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ABSTRACT  

 

The main objective of this study is to explore the complex fluid flow phenomena that result 

in the generation of a high frequency noise in counterbalance valves through an experimental and 

numerical investigation of the flow. Once the influence of the different components involved in 

noise generation is established, a secondary objective is the introduction of design modifications 

that eliminate the undesired effect without altering the operation envelope or the performance of 

the valve.  

A hydraulic test bench was used to carry out an experimental investigation of the noise 

generation process. A computer based data acquisition system was used to record pressure 

fluctuations, flowrates and hydraulic oil temperatures in a production valve under a variety of 

operational conditions. Extensive experimental measurements and numerical modeling lead to the 

hypothesis that noise generation is the result of an acoustic resonance triggered by shear layer 

instability at the valve inlet. The pressure gradients developed when the shear layer entrains the 

stagnant fluid in the valve main cavity cause the layer to become unstable and oscillate. The 

oscillation frequency will depend on a great number of factors such as valve geometry, pressure 

and velocity gradients and the density and viscosity of the fluid. It is postulated that the observed 

noise is generated when this frequency matches one of the resonant frequencies of the valve cavity.  

The proposed mechanism is theoretically poorly understood and well beyond simplified 

analysis, its accurate numerical simulation is computational very intensive requiring sophisticated 

CFD codes. The numerical investigation was carried out using STAR–CCM+, a commercially 
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available CFD code featuring 3-D capabilities and sophisticated turbulence modeling. Streamline, 

pressure, velocity-vector and velocity-scalar plots were obtained for several valve configurations 

using steady and unsteady state flow simulations. 

An experimental and numerical analysis of an alternative valve geometry was carried out. 

Experimental results demonstrated a greatly reduced instability range.  The numerical analysis of 

the unsteady behavior of the shear-layer streamlines for both valves yielded results that were 

compatible with the experimental work. 

The results of this investigation promise a great positive impact on the design of this type 

of hydraulic valves.  
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CHAPTER 1: INTRODUCTION 

 

1.1.  Background    

The study of fluid-power systems is the study of the characteristics and uses of liquids and 

gases in the conversion, control, and transmission of power. Pneumatics and hydraulics are 

applications of fluid power. Pneumatics uses compressed air while hydraulics uses incompressible 

liquid media such as oil or water. Actuators and control systems are mechanical devices often 

found in hydraulic systems. Although mankind has used hydraulic power in the form of water 

wheels for centuries, the study of hydraulics started in the late seventeenth century, when French 

philosopher Blaise Pascal (1623 - 1662) discovered that liquids cannot be compressed. He stated 

that pressure exerted in a confined incompressible fluid is transmitted equally in all directions. 

Pascal’s law is the main reference for all hydraulics science. Using Pascal’s law, engineers have 

been successful in designing hydraulic components such as pumps, control valves, and actuators. 

Later, Joseph Bramah (1748 - 1814) invented the hydraulic press. The hydraulic press was based 

on Pascal's law, it consists of two cylinders and two pistons with different cross-sectional areas. 

Bramah stated that when a force is applied on the small piston, it will produce a large force on the 

larger piston. He proved that the difference between the two forces increased with the difference 

in the area of the two pistons.    

Modern fluid power was born in the early twentieth century with the replacement of some 

electrical systems with hydraulic systems. There are three main types of hydraulic-system 

components: pumps, control valves, and actuators.  The most common types of pumps are gear, 

http://www.hydraulicstroubleshooter.com/physics-help.html
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vane, and piston pumps. The function of these pumps is to convert mechanical energy into 

pressure. The actuators use a source of energy, hydraulic-fluid pressure, or pneumatic pressure, 

and convert that energy into motion as in brakes, hydraulic cylinders, and hydraulic motors. 

Actuators can operate efficiently at varying speeds, unlike motors, which prefer to operate at 

constant speed. Actuators can be reversed instantly while in motion without damage. In addition, 

actuators can be stopped and immediately restarted. The function of a valve is to direct or control 

fluid flow by opening, closing, or partly interrupting flow in hydraulic lines.  

The most common types of valves include counterbalance, check, directional, pressure 

reduction, proportional, flow-divider, rotary, and pressure-relief valves. Hydraulics are used where 

power density must be optimized. Examples of applications of hydraulic systems are 

commonplace. A man lift is a machine used for lifting or lowering loads and to provide access  to 

inaccessible high areas, and is widely used in places such as factories, hotels, and airports. A utility 

lift truck is a mechanical device used in factories to carry and move merchandise; they are used 

frequently by utility companies. A straddle crane is a heavy-duty machine used in port terminals 

for lifting, moving and stacking containers. Fire rescue trucks and mining equipment are additional 

examples of common machinery that use hydraulic systems.        

Hydraulic systems have several advantages over other methods of transmitting power. 

First, they have more efficient and consistent work or power output and in general can transmit 

power more efficiently better than mechanical or electrical systems in a small space, this is 

particularly true when a high force or torque needs to be applied. Second, through the use of 

hydraulic or pneumatic cylinders, hydraulic systems can readily produce linear motion, while 

typical electrical systems require additional machinery to convert the rotational motion into linear 

http://en.wikipedia.org/wiki/Hydraulic_fluid
http://en.wikipedia.org/wiki/Pneumatic
http://en.wikipedia.org/wiki/Hydraulic_cylinder
http://en.wikipedia.org/wiki/Hydraulic_motor
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motion. Third, hydraulic fluids operate very well in hot working environments. Finally, hydraulic 

systems also provide high power with very small weight and size [1].  

1.2.  Literature Review   

Most studies of flow-generated noise are focused on the relationship between the frequency 

of the fluid fluctuations and that of the emitted sound. The frequency of an oscillating flow was 

first related to flow parameters by Strouhal who, as a result of quantitative observations, introduced 

the non-dimensional frequency, the Strouhal number. Lord Rayleigh related the Strouhal number 

to the Reynolds number. He published a masterful treatise (The Theory of Sound) [2] on acoustics 

that develops the mathematical physics of wave propagation and vibration. He developed the 

theory of vibrating systems by formulating approximation techniques to describe complex physical 

situations. These principles are still relevant to the modern field of acoustics. Among the pioneers 

of aeroacoustics was Sir James Lighthill [3], [4], who in 1955 derived a theory for the estimation 

of the intensity of the sound that radiates from turbulent flow. Lighthill first introduced the concept 

of the aeroacoustic analogy, which consists of replacing the actual flow field responsible for 

generating noise with an equivalent system of noise sources. The noise sources act on a uniform 

stagnant fluid that is governed by standard acoustic propagation equations. The aerodynamic 

characterization of the sources then becomes the main issue in noise prediction. Curle [5] extended 

the concepts that Lighthill developed to include the effect of flow body interaction on sound 

generation. Ffowcs Williams and Hawkings [6] extended the Lighthill analogy to account for 

arbitrary surface motion. This formulation was used for noise prediction in rotor blade 

aerodynamics, such as in the helicopter and turbine industries.      

http://en.wikipedia.org/wiki/Fluid_dynamics
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The focus of this literature review will be on the previous experimental and computational 

work in the flow characteristics of counterbalance valves, load control valves, and direct acting 

relief valves.  

1.2.1.  Computational Work     

Fleming et al. [7] used a computational fluid dynamics (CFD) code to examine gas flow 

through a disk valve. The simulation was carried out to study how changing the values of the eddy 

kinematic viscosity (to determine the Reynolds stresses) in the turbulence model influenced the 

computed value of gas forces. The work concluded emphasizing computational techniques with 

turbulence models instead of investigating flows through different valves.    

Guo and Nakano [8] used boundary element methods to investigate axial flow force 

compensation in spool valves.  Pressure distributions were determined using a linear smoothing 

technique. The fluid used in the simulation was viscous and incompressible and the flow was 

steady. A recirculating bucket on the valve spool was modeled in two–dimensions. The Reynolds 

number of the flow in the simulation was 280. The results illustrated the ratio of the flow force 

caused by the momentum change in the jet to the force in the axial direction generated by the 

compensation bucket increases as the Reynolds number increased.   

Ito, Takahashi, and Inoue [9] used a unique combination of numerical techniques to model 

the flow through a poppet valve to study the pressure distribution and flow forces on the valve 

body. A steady, laminar axisymmetric flow around the poppet valve was simulated. The simulated 

flows through a 45ᵒ conical poppet valve were of very low Reynolds numbers (200-300).  Both 

experimental and numerical results were found in good agreement in the pressure distributions for 

Reynolds numbers less than 200, and they showed a large difference for Reynolds greater than 

200.   
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Jahnston et al. and Vaughan et al. [10] used both experimental techniques and numerical 

simulations, in an extensive study the flow characteristics of a poppet valve. The CFD models 

were good trend predictors of flow patterns, but had limitations on determining exact values. This 

work provided an excellent description of the flow structure in poppet valves.   

Nguyen–Schaefer et al. [11] studied the vibration induced by the internal flow of a ball seat 

valve in mobile hydraulics under various extreme flow conditions using both experimental 

techniques and CFD.  The aim of the research was to prove that CFD was a good method to 

understand the flow and the dynamic features in the valve. The authors explained that to reduce 

the noise associated with these vibrations, it was necessary to gain a thorough understanding of 

the flow in this particular hydraulic component and of the dynamic characteristic of the hydraulic 

system. They concluded that the combined, method using CFD and direct measurements, suggests 

itself as a very suitable approach to gain more understanding not only of the flow processes in the 

valve but also of the causes for the instability of the valve closing body.    

Francis and Betts [12] used an axisymmetric CFD model and experimental techniques to 

study the incompressible isothermal flow in a disc relief valve. The CFD simulation was used to 

investigate the fluid flow of an axisymmetric valve, and used the results to compare with the 

pressure distribution on the production valve disc. The oil-film technique was used to facilitate the 

simulation and to record the reattachment lengths of the detached shear layers.  The results 

obtained allowed the identification of the flow regimes and flow characteristics of the valve as 

well as the transition between the separated flow patterns. Their investigation found that the CFD 

model results were a maximum of 30% higher than from the experimental results. 

Weber, Rahman, and Porteiro [13], and [14] provide an extensive study of flow 

characteristics of counterbalance valve–induced noise using both experimental techniques 
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(including flow visualization) and numerical modeling. The authors explain that the formation of 

the noise is due to shear layer instability. In order to eliminate the noise two approaches were 

attempted by the authors. The first approach was to insure that the flow remained attached and did 

not separate, the second approach was to disturb the free stream in such a manner that no coherent 

oscillations were produced.  The unique combination of these two approaches eliminated the noise.  

Borghi et al. [15] carried out a numerical analysis of the transient flow through a spool 

valve. They used laminar two-dimensional non-symmetric steady and transient flows to study the 

velocity and the pressure distribution in the tapered gap of the spool valve. The authors concluded 

that the relationship between the transient flow force and the time-rate-of change of the valve flow 

rate are proportional. They employed a CFD method for fully developed turbulent flow in the 

investigation rather than using the simpler two-dimensional momentum conservation theory. Their 

CFD results and experimental measurements did not agree well for the transient and the steady 

flow forces. They concluded that the CFD model was useful as a qualitative guideline and in 

explaining some hydraulic behaviors. 

Wang, Chen, and Lu [16] used particle image velocimetry measurements to validate their 

computational technique predictions of axial flow forces in a spool valve. The authors used the k 

– Ɛ two-equation turbulence model, specifying the inlet velocity and the outlet pressure to define 

the flow. Their work proved that modifying the relative position of the oil port and the “buckets” 

can remarkably reduce the steady flow force. In addition to the numerical results from CFD 

analysis, they also employed the particle velocimetry technology to visualize the flow field 

experimentally. The visualized flow field indicated that a vortex developed with in the valve 

chamber.  
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Pennington, and Porteiro [17] used numerical simulation, experimental techniques, and 

flow visualization to develop guidelines for the design of direct-acting, differential area relief 

valves by studying the effects that changes in geometry of internal components have on valve 

performance. The numerical simulation of the relief valve proved to be in reasonable agreement 

with flow visualization and experimental results, these results were qualitative rather than 

quantitative. The solutions of steady and transient simulations of the fluid flow were in agreement 

with model prediction, the influence of the seat angle, exhaust hole diameter, and hole position on 

valve performance. The experimental investigation revealed how a number of component 

geometry variations influenced valve performance.   

Weerachai et al. [18] investigated water flow characteristics past butterfly valves. The 

research presented a numerical simulation of the fluid flow through the valve using the available 

code CFD ANSYS FLUENT. The test was carried out when the valve was fully opened (at 0°) 

and then at 30°, 45°, 60° and 75,° at a water speed of 1, 2 and 3 m/s. Dynamics analysis was carried 

out for water speed of 1 m/s at angular velocities of 0.039 and 1.57 rad/s. The valve diameter was 

set for 150 mm and 300 mm to investigate the characteristic of the loss coefficient and torque 

behavior. The results showed that as the disk angle increased so did the torque and loss coefficient. 

Weerachai stated that the loss coefficient remained constant when the water speed increased, even 

though the torque increased. He concluded that at both angular speeds, the maximum torque 

occurred at 70°−80° in closing and 100°−110° in opening. An experiment was also carried out to 

verify the numerical results. Both experimental and numerical values agreed well for both loss 

coefficient and torque.   

Zhang, S. and Manring, N [19] used numerical simulation, experimental techniques, and 

pressure wave generation to study the pressure transient flow-force for spool-type two-way valves. 
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Three types of flow forces were identified: pressure-difference-induced, viscous-shear-induced, 

and momentum-induced. Nondimensional analysis showed that among all steady flow forces the 

pressure-difference-induced flow force was largest, the viscous-shear-induced flow force was 

second largest and the momentum-induced flow force was the smallest. Trial tests on a hydraulic 

circuit showed that the sound wave phenomenon was very strong and there was a pressure gradient 

in the vertical direction. A two-way valve with longer valve length, stepped housing and larger 

clearance was investigated on a second experiment. The geometry modifications on the second 

experiment were made to reduce the energy that could be reflected at the ends and reduce the 

pressure gradient in the vertical direction. The usefulness of those modifications was proven 

experimentally.   

Lisowski, Czyżycki, and Rajda [20] used three-dimensional CFD and experimental tests to 

investigate the flow force acting on the spool of a solenoid operated directional control valve in 

order to calculate the pressure and viscous forces associated with the flow. They explained that 

flow forces increase proportionally with the flow rate, which provide unstable operation of the 

valve and affect the balance of forces acting on the spool. In the proposed method, the surface 

affected by the forces associated with the flow through each path was defined and the values of 

the flow forces were determined. The force values obtained in the CFD simulations agreed well 

with those obtained on the test bench. In order to reduce flow forces additional internal channels 

were added in the valve body. The innovative solution of the valve allowed for a higher flow range 

of about 45% without any change of spring or solenoid.   

1.2.2.  Experimental Work  

Tidor [21] used half of an axisymmetric two-dimensional glass model poppet valve for 

flow visualization. The maximum working pressure was limited to 45 psi, because of the use of 

javascript:__doLinkPostBack('','ss~~AR%20%22E.%20Lisowski%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22W.%20Czyżycki%22%7C%7Csl~~rl','');
javascript:__doLinkPostBack('','ss~~AR%20%22J.%20Rajda%22%7C%7Csl~~rl','');
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glass for wall material. To observe the flow with bubbles, air was injected into the model with a 

0.012 inch hypodermic needle. Several observations were noted by the author, the most important 

one is that the bubbles were possibly caused by cavitation occurring at low pressures.    

Stone [22] conducted a series of tests to measure flow forces in poppet valves operating in 

hydraulic oil. Theoretical analysis was also conducted based upon the assumptions that the flow 

was steady and neglecting both viscous friction and gravity. The author found that the experimental 

results did not agree well with the predicted theoretical values because the viscous friction was 

ignored and the boundary layer was a large part of the flow at small valve openings. He also found 

that the flow forces were strongly influenced by the downstream configuration, the smaller the 

diameter of the downstream chamber, the higher the forces. A poppet configuration was designed 

and tested which virtually eliminated the flow forces. 

 Stone [23] extended his work by modifying the test apparatus and measuring the discharge 

coefficient and flow forces in poppet valves of various shapes. He used a mixture of Esso Univis 

40 and J43 oils as working fluids in a pressure range of 500 and 2000 psi. The author observed 

that in some tests when oil passed into the valve it caused the poppet to oscillate at a frequency of 

1300 Hz. Also, the release of air bubbles in the low-pressure region beneath the poppet was 

observed. Stone [24] developed a flow force compensated design. Hence, the articles are useful 

references for developing a flow force measurement tool and in trying to understand the effects 

that discharge coefficients have on the flow forces.  

Kawakami, Oki [25], and [26] extended the previous work on the disc valves of Schrenk. 

They used the same apparatus, but the diameter ratio between the disc and the valve throat was 

larger.  A series of experiments on valves were carried out with different diameter ratios. The 

authors did not mention cavitation but considering that the work was conducted with a relatively 
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low head, cavitation could not have been much of an issue. One of the important conclusions of 

this work was that flow separation adds hysteresis and uncertainty to the measurements of flow 

with respect to valve opening.    

Takenaka, Yamane, and Iwamizu [27] tested circular disc valves, presenting the 

relationship between lifting force and discharge coefficients. The results showed that viscosity has 

a large influence with small openings and that the influence rapidly decreases as the valve opens. 

They observed that the discharge coefficient is approximately in inverse relation to the valve thrust. 

They suggest that valve stability can be described through discharge coefficients instead of valve 

lift.   

McCloy and McGuigan [28] studied the previous works of Schrenk, Tidor, and Stone. They 

used the results of their work to develop an understanding of how flow forces, discharge 

coefficient, Reynolds number, valve height, pressure drop, and flow rate interact and influence 

valve performance under both steady and non-steady flow conditions. They conducted a series of 

experiments with different sized downstream chambers that were either full of air or full of water. 

The flow forces were calculated using the pressures measured over the surface area of the poppet. 

They were affected by changes in flow patterns and size of the downstream chamber. It was 

determined that flow forces are strongly dependent upon the downstream chamber size. It was also 

demonstrated that the oscillations in pressure cause changes in the discharge coefficient. The 

authors concluded that the flow forces decrease as the chamber size decreases because of the 

presence of recirculating flow.      

Takenaka et al. [29] used both theoretical and experimental techniques to analyze disc 

valves. The authors assumed a parabolic velocity profile at the seat. This is unusual, since most 

hydraulic systems operate in turbulent flow, particularly in the seat areas of the valves. 
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Experimental and numerical results did not agree very well. The disagreement increased when the 

ratio of disc diameter to valve throat diameter increased from 1.5 to 3.0. Takenaka et al. [30] tested 

flow control and relief valves, observing their static and dynamic characteristics. The flow between 

the valve and the valve seat was very complex. The pressure distribution over the valves surface 

and the lifting-force were calculated. The results showed the correlation between the lifting-force 

and the discharge coefficient. In addition, they concluded that the determination of the discharge 

coefficients is the most important factor in the valve design.   

Urata [31] extended Takenaka’s work. He studied flow forces in poppet style valves used 

both laminar and turbulent fluid flow. The author used dye injection flow visualization techniques 

to develop a qualitative understanding of how the flow behaves going through the valve opening. 

Two different liquids (oil and water) were used in the experiments. The validity of the results from 

the two–dimensional models was limited. The author stated that the theoretical and experimental 

results agreed well in the laminar and turbulent flow regimes with small deviations. 

  Feigel [32] experimented on the deflection of oil jets as a function of spool deflection in 

uncompensated valves. The aim of the research was to demonstrate that even in complex flows, 

flow force compensation could be applied. The study was qualitative and used an interactive 

process to develop an understanding of the flow patterns through the spool valves. He concluded 

that the number and size of the outlet holes influenced the flow patterns, finding more favorable 

results with a small number of larger holes than with a larger number of small holes. He noticed 

that the chamber created between the controlling edge and the exit hole influences the flow 

compensation with respect to the jet angle.   

Ishii et al. [33] used flow visualization to study the flow in poppet valves. A fully three-

dimensional steel valve was constructed as part of experimental apparatus. Two industrial fiber 
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optic scopes were attached to two high-speed video cameras. Acrylic portholes were mounted in 

the test valve at 90ᵒ to each other for three-dimensional viewing. The working fluid was oil, the 

flow was not seeded but relied upon the air bubbles that naturally came out of solution as well as 

the bubbles formed from cavitation. The valve was a simple conical poppet that was used as a 

relief valve. The study examined the flow under steady and cavitating conditions. This 

configuration was unstable at low flow rates.    

Tsukiji et al. [34], [35], and [36] investigated the cavitation of counterbalance valves using 

flow visualization. ISO 32 oil at a temperature of 40ᵒ ± 1ᵒ was the working fluid. The model was 

constructed from plastic by sectioning a full valve and installing a window in the area of interest. 

Geometry modifications were made to reduce cavitation and hence the noise. The experiments 

were conducted at Reynolds numbers of 2772, 2847, 3594, and 3478. The flow was photographed 

with a 35 mm camera using the naturally occurring bubbles of cavitation to seed the flow. Very 

good photographs of flow visualization through the valve model were obtained.  

Guivier, Deplano, and Bertrand [37] validated a numerical three-dimensional fluid–

structure interaction (FSI) model for a prosthetic aortic valve based on experimental particle image 

velocimetry (PIV) measurements. CFD analysis was used as the basis for the experiments. For 

validation of the numerical model, an experimental model was developed for both the 

hydrodynamic conditions and the geometrical one. The authors concluded that in both models the 

fluid-flow behaviour and the velocity fields were similar through the quantitative and qualitative 

comparisons methods. The investigation allowed for the confirmation of a fully coupled 3-D fluid-

structure interaction (FSI) numerical model.                    

Wang, Chen, and Hsoao [38] studied the flow rectification performance of conical diffuser 

valves. The cell test performance of the diffuser was set-up. The diffuser angle and the actuation 
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volume for different values of the high frequency of the fluid were studied in this research. The 

range of diffuser angles varied from 10ᵒ to 35ᵒ, with corresponding Roshko numbers from 25 to 

300. The results showed that the taper angle and the Roshko number significantly affect the 

performance of the valve diffuser. The diffuser valve with diverging angle of 10ᵒ exhibited the best 

performance. The authors stated that the experimental results agreed well with their simulations. 

By setting the backpressure to zero, the authors attained maximum flow efficiency around 48%. 

At the same time, the author measured the time-dependent behavior of pressure inside the actuation 

chamber, they concluded that the amplitude pressure variations similar for Roshko number to those 

of the valving efficiency; and the large actuation pressures result in high rectification efficiencies. 

They obtained that the valve performance decreases for a large actuation volume, however the 

actuation pressure increases. In addition, the authors have explanation for this phenomenon.  

Herakovic [39] presented a new way to reduce the flow force within a spool valve. His 

studied focused on how to change the jet angle by a proper design and shape of the valve piston. 

The valve piston has many pressure compensation grooves on its outer surface, and the shape of 

the piston is not perfectly cylindrical. The pressure compensation grooves are on the spool on this 

valve. The experimental results confirmed that these pressure compensation grooves are capable 

of changing the steady flow force greatly, and his new design was very effective for reducing the 

steady flow force.   

1.3.  Problem Description, Methods, and Goals of the Research    

Counterbalance valves provide smooth positive control of overrunning loads, prevent load 

drifting caused by directional control valves, and protect a load from dropping. An overrunning 

load is one that has the tendency to cause the actuator to move faster than the supply fluid coming 

from the pump. This condition is undesirable because loss of control and cavitation may occur in 
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the actuator. The counterbalance valve acts to restrict the fluid flow from the actuator and prevents 

cavitation at the inlet side of the actuator. The valve operates when the fluid enters the valve 

through six axial holes, and exits the valve through six radial holes locate on the valve periphery 

as shown in Figures 1.8. The fluid with high-pressure force acts on the piston area. Fluid also 

enters the spring chamber through a small hole in the piston, causing pressure on the back of the 

piston area. If the force from the oil coming from the directional valve is greater than the force 

generated by the preset of the bias spring, the piston will move inward towards the spring chamber. 

The poppet will move with piston until it reaches the tip of the adjust screw. The piston is free to 

continue moving inward while the poppet will be stopped. This causes a large pressure drop at the 

gap area (the area created between the piston and the poppet) causing under certain condition a 

loud high–frequency noise that can be described as a “squeal”. It is believed this noise is caused 

by the shear layer instability of the fluid flow generating an acoustic resonance on the valve cavity. 

This theory will be tested by experimental investigation, and numerical simulation. The 

experimental investigation of the flow instability will provide the data base for our numerical 

simulations.  

Three–dimensional numerical simulation of the flow will be conducted with a 

commercially available computational fluid dynamics code (STAR–CCM+). STAR CCM+ uses 

the Reynolds-Averaged Navier-Stokes (RANS) equations to solve the momentum conservation 

equations that govern fluid flow.   

The aim of the current work is to use numerical simulation (CFD), and experimental 

techniques to develop guidelines for the design of counterbalance valves by understanding the 

effects that the changes in geometry of the internal components have on valve performance. A 

hydraulic fluid flow test bench, shown in Figure 1.10, will be used for the experimental work. The 
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redesign goals of this study are to eliminate the noise without impacting the operation performance 

of the valve. The piston and poppet geometry are the main two components of the valve to be 

studied in this redesign.  

 

Figure 1.1. Assembly of counterbalance valve.  
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Figure 1.2. Cross section of counterbalance valve type A. 
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CHAPTER 2: NUMERICAL SIMULATION 

 

 2.1.  Introduction   

The fluid flow through the counterbalance valve was numerically simulated using the 3D–

fluid dynamics code STAR – CCM+. STAR-CCM+ can be used in the simulation of compressible, 

incompressible, laminar and turbulent flows of both Newtonian and non-Newtonian fluids. STAR-

CCM+ uses a finite-element technique to solve the equations of motion. The finite-element (FEM) 

technique finds approximate solutions to boundary value problems by discretizing the continuum 

into a number of simply shaped elements. The dependent variables velocity, pressure, and 

temperature are interpolated to a set of nodal points that define each finite element. Within each 

element, the velocity, pressure, and temperature fields are approximated in order to confirm the 

predicted rates of convergence of the finite element approximations. The resulting global set of 

algebraic equations are then solved after imposing the boundary conditions. The solution is a 

numerical integration of the partial differential equations obtained from the conservation laws.  

2.2.  Governing Equations, Boundary, and Initial Conditions  

The governing equations of fluid flow are: conservation of mass, conservation of 

momentum, and conservation of energy. The conservation of mass equation (Continuity equation) 

is:  

 0)V(ρ
xt

ρ









 
  (2.1) 

 

http://en.wikipedia.org/wiki/Boundary_value_problem
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For incompressible fluids, the continuity equation reduces to:  

 0V 


 (2.2) 

For an axisymmetric model in cylindrical coordinates, ) z v,
θ

 v,r(v V  z) θ, (r, = r 
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equation 2.3 becomes:  
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The conservation of momentum can be written as:  

 τ.pgρ
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For a Newtonian incompressible flow with constant viscosity the equation becomes:  

 V.2μpgρ
t

V
ρ








 (2.5) 

which is a set of three partial differential equations, known as the Navier-Stokes equations, when 

external forces are assumed negligible, equation 2.5 becomes: 

 V.2μp
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For an axisymmetric problem in cylindrical coordinates, they can be written as:  
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where 
μ

1
υ      is the kinematic viscosity  
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The energy equation can be expressed as:  

  ΦT).(k)V..Vρ(
t

Vd
ρ 





 (2.10) 

where   is the viscous dissipation function.    

For flows without heat generation du ≈ Cv dT and Cv, µ, k, ρ ≈ const, the energy equation 

simplifies to:   

 ΦT2k
dt

dT
vρc   (2.11) 

in cylindrical coordinates, this equation becomes: 
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 (2.13) 

           The governing equations contain seven unknowns: density, three velocity scalars, pressure, 

internal energy, and temperature. If the fluid is assumed incompressible, body forces are assumed 

negligible, the fluid is viscous with Newtonian characteristics, and internal heat generation is 

assumed negligible, the seven unknowns are now reduced to five: temperature, three velocity 

scalars, and pressure.   

The simulations were conducted as pressure-driven flows. In other words, an inlet and 

outlet pressure boundary conditions were imposed, and no inlet velocity boundary condition was 

prescribed. The fluid temperature was assumed to be known and was used to determine fluid 
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properties. The no-slip condition on the walls was assumed. The fluid properties were assumed to 

be those of the Chevron AW 32 hydraulic oil at 40ᵒ C, µ = 33.6 cSt, and ρ = 0.864 kg/m3.  

2.3.  Turbulence Modeling    

Turbulent flow is a highly complex phenomenon not easily characterized from a theoretical 

standpoint. There are, however, many aspects that are well established: turbulent is highly non-

linear; three-dimensional, characterized by eddies; eddy break-down converts kinetic energy to 

heat by means of viscous dissipation. Accurate prediction of turbulent flow is key to calculate flow 

quantities such as pressure loss, drag, heat transfer, noise, etc. For most engineering analyses, the 

main interest is in the prediction of the mean (averaged) flow field. STAR-CCM+ uses three basic 

approaches to modeling turbulence, in increasing order of complexity they are: Reynolds Averaged 

Navier-Stokes (RANS), Detached Eddy Simulation (DES), and Large Eddy Simulation (LES).  

The most commonly turbulence model used today is the kinetic energy (k-Ɛ) model, which 

is generally applicable to most flow types. Another popular model is the model k-Ɛ which is well 

suited for predicting flow separation. Reynolds Stress Transport Models (RSM) are more 

computationally intensive than k-Ɛ or k-Ɛ models. DES and LES solve the large turbulent scales 

directly providing a greater degree of accuracy but at a larger computational cost. Accurate 

modeling of the transition between laminar and turbulent flow is carried out by using the γ ρ θ 

(Gamma Re Theta) model for transition prediction. The transition variables are set by the user to 

provide accurate modeling of the transition process. 

2.4.  Numerical Stabilization Techniques   

In order to solve for the flow field and pressure fluctuations inside the counterbalance 

valve, the equations governing the conservation of mass and momentum (2.1 – 2.7) were 

discretized using finite-element method techniques ([40], [41] and [42]). Numerical stability 
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decreases as the time-step ∆t is increased and special techniques such as upwinding and relaxation 

have to be used to numerically stabilize the iterative solvers. The particular numerical scheme used 

by the STAR – CCM+ solver also determines the solution accuracy. This is mainly because first 

order schemes neglect higher order gradients to enhance solver stabilization and convergence at 

the expense of accuracy. To achieve convergence in turbulent simulations using STAR CCM+, a 

second-order scheme must be used. This may require using a first-order scheme for a set number 

of iterations or time-steps before using a second order one. In transient simulations, the STAR – 

CCM+, in addition to first-order and second-order upwind, offers the following numerical schemes 

[43]:  

 Central-Difference 

 Blended Upwind/Central 

 Hybrid Second-Order Upwind/Central 

 Hybrid Second-Order Upwind/Bounded-Central   

The simulation of the flow through the counterbalance valve made use of a hybrid second-

order upwind scheme. This scheme employs a combination of relaxation strategies: explicit 

relaxation, implicit convection/diffusion-based relaxation, and implicit source-based relaxation. 

The hybrid scheme automatically activates those portions of the relaxation schemes, as 

necessary, based on their influence in the source terms of the equations. This scheme speeds up 

convergence rates and minimizes the need for tuning relaxation factors. The hybrid relaxation 

factors for turbulent flows used in this work are shown in Table 2.1. The hybrid second-order 

upwind scheme seeks to achieve second-order accuracy and first-order stability. This is 

accomplished by linear combinations of first and second-order schemes. Relaxation slows down 

convergence to numerically stabilize the solution. Explicit and implicit schemes are also used, the 
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explicit schemes are evaluated in terms of known quantities at the previous time step, while the 

implicit schemes are evaluated in terms of unknown quantities at the previous time step. The 

implicit scheme is appropriate when there are strong coupling requirements, physics-wise, between 

the solid and the fluid. The field exchange controller can be used to control the data exchange for 

the implicit scheme. The initial conditions used in this work are shown in Table 2.2.   

 

Table 2.1. Hybrid relaxation factors for turbulent flows used in this work 

Under-Relaxation factor          0.7 

Pressure          0.3 

k-Omega Turbulence 

Under-Relaxation factor 

        0.8 

k-Omega Turbulent viscosity 

Under-Relaxation factor 

        1.0 

Flex Cycle- Restriction tolerance         0.9 

Flex Cycle- Prolongation tolerance         0.5 

 

Table 2.2. Initial conditions of physics model used in the present simulation 

Pressure              700 psi 

Turbulence Intensity             0.01 

Turbulent Velocity Scale                1.0 m/s 

Turbulent Viscosity Ratio           10 

Velocity v (x, y, z)              [0, 0, 0] m/s 
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2.5.  Computational Procedure     

Two difference designs of counterbalance valves, as shown in Figure 2.1 and 2.2 were used 

for the simulations. Three different gaps for each design (shown in Table 2.3) were considered. 

The DES (Detached Eddy Simulation) technique with a hybrid approach was used. In the 

boundary layer, URANS (Unsteady Reynolds-Averaged Navier-Stokes) was used, while in the 

bulk domain LES (Large Eddy Simulation) was used. The complex valve geometry was discretized 

using a combination of polyhedral, prism layer, and surface meshes. A mesh with over 2,345,079 

cells and 1,063,032 faces was created, three different views of this mesh are shown in Figure 2.3. 

A more detailed cross sectional view of the mesh for the boundary layer in the gap is shown in 

Figure 2.4. A mesh of ten prismatic layers was used along the walls. The parameters used to create 

the fluid mesh are shown in Table 2.4.   

When modeling the boundary layer a “wall treatment” must be used. A “wall treatment” is 

a set of assumptions for modeling near-wall turbulence quantities such as shear stress, turbulent 

production and turbulent dissipation. The most common types of wall treatments are the high and 

low y+ treatments.    

In the high y+ wall treatment, wall shear stress, turbulent production and turbulent 

dissipation are all derived from equilibrium turbulent boundary layer theory.  It is assumed that 

the near-wall cells lie within the logarithmic region of the layer, and therefore the centroid of the 

cells attached to the wall should have a value of y+ > 30, where the dimensionless wall distance 

y+, for a wall-bounded flow is defined as:  

 
v

uy
 y   (2.14) 
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Here u is the velocity near the wall, y is the distance to the wall and v is the local kinematic viscosity 

of the fluid.  

 

Figure 2.1. 3-D cross section of counterbalance of the type A valve. 

 

Figure 2.2. 3-D cross section of counterbalance of the type B valve. 

http://www.cfd-online.com/Wiki/Friction_velocity
http://www.cfd-online.com/Wiki/Kinematic_viscosity
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Figure 2.3. Axis-symmetric and cross-sectional views of the computational mesh. 
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Figure 2.4.  Cross sectional of computational mesh showing a detail of the boundary layer in the 

gap area. 
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      Table 2.3. Gaps differences of the two design of counterbalance valves 

          Counterbalance type A               0.002 in            0.005 in            0.017 in 

         Counterbalance type B               0.002 in            0.005 in            0.017 in 

 

          Table 2.4. Initial conditions for simulation model used in the present simulation 

Mesh base size 0.0003 m 

Number of prism layers 10 

Prism layer stretching 1.5 

              Prism layer thickness (Absolute size ) 0.0003 m 

Surface size (Maximum) 10 percent of base 

Surface size (Minimum) 100 percent of base 

 

The low y+ wall treatment assumes that the viscous sublayer is well resolved by the mesh, 

and thus wall laws are not needed. It is used when the entire mesh is fine enough for y+   to be 

approximately 1 or less. The all y+ wall treatment is a hybrid wall treatment that combines the 

high y+ wall treatment for coarse meshes and the low y+ wall treatment for fine meshes. It is 

designed to give results similar to the low y+ treatment as y+ → 0 and to the high-y+ treatment for 

y+ > 30. It is also formulated to produce reasonable values for meshes of intermediate resolution, 

when the wall-cell centroid falls within the buffer region of the boundary layer, i.e. when 1 < y+ 

< 30. The "All y+" method averages turbulence quantities (TQ) such as dissipation, production, 

stress tensor, etc.  

The final value for a turbulence quantity (TQ) is calculated as:   

 g)TQ_high -(1gTQ_lowTQ   (2.15) 
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where g is given by the following function: 

     
11

yRe
expg














  (2.16) 

here Rey is the Reynolds number.  

  Re
υ

ky
y   (2.17) 

where y is the normal distance from the wall to the wall-cell centroid,   is the kinematic viscosity, 

and k is the turbulent kinetic energy.  

To obtain a transient simulation, a steady-state solution was used as the initial condition. 

The same mesh was used for both steady state and transient simulations. A typical steady-state 

simulation model required a 24 hours run to converge, and it carried out 400-iterations using over 

800 megabytes of file space. The convergence of a steady-state simulation is based on the relative 

change in the solution between iterations. A tolerance of one tenth of one percent (0.001) between 

iterations was used on the values of the velocity (r and z components), pressure, turbulent kinetic 

energy, and turbulent dissipation. A typical steady-state simulation convergence graph can be seen 

in Figure 2.5.      

A typical transient simulation model required 240 hours to achieve convergence using a 

one tenth of a millisecond time step and running for a total simulation time of eight hundredths of 

a second. A typical transient simulation convergence graph can be seen in Figure 2.6. The 

following simulation settings were used for all runs: axisymmetric geometry, incompressible 

Newtonian fluid, turbulent isothermal flow, anisotropic turbulence, eddy-viscosity turbulence 

model, hybrid upwinding and hybrid relaxation.  
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Figure 2.5. Typical STAR-CCM+ steady state convergence plot. 

 

Figure 2.6. Typical STAR-CCM+ unsteady state convergence plot. 
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CHAPTER 3: EXPERIMENTAL INVESTIGATION  

 

 3.1.  Introduction 

A series of experiments were conducted to quantify the flow characteristics of the 

counterbalance valve through its operating pressure range. A hydraulic test bench instrumented to 

measure flow rate, temperature, and pressure using a computer based data acquisition system was 

used. A data acquisition program using LabVIEW-NI (2011-32-bit) was written to record the test 

results.  

The main objective of the experimental studies was to explore design modifications that 

would eliminate the generation of the high frequency noise. A secondary objective was to identify 

the influence of the different components in noise generation.  

The experimental procedure used in all of the tests and the operational details of the hydraulic test 

bench are discussed and explained in the following sections.  

3.2.  Experimental Apparatus    

The main components of the hydraulic system used are: a test bench, a hydraulic power 

unit, a high voltage supply, and a data acquisition system. The test bench was certified operational 

after successful testing of benchmark valves.  

3.2.1.  Hydraulic Power Unit   

The power unit provides high-pressure hydraulic oil for use by the test bench. The power 

unit is located 10 feet from the test bench, behind the electric control panel wall, affording the 

operator a measure of protection and reducing the noise level in the lab. It consists of a main 
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reservoir, suction strainer, vane charge pump, heat exchanger, four-micron filter, three high-

pressure three-stage gear pumps, and several check valves and pressure relief valves. Fifty-five 

gallons of Chevron AW 32 hydraulic oil are stored in the main reservoir. Two pictures of the 

hydraulic power unit and the hydraulic circuit are shown in Figures 3.2 and 3.3 respectively. Four 

electric motors power the unit. One is double ended and operates the charge pump and a gear 

pump, and two others power the remaining two gear pumps. The fourth motor powers the test 

bench reservoir return pump.   

 

Figure 3.1. Hydraulic power unit, oil reservoir (front), 208/480 vac transformer (right), oil/water 

heat-exchanger (left), pumps (behind oil reservoir). 

 

3.2.2.  High Voltage Supply   

The operation of this hydraulic system requires high voltage power. The high voltage 

supply powers the pump motors as shown in Figure 3.4. The building main electric panel is 

supplied three-phase power at 208 V. It feeds a single-phase breaker panel and a three-phase 
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transformer. The transformer raises the voltage from 208 to 480 volts. This high voltage powers 

the three starters that control the charge and gear pump motors. The main electric panel also feeds 

power to the single-phase motor starter and the test bench. The motor starters, local disconnect and 

breaker panels are installed next to the test bench.   

 

Figure 3.2. High voltage schematic. 

3.2.3.  Hydraulic Test Bench  

The hydraulic test bench is the most important component of the hydraulic system. A 

picture is shown in Figure 1.10. It contains a fluid collection system that consists of a four-foot by 

five-foot steel basin set on steel supports, with high back and left side walls for mounting 
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components and low front and right side walls for access. It has an integral sump with a total 

capacity of 40 gallons.       

Oil is drawn from the main reservoir through a suction strainer with a vane pump. After 

filtering, the vane pump provides the three high-pressure pumps with positive charge oil. Any 

excess oil flows through a check valve and returns to the reservoir. Three pumps of a staged-gear 

design provide high-pressure oil to the rest of the circuit. The pumps are capable of delivering 24.6 

lpm (6.5 gpm) each or a combined total of 73.8 lpm (19.5 gpm). The pumps can be run separately 

or all together. The inline check valves on the exhaust of the pumps prevent the pumps from 

motoring in reverse direction when not on use. The pumps are limited to a maximum of 275 bar 

(4000 psi) which is below the nameplate rating of 310 bar (4500 psi). Direct acting relief valves 

provide very quick operation and are less susceptible to contamination than pilot-operated relief 

valves. The outlet of the high-pressure pumps goes to a sequence valve that is set to open at 21 bar 

(300 psi) providing pilot-pressure for the logic circuit valves. This allows the motors turning the 

high-pressure pumps to start with a small load. The high-pressure oil is also directed to solenoid 

valves that apply the pilot-pressure to the controlling valves to create the desired flow path. Circuit 

operation is described in the truth presented in Figure 3.1. Solenoid S1 needs to be switched on to 

provide the oil flow path for “P” to “A”. The all ports blocked condition is only possible 

momentarily while the solenoid valves are shifting. This an important safety issue when working 

with high-pressure positive displacement pumps because high-pressure can be unexpectedly 

develop very quickly if the outlet is blocked. The pressure would then only be limited by the relief 

valves at the pumps. The oil flowing out of the “A” work port goes to the load side of the 

counterbalance valve being evaluated. The pressure at this port is controlled by a pilot-operated 

relief valve. A pilot-operated relief valve is used in this position instead of a direct-acting relief 
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valve because they can be easily adjusted while subjected to high-pressure. Pilot-pressure for the 

counterbalance valve is developed by tapping the high-pressure oil ahead of the relief valve and 

plumbing it through a needle valve to a pressure-reducing valve. This reduced pressure is plumbed 

to the pilot port of the counterbalance valve. The needle valve was placed in series with the 

pressure-reducing valve so that the pilot flow could be shut off. Oil flowing out of the valve port 

of the counterbalance valve must flow through a relief valve before returning to the reservoir. 

Again, a pilot-operated relief valve is used in this position so that it can be adjusted under 

pressure. This relief valve simulates the downstream flow restrictions that cause backpressure at 

the valve port. All of the oil form the control portion and test portion of the test stand is dumped 

into a basin for collection and pumped through a heat exchanger before going back to the reservoir.  

3.2.4.  Data Acquisition System  

Data acquisition was carried out using a National Instruments PCI-MIO-16E-4 data 

acquisition card using LabVIEW (version 2011). The card is capable of a 500 KS/s single channel 

scanning rate, 250 KS/s stream-to-disk data rate at a 12-bit resolution for analog inputs. The card 

can be configured for sixteen single-ended or eight differential analog inputs. It can be used for 

input ranges from ±0.05 V to ±10 V, with a maximum resolution better than 5µV.  

Two pressure transducers rated to 1000 and 5000 psia were used to measure the pressure 

at the valve inlet and outlet. The transducers generate an output voltage from 0 to 5 vdc, and their 

natural frequency is greater than 400 KHz. A National Instruments terminal box model SCB-68, 

interfaces the transducers with the data acquisition card.  

A EG&G turbine flow meter was used to measure the fluid flow in the test circuit. The 

flow meter was calibrated for 33.6 cSt kinematic viscosity hydraulic oil for a range of 0 to 30 gpm 

and its output is corrected for temperature variations. It provides a linear output from 0 to 5 vdc. 
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Fluid temperature is measured at the outlet of the flow meter with a fine wire T type thermocouple. 

A schematic diagram of the data acquisition system wiring is shown in Figure 3.5.  

 

 

Figure 3.3. Test bench hydraulic test circuit.  
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Figure 3.4. Schematic diagram of the data acquisition system. 
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3.3.  Experimental Procedure  

The experimental procedure varies with the pressure range of the test valves. The hydraulic 

system configuration depends on operating pressure range of the counterbalance valves. The 

pressure transducers were selected to match the maximum full flow pressure while the inlet 

pressure control (IPC) valve was selected to match the minimum cracking pressure of the test 

valves. The two pressure transducers have operating pressure ranges from zero to 1000 and zero 

5000 psid. The three-inlet pressure control valves have operating pressure ranges from 25 to 400 

psig, 25 to 800 psig, and 150 to 4500 psig. Installing the counterbalance valve completes the 

hydraulic circuit.    

After the components were selected and installed, the system was started. Water supply to 

the oil-water heat exchanger was set to a 6 gpm flow rate. The charge pump and high-pressure 

pumps were started. The basin sump return pump was started and the divider manifold valves 

adjusted until the basin sump fluid level was steady at its operating level. The oil was circulated 

through the system until it warmed to approximately 40 ᵒC. Solenoid S1 was energized to activate 

oil flow through the test circuit, and the inlet pressure control valve was cycled to remove air from 

the test valve and lubricate its internal parts. The test valve was set into the manifold. The test 

bench was now ready to begin data acquisition.  After recording all the data the system was shutting 

down.   
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CHAPTER 4: RESULTS AND DISCUSSION EXPERIMENTAL WORK 

 

4.1.  Introduction    

An experimental investigation was conducted to determine the conditions under which the 

whistling noise was generated and to characterize the flow parameters present in that condition. 

Upstream and downstream dial pressure gages were used to measure average pressures upstream 

and downstream of the counterbalance valve and a temperature compensated flowmeter connected 

to the data acquisition system recorded the flowrates. Upstream and downstream pressures could 

be controlled though needle valves located just upstream of the upstream and downstream pressure 

gages. A pressure transducer with a natural frequency larger than 400 KHz installed at the valve 

outlet port was used to record the downstream pressure fluctuations. 

   Table 4.1. Geometry differences in counterbalance valves A and B 

Description     Type A          Type B 

       Piston sleeve angle         45 ᵒ          14 ᵒ 

        Piston sleeve radius      0            0.0471 in 

    Poppet gap radius           0.2969 in            0.0971 in 

        Poppet Expansion radius           0.2969 in            0.1988 in 

 

Both types of counterbalance valves (A and B), shown in Figures 4.1, and 4.2 were 

investigated. Table 4.1 shows some of the geometry differences between the two of valves. It was 
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hoped that the modifications in type B would result in reduced noise generation when compared 

to type A.  

 

Figure 4.1. Piston and poppet geometry on counterbalance valve type A. 

 

Figure 4.2. Piston and poppet modifications on counterbalance valve type B.  
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4.2.  Experimental Procedure 

A thorough investigation of the conditions required to generate the desired whistling sound 

in valve type A was conducted. Through trial an error it was determined that whistling can be 

generated in a great number of conditions. Once the downstream pressure was set, the upstream 

pressure can be changed in order to generate the desired effect or vice versa.  

It is important to note that finding then instability associated with the noise generation 

strongly depends in the operational procedure used and not only on the operational conditions. In 

general, slow changes may result in an unstable condition generating the desired noise, while a 

rapid change in pressure may not. Once a whistling sound has been generated it is sometimes 

possible to maintain it through further increases in pressure. It is also important to note that valve 

behavior is subject to hysteresis and that oil temperature effects are significant. Typically different 

results are obtained when upstream pressure is increased as opposed as when it is decreased. As it 

was our purpose, through trial and error we became very proficient in noise generation, and, in this 

respect, our procedures may not be representative of normal valve operation.  

4.3.  Results 

4.3.1.  Results of the Type A Valve 

As mentioned above, the desired whistling effect can be obtained through a great number 

of operational conditions. It was decided to characterize the flow by looking at its behavior for a 

fixed setting of the downstream needle valve (equivalent to an almost constant downstream 

pressure) from zero flow conditions to full flow. Once this was accomplished, tests were carried 

out at other downstream pressures in an effort to correlate the results.  

A nominal initial back (downstream) pressure of 200 psi was set for our first trial. The 

valve opened at slightly below 300 psi upstream pressure and the pressure was slowly increased 
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until it was fully opened at a pressure slightly below 2000 psi and a flowrate of 6.59 gpm. At this 

point the back pressure had risen to a value of 250 psi. Data was recorded at approximately 0.5 

gpm intervals. Once full flow was achieved, upstream pressure was slowly decreased until the 

valve closed. Again, data was recorded at 0.5 gpm intervals at flowrates halfway between those of 

the upward run. 

A medium amplitude whistle was first obtained at a flowrate of 2 gpm (Mode 1). It 

persisted until approximately 3 gpm. At this flowrate, it changed to large amplitude whistle and 

persisted until reached flow of 4 gpm. From this point, it decreased in intensity as the flowrate was 

increased and it disappeared at 6.2 gpm (Mode 2). As the upstream pressure was decreased from 

its full flow value, the Mode 2 amplitude whistle reappeared at approximately 6 gpm, transitioning 

at approximately at 3 gpm to a medium amplitude whistle Mode 1. At 1.8 gpm, small amplitude 

whistle with high frequency appeared (Mode 3), disappearing very quickly at 1.5 gpm.        

An analysis of the downstream pressures shows that, even for the conditions in which no 

amplitude whistle is present, the downstream pressure fluctuations are significant. Figure 4.3 (1.04, 

1.3 and 1.52 gpm) and Figure 4.4 (6.25 and 6.69 gpm) show the pressure traces for those 

conditions. In the first case, the oscillations are organized and increasing in amplitude with the 

flowrate, while in the second they are random with an amplitude of about 20 psi.  

Pressure oscillations for modes 1 and 3 are shown in Figure 4.5. The oscillations are much 

larger (40 to 50 psi) and, except for the highest flowrate (2.75 gpm), quasi sinusoidal in nature. At 

2.75 gpm the flow is close to transitioning to Mode 2. Mode 2 behavior is shown in Figure 4.6. 

Pressure oscillations are much larger, of the order of 200 psi, and show significant deviations from 

the sinusoidal behavior.  
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Figure 4.3. Type A valve downstream pressures at 1.04, 1.3 and 1.52 gpm. 

 

Figure 4.4. Type A valve downstream pressures at 6.25 and 6.69 gpm. 
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Figure 4.5. Type A valve downstream pressure oscillations for Modes 1 and 3. 

 

Figure 4.6. Type A valve pressure oscillations for Mode 2. 
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Figure 4.7. Type A valve maximum, minimum and average pressures as a function of flowrate. 

 

A summary of these results is presented in Figure 4.7 that shows maximum, minimum and 

average pressures as well as pressure differential as a function of the flowrate. In it, the three 

regions are clearly identifiable: no amplitude and small pressure differentials (1-1.75, 6.25-6.75), 

modes 1 and 3 with pressure differentials of about 50 psi, (1.75-2.75) and Mode 2 with differential 

of 250 psi (2.75-6.25). 

 In order to capture the oscillation frequency, pressure data was collected at a 60,000 Hz. 

sampling rate and a Fast Fourier Transform (FFT) was used to extract the frequency information. 

A sample size of 1024 was used resulting in a frequency resolution of 58.59 Hz, which is 

acceptable for our purposes. 
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Figure 4.8. Type A valve frequency spectrum. 

The result of this analysis is shown in Figure 4.8. As can be seen, 7 frequency clusters can 

be observed and there is no frequency information above 10000 Hz. 

 

Figure 4.9. Type A valve frequency analysis of Modes 1 and 3. 
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A frequency analysis of Modes 1 and 3 is presented in Figure 4.9. The solitary peak at 9375 

Hz corresponds to Mode 3, (1.75 gpm, going down) and the rest to Mode 1. Mode 1 frequencies 

cluster around 6300 Hz, the highest frequency being 6562 Hz at 2.08 gpm. Both frequency and 

amplitude decrease as the flowrate increases reaching a low value of 6269 Hz at 2.76 gpm. At this 

flowrate, the flow is close to transition to Mode 2 and two new peaks appear at 4804 and 1464 Hz, 

the one a 4804 Hz having a larger amplitude that the one at 6269 Hz. 

Mode 2 results are presented in Figure 4.10. It shows a dominant frequency around 2460 

Hz with lower magnitudes at twice and three times this value. The amplitude of the dominant 

frequency peaks at a flowrate of 4.26 gpm.  

 

Figure 4.10. Type A valve frequency analysis of Mode 2. 
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run, a small amplitude appeared at an upstream pressure of 1500 psi and a 1.82 gpm flowrate. At 

260 psi downstream pressure, medium amplitude was found when the upstream pressure reached 

2000 psi at 2.25 gpm. Increasing the backpressure to 300 psi resulted in a larger amplitude at an 

upstream pressure of 3000 psi and 4.69 gpm.  

Pressure data was sampled at 30,000 Hz and, as before, an FFT was used to obtain the 

frequency information. The results are presented in Figure 4.11 and Figure 4.12. The downstream 

pressure fluctuations for all three runs are shown in Figure 4.11 showing quasi sinusoidal 

fluctuations for the two lowest flowrates and a more complex pattern for the highest one.  

 

Figure 4.11. Type A valve downstream pressure fluctuations. 
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Figure 4.12. Type A valve FFT analysis at 1.83, 2.25, 4.69 gpm. 

The FFT analysis results presented in Figure 4.12 confirm the pressure results. They show 

a single frequency for the 1.82 and 2.25 gpm flowrates, corresponding to modes 3 and 1, while the 

frequencies present at 4.69 gpm are suggestive of a Mode 1 to Mode 2 transition.  

A summary of these results is presented in Table 4.2. The table includes a subjective 

description of the amplitude type and also indicates if it was obtained as pressures were increased 

(up) or decreased (down). Frequencies are listed according to their magnitude as determined by 

the FFT. It is interesting to note that as Mode 1 transitions to Mode 2, at 2.76 gpm; its dominant 

frequency is the 2nd dominant frequency of mode 2 and that the dominant frequency of the 

emerging Mode 2 is half that value. Lowering the backpressure to 160 psi also lowers the 

appearance of Mode 1 to 1.82 gpm, while raising it to 260 psi causes mode 3 to appear at the much 

higher flowrate of 2.25 gpm. The frequency spectrum at 4.46 gpm is interesting in that it appears 

to be transitional presenting a large signal at the Mode 2 dominating frequency. Summary of the 

results at down-stream pressure of 160, 260 and 300 psi are presented in Table 4.3. 
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            Table 4.2. Summary of type A valve at 200-psi of down-stream pressure    

gpm Up 

/Dwn 

Whistle/mode Frequency Pmin Pmax ∆P Pavg 

1.04 U No     211 216 5 214 

1.30 D No     211 217 6 215 

1.52 U No     214 219 5 216 

1.75 D Small ampt-mode3 9375   197 236 38 216 

2.08 U Med ampt- mode1 6562   194 245 50 218 

2.28 D Med ampt- mode1 6386   197 242 44 219 

2.53 U Med ampt- mode1 6269   203 237 33 220 

2.76 D M-L ampt- mode1 4804 6269 1474 194 247 54 220 

3.03 U larger ampt- mode2 2519 4980 7500 139 345 206 223 

3.27 D larger ampt- mode2 2460 4980 7441 165 309 146 223 

3.58 U larger ampt- mode2 2460 4980 7441 146 375 229 225 

3.80 D larger ampt- mode2 2460 4980 7324 149 378 229 226 
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Table 4.2. (Continued) 

4.02 U larger ampt- mode2 2460 4980 7324 155 372 217 228 

4.26 D large ampt- mode2 2460 4980 7324 156 361 205 228 

4.53 U large ampt- mode2 2343 4628 6972 157 365 207 231 

4.79 D large ampt- mode2 2285 4570 6855 159 364 205 231 

5.07 U large ampt- mode2 2285 4511 6796 151 391 240 233 

5.25 D Med-L ampt- mode2 2226 4511 6738 156 385 229 234 

5.55 U Med-L ampt- mode2 2226 4453 6679 156 381 224 236 

5.78 D Med-L ampt- mode2 2226 4424 6621 166 372 205 236 

6.10 U Med ampt- mode2 2226 4453 1523 195 299 104 238 

6.26 D No     227 249 21 239 

6.60 U No     227 251 24 241 
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          Table 4.3. Summary of type A valve at 160, 260 and 300 psi of down-stream pressure   

gpm Whistle  Frequency Pmin Pmax ∆P Pavg 

1.82 Small ampt 6200   156 172 16 164 

2.25 Med ampt 9320   266 318 52 292 

4.69 Med-L ampt 3984 7998 2431 268 368 100 318 

 

4.3.2.  Results of the Type B Valve 

Investigation of the type B valve was carried out following the experimental procedures 

used with type A. Type B, however, proved to be far more “whistle resistant” that type A and could 

only be made to whistle under a narrow set of test conditions. 

A small amplitude corresponding to a frequency of 1113 Hz (with a very small peak at 

twice that frequency) was found at a much lower upstream pressure (900 psi) and flowrate (1.25 

gpm) than for type A. This oscillation mode was not found in the type A valve. The three other 

instability test points take place at frequencies of 6269 and 6563 Hz (twice) which fall within the 

Mode 1 frequency range found in type A. The pressure plot for these instabilities is presented in 

Figure 4.13. For the Mode 1 type instability, the magnitude of the pressure oscillations (P≈50 

psi) is similar to that of the type A valve.  Only two modes can be found in the FFT plot shown in 

Figure 4.14. It clearly shows the low flow, low-pressure 1113 Hz component as well as the two 

other Mode 1 frequencies. The similarity of the Mode 1 component to that fond in the type A valve 

is remarkable once we eliminate from the latter the transitional frequencies corresponding to the 

2.75 gpm data point. Table 4.4 summarizes the test results.   
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Figure 4.13. Type B valve downstream pressure fluctuations. 

 

Figure 4.14. Type B valve FFT analysis at 1.24, 3.74, 4.59, 6.1 gpm. 
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Table 4.4. Summary of type B valve behavior 

Pupst Pdst gpm Whistle Frequency Pmin Pmax ∆P Pavg 

900 125 1.24 Small ampt 1113 2226 118 128 10 123 

1800 300 3.74 Med-L ampt 6269  276 304 29 290 

2600 500 4.58 large ampt 6563  475 518 43 497 

3500 750 6.06 large ampt 6563  717 771 54 745 

 

4.4.  Summary and Conclusion 

It is clear that the pressure fluctuations are a complex phenomenon resulting from the 

interaction of a number of parameters that are on the one hand not easily identifiable and on the 

other poorly understood. Noise can be generated through a large number of upstream/downstream 

pressure combinations. Oscillations occur at a fixed frequency or at a set of frequencies. It appears 

that once an oscillation mode has been excited the magnitude of the pressure oscillations remains 

constant within that mode, the oscillations being mode dependent rather that upstream pressure 

dependent.  

 The presence of the Mode 1 oscillation in both valves despite the radically different internal 

flows strongly points out to the fact that the oscillations are indeed a resonance phenomenon and 

therefore heavily dependent on the overall valve shape and dimensions. The fact that Mode 2, has 

been suppressed in the type B valve solely through internal flow modification is encouraging in 

the sense that it might be possible through further modifications to suppress Mode 1 as well. 
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The task of suppressing these undesirable oscillations, however, is complicated by the presence of 

multiple excitation frequencies, as it is likely that the appearance of any of them may trigger a 

much more complex instability.  
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CHAPTER 5: RESULTS AND DISCUSSION NUMERICAL WORK    

 

5.1.  Introduction    

 The modifications of the seat, piston, poppet, and the sleeve components of the 

counterbalance valves were numerically investigated in order to study their influence on noise 

elimination. The two types of counterbalance valves (A, and B), were used in order to compare 

the results with the experimental ones. The counterbalance valves are axis-symmetric, 

consequently the numerical simulation geometry is also axis-symmetric, as shown in Figures 2.3 

and 2.4. The path of fluid for all figures is from right to left.  

 The STAR CCM+ code used the dimensionless wall distance from the wall y + (law of the 

wall), in order to get the results near the wall. It is assumed that the near-wall cells lie within the 

logarithmic region of the boundary layer, therefore the centroid of the cells attached to the wall 

should have y+ > 30.  

 For both valves the viscous effects dominate the gap flow. For small gaps the boundary 

layers may fill the narrow opening.  

 The simulation of the oscillatory nature of the flow was the primary goal of this research, 

so we are smoothly interested in the unsteady state solutions. A fully converged steady state 

simulation must be obtained first to be used as the initial state for the unsteady solution, this will 

facilitate the convergence of the unsteady state solution.  Without using steady state simulation, it 

is difficult to obtain an unsteady state solution.  A summary of the geometry and test conditions is 

shown in Tables 5.1. 

http://www.cfd-online.com/Wiki/Law_of_the_wall
http://www.cfd-online.com/Wiki/Law_of_the_wall
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          Table 5.1. Counterbalance valve parameters for both types (A, and B)  

        Parameters            Scale 

Gap-1 0.002 in 

Gap-2 0.005 in 

Gap-3 0.017 in 

     Inlet-pressure 700 psi 

       Outlet-pressure  300 psi 

 

5.2.  Steady State Solutions   

The steady-state simulation does not depend on time, and it will run to the maximum 

number of iterations specified in the simulation solver control. The steady-state simulation must 

be obtained first to be used as the initial state for the unsteady solution; this facilitated the 

convergence of the unsteady-state solution. The steady-state simulations needed 400-iterations to 

converge. The convergence of a steady-state simulation is based on the relative change in the 

solution values between iterations. For both valves streamline, pressure, velocity-vector and 

velocity-scalar plots were obtained for three different piston displacements (gaps) as shown in 

Table 2.3. The gap is defined as the minimum distance between piston and poppet as shown in 

Figure 4.1.      

5.2.1.  Counterbalance Valve Type A     

The velocity-scalar, velocity-vector, pressure and streamline plots for all three gaps are 

presented in Figures 5.1 to 5.15. It can be seen from the velocity-scalar plots shown in Figures 5.1 

to 5.3 that the velocity is low everywhere except on the gap areas and that the velocity increases 

as the gap increases. Maximum velocities of 46, 78 and 93 m/s can be noticed at gaps of 0.002, 
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0.005 and 0.017 inches respectively. For the small gap, the velocity at the expansion area is very 

low close to the piston wall and then increases slightly towards the poppet. For the second gap, the 

piston wall velocity is higher than for the small gap with a faster growth towards the poppet. Much 

higher velocities for the whole area can be seen for the large gap case.     

 

Figure 5.1. Steady state velocity scalar - type A- gap 0.002in. 

 

Figure 5.2. Steady state velocity scalar - type A- gap 0.005in. 

 

Figure 5.3. Steady state velocity scalar - type A- gap 0.017in. 
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The velocity-vector plots shown in Figures 5.4 to 5.6 confirm the results of the velocity-

scalar plots showing low velocities dominant except on the gap areas. Recirculation areas can be 

seen at the dead-end areas of the fluid inlet (area above the gaps) and at the expansion areas, next 

to the throat, for all three gaps. The recirculation bubble in the expansion area forms close to the 

piston wall and grows smaller as the external velocity increases. For the smallest opening, the 

bubble is the largest and velocities the smallest, for the largest opening the bubble is much smaller 

and velocities much larger. The six different plots for the scalar and vector velocity are in 

agreement with the experiments of Porteiro et al. [13], and Weber et al. [14].  Animation of the 

velocity-vector plots for all three gaps showing the oscillatory nature of the flow through the valve 

can be seen on movies A-0.002in, A-0.005in and A-0.017in attached with this dissertation as 

(DVD). The videos clearly illustrate the fluid flow paths and recirculation bubbles. A small 

recirculation bubble can be seen above the gap inlet and a larger one at the gap outlet close to the 

piston wall. A non-recirculating fluid jet develops at the gap, passes between the recirculation 

bubble and the poppet, exiting at the left.     

 Flow-field pressure plots can be seen in Figures 5.7 to 5.9. All the numerical simulations 

were run with 700 psi upstream pressure and 300 psi downstream pressure. It can be seen that the 

pressure values before the gap are similar for the 0.002 and 0.005 inches plots. For the large gap, 

a noticeable pressure decrease can be observed before the gap. Pressure drops to 200 psi and stays 

constant through the gaps and at the expansion areas for gaps 0.002 and 0.005 inches. For the 

larger opening (0.017in) the pressure decreases in the gap to 250 psi and then increases to a 

constant pressure of 400 psi at the gap exit and the area of the expansion. The pressure drop across 

the gap decreases as the gap increases.    
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Figure 5.4. Steady state velocity vector - type A- gap 0.002in. 

 

Figure 5.5. Steady state velocity vector - type A- gap 0.005in. 

 

Figure 5.6. Steady state velocity vector - type A- gap 0.017in. 
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Figure 5.7. Steady state pressure scalar - type A- gap 0.002in. 

 

Figure 5.8. Steady state pressure scalar - type A- gap 0.005in. 

 

Figure 5.9. Steady state pressure scalar - type A- gap 0.017in. 
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  Flow streamlines are shown in the Figures 5.10 to 5.15. Again, no recirculation bubbles 

can be seen close to the poppet wall in Figures 5.10 to 5.12.  Figures 5.13 to 5.15 clearly show 

recirculation bubbles at the expansion areas next to the piston walls. The streamlines confirm the 

results of the velocity-scalar and velocity-vector plots showing that the recirculation region 

increases and elongates as the gap decreases. It can be seen that the bulk of the flow is carried by 

the hollow cylindrical jet that develops between the recirculating bubble and the poppet. The jet 

expands in order to carry the high flow rates as the gap increases. It passes through the gap, then 

between the recirculation bubble and the poppet and exits radially through the six exit holes.    

The volumetric flow rate was calculated for each gap. The results show that 0.73, 2.39 and 

12.98 gallons per minute for the 0.002, 0.005 and 0.017 gaps respectively. As expected the 

volumetric flow rate increases as the gap increases.   

 

 

Figure 5.10. Steady state streamline plot for gap 0.002in, valve type A. 
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Figure 5.11. Steady state streamline plot for gap 0.005in, valve type A. 

 

Figure 5.12. Steady state streamline plot for gap 0.017in, valve type A. 

 

Figure 5.13. Steady state streamline plot at the expansion area, for gap 0.002in, valve type A. 
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    Figure 5.14. Steady state streamline plot at the expansion area, for gap 0.005in, valve type A. 

 

    Figure 5.15. Steady state streamline plot at the expansion area, for gap 0.017in, valve type A. 

5.2.2.  Counterbalance Valve Type B   

Figures 5.16 to 5.31 present the velocity (scalar and vector), pressure and streamline plots 

for the 0.002, 0.005 and 0.017in gaps. The velocity-scalar plots (Figures 5.16 to 5.18) show the 
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same fluid flow behavior as valve type A for all gaps in that the velocity is low everywhere except 

on the gap areas. The velocity increases with the gap from the 0.002 to 0.005in gaps but it decreases 

for the 0.017in gap. For the 0.002in gap, the maximum velocity is 90 m/s, increasing to 94 m/s for 

the 0.005in gap and then decreasing to 74 m/s for the 0.017in gap. It can be seen however that the 

velocity at the expansion area for the larger gap is higher than the velocities at the other two.  

The velocity-vector plots can be seen in Figures 5.19 to 5.21. They confirm the results of 

the velocity-scalar plots in that low velocities can be seen everywhere except at gap areas. 

Recirculation bubbles can be observed above the gap and at the expansion areas are similar to 

those of the type A valve. In addition, a small recirculation bubble can be observed for the 0.017in 

gap at the expansion area next to the jet exit.  This recirculation zone partially blocks the flow at 

the gap and this explains why the maximum velocity for larger gap is lower than for the smaller 

and middle gaps. As in the type A valve, the recirculation bubbles grow smaller as the gap 

increases. Animation of the velocity vector plots for all three gaps showing the oscillatory nature 

of the flow through the valve can be seen on movies B-0.002in, B-0.005in and B-0.017in attached 

with this dissertation as (DVD). For all three gaps, a larger recirculation bubble can be seen at the 

gap outlet close to the piston wall, and a small one above the gap inlet. The B-0.017in DVD video 

clearly illustrates the small recirculation bubble at the gap. A non-recirculating fluid jet develops 

at the gap inlet, passes through the gap and between the recirculation bubble and the poppet, exiting 

at the left, as was the case for the type A valve.  
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Figure 5.16. Steady state velocity scalar - type B- gap 0.002in. 

 

Figure 5.17. Steady state velocity scalar - type B- gap 0.005in. 

 

Figure 5.18. Steady state velocity scalar - type B- gap 0.017in. 
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Figure 5.19. Steady state velocity vector - type B- gap 0.002in. 

 

Figure 5.20. Steady state velocity vector - type B- gap 0.005in. 

 

Figure 5.21. Steady state velocity vector - type B- gap 0.017in. 
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700-psi upstream and 300-psi downstream flow field pressure plots can be seen in Figures 

5.22 to 5.24. For the 0.002in and 0.005in gaps, the plots are similar both before the gap and at the 

area of expansion. A clear pressure decrease can be seen before the gap for the larger opening. In 

the first two areas, the pressure drops to 250 psi and stays constant through the gap and at the 

expansion areas. Pressure profiles are quite different for the larger opening. Pressures of 450 psi 

can be observed on both piston and poppet in the gap area. A constant pressure of 300 psi can be 

observed at the rest of the expansion area.  

Flow streamlines are shown in Figures 5.25 to 5.31. The results are similar to those found 

for the type A valve except for the appearance of the small recirculation bubble at the large opening 

that can be clearly observed in Figure 5.31. These plots are in agreement with velocity plots, 

showing the same recirculation regions.  

For each gap of this valve the volumetric flow rate results was obtained. The results show 

the 0.002in has 1.60 gpm, 0.005in has 1.99 gpm and the 0.017in has 8.60 gpm. As was the case 

for the type A valve, the results show the volumetric flow rate increases as the gap increases.     

 

Figure 5.22. Steady state pressure scalar - type B- gap 0.002in. 
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Figure 5.23. Steady state pressure scalar - type B- gap 0.005in. 

 

Figure 5.24. Steady state pressure scalar - type B- gap 0.017in. 

 

Figure 5.25. Steady state streamline plot for gap 0.002in, valve type B. 
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Figure 5.26. Steady state streamline plot for gap 0.005in, valve type B. 

 

Figure 5.27. Steady state streamline plot for gap 0.017in, valve type B. 

 

    Figure 5.28. Steady state streamline plot at the expansion area, for gap 0.002in, valve type B. 
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    Figure 5.29. Steady state streamline plot at the expansion area, for gap 0.005in, valve type B. 

 

    Figure 5.30. Steady state streamline plot at the expansion area, for gap 0.017in, valve type B. 

 

Figure 5.31. Steady state streamline plot at the expansion area, for gap 0.017in, showing 

recirculation at the jet exit, valve type B. 
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5.2.3.  Steady State Summary 

The steady state simulation work produced many useful results. For both valves (A and B) 

the fluid flow was characterized using velocity-scalar, velocity-vector, pressure-scalar and 

streamline plots, for gaps of 0.002, 0.005 and 0.017 inches. The results are very much similar on 

both valves, except for valve type B with a large gap. For both valves and for all three openings, 

the velocity scalar plots are in agreement in that the velocity low everywhere except at the gap 

area. The velocity increases proportionally with the gap increases from 0.002in to 0.005in. For the 

0.017in gap, valve type A shows similar flow fields as those of the type B 0.002in and 0.005in 

gaps. The velocity increases as the gap increases while the type B valve shows a velocity decreases 

for the 0.017in gap.   

The velocity-vector plots confirm the results of the velocity-scalar plots. No recirculation 

bubbles can be seen close to the poppet wall in both valves. For both valves, recirculation zones 

can be seen above the gap and the expansion areas. The recirculation bubble at the expansion area 

increases and elongates when the gap decreases. For the type B valve, a small recirculation bubble 

can be seen at the area of expansion next to the jet exit. The oscillatory nature of the fluid flow has 

been animated on movies for both valves under all opening conditions. The B-0.017in movie 

clearly illustrate the small recirculation bubble at the jet exit.  

Boundary conditions of 700-psi upstream and 300-psi downstream were used for both 

valves. High pressure before the gap can be seen for both valves for the 0.002in and 0.005in gaps. 

A noticeable pressure decrease can be observed in the area for the two larger gaps. The results 

show that for both valves the pressure drop across the gap decreases as the gap increases. 

Flow streamline plots are similar for both valves for all three gaps in that the recirculation 

can be observed at the expansion area except for the small recirculation bubble can be seen only 
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at the large opening of valve type B. No recirculation bubbles can be seen close the poppet wall, 

except for valve B with a large opening. For both valves the streamlines confirm the results of the 

velocity-scalar and velocity-vector plots showing that the recirculation zone increases and 

elongates as the gap decreases.   

For both valves, the volumetric flow rate increases with the gap. A summary for the 

maximum velocities and the volumetric flow rates for both valves can be seen in Table 5.2.   

Table 5.2. Maximum velocities and volumetric flow rates of the steady-state solution for both 

valves (A, and B)   

Gap type Maximum Velocity m/s Volumetric flow rate gpm 

A-0.002 150 0.73 

A-0.005 255 2.39 

A-0.017 307 12.98 

B-0.002 297 1.60 

B-0.005 309 1.99 

B-0.017 243 8.60 

 

5.3.  Unsteady State Solutions      

In order to observe the time-dependent behavior of the flow field, unsteady flow 

simulations were run for both the type A and B valves. The unsteady state simulations were 

computationally very intensive with very high data storage demands. They typically required ten 

days of computing time to converge. Runs were made for the three different piston displacements 

used in the steady state simulations for both type of valves. As in the steady-state case, streamline, 

pressure, velocity-vector and velocity-scalar plots were obtained for both valves with same piston 
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displacements (gaps). In additional, the oscillatory behavior of the streamlines of the shear-layer 

in the gap was investigated.     

To verify convergence the simulations were ran for maximum physical times of 0.004 and 

0.08 seconds, the latter time determined by the data storage limitations. For the 0.08 seconds runs, 

each gap simulation results in an output of 800 simulation files, with 1.31 gigabytes required for 

each file.  

5.3.1.  Counterbalance Valve Type A  

The unsteady state velocity-scalar, velocity-vector, pressure and streamline plots for all 

three gaps presented in Figures 5.32 to 5.62 show no significant differences with respect to those 

of the steady-state simulations. Figures 5.32 to 5.37 present the velocity-scalar plots. The results 

show the velocity is low everywhere except on the gap areas and that the velocity increases as the 

gap increases. Maximum velocities of 46, 78 and 90 m/s can be observed at gaps of 0.002, 0.005 

and 0.017 inches respectively. These values are the same as the steady-state ones except for the 

large gap which is slightly lower. At the expansion areas, low velocities can be seen close to the 

piston wall, increasing as they approach the poppet, for all three gaps. The velocity also increases 

at the expansion area when the gap increases.   

Figures 5.38 to 5.43 present the velocity-vector plots. As for the steady state of type A 

valve the results confirm the velocity-scalar plots showing low velocities can be seen everywhere 

except on the gap areas. On the other hand, recirculation areas can be observed at the area above 

the gaps and at the expansion areas as appeared for the type A of valve of the steady state, for all 

three gaps. As in the steady-state, bubbles in the expansion area forms close to the piston wall and 

grow smaller as the external velocity increases, furthermore, the bubble decrease with the valve-

opening while the velocities increase. Animation of the velocity-vector plots for all three gaps 
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showing the oscillatory nature of the flow through the valve can be seen on movies A-0.002in-

unst, A-0.005in-unst and A-0.017in-unst attached with this dissertation as (DVD). Again, the 

videos clearly illustrate a detailed fluid flow paths and recirculation bubbles close to the piston 

wall, poppet and the expansion area. 

 

Figure 5.32. Unsteady state velocity scalar - type A- gap 0.002in, time-step 0.004S. 

 

Figure 5.33. Unsteady state velocity scalar - type A- gap 0.005in, time-step 0.004S. 

 

Figure 5.34. Unsteady state velocity scalar - type A- gap 0.017in, time-step 0.004S. 
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Figure 5.35. Unsteady state velocity scalar - type A- gap 0.002in, time-step 0.08S. 

 

Figure 5.36. Unsteady state velocity scalar - type A- gap 0.005in, time-step 0.08S. 

 

Figure 5.37. Unsteady state velocity scalar - type A- gap 0.017in, time-step 0.08S. 
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Figure 5.38. Unsteady state velocity vector - type A- gap 0.002in, time-step 0.004S. 

 

Figure 5.39. Unsteady state velocity vector - type A- gap 0.005in, time-step 0.004S. 

 

Figure 5.40. Unsteady state velocity vector - type A- gap 0.017in, time-step 0.004S. 
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Figure 5.41. Unsteady state velocity vector - Type A- gap 0.002in, time-step 0.08S. 

 

Figure 5.42. Unsteady state velocity vector - Type A- gap 0.005in, time-step 0.08S. 

 

Figure 5.43. Unsteady state velocity vector - Type A- gap 0.017in, time-step 0.08S.  
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Flow field pressure plots can be seen in Figures 5.44 to 5.49. The boundary conditions are 

similar to those for type A valve of steady in that the numerical simulations were run with 700 psi 

upstream pressure and 300 psi downstream pressure. The results are very much the same for both 

steady-state and unsteady-state. Pressure values before the gap are similar for the 0.002 and 0.005 

inches plots. A noticeable pressure decrease it can be observed before the gap for the 0.017in gap. 

Pressure drops to 278 psi and stays constant through the gaps and at the expansion areas for gaps 

0.002. For gap (0.005in) pressure drops to 206 psi and then recovers to 310 psi at the expansion 

area. For the larger opening (0.017in) the pressure decreases in the gap to 90 psi and then increases 

to a constant pressure of 330 psi at the gap exit and the area of the expansion. The pressure drop 

across the gap decreases as the gap increases.                     

Flow streamlines are shown in the Figures 5.50 to 5.61. Figures 5.50 to 5.55 depict 

streamlines close to the poppet wall similar to those of the steady state case. While Figures 5.55 to 

5.61 show recirculation bubbles at the expansion areas next to the piston walls. Again, the 

streamlines confirm the results of the scalar and velocity vector plots showing that the recirculation 

region increases and elongates as the gap decreases. Figures 0.005in and 0.017in show 3-D 

recirculation over the poppet area and 2-D recirculation at the plane section. The 3-D recirculation 

illustrate that for running with time-dependent and at high velocities, fluid flows randomly to 

different directions. This phenomenon proved the oscillatory nature of the fluid flow vary with 

change in velocities. The volumetric flow rate was calculated for each gap, the results show flows 

of 0.73, 2.92 and 14.99 gallons per minute for the 0.002, 0.005 and 0.017 gaps respectively. As 

for type A of the steady state case the volumetric flow rate increases as the gap increases.    
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Figure 5.44. Unsteady state pressure scalar - type A- gap 0.002in, time-step 0.004S. 

 

Figure 5.45. Unsteady state pressure scalar - type A- gap 0.005in, time-step 0.004S. 

 

Figure 5.46. Unsteady state pressure scalar - type A- gap 0.017in, time-step 0.004S. 
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Figure 5.47. Unsteady state pressure scalar - type A- gap 0.002in, time-step 0.08S. 

 

Figure 5.48. Unsteady state pressure scalar - type A- gap 0.005in, time-step 0.08S. 

 

Figure 5.49. Unsteady state pressure scalar - type A- gap 0.017in, time-step 0.08S. 
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Figure 5.50. Unsteady state streamline plot for gap 0.002in, valve type A, time-step 0.004S. 

 

Figure 5.51. Unsteady state streamline plot for gap 0.005in, valve type A, time-step 0.004S. 

 

Figure 5.52. Unsteady state streamline plot for gap 0.017in, valve type A, time-step 0.004S. 
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Figure 5.53. Unsteady state streamline plot at the expansion area, gap 0.002in, valve type A, 

time-step 0.004S. 

 

Figure 5.54. Unsteady state streamline plot at the expansion area, gap 0.005in, valve type A, 

time-step 0.004S. 

 

Figure 5.55. Unsteady state streamline plot at the expansion area, gap 0.017in, valve type A, 

time-step 0.004S. 
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Figure 5.56. Unsteady state streamline plot for gap 0.002in, valve type A, time-step 0.08S. 

 

Figure 5.57. Unsteady state streamline plot for gap 0.005in, valve type A, time-step 0.08S. 

 

Figure 5.58. Unsteady state streamline plot for gap 0.017in, valve type A, time-step 0.08S. 
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Figure 5.59. Unsteady state streamline plot at the expansion area, gap 0.002in, valve type A, 

time-step 0.08S. 

 

Figure 5.60. Unsteady state streamline plot at the expansion area, gap 0.005in, valve type A, 

time-step 0.08S. 

 

Figure 5.61. Unsteady state streamline plot at the expansion area, gap 0.017in, valve type A, 

time-step 0.08S. 
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5.3.2.  Counterbalance Valve Type B   

Numerical simulations of the turbulent flow through this type of valve for the same piston 

displacements were carried out to study the development of the unsteady-state flow. The velocity 

(scalar and vector), pressure and streamline plots obtained for the 0.002, 0.005 and 0.017in gaps 

are shown in Figures 5.62 to 5.93. As in the steady-state case, Figures 5.62 to 5.67 show that 

velocity is low everywhere except in the gap areas. The maximum velocity increases with the gap 

for the 0.002 and 0.005in gaps, but decreases for the 0.017in gap as in the steady-state case. For 

the 0.002in gap, the maximum velocity is 90.50 m/s, increasing to 136.98 m/s for the 0.005in gap 

and then decreasing to 120.22 m/s for the 0.017in gap. A larger velocity can be observed at the 

expansion area for the larger gap. The smallest two gaps show low velocity at the expansion areas.     

The velocity-vector plots are presented in Figures 5.68 to 5.73. As in the type A valve, the 

plots confirm the results of the velocity-scalar plots in that low velocities are dominant except at 

gap areas. Again, recirculation bubbles can be noticed above the gap and at the expansion areas 

are similar to those of the type A valve. The resulting recirculating zones matching those observed 

in the steady-state case. The 0.017in gap plot shows a small recirculation bubble at the expansion 

area next to the jet exit. Similar to that of the steady-state case. As in the steady state, the 

recirculation zone partially blocks the flow at the gap and this explains why the maximum velocity 

for larger gap is lower than for the smaller and middle gaps. The recirculation bubbles grow smaller 

as the gap increases as for the type A valve, but their size appears to be larger and the velocities 

lower than the steady state case. In general, the recirculating flow appears to be weaker in the 

unsteady state case.   

 



86 

 

 

Figure 5.62. Unsteady state velocity scalar - type B- gap 0.002in, time-step 0.004S. 

 

Figure 5.63. Unsteady state velocity scalar - type B- gap 0.005in, time-step 0.004S. 

 

Figure 5.64. Unsteady state velocity scalar - type B- gap 0.017in, time-step 0.004S. 
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Figure 5.65. Unsteady state velocity scalar - type B- gap 0.002in, time-step 0.08S. 

 

Figure 5.66. Unsteady state velocity scalar - type B- gap 0.005in, time-step 0.08S. 

 

Figure 5.67. Unsteady state velocity scalar - type B- gap 0.017in, time-step 0.08S. 
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Figure 5.68. Unsteady state velocity vector - type B- gap 0.002in, time-step 0.004S. 

 

Figure 5.69. Unsteady state velocity vector - type B- gap 0.005in, time-step 0.004S. 

 

Figure 5.70. Unsteady state velocity vector - type B- gap 0.017in, time-step 0.004S. 
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Figure 5.71. Unsteady state velocity vector - type B- gap 0.002in, time-step 0.08S. 

 

Figure 5.72. Unsteady state velocity vector - type B- gap 0.005in, time-step 0.08S. 

 

Figure 5.73. Unsteady state velocity vector - type B- gap 0.017in, time-step 0.08S. 
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The same boundary condition of 700-psi upstream and 300-psi downstream pressure has 

been used in these simulations. The resulting flow field pressure plots are shown in Figures 5.74 

to 5.79. The results are very much the same for the 0.002in and the 0.005in gaps. After the gap 

entrance, the pressure drops to 350 psi and stays constant through the gap and at the expansion 

areas. For the larger opening there is a clear pressure decrease before the gap area. The pressure 

drops to 500 psi and further to 350 psi at the expansion area.  

The flow streamlines are shown in Figures 5.80 and 5.93 show similar results in that no 

recirculation bubbles can be seen close to the poppet wall. Figure 5.88 present the 0.005in gap, the 

result is different showing 3-D streamline flow. This difference is due to the very large velocity 

on gap area. The result show the path of the fluid flow is hitting in multiple directions. This 3-D 

result illustrate the oscillatory nature of the fluid affected by the change in velocities.  For the 

0.002in and 0.017 gaps, the streamlines confirm the results of the scalar and velocity vector plots 

showing that the recirculation region increases and elongates from gaps 0.017in to 0.002in as 

presented in Figures 5.90 to 5.92. Figures 5.85 and 5.91 present 3-D flow streamline at the 

expansion as in that for figures 5.60 and 5.61. Appearance of the small recirculation bubble at the 

large opening that can be clearly seen in Figures 5.86 and 5.93 as observed in larger gap in type B 

valve of steady state case. These plots are in agreement with velocity plots, showing the same 

recirculation regions.  

The volumetric flow rate results was calculated for all gaps. The results show flows of 1.87 

gpm, 2.38 gpm and 10.11 gpm, as the type A valve, the volumetric flow rate increases as the gap 

increases.    
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Figure 5.74. Unsteady state pressure scalar - type B- gap 0.002in, time-step 0.004S. 

 

Figure 5.75. Unsteady state pressure scalar - type B- gap 0.005in, time-step 0.004S. 

 

Figure 5.76. Unsteady state pressure scalar - type B- gap 0.017in, time-step 0.004S. 
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Figure 5.77. Unsteady state pressure scalar - type B- gap 0.002in, time-step 0.08S. 

 

Figure 5.78. Unsteady state pressure scalar - type B- gap 0.005in, time-step 0.08S. 

 

Figure 5.79. Unsteady state pressure scalar - type B- gap 0.017in, time-step 0.08S. 
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Figure 5.80. Unsteady state streamline plot for gap 0.002in, valve type B, time-step 0.004S. 

 

Figure 5.81. Unsteady state streamline plot for gap 0.005in, valve type B, time-step 0.004S. 

 

Figure 5.82. Unsteady state streamline plot for gap 0.017in, valve type B, time-step 0.004S. 
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Figure 5.83. Unsteady state streamline plot at the expansion area, gap 0.002in, valve type B, 

time-step 0.004S. 

 

Figure 5.84. Unsteady state streamline plot at the expansion area, gap 0.005in, valve type B, 

time-step 0.004S. 

 

Figure 5.85. Unsteady state streamline plot at the expansion area, gap 0.017in, valve type B, 

time-step 0.004S. 
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Figure 5.86. Unsteady state streamline plot at the expansion area, gap 0.017in, showing 

recirculation at the jet exit, valve type B, time-step 0.004S. 

 

Figure 5.87. Unsteady state streamline plot for gap 0.002in, valve type B, time-step 0.08S. 

 

Figure 5.88. Unsteady state streamline plot for gap 0.005in, valve type B, time-step 0.08S. 
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Figure 5.89. Unsteady state streamline plot for gap 0.017in, valve type B, time-step 0.08S. 

 

Figure 5.90. Unsteady state streamline plot at the expansion area, gap 0.002in, valve type B, 

time-step 0.08S. 

 

Figure 5.91. Unsteady state streamline plot at the expansion area, gap 0.005in, valve type B, 

time-step 0.08S. 
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Figure 5.92. Unsteady state streamline plot at the expansion area, gap 0.017in, valve type B, 

time-step 0.08S. 

 

Figure 5.93 Unsteady state streamline plot at the expansion area, gap 0.017in, showing 

recirculation at the jet exit, valve type B, time-step 0.08S. 

 

5.3.3.  Unsteady State Summary 

There was great similarity between the steady state and the unsteady state results. The 

unsteady-state results are very similar for both valves, except for valve type B with a large gap. 

For both valves, the velocity plots are in agreement in that the velocities are low everywhere except 

at the gap area. For both the unsteady and steady state simulations, the velocity increases 

proportionally with the gap from 0.002in to 0.005in and decreases for the 0.017in gap.   
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The velocity-vector plots show no recirculation bubbles close to the poppet wall in both 

valves as in the steady-state case. For both valves, recirculation zones can be seen above the gap 

and the expansion areas, and the recirculation bubble at the expansion area increases and elongates 

when the gap decreases. A small recirculation bubble can be seen at the area of expansion next to 

the jet exit for the larger gap of type B valve as appeared in the steady-state case for the same valve 

and opening. Animation of the oscillatory nature of the fluid flow can be seen on movies for both 

valves under all opening conditions attached with this dissertation as (DVD).  

700-psi upstream and 300-psi downstream flow field pressure plots were analyzed for both 

valves. In both valves for the 0.002in and 0.005in gaps, high pressure can be seen before the gap. 

Low pressure can be clearly observed in the area for the two larger gaps. Again, as for steady state 

the results show that for both valves the pressure drop across the gap decreases as the gap increases.  

Slightly differences of flow streamline plots between steady and unsteady state can be 

observed. For both valves, the volumetric flow rate was calculated. The results confirm the steady-

state results in that the volumetric flow rate increases with the gap increases. Table 5.2 present a 

detailed results for the maximum velocities and the volumetric flow rates for both unsteady and 

steady state simulations. The results show, for both cases the maximum velocities and the 

volumetric flow rates are very much the same for the 0.002in and 0.005in gaps of type A valve 

and 0.002in gap for the type B valve. The 0.005in and the two larger gaps show high the maximum 

velocities and the volumetric flow rates for the unsteady state than the steady state one.  
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Table 5.3. Maximum velocities and volumetric flow rates of the unsteady-state solution for both 

valves (A, and B)  

Gap type Unsteady state 

Maximum 

Velocity 

ft/s 

Steady state 

Maximum 

Velocity 

ft/s 

Unsteady state 

Volumetric flow 

rate 

 gpm 

Steady state 

Volumetric 

flow rate gpm 

A-0.002 151 150 0.73 0.73 

A-0.005 256 255 2.92 2.39 

A-0.017 296 307 14.99 12.98 

B-0.002 297 297 1.87 1.60 

B-0.005 449 309 2.38 1.99 

B-0.017 394 243 10.11 8.60 

 

5.4.  Unsteady State Streamline Behavior 

In order to verify our hypothesis that the flow induced noise was the result of a shear-layer 

induced acoustic resonance in the valve cavity, the shear-layer was investigated by plotting the 

time dependent behavior of the streamlines in the narrow gap between the piston and poppet. Four 

streamlines, evenly spaced within that gap were chosen, for each of those streamlines four points, 

also evenly spaced, one each at the inlet and outlet of the gap and the other two inside the gap were 

analyzed. The location of the four points for both types of valves is shown in Fig. 5.94 to 5.101. 

5.4.1.  Unsteady State Results for the Type A Valve 

Figures 5.102 to 5.113 summarize streamline behavior for the type A valve. The results are 

presented for all 3 gaps and for running times of 0.04 and 0.8 seconds. Each plots shows the time 

dependent behavior of one point in the streamline, the x-coordinate being time in seconds and the 

y-coordinate the radial coordinate in normalized units. The upper points being closer to the poppet 
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and the lower ones closer to the piston. It is quite remarkable to note that in all cases there is a 

radial displacement for every point at intervals 0.0009 seconds, corresponding to a wave frequency 

of 1111 Hz. For the smallest gap, 0.002 in., there are no significant differences between the 0.004 

and 0.08 plots for any of the locations. For the larger two gaps, 0.005 0.017, there is a significant 

difference in the streamline behavior between the 0.04 and 0.8 seconds results. It is clear that the 

larger gaps allow for larger oscillations in the streamline position. These oscillations increase as 

the gap increases and they are more pronounced as we move downstream. Figures 5.93 and 5.94 

corresponding to the two downstream positions for the largest gap clearly demonstrate this 

behavior. In both cases the 1111 Hz superimposed pulse can be clearly observed. The results of 

the other points for all 3 gaps are presented in Appendix B Figures 5.126 – 5.137.   

5.4.2.  Unsteady State Results for the Type B Valve 

The results obtained for valve B are presented are presented in Fig.5.114 – Fig. 125. For 

the largest and smallest gaps (0. 002 and 0.017 in.) the behavior is somewhat similar to the type A 

valve, showing a radial streamline displacement at 0.0009 second intervals for all locations. For 

the 0.002 gap, oscillatory behavior could be observed at 0.08 seconds that was absent in the type 

A valve. For the large gap (0.017 in.) the 1111 Hz signal could be observed for all locations at 

0.004 s. but it was very weak or missing at 0.08 s. for the points closest to the piston, at the largest 

distance from the flow centerline. 

Remarkably, the 1111 Hz signal could not be detected at any of the locations for the middle 

(0.005 in.) gap. For both 0.004 and 0.08 seconds streamline location did not show any regularity 

or discernable pattern, appearing to be aleatory in nature. Figure 5.89 showing the unsteady flow 

streamlines for the 0.05 gap at 0.08 seconds shows a very complex tri-dimensional behavior that 
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is consistent with this result. As for the type A the results of the other points for all 3 gaps are 

presented in Appendix B Figures 5.138 – 5.149.  

 

Figure 5.94. Point one counterbalance valve type A. 

 

Figure 5.95. Point two counterbalance valve type A. 
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Figure 5.96. Point three counterbalance valve type A. 

 

Figure 5.97. Point four counterbalance valve type A. 
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Figure 5.98. Point one counterbalance valve type B. 

 

Figure 5.99. Point two counterbalance valve type B. 
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Figure 5.100. Point three counterbalance valve type B. 

 

Figure 5.101. Point four counterbalance valve type B. 
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Figure 5.102. Streamlines at point one (x = 0.005mm) for type A-gap 0.002in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm.  
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Figure 5.103. Streamlines at point four (x = 0.810mm) for type A-gap 0.002in,maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.104. Streamlines at point one (x = 0.005mm) type A-gap 0.002in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.105. Streamlines at point four (x = 0.810mm) for type A-gap 0.002in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.106. Streamlines at point one (x = 0.005mm) for type A-gap 0.005in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.107. Streamlines at point four (x = 0.810mm) for type A-gap 0.005in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.108. Streamlines at point one (x = 0.005mm) for type A-gap 0.005in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.109. Streamlines at point four (x = 0.810mm) for type A-gap 0.005in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.110. Streamlines at point one (x = 0.005mm) for type A-gap 0.017in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.111. Streamlines at point four (x = 0.810mm) for type A-gap 0.017in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.112. Streamlines at point one (x = 0.005mm) for type A-gap 0.017in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.113. Streamlines at point four (x = 0.810mm) for type A-gap 0.017in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.114. Streamlines at point one (x = 0.005mm) for type B-gap 0.002in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.115. Streamlines at point four (x = 0.810mm) for type B-gap 0.002in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.116. Streamlines at point one (x = 0.005mm) for type B-gap 0.002in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.117. Streamlines at point four (x = 0.810mm) for type B-gap 0.002in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.118. Streamlines at point one (x = 0.005mm) for type B-gap 0.005in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.119. Streamlines at point four (x = 0.810mm) for type B-gap 0.005in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.120. Streamlines at point one (x = 0.005mm) for type B-gap 0.005in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.121. Streamlines at point four (x = 0.810mm) for type B-gap 0.005in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.122. Streamlines at point one (x = 0.005mm) for type B-gap 0.017in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.123. Streamlines at point four (x = 0.810mm) for type B-gap 0.017in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure 5.124. Streamlines at point one (x = 0.005mm) for type B-gap 0.017in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure 5.125. Streamlines at point four (x = 0.810mm) for type B-gap 0.017in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS     

 

6.1.  Conclusions 

Both the experimental and numerical work have provided valuable insights into the flow 

through the counterbalance valve under operational conditions. While the experimental work has 

given a detailed information about the main characteristics of the oscillatory flow such as the 

magnitude and frequency of the pressure oscillations, the numerical work provided a clear picture 

of the resulting internal flows. Streamline analysis of the unsteady flow reveals the existence of an 

1111 Hz. pulse throughout the flow field. The experimental frequency analysis reveals pressure 

fluctuations with main frequencies ranging from 1113 to 9375 Hz. While the close proximity of 

the lowest experimental frequency and the numerically obtained frequency (1113 and 1111 Hz) 

can only be the result of serendipity, a detailed study suggests that the numerical simulation is 

capturing a feature of the flow and is not the product of a numerical artifact. The absence of higher 

frequencies in the simulations is a consequence of the nature of the flow and the size of the grid. 

The maximum frequency resolved by a computational grid is a function of the turbulent kinetic 

energy, k, and the grid size: 

 

  3
1

2

3

2

max
Vcell

k

f   

For this simulation, the cutoff frequency is approximately 2000 Hz, and therefore the 

absence of higher frequencies is to be expected.  
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The results obtained with valve type B are encouraging from both the numerical and 

experimental perspectives. The experimental results showed that the improvement is both 

quantitative and qualitative and strongly suggest that further improvement is still possible.  

Numerically, the tridimensional flow field observed at the 0.005 inches opening is 

indicative of a poorly organized flow that may be a useful mechanism in suppressing flow 

oscillations and deserves to be analyzed further. 

Overall, the software used for the numerical work proved to be a quite powerful tool for 

the analysis of a very complex flow bounded by a quite complex geometry. Though by no means 

a simple tool to use, and requiring significant computational and storage resources, it is a worthy 

tool to use. 

6.2.  Recommendations for Future Work  

On the experimental side, while the type B valve design was successful in suppressing the 

strong Mode 2 oscillations and reduced the range of Mode 1, mode 1 failed in eliminating it 

completely. This may be due to the appearance of a secondary recirculation bubble at large valve 

openings as shown in the numerical simulations. The possibility of inhibiting the development of 

this bubble as a way of totally suppressing Mode 1 oscillations should be investigated. Two 

possible mechanisms are suggested: notching the piston such that the velocity distribution in the 

gap area is not uniform and altering the diameter of the outlet holes thereby creating an 

asymmetrical flow field throughout the valve that would achieve the same effect.  

On the numerical side, the computational grid should be refined to allow the resolution of 

higher frequencies. This would require a significant upgrade in computational and storage 

capabilities.  
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The present analysis was carried out at quite small valve openings. Flow characteristics at 

larger openings should be investigated. 

Finally, an acoustic analysis should be carried out. The emphasis of such an effort should 

be in the capture of acoustic resonances rather than in the calculation of flow-field noise 

generation.  
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Appendix A.  Symbols and Their Meaning  

A.1.  List of Symbols 

A Gap Area [m2] 

Cv Specific heat [J/kg oC] 

d Gap spacing [m] 

f Frequency of oscillation [Hz] 

k Turbulent Kinematic Energy [J/Kg] 

p Pressure [Psi] 

P Aspect ratio, (t/p) 

r Poppet radius [m] 

t Time [S] 

T Temperature [oC] 

TQ turbulence quantity  

u Friction velocity [m/s] 

uj Local mean velocity [m/s] 

v Velocity [m/s] 

v local kinematic viscosity [m/s]  

xj Coordinate axis [m/s]   

y Normal distance from the wall [m]  

A.2.  Greek Letters 

Ɛ Turbulent kinematic energy dissipation rate  [N/m2.s] 

http://www.cfd-online.com/Wiki/Kinematic_viscosity


138 

 

ρ Density [kg/m3]  

µj Turbulent Viscosity [kg/m.s]   

σ Cauchy stress tensor [kg/m2]  

ω Turbulent frequency [kg/m3.s]  

A.3.  Subscripts  

x Coordinate direction, is also r in cylindrical coordinate   

y Coordinate direction, is also z in cylindrical coordinate   

z Coordinate direction, is also ϕ in cylindrical coordinate  

A.4.  Units 

cSt Centistokes [mm2/s] 

gpm Gallon per minutes 

kg Kilogram  

m Meter 

ms Milliseoncd 

psi Pound per square inches 

psid Pound per square inches differential   

psig Pound per square inches gauge   

s Second distance from the wall [m]  

vdc Volt direct current 

ampt Amplitude  
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Appendix B. Time-dependent Behavior of Streamline 

B.1. Time-dependent Behavior of Streamline for Type A Valve  

 

 

  

 

Figure B.1. Streamlines at point two (x = 0.290mm) for type A-gap 0.002in, maximum physical 

time 0.004 second, x-axis time in s, y-axis mm. 
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Figure B.2. Streamlines at point three (x = 0.660mm) for type A-gap 0.002in, maximum physical 

time 0.004 second, x-axis time in s, y-axis mm. 
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Figure B.3. Streamlines at point two (x = 0.290mm) for type A-gap 0.002in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.4. Streamlines at point three (x = 0.660mm) for type A-gap 0.002in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.5. Streamlines at point two (x = 0.290mm) for type A-gap 0.005in, maximum physical 

time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.6. Streamlines at point three (x = 0.660mm) for type A-gap 0.005in, maximum physical 

time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.7. Streamlines at point two (x = 0.290mm) for type A-gap 0.005in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.8. Streamlines at point three (x = 0.660mm) for type A-gap 0.005in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.9. Streamlines at point two (x = 0.290mm) for type A-gap 0.017in, maximum physical 

time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.10. Streamlines at point three (x = 0.660mm) for type A-gap 0.017in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.11. Streamlines at point two (x = 0.290mm) for type A-gap 0.017in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 

-5.14014

-5.14012

-5.14010

-5.14008

-5.14006
0.072 0.073 0.074 0.075 0.076 0.077 0.078 0.079 0.08

-5.08819

-5.08818

-5.08817

-5.08816

-5.08815

-5.08814

-5.08813

-5.08812

-5.08811

-5.08810

0.072 0.073 0.074 0.075 0.076 0.077 0.078 0.079 0.08

-5.11099

-5.11094

-5.11089

-5.11084

-5.11079

-5.11074

0.072 0.073 0.074 0.075 0.076 0.077 0.078 0.079 0.08



150 

 

 

 

 

Figure B.12. Streamlines at point three (x = 0.660mm) for type A-gap 0.017in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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B.2.  Time-dependent Behavior of Streamline for the Type B Valve 

 

 

 

 

Figure B.13. Streamlines at point two (x = 0.290mm) for type B-gap 0.002in, maximum physical 

time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.14. Streamlines at point three (x = 0.660mm) for type B-gap 0.002in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.15. Streamlines at point two (x = 0.290mm) for type B-gap 0.002in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.16. Streamlines at point three (x = 0.660mm) for type B-gap 0.002in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.17. Streamlines at point two (x = 0.290mm) for type B-gap 0.005in, maximum physical 

time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.18. Streamlines at point three (x = 0.660mm) for type B-gap 0.005in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.19. Streamlines at point two (x = 0.290mm) for type B-gap 0.005in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.20. Streamlines at point three (x = 0.660mm) for type B-gap 0.005in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.21. Streamlines at point two (x = 0.290mm) for type B-gap 0.017in, maximum physical 

time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.22. Streamlines at point three (x = 0.660mm) for type B-gap 0.017in, maximum 

physical time 0.004 second, x-axis time in s, y-axis in mm. 
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Figure B.23. Streamlines at point two (x = 0.290mm) for type B-gap 0.017in, maximum physical 

time 0.08 second, x-axis time in s, y-axis in mm. 
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Figure B.24. Streamlines at point three (x = 0.660mm) for type B-gap 0.017in, maximum 

physical time 0.08 second, x-axis time in s, y-axis in mm. 
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