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ABSTRACT OF THE DISSERTATION

Investigating the variability of subtropical marine boundary layer
clouds in observations and climate models

by

Timothy Albert Myers

Doctor of Philosophy in Earth Sciences

University of California, San Diego, 2015

Professor Joel Norris, Chair

Low-level clouds found over the eastern subtropical oceans have a substan-

tial cooling effect on Earth’s climate since they strongly reflect solar radiation back

to space, and their simulation in climate models contributes to large uncertainty

in global warming projections. This thesis aims to increase understanding of these

marine boundary layer clouds through observational analysis, theoretical consid-

erations, and an evaluation of their simulation in climate models. Examination

of statistical relationships between cloud properties and large-scale meteorological

variables is a key method employed throughout the thesis. The meteorological

environment of marine boundary layer clouds shapes their properties by affecting

the boundary layer’s depth and structure.

xii



It is found that enhanced subsidence, typically thought to promote bound-

ary layer cloudiness, actually reduces cloudiness when the confounding effect of

the strength of the temperature inversion capping the boundary layer is taken into

account. A conceptual model is able to explain this result. Next, fundamental

deficiencies in the simulation of subtropical clouds in two generations of climate

models are identified. Remarkably, the newer generation of climate models is in

some ways inferior to the older generation in terms of capturing key low-level cloud

processes. Subtropical mid- and high-level clouds are also found to contribute more

to variability in the radiation budget at the top of the atmosphere than previously

thought. In the last portion of the thesis, large inter-model spread in subtropi-

cal cloud feedbacks is shown to arise primarily from differences in the simulation

of the interannual relationship between shortwave cloud radiative effect and sea

surface temperature. An observational constraint on this feedback suggests that

subtropical marine boundary layer clouds will act as a positive feedback to global

warming.

xiii



Chapter 1

Introduction

Clouds are a key aspect of climate through their role in the Earth’s energy

budget. Owing to their high brightness relative to most land and ocean surfaces,

clouds have a cooling effect on the climate by reflecting more shortwave radiation to

space than would be the case for an atmosphere free of clouds. This cooling effect

is estimated to be ∼50 W m−2 (Dolinar et al., 2014) on a global annual mean basis.

In addition, owing to their low temperature relative to most underlying surfaces,

clouds have a warming effect on the climate by emitting less longwave radiation to

space than would be the case for an atmosphere free of clouds. This warming effect

is estimated to be ∼28 W m−2 (Dolinar et al., 2014). Thus, clouds on average cool

the climate system by ∼22 W m−2. This is greater than five times the radiative

forcing expected to occur due to a doubling of the atmospheric concentration of

CO2 (Hartmann, 1994). Assuming a climate feedback parameter of 0.5 K / W

m−2 (Hartmann, 1994), the effect of clouds on the energy balance of the climate

system in steady state translates to a cooling of 11 K!

Clearly, even small changes in global cloudiness can have a large effect on

climate, a notion first formally recognized by Charney et al. (1979). In that study,

the equilibrium global mean surface temperature response due to a doubling of CO2

was estimated using the first global climate models. Unknown changes in cloud

properties under this scenario were inferred through loose theoretical reasoning

to yield an uncertainty of future temperature change of 1.5 K. Combining this

with additional inter-model uncertainty, Charney et al. (1979) concluded that a

1
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doubling of CO2 would result in a global surface warming between 1.5 K and 4.5 K.

Even though climate models since the Charney Report have become much more

complex and realistic, this estimated range of climate sensitivity has remained

virtually unchanged (Randall et al., 2007; Stocker et al., 2014).

Why is this so? The main contributor for this large range of climate sen-

sitivity has been identified as uncertainty of projections of reflected shortwave

radiation by clouds (Webb et al., 2006; Andrews et al., 2012b; Vial et al., 2013).

Models that project less reflection by clouds in the future climate tend to sim-

ulate more global warming compared to models that project more reflection by

clouds. Several studies have suggested that subtropical marine boundary layer

(MBL) cloud feedbacks are at the core of these divergent model projections (Bony

and Dufresne, 2005; Soden and Vecchi, 2011; Vial et al., 2013). It follows that

to reduce the uncertainty of climate sensitivity estimates, a more complete un-

derstanding of MBL clouds is needed. This thesis aims to further our knowledge

of subtropical clouds through observational analysis of, theoretical considerations,

and evaluation of their simulation in climate models.

Subtropical MBL clouds include sheet-like stratus, convective yet horizon-

tally homogenous stratocumulus, and convective scattered shallow cumulus. By

definition, these clouds occur within the marine boundary layer – the first few hun-

dred to several thousand meters of the atmosphere where turbulent fluxes of heat

and moisture shape its thermodynamic profile. The MBL extends to a statically

stable layer where temperature sharply increases with height. This temperature

inversion acts as a lid by preventing free-tropospheric air from mixing with the

moister air of the boundary layer. Climatologically, stratus and stratocumulus

clouds are prevalent along the western coasts of the continents over the subtrop-

ical oceans, while shallow cumulus clouds are prevalent in similar latitudes but

farther west. Distinguishing these regimes are particular large-scale meteorologi-

cal characteristics that help to shape the MBL structure and in turn different cloud

types and properties.

The inter-connectedness between subtropical MBL clouds and the proper-

ties of the meteorological environment in which they occur is a main focus of this
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thesis. Relationships between subtropical clouds and large-scale meteorological

factors such as the temperature inversion strength can elucidate understanding

of the cloud dynamics, help establish statistical models for predicting changes in

cloud properties, and serve as performance metrics for the simulation of subtropical

cloud processes in climate models. Numerous studies have investigated these re-

lationships (e.g. Klein and Hartmann, 1993; Norris and Leovy, 1994; Klein et al.,

1995; Bony and Dufresne, 2005; Clement et al., 2009). What distinguishes this

thesis from previous studies is: 1) the identification of a physical mechanism af-

fecting subtropical MBL cloudiness in observations using novel statistical methods;

2) the discovery of a heretofore unrecognized deficiency in climate model simula-

tion of subtropical clouds; 3) the finding that variability of mid- and high-level

clouds in regions of climatological subsidence can have a larger effect on the top-

of-atmosphere radiation budget than previously thought; 4) the discovery of the

key mechanisms driving subtropical cloud feedbacks in climate models.

To understand how large-scale meteorological conditions can help shape

cloud properties, it is useful to consider one of the simplest theoretical models of

the cloudy MBL, first formulated by Lilly (1968) and briefly discussed here. This

model assumes that the MBL is well mixed with respect to heat and moisture.

In such a framework, the governing equations describe the conservation of mass,

equivalent potential temperature θ, and total water mixing ratio q within the

boundary layer. These equations are written as

dzi
dt

= went − wsub (1.1)

dθ

dt
= (VΔθ0 + weΔθ+ −ΔF )/zi (1.2)

dq

dt
= (VΔq0 + wentΔq+)/zi. (1.3)

Here, zi is the depth of the boundary layer or, equivalently, cloud-top height; went

is the rate of entrainment of tropospheric air into the boundary layer; wsub is the

cloud-top subsidence rate; V is the surface horizontal windspeed multiplied by a

non-dimensional transfer coefficient; ΔF is the radiative flux difference between

the surface and cloud top; and Δθ0 = θ0−θ, Δθ+ = θ+−θ, where θ0 and θ+ are the
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potential temperatures at the sea surface and just above cloud top, respectively.

Identical notation is used for Δq0 and Δq+.

In these equations, V , wsub, θ0, q0, θ+, q+, and ΔF are all specified. If

steady state is assumed, there are then three equations and four unknowns zi,

went, θ, and q. For closure, went must be parameterized in some way. One simple

and physically intuitive formulation is to assume that went = αΔF/Δθ+, where

α is a non-dimensional constant representing the entrainment efficiency (Stevens,

2006). Strong radiative cooling ΔF at cloud top induces negative buoyancy of

air parcels, increasing the entrainment rate, and vice versa. Strong static stability

Δθ+ inhibits the mixing of air between the MBL and the free troposphere, reducing

the entrainment rate, and vice versa. Of course, the value of α must be determined

in some way (empirically or through physical arguments). The formulation of went

is thus a challenging problem, and given the solutions’ to Eqs. 1.1–1.3 dependence

on went, so is the modeling of the cloudy MBL even in this simplified framework

(Stevens, 2006). Climate models cannot explicitly resolve entrainment, suggesting

why they struggle so much to simulate MBL clouds (Wood, 2012).

In steady state, cloud top height is located where the rate of entrainment

went of free-tropospheric air into the boundary layer is balanced by the subsidence

rate wsub at cloud top. Surface heating VΔθ0 and entrainment warming wentΔθ+

are balanced by cloud-top radiative cooling ΔF . Surface moisture flux VΔq0 is

balanced by the flux of dry air from the free troposphere wentΔq+. It is clear that

large-scale environmental conditions affect the depth of the boundary layer and its

moisture and heat content. These properties of the MBL in turn determine cloud

thickness, water content, horizontal coverage, and albedo.

A palpable way in which theory of a cloudy MBL can be used to increase un-

derstanding and indeed explain observed relationships among subsidence, inversion

strength, and subtropical MBL cloudiness is presented in the subsequent chapter.

In Chapter 3, we evaluate the performance of a suite of coupled climate models

in simulating relationships between meteorological variables and subtropical cloud

radiative effect. Finally, in Chapter 4, we use a diagnostic technique employing

these relationships to explain the subtropical cloud feedbacks produced in global
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warming simulations in an ensemble of climate models and exploit observations to

suggest how subtropical cloud radiative effect will change in a warming climate.

The reader should note that, while there is an underlying theme of this

thesis, each chapter is written as a stand-alone study with key results that do not

depend critically on the results of other chapters.



Chapter 2

Observational Evidence That

Enhanced Subsidence Reduces

Subtropical Marine Boundary

Layer Cloudiness

Low-level clouds have the largest net cloud radiative effect of all cloud types,

acting to cool the planet via high albedo and a weak greenhouse effect (Hartmann

et al., 1992). The large and persistent decks of stratus and stratocumulus over east-

ern subtropical oceans are the primary contributors to this cooling effect. These

clouds occur predominantly within a shallow, well-mixed marine boundary layer

(MBL) over cool sea surface temperatures (SSTs) and under a strong tempera-

ture inversion associated with the descending branches of the Hadley circulation

(Albrecht et al., 1995; Norris, 1998a; Wood and Hartmann, 2006). Both inversion

strength and subsidence weaken farther west in the downstream region of the trade

winds, and the stratus and stratocumulus eventually transition to scattered trade

cumulus, which have a more minor cooling effect. These trade cumulus often oc-

cur within a deep, decoupled MBL (Albrecht et al., 1995; Norris, 1998a; Wood and

Hartmann, 2006).

Both stratus and stratocumulus and trade cumulus are intimately connected

6
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to the properties of the MBL in which they exist. In a well-mixed MBL, cloud-top

radiative cooling induces negative buoyancy and thereby drives the turbulence that

mixes heat and moisture within the MBL (Lilly, 1968). Cloud base resides at the

lifting condensation level, and cloud top coincides with the MBL topat the base

of a temperature inversion and sharp decrease in moisture. For a well-mxed MBL

in steady state, radiative cooling at cloud top is largely balanced by entrainment

heating, which equals the rate of cloud-top subsidence warming. Cloud-top subsi-

dence and entrainment are thus crucial components of any realistic physical model

of a cloudy MBL. When the MBL is decoupled, well-mixed subcloud and cloud

layers are separated by a stable transition layer in which potential temperature

increases with height. This inhibits the mixing of heat and moisture between the

two layers, and transport of moisture from the subcloud layer to the cloud layer

intermittently occurs in rising cumulus plumes.

Wood and Bretherton (2004) found that shallow, cloudy MBLs tend to be

well mixed, whereas deep MBLs tend to be decoupled. Several physical mechanisms

are thought to cause variations in MBL depth and the extent of decoupling (and

thereby variations in MBL cloudiness). A strong inversion is thought to promote

a shallow, well-mixed MBL containing stratus and stratocumulus (relatively large

cloud fraction) by inhibiting entrainment, while a weak inversion is thought to

promote a deep, decoupled MBL containing scattered trade cumulus (relatively

small cloud fraction) by promoting entrainment (Bretherton and Wyant, 1997).

Enhanced subsidence and the associated surface divergence are thought to promote

a shallow MBL. This may lead to a more well-mixed MBL as well as reduced cloud

thickness (Deardorff, 1976; Schubert et al., 1979).

Several observational studies have investigated the relationship between

low-level cloud amount and inversion strength and subsidence over various time

scales that confirm the results from theoretical models. Over the seasonal cycle,

lower tropospheric stability (LTS) and estimated inversion strength are in phase

with and positively correlated to low-level cloud fraction and explain most of its

seasonal variability (Klein and Hartmann, 1993; Wood and Bretherton, 2006; Sun

et al., 2011). Clement et al. (2009) found strong positive correlations between
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low-level cloud fraction and LTS and pressure vertical velocity at 500hPa over in-

terannual and decadal time scales over the northeast Pacific. Muñoz et al. (2011)

investigated the climatology of the MBL over a coastal site in northern Chile. They

found that cloudy nights tend to be characterized by stronger inversions, enhanced

subsidence, and a shallower MBL than clear nights.

Although providing strong observational evidence for some of the main

physical mechanisms controlling MBL cloudiness, previous studies have not sys-

tematically taken into account the relationship between subsidence and inversion

strength. Climatologically, strong inversions tend to occur where and when sub-

sidence is enhanced. There are two reasons for this. If the free troposphere is

statically stable, enhanced subsidence will act to locally warm air above the MBL.

This will obviously act to increase the strength of the inversion. Furthermore, sub-

sidence over eastern subtropical oceans is climatologically associated with equa-

torward winds and meridional cold air advection, which generally decreases with

height. More cooling within the MBL than above it due to the vertical profile

of advection also acts to increase the strength of the inversion. Considering the

correlation between subsidence and inversion strength, one might wonder whether

enhanced subsidence typically coincides with greater MBL cloudiness only because

enhanced subsidence is associated with strong inversions.

Some recent studies have suggested that enhanced subsidence, when op-

erating independently from inversion strength, actually reduces MBL cloudiness.

Using a mixed-layer model forced by large-scale conditions, Zhang et al. (2009)

showed that the probability of a cloud-free equilibrium solution increases as sur-

face divergence (∼subsidence) increases, although cloud fraction was found to be

larger overall under subsidence than under ascent. Sandu and Stevens (2011)

used a large-eddy simulation to explore the stratocumulus-to-cumulus (Sc-to-Cu)

transition. Although the SST gradient and initial inversion strength were the

dominant factors controlling the transition, reducing subsidence to zero enabled a

thicker and less broken residual stratocumulus layer to persist to the end of the

trajectory. Mauger and Norris (2010) used Lagrangian trajectories to assess the

impact of reanalysis meteorological history on satellite-observed low-level cloud
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fraction over the northeast Atlantic. They found that enhanced subsidence and

surface divergence are associated with reduced low-level cloud fraction 0–12 h later,

whereas increased LTS is associated with increased low-level cloud fraction 24–48 h

later. Kubar et al. (2012) examined correlations between reanalysis pressure verti-

cal velocity at 500hPa and satellite low-level cloud fraction using daily through 90-

day-mean values. They found that over the eastern subtropical oceans, enhanced

subsidence is associated with a near-zero or negative change in cloud fraction.

What is needed is a globally based observational study that systematically

investigates the independent effects of inversion strength and subsidence on MBL

cloudiness. In the present work, we use compositing techniques to examine how

low-level cloud fraction, liquid water path (LWP), estimated cloud-top height, and

morphological cloud type vary with vertical velocity at 700 hPa and estimated

inversion strength when either is held constant. The spatial domain comprises

subsidence regions over tropical (30◦S−30◦N) oceans, and we analyze geographical,

seasonal, and interannual relationships. By focusing only on areas experiencing

subsidence rather than some arbitrarily defined geographic domain, we avoid the

confounding effects of ascent – which has a fundamentally different relationship to

MBL cloudiness than does subsidence – in our interpretation of the results. These

results will increase our understanding of the dynamical and thermodynamical

conditions controlling subtropical MBL cloudiness and may have relevance to the

cloud response to climate change.

2.1 Data

Table 2.1 summarizes the data sources used. Satellite cloud records include

monthly mean low+midlevel cloud fraction and cloud-top temperature from the

International Satellite Cloud Climatology Project (ISCCP) (Rossow and Schif-

fer, 1999), low+midlevel cloud fraction from the Advanced Very High Resolution

Radiometer (AVHRR) Pathfinder Atmospheres - Extended dataset (PATMOS-x)

(Heidinger et al., 2012), total liquid water path from microwave retrievals pro-

duced by the University of Wisconsin team (UWISC) (O’Dell et al., 2008), and
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total cloud fraction and cloud-top height from the Moderate Resolution Imaging

Spectroradiometer (MODIS) (Minnis et al., 2011b,a). The ISCCP and PATMOS-x

data were corrected for artifacts in a manner similar to that described in Clement

et al. (2009), but use of uncorrected data has minimal impact on our results. De-

spite our focus on MBL clouds, we use combined low- and midlevel cloudiness

because ISCCP and PATMOS-x tend to misplace some inversion-capped true low-

level clouds in the midlevel category (Mace et al., 2006). Since there are rarely true

midlevel clouds in tropical ocean subsidence regions, combining retrieved low- and

midlevel cloud fraction (CF) yields a more accurate estimate of true MBL cloudi-

ness (Minnis et al., 1992). Because ISCCP and PATMOS-x report only low- and

midlevel CF unobstructed by higher clouds, we follow the method of Rozendaal

et al. (1995) to estimate the true MBL cloud fraction L as

L = L′ +M ′/(1−H ′), (2.1)

where L′, M ′, andH ′ are the given low-, mid-, and high-level retrievals respectively.

This assumes that the actual clouds are randomly overlapped.

Changes in cloud structure occurring in the Sc-to-Cu transition are not

readily perceived by the passive remote sensing of ISCCP, PATMOS-x, and MODIS.

As a complement to the satellite datasets, we examine variability in the frequency

of occurrence of low cloud type reported by observers on ships. Previous research

has demonstrated that visually identified ordinary stratocumulus, cumulus-under-

stratocumulus, and large cumulus are associated with different average values of

MBL depth and decoupling (Norris, 1998a). We obtained visual cloud type reports

from the Extended Edited Cloud Report Archive (EECRA) (Hahn and Warren,

1999). We averaged individual cloud reports within 2.5◦ × 2.5◦ grid boxes to

monthly mean values of the frequency of occurrence of each low cloud type. Only

daytime reports were used because observers have difficulty correctly identifying

cloud type under conditions of poor illumination (Norris, 1998a).

The Climate Forecast System Reanalysis (CFSR) provided monthly mean

atmospheric data for our analysis (Saha et al., 2010). We supplemented this with

the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim

ReAnalysis (ERA-Interim) (Dee et al., 2011), the Japanese 25-year Reanalysis
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Project (JRA-25) (Onogi et al., 2007), and the Modern-Era Retrospective Analysis

for Research and Applications (MERRA) (Rienecker et al., 2011). For a measure

of subsidence, we chose pressure vertical velocity at 700 hPa ω700 rather than at

the more traditional level of 500hPa because the former is closer to the top of the

MBL. Moreover, ω700 is more directly connected to estimated inversion strength

through vertical temperature advection. For estimated inversion strength (EIS),

we use the formula derived by Wood and Bretherton (2006); that is,

EIS = LTS− Γ850
m (z700 − LCL), (2.2)

where lower tropospheric stability (LTS) is the difference in potential temperature

between the 700-hPa level and the surface, Γ850
m is the moist adiabatic lapse rate at

850hPa, z700 is the height of the 700-hPa level relative to the surface, and LCL is

the height of the lifting condensation level relative to the surface. The calculation

of EIS requires SST, temperature at 700 hPa T700, surface relative humidity, sea

level pressure (SLP), and z700. As in Wood and Bretherton (2006), we assume a

fixed relative humidity of 80%, which simplifies the calculation while introducing

little error. To calculate the LCL, we use the method of Georgakakos and Bras

(1984).

The ISCCP, PATMOS-x, and EECRA cloud data are available on an equal-

angle grid with latitude-longitude spacing of 2.5◦ × 2.5◦. This is the coarsest grid

used in the investigation, and we bilinearly interpolated other data at finer reso-

lutions onto this grid. For our climatological analysis, we examine how cloud and

meteorological properties covary as a function of grid box and long-term monthly

mean. For our interannual analysis, we examine how monthly anomalies covary in

each grid box. Long-term trends were removed from the anomalies in each grid

box to avoid problems caused by possible low-frequency artifacts in the cloud data

and reanalyses, but use of undetrended data has minimal impact on our results.

The domain for our investigation comprises all oceanic grid boxes within

30◦S − 30◦N that have long-term mean ω700 > 0 for every calendar month and

monthly mean ω700 > 0 for at least 80% of the time record. We only examine

anomalies for months with ω700 > 0. This selection is loosely based on the methods

of Bony et al. (2004), who divided the tropics into dynamical regimes according to
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ω500 to quantify separately the thermodynamic and dynamic components of cloud

changes in models from phase 3 of the Coupled Model Intercomparison Project

(CMIP3) (Meehl et al., 2007). Almost all of the grid boxes lie over eastern sub-

tropical oceans and include stratocumulus and trade cumulus regions. The time

periods for each dataset used in our investigation are listed in Table 2.1.

Statistical significance of various quantities is provided by a t test for the

difference between two sample means. We take into account temporal and spatial

autocorrelation by estimating, for each cloud variable, the ratio of the number

of statistically independent points (effective number) to the nominal number of

points. Our assumption is that the number of dependent points is equal to the

lag at which the zonal, meridional, or temporal autocorrelation coefficients crosses

zero. Before calculating zonal and meridional autocorrelation, we subtract the

zonal mean of each latitude band and the meridional mean of each longitude band,

respectively, for both the long-term monthly means and monthly anomalies. To

calculate the temporal autocorrelation of the seasonal cycle and monthly anoma-

lies, we subtract the long-term annual mean from each grid box. We find that one

out of six points is independent zonally and one out of two meridionally, for both

the climatological data and interannual anomalies. For months of the seasonal

cycle, one out of three points is independent temporally. For the interannual anal-

ysis, between one out of eight (for ISCCP low+midlevel cloud-top height) and one

out of two (for MODIS total cloud fraction) monthly anomalies are independent

temporally.

2.2 Results

Figure 2.1 shows climatological annual mean low+midlevel CF, EIS, ω700,

and total LWP over the tropics. Grid boxes used in the investigation are marked

with an ×. Regions of large CF generally coincide with regions of strong EIS and

strong ω700. It is also evident that EIS and ω700 are highly spatially correlated and

have coinciding maxima, suggesting that they are tightly linked. This is consistent

with the paradigm that the descending branches of the Hadley circulation and trade
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winds promote a strong capping inversion via subsidence warming and horizontal

cold air advection. CF maxima, however, are not always collocated with the EIS

and ω700 maxima near western coasts of continents. One reason is that outflow

of dry air from the continents dries the MBL. Second, the 24–48-h response time

of cloudiness to EIS changes causes CF maxima to be downstream from the EIS

maxima closer to the coast (Klein et al., 1995; Mauger and Norris, 2010). Third,

very strong subsidence along the coast may suppress cloudiness, as proposed by

Simon (1977) and consistent with Mauger and Norris (2010), who found that

strong subsidence nearly instantaneously leads to a reduction in CF. The reduction

of cloudiness along the coasts is even more prominent in total LWP (Fig. 2.1d).

To investigate the EIS–ω700 relationship more deeply, we calculate joint

frequency distributions of EIS and ω700. The joint frequency distributions of the

climatology and interannual anomalies are shown in Fig. 2.2. The climatological

distribution (Fig. 2.2a) is clearly elliptical in shape and slopes from weak EIS and

weak ω700 to strong EIS and strong ω700 (r = 0.48). Surprisingly, the interannual

monthly anomaly distribution (Fig. 2.2b) exhibits no such behavior (r = 0.06). In

fact, the distribution is essentially symmetric about both axes and nonsloped. The

positive correlation between EIS and ω700 evident over the climatology is consistent

with a relationship physically linked through vertical warm air advection and hor-

izontal cold air advection. In contrast, the nonexistent correlation for interannual

monthly anomalies indicates that these mechanisms can be overwhelmed by other

influences.

Next, we average all cloud property values falling into each EIS–ω700 bin.

Figures 2.3a and 2.4a show, respectively, climatological variations and interannual

anomalies of ISCCP low+midlevel CF as a function of EIS and ω700. In the cli-

matological plot, large CF (red) is found where EIS is strong and small CF (blue)

is found where EIS is weak. This indicates that EIS is the dominant predictor

of CF in the parameter space of the plot, consistent with results from previous

studies (Klein and Hartmann, 1993; Wood and Bretherton, 2006; Sun et al., 2011).

Closer examination of both plots reveals the independent impacts of EIS and ω700

on cloudiness. The overall occurrence of the largest CF values in the lower right
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quadrants and the smallest CF values in the upper left quadrants suggest that, un-

der conditions of strong EIS, weaker ω700 enhances CF and that, under conditions

of weak EIS, stronger ω700 reduces CF. This behavior is especially evident in the

interannual plot, suggesting that both EIS and ω700 play a significant role in in-

terannual variations of CF. Vertical columns in Figs. 2.3a and 2.4a, corresponding

to conditions of uniform EIS, generally exhibit decreasing CF from bottom (weak

ω700) to top (strong ω700). Horizontal rows in Figs. 2.3a and 2.4a, corresponding

to conditions of uniform ω700, generally exhibit increasing CF from left (weak EIS)

to right (strong EIS).

To more clearly discern the impact of subsidence on CF, we partitioned

adjacent pairs of vertical columns into upper and lower halves according to the

median ω700 value of the column pair (lines across Figs. 2.3a and 2.4a). We then

calculated the difference in mean CF between these two subsets divided by the

difference in mean ω700. This is essentially a centered finite-differencing scheme

for estimating the CF/ω700 slope. At each value of uniform EIS, increasing ω700 is

associated with reduced CF (Figs. 2.3c and 2.4c). We also partitioned adjacent

pairs of horizontal rows into upper and lower halves according to the median EIS

value of the row pair (other set of lines across Figs. 2.3a and 2.4a). At each value

of uniform ω700, increasing EIS is associated with enhanced CF (Figs. 2.3b and

2.4b).

Changes in CF with ω700 or EIS for individual intervals displayed in Figs.

2.3b, 2.3c, 2.4b, and 2.4c are not always statistically significant due to the small

sample size. For this reason we calculated changes in CF with ω700 or EIS, averaged

over all intervals, with weighting according to the number of values in each interval.

Partitioning into upper and lower ω700 subsets according to the median ω700 value

over all EIS intervals is akin to calculating the total derivative D(CF)/D(ω700)

since the variation of ω700 with EIS is not taken into account. For the climato-

logical data, the upper subset has stronger average EIS than the lower subset.

Partitioning according to the median ω700 value in each individual EIS interval

is akin to calculating the partial derivative ∂(CF)/∂(ω700)|EIS because the upper

subset has the same average EIS value as the lower subset. We calculated the
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total derivative D(CF)/D(EIS) and the partial derivative ∂(CF)/∂(EIS)|ω700 in a

similar manner.

Table 2.2 lists total and partial derivative results for ISCCP low+midlevel

CF, PATMOS-x low+midlevel CF, and MODIS total CF with CFSR EIS and

ω700. Similar results were obtained for each of the five primary MBL cloud regions

(Table A2.1) and using EIS and ω700 from the other three reanalyses (Table A2.2).

All three satellite datasets exhibit positive values of D(CF)/D(ω700) but negative

values of ∂(CF)/∂(ω700)|EIS for climatological relationships. This indicates that the

geographical and seasonal association between greater cloud fraction and stronger

subsidence is, in fact, driven by stronger temperature inversions. When EIS is held

constant, subsidence actually reduces CF. In contrast, ∂(CF)/∂(ω700)|EIS is nearly

equal to D(CF)/D(ω700) for interannual anomalies, consistent with a near-zero

correlation between EIS and ω700 over this time scale. In almost all cases, negative

∂(CF)/∂(ω700)|EIS values are statistically significant. Table 2.2 also shows that

the satellite datasets exhibit more positive values for ∂(CF)/∂(EIS)|ω700 than for

D(CF)/D(EIS) for the climatological relationships, while the interannual values

are nearly equal. Although the difference in the former case is not statistically

significant, it suggests that the effect of subsidence partially offsets the effect of

inversion strength on geographical and seasonal variations of cloudiness. Standard

deviations of EIS and ω700 for the climatological data are approximately 3 K and

10 hPa day−1. Given the ∂(CF)/∂(EIS)|ω700 and ∂(CF)/∂(ω700)|EIS values in Table

2.2, this indicates that EIS is the dominant predictor of climatological variations

of CF. Standard deviations of EIS and ω700 for the interannual anomalies are

approximately 1 K and 10 hPa day−1, indicating that the two parameters are

approximately equal contributors to interannual variations of CF.

Figures 2.5a and 2.6a show climatological and interannual UWISC total

LWP as a function of EIS and ω700. Compared to CF, LWP is much more sensi-

tive to changes in ω700 than to EIS changes. In the climatological and especially

the interannual plot, reduced LWP (blue) occurs with stronger subsidence and

enhanced LWP (red) occurs with weaker subsidence. This suggests that ω700 is

more dominant than EIS in predicting interannual variations of LWP. For each
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EIS interval, LWP decreases as ω700 increases (Figs. 2.5c and 2.6c), with high

statistical significance for the interannual relationships. For each ω700 interval in

the climatological plot, LWP increases as EIS increases (Fig. 2.5b), but this effect

is only statistically significant for middle values of ω700.

Table 2.3 lists total and partial derivative results for UWISC LWP with

CFSR EIS and ω700 (results using other reanalyses are in Table A2.3). Clima-

tological and interannual values of ∂(LWP)/∂(ω700)|EIS are negative and strongly

statistically significant. Climatological values of D(LWP)/D(ω700) are less neg-

ative than values of ∂(LWP)/∂(ω700)|EIS, suggesting that strengthening of the

temperature inversion partially offsets the reduction in LWP caused by stronger

subsidence. Climatological values of D(LWP)/D(EIS) are less positive than val-

ues of ∂(LWP)/∂(EIS)|ω700, suggesting that stronger subsidence partially offsets

the enhancement of LWP caused by a stronger inversion. Interannual values of

D(LWP)/D(EIS) and ∂(LWP)/∂(EIS)|ω700 are near zero and slightly negative.

Values derived from the other reanalyses are near zero or slightly positive. This

indicates that EIS plays almost no role in interannual variations in LWP; rather,

ω700 is the overwhelmingly dominant predictor here. Recalling the climatological

standard deviations of EIS and ω700 noted earlier, it is clear that the two parame-

ters contribute nearly equally to climatological variations of LWP.

Since total LWP retrievals include both cloudy and clear portions of the grid

box, observed reductions in LWP caused by enhanced subsidence can result from

decreased cloud thickness, decreased horizontal cloud fraction, and/or decreased

liquid water content. The fact that CF responds less to subsidence, relative to EIS,

than does LWP suggests that decreased cloud thickness is a substantial contributor

to reduced LWP. We investigate this hypothesis by examining changes in cloud-

top height ztop. Since no global multidecadal datasets of cloud-top height exist,

we estimate ztop as (SST − Ttop)/Γ, where Ttop is ISCCP low+midlevel cloud-top

temperature, and Γ is the environmental lapse rate [assumed to be 7.1 Kkm−1

following Minnis et al. (1992)].

Figure 2.7a shows climatological ztop as a function of EIS and ω700. It is

apparent that ztop is lowest (<1400 m) when EIS and ω700 are both strong and
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highest (>2200 m) when EIS and ω700 are both weak. The physically plausible

cloud-top height distribution provides confidence in the quality of the ztop esti-

mates; a similar plot made using MODIS ztop looks qualitatively similar. Values of

ztop decrease as EIS increases for each interval of ω700 (Fig. 2.7b), consistent with

previous reports of lower MBL heights for stronger temperature inversions (Norris,

1998a). Values of ztop decrease as ω700 increases for intervals of EIS < 2 K (Fig.

2.7c), as might be expected from stronger subsidence pushing down cloud top.

Although not statistically significant, ztop increases as ω700 increases for intervals

of EIS > 2 K. It may be the case that this behavior in the climatology partially

results from our assumption of a constant lapse rate. A shallower MBL under

stronger subsidence is more likely to be well mixed and have a lapse rate closer

to adiabatic (Wood and Bretherton, 2004), thus producing a colder cloud-top tem-

perature as an alternative to greater cloud-top height. Assuming a fixed cloud-top

height instead of a fixed lapse rate enabled us to test our hypothesis by creating a

composite plot with lapse rate as a function of EIS and ω700 (not shown). Lapse

rate did, indeed, become closer to adiabatic under stronger subsidence within the

EIS > 2 K regime.

Figure 2.8 shows interannual anomalies in ztop as a function of EIS and

ω700. Values of ztop decrease as EIS increases for every interval of ω700, and values

of ztop decrease as ω700 increases for every interval of EIS. Although not shown, the

MODIS ztop plot shows similar behavior. All of these relationships are statistically

significant. Table 2.4 lists total and partial derivative results for ISCCP-derived

ztop with CFSR EIS and ω700 (results using other reanalyses are in Table A2.4). Cli-

matological and interannual values of ∂(ztop)/∂(ω700)|EIS and ∂(ztop)/∂(EIS)|ω700
are negative and statistically significant. Climatological values of D(ztop)/D(ω700)

and D(ztop)/D(EIS) are more negative than their respective partial derivatives,

suggesting that the strengthening of the temperature inversion and stronger sub-

sidence supplement each other in reducing cloud-top height.

For further insight into the response of cloudiness to changes in inversion

strength and subsidence, we examine the climatological and interannual variations

in the frequency of low cloud types reported by surface observers on ships. These
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provide a qualitative measure of the depth of and degree of mixing in the MBL.

Ship sampling is sparse over many areas of the ocean, so we required at least

10 observations per month to create a monthly anomaly. Figure 2.9a shows the

climatologically most frequently occurring low cloud type within each EIS–ω700 bin.

The Sc-to-Cu transition is clearly apparent (Wyant et al., 1997). Beginning in the

upper right portion of the plot, where EIS and ω700 are strong, and proceeding to

the lower left, where EIS and ω700 are weak, the dominant cloud types progress from

stratocumulus and stratus (Sc+St) to cumulus under stratocumulus (Cu-under-

Sc) to small cumulus (small Cu) and, finally, to large cumulus (large Cu). This

transition in EIS, ω700, and cloud types parallels what occurs along a trajectory

following the trade winds over the eastern subtropical ocean (Norris, 1998b). The

composite plots using the other reanalyses (not shown) behave similarly.

The climatological distribution of low cloud types with EIS and ω700 is

also consistent with previous figures (Figs. 2.3a, 2.5a, and 2.7a). The middle

right portion of the plot (strong EIS and median ω700) is dominated by Sc+St.

It has the largest CF, large LWP, and low ztop, as expected for relatively thick

stratocumulus. The lower left portion of the plot (weak EIS and weak ω700) is

dominated by large Cu. It has relatively small CF, large LWP, and highest ztop,

as expected for vertically extensive cumulus. The middle left portion of the plot

(weak EIS and median ω700) is dominated by small Cu, and occurrences of no

low cloud are most frequent here. It has the smallest CF and smallest LWP, as

expected for vertically limited cumulus or a cloudless MBL.

Figure 2.9b shows the low cloud type with the largest positive interan-

nual anomaly in frequency of occurrence within each EIS-ω700 bin. Although not

shown, composite plots using the other reanalyses look similar. For intervals of

ω700 anomalies near zero, there is general progression from Sc+St to large Cu for

positive to negative anomalies in EIS. This is associated with a decrease in CF,

almost no change in LWP, and an increase in ztop (Figs. 2.4a, 2.6a, and 2.8a).

For intervals of EIS anomalies near zero, there is general progression from Sc+St

to small Cu for negative to positive anomalies in ω700. This is associated with a

decrease in CF, a large decrease in LWP, and a decrease in ztop. Although weaker
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EIS and stronger subsidence both promote more cumulus and less stratocumulus,

the differences in CF, LWP and ztop suggest that the underlying processes are not

identical.

2.3 Conceptual model

We now consider a highly idealized one-dimensional conceptual model of

a cloud within the MBL to understand how changes in subsidence and inversion

strength independently affect cloud properties. We assume that the marine bound-

ary layer is in equilibrium and ignore horizontal advection so that subsidence ωsub

balances the rate of entrainment ωent at cloud top (approximately the top of the

MBL). For the monthly data on which our study is based, ignoring horizontal ad-

vection is reasonable (Wood and Bretherton, 2004; Wang et al., 2011). We also

assume that entrainment rate is inversely proportional to inversion strength, which

is reasonable if we ignore variations in cloud-top radiative cooling and surface heat-

ing (Lilly, 1968). Figure 2.10 shows a schematic of our conceptual model. The lower

troposphere has subsidence profile ωsub(z) that is zero at the surface and increases

monotonically with height. Cloud-top height ztop occurs at the elevation where

ωent matches ωsub(z). Stratocumulus cloud-base height zbase is at the saturation

level for the upper part of the MBL and may differ from the lifting condensation

level of surface air if the MBL is decoupled.

The schematic shows two possible pathways by which ztop decreases by

some distance Δz. In the first case (Fig. 2.10a) we imagine that the vertical ve-

locity profile is perturbed by some amount Δω > 0 so that subsidence increases

throughout the lower troposphere. For simplicity, we assume that enhanced sub-

sidence warming is offset by enhanced horizontal cold air advection or some other

factor so that inversion strength, and therefore entrainment rate, does not change.

To satisfy equilibrium, cloud top must decrease to some new height ztop − Δz

where the unchanged rate of entrainment balances the perturbed subsidence pro-

file (Schubert et al., 1979). Since the entrainment rate does not change, we assume

that the relative humidity in the upper MBL does not change, implying no change
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in zbase. The net result is a reduction of cloud thickness and LWP. Subsidence

may push the MBL top below the saturation level in some places (if cloud-base

height is horizontally inhomogeneous) or all places (Zhang et al., 2009). This will

reduce CF and favor small cumulus. Although not illustrated in Fig. 2.10a, a

weakening of subsidence with unchanged entrainment rate will promote increas-

ing ztop, cloud thickness, LWP, CF, and stratocumulus (Deardorff, 1976; Sandu

and Stevens, 2011). This is consistent with the large-eddy simulation results of

Blossey et al. (2013) and Bretherton et al. (2013), who examined the response

of stratocumulus, cumulus-under-stratocumulus, and shallow cumulus to idealized

climate perturbations. For each cloud type, they found increased cloud thickness

due to a rise in cloud top under reduced subsidence and warming SSTs compared

to warming SSTs alone (with nearly the same slight increase in inversion strength

for the two cases).

In the second case (Fig. 2.10b), we imagine that the vertical velocity profile

is unchanged while the inversion becomes stronger and entrainment weakens. To

satisfy equilibrium, cloud top must decrease to some new height ztop −Δz where

the reduced entrainment rate ωent − Δω balances lesser subsidence at lower ele-

vation. Since the entrainment rate weakens, we assume there is less drying and

the relative humidity in the upper MBL increases, resulting in a lowering of zbase

by some distance Δz∗. If stratocumulus cloud base lowers more than cloud top

(Δz∗ > Δz), cloud thickness and LWP increase. If humidity is horizontally inho-

mogeneous, then moistening may lower the saturation level below the MBL top in

some places. This will enhance CF and favor stratocumulus. This mechanism is

consistent with the modeling results of Bretherton et al. (2013), who found that

an increase in EIS for constant subsidence caused increased thickness of cumulus-

under-stratocumulus and shallow cumulus due to cloud base lowering more than

cloud top, and almost no change in stratocumulus thickness due to cloud base

lowering approximately as much as cloud top. Although not illustrated in Fig.

2.10b, a reduction of inversion strength and enhancement of entrainment rate will

promote rising ztop and increased MBL drying (Deardorff, 1976). This will favor

large cumulus whereby an increase in cumulus thickness offsets the reduction in
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LWP associated with smaller CF, perhaps explaining why LWP appears to be less

sensitive to EIS changes than ω700 changes.

2.4 Conclusions

This study used a combination of satellite cloud data, visual cloud obser-

vations, and reanalysis meteorological parameters to investigate how variations

in subsidence and inversion strength independently affect marine boundary layer

cloud fraction, liquid water path, cloud-top height, and morphological cloud type.

Compositing cloud data into intervals of estimated inversion strength and ω700

prevented the climatological association between stronger temperature inversions

and stronger subsidence from producing a confounding correlation with cloudiness

that affected previous studies. Using this approach, we have found the following.

• For uniform estimated inversion strength, enhanced subsidence reduces cloud

fraction, total liquid water path, cloud-top height, and frequency of stratocu-

mulus.

• For uniform subsidence, enhanced estimated inversion strength reduces cloud-

top height but increases cloud fraction and frequency of stratocumulus.

• Estimated inversion strength is the dominant contributor to climatological

variability in cloud fraction.

• Subsidence is the dominant contributor to interannual variability in liquid

water path.

• Estimated inversion strength and subsidence contribute approximately equally

to climatological variability in liquid water path and interannual variability

in cloud fraction.

A simple conceptual model helps explain the above results by assuming

that 1) subsidence balances entrainment at cloud top and 2) entrainment rate

and drying is inversely proportional to inversion strength. Assuming no change
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in inversion strength, stronger subsidence pushes down cloud top and thereby

reduces cloud thickness and cloud fraction. This favors small cumulus. Weaker

subsidence allows cloud top to rise and thereby enhances cloud thickness and cloud

fraction. This favors stratocumulus. Assuming no change in subsidence, a stronger

inversion results in lower cloud top due to less entrainment but greater cloud

thickness and cloud fraction due to less drying. This also favors stratocumulus. A

weaker inversion results in higher cloud top due to more entrainment but reduced

stratocumulus thickness and less cloud fraction due to more drying. This favors

large cumulus.

Climatologically, inversion strength and subsidence are positively corre-

lated. Thus, subsidence partially offsets enhanced cloud fraction due to a stronger

inversion, and a stronger inversion partially offsets reduced liquid water path due

to stronger subsidence. These cancelling effects, however, probably do not apply

to projected climate change. Models currently predict that inversion strength over

eastern subtropical oceans will increase, while subsidence will weaken (Held and

Soden, 2006; Vecchi and Soden, 2007; Webb et al., 2012). In this case, our results

suggest that greater inversion strength and weaker subsidence will work together

to favor greater marine boundary layer cloud fraction and liquid water path over

eastern subtropical oceans. These processes act to increase albedo from cloudi-

ness and may counteract other processes acting to decrease it, such as warmer sea

surface temperature and greater downwelling radiation from more CO2 in the at-

mosphere (Norris and Leovy, 1994; Gregory and Webb, 2008; Blossey et al., 2013;

Bretherton et al., 2013). The effects of weakening subsidence on marine boundary

layer cloudiness will likely exert a negative feedback to global warming that will

oppose other positive cloud feedbacks.
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Tables and Figures

Table 2.1: Summary of data used in the investigation.

Table 2.2: Ratio of average CF difference over average CFSR ω700 or EIS difference
for above- and below-median ω700 or EIS. Boldface and italicized text indicates
statistical significance at the 90% level.

Table 2.3: As in Table 2.2, but for LWP.
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Figure 2.1: (a) 1984–2009 mean annual ISCCP low+midlevel cloud fraction, (b)
CFSR estimated inversion strength, (c) CFSR pressure vertical velocity at 700
hPa, and (d) 1988–2008 mean annual UWISC total liquid water path. The ×
indicates grid boxes used in subsequent analyses.
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Table 2.4: As in Table 2.2, but for ztop.
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Figure 2.2: EIS–ω700 joint frequency distributions of (a) 1984–2009 CFSR geo-
graphical and seasonal climatology and (b) interannual anomalies. In each plot, the
size of the box within each bin is proportional to the number of values contributing
to the average.
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Figure 2.3: (a) Average ISCCP low+midlevel CF plotted as colors in EIS–ω700

bins for the geographical and seasonal climatology. (b) Ratio of the difference in
average CF over the difference in average EIS for above- and below-median EIS
in each ω700 interval. (c) Ratio of the difference in average CF over the difference
in average ω700 for above- and below-median ω700 in each EIS interval. Error bars
indicate 90% confidence limits. In each plot, the size of the box within each bin
or circle within each interval is proportional to the number of values contributing
to the average. Also, the black solid lines in (a) demarcate the median EIS values
used in (b) and median ω700 values used in (c).
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Figure 2.4: As in Fig. 2.3, but for ISCCP low+midlevel CF interannual
anomalies.
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Figure 2.5: As in Fig. 2.3, but for UWISC total LWP geographical and seasonal
climatology.
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Figure 2.6: As in Fig. 2.3, but for UWISC total LWP interannual anomalies.
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Figure 2.7: As in Fig. 2.3, but for ISCCP estimated cloud-top height geographical
and seasonal climatology.
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Figure 2.8: As in Fig. 2.3, but for ISCCP estimated cloud-top height interannual
anomalies.
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Figure 2.9: (a) Most frequently occurring low cloud type plotted as colors in
EIS–ω700 bins for the geographical and seasonal climatology and (b) low cloud
type with the largest positive interannual anomaly in frequency of occurrence. In
each plot the size of the box within each bin is proportional to the number of
contributing values. Sc+St includes CL 5 (stratocumulus) and CL 6 (fair-weather
stratus). Cu-under-Sc includes CL 8 (cumulus occurring with stratocumulus but
not spreading into it) and CL 4 (cumulus spreading into stratocumulus). SmallCu
includes CL 1 (cumulus with little vertical extent) and CL 0 (no low cloud present).
LargeCu is CL 2 (cumulus with moderate or large vertical extent). See Table 1 of
Norris (1998a) for details.
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a) Stronger Subsidence, Fixed Entrainment b) Weaker Entrainment, Fixed Subsidence

Figure 2.10: Conceptual model of cloud-top and cloud-base height variations
due to changes in subsidence and inversion strength for an MBL in equilibrium.
The lower troposphere has a monotonic subsidence profile ωsub(z) [solid diagonal
line in (a) and (b)] that is zero at the surface. Cloud-top height ztop occurs where
entrainment rate ωent matches ωsub(ztop) [filled circles in (a) and (b)], and stratocu-
mulus cloud-base height zbase is at the saturation level for the upper part of the
MBL (other filled circles). The diagram shows two possible pathways by which
ztop decreases by some distance Δz. Gray solid (dashed) lines illustrate initial
(final) cloud states. In (a), the vertical velocity profile is perturbed by Δω > 0
so that subsidence increases throughout the lower troposphere (dashed diagonal
line) with no change in inversion strength or ωent. For equilibrium, cloud top
must decrease to new height ztop−Δz (dashed horizontal line) where ωent balances
ωsub(ztop − Δz) + Δω [open circle in (a)]. We assume that no change in ωent re-
sults in no change in MBL moisture and no change in zbase [other open circle in
(a)]. The net result is a reduction of cloud thickness. In (b), the vertical velocity
profile is unchanged while the inversion strengthens and entrainment weakens by
Δω (dashed vertical line). For equilibrium, cloud top must decrease to new height
ztop −Δz (dashed horizontal line) where ωent −Δω balances ωsub(ztop −Δz) [open
circle in (b)]. We assume the MBL moistens due to less entrainment drying, re-
sulting in a lowering of zbase by some distance Δz∗ [other open circle in (b)]. If
Δz∗ > Δz, cloud thickness increases.
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Appendix

Results for Individual MBL Cloud Regions, Additional Re-

analyses, and Different Satellite Cloud Datasets

We checked to see whether the climatological relationships found in the

investigation individually hold for the five primary MBL cloud regions (clearly

evident in Fig. 2.1) within our domain. The total and partial derivative values

for cloud fraction, liquid water path, and ztop with respect to estimated inversion

strength or ω700 for each individual region are similar to those attained using

climatological data from all regions. CF/EIS and CF/ω700 slope values for each

individual region are displayed in Table A2.1. Enhanced subsidence, independent

of inversion strength, reduces cloud fraction in all regions except for the southeast

Indian Ocean. Statistical significance of quantities is less than when all regions are

used to compute the slopes because of reduced sample size. To ensure robustness

of the results, we also used four reanalyses (CFSR, ERA-Interim, JRA-25, and

MERRA). Tables A2.2, A2.3, and A2.4 list the same partial and total derivatives

as in Tables 2.2, 2.3, and 2.4, except derived from the other reanalyses. Results

are in most cases quantitatively similar, especially within the range of uncertainty.

We also repeated the analysis for ISCCP data that were not corrected for artifacts

and for ISCCP, PATMOS-x, and UWISC anomalies without the long-term trends

removed. The results (not shown) are robust to these choices of data.
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Table A2.1: As in Table 2.2, but for climatological estimates for ISCCP
low1midlevel cloud fraction in each primary MBL cloud region within the do-
main. Derivatives are with respect to EIS or ω700 from CFSR (top), ERA-Interim
(second from top), JRA-25 (second from bottom), and MERRA (bottom).

Table A2.2: As in Table 2.2, but for derivative estimates with respect to EIS and
ω700 from (top) ERA-Interim, (middle) JRA-25, and (bottom) MERRA.
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Table A2.3: As in Table A2.2, but for LWP

Table A2.4: As in Table A2.2, but for ztop



Chapter 3

On the Relationships between

Subtropical Clouds and

Meteorology in Observations and

CMIP3 and CMIP5 Models

Estimates of the global mean equilibrium temperature response due to a

doubling of CO2 relative to the preindustrial level range from 2.1 to 4.7 K among

models in phase 5 of the Coupled Model Intercomparison Project (CMIP5) (Taylor

et al., 2012; Stocker et al., 2014). This is almost identical to the range produced

by CMIP3 models (Meehl et al., 2007; Randall et al., 2007). This spread in climate

sensitivity is mostly a result of the wide intermodel spread of simulated changes in

the shortwave cloud radiative effect (SW CRE; defined as clear-sky minus all-sky

top-of-atmosphere outgoing solar radiation) (Webb et al., 2006; Andrews et al.,

2012b). Model disagreement on changes in marine boundary layer (MBL) clouds

over eastern subtropical oceans was identified as the dominant driver of the spread

of projections of SW CRE among CMIP3 models (Bony and Dufresne, 2005). In

fact, neither CMIP3 nor CMIP5 models agree on whether subtropical MBL cloud

fraction will increase or decrease under anthropogenic climate change (Qu et al.,

2013). An understanding of MBL clouds and their simulation in models is therefore

38
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important in order to evaluate climate change projections.

MBL clouds, including stratocumulus and shallow cumulus, are prevalent

over eastern subtropical oceans. Stratocumulus clouds tend to occur under strongly

descending air, a sharp temperature inversion, and within a shallow, well-mixed

MBL (Albrecht et al., 1995; Norris, 1998a; Wood and Hartmann, 2006). Shal-

low cumulus clouds tend to occur under more weakly descending air, a less sharp

temperature inversion, and within a deeper, more decoupled MBL. Geographical

and seasonal-to-decadal statistical relationships between MBL cloud fraction (CF)

and the large-scale meteorology have been extensively examined in observations.

These studies have found that large CF is favored by strong inversions (Klein and

Hartmann, 1993; Wood and Bretherton, 2006; Sun et al., 2011; Myers and Nor-

ris, 2013), cool sea surface temperature (Hanson, 1991; Norris and Leovy, 1994;

Clement et al., 2009), enhanced horizontal cold air advection near the surface

(Klein et al., 1995; Park and Leovy, 2004; Norris and Iacobellis, 2005), and weaker

subsidence (Myers and Norris, 2013). The relationship between free-tropospheric

moisture and MBL CF is not as clear from an observational perspective. Klein

et al. (1995) found that enhanced free-tropospheric moisture over the eastern sub-

tropical Pacific was associated with small low-level CF, whereas Lacagnina and

Selten (2013) found that it was associated with large low-level CF.

These observed relationships can be understood in terms of their connec-

tions to the turbulent processes occurring within the MBL. Strong inversions may

favor larger MBL CF by reducing entrainment dying and promoting a moister

MBL in addition to being associated with cool sea surface temperature (Brether-

ton and Wyant, 1997; Wood, 2012). Cool sea surface temperature may favor larger

CF by leading to a shallower, more well-mixed MBL containing predominantly

stratocumulus by reducing surface latent heating (Bretherton and Wyant, 1997).

Weaker subsidence leads to larger MBL CF by increasing cloud-top height and

stratocumulus cloud thickness (Blossey et al., 2013; Bretherton et al., 2013; Myers

and Norris, 2013). A moister free troposphere may act to reduce cloud-top radia-

tive cooling (leading to a lowering of cloud top) and reduce entrainment drying

(leading to a lowering of stratocumulus cloud base) (Betts and Ridgway, 1989).
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This may result in either an increase or decrease in stratocumulus cloud thickness.

The reduction of radiative cooling may also lead to decoupling, favoring cumulus

and thinner stratocumulus, by reducing turbulent mixing (Sandu et al., 2010).

The simulation of these observed relationships in climate models serves as

a test for how well models represent MBL cloud processes. Clement et al. (2009)

found that most CMIP3 models fail to simulate the interannual to decadal positive

correlation between lower tropospheric stability and total CF over the eastern

subtropical North Pacific. They also found that CMIP3 models exhibit a wide

intermodel spread in the magnitude and the sign of the correlations between total

CF and both sea surface temperature and pressure vertical velocity at 500 hPa.

Similarly, Caldwell et al. (2013) found that most CMIP3 models fail to simulate

the climatological positive correlation between estimated inversion strength and

total CF. They also found negligible interannual relationships between total CF

and both sea surface temperature and horizontal surface temperature advection

in CMIP3 models. Webb et al. (2012) found that most models fail to simulate

the observed climatological enhancement of SW CRE (i.e., more SW radiation

reflected to space) associated with stronger lower tropospheric stability. These

findings suggest considerable deficiencies in models’ representation of MBL clouds.

One drawback of the aforementioned model evaluation studies is that total

CF was examined rather than the vertical profile of CF. The relationships found in

those studies therefore represent mixed effects of low-level and higher-level clouds.

Indeed, Broccoli and Klein (2010) note that if low-level CF is examined in the

GFDL CM2.1 model, the simulated relationships examined in Clement et al. (2009)

are all of the correct sign. This motivates looking beyond the total CF metric in

examining the simulation of clouds in climate models. It is also suggests that

variability of higher-level CF over the eastern subtropics may be non-negligible

in models and oppose variability of low-level CF, yielding confounding total CF

changes.

Previous model evaluation studies generally have not compared the vertical

profile of CF in models to satellite observations because satellites cannot, unlike

a model, perfectly specify cloud fraction, liquid water content, and other cloud
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properties at each vertical level in the atmosphere. For example, passive satel-

lites, such as those used for the International Satellite Cloud Climatology Project

(ISCCP) (Rossow and Schiffer, 1999), can only detect low clouds unobstructed

by higher clouds. Active satellites, such as the Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observations (CALIPSO) (Chepfer et al., 2010), provide a

more realistic vertical profile of cloud properties than passive satellites, but this

type of observational data has only existed since 2006 compared to 1983 for pas-

sive satellite data. Still, both types of data represent retrieved cloud properties,

not actual cloud properties. Contrastingly, within climate models and regardless

of their realism, the values of various cloud properties are known exactly. Several

CMIP5 models utilize “simulator” packages that provide cloud properties that an

imaginary satellite orbiting the modeled world would detect (Bodas-Salcedo et al.,

2011). One such property is CF obtained using simulated retrieval methods similar

to those of ISCCP and the CALIPSO-GCM Oriented CALIPSO Cloud Product

(CALIPSO-GOCCP) (Chepfer et al., 2010). Differences between observed CF and

modeled CF using simulator packages can be mostly attributed to deficiencies in

model physics rather than differences in the definition of CF.

Motivated by the shortcomings of previous studies, in this work we exam-

ine the interannual relationships of top-of-atmosphere SW, longwave (LW), and

net CRE over eastern subtropical oceans to sea surface temperature, estimated

inversion strength, horizontal surface temperature advection, free-tropospheric hu-

midity, and subsidence in 11 CMIP3 models, 14 CMIP5 models, and observations.

We complement this with an analysis of the relationship between the vertical pro-

file of CF and the same meteorological variables. This will allow us to physically

interpret the SW, LW, and net-CRE relationships in models and observations. Fur-

thermore, assessment of CMIP5 CF derived from ISCCP and CALIPSO-GOCCP

simulators will make possible an apples-to-apples comparison between models and

observations.
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3.1 Data and methods

3.1.1 Observational data

Tables 3.1 and 3.2 summarize the observational cloud and meteorological

data used in this investigation, respectively. Each dataset was bilinearly inter-

polated onto a 2.5◦ × 2.5◦ equal-angle grid, which is the grid with the coarsest

resolution of all datasets. SW, LW, or net CRE is defined as clear-sky minus

all-sky top-of-atmosphere SW, LW, or net outgoing radiation (positive outward).

According to this definition, clouds almost always exert a negative SW CRE and

a positive LW CRE, acting to increase outgoing SW radiation (cooling effect) and

decrease outgoing LW radiation (warming effect) at the top of the atmosphere, re-

spectively. Therefore, hereafter, more negative (positive) SW CRE will be referred

to as enhanced (weaker) SW CRE, and more positive (negative) LW CRE will be

referred to as enhanced (weaker) LW CRE. The CRE data are provided by the

Clouds and Earth’s Radiant Energy System (CERES) Energy Balanced and Filled

(EBAF) dataset version 2.7 (Loeb et al., 2009).

We use CF from the GCM simulator-oriented ISCCP cloud product (Pincus

et al., 2012; Zhang et al., 2012) and CALIPSO-GOCCP datasets. ISCCP provides

CF in 7 pressure layers and 6 optical thickness categories. CALIPSO provides

CF in 40 vertical layers specified in geometric height. We converted these height

coordinates to pressure coordinates by assuming that pressure p decreases expo-

nentially with height z such that p = p0e
−z/H , where surface pressure p0 = 1010

hPa and scale height H = 8000 m. Total ISCCP CF for each pressure layer was

computed by summing CF over all optical thickness categories. We use two ver-

sions of ISCCP cloud data: one that assumes clouds are not overlapped, which is

what the ISCCP retrieval method assumes (satellite view), and one that assumes

clouds are randomly overlapped. To estimate the true total CF at some level us-

ing the random overlap assumption, we divided the retrieved, unobstructed total

CF by the clear-sky fraction above that level (Rozendaal et al., 1995). The use

of ISCCP CF data corrected for artifacts as in Norris and Evan (2015) yields no

appreciable difference to our results.
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We use meteorological variables from four atmospheric reanalyses, including

the Climate Forecast System Reanalysis (CFSR) (Saha et al., 2010), the Interim

European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-Interim) (Dee et al., 2011), the Japanese 55-year Reanalysis Project (JRA-

55) (Ebita et al., 2011), and the Modern-Era Retrospective Analysis for Research

and Applications (MERRA) (Rienecker et al., 2011). Because meteorological ob-

servations over the oceans are sparse, using four reanalyses ensures that we robustly

capture the range of observational uncertainty. The meteorological variables in-

clude sea surface temperature (SST), estimated inversion strength (EIS), advection

by the surface wind over the SST gradient (SSTadv), specific humidity at 700hPa

(q700), and pressure vertical velocity at 700 hPa (ω700). For JRA-55, air tempera-

ture two meters above the surface (T2m) was used since SST was not provided.

EIS was calculated as in Wood and Hartmann (2006), who derived the

formulation

EIS = LTS− Γ850
m (z700 − LCL). (3.1)

Here, LTS stands for lower tropospheric stability and is the difference in potential

temperature between the 700-hPa level and the surface, Γ850
m is the moist adiabatic

lapse rate at 850hPa, z700 is the height of the 700-hPa level relative to the surface,

and LCL is the height of the lifting condensation level relative to the surface. We

assume a surface relative humidity of 80% as in Wood and Hartmann (2006) and

use the method of Georgakakos and Bras (1984) for the calculation of LCL. We

computed SSTadv as the advection by reanalysis near-surface wind over the SST

gradient (or T2m gradient for JRA-55) using a centered finite differencing scheme

in spherical coordinates.

3.1.2 Model output

We use monthly output from 25 coupled climate models from 10 different

modeling centers participating in both CMIP3 and CMIP5, summarized in Table

3.3. This will allow us to assess the overall progress, if any, in modeling of sub-

tropical cloud processes from CMIP3 to CMIP5. For a particular modeling center,

each of the model variants examined incorporates a different atmospheric model.



44

For the CMIP3 models, we use output from the climate of the twentieth-century

experiment runs, and the “run1” ensemble member is used for each model. For the

CMIP5 models, we use output from the historical runs, and the “r1i1p1” ensemble

member is used for each model. These scenarios use anthropogenic and natural

forcing constituents, and run from the late 1800s until 1999 for CMIP3 and until

2005 for CMIP5. So that the time periods examined are the same length as the

ISCCP record (26 yr), time periods of 1974-99 and 1980-2005 were used for CMIP3

and CMIP5 data, respectively. The results of our study, however, are insensitive

to the chosen time period.

The model variables used are the same as the observed variables, with the

exception of CF. We use the vertical profile of CF of each model in our analysis,

but these profiles cannot be directly compared to those of ISCCP or CALIPSO-

GOCCP due to the imperfect retrievals of cloud properties by satellites and in-

consistent definitions of CF between models and the satellite datasets. Nonethe-

less, qualitative analysis of these profiles will provide insight into the relationships

between CRE and the meteorology. ISCCP and CALIPSO-GOCCP simulator-

derived CF will be examined from the six CMIP5 models providing such data

(indicated in Table 3.3).

3.1.3 Computation of cloud relationships to meteorological

variables

Because we are primarily interested in MBL clouds, we chose to define

our domain dynamically, rather than spatially, as in Bony et al. (2004). The

domain includes all ocean grid boxes within 30◦S−30◦N that have long-term mean

ω700 > 0 for every calendar month and monthly-mean ω700 > 0 for at least 80%

of the time record; only months for which ω700 > 0 were examined. This method

allows us to focus on dynamically similar regimes predominantly containing MBL

clouds. It also implies that positive (negative) anomalies of ω700 represent strong

(weak) subsidence relative to the mean. Since the models have different subsidence

climatologies, each domain is specific to each reanalysis and model. The percentage

of ocean grid boxes within 30◦S− 30◦N satisfying our criteria are shown in Tables
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3.2 and 3.3 for reanalyses and models, respectively.

Before examining relationships between the cloud and meteorological vari-

ables, we computed linearly detrended interannual monthly anomalies for each grid

box. By detrending, we avoided the possibility of our results being affected by po-

tential unphysical, low-frequency artifacts in the satellite cloud observations and

reanalyses. We calculated relationships of CRE or CF to a meteorological property

x by splitting values of x from all grid boxes into two subsets, one with anomalies

above the median x and one with anomalies below the median. This is nearly

identical to separating values of x according to positive and negative anomalies.

We then took the difference in mean CRE or CF between these two subsets and

divided by the difference in mean x for each subset. This is essentially a cen-

tered finite-differencing scheme for estimating the slope. We refer to the resulting

quantity as the relationship of CRE or CF to x, which we write mathematically

as D(CRE)/D(x) or D(CF)/D(x). Although not shown in the paper, slopes were

also computed using linear regression, and the results are quantitatively similar. It

is important to note that the computed relationships are not necessarily indepen-

dent because the predictor variables may covary. They can therefore be thought of

as total derivatives. This is in contrast to Myers and Norris (2013), who examined

the independent effects of subsidence and inversion strength on subtropical MBL

clouds (i.e., partial derivatives).

Each relationship is normalized by the 1984-2012 standard deviation of

observed interannual anomalies of each meteorological variable x. This allows

us to more easily compare the magnitudes of each relationship, which can be

viewed as the response of CRE or CF to a typical anomaly in x. Because there

are four reanalyses, there are four standard deviations for each x. We use the

average of these four standard deviations of each x to normalize each observed and

modeled quantity. Since observed and modeled values of a given relationship are

normalized by a single standard deviation, relative differences among values and

their statistical significance are unchanged compared to nonnormalized values.

A two-tailed t test for the difference between two sample means provided

an assessment of the statistical significance of individual relationships and the dif-
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ference between modeled and observed relationships. The range of observational

uncertainty of a CRE relationship is defined as the envelope of 95% confidence

intervals of the four observed values (one derived from each reanalysis), and sta-

tistical significance of the observations is gauged by this range of uncertainty. A

modeled CRE relationship is considered to be outside the range of observational

uncertainty if it is more positive or more negative than each of the four obser-

vational estimates with 95% confidence. We also assess whether models simulate

the correct sign of each CRE relationship. A model is considered to simulate an

incorrect sign if 1) it simulates a statistically significant CRE relationship of op-

posite sign to the observed relationship, 2) it simulates a statistically significant

CRE relationship when the observed relationship is statistically insignificant, or 3)

it simulates a statistically insignificant CRE relationship when the observed rela-

tionship is statistically significant. If none of these conditions occurs, the model is

considered to simulate the correct sign of the CRE relationship.

The cloud data are autocorrelated because processes affecting clouds on

monthly time scales have a large spatial scale. To take this into account in sta-

tistical significance tests, for each observational cloud variable we computed the

ratio of the number of statistically independent points [effective number (neff)] to

the nominal number of points n by determining the lag at which the zonal, merid-

ional, or temporal autocorrelation coefficients cross zero. The inverse of this lag is

assumed to be equal to this ratio. Zonal and meridional anomalies of each latitude

and longitude band, respectively, were used to compute zonal and meridional au-

tocorrelation. The temporal ratio multiplied by the zonal and meridional ratios is

assumed to be equal to the overall ratio of effective to nominal number of points.

Table 3.1 shows the ratios for observed cloud variables. We assume that the mod-

eled ratios are equal to the observed ratios multiplied by (i×j)/(2.5◦×2.5◦), where

i (j) is the average latitude (longitude) increment of each model’s grid. This en-

sures that the total number of effective points in models with resolutions higher

(lower) than 2.5◦ × 2.5◦ is not overestimated (underestimated).
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3.2 Results

3.2.1 Observed climatology

Figure 3.1 shows observed mean annual fields of SW and LW CRE, SST

and surface wind velocity, EIS, SSTadv, q700, and ω700. Over the eastern sub-

tropical oceans, SW CRE (Fig. 3.1a) is strongly negative due to high amounts

of reflection of shortwave radiation by abundant, optically thick low-level clouds.

LW CRE (Fig. 3.1b) is weakly positive due to approximately equal amounts of

absorption of longwave radiation by these low-level clouds and by less abundant,

optically thin high-level clouds. Inspection of the meteorology reveals that regions

of enhanced SW CRE and weaker LW CRE are characterized by cool SST (Fig.

3.1c), strong EIS (Fig. 3.1d), cold SSTadv (Fig. 3.1e), low q700 (Fig. 3.1f), and

strong ω700 (Fig. 3.1g). This is qualitatively consistent with previous observational

studies that have found large CF of low-level, optically thick clouds and small CF

of overlying high-level, optically thin clouds associated with these meteorological

conditions (Hanson, 1991; Klein and Hartmann, 1993; Klein et al., 1995; Wood,

2012; Christensen et al., 2013).

3.2.2 Observed and multimodel mean CRE and CF inter-

annual relationships

One might expect these geographical relationships to also occur on inter-

annual time scales, and this is generally confirmed in Fig. 3.2, which shows in-

terannual relationships of SW, LW, and net CRE to the meteorological variables

for both observations and multimodel means. Since subtropical optically thick,

low-level (around 700 hPa and lower in elevation) clouds dominate SW CRE and

subtropical optically thin, high-level (around 400 hPa and higher in elevation)

clouds contribute substantially to LW CRE, Fig. 3.3 complements the results of

Fig. 3.2 by showing vertical profiles of the observed and multimodel mean CF rela-

tionships. Because strongly negative SW CRE is a primary climatological feature

over the eastern subtropical oceans, in our discussion we speak in terms of which
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observed meteorological conditions are associated with anomalously enhanced SW

CRE.

CRE AND CF RELATIONSHIPS TO SST, EIS, AND SSTadv

Observations show that anomalously cool SST, strong EIS, and cool SSTadv

are each associated with enhanced SW CRE (Fig. 3.2a), a small decrease or no

change in LW CRE (Fig. 3.2b), and more negative net CRE (i.e., more outgoing

net radiation at the top of the atmosphere, Fig. 3.2c). This is physically consistent

with the observed increase in low-level CF and small decrease or almost no change

in high-level CF for the same meteorological conditions (Figs. 3.3a–c) and is con-

sistent with previous observational studies (Hanson, 1991; Klein and Hartmann,

1993; Klein et al., 1995). The above interpretation is corroborated by composite

plots of the ISCCP CF relationships binned according to cloud-top pressure and

optical thickness, multiplied by identically binned cloud radiative kernels (Figs.

A3.1–A3.3; see the appendix for discussion of kernels). It is important to rec-

ognize that SST and EIS are anticorrelated (r = 0.6 over all grid boxes for the

detrended interannual monthly anomalies), so that the observed and modeled CRE

and CF relationships to these variables are qualitatively similar but with opposite

signs. We also note that the maximum magnitude of each of the observed low-

level CF relationships occurs at a higher elevation for ISCCP than for CALIPSO,

likely because of the well-known problem of ISCCP mistaking low-level clouds for

midlevel clouds when there are strong inversions (Garay et al., 2008) or overlying

cirrus (Mace et al., 2006). We consider the elevation where CALIPSO places the

maximum magnitude of the relationships to be more representative of reality.

In agreement with observations, the CMIP3 and CMIP5 multimodel means

simulate enhanced SW CRE and larger low-level CF for anomalously cool SST

and strong EIS, but the magnitude of each relationship is slightly weaker than

observed. This is consistent with Bony and Dufresne (2005), who found that

CMIP3 models tend to underestimate the enhancement of SW CRE associated

with cooler SST in the tropical ocean subsidence regime. In contrast to obser-

vations, the multimodel means simulate no change in SW CRE when SSTadv is
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anomalously cold, physically consistent with producing too little increase in low-

level CF for this condition. This indicates that the SW-CRE-SSTadv relationship

is on average poorly simulated by the models. There is a substantial increase in

intermodel spread of D(SW)/D(SST) and D(SW)/D(EIS) among CMIP5 models

compared to CMIP3, physically consistent with the increase in intermodel spread

of D(CF)/D(SST) and D(CF)/D(EIS) for low–level clouds evident in Figs. 3a

and 3b. In fact, a two-tailed F test for two sample variances indicates that the

CMIP5 intermodel standard deviations of D(SW)/D(SST) and D(SW)/D(EIS)

are significantly greater than those of CMIP3 with 95% confidence. Since the mul-

timodel means of these two relationships are well simulated for both generations

of models, this suggests on average worse performance by the CMIP5 models.

Both the CMIP3 and CMIP5 multimodel means also simulate weaker LW

CRE and decreased high-level CF when EIS is anomalously strong, in agreement

with observations. However, the CMIP5 ensemble mean relationships are closer

to observations, and the CMIP5 intermodel standard deviation of D(LW)/D(EIS)

is significantly less than that of CMIP3 with 90% confidence. This is probably

because the intermodel spread of D(CF)/D(EIS) for high-level clouds is smaller

among CMIP5 models than among CMIP3 models. The CMIP3 and CMIP5 en-

semble means exhibit statistically significant weaker LW CRE for anomalously cool

SST and cold SSTadv, while the observed values do not. Composite plots of binned

LW-CRE relationships to SST and SSTadv (as in Fig. A3.2) of models employing

the ISCCP simulator suggest that this can be explained by models’ simulating too

little increase in optically thick, low-level CF for cooler SST and colder SSTadv

(results not shown). This allows the overall weaker LW CRE associated with these

meteorological conditions to be dominated by reduced absorption of LW radiation

due to a decrease in optically thin, high-level CF. In observations, this reduced ab-

sorption is equally offset by greater absorption of LW radiation due to a relatively

large increase in low-level CF (Fig. A3.2).

An important feature of Fig. 3.2 is that, for both CMIP3 and CMIP5, the

intermodel spread of each of the SW-CRE relationships to SST, EIS, and SSTadv is

much larger than that of the LW-CRE relationships. This is physically consistent
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with the greater intermodel spread of D(CF)/D(SST) and D(CF)/D(EIS) for low-

level clouds than for high-level clouds in the case of CMIP5.

Finally, the multimodel means produce net-CRE relationships to SST, EIS,

and SSTadv that are generally similar to the respective SW-CRE relationships.

However, for D(net)/D(SST) and D(net)/D(SSTadv), there is some degree of

compensating errors by the SW and LW components. This yields changes in net

CRE that are artificially closer to the observations relative to the changes in SW

CRE for anomalies in SST and SSTadv.

CRE AND CF RELATIONSHIPS TO q700 AND ω700

In observations, anomalously high q700 and weak ω700 are each associated

with enhanced SW CRE (Fig. 3.2a) and an approximately equal enhancement

of LW CRE (i.e., less LW radiation emitted to space; Fig. 3.2b), yielding no

change in net CRE (Fig. 3.2c). The increase in mid- and high-level CF associated

with these meteorological conditions is physically consistent with the enhancement

of both SW and LW CRE and is sufficient to offset the radiative effects of the

decrease in low-level CF also seen in the profiles (Figs. 3d,e; see also Figs. A3.1–

A3.3). The decrease in low-level CF for weaker ω700 evident in the CALIPSO

profile may seem to contradict the finding of Myers and Norris (2013) that weaker

ω700, independent of variations in EIS, increases low-level CF. But the present

study does not attempt to remove possible confounding factors affecting the low-

level CF–ω700 relationship. The results of the two studies may therefore not be

comparable. It is important to recognize that ω700 and q700 are anticorrelated

(r = 0.3), so that the observed and modeled CRE and CF relationships to these

variables are qualitatively similar but with opposite signs. Examination of the

vertical profile of q700 (not shown) indicates that when q700 increases, so does q

throughout the troposphere. Higher q700 and weaker ω700 may favor more mid-

and high-level clouds by increasing relative humidity. Anomalously high q700 is

also associated with a decrease in CF in the 850–700-hPa layer, and an increase in

CF just below and above that layer (Fig. 3.3d). This peculiar vertical structure

may explain why previous observational studies have found differing effects of free-
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tropospheric moisture on low-level clouds over the subtropical oceans (Klein et al.,

1995; Lacagnina and Selten, 2013).

In agreement with observations, the CMIP3 and CMIP5 multimodel means

simulate enhanced SW CRE and enhanced LW CRE for relatively high q700 and

weak ω700. This is physically consistent with the simulated vertical profiles of

D(CF)/D(q700) and D(CF)/D(ω700), which qualitatively resemble the observed

profiles. The offsetting changes in low-level CF when q700 is anomalously high,

however, are considerably smaller than observed. As in observations, the ensem-

ble mean D(net)/D(q700) is nearly indistinguishable from zero for both CMIP3

and CMIP5. Unlike in observations, though, each ensemble mean simulates more

negative net CRE for anomalously weak ω700, and the relationship is statistically

significant. This is because models on average overestimate the magnitude of the

SW-CRE relationship more strongly than they overestimate the magnitude of the

LW-CRE relationship. One reason for this may be that the ensemble means do

not simulate a decrease in low-level CF at around 900 hPa for relatively weak ω700,

a feature evident in the CALIPSO profile that partially offsets the enhancement

of SW CRE associated with higher-level CF. Like the relationships discussed in

the previous section, the intermodel spread of each of the SW-CRE relationships

to q700 and ω700 is much larger than that of the LW-CRE relationships.

3.2.3 Individual model CRE relationships

In addition to the multimodel means, we also examine CRE relationships

to the meteorological variables in individual models. Figure 3.4 shows the CRE

relationships to SST, EIS, and SSTadv for observations, individual CMIP3 and

CMIP5 models, and multimodel means for completeness. Figure 3.5 shows the

CRE relationships to q700 and ω700. A sizeable number of models (more than half

in several cases) simulate SW and net-CRE relationships outside the range of ob-

servational uncertainty. For several relationships, this is true for a majority of

models even when the multimodel mean is not outside the range of observational

uncertainty. In addition, some models do not even predict the correct signs of the

SW and net-CRE relationships. A relatively small number of models simulate the
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LW-CRE relationships outside the range of observational uncertainty. Generally,

when the intermodel spread of a relationship is large relative to the observational

uncertainty (Fig. 3.2), a high percentage of models simulate the relationship out-

side this range of uncertainty of observations, and vice versa.

Examining Fig. 3.4 in more detail, CMIP3 models generally simulate the

correct sign and magnitude of the SW and net-CRE relationships to SST and

EIS, whereas CMIP5 models do not. Strikingly, half of CMIP5 models simulate

the wrong sign of the SW-CRE relationship to EIS, whereas only two CMIP3

models do so. Moreover, in contrast to observations, most CMIP3 and CMIP5

models simulate a negligible relationship or weaker SW CRE for anomalously cold

SSTadv, consistent with the bias of the multimodel means (Fig. 3.2a). Third,

most CMIP3 and CMIP5 models exhibit weaker LW CRE for anomalously cool

SST or cold SSTadv, whereas observations show no change in LW CRE for ei-

ther of these meteorological conditions. This is consistent with the bias of the

multimodel means (Fig. 3.2b). Last, Fig. 3.5 reveals that most models simulate

a statistically significant change in net CRE for variations in both q700 and ω700

despite observations showing no change in net CRE for the same variations. In the

case of D(net)/D(ω700), this is consistent with the bias of the multimodel means

(Fig. 3.2c).

3.2.4 Connection between CF and SW-CRE relationships

in CMIP5 models

We next assess the physical connection between the sign of individual SW-

CRE relationships and the vertical profile of the CF relationships in CMIP5 models.

CMIP3 models are not examined because they do not provide vertical profiles of

CF derived from the ISCCP and CALIPSO simulators.

In Figs. 3.6a–c we show the CMIP5 simulated vertical profiles of

D(CF)/D(SST), D(CF)/D(EIS), and D(CF)/D(SSTadv) of models that simu-

late the correct sign of the respective SW-CRE relationships. Observed profiles

are also shown. The CF relationships to q700 and ω700 are not shown since, as

previously noted, the SW-CRE relationships to these variables represent varying
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effects of changes in low-, mid-, and high-level CF (Figs. 3.2 and 3.3) and are thus

more complicated to interpret. All of these CMIP5 models simulate an increase in

low-level CF for anomalously cool SST, strong EIS, and cold SSTadv. Thus they

simulate enhanced SW CRE for the appropriate physical reason.

Shown in Figs. 3.6d–f are the CMIP5 simulated vertical profiles of

D(CF)/D(SST), D(CF)/D(EIS), and D(CF)/D(SSTadv) of models that simu-

late the wrong sign of the respective SW-CRE relationships. Some of these models

simulate no change or an unrealistic decrease in low-level CF when SST is cooler,

EIS is stronger, and SSTadv is colder. This explains why these models simulate

no change or unrealistically weaker SW CRE for these meteorological conditions.

Some models, however, appear to simulate the correct sign of the low-level CF

relationships despite simulating the wrong sign of the SW-CRE relationships. One

such model is FGOALS-g2. When SST is cooler, EIS is stronger, and SSTadv is

colder, this model simulates an unrealistically large decrease in CF above roughly

800 hPa in elevation that offsets the enhancement of SW CRE associated with an

increase in CF at a lower elevation. Another model that exhibits similar behavior

is GFDL-CM3. This model produces the correct sign of the low-level CF rela-

tionship to SSTadv despite simulating the wrong sign of the SW-CRE relationship

to SSTadv. When SSTadv is anomalously cold, GFDL-CM3 simulates an unreal-

istically large decrease in CF in the middle-to-upper troposphere that offsets the

enhancement of SW CRE associated with an increase in CF near the surface. These

examples show that for models to realistically simulate the relationship between

SW CRE and the meteorology in regions of climatological subsidence, they must

not only accurately simulate the low-level CF relationships; they must accurately

simulate the mid- and high-level CF relationships as well.

In yet another case, CCSM4 simulates the correct sign of the low-level CF

relationships to EIS and SSTadv despite simulating the wrong sign of the corre-

sponding SW-CRE relationships. While most models simulate a maximum in mean

annual cloud water content (CWC) between 700 and 900 hPa, CCSM4 simulates a

local minimum in CWC at around 900 hPa and a local maximum in CWC at around

500 hPa (Fig. A3.4). Therefore, the simulated decrease in CF above roughly 700
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hPa associated with anomalously strong EIS and cold SSTadv, though small, leads

to substantially weaker SW CRE because the clouds are optically thick. In turn

this more than offsets the enhancement of SW CRE associated with an increase in

CF below 700hPa where the clouds are optically thin. This shows that for models

to realistically simulate the relationships between SW CRE and the meteorology,

they must not only accurately simulate the low-level CF relationships; they must

reasonably simulate the mean state of cloud optical thickness as well.

For those models for which ISCCP simulator-derived CF was available, ver-

tical profiles of the CF relationships are additionally examined as a more direct

comparison with the observations. Among these models, Fig. 3.7 shows the simu-

lated vertical profiles of D(CF)/D(SST), D(CF)/D(EIS), and D(CF)/D(SSTadv)

of models that simulate the correct and incorrect signs of the respective SW-CRE

relationships. Observed ISCCP profiles are also shown for reference. In all of these

models, the low-level CF relationships are sufficient to explain the signs of the re-

spective SW-CRE relationships. This is corroborated by the observed and modeled

vertical profiles of the same ISCCP CF relationships multiplied by the SW cloud

radiative kernel profile (Fig. A3.5). We also note that for these six models, the in-

termodel spread of each of the low-level CF relationships is larger than that of the

corresponding high-level CF relationships, explaining why the intermodel spread

of the SW-CRE relationships is larger than that of the LW-CRE relationships.

Although not shown, Fig. 3.7 was replicated using CALIPSO simulator-derived

CF, and the results are qualitatively similar.

Before continuing, we note that changes in cloud optical depth are also

found to influence the response of SW CRE to variations in the meteorology (Fig.

A3.6) in models and observations. However, changes in total cloud amount are

sufficient to explain the sign of each of the SW-CRE–meteorology relationships and

explain more of the intermodel spread of the SW-CRE–meteorology relationships

compared to changes in optical depth. This justifies our focus on CF in the present

study.
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3.2.5 Model performance and climate change

Is there a relationship between models’ simulation of subtropical MBL

cloud-meteorology relationships and their projections of anthropogenic climate

change? To address this question, we compare SW-CRE changes and equilibrium

climate sensitivity (ECS) estimates to models’ root-mean-square error (RMSE) of

all five D(SW)/D(x) values relative to the observed values. Mathematically, the

RMSE is expressed as

RMSE =

√√√√1

5

5∑
i=1

(D(SW)

D(xi)

model

− D(SW)

D(xi)

obs)2

, (3.2)

where D(SW)/D(xi)
model is one of the five simulated relationships for a given

model, and D(SW)/D(xi)
obs is the mean value of the observed relationship over

all reanalyses. Twenty-first-century changes in SW CRE (2080–99 minus 2000–19

mean annual SW CRE averaged over the five main low-level cloud regions over

the eastern subtropical oceans) are taken from Qu et al. (2013). The simulations

examined include the A1B (Nakicenovic and Swart, 2000) forcing scenario for the

CMIP3 models and the representative concentration pathway (RCP) 8.5 (Taylor

et al., 2012) for the CMIP5 models. ECS is defined as the equilibrium global mean

surface temperature change due to a doubling of CO2, and CMIP3 and CMIP5

values are taken from Randall et al. (2007) and Stocker et al. (2014), respectively.

We note that SW-CRE changes are positively correlated with ECS (r = 0.92 for

CMIP3 and r = 0.6 for CMIP5; Fig. 3.8a).

Figures 3.8b and 3.8c show the RMSE of the SW-CRE relationships plot-

ted against twenty-first-century SW-CRE trends and ECS values for all available

models. The plots show that models that simulate large RMSE (unrealistic mod-

els) tend to exhibit more negative SW-CRE changes and low ECS compared to

models with smaller RMSE (more realistic models). In fact, of the CMIP5 models

shown in Fig. 3.8b, the two with the largest RMSE are the only models sim-

ulating enhanced SW CRE. To quantify these inferences, we divide models into

two subsets according to whether their RMSE values are less than or greater than

the median RMSE (vertically dashed lines in Figs. 3.8b and 3.8c). We show the
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mean SW-CRE change and ECS of each subset in Table 3.4. For both CMIP3

and CMIP5, models with RMSE less than the median RMSE have a higher mean

ECS and more positive mean SW-CRE change compared to models with RMSE

greater than the median, although the difference between the means is statisti-

cally significant (p < 0.1) in only two cases. Figures 3.8b and 3.8c also show that

the intermodel spread of twenty-first-century SW-CRE changes and ECS is gener-

ally higher among the more realistic models compared to the less realistic models.

Collectively, these results suggest that a positive SW cloud feedback associated

with subtropical MBL clouds and a high ECS is more likely than a negative cloud

feedback and a low ECS. It is clear, however, that accurate simulation of SW-

CRE–meteorology relationships is not sufficient to constrain either the SW-CRE

feedback or ECS in a statistically robust manner. One reason for this may be that

the climate change scenarios examined here include changes in aerosols, which can

cause changes in cloudiness independent of the meteorology.

3.3 Conclusions

We have evaluated the performance of CMIP3 and CMIP5 models in simu-

lating the interannual relationships of shortwave, longwave, and net cloud radiative

effect to sea surface temperature, estimated inversion strength, horizontal surface

temperature advection, free-tropospheric moisture, and subsidence. To ensure dy-

namically consistent domains among models and observations, we examined grid

boxes occurring within the tropical (30◦S − 30◦N) oceanic subsidence regime for

each particular model and reanalysis. Examining the relationships of the vertical

profile of cloud fraction to the same meteorological variables allowed us to physi-

cally assess the connection between changes in cloud radiative effect and changes

in cloud fraction.

We find that, in observations, anomalously cool SST, strong EIS, and cold

SSTadv are each associated with larger low-level CF and enhanced SW CRE (i.e.,

more shortwave radiation reflected to space). Higher q700 and weaker ω700 are

each associated with larger mid- and high-level CF and enhanced SW CRE, en-
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hanced LW CRE (i.e., less LW emitted radiation to space), and no change in

net CRE. Changes in LW CRE associated with variability of q700 and ω700 can

thus be as large as changes in SW CRE over the eastern subtropical oceans, even

though climatologically the magnitude of SW CRE is much stronger than that of

LW CRE. Both the CMIP3 and CMIP5 multimodel means generally simulate the

above relationships realistically. Moreover, the intermodel spread of the SW-CRE

relationships is larger than that of the LW-CRE relationships. Since previous find-

ings that trends in SW CRE, not LW CRE, are responsible for the wide spread

of cloud feedbacks simulated in CMIP3 and CMIP5 models (Webb et al., 2006;

Andrews et al., 2012a), this suggests that interannual estimates of CREmeteorol-

ogy relationships may project onto the longer time scale of anthropogenic climate

change.

A larger percentage of CMIP5 than CMIP3 models are found to simulate

the wrong sign or magnitude of the relationship of SW CRE to SST and EIS. In

fact, half of CMIP5 models simulate the wrong sign of the SW-CRE relationship

to EIS. To the extent that EIS strengthens over the eastern subtropical oceans in

simulations of anthropogenic climate change (Webb et al., 2012), this suggests that

for this change a substantial percent- age of CMIP5 models simulate the wrong

sign of the SW cloud feedback to warming. Furthermore, most CMIP3 and CMIP5

models exhibit the wrong sign of the SW- CRE relationship to SSTadv. Insofar as

cold SSTadv will amplify over the eastern subtropical oceans due to anthropogenic

climate change (Caldwell et al., 2013), this suggests that for this change most

models fail to simulate the implied negative SW cloud feedback to warming.

We find that for CMIP5 models to realistically produce SW-CRE relation-

ships to SST, EIS, and SSTadv, it is necessary but not sufficient for models to

realistically simulate corresponding low-level CF relationships. To produce these

observed SW-CRE– meteorology relationships, models must also reasonably sim-

ulate the mid and high-level CF relationships and the mean cloud water content.

While changes in low-level CF explain much of the CMIP5 intermodel spread in

the simulated SW-CRE relationships, some of the spread is explained by changes

in mid and high- level CF and differences in the mean cloud water content. Studies
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that examine the intermodel spread of changes in SW CRE in regions of clima-

tological subsidence (Bony and Dufresne, 2005) should therefore use caution in

attributing those changes exclusively to low-level clouds.

Comparing overall model performance of the SW-CRE–meteorology rela-

tionships to twenty-first-century trends in SW CRE and equilibrium climate sen-

sitivity suggests that the more realistic models simulate more positive SW-CRE

changes and higher climate sensitivities compared to the less realistic models. This

is consistent with recent studies that have found that climate models most closely

resembling observations simulate strong positive cloud feedbacks and enhanced

global warming (Fasullo and Trenberth, 2012; Klein et al., 2013; Sherwood et al.,

2014; Su et al., 2014). Despite this, there is not a one- to-one relationship be-

tween the root-mean-square error of the modeled D(SW)/D(x) values and either

SW-CRE trends or climate sensitivity. A thorough assessment of projections of

the meteorological and cloud changes in a future study is necessary in order to

understand why this is the case.
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Tables and Figures

Table 3.1: Summary of satellite data used in the investigation. The values in the
neff/n column are the ratio of the number of statistically independent points to the
nominal number of points for the different cloud variables, computed as described
in the text.

Table 3.2: Summary of reanalysis data used in the investigation. Values in the
ω700 > 0 column are the percentage of ocean grid boxes within 30◦S− 30◦N satis-
fying the criteria specified in the text for the different reanalyses.
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Figure 3.1: Mean annual: (a),(b) 2000–12 CERES shortwave and longwave cloud
radiative effect, respectively, (c) 1984–2012 ERA-Interim sea surface temperature
and surface wind velocity, (d) estimated inversion strength, (e) horizontal surface
temperature advection, (f) specific humidity at 700 hPa, and (g) pressure vertical
velocity at 700 hPa with the × symbol indicating grid boxes used in the ERA-
Interim observational analysis.
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Figure 3.2: (a) Shortwave cloud radiative effect relationship to meteorological
variables in CMIP3 models (orange box plots), CMIP5 models (green box plots),
and observations (black squares and error bars); (b) as in (a), but for longwave
cloud radiative effect; (c) as in (a), but for net cloud radiative effect. For each
modeled relationship, the square denotes the multimodel mean, the horizontal line
denotes the median of all modeled values, the box spans the interquartile range
of all modeled values, the whiskers extend to the 10th and 90th percentiles of all
modeled values, and the two circles are the modeled values outside the 10th and
90th percentiles. For each observed relationship, the error bars span the four 95%
confidence intervals derived from CERES and the four reanalyses, and the square
is the mean of the four reanalysis values.
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Figure 3.3: Cloud fraction relationship to (a) sea surface temperature, (b) esti-
mated inversion strength, (c) horizontal surface temperature advection, (d) specific
humidity at 700 hPa, and (e) pressure vertical velocity at 700 hPa as a function of
pressure in CMIP3 models (orange lines and shading), CMIP5 models (green lines
and shading), ISCCP (gray lines), and CALIPSO (black lines and gray shading).
For each modeled relationship, the multimodel mean is plotted as a line, and the
shading spans the interquartile range among all modeled values. For ISCCP, the
horizontal error bars span the eight 95% confidence intervals derived from the four
reanalyses and either the “random overlap” or “satellite view” version of ISCCP.
Each vertical line spans one of the seven ISCCP cloud-top pressure categories
and represents the mean among all reanalyses and both versions of ISCCP. For
CALIPSO, the shading spans the four 95% confidence intervals derived from the
four reanalyses, and the black line is the mean of the four reanalyses values.
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Figure 3.4: The (from left to right) shortwave, longwave, and net cloud radiative
effect relationships to (from top to bottom) sea surface temperature, estimated
inversion strength, and horizontal surface temperature advection for (left) CMIP3
and (right) CMIP5 models and observations. Each meteorological variable listed
on the vertical axis represents x in D(CRE)/D(x), where CRE is SW, LW, or net
CRE, listed on the horizontal axis. Observed values for each relationship from top
to bottom are derived from CERES paired with CFSR, ERA-Interim, JRA-55,
and MERRA. A square indicates that the observed value is significant at the 95%
confidence level. A circle indicates that the simulated value has the wrong sign
relative to observations. A downward (an upward)-pointing arrow indicates that
the simulated value is less (greater) than each of the four observed values with
95% confidence.
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Table 3.3: CMIP models used in the investigation. Values in the ω700 >
0 column are the percentage of ocean grid boxes within 30◦S − 30◦N sat-
isfying the criteria specified in the text for the different models. Aster-
isks denote those models providing ISCCP and CALIPSO-GOCCP simulator-
derived cloud fraction. (Expansions of model acronyms are available online at
“http://www.ametsoc.org/PubsAcronymList”.)

Figure 3.5: As in Fig. 3.4, but for (from top to bottom) specific humidity and
pressure vertical velocity at 700 hPa.
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Figure 3.6: Cloud fraction relationship to sea surface temperature, estimated
inversion strength, and horizontal surface temperature advection as a function of
pressure in CMIP5 models, ISCCP, and CALIPSO. For each relationship, only
those models that simulate the (a)–(c) correct or (d)–(f) incorrect sign of the
shortwave cloud radiative effect relationship to the same meteorological variable
are shown.
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Figure 3.7: Cloud fraction relationship for sea surface temperature, estimated
inversion strength, and horizontal surface temperature advection as a function of
pressure in CMIP5 models employing the ISCCP simulator and ISCCP observa-
tions. For each relationship, only those models that simulate the (top) correct and
(bottom) wrong sign of shortwave cloud radiative effect relationship to the same
meteorological variable are shown. For both models and observations, only the
random overlap version of ISCCP is shown. The error bars span the four 95%
confidence intervals computed from the four reanalyses.
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Figure 3.8: (a) Twenty-first-century change in SW CRE plotted against equilib-
rium climate sensitivity in models, (b) root-mean-square error (RMSE) of the sim-
ulated SW-CRE–meteorology relationships relative to observations plotted against
simulated twenty-first-century SW-CRE change, and (c) RMSE of the simulated
SW-CRE–meteorology relationships relative to observations plotted against equi-
librium climate sensitivity. CMIP3 (CMIP5) models are denoted as orange (green)
letters, which are defined in Table 3.3. The asterisks denote either the multimodel
mean SW-CRE change or equilibrium climate sensitivity and the RMSE of the
multimodel mean relationships. Vertical dashed lines show the median RMSE sep-
arately for CMIP3 and CMIP5 models. The median RMSEs of (b) and (c) are not
identical because data for all models were not available.
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Appendix

Quantifying the Relationship between Changes in CF and

CRE

We also performed a more rigorous assessment of how observed and modeled

changes in CF associated with meteorological variability are related to changes in

CRE. To do this, we took advantage of the ISCCP CF data, binned according to

cloud-top pressure (CTP) and cloud optical thickness (τ), as well as observational

(Zhou et al., 2013) and model-derived (Zelinka et al., 2012) cloud radiative kernel

datasets binned in an identical manner. A cloud radiative kernel is the change

in top-of-atmosphere SW, LW, or net radiation per unit change in CF. For a

given month, it depends primarily on τ , CTP, clear-sky albedo, and latitude.

The radiative kernels we use are annually averaged between 30◦S and 30◦N for

a clear-sky albedo of 0.07, which is the albedo of the ocean surface used in the

ERA-Interim. The observational kernels are very similar to those derived from

models.

We computed D(CF)/D(x) as described in the data and methods section

for the binned ISCCP data and multiplied the values by the cloud radiative ker-

nels. For each bin, this essentially yields the change in top-of-atmosphere CRE

associated with a change in a typical anomaly of the meteorological property x.

Mathematically, this can be written as [D(CF)/D(x)] × [D(CRE)/D(CF )]. For

the observations, the binned relationships of SW, LW, and net CRE to the me-

teorological variables are shown in Figs. A3.1–A3.3. The overall (i.e., integrated

over all CTP layers and τ categories) enhancement of SW CRE associated with

anomalously cool SST, strong EIS, and cold SSTadv is dominated by an increase

in CF of clouds in the lower troposphere with medium τ . Because the binned LW-

CRE changes associated with such meteorological conditions are small, the binned

net-CRE changes resemble those of SW CRE. The binned relationships between

CRE and both q700 and ω700 are more complicated. The overall enhancement and

offsetting components of SW and LW CRE associated with anomalously high q700

and weak ω700 each have large contributions from an increase in CF of clouds in
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the middle and upper troposphere with varying values of τ . The sum of each of

the binned relationships between CRE and the meteorology over all CTP layers

and τ categories is quantitatively similar to the CRE relationships computed from

CERES (Figs. 3.2, 3.4, and 3.5). This establishes confidence in both sets of results.

Not all CMIP5 models provide the ISCCP simulator output that allows

us to compute binned SW-CRE relationships. Therefore, to infer qualitatively

how changes in CF in each model impact SW CRE in models not employing the

ISCCP simulator, we show in Fig. A3.4 the 1980–2005 mean annual vertical profile

of cloud water content (CWC) of the CMIP5 models (data for CMIP3 models were

unavailable). CWC at each model level is defined as (ρamt)/CF, where ρa is the

density of dry air, and mt is the total (liquid plus ice) water mixing ratio in a grid

box. Dividing by CF allowed us to examine the total water content within a cloud.

The relevant features of Fig. A3.4 are described in the results section.

For the six models providing ISCCP simulator output, we computed binned

SW-CRE relationships to SST, EIS, and SSTadv in the manner described above.

For these models and observations, we summed the relationships over all τ cat-

egories for each CTP layer to yield profiles of changes in SW CRE for the same

meteorological variations, shown in Fig. A3.5. The results confirm that for these

models and observations, changes in low-level CF drive the overall changes in SW

CRE associated with variability of SST, EIS, and SSTadv.

Components of SW CRE relationships to SST, EIS, and

SSTadv

Changes in top-of-atmosphere SW CRE arise primarily due to changes in

total cloud amount and cloud optical depth. Changes in cloud-top altitude play a

minor role. To determine the relative contributions of each factor to the SW CRE

relationships to SST, EIS, and SSTadv, we use the method of Zelinka et al. (2012)

for the ISCCP observations and those models providing ISCCP simulator output.

The method is outlined below.
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Cloud amount component

To compute the cloud amount component of the relationship between SW

CRE and a meteorological variable x, D(SWamt)/D(x), first we express the clima-

tological mean total cloud fraction, 〈CFtot〉, as

〈CFtot〉 =
T∑

τ=1

P∑
p=1

〈CF[p, τ ]〉, (A3.1)

where 〈CF[p, τ ]〉 is the climatological mean cloud fraction at a given cloud-top

pressure layer p and optical thickness category τ , and P and T are the total

number of respective bins of cloud-top pressure and optical thickness. Next, we

express the relationship between total CF and x as

D(CF)tot
D(x)

=
T∑

τ=1

P∑
p=1

D(CF[p, τ ])

D(x)
, (A3.2)

where D(CF[p, τ ])/D(x) is the relationship between CF and x at a given p and τ .

Finally, D(SWamt)/D(x) is computed as

DSWamt

D(x)
=

T∑
τ=1

P∑
p=1

D(CFtot)

D(x)
× 〈CF[p, τ ]〉

〈CFtot〉 × SWk[p, τ ], (A3.3)

where SWk[p, τ ] is the shortwave cloud radiative kernel at a given p and τ . The

resulting quantity is interpreted as the change in SW radiation, in response to

a perturbation in x, due to a change in total cloud amount independent of the

change in the clouds’ optical depth and vertical distribution.

Cloud optical depth component

To compute the cloud optical depth component of the relationship between

SW CRE and x, D(SWτ )/D(x), first we calculate the mean D(CF[p, τ ])/D(x) over

all τ for a given p. Mathematically this is written as

〈D(CF[p])

D(x)

〉
=

1

T

T∑
τ=1

D(CF[p, τ ])

D(x)
. (A3.4)
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Then D(SWτ )/D(x) is computed as

D(SWτ )

D(x)
=

T∑
τ=1

P∑
p=1

((D(CF[p, τ ])

D(x)
−

〈D(CF[p])

D(x)

〉)
× SWk[p, τ ]

)
. (A3.5)

The resulting quantity is interpreted as the change in SW radiation, in response

to a perturbation in x, due to a change in the clouds’ optical depth distribution

independent of the change in the clouds’ vertical distribution and change in total

cloud amount.

Results

Note that the overall change in SW radiation in response to a change in x,

D(SW)/D(x)k is expressed as

D(SW )

D(x)k
=

T∑
τ=1

P∑
p=1

D(CF[p, τ ])

D(x)
× SWk[p, τ ]. (A3.6)

For observations and models, Fig. A3.6 shows this quantity plotted against the

relationship between SW CRE and x, which we call D(SW)/D(x). The two quan-

tities are nearly identical for all observations and models.

Figure A3.6 also shows D(SW)/D(x)k plotted against D(SWamt)/D(x),

D(SWtau)/D(x), andD(SWamt)/D(x)+D(SWtau)/D(x) for observations and mod-

els. The sum of the cloud amount and optical depth components is sufficient

to explain the sign and magnitude of all observed and modeled D(SW)/D(x)k

values. Interestingly, the cloud amount and optical depth components have

similar signs in most models, so that individually either can generally ex-

plain the sign of D(SW)/D(x)k. Their magnitudes are also similar. However,

D(SWamt)/D(x) explains more inter-model variance in D(SW)/D(x)k compared

to D(SWtau)/D(x), justifying our focus on cloud fraction in the main text. In

observations, D(SW)/D(SST)k and D(SW)/D(EIS)k each have cloud amount and

optical depth contributions of the same sign, whereas D(SW)/D(SSTadv)k only

has a cloud amount contribution.
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Figure A3.1: Observed ISCCP cloud fraction relationships to meteorological
variables multiplied by the shortwave cloud radiative kernel, binned by CTP and
τ . The area of the box within each bin is proportional to the D(CF)/D(x) value
therein, and a solid gray line around a box indicates that a value is significant at
the 95% confidence level. The sum of values over all CTP layers and τ categories
is shown at the top of each subplot.
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Figure A3.2: As in Fig. A3.1, but for the longwave cloud radiative kernel.
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Figure A3.3: As in Fig. A3.1, but for the net cloud radiative kernel.



75

0 0.2 0.4 0.6 0.8 1

0

200

400

600

800

1000

g m−3

Mean annual CMIP5 cloud water content

pr
es

su
re

 (
hP

a)

 

 multi−model mean

CCSM4

CESM1−CAM5

CanESM2

MPI−ESM−LR

FGOALS−g2

GFDL−CM3

GFDL−ESM2G

GISS−E2−H

IPSL−CM5A−LR

IPSL−CM5B−LR

MIROC5

MIROC−ESM−CHEM

MRI−CGCM3

HadGEM2−ES

Figure A3.4: The 1980–2005 mean annual cloud water content as a function of
pressure in CMIP5 models.
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Figure A3.5: Observed and modeled ISCCP cloud fraction relationships to (left)–
(right) SST, EIS, and SSTadv multiplied by the shortwave cloud radiative kernel,
summed over all optical thickness categories. The error bars span the four 95%
confidence intervals computed from the four reanalyses.



76

0 1 2 3 4

0

1

2

3

4

B

C

H1

H2I
J

r1

r2 r3

r4

D(SW)/D(SST)

D
(S

W
)/

D
(S

S
T

) k

r2 = 0.99

0 1 2 3 4

0

1

2

3

4

B

C

H1

H2I
J

r1

r2r3

r4

D(SWamt)/D(SST)

D
(S

W
)/

D
(S

S
T

) k

Components of SW CRE relationships to SST, EIS, and SSTadv (W m−2 sigma−1)

       0.74                                                                   

0 1 2 3 4

0

1

2

3

4

B

C

H1

H2I
J

r1

r2r3

r4

D(SWtau)/D(SST)

D
(S

W
)/

D
(S

S
T

) k

0.57

0 1 2 3 4

0

1

2

3

4

B

C

H1

H2I
J

r1

r2r3

r4

D(SWamt)/D(SST)+D(SWtau)/D(SST)

D
(S

W
)D

(S
S

T
) k

0.99

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

B

C

H1H2

IJ

r1

r2r3
r4

D(SW)/D(EIS)

D
(S

W
)/

D
(E

IS
) k

0.99

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

B

C

H1H2

IJ

r1

r2r3
r4

D(SWamt)/D(EIS)

D
(S

W
)/

D
(E

IS
) k

0.88

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

B

C

H1H2

I J

r1

r2r3
r4

D(SWtau)/D(EIS)

D
(S

W
)/

D
(E

IS
) k

0.69

−3 −2 −1 0 1 2

−3

−2

−1

0

1

2

B

C

H1H2

IJ

r1

r2r3
r4

D(SWamt)/D(EIS)+D(SWtau)/D(EIS)

D
(S

W
)/

D
(E

IS
) k

1

−1 0 1 2 3

−1

0

1

2

3

B

C

H1

H2

I

J
r1

r2 r3r4

D(SW)/D(SSTadv)

D
(S

W
)/

D
(S

S
T

ad
v)

k

1

−1 0 1 2 3

−1

0

1

2

3

B

C

H1

H2

I

J
r1

r2r3r4

D(SWamt)/D(SSTadv)

D
(S

W
)/

D
(S

S
T

ad
v)

k

0.92

−1 0 1 2 3

−1

0

1

2

3

B

C

H1

H2

I

J
r1

r2r3r4

D(SWtau)/D(SSTadv)

D
(S

W
)/

D
(S

S
T

ad
v)

k

0.67

−1 0 1 2 3

−1

0

1

2

3

B

C

H1

H2

I

J
r1

r2r3r4

D(SWamt)/D(SSTadv)+D(SWtau)/D(SSTadv)
D

(S
W

)/
D

(S
S

T
ad

v)
k

1

Figure A3.6: SW CRE relationships to SST, EIS and SSTadv plotted
against SW/meteorology relationships computed using cloud radiative kernel
method (left panels). Cloud amount component of SW/meteorology relation-
ships plotted against SW/meteorology relationships (second from left panels).
Cloud optical depth component of SW/meteorology relationships plotted against
SW/meteorology relationships (second from right panels). Sum of cloud amount
and optical depth components of SW/meteorology relationships plotted against
SW/meteorology relationships (right panels). Observations are denoted as black
letters, where r1 stands for CFSR, r2 for ERA-Interim, r3 for JRA55, and r4
for MERRA, each paired with CERES (for CRE method) or ISCCP (for kernel
method). Models are denoted as green letters (defined in Table 3.3 in the main
text). Numbers on the top of each subplot are the r-squared values of the modeled
quantities.



Chapter 4

Observational and model

estimates of subtropical marine

boundary layer cloud feedbacks

Low-level clouds over the eastern subtropical oceans strongly modulate the

energy budget of the climate due to their high albedo (Hartmann et al., 1992).

Just a fractional change in their global horizontal coverage exerts a radiative forc-

ing at the top of the atmosphere greater than that caused by a doubling of the

atmospheric concentration of CO2 (Wood, 2012). Climate models project a wide

spread of changes in these clouds in anthropogenic warming simulations (Bony and

Dufresne, 2005; Qu et al., 2013). A decrease (increase) in subtropical cloudiness in

the future climate implies a positive (negative) feedback to global warming. Mod-

els that predict a decrease in subtropical cloudiness in the future climate tend to

simulate more global warming than models that predict an increase in cloudiness

(Myers and Norris, 2015). Evaluating and seeking to constrain the inter-model

spread in the subtropical cloud feedback should thus play a key role in any effort

to reduce uncertainty in global warming estimates.

Stratocumulus and shallow cumulus are the primary low-level cloud types

occurring over the subtropical oceans. Collectively, we refer to them as marine

boundary layer (MBL) clouds because they occur within the planetary boundary

layer in similar climatological conditions. These include a cool ocean surface rel-
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ative to the zonal mean, a temperature inversion separating the MBL from the

free troposphere, cold air advection near the surface, a dry free troposphere, and

subsidence (Albrecht et al., 1995; Norris, 1998a;Myers and Norris, 2015). Such me-

teorological properties are key to generating and sustaining MBL clouds and can

be considered as external cloud forcing parameters in both simple and complex

models of the cloudy MBL (Lilly, 1968; Blossey et al., 2013).

Given that the meteorological environment of MBL clouds will change in the

future climate, determining the sensitivity of MBL clouds to perturbations in ex-

ternal forcing parameters has been the focus of many studies (see e.g. Wood, 2012,

and references therein). Observational studies tackling this problem have found

that smaller low-level cloud fraction (CF) and/or less solar reflection by subtrop-

ical clouds is associated with relatively warm sea-surface temperature (Hanson,

1991; Norris and Leovy, 1994; Clement et al., 2009; Myers and Norris, 2015), a

weaker temperature inversion (Klein and Hartmann, 1993; Wood and Bretherton,

2006; Sun et al., 2011; Myers and Norris, 2013), reduced cold advection by surface

winds (Klein et al., 1995; Park and Leovy, 2004; Norris and Iacobellis, 2005; Myers

and Norris, 2015), and enhanced subsidence (Myers and Norris, 2013). Theoreti-

cal studies have found similar relationships (Bretherton and Wyant, 1997; Blossey

et al., 2013; Bretherton et al., 2013). In the previous chapter, also published in

Myers and Norris (2015), we discovered that climate models simulate a wide range

of these relationships on interannual timescales in terms of both sign and magni-

tude, suggesting why models predict vastly different subtropical cloud feedbacks

and hence climate sensitivities.

Can these relationships be used to evaluate and constrain the inter-model

spread of changes in subtropical clouds? A recent study by Qu et al. (2013) sug-

gests that this is possible. In that study, a statistical model employing the CF/SST

relationship was able to explain 50–64% of the inter-model variability of subtrop-

ical CF trends in climate change simulations of models participating in phases 3

and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respec-

tively) (Meehl et al., 2007; Taylor et al., 2007). Qu et al. (2013) argued that the

general decrease in CF projected by the models in a perturbed climate is likely to



79

occur based on the observed sensitivity of CF to increases in SST and estimated in-

version strength (EIS). Caldwell et al. (2013) predicted future changes in CF using

a mixed-layer model forced by the climate change perturbations simulated by an

ensemble of CMIP3 models. Perhaps surprisingly, they found that the inter-model

variability in CF trends was not reduced compared with what the models actually

predict. Their mixed-layer model predicted an increase in CF due primarily to an

increase in EIS in the future climate, which they argued was more realistic than

the general decrease in CF simulated by the CMIP3 ensemble.

One drawback of these studies is that changes in CF are not guaranteed to

produce proportional changes in shortwave cloud radiative effect (SW CRE), which

is the parameter that is more directly related to the subtropical cloud feedback

and ultimately to climate sensitivity. Furthermore, even if models project the same

change in SW CRE, they may simulate different cloud feedbacks – defined as the

trend in SW CRE per unit change in global mean surface temperature. A more

insightful approach to investigating inter-model differences in subtropical cloud

trends would be to examine and attempt to constrain cloud feedbacks rather than

changes in SW CRE or CF alone.

In this study, we seek to explain the sign and strength of the subtropi-

cal cloud feedback in idealized climate change simulations of 19 CMIP5 models.

Specifically, we will assess the trends in subtropical mean SW CRE in an instan-

taneous quadrupling of CO2 experiment mediated purely by an increase in global

mean temperature. A multi-linear regression model based on the simulated inter-

annual variability of the current climate will be employed to predict changes in SW

CRE per unit change in global mean temperature based on perturbations in SST,

EIS, horizontal advection over the SST gradient (SSTadv), relative humidity at

700 hPa (RH700), and pressure vertical velocity at 700 hPa (ω700). We also seek to

constrain the subtropical cloud feedback using observations provided by satellite

data and reanalyses.
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4.1 Data and methods

4.1.1 Observational data

SW CRE is defined as clear-sky minus all-sky radiation at the top of the

atmosphere. 2000–2012 and 1984–1999 observed monthly mean values of this quan-

tity are taken respectively from the Clouds and Earth’s Radiant Energy System

(CERES) Energy Balanced and Filled (EBAF) dataset version 2.7 (Loeb et al.,

2009) and the International Satellite Cloud Climatology Project (ISCCP) (Rossow

and Schiffer, 1999). ISCCP data were corrected for artifacts as in Norris and

Evan (2015). Although ISCCP provides data through 2009, we only use retrievals

from the period that does not overlap with the CERES record, allowing for an

assessment of two truly independent cloud datasets.

Four different reanalyses provide 1984–2012 monthly mean values of SST,

EIS, SSTadv, RH700, and ω700. These include the Climate Forecast System Reanal-

ysis (CFSR) (Saha et al., 2010), the Interim European Centre for Medium Range

Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) (Dee et al., 2011), the

Japanese 55-year Reanalysis Project (JRA-55) (Ebita et al., 2011), and the Modern-

Era Retrospective Analysis for Research and Applications (MERRA) (Rienecker

et al., 2011). EIS – a measure of the strength of the temperature inversion above

cloud top formulated by Wood and Bretherton (2006) – and SSTadv are computed

as described in the preceding chapter and Myers and Norris (2015). Each dataset

was bilinearly interpolated onto a 2.5◦ × 2.5◦ grid. It is unclear which reanalysis

is the best representation of the climate record, so we averaged each of the five

meteorological fields over the four reanalyses to attain a single merged reanaly-

sis product. We consider the resulting dataset to be the best approximation of

observations.

4.1.2 Model output

We analyze monthly mean output from 19 coupled climate models partici-

pating in CMIP5, listed in Table 4.1. All fields were interpolated onto a 2.5◦×2.5◦

grid prior to analysis. Only models with unique atmospheric components from
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each modeling center were chosen. In this way, we exclude examination of mul-

tiple model variants with identical atmospheric components but different land or

ocean components or resolutions. This is justified by our focus on the factors af-

fecting the inter-model spread of the subtropical cloud feedback, which is likely

uniquely determined by the atmospheric component of a particular model.

A single realization of both the “piControl” and “abrupt4xCO2” experi-

ments is used for each model. The former is a control simulation in which forc-

ing constituents are held fixed at preindustrial values. The latter is a simulation

lasting at least 150 years in which, at the start of the run, the concentration of

atmospheric CO2 is quadrupled instantaneously relative to pre-industrial values.

All other forcing constituents are identical to those in the control run.

4.1.3 Computation of cloud feedbacks and multi-linear re-

gression model

Our domain is defined dynamically similar to the method used in previous

chapters, published in Myers and Norris (2013) and Myers and Norris (2015).

For the observations, we examine all grid boxes occurring under 1984–2012 long–

term mean subsidence (ω700 > 0) for each calendar month within the ocean region

between 30◦N and 30◦S and for which monthly mean subsidence occurs for 80%

of the time record. Only months experiencing mean subsidence are included in

the analysis. For the models, this constraint applies jointly for the control and

4xCO2 runs. This ensures that regions that occur under mean subsidence in the

control climate but not in the perturbed climate (e.g. due to a shift in convection)

are excluded. Note that since observations and models may have different areas

experiencing mean subsidence, the geographical area satisfying our criteria is not

guaranteed to be identical across reanalyses and models.

We quantify the subtropical cloud feedback in each model as the domain

mean SW CRE of years 121–140 of the 4xCO2 run minus that of years 1–20,

divided by the increase in global mean temperature between the two time periods.

By examining the normalized change in SW CRE over the 4xCO2 run, the so called

fast cloud adjustment to the abrupt increase in CO2 (not mediated by the increase
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in global mean temperature) is omitted in our computation of cloud feedback

(Gregory and Webb, 2008; Andrews et al., 2012a). Note that the choice of years

here corresponds to periods for which ISCCP simulator output (Pincus et al.,

2012; Zhang et al., 2012) is available. Output from models employing the ISCCP

simulator will be used to assess how clouds at different altitudes contribute to the

SW CRE feedback.

The goal of the present study is to understand and place an observational

constraint on the inter-model spread of this feedback. To accomplish this, first

we assume that SW CRE is a function of SST, EIS, SSTadv, RH700, and ω700.

These variables are a reasonable approximation of the complete set of external

parameters for a mixed-layer model of the cloudy MBL (Lilly, 1968). We can then

write a first order Taylor series approximation of the change in SW CRE per unit

change in global mean temperature T as

dSW

dT
=

5∑
i=1

∂SW

∂xi

dxi

dT
, (4.1)

where xi is one of the five forcing variables. ∂SW/∂xi represents the direct re-

sponse of SW CRE to a perturbation in xi, and dxi/dT represents the change in

xi mediated by a change in T . For each grid box we compute the latter derivative

as the mean value of xi in years 121–140 of the 4xCO2 run minus that of years

1–20, divided the increase in T between the two time periods. To compute the par-

tial derivatives of SW CRE with respect to each forcing parameter, we construct

a multi-linear regression model from the time series of detrended, deasonalized

monthly anomalies in each model’s control climate. For each grid box SW CRE is

then approximated as

SW ≈
5∑

i=1

aixi + b. (4.2)

Each coefficient ai is equal to ∂SW/∂xi. Partial derivatives are also computed in

this manner using anomalies of observations. Detrending ensures that potential

unphysical trends in the reanalyzes do not contaminate the observational results.

Each partial derivative represents the sensitivity of SW CRE to a change in some

cloud-controlling factor when all other factors are held fixed. Covariability among
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the xi does not alter this interpretation (see Appendix).

Decomposing each partial derivative and change in external parameter for

the models into a domain average value plus a perturbation term, the spatially

averaged predicted feedback described by Eq. 4.1 yields

〈dSW
dT

〉
=

5∑
i=1

〈∂SW
∂xi

〉〈dxi

dT

〉
+
〈∂SW

∂xi

′dxi

dT

′〉
. (4.3)

The covariance term is found to be negligibly small, so that

〈dSW
dT

〉
≈

5∑
i=1

〈∂SW
∂xi

〉〈dxi

dT

〉
. (4.4)

By estimating the subtropical cloud feedback in this fashion, we are able

to determine the role of changes in external forcing parameters in the perturbed

climate in generating the cloud feedback in each model. While we do not expect

this diagnostic technique to perform perfectly for each model, we expect that

the results will elucidate reasons for the sign and magnitude of cloud feedbacks

produced in the CMIP5 ensemble.

4.1.4 Determining observational uncertainty

Standard errors of the observed partial derivatives are computed as the

square roots of the diagonal elements of the variance-covariance matrixC of regres-

sion coefficients (Press et al., 1996). This matrix is formulated as C = σ̂2(XTX)−1,

where X is the gram matrix with columns composed of the time series of each xi

and a column of ones, and σ̂2 is the mean of squared residuals of the regression

model. Assuming the errors are normally distributed, we then calculate a 90%

confidence interval for each grid box’s partial derivative as

∂SW

∂xi

± t
√
Cii

√
Nnom/Neff, (4.5)

or equivalently
∂SW

∂xi

± δ, (4.6)
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where Nnom (Neff) is the nominal (effective) number of points in the time series,

and t is the critical value of the student’s t test at the 95% significance level with

degrees of freedom equal to Neff − 6. The right most term in Eq. 4.5 takes into

account that the time series of SW CRE may be auto-correlated. Neff is formulated

as

Neff = Nnom

(1− rT
1 + rT

)
, (4.7)

where rT is the lag one auto-correlation coefficient of the time series of SW CRE.

Finally a 90% confidence interval for the domain average partial derivative is com-

puted as

〈∂SW
∂xi

〉
±

√√√√N ′
nom∑

k=1

δ2k
N ′2

eff

, (4.8)

or equivalently 〈∂SW
∂xi

〉
±Δ, (4.9)

where N ′
nom (N ′

eff) is the nominal (effective) number of points over the domain, and

δk is the uncertainty for the kth grid box. N ′
eff is formulated as

N ′
eff = N ′

nom

(1− rZ
1 + rZ

)(1− rM
1 + rM

)
, (4.10)

where rZ and rM are the zonal and meridional lag one auto-correlation coefficients

computed using the zonal and meridional anomalies of ∂SW/∂xi of all latitude

and longitude bands, respectively.

We desire a single value and confidence interval for each of the five partial

derivatives in the regression model. However, since two cloud datasets and one

merged reanalysis are used in this study, there are two observational estimates

for each coefficient. To attain a single observational value for each
〈
∂SW/∂xi

〉
,

we take the mean of these two estimates. By propagating uncertainty between

datasets, a 90% confidence interval bounding this value is computed as

〈∂SW
∂xi

〉
±

√
Δ2

CERES +Δ2
ISCCP

22
. (4.11)



85

Here, ΔCERES is the uncertainty of the observational estimate derived from CERES,

and ΔISCCP is that derived from ISCCP. This method of computing the uncertainty

assumes that the CERES and ISCCP estimates are independent. This assumption

is justified because the cloud datasets provide SW CRE using different satellites

with unique retrieval algorithms and have non-overlapping time periods of record.

4.2 Results

4.2.1 Contributions to SW CRE feedbacks

Figure 4.1 shows subtropical mean trends of the meteorological variables

in the perturbed climate per unit increase in global mean temperature; observed

and simulated partial derivatives of SW CRE with respect to SST, EIS, SSTadv,

RH700, and ω700; and the actual and predicted SW CRE feedback for the CMIP5

ensemble. The predicted feedback is further broken into its components, each of

which is defined as
〈
∂SW/∂xi×dxi/dT

〉
. Partial derivatives and trends in external

parameters are normalized by the respective standard deviations of the observed

1984–2012 domain mean time series of detrended interannual anomalies of each

meteorological variable.

In the future climate, per unit increase in global mean temperature, the

ensemble mean exhibits a strong increase in subtropical average SST, an increase

in EIS and RH700, and very small changes in SSTadv and ω700 (weakly enhanced

cold SSTadv and slightly weaker subsidence). With the exception of the increase

in RH700, these changes over the subtropical ocean regions simulated by CMIP3 or

CMIP5 models have been documented by previous studies (Bretherton and Blossey,

2013; Caldwell et al., 2013; Qu et al., 2013) and are considered to be realistic re-

sponses to greenhouse forcing. Relative humidity is often assumed to not change

very much under anthropogenic warming, so the result that free-tropospheric rel-

ative humidity over the eastern subtropical oceans increases substantially when

scaled by its observed interannual standard deviation is an interesting result in

itself.

To elucidate the regression results, it is useful to consider how meteorolog-
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ical perturbations of the same sign as their climate change signal are related to

interannual variations of SW CRE in the control/observed climate. These relation-

ships are quantified as the partial derivatives shown in Fig. 4.1. For observations

and the ensemble mean, more positive SW CRE (less solar reflection) is associated

with anomalously warm SST. When multiplied by the increase in SST in the future

climate, this relationship leads to a large positive feedback in most models. More

negative SW CRE (more solar reflection) in the control and observed climates is

associated with anomalously strong EIS, high RH700, enhanced cold SSTadv, and

weaker ω700. When multiplied by the appropriate changes in meteorological vari-

ables, these relationships lead to small negative feedbacks (for the increase in EIS

and RH700) or near zero feedbacks (for the small changes in SSTadv and ω700) in

most models. Overall, for the ensemble mean, the positive feedback due to warmer

SST dominates over the smaller negative feedbacks due to stronger EIS and higher

RH700. This yields a positive predicted SW CRE feedback.

The regression model therefore captures the correct sign of the actual en-

semble mean SW CRE feedback (also shown in Fig. 4.1), though with a larger

magnitude. Moreover, with the exception of one outlier, the inter-model spread

of the predicted feedback is similar to that of the actual feedback and clearly

dominated by the SST component
〈
∂SW/∂SST× dSST/dT

〉
.

A more rigorous test of how the multi-linear regression model performs is

presented in Fig. 4.2, showing a scatter plot of the predicted versus actual SW CRE

feedback for all models. To highlight the most important components contributing

to the feedback estimated via regression, scatter plots of the predicted SW CRE

feedback for the SST component, SST+EIS components, and SST+EIS+RH700

components are also shown. Excluding the outlier model “P”, the regression model

explains 38% of the inter-model variability in the SW CRE feedback. As inferred

from Fig. 4.1, most of the spread in the feedback is explained by the SST com-

ponent, which alone explains 52% of inter-model variability. Hence, about half

of the inter-model variability in SW CRE feedbacks in the CMIP5 ensemble is

explained by differences in the strength of the positive SW CRE feedback induced

by warming subtropical SST. This corroborates the findings of Qu et al. (2013),
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who found that a similar amount of inter-model variance in 21st century changes

in subtropical low-level CF is explained by the SST component of a similarly con-

structed statistical model. It is important to note, though, that changes in CF are

not equivalent to cloud feedbacks.

Figure 4.2 also shows that the addition of the EIS and RH700 components

to the SST part of the regression model each reduces the root mean square of the

residuals, suggesting that the increase in both EIS and RH700 in the future climate

collectively leads to a non-negligible negative SW CRE feedback in most models.

Still, the full regression model explains only a modest amount of the spread

in the cloud feedback, and the magnitude of the residuals is substantial. This

implies that some predictor variable(s) is (are) missing from the regression model

and/or that interannual variability of SW CRE in the control climate cannot always

be used to estimate any particular model’s SW CRE feedback.

4.2.2 Performance of the regression model

We contend that for our regression method to perform well for a given

model, the factors controlling the interannual variability of SW CRE in its control

climate should be the same as or similar to those controlling SW CRE variabil-

ity in observations. To explore this hypothesis, for each model we compute the

root-mean-square error (RMSE∂SW/∂x) of all five partial derivatives relative to ob-

servations. This is expressed as

RMSE∂SW/∂x =

√√√√1

5

5∑
i=1

(∂SWmodel

∂xi

− ∂SWobs

∂xi

)2

, (4.12)

where ∂SW/∂xmodel
i is one of the five spatially averaged relationships for a given

model, and ∂SW/∂xobs
i is the mean value of the observed relationships derived from

CERES and ISCCP. Next we plot RMSE∂SW/∂x versus the absolute value of the

difference between the actual and predicted SW CRE feedback for all models (Fig.

4.3). A positive relationship between RMSE∂SW/∂x and the residuals is evident,

supporting our hypothesis that models must simulate the interannual variability

of SW CRE in a manner consistent with observations in order for our regression



88

method to accurately predict their SW CRE feedbacks. Similar results are attained

when only the partial derivatives of SW CRE with respect to SST, EIS, and RH700

– the three relationships weighted most heavily in the regression model for future

climate change – are used to compute RMSE∂SW/∂x. Note also that models with

small RMSE∂SW/∂x are generally inferior in their simulation of the sensitivity of SW

CRE to interannual variations in both SST and EIS (Fig. A4.1) and in many cases

simulate individual relationships outside the range of observational uncertainty.

In Fig. 4.4 we show the predicted versus actual SW CRE feedback with

models color coded according to two categories distinguishing their RMSE∂SW/∂x.

Green points denote models with the nine smallest RMSE∂SW/∂x values, while

red points denote models with the nine largest RMSE∂SW/∂x values (excluding

the model “P” with the largest RMSE∂SW/∂x). Models with small RMSE∂SW/∂x

simulate actual SW CRE feedbacks closer to the regression-derived feedbacks than

models with larger RMSE∂SW/∂x. In fact, the root mean square of the residuals

of the realistic subset of models is half of that of the poorer performing subset.

Additionally, the regression model is able to explain 61% of inter-model variability

among the realistic models compared to 38% of variability among all models.

Further classifying models according to the RMSE∂SW/∂x metric, in Fig. 4.5

we plot the predicted versus actual SW CRE feedback with models color coded

according to four categories distinguishing their RMSE∂SW/∂x values. The models

with the four smallest RMSE∂SW/∂x values simulate actual feedbacks much closer

to the feedbacks predicted via regression relative to models with the five largest

RMSE∂SW/∂x.

To corroborate our claim that models can be considered realistic or unre-

alistic according to the RMSE∂SW/∂x metric, we next evaluate vertical profiles of

the mean annual cloud water content (CWC) in the control climate of the mod-

els with the four smallest RMSE∂SW/∂x and compare these to the profiles of the

models with the five largest RMSE∂SW/∂x. This is motivated by the findings of the

preceding chapter, published in Myers and Norris (2015), in which we showed that

the inter-model spread of the mean CWC can have large impacts on variability of

SW CRE, since CWC is proportional to cloud optical thickness. CWC at each
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model level is defined as (ρamt)/CF, where ρa is the density of dry air, mt is the

total (liquid plus ice) water mixing ratio in a grid box, and CF is cloud fraction.

Dividing by CF allows us to examine the total water content within a cloud. The

mean CWC profiles are shown in Fig. 4.6. Realistic models, according to the

RMSE∂SW/∂x metric, simulate lower-tropospheric CWC maxima of around 0.25 g

m−2 or less, close to the value of the ensemble mean of all 19 CMIP5 models.

With one exception, poorer performing models simulate lower-tropospheric CWC

maxima between 0.6 and 0.9 g m−2. The profiles of these two subsets of models are

therefore fundamentally different, justifying our classification of models according

to their RMSE∂SW/∂x.

Another reason why our regression technique may not perform well for cer-

tain models could be that that there are SW CRE feedbacks in some models driven

by changes in mid- or high-level clouds. The predictor variables in the regression

model were chosen as the set of external parameters controlling subtropical MBL

cloudiness, so we do not expect the model to capture changes in SW CRE associ-

ated with higher-level clouds.

To explore this hypothesis, we compute subtropical mean SW cloud feed-

backs in models providing ISCCP simulator output and compare these to the SW

feedbacks due only to changes in low-level clouds. SW cloud feedbacks are com-

puted using the radiative kernel method of Zelinka et al. (2012) (see the previous

chapter for a discussion of kernels and the ISCCP simulator). We define low clouds

as those with tops below the 560 hPa level since the retrieval algorithm of ISCCP,

and hence likely the simulator, often places true low-level clouds in the mid-level

category in regions where strong inversions and overlying cirrus occur (Mace et al.,

2006; Garay et al., 2008). The results are displayed in Fig. 4.7. While the spread

of the SW cloud feedback shown in Fig. 4.7 is largely driven by changes in low

clouds, two out of six models (“D” and “Q”) simulate substantial negative feed-

backs induced by trends in higher-level clouds, manifested as the residuals from

the one-to-one line.

In Fig. 4.8 we illustrate that when the negative high cloud feedbacks in “D”

and “Q” are subtracted from their simulated SW CRE feedbacks, the resulting
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low cloud feedbacks more closely align with the SW CRE changes estimated via

regression. Note that models “D” and “Q” are within the subset of models with the

nine smallest RMSE∂SW/∂x values. This suggests that for the models realistically

producing interannual SW CRE variability, the SW CRE change predicted using

our regression technique is truly capturing low cloud feedbacks.

4.2.3 Decomposition of feedbacks

Now that we are able to reasonably predict SW CRE feedbacks in nine

models in the CMIP5 ensemble, we can ask, What drives the inter-model spread

in this subset of models? To answer this question, we decompose each spatially

averaged partial derivative
〈
∂SW/∂xi

〉
and meteorological trend

〈
dxi/dT

〉
into a

multi-model mean plus an anomaly from the multi-model mean. Then Eq. 4.4 can

be written as

dSW

dT
=

5∑
i=1

[∂SW
∂xi

][dxi

dT

]
+

∂SW

∂xi

′[dxi

dT

]
+
[∂SW
∂xi

]dxi

dT

′
+
[∂SW
∂xi

′dxi

dT

′]
. (4.13)

Bracketed quantities are multi-model means, primes denote anomalies of adjacent

quantities, and the spatial average operator
〈
...
〉
is omitted for conciseness. The

first term on the right-hand side of Eq. 4.13 is the part of the SW CRE feedback

common to all models. The second term is the part of the feedback due to interan-

nual cloud/meteorology relationships different from those of the ensemble mean.

The third term is the part of the feedback due to trends in meteorological variables

different from those of the ensemble mean. The fourth term is a covariance factor,

which is found to be small.

In Fig. 4.9 we plot the part of the SW CRE feedback common to all models

plus ∂SW/∂x′i
[
dxi/dT

]
(top left) and ∂SW/∂x′i

[
dxi/dT

]
+
[
∂SW/∂xi

]
dxi/dT

′ (top

right) separately versus the actual SW CRE feedbacks in all CMIP5 models. We

also plot the SST component of the predicted feedback decomposed in a similar

manner versus the actual SW CRE feedback. Models are color coded into the

two categories distinguishing their RMSE∂SW/∂x values, as done in Fig. 4.4. The
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top two subplots of Fig. 4.9 reveal that differences in partial derivatives among

models contribute most to the spread of SW CRE feedbacks in both the realistic

and poorer performing subset of models. Note, however, that the root mean square

of the residuals is smaller among the former set of models.

The bottom two subplots of Fig. 4.9 show that differences in the sensitivity

of SW CRE to interannual fluctuations in SST in the control climate are key to

generating the spread of SW CRE feedbacks among models. As expected, not

accounting for the EIS and RH700 components of the feedback increases the root

mean square of the residuals compared to if they are included in the regression

model. The interannual SW CRE/SST relationship on its own can explain nearly

50% of the inter-model spread in the SW CRE feedback in both the realistic and

poorer performing subsets of models (bottom left of Fig. 4.9). Since observations

can provide an estimate of this sensitivity as well as the sensitivity of SW CRE

to interannual fluctuations in EIS and RH700 (Fig. 4.1), these results strongly

indicate that realistic bounds of the true SW CRE feedback can be attained.

4.2.4 Observational constraint on the SW CRE feedback

Using multi-model mean values for each of the spatially averaged climate

change perturbations in the meteorological variables
〈
dxi/dT

〉
and observational

estimates for each of the five interannual SW CRE sensitivity values
〈
∂SW/∂xi

〉
,

we approximate the true subtropical mean SW CRE feedback
〈
dSW/dT

〉
using

Eq. 4.4. By defining Δi as the observational uncertainty of
〈
∂SW/∂xi

〉
(Eq. 4.11)

and propagating the error, we compute a 90% confidence interval for the true SW

CRE feedback as

〈dSW
dT

〉
±

√√√√ 5∑
i=1

Δ2
i

〈dxi

dT

〉2

. (4.14)

The observational estimate of the SW CRE feedback and its uncertainty and largest

components are displayed in Fig. 4.10. Overall, the feedback is positive and nearly

statistically significant at the 90% confidence level (p = 0.13). A positive feedback

of 2 W m−2 K−1 arises as a result of the increase in SST projected by the ensemble
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(Fig. 4.1), while a negative feedback of around −1 W m−2 K−1 arises as a result

of the increase in EIS and RH700. This yields a total feedback of 1 W m−2 K−1

with a 90% confidence interval extending from around 0 W m−2 K−1 to 2 W m−2

K−1. This observationally constrained range of the subtropical SW CRE feedback

is around half of the range of SW CRE feedbacks produced by the CMIP5 ensemble

(Fig. 4.1).

Much of the spread of equilibrium climate sensitivity (ECS, the global mean

equilibrium temperature response due to a doubling of CO2) in the CMIP5 ensem-

ble is explained by changes in SW CRE over the subtropical oceans (Vial et al.,

2013; Myers and Norris, 2015). We can therefore place an observational constraint

on ECS using our observational estimate of the subtropical SW CRE feedback. To

do this, in Fig. 4.11 we plot the actual SW CRE feedback against ECS for the

nine models most realistically simulating the observed interannual variability of

SW CRE (using our RMSE∂SW∂x metric) and with reported ECS values taken

from Stocker et al. (2014). Note that the SW CRE feedback and ECS in these

models is highly correlated (r=0.8), pointing to the importance of the “slow” re-

sponse of subtropical clouds to anthropogenic forcing. Also shown are standard

error bounds and a 90% confidence interval for our observational estimate of the

SW CRE feedback. The only two models, “H” and “Q”, with feedbacks falling

within the standard error bounds have ECS values of 3.6 K and 4 K, respectively.

Models with feedbacks below (above) this range generally have lower (higher) ECS.

In fact, three out of four models with SW CRE feedbacks of more than one standard

error below the observational feedback estimate have ECS values between 2.1 K

and 2.7 K. The 90% confidence range of the observationally constrained feedback,

however, includes model “O” with an ECS of 2.7 K. Constraining the subtropical

SW CRE feedback in a more statistically robust manner will require reducing the

observational uncertainty of relationships between SW CRE and cloud controlling

factors. But the fact that four out of the five models residing within the 90%

confidence range of observations have ECS values between 3.6 K and 4.6 K is very

suggestive evidence that the true climate sensitivity is on the high end of estimates

currently produced by climate models.
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Figure 4.11 additionally shows the SW CRE feedback versus ECS for all

models with reported ECS values. Here, the two variables are also correlated

(r=0.72), and the range of uncertainty of the observationally constrained feedback

points to a high climate sensitivity but with a lesser degree of confidence than

indicated by the left subplot of Fig. 4.11. This highlights the importance of the

simulation of interannual variability in climate models. Models “P” and “R” reside

within one standard error of our SW CRE feedback estimate but have ECS on the

highest and low ends of estimates produced by the ensemble, respectively. These

models, however, are among the five worst with respect to simulating interannual

relationships between SW CRE and cloud-controlling factors (Fig. 4.3), and they

both simulate
〈
∂SW/∂SST

〉
and

〈
∂SW/∂EIS

〉
outside the range observational

uncertainty (Fig. A4.1). On this basis we argue that their SW CRE feedbacks,

and by extension their climate sensitivities, are not to be trusted.

4.3 Summary and Discussion

In this study, we employ multi-linear regression analysis to explain the sub-

tropical mean SW CRE feedbacks produced by 19 CMIP5 models in an idealized

experiment in which CO2 concentration is instantaneously quadrupled relative to

preindustrial levels. Departing from previous studies examining changes in bound-

ary layer clouds over the subtropical oceans, we restrict our analysis to a study

of the “slow” cloud feedback, defined as the change in SW CRE mediated by the

increase in global mean temperature over the first 140 years of the climate change

run. The regression model, constructed from each CMIP5 model’s control cli-

mate, produces the interannual sensitivity of SW CRE to independent variations

in five external forcing parameters for each grid box over the tropical (30◦N–30◦S)

oceans experiencing climatological subsidence. These parameters include SST,

EIS, SSTadv, RH700, and ω700. Multiplying each of these partial derivatives by

the grid-box trends in each parameter per unit of global warming, summing all

components, and then spatially averaging results in an estimate of the subtropical

SW CRE feedback for each model.
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This diagnostic technique is able to explain the (positive) sign of the en-

semble mean subtropical SW CRE feedback and a modest amount of its spread.

The three most dominant variables in determining the SW CRE feedback are SST,

EIS, and RH700. This is mainly because in the 4xCO2 experiments examined here,

the CMIP5 ensemble predicts strong increases in these parameters relative to fu-

ture changes in ω700 and SSTadv. For the ensemble mean and most models, a

strong positive feedback due to warmer SST is larger in magnitude than the nega-

tive feedback resulting from stronger EIS and higher RH700. The SST component

of the regression model,
〈
∂SW/∂SST × dSST/dT

〉
, explains 52% the inter-model

variability of the SW CRE feedback in 18 models of the CMIP5 ensemble.

The ability of our regression technique to predict the SW CRE feedback in a

given model depends on how well that model simulates the sensitivity of SW CRE

to interannual variations in the five forcing parameters and whether or not the

model simulates substantial high cloud feedbacks. Among the nine models most

closely resembling observations, the root mean square of the difference between the

actual and regression-predicted SW CRE feedbacks is half of that of the poorer-

performing models. For this subset of models, 50% of inter-model variance of the

feedback is explained by the interannual sensitivity of SW CRE to fluctuations

in SST,
〈
∂SW/∂SST

〉
. This strongly indicates that observational relationships

between SW CRE and cloud-controlling factors can be used to constrain the cloud

feedback.

Our observational estimate of the feedback is computed by multiplying the

observed interannual sensitivity of SW CRE to independent variations in each of

the five cloud-controlling factors by the appropriate multi-model mean climate

change perturbations in these external factors and summing the resulting com-

ponents. Using two independent cloud datasets (CERES and ISCCP) and four

atmospheric reanalyses (CFSR, ERA-Interim, MERRA, and JRA-55) enables us

to robustly capture the range of uncertainty of this estimate. This observationally

constrained estimate suggests that a positive SW CRE feedback arising from the

increase in SST will likely dominate over a negative feedback arising from the in-

crease in both EIS and RH700. Of the subset of models most realistically producing
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interannual variability of SW CRE, four out of the five models that simulate SW

CRE feedbacks within the 90% confidence interval of our observational estimate

produce ECS values between 3.6 K and 4.6 K. This corroborates several recent

studies that have found that climate models most closely resembling some obser-

vational metric describing cloud processes have strong positive cloud feedbacks and

high climate sensitivities (Fasullo and Trenberth, 2012; Klein et al., 2013; Sherwood

et al., 2014; Su et al., 2014; Myers and Norris, 2015).

While several studies have used observations to argue how subtropical MBL

clouds will respond to and feed back on anthropogenic warming (Miller, 1997;

Clement et al., 2009; Myers and Norris, 2013; Qu et al., 2013), ours is the first to

do so in such a quantitative and systematic fashion. Why SW CRE over subtropical

subsidence regions becomes more positive as SST warms is still an open question.

A leading hypothesis proposed by recent modeling studies (Brient and Bony, 2013;

Bretherton et al., 2013) is based on the response of low clouds to the increase in

the absolute moisture difference between the MBL and the drier free troposphere

in the future climate that will occur for vertically uniform warming and unchanged

relative humidity, based on Clausius-Clapeyron scaling. This enhanced moisture

gradient increases entrainment drying of the MBL, reducing cloud cover. From

an energetic standpoint, the enhanced moisture gradient results in an increase of

the transport of air with low moist static energy by large-scale subsidence into

the MBL. This is balanced in turn by a decrease in the radiative cooling by clouds

within the MBL, reducing cloud cover. One issue with these arguments is that they

assume that the relative humidity remains constant in a global warming scenario,

whereas in the CMIP5 4xCO2 simulations examined here free-tropospheric rela-

tive humidity increases non-negligibly. This increase in relative humidity implies

less of an increase in the absolute moisture difference between the MBL and free

troposphere than would occur if relative humidity were to remain fixed. In fact,

we find that increasing relative humidity at 700 hPa will likely lead to a negative

subtropical SW CRE feedback and partially act to oppose the positive feedback

arising from an increase in SST.

Regardless of the physical mechanisms at play, the results of the present
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study reveal that an understanding of how and why subtropical MBL clouds vary

on an interannual basis is likely sufficient to explain the cloud response to climate

change. Our work may provide a framework with which to reduce uncertainty in

MBL cloud feedbacks and climate sensitivity. Developers of cloud parameteriza-

tions can use the observational cloud/meteorology sensitivity estimates computed

here as a benchmark for model performance. If the inter-model spread of inter-

annual relationships between subtropical SW CRE and large-scale meteorological

factors is reduced, it is likely that the spread of the subtropical cloud feedback and

climate sensitivity will similarly be narrowed.
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Tables and Figures

Table 4.1: CMIP5 models used in the investigation. The ID column lists letters
used to identify models in the text and figures.

Modeling Group CMIP5 Models ID 
Commonwealth Scientific and Industrial 
Research Organization (CSIRO) and Bureau 
of Meteorology (BOM), Australia 

ACCESS1.0 
ACCESS1.3 

A 
B 

Beijing Climate Center, China 
Meteorological Administration 

BCC-CSM1.1 C 

Canadian Centre for Climate Modelling and 
Analysis 

CanESM2 D 

National Center for Atmospheric Research CCSM4 
 

E 
 

Commonwealth Scientific and Industrial 
Research Organization in collaboration with 
Queensland 
Climate Change Centre of Excellence 

CSIRO-Mk3.6.0 F 

LASG, Institute of Atmospheric Physics, 
Chinese Academy of Sciences and CESS, 
Tsinghua 
University 

FGOALS-g2 G 

NOAA Geophysical Fluid Dynamics 
Laboratory 

GFDL-CM3 
GFDL-ESM2G 

H 
I 

NASA Goddard Institute for Space Studies GISS-E2-H J 
Met Office Hadley Centre HadGEM2-ES K 
Institute for Numerical Mathematics INM-CM4 L 
Institut-Pierre Simon Laplace ISPL-CM5A-LR 

IPSL-CM5B-LR 
M 
N 

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National Institute for 
Environmental Studies 

MIROC5 
MIROC-ESM 

O 
P 

Max Plank Institute for Meteorology  MPI-ESM-LR Q 
Meteorological Research Institute MRI-CGCM3 R 
Norwegian Climate Centre NorESM1-M S 
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Figure 4.1: (top) Changes in subtropical mean meteorological variables in CMIP5
models per unit increase in global mean temperature, (second from top), subtropi-
cal mean sensitivity of SW CRE to interannual variations in meteorological param-
eters estimated using multi-linear regression in models and observations, (second
from bottom) subtropical mean components of the estimated SW CRE feedback
in the CMIP5 ensemble, and (bottom) estimated and actual subtropical mean SW
CRE feedback in the CMIP5 ensemble. For CMIP5 quantities, the square denotes
the multi-model mean, the horizontal line denotes the median of all modeled values,
the box spans the interquartile range of all modeled values, the whiskers extend to
the 10th and 90th percentiles of all modeled values, and the circles are the modeled
values outside the 10th and 90th percentiles. For each observed relationship, the
error bars span the 90% confidence range for ISCCP (blue), CERES (cyan), and
merged observations (magenta) as described in the text.
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Figure 4.2: Components of the SW CRE feedback predicted using regression
plotted against the actual SW CRE feedback in CMIP5 models. The SST com-
ponent is defined as

〈
∂SW/∂SST× dSST/dT

〉
. The EIS and RH700 components

are defined similarly. Letters stand for individual models, defined in Table 4.1.
Each dashed line is a theoretical perfect fit, and the solid line in the bottom right
subplot shows a best fit using least squares linear regression excluding the outlier
model “P”. At the top of each subplot, a Pearson correlation coefficient (r) and
the root mean square of the residuals (RMSE, in W m−2K−1) are listed.
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Figure 4.3: Root-mean-square error of the five subtropical mean SW CRE sen-
sitivity estimates relative to observations plotted against the absolute value of
the difference between actual SW CRE feedback and the feedback predicted via
regression in CMIP5 models.
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Figure 4.4: The SW CRE feedback predicted using regression plotted against
the actual SW CRE feedback in CMIP5 models. Green points denote models with
the nine smallest values of RMSE∂SW/∂x (good models). Red points denote models
with the nine largest values of RMSE∂SW/∂x (bad models), excluding the outlier
model “P”. The dashed line is a theoretical perfect fit, while the green and red
lines show best fits using least squares linear regression for good and bad models,
respectively. At the top of the plot, correlation coefficients and the root mean
square of the residuals (in W m−2K−1) are listed separately for good and bad
models.
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Figure 4.5: The SW CRE feedback predicted using regression plotted against
the actual SW CRE feedback in CMIP5 models. Green points denote models
with the four smallest values of RMSE∂SW/∂x (four best models). Blue points
denote models with the next five smallest values of RMSE∂SW/∂x (five second best
models). Red points denote models with the five largest values of RMSE∂SW/∂x

(five worst models). Orange points denote models with the next five largest values
of RMSE∂SW/∂x (five second worst models). The dashed line is a theoretical perfect
fit.
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Figure 4.7: SW cloud feedback due to changes in all clouds plotted against the
SW cloud feedback due to changes in low clouds, computed using the radiative
kernel method of Zelinka et al. (2012). The dashed line is a theoretical perfect
fit. Note that residuals from the dashed line indicate SW cloud feedbacks due to
changes in high clouds.
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Figure 4.8: The SW CRE feedback predicted using regression plotted against the
actual SW CRE feedback in CMIP5 models employing the ISCCP simulator. The
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a theoretical perfect fit.



103

0 2 4 6

0

2

4

6

A
B

C
D

E

F

G

H

I

J

K

L

M

N O
P

Q
R
S

ac
tu

al
 S

W
cr

e 
fe

ed
ba

ck
 (

W
 m

−
2  K

−
1 )

ensemble mean plus feedbacks
due to all dSW/dx (W m−2 K−1)

r good=0.59 bad=0.67
RMSE good=1.1 bad=1.9

0 2 4 6

0

2

4

6

A
B

C
D

E

F

G

H

I

J

K

L

M

N O
P

Q
R

S

ac
tu

al
 S

W
cr

e 
fe

ed
ba

ck
 (

W
 m

−
2  K

−
1 )

ensemble mean plus feedbacks
due to all dSW/dx and dx/dT (W m−2 K−1)

r good=0.7 bad=0.63
RMSE good=1.1 bad=2

0 2 4 6

0

2

4

6

A
B

C
D

E

F

G

H

I

J

K

L

M

NO
P

Q
R

S

ac
tu

al
 S

W
cr

e 
fe

ed
ba

ck
 (

W
 m

−
2  K

−
1 )

ensemble mean plus feedbacks
due to dSW/dSST (W m−2 K−1)

r good=0.7 bad=0.71
RMSE good=1.7 bad=2.6

0 2 4 6

0

2

4

6

A
B

C
D

E

F

G

H

I

J

K

L

M

NO
P

Q
R

S

ac
tu

al
 S

W
cr

e 
fe

ed
ba

ck
 (

W
 m

−
2  K

−
1 )

ensemble mean plus feedbacks
due to dSW/dSST and dSST/dT (W m−2 K−1)

r good=0.76 bad=0.76
RMSE good=1.8 bad=2.5

Figure 4.9: Decomposed SW CRE feedback predicted using regression plotted
against the actual SW CRE feedback in CMIP5 models. The horizontal axis of the
top left subplot represents the part of the predicted SW CRE feedback common
to all models plus the part of the feedback due to interannual cloud/meteorology
relationships different from those of the ensemble mean. The horizontal axis of the
top right subplot represents the part of the predicted SW CRE feedback common to
all models plus both the part of the feedback due to interannual cloud/meteorology
relationships different from those of the ensemble mean and the part of the feedback
due to trends in meteorological variables different from those of the ensemble mean.
The horizontal axes of the bottom subplots are defined similarly but just for the
SST component of the SW CRE feedback. See text for details. Points are color
coded according to models’ RMSE∂SW/∂x values, as in Fig. 4.4. Each dashed line
is a theoretical perfect fit. At the top of each subplot, a correlation coefficient and
the root mean square of the residuals (in W m−2K−1) are listed separately for good
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Appendix

Meteorological covariability

The reader may question how covariability (or multi-collinearity) among the

predictor variables (SST, EIS, SSTadv, RH700, ω700) in the present study affects

the results. Multi-collinearity increases the uncertainty of the observed regression

coefficients (Fig. 4.1, O’brien, 2007). Second, the model and observational esti-

mates of the subtropical SW CRE feedback are not affected by multi-collinearity.

Third, the variance inflation factor of the standard error for each observed co-

efficient is within the range considered by many statisticians not to indicate a

multi-collinearity issue (O’brien, 2007). We conclude that multi-collinearity does

affect any of our conclusions. For completeness, it is worth noting the degree of

correlation among predictor variables. For each grid box we computed correlation

coefficients among the time series of 1984-2012 interannual anomalies of the five

cloud-controlling meteorological parameters examined in the study. The domain

averages of these coefficients are shown in Table A4.1. The largest correlations are

between SST and EIS (r = 0.52) and between RH700 and EIS (r = 0.5), both of

which make physical sense given the definition of EIS.

Contributions to SW CRE feedbacks in individual models

To further support and elaborate on our methodology for grouping models

into realistic and unrealistic subsets, in Fig. A4.1 we show subtropical mean partial

derivatives of SW CRE with respect to each of the five external forcing parameters

for observations and individual models color coded into four categories according

to their values of RMSE∂SW/∂x. Models with small RMSE∂SW/∂x generally are su-

perior in their simulation of the interannual sensitivity of SW CRE to variations

in both SST and EIS compared to models with relatively large RMSE∂SW/∂x. The

distinction is especially evident between the four best and five worst models ac-

cording to this metric, with several models in the latter subset clearly outside the

range of observational uncertainty of
〈
∂SW/∂SST

〉
or

〈
∂SW/∂EIS

〉
.
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Table A4.1: Spatially averaged correlation coefficients among the observed
variables.

 
 SST EIS SSTadv RH700 ω700 
SST 1 -0.52 0.28 0.22 -0.19 
EIS -0.52 1 -0.14 -0.5 0.14 
SSTadv 0.28 -0.14 1 0.2 -0.29 
RH700 0.22 -0.5 0.2 1 -0.43 
ω700 -0.19 0.14 -0.29 -0.43 1 

dSW/dSST dSW/dEIS dSW/dTadv dSW/dRH700 dSW/domega
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Figure A4.1: Subtropical mean sensitivity of SW CRE to interannual variations
in meteorological parameters estimated using multi-linear regression in individual
models and observations. Models are color coded according to their RMSE∂SW/∂x

values as done in Fig. 4.5. For each observed relationship, the error bars span the
90% confidence range for ISCCP (blue), CERES (cyan), and merged observations
(magenta) as described in the text.



Chapter 5

Conclusions

This thesis has aimed to increase the scientific understanding of subtropi-

cal marine boundary layer (MBL) clouds, which are poorly simulated by climate

models and lead to large uncertainty of global warming projections. The main

methodology employed throughout all chapters was the computation and interpre-

tation of statistical relationships between boundary layer cloud properties and the

variables describing their large-scale meteorological environment. These relation-

ships serve as proxies for MBL cloud processes that occur on spatial scales too

small to directly measure or to represent explicitly in climate models.

In Chapter 2, we showed, by dint of careful assessment of observations and

theoretical reasoning, how large-scale subsidence affects MBL properties over the

eastern subtropical oceans. In short, enhanced subsidence directly pushes down

cloud top, reducing cloud thickness, whereas weaker subsidence allows cloud top to

rise, increasing cloud thickness. Until now, this finding has proved elusive to obser-

vational studies because, climatologically, enhanced subsidence favors a stronger

temperature inversion capping the MBL, which itself promotes MBL cloudiness.

We sidestepped this confounding effect using a novel statistical technique to infer

the relationship between subsidence MBL cloudiness for a fixed value of inversion

strength. This approach is by no means exclusive to investigating MBL cloud pro-

cesses or even just to climate science generally. Indeed, our methods can be used

by other fields of research to disentangle the effects of different predictor variables

on a dependent variable of interest, especially if the predictor variables covary.
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In Chapter 3, we performed a thorough evaluation of model simulation of

subtropical cloud processes on time scales of one month or greater. We found that

both the latest generation of climate models (CMIP5) and the previous generation

(CMIP3) are deficient in their simulation of the interannual relationship between

shortwave cloud radiative effect and horizontal surface temperature advection. We

discovered that CMIP5 is inferior to CMIP3 in producing the interannual relation-

ship between shortwave cloud radiative effect and both sea surface temperature

(SST) and the strength of the temperature inversion capping the MBL. While this

may seem like a surprising result, it is important to recognize that CMIP5 mod-

els employ more physically realistic cloud parameterization schemes compared to

CMIP3. It is likely that such schemes generate more degrees of freedom in their

representation of MBL cloud processes than in CMIP3, allowing for a wider vari-

ety of cloud/meteorology relationships produced. Future studies can address this

hypothesis.

But what makes a good model? One could argue that a model that realis-

tically simulates the observed climate is a superior model to one that does a worse

job at simulating observations but is more physically realistic. One could just

as easily argue the opposite. Determining what makes a good model depends on

how one wants to use the model in the first place (e.g numerical experimentation,

decadal prediction, seasonal forecasting, etc.). Unfortunately, for global warming

projections, only time will tell which models will have accurately predicted the

climate response to anthropogenic forcing. Until then, we think it is crucial for

models to simulate relationships between subtropical clouds and large-scale me-

teorological factors with some degree of fidelity if they are to be trusted in their

global warming projections.

The large inter-model spread of the sensitivity of subtropical shortwave

cloud radiative effect (SW CRE) to fluctuations in large-scale meteorological fac-

tors produced by climate models suggests why low-level cloud feedbacks to global

warming are so uncertain. Chapter 4 is dedicated to more quantitatively and rig-

orously testing this hypothesis. In that chapter, we used a diagnostic technique to

determine the mechanisms leading to the variety of subtropical SW CRE feedbacks
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projected by 19 CMIP5 models in an idealized instantaneous quadrupling of CO2

experiment. After eliminating the models most poorly representing interannual

relationships between SW CRE and cloud-controlling factors, the ensemble still

produces a wide inter-model spread of the SW CRE feedback. Among these more

realistic models, using multi-linear regression we find that the inter-annual sensi-

tivity of SW CRE to variations in SST explains roughly 50% of the inter-model

variance of the SW CRE feedback. All models simulate more positive SW CRE

(i.e. less solar radiation reflected to space) when SST is anomalously warm on an

inter-annual timescale. SST warms a lot relative to changes in other cloud control-

ling factors in the future climate, so models that produce a large magnitude of this

sensitivity project more positive SW CRE feedbacks than models that produce a

weaker sensitivity. An observational estimate of this sensitivity implies a positive

SW CRE feedback to global warming, partially offset by a negative feedback due

to an increase of both inversion strength and free-tropospheric relative humidity

in the future climate. Our observational estimate also suggests that a high climate

sensitivity is more probable than a low one, in line with results of several recent

model evaluation studies (Fasullo and Trenberth, 2012; Klein et al., 2013; Sherwood

et al., 2014; Su et al., 2014; Myers and Norris, 2015).

The results of Chapter 4 show that an understanding of the mechanisms

governing interannual variability of subtropical MBL clouds may be sufficient to

understand the cloud response to climate change. Though we did not address

why warmer SST on an interannual basis leads to less solar reflection by MBL

clouds, recent modeling studies propose that vertically uniform warming leads to

more entrainment drying and an increase in the import of air with low moist

static energy into the MBL, thereby reducing cloudiness (Bretherton et al., 2013;

Brient and Bony, 2013). Future observational studies can apply the compositing

techniques of Chapter 2 to explore whether these mechanisms operate in the real

atmosphere.
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