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Abstract 
 
Understanding the physical basis of enzyme dynamics is a major challenge in biology. Although 

modeling the motion of individual atoms is straightforward, combining these movements into 

descriptions of macromolecular function proves more difficult. X-ray crystallography produces 

atomic-level visualizations of an ensemble of countless molecules; however, current methods 

capture only the average protein conformation and thus cannot completely describe the 

underlying dynamics. A parallel source of information, diffuse scattering, is present in 

diffraction images and directly reports on correlated atomic motions. 

 

I created experimental and computational tools to measure macromolecular diffuse scattering 

and compare it against hypotheses of correlated motion. The first tool, phenix.diffuse, calculates 

diffuse scattering patterns from known structural ensembles. I applied this software to the 

refinement technique Translation-Libration-Screw and solved a pre-existing degeneracy within 

the predicted motion of glycerophosphodiesterase GpdQ. Surprisingly, I also uncovered a 

fundamental flaw in the implementation of TLS refinement in structural biology software, 

revealing unphysical motions to be present in nearly 25% of all known macromolecular 

structures. 

 

Next, I developed the comprehensive pipeline DIALS-LUNUS for the measurement of 

macromolecular diffuse scattering. This system was applied to crystals of the proline isomerase 

cyclophilin A (CypA) and trypsin, ultimately producing high-resolution diffuse maps of both 

proteins. These maps were compared to several distinct models of motion that were previously 

indistinguishable to crystallographic techniques. By comparing the experimental data to each 
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predicted diffuse scattering pattern, I was able to successfully identify the most probable 

mechanism of motion. Ultimately, these studies provide a new avenue of exploration in the 

pursuit of understanding molecules as dynamic entities. 
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Chapter 1 
 

Introduction 

 
   Any good introductory biology course will doubtless cover the fascinating topic of enzyme 

selectivity. Despite the astronomical number of molecules in a cell, binding partners are able to 

uniquely identify each other and collaborate on critical chemical reactions. Perhaps more 

importantly, these seemingly improbable events happen frequently enough to sustain the 

processes of life. The 20th century saw two competing theories attempt to explain this paradox. 

The first, the “lock-and-key” hypothesis, was proposed by chemist Emil Fischer in 1890 and 

defined both enzyme and substrate as uniquely shaped rigid bodies. In the same way that a door 

is opened by only a single key (out of many possibilities), biological selectivity is achieved 

through perfect shape complementarity. In stark contrast stood the induced fit mechanism 

(Koshland, 1958), in which weak initial interactions between binding partners triggered 

structural rearrangements, resulting in a more ideal enzyme-substrate fit. Though both lines of 

reasoning make intuitive sense, substantial evidence has emerged over the past few decades that 

support the induced-fit hypothesis (Lakowitz and Weber, 1973; Frauenfelder and Petsko, 1980; 

James et.al, 2003; Fraser et.al, 2009). Indeed, we now know that molecules flex, bend and twist 

in order to accomplish functions as diverse as enzymatic turnover, signaling regulation and 

protein-protein interactions (Woldeyes et.al, 2014).  
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   This shift in understanding molecules as conformational ensembles rather than unbending 

chunks of carbon has also taken place in the field of X-ray crystallography. Crystallography is by 

nature an ensemble experiment: many copies of the molecule come together to form a rigid 

lattice. If we assume the molecule adopts an “average” structure at each lattice point, our system 

can be perfectly described by Bragg’s Law of X-ray scattering (Bragg & Bragg, 1913). 

According to Bragg’s law, diffraction events occur in well-defined, repeating regions of 

reciprocal space known as “Bragg spots” and can be modeled using simple mathematics. If we 

measure enough Bragg spots, apply a Fourier transform and perform a bit of electron density 

modeling, we’ll end up with a snapshot of this “average” protein structure. This trick of 

simplifying our crystalline system to the “average” protein structure enables much easier 

parameter fitting and provided great benefit to early crystallographers, who were forced to 

perform the intimidating task of solving protein structures by hand. However, it was soon 

realized that a single average conformation was inadequate to capture the rich dynamics present 

within the crystal. In 1979, Frauenfelder et.al introduced the notion of atomic B-factors: 

Gaussian modulating terms that captured the spread in atomic electron density. Including these 

parameters provided a more accurate fit to observed data; differences in B-factor values also 

provided evidence for localized molecular flexibility. In a similar fashion, mathematical models 

such as the Translation-Libration-Screw approximation (“TLS”, Schomaker & Trueblood, 1968) 

provided implicit descriptions of flexibility present in the macromolecule. As data collection and 

analysis methods improved, explicitly modeling part (or all) of the conformational states into the 

“average” structural data became possible (Gros et.al, 1990; Rader and Agard, 1997). A 

powerful example of the usefulness of defining the explicit ensemble to was produced by Fraser 

et.al (2009), in which structural refinement of high-resolution human proline isomerase 
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cyclophilin A data revealed two distinct protein conformations that defined a mechanism for 

catalytic turnover. As this mechanism was validated in parallel through Nuclear Magnetic 

Resonance analysis and mutational studies, modern crystallography is now capable of providing 

a detailed glimpse into the inner dynamics of biological macromolecules. 

 

   However, this structural understanding of enzyme dynamics is fundamentally at odds with the 

“average” protein model provided by Bragg data, as there may be several orthogonal models of 

correlated atomic displacement that fit the cumulative density equally well. To break this 

degeneracy we must look beyond the Bragg spots to the realm of X-ray diffuse scattering, which 

occurs throughout reciprocal space and results from correlated variation in the electron density 

distributions (Phillips et al., 1980; Chacko & Phillips, 1992; Faure et al., 1994; Clarage & 

Phillips, 1997; Mizuguchi et al., 1994). This variation breaks from the theoretical “perfect” 

crystal lattice, leading to diffraction outside of the regions predicted by Bragg’s law. 

Incorporating diffuse scattering analysis into crystallographic investigations would help create 

rich pictures of correlated molecular motion. Indeed, mathematical descriptions of the molecular 

imperfections underpinning various diffuse scattering patterns have been formalized (Guinier, 

1963; Amoros & Amoros, 1964) and diffuse scattering analysis has previously shed light on 

small molecule motion (Welberry & Butler, 1994; Estermann & Steurer, 1998; Michels-Clark et 

al., 2013). 

 

   Unfortunately, real-world limitations have historically prevented the application of diffuse 

scattering analysis to more complex targets. The measured signal is weak, often a thousand-fold 

less intense than the corresponding Bragg peaks. As a result, crystals must undergo long periods 
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of X-ray exposure for these features to be revealex, frequently causing significant radiation 

damage to the lattice. Additionally, the increased parametric complexity of macromolecular 

motion significantly complecates the modeling of diffuse scattering beyond the smallest atomic 

systems. Despite these challenges, several notable attempts have been made to analyze the 

diffuse signal arising from protein crystals. Phillips and co-workers produced initial 

investigations of the global motions of tropomyosin in the crystalline lattice (Phillips et.al, 1980) 

and demonstrated that the observed diffuse features could be roughly reproduced if the short and 

long filament arms were assumed to fluctuate over distances of 5 Å and 8 Å, respectively. 

Doucet & Benoit (1987) later proposed that sharp diffuse streaks observed along the Bragg 

planes in lysozyme could be explained by molecular vibrations coupled across multiple unit cells 

along the a and c lattice axes. Comparison of experimental lysozyme features to simulated 

diffuse intensities similarly revealed nearest-neighbor interactions across the unit cell boundaries 

(Clarage et.al, 1992), as well as rough agreement with normal-mode calculations of the protein 

structure (Faure et.al, 1994).  In each of these instances, however, experimental diffuse data was 

limited to a single diffraction frame. Recognizing the need for a more complete picture of diffuse 

scattering, Wall et.al (1997) introduced the first computational framework for the measurement 

of diffuse signal across the entirety of reciprocal space. This framework was applied to 

diffraction data from Staphylococcal nuclease crystals, revealing that 3D diffuse scattering 

features were reproducible and displayed crystallographic symmetry. Though the computational 

elements for obtaining complete pictures of macromolecular diffuse scattering were now 

available, inherent limitations within Charge-Coupled Device (CCD) detectors (present at nearly 

every synchrotron beamline worldwide) continued to prohibit diffuse intensity measurement. 

These cameras were highly noisy and possessed significant point-spread functions, causing weak 
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diffuse intensities to wash out in the diffraction background. Thus, in the absence of technically 

challenging detector modification (Wall, 1996), hardware limitations proved to be yet another 

obstacle in the pursuit of routine diffuse scattering analysis. 

 

   However, the recently developed pixel-array detector (Gruner et.al, 2002) has overcome these 

technical challenges and provides perhaps the final component for developing diffuse scattering 

into a standard crystallographic technique.  These detectors provide exquisite single-photon 

diffraction detail across a low-noise background, providing an ideal setting for the measurement 

of weak signal. When coupled with 21st-century room-temperature diffraction methods (Fraser 

et.al, 2011), it becomes possible to extract complete Bragg and diffuse datasets from single 

protein crystals with little to no radiation damage. A significant parallel development has been 

the convergence of computational crystallographic tools into well-defined open-source packages. 

Perhaps most notable is the Computational Crystallography Toolbox and the Python-based 

Hierarchical ENvironment for Integrated Xtallography (PHENIX; Adams et.al, 2010), which 

provides the groundwork for assimilating pre-existing diffuse measurement programs into 

standard crystallographic refinement routines. Building on the work of others before me, I have 

developed computational and experimental tools to capture diffuse scattering intensities and fit 

the resulting data to models of protein motion. In Chapter 2 I outline my mathematical 

investigation of TLS refinement, long thought to be quantifiable through diffuse scattering 

analysis (Tickle & Moss, 1999), and reveal unexpected issues in the computational 

implementations of TLS within all current refinement software packages. In Chapter 3 I 

introduce phenix.diffuse, a tool capable of simulating X-ray diffuse scattering from structural 

ensembles and thus making the critical connection between experimental data and generalized 
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models of motion. Finally, in Chapter 4 I present DIALS-LUNUS, an experimental pipeline for 

quantifying diffuse signal from diffraction frames. Using this tool I created two new three-

dimensional diffuse maps from the proteins cyclophilin A and trypsin. These maps were then 

utilized to select distinct models of motion for each molecule. My work provides the foundation 

for using every bit of available diffraction information to further our understanding of biological 

molecules as dynamic structural ensembles. 
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Chapter 2 
 

From deep TLS validation to ensembles of atomic models built from elemental 

motions 
 

2.1 Abstract 
The Translation Libration Screw model (Schomaker & Trueblood, 1968) describes 

concerted motions of atomic groups. This type of refinement can increase the agreement between 

calculated and experimental diffraction data and potentially shed light on molecular mechanisms. 

Three matrices T, L and S describe the combination of the atomic vibrations and librations. 

Because these matrices describe physical motions, their elements must satisfy several conditions 

described in this article. Refining the T, L and S matrix elements as independent parameters 

without taking these conditions into account may result in matrices that do not represent real-

space movement. We describe a mathematical framework and the computational tools to analyze 

TLS matrices, resulting in either explicit decomposition into descriptions of the underlying 

motions or the detection of broken conditions. As a first application we present an algorithm to 

generate structural ensembles that are consistent with given TLS parameters. All methods are 

implemented as part of the Phenix project. 

 

2.2 Introduction 
Independent and concerted molecular motions 

Crystallographic models that are used to fit diffraction data (X-ray, neutron, or electron 

diffraction) describe each atom by its central position r0 and parameters modeling displacement 

from the central position. Small-magnitude structure disorder, particularly thermal motion, is 

described by the so-called Debye-Waller factor that reflects the probability of an atom moving 

from its central position by certain amount. A contribution of each atom to a structure factor 

corresponding to integer indices ( )lkh ,,  is multiplied by this factor that in a harmonic 

approximation can be presented as  
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( )( )hh ττπ 1122exp −−− OUO Cart    .   (1) 

(see for example, Grosse-Kunstleve & Adams, 2002, and references therein). Here O is the 

orthogonalization matrix for the given crystal, h is the column vector of integer indices ( )lkh ,, , t 

signifies matrix or vector transposition, and CartU  is an atomic displacement parameter, ADP. (In 

Grosse-Kunstleve & Adams (2002) the orthogonalization matrix is noted as A; here this letter is 

reserved for the matrix in development of CartU , following Tickle & Moss, 1999). The 

symmetric positive definite matrix CartU  is defined by the average atomic shifts (and their 

correlations) along the coordinate axes. The matrix CartU  varies between atoms and is diagonal 

(with equal elements) for atoms that are assumed to be moving isotropically. 

For each atom, CartU  accumulates several contributions arising from difference sources, 

including overall crystal anisotropy crystU , various kinds of concerted motions groupU  and 

independent displacement of individual atoms localU  (see for example Dunitz & White, 1973; 

Prince & Finger, 1973; Johnson, 1980; Sheriff & Hendrickson, 1987; Murshudov et al., 1999; 

Winn et al., 2001). 

A description of the concerted molecular motion of an atomic group by means of the TLS 

formalism has been introduced by Cruickshank (1956) and Schomaker & Trueblood (1968) and 

developed further in a number of works such as Johnson (1970), Scheringer (1973), Howlin et al. 

(1989, 1993), Kuriyan & Weis (1991), Schomaker & Trueblood (1998), Tickle & Moss (1999), 

Murshudov et al. (1999), Winn et al. (2001, 2003) and Painter & Merritt (2005, 2006a, 2006b). 

This type of motion is of special interest for several reasons. First, it may characterize the 

anisotropic mobility of atomic groups and thus give insight into molecular mechanism. Second, 

describing only the concerted motion can simplify the crystallographic model and reduce the 

number of parameters needed to model the data while simultaneously providing a more 

physically realistic description of atomic displacements.  

A common misconception of TLS parametrization is that its sole merit is providing an 

economical way to account for anisotropic atomic motions at low resolution. There are a number 

of examples of using the TLS formalism to analyze flexibility of the molecules relevant to their 

mechanisms (see for example Kuriyan & Weis, 1991; Harris et al., 1992; Sali et al., 1992 ; 

Wilson & Brunger, 2000; Raaijmakers et al., 2001; Yousef et al., 2002; Papiz & Prince, 2003; 
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Chaudhry et al., 2004). Thus physically meaningful TLS matrices can provide useful structural 

information. Moreover, this information can be used to build ensembles of atomic models that 

explicitly represent corresponding conformations. In turn, this allows for a better description of 

diffraction data, particularly in the case of diffuse X-ray scattering (Van Benschoten et al., 

2015). Thus, TLS parameterization can be useful regardless of the resolution of the available 

diffraction data. 

 

TLS model 

Since displacement of a rigid group of atoms is a composition of translation and rotation 

(see for example Goldstein, 1950), Schomaker & Trueblood (1968) presented the matrices 

ngroupU ,  for a concerted motion of a group of atoms n = 1, 2, … N  as a sum  

τττ
nnnnngroup ASSALAATU +++=,        (2) 

Anti-symmetric matrices An are functions of the Cartesian coordinates ( )nnn zyx ,,  of atom n 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−

−

=

0
0

0

nn

nn

nn

n

xy
xz
yz

A       .   (3)  

Matrix S and symmetric matrices T and L are common to all atoms within each rigid group. L 

describes librations (oscillating rotations) around three principal rotation axes mutually 

orthogonal to each other. T describes apparent translations of the atomic group (the term 

‘vibrations’ might actually be more appropriate for random translations around a central 

position). S describes screw motions, i.e. the combination of librations and vibrations. We use 

the term ‘apparent translation’ because matrix T may have an additional contribution from 

librations as discussed in Section 2.  

 Thus, explicit information about atomic motions can be encoded into TLS matrices 

making them inexplicit descriptors of such motions. These two ways of describing atomic group 

motions have their merits. Explicit description allows for a straightforward interpretation and 

analysis of the motions, while using TLS formalism provides an easier framework for calculating 

structure factors. As they arise from a specific combination of motions, elements of TLS matrices 

must obey certain conditions. However, current refinement programs treat elements of the TLS 

matrices as independent variables with a constraint on the trace of the matrix S (as discussed 
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below) and postrefinement enforcement of the resulting Ugroup,n to be non-negative definite 

(Winn et al., 2001). Previously Zucker et al. (2010) analyzed all PDB entries containing TLS 

descriptions and suggested tools to validate the TLS parameters. However, this was done from 

the different viewpoint of smoothness of the ADP for neighboring groups. Failure to enforce all 

conditions on the individual components of Ugroup,n, i.e. on the TLS matrices, may result in these 

matrices being physically nonsensical and thus invalidating the TLS model. With methods and 

tools presented in this manuscript, we analyzed all structures from the PDB (Bernstein et al., 

1977; Berman et al., 2000; about 105,000 entries, 25,000 of which contain TLS models with a 

total of 200,000 sets of matrices). A third of these sets contains T or L matrices that are non 

positive semidefinite and another third (Table 2.1) cannot describe libration-vibration correlated 

motions due to other reasons discussed in Sections 2 – 5. Some of these errors are trivial to fix, 

e.g. correcting marginally negative eigenvalues of T and L or modifying the trace of S (examples 

are given in Section 6 and in Table 2.1).  

 

On the physical meaning and use of TLS  

By definition, TLS is a physical description of the anisotropic harmonic motion of atomic 

groups in the crystal (Schomaker & Trueblood, 1968) and has no relations to the diffraction data 

quality (resolution, for instance). Consequently, it is incorrect to consider the TLS matrices to be 

merely a tool to describe the uncertainties in atomic positions in the context of a reduced number 

of refinement parameters. The physical meaning of the individual T, L and S matrices is as 

important as the condition imposed on ngroupU ,  to be positive definite. Nonsensical individual 

TLS matrices invalidate the underlying physical model. B values need to be positive, occupancies 

must range between 0 and 1 and atomic coordinates should define model geometry in accordance 

with chemical knowledge. Similarly, TLS matrices need to make sense according to the model 

they describe. Efforts to constrain TLS parameters to keep them physically meaningful have been 

discussed previously (Winn et al., 2001; Painter & Merritt, 2006a).  

Because TLS matrices are physically meaningful, the corresponding composite motions 

can be extracted from these matrices and in turn help to analyze molecular mobility. However, 

while calculating TLS matrices from corresponding libration and vibration parameters is rather 

straightforward (Section 2), the inverse procedure is less trivial. As discussed previously 

(Johnson, 1970; Scheringer, 1973; Tickle & Moss, 1999) the problem itself is poorly posed since 
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the same set of diffraction data (and consequently the same set of the TLS matrices) may 

correspond to different motions of the contributing atoms or atomic groups. Moreover, there are 

computational difficulties if all the conditions on the matrices have not been considered 

(Sections 3-5). There exist several programs that aim to analyze TLS matrices (Howlin et al., 

1993; Painter & Merritt, 2005); however, we could not find in the literature a comprehensive 

mathematical protocol for describing these procedures. 

The set of TLS matrices that correspond to physically possible combinations of motions is 

smaller than the set of all possible TLS matrices. Since for any function its minimum on a larger 

set of parameters may be deeper than that for its subset, this means that refinement with versus 

without imposing conditions on TLS matrices may result in higher R-factors. Since TLS modeling 

is an approximation to the true molecular motions and also strongly depends on the assignment 

of TLS groups, higher R-factors as result of using TLS may be indicative of this model being 

counterproductive in that particular case.  

 

 

Summary of presented work 

 In our work described in this article we address the following points. 

- We describe the algorithm (Fig. 2.1) that interprets the TLS matrices in terms of parameters 

of the corresponding motions. This includes the direction of the principal axes of vibration 

and libration, the corresponding root-mean-square displacements, the position of the 

libration axes, as well as the correlations between vibration and libration displacements. 

- We present a complete list of conditions that must be fulfilled to make the aforementioned 

TLS decomposition possible; this includes widely known conditions (e.g. T and L must be 

positive semidefinite) as well as a number of less trivial conditions that to the best of our 

knowledge have not been previously discussed. 

- We describe the calculation protocols in a ready-to-program style so that they can be 

implemented in existing or future software. Most of calculations described in the manuscript 

are straightforward; less trivial expressions and proofs can be found in Appendix A as well 

as in the review Urzhumtsev et al. (2013) below referred to as UAA-2013. 

- We implemented the described algorithms in the open source Computational 

Crystallography Toolbox (cctbx; Grosse-Kunstleve et al., 2002). Also, we made two end-
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user applications available in Phenix suite (Adams et al., 2010).: phenix.tls_analysis for 

analysis and validation of refined TLS matrices and their underlying motions, and 

phenix.tls_as_xyz for generating ensembles of structures consistent with TLS matrices. 

- We applied the program to all PDB entries containing TLS matrices. We discovered that 

majority of these matrices are nonsensical. For a number of cases marginal modification of 

the TLS matrices can correct the errors.  

- We used the program to generate a structural ensemble for the calculation of X-ray diffuse 

scattering (Van Benschoten et al., 2015). 

 

2.3 Calculating TLS matrices from elemental motions 

 

This section provides a step-by-step protocol for the calculation of TLS matrices from the 

parameters of the composite vibrations and librations. Inverting this scheme provides the method 

of extracting libration-vibration parameters from the TLS matrices. 

 

Constructing TLS matrices from the parameters of the libration and vibration 

 

 The matrices in equation (2) depend on the basis in which the atomic coordinates are 

given. We use the index in square brackets to indicate which basis is used. Let the atoms be 

given in some basis denoted [M]; for example it may be the basis corresponding to the model 

deposited into PDB. Even if a rigid group is involved in several simultaneous motions 

(supposing that the amplitudes of these motions are relatively small and the motions are 

harmonic), the total motion can be described by a libration around three axes lx, ly, lz that are 

mutually orthogonal and by a vibration along three other mutually orthogonal axes, vx, vy, vz. 

These triplets of axes form the other two bases, [L] and [V].  

 In equation (2) the matrix T is a sum of several components. In the absence of librations 

(that is, matrices L and S are zero) it is equal to the contribution V arising from pure vibrations. 

In the basis [V] this matrix is diagonal 
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Here 222 ,, zyx ttt  are the corresponding squared root-mean-square deviations (rmsd) along the 

principal vibration axes vx, vy, vz and are expressed in Å2. If there are librations the matrix L is 

always diagonal in the basis [L]:  
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 (5) 

 

Here 222 ,, zyx ddd  are the squared rmsds of the vibration angles expressed in squared 

radians; for small deviations they are numerically equal to the squared rmsds of points at a unit 

distance from the corresponding axes.  

 In reality the principal vibration and libration axes are not parallel to each other; 

practically, it is convenient to express the matrices in a common basis. Basis [L] is more 

convenient for this since in this basis the elements of S (see below) are easily expressed through 

geometric parameters of librations. Matrix V in this basis is no longer diagonal but is instead 

equal to  

 [ ] [ ] VLVVLL RVRV τ=   .      

 (6) 

Here VLR  is the transition matrix that describes the rotation that superposes the vectors vx, vy, vz 

with the vectors lx, ly, lz (Appendix A). Frequently, vibration and libration motions are not 

independent but instead are correlated to form screw rotations. It is convenient to characterize 

screw rotations by the parameters zyx sss ,,  such as for a screw rotation by zd  radians around an 

axis parallel to lz each atom is shifted by zs  Ångstroms along this axis; a similar definition is 
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used for two other parameters. Such a correlation generates an additional contribution [ ]LC  to the 

T matrix that arises from screw motions  

 [ ] [ ] [ ] [ ]
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and also results in a non-zero S matrix 
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Finally, the principal libration axes do not necessarily pass through the origin, or even have a 

common point (i.e. may not intersect). If they pass through the points [ ] ( )lxzlx
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L www ,,=w , 
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L www ,,=w , respectively, this generates an additional component 

to the T matrix  

 [ ] [ ] [ ]LWLCL DTT +=           (9) 
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 (10) 
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Taking into account both the screw motion and the position of the libration axes, the matrix S 

becomes  
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(if the axes pass through the origin this matrix is the diagonal matrix (8)). Finally, the matrices in 

the original basis [M] where they are reported together with the atomic coordinates, are obtained 

from [ ]LL  (5), [ ]LT  (9), [ ]LS  (11) as 

 [ ] [ ]
τ
MLLMLM RLRL =  

 [ ] [ ]
τ
MLLMLM RTRT =    .     

 (12) 

 [ ] [ ]
τ
MLLMLM RSRS =

   

Here MLR  is the transition matrix from the basis [M] to the basis [L] (Appendix A). 

 

Molecular basis and center of reaction  

 The TLS matrices also depend on the choice of the origin. Clearly, the coordinates of 

the position of the libration axes change as function of the origin. Usually the origin is taken to 

be the center of mass of the atomic group or in the point where the mean atomic displacements 

are similar in magnitude to each other due to librations around each of the principal axes. This 

second point is called the center of diffusion (Brenner, 1967) or the center of reaction (Tickle & 

Moss, 1999). Choosing the origin at the center of reaction minimizes the trace of T and makes S 

symmetric (Brennen, 1967; Tickle & Moss, 1999; UAA-2013). Shifting from one origin to 

another changes T and S but does not change L and does not modify the algorithm of the search 

for the composite motions. In what follows we consider the matrices to be in their original basis 

(for example as they are defined in the PDB).  

 

 

Calculating elemental motions from TLS matrices: libration axes 
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This section provides a step-by-step explanation of the inverse problem, i.e. calculating the 

vibration and libration axes and the corresponding rmsds, the position of the libration axes, and 

the parameters describing the correlations between librations and vibrations from given TLS 

matrices. 

 

Diagonalization of the L matrix ([L] basis; step A) 

Suppose that we know the elements of the matrices (12) in the basis [M]. By construction, 

the matrices T and L should be positive semidefinite (Appendix B) and symmetric, [ ] [ ]yxMxyM TT = , 

[ ] [ ]zxMxzM TT = , [ ] [ ]zyMyzM TT =  and [ ] [ ]yxMxyM LL = , [ ] [ ]zxMxzM LL = , [ ] [ ]zyMyzM LL = . These properties 

remain such for any rotation of the coordinate system, i.e. in any Cartesian basis; this is 

important for further analysis of the T matrices. 

We start the procedure from the matrix L[M], which depends only on the libration 

parameters. The principal libration axes correspond to its three mutually orthogonal 

eigenvectors. First we search for the corresponding eigenvalues 3210 λλλ ≤≤≤ , which must be 

non-negative (see expression (5); eigenvalues do not change with the coordinate system). Let l1, 

l2, l3 be the corresponding normalized eigenvectors from which we construct a new basis [L] as  

 lx = ±l1, ly = l2, lz = l3          (13) 

The appropriate sign for lx is chosen so that the vectors in (13) form a right-hand triad; for 

example one can take lx = ly × lz that guarantees such the condition. The TLS matrices in the [L] 

basis are 

 [ ] [ ] MLMMLL RLRL τ=  

 [ ] [ ] MLMMLL RTRT τ=         

 (14) 

 [ ] [ ] MLMMLL RSRS τ=

  where MLR  is the transition matrix from the basis [M] into basis [L] (Appendix A). In this new 

basis matrix [ ]LL  is diagonal with the elements [ ] [ ] [ ] 321 ,, λλλ === zzLyyLxxL LLL , giving the 

estimates [ ]xxLx Ld =2 , [ ]yyLy Ld =2 , [ ]zzLz Ld =2  of the squared libration amplitudes around the 
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three principal libration axes.  

 

Position of the libration axes in the [L] basis (step B) 

In the basis [L] the libration axes are parallel to the coordinate axes but do not necessarily 

coincide with them. Let them pass through some points lxw , lyw , lzw , respectively, that we are 

looking for. Using equation (11) we calculate the coordinates of these points as 
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A zero value for any denominator in (15) means that there is no rotation around the 

corresponding axis; in this case the two corresponding numerator values must also be equal to 

zero and thus assign zero values to the corresponding coordinates in (15); otherwise the input 

matrices are incompatible and the procedure must stop (Appendix B). The x-component of lxw , 

y-component of lyw and z-component of lzw in the basis [L] can be any values. For presentation 

purposes it might be useful to assign them as 
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 (16) 

that will position each of these points in the middle of the two other axes. 

Knowing the positions (15) – (16) of the libration axes and elements of [ ]LL  we can 

calculate the contribution [ ]LWD  (10) from an apparent translation due to the displacement of the 

libration axes from the origin. Then inverting (9) we can calculate the residual matrix [ ]LCT  after 

removal of this contribution: 
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[ ] [ ] [ ]LWLLC DTT −=

       

  

 (17) 

Matrix (17) must be positive semidefinite (Appendix B) as it is a sum (7) of two positive 

semidefinite matrices. Matrices S[L] and L[L] are not modified at this step. 

 

 

Calculating elemental motions from TLS matrices: screw components (step C) 

 

Correlation between libration and vibration and a choice of the diagonal elements of S 

 Next we use the matrices L[L] and S[L] to determine the screw parameters zyx sss ,, , 

remove the screw contribution from the [ ]LCT  matrix using equations (7) and (17), and finally 

extract the matrix V[L] for uncorrelated vibrations. However, there is an ambiguity in the 

definition of S[L] which is apparent from the observation that the matrices nconcertedU ,  of individual 

atoms will not change if the same number t is added or removed simultaneously from all three 

diagonal elements of S[L]. This is usually known as indetermination of the trace of this matrix. 

The choice of this number has been discussed by Schomaker & Trueblood (1968). A current 

practice (Section 6.1 provides an illustration) is to choose t such that it minimizes the trace 

(rather its absolute value) of the resulting matrix  

 ( ) [ ] tIStS LC −=  

       

  

 (18) 

(where I is a unit matrix), i.e. minimizing vibration-libration correlation (UAA-2013). The 

unconditioned minimization  

 ( ) [ ] [ ] [ ]( ) 03minmin =−++= tSSStS zzLyyLxxLtCt

    

 

(19) 

gives  

 [ ] [ ] [ ]( ) [ ]LzzLyyLxxL trSSSSt 3
1

3
1

0 =++=

      

 

(20)

 
However, this value may lead to physically unrealistic matrices for which libration-vibration 
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decomposition is impossible. Intuitively, if the elements of matrix S and the corresponding 

values zyx sss ,,  are too large, the matrix V in (7) may be not positive definite for a given [ ]LCT . 

The next sections describe a procedure that defines the constraints on the diagonal elements of 

matrix S when using (18).  

 

Cauchy-Schwarz conditions 

After removing [ ]LWD  (eq. (17)), the set of matrices ][][ , LLC LT  and the matrix ][LS  with the 

removed off-diagonal elements (reducing the matrix (11) to the form (8)) correspond to a 

combination of vibrations with screw rotations around the axes crossing the origin. The diagonal 

elements of these matrices must satisfy the Cauchy-Schwarz inequality (Appendix A) 

 zzLzzLCzzLyyLyyLCyyLxxLxxLCxxL LTSLTSLTS ][][
2
],[][][

2
],[][][

2
],[ ;; ≤≤≤    

 (21) 

that in turn defines the conditions (Appendices A and B): 
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 (22) 

or 

 CC ttt max,min, ≤≤          (23) 

with 

 { }zzzLyyyLxxxLC rSrSrSt −−−= ][][][min, ;;max    

 { }zzzLyyyLxxxLC rSrSrSt +++= ][][][max, ;;min       

 (24) 
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1
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][][2

1 ,, zzLzzLCzyyLyyLCyxxLxxLCx LTrLTrLTr ===    

 

In particular, this unambiguously defines the t value if one of the diagonal elements of the matrix 

[ ]LL  is zero so that the trace of S[L] cannot be changed or assigned arbitrarily (see section 4.4).  
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Positive semidefinition of the V matrix 

 The last condition to check is that the matrix V is positive semidefinite. Let us suppose 

that all diagonal elements of the matrix [ ]LL  are different from zero; section 4.4 considers the 

alternative case. From equations (5), (7), (8) and (18) we find the expression for the screw 

contribution  
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to be subtracted from matrix (17) as  

 

[ ] [ ] [ ]( )tCTV LLCL −=
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 (26) 

 

Matrix [ ]LV  is positive semidefinite along with 
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Necessarily, all diagonal terms of (30) cannot be larger than the maximal eigenvalue maxτ  of 

matrix (29) giving a necessary condition (Appendix B) 

    { } { } ττ ττ max,
2/1

max][][][
2/1

max][][][min, ;;min;;max tSSStSSSt zzLyyLxxLzzLyyLxxL =+≤≤−= . (31)  

Another condition (all diagonal terms of (30) are not larger than the minimum eigenvalue minτ  of 

(29)) is sufficient but not necessary. 

 Matrix ΛV  is positive semidefinite if and only if all three of its real eigenvalues are non-

negative (some of them may coincide with each other). They are the roots of the cubic 

characteristic equation  

023 =+++ SSS cba ννν         

 (32) 

with the coefficients  

( ) Λ−= trVtaS ,                           (33) 
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( ) Λ−= VtcS det                   

 (35) 
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The roots of (32) are positive if and only if three inequalities below hold simultaneously: 

 ( ) 0≤taS   ,   ( ) 0≥tbS    ,  ( ) 0≤tcS       

 (36) 

where the left parts are polynomials of order 2, 4 and 6 of the parameter t, all with the unit 

highest-order coefficient (Appendix A). The first condition in (36) defines the interval for t 

values (Appendix B): 

 aaaa ttttttt +=≤≤−= 0max,0min,        (37) 

with 

 [ ] [ ] [ ]( )[ ] 2/1222
3
1

3
12

0 zzLyyLxxLa SSStrTtt ++−+= Λ            

 (38) 

 

We failed to find analytical expressions corresponding to the two other inequalities. As a result, 

the following numerical procedure is suggested to find the best t value that is physically 

acceptable:  

a) Calculate 0t  value (equation (20)); 

b) Calculate the interval ( )maxmin , tt  for allowed t values as intersection of intervals (23), (31) 

and (39); { }aC tttt min,min,min,min ,,max τ= , { }aC tttt max,max,max,max ,,min τ=  ; if maxmin tt >  the 

problem has no solution and the procedure stops (Appendix B); 

c) If maxmin tt =  we check the conditions ( ) 0min ≥tbS , ( ) 0min ≤tcS , or the condition that ΛV  

is positive semidefinite; if the conditions are satisfied we assign minttS =  otherwise the 

problem has no solution and the procedure stops (Appendix B); 

d) If maxmin tt <  we search numerically, in a fine grid, for the point St  in the interval 

( )maxmin , tt  and closest to 0t  such that ( ) 0≥SS tb , ( ) 0≤SS tc ; if for any point of this 

interval at least one of these inequalities is wrong, then the procedure stops (Appendix 

B); 

e) We accept the value obtained at the step c or d as the final St . 

 

Singular sets of rotation 
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 When one of the zzLyyLxxL LLL ][][][ ,,  values is zero (that is there is no rotation around the 

corresponding axis), straightforward use of the standard procedure including (25) becomes 

impossible. However, in this case the St  value must be equal to xxCS , , yyCS ,  or zzCS , , 

corresponding to the axes with no rotation, making the corresponding diagonal element in (25) 

equal to zero and turning the corresponding inequality in (24) into an equality. For example, if 

0][ =xxLL  then xxLS St ,=  resulting in [ ] 0=xxLC . We simply need to check two other conditions 

in (21) and the condition that the residual matrix is positive semidefinite (for example by 

calculating (36)). If St  does not satisfy these conditions, the problem has no solution (Appendix 

B).  

 

Screw parameters 

 For the Stt =  determined above we calculate the matrix ( )SC tS  (18). From this matrix 

we obtain the screw parameters [ ]
1

,
−= xxLxxCx LSs , [ ]

1
,

−= yyLyyCy LSs , [ ]
1

,
−= zzLzzCz LSs  for the rotation 

axes currently aligned with the coordinate axes of the basis [L]. If one of the zzLyyLxxL LLL ][][][ ,,  

values is equal to zero, the corresponding diagonal element of CS  must also be equal to zero 

(otherwise the matrices are inconsistent with each other and the procedure stops (Appendix B) 

and we assign the corresponding screw parameter, xs , ys  or zs  to be zero.  

 

 

Calculating elemental motions from TLS matrices: vibration components (step D) 

 

Matrix V and vibration parameters in [L] basis  

 For the known St , matrix [ ]( )SL tC  and then [ ]LV  are calculated as (25) - (26). The values 

of parameters of the independent vibrations are calculated from the [ ]LV  matrix similarly to those 

for the independent librations, as we obtain them from [ ]ML . First, we calculate the three 

eigenvalues 3210 µµµ ≤≤≤  of matrix [ ]LV  (Appendix B; in practice, all of them are strictly 
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positive). Then we identify three corresponding unit eigenvectors 321 ,, vvv  that are orthogonal 

to each other and assign 

 321 ,, vvvvvv ==±= zyx          

 (39) 

(the sign for vx is taken so that the vectors (39) form a right-hand triad). We remind that these 

axes define the basis [V] in which matrix [ ]VV  (6) is diagonal with elements [ ] 1µ=xxVV ,

[ ] 2µ=yyVV , [ ] 3µ=zzVV  defining the last missing parameters, namely the values of the squared 

rmsds along these axes: [ ]xxVx Vt =2 , [ ]yyVy Vt =2 , [ ]zzVz Vt =2 .  

 

Vibration and libration axes in [M] basis 

 The libration and vibration amplitudes and screw parameters are independent of the 

choice of the basis, and the direction of the libration axes is known in the principal [M] basis. 

However the directions of the uncorrelated translations 321 ,, vvv  that were calculated in section 

4 and the points [ ]
lx
Lw , [ ]

ly
Lw , [ ]

lz
Lw  belonging to the libration axes (section 3.2) are now known in 

the [L] basis.  

 To obtain the coordinates [ ] [ ] [ ]( )lx
zM

lx
yM

lx
xM www ,, , [ ] [ ] [ ]( )ly

zM
ly

yM
ly

xM www ,, , [ ] [ ] [ ]( )lz
zM

lz
yM

lz
xM www ,,  

of these points in the [M] basis we apply the transformation 

 [ ] [ ]
lx
LML

lx
M R ww =     , [ ] [ ]

ly
LML

ly
M R ww =     ,     [ ] [ ]

lz
LML

lz
M R ww =       

 (40) 

 

Similarly, the vectors defining the direction of the axes zyx vvv ,,  in the basis [M] can be 

obtained as  

 xLMLxM R ][][ vv =     , yLMLyM R ][][ vv =     ,     zLMLzM R ][][ vv =       

 (41) 

 

 This step finalizes extracting the parameters of the motions that correspond to the given 

set of TLS matrices. Section 6 provides some examples of this procedure applied to models 

deposited in the PDB. Section 7 describes an example of when knowledge of the motion 
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parameters extracted from the TLS matrices is necessary to explicitly simulate the ensemble of 

corresponding structures in order to simulate diffuse scattering.  

 

 

2.4 Examples of the TLS matrix analysis  

 

As pointed out in the Introduction, there are numerous examples of fruitful application of 

the TLS formalism to structural studies. The goal of this section is to illustrate the algorithm 

described above, describe possible traps and discuss further developments.  

 

Survey of available TLS matrices in the PDB  

We have analyzed the TLS matrices available in the PDB. From the overall 106,761 entries 

(as of March 2015), 25,904 use TLS modeling. More than 20,000 of these systems have several 

TLS groups, resulting in a total of 203,261 sets of TLS matrices (Fig 2.5a) with the largest 

number of groups per entry being 283 (PDB code 3u8m). About a third of these sets have 

negative eigenvalues for the deposited T or L matrices. Some of these values are only slightly 

negative (Figs. 2.5b and 2.5c) and can be considered rounding errors, while the worst values are 

as small as -0.28 radians2 for L and -20.72 Å2 for T. For 11,412 T matrices and 138 L matrices all 

three eigenvalues are negative.  

Another third of the TLS groups cannot be interpreted by elemental motions due to other 

reasons described in sections 3-4 (Table 2.1). 

After an initial screen to find the positive T and L matrices, we then ran a search for the 

elemental motions in two modes. First, we tried to decompose the TLS matrices as taken directly 

from the PDB files. As expected, the average value of trS is 3·10-5 Å , (i.e. practically zero) and 

the corresponding rms is s = 10-2 Å. About 120,000 S matrices have | trS | < 10-4 Å. The number 

of the matrices with | trS | larger than 1s, 3 s, 10 s and 20 s Å is only 3772, 486, 31 and 3, 

respectively. We then applied the aforementioned algorithm with the optimal choice of the value 

tS to be subtracted from the diagonal S elements in each case.  

Table 2.1 shows the results of both runs and illustrates  that we can fix the problems found 

in 6,500 of the TLS sets (corresponding to about 500 PDB entries) by a correction of the diagonal 

elements of the S matrix as described above. The Table takes into account possible rounding 
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errors by correcting slightly negative eigenvalues (those closer in value to 0 than 10-5 of the 

default units Å2, radians2, Å·radians for T, L, S, respectively). For example, when running the 

algorithm in the S-optimizing mode the program can formally calculate the V matrix for about 

70,000 sets. For 2296 cases this matrix has negative eigenvalues (Fig. 2.5d) while in 2294 of 

them these eigenvalues are closer to 0 than 10-5 Å2; for such matrices the program makes 

automatic corrections and continues the process.  

It is important to note that even if the parameters of the elemental motions can be formally 

extracted from the TLS matrices, this does not guarantee that they make physical sense. Clearly, 

the vibration amplitudes on the order of 20 Å2 cannot represent harmonic vibrations (Fig. 2.5d). 

Similarly, the linear rotation approximation contained in TLS theory is valid only up to 

approximately 0.1 radians; much larger values can be found in the PDB (Fig. 2.5b). This is also 

true for the screw parameters. The products zzyyxx dsdsds ,,  show the mean shifts along the 

screw axes due to librations around these axes; the values found in the PDB approaching 3Å 

seem to be too large to describe harmonic motions. 

For a more detailed analysis we selected several entries from the PDB. For each structure, 

we applied a standard TLS refinement protocol as implemented in phenix.refine (Afonine et al., 

2012) including automatic determination of the TLS groups. During refinement, 20 matrix 

elements were refined independently; 6 for T, 6 for L and 8 for S; the three diagonal elements of 

S have been constrained such that the trace of the matrix is equal to 0. The procedure described 

above (Sections 3-5) was then applied to all sets of obtained TLS matrices.  

We remind a reader that the elements of the L and S matrices are expressed in radians2 and 

Å·radians while in the PDB files they are kept in degrees2 and in Å·degrees, respectively; this 

makes their mantissa smaller and thus more convenient for archiving.  

 

Synaptotagmin 

The crystals of synaptotagmin III (PDB code 1dqv) contain two copies of the molecule in 

the asymmetric unit. The structure after re-refinement by phenix.refine without TLS modeling 

has Rwork = 0.200 and Rfree = 0.231 at a resolution of 2.5 Å. Performing TLS refinement with each 

molecule taken as a single TLS group reduced R-factors to Rwork = 0.177 and Rfree = 0.211 

indicating this additional modeling significantly improves agreement with the experimental data. 

Table 2.2 shows the two sets of matrices and Table 2.3 contains the corresponding motion 
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parameters extracted using our approach. For the two groups both vibrations and librations are 

practically isotropic and are of the same order of magnitude. Fig. 2.2a shows the principal axes 

of these motions.  

 

Calmodulin  

The structure of calmodulin (PDB code 1exr) was determined previously at a resolution of 

1.0 Å. We use this example to illustrate possible problems that could be solved by a minimal 

correction of the TLS values. For re-refinement with phenix.refine the model was automatically 

split into four TLS groups. For the first group, one of the eigenvalues of the matrix L was equal 

to -0.23·10-4 radian2. If we consider this value to be zero (in this case the zero value must be also 

assigned to off-diagonal elements of the first row of the matrix S), all composite motions can be 

extracted routinely with only two libration axes. Corresponding modifications of the resulting 

matrices ngroupU ,  (2) can be compensated for by respective modification of the individual 

contributions nlocalU , . This keeps the total ADP parameters nCartU ,  unchanged, which maintains 

the previously calculated structure factors and R-factors. An accurate separation of total atomic 

displacement parameter values into contributions from several sources (for example, Murshudov 

et al., 1999; Winn et al., 2001, 2003; Afonine et al., 2013) is a separate ongoing project (Afonine 

& Urzhumtsev, 2007). 

For the second TLS group, the refined TLS matrix elements contained one degenerate 

libration. The procedure described in sections 3-5 was successfully applied. Note that this 

procedure modified the diagonal elements of the matrix S, removing an appropriate value of the 

parameter tS (Section 4.4) and making trS non-zero. 

For the third group, the screw parameters were extremely large, leading to the procedure’s 

inability to find a positive semidefinite [ ]LV  (27). All three eigenvalues of the matrix L were 

extremely small (0.0, 0.08·10-4 and 0.35·10-4 radians2), resulting in high computational 

instability. If we replace matrix L (and respectively S) by zero matrices, defining all librations to 

be absent, the vibration parameters can easily be found from T. In fact, this TLS group is a helix 

held at both ends by large domains which leads to the expectation of a pure vibration motion. 

Finally, for the fourth group one of the diagonal elements of the matrix T was marginally 

negative. Increasing all diagonal elements of the matrix T by 0.002 Å2 makes this matrix positive 
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definite (this corresponds to B = 0.16 Å2). As discussed above, this adjustment can be 

compensated for by removing the equivalent amount from individual atomic contributions 

nlocalU ,  (assuming such subtraction keeps the individual atomic contributions positive). This 

group vibrates in a plane (Fig. 2.2b) and the principal vibration axis of group 3 (the helix) is 

parallel to this plane, leading to the plausible hypothesis that groups 3 and 4 at least partially 

move together or slide one with respect to another.  

To check the influence of the manual modification on the TLS matrices, we recalculated 

the R-factors before and after performing these changes without updating the individual atomic 

contributions nlocalU , . For all modifications described above, including the ensemble of 

modifications applied together, the R-factors varied only in the 4th significant digit.  

This example demonstrates that current refinement procedures may result in TLS matrices 

that do not satisfy the previously mentioned conditions. However, small changes to refined TLS 

matrices may be sufficient correction. This highlights the need to use appropriate restraints or 

constraints on refinable parameters within the TLS model.  

 

 

Initiation translation factor 2 (IF2) 

The structure of IF2 (PDB code 4b3x) has recently been solved in one of our laboratories 

(Simonetti et al., 2013) with Rwork = 0.180 and Rfree = 0.219 at a resolution of 1.95 Å. A 

posteriori TLS refinement was done with two groups: the first group included the N-terminal and 

the following long helix, and the second included the rest of structure. The re-refined model had 

better Rwork = 0.176 and especially Rfree= 0.203. In this example the TLS matrices from the first 

group were not directly interpretable because the residual matrix [ ]LV  was not positive 

semidefinite (the minimal eigenvalue was -0.05). Similarly to the last TLS group in calmodulin, 

we artificially added 0.06 Å2 to all diagonal elements of the matrix T, corresponding to roughly 5 

Å2 (the same amount has been removed from the residual atomic B values, thus leaving the R-

factors unchanged). This correction allowed for interpretation of the TLS matrices in terms of 

elemental motions. We note that for the first TLS group one of the rotations was degenerate and 

that the assignment trS = 0 would make this matrix incompatible with L. Table 2.3 shows that 

vibrations of this group are essentially anisotropic. Fig. 2.2c also shows that the libration axes for 
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this group pass quite far away from the molecule, which makes the corresponding rotation 

similar to a translation. Additionally, we believe that the large zs  value indicates that the matrix 

S is not well defined to be physically significant in this case. The matrices for the second group 

were interpreted and revealed isotropic vibrations and librations.  

Finally, we tried to apply the same procedure after choosing the TLS groups manually as 

residues 1-50 (N terminal), 51-69 (helix), 70-333 (G domain) and 343-363 (connector to the C 

domain absent in this structure). As before, the matrices were physically interpretable for the G 

domain. For the groups 2 and 4, after an adjustment similar to those discussed above (a slight 

increasing the diagonal T elements with decreasing the residual B values of the individual 

atoms), we obtained a pure vibration for the helix (as for the calmodulin case) and a libration 

around a single axis for the terminal group. In contrast, we failed to find reasonably small 

corrections for the matrices of the first group that would make them physically interpretable.  

This case exemplifies a situation when the current TLS refinement protocol resulted in 

matrices (a few of which are physically nonsensical) that significantly reduced the R-factors 

without providing physically meaningful refined TLS parameters for one of the groups. This 

again highlights the need to improve TLS refinement algorithms.   

 

 

2.5  Interpreting TLS matrices with a structural ensemble  

 

Generation of an explicit set of atomic models with a variability consistent with TLS 

 Some structural problems may explicitly require a set of models that describe a given 

mobility, e.g. corresponding to the TLS matrices for harmonic motion (here we exclude larger-

scale anharmonic motions for which other techniques such as molecular dynamic trajectories 

have traditionally been used, as originated by McCammon et al., 1977). An example of such a 

problem is described in Van Benschoten et al. (2015), and briefly presented in Section 7.4, in 

which X-ray diffuse scattering data were compared with calculated data corresponding to 

different types of molecular motion. 

 As soon as a combination of vibrations and librations is extracted from the TLS matrices, 

we can explicitly build a corresponding set of models. If a model deposited in the PDB contains 

TLS matrices, the matrices can be decomposed as described above. A decomposition of this 
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motion into three vibrations and three librations provides the atomic shifts underlying the total 

displacement.  

It is generally more convenient to generate each group of atomic shifts in its own basis: 

shifts [ ] n
V
V rΔ  due to vibration in the [V] basis and shifts [ ] n

L
L rΔ  due to libration in the [L] basis. 

Here we are working in a linear approximation such that rotation angles are on the order of 0.1 

radian. For each particular set of generated shifts, they are transformed into the [M] basis as 

[ ] n
V
M rΔ  and [ ] n

L
M rΔ  and their sum 

 

 [ ] [ ] [ ] n
V
Mn

L
MnM rrr Δ+Δ=Δ        

 (42) 

 

is applied to the corresponding atoms. Details of model generation are discussed in the next 

sections. This procedure is repeated independently multiple times, leading to structural models 

distributed according to the TLS matrices.  

 

Calculation of the model shift due to libration 

 Let us suppose that we know the following axes in the basis [M]: the three mutually 

orthogonal axes lx, ly, lz for independent libration as well as the coordinates of the points [ ]
lx
Mw , 

[ ]
ly
Mw , [ ]

lz
Mw  that belong to each of them. We recalculate the coordinates of these points and the 

coordinates [ ] [ ] [ ]( )nMnMnM zyx ,, , n = 1, 2, …, N, of all atoms [ ]nMr  of the group into the [L] basis 

as 

 [ ] [ ] [ ]nMMLnMMLnL RR rrr τ== −1        

 (43) 

 

(similar relations are for the points [ ]
lx
Lw , [ ]

ly
Lw , [ ]

lz
Lw ). We remind the reader that the squared 

libration amplitudes [ ] 1
2 λ== xxLx Ld , [ ] 2

2 λ== yyLy Ld , [ ] 3
2 λ== zzLz Ld  (Section 3.2) and 

the screw parameters xs , ys , zs  (Section 4.5) are independent of the basis.  

For an atom at a distance R = 1 Å from the rotation axis, the probability of the shifts 
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zyx ddd ,, , which are numerically equal to the rotation angle in radians, are equal to:  

 axis parallel to lx: ( )12
1 2/exp2)( λπλ xx ddP −=          

 axis parallel to ly : ( )22
2 2/exp2)( λπλ yy ddP −=      

 

 

(44) 

 axis parallel to lz : ( )32
3 2/exp2)( λπλ zz ddP −=

 

         

If one of the eigenvalues is equal to 0 then the corresponding d is equal to 0 with unit probability. 

The particular values of 0xd , 0yd , 0zd  are obtained using a random number generator with an 

underlying normal distribution (44).  

 For each of the axes lx , ly , lz for each atom n described by the vector nr  we calculate the 

coordinates, in the [L] basis, of its shifts [ ] n
lx
L rΔ , [ ] n

ly
L rΔ , [ ] n

lz
L rΔ  due to the corresponding rotations 

by 0xd , 0yd , 0zd  (Appendix A). The overall shift due to libration around the three axes is the 

sum  

 

 [ ] [ ] [ ] [ ] n
lz
Ln

ly
Ln

lx
Ln

L
L rrrr Δ+Δ+Δ=Δ       

 (45) 

 

It changes from one atom of the group to another and must be calculated for all atoms of the 

group with the same ( 0xd , 0yd , 0zd ) values for a particular instance of the three rotations.  

  To transform the atomic shift (45) from the [L] basis into the initial [M] basis, we invert 

equation (43):  

 

 [ ] [ ] n
L
LMLn

L
M R rr Δ=Δ

 

        

 (46) 

 

Calculation of the model shift due to vibration 

 In the harmonic approximation, the independent vibration shifts zyx ttt ,,  expressed in the 

[V] basis are distributed accordingly to the probability laws: 
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 [ ] [ ]( ) ( )12
1

2 2/exp22/exp2)( µπµπ xxxVxxxVx tVtVtP −=−=

 

   

 [ ] [ ]( ) ( )22
2

2 2/exp22/exp2)( µπµπ yyyVyyyVy tVtVtP −=−=

 

  

 (47) 

 [ ] [ ]( ) ( )32
3

2 2/exp22/exp2)( µπµπ zzzVzzzVz tVtVtP −=−=

 

   

 

Using a random number generator, for each model we obtain particular values of 000 ,, zyx ttt  

using (47). If one of the eigenvalues m is equal to zero, the zero value is assigned to the 

corresponding shift. The overall translational shift, common to all atoms of the rigid group, is 

equal to  

 [ ] zzyyxxn
V
V ttt vvvr 000 ++=Δ .       (48) 

In order to obtain this shift in the [M] basis we calculate, similarly to equation (46), 

 [ ] [ ] n
V
VMVn

V
M R rr Δ=Δ

 

        

 (49) 

 

Validation and application to GpdQ 

We generated the ensembles produced by alternative TLS refinements of the 

glycerophosphodiesterase GpdQ (Jackson et al., 2007). GpdQ is found in Enterobacter 

aerogenes and contributes to the homeostasis of the cell membrane by hydrolyzing the 3’-5’ 

phosphodiester bond in glycerophosphodiesters. Each dimer contains three distinct domains per 

monomer: an a/b  sandwich fold containing the active site, a domain-swapped active site cap and 

a novel dimerization domain comprised of dual-stranded antiparallel b-sheets connected by a 

small b-sheet. Due to the high global B-factors and presence of diffuse signal (Fig. 2.3), Jackson 

et al. (2007) performed three separate TLS refinements to model the crystalline disorder: Entire 

molecule, Monomer and Sub-domain. All TLS refinement attempts improved the Rfree values 

when compared to the standard isotropic B-factor refinement; however, there was no significant 

difference among the final Rfree values from the various TLS runs. We hypothesized that the 

diffuse scattering produced by each TLS motion would contain significant differences, as diffuse 

signal is a direct result of correlated motion. The notion that TLS refinement produces unique 

diffuse signal has been suggested previously (Tickle & Moss, 1999). Physical ensembles of the 
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TLS motion, rather than a mathematical description, were required to generate 3D diffuse 

scattering maps from phenix.diffuse. Visual inspection confirmed that the ensembles produced by 

phenix.tls_as_xyz replicated the anisotropic motion predicted by TLS thermal ellipsoids (Fig. 

2.4). Additionally, we calculated the structure factors predicted by the original TLS refinement 

Entire molecule and compared them to Fmodel values (for example as defined in Afonine et al., 

2012) produced by various phenix.tls_as_xyz ensemble sizes. The structure factors converged to 

a global correlation value of 0.965, demonstrating that phenix.tls_as_xyz ensembles accurately 

represent the motions predicted by TLS refinement. Physical representation of the underlying 

motion also revealed that, while two of the TLS refinements produced motion with small 

variances (a necessity within TLS theory), using each functional region as a TLS group produced 

fluctuations that are clearly non-physical (Fig. 2.3). Thus, viewing TLS refinement in the form of 

a structural ensemble is a valuable check of the validity of the results, as matrix elements that 

satisfy the previously described conditions may still produce motions that are clearly 

implausible.  

 

 

2.6 Discussion  

While our previous review on the subject (UAA-2013) describes the computational 

details of obtaining the TLS matrices from a known set of vibration and libration parameters 

(including the position of the axes and correlation of these motions), the current work focuses on 

the opposite problem of extracting these parameters from a given set of TLS matrices. The 

problem is not as simple as it may at first seem. 

This difficulty arises because current structure refinement programs vary the matrix 

elements as independent parameters and often ignore critical constraints on real-space motions. 

A second difficulty is that identical motions may be represented by different vibration-libration 

combinations. As a consequence, there is no one-to-one relationship between these parameters 

and the set of TLS matrices. In particular, the traditional way of choosing the matrix S so that its 

trace is equal to zero may result in a mutually inconsistent combination of TLS matrices. 

This manuscript describes the constraints that should be used to validate a given set of T, 

L and S matrices. Beyond the well-known conditions of non-negativity for the eigenvalues of T 

and L, we also discuss the conditions that relate the matrices, a crucial step in ensuring that the 
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results of TLS refinement correspond to physically possible combinations of librations and 

vibrations.  

The survey of PDB entries with TLS matrices available revealed that roughly 85% of 

deposited models contain physically nonsensical TLS matrices (Table 2.1). This highlights two 

urgent needs. The first step must be changing existing refinement programs so that they apply 

appropriate restraints or constraints on refinable parameters of the TLS model. This must be 

followed by the implementation and use of comprehensive validation of TLS refinement results.   

The utility of our presented algorithm is two-fold: it validates TLS matrices to confirm 

that they make physical sense and interprets TLS matrices in terms of the elemental motions that 

they describe. The information about atomic group motions conveyed by the TLS model can be 

used to analyze possible molecular mechanisms (as illustrated previously). Descriptions of TLS 

motion may also be used to generate an ensemble of molecular conformations, from which the 

predicted diffuse scattering signal can be calculated (Van Benschoten et al., 2015). 

TLS matrix representation is a convenient way of encoding concerted motions into a form 

that is suitable for the calculation of structure factors and, in turn, structure refinement. There are 

two drawbacks to the standard implementation of this method. First, TLS matrices cannot be 

readily interpreted in terms of underlying motions but rather require additional processing in 

order for this information to be extracted. Secondly, direct refinement of the TLS matrix elements 

may result in refined matrices that do not make physical sense. To address these two drawbacks 

we propose using the set of vibration and libration parameters as refinable variables (an ongoing 

project for the authors) and reporting them in the PDB files. Indeed, using actual motion 

descriptors as refinement variables will allow for more effective application of physical 

constraints and in turn guarantee that refined values make physical sense. This will also simplify 

the analysis of refinement results, as they will be readily available for interpretation. Finally, this 

strategy would reduce data overfitting from physically nonsensical atomic models. 

The current procedures for analysis and validation of TLS parameters, as well as the 

algorithm for generating a set of models from given libration and vibration parameters, are 

implemented in the Phenix suite and are called phenix.tls_analysis and phenix.tls_as_xyz, 

respectively; they are available starting with version dev-1890.  
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2.5 Tables 

 

Table 2.1) Number of PDB entries with at least one physical conditions on TLS matrices 

broken. The statistics is shown for the matrices in the PDB (25904 entries with the TLS matrices 

from the total number of 106,761 entries, as of March 2015) with the default condition trS = 0 

(upper line) and with the optimal choice of the diagonal S elements whenever possible as 

described in Sections 3-4 (bottom line). The conditions are, from left to right: matrices T and L 

are positive semidefinite (T≥0 & L≥0); an absence of libration around one of the axes requires 

the corresponding elements of the S matrix to be equal to 0 (s=0 & w=0); matrix T is positive 

semidefinite after the contribution due to the displacement of libration axes is removed (TC≥0); 

elements of the S matrix are limited by the corresponding elements of the T and L matrices 

accordingly to the Cauchy conditions (S≤TL); residual V matrix is positive semidefinite (V≥0). 

The column (V≥0) includes all conditions from Sections 4.3 - 4.4. When one of the conditions is 

broken further conditions were not checked.  

 

 
Mode Total 

PDB 
number 

Total TLS 
number 

 Condi tions broken  Total 
TLS 

broken 

Total 
TLS 
OK 

Total 
PDB 

broken 
   T≥0 & 

L≥0 
 s=0 &  
w=0 

TC≥0 S≤TL V≥0    

tS = 0 25904 203261 71362 3104 52254 n/a 10492 137212 66049 22707 
best tS  25904 203261 71362 3104 52255  133  3776 130630 72631 22201  
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Table 2.2) Examples of the TLS matrices. The matrix elements extracted from the PDB files 

after refinement (section 6). 

 

PDB 

code 

chain, 

residue 

number 

 

T (Å2) 

 

L (degree2) 

 

S (Å·degree) 

1dqv A1 –  

A97 

 0.1777  0.0090 -0.0044 

 0.0090  0.1306  0.0019 

-0.0044  0.0019  0.1372 

 1.4462 -0.0160 -0.2656 

-0.0160  1.2556  0.4713 

-0.2656  0.4713  0.8689 

 0.0467 -0.0523  0.0566 

 0.1010  0.0032 -0.0164 

 0.0090  0.0188  0.0560 

 B1 –  

B97 

 0.1777  0.0090 -0.0044 

 0.0090  0.1306  0.0019 

-0.0044  0.0019  0.1372 

 1.4462 -0.0160 -0.2656 

-0.0160  1.2556  0.4713 

-0.2656  0.4713  0.8689 

 0.0467 -0.0523  0.0566 

 0.1010  0.0032 -0.0164 

 0.0090  0.0188  0.0560 

1exr A2 –  

A30 

 0.0899  0.0040 -0.0004 

 0.0040  0.1333  0.0058 

-0.0004  0.0058  0.0728 

 1.3491 -0.3760 -0.3971 

-0.3760  0.6103  -0.3389 

-0.3971  -0.3389  0.3698 

 -0.0249 -0.3537  -0.0874 

 0.1275  0.0783 -0.0144 

 0.0183  0.0542  -0.0103 

 A31 - 

A74 

 0.0925  0.0037 0.0041 

 0.0037  0.0673  0.0062 

0.0041  0.0062  0.1119 

0.3464  0.3638  0.2923 

 0.3638  0.3283  0.1212 

 0.2923  0.1212  0.3799 

 -0.0220 -0.0419  -0.0793 

 -0.0061  0.0018 0.1161 

 -0.0041  -0.0385  -0.0009 

 A75 – 

A84 

 0.2433  0.0144 0.0917 

 0.0144  0.2867  0.1720 

0.0917  0.1720  0.1749 

 0.0736  0.0171 0.0565 

0.0171  0.0068  -0.0203 

0.0565  -0.0203  0.0336 

 0.4357 0.1151  0.2346 

 -0.2521  -0.3549 -0.2041 

 -0.3793  -0.1499  0.0111 

 A85 – 

A147 

 0.0747  -0.0110 0.0066 

 -0.0110  0.1384  0.0062 

0.0066  0.0062  0.0673 

 0.6097 -0.0786 -0.1864 

-0.0786  0.6474  -0.6233 

-0.1864  -0.6233  0.9637 

 0.0180 0.1466  0.0378 

 0.0155  -0.0872 -0.0542 

 -0.0440  0.1022  -0.0852 

4b3x A1 –  

A65 

 0.4663  0.0991 -0.0764 

 0.0991  0.5443 -0.0321 

-0.0764 -0.0321  0.5001 

 0.4738  0.0063  0.2318 

 0.0063  0.2120 -0.0584 

 0.2318 -0.0584  0.1312 

 0.0391 -0.0307 -0.4316 

 0.0587  0.1786 -0.2003 

 0.3665  0.4293  0.0403 

 A66 -

A363 

 0.1649 -0.0259  0.0184 

-0.0259  0.1422  0.0055 

 0.0184  0.0055  0.2028 

 0.8808 -0.0912 -0.1736 

-0.0912  0.9522  0.0972 

-0.1736  0.0972  1.6563 

-0.0345  0.0102 -0.0661 

 0.1159 -0.0222  0.0999 

 0.0424 -0.1330 -0.0237 
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Table 2.3) Examples of parameters of the elemental motions found from the decomposition 

of the TLS matrices. The parameters are given in the units used in this article allowing an easy 

estimation of the corresponding atomic displacements. Direction of the libration and rotation 

axes is not given. 

 

PDB 

code 

chain, 

residue 

number 

 

T: tx, ty, tz  (Å) 

 

L: dx, dy, dz (rad) 

 

 

S: sx, sy, sz (Å) 

 

 

trS  

1dqv A1-A97 .3455 .3671 .4172 .01239 .02044 .02273 1.343  1.137 -1.319  0 

 B1-B97 .3634 .3885 .4166 .01608 .01753 .03069 0.679 -1.177  0.200  0 

1exr A2-A30 .1944 .2663 .2870 .00000 .01602 .02182 0.000  2.951  3.408  >0 

  A31-A74 .2110 .2939 .3068 .00000 .00860 .01637 0.000 -18.14 -5.028  <0 

  A75-A84 .1692 .4906 .6598 .00000 .00000 .00000 0.000  0.000  0.000  0 

  A85-A147 .0002 .2270 .3078 .00553 .01418 .02109 20.83  0.800 -1.672  ≈0 

4b3x A1-A65 .0994 .6064 .7116 .00000 .00825 .01343 0.000  2.718 -11.05 <0 

  A66-A363 .3306 .4102 .4413 .01568 .01720 .02283 3.164 -2.276 -0.197  0 
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2.8 Figures 

 
 

Figure 2.1) General flowchart of the TLS decomposition into libration and vibration 

composite motions. Yellow ellipses are for conditions to the verified. Green rectangles are for 

the output parameters of the composite motions. Letters A-D indicate different steps of the 

procedure as described in the text. 
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Figure 2.2) Examples of the vibration-libration ensembles. Red / salmon / magenta sticks 

indicate the principal vibration axes with the origin in the centre of the group; blue / marine / 

black sticks are for the libration axes. Yellow spheres for the 1dqv model show the reaction 

centers. a) 1dqv model. b) 1exr model; note pure vibrations for the group 3 (the helix) and 

absence of one of libration axes for the groups 1 and 2. c) 4b3x model. Libration axes for the 

first group are not shown being too far from the molecule. 
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Figure 2.3) GpdQ TLS ensembles. The GpdQ TLS groups are projected onto the protein 

structure. The corresponding ensembles produced by phenix.tls_as_xyz are shown below. Each 

TLS PDB ensemble is shown as a single asymmetric unit outlined by the unit cell. An increase in 

overall motion is apparent going from left to right. The 20 member ensemble is shown for visual 

simplicity. 
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Figure 2.4) phenix.tls_as_xyz ensembles replicate TLS anisotropic motion. a) GpdQ 

backbone with thermal ellipsoid representation of “entire molecule” TLS anisotropic B-factors. b) 

phenix.tls_as_xyz ensemble backbones produced from “entire molecule” TLS refinement. c) 

Complete electron density predicted by “entire molecule” TLS refinement. d) Global correlation 

coefficient between experimental structure factor amplitudes Fobs of the original GpdQ ‘entire 

motion’ refinement and phenix.tls_as_xyz ensembles of various sizes. Convergence values 

plateau at 0.935. 
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Figure 2.5) The number of PDB entries (in thousands) as a function of various parameters. 

The blue histogram in (b-d) is for the minimum eigenvalue and the red histogram is for the 

maximum eigenvalue. The leftmost and rightmost bins include all the cases with the values 

respectively less than or greater than the limits given at the axis. The eigenvalues are given in 

radians2 for L and in Å2 for T and L. The total number of the TLS groups is 203,261 for the 

diagrams (a-c) and about 70,000 for the diagram d) when the matrix V could be calculated. a) 

The number of the TLS groups per entry; the largest is 283. b) Distribution of eigenvalues of the 

matrix L; minimum eigenvalue varies from -0.285 to 0.164, maximum eigenvalue varies from -

0.001 to 0.409. c) Distribution of eigenvalues of the matrix T; minimum eigenvalue varies from -

20.716 to 6.852, maximum eigenvalue varies from -1.551 to 28.676. d) Distribution of 

eigenvalues of the matrix V (S matrix optimized as described in the article); minimum eigenvalue 

varies from -0.001 to 2.815, maximum eigenvalue varies from 0 to 5.950.  
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2.10 Appendix A. Technical details of the algorithm 

 

Definition of the transition matrices 

 Let us have three mutually orthogonal unit vectors lx, ly, lz described respectively by their 

coordinates ( )[ ] ( )[ ] ( )[ ]( )zMxyMxxMx lll ,, , ( )[ ] ( )[ ] ( )[ ]( )
zMyyMyxMy lll ,, , ( )[ ] ( )[ ] ( )[ ]( )zMzyMzxMz lll ,,  in the 

Cartesian basis [M]. These vectors can be considered as a new basis [L]. The coordinates of a 

vector r in [L] and [M] are expressed through each other using the transition matrix MLR  as   

   

( )[ ] ( )[ ] ( )[ ]

( )[ ] ( )[ ] ( )[ ]

( )[ ] ( )[ ] ( )[ ]
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
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⎠
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⎜
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⎝

⎛

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
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⎝

⎛

][

][

][

][

][

][

][

][

][

L

L

L

zMzzMyzMx

yMzyMyyMx

xMzxMyxMx

L

L

L

ML

M

M

M

z
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lll

lll

z
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R

z
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 (50) 

Transition matrices for other pairs of basis, for example from [V] to [L] (section 2.1), [M] to [V] 

and vice versa (Section 7.3) are defined in a similar way.  

 

Cauchy conditions on the elements of the TLS matrices 

 Let zyx ddd ,,  and zyx uuu ,,  be random displacements due to rotations and translations, 

respectively. Since xxxx udS = , xxxx uuV = , xxxx ddL =  (Schomaker & Trueblood (1968); 

see also equations (8.5) - (8.7) in UAA-2013) , it follows from the Cauchy inequality that
 

  xxxxxx LTS ≤2           

 (51) 

In the basis [L] with [ ]LS = ( )SC tS  (eq. (18)), condition (51) becomes 

 ( ) xxLxxLCxxL LTtS ][][
2

][ ≤−         

 (52)  

Similarly we obtain two other conditions 

   ( ) ( ) zzLzzLCzzLyyLyyLCyyL LTtSLTtS ][][
2

][][][
2

][ , ≤−≤−    

 (53) 
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Polynomials for the coefficients of the characteristic equation 

 If xzxyxx ttt ,,  etc are respective elements of the matrix ΛT (29), the coefficients (36) of the 

characteristic equation as functions of the parameter t are:
 

( ) [ ]( )[ ] [ ]( )[ ] [ ]( )[ ]zzzzLyyyyLxxxxLS tSttSttStta −−+−−+−−=
222

       

 (54) 

( ) [ ]( )[ ] [ ]( )[ ] [ ]( )[ ] [ ]( )[ ]+−−−−+−−−−= zzzzLyyyyLyyyyLxxxxLS tSttSttSttSttb 2222
  

[ ]( )[ ] [ ]( )[ ] [ ]22222
zxyzxyxxxxLzzzzL ttttSttSt ++−−−−−+                            (55) 

( ) [ ]( )[ ] [ ]( )[ ] [ ]( )[ ]−−−−−−−= zzzzLyyyyLxxxxLS tSttSttSttc 222
    

 (56) 

 [ ]( )[ ] [ ]( )[ ] [ ]( )[ ] xzyzxyzzzzLxyyyyyLxzxxxxLyz ttttStttStttStt 2222222 −−−−−−−−−−    

 

Explicit expression for the atomic shifts due to rotations with given parameters 

 Let [ ] [ ] [ ]( )LLL zyx ,,  be Cartesian coordinates of a point r  in the basis [L]. For a rotation 

around the axis parallel to lz and crossing the point [ ] [ ] [ ] [ ]( )lz
zL

lz
yL

lz
xL

lz
L www ,,=w , we recalculate first 

the coordinates of the vector [ ]
lz
Lwr −  with respect to the rotation axis 

 [ ] [ ] [ ] [ ] [ ] [ ]nLA
lz
yLA

lz
xLA zzwyywxx =−=−= ;;      

 (57) 

If rʹ′  stands for the position of the same point after rotation by angle 0zd  around this axis, the 

coordinates of [ ]
lz
Lwr −ʹ′  , the point with respect to the axis, are   

 [ ] [ ]( ) [ ] [ ]( ) [ ]( )00000 ;cossin;sincos zzAzAzAzAzA dszdydxdydx ++−  . 

 (58) 

This gives the atomic shift  

  [ ] [ ]( ) [ ]( )=−−−ʹ′=−ʹ′=Δ lz
L

lz
L

lz
L wrwrrrr      

 (59) 

 [ ]( )( ) [ ]( )[ ] +−−−−= xl00 sin1cos z
lz
yLz

lz
xL dwydwx   
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  [ ]( ) [ ]( )( )[ ] zy ll 000 1cossin zzz
lz
yLz

lz
xL dsdwydwx +−−+−+  

There are similar expressions for the shift due to rotations around two other axes: 

 [ ] [ ]( )( ) [ ]( )[ ] +−−−−=Δ yl00 sin1cos x
lx
zLx

lx
yL

lx
L dwzdwyr    

 (60) 

  [ ]( ) [ ]( )( )[ ] xz ll 000 1cossin xxx
lx
zLx

lx
yL dsdwzdwy +−−+−+  

 [ ] [ ]( )( ) [ ]( )[ ] +−−−−=Δ zl00 sin1cos y
ly
xLy

ly
zL

ly
L dwxdwzr    

 (61) 

  [ ]( ) [ ]( )( )[ ] yx ll 000 1cossin yyy
ly
xLy

ly
zL dsdwxdwz +−−+−+  

 

 

2.11 Appendix B. List of abnormal situations requiring procedural interruption 

This appendix summarizes the situations when the described algorithm breaks. Each 

condition below starts from the corresponding program message and then refers to the main text 

and to Figure 2.1. To analyze the PDB content, the program can be run in a special regime when 

at step C we assign 0=St  (this corresponds to the current default constraint trS = 0), i.e. when 

the matrix S is taken without any correction. In this regime we calculate directly the matrices C 

and ][LV  and check the conditions (k-m).  

 

Step A: basis [L]; determination of the libration axes and amplitudes 

a) “Input matrix L[M]  is not positive semidefinite”. Section 3.1. 

b) “Input matrix T[M]  is not positive semidefinite”. Section 3.1. 

 

Step B: determination of the points w at the libration axes 

c) “Non-zero off-diagonal S[L] and zero L[L] elements”. Section 3.2, eq. (15).  

d) “Matrix T_C[L] is not positive semidefinite”. Section 3.2, eq. (17). 

 

Step C: determination of the screw parameters 

 

left branch (librations around all three axes)  
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e) “Empty (tmin_c , tmax_c) interval”. Section 4.2, eq. (23). CC tt max,min, > . 

f) “Empty (tmin_t , tmax_t) interval”. Section 4.3, eq. (31). ττ max,min, tt > . 

g) “Negative argument when estimating tmin_a”. Section 4.3, eq. (38).  

h) “Intersection of the intervals for t_S is empty”. Section 4.3, step b. maxmin tt >  

i) “t_min = t_max giving non positive semidefinite V_lambda”. Section 4.3, step c.  

j) “Interval (t_min , t_max) has no t value giving positive semidefinite V”. Section 4.3, step d.  

 

right branch (no libration around at least one of the axes)  

k) “Cauchy-Schwarz conditions are wrong for the found t_S”. Eq. (22) with St calculated in 

section 4.4. 

l) “Non-zero diagonal S[L] element for a zero L[L] element”. Section 4.4. 

 

 

Step D: determination of the vibration parameters 

m) “Matrix V[L]  is not positive semidefinite”. Section 5.1. 

 

Extra checks at step C when some conditions may fail due to rounding errors: 

- When calculating square roots (24), the arguments are non negative by previous conditions (a) 

and (d) since the diagonal elements of a positive semidefinite matrix are non negative. 

- When calculating square roots (28), the arguments are non negative by previous condition (a). 

- When calculating square roots (31), the argument maxτ  is non negative since the eigenvalues 

of ][LCT  are also non negative by previous condition (d). 
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Chapter 3 
 

Predicting X-ray Diffuse Scattering from Translation Libration Screw 
Structural Ensembles 

 

3.1 Abstract      

Identifying the intramolecular motions of proteins and nucleic acids is a major challenge in 

macromolecular X-ray crystallography. Because Bragg diffraction describes the average 

positional distribution of crystalline atoms with imperfect precision, the resulting electron 

density can be compatible with multiple models of motion. Diffuse X-ray scattering can reduce 

this degeneracy by directly reporting on correlated atomic displacements. Although recent 

technological advances are increasing the potential to accurately measure diffuse scattering, 

computational modeling and validation tools are still needed to quantify the agreement between 

experimental data and different parameterizations of crystalline disorder. A new tool, 

phenix.diffuse, addresses this need by employing Guinier’s equation to calculate diffuse 

scattering from Protein Data Bank (PDB)-formatted structural ensembles. As an example case, 

phenix.diffuse is applied to Translation-Libration-Screw (TLS) refinement, which models rigid 

body displacement for segments of the macromolecule. To enable calculation of diffuse 

scattering from TLS refined structures, phenix.tls_models builds multi-model PDB files that 

sample the underlying T, L and S tensors. In the glycerophosphodiesterase GpdQ, alternative 

TLS group partitioning and different motional correlations between groups yield markedly 

dissimilar diffuse scattering maps with distinct implications for molecular mechanism and 

allostery. These methods demonstrate how, in principle, X-ray diffuse scattering could extend 

macromolecular structural refinement, validation, and analysis. 
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3.2 Introduction 

Protein flexibility is essential for enzymatic turnover, signaling regulation and protein-protein 

interactions (Fraser & Jackson, 2011). The motions enabling these functions span length-scales 

from a few angstroms to many nanometers and include transitions between side chain rotamers 

(Fraser et al., 2009), loop openings and closings (Qin et al., 1998; Williams et al., 2014) and 

rigid-body subunit rotations (Korostelev & Noller, 2007). Multiple crystal structures are 

routinely compared to identify these motions and to derive hypotheses about the role of 

correlated motions in executing protein function. However, if only a single crystal form is 

available, evidence of concerted motion must be extracted from the spread in the electron 

density.  

 

Extracting this information is possible because protein conformational heterogeneity across unit 

cells in space and within unit cells during the X-ray exposure time leads to an ensemble-

averaged electron density map. Atomic vibrations are commonly fit with individual B-factors, 

which describe the electron density distribution as a continuous isotropic Gaussian envelope 

around a central location and predominantly encompass disorder from thermal motion. Discrete 

conformational heterogeneity and crystal packing defects can be described as ensembles of 

structural models with partial occupancy (Burnley et al., 2013; Rader & Agard, 1997; Gros et al., 

1990; van den Bedem et al., 2009; Levin et al., 2007; Wall et al., 1997). If high-resolution 

diffraction data are available, anisotropic directionality can be added to B-factors by modeling a 

Gaussian distribution along each real-space axis, yielding an ellipsoid that shows the 

predominant direction of the electron density.  
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However, the large number of parameters required for anisotropic B-factor refinement renders it 

inaccessible for most macromolecular diffraction experiments.  Translation-Libration-Screw 

(TLS) modeling, introduced by Schomaker and Trueblood (1968), can describe concerted, rigid-

body displacement for groups of atoms (for comprehensive review see Urzhumtsev et al., 2013). 

In TLS refinement, the target protein is segmented into independent rigid bodies that undergo 

small translations (“vibrations”) and rotations (“librations”). The anisotropic displacement of 

TLS refinement can be fully described with twenty parameters per rigid body, each of which can 

potentially contain many atoms. This small number of parameters compares favorably to the six 

parameters per atom demanded by individual anisotropic B-factor refinement and allows 

grouped anisotropic B-factors to be modeled at mid to low-resolution ranges. TLS refinement 

often leads to better agreement between observed and calculated structure factors, as measured 

by decreasing Rfree values. The potential for improved statistics when relatively few observations 

are available has positioned TLS as a general refinement technique: 22% of the structures 

deposited in the Protein Data Bank (PDB; Bernstein et al., 1977; Berman et al, 2000) employ 

TLS refinement in some form. TLS refinement is a component of many major structural 

refinement programs such as Refmac (Murshudov et al, 1997; Winn et al., 2001), BUSTER-TNT 

(Bricogne et al, 1993, 2011) and phenix.refine (Afonine et al, 2012). These programs can select 

TLS groups automatically, based on biochemical intuition, or with the assistance of external web 

servers (Painter & Merritt, 2006a; Painter & Merritt, 2006b).  

 

TLS refinement naturally suggests concerted structural motions, which can be assigned 

biological significance and subsequently tested with additional experiments.  Visualization 

programs such as TLSViewer (Painter & Merritt, 2005) can convert the T, L and S tensors into a 
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description of domain-scale mechanical motions and molecular graphics programs, such as 

Chimera (Pettersen et.al, 2004), Coot (Emsley and Cowtan, 2004) or PyMol (DeLano, 2002), 

can be used to visualize the resulting anisotropic ellipsoids. For example, TLS refinement of the 

large multi-protein complex GroEL revealed subunit tilting that may play a role in transmitting 

conformational changes upon GroES or nucleotide binding (Chaudhry et al., 2004) (Figure 3.1a-

b). Similarly, TLS modeling of the ribosome structure implied a “ratcheting” rotation of the 50S 

and 30S subunits around the peptidyl transferase center during tRNA translocation (Korostelev 

& Noller, 2007).  

 

A potential complication of TLS refinement is that there is no information regarding correlations 

between groups; thus, many different rigid body arrangements can result in equivalent 

improvement of refinement statistics (Moore, 2009; Tickle & Moss, 1999).  The inability to 

discriminate among alternate TLS models stems from the exclusive usage of Bragg diffraction 

data in model refinement. Because Bragg data reports on electron density averaged across all 

unit cells, there may be several models of correlated structural displacement that fit the density 

equally well. Thus, TLS refinement might improve the modeled electron density but incorrectly 

describe the correlated motion that occurs in the crystal during the diffraction experiment. 

Drawing on additional sources of information such as patterns of steric clashes (van den Bedem 

et al., 2013), NMR spectroscopy (Ruschak & Kay, 2012), or mutational analysis (Fraser et al., 

2009) can be used to distinguish competing models of correlated motion between non-bonded 

atoms.  
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An additional, yet rarely used, data source that can discriminate between these models is X-ray 

diffuse scattering from protein crystals, which results from correlated variation in the electron 

density distributions (Phillips et al., 1980; Chacko & Phillips, 1992; Faure et al., 1994; Clarage 

& Phillips, 1997; Mizuguchi et al., 1994). This variation breaks from the hypothetical “perfect” 

crystal lattice, leading to diffraction outside of the regions of reciprocal space predicted by 

Bragg’s law. The theoretical relationship between conformational heterogeneity within unit cells 

and diffuse scattering has been available for decades (Guinier, 1963; Amorós & Amorós, 1968) 

and small-molecule crystallographers have used diffuse scattering data in refinement and model 

validation (Estermann & Steurer, 1998; Michels-Clark et al., 2013, Welberry & Butler, 1994).  

 

The potential of macromolecular diffuse scattering to break the degeneracy within refinement 

methods such as TLS, including information about the location and length scale of 

macromolecular disorder, has long been recognized (Thune & Badger, 1995; Perez et al., 1996; 

Hery et al., 1998; Tickle & Moss, 1999). Diffuse scattering maps predicted by models of motion 

can be calculated using either an all-atom covariance matrix or the equation  𝐼(𝑞)!"##$%& =

𝑁. 𝑓! 𝑞 ! − 𝑓!(𝑞) !  (often called Guinier’s equation, where q is the scattering vector, n 

is the complex structure factor of the n-th protein conformation and N is the number of unit cells 

in the crystal) (Micu & Smith, 1994; Lindner & Smith, 2012). The covariance matrix describes 

correlated displacements between every pair of atoms, whereas Guinier’s equation models 

diffuse scattering from an ensemble of structure factors. Calculation of the covariance matrix has 

been used to model crystalline normal modes and TLS parameterization (Riccardi et al., 2010). It 

is also possible to explicitly estimate each matrix element from molecular dynamics trajectories 

(Meinhold & Smith, 2007). The size of the covariance matrix scales as the square of the number 
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of atoms, making full matrix calculations expensive to compute for large systems. This poses a 

significant challenge to quantitative diffuse scattering analysis. For these reasons, a 

straightforward method that calculates diffuse scatter from discrete multi-model PDB files may 

be preferable. 

 

To meet this need, we developed phenix.diffuse, a new tool within the Phenix software suite 

(Adams et al., 2010), which uses Guinier’s equation to calculate diffuse scattering from multi-

model (ensemble) PDB files. Thus, phenix.diffuse can be applied to any motional model 

represented as an explicit ensemble of related structures. As a first application we have simulated 

the diffuse scattering produced by alternative TLS refinements of the glycerophosphodiesterase 

GpdQ (Jackson et al., 2007). GpdQ is found in Enterobacter aerogenes and contributes to the 

homeostasis of the cell membrane by hydrolyzing the 3’-5’ phosphodiester bond in 

glycerophosphodiesters. Each chain of the dimeric enzyme contains three distinct structural 

elements: an α/β sandwich fold containing the active site, a domain-swapped active site cap and 

a novel dimerization domain comprised of dual-stranded antiparallel β-sheets connected by a 

small β-sheet. Though the catalytic mechanism of GpdQ is similar to other metallo-

phosphoesterases, some substrates are too large to pass through the active site entrance as it is 

modeled in the crystal structure. Protein dynamics must therefore play a role in substrate entry 

and product release. Normal mode analysis of the GpdQ hexamer suggested high mobility in the 

cap domain and a breathing motion centered on the catalytic and dimerization domains (Jackson 

et al., 2007). Due to the high global B-factors and presence of diffuse signal in the diffraction 

images (Figure 3.1c), Jackson and colleagues performed three separate TLS refinements to 

model the crystalline disorder. All three TLS refinements improved the Rfree values when 
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compared to the standard isotropic B-factor refinement; however, there was no significant 

difference among the final Rfree values from the refinements initiated with distinct TLS 

groupings. In contrast, our results reveal significant differences between the diffuse intensities 

predicted by the motion from each TLS refinement, highlighting the possible usefulness of 

diffuse scattering in optimizing structure refinement.  

 

3.3 Methods 

GpdQ refinement. Based on the original refinement strategy of Jackson et al. (2007), we 

performed three different TLS refinements on the zinc-bound structure of GpdQ (PDB ID: 

2DXN): “Entire molecule”, one TLS group for all residues; “Monomer”, one TLS group for 

each of the two individual chains; and “Sub-domain”, one TLS group for each of the 

α/β sandwich domain (residues 1-196), the “dimerization” domain (residues 197-255) and the 

“cap” domain (residues 257-271) of each chain. The pre-TLS refinement Rwork and Rfree were 

19.1% and 23.1%, respectively. After defining the TLS groups, each structure was re-refined for 

5 macrocycles in Phenix.refine. The strategy included refinement of the individual coordinates 

and isotropic B-factors, water picking and refinement of TLS parameters for defined TLS 

groups. Both the X-ray/atomic displacement parameters and X-ray/stereochemistry weights were 

optimized (Afonine et al, 2011). The final Rwork, Rfree values for each refinement were as 

follows: “Entire molecule” (14.6%, 18.9%), “Monomer” (14.9%, 19.0%), “Sub-domain” 

(14.9%, 19.3%), suggesting approximately equal agreement with the Bragg data (Figure 3.1d). 

 

In TLS refinement, the eigenvalues of the T and L matrices describe the variance of the motional 

displacement along each orthogonal real-space axis. To avoid an unphysical description of TLS 
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motion (Urzhumtsev et al. accompanying manuscript), we inspected the eigenvalues of each TLS 

refinement to ensure non-negative eigenvalues for the T and L matrices (Table 3.1). Although 

solvent is expected to contribute significantly to experimental diffuse scattering, we removed 

water molecules after refinement. This step, along with removing bulk solvent from the starting 

structure, ensures that all subsequent diffuse scattering simulations only reflect correlated 

motions implicit in the TLS refinement. 

 

phenix.tls_models and TLS ensemble generation. We used phenix.tls_models (Urzhumtsev et 

al., accompanying manuscript) to convert the TLS matrices to a structural ensemble. 

phenix.tls_models receives as input a structure with TLS header information, separates the 

molecule into individual TLS groups and randomly samples the real-space distribution for each 

group based on mathematical decomposition of the T, L and S matrices. The trace of the matrix 

S is set to 0 during these calculations. The sampled PDB files are then either re-assembled into a 

multi-model PDB ensemble or output with no further changes (Figure 3.2). To ensure adequate 

sampling of the underlying Gaussian distributions, we generated ensembles of different sizes and 

monitored the convergence of the global correlation coefficient between diffuse maps in which 

spherically-symmetric sources of diffuse scattering have been removed (“anisotropic maps”: 

Table 3.2). These maps offer an improved comparison relative to the raw diffuse signal because 

they correct for the resolution dependency of diffuse scattering, which would otherwise lead to 

overestimation of inter-map correlation.  We determined that an ensemble size of 1000 models 

was sufficient for effective sampling of each TLS refinement. The extent of the motions 

predicted by the “sub-domain” refinement (Figure 3.3) is quite surprising and likely results from 

a lack of chemical restraints within the TLS refinement implementation in Phenix. While 
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subdividing the “monomer” TLS refinement into smaller components might intuitively produce 

similar refinement statistics, the tensors between all three groups are substantially different and 

thus describe dissimilar motions. 

 

phenix.diffuse. Phenix.diffuse implements Guinier’s description of diffuse scattering (Guinier, 

1963) (Figure 3.4a) . Diffuse scattering is calculated entirely from a series of unit cell 

“snapshots” contained in a multi-model PDB ensemble and assumes no motional correlation 

between crystal unit cells. This simplification ignores sources of disorder spanning multiple unit 

cells, which can contribute to experimentally measured diffuse scattering (Clarage et al., 1992; 

Doucet & Benoit, 1987; Wall et al., 1997). phenix.diffuse can model these large-scale effects 

through the analysis of a “supercell” containing multiple unit cell copies as implemented in 

several recent MD simulations of small proteins (Janowski et al., 2013; Kuzmanic et al., 2014). 

Guinier’s equation can be applied to arbitrarily sized crystalline regions; thus, a system of 

multiple unit cells allows for analysis of motions that occur between and across unit cells. In line 

with previous diffuse scattering simulations (Wall et al., 2014), our program calculates structure 

factors for each ensemble member at the Bragg lattice positions, from which each term in 

Guinier’s equation is determined. 

 

GpdQ TLS diffuse scattering simulation. We simulated the diffuse scattering of each of the 

GpdQ TLS ensembles to 3.0Å resolution. Unless otherwise stated, all TLS groups within a given 

refinement were assumed to move independently of one another. Since the diffraction data for 

GpdQ PDB entry 2DXN extends to 2.9Å, our simulation should be sufficient for future 

comparisons with experimental maps. As the resulting diffuse scattering data is identical in 
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format to descriptions of Bragg X-ray reflections, phenix.reflection_statistics was used to 

perform all statistical analyses. All reported correlation values are global Pearson correlation 

coefficients calculated between the described two sets of diffuse intensities. As previously 

mentioned (and described in Wall et al. (1997)), spherically symmetric sources of diffuse 

scattering contribute significantly to the observed intensity. In order to remove these 

confounding effects, we used the LUNUS software package (Wall, 2009) to subtract from each 

point the average radial diffuse intensity (Figure 3.5).  

 

GpdQ diffraction image processing and radial averaging. Diffraction images used to 

determine the GpdQ Bragg structure were collected at the Advanced Photon Source (Lemont, IL) 

under cryogenic temperatures with 0.25o oscillation wedges (Jackson et al., 2006). Subsequent 

processing was performed using LUNUS (Wall, 2009). Pixels correlating to the beamstop 

shadow and CCD detector panels were removed with the LUNUS punchim and thrshim routines. 

Solid-angle normalization and beam polarization were corrected using polarim and normim. 

Mode filtering was applied as previously described (Wall et al., 1997). The radial intensity 

profile was calculated from a single image using the avgrim function, which calculates radial 

intensities on a per-pixel scale. The radial profile for the experimental GpdQ data was scaled by 

a factor of 1000x to better facilitate qualitative comparisons to the simulations.  

 

3.4 Diffuse scattering is dependent on TLS grouping.  

The raw diffuse intensity predicted by the motions described from each TLS refinement strategy 

rises as a function of the number of TLS groups (Figure 3.6). The “entire molecule” and 

“monomer” maps show a similar range of intensity values: 0-4.52x106 and 0-8.34x106 
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respectively. The “subdomain” map displays a much wider dynamic range (0-4.71x108) (Figure 

3.3c). This trend likely results from an increase in the amplitude of TLS motion, particularly 

within the dimerization region of the “subdomain” model. (Figure 3.3). However, “sub-domain” 

map intensities greater than 1x107 are limited to a resolution range of 11Å and lower. The “entire 

molecule” and “monomer” maps also possess “primary diffuse shell” regions surrounding the 

origin, though they only extend out to a resolution range of 30Å. This region will be particularly 

difficult to measure experimentally given the presence of a beamstop, which blocks access to 

signal around F000 (Lang et al., 2014). Each diffuse map has a dip in radial intensity between the 

primary diffuse shell before the diffuse intensity rises in a second shell (Figure 3.7a). In contrast 

to the “sub-domain” map, the strongest diffuse intensities for the “entire molecule” and 

“monomer” maps occur within this secondary shell.  The width between the primary and 

secondary diffuse shells decreases as the number of TLS groups increases, due to an expansion 

in the primary diffuse shell radius. As X-ray detectors can easily measure intensities in the 

regions of reciprocal space occupied by the secondary shell, a significant fraction of the diffuse 

scattering predicted by TLS refinement can potentially be compared to experimental data. 

 

To determine if the different TLS groupings yielded distinct diffuse scattering predictions, we 

calculated global Pearson correlation coefficients between each refinement’s anisotropic signal. 

The anisotropic comparison revealed little similarity between maps (CC range from 0.031 to 

0.312) (Figure 3.6). Comparing the correlation values across resolution bins reveals the 

anisotropic diffuse signal correlations remain consistently poor across scattering vector length 

(Figure 3.7b).  The large discrepancy between the maps calculated with different TLS models 

contrasts with the high similarity of experimental maps of anisotropic diffuse signal from 
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different crystals of Staphylococcal nuclease (CC = 0.93) (Wall et al., 1997). This result suggests 

the experimentally measured diffuse signal will be sufficiently precise to distinguish between 

TLS-related diffuse scattering models (Wall et al., 2014). However, other sources of disorder 

will need to be accounted for before models of TLS motion can be effectively compared to 

experimental data.  

 

3.5 Correlations between TLS groups can be detected by diffuse scattering.  

Although TLS refinement makes no assumptions regarding motion between groups, diffuse 

scattering can test whether correlated rigid body fluctuations do, in fact, exist. To illustrate this 

concept, we simultaneously sampled the motions along the translation and libration eigenvectors 

to produce “parallel” and “antiparallel” correlated motions for the “monomer” GpdQ TLS 

refinement (Figure 3.8). For the “parallel” model, the correlated motion consists of sampling 

along all translation and libration eigenvectors in step sizes of σ/2, where σ is obtained from the 

underlying Gaussian distribution in each direction, for a total of 10 steps (-2.5σ to 2.5σ). Simply 

reversing the direction of sampling for the chain B translation eigenvectors created the 

“antiparallel” motion.  In contrast to the simulation in Figure 3.6a, which assumed no 

correlation between TLS groups, here we have introduced correlated motion between GpdQ 

monomers. Next, we simulated the diffuse scattering produced by the “parallel” and 

“antiparallel” correlated motions. Both raw maps display strong secondary shell characteristics in 

combination with a weak primary shell of diffuse scattering (Figure 3.8c). A diffuse intensity 

difference map (Figure 3.8d) shows that discrepancies between the raw maps occur across the 

entirety of reciprocal space. Comparing the anisotropic diffuse intensity correlation across 

resolution bins reveals a general decreasing trend as the scattering vector length increases 
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(Figure 3.8e). In contrast to the previous TLS simulations, the correlation values are highest at 

low resolution. The low global Pearson correlation coefficient (0.375) demonstrates there are 

quantitative differences between the two maps. However, these inter-group correlation 

differences will be slightly more difficult to detect than changes between specific TLS models, 

where the correlation coefficients range from 0.031 to 0.312. 

 

3.6 TLS models yield unique radial profiles of diffuse intensity.  

We calculated the radial diffuse intensity profile for a GpdQ diffraction frame and for the three 

TLS refinements (Figure 3.9). Although radial averaging removes the rich directional 

information present in diffuse scattering, this simplification has been successfully used to assess 

agreement between distinct diffuse maps (Meinhold & Smith, 2005; Meinhold & Smith, 2007). 

For the experimental GpdQ map, a peak at 8.5Å and a shoulder at 6Å are observed. None of 

these features are observed in the raw TLS radial profiles, except for a local maximum at 4.5Å 

and shoulder at 4Å for the “monomer” refinement. Rather, the dominating feature for each TLS 

simulation is the secondary diffuse scattering shell, which varies between maps in both width 

and maximum radial value. This result is not surprising, as the experimental diffuse scattering 

from GpdQ reflects a much broader group of correlated motions than simply TLS-related 

movement within the macromolecule. For example, disordered solvent is expected to 

significantly contribute to experimental diffuse measurements (Wall et al., 1997). As solvent 

molecules were not modeled in our TLS ensembles, this is a likely source of the discrepancy 

between GpdQ experiment and simulation. The liquid-like motions (LLM) model, in which 

atoms interact only with nearest neighbors to produce a gelatinous crystalline environment, can 

also be used to explain the diffuse scattering intensity. Comparing the diffuse maps of 
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Staphylococcal nuclease (Wall et al., 1997), pig insulin (Caspar et al., 1988) and hen egg-white 

lysozyme (Clarage et al., 1992) to LLM models maximized correlations across distances of 6-

10Å. Thus, a more thorough analysis involving several models of disorder must be applied to 

GpdQ to improve the fit to the experimental diffuse data. 

 

3.7 Distinct patterns of diffuse signal can be calculated at Non-Bragg Indices   

While phenix.diffuse currently calculates the diffuse signal under Bragg peaks, diffuse scattering 

occurs throughout the entirety of reciprocal space. To more completely sample reciprocal space 

between the Bragg spots, we increased the unit cell boundaries. Expanding the unit cell in real 

space allows for finer sampling of the underlying Fourier transform (Figure 3.10). The resulting 

structure factors can be re-scaled to the original lattice points, leading to fractional hkl sampling. 

These fractional values are then assigned to the nearest integer hkl index and averaged, leading to 

a single diffuse intensity value associated with each Bragg peak. Although it is clearly possible 

to output a map consisting of these fractional values and thereby produce a more accurate picture 

of diffuse scattering, we chose the integer values because diffuse scattering processing 

techniques commonly calculate the average diffuse intensity across pixels within a 1x1x1 voxel 

around each Bragg point (Wall, 1996). This average value is then assigned to the hkl index, 

leading to the same 1:1 correlation between lattice points and diffuse intensity values. Although 

it is tempting to use this method in our current analysis, the unit cell expansion method does not 

maintain the expected crystallographic symmetry for any crystal system with a screw axis. 

Introducing vacuum into our structure factor calculations will satisfy other symmetry operations, 

but as GpdQ possesses a screw axis we are currently unable to more finely sample its predicted 

diffuse scattering. Therefore, we can use this method to compare data between simulated models 
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of motion, but not between simulated models and experimental data. More advanced simulation 

methods will need to incorporate screw axes, either by defining a new supercell for simulation or 

directly calculating structure factors at fractional hkl indices. Cognizant of these limitations, we 

calculated the diffuse scattering of each of the GpdQ TLS ensembles to 3.0Å resolution in a P1 

cell, with a sub-sampling of 4x4x4 around each Bragg lattice point (Figure 3.10c). These 

calculations confirm that each TLS motion produces distinct patterns of diffuse signal throughout 

reciprocal space. 

 

3.8 Discussion 

Accurate modeling of conformational dynamics is important for understanding macromolecular 

function. Although many models may fit the existing data equally well, they can often suggest 

different correlated motions.  Our results indicate that comparisons to experimental diffuse 

scattering can break the degeneracy between different TLS refinements, as different selections of 

rigid bodies (along with their associated correlations) can produce markedly different diffuse 

patterns. For example, alternative correlations between TLS groups have equivalent average 

electron density, but result in unique diffuse scattering predictions. More generally, any model 

proposed through TLS refinement should agree with the experimental diffuse data, as this data 

directly reflects the existing protein disorder (Moore, 2009). 

 

Despite this synergy between TLS refinement and diffuse scattering, there are many potential 

complications when applying TLS X-ray refinement to model protein dynamics. As the T and L 

matrices describe independent translations and librations, these motions must be physically 

sensible. Our review of protein structures deposited in the Protein Data Bank indicates that 88% 
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of refinements employing TLS (24% of the total PDB) do not satisfy this physical requirement 

(Urzhumtsev et al., complementary paper). We hypothesize that this discrepancy arises due to a 

lack of restraints applied to refined TLS parameters to ensure their physical plausibility. Even if 

this criterion is met, current TLS refinement methods still do not impose chemical restraints 

between TLS groups, which can lead to displacements that are chemically unreasonable. Our 

TLS refinement of the GpdQ subdomain is one such example, as it produces rigid body 

displacements that extend across the entirety of the unit cell (Figure 3.3c). Thus, validation 

checks of TLS refinement (such as those implemented in phenix.tls_models) are critical, as is 

employing TLS refinement within a broader framework of restraints. Alternative techniques, 

such as the Phase Integrated Method (PIM), which derives anisotropic B factors from low-

frequency normal modes (Chen et al., 2010), may significantly improve the biochemical 

accuracy of modeling efforts. In PIM, the fit between model and experiment is significantly 

improved by calculating normal modes in the context of the asymmetric unit rather than 

individual molecules (Lu & Ma, 2013).  

 

Numerous sources of crystalline disorder combine to produce observed diffuse intensity patterns. 

Perhaps the most critical step in diffuse signal analysis is the determination of the relative 

contribution from each source; phenix.diffuse represents an important step towards performing 

such an investigation. Many causes of disorder can be described in terms of structural ensembles; 

thus, our tool enables the diffuse scattering produced by each source to be calculated. As 

experimental diffuse intensity is simply the sum of its independent components, optimizing the 

relative weights of the hypothesized sources of disorder to best fit the observed diffuse scattering 

may provide a feasible method of comprehensive diffuse scattering analysis. 
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With the increasing availability of modeling tools, the lack of high-quality three-dimensional 

datasets is now a key bottleneck in diffuse scattering analysis. One challenge in data collection is 

that long X-ray exposures can be required to reveal diffuse features. This can lead to blooming 

around saturated Bragg spots in diffraction images collected using commercially-available 

charge-coupled device (CCD) area detectors (Gruner et al., 2002) Blooming can artificially 

increase pixel values between the Bragg spots, where the diffuse intensity is measured (Glover et 

al., 1991). Although CCD detectors can be configured to eliminate spot blooming at the cost of 

decreasing dynamic range (Wall, 1996; Wall et al., 1997), this configuration is not available in 

commercial detectors. The development of pixel array detectors, which possess much higher 

dynamic ranges as well as very small point-spread functions, has opened the door to more 

accurate measurement of diffuse signal. Additionally, methods for processing diffuse scattering 

data from raw image frames to complete reciprocal space map are under active development 

(Wall et al., 2014). Because acoustic scattering is maximized at Bragg peaks (Glover et.al, 

1991), diffuse signal will be most straightforward to measure in intervening regions. These 

methods will be applied to new datasets of simultaneous Bragg and diffuse scattering data. 

Instead of being included in the background corrections in estimating Bragg peak intensities, 

these diffuse intensities will increase the data available for refinement, enable more accurate 

quantification of interatomic distances (Kuzmanic et al., 2011), and allow for the simultaneous 

refinement of multiple coupled protein motions (Wilson, 2013). 
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3.9 Tables 

Table 3.1) Eigenvalues of GpdQ TLS refinement matrices. a) “Entire molecule” b) 
“Monomer” c) “Sub-domain”. It is important to note that, for the “Sub-domain” refinement, L#5 
and L#6 have negative eigenvalues. Due to their low value, however, these eigenvalues were set 
to zero for subsequent calculations. 
 

a) 
 

T L 

0.854 1.405 

0.258 0.717 

0.338 0.172 
 
b) 

 
T  

Monomer A 
L  

Monomer A 
T  

Monomer B 
L  

Monomer B 
0.873 1.843 0.850 1.896 

0.236 0.021 0.192 1.103 

0.327 0.822 0.329 0.500 
 

c) 
 

T  
Sandwich 

(A) 

L  
Sandwich 

(A) 

T 
Dimerization 

(A) 

L 
Dimerization 

(A) 

T  
Cap 
(A) 

L  
Cap 
(A) 

0.917 0.005 0.942 1.420 0.902 0.154 

0.247 1.396 0.313 0.181 0.475 0.062 

0.367 0.957 0.375 0.057 0.323 0.005 
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T  
Sandwich 

(B) 

L  
Sandwich 

(B) 

T 
Dimerization 

(B) 

L 
Dimerization 

(B) 

T  
Cap 
(A) 

L  
Cap 
(A) 

0.940 0.216 0.897 1.07 0.938 0.155 

0.170 1.265 0.267 0.059 0.638 -0.003 

0.399 0.838 0.368 -0.001 0.477 0.031 

	
  
	
  
	
  
Table 3.2) Multi-model ensembles are necessary for adequate random sampling of TLS 
motions. Two ensembles independently sampling the underlying TLS distributions were used to 
generate anisotropic diffuse scattering maps. Global CC values between the two maps are shown. 
These simulations were conducted in triplicate, producing the CC standard deviation shown in 
parentheses.  All maps were simulated to 3 Angstrom resolution. 
 

 10 50 100 500 1000 
Entire 

Molecule  
0.886 

(0.027) 
0.956 

(0.019) 
0.988 

(0.005) 
0.996 

(0.002) 
0.999 

(0.000) 

Monomer 0.809 
(0.087) 

0.924 
(0.008) 

0.952 
(0.005) 

0.992 
(0.002) 

0.997 
(0.001) 

Sub-
domain 

0.944 
(0.012) 

0.984 
(0.005) 

0.992 
(0.001) 

0.999 
(0.000) 

0.999 
(0.000) 
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3.10 Figures 
 

 
 
 
 
 
Figure 3.1) TLS refinement suggests macromolecular motions linked to function a) Top and 
side view of GroEL. Each color denotes a unique chain. b) TLS refinement of GroEL subunits 
reveals a “tilting” motion around the center of the subunit. c) GpdQ diffraction image showing 
significant diffuse scattering features. d) Refinement of GpdQ fails to produce substantial 
changes in Rwork and Rfree values between alternate TLS groups. TLS refinement significantly 
improves the overall Rfree (23.1% pre-TLS). 
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Figure 3.2) Overview of Phenix.tls_as_xyz The input PDB (1) is broken down into its 
constituent TLS groups (2) and TLS ensembles are generated for each group independently (3). 
These groups are then re-assembled into the complete protein structure on a model-by-model 
basis (4). 
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Figure 3.3) Structural ensembles of GpdQ TLS motions. Each TLS PDB ensemble is shown 
as a single asymmetric unit outlined by the unit cell. An increase in overall motion is apparent 
going from left to right. The 20 member ensemble is shown for visual simplicity. It is important 
to note that the chemically unreasonable motion produced by the sub-domain TLS refinement is 
not immediately apparent from the T and L eigenvalues presented in Supplemental Table 1, 
highlighting the need for the more thorough matrix analysis presented in our accompanying 
paper. 
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Figure 3.4) Overview of Phenix.diffuse a) The general form of Guinier’s equation, The motion 
to be analyzed is captured in a series of “snapshots” defined by the the multi-model PDB. b) The 
general program flow. Each term in Guinier’s equation is calculated separately from the 
structural ensembles and then combined to obtain the final map. 
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Figure 3.5) Anisotropic diffuse scattering maps. Positive and negative anisotropic density is 
shown as green and red mesh, respectively. Absolute threshold levels shown for the positive and 
negative signals are equivalent. The maps are shown to their full 3 Angstrom resolution limit. 
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Figure 3.6) Differing TLS groups produce unique diffuse scattering. a) The GpdQ TLS 
groups projected onto the structure, along with the calculated diffuse scattering (looking down 
the L axis; grey sphere denotes 4Å resolution). The “Monomer” and “Sub-domain” maps are 
shown at equivalent density thresholds, while “Entire molecule” is set at 60% of the density 
threshold. No correlation is assumed between TLS rigid body groups. b) Pearson correlation 
coefficients between anisotropic maps. 
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Figure 3.7) Comparison of simulated GpdQ TLS diffuse scattering maps. a) Cross-section 
of simulated TLS diffuse scattering maps. Primary and secondary diffuse intensity shells, 
separated by a gap, can be observed in each model. As the number of TLS groups increase, the 
intensity shells grow closer, predominantly due to an expansion in primary intensity shell size. b) 
Pearson correlation values between each set of maps across resolution bins. 
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Figure 3.8) Different correlations between TLS groups produce unique diffuse scattering. 
Parallel (a) and antiparallel (b) TLS motions in GpdQ chains result in measurable differences 
between diffuse scattering patterns (CC = 0.375). Color bars indicate the directionality of the 
TLS motions; each color represents a unique molecular position. c) A map cutaway reveals 
strong secondary shell features with a small primary diffuse shell (looking down the L axis; grey 
sphere denotes 4Å resolution). d) Intensity differences between raw “anti” and “parallel” diffuse 
maps (green: positive, red: negative) highlights the qualitative changes caused by alternative 
TLS group correlations. e) Correlation values across anisotropic map resolution bins reveal 
highest correlation occurs between the maps at low resolution and decreases as a function of 
scattering vector length. 
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Figure 3.9) TLS models yield unique radial profiles of diffuse intensity. a) Mode filtered 
GpdQ diffraction image used for radial intensity calculation. The white regions correspond to 
pixels thrown out due to detector panel and beamstop artifacts, as well as Bragg scattering 
contamination. b) Radial diffuse intensity profiles for experimental and simulated GpdQ data. 
Resolution data below 15Å  (roughly corresponding to the primary diffuse shell) were removed 
for more accurate visual comparison. The “Sub-domain” map exceeds the limits of the Y-axis at 
lower than 10Å resolution. 
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Figure 3.10) Unit cell expansion allows for reciprocal space subsampling a) The input PDB’s 
unit cell is expanded to create the desired unit cell sampling, each term in Guinier’s equation is 
calculated separately and then the second term is subtracted from the first to obtain the diffuse 
intensity. The “pseudo-unit cells” are then averaged across, producing the final diffuse scattering 
map. b) Unit cell expansion allowing for 3x subsampling of reciprocal space. True/”pseudo” 
Bragg peaks are shown in black/orange and red, respectively. The intensity values of the eight 
pseudo peaks and one orange peak in the blue box are averaged and the resulting value is 
assigned to the orange peak’s Bragg index. c) Pearson correlation coefficients between maps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
   80	
  

3.11 References 
 
Adams, P. D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., 
Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, 
R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C. & Zwart, P. H. (2010). 
Acta crystallographica. Section D, Biological crystallography 66, 213-221. 

Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., 
Mustyakimov, M., Terwilliger, T. C., Urzhumtsev , A., Zwart, P. H. & Adams, P. D. 
(2012). Acta Crystallographica Section D: Biological Crystallography 68, 352-367. 
 
Amorós, J. L. & Amorós, M. (1968). Molecular crystals: their transforms and diffuse 
scattering (Vol. 6). New York: Wiley. 
 
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I.N. 
& Bourne, P. E. (2000). Nucleic acids research, 28(1), 235-242. 
 
Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R., 
Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). European Journal of Biochemistry 80, 319-
324. 
 
Bricogne, G. (1993). Acta crystallographica. Section D, Biological crystallography 49, 37-60. 

Bricogne, G., Blanc, E., Brandl, M., Flensburg, C., Keller, P., Paciorek, W. Roversi, P., Sharff, 
A., Smart, O.S, Vonrhein, C. & Womack, T. O. (2011). Cambridge, United Kingdom: Global 
Phasing Ltd. 
 
Burnley, B. T., Afonine, P. V., Adams, P. D. & Gros, P. (2012). Elife 1. 
 
Chacko, S. & Phillips, G.N. Jr. (1992) Biophysical Journal 61, 1256-1266 

Chaudhry, C., Horwich, A. L., Brunger, A. T. & Adams, P. D. (2004). Journal of molecular 
biology 342, 229-245. 

Chen, X., Wang, Q., Ni, F. & Ma, J. (2010). Proceedings of the National Academy of 
Sciences, 107,11352-11357. 
 

Clarage, J. B., Clarage, M. S., Phillips, W. C., Sweet, R. M. & Caspar, D. L. (1992). Proteins 12, 
145-157. 

Clarage, J. B., Phillips, G.N. Jr (1997) Methods in Enzymology 277, 407-432 

DeLano, W. L. (2002). The PyMOL molecular graphics system. 
 
Doucet, J. & Benoit, J. P. (1987). Nature 325, 643-646. 



	
   81	
  

Emsley, P., & Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta 
Crystallographica Section D: Biological Crystallography, 60(12), 2126-2132. 
 

Estermann, M. A. & Steurer, W. (1998). Phase Transitions 67, 165-195. 

Fraser, J. S., Clarkson, M. W., Degnan, S. C., Erion, R., Kern, D. & Alber, T. (2009). Nature 
462, 669-673. 

Fraser, J. S., & Jackson, C. J. (2011) Cellular and Molecular Life Sciences, 68(11), 1829-1841. 
 
Faure, P., Micu, A., Perahia, D., Doucet, J., Smith, J.C., & Benoit, J. P. (1994) Nature 1, 124-

128 

Glover, I. D., Harris, G. W., Helliwell, J. R., & Moss, D. S. (1991). Acta Crystallographica 
Section B: Structural Science 47, 960-968. 
 

Gros, P., van Gunsteren, W. F., & Hol, W. G. (1990). Science 249, 1149-1152. 
 

Gruner, S. M., Tate, M. W. & Eikenberry, E.F. (2002) Review of Scientific Instruments 73, 2815-
2842 

Guinier, A.  (1963). X-ray diffraction in crystals, imperfect crystals, and amorphous bodies. 
Courier Dover Publications. 

Hery, S., Genest, D. & Smith, J.C (1998) Journal of Molecular Biology 279, 303-319 

Jackson, C. J., Carr, P. D., Kim, H. K., Liu, J. W., & Ollis, D. L. (2006). Acta Crystallographica 
Section F 62(7), 659-661. 
 
Jackson, C. J., Carr, P. D., Liu, J. W., Watt, S. J., Beck, J. L. & Ollis, D. L. (2007). Journal of 

molecular biology 367, 1047-1062. 

Janowski, P. A., Cerutti, D. S., Holton, J. & Case, D. A. (2013). Journal of the American 
Chemical Society 135, 7938-7948. 

Korostelev, A. & Noller, H. F. (2007). Journal of molecular biology 373, 1058-1070. 

Kendall, M. G., & Stuart, A. (1958) The Advanced Theory of Statistics. C. Griffin & C., London. 
 
 
Kuzmanic, A., Kruschel, D., van Gunsteren, W. F., Pannu, N. S. & Zagrovic, B. (2011). Journal 

of molecular biology 411, 286-297. 

Kuzmanic, A., Pannu, N. S. & Zagrovic, B. (2014). Nature communications 5, 3220. 



	
   82	
  

Lang, P. T., Holton, J. M., Fraser, J. S. & Alber, T. (2014). Proceedings of the National Academy 
of Sciences of the United States of America 111, 237-242. 

Levin, E. J., Kondrashov, D. A., Wesenberg, G. E. & Phillips G. N., Jr. (2007). Structure 15, 
1040-1052. 
 
Linder, B. & Smith, J.C. (2012) Computer Physics Communications 183, 1491-1501 

Lu, M., & Ma, J. (2013). Journal of Molecular Biology, 425, 1082-1098. 
 
Meinhold, L. & Smith, J.C. (2005). Physical Review Letters 95, 218103 

Meinhold, L. & Smith, J. C. (2007). Proteins 66, 941-953. 

Michels-Clark, T., Lynch, V., Hoffmann, C., Hauser, J., Weber, T., Harrison, R. & Burgi, H. 
(2013). Journal of Applied Crystallography 46, 1616-1625. 

Micu, A. M. & Smith, J.C. (1994) Computer Physics Communications 91 331-338 

Mizuguchi, K., Kidera, A. & Go, N. (1994) Proteins 18, 34-48 

Moore, P. B. (2009). Structure 17, 1307-1315. 

Murshudov, G. N., Vagin, A. A., & Dodson, E. J. (1997). Acta Crystallographica Section D: 
Biological Crystallography 53, 240-255. 
 

Painter, J. & Merritt, E. A. (2005). Acta crystallographica. Section D: Biological 
crystallography 61, 465-471. 

a) Painter, J., & Merritt, E. A. (2006a). Acta Crystallographica Section D: Biological 
Crystallography 62, 439-450. 
 
b) Painter, J. & Merritt, E.A. (2006b) Journal of Applied Crystallography 39, 109-111 

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & 
Ferrin, T. E. (2004). Journal of computational chemistry 25, 1605-1612. 
 
Perez, J., Faure, P. & Benoit, J.P. (1996) Acta crystallographica. Section D, Biological 

Crystallography 52, 722-729 

Phillips, G.N Jr, Fillers, J.P. & Cohen, C. (1980) Biophysical Journal 32, 485-502 

Qin, B. Y., Bewley, M. C., Creamer, L. K., Baker, H. M., Baker, E. N. & Jameson, G. B. (1998). 
Biochemistry 37, 14014-14023. 

Rader, S. D. & Agard, D. A. (1997). Protein science 6, 1375-1386. 
 



	
   83	
  

Riccardi, D., Cui, Q. & Phillips, G. N., Jr. (2010). Biophysical journal 99, 2616-2625. 

Ruschak, A. M. & Kay, L. E. (2012). Proceedings of the National Academy of Sciences of the 
United States of America 109, E3454-3462. 

Schomaker, V. & Trueblood, K. N. (1968). Acta Crystallographica Section B 24, 63-76. 

Tickle, I. J., & Moss, D. S. (1999). IUCr99 Computing School, London, United Kingdom [Online 
http://people.cryst.bbk.ac.uk/~tickle/iucr99/iucrcs99.html] 
 
Thüne, T., & Badger, J. (1995) Progress in biophysics and molecular biology, 63(3), 251-276. 
 
Urzhumtsev, A., Afonine, P. V., Van Benschoten, A. H., Fraser, J. S. & Adams, P. D. (2014) 
Acta Crystallographica Section D: Biological Crystallography, submitted. 
 
Urzhumtsev, A., Afonine, P. V. & Adams, P. D. (2013). Crystallography Review 19, 230-270. 
 
van den Bedem, H., Dhanik, A., Latombe, J. C., & Deacon, A. M. (2009). Acta 
Crystallographica Section D: Biological Crystallography,65(10), 1107-1117. 
 
van den Bedem, H., Bhabha, G., Yang, K., Wright, P. E. & Fraser, J. S. (2013). Nature methods 

10, 896-902. 

Wall, M. E. (1996). PhD thesis, Princeton University. 

Wall, M. E. (2009). Methods in molecular biology 544, 269-279. 

Wall, M. E., Adams, P. D., Fraser, J. S. & Sauter, N. K. (2014). Structure 22, 182-184. 

Wall, M.E., Clarage J.B. & Phillips, G.N. Jr (1997) Structure 5, 1599-1612 

Wall, M. E., Ealick, S. E. & Gruner, S. M. (1997). Proceedings of the National Academy of 
Sciences of the United States of America 94, 6180-6184. 

Wall, M.E., Van Benschoten, A.H., Sauter, N.K, Adams, P.D, Fraser, J.S & Terwilliger, T.C. 
(2014) Proceedings of the National Academy of Sciences of the United States of America  
111, 17887-17892  

Welberry, T.R & Butler, B.D. (1994) Journal of Applied Crystallography 27, 205-231 

Williams, B.B., Van Benschoten, A. H., Cimermancic, P., Donia, M. S., Zimmermann, M., 
Taketani, M., Ishihara, A., Kashyap, P. C., Fraser, J.S. & Fischbach, M. A. (2014) Cell Host & 
Microbe, 16, 495-503 

Wilson, M. A. (2013). Nature methods 10, 835-837. 
 
Winn, M. D., Isupov, M. N. & Murshudov, G. N. (2001). Acta crystallographica. Section D, 

Biological crystallography 57, 122-133. 



	
   84	
  

 Chapter 4 
 

Mapping and modeling X-ray diffuse scattering from protein crystals 
 

 
4.1 Abstract 
 
Correlated atomic motions underlie macromolecular functionality. While it is challenging to 

uncover these movements through traditional biophysical experiments, X-ray diffuse scattering 

directly reports on these linked atomic motions. However, measuring and analyzing diffuse 

scattering signal has been historically challenging. Here, we introduce LUNUS-DIALS, a 

comprehensive experimental and computational pipeline for creating three-dimensional maps of 

diffuse scattering. This tool was applied to diffraction datasets collected from Cyclophilin A and 

trypsin crystals, resulting in high-resolution reciprocal space diffuse scattering maps from both 

proteins. We used these maps to break molecular motional degeneracy resulting from alternative 

TLS refinement strategies and select the TLS grouping most consistent with the diffuse data. We 

also applied the liquid-like motions model to CypA, revealing a high degree of global correlation 

with implications for the scientific understanding of crystalline lattices. These results represent a 

significant technical advancement in macromolecular diffuse analysis and direct evidence of 

diffuse scattering’s ability to uncover correlated motions. 

 
4.2 Introduction 
 
  Structural dynamics play a critical role in enzymatic reactions (Williams et.al, 2014), protein-

protein interactions and signaling cascades (Woldeyes et.al, 2014). One of the most useful tools 

for uncovering these motions is X-ray crystallography, which provides atomic-level detail of a 

molecule’s inner workings. Crystallography is by definition an ensemble experiment: unit cell 

heterogeneity results from multiple conformational states, thermal motion and crystalline defects. 
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Although crystallographers have historically modeled proteins as single structural snapshots, 

parameters have been gradually introduced to account for both atomic and molecular motion. 

Examples include thermal B-factors (Frauenfelder et.al, 1979) and Translation-Libration-Screw 

structural refinement (Schomaker & Trueblood, 1968). Newly-emergent methods such as room-

temperature crystallography (Fraser et.al, 2011) and the X-ray Free Electron Laser (Keedy et.al, 

2015) provide further avenues for understanding the motion present in these once (supposedly) 

static environments. 

 

  However, there remains a fundamental limit in the amount of dynamics information present 

within modern crystallography experiments. These analyses focus on the signal at Bragg peaks: 

repetitive regions of reciprocal space containing significant X-ray scattering intensity. 

Crystallographic theory dictates that the signal present in these spots is a combination of all 

diffraction events occurring in the crystal (Bragg & Bragg, 1913); thus, the electron density maps 

produced from this data is an average of the electron density across all unit cells. This in turn can 

lead to degeneracy when attempting to model the correlation between atomic motions. 

Additional sources of information, such as patterns of steric clashes (van den Bedem et al., 

2013), NMR spectroscopy (Ruschak & Kay, 2012), or mutational analysis (Fraser et al., 2009) 

can often be used to distinguish competing models of correlated motion between non-bonded 

atoms. However, this need for external experiments further emphasizes the limitations of current 

crystallographic analysis in capturing protein motions. 

 

  A parallel data source capable of directly measuring atomic correlation is X-ray diffuse 

scattering (Phillips et al., 1980; Chacko & Phillips, 1992; Faure et al., 1994; Clarage & Phillips, 
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1997; Mizuguchi et al., 1994). Deviations away from a perfect crystal (thermal motion, crystal 

defects, static disorder) violate the repetitive structure of the lattice and lead to diffraction 

outside of the regions of reciprocal space predicted by Bragg’s Law. The relationship between 

unit cell heterogeneity and diffuse signal has been available for decades (Guinier, 1963; Amorós 

& Amorós, 1968). As a result, the ability of diffuse scattering to break the degeneracy between 

multiple models of motion has long been recognized and multiple attempts have been made over 

the past few decades to quantify and model this signal (Thune & Badger, 1995; Perez et al., 

1996; Hery et al., 1998; Tickle & Moss, 1999). In every case, analysis consists of calculating 

diffuse intensity patterns produced by some hypothetical motion and comparing to experimental 

data. Multiple strategies currently exist for calculating diffuse scattering, including all-atom 

covariance matrices (Riccardi et.al, 2010) and our recently-published tool phenix.diffuse (Van 

Benschoten et.al, 2015), which uses Guinier’s equation to calculate reciprocal space diffuse 

scattering map from multi-model PDB files.  

 

   More challenging has been the collection and measurement of experimental diffuse intensities. 

Diffuse scattering is 1000x weaker than Bragg signal and thus requires overexposure of the X-

ray image. Unfortunately, overexposure leads to spot blooming and the washing out of diffuse 

signal in the region immediately surrounding Bragg peaks. Furthermore, diffuse data must be 

collected at room temperature, as cryogenic conditions will “freeze out” many of the motions 

contributing to the observed signal (Fraser et.al, 2011). However, room-temperature data 

collection greatly increases crystal radiation sensitivity and leads to faster crystal decay. Because 

of these technical challenges, experimental diffuse scattering data has historically been limited to 

single diffraction frames. Recently, Wall et.al (1997) developed a computational framework for 
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measuring diffuse scattering across the entirety of reciprocal space. Through mode filtering, 

sharp Bragg intensities are removed and the subsequent frames, which only contain diffuse 

scattering signal, can be scaled together and integrated into a complete diffuse map. Though this 

process was originally applied to specialized CCD detectors (Wall, 1996), the recent commercial 

development of pixel-array detectors, which possess tight point-spread functions and single-

photon sensitivity, has opened up the realm of experimental diffuse scattering measurement to 

the general scientific community. Thus, the computational and experimental framework is now 

in place for diffuse scattering to become a routine component of structural analysis. 

 

  Despite this ability to measure diffuse scattering through mode filtering, several additional 

features are necessary for any comprehensive diffuse analysis software package. The processed 

images must be assembled into a three-dimensional lattice, symmetry operators must be applied 

and the resulting data written out in a standardized file format. Though diffuse signal is of 

primary interest, it is also critical to have the corresponding electron density map produced from 

the Bragg data. Not only does the Bragg signal provide a frame of reference for the raw diffuse 

intensities, but the electron density map supplies a crystal-specific context for subsequent 

modeling attempts. If this context is not considered, subsequent models of motion may fail to 

capture unique crystalline nuances. Additionally, spherically symmetric sources of diffuse signal 

such as disordered solvent and scattering angle effects contribute significantly to the observed 

intensity. These sources must be removed in order to facilitate more accurate motional analysis 

(Wall et.al, 1997). Here we introduce a new program, DIALS-LUNUS, that achieves all of these 

goals through the combination of pre-existing software and new computational routines (Figure 

4.1). The end result is a comprehensive diffuse scattering analysis pipeline capable of converting 
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raw datasets into corresponding maps of Bragg and diffuse diffraction, ultimately providing new 

insights into protein dynamics.  

 

   We used this program to construct diffuse datasets of the human isomerase cyclophilin A 

(CypA) and the serine protease trypsin. These datasets triple of the amount of three-dimensional 

macromolecular diffuse scattering maps available to the scientific community, providing a 

critical advancement for the field (Wall et.al, 2014). We then compared these maps to various 

models of correlated motion predicted from TLS structure refinement, as well as the Liquid-Like 

Motion (LLM) lattice model (Clarage et.al, 1992).  Our results demonstrate that observed diffuse 

features can be accurately modeled and assist in the selection of competing hypotheses of 

motion.  Long-term, diffuse X-ray scattering can guide structure refinement as well as further our 

understanding of the enzyme as a dynamic entity. 

 
4.3 Methods 
 
Protein purification and crystallization. Trypsin crystals were obtained according to the 

method of Liebschner et.al (2013). Lyophilized bovine pancreas trypsin was purchased from 

Sigma-Aldrich (T1005) and dissolved at a concentration of 30 mg/mL into 30mM HEPES pH 

7.0, 5 mg/mL benzamidine and 3mM CaCl2. Crystals were obtained from a solution of 200mM 

Ammonium sulfate, 100mM Na cacodylate pH 6.5, 20% PEG 8000 and 15% glycerol. CypA 

was purified and crystallized as previously described (Fraser et.al, 2009). Briefly, the protein 

was concentrated to 60 mg/mL in 20mM HEPES pH 7.5, 100mM NaCl and 500mM TCEP. 

Trays were set with a precipitant solution of 100mM HEPES pH 7.5, 22% PEG 3350 and 5mM 

TCEP. Both crystal forms were obtained using the hanging-drop method. 
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Crystallographic data collection. Diffraction data was collected at the Stanford Synchrotron 

Radiation Lightsource (Menlo Park, CA). Each dataset was collected from a single crystal at 

273K. To prevent dehydration, crystals were coated in a thin film of paratone. For CypA, a 

single set of 0.5 degree oscillation images were collected and used for both Bragg and diffuse 

data processing. A total of 360 images were collected across a 180 degree phi rotation. Trypsin 

data was gathered through an “interleaved” process of collecting an image still for the diffuse 

signal, followed by a one degree oscillation for the Bragg data. This process was repeated for a 

total of 135 degrees. 

 

Bragg data processing. All Bragg diffraction data was processed using XDS and XSCALE 

within the xia2 software package (Winter, 2009). Molecular replacement solutions were found 

using the Phaser-MR package within the Phenix software suite (Adams et.al, 2010). The PDB 

search models were 4I8G (Trypsin) and 2CPL (CypA). Initial structural refinement was 

performed using phenix.refine (Afonine et.al, 2011). The strategy included refinement of 

individual atomic coordinates and water picking. Both the X-ray/atomic displacement parameters 

and X-ray/stereochemistry weights were optimized. Isotropic B-factos were chosen for the initial 

structures to allow for non-negligible R-factor optimization by subsequent TLS refinement 

strategies. All structures were refined for a total of 5 macrocycles. Statistics for the “initial” 

Bragg structures are shown in Table 4.1. 

 

Diffuse data processing. Pixels corresponding to the beamstop and image edges were removed 

using the punchim and windim routines within the LUNUS software package (Wall, 1997). This 

was performed to avoid contaminant scattering and edge effects. Beam polarization was 

corrected using polarim; polarization values were determined by analyzing the azimuthal profile 
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of sample diffraction images. A solid-angle normalization (normim) correction was also applied. 

Finally, mode-filtering was used to remove Bragg peaks from diffraction images and leave only 

the diffuse background intensities. This was accomplished using the LUNUS routine modeim, 

with the mask and bin sizes set to 20 and 1, respectively. A radial scattering vector intensity 

profile was then calculated and used to scale diffuse frames across the entire dataset. The stills 

were then assembled into a 3D lattice using novel DIALS routines produced from the 

Computational Crystallography Toolbox (cctbx.sourceforge.net). Finally, a combination of 

LUNUS and Phenix programs were used to remove the spherically-symmetric scattering sources, 

symmetrize the experimental data and calculate correlation values both globally and across 

resolution bins.  

 

Bragg model building  

CypA TLS refinement. Three independent TLS refinements were performed on CypA. Whole 

molecule denotes selection of the entire molecule as a single TLS group. Phenix signifies 

identification of the TLS groups with the aid of phenix.find_tls_groups. A total of 8 TLS groups 

were chosen by this method: residues 2-14, 15-41, 42-64, 65-84, 85-122, 123-135, 136-145 and 

146-165. TLSMD describes selection of the TLS groups through the TLS Motion Determination 

web server (Painter & Merritt, 2006a; Painter & Merritt, 2006b). Again, 8 TLS groups were 

identified: residues 2-15, 16-55, 56-80, 81-85, 86-91, 92-124, 125-143 and 144-165. All TLS 

refinement was performed within phenix.refine through 5 macrocycles. Aside from the inclusion 

of TLS refinement, these macrocycles were identical to the initial structure refinement described 

above. CypA diffuse maps were simulated to a resolution of 1.4 angstroms using phenix.diffuse.  
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Trypsin TLS refinement. The previously-described whole molecule, Phenix and TLSMD TLS 

refinement strategies were similarly applied to trypsin. Phenix automation selected 7 TLS 

groups: residues 16-54, 55-103, 104-123, 124-140, 141-155, 156-225 and 226-245. The TLSMD 

web server selected the following 9 groups: 16-52, 53-98, 99-115, 116-144, 145-171, 172-220, 

221-224, 225-237 and 238-245. Diffuse maps were generated to a resolution of 1.25 angstroms 

using phenix.diffuse. 

 
 
4.4 Experimental diffuse maps possess crystallographic symmetry  

The symmetrized diffuse scattering maps are shown in Figure 4.2. The CypA dataset is 98% 

complete to a resolution of 1.4 Angstroms, while trypsin possesses 95% completeness to 1.25 

Angstroms. Two unique statistics were defined to quantify the level of crystallographic 

symmetry in each anisotropic map. In order to evaluate the presence of Friedel symmetry, we 

averaged diffuse values across Friedel pairs to create a symmetrized map I_Friedel and 

calculated the Pearson Correlation Coefficient (PCC) between the symmetrized and 

unsymmetrized data to obtain the statistic CCFriedel. For CypA and trypsin, CCFriedel = 0.90 and 

0.95 respectively, demonstrating that Friedel symmetry is conserved across diffuse intensities. In 

order to analyze the presence of space group symmetry in the diffuse maps, we averaged P222-

related reflections (since both crystals displayed P 21 21 21 symmetry) to produce the map 

I_p222. This map was then compared to the unsymmetrized diffuse map to obtain a correlation 

value CCSym. High levels of symmetry are observed for both CypA (CCSym = 0.70) and trypsin 

(CCSym = 0.69). Thus, our data demonstrates that crystallographic symmetry is preserved in 

diffuse signal across multiple systems. It is also important to note that while the trypsin data was 

collected using the common “interleaved” diffuse data collection strategy (where still images are 
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captured in between standard one degree oscillations), the CypA dataset consisted entirely of 

oscillation frames, a procedure more frequently utilized in standard crystallography. As the 

CypA map displays equivalent levels of symmetry to the trypsin map, this suggests that diffuse 

signal is robust (to a degree) with respect to data collection method. 

 

4.5 Diffuse signal can select between equivalent models of motion 

CypA. In order to understand the molecular motions taking place in the CypA crystal, we 

compared the diffuse map to three alternative TLS refinements of the Bragg structure: phenix, 

tlsmd and whole molecule (Figure 4.3a). Although all three refinements predict different 

motions, the R-free values between the structures are nearly identical, again highlighting the 

limitations of Bragg structure refinement. All three maps show little similarity with each other: 

the global correlation coefficient between the maps range between 0.07 and 0.22 (Figure 4.3b). 

Both the phenix and TLSMD motions display poor global fit to experimental data (PCC = 0.03 

and 0.04 respectively), while the whole molecule TLS motion displays a better fit (0.14). An 

analysis of the correlation by resolution (Figure 4.5) shows that the whole molecule motion 

correlates best at low resolution (above 3A), while the phenix and tlsmd models remain 

consistently poor across resolution bins. This result prompted further investigation of the whole 

molecule map at the subsampled resolution range of 3A and below. Applying this cutoff to the 

data reveals that the map correlation peaks in the range between 3.56-3.37A, where PCC 

=  0.373. In this range the experimental map correlates less well with phenix (0.005) and tlsmd 

(0.157), demonstrating that comparing specific regions of reciprocal space may serve as a viable 

method of boosting the ability to best match motional hypothesis to experiment. As the 

experimental diffuse intensity is strongest within this resolution range (the “solvent ring” found 
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between 5.0 and 3.3 Angstroms), these results provide a solid foundation for further 

investigations int the correlated motions present within CypA. 

 

Trypsin. As with CypA, our three trypsin TLS refinement strategies yielded roughly equivalent 

Rfree values (16.6-16.7%; Figure 4.4a).  Anisotropic map comparison reveals that although the 

Whole molecule motion is dissimilar to both the Phenix and TLSMD predictions (PCC = 0.03 and 

0.05, respectively), the Phenix and TLSMD refinements show a significant degree of similarity 

with a global PCC of 0.515 (Figure 4.4b). However, we believe that this occurs because the two 

refinement strategies selected similar TLS groups (as described in the Methods section). 

Comparison of the simulated maps to the experimental data again reveals that the Whole 

molecule strategy (PCC = 0.08) fits slightly better than either Phenix (PCC = 0.02) or TLSMD 

(PCC = 0.02), although to a lower degree than in the case of CypA. Map correlation values 

across resolution bin shows that all three simulations agree best with experimental data between 

2.56-2.03 Angstroms. However, the low overall correlation between all three models of motion 

and the data suggest that additional refinement strategies not considered here may better explain 

the observed diffuse scattering. Alternatively, further improvements in data quality might lead to 

better agreement between model and experiment.   

 

4.6 Liquid-like motions accurately model global diffuse features 

 In order to better explain the observed diffuse signal within CypA, we applied a liquid-like 

motions (LLM) model of molecular motion (Clarage et.al, 1992). The LLM framework describes 

the crystal lattice as a soft, elastic environment in which individual molecules undergo internal 

fluctuations and interact most strongly with nearest neighbors. These fluctuations decay 

exponentially according to a correlation length γ and standard deviation σ. Previous results 
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demonstrate that the LLM model is highly successful in fitting experimental diffuse scattering 

data (Wall, 1997; Wall, 1998). For CypA, parameter optimization (where γ = 6.0 Angstroms and 

σ = 0.53 Angstroms) yielded an overall correlation of 0.525 to the experimental data. This is 

roughly in line with Wall et.al’s previous LLM fit to Staph nuclease diffuse maps, where PCC = 

0.595. Subdividing the model into resolution bins reveals that the highest correlation between 

data and experiment occurs in the range 2.39-2.09A, where PCC = 0.665 (Figure 4.6). 

 

4.7 Discussion 
 
   Diffuse scattering has long been viewed as a valuable source of information on protein 

dynamics, but experimental and computational challenges have hampered extensive 

investigation. Our results represent a significant step towards moving X-ray diffuse scattering 

analysis into the mainstream of structural biology. DIALS-LUNUS makes possible the analysis 

of diffuse data collected on a wide range of available detectors, with no need for technical 

modifications or the development of complex computational scripts. Furthermore, our 

comparison of CypA and trypsin maps to various refinement models demonstrate that diffuse 

signal can serve to distinguish between degenerate models of motion and potentially guide 

refinement efforts. 

   It is not surprising that the Whole molecule TLS refinement provides the best agreement with 

experimental data. This group selection roughly approximates many crystalline imperfections 

present in the crystal, including vibrational phonons and lattice shear. Indeed, treating the entire 

molecule as a single TLS group is a common strategy for modeling global crystalline disorder 

during macromolecular refinement (Burnley et.al, 2012). The results of Doucet and Benoit 

(1987) revealed that correlated short-range rigid movements take place between molecules 
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within the crystalline unit cell, further supporting this observation. However, Clarage et.al (1992) 

proposed that these rigid unit cell motions might only supply ~10% of the observable diffuse 

scattering, which could explain the observed correlation of 0.143 in the case of CypA.  

  The agreement of the liquid-like motions model with experimental diffuse data across multiple 

systems warrants further consideration. Whereas most crystallographic refinement programs 

consider the crystal lattice to be a rigid entity (with a bit of thermal noise), the fit between LLM 

and diffuse data strongly suggests that this assumption should be revisited. This model provides 

a new paradigm for understanding and modeling intra-lattice effects: a gelatinous 

macromolecular environment in which molecules soften and interact with each other across 

defined correlation distances. Indeed, changing the description of the crystalline lattice to this 

softer network could provide significant improvements in both Bragg and diffuse structural 

refinement. 

 

  Because our optimal correlation between model and map is only 0.525 for the CypA LLM, it is 

clear that there is still much room for improvement in modeling the crystalline disorder 

contributing to diffuse scattering. Future efforts will need to take into consideration the myriad 

of intramolecular (loop openings, side chain flips), intermolecular (phonons, lattice contacts) and 

crystal-specific (mosaicity, microlattices) effects.  However, this work clearly demonstrates the 

value of simultaneously refining Bragg and diffuse data in crystallographic analysis. Rather than 

being thrown out as noise, diffuse intensities can provide a valuable set of experimental restraints 

and unlock new insight into protein dynamics.  Further work will need to be performed in order 

for this goal to be completely realized; however, the computational and experimental routines 

presented here will greatly simplify this process. 
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4.8 Tables 
 
Table 4.1) Initial Bragg data refinement statistics
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4.9 Figures 
 
 

 
 
Figure 4.1) Overview of DIALS-LUNUS Raw CypA diffraction images (a) are thresholded and 
mode filtered (b) to remove Bragg peaks and contaminant scattering. These processed images are 
integrated in parallel to produce individual slices of the diffuse scattering across reciprocal space 
(c). All slices are combined and symmetrized into a comprehensive three-dimensional map. 
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Figure 4.2) Experimental diffuse scattering maps a) Isotropic diffuse scattering maps after 
application of symmetry operators. Grey reference spheres denote a resolution of 2.0A. b) 
Crystallographic symmetry statistics for anisotropic maps. 
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Figure 4.3) Different CypA TLS groups produce unique diffuse scattering. a) The CypA 
TLS groups projected onto the structure, along with the calculated diffuse scattering (looking 
down the L axis; grey sphere denotes 4Å resolution). All maps are shown at an equivalent 
intensity isosurface. b) Pearson correlation values between anisotropic maps. 
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Figure 4.4) Different Trypsin TLS groups produce unique diffuse scattering. a) TLS groups 
for each refinement strategy projected onto the CypA structure, along with the calculated diffuse 
scattering for each predicted TLS motion (looking down the L axis; grey sphere denotes 2Å 
resolution). Whole molecule is shown at 25% of the intensity as phenix and TLSMD. b) Pearson 
correlation values between anisotropic maps. 
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Figure 4.5) Diffuse scattering can distinguish between TLS motions. a) Pearson correlation 
coefficient values between CypA TLS refinements and experimental diffuse data as a function of 
resolution bin. b) PCC between Whole Molecule TLS refinement and experimental map in the 
highlighted sub-range from a) c) Pearson correlation coefficient values between CypA TLS 
refinements and experimental diffuse data as a function of resolution bin. 
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Figure 4.6) CypA Liquid-Like Motions agree with experimental data. Global correlation 
between CypA experimental map and LLM best-fit, where γ = 6.0A and σ = 0.53A. 
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