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tation simply would not have been possible were it not for their unconditional support and endless

love. I will be forever on their debt.

iv



Contents

Acknowledgment iv

List of Tables viii

List of Figures x

Abstract xiv

1 Introduction 1

2 Literature Review 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Planning and Control Systems of Autonomous Unmanned Aerial Vehicles (UAVs) . 5

2.2.1 Centralized, Decentralized and Hybrid Frameworks . . . . . . . . . . . . . . . 6

2.2.2 Algorithms for Planning and Control Systems . . . . . . . . . . . . . . . . . . 9

2.3 Measuring the Cost of Decentralization . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Duality and its Economic Interpretation . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Game Theory and the Price of Anarchy . . . . . . . . . . . . . . . . . . . . . 17

3 An Entropy-based Relative Rating System for Potential Information Gain 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Information, Entropy and Other Terms Defined . . . . . . . . . . . . . . . . . . . . . 22

v



Contents vi

3.3 Rating and Ranking Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Computing Potential Information Gain Maps . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 A Programming Framework for Decentralized Planning and Control Systems 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Mathematical Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Mathematical Model Main Decision Variables . . . . . . . . . . . . . . . . . . . . . 51

4.4 Mathematical Model Objective Function and Constraints . . . . . . . . . . . . . . . 52

4.4.1 Objective Function and Constraints . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Collection Assets Movement Constraints . . . . . . . . . . . . . . . . . . . . . 52

4.4.3 Potential Information Gain Constraints . . . . . . . . . . . . . . . . . . . . . 53

4.4.4 Communication Network Constraints . . . . . . . . . . . . . . . . . . . . . . 55

4.5 Pictorial Representation of the Output of the Mathematical Model . . . . . . . . . 57

5 Solution Approach to Mathematical Programming Framework 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Time Cascade Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Space Aggregation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Extensions to Mathematical Model 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Support to Systems Using Ground Control Stations . . . . . . . . . . . . . . . . . . 89

6.2.1 Updates to Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3 Network Connectivity through Asset Paths . . . . . . . . . . . . . . . . . . . . . . . 96



Contents vii

6.3.1 Updates to Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.2 Additional Decision Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.3 Additional Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.4 Proof that Constraints (6.11) - (6.14) are Sufficient and Necessary Conditions 98

6.3.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Trust on Information from Assets Outside the Network Component . . . . . . . . . 119

6.4.1 Updates to Mathematical Programming Model . . . . . . . . . . . . . . . . . 119

7 Measuring the Price of Decentralization 121

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 From Centralized Planning to Anarchy: the Price of Decentralization . . . . . . . . . 123

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8 Conclusions and Future Research Topics 131

Bibliography 135



List of Tables

3.1 Probability of Feature 1 of Information Deficit 1 Occurring in the AO . . . . . . . . 29

3.2 Probability of Feature 2 of Information Deficit 1 Occurring in the AO . . . . . . . . 30

3.3 Probability of Feature 1 of Information Deficit 2 Occurring in the AO . . . . . . . . 31

3.4 Probability of Feature 2 of Information Deficit 2 Occurring in the AO . . . . . . . . 32

3.5 Probability of Feature 3 of Information Deficit 2 Occurring in the AO . . . . . . . . 33

3.6 Potential Information Gain for Information Deficit 1 . . . . . . . . . . . . . . . . . . 36

3.7 Potential Information Gain for Information Deficit 2 . . . . . . . . . . . . . . . . . . 39

3.8 Potential Information Gain for Combination of Equally Weighted Information Deficits 42

3.9 Potential Information Gain for the Weighted Combination of Information Deficit 1,

w̄1 = 3
4 and Information Deficit 2, w̄2 = 1

4 . . . . . . . . . . . . . . . . . . . . . . . . 44

3.10 Potential Information Gain for the Weighted Combination of Information Deficit 1,

w̄1 = 1
4 and information deficit 2, w̄2 = 3

4 . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 Mathematical Program and Experiment Parameters for Model Evaluation . . . . . . 59

5.1 Mathematical Program and Experiment Parameters for Solution Approach Evaluation 70

5.2 Summary of Results - Information Gain Improved with Solution . . . . . . . . . . . 74

5.3 Summary of Results - Information Gain Worsened with Aggregation . . . . . . . . . 75

5.4 Summary of Results - Average Time to Solve (s) . . . . . . . . . . . . . . . . . . . . 76

viii



List of Tables ix

6.1 Mathematical Program and Experiment Parameters for CS Extension Model . . . . 93

6.2 Discretized Effectiveness Sensor Suite on each UAV for each Collection Requirement 94

7.1 Mathematical Program and Experiment Parameters for Evaluation of PoD . . . . . 125



List of Figures

2.1 Example of a Centralized Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Example of a Decentralized Framework . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Example of a Hierarchical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Dynamic Feedback Loop Used by Hirsch et al. [1] . . . . . . . . . . . . . . . . . . . . 13

2.5 Prisoner’s Dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Entropy function H(p) for the Bernoulli random variable X . . . . . . . . . . . . . . 23

3.2 Definition of Cell Index k for the Discretization of AO . . . . . . . . . . . . . . . . . 26

3.3 Heat Map of Probabilities for Information Deficit 1 - Feature 1 in AO . . . . . . . . 29

3.4 Heat Map of Probabilities Information Deficit 1 - Feature 2 in AO . . . . . . . . . . 30

3.5 Heat Map of Probabilities Information Deficit 2 - Feature 1 in AO . . . . . . . . . . 31

3.6 Heat Map of Probabilities Information Deficit 2 - Feature 2 in AO . . . . . . . . . . 32

3.7 Heat Map of Probabilities Information Deficit 2 - Feature 3 in AO . . . . . . . . . . 33

3.8 Information Gain Map for Information Deficit 1 Using Modified Keener’s Method . . 34

3.9 Information Gain Map for Information Deficit 1 Using Colley’s Method . . . . . . . 35

3.10 Information Gain Map for Information Deficit 2 Using Modified Keener’s Method . . 37

3.11 Information Gain Map for Information Deficit 2 Using Colley’s Method . . . . . . . 38

3.12 Information Gain Map for Information Deficits 1,2 Using Modified Keener’s Method 41

3.13 Information Gain Map for Information Deficits 1,2 Using Colley’s Method . . . . . . 41

x



List of Figures xi

3.14 Information Gain Map for Information Deficit 1 and 2, with w1 = 3
4 and w2 = 1

4 ,

using Modified Keener’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.15 Information Gain Map for Information Deficit 1 and 2, with w̄1 = 1
4 and w̄2 = 3

4 ,

using Modified Keener’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.16 Information Gain Map using the Modified Keener’s Method for an Information Deficit

with pjk ≈ 0 or pjk ≈ 1, ∀j, ∀k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Representation of Collection Requirements for a Mission as Potential Information

Gain Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Concept of Potential Information Gain Update . . . . . . . . . . . . . . . . . . . . . 53

4.3 A Fully Connected Communication Network for 3 Collection Assets . . . . . . . . . 57

4.4 Area of Operation for Test Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Sensor Model for Test Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Experiment Results Centralized Solution (t = 1) . . . . . . . . . . . . . . . . . . . . 60

4.7 Experiment Results Decentralized Solution (t = 1) . . . . . . . . . . . . . . . . . . . 60

4.8 Experiment Results Centralized Solution (t = 2) . . . . . . . . . . . . . . . . . . . . 60

4.9 Experiment Results Decentralized Solution (t = 2) . . . . . . . . . . . . . . . . . . . 60

4.10 Experiment Results Centralized Solution (t = 3) . . . . . . . . . . . . . . . . . . . . 61

4.11 Experiment Results Decentralized Solution (t = 3) . . . . . . . . . . . . . . . . . . . 61

4.12 Experiment Results Centralized Solution (t = 4) . . . . . . . . . . . . . . . . . . . . 61

4.13 Experiment Results Decentralized Solution (t = 4) . . . . . . . . . . . . . . . . . . . 61

4.14 Experiment Results Centralized Solution (t = 51) . . . . . . . . . . . . . . . . . . . . 62

4.15 Experiment Results Decentralized Solution (t = 5) . . . . . . . . . . . . . . . . . . . 62

5.1 Overview of Time Cascades Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Sample of Digital Image Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 General Digital Image Compression Process . . . . . . . . . . . . . . . . . . . . . . 67



List of Figures xii

5.4 General Digital Image Compression Process - Numerical Example . . . . . . . . . . 67

5.5 Sample IGM with 1 Hot-Spot to Evaluate Solution Approach . . . . . . . . . . . . . 71

5.6 Sample Random IGM to Evaluate Solution Approach . . . . . . . . . . . . . . . . . 72

5.7 Avg. % Increase Solution Value with Space Aggregation (PH=10, RH=3, FW=1) . 77

5.8 Avg. % Increase Solution Value with Space Aggregation (PH=10, RH=3, FW=2) . 77

5.9 Avg. % Increase Solution Value with Space Aggregation (PH=10, RH=3, FW=3) . 78

5.10 Avg. % Increase Solution Value with Space Aggregation (PH=10, RH=4, FW=1) . 78

5.11 Avg. % Increase Solution Value with Space Aggregation (PH=10, RH=4, FW=2) . 79

5.12 Avg. % Increase Solution Value with Space Aggregation (PH=10, RH=4, FW=3) . 79

5.13 Average Time to Solve (s) Routing Problem with No Space Aggregation . . . . . . . 80

5.14 Average Time to Solve (s) Routing Problem with Space Aggregation . . . . . . . . . 80

5.15 Avg. % Difference Solution and Best Known Value (PH=10, RH=3, FW=1) . . . . 81

5.16 Avg. % Difference Solution and Best Known Value (PH=10, RH=3, FW=2) . . . . 81

5.17 Avg. % Difference Solution and Best Known Value (PH=10, RH=3, FW=3) . . . . 82

5.18 Avg. % Difference Solution and Best Known Value (PH=10, RH=4, FW=1) . . . . 82

5.19 Avg. % Difference Solution and Best Known Value (PH=10, RH=4, FW=2) . . . . 83

5.20 Avg. % Difference Solution and Best Known Value (PH=10, RH=4, FW=3) . . . . 83

5.21 Avg. % Difference Solution and Best Known Value (1 Hot Spot, 0.25 effectiveness) . 84

5.22 Avg. % Difference Solution and Best Known Value (1 Hot Spot, 0.50 effectiveness) . 85

5.23 Avg. % Difference Solution and Best Known Value (1 Hot Spot, 0.75 effectiveness) . 85

5.24 Avg. % Difference Solution and Best Known Value (Random, 0.25 effectiveness) . . 86

5.25 Avg. % Difference Solution and Best Known Value (Random, 0.50 effectiveness) . . 86

5.26 Avg. % Difference Solution and Best Known Value (Random, 0.75 effectiveness) . . 87

6.1 Area of Operation and Initial Location of CSs and UAVs . . . . . . . . . . . . . . . 93

6.2 Initial Potential Information Gain Map for Collection Requirement 1 . . . . . . . . . 94



List of Figures xiii

6.3 Initial Potential Information Gain Map for Collection Requirement 2 . . . . . . . . . 94

6.4 Defined Routes for UAVs in Case 1 (w1t = 0.80 and w2t = 0.20, ∀t) . . . . . . . . . . 95

6.5 Defined Routes for UAVs in Case 1 (w1t = 0.50 and w2t = 0.50, ∀t) . . . . . . . . . . 96

6.6 Network Connectivity through Asset Paths - Test Case 1 . . . . . . . . . . . . . . . 105

6.7 Network Connectivity through Asset Paths - Test Case 2 . . . . . . . . . . . . . . . 107

6.8 Network Connectivity through Asset Paths - Test Case 3 . . . . . . . . . . . . . . . 109

7.1 Sample Information Gain Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Sample IGM with 1 Hot-Spot for Evaluation of Price of Decentralization . . . . . . 126

7.3 Sample Random IGM for Evaluation of Price of Decentralization . . . . . . . . . . . 127

7.4 Price of Decentralization for Pairwise Sensor Topologies on 1 Hot-Spot IGMs . . . . 128

7.5 Price of Decentralization for Path-based Sensor Topologies on 1 Hot-Spot IGMs . . . 129

7.6 Price of Decentralization for Pairwise Sensor Topologies on Random IGMs . . . . . . 129

7.7 Price of Decentralization for Path-based Sensor Topologies on Random IGMs . . . . 130



Abstract

One of the main technical challenges facing intelligence analysts today is the efficient utilization

of limited resources (both in quantity and capabilities) to maximize the accuracy and timeliness

of collected data to address information gaps. The challenges on this problem increase when the

communication between the information gathering assets is limited, preventing constant coordina-

tion of collection activities and information sharing among the assets. This work addresses the

problem of routing cooperative autonomous vehicles (e.g., unmanned vehicles) operating in a dy-

namic environment to maximize overall information gain. Vehicles (collection assets) are collecting

information on multiple objectives, subject to communication network constraints. In addition, this

research studies the degradation of solution quality (i.e., information gain) as a centralized system

synchronizing information gathering activities for a set of cooperative autonomous vehicles moves

to a decentralized framework.

A mathematical programming model to determine routes in (de)centralized frameworks was

developed. This model is based on a representation of potential information gain in discretized maps,

the effectiveness of the assets collecting information and an obsolescence rate on the areas visited

by the assets. The model assumes that information is only exchanged when assets are part of the

same network, allowing a multi-perspective optimization of the information gathering activities in

which each asset develops its own decisions based only on its perspective of the environment (i.e.,

potential information gain). This framework is used to evaluate the degradation of solution quality

as a centralized system moves to a decentralized framework. This research extends the concept of

‘‘price of anarchy’’ (a measure on the inefficiency of a system when individuals (i.e., agents) maximize

decisions without coordination) by considering different levels of decentralization.

Different communication network topologies are considered. Collection assets are part of

xiv



Abstract xv

the same communication network (i.e., a connected component) if: (1) a fully connected network

exists between the assets in the connected component, or (2) a path (consisting of one or more

communication links) between every asset in the connected component exists. Multiple connected

components may exist among the available collection assets supporting a mission. Trust (with a

suitable decay factor as a function of time) on the potential location of assets that are not part

of a connected component is considered as part of an extension to the optimization model. A

solution approach based on multiple aggregation strategies to obtain satisficing solutions that are

computational efficient was developed.



Chapter 1

Introduction

One of the main technical challenges facing intelligence analysts today is the efficient utilization of

limited resources (both in quantity and capabilities) to maximize the accuracy and timeliness of

collected data to address information gaps. The challenges on this problem increase when the com-

munication between the information gathering assets is limited, preventing constant coordination of

collection activities and information sharing among the assets. This work addresses the problem of

routing cooperative autonomous vehicles (e.g., unmanned vehicles) operating in a dynamic environ-

ment to maximize overall information gain. Vehicles (collection assets) are collecting information

on multiple objectives, subject to communication network constraints. In addition, this research

studies the degradation of solution quality (i.e., information gain) when a centralized system syn-

chronizing information gathering activities for a set of cooperative autonomous vehicles moves to a

decentralized framework. The concept of ‘‘price of anarchy’’, a measure referring to the inefficiency

of a system when decisions are made without coordination, is extended by considering different levels

of decentralization.

The objective of this chapter is to present an overview and a roadmap of the research

documented in this dissertation: from the definition of potential information gain maps to the

computation and comparison of the ‘‘price of decentralization’’ for different network configurations.

Mathematical tools are developed to facilitate the measurement and analysis of the loss of effective-

ness (i.e., level of performance accomplishing a goal [2]) of information gathering systems operating

with some degree of decentralization when compared to its centralized version. The main interest

1



Chapter 1. Introduction 2

is to represent the effects of the lack of overall coordination of resources, for example UAVs, on

a system-level measure of performance (e.g., number of detected targets, accuracy of information,

information gain, etc.). This chapter is used then as a means to clarify terms and concepts, to

characterize the research problem, and to highlight potential areas of additional research.

Collection assets are represented in this research as entities characterized by three main

components: (1) the platform (also referred to as the vehicle), (2) an on-board sensor suite, and

(3) the communication network. The Area of Operation (AO) where assets are collecting informa-

tion is discretized and represented by a set of grid cells. A numerical value, the potential information

gain, is associated to each cell. An Information Gain Map (IGM) represents a characterization of

the subareas in the AO based on its potential of having features addressing identified information

deficits and objectives in the mission. When considering the IGMs, a higher value among cells rep-

resent a higher opportunity to obtain information of interest between them; thus, a rating system to

define IGMs is developed. The concept of entropy, a measure of the amount of information required

on the average (i.e., a measure of the uncertainty) to describe a random variable, is exploited in the

rating system.

A Mixed-Integer Linear Program (MILP) was developed to determine the optimal routes

(i.e., the sequence of moves) of the information collection assets in the AO to maximize the overall

potential information to be gained. The model is based on the representation of potential infor-

mation gain in discretized maps (i.e., IGMs), the effectiveness of the assets collecting information

and an obsolescence rate on the areas visited by the assets. The model assumes assets operate on

a decentralized framework. In a centralized framework, the information is propagated from node to

node in the network until it reaches a ‘‘central’’ node responsible of determining and disseminating

expected decisions (e.g., path definition, tasks assignments) to all lower nodes. This requires high

computational burden at the central node and a robust and reliable communication network that

allow virtually perfect information flow among all the agents in the system and the central node.

Decentralized frameworks rely on local processing of information, including information from nearby

agents, and local decision-making. This framework reduces the computational and communication

requirements of a centralized framework, allowing scalability of the system to large group sizes [3].

Moreover, in the assumed decentralized framework, information is only exchanged when assets are

part of the same communication network, allowing a multi-perspective optimization of the informa-
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tion gathering activities in which each asset develops its own decisions based only on its perspective

of the environment.

Different communication network topologies are considered. First, a fully connected network

between the collection assets in the same communication network (i.e., a connected component) was

assumed. For this communication network topology a direct communication link between each pair

of assets is required. Multiple connected components may exist among the available collection assets

supporting a mission. A different communication network topology is possible in which assets use

other assets as intermediary (or ‘‘bridge’’) nodes to exchange information. In this case, assets are

not required to have a direct communication link (within its communication range) to all other

assets in the network: information is exchanged between assets as long as there is a communication

path between them. Mathematical model was updated in order to relax the constraints of the

direct communication link topology and allow assets to identify communication paths to exchange

information. Other extensions, including the evaluation of the potential location of assets that are

not part of a connected component, were derived and described in Chapter 6.

A solution approach based on multiple aggregation strategies to obtain satisficing solutions

that are computational efficient was developed. Instead of trying to solve the complete route for

each asset at once, a strategy is defined in which only a subset of time-steps are evaluated at a time.

This subset of time-steps is referred to as a rolling horizon and it constitutes a subproblem to be

solved using the mathematical model described above. Within this rolling horizon, only a number

of time-steps from the solution obtained while solving this subproblem will be considered in the

final solution. This subset of time-steps is considered as the fixed window. Once this cascade (i.e.,

a subproblem defined, solved and appropriate solution fixed) is completed, a new rolling horizon

is defined from the last fixed time-step in the solution. A new cascade is then solved. When the

rolling horizon includes the last time-step in the planning horizon, the solution from that subproblem

completes the final solution.

Using the time aggregation approach described above provides the opportunity to also reduce

the number of grid cells considered in each cascade, reducing even more the complexity of solving the

MILP. Given the number of time-steps in each rolling horizon and the (known) kinematic constraints

of each vehicle, only the cells that could be reached in each cascade are considered. In addition to

time aggregation, we consider a spatial aggregation whereby gain information for cells that cannot
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be reached in the current rolling horizon are ‘‘combined’’ with the rolling horizon boundary cells.

This space aggregation approach is used to update the value of selected cells considered on each

rolling horizon, complementing the developed solution approach.

The developed mathematical programming model and solution approach are used as a frame-

work to evaluate the degradation of solution quality as a centralized system moves to a decentral-

ized framework. This research extends the concept of ‘‘price of anarchy’’, a measure referring to

the inefficiency of a system when individuals (i.e., agents) maximize decisions without coordination

[4, 5, 6, 7, 8]. The Price of Decentralization (PoD) is defined as a measure on the degradation of so-

lution quality as a centralized system moves to different levels of decentralization. Price of Anarchy

(PoA) is then only the extreme case of the PoD concept, wherein all collection assets defined their

best route to maximize the potential information gain, without coordination. Network connectivity

is represented by a set of binary variables in the mathematical model so a connectivity matrix can

be defined capturing what assets are in the same communication network and enabled to exchange

information. Levels of decentralization will be determined by redefining the structure of this con-

nectivity matrix and computing the PoD metric against the information gain from the best-known

solution for a centralized framework.

This dissertation is organized as follow: In Chapter 2 a review of relevant research is pre-

sented. The concepts of centralized and decentralized architectures are described in detail. Research

efforts and results on the areas of planning and control systems are also discussed. In Chapter 3,

a rating system is discussed to characterize the potential information gain in an area of operation.

In Chapter 4, a mathematical programming model for multi-perspective optimization is developed.

Chapter 5 discusses multiple heuristic approaches to allow evaluation of the mathematical pro-

gramming model while considering larger problem sizes and operational timelines. Extensions to

the mathematical model, including theoretical mathematical proofs and numerical examples of the

derived constraints to allow assets to identify communication paths to exchange information are

presented in Chapter 6. A characterization of the price of decentralization is then presented in

Chapter 7 by evaluating different network topologies and asset collection parameters operating in

different conditions (as captured by different types of IGM). Finally, conclusions and future research

topics are presented in Chapter 8.



Chapter 2

Literature Review

2.1 Introduction

This chapter is a literature review on the general area of planning and control systems on centralized

and decentralized frameworks, with particular emphasis on the control of cooperative autonomous

vehicles (e.g., Unmanned Aerial Vehicles (UAVs)). The main thrust of the chapter is to highlight

relevant previous work in this area. The chapter is organized as follows: In Section 2.2, the concepts

of centralized, decentralized and hierarchical architectures are defined in the context of this work.

Research efforts and results on the area of planning and control of UAV systems are then discussed,

highlighting its application to centralized or decentralized frameworks. In Section 2.3, a review of the

literature on cost of anarchy, or loss of effectivity, when moving from a centralized to a decentralized

system is provided, including a description of a game-theoretic perspective on resource allocation

problems, the price of anarchy and the price of fairness.

2.2 Planning and Control Systems of Autonomous UAVs

Autonomous systems are playing an increasingly important role in both civilian and military appli-

cations. Systems of UAVs, for example, are allowing military personnel to focus on more important

issues like interpreting gathered information, as opposed to determining how to acquire it [9]. The

planning and control component on these autonomous systems is responsible for determining the

5



Chapter 2. Literature Review 6

trajectory the vehicles will follow. For the purpose of this discussion, a trajectory is defined as an

assignment of the UAVs to set of tasks with a location associated to them, a set of waypoints or

simply an area in a discretized environment (i.e., a cell in a grid representing the area of operation

of the UAVs). The terms trajectory, route and path are used interchangeably throughout this dis-

sertation and refer to the described assignment. A general description of the different architectures

in which planning and control systems are implemented, with the purpose of clarifying the termi-

nology used throughout the paper, is presented in Section 2.2.1. A literature review on centralized

and decentralized algorithms and results for planning and control of UAV systems is discussed in

Section 2.2.2.

2.2.1 Centralized, Decentralized and Hybrid Frameworks

Frameworks for planning and control of autonomous systems, similar to an information fusion system,

can be classified into three types of topologies [10, 11]: (1) centralized, (2) decentralized, and

(3) hierarchical (hybrid).

“Central” node 

Broadcasted Messages  
from “Central” Node 

Messages to  
“Central” Node 

Figure 2.1: Example of a Centralized Framework
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Fusion Node 

Messages to  
Near-by Nodes 

Figure 2.2: Example of a Decentralized Framework

Fusion Node 

Messages from 
Fusion Node 

Messages to  
Fusion Node 

Figure 2.3: Example of a Hierarchical Framework
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In a centralized architecture, the information is propagated from node to node in the net-

work until it reaches a ‘‘central ’’ node responsible of determining and disseminating expected de-

cisions (e.g., path definition, tasks assignments) to all lower nodes (Figure 2.1). This requires high

computational burden at the central node and a robust and reliable communication network that

allows virtually perfect information flow (i.e., all relevant information to make decisions is available,

uncorrupted and with no delay) among all the agents in the system and the central node.

Decentralized frameworks (Figure 2.2) rely on local (i.e., by each agent) processing of in-

formation, including information from nearby agents, and local decision-making. This framework

reduces the computational and communication requirements of a centralized framework, allowing

scalability of the system to large group sizes [3]. Jameson [12] compared a few distributed architec-

tures based on a set of general requirements for distributed information fusion. In his work, nodes

on the network consisted of fusion centers (e.g., command and control center) and/or sensors. For

the purpose of this discussion, it is at these fusion nodes where planning and control decisions are

made. The first architecture analyzed was the single composite picture implemented by the US

Navy in the Cooperative Engagement Capability (CEC) system [13]. This architecture consists of

high speed communication links connecting peer nodes. Each node consists of high quality sensors.

All nodes in this architecture fuse data using the same algorithm so, given the low latency provided

by the network, all nodes maintain virtually the same ‘‘fused’’ picture. A ‘‘fused’’ picture refers to

the representation of entities (e.g., targets, assets) in the environment by combining data from mul-

tiple sensors. As would be expected, the requirements, particularly on communication bandwidth,

to maintain such an accurate and high-speed network are substantial. The grapevine architecture

is also a decentralized, peer to peer architecture in which each node is capable of fusing the data

collected by local sensors, as well as the data received from peer nodes. At each node, a Grapevine

manager is responsible for the interchange of data with peer nodes to mitigate the communication

bandwidth requirements on CEC. This manager evaluates the information needs and capabilities of

peer nodes and, as data is received, it is propagated to the appropriate node. This is referred to

as an intelligent push of data. The Grapevine manager on each node is also responsible to commu-

nicate the local information needs to peer nodes. Since the peer nodes will identify information to

satisfy those needs, Jameson refers to it as an intelligent pull of data. A similar approach, but from

a goal-driven (rather than a data driven) perspective is presented by Perugini et al. [14]. Finally,

Jameson describes the Distributed Hierarchical Information Fusion architecture. The nodes on this
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network correspond to military units in a command and control hierarchy. Each node is responsi-

ble for propagating the collected information to its parent node and child nodes (Figure 2.3). In

addition, each node has its local fused picture and a computed fused picture of the nodes it is prop-

agating information to. This proxy fused picture is necessary to avoid fusing repeated information.

Since data is propagated only to adjacent nodes, flow of information is faster than in a centralized

architecture.

As will be discussed in Section 2.2.2 most planning and control algorithms assumed a central-

ized framework. When the challenges of a decentralized frameworks are addressed, an architecture

such as the one implemented by CEC is usually assumed: each UAV collects information from on-

board sensors and, over a low latency network, exchanges information with neighbor UAVs (i.e.,

peer nodes). Information is processed and a trajectory is (re) defined.

2.2.2 Algorithms for Planning and Control Systems

Research in the area of planning and control systems has resulted in the development of algorithms

assuming, mostly, a centralized framework [15, 16]: information is collected in a single, ‘‘central’’

node and optimal or near-optimal plans (or re-plans) are defined and communicated to the agents

(e.g., UAV) in the system. Just a small fraction of the research on this area has been concerned

with the more realistic coordination of resources in a decentralized environment.

Jin, Minai and Polycarpou [17] considered two classes of UAVs, target recognition UAVs

and attack UAVs, for the search-and-destroy problem over an area. All UAVs were assumed to have

sensors needed for search. A distributed assignment, mediated through centralized mission status

information, was developed. At each potential target location (environment was discretized as a set

of cells), UAVs can Search, Confirm, Attack, perform Battle Damage Assessment (BDA), or Ignore.

A centralized information base kept essential information updated for the coordination of the UAVs.

Information include, for each target location, the Target Occupancy Probability (TOP), certainty,

task status, and assignment status. In addition, the information base includes state information of

each UAV. A set of rules, based on the information contained in the information base, determined

the assignment of tasks to UAVs. Each UAV accesses and updates the information base at each

step. Two measures of performance were considered to evaluate the proposed algorithm: the time

needed to neutralize all a priori known (stationary) targets, and the total number of steps needed
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to bring all cells to the Ignore status.

Shetty, Sudit, and Nagi [18] considered the routing of multiple unmanned (combat) vehicles

to service multiple potential targets in space. They formulated this as a Mixed-Integer Linear

Program (MILP), and decomposed the problem into: (1) the vehicle to target assignment problem,

and (2) determining the tour for each vehicle to service their assigned targets. Each problem was

solved using a tabu-search heuristic.

A modeling framework for the dynamic rerouting of a set of heterogeneous vehicles was

presented by Murray and Karwan in [19]. Vehicles were constrained by fuel- and payload- capacity.

The defined MILP maximizes overall mission effectiveness and minimizes changes to the original

vehicles’ task assignments. Tasks were characterized by priority values, service duration, limits on

the minimum and maximum number of resources that may perform them, precedence relationships

among tasks, and multiple time windows in which resources may be assigned to the tasks. In addition,

tasks were classified as required or optional. Vehicles were characterized by a value indicating the

resource’s relative capability of performing a task.

A planning algorithm to maximize the visibility of a set of UAVs monitoring multiple moving

ground targets in an urban area is discussed by Kim and Crassidis [20]. The shape and location of

each urban obstacle (e.g., buildings) were assumed to be known. The algorithm consisted of three

main parts: (i) an optimal grouping of (known) targets, and assignment of UAVs to each defined

group, (ii) definition of an optimal circular path for each UAV, and (iii) an optimal transition path

(i.e., from one circular path to another) for each UAV . Full information was assumed to be shared

among all UAVs, in a centralized control framework, for the first two steps of the algorithm.

Several authors [21, 22, 23] have taken an information-theoretic approach to the resource

allocation problem. From this perspective, the purpose of the resource management algorithm

is to reduce the uncertainty about the environment. McIntyre and Hintz [21] demonstrated the

effectiveness of this approach for sensor management on the problem of searching and tracking

targets. For this problem, the area of operation was represented as a grid divided into m× n cells.

Information about targets was represented as a discrete probability density function (pdf) on the

m × n area. The pdf represents the sensors’ estimate of the location of the targets. Two types of

uncertainty where considered on this problem: (i) the location of undetected targets, and (ii) an

estimate of the target state vector. The manager decides which sensor to use and whether to continue
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tracking a target (already represented as a track) or to search for new ones. When a cell is observed

by a sensor, two conditional entropies are computed, H(X|Y = D) and H(X|Y = ND), where D

and ND represent detection and no detection, respectively. The amount of information gained was

defined as the change in entropy prior to and proceeding a sensor measurement. The information

gained by observing a cell on the grid depends on the probability of getting a detection or not. The

information gained by updating a (detected) target state vector considers a norm of the respective

track’s error covariance matrix. The sensor management control algorithm consists of comparing

the potential information gain from each sensor and target combination. Once a target is detected,

the amount of information gain is computed and a decision on whether to update the track or to

search is made. If search was decided, the cell with the highest probability of detecting a target

determined where a sensor is aimed. Also using an information-theoretic approach, Kreucher et al.

[23] presented their results on a decentralized sensor management algorithm. The sensor actions were

determined by maximizing the expected Rényi Divergence, subject to sensors’ kinematic and physical

constraints. The Rényi Divergence, also known as the α divergence, is a measure of the difference

between two probability distributions (i.e., information gain). In the distributed implementation,

each node transmits its information to neighbor nodes within a ”radius of communication”.

Mullen, Avasarala and Hall [24] explored the application of market-based concepts to sensor

management in a single-platform. Market-oriented programming refers to the design of a process

in which distributed agents determine prices and exchange goods, facilitating a resource allocation

mechanism. This approach usually involves an auction mechanism where resource allocation is de-

termined from the bids submitted by agents seeking and selling resources. The authors considered a

network of sensors with processing and communication capabilities in a system with multiple, coop-

erating decision makers. A specialized architecture, the Market Architecture for Sensor Management

(MASM), was developed for sensor management. The main components of MASM are the mission

manager and sensor manager. The mission manager component evaluates mission-level decisions

(e.g., task priorities) and the assignment of tasks to consumer agents. At this component, consumer

agents’s budgets to accomplish these tasks is also determined. The sensor manager component is

responsible for the allocation of sensors to various tasks, schedules and necessary sensor resources

(e.g., bandwidth and battery power). Bids for resources include a description of the task (in terms

of products) and the minimum acceptable task quality. Bids also include the price consumers are

willing to pay for the service. A service chart database captures the products that consumers may
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obtain from the measurement made by the sensor. This database include detailed domain infor-

mation such as sensor’s field location and available bandwidth. A bid formulator translates the

bids using the service chart and submits them to a combinatorial auctioneer module. An auction is

conducted to set prices and allocate sensors so that revenue is maximized. The authors use a genetic

algorithm to solve this problem. The authors left as future work the extension of their algorithm to

distributed sensor systems by incorporating distributed auction design.

Hirsch et al. [9] mathematically formulated the problem of dynamically tracking targets of

interest by a set of autonomous UAVs in a centralized cooperative control framework. A decentralized

control approach for UAVs with the goal of tracking moving ground targets was developed by Hirsch,

Ortiz-Peña and Eck [1]. Targets and UAVs were moving through an urban domain, simulated as a

set of buildings. The shape and location of each building was assumed to be known by each UAV.

Areas in the urban domain in which an accurate representation of the ground targets was more

important were represented by an importance function. This function was modeled as the sum of

Gaussian pdfs (each pdf represented an important area). The vehicles operate in a decentralized

manner, in which each UAV was responsible to plan its route to maintain an accurate representation

of detected targets. A nonlinear optimization problem was defined and solved at each time-step of

the duration of the simulation. The Continuous Greedy Randomized Adaptive Search Procedure

(GRASP) [25] was utilized to approximately solve this optimization problem. The vehicles were

modeled as non-holonomic point masses on a two-dimensional plane with a minimum turning radius

(i.e., a Dubins vehicle), and a minimum and maximum speed. Communication among UAVs was

restricted to a maximum communication range, beyond which UAVs cannot share information. A

minimum distance among UAVs and between buildings was also considered as a collision avoidance

mechanism. UAVs were assumed to be flying at a constant altitude, below the height of the buildings.

Additional constraints considered in the formulation include line of sight to targets due to the

presence of buildings and minimum/maximum detection range. Every UAV operated following its

own dynamic feedback loop in which, at each time-step:

1. the UAV moved according to its plan.

2. the UAV sensed the environment with on-board sensors and received measurements from

neighbor UAVs on the targets they have been tracking.

3. sensor measurements were fused (i.e., tracks’ states representing targets in the environment



Chapter 2. Literature Review 13

were created, updated or deleted).

4. if a new route was needed (based on some criteria on the fused picture, or the time since the

last route was defined)

(a) targets’ states and neighbor UAVs’ routes were predicted over the planning horizon

(b) a new route was defined by solving the nonlinear optimization problem described above

This dynamic feedback loop is depicted in Figure 2.4.

Figure 2.4: Dynamic Feedback Loop Used by Hirsch et al. [1]

In [26], Hirsch, Ortiz-Peña and Sudit studied the effects of this decentralized control ap-

proach for the cooperative tracking of ground targets in an urban environment, as a function of

the number of UAVs. It was shown, experimentally, that the decentralized approach exploits the

availability of multiple UAVs by defining routes that resulted in an accurate representation of the

targets.

In [27], Hirsch and Ortiz-Peña extended their work in [1] by considering the decentralized

control of a set of autonomous UAV consisting of two sets of UAV (determined a priori):

1. a set of “Low-level” UAVs responsible of sensing the environment with the goal of accurately

tracking targets of interest in the urban domain, and
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2. a set of “High-level” UAVs responsible of providing the communication back-bone for the

autonomous UAVs tracking the targets of interest.

Low-level UAVs were modeled as in [1], with the additional constraint that they could only communi-

cate with high-level UAVs. High level UAVs, also in a decentralized cooperative control framework,

maximized the potential communication of the low-level UAVs by planning routes that will keep

them within communication range to both, low-level UAVs, and other high-level UAVs. A nonlinear

optimization problem was defined and solved (using the GRASP heuristic) at each time-step of the

duration of the simulation. This optimization problem maximizes the number of potential direct

connections of the UAVs over the planning horizon. High-level UAVs were assumed to be flying at a

higher altitude than the low-level UAVs and the buildings. The created communications back-bone

by the high-level UAVs is the mechanism by which UAVs shared, with other UAVs, the information

on the targets they were tracking.

Another decentralized algorithm for the routing of cooperative UAVs is presented by Shima,

Rasmussen and Chandler [3]. UAVs were modeled as a Dubin’s vehicle. They considered a set of

UAVs performing tasks on a set of targets. The task assignment was performed using an iterative

capacitated transshipment problem and auction algorithms. In each iteration, every vehicle computes

the cost of performing the available tasks, based on its own information. This information consists

of an estimate of its own state (i.e., position and velocity), the teammates’ states and its state,

as viewed by the teammates. This estimation is based on an information filter and accounts for

communication delays. The total accumulated cost for all of the vehicles to perform all of the tasks

on all of the targets was used as the cost function. Since each UAV knows the cost function of the

members of the group, and an estimate of the teammates’ states is being maintained by each UAV,

it enables each UAV to estimate the cost of assigning new tasks to all UAVs, allowing a sub optimal

decentralized coordination among them.

The multiple vehicle coordination problem in which vehicles pursue private as well as global

objectives is considered by Raffard, Tomlin and Boyd [28] from a decentralized perspective. For

each vehicle, i ∈ {1, ..., N}, xi and ui represent the state and control input of vehicle i, respectively.

Private objectives were specified by linear equalities on xi : Aixi = bi and may represent vehicle’s fuel

consumption minimization or trajectory optimization for a previously specified path, for example.

Common objectives, in particular the case of flight formation, were also a set of linear equalities of
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the form yi − yj = Δyijdesired. The key quantity of the proposed algorithm is the deviation from

common objectives: dij = C (xi − xj) − Δyij , j ∈ R (i) , i = 1, . . . , N , where R (i) represents the

set of vehicles which communicate with vehicle i. The proposed decentralized algorithm is derived

from the dual decomposition method: each UAV, iteratively, submits its deviation from common

objectives to neighbor UAVs, (dij , ∀j ∈ Ri, from UAV i’s perspective), UAVs recompute their routes,

and update their deviation to common objectives; new deviations are submitted again to neighbor

UAVs and the process is repeated until the deviations to common objectives converge.

A decentralized policy, the Multi-Vehicle Receding Horizon Median/TSP policy (mRH),

is proposed in [29] by Frazzoli and Bullo for the motion coordination of a group of autonomous

vehicles. The mRH is defined so the expected waiting time to service stochastically-generated targets

is minimized. Letting Q represent the environment as a convex, compact set with unit volume, and

m vehicles at positions P = (p1, ..., pm) ∈ Q, V (P,Q) is defined as the Voronoi partition of the

environment Q and the set P . P ∗
m (Q) is referred to the m-median of the set Q. Each vehicle is

assumed to have sufficient information to determine: (1) its Voronoi cell, and (2) the locations of

outstanding events in its Voronoi cell . The Single-Vehicle Receding Horizon Median/TSP policy

(sRH) is proposed to define the path for a single vehicle servicing targets in the set D: when there

are no targets to service, the vehicle should move towards P ∗
1 (P,Q) if p1 �= P ∗

1 (P,Q), otherwise,

stop; while D is not empty, a path that maximizes the number of targets reached within τ time

units is defined. Under the mRH, each vehicle computes its Voronoi cell Vi (P,Q) and executes the

sRH(Vi (P,Q)), removing all targets already serviced by other vehicles. This process is repeated as

new targets might be added to and removed from D.

2.3 Measuring the Cost of Decentralization

Implementation of planning and control algorithms for UAV systems is in most situations, as dis-

cussed in 2.2.1, in a decentralized architecture. Given that reality, how can a system designer quantify

the potential loss of a system’s efficiency when the planning and control system is implemented in a

decentralized framework, when it is compared to a centralized implementation? Having a model of

the system, we are interested in measuring the effects of the lack of an overall, ‘‘central’’ controller

to the optimal value that would be obtained when such a centralized coordination is available. One
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measure of this is to quantify the value of the communication links that, if available, would allow

the overall system to obtain the same optimal value as a centralized framework. In Section 2.3.1 the

concept of shadow prices and its interpretation in economic theory as the value of a particular good

is presented. In Section 2.3.2 the game theoretic ‘‘price of anarchy’’ is presented. In addition, the

price of ‘‘fairness’’ is discussed. Under slightly different assumptions, both are proposed measures

to quantify (and bound) the efficiency loss of a system due to the lack of overall coordination of

players.

2.3.1 Duality and its Economic Interpretation

Whenever a (primal) resource allocation problem is solved, the (dual) resource valuation problem is

solved simultaneously. Following the description in [30], consider z∗ = cx∗ as the optimal objective

function value of a primal Linear Programming (LP) problem, then the dual variable corresponding

to the ith constraint (say w∗
i ), is the rate of change of the optimal objective value with a unit increase

in ith in the right-hand side value, bi

(
i.e., ∂z∗

∂bi
= w∗

i

)
.

From LP and economic theory, if the ith constraint represents a demand for production of

at least bi units of the ith product and cx represents the total cost of the production, then w∗
i is

the incremental cost of producing one more unit of the ith product. The values of the vector w∗ are

referred to as ‘‘shadow prices’’ and provide an indication of the value of a particular good. These

estimates have been used in a variety of applications, including cost-benefit analyses and investment

decisions, or as a weighting method for comparing the relative severity of different environmental

impacts.

Soest, List and Jeppesen [31] used the concept of ‘‘shadow prices’’ to measure the impact

of environmental policies and its relationship to international competitiveness. They assumed that

environmental regulation imposes a constraint on a firm’s use of polluting inputs (such as energy)

either because it artificially reduces firm-level profitability or because it directly imposes a cap on the

amount of polluting inputs. One implication is that environmental policies create a gap between the

firm’s willingness to pay for an additional unit of a polluting input and the input’s purchase price.

In this case, the value (i.e., the input’s shadow price) of the firm’s willingness to pay is equivalent to

the benefits of using one additional unit that cannot be captured due to the environmental policy

constraints. In [32, 33], ‘‘shadow prices’’ were used to provide an indication of the value of water
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and the impact on productivity performances.

Examples of the use of ‘‘shadow prices’’ is not limited to applications in the economic

sector. Fare, Grosskopf and Weber [34] defined a framework for measuring the shadow prices of

nonmarket, undesirable byproducts of some agricultural production process. Xue, Li and Nahrstedt

[35] proposed a price-based resource allocation framework for wireless ad hoc networks to achieve

optimal resource utilization and fairness by considering the value of data links among competing

end-to-end flows. Shadow prices were associated to a wireline link in previous research to reflect the

relation between the traffic load of the link and its bandwidth capacity. These results motivated

the proposed pricing framework by relating individual links in a wireline network to the notion of

maximal cliques in wireless ad hoc networks. A clique refers to a complete subgraph; a maximal

clique is a clique that is not contained in any other cliques. A utility function was associated with

the end-to-end flow to reflect its resource requirement.

2.3.2 Game Theory and the Price of Anarchy

Game theory is emerging as a popular tool for distributed control of multi-agents systems [5]. It

has been applied to a variety of scenarios including, for example, counter-terrorism operations and

disaster relief recovery coordination [36]. Theoretical computer scientists used the decentralized

systems described by economic game theory to model the Internet [37].

The cost for the lack of coordination was investigated in [38] to quantify the performance

lost in the Internet where users act selfishly without an overarching authority regulating network

operations. Modeling this network routing problem as a non-cooperative game, the ratio of the

worst-case Nash equilibrium and the global optimum was proposed as such a measure. A Nash

equilibrium is a combination of actions for each agent in the system from which no agent has

an incentive to unilaterally change their actions [39]. Mathematically, for a given set N of n-

players in a non-cooperative game, where each player i ∈ N is represented by a strategy vector

xi ∈ Xi ⊂ R
mi (mi is a positive integer) and a utility function ui : X → R, where X ≡ ∏N

i=1 Xi

and u = (u1, u2, u3, . . . , uN )
T
, a Nash equilibrium, x∗ ∈ X, could be expressed as

ui

(
x∗
i , x

∗
−i

) ≥ ui

(
xi, x

∗
−i

)
, ∀xi ∈ Xi
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where x−i = xN\{i} = (xj : j ∈ N, j �= i)

It is known (for example, the Prisoner’s Dilemma) that there may be no Nash equilibrium

which optimizes overall performance. The Prisoner’s Dilemma is a classic example in game theory to

describe this situation. It is usually phrased in terms of two crime suspects, Prisoner A and Prisoner

B, arrested and interviewed separately. Figure 2.5 shows a typical payoff matrix to describe the

Prisoner’s Dilemma:

• If Prisoner A confesses and Prisoner B denies, Prisoner A will be convicted for 1 year, while

Prisoner B will be convicted for 4 years, and vice versa.

• If both confess, they will both serve a three-years sentence.

• If both deny, they will both serve a two-years sentence.

The best scenario for both prisoners (i.e., Nash equilibrium) is for each of them to deny involvement,

earning them the shortest sentence of two-years in prison. But not knowing what the other prisoner

intends to do might deter them from denying the crime.

Figure 2.5: Prisoner’s Dilemma - By cooperation (both denying) a better result could be obtained than
by deciding individually.

Conditions under which the best Nash equilibria can achieve the overall optimum have been

studied extensively, mainly with the intent to quantify the effectiveness of approximation algorithms

and “on-line” algorithms [37]. The term Price of Anarchy (PoA) was used in [4] to refer to the

inefficiency of a system when individuals (i.e., agents) maximize decisions without coordination.

Researchers have continued using this term to refer to the efficiency-loss ratio described above.

A general framework for investigating the feasibility of non-cooperative resource allocation

and designing desirable utility functions, utilizing a game-theoretic perspective and the concept of

distributed welfare game, was presented by Marden and Wierman [16]. A distributed welfare game
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was defined as a non-cooperative resource allocation game with each player’s utility function having

a specific structure. A resource allocation game consists of a set of players N := {1, ..., n} and a

(finite) set of resources R that are to be shared by the players. Each player i ∈ N is assigned

an action set Ai ⊆ 2R and a utility function of the form Ui : A → R. Consider an action profile

a = (a1, a2, . . . , an) ∈ A. Let a−i denote the profile of player actions other than player i. In

distributed welfare games, each player’s utility function is defined as some portion of the welfare,

W (a), and satisfies the following properties:

(i) Ui (a) ≥ 0

(ii)
∑

i∈N Ui (a) ≤ W (a)

Moreover, separable welfare functions are restricted to the form W (a) =
∑

r∈R W r (a). Consider a

distribution rule fi (r, a) for any player i ∈ N , resource r ∈ R and action profile a ∈ A, satisfying

the following properties:

(i) fi (r, a) ≥ 0

(ii) r /∈ ai ⇒ fi (r, a) = 0

(iii)
∑

i∈N fi (r, a) ≤ 1

Then the utility function of each player is restricted to the form Ui (ai, a−i) =
∑

r∈ai
fi (r, a) W

r (a).

Using this definition, the authors explored three different categories of utility functions:

Equally Shared Utilities Ui(ai, a−i) =
∑

r∈ai

(
1∑

j I{r∈aj} W
r (a)

)

Marginal Contribution Utility Ui (ai, a−i) = W r (ai, a−i) −W r
(
a0i , a−i

)
where a0i is the

null (i.e., default) action for player i.

Shapley Value Utility Ui (ai, a−i) =
∑

r∈ai
Shr

i (a
r)

in which, Shr
i (a

r) is referred to as the Shapley value and it is defined as

Shr
i

(
Ñ
)
=

∑
S⊆Ñ :i∈S

(
|Ñ | − 2

)
! (|S| − 1)!

|Ñ |! (W r (S)−W r (S \ {i}))
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The PoA for any distributed welfare game in which players are assigned any of these utility functions

is equal to 1
2 .

The Shapley value utility function was also used by Marden and Roughgarden in [5] for the

vehicle to target assignment problem. This work was an application of their main research in the

area of routing traffic on the Internet, in which users act selfishly without an overarching authority

regulating network operations. Roughgarden and Tardos [6] considered a model of selfish routing

in which the latency on an edge of the network is a function of the edge congestion, and network

users are assumed to selfishly route traffic on minimum latency paths. Using this model, the price

of anarchy for linear edge latency functions was determined. Roughgarden [7] extended this work by

determining the PoA for a common set of edge latency functions (e.g., quadratic, cubic functions).

Finally, the price of fairness is defined by Bertsimas, Farias and Trichakis [8] as a measure

of the relative system efficiency loss under a ‘‘fair’’ allocation compared to the one that maximizes

the sum of player utilities.

POF (U ;S) =
SY STEM(U)− FAIR(U ;S)

SY STEM(U)

where U is the utility set and S the fairness scheme. Be definition, SY STEM(U) is the sum of

the utilities of the players. The price of fairness is then a value between 0 and 1. Two fairness

schemes were discussed in this work: proportional fairness and max-min fairness, which maximizes

the minimum utility that all players derive. Although its definition is slightly different and more

restrictive than the PoA above, it is of interest in the study of decentralized systems, particularly for

cooperative control of UAV systems in which a balance utilization of available resources is of interest.

PoA assumes a formulation of the problem as a non-cooperative game and, moreover, selfish behavior

of players. In the design of decentralized cooperative control algorithms, both approaches should be

considered. As will be discussed in Chapter 7, a categorization of UAVs’ missions may highlight the

applicability of these type of utility functions and criteria on the design of the decentralized systems

in order to minimize the efficiency loss when compared to the centralized framework.



Chapter 3

An Entropy-based Relative Rating

System for Potential Information

Gain

3.1 Introduction

In this chapter, Potential Information Gain Maps, or simply Information Gain Maps (IGMs), are

defined. An IGM is a characterization of subareas in the Area of Operation (AO) based on its

potential to have information about relevant features that may address information deficits for a

mission. Relevant features for an information deficit as well as the deficits identified for a mission

are assumed to be known. The area of operation is represented as a discrete set of grid cells. A

numerical value, its potential information gain, is associated with each cell. When considering an

IGM, a higher value represents a higher opportunity to obtain relevant information from a cell in

the AO to address one or more deficits. A rating and ranking system is defined to generate IGMs.

As will be discussed in Chapter 4, IGMs are a main input to the mathematical programming model

for the cooperative control of multiple autonomous vehicles collecting information for a mission.

21
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3.2 Information, Entropy and Other Terms Defined

Information is a very difficult and broad concept to be defined in a single definition [40]. Information

theory, for example, is based on probability theory and statistics. For this paradigm, information

in a random variable is referred to as entropy. Entropy is a measure of the amount of information

required on the average (i.e., a measure of the uncertainty) to describe the random variable. Others

define information as ‘‘facts provided or learned about something or someone’’ [41]. While defining

IGMs, both concepts will be applied. A set of facts, or features, are assumed to be related a priori

to each information deficit. Moreover, the probability of each feature occurring on each subarea of

the AO is assumed to be known. This information may be provided by Subject Matter Experts

(SMEs) or gathered from a probabilistic framework modeling these features and the conditions in

the area of interest.

Mathematically, the entropy H(X) of a discrete random variable X is defined by

H(X) = H(p) = −
∑
x∈X

p(x) log2(p(x)) (3.1)

For example, the graph of H(p) for the Bernoulli random variable X defined in Equation (3.2) is

shown in Figure 3.1.

X =

⎧⎨
⎩

1 with probability p

0 with probability 1 - p
(3.2)

The concept of entropy and Equation (3.1) are used in the rating system defined in Section 3.4. Let

Xjk be a Bernoulli random variable as defined in Equation (3.2) where pjk refers to the probability

of feature j be found in cell k. Figure 3.1 provides insights into the benefits of using H(p) as the

basis for the rating system. For a particular feature j on cell k:

(1) as pjk → 0, knowledge about feature j on cell k is actually increasing (i.e., it is unlikely that

cell k contains information about feature j) so the opportunity to gain information decreases ,

(2) similarly, as pjk → 1, knowledge about feature j on cell k is also increasing (i.e, it is likely that

cell k contains information about feature j) so the opportunity to gain information decreases.

Moreover, from [40], H(p) ≥ 0 and is concave in p, characteristics that will prove beneficial while
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Figure 3.1: Entropy function H(p) for the Bernoulli random variable X

defining the statistics and scoring function for the rating system. In Section 3.3 different rating

methods are described. Key to these methods are the scoring mechanism selected to establish the

comparison among the items being rated.

3.3 Rating and Ranking Systems

A rating assigns a numerical score to each item in a set. A rating list, when sorted, creates a

ranking list [42]. Rating and ranking are everywhere in our daily lives, from presidential elections

[42], to sports leagues [43], to information retrieval systems [44]. The ranking system on each of

these applications requires a deep understanding of the relevant factors that should be considered

to design an effective rating criteria.

In 1997, Massey [45] created a method for ranking college football teams. The fundamental

philosophy of this method is summarized by the idea that the difference in the ratings of two teams i

and j, ideally, predicts the margin of victory in a game between these two teams. This is represented

with the following equation,

ri − rj = yk, (3.3)



Chapter 3. An Entropy-based Relative Rating System for Potential Information Gain 24

where yk is the margin of victory for game k, and ri and rj are the rating of teams i and j,

respectively. Massey defined a least squares system relating these variables as

Mr = p (3.4)

where M is the n × n Massey matrix, r is the n × n vector of unknown ratings, and p is a n × 1

vector of cumulative point differentials. n is the number of teams in the college football league. M

is formed by using the fact that diagonal elements Mii are the total number of games played by

team i and the off-diagonal element Mij , for i �= j, is the negation of the number of games played

by team i against team j. Massey’s method has been applied in the Bowl Champion Series (BCS)

to select the National Collegiate Athletic Association (NCAA) football bowl matchups.

In 2002, Colley [46] wrote about a new method for ranking sports teams. To obtain the

Colley rating vector r, the system Cr = b is solved, where C is a n × n real, symmetric, positive

definite matrix. C is called the Colley matrix and it is defined by

Cij =

⎧⎨
⎩

2 + ti, i = j,

−nij i �= i

where

ti is the total number of games played by team i,

nij is the number of times teams i and j faced each other,

bn×1 is the right-hand side vector and bi = 1 + 1
2 (wi − li),

wi is the total number of wins accumulated by team i,

li is the total number of losses accumulated by team i, and

n is the number of teams.

Some properties of the Colley method include:

• Ratings are generated using only win-loss information and not point score data. The ratings

are considered bias-free as they are unaffected by score differentials.

• The Colley ratings follow a conservation property in which the average of all ratings is 1
2 .
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The Massey and the Colley methods are related by the Equation 3.5:

C = 2I+M (3.5)

The reader is referred to [42] for the details of the derivation of this equation.

Keener [47] proposed a rating method relating the rating for a given team to the absolute

strength of the team. The strength of a team should be based on its interactions with opponents,

together with the strength of these opponents. The rating for each team should be uniformly

proportional to the strength of the team. Mathematically, if si and ri are the strength and rating

values for team i respectively, then there should be a proportionality constant λ such that si = λri,

and λ must have the same value for each team. Keener’s method was updated and evaluated as the

rating framework to define the relative potential information gain for each information deficit in an

IGM.

The concept of entropy has been applied in information retrieval while selecting the words

to be used to characterize a document [48]. Given this characterization, relevant documents are

identified for a given search query.

3.4 Computing Potential Information Gain Maps

Consider a deficit (or any combination of them) on a mission, consisting of multiple features describ-

ing the relevant information to address it. The probability of each feature occurring on each subarea

(a cell) of the AO is assumed to be known. The AO is discretized by a number of rows× columns.

The total number of cells K = rows×columns. Each cell in the resulting grid will be indexed as k or

k′, where k, k′ ∈ K as shown in Figure 3.2. The relative priority of each cell k in the AO to address

the information deficits of the mission will be determined. Assuming an information gathering asset

can collect information on any cell in the AO, the most uncertain cell about an information deficit

provides the highest potential to gather relevant information about that deficit. The defined rating

system should then rank this cell highest (and hence have the highest rating) on the list of cells

to evaluate while obtaining information about that deficit. Moreover, while aggregating multiple

deficits into the computation of the IGM, the rating system should preserve the relative priority of

each deficit in the mission.
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Figure 3.2: Definition of Cell Index k for the Discretization of AO

A tournament in which cells will be ranked based on an assessment of their potential to

contain the information requested will be establish to represent an IGM. The concept of strength

in Keener’s method and the rating algorithm defined around it, will be updated and applied to the

defined rating system. This rating system will be compared to the Colley’ rating method described

in Section 3.3 applied to this domain.

Let the value of the statistic when cell k is compared to cell k′ be ak,k′ . Using Keener’s

proposed definition for this statistic, ak,k′ is defined as

ak,k′ =
Sk,k′ + 1

Sk,k′ + Sk′,k + 2
(3.6)

The key of the rating system is then the definition of Sk,k′ , the score of cell k when compared

to cell k′. The defined scoring function is based on the entropy function shown in Figure 3.1. Let this

function be represented by H(pjk) and defined by Equation (3.1), where pjk refers to the probability

that feature j will be found in cell k. Then,

Sk,k′ = (K − 1) ·max

⎧⎨
⎩

J∑
j=1

wj (H(pjk)−H(pjk′)), 0

⎫⎬
⎭ (3.7)

where wj is a predefined priority on feature j. Priorities wj can be defined based on the mission
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objectives. J is the total number of features under consideration.

wj ≥ 0, ∀j ∈ J (3.8)

∑
j∈J

wj = 1 (3.9)

As described above, K is the number of cells in the discretized representation of the AO. Sk,k′ is a

measure on the differential in uncertainty between cells k and k′. The defined scoring function in

Equation (3.7) meets all constraints required by Keener’s method in [47]. These constraints are:

1. Nonnegativity. The statistic ak,k′ is a nonnegative number so that A ≥ 0 is a nonnegative

matrix. From Equation (3.6) - Equation (3.9) it is easy to see that this constraint is met.

2. Irreducibility. This constraint requires that the items being compared are ‘‘connected’’ by

a series of past comparisons involving other items. In the case of a sports tournament for

example, not all teams will have the opportunity to play each other. However, this constraint

requires a series of games between other teams so a comparison between i and j is possible.

For the definition of IGMs, all cells are compared against each other so this constraint is met.

3. Primitivity. More restrictive than irreducibility, this constraint requires that all cells are

connected by the same number of comparisons. This is equivalent to Ap > 0 for some power

p. Similar to the above discussion on irreducibility, there are K − 1 comparisons for each cell

in the application of this method so this constraint is also met.

Using the ak,k′ defined using Equation (3.6) - Equation (3.9), consider the matrix

A = [ak,k′ ]K×K ,where K is the number of cells in the AO.

Assuming rk is the (so far, unknown) rating of cell k, and using Keener’s terminology for strength

and rating, the relative strength of cell k compared to cell k′ is defined as

sk,k′ = ak,k′ rk
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The absolute strength of cell k can be defined as

sk =

K∑
k′=1

sk,k′ =

K∑
k′=1

ak,k′ rk

Letting s and r be the strength and rating vectors, respectively.

s =

⎛
⎜⎜⎜⎜⎜⎜⎝

∑K
k=1 a1,k rk∑K
k=1 a2,k rk

...∑K
k=1 aK,k rk

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a1,1 a1,2 · · · a1,K

a2,1 a2,2 · · · a2,K
...

...
. . .

...

aK,1 aK,2 · · · aK,K

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

r1

r2
...

rk

⎞
⎟⎟⎟⎟⎟⎟⎠

= Ar

Following the assumption that the rating for each team should be uniformly proportional

to the strength of the team,

Ar = λr (3.10)

In [42], Equation (3.10) is referred to as “the keystone of Keener’s method”. From Equa-

tion (3.10), the rating vector r is then the eigenvector associated with the maximum eigenvalue of

A. The rating vector r is normalized as

r̃ = r/
K∑
k

rk (3.11)

r̄ = r̃/max
k∈K

{r̃k} (3.12)

Equation (3.6) - Equation (3.12) constitute the rating method used to compute IGMs. This will be

referred to as the Modified Keener’s Method in this dissertation.

3.5 Results

A mission consisting of 2 information deficits is used to illustrate the computation of IGMs. The

mission is over an area represented by a discrete 10 × 10 grid set. Each information deficit is

represented by a set of features: for information deficit 1, two features are being monitored; for

information deficit 2, three features are being monitored. For each information deficit, the features

are equally weighted in Equation (3.6): w1 = w2 = 1
2 for information deficit 1, w1 = w2 = w3 = 1

3
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for information deficit 2. Table 3.1 and Table 3.2 capture the probabilities of feature 1 and feature

2 from information deficit 1 occurring on each cell of the mission area, respectively. Similarly,

Table 3.3, Table 3.4 and Table 3.5 capture the probabilities of feature 1, feature 2 and feature 3

from information deficit 2 occurring on each cell of the mission area, respectively. A heat map of

the probabilities for each feature is shown in Figure 3.3 - Figure 3.7.

Table 3.1: Probability of Feature 1 of Information Deficit 1 Occurring in the AO

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005 0.0005 0.0004 0.0002 0.0001
7 0.0000 0.0001 0.0005 0.0013 0.0025 0.0036 0.0037 0.0027 0.0014 0.0005
6 0.0001 0.0006 0.0024 0.0066 0.0132 0.0188 0.0192 0.0140 0.0074 0.0028
5 0.0004 0.0023 0.0089 0.0247 0.0491 0.0700 0.0715 0.0523 0.0274 0.0103
4 0.0011 0.0061 0.0238 0.0660 0.1312 0.1869 0.1908 0.1395 0.0731 0.0275
3 0.0022 0.0117 0.0455 0.1262 0.2509 0.3574 0.3649 0.2669 0.1399 0.0525
2 0.0030 0.0161 0.0623 0.1729 0.3438 0.4898 0.5000 0.3657 0.1917 0.0720
1 0.0029 0.0158 0.0612 0.1698 0.3376 0.4810 0.4910 0.3591 0.1882 0.0707

1 2 3 4 5 6 7 8 9 10

Figure 3.3: Heat Map of Probabilities for Information Deficit 1 - Feature 1 in AO

For this example, three IGMs will be computed:

1. An IGM representing the potential information gain only considering the features of informa-
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Table 3.2: Probability of Feature 2 of Information Deficit 1 Occurring in the AO

10 0.0006 0.0041 0.0210 0.0765 0.1996 0.3732 0.5000 0.4800 0.3301 0.1627
9 0.0005 0.0039 0.0198 0.0720 0.1879 0.3513 0.4706 0.4517 0.3107 0.1531
8 0.0004 0.0026 0.0133 0.0486 0.1267 0.2369 0.3174 0.3046 0.2095 0.1033
7 0.0002 0.0013 0.0064 0.0235 0.0612 0.1145 0.1534 0.1472 0.1013 0.0499
6 0.0001 0.0004 0.0022 0.0081 0.0212 0.0396 0.0531 0.0510 0.0351 0.0173
5 0.0000 0.0001 0.0006 0.0020 0.0053 0.0098 0.0132 0.0126 0.0087 0.0043
4 0.0000 0.0000 0.0001 0.0004 0.0009 0.0017 0.0023 0.0022 0.0015 0.0008
3 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0003 0.0002 0.0001
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 2 3 4 5 6 7 8 9 10

Figure 3.4: Heat Map of Probabilities Information Deficit 1 - Feature 2 in AO

tion deficit 1.

2. An IGM representing the potential information gain only considering the features of informa-

tion deficit 2.

3. An IGM representing the potential information gain aggregating both information deficit 1

and information deficit 2.

IGMs are represented as heat maps as a visualization aid of the resulting rating.

The priority of the different information deficits to the mission may vary. The case of
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Table 3.3: Probability of Feature 1 of Information Deficit 2 Occurring in the AO

10 0.0001 0.0007 0.0026 0.0069 0.0130 0.0177 0.0173 0.0120 0.0060 0.0022
9 0.0005 0.0027 0.0098 0.0261 0.0495 0.0673 0.0656 0.0458 0.0229 0.0082
8 0.0014 0.0072 0.0268 0.0710 0.1347 0.1831 0.1784 0.1246 0.0623 0.0223
7 0.0027 0.0141 0.0523 0.1384 0.2627 0.3572 0.3481 0.2430 0.1216 0.0436
6 0.0038 0.0198 0.0731 0.1935 0.3672 0.4993 0.4865 0.3396 0.1699 0.0609
5 0.0038 0.0198 0.0732 0.1938 0.3677 0.5000 0.4872 0.3401 0.1701 0.0610
4 0.0028 0.0142 0.0525 0.1390 0.2639 0.3588 0.3496 0.2441 0.1221 0.0438
3 0.0014 0.0073 0.0270 0.0715 0.1357 0.1845 0.1797 0.1255 0.0628 0.0225
2 0.0005 0.0027 0.0099 0.0263 0.0500 0.0680 0.0662 0.0462 0.0231 0.0083
1 0.0001 0.0007 0.0026 0.0070 0.0132 0.0179 0.0175 0.0122 0.0061 0.0022

1 2 3 4 5 6 7 8 9 10

Figure 3.5: Heat Map of Probabilities Information Deficit 2 - Feature 1 in AO

equally weighted deficits as well as cases where the deficits are weighted differently is presented

below. To represent this case, let wj in Equation (3.6) be updated to wji where ji refers to feature

j characterizing information deficit i. wji = wj ∗ w̄i where wj remains the priority of feature j and

w̄i is a weighting parameter on information deficit i when it is aggregated with other information

deficits in an IGM. Note that weighting parameter w̄i may represent the relative importance of

gathering information about deficit i for the mission. Let I be the set of information deficits being

aggregated into the IGM

w̄i ≥ 0, ∀i ∈ I (3.13)
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Table 3.4: Probability of Feature 2 of Information Deficit 2 Occurring in the AO

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0003 0.0003
8 0.0000 0.0000 0.0000 0.0001 0.0003 0.0009 0.0017 0.0025 0.0026 0.0020
7 0.0000 0.0000 0.0001 0.0004 0.0017 0.0047 0.0096 0.0140 0.0146 0.0109
6 0.0000 0.0000 0.0003 0.0017 0.0066 0.0186 0.0379 0.0552 0.0576 0.0430
5 0.0000 0.0001 0.0009 0.0047 0.0186 0.0528 0.1072 0.1561 0.1629 0.1218
4 0.0000 0.0002 0.0017 0.0095 0.0377 0.1070 0.2175 0.3167 0.3304 0.2470
3 0.0000 0.0003 0.0025 0.0139 0.0548 0.1555 0.3161 0.4602 0.4802 0.3590
2 0.0000 0.0003 0.0026 0.0144 0.0571 0.1620 0.3291 0.4792 0.5000 0.3738
1 0.0000 0.0003 0.0019 0.0108 0.0426 0.1208 0.2456 0.3576 0.3731 0.2789

1 2 3 4 5 6 7 8 9 10

Figure 3.6: Heat Map of Probabilities Information Deficit 2 - Feature 2 in AO

∑
i∈I

w̄i = 1 (3.14)

The Modified Keener’s method (i.e., Equation 3.6 - Equation 3.14) will be used to define

the IGMs. The resulting IGMs will be compared to the rating obtained while using Colley’s method

described in Section 3.3. For the Colley’s rating method, the following values were defined:

K = number of cells = 100

tk = total number of cells compared to cell k = K − 1

nk,kp = number of times cells k and k′ were compared to each other = number of features
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Table 3.5: Probability of Feature 3 of Information Deficit 2 Occurring in the AO

10 0.0001 0.0007 0.0040 0.0168 0.0501 0.1071 0.1641 0.1801 0.1417 0.0798
9 0.0002 0.0014 0.0079 0.0329 0.0983 0.2101 0.3219 0.3533 0.2778 0.1566
8 0.0002 0.0019 0.0111 0.0463 0.1381 0.2953 0.4524 0.4965 0.3905 0.2200
7 0.0002 0.0019 0.0112 0.0466 0.1391 0.2974 0.4555 0.5000 0.3932 0.2216
6 0.0002 0.0014 0.0081 0.0336 0.1004 0.2146 0.3287 0.3608 0.2837 0.1599
5 0.0001 0.0007 0.0042 0.0174 0.0519 0.1109 0.1699 0.1865 0.1467 0.0827
4 0.0000 0.0003 0.0015 0.0064 0.0192 0.0411 0.0630 0.0691 0.0543 0.0306
3 0.0000 0.0001 0.0004 0.0017 0.0051 0.0109 0.0167 0.0183 0.0144 0.0081
2 0.0000 0.0000 0.0001 0.0003 0.0010 0.0021 0.0032 0.0035 0.0027 0.0015
1 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0004 0.0005 0.0004 0.0002

1 2 3 4 5 6 7 8 9 10

Figure 3.7: Heat Map of Probabilities Information Deficit 2 - Feature 3 in AO

Sck,k′,j = H(pjk)−H(pjk′) = scoring function based on the difference of entropy values on

cell k and k′, for feature j

wk= number of times Sc(k, k′, j) > 0

lk = number of times Sc(k, k′, j) < 0

Note that different scoring functions Sc(k, k′, j) for Colley’s method could be defined to compare

the cells in the AO. All IGMs were computed using MATLAB R2011B [49].

Table 3.6 shows the resulting potential information gain values for the IGM of information
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deficit 1 applying the Modified Keener’s and Colley’s methods. Figure 3.8 shows the IGM repre-

senting the potential information gain for information deficit 1 using the Modified Keener’s method.

Similarly, Figure 3.9 shows the IGM representing the potential information gain for information

deficit 1 using Colley’s method.

Figure 3.8: Information Gain Map for Information Deficit 1 Using Modified Keener’s Method
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Figure 3.9: Information Gain Map for Information Deficit 1 Using Colley’s Method
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Table 3.6: Potential Information Gain for Information Deficit 1

Cell
IGM Value

Cell
IGM Value

Modified Modified
Keener’s Method Colley’s Method Keener’s Method Colley’s Method

1 0.0917 0.2376 51 0.0638 0.2673
2 0.1849 0.3020 52 0.0747 0.3812
3 0.3848 0.3713 53 0.1143 0.4604
4 0.6498 0.4406 54 0.2085 0.5495
5 0.8794 0.4950 55 0.3575 0.6188
6 0.9968 0.5396 56 0.4965 0.6535
7 0.9983 0.5594 57 0.5635 0.6782
8 0.9112 0.5297 58 0.5133 0.6535
9 0.6909 0.4802 59 0.3814 0.6089
10 0.4231 0.4109 60 0.2385 0.5495
11 0.0922 0.2525 61 0.0643 0.2574
12 0.1867 0.3218 62 0.0791 0.3614
13 0.3896 0.4059 63 0.1338 0.4505
14 0.6573 0.5000 64 0.2589 0.5347
15 0.8889 0.5495 65 0.4356 0.5941
16 0.9991 0.6040 66 0.6007 0.6436
17 1.0000 0.6238 67 0.6951 0.6683
18 0.9223 0.5990 68 0.6631 0.6337
19 0.7004 0.5446 69 0.5348 0.5891
20 0.4289 0.4703 70 0.3621 0.5396
21 0.0846 0.2376 71 0.0666 0.2475
22 0.1592 0.3515 72 0.0926 0.3416
23 0.3230 0.4307 73 0.1791 0.4356
24 0.5581 0.5248 74 0.3505 0.4950
25 0.7872 0.5990 75 0.5749 0.5545
26 0.9179 0.6337 76 0.7803 0.6139
27 0.9318 0.6535 77 0.8768 0.6337
28 0.8121 0.6238 78 0.8535 0.6040
29 0.5939 0.5743 79 0.7363 0.5842
30 0.3520 0.4901 80 0.5146 0.5198
31 0.0743 0.2673 81 0.0689 0.2178
32 0.1195 0.3663 82 0.1053 0.3069
33 0.2314 0.4604 83 0.2195 0.3960
34 0.4126 0.5495 84 0.4316 0.4653
35 0.5902 0.6188 85 0.6935 0.5297
36 0.7298 0.6584 86 0.9047 0.5792
37 0.7508 0.6881 87 0.9825 0.5990
38 0.6354 0.6535 88 0.9752 0.5842
39 0.4628 0.6188 89 0.8505 0.5446
40 0.2615 0.5446 90 0.6221 0.4901
41 0.0666 0.2624 91 0.0693 0.2178
42 0.0874 0.3614 92 0.1076 0.2822
43 0.1481 0.4752 93 0.2269 0.3515
44 0.2648 0.5594 94 0.4459 0.4158
45 0.4162 0.6188 95 0.7140 0.4802
46 0.5530 0.6683 96 0.9248 0.5347
47 0.5909 0.6881 97 0.9847 0.5594
48 0.5052 0.6485 98 0.9827 0.5396
49 0.3526 0.6188 99 0.8775 0.5000
50 0.2023 0.5495 100 0.6454 0.4505
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Two clusters of high potential information gain are recognized from Figure 3.8: (1) around

cells 87, 88, 97 and 98, and (2) around cells 6, 7, 16 and 17. These cells are the most uncertain cells

from the features characterizing information deficit 1 (see Table 3.1 and Table 3.2). Note that for

this case, the rating defined by Colley’s method identifies an area of relatively high value cells (rating

> 0.60) for this IGM, between the two areas of the most uncertain cells. However, although the

area with relatively high potential gain value extends to the areas most uncertain of this information

deficit, it does not rate cells 6, 7, 16, 17, 87, 88, 97 and 98 as high.

Table 3.7 shows the resulting potential information gain values for the IGM of information

deficit 2 applying the Modified Keener’s and Colley’s methods. Figure 3.10 shows the IGM repre-

senting the potential information gain for information deficit 2 using Keener’s method. Similarly,

Figure 3.11 shows the IGM representing the potential information gain for information deficit 2

using Colley’s method.

Figure 3.10: Information Gain Map for Information Deficit 2 Using Modified Keener’s Method
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Figure 3.11: Information Gain Map for Information Deficit 2 Using Colley’s Method
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Table 3.7: Potential Information Gain for Information Deficit 2

Cell
IGM Value

Cell
IGM Value

Modified Modified
Keener’s Method Colley’s Method Keener’s Method Colley’s Method

1 0.0405 0.0745 51 0.0474 0.1407
2 0.0427 0.1407 52 0.0764 0.3129
3 0.0536 0.2169 53 0.1756 0.4884
4 0.0904 0.2964 54 0.3704 0.6142
5 0.1737 0.3791 55 0.6066 0.7334
6 0.2983 0.4520 56 0.8168 0.8262
7 0.4210 0.4818 57 0.9616 0.8526
8 0.4832 0.4884 58 0.9812 0.8493
9 0.4690 0.4520 59 0.8150 0.7964
10 0.4008 0.3758 60 0.5290 0.6805
11 0.0413 0.0977 61 0.0457 0.1308
12 0.0465 0.1970 62 0.0685 0.2666
13 0.0675 0.2997 63 0.1494 0.4354
14 0.1318 0.4321 64 0.3319 0.5877
15 0.2613 0.5182 65 0.5895 0.6838
16 0.4428 0.6043 66 0.8077 0.7897
17 0.5975 0.6308 67 0.8955 0.8195
18 0.6157 0.6242 68 0.8503 0.8195
19 0.5625 0.5977 69 0.7091 0.7599
20 0.4846 0.5050 70 0.4747 0.6474
21 0.0428 0.1109 71 0.0434 0.0911
22 0.0538 0.2334 72 0.0576 0.2169
23 0.0955 0.4023 73 0.1117 0.3692
24 0.2009 0.5315 74 0.2464 0.5083
25 0.3831 0.6242 75 0.4638 0.6043
26 0.6028 0.6937 76 0.6677 0.7070
27 0.7693 0.7268 77 0.7432 0.7401
28 0.7720 0.7368 78 0.6857 0.7334
29 0.6830 0.6904 79 0.5835 0.6871
30 0.5458 0.6010 80 0.3968 0.5811
31 0.0452 0.1341 81 0.0416 0.0613
32 0.0648 0.2798 82 0.0491 0.1573
33 0.1323 0.4454 83 0.0776 0.2666
34 0.2820 0.5844 84 0.1554 0.3825
35 0.4945 0.6970 85 0.2949 0.4917
36 0.7155 0.7599 86 0.4577 0.5844
37 0.8922 0.7997 87 0.5422 0.6109
38 0.9259 0.7997 88 0.5238 0.6043
39 0.7993 0.7467 89 0.4375 0.5646
40 0.5743 0.6374 90 0.2935 0.4520
41 0.0472 0.1474 91 0.0406 0.0414
42 0.0749 0.3195 92 0.0436 0.1109
43 0.1679 0.5017 93 0.0570 0.1838
44 0.3461 0.6341 94 0.0934 0.2666
45 0.5628 0.7434 95 0.1627 0.3460
46 0.7722 0.8063 96 0.2525 0.4089
47 0.9490 0.8460 97 0.3223 0.4387
48 1.0000 0.8394 98 0.3289 0.4387
49 0.8456 0.7864 99 0.2694 0.3924
50 0.5628 0.6805 100 0.1880 0.3195



Chapter 3. An Entropy-based Relative Rating System for Potential Information Gain 40

The IGM generated using the modified Keener’s method for information deficit 2 rated cells

47 and 57 as the highest. This cluster, including the adjacent cells, correspond to the most uncertain

cells of features 1 and 3 on information deficit 2. A rating greater than 0.60 was assigned to cells

where feature 2 was most uncertain, a relatively high potential information gain but not as high as

the cells were information collection could address multiple features. Similar for information deficit

1, a single cluster of high potential gain around the uncertain areas of the features of information

deficit 2 is recognized by Colley’s method.

For the third case, information deficits were combined into a single IGM to obtain an

overall representation of the potential information gain for the mission. First, both deficits were

equally weighted ( i.e., w̄1 = w̄2 = 0.5). Table 3.8 shows the resulting potential information gain

values for this IGM applying Modified Keener’s and Colley’s methods. For this case, areas of high

potential information gain from the IGM for information deficit 1 (Figure 3.8) are expected to

also be highlighted when the combined IGM is computed. Similarly, the areas of high potential

information gain from the IGM for information deficit 2 (Figure 3.10) are also expected to be

highlighted in the IGM in which all deficits are considered simultaneously. From Figure 3.12, the

IGM generated by the rating system leveraging Keener’s method clearly identifies the two areas ((1)

around cell 77 and (2) around cell 27) where gain for individual deficits were identified. A third

area between these two high potential information gain is also recognized from Figure 3.12. Ratings

from Colley’s method concentrated the potential information gain from all features evaluated around

this area (Figure 3.13). However, even this rating is not as high as any of the ratings obtained in

the three main areas identified from the Modified Keener’s Method. The ability to rank highest

all the cells with relatively high potential information gain from all the features considered is an

important characteristic of IGMs since, as the basis for the routing of collection assets maximizing

information gain, preserving the potential gain for all deficits that could be addressed by the same

sensor capabilities (e.g., imagery, signals, etc.) is key. This will be described in detail in Chapter 4.
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Figure 3.12: Information Gain Map for Information Deficits 1,2 Using Modified Keener’s Method

Figure 3.13: Information Gain Map for Information Deficits 1,2 Using Colley’s Method
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Table 3.8: Potential Information Gain for Combination of Equally Weighted Information Deficits

Cell
IGM Value

Cell
IGM Value

Modified Modified
Keener’s Method Colley’s Method Keener’s Method Colley’s Method

1 0.0649 0.1384 51 0.0572 0.1902
2 0.1110 0.2042 52 0.0836 0.3396
3 0.2204 0.2779 53 0.1761 0.4771
4 0.3918 0.3536 54 0.3608 0.5886
5 0.5622 0.4253 55 0.5875 0.6882
6 0.6844 0.4871 56 0.7797 0.7580
7 0.7736 0.5129 57 0.8973 0.7839
8 0.7779 0.5050 58 0.8857 0.7719
9 0.6516 0.4631 59 0.7167 0.7221
10 0.4709 0.3894 60 0.4596 0.6285
11 0.0657 0.1584 61 0.0562 0.1803
12 0.1146 0.2460 62 0.0792 0.3038
13 0.2340 0.3416 63 0.1642 0.4412
14 0.4318 0.4592 64 0.3549 0.5667
15 0.6416 0.5309 65 0.6204 0.6484
16 0.8008 0.6046 66 0.8528 0.7321
17 0.9022 0.6285 67 0.9569 0.7600
18 0.8761 0.6145 68 0.9100 0.7460
19 0.7175 0.5767 69 0.7385 0.6922
20 0.5258 0.4910 70 0.4814 0.6046
21 0.0633 0.1604 71 0.0557 0.1524
22 0.1061 0.2799 72 0.0768 0.2659
23 0.2230 0.4133 73 0.1562 0.3954
24 0.4348 0.5289 74 0.3421 0.5030
25 0.6860 0.6145 75 0.6254 0.5847
26 0.8920 0.6703 76 0.8846 0.6703
27 1.0000 0.6982 77 0.9858 0.6982
28 0.9380 0.6922 78 0.9341 0.6823
29 0.7449 0.6444 79 0.7720 0.6464
30 0.5295 0.5568 80 0.5148 0.5568
31 0.0602 0.1863 81 0.0556 0.1225
32 0.0951 0.3137 82 0.0766 0.2161
33 0.2025 0.4512 83 0.1511 0.3177
34 0.4097 0.5707 84 0.3195 0.4153
35 0.6610 0.6663 85 0.5716 0.5070
36 0.8694 0.7201 86 0.8054 0.5827
37 0.9862 0.7560 87 0.8958 0.6066
38 0.9448 0.7420 88 0.8716 0.5966
39 0.7549 0.6962 89 0.7457 0.5568
40 0.5088 0.6006 90 0.5089 0.4671
41 0.0583 0.1922 91 0.0552 0.1106
42 0.0882 0.3357 92 0.0743 0.1783
43 0.1877 0.4910 93 0.1407 0.2500
44 0.3775 0.6046 94 0.2822 0.3257
45 0.6014 0.6942 95 0.4808 0.3994
46 0.7903 0.7520 96 0.6552 0.4592
47 0.9141 0.7839 97 0.7325 0.4871
48 0.9048 0.7639 98 0.7311 0.4791
49 0.7308 0.7201 99 0.6367 0.4353
50 0.4752 0.6285 100 0.4482 0.3715
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Figure 3.14 shows an IGM where information deficit 1 and 2 were combined with the follow-

ing weighting: w̄1 = 3
4 and w̄2 = 1

4 . Table 3.9 shows the resulting potential information gain values

for this IGM applying the Modified Keener’s method. Figure 3.15 also shows an IGM of information

deficit 1 and 2 combined, but with a different weighting: w̄1 = 1
4 and w̄2 = 3

4 . Table 3.10 shows the

resulting potential information gain values for this IGM applying the Modified Keener’s method.

For the case in which w̄1 > w̄2, the resulting IGM is very similar to the IGM generated when only

the features of information deficit 1 were considered (Figure 3.8) and two high potential gain areas

are identified. Rating of cells increased due to contributions of the features of information deficit 2.

Following the same pattern, for the case in which w̄1 < w̄2, the resulting IGM is very similar to the

IGM generated when only the features of information deficit 2 were considered. The high potential

information gain area identified in Figure 3.10 is extended north and south due to the uncertainty

of the features of information deficit 1 on cells 27, 28, 89 and 90.

Figure 3.14: Information Gain Map for Information Deficit 1 and 2, with w1 = 3
4
and w2 = 1

4
, using

Modified Keener’s Method
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Table 3.9: Potential Information Gain for the Weighted Combination of Information Deficit 1, w̄1 = 3
4
and

Information Deficit 2, w̄2 = 1
4

Cell
IGM Value

Cell
IGM Value

Modified Modified
Keener’s Method Keener’s Method

1 0.0755 51 0.0591
2 0.1428 52 0.0789
3 0.2925 53 0.1486
4 0.5091 54 0.2942
5 0.7037 55 0.4859
6 0.8178 56 0.6532
7 0.8763 57 0.7480
8 0.8451 58 0.7189
9 0.6747 59 0.5654
10 0.4517 60 0.3583
11 0.0762 61 0.0587
12 0.1458 62 0.0782
13 0.3032 63 0.1500
14 0.5380 64 0.3125
15 0.7598 65 0.5427
16 0.8977 66 0.7515
17 0.9614 67 0.8550
18 0.9132 68 0.8144
19 0.7174 69 0.6552
20 0.4861 70 0.4281
21 0.0715 71 0.0594
22 0.1287 72 0.0827
23 0.2697 73 0.1659
24 0.4985 74 0.3486
25 0.7471 75 0.6141
26 0.9291 76 0.8594
27 1.0000 77 0.9687
28 0.9054 78 0.9277
29 0.6876 79 0.7696
30 0.4567 80 0.5182
31 0.0653 81 0.0604
32 0.1050 82 0.0882
33 0.2161 83 0.1814
34 0.4169 84 0.3738
35 0.6479 85 0.6374
36 0.8273 86 0.8696
37 0.9034 87 0.9573
38 0.8257 88 0.9393
39 0.6299 89 0.8080
40 0.4011 90 0.5666
41 0.0609 91 0.0603
42 0.0870 92 0.0878
43 0.1706 93 0.1786
44 0.3313 94 0.3579
45 0.5269 95 0.5908
46 0.6889 96 0.7806
47 0.7737 97 0.8526
48 0.7295 98 0.8507
49 0.5623 99 0.7494
50 0.3532 100 0.5399
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Table 3.10: Potential Information Gain for the Weighted Combination of Information Deficit 1, w̄1 = 1
4

and information deficit 2, w̄2 = 3
4

Cell
IGM Value

Cell
IGM Value

Modified Modified
Keener’s Method Keener’s Method

1 0.0534 51 0.0536
2 0.0773 52 0.0837
3 0.1397 53 0.1880
4 0.2500 54 0.3910
5 0.3833 55 0.6331
6 0.5109 56 0.8394
7 0.6236 57 0.9730
8 0.6593 58 0.9782
9 0.5847 59 0.8061
10 0.4556 60 0.5232
11 0.0542 61 0.0521
12 0.0812 62 0.0766
13 0.1541 63 0.1664
14 0.2943 64 0.3656
15 0.4737 65 0.6407
16 0.6490 66 0.8747
17 0.7812 67 0.9729
18 0.7766 68 0.9243
19 0.6667 69 0.7591
20 0.5252 70 0.5008
21 0.0539 71 0.0507
22 0.0809 72 0.0688
23 0.1642 73 0.1392
24 0.3346 74 0.3098
25 0.5633 75 0.5772
26 0.7821 76 0.8216
27 0.9218 77 0.9111
28 0.8925 78 0.8532
29 0.7444 79 0.7101
30 0.5596 80 0.4755
31 0.0537 81 0.0497
32 0.0821 82 0.0637
33 0.1757 83 0.1162
34 0.3661 84 0.2458
35 0.6099 85 0.4571
36 0.8320 86 0.6679
37 0.9823 87 0.7572
38 0.9795 88 0.7321
39 0.8153 89 0.6206
40 0.5704 90 0.4160
41 0.0540 91 0.0489
42 0.0849 92 0.0596
43 0.1893 93 0.0996
44 0.3860 94 0.1923
45 0.6168 95 0.3361
46 0.8218 96 0.4783
47 0.9764 97 0.5557
48 1.0000 98 0.5567
49 0.8320 99 0.4751
50 0.5520 100 0.3284
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Figure 3.15: Information Gain Map for Information Deficit 1 and 2, with w̄1 = 1
4
and w̄2 = 3

4
, using

Modified Keener’s Method

As information is collected and exploited (analyzed), the probability of the features on

information deficits might change. When an information deficit for a mission is addressed, the

probability for each associated feature, pjk, is expected to be either 0 or 1. For this case, the relative

priority among the cells in the AO is expected to be uniform, capturing the lack of information to

establish any preference to collect information on a particular cell. The resulting IGM is shown in

Figure 3.16.

Based on the results above, the ability of the Modified Keener’s Method to establish a

relative prioritization on the discretized areas of an AO based on the potential information gain to

address information deficits will be exploited in Chapter 4. IGMs capturing this prioritization for

different information collection requests in support of multiple mission objectives are the basis for

the developed framework for the routing of cooperative assets maximizing overall information gain.
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Figure 3.16: Information Gain Map using the Modified Keener’s Method for an Information Deficit with
pjk ≈ 0 or pjk ≈ 1, ∀j, ∀k



Chapter 4

A Mathematical Programming

Framework for Decentralized

Planning and Control Systems

4.1 Introduction

In this chapter, a Mixed-Integer Linear Program (MILP) to determine the routes of vehicles tasked

to collect information on multiple objectives on a particular Area of Operation (AO) is presented.

The main strategy is based on the discretization of the geographical space and time to represent

the AO and the mission timeline, respectively. The mathematical model exploits the representation

of potential information gain maps discussed in Chapter 3, the effectiveness of the assets collecting

information and an obsolescence rate on the areas visited by the assets. The obsolescence rate

captures the expected freshness on the information for a mission, increasing the information gain

values when collection on a cell has not occurred over time. Each discretized subarea in the AO

is referred to as a ‘‘cell’’. A mission is represented by a set of Information Gain Maps (IGMs),

each capturing the potential information gain for a collection capability (e.g., imagery) required to

accomplish mission objectives (see Figure 4.1), and a number of time-steps defining the planning

horizon.

48
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Figure 4.1: Representation of Collection Requirements for a Mission as Potential Information Gain Maps

A collection asset is represented in the mathematical model as an entity characterized by 3

main components:

1. the platform (also referred to as the vehicle)

2. an on-board sensor suite

3. the communication network

A platform can represent, for example, a manned aircraft, an unmanned ground vehicle or a ship.

Movement of platforms is constrained and it is represented in the mathematical model by the cells

the platform could reach from a given location over a given time horizon.

Collection assets are assumed to be equipped with a fixed set of on-board sensors. This

sensor suite is not modifiable during the actual mission timeline. Each sensor is characterized by

its effectiveness collecting a particular type of information (e.g., imagery) on each cell. Sensor

effectiveness is assumed to be a function of time and the location of the sensor.

The communication network is represented in the MILP by a set of binary variables. Each

binary variable represents a directed communication link between a pair of collection assets. Line-

of-sight is assumed to be required to establish a communication link. A communication link is

assumed to be required so two assets are considered ‘‘connected’’ and can exchange information.
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This constraint is later relaxed as an extension to the model. The range to establish a communication

link is limited.

Each collection asset is responsible for determining its own route plan over the planning

horizon, considering its perspective of the environment and mission objectives. This implies that

the collection asset has the necessary computational resources and authority to make those decisions

autonomously. Note that this assumption does limit the applicability of the developed model and

solution approaches to platforms with on-board computers with sufficient processing power. How-

ever, if decisions about the platform’s routes over the planning horizon occur at a remote location,

the latency to communicate that information to the platform is assumed to be insignificant.

Section 4.2 and Section 4.3 present the parameters and main decision variables defined in

the mathematical model, respectively. Section 4.4 describes in detail the objective function and

constraints in the MILP. Finally, in Section 4.5, a pictorial representation of the solutions obtained

from the mathematical model for a simulated scenario is described. Solutions to this simulation

were obtained by solving the MILP using CPLEX Interactive Optimizer 12.2 [50].

4.2 Mathematical Model Parameters

The following parameters are defined:

I ≡ set of information collection assets

T ≡ set of discrete time-steps in planning horizon

K ≡ set of grid cells in the area of operation

R ≡ set of collection requirements (e.g., collection capabilities required for
the mission)

xik0 ≡
⎧⎨
⎩

1 if information collection asset i is at cell k at the time of planning

0 otherwise

xik,-1 ≡

⎧⎪⎪⎨
⎪⎪⎩

1 if information collection asset i was at cell k a time-step prior
to the time of planning

0 otherwise

ψik′′k′k ≡

⎧⎪⎪⎨
⎪⎪⎩

1 if information collection asset i at cell k′′ at time t− 2 and
at cell k′ at time t− 1 can be assigned to cell k at time t

0 otherwise
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wrt ≡ weight (priority) of collection requirement r at time-step t

frk0 ≡ initial potential information gain from cell k for collection requirement r

ηkk′ ≡ distance between cell k and cell k′, ηkk′ ≥ 0 ∀k, k′ ∈ K

CRi ≡ communication range of information collection asset i, CRi ≥ 0, ∀i ∈ I

ejrkt ≡ effectiveness of information collection asset j on cell k for collection
requirement r at time-step t

Drkt ≡ maximum increase of potential information gain at time t due to obso-
lescence of collected information for requirement r on cell k

M ≡ large-enough constant used in Constraints (4.13), (4.14) and (4.23)

4.3 Mathematical Model Main Decision Variables

The following decision variables are considered in the mathematical program:

xikt =

⎧⎨
⎩

1 if information collection asset i is assigned to cell k at time-step t

0 otherwise

frkt ≡ potential information gain from cell k for collection requirement r at time-step t

drkt ≡ increase in information value (due to obsolescence) of cell k for collection requirement
r at time-step t

grkt ≡ reduction of information value due to the sensor effectiveness of the team of informa-
tion collection assets for collection requirement r from cell k at time-step t

Δijt ≡ distance from information collection asset i to information collection asset j at time-step t

cijt =

⎧⎪⎪⎨
⎪⎪⎩

1 if information collection asset j and information collection asset i are
within communication range at time-step t

0 otherwise
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4.4 Mathematical Model Objective Function and Constraints

4.4.1 Objective Function and Constraints

Consider the following objective for the mathematical formulation

max
∑
r∈R

∑
t∈T

wrt

∑
k∈K

grkt (4.1)

The objective function in equation (4.1) maximizes the overall potential information to be gained

by the set of information collection assets, for all collection requirements over the planning horizon.

4.4.2 Collection Assets Movement Constraints

Movement of collection assets is assumed to be constrained for realistic vehicle kinematics motion.

The following constraints capture this behavior:

∑
k∈K

xikt = 1 ∀i ∈ I, ∀t ∈ T (4.2)

Constraint (4.2) ensures that each information collection asset i is assigned to a (single) cell at each

time-step t. ∑
k∈K

∑
k′

∑
k′′

k,k′,k′′∈K|ψik′′k′k=1

lik′′k′kt = 1 ∀i ∈ I, ∀t ∈ T (4.3a)

lik′′k′kt ≤ xikt + xik′,t−1 + xik′′,t−2

3
∀i ∈ I, ∀k, k′, k′′ ∈ K|ψik′′k′k = 1, ∀t ∈ T (4.3b)

Constraints (4.3) ensure that each information collection asset i is assigned to a cell k that can be

reached at time-step t, given its assignment xik′′,t−2 and xik′,t−1 at times t−2 and t−1, respectively

(see Section 4.2 for the definition of (parameter) ψik′′k′k).
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4.4.3 Potential Information Gain Constraints

As described in Chapter 3, an IGM provides a characterization of the potential information gain

available at a subarea of the AO at a particular time-step. At the time of planning, an initial set

of IGMs, one for each collection requirement r ∈ R, is assumed to be an input parameter (see

Section 4.2) to the mathematical model. Values on these maps need to be updated to account for

the expected information collection from assets and information obsolescence rate on each cell.

Let frkt represent the potential information gain for collection requirement r from cell k at

time-step t. It consists of three components:

frkt ≤ frk,t−1︸ ︷︷ ︸
potential
information
gain at t-1

+ drkt︸︷︷︸
temporal

− grkt︸︷︷︸
geospatial

∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.4)

frkt ≤ 1.0 ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.5)

This relationship is shown in Figure 4.2.

Figure 4.2: Concept of Potential Information Gain Update

In Figure 4.2, the AO is represented as a 3 × 3 grid. Three assets are moving in the area and

cooperatively gathering information in support of the same collection request (thus, one IGM). The
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initial IGM is captured by frk0. IGM values are represented by a heat map in which the color

blue represents low information gain while the color red represents high information gain. For each

time-step, a cell k may decrease its current potential information gain value due to the collection

of assets (e.g., grk1) or increase it due to the decay in the value of previously collected information

(e.g., drk1). Decay of information value is constrained by

drkt ≤ Drkt ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.6)

where Drkt is a constant indicating an upper bound on the decay contribution to the potential

information gain.

In Constraint (4.4), drkt represents a decay on the value of the information on cell k. grk,t−1

represents the assumed gain of information on collection requirement r from cell k from time-step

t− 1 to t. grkt is represented as a set of constraints in the mathematical program as

grkt =
∑
j∈I

gjrkt ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.7)

gjrkt ≤ ejrkt xjkt fjrkt ∀j ∈ I, ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.8)

Constraint (4.7) captures the overall information gain for collection requirement r from the set of

collection assets I at time-step t on cell k. Constraint (4.8) captures the potential information gain

from each collection asset j on cell k at time-step t, as a function of the effectiveness of the assets

collecting information on r, the current potential information gain in cell k and the assignment of

the collection asset to cell k. Note that decision variable fjrkt was introduced in Constraint (4.8) to

capture the perspective of each asset j on cell k from the IGM for collection requirement r at time-

step t. This representation allows the mathematical model to capture the potential information gain

when more than one asset collects information on the same cell and at the same time. Constraint

(4.8) is nonlinear, and can be linearized as seen in Constraints (4.9) - (4.14).

gjrkt ≤ ejrkt ζjrkt ∀j ∈ I, ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.9)
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and

f0rkt = frkt ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.10)

fjrkt = fj−1,rkt − gjrkt ∀j ∈ I, ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.11)

ζjrkt ≤ fj−1,rkt ∀j ∈ J, ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.12)

ζjrkt ≥ fj−1,rkt + (xjkt − 1) M ∀j ∈ I, ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (4.13)

ζjrkt ≤ xjkt M ∀j ∈ I, ∀r ∈ R, ∀k ∈ R, ∀t ∈ T (4.14)

Also, note that grk0 in Constraint (4.4) is

grk0 = 0 ∀r ∈ R, ∀k ∈ K (4.15)

4.4.4 Communication Network Constraints

A communication link between collection assets i and j is possible if collection asset j is located

within the communication range of collection asset i. As captured in Section 4.3, let cijt represent

this communication link between assets i and j at time-step t.

cijt =

⎧⎪⎨
⎪⎩

1 if information collection asset j and information collection asset i are
within communication range at time-step t

0 otherwise

The following constraints are added to the mathematical model:

Δijt =
∑
k

∑
k′

ηkk′ xikt xjk′t ∀i, j ∈ I, j �= i, ∀t ∈ T (4.16)

Constraint (4.16) is nonlinear and can be replaced by the following set of linear constraints,

where the term xikt xjk′t is replaced by the binary variable aikjk′t.

aikjk′t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
if information collection asset i is assigned to cell
k and information collection asset j is assigned to
cell k′ at time-step t

0 otherwise

∀i, jj �=i ∈ I, ∀t ∈ T (4.17)
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Δijt =
∑
k

∑
k′

ηkk′ aikjk′t ∀i, j ∈ I, ∀t ∈ T (4.18)

aikjk′t ≤ xikt ∀i, j ∈ I, ∀k, k′ ∈ K, ∀t ∈ T (4.19)

aikjk′t ≤ xjk′t ∀i, j ∈ I, ∀k, k′, ∀t ∈ T (4.20)

aikjk′t ≥ xikt + xjk′t − 1 ∀i, j ∈ I, ∀k, k′ ∈ K, ∀t ∈ T (4.21)

Decision variable cijt is defined by

cijt =

⎧⎨
⎩

1 if Δijt ≤ CRi

0 otherwise
∀i, j ∈ I, j �= i, ∀t ∈ T (4.22)

Parameters ηkk′ and CRi are defined in Section 4.2. For these communication objectives, consider

the following constraint

Δijt ≤ CRi + (1− cijt)M ∀i, j, ∀t ∈ T (4.23)

where M is a large-enough constant.

Given the equality in Constraint (4.18), Constraint (4.23) forces cijt to be 0 when, at time-

step t, the assets i and j are assigned to cells with a distance between them greater than the

communication radius CRi. Note that Constraint (4.23) by itself does not force cijt to be 1, even

when the distance between assets i and j at time-step t is less than or equal to the communication

radius CRi. Decision variables cijt are forced to be 1 when possible (i.e., Constraint (4.23) is

satisfied) and as needed by the communication network topology (see, for example Constraint (4.24)

for a fully connected communication network.)

The information collection assets in set I are assumed to form a direct communication link

topology. Under this communication network topology, a fully connected network is required among

the assets: each asset is required to have a direct communication link to all other assets in the

network. Figure 4.3 depicts a sample of this network topology for 3 Unmanned Aerial Vehicles

(UAVs).

This can be represented mathematically by
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1

2 3

Figure 4.3: A Fully Connected Communication Network for 3 Collection Assets

∑
i∈Ja

∑
j∈Ja

j �=i

cijt ≥ |Ja|(|Ja| − 1)

2
∀t ∈ T (4.24)

where Ja ⊆ I represents the set of collection assets in a connected component a. It is important

to note that Ja ∩ Ja′, a′ �=a = ∅ and ∪
a
Ja = I. Constraints (4.16) - (4.24) are then added to the

mathematical program of Sections 4.4.1 - 4.4.3 when the fully connected network topology is assumed

for a connected component.

Note: M is a large-enough constant so it enables the behavior described for Constraints (4.13),

(4.14) and (4.23). Thus, from Constraint (4.13), M ≥ fjrkt, from Constraint (4.14), M ≥ ζjrkt, and

from Constraint (4.23), M ≥ CRi. Given that fjrkt ≤ 1.0 and ζjrkt ≤ 1.0,

M ≥ max{max
i∈I

CRi, 1.0} (4.25)

4.5 Pictorial Representation of the Output of the Mathemat-

ical Model

Based on the concepts described in Sections 4.1 - 4.4, a simulation was implemented to show the

applicability and potential of our mathematical programming model to study the influence of decen-

tralization level on solution quality. The assignment of 3 information collection assets was considered,

particularly a set of UAVs, in an area of operation represented by a grid of 5 × 5 cells as shown

in Figure 4.4. It is assumed all UAVs are autonomous, with a single on-board sensor. Assets were

tasked to collect information for a search mission (i.e., R = 1) in which the information value on

each cell represents the likelihood of finding a high value target at that cell. In Figure 4.4, areas
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of low information gain (e.g., the middle of a lake while searching for a car) are denoted by yellow

oval A, while those of high information gain are denoted by yellow oval B. The planning horizon was

assumed to be 5 time-steps.

Three identical UAVs were modeled:

1) On-board sensors are assumed to be radars, having a discretized effectiveness of collecting infor-

mation as shown in Figure 4.5.

2) UAVs can only move in horizontal and vertical directions; no diagonal movement is allowed.

3) All unmanned aerial systems will have the same initial potential information gain map.

1 

3 

2 

Low  Information Gain  

High  Information Gain  

Figure 4.4: Area of operation: (A) represents a low potential information gain area; (B) represents a high
potential information gain area

Values of other relevant parameters during the simulation are captured in Table 4.1.

First, a centralized framework was evaluated in which all information collected by each UAV

is assumed to be available at a ‘‘central’’ controller. This allows optimal coordination of all collection

assets in the area of operation to maximize the information gain for the mission.
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Figure 4.5: Sensor Model (values represent sensor’s discretized effectiveness acquiring the potential infor-
mation of cell)

Table 4.1: Mathematical Program and Experiment Parameters for Model Evaluation

Parameter Value

Mathematical Program

I {1, 2, 3}
T {1, 2, . . . , 5}
K

{1,2,. . . ,25}
(a 5-by-5 grid area)

R {1}

CRi

10
(centralized framework)

0
(decentralized framework)

wrt
1.0

(∀r ∈ R, t ∈ T )

M 10

For this case, in the mathematical programming model, the set I includes all collection assets and

the communication range for each of them, CRi = 10. The routes for each collection asset for this

centralized framework are shown in Figures 4.6, 4.8, 4.10, 4.12, 4.14 for time-steps t = 1, . . . , 5,

respectively. A decentralized framework in which each collection asset is operating independently,
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with no coordination or communication among the team members was also evaluated. For this case,

each unmanned vehicle system is solving the mathematical programing model considering only its

own collection asset. The MILP is solved independently for each asset i in the set I. The routes for

each collection asset for this decentralized framework are shown in Figures 4.7, 4.9, 4.11, 4.13, 4.15

for time-steps t = 1, . . . , 5, respectively.

1 

3 

2 

Figure 4.6: Centralized Solution (t = 1)

1 

2 

3 

Figure 4.7: Decentralized Solution (t = 1)

1 

2 

3 

Figure 4.8: Centralized Solution (t = 2)
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2 

3 

Figure 4.9: Decentralized Solution (t = 2)

From Figures 4.6, 4.8, 4.10, 4.12, 4.14, note how the centralized, coordinated solution, in

general, distributes the UAVs over the area of interest. From t=1 to t =4, UAVs are assigned to

areas in which their sensors’ coverage do not overlap. At time-step = 5, when the sensor coverage of

UAV 1 and 3 overlaps, the potential information gain in the area of operation is relatively constant



Chapter 4. A Programming Framework for Decentralized Planning and Control Systems 61
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3 

Figure 4.10: Centralized Solution (t = 3)

1,2 

3 

Figure 4.11: Decentralized Solution (t = 3)
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Figure 4.12: Centralized Solution (t = 4)
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2 

3 

Figure 4.13: Decentralized Solution (t = 4)

and low (compared to the solution for the decentralized framework at the same time-step, Figure

4.15). For the decentralized solution on Figures 4.7, 4.9, 4.11, 4.13, 4.15, each UAV is trying to

maximize its own potential information gain, with no consideration for the effectiveness of the other

UAVs in the area of operations. In this framework, UAVs tend to travel to the same area of high

potential information gain, including visiting the same cell simultaneously (see Figure 4.11). Note

that the solutions shown are the optimal allocation of UAVs, solving the mathematical programming

model described in Sections 4.2 - 4.4 using CPLEX Interactive Optimizer 12.2 [50].

As shown in this section, the mathematical programming model described in Sections 4.2 -

4.4 define a framework to determine the routes of cooperative assets collecting information, based
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3 

1 

2 

Figure 4.14: Centralized Solution (t = 5)

1 3 

2 

Figure 4.15: Decentralized Solution (t = 5)

on the representation of potential information gain in discretized maps derived in Chapter 3. As is

well-known, there is no polynomial time approximation algorithm for the vehicle routing problem or

traveling salesman problem [51], both directly related to the derived mathematical model. Conse-

quently, the same holds for the derived mathematical formulation. Heuristic and solution approaches

need to be developed to find acceptably good solutions that are computational efficient. This is the

topic discussed in Chapter 5. Extensions to the mathematical program to represent additional op-

erational constraints are discussed in Chapter 6. In Chapter 7, the mathematical program is used

as the framework to evaluate the degradation of solution quality as a centralized system moves to a

decentralized framework considering different communication network topologies.



Chapter 5

Solution Approach to

Mathematical Programming

Framework

5.1 Introduction

Although the mathematical program presented in Chapter 4 provides a framework to define the op-

timal trajectory of autonomous information gathering assets maximizing potential information gain,

it becomes intractable for relative small Area of Operations (AOs) (i.e., number of cells) and mission

timelines (i.e., number of time-steps in the planning horizon). This becomes a research challenge

since routing of assets over relatively large AOs and extensive planning timelines is envisioned. The

solution strategy defined to address this issue consists of solving a set of subproblems using the

same framework described in Chapter 4. Subproblems will be defined using a combination of time

cascades and space aggregation algorithms, described in Section 5.2 and Section 5.3, respectively.

In Section 5.4, an analysis of the impact of the combined time and space aggregation approaches to

the solution quality (i.e., overall information gain) on various scenarios and the time to obtain such

solutions is presented.

63
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5.2 Time Cascade Approach

Consider the definition of routes for a set of cooperative, autonomous information gathering assets

using Equations (4.1) - (4.24) from Chapter 4 over a Planning Horizon (PH). Instead of defining

the complete route for each asset at once, the evaluation of a subset of time-steps at a time is

proposed. This subset of time-steps is referred to as a Rolling Horizon (RH) and it constitutes a

subproblem to be solved using Equations (4.1) - (4.24). While solving this subproblem, the number

of time-steps considered as the planning horizon, T in Section 4.2, is replaced by the rolling horizon.

No other changes are required to define the optimal route of the set of information gathering assets

to maximize the potential information gain within the rolling horizon.

Once the route of each asset is obtained within a RH, only a number of time-steps from the

solution of this subproblem will be considered in the final solution (i.e., the route of each asset). This

subset of time-steps is referred to as a Fixed Window (FW). Note that PH ≥ RH ≥ FW ≥ 1. The

routes for the entire PH are then defined by solving multiple RHs, each solving the routing problem

for a certain number of time-steps. Each stage is referred to as a cascade in this work . Once a

cascade is completed (i.e., a subproblem defined, solved and appropriate steps from the solution

fixed), a new rolling horizon is defined starting from the last fixed time-step in the solution. A new

cascade is then solved. In this approach, subsequent RHs may overlap. This gives the opportunity

to revisit decisions made only with limited information (i.e., the value of potential information gain

from cells outside the rolling horizon in a cascade is not considered). When the RH includes the last

time-step in the PH, the solution from that subproblem completes the final solution of the routing

problem; routes for each information gathering assets are defined.

Figure 5.1 shows an overview of the time cascade approach for a sample routing problem

consisting of a PH of 10 time-steps, a RH of 3 time-steps and a FW of 1 time-step. The first

cascade, Cascade 1, consists of solving a subproblem considering time-steps t1, t2, and t3. As will be

described below, information from the remaining time-steps in the planning horizon is aggregated

while solving each subproblem. The solution of the mathematical program described in Chapter 4

consists of an assignment, xjkt, of a cell k in the discretized AO for each time-step t of the planning

horizon, for each collection asset j. For Cascade 1 in Figure 5.1, the solution will be an assignment

{xjkt1 , xjkt2 , xjkt3} for each asset j under consideration. Given that FW = 1, the values of xjkt1 ,

∀j, ∀k, will be part of the final solution. A new cascade, Cascade 2, is then defined. Cascade 2
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t1 t2 t3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

Solution is fixed

Original 
MILP

Cascade
1

Rolling 
Horizon

Rolling 
Horizon

Cascade
2

t1 t2 t3
Problem 
to Solve

Planning Horizon

Figure 5.1: Overview of Time Cascades Approach

will consist of solving a subproblem for time-steps t2, t3, and t4. The same process defined above is

repeated until Cascade 8, where the subproblem for time-steps t8, t9 and t10 is defined. The solution

obtained for this last subproblem completes the definition of the routes {xjkt1 , xjkt2 , · · · , xjkt10} for

each asset j over the 10 time-steps of the planning horizon.

Note that while solving each cascade, certain areas of the discretized geographical space

will not be considered, even when those areas might be visited if the complete planning horizon

was considered at once. It is desirable to the solution strategy using the time cascade approach

to define a mechanism to consolidate some of the information about those cells so that decisions

(moves) made at an earlier stage consider potential future gain. The aggregation of information

from feasible future moves that are not part of a cascade’s rolling horizon is presented in Section 5.3.

5.3 Space Aggregation Approach

The time cascade approach is based on the idea of reducing the number of time-steps considered

while solving the mathematical program defined in Chapter 4. Using this approach provides the

opportunity to also reduce the number of grid cells considered while solving the subproblem in

each cascade. Given the number of time-steps in each rolling horizon and the (known) kinematic

constraints of each autonomous vehicle, the cells that could be reached in each cascade are identified.

The set K in Section 4.2, is replaced by considering only those cells (rather than the complete,
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Figure 5.2: Sample of Digital Image Compression

discretized AO).

Although the time cascade approach can reduce the number of decision variables considered

in the mathematical program, it introduces the risk of defining a suboptimal set of routes because

decisions are made on each cascade based on only a subset of the feasible space. If information about

cells outside of the RH were considered when solving each cascade problem, better solutions would

result.

In image processing, a digital image is simply an array of numbers [52]. Each element in

this array is referred to as a picture element, or pixel as shown in Figure 5.2. This figure shows

an example of digital image compression. Note that the compressed images preserve ‘‘relevant’’

features that allow the original image to be recognized. Figure 5.3 shows the general steps used

while compressing an image. A numerical example of this process is shown in Figure 5.4. Motivated

by this observation, and considering Information Gain Maps (IGMs) as digital images, the following

approach is defined to preserve relevant information from the IGMs while solving each subproblem

in the time cascade approach: information from cells that might be visited in the planning horizon

are aggregated to the cells that could be assigned on each subproblem in each cascade. Let us refer

to a cell that might be assigned in the last time-step of a rolling horizon and whose value will be

updated after aggregation as a cell of interest. The following procedure is defined:

1. An aggregation window is defined capturing adjacent cells to the cell of interest. The aggre-
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Figure 5.3: General Digital Image Compression Process

Consider a 3 x 3 image 
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Figure 5.4: General Digital Image Compression Process - Numerical Example

gation window will only consider cells that will not be evaluated as part of the rolling horizon.

2. An aggregation function is applied to the cell in the aggregation window. The aggregation

function performs, for example, the blurring and shrinking steps in Figure 5.3.

3. The resulting value from the aggregation function replaces the value of the cell of interest.

Figure 5.4 depicts the steps considered in this approach for an aggregation window of 9 cells and
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the arithmetic mean of these cells as the aggregation function.

The decision to assign a cell to a collection asset should be based not only on the current

reward of this cell but on the potential to move to other feasible cells to collect additional information.

Based on this observation, an aggregation function that identifies the path that maximizes the

potential information gain from the cell of interest over the remaining time-steps in the planning

horizon is defined. The Bellman-Ford algorithm [53] is used to define such a path for each cell of

interest in a subproblem.

Bellman-Ford is an efficient procedure used to find all shortest paths in a graph, G(V,E),

from one source to all other nodes in the graph, where V is the set of vertices and E is the set

of edges. This problem is also referred to as the single-source shortest path problem for weighted

directed graphs. The weights on the edges of E were updated to identify the path that maximizes

the potential information gain from the cell of interest. The algorithm initializes the distance to the

source vertex to 0 and all other vertices to ∞. It then does |V | − 1 passes (|V | is the number of

vertices) over all edges relaxing, or updating, the distance to the destination of each edge. Finally

it checks each edge again to detect negative weight cycles, in which case it returns false. Weights

may be negative. The time complexity of the Bellman-Ford algorithm is O(|V | |E|), where |E| is
the number of edges.

Let T be the remaining time-steps in the planning horizon when a subproblem is defined.

T = {1, 2, . . . , PH − RH + t} where t is the initial time-step of the cascade. T is the set of time-

steps in the planning horizon (as defined in Section 4.2). Moreover, let k be a cell of interest on a

subproblem.

Let Fk be the set of cells that any of the vehicles under consideration could visit from cell

k. Parameter ψik′′k′k (as defined in Section 4.2) is used to define Fk. The set V is created from the

set Fk. Let Vt be the set of cells that could be visited at time-step t, t ∈ T .

V1 = k (5.1)

Now, ∀t ∈ T , t > 1

Vt = ∪Fk, ∀k ∈ Vt−1 (5.2)



Chapter 5. Solution Approach to Mathematical Programming Framework 69

Finally,

V = ∪Vt ∀t ∈ T (5.3)

Let ek,k′ be an edge in E for each k ∈ Vt and k′ ∈ Fk. The weight of each edge

ek,k′ = 1−max{f1k0 + t ∗D1k, 1.0}, ∀k ∈ Vt (5.4)

where f1k0 is the initial potential information gain from cell k, and D1k is the maximum increase of

potential information gain at time t due to obsolescence of collected information on cell k. Both are

parameters of the mathematical program of Chapter 4. Note that G(V,E) is defined once for each

subproblem. Without loss of generality, since a single mission was assumed to describe the solution

approach, a single collection requirement (R = 1) is assumed while defining these parameters. The

same approach would be applied when multiple collection requirements (and corresponding IGMs)

are considered in a mission.

Given the best path over the remaining time-steps to complete the planning horizon, the

aggregation function is defined as a weighted average of the potential information gain values of the

cells in the path and their respective distance to the cell of interest. This aggregation function for

a cell of interest k is represented mathematically as

fk =

∑
t∈T wt max{f1kt0

+ t ∗D1kt
, 1.0}

|T | (5.5)

where kt is the potential information gain for cell k, when k is the tth move on the identified best

path by the Bellman-Ford algorithm and wt is a weighting parameter on the assigned cell at time

t. The weighting parameter wt can be used to discount the contributions of cells that are far in the

future to the value of fk.

Section 5.4 presents an analysis of the impact of the combined time and space aggregation

approaches to the solution quality (i.e., overall information gain) on various scenarios and the time

to obtain such solutions.
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5.4 Experimental Results

A study was conducted to analyze the impact of the combined time and space aggregation approaches

to the solution quality (i.e., overall information gain) and the time to obtain such solutions. All

subproblems were solved using CPLEX Interactive Optimizer 12.2 [50]. The time cascades and space

aggregation approach were implemented in MATLAB R2011b [49]. Table 5.1 captures the parameters

under consideration in the study. Two types of IGMs were considered: (1) 1 Hot-Spot, and (2)

Random. Figure 5.5 shows an example of an IGM with a single hot spot. The location of the hot

spot was randomly selected for each case considered. Figure 5.6 shows an example of a random

IGM. For this type of IGM, the value of each cell was randomly selected from a uniform distribution

U(0, 1). A 10 time-step route for a single vehicle over a 15 × 15 grid area was defined. Rolling

Horizon and Fixed Window were varied. Moreover, the impact of the vehicle’s sensor effectiveness

collecting information was studied.

Table 5.1: Mathematical Program and Experiment Parameters for Solution Approach Evaluation

Parameter Value

Mathematical Program

I {1}
T {1,2,. . . , RH}
K

{1,2,. . . ,225}
(a 15-by-15 grid area)

R {1}
CRi

3.0
(∀i ∈ I)

wrt
1.0

(∀r ∈ R, t ∈ T )
Solution Approach

wt e−λ (t−1)

λ − ln(0.90)
Design of Experiment

n (number of trials) 100

Information Gain Maps 100

Type of Information Gain Maps 1 Hot-Spot and Random

Rolling Horizon (RH) {3, 4}
Fixed Window (FW) {1, 2, 3}
sensor effectiveness {0.25, 0.50, 0.75}
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Figure 5.5: Sample IGM with 1 Hot-Spot to Evaluate Solution Approach

For each combination of IGM type and sensor effectiveness, 100 different test cases were

defined. Let P represent the set of these cases. The vehicle’s initial location and initial IGM were

randomly defined for each of these cases. Each of the cases were solved first by applying the time

cascade approach but with no space aggregation. Space aggregation as described in Section 5.3 was

then enabled. Overall potential information gain from the defined route and the time to obtain

that solution was captured. Several metrics were computed. Let zno aggregation,p and tno aggregation,p

be the overall potential information gain from the defined route and time to obtain the solution,

respectively, when space aggregation was not applied in the solution approach while solving case p.

Similarly, let zwith aggregation,p and twith aggregation,p be the overall potential information gain from

the defined route and time to obtain the solution, respectively, when space aggregation was applied

in the solution approach while solving case p. Note that

P = Psolution improved ∪ Psolution worsened ∪ Pno difference

where

p ∈ Psolution improved if zwith aggregation,p − zno aggregation,p > 0;
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Figure 5.6: Sample Random IGM to Evaluate Solution Approach

p ∈ Psolution worsened if zno aggregation,p − zwith aggregation,p > 0; and,

p ∈ Pno difference if zwith aggregation,p = zno aggregation,p.

The following metrics were considered in the study:

• Percentage of cases where Solution Improved When Space Aggregation was Applied =

|Psolution improved with aggregation|
n

100%

• Percentage of cases where Solution Worsened When Space Aggregation was Applied =

|Psolution worsened with aggregation|
n

100%

• Average Percentage Increase in Solution Value when Solution Improved with Space Aggrega-

tion =

1

|Psolution improved|
∑

p∈Psolution improved

zwith aggregation,p − zno aggregation,p

zwith aggregation,p
100%
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• Average Percentage Increase in Solution Value when Solution Worsened with Space Aggrega-

tion =

1

|Psolution worsened|
∑

p∈Psolution worsened

zno aggregation,p − zwith aggregation,p

zno aggregation,p
100%

• Average Time to Solve Problem using Solution Approach without Space Aggregation =

1

n

n∑
p=1

tno aggregation,p

• Average Time to Solve Problem using Solution Approach with Space Aggregation =

1

n

n∑
p=1

twith aggregation,p

Results are summarized in Table 5.2 - Table 5.4 and used for the analysis that follows.

Figure 5.7 - Figure 5.9 show a comparison of the average percentage increase in solution

value when space aggregation was applied as part of the solution approach for a RH = 3 time-steps

and FW = 1, 2 or 3 time-steps, respectively. Similarly, in Figure 5.10 - Figure 5.12, a comparison is

shown on the average percentage increase in solution value when space aggregation was applied as

part of the solution approach for a RH = 4 time-steps and FW = 1, 2 or 3 time-steps, respectively.

From these figures, it is evident that applying space aggregation as part of the solution approach

has no impact on the solution quality, on average, when the type of IGM is Random. Although

for any of the combinations of RH, FW and sensor effectiveness, the percentage number of cases in

which the solution improved was over 16%, the best average percentage increase in solution value

was 2.73%. Likewise, the average percentage increase in solution value was less than 4% on the

cases in which the solution worsened when space aggregation was applied. The value of each cell in

an IGM of type Random was defined, independently, from a uniform distribution ∼ U(0, 1). The

expected value for any cell of interest during the space aggregation phase would then be the same,

providing no relevant information to exploit as part of the solution strategy.

The improvement observed when space aggregation was applied to the solution approach for

IGMs of 1 Hot-Spot was significant. Although not all the cases considered resulted in an improve-

ment, on average, 38% of the solutions obtained when space aggregation was part of the solution
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Table 5.2: Summary of Results - Information Gain Improved with Solution

Type of Sensor Rolling Fixed % Cases Solution Avg % Increase
IGM Effectiveness Horizon Window Improved Solution Value

1 Hot-Spot

0.25

3
1 32.00 35.58
2 32.00 34.13
3 20.00 43.91

4
1 50.00 27.17
2 42.00 26.22
3 40.00 26.46

0.50

3
1 34.00 34.18
2 38.00 33.54
3 36.00 28.85

4
1 52.00 19.75
2 50.00 22.13
3 34.00 25.45

0.75

3
1 28.00 35.92
2 28.00 35.92
3 36.00 32.98

4
1 38.00 25.23
2 46.00 22.67
3 42.00 27.78

Random

0.25

3
1 30.00 1.28
2 20.00 1.90
3 34.00 2.60

4
1 34.00 1.07
2 20.00 1.31
3 36.00 1.12

0.50

3
1 30.00 2.66
2 22.00 2.32
3 44.00 2.19

4
1 16.00 1.38
2 18.00 1.82
3 26.00 1.60

0.75

3
1 36.00 2.17
2 20.00 2.73
3 40.00 2.06

4
1 20.00 1.45
2 22.00 1.61
3 28.00 1.64

strategy improved the potential information gain from the route computed without applying space

aggregation. The average percentage increase in solution value for these cases was always over

19.75% for the different combinations of RH, FW and sensor effectiveness studied. For the cases

where the solution did not improve with the space aggregation approach, the decrease in potential

information gain was, on average, 0.67% from the solution obtained when space aggregation was not

applied.

The computational cost of using space aggregation as part of the solution strategy is rel-
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Table 5.3: Summary of Results - Information Gain Worsened with Aggregation

Type of Sensor Rolling Fixed % Cases Solution Avg % Increase
IGM Effectiveness Horizon Window Worsened Solution Value

1 Hot-Spot

0.25

3
1 16.00 0.15
2 32.00 0.80
3 32.00 0.58

4
1 12.00 0.21
2 22.00 0.39
3 24.00 0.40

0.50

3
1 14.00 0.64
2 14.00 1.06
3 18.00 0.70

4
1 18.00 0.40
2 14.00 0.38
3 22.00 0.49

0.75

3
1 24.00 0.89
2 24.00 1.37
3 18.00 0.96

4
1 20.00 0.46
2 16.00 0.59
3 20.00 1.68

Random

0.25

3
1 58.00 2.69
2 76.00 2.52
3 60.00 2.78

4
1 30.00 1.63
2 32.00 1.88
3 26.00 1.87

0.50

3
1 58.00 2.94
2 66.00 3.16
3 52.00 3.57

4
1 44.00 2.04
2 38.00 2.52
3 38.00 2.14

0.75

3
1 52.00 2.56
2 64.00 3.15
3 52.00 3.83

4
1 40.00 1.89
2 40.00 2.25
3 32.00 1.92

atively minimal. Figure 5.13 and Figure 5.14 captures the average time (in seconds) required to

obtain a 10 time-steps route for a single vehicle using the described solution strategy for different

RHs and FWs. The average time increase to obtain a solution with space aggregation was 7.66% of

the time required by the solution approach to define a route without space aggregation. The worst

case observed was an average increase of 0.49s. Both, Figure 5.13 and Figure 5.14, capture a similar

trend: solving subproblems with a rolling horizon of 4 time-steps increased the time to obtain a

solution by 64.36%, relative to the time required, on average, to solve the routing problem for a RH
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Table 5.4: Summary of Results - Average Time to Solve (s)

Rolling Fixed Avg. Time to Solve (s)
Horizon Window No Aggregation With Aggregation

3
1 2.3220 2.5241
2 1.3637 1.4778
3 1.1005 1.1874

4
1 6.6987 7.1933
2 3.9068 4.1515
3 2.9979 3.2176

of 3 time-steps, fixing the same number of time-steps. As described in Section 5.2 and Section 5.3,

the complexity of the subproblems increase as the planning horizon (i.e., rolling horizon in a cascade)

and the number of cells from the IGM increase. From the perspective of a particular RH, increasing

the number of time-steps in the FW represents a potential reduction on the subproblems to solve

(i.e., less cascades), resulting in a decrease in the time to obtain a solution. For a RH = 3 time-steps,

the time to solved the 10 time-steps routing problem was reduced by 41.4% for a FW = 2 time-steps

and 52.8% for a FW = 3 time-steps, from the time required to solved the problem with a FW = 1

time-steps. For the case of RH = 4 time-steps, the time to solved the 10 time-steps routing problem

was reduced by 42% for a FW = 2 time-steps and 55.3% for a FW = 3 time-steps, from the time

required to solved the problem with a FW = 1 time-steps.

Finally, a comparison on the quality of the solution obtained from each of these cases was

made. Figure 5.15 - Figure 5.17 shows the average percentage difference between the potential

information gain obtained from the route defined using the solution strategy and the best known

solution for the cases of RH = 3 time-steps, FW = 1, 2, and 3 time-steps. Similarly, Figure 5.18

- Figure 5.20 shows the average percentage difference between the solution strategy and the best

known solution for the cases of RH = 4 time-steps, FW = 1, 2, and 3 time-steps. The best known

solution value was obtained by evaluating all cases where the IGM, sensor effectiveness and initial

location of the vehicle were the same. The maximum solution value for each of these cases was then

used to compare the resulting potential information gain from each of them. Note that for the IGMs

with 1 Hot Spot, solutions were on average within 1.35% of the best known solution. When space

aggregation was not applied, the smallest average percentage difference was 9.81% for a RH of 4

time-steps and a FW of 1 time-step. As indicated before, for the cases of Random IGMs, there is

no statistical benefit or disadvantage of applying space aggregation.



Chapter 5. Solution Approach to Mathematical Programming Framework 77

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.25 0.5 0.75

Av
er

ag
e 

%
 D

iff
er

en
ce

Sensor Effectiveness

Average Percentage Difference the Solution Improved or Worsened when Aggregation is 
applied in Solution Approach for PH = 10 time-steps, RH = 3 time-steps, FW = 1 time-step

 Solution Improved in 1 Hot-Spot IGM

Solution Worsened in 1 Hot-Spot IGM

Solution Improved in Random IGM

Soultion Worsened in Random IGM

Figure 5.7: Average Percentage Increase in Solution Value when Space Aggregation is applied to Solution
Approach for PH = 10 time-steps, RH = 3 time-steps, FW = 1 time-step
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Figure 5.8: Average Percentage Increase in Solution Value when Space Aggregation is applied to Solution
Approach for PH = 10 time-steps, RH = 3 time-steps, FW = 2 time-steps
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Figure 5.9: Average Percentage Increase in Solution Value when Space Aggregation is applied to Solution
Approach for PH = 10 time-steps, RH = 3 time-steps, FW = 3 time-steps
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Figure 5.10: Average Percentage Increase in Solution Value when Space Aggregation is applied to Solution
Approach for PH = 10 time-steps, RH = 4 time-steps, FW = 1 time-step
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Figure 5.11: Average Percentage Increase in Solution Value when Space Aggregation is applied to Solution
Approach for PH = 10 time-steps, RH = 4 time-steps, FW = 2 time-steps

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.25 0.5 0.75

Av
er

ag
e 

%
 D

iff
er

en
ce

Sensor Effectiveness

Average Percentage Difference the Solution Improved or Worsened when Aggregation is 
applied to Solution Approach for PH = 10 time-steps, RH = 4 time-steps, FW = 3 time-steps

 Solution Improved in 1 Hot-Spot IGM

Solution Worsened in 1 Hot-Spot IGM

Solution Improved in Random IGM

Soultion Worsened in Random IGM

Figure 5.12: Average Percentage Increase in Solution Value when Space Aggregation is applied to Solution
Approach for PH = 10 time-steps, RH = 4 time-steps, FW = 3 time-steps
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Figure 5.15: Average Percentage Difference Between the Solution Obtained With andWithout Aggregation
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Figure 5.16: Average Percentage Difference Between Solution Quality With and Without Aggregation an
the Best Known Solution for PH = 10 time-steps, RH = 3 time-steps, FW = 2 time-step
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Figure 5.17: Average Percentage Difference Between Solution Quality With and Without Aggregation an
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Figure 5.18: Average Percentage Difference Between Solution Quality With and Without Aggregation an
the Best Known Solution for PH = 10 time-steps, RH = 4 time-steps, FW = 1 time-step
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Figure 5.19: Average Percentage Difference Between Solution Quality With and Without Aggregation an
the Best Known Solution for PH = 10 time-steps, RH = 4 time-steps, FW = 2 time-step
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Figure 5.20: Average Percentage Difference Between Solution Quality With and Without Aggregation an
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Figure 5.21: Average Percentage Difference Between the Best-Known Solution and the Result from Solution
Approach with Space Aggregation for PH = 10 time-steps on 1 Hot Spot IGM with Sensor Effectiveness=
0.25, as a function of FW

In terms of the impact of the FW to the solution quality of the overall solution strategy

(i.e., time and space aggregation), Figure 5.21 - Figure 5.23 present a comparison of the average

percentage difference between the solution obtained for different FWs and the best known solution

for cases on the 1 Hot Spot IGM and sensor effectiveness = 0.25, 0.50 and 0.75, respectively. A similar

comparison is made for the cases on the Random IGM and sensor effectiveness = 0.25, 0.50 and 0.75,

and shown in Figure 5.24 - Figure 5.26, respectively. Space aggregation was part of the solution

strategy for the results shown in these figures. A FW = 1 time-step defined trajectories resulting,

on average, in better overall potential information gain. Although the magnitude of the changes

are different, this behavior was consistent regardless of the type of IGM and sensor effectiveness.

Intuitively, a FW = 1 time-step provides a solution strategy where the routes are cautiously defined

by only committing to the initial time-step of the solution of each subproblem in a cascade. This

gives the procedure more opportunities to correct any decisions (moves) on the vehicle’s path based

on the additional information that might be considered on subsequent cascades. As discussed above,

the tradeoff is the required computational time to solve the problem.
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Figure 5.22: Average Percentage Difference Between the Best-Known Solution and the Result from Solution
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Figure 5.23: Average Percentage Difference Between the Best-Known Solution and the Result from Solution
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Figure 5.24: Average Percentage Difference Between the Best-Known Solution and the Result from Solution
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Figure 5.25: Average Percentage Difference Between the Best-Known Solution and the Result from Solution
Approach with Space Aggregation for PH = 10 time-steps on Random IGM with Sensor Effectiveness= 0.50,
as a function of FW



Chapter 5. Solution Approach to Mathematical Programming Framework 87

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1 2 3

Av
er

ag
e 

%
 D

iff
er

en
ce

 

Fixed Window (time-steps)

Average Percentage Difference Between the Best-Known Solution and the Result from Solution 
Approach with Space Aggregation for PH = 10 time-steps on Random IGM

with Sensor Effectiveness= 0.75, as a function of FW 

RH = 3 time-steps

RH = 4 time-steps
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Chapter 6

Extensions to Mathematical Model

6.1 Introduction

In this chapter, extensions to the mathematical model presented in Chapter 4 are described. Mod-

ifications to decision variables and constraints represent the modeling of additional considerations

on communication networks and situations among cooperative collection assets . The first update

to the Mixed-Integer Linear Program (MILP) includes the addition of control centers or stations to

the information gathering system: entities in current operational systems that manage the plans of

information collection assets. Control Stations (CSs) can be stationary or move within the Area of

Operation (AO). It is assumed that CSs provide no collection capabilities to the mission, although

this limitation can be relaxed easily in the formulation. With these assumptions, information ex-

change occurs between CSs and not directly between collection assets. Collection assets are restricted

to remain within communication range of its CS. Section 6.2 captures the updates to the model and

results for this extension.

In Chapter 4 it was assumed that, in order to communicate and exchange information, col-

lection assets should be within a bounded communication range to all other assets in the network,

effectively creating a fully connected network. This was also the assumption for the communication

between CSs with the initial extensions to the model in Section 6.2. A different communication

network topology is possible in which assets use other assets as intermediary (or ‘‘bridge’’) nodes

to exchange information. In this case, assets are not required to have a direct communication link

88
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(within its communication range) to all other assets in the network: information is exchanged be-

tween assets as long as there is a communication path between them. In Section 6.3, updates to

the mathematical model are described in order to relax the constraints of a direct communication

link topology and allow assets to identify communication paths to exchange information. Theo-

retical mathematical proofs and numerical examples of the application of these extensions to the

mathematical model are also included as part of this section.

Knowledge about an asset (e.g., location, plans, etc.) might be known to other assets even

when they are not part of the same network at a given point in time. This information may have an

impact in the definition and selection of routes for a collection asset. The concept of trust used in

this research is introduced in Section 6.4. Trust (with a suitable decay factor as a function of time)

on the potential location of assets that are not part of a connected component is considered as part

of additional extensions to the optimization model.

6.2 Support to Systems Using Ground Control Stations

Operational collection assets may receive tasking and route plans from remote control centers or

stations. These CSs can be stationary or move within the AO. The mathematical program defined

in Chapter 4 is updated to support this type of information gathering systems. It is assumed that

sensing of the AO is the responsibility of the collection assets; CSs provide no collection capabilities to

the mission. This limitation can be relaxed easily in the formulation. Any information sharing occur

between CSs and not directly between collection assets. Collection assets, however, are restricted to

remain within communication range of its CS over the mission timeline. Section 6.2.1 captures the

updates to the mathematical model.
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6.2.1 Updates to Mathematical Model

Parameters

The following parameters are defined:

CRi ≡ communication range of information collection asset i to its CS, CRi ≥
0, ∀i

CRi ≡ communication range of information collection asset i’s CS to other CSs,
CRi ≥ 0, ∀i

ϕik′′k′k ≡

⎧⎪⎪⎨
⎪⎪⎩

1 if information collection asset i’s CS at cell k′′ at time t− 2 and
at cell k′ at time t− 1 can be assigned to cell k at time t

0 otherwise

Main Decision Variables

The following decision variables are considered in the mathematical program:

yikt =

⎧⎨
⎩

1 if information collection asset i’s CS is assigned to cell k at time-step t

0 otherwise

Δijt ≡ distance from information collection asset i’s CS to information collection
asset j’s CS at time-step t

cijt =

⎧⎪⎪⎨
⎪⎪⎩

1 if information collection asset j’s CS and information collection asset i’s
CS are within communication range at time-step t

0 otherwise

Objective Function

No changes are required to the objective function (4.1) to accommodate the requirements from CSs.

UV Assignment Constraints

∑
k∈K

∑
k′∈K

ηkk′ xikt yik′t ≤ CRi, ∀i ∈ I, ∀t ∈ T (6.1)

Constraint (6.1) ensures that information collection asset i remains within communication distance

of its CS.
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Let bikk′t be a binary variable to replace the nonlinear term xikt yik′t, where

bikk′t =

⎧⎪⎨
⎪⎩

1 if information collection asset i is assigned to cell k and its CS is assigned
to cell k′ at time-step t

0 otherwise

Constraint (6.1) is then replaced by

∑
k∈K

∑
k′∈K

ηkk′ bikk′t ≤ CRi, ∀i ∈ I, ∀t ∈ T (6.2a)

bikk′t ≤ xikt, ∀i ∈ I, ∀k, k′ ∈ K, ∀t ∈ T (6.2b)

bikk′t ≤ yik′t, ∀i ∈ I, ∀k, k′ ∈ K, ∀t ∈ T (6.2c)

bikk′t ≥ xikt + yik′t − 1, ∀i ∈ I, ∀k, k′ ∈ K, ∀t ∈ T (6.2d)

CS Assignment Constraints

Similar to Constraints (4.2) - (4.3), the assignment of CSs to a cell k is constrained by

∑
k∈K

yikt = 1, ∀i ∈ I, ∀t ∈ T (6.3)

where Constraint (6.3) ensures that each CS is assigned a (single) cell each time-step t.

∑
k

∑
k′

∑
k′′

k,k′,k′′∈K|ϕik′′k′k=1

oik′′k′kt = 1, ∀i ∈ I, ∀t ∈ T (6.4a)

oik′′k′kt ≤ yikt + yik′,t−1 + yik′′,t−2

3
, ∀i ∈ I, ∀k, k′, k′′ ∈ K|ϕik′′k′k = 1, ∀t ∈ T (6.4b)

Constraints (6.4) ensure that each CS i is assigned to a cell that can be reached at time-step t, given

its assignment yik′′,t−2 and yik′,t−1 at times t − 2 and t − 1, respectively (see Section 6.2.1 for the

definition of (parameter) ϕik′′k′k).
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Communication Constraints

For communication objectives, consider

Δijt =
∑
k∈K

∑
k′∈K

ηkk′ yikt yjk′t, ∀i, j ∈ I, j �= i, ∀t ∈ T (6.5)

Δijt ≤ CRi + (1− cijt)M, ∀i, j ∈ I, ∀t ∈ T (6.6)

Constraint (6.5) can be replaced by the following set of constraints, where the nonlinear term yikt yjk′t

is replaced by the binary variable aikjk′t

Δijt =
∑
k

∑
k′

ηkk′ aikjk′t, ∀i, j ∈ I, ∀t ∈ T (6.7)

aikjk′t ≤ yikt, ∀i, j ∈ I, ∀k, k′ ∈ K, ∀t ∈ T (6.8)

aikjk′t ≤ yjk′t, ∀i, j ∈ I, ∀k, k′ ∈ K, ∀t ∈ T (6.9)

aikjk′t ≥ yikt + yjk′t − 1, ∀i, j ∈ I, ∀k, k′ ∈ K, ∀t ∈ T (6.10)

6.2.2 Results

Based on the concepts described in Section 6.2.1, a simulation was implemented to show the appli-

cability and potential of the introduced extensions to the mathematical model. The assignment of 2

cooperative autonomous collection assets, in particular Unmanned Aerial Vehicles (UAVs), to surveil

the littoral of an area represented by a grid of 10 x 10 cells is considered. Both UAVs are assumed

to be controlled by stationary ground CSs. Figure 6.1 shows the selected area of operation and the

location of the ground control stations. The CS of UAV 1 is located in cell k = 83 (or cell (3, 9)),

CS of UAV 2 is located at cell k = 66 (or cell (6, 7)). Values of other relevant parameters during the

simulation are captured in Table 6.1.

The littoral surveillance mission consists of two (2) collection requirements: (1) detecting incoming

maritime vessels and (2) detecting vehicles approaching the coastline, both suspected to be involved

in drug-related activities. A low potential information gain region for collection requirement 2 rep-

resents, for example, looking for a car in a body of water. The initial information gain map for each
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Table 6.1: Mathematical Program and Experiment Parameters for CS Extension Model

Parameter Value

Mathematical Program

I {1,2}
T {1,2,. . . ,10}
K

{1,2,. . . ,100}
(a 10-by-10 grid area)

R {2}
CRi

4.0
(∀i ∈ I)

α 0.5

 

 

Figure 6.1: Area of Operation and Initial Location of CSs and UAVs

collection requirement is shown in Figure 6.2 and Figure 6.3, for collection requirements 1 and 2

respectively.

On-board sensors, on both UAVs, are assumed to have a discretized effectiveness of collecting

information only on the assigned cell. Discretized sensor effectiveness values are captured in Table

6.2. Moreover, UAVs can only move to horizontally or vertically adjacent cells; no diagonal movement

is allowed. The communication range between each UAV and its respective CS is 4 distance units.

A decentralized framework in which each UAV is operating independently is considered.
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Collection Requirement 1 Collection Requirement 2
UAV 1 0.75 0.25
UAV 2 0.5 0.5

Table 6.2: Discretized Effectiveness Sensor Suite on each UAV for each Collection Requirement

High 

Low 

Potential  
Information  

Gain 

Figure 6.2: Initial Potential Information Gain Map for Collection Requirement 1

Exchange of information and coordination only occurs when the respective CSs are within com-

munication range of each other. For this example, the CSs are stationary and their respective

communication radius allow them to share information over the mission timeline. Each unmanned

High 

Low 

Potential  
Information  

Gain 

Figure 6.3: Initial Potential Information Gain Map for Collection Requirement 2
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vehicle system is solving the mathematical programing model considering only its perceived en-

vironment, derived from the information received by the on-board sensors in the UAV, and any

information received from neighboring CSs. The UAVs have the same initial potential information

gain map and their altitude is assumed to be fixed.

The routes defined for each UAV in 2 situations regarding littoral surveillance are compared.

Two cases are considered in which the priorities assigned to each collection requirement differ. In

the first case, the priority of surveilling the littoral for incoming vessels is higher than detecting

vehicles on land. In the mathematical programming model this is represented by setting w1t = 0.80

and w2t = 0.20, ∀t in the objective function. The linearized formulation described in Sections 4.2 -

4.4 using CPLEX Interactive Optimizer 12.2 [50] is solved. The routes defined for both UAVs locate

them closer to the littoral, keeping both UAVs always within communication range of its CS but

maximizing the coverage area (i.e., disjoint sensors coverage area). This is shown in Figure 6.4. In

the second case, both objectives were assumed to be equally important (w1t = 0.50 and w2t = 0.50,

∀t). For this case, UAV 1, having the best sensor suite to detect maritime vessels is assigned to

cover most of the littoral and UAV 2 is assigned the inland surveillance (see Figure 6.5).

    

 

 

 

 

 

 

  

 

 

Figure 6.4: Defined Routes for UAVs in Case 1
(w1t = 0.80 and w2t = 0.20, ∀t in the objective function)
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Figure 6.5: Defined Routes for UAVs in Case 2
(w1t = 0.50 and w2t = 0.50, ∀t in the objective function)

6.3 Network Connectivity through Asset Paths

A communication network topology is possible in which assets use other assets as intermediary

(or ‘‘bridge’’) nodes to exchange information. In this case, assets are not required to have a direct

communication link (within its communication range) to all other assets in the network: information

is exchanged between assets as long as there is a communication path between them. In Section 6.3,

updates to the mathematical model presented in Sections 4.2 - 4.4 are described in order to relax

the constraints of a direct communication link topology and allow assets to identify communication

paths to exchange information. Theoretical mathematical proofs and numerical examples of the

application of these extensions to the mathematical model are also included as part of this section.

6.3.1 Updates to Mathematical Model

As described above, let

cij ≡ direct communication link between i and j, i, j ∈ J
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Moreover, let

I ≡ set of collection assets in a connected component = {1, 2, . . . , |I|}

The constraints in Section 4.4 that all assets need to be directly connected to all other assets were

relaxed. Instead, the relaxation allows each asset to have a communication path to all other assets

in its connected component. For each pair of collection assets, i, j ∈ I, i �= j, there should exists a

path, a set of communication links ck,k′ = 1 so that i can send its information to j. Assume that

this set is represented by C(ij)

C(ij) = {cik1
, ck1,k2

, · · · , ckn,j}

where n is the number of required ‘‘bridge’’ assets to connect i and j. When n = 0, i and j are

connected directly by the communication link cij so the set C(ij) for this case is

C(ij) = {cij}

Goal: Define a set of constraints to preserve the connected component I.

6.3.2 Additional Decision Variables

Define

yijk ≡ i is connected to j via k =

⎧⎨
⎩

1 if i is connected to j via k

0 otherwise
, i, j, k ∈ I, i �= j �= k

6.3.3 Additional Constraints

Consider the following set of constraints to preserve the connected component I:

cij +
∑

k∈I,k �=i �=j

yijk = 1 ∀i, j ∈ I, i �= j (6.11)

cik + ckj +
∑

k′∈I,k′ �=i �=j �=k

ykjk′ ≥ 2 · yijk ∀i, j, k ∈ I, i �= j �= k (6.12)
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∑
j∈I,j �=i

cij ≥ 1 ∀i ∈ I (6.13)

∑
j∈I,i�=j

cji ≥ 1 ∀i ∈ I (6.14)

Constraint (6.11) indicates that each pair of assets i and j in I are connected if (1) there exists a

direct communication link between i and j, or (2) these assets are connected via another asset k.

Constraint (6.12) captures when i is connected to j by a “bridge” asset k that is either (1) directly

connected to j, or (2) connected to an asset k′ that is connected (not necessarily directly) to j .

Constraint (6.13) captures the need to have at least 1 communication link from some asset to i (to

receive information from other assets). Similarly, Constraint (6.14) captures the need to have at

least 1 communication link out of i (to send information to other assets). Given that this set of

constraints enforces that there is a path between each pair of assets i, j ∈ I, (as will be proved in

Section 6.3.4), the connected component I is preserved.

Constraints (6.11) to (6.14) replace Constraint (4.24) in the mathematical model when a

path between each pair of asset is sufficient to maintain a connected component in the communication

network.

6.3.4 Proof that Constraints (6.11) - (6.14) are Sufficient and Necessary

Conditions

To show Constraints (6.11) - (6.14) are sufficient and necessary conditions to identify network topolo-

gies that preserve a connected component, consider the following:

Theorem 1. A path connecting i and j is not affected by having additional communication links

ck,k′ = 1, k, k′ ∈ I k �= k′ in the network.

Proof. Consider the set C(ij) = {cik1
, ck1,k2

, · · · , ckn,j} as the set of communication links defining a

path between i and j Adding communication links to C(ij), ck,k′ = 1, k, k′ ∈ I, k �= k′, creates a

new set C ′, where

C ′ = {cik1
, ck1,k2

, · · · , ckn,j , ck,k′}
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This is simply the union of C(ij) and any additional ck,k′ = 1 in the network. So,

C ′ = C(ij) ∪ {ck,k′}

Since the set C(ij) is preserved, the path connecting i and j is not affected by additional communi-

cation links ck,k′ = 1, k, k′ ∈ I k �= k′ in the network. QED

Corollary 1.1. A path connecting i and j consisting of the direct communication link cij = 1 is not

affected by having additional communication links ck,k′ = 1, k, k′ ∈ I k �= k′ in the network.

Proof. Consider the set C(ij) = {cij} for the case of a direct communication link between i and j.

Adding communication links to C(ij), ck,k′ = 1, k, k′ ∈ I, k �= k′, create a new set C ′, where

C ′ = {cij , ck,k′}

This is simply the union of C(ij) and any additional ck,k′ = 1 in the network. So,

C ′ = C(ij) ∪ {ck,k′}

Since the set C is preserved, the path connecting i and j is not affected by additional communication

links ck,k′ = 1, k, k′ ∈ I k �= k′ in the network. QED

Theorem 2. For any pair of connected assets i, j ∈ I, i �= j, Constraints (6.11) - (6.14) are not

affected by additional communication links ck,k′ = 1, k �= i, k′ �= j in the network.

Proof. Lets assume that C(ij) is the set of required communication links ck,k′ = 1, k, k′ ∈ I required

to establish a path between i and j.

C(ij) = {cik1 , ck1,k2 , · · · , ckn,j}

where n is the number of required ‘‘bridge’’ assets to connect i and j. Assume adding communication

link ck,k′ = 1, k �= i, k′ �= j to the network affects the path between i and j by having cij = 1 so the

set of Constraints (6.11) - (6.14) will not be enforced.

From Constraint (6.11), cik = 1
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⇒ ∑
k′∈I,k′ �=i �=j y

ik
k′ = 0

⇒ yikk′ = 0∀k′.
For ckn,j , ckn,j = 1 ⇒ ∑

k′∈I,k′ �=i �=j y
i,kn

k′ = 0

⇒ yikk′ = 0∀k′.
cik = 1 ⇒ ∑

k′∈I,k′ �=i �=j y
ik
k′ = 0

⇒ yikk′ = 0∀k′.
Given that cij and yijk ∈ {0, 1}, Constraint (6.12) will always be satisfied. Moreover, Constraints

(6.13) - (6.14) will continue to be met since the summations are over non-negative numbers.

⇒ Contradiction.

∴ Constraints (6.11) - (6.14) are not affected by additional communication links ck,k′ = 1, k �= i, k′ �=
j in the network. QED

Corollary 2.1. For any pair of assets i, j ∈ I, i �= j, the communication path created by a di-

rect communication link (i.e., cij = 1), Constraints (6.11) - (6.14) are not affected by additional

communication links ck,k′ = 1, k �= i, k′ �= j in the network.

Proof. Assume adding communication link ck,k′ = 1, k �= i, k′ �= j to the network affects the path

between i and j by having cij = 1 so the set of Constraints (6.11) - (6.14) will not be enforced.

From Constraint (6.11), cij = 1

⇒ ∑
k∈I,k �=i �=j y

ij
k = 0

⇒ yijk = 0 ∀k ∈ K.

Given that cij and yijk ∈ {0, 1}, Constraint (6.12) will always be met. Moreover, Constraints (6.13)

- (6.14) will continue to be met since the summations are over non-negative numbers.

⇒ Contradiction.

∴ Constraints (6.11) - (6.14) are not affected by additional communication links ck,k′ = 1, k �= i, k′ �=
j in the network. QED

Theorem 3. Constraints (6.11) - (6.14) are sufficient to identify a network preserving a connected

component

Proof. Assume Constraints (6.11) - (6.14) do not hold for a set I capturing the set of assets in a

connected component. For any pair of assets i and j, let the set C be the set of communication links
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ck,k′ = 1, k, k′ ∈ I required to establish a path between each i and j.

C = {cik1
, ck1k2

, · · · , ckn,j}

where n is the number of required ‘‘bridge’’ assets to connect i and j. Given cik1
= 1, Constraint

(6.13) is satisfied. Similarly, given ckn,j = 1, Constraint (6.14) is satisfied.

From (6.11), ∃!k : yijk = 1. Without loss of generality, let this k be k1. From Constraint

(6.12), ck1,j +
∑

k′∈I,k′ �=i �=j �=k1
yk1,j
k′ ≥ 1. However, from Constraint (6.11) applied to the pair of

assets k1 and j, ck1,j +
∑

k′∈I,k′ �=i �=j �=k1
yk1,j
k′ = 1. If ck1,j = 1, Constraint (6.12) is satisfied for i and

j using k1 as the ‘‘bridge’’ asset and we have a path between assets i and j. Otherwise, ck1,j = 0,

so
∑

k′∈I,k′ �=i �=j �=k1
yk1,j
k′ = 1.

∑
k′∈I,k′ �=i �=j �=k1

yk1,j
k′ = 1 in turn implies that ∃!k′ : yk1,j

k′ = 1.

Let this k′ be k2. From Constraint (6.12) for k1,j, and k2 and using the fact that ck1,k2
= 1,

ck2,j +
∑

k′∈I,k′ �=i �=j �=k1 �=k2
yk2,j
k′ ≥ 1. The same argument is used successively, until (6.12) is applied

to assets kn−1,n, n and j. For this case, ckn−1,kn + ckn,j +
∑

k′∈I,k′ �=i �=j �=k1 �=k2 �=···�=kn
ykn,j
k′ ≥ 2.

But ckn−1,kn
= 1 and ckn,j = 1 so the above constraint is satisfied and no additional communication

link is required to connect i and j. This is applied to all pairs of assets in the connected component

I. As indicated in Theorem 1, if there is a path from any i and j, adding more communication links

to the connected component do not affect the path between them.

⇒ Contradiction.

∴ The set of Constraints (6.11) - (6.14) are sufficient to verify that a set of communication links

connect any 2 assets i and j. QED

Theorem 4. Constraints (6.11) - (6.14) are necessary to identify a connected component.

Proof. Consider the set C(ij). Assume communication link ca,b is lost (i.e., ca,b = 0), a, b ∈ I, so i

and j are no longer connected. Under these conditions, let’s assume that Constraints (6.11) - (6.14)

hold. Three cases are identified:

1. a = i, b = k so cik = 0

2. a = kn, b = j so ckn,j = 0

3. (Without loss of generality) a = k1, b = k2 so ck1,k2 = 0
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Case 1: cik = 0.

If cik = 0, Constraint (6.13) is not satisfied. ⇒ Contradiction.

Case 2: ckn,j = 0.

If ckn,j = 0, Constraint (6.14) is not satisfied. ⇒ Contradiction.

Case 3: ck1,k2
= 0.

Constraint (6.11) for k1 and k2 indicates that ck1,k2 +
∑

k∈I,k �=k1 �=k2
yk1,k2

k = 1 ∀k1, k2 ∈
I, k1 �= k2. Given that ck1,k2

= 0, this implies that
∑

k∈I,k �=k1 �=k2
yk1,k2

k = 1 ∀k1, k2 ∈ I, k1 �= k2.

⇒ ∃!k : yk1,k2

k = 1. Let assume that k is k̄.

Constraint (6.12), indicates ck1,k̄ + ck̄,k2j +
∑

k′∈I,k′ �=k1 �=k2 �=k̄ y
k̄,j
k′ ≥ 2. Given that ck1,k2 = 0,

ck2,j +
∑

k′∈I,k′ �=i �=j �=k y
kj
k′ ≥ 2 but from (6.11), ∃!k : k2, j

ck2,j +
∑

k′∈I,k′ �=i �=j �=k y
kj
k′ = 1 ⇒ 1 ≥ 2 ⇒ (6.12) is not satisfied ⇒ Contradiction. QED

6.3.5 Numerical Examples

Homogeneous Communication Radii

To show how Constraints (6.11) - (6.14) capture that a given network preserves the connected

component, consider a numerical example in which

I = {1, 2, 3, 4, 5}

For the case in which all assets i ∈ I have homogenous communication radii, cij = cji. With this,

yijk = yjik ∀i, j, k ∈ I, i �= j �= k (6.15)

For the set I and assumptions above, the following constraints, from Constraints (6.11) - (6.14), will

be generated:

(from Constraint (6.11))

c12 + y123 + y124 + y125 = 1 (6.16)

c13 + y132 + y134 + y135 = 1 (6.17)
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c14 + y142 + y143 + y145 = 1 (6.18)

c15 + y152 + y153 + y154 = 1 (6.19)

c23 + y231 + y234 + y235 = 1 (6.20)

c24 + y241 + y243 + y245 = 1 (6.21)

c25 + y251 + y253 + y254 = 1 (6.22)

c34 + y341 + y342 + y345 = 1 (6.23)

c35 + y351 + y352 + y354 = 1 (6.24)

c45 + y451 + y452 + y453 = 1 (6.25)

(from Constraint (6.12))

c13 + c23 + y234 + y235 ≥ 2 · y123 (6.26)

c14 + c24 + y243 + y245 ≥ 2 · y124 (6.27)

c15 + c25 + y253 + y254 ≥ 2 · y125 (6.28)

c12 + c23 + y234 + y235 ≥ 2 · y132 (6.29)

c14 + c34 + y342 + y345 ≥ 2 · y134 (6.30)

c15 + c35 + y352 + y354 ≥ 2 · y135 (6.31)

c12 + c24 + y243 + y245 ≥ 2 · y142 (6.32)

c13 + c34 + y342 + y345 ≥ 2 · y143 (6.33)

c15 + c45 + y452 + y453 ≥ 2 · y145 (6.34)

c12 + c25 + y253 + y254 ≥ 2 · y152 (6.35)

c13 + c35 + y352 + y354 ≥ 2 · y153 (6.36)

c14 + c45 + y452 + y453 ≥ 2 · y154 (6.37)
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c12 + c13 + y134 + y135 ≥ 2 · y231 (6.38)

c24 + c34 + y341 + y345 ≥ 2 · y234 (6.39)

c25 + c35 + y351 + y354 ≥ 2 · y235 (6.40)

c12 + c14 + y143 + y145 ≥ 2 · y241 (6.41)

c23 + c34 + y341 + y345 ≥ 2 · y243 (6.42)

c25 + c45 + y451 + y453 ≥ 2 · y245 (6.43)

c12 + c15 + y153 + y154 ≥ 2 · y251 (6.44)

c23 + c35 + y351 + y354 ≥ 2 · y253 (6.45)

c24 + c45 + y451 + y453 ≥ 2 · y254 (6.46)

c13 + c14 + y142 + y145 ≥ 2 · y341 (6.47)

c23 + c24 + y241 + y245 ≥ 2 · y342 (6.48)

c35 + c45 + y451 + y452 ≥ 2 · y345 (6.49)

c13 + c15 + y152 + y154 ≥ 2 · y351 (6.50)

c23 + c25 + y251 + y254 ≥ 2 · y352 (6.51)

c34 + c45 + y451 + y452 ≥ 2 · y354 (6.52)

c14 + c15 + y152 + y153 ≥ 2 · y451 (6.53)

c24 + c25 + y251 + y253 ≥ 2 · y452 (6.54)

c34 + c35 + y351 + y352 ≥ 2 · y453 (6.55)

Note that Constraint (6.15) and the equality cij = cji, ∀i, j ∈ I were included in the constraints

above.

Now, consider in particular the case where information collection asset 1 is connected to information
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collection asset 2 via a direct communication link, information collection asset 2 is connected to

information collection asset 3 via a direct communication link, information collection asset 3 is con-

nected to information collection asset 4 via a direct communication link, and, information collection

asset 4 is connected to information collection asset 5 via a direct communication link (as depicted

in Figure 6.6). The binary variables capturing this network are:

1 
3 2 

4 
5 

Figure 6.6: Network Connectivity through Asset Paths - Test Case 1

c12 = 1 (6.56a)

c13 = 0 (6.56b)

c14 = 0 (6.56c)

c15 = 0 (6.56d)

c23 = 1 (6.56e)

c24 = 0 (6.56f)

c25 = 0 (6.56g)

c34 = 1 (6.56h)

c35 = 0 (6.56i)

c45 = 1 (6.56j)

To show how the different decision variables capture that the network connectivity (6.56) is a feasible

solution (i.e., a connected component) based on the constraints above, observe the following ‘‘phases’’

of the proof:

1. Exploit connectivity information from direct communication links
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2. Identify connectivity via network ‘‘bridges’’

Exploit connectivity information from direct communication links

From Constraint (6.16), and noting that c12 = 1, we have y123 = y124 = y125 = 0. Similarly, from

Constraint (6.20), and noting that c23 = 1, we have y231 = y234 = y235 = 0. From Constraint (6.23),

and noting that c34 = 1, ⇒ y341 = y342 = y345 = 0. Finally, from Constraint (6.25), and noting that

c45 = 1,⇒ y451 = y452 = y453 = 0.

Now, with this information we know that, from Constraint (6.30), y134 = 0. (Note, Constraint (6.30)

indicates that 1 ≥ 2 · y134 ⇒ y134 = 0). Using the same observation, from (6.33), (6.34), (6.37), (6.43)

and (6.46), y143 , y145 , y154 , y245 , and y254 are equal to 0, respectively.

We can further recognize that from Constraint (6.18), y142 = 1 and, from Constraint (6.32), y243 =

1 (Note, Constraint (6.32) indicates that 1 + y243 ≥ 2 ⇒ y243 = 1) which further implies that,

from Constraint (6.21), y241 = 0. Also, from Constraint (6.50), y351 = 0 (Note, since y152 ∈ {0, 1}
Constraint (6.50) ⇒ y351 = 0.)

At this point in the analysis, variables y132 , y135 , y152 , y153 , y251 , y253 , y352 , and y354 are still ‘‘open’’,

meaning that their value has not been determined.

Identify connectivity via network ‘‘bridges’’

Observe that from Constraint (6.24), y352 + y354 = 1 which, from Constraint (6.31) we have y135 = 0,

and from Constraint (6.36), y153 = 0. Now, from Constraint (6.17) we have y132 = 1, and from

Constraint (6.19), y152 = 1.

These two previous steps allow us to recognize that, from Constraint (6.35), y253 = 1 (i.e., 1 + y253 ≥
2 ⇒ y253 = 1), which, since y251 = 0 due to Constraint (6.19), y352 = 0 on Constraint (6.51). Finally,

y354 = 1 from Constraint (6.24).

In summary, for this case,
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• Information collection asset 1 is connected directly to information collection asset 2 (c12 = 1),

and it is connected to the other information collection assets in the network via this information

collection assets (y132 = y142 = y152 = 1).

• Information collection asset 2 is connected directly to information collection asset 1 and to

information collection asset 3 (c12 = c23 = 1), and it is connected to information collection

assets 4 and 5 via information collection asset 3 (y243 = y253 = 1).

• Information collection asset 3 is connected directly to information collection asset 2 and to

information collection asset 4 (c23 = c34 = 1), and it is connected to information collection

asset 1 via information collection asset 2 (y132 = 1) and to information collection asset 5 via

information collection asset 4 (y354 = 1).

• Information collection asset 4 is connected directly to information collection asset 3 and to

information collection asset 5 (c34 = c45 = 1), and it is connected to information collection

asset 2 via information collection asset 3 (y243 = 1) and it is connected to information collection

asset 1 via this path (y142 = 1).

• Information collection asset 5 is connected directly to information collection asset 4 (c45 = 1),

and it is connected to information collection asset 3 via information collection asset 4 (y354 = 1)

and to information collection assets 1 and 2 since either information collection asset 3 or 4 are

communicating with them (as indicated above).

Now, let’s update the network (6.56) by considering the case when information collection asset 2

and 3 are not within communication distance ⇒ c23 = 0. This network is depicted in Figure 6.7.

The binary variables capturing this network are:

1 
3 2 

4 

5 

Figure 6.7: Network Connectivity through Asset Paths - Test Case 2
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c12 = 1 (6.57a)

c13 = 0 (6.57b)

c14 = 0 (6.57c)

c15 = 0 (6.57d)

c23 = 0 (6.57e)

c24 = 0 (6.57f)

c25 = 0 (6.57g)

c34 = 1 (6.57h)

c35 = 0 (6.57i)

c45 = 1 (6.57j)

Following the same approach above, from the direct communication links, we know that from Con-

straint (6.16), and noting that c12 = 1, we have y123 = y124 = y125 = 0. From Constraint (6.23), and

noting that c34 = 1, we have y341 = y342 = y345 = 0. Finally, from Constraint (6.25), and noting that

c45 = 1, we have y451 = y452 = y453 = 0.

Now, with this information we know that, from Constraint (6.30), Constraint (6.33), Constraint

(6.34), Constraint (6.37), Constraint (6.39),Constraint (6.42), Constraint (6.43), and Constraint

(6.46), decision variables y134 , y143 , y145 , y154 , y234 , y243 , y245 and y254 are equal to 0.

We can further recognize that from Constraint (6.18), y142 = 1.

Now, Constraint (6.32) indicates that 1 ≥ 2 · y142 ⇒ 1 ≥ 2, identifying that network (6.58) is not a

connected component.

As a final case, let’s update the network (6.56) by adding a communication link, say between

information collection assets 3 and 5 (⇒ c35 = 1). This network is depicted in Figure 6.8. The

binary variables capturing this network are:

c12 = 1 (6.58a)

c13 = 0 (6.58b)

c14 = 0 (6.58c)
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1 
3 2 

4 
5 

Figure 6.8: Network Connectivity through Asset Paths - Test Case 3

c15 = 0 (6.58d)

c23 = 1 (6.58e)

c24 = 0 (6.58f)

c25 = 0 (6.58g)

c34 = 1 (6.58h)

c35 = 1 (6.58i)

c45 = 1 (6.58j)

Following the same approach above we know :

Exploit connectivity information from direct communication links

From Constraint (6.16), and noting that c12 = 1, we have y123 = y124 = y125 = 0. Similarly, from

Constraint (6.20), and noting that c23 = 1, y231 = y234 = y235 = 0. From Constraint (6.23), and

noting that c34 = 1, we have y341 = y342 = y345 = 0. From Constraint (6.24), and noting that

c35 = 1, y351 = y352 = y354 = 0. Finally, from Constraint (6.25), and noting that c45 = 1, we have

y451 = y452 = y453 = 0. Now, with this information we know that, from Constraint (6.30), y134 = 0.

(Note, Constraint (6.30) indicates that 1 ≥ 2 · y134 ⇒ y134 = 0.)

Using the same observation, from Constraint (6.31), y135 = 0. From Constraint (6.33), y143 = 0.

From Constraint (6.34), y145 = 0. From Constraint (6.36), y153 = 0. From Constraint (6.37), y154 = 0.

From Constraint (6.43), y245 = 0. From Constraint (6.46), y254 = 0.
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We can further recognize that from Constraint (6.17), y132 = 1. From Constraint (6.18), y142 = 1 and,

from Constraint (6.32), y243 = 1. (Note, Constraint (6.32) indicates that 1 + y243 ≥ 2 ⇒ y243 = 1.)

This further implies that, from Constraint (6.21), y241 = 0. Now, from Constraint (6.19), y152 = 1,

which further implies that, from Constraint (6.45), y253 = 1 and, finally, from Constraint (6.22),

y251 = 0.

In summary, for this case,

• Information collection asset 1 is connected directly to information collection asset 2 (c12 = 1),

and it is connected to the other information collection assets in the network via this information

collection assets (y132 = y142 = y152 = 1).

• Information collection asset 2 is connected directly to information collection asset 1 (c12 = 1)

and to information collection asset 3 (c23 = 1), and it is connected to information collection

assets 4 and 5 via information collection asset 3 (y243 = y253 = 1).

• Information collection asset 3 is connected directly to information collection asset 2 (c23 = 1)

and to information collection asset 4 (c34 = 1) and information collection asset 5 (c35 = 1), and

it is connected to information collection asset 1 via information collection asset 2 (y132 = 1).

• Information collection asset 4 is connected directly to information collection asset 3 (c34 = 1)

and to information collection asset 5 (c45 = 1), and it is connected to information collection

asset 2 via information collection asset 3 (y243 = 1) and it is connected to information collection

asset 1 via this path (y142 = 1).

• Information collection asset 5 is connected directly to information collection asset 3 (c35 = 1)

and to information collection asset 4 (c45 = 1), and it is connected to information collection

assets 1 and 2 since either information collection asset 3 or 4 are communicating with them

(as indicated above).

Note on the fully connected (pairwise connectivity) network. For this case, cij = 1, ∀i, j ∈ I.

Constraints (6.16) - (6.25) will require that yijk = 0, ∀i, j, k ∈ I, i �= j �= k. Constraints (6.26) - (6.55)

will still be satisfied since 2 ≥ 0 for all of them ⇒ a connected component.
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Note on a completely disconnected network. For this case, cij = 0, ∀i, j ∈ I. Constraint (6.11)

reduces to
∑

k∈I,k �=i �=j y
ij
k = 1 ∀i, j ∈ I, i �= j. This indicates that the left-hand side of constraint

(6.12) is at most 1; requiring then that all yijk = 0, ∀i, j, k ∈ I, k �= i �= j. Constraint (6.16) cannot

be then satisfied ⇒ not a connected component.

Heterogeneous Communication Radii

Consider now the case when cij �= cji. Under this assumption, Constraint (6.15) is not valid and

can no longer be considered. However, Constraints (6.11) and (6.14) are still sufficient to identify a

connected component.

Considering the connected component for the set I above, the following constraints will be generated:

(from Constraint (6.11))

c12 + y123 + y124 + y125 = 1 (6.59)

c13 + y132 + y134 + y135 = 1 (6.60)

c14 + y142 + y143 + y145 = 1 (6.61)

c15 + y152 + y153 + y154 = 1 (6.62)

c21 + y213 + y214 + y215 = 1 (6.63)

c23 + y231 + y234 + y235 = 1 (6.64)

c24 + y241 + y243 + y245 = 1 (6.65)

c25 + y251 + y253 + y254 = 1 (6.66)

c31 + y312 + y314 + y315 = 1 (6.67)

c32 + y321 + y324 + y325 = 1 (6.68)

c34 + y341 + y342 + y345 = 1 (6.69)
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c35 + y351 + y352 + y354 = 1 (6.70)

c41 + y412 + y413 + y415 = 1 (6.71)

c42 + y421 + y423 + y425 = 1 (6.72)

c43 + y431 + y432 + y435 = 1 (6.73)

c45 + y451 + y452 + y453 = 1 (6.74)

c51 + y512 + y513 + y514 = 1 (6.75)

c52 + y521 + y523 + y524 = 1 (6.76)

c53 + y531 + y532 + y534 = 1 (6.77)

c54 + y541 + y542 + y543 = 1 (6.78)

(from Constraint (6.12))

c13 + c32 + y324 + y325 ≥ 2 · y123 (6.79)

c14 + c42 + y423 + y425 ≥ 2 · y124 (6.80)

c15 + c52 + y523 + y524 ≥ 2 · y125 (6.81)

c12 + c23 + y234 + y235 ≥ 2 · y132 (6.82)

c14 + c43 + y432 + y435 ≥ 2 · y134 (6.83)

c15 + c53 + y532 + y534 ≥ 2 · y135 (6.84)

c12 + c24 + y243 + y245 ≥ 2 · y142 (6.85)

c13 + c34 + y342 + y345 ≥ 2 · y143 (6.86)

c15 + c54 + y542 + y543 ≥ 2 · y145 (6.87)

c12 + c25 + y253 + y254 ≥ 2 · y152 (6.88)

c13 + c35 + y352 + y354 ≥ 2 · y153 (6.89)
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c14 + c45 + y452 + y453 ≥ 2 · y154 (6.90)

c23 + c31 + y314 + y315 ≥ 2 · y213 (6.91)

c24 + c41 + y413 + y415 ≥ 2 · y214 (6.92)

c25 + c51 + y513 + y514 ≥ 2 · y215 (6.93)

c21 + c13 + y134 + y135 ≥ 2 · y231 (6.94)

c24 + c43 + y431 + y435 ≥ 2 · y234 (6.95)

c25 + c53 + y531 + y534 ≥ 2 · y235 (6.96)

c21 + c14 + y143 + y145 ≥ 2 · y241 (6.97)

c23 + c34 + y341 + y345 ≥ 2 · y243 (6.98)

c25 + c54 + y541 + y543 ≥ 2 · y245 (6.99)

c21 + c15 + y153 + y154 ≥ 2 · y251 (6.100)

c23 + c35 + y351 + y354 ≥ 2 · y253 (6.101)

c24 + c45 + y451 + y453 ≥ 2 · y254 (6.102)

c32 + c21 + y214 + y215 ≥ 2 · y312 (6.103)

c34 + c41 + y412 + y415 ≥ 2 · y314 (6.104)

c35 + c51 + y512 + y514 ≥ 2 · y315 (6.105)

c31 + c12 + y124 + y125 ≥ 2 · y321 (6.106)

c34 + c42 + y421 + y425 ≥ 2 · y324 (6.107)

c35 + c52 + y521 + y524 ≥ 2 · y325 (6.108)

c31 + c14 + y142 + y145 ≥ 2 · y341 (6.109)

c32 + c24 + y241 + y245 ≥ 2 · y342 (6.110)
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c35 + c45 + y451 + y452 ≥ 2 · y345 (6.111)

c31 + c15 + y152 + y154 ≥ 2 · y351 (6.112)

c32 + c25 + y251 + y254 ≥ 2 · y352 (6.113)

c34 + c45 + y451 + y452 ≥ 2 · y354 (6.114)

c42 + c21 + y213 + y215 ≥ 2 · y412 (6.115)

c43 + c31 + y312 + y315 ≥ 2 · y413 (6.116)

c45 + c51 + y512 + y513 ≥ 2 · y415 (6.117)

c41 + c12 + y123 + y125 ≥ 2 · y421 (6.118)

c43 + c32 + y321 + y325 ≥ 2 · y423 (6.119)

c45 + c52 + y521 + y523 ≥ 2 · y425 (6.120)

c41 + c13 + y132 + y135 ≥ 2 · y431 (6.121)

c42 + c23 + y231 + y235 ≥ 2 · y432 (6.122)

c45 + c53 + y531 + y532 ≥ 2 · y435 (6.123)

c41 + c15 + y152 + y153 ≥ 2 · y451 (6.124)

c42 + c25 + y251 + y253 ≥ 2 · y452 (6.125)

c43 + c35 + y351 + y352 ≥ 2 · y453 (6.126)

c52 + c21 + y213 + y214 ≥ 2 · y512 (6.127)

c53 + c31 + y312 + y314 ≥ 2 · y513 (6.128)

c54 + c41 + y412 + y413 ≥ 2 · y514 (6.129)

c51 + c12 + y123 + y124 ≥ 2 · y521 (6.130)

c53 + c32 + y321 + y324 ≥ 2 · y523 (6.131)
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c54 + c42 + y421 + y423 ≥ 2 · y524 (6.132)

c51 + c13 + y132 + y134 ≥ 2 · y531 (6.133)

c52 + c23 + y231 + y234 ≥ 2 · y532 (6.134)

c54 + c43 + y431 + y432 ≥ 2 · y534 (6.135)

c51 + c14 + y142 + y143 ≥ 2 · y541 (6.136)

c52 + c24 + y241 + y243 ≥ 2 · y542 (6.137)

c53 + c34 + y341 + y342 ≥ 2 · y543 (6.138)

Now, consider again the network (6.56). The binary variables capturing this network are now:

c12 = 1 (6.139a)

c13 = 0 (6.139b)

c14 = 0 (6.139c)

c15 = 0 (6.139d)

c21 = 0 (6.139e)

c23 = 1 (6.139f)

c24 = 0 (6.139g)

c25 = 0 (6.139h)

c31 = 0 (6.139i)

c32 = 0 (6.139j)

c34 = 1 (6.139k)

c35 = 0 (6.139l)

c41 = 0 (6.139m)

c42 = 0 (6.139n)

c43 = 0 (6.139o)

c45 = 1 (6.139p)
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c51 = 0 (6.139q)

c52 = 0 (6.139r)

c53 = 0 (6.139s)

c54 = 0 (6.139t)

Now, exploiting the connectivity information from direct communication links, from Constraints

(6.127), (6.128), and (6.129), and noting that c52 = c21 = c53 = c31 = c54 = c41 = 0, we

have y512 = y513 = y514 = 0. However, from Constraint (6.75), and noting that c51 = 0, we have

y512 + y513 + y514 = 1.

⇒ network (6.139) is not a connected component.

Now, considering again the network (6.139) but this time adding a direct communication link between

information collection asset 5 and 1 (i.e., c51 = 1), we have:

c12 = 1 (6.140a)

c13 = 0 (6.140b)

c14 = 0 (6.140c)

c15 = 0 (6.140d)

c21 = 0 (6.140e)

c23 = 1 (6.140f)

c24 = 0 (6.140g)

c25 = 0 (6.140h)

c31 = 0 (6.140i)

c32 = 0 (6.140j)

c34 = 1 (6.140k)

c35 = 0 (6.140l)
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c41 = 0 (6.140m)

c42 = 0 (6.140n)

c43 = 0 (6.140o)

c45 = 1 (6.140p)

c51 = 1 (6.140q)

c52 = 0 (6.140r)

c53 = 0 (6.140s)

c54 = 0 (6.140t)

Are Constraints (6.59) - (6.138) sufficient to recognize that network (6.140) is a connected compo-

nent?

Following the same process above, the following solution was found:

c12 = 1 (given)

y123 = 0

y124 = 0

y125 = 0

y132 = 1

y134 = 0

y135 = 0

y142 = 1

y143 = 0

y145 = 0

y152 = 1

y153 = 0

y154 = 0

y213 = 1

y214 = 0

y215 = 0

c23 = 1 (given)

y231 = 0

y234 = 0

y235 = 0

y241 = 0

y243 = 1

y245 = 0

y251 = 0

y253 = 1

y254 = 0

y312 = 0

y314 = 1

y315 = 0

y321 = 0

y324 = 1

y325 = 0

c34 = 1 (given)

y341 = 0

y342 = 0

y345 = 0

y351 = 0

y352 = 0

y354 = 1

y412 = 0

y413 = 0

y415 = 1
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y421 = 0

y423 = 0

y425 = 1

y431 = 0

y432 = 0

y435 = 1

c45 = 1 (given)

y451 = 0

y452 = 0

y453 = 0

c51 = 1 (given)

y512 = 0

y513 = 0

y514 = 0

y521 = 1

y523 = 0

y524 = 0

y531 = 1

y532 = 0

y534 = 0

y541 = 1

y542 = 0

y543 = 0

⇒ network (6.139) is a connected component.

In summary, for this case,

• Information collection asset 1 is connected directly to information collection asset 2 (c12 = 1),

and it is connected to the other information collection assets in the network via this information

collection assets (y132 = y142 = y152 = 1).

• Information collection asset 2 is connected directly to information collection asset 3 (c23 = 1),

and it is connected to the other information collection assets in the network via this information

collection assets (y243 = y253 = y213 = 1).

• Information collection asset 3 is connected directly to information collection asset 4 (c34 = 1),

and it is connected to the other information collection assets in the network via this information

collection assets (y354 = y314 = y324 = 1).

• Information collection asset 4 is connected directly to information collection asset 5 (c45 = 1),

and it is connected to the other information collection assets in the network via this information

collection assets (y415 = y425 = y435 = 1).

• Information collection asset 5 is connected directly to information collection asset 1 (c51 = 1),

and it is connected to the other information collection assets in the network via this information

collection assets (y521 = y531 = y541 = 1).
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6.4 Trust on Information from Assets Outside the Network

Component

Consider the following situation: At time-step t0, information collection asset 1 and information

collection asset 2 shared their respective Information Gain Maps (IGMs) and routes. As assumed

before, each route consists of a sequence of cells each collection asset will visit in the next T time-

steps. At time-step t, information collection asset 1 and information collection asset 2 are not

communicating (e.g,. communication equipment is no longer operational). At time-step t0 + T ,

information collection asset 1 will define its new route for the next T time-steps. We know that

information collection asset 2 is in the area but, since we are not communicating with it, we are not

certain on its location nor its route for the next T time-steps.

Research question

From information collection asset 1’s perspective, how do we account for the potential collection of

information from information collection asset 2 while defining a new route?

6.4.1 Updates to Mathematical Programming Model

Parameters

The following parameters are defined:

Ĵ ≡ set of collection assets not in connected component, indexes ĵ =
{
1, 2, . . . , |Ĵ |

}
; Ĵ ⊂ I

pı̂kt ≡ confidence collection assets ı̂ will be on cell k at time-step t

Objective Function

No changes are required to the objective function (4.1) to accommodate the potential contribution

of collection assets outside the connected component.
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Potential Information Gain Constraints

From Section 4, Constraint (4.4) relates the value of cell k at time-step t to its value at time-step

t − 1, the obsolescence rate drkt and the gain grk,t−1 from the set of collection assets. Constraint

(4.4) is repeated below to facilitate description of updates to formulation

frkt ≤ frk,t−1 + drkt − grk,t−1

For the case in which we are considering the potential contribution of collection assets outside the

connected component (information collection asset ĵ ∈ Ĵ), frkt needs to account for the expected

information gain from these assets.

grkt is now represented as constraint

grkt =
∑
j∈J

gjrkt +
∑
ĵ∈Ĵ

gĵrkt =
∑

j∈J∪Ĵ

gjrkt ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (6.141)

updating Constraint (4.7).

In addition, the following constraint capturing the gain from collection assets outside the connected

component is required

gĵrkt ≤ eĵrkt pĵkt fĵrkt ∀ĵ ∈ Ĵ , ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (6.142)

Note that the contribution to the overall information gain from collection assets ĵ outside

the connected component (i.e., eĵrkt fĵrkt) is weighted by the confidence pĵkt the asset will be at cell

k at time t. The smaller the confidence on an asset ĵ being at a cell k at time t (e.g., pĵkt ≈ 0), the

smaller the gain is assumed to be collected from that asset, leaving the collection of information to

other assets in the network.

The set of collection assets considered in Constraint (4.11) need to be updated to include all assets

(i.e., connected and not-connected). Constraint (4.11) is then updated as follows

fjrkt = fj−1,rkt − gjrkt ∀j ∈ {J ∪ Ĵ}, ∀r ∈ R, ∀k ∈ K, ∀t ∈ T (6.143)



Chapter 7

Measuring the Price of

Decentralization

7.1 Introduction

Technology advancements in Intelligence, Surveillance, and Reconnaissance (ISR) automation and

the intelligent use of network assets is needed to improve the timely processing and delivery of

information products in the emerging Command and Control (C2)/ISR integrated operational en-

vironment. Synchronization of activities to maximize the utilization of limited resources (both in

terms of quantity and capability) has become critically important to military forces in this envi-

ronment. Timely and accurate answers to information needs contribute significantly to situational

understanding. This requires the increase of information sharing capabilities and planning and con-

trol algorithms among current operational and expected future systems to efficiently use all limited

resources across domains.

As discussed in Chapter 2, most planning and control algorithms assume a centralized

framework [1, 15, 16, 18]. In centralized frameworks, a single node is responsible for determining and

disseminating decisions (e.g., tasks assignments) to all nodes in the network. This requires a robust

and reliable communication network. In decentralized frameworks, processing of information and

decision making occur at different nodes in the network, reducing the communication requirements.
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This chapter studies the degradation of solution quality (i.e., potential information gain)

as a centralized system synchronizing ISR activities moves to a decentralized framework. The

potential information gain value on a discretized area of the Area of Operation (AO) represents a

relative prioritization of the likelihood of addressing relevant features of an information deficit for

the mission. As described in Chapter 3, this characterization creates an Information Gain Map

(IGM). Each collection asset is responsible for sensing the environment. Moreover, each collection

asset is responsible for determining its flight plans over the planning horizon, considering mission

objectives, its perspective of the environment, and the potential collected information from other

assets in its connected component. The primary objective of each asset while defining its plan is

then to maximize the overall expected information gain considering available sensing capabilities

while preserving the connected component to enable information sharing over the planning horizon

in the decentralized framework. The Mixed-Integer Linear Program (MILP) described in Chapter 4

and the solution approach discussed on Chapter 5 provide the framework to define the plans for

each collection asset for the study documented in this Chapter. Communication to other assets to

exchange information is limited over different communication network topologies. Information is

only exchanged when assets are part of the same network. Collection assets are part of the same

communication network (i.e., a connected component) if (1) a Fully Connected Network (FCN)

exists between the assets in the connected component, or (2) a path between each pair of assets

(PPA) in the connected component exists. Equations (4.16) to (4.24) presented in Section 4.4.4

capture the representation of the FCN topology in the mathematical program. A description of

Constraints (6.11) to (6.14) and additional updates to the mathematical program to represent the

PPA topology are discussed in Section 6.3.1. Multiple connected components may exist among

the available collection assets supporting a mission. As described in Section 6.4, in both types of

network configuration, the potential location and information collection of assets that are not part

of a connected component can be considered as part of the optimization model.

The rest of this chapter is organized as follows: Section 7.2 reviews the concept of the price of

decentralization. In Section 7.3, the methodology and results of the experiments to study the impact

of the network topology, collection effectiveness and type of IGM to the price of decentralization are

presented.
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7.2 From Centralized Planning to Anarchy: the Price of De-

centralization

The Price of Decentralization (PoD) is defined as a measure on the degradation of solution quality

as a centralized system moves to a more decentralized framework. The term ‘‘price of anarchy’’ has

been used to refer to the inefficiency of a system when individuals (i.e., agents) maximize decisions

without coordination [4]. Researchers have continued using this term to refer to this efficiency-loss

ratio [5, 6, 7, 8]. This research extends the concept of Price of Anarchy (PoA) by considering different

levels of decentralization. Levels of decentralization are determined by redefining the structure of

the network topology used by the collection assets to exchange information. In this research, PoD

is defined as

PoD =

(
1−

∑
r

∑
t wrt

∑
k grkt∑

r

∑
t wrt

∑
k g

∗
rkt

)
(7.1)

where g∗rkt refers to the information obtained by the solution of the centralized framework for col-

lection requirement r ∈ R, from cell k ∈ K, at time-step t ∈ T . Parameters R, K, and T are defined

in Section 4.2 and capture the set of collection requirements for the mission, the number of cells

representing the AO and the planning horizon, respectively. grkt in Equation (7.1) is the resulting

information gain for collection requirement r from cell k at time-step t by solving the mathematical

programming model consisting of Equations (4.1) to (4.15), and the additional constraints for a

particular configuration network. As described in Section 4.2, wrt represents a weighting parameter

for collection requirement r at time-step t.

Equation (7.1) captures the loss ratio of potential information gain when the solution from

a decentralized framework is compared to the solution a centralized framework could attain under

the same initial conditions and constraints. In this research, a centralized framework is represented

by a network configuration in which all collection assets can share their information. Although there

is no ‘‘central’’ node deciding the plans for the assets in this configuration, given that all assets

will be aware of all available information for the mission, solving the (deterministic) mathematical

program of Chapter 4 will result in the same solution for each asset. Under the assumption of a

no latency communication network in this research, this is equivalent to a centralized framework in

which the assets broadcast their information to and receive the plans from the ‘‘central’’ node. Note

that, under these assumptions,
∑

r

∑
t wrt

∑
k g

∗
rkt ≥

∑
r

∑
t wrt

∑
k grkt.
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7.3 Experimental Results

The purpose of this research is to measure the impact of sensor effectiveness, communication network

topology and type of IGM on the PoD metric. Three collection assets, indexed 1, 2, and 3, were

considered in a given area of operation. The AO was represented as a grid of 15-by-15 cells. Without

loss of generality, it is assumed for these experiments that all information collection assets have a

single, on-board sensor. Sensor effectiveness, the ability of a sensor to collect information, was varied

in the experiments and is displayed in Table 7.1. As an example, if the sensor effectiveness is given

by α ∈ [0, 1], then a collection asset with this sensor effectiveness will collect α% of the information

available on the collection asset’s current cell.

In the developed scenario, the potential information gain value on a discretized area of

the AO represents a relative prioritization of the likelihood of addressing relevant features of an

information deficit (e.g., finding a high value target at that cell) for the mission. As described in

Chapter 3, this characterization creates an IGM. Areas of high information gain are denoted in

red, while those of low information gain (e.g., the middle of a lake while searching for a car) are

denoted in blue. Figure 7.1 shows a sample of an information gain map. Ten randomly generated

information gain maps were used for these experiments. Analysis is based on the results captured

from 10 different trials for each type of network configuration in which the initial location of the

assets and information gain maps were randomly determined.

Figure 7.1: Sample Information Gain Map

The planning horizon for the routes to be defined for each asset consisted of 5 time-steps.

In the experiments below, however, assets were considered homogeneous: at each time-step, each
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asset was allowed to move to any adjacent cells, or remain at the same cell. Moreover, for a given

trial in the experiment, all assets started at the same initial location and were assumed to have the

same sensor effectiveness. Values of other relevant parameters during the simulation are captured

in Table 7.1.

Table 7.1: Mathematical Program and Experiment Parameters for Evaluation of PoD

Parameter Value

Mathematical Program

I {1,2,3}
T {1,2,. . . , 5}
K

{1,2,. . . ,225}
(a 15-by-15 grid area)

R {1}
CRi

3.0
(∀i ∈ I)

wrt
1.0

(∀r ∈ R, t ∈ T )

sensor effectiveness {0.25, 0.50, 0.75}
Design of Experiment

Number of Trials 10

Type of Information Gain Maps 1 Hot-Spot and Random

Information Gain Maps
10

(for each IGM type)

Using each of the potential network configurations, the solution obtained under distributed

planning will be compared with the potential information gain obtained if a ‘‘central’’ node was

available and responsible for determining the routes for all information gathering assets supporting

the mission.

PoD was computed for multiple runs, under multiple initial conditions, created by varying

the starting locations of the collection assets and the initial information gain maps. Moreover, two

types of IGMs were considered: (1) 1 Hot-Spot, and (2) Random. Figure 7.2 shows an example of

an IGM with a single hot spot. The location of the hot spot was randomly selected for each case

considered. Figure 7.3 shows an example of a random IGM. For this type of IGM, the value of each

cell was randomly selected from a uniform distribution ∼ U(0, 1).

Levels of decentralization are defined by fixing the connected components on the communica-

tion network structure. Indices within brackets represent the set of collection assets in a connected
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Figure 7.2: Sample IGM with 1 Hot-Spot for Evaluation of Price of Decentralization

component (e.g., [1 2][3] represents that collection asset 1 and collection asset 2 are part of the

same connected component and exchange information with each other, while collection asset 3 does

not communicate with any other asset in the area of operation). For each connected component,

the mathematical program described in Chapter 4 and the corresponding set of constraints for the

network topology were solved using CPLEX Interactive Optimizer 12.2 [50]. Solutions were then

compared to the potential information gain expected from the best-case known centralized solution

for each of the cases. This provides a bound on the PoD since, as discussed in Section 7.2, the

centralized solution is guaranteed to not be worse than the decentralized solutions.

Figure 7.4 shows a plot of the average PoD as a function of sensor effectiveness for collection

assets on different fully connected network (i.e., pairwise connectivity) topologies on the IGMs with

1 Hot-Spot. The PoD increases as the accuracy of the sensor increases, regardless of the network

topology. For the case where one collection asset was operating independently (network topology [1

2][3]) the PoD increased from a 3.36% for assets with a collection effectiveness of 0.25, to a PoD of

14.97% when the effectiveness of the sensors was 0.75. Similarly, for the case where all assets were

operating independently (network topology [1]2][3]) the PoD increased from a 26% for assets with

a collection effectiveness of 0.25, to a PoD of 45.3% when the effectiveness of the sensors was 0.75.
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Figure 7.3: Sample Random IGM for Evaluation of Price of Decentralization

PoD for this [1][2][3] network topology is equivalent to PoA. Note also the substantial increase in

the PoD for each particular sensor effectiveness but on different network topologies. In Figure 7.5,

a plot of the average PoD as a function of sensor effectiveness for collection assets on different PPA

(i.e., path connectivity) network topologies on the IGMs with 1 Hot-Spot is shown. Since PPA is

a generalization of FCN, under the same initial conditions, the potential information gain obtained

by solving the full mathematical program for a PPA network is never worse than the potential

information gain obtained from a FCN network. However, it is worth highlighting the trend for

each of these network types in the price of decentralization on these experiments: as the accuracy of

sensors (better collection effectiveness) increases, the solution quality is more dependent on whether

or not the assets are able to communicate, regardless of the type of network topology or type of IGM.

The PoD metric in Figures 7.6 and 7.7 show the impact on the lack of coordination for assets with a

low sensor effectiveness for different types of IGMs, on the FCN and PPA networks, respectively. In

general, less accurate sensors will leave significant information on a sensed cell so additional assets

will still benefit by sensing the same cell at the same time. Consider for example a cell with current

potential information gain value of 1.0. An asset with on-board sensing capabilities of just 0.25 will

leave 0.75 of potential information for other assets to collect. The impact of the lack of coordination
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of assets is less evident (i.e., a small PoD) for those cases (as shown in Figures 7.6 and 7.7). From

Figure 7.2, there is a single cluster of high potential information gain in a 1 Hot-Spot IGM so any

move delaying collection on the area will be have a substantial impact on the overall information

gained by the assets. The PoD is relatively the same for an asset with a better sensor effectiveness

( ≥ 0.5 on this experiment), regardless of the type of IGM. Note that this does not imply that

having less accurate (and potentially, cheaper) sensors is not valuable for a mission. However, the

price of not coordinating the information gathering activities from these less accurate assets is less

when compared to the same situation with highly accurate sensors (20% vs 48% reduction on the

potential information gain), regardless of the type of IGM or network type.
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Chapter 8

Conclusions and Future Research

Topics

This work addressed the problem of routing cooperative autonomous vehicles (e.g., unmanned vehi-

cles) operating in a dynamic environment to maximize overall information gain. Vehicles (collection

assets) are collecting information on multiple objectives, subject to communication network con-

straints. The Area of Operation (AO) where assets are collecting information is discretized and

represented by a set of grid cells.

A rating system based on Keener’s method [47] was developed to define Information Gain

Maps (IGMs). IGMs assign a numerical value to each cell in the AO based on its potential of having

features addressing identified information deficits and objectives in the mission. When considering

an IGM, a higher value represents a higher opportunity to obtain relevant information from a cell

in the AO to address one or more deficits. The concept of entropy as a measure of the amount of

information required on the average to describe a random variable was exploited in the developed

rating system. Additional scoring functions to better represent the fusion of relevant features from

information deficits will the topic of future research.

A rigorous mathematical model was developed as a Mixed-Integer Linear Program (MILP)

to determine the optimal routes (i.e., the sequence of moves) of the information collection assets

in the AO to maximize the overall potential information to be gained. The model is based on

131



Chapter 8. Conclusions and Future Research Topics 132

the representation of potential information gain in discretized maps (i.e., IGMs), the effectiveness

of the assets collecting information and an obsolescence rate on the areas visited by the assets.

The model assumes assets operate on a decentralized framework. Different communication network

topologies were considered. Collection assets are part of the same communication network (i.e., a

connected component) if: (1) a fully connected network exists between the assets in the connected

component, or (2) a path (consisting of one or more communication links) between every asset

in the connected component exists. Multiple connected components may exist among the available

collection assets supporting a mission. Extensions to the mathematical model included the evaluation

of the potential location of assets that are not part of a connected component. Additional extensions

to the mathematical model may consider the endurance of vehicles, time constraints to return to a

predefined location (e.g., landing zones), effects of weather on both, mobility and communication

capabilities, and other operational limitations.

A solution approach based on multiple aggregation strategies to obtain acceptably good

solutions that are computational efficient was developed. Instead of trying to solve the complete

route for each asset at once, a strategy in which only a subset of time-steps are evaluated at a

time was defined. Using this time cascade approach provided the opportunity to also reduce the

number of grid cells considered in each cascade, reducing even more the complexity of the MILP

to be solved. A spatial aggregation algorithm was then defined whereby gain information for cells

that cannot be reached in a cascade are ‘‘aggregated’’ and used to update the value of selected cells

within the rolling horizon. The Bellman-Ford algorithm was used as the basis of this aggregation

approach. It defines the path that maximizes the potential information gain for a vehicle on each cell

of interest in the subproblem. However, the use of Bellman-Ford algorithm and the definition of the

graph G limited the representation of relevant information considered in the modeling of the vehicle

routing problem while computing the aggregated cell value. First, the definition of graph G does not

include the potential reduction of available information gain from other collection assets in the AO.

Moreover, the expected reduction of potential information gain due to the sensor effectiveness of an

asset is not captured in the definition of graph G. Approaches to better represent this information

will be the subject of future research.

The benefits of applying space aggregation as part of the solution strategy for a random

IGM decreased relative to the increase in solution quality observed when aggregation was part of
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the solution strategy for the 1 Hot-Spot IGM shown in Chapter 5. Applying aggregation as part

of the solution strategy for the 1 Hot-Spot IGM showed an increase of 30% on the solution value

(potential information gain); applying aggregation as part of the solution strategy for the Random

IGM showed an increase of 4% on the solution value. In the Random IGM, the value of each cell

was randomly determined from a uniform distribution so there was no concentration of potential

information gain as in the 1 Hot-Spot IGM. Based on these results, the impact of the distance

from an information collection asset location to a hot-spot (an area of high potential information

gain) in the IGM will be studied as part of future research. Although the computational price to

include aggregation as part of the solution strategy was relatively minimal (an average increase of

0.01 seconds), an adaptive solution strategy is envisioned in which, based on a characterization of

the IGM, the contribution of aggregation is varied. A study of this characterization is needed and

it may include, the variance of the IGM and the distance to clusters of high potential information

gain (hot-spots).

The developed mathematical programming model and solution approach were used as a

framework to evaluate the degradation of solution quality as a centralized system moves to a de-

centralized framework. This research defined Price of Decentralization (PoD) as a measure on the

degradation of solution quality as a centralized system moves to different levels of decentralization,

extending the concept of ‘‘price of anarchy’’ originally defined by the game theory community. A net-

work connectivity matrix captured what assets are in the same communication network and enabled

to exchange information. Levels of decentralization were determined by redefining the structure

of this connectivity matrix and computing the PoD metric against the information gain from the

best-known solution for a centralized framework. Moreover, assets in a connected component were

required to maintain (1) pairwise connectivity to all assets in communication network; or, (2) a path

between each pair of assets in the communication network. On the latter configuration, assets use

other assets as intermediary (or ‘‘bridge’’) nodes to exchange information. Using a set of simulated

scenarios where the initial location of assets and the initial information gain maps were defined ran-

domly, the impact of sensor effectiveness, network topology and the type of IGM to the PoD metric

was measured. Homogeneous assets (i.e., assets having the same mobility constraints and sensing

capabilities) starting at the same location in a discretized area of operation were assumed. Under

these conditions, the PoD metric was 45% when the information gathering activities of accurate

sensors (0.75 sensor effectiveness) were not coordinated. This contrasts drastically with a PoD value
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of 20% when the information gathering activities of less accurate sensors (0.25 sensor effectiveness)

were not coordinated. The PoD was relatively the same for an asset with a better sensor effective-

ness, regardless of the type of IGM. A study of the impact of heterogeneous collection assets and the

effects of the asset’s communication range for the different network topologies on the PoD metric

is envisioned as future research. Moreover, PoD will be extended to consider available bandwidth,

expected latencies and the value of the information flow present in the communication network.

Based on the above results, more complex experiments will be performed, determining

how heterogeneous assets impact PoD as a function of the communication topology network. In

particular, future work will provide an in-depth analysis of the PoD metric as assets with a mix of

sensor effectiveness are available to support a mission. The PoD metric will also be extended to

consider available bandwidth, expected latencies and the value of the information flow present in

the communication network. The effects of decentralization on other metrics such as the Price of

Fairness (PoF) [8] will also be evaluated.
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