The Capture and Evolution of Contextual Requirements:
The Case of Adaptive Systems

by

Alessia Knauss
Dipl.-Math., Leibniz Universitdt Hannover, 2009

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

(© Alessia Knauss, 2015

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

11

The Capture and Evolution of Contextual Requirements:
The Case of Adaptive Systems

by

Alessia Knauss
Dipl.-Math., Leibniz Universitat Hannover, 2009

Supervisory Committee

Dr. Daniela Damian, Supervisor

(Department of Computer Science)

Dr. Hausi A. Miiller, Departmental Member

(Department of Computer Science)

Dr. Xavier Franch, Outside Member
(Service and Information System Engineering Department, Universitat Politécnica de

Catalunya)

11

Supervisory Committee

Dr. Daniela Damian, Supervisor

(Department of Computer Science)

Dr. Hausi A. Miiller, Departmental Member

(Department of Computer Science)

Dr. Xavier Franch, Outside Member
(Service and Information System Engineering Department, Universitat Politécnica de

Catalunya)

ABSTRACT

Today’s software systems are becoming increasingly integrated into the lives of
their end-users and their ever-changing environments and needs. These demands
lead to a growing complexity of systems. The development of adaptive systems is a
promising way to manage this complexity. Adaptive systems are able to adapt their
behavior at operation time while considering the changing operational environment
to maximize the satisfaction of end-user needs. However, adaptive systems have
their own challenges to overcome. Especially, requirements engineering for adaptive
systems is challenging given the fact that requirements are active runtime entities
and can change at runtime. Requirements engineering activities have not only to take
place at design but also at runtime. Requirements engineering for adaptive systems is
an emerging research area that has so far received little attention, compared to other
research areas (e.g., architecture) for adaptive systems.

Adaptive systems need to have a full understanding of the context in order to
handle the complexity and satisfy end-user needs. Therefore, a new trend in require-
ments engineering for adaptive systems emerged to document requirements with the
context in which the requirements are valid. Such contextual requirements necessi-

tate adaptive systems to consider and define context in order to fully understand the

v

requirements at operation time. Further, adaptive systems must be able to cope with
uncertainty inherent in a changing runtime environment. Otherwise, adaptive sys-
tems will not be able to satisfy end-user needs. Therefore, after the system has been
deployed, support for the evolution of contextual requirements is needed, too. The
trend of considering context as part of a contextual requirement poses new challenges
in the field of requirements engineering.

This dissertation investigates the capture and evolution of contextual requirements
for adaptive systems, which leads to three contributions: First, this dissertation
presents a framework that differentiates between context and requirements as two
separate entities in contextual requirements that can be captured and can be evolved
independently. It is especially necessary to capture and evolve the essential context
to support the ability of a system to adapt to fulfilling the needs of its end-users,
whose requirements and context are constantly changing.

The framework is then applied in two case studies. The first case study investi-
gates the usefulness of existing requirements elicitation techniques for the elicitation
of contextual requirements. This dissertation’s second contribution is the empirical
evidence that existing requirement elicitation techniques can be used for the capture
of contextual requirements at design time. We propose a combination of interviews,
focus groups and prototyping that we found useful in eliciting contextual requirements
in our case study. The second study develops and evaluates techniques to support
the evolution of context when contextual requirements are validated at runtime. For
this purpose we propose an approach which uses machine learning and feedback loops
to support the evolution of contextual requirements and which represents the third

contribution of this dissertation.

Contents

Supervisory Committee ii
Abstract iii
Table of Contents \4
List of Tables vii
List of Figures viii
Acknowledgements X
Dedication xii
1 Introduction 1
1.1 Problem Statement L 2
1.2 Research Goal and Questions 3
1.3 Dissertation Structure L 8
2 Background and Related Work 10
2.1 Capturing Requirements and Context in Requirements Engineering . 10
2.2 Requirements Engineering for Adaptive Systems 13
2.3 Uncertainty in Adaptive Systems 15
2.4 Requirements Evolution in Adaptive Systems. 16
2.5 Context in Requirements Engineering and Adaptive Systems 18
2.6 Contextual Requirements 19
2.7 Chapter Summary 21
3 Research Design 22

3.1 Phase 1: Exploration of Research Area and Development of Framework 23

3.2 Phase 2: Application of the Framework

4 A Framework for the Capture and Evolution of Contextual Re-
quirements
4.1 Contextual Requirements: Definition and Example
4.2 From Partial to Complete Knowledge of Contextual Requirements . .
4.3 The Capture and Evolution of Contextual Requirements at Design vs.
Runtime
4.4 Elicitation of Contextual Requirements
4.5 Discovery of Contextual Requirements
4.6 Evolution of Contextual Requirements

4.7 Chapter Summary

5 Elicitation of Contextual Requirements at Design Time
5.1 Example and Related Work
5.2 Case Study on Eliciting Contextual Requirements at Design Time . .
5.3 The Use of Requirements Elicitation Techniques to Elicit Contextual
Requirements
5.4 Threats to Validity L
5.5 Chapter Summary and Future Work on Elicitation of Contextual Re-

quirements L

6 Supporting Evolution of Contextual Requirements at Runtime
6.1 Background and Related Work
6.2 Preconditions for the Application of ACon
6.3 ACon - An Approach to Support the Evolution of Contextual Require-

mentsS Lo e e
6.4 Evaluationof ACon
6.5 Discussion
6.6 Chapter Summary and Future Work on Evolution of Contextual Re-

quirements Lo

7 Conclusion
7.1 Dissertation Summary
7.2 Future Work

Bibliography

vi

List of Tables

Table 5.1

Table 5.2

Table 6.1
Table 6.2

Table 6.3

Table 6.4
Table 6.5

Requirements elicitation activities in the project. The second
iteration describes the case study we report on in this chapter. .
Following these steps we could identify contextual requirements

at design time.

Summary of related work compared to ACon.
Each contextual requirement is stored as a 2-tuple of context and
expected system behavior in the knowledge base, together with
the operationalization (rules) produced through the application
of data mining.
Sensor data and related information are stored in the knowledge
base.
Monitoring of requirements affected by runtime uncertainty.

Contextual requirements with most important sensors (sorted
based on the importance calculated through data mining) and

number of rules generated for day 53.

vii

o1

61

71

79

81
83

List of Figures

Figure 1.1
Figure 3.1

Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4
Figure 4.5

Figure 4.6
Figure 4.7

Figure 5.1

Figure 6.1

Figure 6.2

Figure 6.3

Overview of our research questions and contributions.
Research pathway

Examples of contextual requirements
Four quadrants representing the combinations of known /unknown
influence of context, and known/unknown system behavior (re-
quirement)
Design time: elicitation of contextual requirements
Discovery of contextual requirements
Details on transition (1) and transition (2) in the process of dis-
covery of contextual requirements. Transition (1) starts from a
known requirement and transition (2) from a known context.

Evolution of contextual requirements
Summary of the framework on the capture and evolution of con-

textual requirements. oL

Investigating the support of the transition from known require-
ment and unknown context to contextual requirements, where
context and functional requirement are known in the elicitation

of contextual requirements.

Research question 3 addresses the evolution of contextual re-
quirements at runtime
Contextual requirements decomposed of system behavior and
context. The context is made measurable through a context
operationalization in terms of sensors and their values.
IBM’s autonomic element consisting of a managed element and
an autonomic manager with a MAPE-K feedback loop at its core
[38, T4]. . . .

viil

34
37
39

39

43

45

46

67

68

Figure 6.4
Figure 6.5

Figure 6.6

Figure 6.7
Figure 6.8

Figure 7.1

Variables and functions defined in ACon framework.
The ACRFL in ACon responsible for the adaptation of contex-
tual requirements.o Lo
Contextual goal model representing the five contextual require-
ments for TOoTEM.
Anomalous user behavior indicates sea anchor conditions
Time series analysis of contextual rules generated by the JRip
algorithm for the five contextual requirements from Table 6.5.
Each column shows precision, recall, and f-measure of correctly

identified context related to each contextual requirement.

Summary of the framework on the capture and evolution of con-

textual requirements.o

1X

7

91
93

94

ACKNOWLEDGEMENTS

I have been very fortunate to work with an outstanding dissertation committee. I
would like to express my deepest gratitude and appreciation to my supervisor Daniela
Damian. Thank you for believing in me and giving me the chance to study this
exciting topic, despite the doubts and risks, for your permanent support, your patience
and understanding. Without this, I would not have been able to accomplish this
dissertation.

[am deeply indebted to my dissertation committee members Hausi Miiller, Xavier
Franch, and Bashar Nuseibeh. Hausi, thank you for introducing the topic of self-
adaptive systems closer to me as well as for insightful discussions. I felt very welcome
to the RIGI group, like an external group member. It was very encouraging. Xavier,
thank you for seeing the potential in this research topic, for challenging me, your
mentoring and support. It kept me going. Bashar, thank you for your precious
time and stimulating questions. The content of this dissertation is based on two
investigations. I would like to show my deepest gratitude to Kane Kilbey from the
University of Victoria to involve us in the replacement of the applicant tracking system
at UVic, as well as to all participants in the study. Additionally, I cannot express how
thankful I am to the OAR Northwest team members Adam Kreek, Jordan Hanssen,
Greg Spooner, Markus Pukonen, and Pat Fleming. They not only gave us the chance
to study the evolution of contextual requirements based on their rowing trip, but took
all possible effort to collect the data that we needed while being totally exhausted
during their rowing trip. You guys are just amazing!

The life during my dissertation study was made very special by certain people
being around. First and most important, the members of the SEGAL lab. Thank
you Jordan, Braden, Angela, Adrian, Jorge, German, Arber, Aminah, Francis, Joyti,
Prashant, Ville and Daniel. Thank you Eirini for taking time and effort in supporting
me at times when needed. Thank you Norha, Lorena, Nina, Andy, and Pratik for
our discussions on self-adaptive systems. Special thanks to the Computer Science
secretaries, especially Wendy and Nancy for their support.

I would also like to thank Kurt Schneider for getting me involved into the topic
of requirements engineering for adaptive systems and ecosystems. Being part of his
group gave me the opportunity to gain some invaluable experiences.

This dissertation would not have been possible without the support and encour-

agement of my family and friends. I would like to show my deepest appreciation to

x1

my mom, who raised and taught me that you have to work hard and be patient to
reach the goals you set for yourself. I am greatly indebted to my husband for going
beyond boundaries to support me to make this dissertation possible and for being
a great mentor to learn from. Supporting his academic path gave me a preview of
what I have to expect, so I was prepared for the tough times. Thanks to my little
sweetheart, Marie, for showing me that you sometimes have to pause to explore the

beauty of the world.

DEDICATION

To my family.

xii

Chapter 1
Introduction

Today’s software systems are increasingly complexr with regards to their integration
in larger system landscapes and the trend towards their ubiquity [93, 26]. This com-
plexity makes maintenance and evolution of such systems a challenge for software
engineers. Adaptive systems promise to decrease the cost of handling the complexity
of software systems at runtime [110].

Adaptive systems are defined as "computer-based systems that are capable of
recognizing changes in the domain they share an interface with, and at the same
time being able to change their behavior to adapt to the changing conditions without
necessary direct user interaction" [123|. The goal of an adaptive system is to provide
a better system for its users, which operates well in different situations through the
use of context-awareness and adaptation [123, 18|. To fulfill this goal, an adaptive
system must be given a thorough understanding of the context during its design phase
in order to satisfy end-user needs in different situations [120, 69, 12].

Uncertainty makes it impossible to completely understand end-user needs and
runtime environment during the design phase [135, 106]. Therefore, requirements
engineering activities have not only to take place during design, but also at run-
time [103]. During use of the system (we refer to it as runtime), the environment
and end-user expectations change and require the system to evolve its knowledge of
requirements and context in order to fulfill end-user needs [92].

Therefore, focusing solely on the requirements in requirements engineering activ-
ities becomes insufficient given the importance of specific context that can change at
runtime [102, 70]. For certain systems adaptation can even benefit from keeping the
human in the loop [72]. The importance of context in requirements engineering is not

a new phenomenon. Understanding the context is a well known and important ac-

tivity for capturing requirements [98]. For example, contextual inquiry is an integral
part of customer focused research [20]. But for adaptive systems, in which the context
is an equally important part and is documented together with requirements, existing
requirements engineering approaches only focusing on understanding the context are
insufficient.

Context has to become an active constituent of an adaptive system [56, 58, 111,
125, 123] and has to be monitored and captured not only at design, but also at runtime
[14, 21, 96, 116, 117, 123, 134]. In this situation, there exists a need to further our
understanding of the relationship between context and requirements in requirements

engineering for adaptive systems.

1.1 Problem Statement

In our preliminary works we focused on investigating requirements approaches that
equally emphasize requirements and their context, such as the capture of requirements
in their context [24, 25, 122] and end-user involvement in requirements elicitation
activities [23, 77, 76].> We discovered that in some cases even the decision about

when a requirement is needed depends on context.

As an example, we conducted a study [24] in which a system guiding drivers to a
vacant parking space in a multi-level parking garage was tested. The system at this
stage tried to fill up the parking lot from the top. We found that users chose the
parking space fitting a particular context regardless of the recommendation of the
system.

In our case study the adaptive system was a guidance system with two LED ar-
rows that directed drivers to a floor with free parking spaces. This system adapted
by showing users the direction to the higher level floor with empty parking spaces.
While users were happy with this system at the beginning of its operation as their
requirements were fulfilled, their needs seemed to change: Users eventually did not
follow the advice of the system and chose the lower (closer) level, even if free park-
ing spaces were available on a higher (further) level. Observations of user behavior
in the basement garage shed more light on this phenomenon: Users preferred free

parking spaces not adjacent to pillars. The newly captured requirement represents a

!Please note that Brill is my maiden name.

contextual requirement and can be formulated in the following way: If there exist free
parking spaces not adjacent to pillars on ground floor, direct the car to ground floor.
The requirement of directing the cars to the ground level was needed in the context of
free parking spaces not adjacent to pillars. The context "free parking spaces not ad-
jacent to pillars" was not considered by the adaptive system, leaving end-user needs
unfulfilled. If such parking spaces are not available on ground level and there are
parking spaces available on the higher level, then the system should give directions
to the higher level. This means that depending on the context, the system’s behavior

needs to change.

In a literature review we found similar observations of contextual requirements —
requirements that depend on context [70, 7, 21]. Nevertheless, approaches to identify
and discover requirements together with relevant context are currently underrepre-
sented in research and practice, as also stated by Cheng et al. [33, 34|. While
approaches to modeling system requirements and their context have been proposed
to deal with complexity [9], capturing and evolving requirements and relevant context
for adaptive systems continue to pose significant challenges for requirements engineer-
ing research [6]. To address topics like uncertainty affecting requirements and relevant
context [127, 106] threatening the satisfaction of contextual requirements at runtime
[56, 34|, research needs to consider requirements engineering activities during design,

but also at runtime.

1.2 Research Goal and Questions

To further the research on contextual requirements, particularly for adaptive systems,

this dissertation investigates the following research goal:

Investigate how to capture contextual requirements and manage
their evolution to address uncertainty during the design and operation

of adaptive systems.

We address the research goal based on three research questions using exploratory
research methods. Figure 1.1 gives an overview of our research methodology. The first

research question investigates how to study the capture and evolution of contextual

Chapter 4

RQ 1: What are the essential elements of the capture and evolution of contextual requirements for adaptive systems?
Contribution: Framework that distinguishes between 1) functionality from context, 2) design and runtime activities in
the capture and evolution, and 3) partial knowledge from complete knowledge of contextual requirements.

A Chapter 5 ’ Chapter 6
RQ 2: How can existing requirements elicitation RQ 3: How can the evolution of contextual
techniques help elicit contextual requirements at design requirements that are affected by uncertainty be
time? supported at runtime?
Method: Exploration on the usefulness of existing Method: Exploration on runtime-suppart for the
requirements elicitation techniques to elicit contextual evolution of contextual requirements to deal with
requirements runtime uncertainty
Contribution: Empirical evidence for using and Contribution: An approach supporting the evolution
assessing the usefulness of existing requirements of the context in which contextual requirements are
elicitation techniques for the elicitation of contextual valid. We use feedback loops to detect contextual
requirements. Propose a combination of existing requirements affected by uncertainty and machine
requirements elicitation techniques that we found useful. learning to determine an up-to-date context.

Figure 1.1: Overview of our research questions and contributions.

requirements. The second research question addresses the capture (i.e., elicitation)
of contextual requirements during the design phase through the use of existing re-
quirements elicitation techniques. The third research question pursues evolution of
contextual requirements at runtime to deal with uncertainty. In the following, we
describe each of the research questions briefly. Further information on the research
design can be found in Chapter 3.

Contextual requirements are a specific kind of requirements and it is unclear
whether existing requirements engineering techniques can be used for capturing con-
textual requirements. As such kind of requirements include a detailed description
of the context, both context and requirement (also referred to as expected system
behavior from the view of the system) have to be captured. Capture of contextual
requirements is used in this dissertation as a broad term encompassing the process of
learning and understanding (contextual) requirements.

The captured context as well as system behavior can change at runtime. Therefore,
we have to consider evolution of contextual requirements to ensure that the software
system is constantly maximizing the satisfaction of end-user requirements at runtime
and does not fail when it encounters uncertainty.

Our first research question (RQ 1) investigates how to study the capture and evo-

lution of such requirements that depend on context:

Research Question 1: What are the essential elements of the capture and evolution

of contextual requirements for adaptive systems?

We present a framework to structure our understanding of as well as the activities
of the capture and evolution of contextual requirements for adaptive systems at de-
sign and runtime. The framework consists of three main concepts: 1) distinguishing
functionality from context in contextual requirements, 2) distinguishing between de-
sign and runtime activities in the capture and evolution of contextual requirements,
and 3) distinguishing partial and complete knowledge of contextual requirements.
The framework is intended to help requirements analysts, designers, and operators
of adaptive systems explore techniques that support the capture and evolution of
contextual requirements.

The framework divides the activity of capturing contextual requirements into
two distinct activities — requirements elicitation and discovery. Motivated by litera-
ture that differentiates requirements engineering activities at design and runtime, the
framework differentiates between capturing contextual requirements at design time
(referred to as elicitation) as well as capturing contextual requirements at runtime
(referred to as discovery). The evolution of contextual requirements is defined as
identification of changes to existing contextual requirements at runtime.

The separation of system behavior and context in contextual requirements allows
to reason about each part separately. The framework discusses the transitions from
partial knowledge about contextual requirements to their correct and complete spec-
ification and in relation to the three activities of requirements elicitation, discovery,
and evolution. This process can be applied at design and runtime. Additionally, par-
tial knowledge about contextual requirements can be reused from the design phase

and complemented during runtime.

Contribution 1: The framework facilitates reasoning about the activities nec-
essary for the elicitation, discovery, and evolution of contextual requirements. It
facilitates decisions about which techniques to use for each of these activities. The
three essential elements of the capture and evolution of contextual requirements —
the differentiation between the three activities elicitation, discovery, and evolution,
the differentiation between context and system behavior in contextual requirements,
and the differentiation between partial and complete knowledge of contextual require-

ments — offer value for practitioners as well as researchers in the field. Practitioners

can use the framework to set up the requirements capture process for adaptive sys-
tems. For researchers the framework provides guidance to focus research activities

and define research questions.

In RQ 2 and RQ 3 this dissertation investigates more deeply two cases in our
framework, more specifically the case of capturing contextual requirements at design
time and the case of evolving contextual requirements at runtime This dissertation
does not investigate techniques on the discovery of contextual requirements at run-
time.

Literature presents approaches to the elicitation of requirements as well as con-
text separately. However, approaches that combine the elicitation of requirements and
then their context of validity are to the best of our knowledge underrepresented and
require further research attention. Instead of starting to investigate new techniques
for the elicitation of contextual requirements, we investigate in research question 2
whether and how existing requirements elicitation techniques are useful for the elici-

tation of contextual requirements.

Research Question 2: How can existing requirements elicitation techniques help

elicit contextual requirements at design time?

In a case study conducted with the Human Resources Department at the Univer-
sity of Victoria we explored the usefulness of existing requirements elicitation tech-
niques in eliciting contextual requirements when revising its job applicant tracking
system. Reports of actual requirements engineering practice in real projects are rare
in literature [86]. In-depth studies of requirements engineering practice are difficult to
carry out given the human, organizational, and political aspects that surround soft-
ware projects. Yet they are very important in providing insights about the application
of requirements engineering techniques in eliciting requirements in practice.

In our case study with the University of Victoria, we acted as the requirements an-
alyst in the project. The applicant tracking system was to be replaced to better serve
the needs of thousands of stakeholders. We applied different requirements elicitation
techniques (e.g., interviews, prototyping, scenarios, goal-based approaches, and focus
groups) to explore their usefulness in eliciting contextual requirements.

We were able to document a number of contextual requirements when applying

existing requirements elicitation techniques in a particular order: First we identified

requirements through interviews and focus groups and attempted to understand the
rationale behind them through interviews. We then used prototyping to get a detailed
understanding of these requirements in context. Next, we identified conflicts between
different end-users when discussing requirements in detail together in focus groups.
These discussions helped identify the need for contextual requirements. Finally we
elicited, through interviews with the respective end-users, the different contexts re-

lated to requirements so that we could document the contextual requirements.

Contribution 2: This dissertation brings empirical evidence on using and assess-
ing the usefulness of existing requirements elicitation techniques for the elicitation of
contextual requirements in a real software acquisition project. We propose a com-
bination of existing requirements elicitation techniques that we found useful for the

elicitation of contextual requirements.

Keeping user requirements continuously satisfied at runtime requires evolution of
contextual requirements. Current approaches either focus on requirements evolution
or context evolution. Evolution of contextual requirements needs further investiga-
tions, especially the development of automatic support for the evolution of contextual
requirements to be used in adaptive systems.

Therefore, the third research question (RQ 3) investigates support for the evolu-

tion of contextual requirements:

Research Question 3: How can the evolution of contextual requirements that

are affected by uncertainty be supported at runtime?
Runtime uncertainty might affect contextual requirements at runtime [106]. In order
to keep contextual requirements satisfied, a system must keep the knowledge about
contextual requirements up-to-date. Hence an adaptive system has to support the
evolution of its contextual requirements to fulfill end-user needs.

We present an approach that updates the knowledge about contextual require-
ments with up-to-date information about the context in which contextual require-
ments are valid at runtime. The approach detects contextual requirements that are
affected by uncertainty and integrates data mining algorithms that are used on con-
textual data (i.e., sensor data) to update the context in which the system behavior is
valid.

We evaluated the approach based on a case study in an unpredictable environment,

the ocean, with a high impact from the environment on the requirements. We mined
contextual data from 46 sensors for five contextual requirements to make the context
measurable in which contextual requirements were valid. Further, we analyzed the
cases in which our approach would trigger the evolution of contextual requirements
that are affected by uncertainty. We could show that our approach would achieve

great results for 4 out of 5 contextual requirements.

Contribution 3: This dissertation develops and evaluates an approach to sup-
port the evolution of the context in which contextual requirements are valid. The
approach uses feedback loops to detect contextual requirement affected by runtime
uncertainty, with a need for evolution. It applies data mining algorithms on sensor

data to determine an up-to-date context in which contextual requirements are valid.

1.3 Dissertation Structure

This dissertation is organized as follows:

Chapter 2 — Background and Related Work. In this chapter we depict back-
ground information necessary to understand the concepts presented in this dis-

sertation as well as related work.

Chapter 3 — Research Design. We detail the research design of this dissertation

and outline the research methods for each of the research questions.

Chapter 4 — A Framework for Contextual Requirements. We present our first
contribution of this dissertation, a framework on the capture and evolution of

contextual requirements.

Chapter 5 — Eliciting Contextual Requirements at Design Time. This chap-
ter presents a case study on the use of existing requirements elicitation tech-

niques for the elicitation of contextual requirements at design time.

Chapter 6 — Support Evolution of Contextual Requirements at Runtime.
Our last contribution is an approach developed to support the evolution of con-
textual requirements to deal with uncertainty affecting the execution of contex-

tual requirements at runtime.

Chapter 7 - Contributions and Future Work. In this chapter we revisit the re-
search questions along with the contribution of the dissertation, and discuss

future work.

10

Chapter 2

Background and Related Work

This chapter presents background for the concepts of this dissertation as well as re-
lated works. The literature review was conducted in an iterative way, using the snow
ball method. We studied existing related work at the beginning of the dissertation
study. Over the last three years we continuously complemented the literature review
using databases including IEEE Xplore, Springer Link, and Google Scholar. After
identifying relevant papers, we applied the snowball approach making sure we have
considered all relevant publications. Additionally, we monitored publications from re-
lated conferences, workshops, and journals, including the International Requirements
Engineering Conference, Requirement Engineering Journal, International Conference
on Software Engineering, Transactions on Software Engineering Journal, Software
Engineering for Adaptive and Self-Managing Systems, International Working Con-
ference on Requirements Engineering: Foundation for Software Quality, as well as

workshops taking place at the mentioned conferences.

2.1 Capturing Requirements and Context in Require-

ments Engineering

Capturing Requirements

A requirement expresses a system behavior needed or wished for by stakeholders
[97]. The process of learning and understanding stakeholder’s needs and wishes is
often referred to as requirements elicitation [140]. There exist multiple definitions

for requirements elicitation, as well as overlapping concepts that are closely related,

11

including requirements capture [140]|, gathering [36], discovery [119], acquisition [88],
as well as inventing [87], and creating requirements [87].

In this dissertation we refer to the general process of learning and understand-
ing requirements as requirements capture of contextual requirements. We refine this
process and define requirements elicitation as a design time activity and require-
ments discovery as a runtime activity. At runtime, many requirements are already
implemented and the requirements analyst is faced with the problem of discovering
requirements that are currently missing. In contrast, at design time, the requirements
analyst has to start from scratch and therefore we refer to this more established ac-
tivity as requirements elicitation.

According to Nuseibeh and Easterbrook, the established requirements elicitation

techniques can be classified as follows [95]:

1. Traditional techniques include questionnaires, interviews, and analysis of exist-

ing documentation.

2. Group elicitation techniques allow for the exploitation of team dynamics for

requirements elicitation and include focus groups, JAD, and brainstorming.

3. Prototyping allows dealing with high levels of uncertainty and can provoke cus-
tomer feedback and includes using prototypes to invoke discussions in group

elicitation techniques.

4. Model-driven techniques focus on using models to drive the elicitation process

and include goal-based methods.

5. Cognitive techniques allow for knowledge acquisition and include protocol anal-

ysis, laddering, card sorting, and repository grids.

6. Contextual techniques are used in situations where the local context is vital
for understanding social and organizational behavior, and include ethnographic

techniques such as participant observation.

Before starting with the elicitation of requirements, the requirements analyst has
to determine suitable requirements elicitation techniques. Dieste and Juristo assess
effective requirements elicitation techniques [47]. In a systematic literature review of
empirical studies on elicitation techniques, they found that although many experi-

ments to study different aspects of requirements elicitation techniques exist, studies

12

run in real environments are missing. Based on the review, the most studied elic-
itation technique is interviewing, which also seems to be one of the most effective
requirements elicitation techniques as presented by Dieste and Juristo in an earlier
publication of this study [1].

Requirements at design time might be known or unknown [127]. In the case they
are known, it is possible to get a detailed understanding of requirements. In cases
where requirements are unknown, researchers differentiate between the known un-
known and the unknown unknown. In the first case, we know that certain information
is unknown and can implement techniques at runtime to get a detailed understanding.
In the second case, we do not even know which information is missing. Capturing
unknown unknowns is challenging.

Recent trends in supporting the capture of requirements at runtime involve tech-
niques that automatically extract information from online data based on which new
requirements can be derived. Guzman et al. [64] analyze app reviews to identify new
requirements. The app reviews are filtered, aggregated, and analyzed using sentiment
analysis. Rahimi et al. [104] present a data mining approach to automatically ex-
tract quality concerns from requirements, feature requests, and online forums. Such

approaches could be a valuable first step, when capturing contextual requirements.

Capturing Context

Understanding the context is an important activity for capturing requirements [98].
For example, contextual inquiry is an integral part of customer focused research [20].
In fact, with advances in ubiquitous computing, context plays an increasingly impor-
tant role in understanding stakeholder’s needs [114]. Different approaches propose
capturing context to better understand user needs.

Context plays an increased role in ubiquitous and embedded systems. Maiden
and Seyff develop techniques that can be used to detect context in which new system
behavior is needed [89, 119]. They validate scenarios in the original context of use.
Seyff et al. present a tool to submit user needs at runtime [118]. Schneider et al.
give users the opportunity to articulate their feedback in context at runtime to better
understand the runtime context [116]. Daun et al. propose to document assumptions
about the operational context for long-living collaborative embedded systems to allow
the systems to cope with specific changes in their operational context [43].

With respect to the goal of this dissertation, these contextual approaches can be

13

considered as an important first step, as they recognize the importance of context.
Mostly, requirement engineering approaches focus on the capture of requirements,
while understanding the context, or on the capture of context to understand real life
situations for which end-users require new features. While modeling approaches exist
to model and analyze requirements in context, approaches to systematically capture
end-user requirements together with the context they are valid in are underrepre-
sented. Before we investigate the development of new techniques for the purpose
of capturing contextual requirements, we investigate the usefulness of exist-
ing requirements elicitation techniques for the capture (i.e., elicitation) of

contextual requirements in research question 2.

2.2 Requirements Engineering for Adaptive Systems

Self-adaptive systems (also referred to as dynamically adaptive systems [135]) are
systems with the ability to adjust their behavior in response to their perception of
the environment and the system itself [34]. This operating environment includes end-
user input, external hardware devices, and sensors [110]. To determine how to adjust
behavior in a specific state, a self-adaptive system uses models to decide which action
needs to be performed in order to reach an end-user goal [99, 9].

Designing self-adaptive systems demands the prediction of potential changes at
runtime, and implementation of abilities to facilitate reflection of the system depends
on a solid understanding of the runtime environment at design time [113]. Qureshi
et al. confirm the importance of distinguishing between requirements engineering
activities at design time and runtime, when engineering self-adaptive systems [102]. In
traditional requirements engineering, the analyst is typically responsible for specifying
requirements at design time. Nowadays, there is a move to collect runtime system data
which can be used by the requirements engineer to better understand the environment
[68]. However, self-adaptive systems are aware of their requirements and can execute
basic requirements engineering activities themselves to cope with changing conditions
that appear at runtime [100].

The PhD thesis of Nauman Qureshi [100] presents an important work for this
dissertation. Qureshi presents a conceptual framework to perform requirements engi-
neering for self-adaptive systems, in which he describes the importance of context for
requirements in self-adaptive systems. Furthermore, Qureshi et al. present adaptive

requirements [99] — “requirements that encompass the notion of variability associated

14

to either a functionality or a system quality constraint”. In contrast to Qureshi et
al.’s focus on variability, we focus in this dissertation on one specific system behavior,
which is needed in a specific context.

Cheng et al. argue that the central task of requirements engineering for adaptive
systems is capturing the relevant context-attributes for the adaptability of the sys-
tem at design time [34]. Qureshi et al. describe the adaptation problem at runtime
[100, 102]. Their approach for identifying new context-attributes is to ask the end-
users for missing context information. Including the users in the adaptation process
has an advantage in that they are already in the right context and are able to provide
relevant data. However, experience shows that stakeholders find it difficult to articu-
late the influences of context and their implications [95]. Sitou and Spanfelner propose
a model-based approach to requirements engineering for (context-)adaptive systems
[123]. This approach integrates a model of the usage context and distinguishes three
dimensions: Changing participants, activities, and operational environment. Their
methodology consists of two parts: Stability check and identification check. In con-
trast to this dissertation, they only consider a fixed set of context-attributes of the
environment that they monitor for adaptation.

Based on these context-attributes, analysts have to assess which requirements
might change during runtime. In the scope of requirements elicitation for adaptive
systems, the focus is not primarily on understanding complex tasks but to understand
the influence of context. However, a deep understanding of the required functionality
and its connection to the context is required to address the uncertainty inherent in
adaptive systems, and this dissertation proposes a framework that establishes this
connection and allows continuous learning and adaptation of the knowledge about
context influences at runtime. Hassan et al. [65] present a method that can be used
to explore the design decisions for self-adaptive systems. They provide designers of
self-adaptive systems with a basis for multi-dimensional what-if analysis to revise and
improve the understanding of the environment.

Current research on adaptive systems concentrates mainly on modeling, architec-
ture, and monitoring, see for example [127, 8, 137, 111]. However, research previews
emphasize the importance of further investigations in requirements engineering for
adaptive systems (e.g., [34, 110, 137]). Hong et al. identify important characteristics
of context-adaptive systems based on a literature review, but also report a lack of re-
quirements engineering in this field [66]. Especially linking requirements with context

and defining which context can change at runtime is an important activity at design

15

time that needs further investigation [34, 37|. A recent systematic literature review
published in 2015 on requirements engineering for self-adaptive systems outlines the
101 publications on this topic [124]. It shows that the highest number of research
in the area of requirements engineering for self-adaptive systems was published in
2012. Most publications focus on the activities requirements specification (34 out
of 101), requirements modeling (15 out of 101), requirements monitoring (12 out of
101), and requirements verification (12 out of 101). Only three publications exist
on requirements elicitation, three publications on system evolution, and only one on
requirements evolution. This emphasizes the lack of research in the area of capture

and evolution of requirements for self-adaptive systems.

2.3 Uncertainty in Adaptive Systems

Designing self-adaptive systems presents researchers with different challenges. One
challenge is handling uncertainty that affects adaptive systems. Uncertainty in (dy-

namically) adaptive systems is defined as:

Definition 2.3.1. Uncertainty

Uncertainty is “a system state of incomplete or inconsistent knowledge such that
it is not possible for a dynamically adaptive system to know which of two or
more alternative environmental or system configurations hold at a specific point.
This uncertainty can occur due to missing or ambiguous requirements, false as-
sumptions, unpredictable entities or phenomena in the execution environment,
and unresolvable conditions caused by incomplete and inconsistent information
obtained by potentially imprecise, inaccurate, and unreliable sensors in its moni-

toring infrastructure.” — Ramirez at al. [106]

One of the main reasons for uncertainty is that adaptive systems are often operated
in uncertain environments to which they must adapt. Examples of such systems
interacting in an uncertain environment include: 1) intelligent vehicle systems [106]
that have to deal with differing and unforeseen traffic and weather conditions or
obstacles that they have to detect and avoid, and 2) software systems in smart cities
that are interacting with thousands of individuals in highly dynamic environments
[42, 24].

16

In order to deal with uncertainty affecting requirements, Whittle et al. propose
the RELAX language [138|. The language allows relaxed requirements that can be
adjusted at runtime by giving the system flexibility to handle its requirements. By
relaxing requirements, the system can determine the best solution to fulfill the re-
quirement at runtime. Further approaches to solving the problem of missing runtime
information at design time are to include users in decision-making [13| or in the
software life cycle [84].

Even when using the RELAX language and including the users in decision-making,
it is still challenging to detect certain context conditions in an uncertain operational
environment in which certain system behavior is required. The definition of when an
adaptive system is supposed to execute a certain action requires a full understanding
of relevant context, which might not be possible at design time. In the last year several
approaches on handling uncertainty have been presented: Horkoff et al. [67, 109] focus
on methods to support early requirements decision-making. They model uncertainty
in goal models to support the iterative reduction of uncertainty [67] and provide
support for uncertainty capture, elaboration, and change [109]. Tran and Massacci
[129] provide a means to capture the uncertainty of evolution in feature models. This
dissertation presents a framework that differentiates between system behavior and
the context in which it is valid, as well as between design and runtime activities to
deal with uncertainty concerning contextual requirements at different levels of time
in the development process as well as handling uncertainty of system behavior and

context independently.

2.4 Requirements Evolution in Adaptive Systems

Anton [16] describes goal evolution when discussing the refinement of a requirements
model from high-level objectives to lower level, technical requirements including the
operationalization of goals with enough details. The goal of this process is to refine
subgoals into an operational definition [17], which is an important task for adaptive
systems. However, it is not always possible to refine subgoals at design time due to
incomplete context information that are caused due to uncertainty [106]. One solu-
tion to deal with this situation is to support requirements evolution at runtime when
more context information becomes available [34]. Specifically, even if context condi-
tions can be captured at design time, assumptions might become invalid at runtime

[10] or uncertainty might affect the system’s ability to satisfy requirements otherwise.

17

Changing requirements and uncertainty concerning the operational environment re-
quire adaptive systems to evolve at runtime [92].

Fickas et al. and Oriol et al. propose to use requirements monitoring, the results
of which can be of benefit for designers and maintainers to provide the required
information to redesign the system [55, 96]. Additionally, to be able to execute
requirements engineering activities at runtime, an adaptive system has to store a
model containing the necessary information that can change at runtime (e.g., context
and requirements information) [56]. This model is used to evolve the knowledge
regarding changing end-user needs and context information.

Souza et al. [121] introduce evolution requirements that define the runtime evo-
lution of existing requirements. Evolution requirements define how requirements can
change at runtime and under which conditions. When identifying such conditions at
runtime, the system can trigger the (predefined) evolution on its own. Nevertheless,
evolution requirements are not easily applicable in uncertain environments that can-
not be completely predicted at design time. In fact, uncertainty is the main reason
that we cannot fully specify our knowledge of the requirements and environment of
a system at design time [106]. Due to uncertainty, self-adaptive systems need to
evolve and even consider unforesecable changes at runtime [92]. Indeed, the ability
of self-adaptive systems to adjust their behavior based on what they sense in the
environment and the system itself [34] is linked to software evolution [110].

Inverardi et al. [69] present a framework on the evolution of contextual require-
ments. They propose integrating the user feedback as one source for evolution, fo-
cusing on the evolution of the system functionality and not on the evolution of the
context representation. In research question 3 we investigate support for the
evolution of the context (operationalization) in which contextual require-
ments are valid. Instead of relying (only) on user input, we present an approach
that is based on machine learning and feedback loops to detect contextual require-
ments affected by uncertainty and supporting the knowledge of the context in which

contextual requirements are valid.

18

2.5 Context in Requirements Engineering and Adap-

tive Systems

As software intensive systems pervade more aspects of life, the notion of context
becomes increasingly important in requirements engineering. User needs have to be
supported actively at runtime and context plays an increased role in supporting user
needs efficiently [22].

Villegas et al. conducted a literature review on context-awareness, with a focus on
the characterization of context information [132, 133]. Based on this literature review

they propose a context definition that we reuse for the purpose of this dissertation:

Definition 2.5.1. Context

“Context is any information useful to characterize the state of individual entities
and the relationships among them. An entity is any subject which can affect the
behavior of the system and/or its interaction with the user. This context infor-
mation must be modeled in such a way that it can be pre-processed after its ac-
quisition from the environment, classified according to the corresponding domain,
handled to be provisioned based on the system’s requirements, and maintained to

support its dynamic evolution.” — Villegas et al. [133].

Furthermore, Villegas et al. [134] present separation of concerns between require-
ments, context, and adaptation. Each of the three levels needs to be controlled in
self-adaptive systems, for which they use feedback loops. The work by Villegas et
al. is important work that influenced this dissertation, especially the concepts of the
framework on the capture and evolution of contextual requirements (cf. Chapter 4).

One important activity during requirement elicitation for adaptive systems is the
identification of context-attributes [123]. Related work presents different context tax-
onomies. Context taxonomies that mainly present common context-attributes are de-
scribed for example in [66, 61, 139, 31]. Still, most taxonomies are designed for a spe-
cific system. Different types of systems need to consider different context-attributes
and therefore the existing taxonomies of context-attributes cannot always be trans-
ferred to other domains or systems. Once identified, the importance of context-
attributes can change at runtime. Therefore, systematic approaches for capturing

context and supporting its evolution can help in this situation.

19

Some of the requirements for context-aware systems (i.e., systems that implement
the concept of context-awareness) are only valid at specific locations [35, 2|, or in
other specific contexts [54]. The concept of context is not limited to the spatial
position. Schmidt et al. [115] propose a hierarchical model of context-attributes.
Several researchers propose to use an ontology to document context information, for
example Villegas et al. [132] and Qureshi et al. [100]. This work is an excellent
starting point when searching for relevant context-attributes in a given situation. We
focus on the capture and evolution of context information related to one particular
system behavior that is captured in a contextual requirement.

Chen at al. argue that the implementation of context-awareness requires the
capture of context on different levels: Low level context (e.g., location and time) and
higher-level context (e.g., user’s current activity) that can be expressed through low-
level context [32]. Through the combination of several low level contexts, complex
context can be recognized [32]. Mongiello et al. [91] present a runtime verification
method for context-aware applications. They use cognitive psychology concepts for
the adaptation of adaptive systems to changed context on the source code level.

Villegas [132] introduces situation-aware software systems, in which context in-
formation is collected and the system is able to recognize different situations from
lower-level context at runtime. For this purpose, Villegas presents a context ontol-
ogy and reasoning engine and demonstrates the concepts based on a smarter internet
shopping case study. This demonstration is a good application example of system
adaptation to context, in which the end-user is involved in the activities. Afanasov et
al. |4] provide design concepts and language support for the design and implementa-
tion of cyberphysical systems. Their concepts include situation-awareness. All these
approaches view the developed techniques from the system’s (technical) adaptation

point of view, while we focus on support for requirements engineering activities.

2.6 Contextual Requirements

First ideas on adapting requirements based on changes in the environment were pre-
sented around the year 2000 (e.g., by Eracar et al. [52]). Over the last decade
there has been a growing interest in developing approaches to study contextual re-
quirements engineering and contextual design. The first framework on contextual
requirements engineering was presented by Sutcliffe et al. [126] considering the effect

of context on personal goals. Miiller and Villegas [133| propose a reference model that

20

uses a separation of concerns between the system objectives, monitoring of the con-
text representation, and adaptation to context using feedback loops. In a next step,
Castaneda, Villegas and Miiller [30] enrich the objectives by user’s personal goals for
web-tasking systems. Inverardi and Mori [70] present a framework that is centered
around features. Their framework considers three elements — a requirement in form of
a feature, a context entity, and the service implementing the feature. Afanasov et al.
[4] present contextual design for cyberphysical systems. They focus on the definition
of different context situations, and their monitoring. Acher et al. [3] model context
together with software variants in feature models. Ali et al. [7] introduce contextual
requirement models to specify requirements and their context at runtime. They de-
scribe contextual requirements as the interplay of two elements — requirements and
context — and focus on the modeling of the variability of both context and require-
ments, and the detection of errors in contextual requirements models [9]. Ali et al.
refer to context as activation context, required context, and context which leads to
different quality levels. In this dissertation we concentrate on the activation context,
which describes when exactly requirements are valid.

In building on this related work where the execution of requirements depends on

the context, we define contextual requirements:

Definition 2.6.1. Contextual requirement
A contextual requirement consists of a 2-tuple of the expected system behavior

and the specific context within which this expected behavior is valid.

Similarly to the approaches by Inverardi and Mori [70] and Ali et al. [7], this
dissertation focuses on requirements that depend on context. The approach by Ali
et al. concentrates on modeling and reasoning about the adaptation of systems to
variable context. Contextual goal models are a powerful instrument to model socio-
technical systems [41] and are recently being presented as an instrument for the
analysis of security requirements [83]. However, the presented approach on contextual
goal models does not deal with requirements uncertainty at runtime. Inverardi and
Mori [70] present a research preview on the evolution of context variations to deal
with uncertainty by using model checking to execute either predefined evolution or
by letting users specify the evolution needs.

The approaches described above motivate the need for contextual requirements.

21

Requirements capture and evolution are largely unexplored research areas that mo-
tivate us to investigate research question 1: What are the essential elements
of the capture and evolution of contextual requirements for adaptive sys-
tems? This dissertation presents a framework that can be used to develop techniques

to support the capture and evolution of contextual requirements.

2.7 Chapter Summary

This chapter reviewed the challenges in capturing contextual requirements. Tradi-
tional requirements elicitation techniques only focus on capturing requirements, while
understanding the context as far as is necessary. Recent advances in requirements
engineering research have presented approaches to document relevant context at run-
time, but do not offer assistance when actively integrating context capture into (con-
textual) requirements capture. In addition to requirements elicitation at design time,
requirements engineering for adaptive systems has to consider runtime requirements
capture and evolution due to uncertainty. Literature on contextual requirements
mostly concentrates on modeling, architecture, and monitoring of requirements and
relevant context. The research presented in this dissertation focuses on the topic of
capture and evolution of contextual requirements at design and runtime to deal with

runtime uncertainty.

22

Chapter 3
Research Design

The research conducted in this dissertation is of an exploratory nature due to the
unexplored area of the capture and evolution of contextual requirements for adaptive
systems.

Figure 3.1 gives a detailed overview of the research design used in this dissertation.

The structure was divided into two parts. In phase I we explored the research area

Phase 1: Development of Framework Phase 2: Application of Framework
(Define Research Topic) 4’(Apply Framework)

v

(Explore Research Area)

v
(Literature Review) (RQ 2) C RQ 3)

v

[Deﬂne Research Goal and]

Questions

(Literature Review)

v

Develop Framework -
RQ 1

Figure 3.1: Research pathway

and developed a framework for the capture and evolution of contextual requirements

(presented in Chapter 4). In phase 2 we applied the framework and investigated

23

techniques for elicitation (presented in Chapter 5) and evolution of contextual re-

quirements (presented in Chapter 6).

3.1 Phase 1: Exploration of Research Area and De-

velopment of Framework

The goal of phase 1 was the development of a framework for capture and evolution
of contextual requirements to deal with uncertainty. In the first step we defined the
research topic of the capture and evolution of requirements considering context
for adaptive systems, with a focus on capturing and communicating context together
with requirements for system adaptation. To investigate this research topic we started
to explore the research area. We complemented this exploration continuously
through reviews of existing literature. An extensive literature review was conducted
at the beginning of phase 1. During that time the area of requirements engineering for
adaptive systems was quite unexplored and only just started gaining importance due
to the trend in increasing ecosystems and decentralized systems [93]. The literature
review included the areas of system adaptation, requirements engineering techniques
with focus on requirements elicitation, and end-user involvement in requirements
elicitation activities at runtime for system adaptation. Additionally, the literature
review included contextual techniques in requirements engineering, in-situ techniques,
and capturing context.

Due to the fact that this research area so far had little research activity, the
methodology taken in this dissertation is of an exploratory nature. Three research
questions were derived with respect to the research goal "investigate how to cap-
ture contextual requirements and manage their evolution to address uncertainty dur-
ing design and operation of adaptive systems." The rest of this chapter details the
three research questions and the research methodology that we used to investigate
them.

Usually context helps clarifying requirements, e.g. by understanding context of
use and human factors we are able to derive usability requirements more concretely
[85]. For requirements that are contextual, analysts will have to capture and docu-
ment the system behavior and the context it is valid in. To continue the satisfaction

of contextual requirements, runtime support is needed to evolve contextual require-

24

ments where appropriate. Research question 1 investigates capturing and evolution

of contextual requirements in general:

RQ 1: What are the essential elements of the capture and evolution of contextual

requirements for adaptive systems?

To capture all relevant information about contextual requirements and demonstrate
how analysts can apply existing techniques, a framework is developed.

Literature differentiates between requirements engineering activities at design and
runtime [103]. Motivated by their work, this dissertation differentiates between the
activities of capturing requirements at design and runtime. The framework defines
the design time activity as elicitation (the traditional requirements elicitation), and
the runtime requirements capturing activity as discovery. Changes to existing re-
quirements at runtime is defined as the evolution of contextual requirements.

This dissertation takes the view of contextual requirements as consisting of two
parts — system behavior and context in which it is valid. Underlying this view is the
notion that each of the requirement and its relevant context can be discovered and
evolved separately at runtime. By evolving the context the adaptive system keeps
satisfying its requirements continuously in the right context, and end-user needs are
fulfilled.

3.2 Phase 2: Application of the Framework

To evaluate aspects of the framework and further an understanding of the applica-
tion of existing techniques this dissertation applies the framework in two further
studies. The first study investigates techniques for the elicitation of contextual re-

quirements at design time (RQ 2) and the second study their evolution at runtime

(RQ 3).

RQ 2: How can existing requirements elicitation techniques help elicit contextual

requirements at design time?

To support adaptive systems, contextual requirements must be captured at design

time. Requirements that depend on context have to be identified, as well as their

25

valid context defined as precisely as possible to remove requirements uncertainty.
Yet, while the usefulness of contextual requirements has been discussed, there is lit-
tle research on how to analyze, or more specifically to use, existing requirements
engineering practices for their elicitation at design time.

Case study research is chosen as the research method of choice to investigate this
exploratory research question [108]. We had the opportunity to work with the Hu-
man Resources Department at the University of Victoria in revising its job applicant
tracking system. To investigate the goal of exploring the use of existing requirements
elicitation techniques in identifying contextual requirements at design time we acted
as the requirements analyst for the project. The applicant tracking system was to
be replaced to better serve the needs of thousands of stakeholders. We applied dif-
ferent requirements elicitation techniques (e.g., interviews, prototyping, scenarios,
goal-based approaches, and focus groups) to this real world socio-technical system.

We were able to document a number of contextual requirements when applying
particular requirements elicitation techniques in a particular order: First we identi-
fied requirements through interviews and focus groups, attempted to understand the
rationale behind them through interviews, then used prototyping to get a detailed
understanding of these requirements in context. Next we identified conflicts between
different end-users when discussing requirements in focus groups in detail. These
discussions helped identify the need for contextual requirements. Finally, we identi-
fied through interviews with the respective end-users the different context related to
requirements so that we could document the contextual requirements.

In our case the need for system runtime adaptation (by identifying contextual
requirements) became apparent based on end-user requirements and their complex
operating environments. The context part offered a starting point to analyze triggers
for adaptation, while the requirement part defined the adaptation goal. Designing
such a system as an adaptive system would allow it to fulfill otherwise conflicting
requirements of the different stakeholders by adapting to their context-specific needs.

Due to uncertainty we cannot fully specify our knowledge of requirements and the
environment of a system during design time [106]. Therefore, contextual requirements
that are elicited and implemented at design time can be affected by uncertainty at
runtime. Uncertainty leads to the fact that contextual requirements will not be sat-
isfied without runtime support for their evolution [92|, enabling the system to react
appropriately [54]. Therefore, the next research question investigates the evolution of

contextual requirements that are affected by runtime uncertainty (i.e., unpredictable

26

environment and sensor loss can be supported):

RQ 3: How can the evolution of contextual requirements that are affected by un-

certainty be supported at runtime?

Supporting the evolution of existing contextual requirements requires runtime
support that analyzes usage data as well as contextual data, and can be run auto-
matically and use available data at runtime. In this research question we explore
the use of existing techniques such as data mining algorithms and feedback loops to
support the evolution of contextual requirements in the face of uncertainty (i.e., un-
predictable environment and sensor failure). We concentrate on the evolution of the
context part of contextual requirements, as there already exists work on the evolution
of requirements, and the contribution of context evolution research would be more
valuable for the research field.

Data mining provides techniques to detect patterns in large data sets to deal with
their complexity. The application of data mining on contextual data is a promising
strategy to use when detecting certain conditions that change over time [5]. When
used by an adaptive system to support the evolution of contextual requirements,
data mining shows promise in helping the system maintain updated knowledge about
contextual requirements in the face of runtime uncertainty and herewith supports the
evolution of contextual requirements. Feedback loops promise automatic support at
runtime and can help in implementing automatic support for evolution.

Considering the integration of data mining and feedback loops, we present an ap-
proach that updates the knowledge about contextual requirements with up-to-date
information about the context in which contextual requirements are valid at run-
time. A feedback loop is used to detect indications that the satisfaction of contextual
requirements is affected by runtime uncertainty, and data mining algorithms are inte-
grated to determine the context in which contextual requirements are valid. With the
help of data mining used on sensor data, the approach is able to update the software
system’s knowledge about contextual requirements where affected by uncertainty.

For the purpose of evaluation we developed an activity scheduling system we called
ToTEM to be used in a wild and unpredictable environment, the ocean. ToTEM is
an activity scheduling system that supports extremely demanding and potentially

life-threatening situations in this wild environment. ToTEM provided alarms for the

27

daily activities of a crew of four rowers crossing the Atlantic Ocean during a 72-day
trip [94]. In the case of TOTEM we collected the rowers’ system adaptation needs
in context, elicited five contextual requirements, analyzed patterns in the contextual
data from 46 sensors, and mined this data to make the context in which contextual
requirements were valid and measurable. Further, we analyzed the cases in which the

evolution of contextual requirements would be triggered due to uncertainty.

28

Chapter 4

A Framework for the Capture and
Evolution of Contextual

Requirements

When developing adaptive systems, requirements engineering becomes more difficult
compared to the development of traditional systems. In addition to converting end-
user needs into requirements, the requirements analysts and designers of the system
have to determine when and how the system should adapt at runtime. At runtime,
end-user needs and operational environments can change. Adaptive systems have to
support the systematic evolution of requirements to maximize user satisfaction during
the lifetime of a system.

We motivated the need for treating some requirements as contextual in Chapter 1.
Capturing such contextual requirements and supporting their evolution is challenging
as end-user needs have to be analyzed in context. Additionally, the context has
to be documented together with the corresponding requirement in system models.
Adaptive systems have to implement techniques to track the need for both evolution
and execution of the evolution of contextual requirements to deal with uncertainty.

This chapter investigates the following research question:

RQ 1: What are the essential elements of the capture and evolution of contextual

requirements for adaptive systems?

We present a framework with essential elements of capture and evolution of con-

29

textual requirements for adaptive systems at design and runtime.

At its core are contextual requirements which are decomposed into two parts: the
expected system behavior and the context in which this behavior is valid. Taking the
view that system behavior and context can be regarded as two entities of contextual
requirements allows us to examine each part separately. Because the framework is
meant to be applicable to different domains and different kind of systems, we keep the
concepts of the framework on a higher level of abstraction. The implications of this
decision include the fact that parts of the concepts, discussed in the framework, are
only formalized in Chapter 6. Furthermore, we do not distinguish between context
description and measurable context when presenting the concepts of the capture and
evolution of contextual requirements in the framework.

The framework differentiates between capturing contextual requirements at design
and runtime. It also considers the evolution of existing contextual requirements. Mo-
tivated by the literature on differentiating between design and runtime activities in
requirements engineering [103], the activity of capturing requirements is defined as re-
quirements elicitation (at design time), and requirements discovery (of new contextual
requirements at runtime). Requirements evolution is the activity of evolving existing
contextual requirements at runtime. Furthermore, we treat contextual requirements
as composed of the system behavior and the context in which the system behavior is
valid. This separation of concern is motivated by the work presented by Villegas et al.
[134]. They separate the system objectives, the context information, and the adapta-
tion. Our framework considers transitions from partial knowledge about contextual
requirements to their correct and complete specification for the three activities of
requirements elicitation, discovery, and evolution (thus differentiating between design
and runtime activities).

The framework is intended to help requirements analysts, designers, and operators
of adaptive systems in exploring techniques that support the capture and evolution

of contextual requirements through the following underlying concepts:

e Distinguishing between design time and runtime activities in the capture of
contextual requirements allows adding new contextual requirements at runtime
to deal for example with incomplete design time knowledge or changing end-user

needs or operational environment at runtime.

e Distinguishing functionality from context in contextual requirements enables ac-

tivities that lead to partial knowledge of any part of the contextual requirement

30

to be completed later through analysis.

o Distinguishing between partial and complete knowledge of contextual require-
ments by leveraging the concept of known/unknown requirements presented by
Sutcliffe et al. [127]. It allows capturing contextual requirements step by step

by using partial knowledge about contextual requirements.

4.1 Contextual Requirements: Definition and Exam-
ple

This section defines the concept of contextual requirements and illustrates it by two

contextual requirements from the parking lot example.

4.1.1 Definition

Drawing on existing work as elaborated on in Chapter 2, we refine our definition of

contextual requirements.

Definition 4.1.1. Contextual requirement
A contextual requirement cr is a requirement (an expected system behavior) that
is only valid in a specific context, represented as a 2-tuple cr = (b, ¢) consisting

of an expected behavior b and the context ¢ in which it is valid.

In order to have the flexibility of separately adding or changing the content of
contextual requirements, the framework presented in this chapter supports the view
of contextual requirements as composed of the system behavior and contexrt as two
entities that can be captured and can evolve separately. This allows us to analyze,
at runtime, the evolution of context or behavior and identify possible evolution of
previously identified contextual requirements. Further, it allows the elicitation and
discovery of new contextual requirements step by step by using partial knowledge
about contextual requirements.

Contextual requirements can be used by adaptive systems in order to provide
the appropriate system behavior based on the current context. For this purpose an

adaptive system monitors the execution context at runtime in order to decide which

31

behavior needs to be provided in the currently sensed context. Therefore, in order to
be quantifiable by an adaptive system, a certain context of validity ¢ has to be mea-
surable by the system. In contrast to the perceived context, the measurable context
condition cannot always be provided by end-users during requirements elicitation.
Therefore, this dissertation differentiates between a context description (i.e., the per-
ceived context in which a user requires a certain system behavior) and a measurable

context.

Definition 4.1.2. Measurable context
A measurable context is a certain condition that can be monitored and quantified

by the system with the help of context-attributes.

4.1.2 Example of Contextual Requirements

We illustrate the introduced concepts based on the parking lot example presented in
the introduction.

Figure 4.1 outlines two contextual requirements in detail. Each contextual require-
ment, cr; and cry, consists of the two parts — the system behavior and context. The
context is separated into a context description, and the corresponding measurable
context that includes context-attributes. In the following, we discuss the example
and show one contextual requirement (crq) elicited at design time, one contextual re-
quirement (cry) that was discovered at runtime, and the evolution of one contextual

requirement (cr; with evolution of the context).

FElicitation of contextual requirement 1 (cri): If there are (is) (a) free parking
space(s) on the second floor (cy1), the system should direct the car to the second floor
(b).

Direct cars to the lower level floor (also referred to as ground floor - F'1) was so far
the standard system behavior (b;). The context description ¢;; adds a restriction to
the system behavior. This represents a contextual requirement (cry): If there is at
least one free parking space on the higher level floor (also referred to as second floor,

F2, in the following) then the system gives directions to the second floor. In our

32

Contextual |System behavior |Context description (c) Measurable context,
require- (b) including context-attributes
ment (cr)
Ccry by Direct car |Cy.1 | Free parking space(s) | F2.Free-parking-

to second on second floor spaces >0

floor

C1.2 | Free parking space(s) | (F2.Free-parking-
on second floor and | spaces > 0) and
no free parking (F1.free-

space(s) not adjacent| parking-spaces-
to pillars on ground | not-adjacent-

uonNjoAd

floor to-pillars=0)
Cro by Direct car |C2 Free parking space(s) | (F1.free-
to ground not adjacent to parking-spaces-
floor pillars on ground not-adjacent-
floor or no free to-pillars >0)or
parking space(s) on (F2.Free-parking-
second floor spaces = 0)

Figure 4.1: Examples of contextual requirements

example the first contextual requirement cr; consisting of by and c¢y; was elicited at

design time.

Discovery of conteztual requirement 2 (cry): If there are (is) (a) free parking
space(s) not adjacent to pillars on the ground floor or no free parking space(s) on the
second floor, the system should direct the car to the ground floor.

Our second example illustrates a contextual requirement discovered at runtime. By
observing the user behavior together with the context, we were able to identify in-
dications for the need of a second contextual requirement (cry). At design time the
only emphasis was on providing a free parking space, discarding its location. When
observing users we identified that users preferred to choose free parking spaces not
adjacent to pillars. A new contextual requirement had to be introduced considering
the context-attribute: free-parking-spaces-not-adjacent-to-pillars. If there
are no free parking spaces not adjacent to pillars on ground floor, users go to the
second floor to check whether there are parking spaces not adjacent to pillars. Only
if there are no free parking spaces on the second floor, the system should direct cars
to the ground floor. Hence, the second context condition for crs is: no free parking

spaces on the second floor.

33

FEvolution of contextual requirement 1 (cry - with ¢15): If there are (is) (a) free
parking space(s) on the second floor and no free parking space(s) not adjacent to pil-
lars on the ground floor (c12), the system should direct the car to the the second floor
(b)-

We identified the need for evolution of the first contextual requirement cry at run-
time. By identifying the need for the context-attribute free-parking-spaces-not
-adjacent-to-pillars, the context part (¢;1) of c¢r; had to evolve. ¢, adds an-
other condition of "no free parking space(s) not adjacent to pillars on ground floor"
to the context ¢y of free parking space(s) on the second floor. Users prefer choosing
a parking lot that is not adjacent to pillars and prefer the ground floor. If no such
parking spaces are available they choose other parking spaces. In the example it
was necessary to evolve the contextual requirement concerning the context to satisfy
end-user needs, whereas the expected system behavior of directing cars to the second

floor stayed the same.

4.2 From Partial to Complete Knowledge of Contex-

tual Requirements

The example of cry shows that in some cases the context is known at design time,
but the required system behavior is discovered at runtime (cry). The same can hap-
pen if the system behavior is known at design time, but its relevant context is not
known at design time and discovered at runtime. To have the flexibility in capturing
only parts of contextual requirements, we differentiate between partial and complete
knowledge of contextual requirements. Partial knowledge means that only the context
or the system behavior are known, but the corresponding system behavior or context
respectively unknown.

To model the partial knowledge and the transitions from partial to complete
knowledge, the framework uses the model of known /unknown requirements presented
by Sutcliffe et al. [127]. This representation of known/unknown requirements is not
only applied to the expected behavior, but also to the context in which this is valid.
Known or unknown requirement refers to whether the expected behavior in the con-
textual requirement is known or unknown. Similarly, unknown context describes the

situation where the influence of context on the validity of the system behavior is not

34

Influence of Context

Unknown

1O,

Contextual Only Requirement
Requirement Known

at] | [o2] I
@

Only Context

Known <__@

Figure 4.2: Four quadrants representing the combinations of known/unknown influ-
ence of context, and known/unknown system behavior (requirement)

Requirement

c
2
o
=
X
[
o)

known. Figure 4.2 illustrates the concept of known or unknown requirements and
known or unknown context through four quadrants (Q1 - Q4). In the following we

give more details on each quadrant:

Q1 - Known requirement and known context: Contextual requirement - The
expected behavior as well as the influence of context on the functionality is
known and defined. The behavior is only valid in the context that has been
identified.

Q2 - Known requirement and unknown context: Only the expected behavior
is known. This quadrant represents traditional requirements, for which the

influence of context on the execution of the system behavior is not known.

Q3 - Unknown requirement and known context: Only the context in which a
system behavior might be needed is known. The requirement has to be deter-

mined so that the system can satisfy end-user needs in this context.

Q4 - Unknown requirement and unknown context: We neither know the re-

quired system behavior nor the context in which this behavior is needed.

The four quadrants represent our knowledge of contextual requirements. In Q4 we

do not have any knowledge. In Q2 the requirement is known, whereas in Q3 only the

35

context is known. Both quadrants represent partial knowledge of contextual require-
ments. Q1 is representative of the complete knowledge of contextual requirements.
This concept of partial to complete knowledge of contextual requirements allows us

to discuss the given information, as well as the information that is missing.

4.3 The Capture and Evolution of Contextual Re-

quirements at Design vs. Runtime

Capturing contextual requirements (represented in quadrant Q1 in Figure 4.2) re-
quires that context and system behavior are known. To identify contextual require-
ments (reach quadrant Q1) there are certain steps that have to be followed in order
to identify the system behavior and the context in which this behavior is valid. We
outline two possibilities on the capture of contextual requirements, starting from any-
thing known and reaching the complete knowledge of contextual requirements (i.e.,

system behavior and context known):

Path 1: Capture the context (i.e., transition (3) in Figure 4.2, from quadrant Q4
to Q3) and then the requirement which should be valid in this context (i.e.,
transition (2), from Q3 to Q1).

Path 2: Capture the requirement (transition (4), from Q4 to Q2) and then the con-
text in which this requirement is valid (transition (1), from Q2 to Q1).

In the following we outline the four possible transitions presented in Figure 4.2

that an analyst could use to capture contextual requirements.

Transition (1) - From known requirement (influence of context unknown)
to a contextual requirement (known requirement and known context): The
task of this transition is to find the context in which a requirement is valid. Not all
requirements will necessarily resolve in contextual requirements. For contextual re-

quirements the context of validity has to be identified.

Transition (2) - From known context (and unknown requirement) to a
contextual requirement (known context and known requirement): In this

case the context in which a requirement is needed is known. In this transition the

36

exact requirement has to be identified.

Transition (3) - From anything known to known context (and unknown
requirement): This is the precondition of transition (2) in which the context for

the validity of a system behavior is identified.

Transition (4) - From anything known to known requirement (and un-
known context): This transition is representative of traditional requirements elic-
itation activities in which a requirement is captured. Additionally, it represents the
precondition for transition (1).

All four transitions can take place at design or runtime. In our framework we
distinguish between elicitation of contextual requirements (at design time) and dis-
covery of contextual requirements (at runtime). We consider a contextual requirement
as discovered even if only parts of the contextual requirement are captured at runtime
and the rest at design time.

The evolution of contextual requirements takes place at runtime. There are two
options for the evolution of contextual requirements at runtime: evolution of the
knowledge of the system behavior or the context. Therefore, the evolution of con-
textual requirements has to support transition (2) (i.e., evolution concerning system
behavior) or transition (1) (i.e., evolution concerning the context of validity). In
the following, elicitation, discovery, and evolution of contextual requirements are de-
fined and the concepts, introduced in this chapter, are discussed for each of the three

activities.

4.4 Elicitation of Contextual Requirements

Definition 4.4.1. Elicitation of contextual requirements

The capture of contextual requirements at design time.

During the elicitation of contextual requirements all four transitions introduced in
the previous section have to take place at design time (as depicted in Figure 4.3).
Again, transition (3) and (2), as well as transition (4) and (1) are connected, as they

represent the two paths of eliciting contextual requirements.

37

Influence of Context

Unknown

Contextual Only Requirement
T Requirement Known T

@

Only Context design

Known &_@

Figure 4.3: Design time: elicitation of contextual requirements

design
time

design
time

Requirement

c
2
@)
c

=
c

D

Transition (4) - This is the well known requirements elicitation: As thisac-
tivity has been extensively studied for the last couple of decades it deserves no

further attention in this dissertation.

Transition (1) - Elicit context in which requirements from (4) are valid: The
context for which the requirement (system behavior) from transition (4) is valid
has to be elicited. This implies a complete understanding of the circumstances
in which the system behavior is needed at runtime. This dissertation explores
(in research question 2) the use of existing requirements elicitation techniques,
e.g. interviews, prototyping, and focus groups for the elicitation of contextual
requirements from an existing requirements document, which basically repre-

sents this transition.

Transition (3) - Elicit context (for yet unknown system behavior): Starting
with a context description in which a specific, yet unknown, system behavior
should be valid is challenging at design time. The system is not implemented
yet and therefore the operational context and user interaction with the system
cannot be observed. Approaches for contextual design are a good starting point
for the elicitation of the context in which some, yet undefined, system behav-

ior is needed [20]. Additionally, there exist tools that can be used in the real

38

environment at design time to collect context situation that would have been
otherwise undiscovered [119]. Both sources are just a starting point as they
present approaches to understanding the context, but not explicitly present a
way on how to elicit and document the context in which contextual requirements

are valid.

Transition (2) - Elicit system behavior for context from (3): For the context
elicited in transition (3) we now have to determine the system behavior. Mostly,
approaches combine both tasks of elicitation of context as well as system be-

havior, for example the approaches described in transition (3) (i.e.,[20, 119]).

4.5 Discovery of Contextual Requirements

Definition 4.5.1. Discovery of contextual requirements
The capture of contextual requirements or complementing partial knowledge of

contextual requirements at runtime (when the system is operating).

Figure 4.4 illustrates the concept of discovery of contextual requirements with the
view on the transitions that have to take place at design and/or runtime. The figure
represents four transitions, from which two have to take place at runtime to call it
discovery of contextual requirements. We purposely integrate the partial knowledge
from design time in the activity of contextual requirements discovery. For exam-
ple, a requirement is captured at design time and context of validity at runtime.
Consequently, only transition (1) and transition (2) have to take place at runtime.
Transition (3) and transition (4) take place at design time or runtime.

We give more details on each of the four transitions, with a focus on transition
(1) and transition (2) as the activities that have to take place at runtime. Figure 4.5

summarizes steps that have to take place in transition (1) and (2).

Transition (1): In the process of discovering contextual requirements we start with
a particular requirement (system behavior) that is either elicited at design time
or runtime in transition (4), but for which the influence of context is not known

at design time. If, at runtime, the system identifies that a system behavior

39

Influence of Context

Unknown

runtime
<«

Contextual Only Requirement
Requirement Known

runtime
—+—>

Design time/

runtime

@

Only Context

Known pesign time/

runtime
«—

Figure 4.4: Discovery of contextual requirements

Requirement

c
2
@)
c
=
[=
D

might be required depending on the context, then this dissertation proposes to
use the following steps for the transition to a contextual requirement (transition
(1) in Figure 4.2 and Figure 4.5):

Transition (1) T Transition (2)
v

(Starting with a particular] (Starting with a particular context |

requirement I

h @tep (2)-1. Understand end-)

(Step (1)-1. Identify indications user needs in this particular

for requirements with influence context by identifying patterns in

lof context (user behavior of the system)
I}

@tep (1)-2. Identify conditions @tep (2)-2. Define requirement A

for this specific context for that the system needs to execute

example by identifying patterns in the particular context

\in contextual data _)

T 1]

Step (1)-3./(2)-3. Link requiremen
(system behavior) and context to
contextual requirement

Figure 4.5: Details on transition (1) and transition (2) in the process of discovery
of contextual requirements. Transition (1) starts from a known requirement and
transition (2) from a known context.

40

Step (1)-1. Identify indicators for requirements (system behavior) that might
only be valid in a specific context (e.g., by observing end-user needs and

analyze in which context a particular system behavior is needed.)

Step (1)-2. Identify conditions for this specific context (if possible identify the

relevant context-attributes and their values).

Step (1)-3. Link the requirements to the identified context in which they are

valid to create contextual requirements.

Consider the parking lot example above: At design time the system behavior
b1, representing the requirement of directing cars to second floor, was elicited.
At runtime, while using the system, we observed that users chose the ground
floor if there were parking spaces not adjacent to pillars on that floor. This
is a particular context in which the user needs the system to direct him to
the ground floor, even if there are free parking spaces on the second floor as
described by crq (the only contextual requirement for the guidance system so
far). This end-user behavior was an indicator that the requirement of directing
cars to the ground floor was needed in a specific context (step (1)-1.), namely
in the context ¢y of "free parking lots not adjacent to pillars" (step (1)-2.).
The other context in which users chose the ground floor was when no parking
lots were available on the second floor. The new contextual requirement of if
there are free parking lots not adjacent to pillars on the ground floor or no free
parking lots on the second floor, direct car to the ground floor is discovered by

merging the system behavior with the context in which this behavior is needed
(step (1)-3.).

Following this approach of distinguishing the context from the requirement,
the system is able to "learn" the context in which a particular requirement
needs to be executed over time even if the influence of context is not known at
design time. The system learns the important context in which b; is needed,
for example by observing the users in their interaction with the system and
identifying situations in which the user is behaving differently than expected
[24].

The integration of techniques to support the transition from requirements to

contextual requirements at runtime is a necessary step in the discovery of con-

41

textual requirements. Existing requirements elicitation techniques should be
complemented by methods that automatically identify requirements and ana-
lyze their context at runtime, especially for systems where the context is not

even observable at design time.

Transition (2): Starting with a particular known context in which a requirement is
needed (i.e., the system identifies in transition (3) a particular context in which
the end-user needs require a certain system behavior). In transition (2) the

system behavior for this particular context has to be identified.

This dissertation proposes the following steps for transition (2) to transfer our
knowledge from partial to complete knowledge of a contextual requirement (Fig-
ure 4.5):

Step (2)-1. Understand end-user needs in the particular context, for example

by identifying patterns in user behavior.

Step (2)-2. Define the requirement that the system needs to execute in the

particular context.

Step (2)-3. Link the identified requirement to the particular context in which

the requirement is valid to define a contextual requirement.

In the parking lot example above we could identify that every time a free parking
space not adjacent to a pillar was available on the ground floor, end-users would
drive their car there instead of to the second floor (as proposed by the system,

because at the same time there were also free parking lots on the second floor).

The system might observe end-users in their behavior [24], collect usage data,
and identify patterns in how the system is used in the particular context (step
(2)-1.), thus identifying a new system behavior (by, step (2)-2.) and then link

it with the context (step (2)-3.) to define the contextual requirement.

Transition (3): If the context of validity is not already captured at design time,
at runtime the system might observe indications for the appearance of certain
patterns in the context. After identifying a particular context that seems to
have an influence on system behavior (Figure 4.2, transition (3)) in the next
step, the system behavior has to be discovered (followed up with the case of

unknown requirement/known context, transition (2) in Figure 4.5).

42

Transition (4): At runtime, the system might also discover that in certain situations
(in a certain context) the end-users are using the system differently or do not
use the system at all. Their behavior might give indications for a particular
new requirement that has not been considered so far (Figure 4.2, transition
(4)). Techniques that automate the discovery of requirements support this
transition. For example, techniques that use machine learning techniques to
(automatically) discover new requirements include mining online data [104] or
sentiment analysis of app reviews [64]. By identifying the exact requirement,
the system can then follow up with the case of known requirement/unknown

context (Transition (1) in Figure 4.5).

4.6 Evolution of Contextual Requirements

During its lifetime, an adaptive system will face uncertainty in the operational envi-
ronment or requirements. In such cases, the system needs to evolve the knowledge
around existing contextual requirements at runtime to keep satisfying end-user needs.
Figure 4.6 depicts the evolution of contextual requirements. As the evolution is based
on existing contextual requirements, we start with the evolution in quadrant Q1 (i.e.,

the context and requirement are known, but have to evolve).

Definition 4.6.1. Evolution of contextual requirements
Evolution of the knowledge of the context or the system behavior of existing

contextual requirements at runtime.

Transition (1) - Evolution of the context: If the context of validity is outdated
or affected by runtime uncertainty, we have to determine an up-to-date context
in which the contextual requirement is valid. Transition (1) is modeled such
that it starts with an existing contextual requirement (Q1), migrates to Q2
(i.e., requirement known and context unknown), and finally moves back to a

contextual requirement by determining the up-to-date context of validity.

Later in this dissertation, we investigate support for the evolution of the context
in which contextual requirements are valid. We present an approach in which we
use data mining and feedback loops for the purpose of evolution of contextual

requirements.

43

Transition (2) - Evolution of the system behavior: Transition (2) follows a sim-
ilar pattern as transition (1), in this case concentrating on the system behavior
instead of the context. If the user needs evolve, we move from a contextual
requirement (i.e., context and requirement known) to only context known. De-
termining the up-to-date system functionality allows to move back to the com-
plete knowledge of the contextual requirement (i.e., context and requirement

known).

Influence of Context

Unknown

runtime Q2

Contextual Only ReQnirement
Requirement Knowyn

Requirement

c
2
[e]
c

X
[=

-

Q3 Q4

runtime

Figure 4.6: Evolution of contextual requirements

One example of the evolution of contextual requirements is shown in Section 4.1.2
for contextual requirement 1 (crq). For the system behavior of directing cars to the
second floor, the knowledge of the context evolved from ¢y ; to ¢; 5 in which cry is valid
(transition (1)). At the beginning, the system directed cars to the second floor when
there were free parking spaces. After having identified contextual requirement crs,
the original contextual requirement cr; had to evolve as users preferred the ground
floor in case there were free parking spaces not adjacent to pillars. Only if this was
not the case, they preferred the second floor if there were free parking spaces (here
again the favorite choice was parking spaces not adjacent to pillars). Therefore, the

context conditions in which cr; is needed evolved from c¢;; of "free parking spaces

44

on the second floor", to ¢;5 of "free parking spaces on the second floor and no free

parking spaces not adjacent to pillars on the ground floor".

4.7 Chapter Summary

In this chapter we presented a framework for the capture and evolution of contextual
requirements. Figure 7.1 summarizes the concepts of the framework. The frame-
work presented three elements that play a key role in the capture and evolution of
contextual requirements. It differentiated system functionality from context in con-
textual requirements (outlined in the black/white boxes in Figure 7.1). By this, it
enabled us to consider the two parts of contextual requirements separately. Further,
the framework differentiated between design time and runtime activities and therefore
between elicitation (at design time) and discovery (at runtime) in respect to capturing
contextual requirements. Finally, the framework distinguished between partial and
complete knowledge of contextual requirements and allowed us for example to start
with existing knowledge about the context and enrich it with the system behavior to
have complete knowledge about a contextual requirement. This view enables a more
flexible approach to the capture and evolution of contextual requirements, especially
when more information about end-user needs and an (unpredictable) environment is
available at runtime.

In the remaining sections of this dissertation we present our investigations into
techniques to support the capture and evolution of contextual requirements. As the
latter task takes place at runtime, we chose to investigate the capture of contextual
requirements at design time (i.e., investigate the elicitation of contextual require-
ments) to cover different aspects of the framework. In our investigations we focus on
applying the concept of partial to complete knowledge of contextual requirements.
In research question 2 (Chapter 5) we investigate the use of existing requirements
elicitation techniques for the elicitation of contextual requirements. We investigate
path 2, starting with the elicitation of requirements represented through transition
(4). For requirements that are contextual, we investigate techniques that support the
elicitation of the context in which contextual requirements are valid (i.e., transition
(1)). In research question 3 (Chapter 6) we investigate techniques to support the

evolution of contextual requirements. As the new aspect of this dissertation are re-

45

Capture Evolution
Design | Elicitation: g K"°W"C°"“‘ 2| - not needed
4 Contextua
Time Partial to complete knowledge § Reqpiremel | cosign tm
Path 1: (3) + (2) = contextual req. c . :
Path 2: (4) + (1) = contextual req. E Context _gesops
Dlscover o Partial knOWIedge Known Context Unknown
Y Path 1: (3) or path 2: (4)H e
a % Rez::re:::nt Requirement . Known Context Unknown
Runtime e lwime | wsn | || Evolution: g -
c ! J4 Contexlia >
§ Context,__| n"mme H Requirefent %mem
£ designitime’ < HIVERNS
> runtimp @
Partial to complete knowledge (reuse knowledge from E E\context Ras
design time) H S
Path 1: (3 from design time) + (2) = contextual req. .
. Ao _ Partial to complete knowledge
Path 2: (4 from design time) + (1) = contextual req. Path 1: contextual req. + (2) = evolved
Partial to complete knowledge (only runtime) context in contextual req.
Path 1: (3) + (2) = contextual req. Path 2: contextual req. + (1) = evolved
Path 2: (4) + (1) = contextual req. requirement in contextual req.
Figure 4.7: Summary of the framework on the capture and evolution of contextual
requirements.

quirements that are only valid in a specific context, we focus on the evolution of the

context (operationalization) represented through transition (1), viewed in relation to

the system behavior.

46

Chapter 5

Elicitation of Contextual

Requirements at Design Time

ence of Conte
O O
desig
Jime | RQ 2
= Contextual Only Requireme
c Requirement Known o
Do 2
d 3 E 3 E
. T+ T+
S Only Context design
Known &_@

Figure 5.1: Investigating the support of the transition from known requirement and
unknown context to contextual requirements, where context and functional require-
ment are known in the elicitation of contextual requirements.

In the previous chapter we defined the elicitation of contextual requirements as
an activity that takes place at design time. To elicit contextual requirements we have
to capture the system behavior as well as the context in which this is valid. The
elicitation of requirements (transition (4) in Figure 5.1) has been intensely studied
in the past. Established requirements elicitation approaches focus on eliciting the

requirement, while understanding the context. In the process of eliciting contextual

47

requirements, the challenge is mainly to detect the need for contextual requirements
and elicit the context in which such contextual requirements are valid (transition (1)).

Before we develop new techniques to investigate the gap of eliciting requirements
and their context of validity, we investigate whether existing requirements elicitation
techniques can support the elicitation of contextual requirements (i.e., the elicitation
system behavior, followed by the elicitation of context).

This chapter investigates the following research question!:

RQ 2: How can existing requirements elicitation techniques help elicit contextual

requirements at design time?

In a case study we applied several existing requirements elicitation techniques
and explored their use for the elicitation of contextual requirements. We had the
opportunity to with the Human Resources Department at the University of Victoria
in supporting them in their requirements engineering process for its job applicant
tracking system. The system enables online job application submissions, managing
the applications, and supporting recruiters for staff and faculty positions in the hiring
process to find the right applicant. Furthermore, as soon as someone is recruited,
the system supports the transition from an applicant to an employer for example
by transferring information related to financing to the right place. This system had
thousands of users and their requirements had to be considered for the implementation
of the system.

We took the role of the requirements analyst in the software project at the Univer-
sity of Victoria. We applied several existing requirements elicitation techniques (e.g.,
interviews, prototyping, scenarios, goal-based approaches, and focus groups) to this
real world socio-technical system. More precisely, we started with existing functional
requirements and investigated how existing requirements elicitation techniques help
eliciting the context in which a functional requirement is valid. For the elicitation of
functional requirements the literature provides enough knowledge about the fact that
and how existing requirements elicitation techniques support their elicitation. The
important fact here is to elicit the context in which such requirements are valid.

We considered exploring ontology-based approaches (e.g., [51, 101, 28]) as well as

LA publication based on this chapter appears in Proceedings of the International Workshop on
Empirical Requirements Engineering [78]

48

creativity techniques for the elicitation of contextual requirements. However, none

proved applicable:

e Using context-ontologies proved to be difficult, as it required a lot of time and
did not yield good information. Thus, the acceptance among users was low.
Furthermore, we found the specific context provided by the ontologies restric-

tive. We concluded that it is not possible to elicit unknown unknowns [127].

e As we started from existing requirements, the acceptance of creativity tech-

niques was low among our users.

We were able to document a number of contextual requirements by using existing
requirements elicitation techniques. The use of particular requirements elicitation

techniques in a particular order seemed to be important:

e First we identified requirements through interviews and focus groups. Interviews

helped in understanding the rationale behind requirements.

e Prototyping was helpful to gain a detailed understanding of these requirements

in context.

e Focus groups were helpful in identifying conflicts between different end-users
when discussing requirements together in detail. These discussions helped iden-

tify the need for contextual requirements.

e Finally we identified, through interviews with the respective end-users, the dif-
ferent context related to requirements so that we could document the contextual

requirements.

5.1 Example and Related Work

Before detailing the case study and its findings we give an example of contextual re-
quirements elicitation from the case study and present background information that is
important to understand our investigation in the case study. The example should give
an understanding what a contextual requirements looks like for an applicant tracking
system by differentiating between 1) the elicitation of a functional requirement and 2)
the context in which this functionality is valid for the purpose of 3) the elicitation of

a contextual requirement. The research question in this chapter investigates mainly

49

transition (2), the transition from a known requirement and unknown context to a

known requirement and known context as shown in Figure 5.1.
5.1.1 Example for Contextual Requirements Elicitation

An example of elicitation of contextual requirements from our case of the applicant

tracking system:

1) Requirement elicited: Consider the requirement "the system should be able to
screen the applicants in case the recruiters have too many applications for one
position” and its rationale that screening helps with identifying qualified appli-

cants.

2) Relevant context identified: A relevant context-attribute in this case is the number
of applicants that applied to an open job posting and which can be small (e.g. 15)
or high (e.g. 100). Another context is the department in which the job is posted,

the qualification of applicants etc.

3) Resulting contextual requirement: If the number of applicants is high, the screening
functionality should propose the 15 most qualified candidates. If the number
of applicants is small, the functionality depends on the department. In some
departments recruiters need to be able to get more information from the few
candidates that applied. In this case chat functionality could enable recruiters to
connect to the applicants and receive more information or to clarify information

already submitted.

5.1.2 Related Work

In the preparation of our case study we identified the importance of different user
viewpoints. Therefore, we assumed that different user viewpoints, as described in
viewpoints-based approaches [140], have an impact on the requirements for the sys-
tem under investigation. A wviewpoint is defined as "a self-consistent description of an
area of knowledge with an identifiable originator" [49, 50]. Because the system under
investigation in our case study had thousands of end-users with different backgrounds

and working in different domains (e.g., janitorial, medical, faculty) their viewpoints

50

played an important role in the elicitation of the context in which contextual require-
ments were valid.

Zowghi and Coulin give an overview of requirements elicitation techniques in gen-
eral and discuss which requirements elicitation techniques complement each other
and which can be used as alternatives [140|. Based on this information we chose
the requirements elicitation techniques that seemed promising to elicit and analyze
information about viewpoints: interviews, groupwork, prototyping, and goal-based
analysis.

In the elicitation of contextual requirements the identification of the exact con-
text related to contextual requirements plays a major role. Van der Zanden argues
for prototypes of the actual system as the requirements elicitation technique that
helps users understand the system and their needs in order to support requirements
engineering for a context-aware system [130]. His work is based on a literature review
and is missing empirical investigation. In our case study we use mock-ups from the
legacy system and similar systems to set users in context. Using mock-ups gives them
an understanding what the system under investigation could look like.

Related work in the area of requirements engineering for socio-technical systems
(e.g., Mate and Silva [90], Whittle et al. [138], Dalpiaz et al. [41]|, Lapouchnian et al.
[81], and Ali et al. [11]) presents the importance of iterative development in socio-
technical systems. For adaptive socio-technical systems, investigations mostly focus
on requirements analysis. Dalpiaz et al. [41], Lapouchnian et al. [81], and Ali et
al. [11] model and analyze contextual requirements that represent end-user needs in
contextual goal models. An interplay of modeling and analysis as well as research that
investigates the communication around contextual requirements is necessary. Our
case study presents one of few case studies on requirements engineering in practice
and extends their work by investigating the communication about requirements to
enable modelling of contextual requirements. Models are used in our investigation as

a foundation to support requirements communication.

5.2 Case Study on Eliciting Contextual Requirements

at Design Time

This section gives an overview of our case study, presents the system under investi-

gation and the requirements elicitation techniques we used in our exploration for the

ol

elicitation of contextual requirements.

5.2.1 Research Methodology

According to recommendations of Ruba and Cruzes [48] to study requirements elic-
itation processes based on field work and given contextualization, we conducted an
exploratory case study [82, 40] with the office of Human Resources of the Univer-
sity of Victoria, Canada. While we had a practical role (analyst) in their project, our
research goal was also to explore and continually reflect on the use of different require-
ments elicitation techniques (alone or in combination) in the elicitation of contextual
requirements.

A case study of exploratory nature [108| allows us to observe natural behavior of
stakeholders in socio-technical systems and the results of elicitation techniques. Such
end-user behavior and the outcome of different requirements elicitation techniques
cannot be observed from the outside, but needs to be studied in context. Therefore,

a researcher has to stay a longer time in the field and become a part of local culture

82].

Table 5.1: Requirements elicitation activities in the project. The second iteration
describes the case study we report on in this chapter.

Iteration Responsibility of Purpose Techniques used

1 Professional Requirements Interviews, focus groups
req. analyst elicitation

2 My responsibility Contextual - Interviews (3+24) in com-

requirements bination with: scenarios,
elicitation & prototyping, goal-based
prioritization approaches.

- Focus groups (7).

Table 5.1 shows the process of requirements engineering activities in the entire
project. At the start of our investigation, the first iteration of requirements analysis
had already been completed by a professional requirements analyst and integrated
all end-user groups. At this point, the requirements engineering process was con-
sidered to be complete, with the prioritization of requirements missing. Our task
(second iteration of requirements activities in this project) was to prioritize the re-

quirements that were elicited and documented requirements in the first iteration. We

52

had the opportunity to meet with participants that got involved in the first iteration
of requirements engineering activities.

For research purposes we were interested which of the elicited requirements de-
pended on context and how this context interplays with the socio-technical system.
Our task was to combine different existing requirements elicitation techniques for the
elicitation of contextual requirements and related context-attributes that define the
context. Systems integrating contextual requirements have to capture this context at
runtime to decide about necessary adaptation. In the scope of this study we investi-
gated how the dependence of requirements on context and the specific context itself
can be determined based on discussing requirements with end-users.

Hence, our goal in this investigation was to explore existing requirements elicita-
tion techniques with the goal to combine both, elicitation of requirements and related
context that the requirements are valid in simultaneously at design time through
the involvement of end-users. We used existing requirements elicitation techniques
to investigate different user viewpoints: interviews, prototyping, goal-based analysis,
and groupwork [140]. We added scenarios as a technique to be able to talk about
requirements with users and that provided us with the possibility to understand re-
quirements in context of other requirements, which is important in a complex setting.
We explored the usefulness of the chosen requirements elicitation techniques for the
identification of contextual requirements based on the need that we felt in the inter-
view.

Before presenting our insights in the next section, we describe the system under
investigation, users of the system, requirements elicitation techniques and how they

were used in the case study.

5.2.2 System under Investigation: Applicant Tracking System

This study is based on a real project that aims at upgrading the staff and faculty
applicant tracking system with thousands of users and introduces it into a bigger
systems landscape. In the past the existing system was only used for hiring staff
(e.g., library assistants, nurses, janitorial). Additionally to staff member a new group
of end-users, faculty staff members, is introduced in the replacement process. Another
goal for the replacement was to integrate the applicant tracking system in the complex
environment of a socio-technical system — the University of Victoria system landscape

as well as the thousands of users that use (parts of) this landscape — by integrating

93

different systems that are used together. In the past the transition between the
applicant tracking system and other systems was based on the manual work of end-
users (e.g. printing documents and typing them in the other systems) who transferred
the data into related systems. For example, the replacement system should facilitate
to push or pull applicant data to and from a separate administrative system that is
used to manage personal and accounting data for all employees.

For the requirements engineering effort, thousands of end-users of the system were
classified into 6 large groups of end-users whose requirements are considered in the

development of the system. The end-users and their goals are as follows:

e Human resources staff has different roles and goals that range from helping
other end-users in solving their problems with the system to checking that

regulations are adhered to collective agreement rules.

e Finance staff is interested mainly in confirming the availability of budget for
new positions (also known as position control). Payroll/HRIS processes job and

employee information for new hires.
e Recruiters for staff from different departments are looking to fill positions.
e Recruiters for faculty from different departments are looking to fill positions.
e Operational unit staff supports recruiters in the recruitment process.

e Finally, the biggest group consists of applicants that are interested in being

hired and who use the system during the application process.

The case study we present offers highly diversified end-user groups. Some groups
were substantially larger than others. The groups include people with a high level of
responsibility that are quite busy and have little time to participate in the require-
ments engineering process, power-users that are using the system for hiring employees
several times a week, novice users that have only used the system once, and users
with other possible combinations of use in between these ranges.

Only a small sample size of each group could be considered in our study. Each
sample covered 4-6 participants for each of the six core groups during the requirements
elicitation activities. For some of these groups, the participants of the case study were
only a very small sample size, whereas for the smallest group these 4-6 participants

covered almost the entire end-user group.

o4

5.2.3 Requirements Elicitation Techniques

In this section we describe the requirements elicitation techniques and how they were
used in detail.

Interviews: Interviews with end-users constitute the elicitation technique most
commonly used in practice [31]. This was also the preferred technique for our project.
We started with a series of three interviews with end-users from different groups for the
purpose of understanding the domain, identifying sources of requirements, analyzing
the stakeholders, and selecting the requirements elicitation techniques to use [140].
The results of some of these activities were already well prepared and documented by
the professional requirements analyst, minimizing our effort for example in studying
legacy documents.

In the following, we conducted 24 additional interviews for our research purpose
of identifying contextual requirements. We used voice recording for later analysis of
meetings with end-users. We interviewed each end-user for approximately one hour.
We enriched the interviews with task-analysis, scenario walkthroughs, and prototyp-
ing in different combinations. Goal-based approaches were used for requirements
analysis in parallel. In some of the interviews we used all three techniques. In these
interviews we started with discussions about end-users’ goals to be supported by the
system and the tasks they would be performing while using or aiming to use the new
system. Following this, we asked the end-users to describe their scenarios. The last
task was to talk about their (most important) requirements. This question sometimes
helped end-users to think out of the box, and not only to think about their scenarios.
Additionally, by talking about the most important requirements we got a feeling of
what was perceived as important by the end-users.

Scenarios: The requirements documentation that we received from the profes-
sional requirements analyst did not include scenarios. The requirements were only
mapped to high level user goals, e.g., "interviewing" or "applying for a job post-
ing". During many of the interviews, we used scenarios for discovering requirements.
Scenarios allow talking to end-users about their requirements step by step and to
understand the goals that end-users aim to achieve through the completion of tasks.

We asked the end-users for their scenarios to be covered by the replacement system.
If the end-user had difficulties to come up with scenarios, we divided this task in three
subtasks. We asked the end-user to

(i) describe the scenarios for using the existing system,

%)

(i) how existing scenarios can be improved, and
(iii) which of the steps or even which scenarios can be added beyond the scope of the

existing system.

We give a high level example of a scenario with the goal "fill a new position" that
was discussed with one of the end-users. Note that this scenario can be divided into

subgoals/tasks.
1. Looks at the application of each applicant.
2. Review applications.
3. Forward them to the hiring committee.
4. Create a short list (which is done by the hiring committee).
5. Email applicants that are shortlisted.
6. Telephone or email applicants (choice is on personal preference).

7. Schedule interview appointments and document information concerning the ap-

plicant in the system.
8. Put information into the system in the case when someone has been chosen.

After an applicant has been chosen to fill a position, a new entry with the employee
data needs to be created in a separate administrative system. In this system all
employees have an account, containing personal data, accounting data, etc. Both
systems can be integrated in a way that data can be securely pushed and pulled
between this system and the new applicant tracking system. There are some workflows

(e.g., accounting approvals) that may need to bridge the two systems.

Prototyping: We explored the use of the following prototypes as visual representa-
tions to discuss requirements: 1) Screenshots from the existing system, 2) screenshots
from another very successful system that fulfilled the same purpose, and 3) screen-
shots that were proposed by end-users.

Screenshots of the actual system and other systems with an extended set of fea-
tures were used for clarifying requirements. In some interviews end-users talked about

their experience with other systems used for the same purpose. They explained some

o6

of their requirements based on their experience. We asked them to show us the sys-
tem and made screenshots of these systems. We used the screenshots in the following
interviews.

Focus Groups: After discussing the requirements with a few end-users from the
same group (the minimum was three interviews) we set up two hours focus groups.
In total, seven focus groups with 3-7 participants were conducted to discuss the
priorities of requirements. We employed a simple process: If end-users from the same
end-user group did not give the same priority rating to a particular requirement this
requirement was discussed in more detail.

We based our prioritization process on the work of Karlsson et al. and used the
group sorting technique for prioritizing requirements with stakeholders [73]. At the
end of our prioritization process, user requirements fell into three different groups
of requirements: Requirements with an average of high, medium and low priority.
The group with medium priority requirements contained many requirements with
different individual ratings (high, medium and low), which we call here conflicting
requirements. These requirements were analyzed in more detail, to identify the reason
for the contradicting priorities.

Goal-based requirements analysis was used in parallel to document and analyze
end-user goals as well as their tasks to fulfill these goals. We used task analysis in
the beginning of most interviews in order to understand commonalities and compare

the viewpoints of different end-users.

5.3 The Use of Requirements Elicitation Techniques

to Elicit Contextual Requirements

Our main insight from this case study is the need for a combination of different re-
quirements elicitation techniques for the elicitation of contextual requirements. We
describe lessons learned from the application of these techniques as well as a combi-
nation that helped us elicit contextual requirements in our case study.

End-users from the same end-user group did not necessarily agree on
requirements and priorities due to different user viewpoints. We identified
the importance of viewpoints to identify context related to requirements early on in
our investigation. One of the initial interviews was especially important for under-

standing the dynamics in the project. The person we interviewed was responsible

57

for the help desk and knew the problems of the existing system as well as the needs
of the different end-user groups. Through this interview we understood that project
success would depend on the consideration of viewpoints in the prioritization of re-
quirements. This prioritization was most challenging because of the complexity of the
end-user groups. The scenarios for the six groups were partially heterogeneous and
end-users from one group could not see the importance of the other groups, because
of the limited understanding for the viewpoints of others. Therefore we considered
different viewpoints as a source for requirements.

Requirements elicitation techniques should not assume that stakehold-
ers have similar operating contexts. While analyzing the documented require-
ments that resulted from the first iteration we found 33 requirements with an average
rating for high priority, 86 for medium priority, and 48 for low priority. From the 48
with low priority, there were even 22 requirements with low priority for the target
group, from which the requirement originated. We investigated those 22 requirements
out of 167 in more detail. We made an observation that requirements were important
only for some end-users from the target group. They seem to have been documented
when the requirements analyst encountered and understood them for the first time.
In our case when we tried to understand those requirements in the interviews with
the stakeholders the requirement was not investigated in detail, because the analyst,
misled by her previous knowledge, failed to recognize the subtle differences that were
caused by different end-user context. Prioritization would not help in this case as
different end-user viewpoints are not considered for requirements. This is one of the
main causes for the problems we encountered with prioritization. Asking users cannot
solve this problem, because usually end-users do not have other end-users but only
their own viewpoint. They think they are understood and cannot know that a similar
requirement with potentially contradicting details already exists.

Designing a system as an adaptive system through the consideration of
contextual requirements helped resolving conflicting requirements.

In our case study the indication that adaptation to context is necessary was given
by the fact that no agreement could be achieved with respect to prioritization of some
of the requirements (especially requirements with an average rating of medium that
contained high, medium as well as low individual ratings) among end-users without
considering the specific context for requirements.

One indicator for the need of systems adaptation to context is the fact that the

execution of a requirement does not only depend on the input from the end-user,

o8

the system provides the functionality to, but also from other sources (e.g., for the
contextual requirement of screening the applicants the system has to consider the
context-attributes number of applicants, type of position, qualification of applicants).
After identifying these context-attributes, the system should decide which function-
ality it offers to each end-user based on the exact value for the attribute at runtime.
At design time this context-awareness and therefore consideration of context of the
end-users for adaptation needs to be investigated. One opportunity for the identi-
fication is talking about different context with end-users and creating a shared un-
derstanding. Conflicts are great sources for contextual requirements and important
context-attributes.

The original requirements elicitation based on established techniques was not com-
plete and satisfying from the perspective of the project manager. The first indicator
for this was the lack of prioritization of the requirements. Closer investigation on this

issue revealed several problems:

e Different end-user groups did not agree on priorities. For this reason, the pri-

orities of each group were weighted based on the importance of the group.

e Contradicting priorities of requirements even within groups: It was not possible
to achieve an agreement on the priorities of requirements, not even within end-
user groups, i.e. two end-users with the same role would often disagree on

priorities.

e Contradicting requirements: End-users would agree on an abstract requirement,
but would offer contradicting specific requirements when asked for details. Of-

ten, these detailed requirements would exclude each other.

Having finer grained end-user groups would not have been a solution, because the
prioritization was planned on the given level of abstraction, i.e. based on end-user
roles. Even with finer grained groups, an agreement about the prioritization and
contextual requirements would have needed to be achieved. Finer grained groups
only shift the problem up and require focus groups that consist of representatives
from different end-user groups which would further increase the effort. Also, it was
not possible to create finer grained groups in our case, because any two end-users
would agree with one requirement and disagree with another requirement.

Conflicts among end-users helped resolve different viewpoints and iden-

tify important contextual requirements.

99

We combined different elicitation techniques to elicit end-user viewpoints. The
need for a combination became apparent during a particular conflict in a focus group
meeting. After one third of the scheduled time, one end-user left the room, appar-
ently angry about the situation ("It was not a pleasure."). We conducted a follow-up
interview in which we used prototyping and were able to understand the end-user
viewpoint as well as identify context-attributes for the discussed contextual require-
ment. This interview revealed that the discussion during the focus group meeting
was not aligned to the views of this end-user, even though all participants belonged
to the same end-user group, had the same role, and no differences were visible. This
specific end-user could not find herself in the discussion results. In order to achieve
a consistent requirements description, it is important to be aware that conflicts can
lead to great results and resolve them in a less frustrating way by facilitating them.
Otherwise, the support of important end-users might be lost during elicitation and
development, rendering the resulting system useless.

During our study, the following steps proved useful in our requirements elicitation

approach:
1. Confront each end-user with a specific requirement in context.

2. If two end-users disagree, analyze their viewpoint and the context they are

presuming.

3. Add as many context-attributes as needed to fulfill their needs through contex-

tual requirements.

From the requirements perspective, this algorithm leads to important context-
attributes for systems adaptation, i.e. the ones that determine when the system
needs to adapt in order to fulfill the end-users’ requirements.

Prototypes were useful in understanding the differences of end-users
in context. When the first attempt to prioritize the requirements failed, our as-
sumption was that the initial requirements elicitation was not sufficiently detailed.
Therefore, we applied prototyping to get more detailed requirements from end-users
[46]. For adaptive systems the activity of identifying and capturing the context for the
development of the software system plays an important role. Therefore prototyping
might have a really important role in identifying contextual requirements. Therefore
our hypothesis was that prototyping would unveil enough context to identify impor-

tant contextual requirements and thus overcome the limitations of only using one

60

requirements elicitation technique. However, prototyping alone was not sufficient to
overcome these limitations and to deliver consistent prioritization and requirements
without contradictions. Our endeavor revealed that the initial requirements were
complete and actually in a good shape. Prototyping lead to the same requirements,
and simply added more details.

Prioritization was still not possible because of contradicting requirements, and no
agreement could be achieved between different end-user groups, or even among the
end-users of one group. The major problem was the wide range of end-users and
their different needs (same end-user group, same requirement). It seemed that the
documented requirements were only documented from the viewpoint of one end-user,
probably the first who had communicated this requirement. While the other end-
users from the same group seemed to have at first sight the same requirement, but
when discussed in detail, they were, in fact, slightly different, demonstrating the need
for different system functionality.

In our project, prototyping helped to identify these differences. By using the same
prototypes when talking to end-users about the same requirement, an understanding
of the differences in the needed functionality could be reached in most of the cases.
In a few cases, the personal preferences were what made the difference.

No single elicitation technique was sufficient to capture contextual re-
quirements on its own. To summarize we propose the following seven-step ap-
proach for a similar process that someone wants to use (see Table 5.2 for details).
In this project none of the existing elicitation techniques was successful in eliciting
contextual requirements on its own. Instead, our approach that consisted of a combi-
nation of techniques was successful because it allowed end-users agree on prioritization
and resolve inconsistencies in viewpoints. Below we list the techniques and how they

were used in the approach:

1. Identify all requirements from the (sample of) users (which in our case study

was conducted by a professional requirements analyst).

2. Understand the rationale behind these requirements, to prepare for their dis-

cussion with other end-users.

3. Use appropriate prototypes to better understand the needs of end-users in con-

text.

4. Let end-users prioritize the elicited requirements.

61

Table 5.2: Following these steps we could identify contextual requirements at design

time.
Technique Usefulness in identifying Explanation
contextual requirements
Step 1 Interview, Identify requirements Having a complete list of require-
Focus ments is necessary for a complete
Groups understanding.

Step 2 Interviews Rationale behind priorities Understanding why something is
important helps to prepare nego-
tiation.

Step 3 Prototyping Detailed understanding Establish reference for negotiation:
Details for requirements are impor-
tant to be able to compare these re-
quirements to similar requirements
from other end-users.

Step 4 Focus Prioritization of require-

Groups ments
Step 5 Focus Identify conflicting require- These conflicts between end-user
Groups ments requirements are sources of impor-
tant context-attributes.
Step 6 Understand priorities and How do those detailed requirements
establish common ground differ? Derive context-attributes
on detailed requirements and related contextual requirements.
Step 7 Interviews Understand priorities and Probably information is missing for

why they differ.
Go back to step 2.

a complete understanding.

62

5. Identify conflicting requirements or prioritization of requirements.

6. Understand the rationales behind conflicting requirements. Are there cases
where the end-users can agree on prioritization if documenting the requirement

as contextual requirement?

7. If steps 1 to 6 do not lead to a successful understanding of the requirements
then conduct further interviews with end-users who had contradicting priorities

for the same requirement.

This approach was successful in our case study because it led to contextual re-
quirements which allowed end-users to agree on prioritization. The discussion about
different viewpoints helped end-users to understand the specific context of other end-
users. This allowed the disagreeing end-users to accept that in a specific context, a
given requirement is important. Discussing the complete picture during focus groups
meetings, especially the end-user needs to differentiate a system behavior in differ-
ent operational context of end-users from the same user group helped to establish a

complete picture of the adaptation needs concerning this requirement.

5.4 Threats to Validity

5.4.1 Internal Validity

This exploratory case study is based on authentic data analyzed and interpreted by
the author of this dissertation. The main concern here is that only one researcher was
responsible for requirements elicitation. Therefore, there might be some limitations
of our ability to objectively discuss the results. Firstly, it is hard to objectively
judge if there were faults in the requirements elicitation techniques as applied by the
first author. Secondly, the goal of this exploratory study was to investigate the use
of requirements elicitation techniques for the elicitation of contextual requirements.
With this goal in mind, the first author might have introduced a bias into the results.
However, we are not reporting quantitative results, but share qualitative results in
our example from this specific perspective.

A third threat to internal validity is caused by the fact that at the start of this
case study a requirements specification for the project already existed. We were thus
asked to help with the prioritization of these requirements and in return received the

opportunity to explore the usefulness of elicitation techniques. However, the existence

63

of requirements caused us to chose a specific path with respect to the framework of
this dissertation, i.e. the path where requirements were captured first, followed by

the capture of the context.

5.4.2 Construct Validity

In this exploratory case study, the selection of elicitation techniques and the classi-
fication of observations might be biased to some extent. For example, we discarded
use of context ontologies and creativity techniques because of low acceptance and
effectiveness with our users. Thus, the case presents some additional risks which we
could not avoid in the activity of reflecting on the usefulness of elicitation techniques
for elicitation of contextual requirements. However, we considered the opportunity
to explore elicitation techniques in a real project to outweigh this threat to construct

validity.

5.4.3 Conclusion Validity

As a single case study, our insights might have a low generalizability to other projects.
We presented our approach as detailed as possible to support replication of our study.
While it is possible or even likely that other researchers would identify a slightly
different set of elicitation techniques or order to be useful for elicitation of contextual
requirements, we are confident that our main results would be confirmed, i.e. the
applicability of traditional elicitation techniques and the fact that conflict points

towards relevant contextual requirements.

5.4.4 External Validity

As a qualitative exploratory case study, our ability to draw conclusions from our find-
ings is limited to the scope of our study. In the applicant tracking case, the presented
list of elicitation techniques was found useful to uncover contextual requirements,
when executed exactly in the presented order.

Our insights are at least applicable to other applicant tracking systems for uni-
versities. Many issues we encountered seem to result from a wide range of end-users
covered in this study. This indicates that a significant amount of our experiences

are more generally applicable to the development of today’s complex systems that

64

often face the similar challenge of having to cover a wide range of end-users in the
requirements engineering process.

While practitioners in comparable projects might profit from our experience, the
existence of a good solution for our specific case is sufficient: we found indeed that
existing elicitation techniques can be suitable for uncovering contextual requirements

at design time.

5.5 Chapter Summary and Future Work on Elicita-

tion of Contextual Requirements

In this chapter we shared our insights from an exploratory case study on contex-
tual requirements elicitation. Specifically, we investigated the usefulness of existing
requirements elicitation techniques in identifying contextual requirements at design
time. Our main insight from this study was that no one elicitation technique is
sufficient to elicit contextual requirements.

We were able to elicit contextual requirement by applying existing requirements
elicitation techniques (interviews, focus groups, and prototyping) in a particular order.

In summary, our insights from the case study included the following:

e Requirements elicitation techniques have to consider that end-users have dif-
ferent operation context. These different operation contexts can cause require-
ments conflicts among stakeholders, e.g. two stakeholders might agree on an
abstract requirement but disagree on its specific refinements in a way that they

cannot be fulfilled at the same time.

e Conflicts among stakeholders indicate the need for contextual requirements:
Requirements of several stakeholders are not alternatives and are not consistent
with each other - they rather apply under certain conditions that are determined

by the context.

e Viewpoints are valuable to identify such context related to requirements and to

analyze contextual requirements.

e Prototypes are particularly helpful to understand the context of conflicting re-

quirements in detail.

Besides this investigation our plans for future work are the following:

65

Extend Investigation on Extisting Requirements Elicitation Techniques for

Elicitation of Contextual Requirements

We presented one case study on the usefulness of existing requirements elicitation
techniques for the elicitation of contextual requirements, focusing on the elicitation of
the context in which contextual requirements were valid. Further research is needed
to extend our insights into a more general approach that is applicable to different
systems and domains for the elicitation of contextual requirements.

It would be important to explore other existing requirements elicitation techniques
for the usefulness of eliciting contextual requirements. In our case study we were only
able to explore an excerpt of existing requirements elicitation techniques. We believe
that video-based requirements elicitation [25] could be quite useful in identifying
differences in context when talking about a specific requirement. The reason for this
believe is the fact that prototyping was very helpful in our case study in defining the
context in which contextual requirements were valid. Prototyping enabled users to
imagine what the system could look like. Videos could reinforce this fact through
visualizations of different scenarios (which can consist of prototypes) [25] and the
interaction between the user and the system.

It would be interesting to use ewisting elicitation techniques for existing adaptive
systems to investigate how the presented work can be applied and extended to cases
when an existing running adaptive system needs manual identification of context
related to requirements. Conflicts are often based on different viewpoints and bringing
them to surface is useful for adaptive systems in general (e.g., it has been shown that
viewpoints are helpful to identify errors early in the development process in contextual

goal models [9]).

Support Elicitation on Different Levels of Context

Beyond the use of existing requirements elicitation techniques, we envision the level
of context to be an important topic in the elicitation (and discovery) of contextual
requirements. In this dissertation, we differentiated between the higher level context
(which we called context description) and the lower-level context (which we called
measurable context). Elicitation of context-attributes (and related sensors) already
at design time is challenging, but would be very valuable for adaptive systems. The
more knowledge we gain at design time, the better we can make decisions on how to

design adaptive systems.

66

Capturing context is partly a very subjective task. The perceived user context (as
elicited in research question 2) is mostly on a higher level. The high level context
description has to be made measurable through sensors. In most cases users will
not be able to map such perceived context to sensors or even context-attributes.
The task of mapping high level context to such specific, lower level context that can
be measured by sensors is a difficult task and can be easily manipulated through
subjectivity. This leads to another important research question that has so far not
been addressed: How can we objectively derive the operationalization of context by

considering the perceived context of different end-users?

67

Chapter 6

Supporting Evolution of Contextual

Requirements at Runtime

Predicting, at design time, how a contextual requirement evolves is challenging as we
do not know the changes in the context and end-user needs that will arise at run-
time, especially in uncertain operating environments. Therefore, the ability to embed
support for the evolution of contextual requirements into the requirements model al-
ready at design time is restricted. Instead, we posit that self-adaptive systems need
to support the evolution of existing contextual requirements to learn from the data
that they have available at runtime about user needs and operational environment.

In the framework (cf. Chapter 4) we defined the evolution of existing contextual

Influence of Context

Unknown

runtime

Cgntextual Only Redyirement
Requirement Known

Requirement

Unknown

runtime

Figure 6.1: Research question 3 addresses the evolution of contextual requirements
at runtime

68

requirements as the evolution of the knowledge of the context or system behavior.
Figure 6.1 outlines the two possible transitions for the evolution of contextual require-
ments at runtime. Transition (1) visualizes the evolved knowledge of the context,
respectively transition (2) the evolved knowledge of the system behavior.

Research into supporting the evolution of contextual requirements is limited and
largely visionary in nature, focusing on the evolution of the system behavior and
including the end-users in the evolution process [69]. Complementary, this chapter

investigates the following research question:

RQ 3: How can the evolution of contextual requirements that are affected by un-

certainty be supported at runtime?

In our investigation, we chose to concentrate on the evolution of the context part of
contextual requirements (transition (1) in Figure 6.1). We focus on the context part,
as uncertainty in self-adaptive systems at runtime arises mostly between a software
system and its execution environment [106] and can affect the satisfaction of system
requirements [107]. The two major root sources of runtime uncertainty tackled in
this chapter are: 1) The dimension of unpredictability in the environment resulting
from the fact that the requirements analyst cannot predict all possible environmental
conditions when designing the system [107]|, and 2) runtime uncertainty due to the
monitoring infrastructure (e.g., sensor imprecision, sensor noise, and sensor failures)
[106].

Unpredictable environments have especially an impact on contextual require-

Contextual requirement

W composed-0

(Expected)

Context Behavior

woperationalized-by

Context opera dobserved-b
tionalization
in-terms-ofp e

Sensors

(@09

Figure 6.2: Contextual requirements decomposed of system behavior and context.
The context is made measurable through a context operationalization in terms of
sensors and their values.

69

ments. The context state in which a contextual requirement is valid, has to be made
measurable (through sensors) for the system (see Figure 6.2). At runtime, uncertainty
may result in invalid measurable context for contextual requirements. Additionally,
runtime uncertainty may affect the system’s ability to recognize a certain context
in which contextual requirements are valid due to problems or changes in the moni-
toring infrastructure. Both conditions result in the system not being able to satisfy
contextual requirements and to provide the system behavior.

The need to overcome this limitation calls for runtime support for the evolution of
contextual requirements [92]. Based on the changes in the operational environment
or the monitoring infrastructure the knowledge of the context in which contextual
requirements are valid has to be updated. An up-to-date knowledge about contextual
requirements enables the system to react appropriately at runtime [54].

In this section, we present an approach that updates the knowledge about contex-
tual requirements with up-to-date information about the context in which contextual
requirements are valid at runtime. Through an incremental runtime adaptation of
the operationalized context in which contextual requirements are valid the approach
supports the evolution of the context part of contextual requirements. We call the
approach ACon (Adaptation of Contextual requirements). ACon uses a feedback
loop to detect indications that contextual requirements are affected by runtime un-
certainty, and integrates data mining algorithms that are used on contextual data
(i.e., sensorized environmental data) to determine the context in which contextual
requirements are valid. ACon adapts the context in which contextual requirements
are valid where appropriate and includes the interaction with end-users as part of a
semi-automatic approach in which the human is in the loop.

For the purpose of validation we developed ToTEM - an activity scheduling sys-
tem that was used in extremely demanding situations (with threat to life) in a wild
and unpredictable environment with a complex monitoring infrastructure. ToTEM
provided alarms for the daily activities of a crew of four rowers crossing the Atlantic
Ocean during a 72-day trip [94]. In the case of TOTEM we collected contextual data
from 46 sensors and mined this data to determine patterns guiding the appropriate
adapted context for five selected contextual requirements.

Publication from this chapter has been submitted as "Alessia Knauss, Daniela
Damian, Xavier Franch, Angela Rook, Hausi A. Miiller, Alex Thomo. ACon: A
Learning-Based Approach to Deal with Uncertainty in Contextual Requirements at

Runtime. Information and Software Technology".

70

6.1 Background and Related Work

In this section we give an overview of related approaches and background information

on feedback loops.

6.1.1 Related Work

Table 6.1 summarizes the characteristics of related approaches compared with ACon.

An adaptive system adapts to certain context conditions by monitoring the current
operating environment (through sensors) to decide which actions it has to perform
to fulfil system goals [34, 56]. Oriol et al. [96] argue that a monitoring specification
(operationalization of context) is a prerequisite to designing requirements monitoring
feedback loops to adapt to a certain goal, and derive this monitoring specification
manually. Franch et al. [59] extend this work to integrate (again, manually) monitor-
ing into an approach of goal-driven adaptation. Qureshi et al. [99] introduce adaptive
requirements that contain variation points together with a monitoring specification,
so that the system can make its own decision on how to best react to a particular
goal with such variation points.

Even when using adaptive requirements, the challenge remains on how to detect
certain context conditions in an uncertain operational environment when the mea-
surable conditions might be unknown at design time to define the monitoring spec-
ification. Context operationalization is not trivial and requires a full understanding
of relevant context. Even if context conditions can be operationalized, assumptions
might become invalid at runtime [106], or sensor failure in the sensors monitoring
these conditions make the re-operationalization necessary at runtime to provide the
adaptive system with up-to-date contextual requirements. This situation requires
techniques to track sensor data at runtime and adapt the operationalization of con-
text in which contextual requirements are valid. We investigate how to update the
monitoring specification of one (contextual) variation point automatically at runtime
with the help of machine learning (i.e., data mining).

Related work shows that machine learning techniques are valuable for the devel-
opment of self-adaptive mechanisms, where often great volumes of data are produced
over time and can be used to derive decisions on self-adaptation. In this way, ma-
chine learning has been used successfully in different research areas on self-adaptive
systems: Canavera et al. use data mining to determine the right time for system

adaptation with the goal to avoid inconsistencies and system disruptions during and

71

(Surutu ejep) dooj ‘bou [enjxojuoo sjuswaaIinboa
Surures| suIYORN sox Moeqpeoqg sox Sox Jo uonyejdepy [enjxsjuo)d uonVv
surure9| doog uoryeydepe
QUITPRIN SOX Yorqpeoqg SOx SOX PoJUOLIO-0IN)R] soInjea [eg] e 10 TuRTRISH
sururu SI9[[01pu0d oarjdepe
eyeq V/N V/N V/N SOX JO JuoWSFeUR-Jog V/N [e9] Te se mredermy
Sururu uoryeydepe 10y
'R SOX V/N V/N SOX owI} JPYSII SUIULIYI(T V/N [62] e 20 eI0ARUR))
gurepowt uoryeydepe sjuowaanbol
A[rqerrep ON V/N ON SOA surmiyde) aanydepy [66] ‘Te 1o 1yseInd)
uory doop uorjejdepe syuowdIMmbax
- PUO)-JUdAN ON Yoeqpeoq oN oN IOYTUOTA SULIO)TUOIN [96] ‘Te %0 10110
pordde uwormooxe segueyo AJUre)Iooun wWYSAS Ul JuemIMbal
sonbruyoq], onewoINy O[OADIJIT SIOTSLIT, IapISuo)) o8esn jo osoding Jo odAT,

U0y 03 pareduwod sIom poje[ol Jo Arewrmung :1°9 o[qr],

72

after adaptation [29]. They focus on situations (to which they refer to as "uncer-
tainty factor) where the dependencies of system components are not captured in a
model. They mine the execution history of a software system to infer a stochas-
tic component dependency model, which represents interactions among the system’s
components and use this model to infer the right time for adaptation of a system
component. Gullapalli et al. apply data mining to adaptive control in order to adapt
feedback control based solutions to changes in the environment [63]. Their goal is to
provide accurate decisions in tuning the control parameters in order to self-regulate
distributed computing systems based on a time-series-analysis algorithm. Esfahani
et al. use machine learning on a feature selection space to support system adap-
tation of features [53]. They focus on feature adaptation and suggest to treat the
system as a blackbox. Thus, they do not base adaptation decisions on the managed
system’s internal structure. Instead, by defining a feature solution space, they are
able to use machine learning to asses and reason about adaptation decisions. They
map features to metrics that consider contextual factors to allow automatic learning
of feature-oriented adaptation. While Esfahani et al. concentrate on making deci-
sions on the adaptation of all possible features, we concentrate on only one particular
system behavior to adapt the context operationalization.

Our work is motivated by the literature on the use of machine learning to support
adaptive systems. Machine learning techniques seem to be valuable for the devel-
opment of self-adaptive mechanisms where great volumes of data are produced over
time and can be used to derive decisions on self-adaptation.

In comparison to these proposals (Table 6.1), our approach ACon uses machine
learning to mine contextual data at runtime so that the system can continuously adapt
its contextual requirements. Adaptive requirements capture points of adaptation [99].
ACon uses a MAPE-K feedback loop [38] to trigger adaptation of context operational-
ization concerning contextual requirements to deal with runtime uncertainty. Oriol
et al. use feedback loops to monitor the context and provide system adaptation to
current context conditions by using a monitoring specification [96]. They do not con-
sider the adaptation of the monitoring specification. Three approaches — by Canavera
et al. [29], Gullapalli et al. [63], and Esfahani et al. [53] — use machine learning (data
mining) to support system adaptation. Only one of these approaches concentrates
on the integration of requirements through the focus on features [53]. They concen-
trate on making decisions on the adaptation of all possible features, while we only

concentrate on the adaptation of the context in which one system behavior is valid.

73

6.1.2 Background: MAPE-K Feedback Loops

Feedback loops are a key aspect of engineering self-adaptation [27|. Kephart and
Chess introduced the notion of an autonomic element with its famous MAPE-K loop
(cf. Figure 6.3), which culminated in IBM’s architectural blueprint for autonomic
computing and the Autonomic Computing Reference Architecture (ACRA) [38, 74].
These are key architectural elements of modern self-adaptive systems. Several auto-

nomic elements can be composed to fulfill a common system goal.

Autonomic element

o
Sensors Effectors
Autonomic Request for \
manager Change
Symptom Analyze Plan Change Plan

Monitor Execute
Knowledge

Base
Sensors Effectors g

Managed element

Figure 6.3: IBM’s autonomic element consisting of a managed element and an auto-
nomic manager with a MAPE-K feedback loop at its core |38, 74].

Each autonomic element consists of an autonomic manager, and one or more
managed elements. The autonomic manager implements two manageability interfaces
— sensors and effectors. Through sensors the autonomic manager gathers information
from the environment or other autonomic elements. Through effectors the autonomic
manager adjusts the managed element as needed. An autonomic element itself can
be a managed element, therefore consisting of sensors and effectors at the top of the
autonomic manager. Through the effectors at the top the autonomic manager can
receive policies that drive the adaptation and evolution of the system.

The autonomic manager implements a feedback loop that is known as the MAPFE-
K loop because of the four components — monitor, analyze, plan, and execute —
and the knowledge base. The knowledge base represents the major communication
mechanism between the four components of the autonomic manager. The monitor

senses the managed element and the context, filters the collected sensor data, and

74

decides on relevant events that can indicate the need for an action of the autonomic
manager. These symptoms are communicated to the analyzer for further analysis
[39]. The analyzer correlates the received symptoms and in case it decides about
the need to adapt the managed element, it sends a request for change. The planner
defines the activity to be executed by considering the policy and creates a change
plan. The executor adapts or evolves the system accordingly following the change
plan [92].

6.2 Preconditions for the Application of ACon

This section formalizes the ACon framework by defining different functions over the
domains introduced in Figure 6.2. Figure 6.4 outlines further details (e.g., variable

names) that are necessary to understand the concepts presented in this section.

To illustrate these concepts we use a fictive but realistic example from a domain af-
fected by runtime uncertainty: the intelligent vehicle domain. Consider the following
contextual requirement support lane keeping when end-user is sleeping, represented
with the 2-tuple e¢r = (end-user is sleeping, support lane keeping). In order for the
system to be able to satisfy a contextual requirement, the context needs to be opera-
tionalized using available sensors (e.g., a camera installed in the car or some wearable

devices).

Contextual
M _|requirements

cry cr, ... cr

= XY Expected
Contexts c1‘/_._ cn b o b (Bethior)
Oper Oper
Context ope- v
rationalization e)fp1 o XPm
in-terms-of

Figure 6.4: Variables and functions defined in ACon framework.

75

6.2.1 Definition of a System State

At any time t, the self-adaptive system will be in a given state concerning the re-
quirements, the operationalization of their context and their satisfactibility. The

state includes:

1. A set CR of m contextual requirements,
CR = {cr; = (ci,b;) | 0 <i < m},

where ¢; is the context and b; the expected system behavior for a particular

contextual requirement i.

2. Contextscr and Behavegr are the sets of all contexts respectively expected
behaviors of CR,

Contextscr = {c; | 0 < i < m},

Behaveg = {b; | 0 <i < m}.

3. A set Env of typed variables that represents the environment measured through

sensors,
Env={e; | 0 <i<n}.

The value of these variables is characterized by a measurement function
Meas : Env — Object,

where Object is a supertype of all possible measure types.

4. The function Oper assigns to requirements’ contexts its operationalization in

terms of the environment variables
Oper : Contextscr — T(Env),

where T(Env) is the term algebra formed from variables from Env combined

with expression operators (i.e., relational, arithmetic, and logical). vars(Oper(c))

76

denotes the set of variables involved in the operationalization of ¢, ¢ € Contextscr.
We assume the following;:

1. The contextual requirements in C'R are elicited at design time and cannot
change, which means that no unexpected system behavior may emerge and
also that contexts cannot change, only their operationalization (represented by

the Oper function) is allowed to change.

2. Variables in Env are fixed, too, meaning that sensors are deployed at design

time.

3. Meas is a partial function to reflect the fact that a particular sensor may become

unavailable at a certain interval of time.

4. Oper is a partial function, meaning that at some points, the operationalization
of a context is not yet known (typically because it is not known at design time

and not yet determined at runtime).

5. Even if a context is operationalized, it may be not evaluable because some of the
variables involved represent a sensor that is currently unavailable. To facilitate
the detection of this situation, we introduce a predicate evaluable on contexts
defined as: evaluable(c) = Ve : e € vars(Oper(c)) : e € dom(Meas), where

dom is the actual domain of the specified function at a given point of time.

6. Even if the sensor is available, it may be sending wrong data. To detect such

situations, we introduce a predicate
outlier : Env — Bool

over environment variables. outlier returns true if the current value of the

variable is considered to be wrong.

7. At design time, an initial operationalization Oper; of the defined contexts will

be determined with all the operationalizations that are known beforehand.

7

Policy: Desired
characteristics
of results

Request for Change:
Classification results per
contextual requirement
——=_| Plan:
Compare actual
characteristics
of results
towards
policy

Change Plan:
Operationalization
for contextual
requirements

Symptom:
Indication for
uncertainty

Analyze:
Determine
affected contextual
requirements
and mine
contextua
data

Monitor:

Execute:
1. Sensor

Update

data) .
. . operationali-
2. Satlsfactloln of o
SEIFIE] Knowledge
requirements
Base

Figure 6.5: The ACRFL in ACon responsible for the adaptation of contextual re-
quirements.

6.2.2 Satisfaction of Contextual Requirements

The ultimate goal is to maximize the satisfaction of contextual requirements under

uncertainty. With this objective, we introduce selected evaluation functions to the
ACon framework:

1. Evaloper, a function to evaluate the current operationalization of a context,

FEvalope, : Contextscr — Bool,

defined as

Evaloper(ci) = evaluation(Oper(c;)),

where evaluation is a function that analyzes the operationalization of the con-

text in some given logic that interprets the expressions formed with the term
algebra T(Env) previously chosen.

78

2. Fvalgenaw, a function to evaluate the satisfaction of a given system behavior,

Evalgepay : Behavor — Bool.

3. FEvalcg, a function to evaluate the satisfaction of a contextual requirement,
FEvalcr : CR — Bool.

We define Fvalcg((c;,b;)) in the following manner:

o if ¢; ¢ dom(Oper), then the context is not operationalized, therefore the
context cannot be evaluated. In this case, we consider that the contextual

requirements is not satisfied

e if —evaluable(c;), the contextual requirement is considered not satisfied

since the current context operationalization cannot be evaluated

e if —¢;, the contextual requirement is considered satisfied since the context

acts as guard when evaluating the satisfaction

e if ¢; and b;, this means that both the context and the behavior are satisfied,

yielding thus to the satisfaction of the contextual requirement
e if ¢; and —b;, this yields clearly to insatisfaction of the contextual require-

ment

Given this, we define:

Evalcr((ci, b)) = (¢; € dom(Oper))
A evaluable(c;) N (¢; = b;)

Note that, in order to make ACon as generic as possible, we leave the choice
of formal framework both for expressing and evaluating contexts and requirements
open. These formalisms do not impact the design of ACon as long as the three

required satisfaction functions are provided.

6.2.3 ACon Objective Function

ACon aims at reacting to changes that make requirements unsatisfied. In the case

of contextual requirements, the particular situation to avoid is having requirements

79

Table 6.2: Each contextual requirement is stored as a 2-tuple of context and expected
system behavior in the knowledge base, together with the operationalization (rules)
produced through the application of data mining.

Contextual requirements knowledge base

cr € Context Exp. Behavior Operationalization of Sensors involved
CR (c) (bi) context (Oper(cy)) (vars(Oper(c;)))
cry End-user Support lane BlinkOfEye <= 0.9) and BlinkOfEye,

PositionOfHead <= 0.85) and PositionOfHead

(
is sleeping keeping (
(PositionOfHead >= 0.75)
(

cry End-user Support lane Right ArmOffSteeringwheel = 1) Right ArmOff-
is sleeping keeping and (Left ArmOffSteeringwheel Steeringwheel,
= 1) and (PositionOfHead Left ArmOff
> 0.95) Steeringwheel,
PositionOfHead
cro It is Activate wind-
raining shield wiper

whose context is not operationalized or is not satisfied while the behavior is. These
are the two cases that violate the notion of satisfaction of contextual requirements.

This objective can be formalized in the following way:

minimize cr; : 0 < i < m: ~Fvalcgr(cr;)

In order to accomplish this goal, ACon will continuously try to operationalize
contexts not yet operationalized, and will react as soon as possible to unpredictable

environment changes and monitoring problems.

6.3 ACon - An Approach to Support the Evolution

of Contextual Requirements

Since ACon intends to support systems in self-adaptation, we adopt a feedback loop-
based approach as an essential part to realize the adaptation. The feedback loop,
which we call Adaptation of Contextual Requirements Feedback Loop (short: ACRFL),

80

identifies conditions in which contextual requirements are affected by uncertainty and
adapts the context operationalization for such contextual requirements.

Figure 6.5 gives an overview of the elements and activities taking place in the
ACRFL. The managed element of the feedback loop consists of all contextual re-
quirements of the system. The monitor keeps track of the managed elements. The
monitoring component continuously executes two main tasks: 1) evaluating the satis-
faction of contextual requirements, and 2) collecting available sensor data related (see
Figure 6.5). The monitor communicates symptoms to the analyzer: every require-
ments violation and sensor relevant change (i.e., indications of potential uncertainty).
A symptom contains relevant information for the indication on uncertainty so that
the analyzer can analyze the situation and make a decision on whether to act on the
indications or not. If the analyzer decides to act on it, the analyzer uses data mining
on the collected sensor data to determine an appropriate operationalization. The
planner decides whether the results of the data mining algorithm are good enough
and generates a change plan. The change plan contains the rules produced by the
data mining algorithms representing a new operationalization. Based on the change
plan the ezecuter updates the knowledge base that contains information about con-
textual requirements as well as the operationalization for the contextual requirements
involved.

We describe the tasks of the four components as well as the knowledge base of the

ACRFL step by step in the remainder of this section.

6.3.1 Knowledge Base

The knowledge base is an important part of ACon and stores relevant information
about 1) contextual requirements, and 2) sensor data as preparation to apply data

mining on.

Information Related to Contextual Requirements

For simplicity we store all information about requirements in the knowledge base.

Every requirement is stored as a 2-tuple (context, expected behavior).

Table 6.3 shows the knowledge base containing the contextual requirement from

the intelligent vehicle example. The expected behavior (by) is support lane keeping

81

Table 6.3: Sensor data and related information are stored in the knowledge base.

Sensor data in knowledge base

Time TIA for IA for IA for e eq
crq Cro Crs

t—1 true true false 0.34 0.8

t false true false 0.34 0.7

t+1 false true false 0.34 0.7

in the context (c;) of end-user is sleeping. To be able to satisfy this contextual
requirement the system has to identify when an end-user is sleeping using the sen-
sors or cameras installed in a car. Such an operationalization (represented through
sensors and their values) could be (BlinkOfEye <= 0.9) and (PositionOfHead <=
0.85) and (PositionOfHead >= 0.75), measurable by the sensors BlinkOfEye and
PositionOfHead.

The operationalization allows the system to exactly recognize the context state
(end-user is sleeping) at runtime. The different operationalizations created along time
for the requirement are stored in the operationalization column in the knowledge base
(each rule represented in one row in Table 6.3). We introduce the function former-
operationalizations: Contextscr = Powerset(T(Env)) which returns the set of such

existing operationalizations.

Information Related to Sensor Data for Data Mining

Typically, the data used for data mining will come from sensors of different types.
Before data mining can be applied on the sensor data, the incoming raw sensor data
from the available sensors has to be preprocessed. Preprocessing of the contextual
data depends on the characteristics of the sensors and data collected. The frequency
of sensor readings that are taken into account for the operationalization have to be
determined and can change at runtime (the time ¢, ¢ + 1, ¢ + 2 that is used to in
ACon). For some sensors (e.g., sensors integrated in other devices and reused for the
purpose of system adaptation) the readings might be less often than the defined time

interval ¢;,;. In such cases missing data for these less frequent readings has to be

82

determined for example by keeping the value of the last reading till the next reading.
Finally, the sensor data has to be normalized to lay within a range between 0 and
1 so that data mining algorithms that rely on Euclidian distance can be applied for
operationalization.

After preprocessing of sensor data, another step is necessary to prepare the con-
textual data for data mining. An additional attribute, the indicator attribute (short:
TA), is stored together with the sensor data in the knowledge base (see Table 6.3)
and is needed to determine the operationalization of the context in which a contex-
tual requirement is valid. Every time the expected system behaviour was satisfied it
stores the current context together with a value true for the indicator attribute, false

otherwise.

For the initial operationalization of the "driver is sleeping" context the user might
help by manually activating the lane keeping feature when he has the feeling to fall
asleep soon. Tracking these situations allows to exactly define conditions which indi-
cate that the driver is falling asleep and in which the expected behavior of supporting
lane keeping is needed. When the system starts executing the lane keeping feature on
its own the system monitors the actions of the user. Slow actions might indicate that
the user is sleeping. In addition end-user feedback can be used to determine whether

the action was right or wrong.

ACon uses the evaluation function of the system behavior (Evalpepqy(b) for cr =
(¢,b)) as the indicator attribute. Evalgenq(b) = true marks contextual data in which
the expected system behavior is linked to the contextual requirement. Fvalgepqa(b) =
false marks contextual data in which the expected behavior is not needed. Note
that we expect the user correct the system if the executed behavior is not correct for
example by terminating the system behavior. The indicator attribute together with
the contextual data define the input for data mining algorithms to identify patterns

that show correlation between contextual conditions with Evalgepa, (b) = true.

6.3.2 Monitor the State of the System

In the monitoring component, ACon keeps track of the satisfaction of contextual
requirements in certain intervals of time. We define the time interval ¢;,; between two

measurements ¢t and t + 1 of the monitor. ACon considers four different cases that

83

can point to uncertainty affecting the satisfaction of contextual requirements (Table

6.4, case 1 - case 4).

Table 6.4: Monitoring of requirements affected by runtime uncertainty:.

Cases Detection of Condition on Condition on
uncertainty context (c) behavior (b)
Case 1 No operationalized ¢ ¢ dom(Oper)
context.
Case 2 a) Sensor lost Je € vars(Oper(c)) :
e ¢ dom(Meas)
Case 2 b) Sensor decallibrated Je € vars(Oper(c)) :
outlier(e)
Case 2 ¢) Sensor up Je € vars(Oper(c)) :

Time t — 1 : —correctSensor(e)
Time t : correctSensor(e)

Case 3 Violation Evaloper(c) =true Eval genavn(b) =false

Case 4 Potentially wrong context FEuvaloper(c) =false Eval gepav(b) =true

Case 1: No operationalized context

This case will arise typically when the context has not been operationalized at design
time and still there is not enough data for the data mining algorithm to propose a
context. Eventually, it also may happen that a context becomes unoperationalized at

runtime since no feasible operationalization can be found at a certain moment.

Affected requirements: {cr = (¢,b) € CR | ¢ ¢ dom(Oper)}

For each new car which does not include the sensor PositionOfHead, the analyst
does not know how to operationalize the context end-user is sleeping. As a conse-
quence, the operationalization is left to runtime, expecting than the ACon approach

will be able to discover other ways to operationalize the context.

84

Case 2: An unpredictable monitoring framework state

When the context is operationalized, some of the sensors might become unavailable
temporarily or permanently. Even if the signal is not lost, the data may be incorrect
because the sensor requires recallibration. In any case, the system will not be able to
satisfy those contextual requirements which contain the sensor that is malfunctioning
in their operationalization. To identify this situation, all sensors that are part of the
current operationalized context for the contextual requirements are monitored.

Three situations are possible:

a) The sensor stops sending data.

Affected requirements: {cr = (¢,b) € CR | ¢ € dom(Oper) A (Fe : e €
vars(Oper(c) : e ¢ dom(Meas))}

b) The sensor is sending wrong data.

Affected requirements: {cr = (¢,b) € CR | ¢ € dom(Oper) A (Fe : e €
vars(Oper(c)) : e € dom(Meas) A outlier(e))}

c) The sensor regains a correct state. Either because it gets recallibrated or
comes back into operation again. Requirements that have this sensor in their
operationalization are affected, as well as all other requirements that contained
the sensor in an operationalization in their history. This second type includes
both requirements whose context is not currently operationalized as well as
others that are operationalized because it may happen that the current opera-
tionalization does not behave as well as the one involving the recovered sensor.
To detect conditions that trigger this case, we define correctSensor(e) = e €
dom(Meas) N —outlier(e).

Affected requirements: {cr = (¢,b) € CR | e € vars(Oper(c)) V (Jop €

former-operationalizations(c): e € vars(op))}

85

Note that it is not necessary to refer to unoperationalized requirements because

these ones will be identified in Case 1 (see above).

Ezxample for case a: Consider a user that is suddenly wearing sunglasses. So
far the eye tracking sensor was the most accurate sensor to measure when a user is
sleeping. After wearing sunglasses the sensor shows an error in capturing the sensor
values. Hence, the monitor will communicate this loss of sensor. Later in the cycle, all
other available sensors will be used for re-operationalization for "end-user is sleeping"
context so that the system can continue monitoring the satisfaction of this contextual

requirement.

Case 3: Contextual requirement not satisfied

This situation may occur in two completely different circumstances. First, it may
happen that the context has been operationalized in an incorrect or inaccurate way
(e.g., because the data mining algorithms have not learned enough yet or because the
context has been reoperationalized recently due to some malfunctioning in a sensor of
the previous operationalization) or because the action that leads to the satisfaction
of the behaviour has not been executed yet. The reason will be found out in the next

phase of the cycle (analysis), determining then the adequate actions for the next loop.

Affected requirements: {cr = (¢,b) € CR | Evalope(c) = true A
Evalpenay(b) = false}

Imagine the data mining algorithm was mostly used for daily trips where the user
is awake. With the resulting operationalization, the system would only be able to
detect "end-user is sleeping" situation with the end-user’s fast blinking of eyes. Now
during the night it might happen that the user needs to blink often due to the different
light. Therefore, the operationalization will be satisfied while the system behavior is

not, as it is not needed.

Case 4: Effects of environmental uncertainty

Cases occur in which the operationalization is not satisfied but the expected system

behavior is. Especially at the beginning, when the data mining classifier is not prop-

86

erly trained because it does not have enough historical data, this case will appear as
the system has to learn over time. In this case the user executes an action that makes
the specified system behavior to be fulfilled, triggering the system to re-operationalize

the context considering the current context state in the new operationalization.

Affected requirements: {cr = (¢,b) € CR | Evalope,(c) = false A
Evalpepay (b) = true}

For example, a user who is quite tired realizes that he might be falling asleep in
the next couple of minutes. Therefore, he switches on the lane keeping feature which
makes context situation "end-user is sleeping" to become active. The current context

should be considered for (re-)operationalization.

6.3.3 Analyze - Apply Data Mining to Operationalize Context

for Contextual Requirements affected by Uncertainty

Given the output of the monitor, the analyzer determines which contextual require-
ments are affected by uncertainty. For these contextual requirements, it applies data
mining to (re-)operationalize the context (determine Oper(c;)). In cases of sensor
loss, the analyzer will identify the missing sensor e; and ensure that it is not included
in the operationalization (because e; ¢ dom(Meas)).

In the analyzer, ACon relies on lightweight data mining algorithms (i.e. rule-based
classifiers) which can be easily rerun many times as newer data instances become
available. The outcome of applying such data mining algorithm is the identifica-
tion of patterns, so called rules which represent the operationalization of context
Oper(c;). Rules are produced on contextual data collected by the monitor at runtime
and represent the operationalization of the desired context in which the contextual
requirement is valid. Many different rules can exist for one contextual requirement,
depending on how many patterns the data mining algorithm finds in the contextual
data. This means that there will exist many operationalizations for the context of

one contextual requirement.

87

For the sake of illustration, we show two hypothetical rules for our example
in Table 6.3. The rule describes a situation in which the eyes of the end-user
are almost closed (BlinkOfEye <= 0.9), and the head directed to the left side
((PositionOfHead <= 0.85) and (PositionOfHead >= 0.75)).

6.3.4 Plan - Decide whether Operationalization is Good Enough

The decision as to whether the rules that represent the operationalization of context
are to be updated in the knowledge base depends on the system’s tolerance of error
in the rules produced by the data mining algorithm. In the planer the actual error in
classifying correct context conditions (e.g. number of context conditions misclassified
by the rules generated by the data mining algorithm and calculated by the 10-fold
cross validation) is compared against the policy that is given. The policy can represent
either an error threshold given by the system provider or given by the users. The users
can define this threshold for the error at design time (and change it at runtime). If the
error is smaller than the threshold, the system updates the contextual requirements

with the new rules produced by the data mining algorithm at runtime.

6.3.5 Execute - Update Contextual Requirements with Oper-

ationalized Context

Last, the system updates the information about contextual requirements in the knowl-
edge base with the operationalized context. The rules generated by the data mining
algorithm become the candidate operationalization of context for the particular con-
textual requirement. Using these rules, the system can automatically recognize the
context in which contextual requirements are valid at runtime and satisfy the expected

behavior.

6.4 Evaluation of ACon

In this section we present the evaluation of our ACon approach. As shown in the
previous section, ACon is designed to deal with two different types of runtime uncer-

tainty, i.e. unpredictable environment and unpredictable monitoring infrastructure.

88

The main idea of ACon is to use data mining algorithms for context operationaliza-
tion at runtime. Feedback loops are a means to automate this operationalization to
tackle runtime uncertainty.

In our evaluation of ACon we focus on the data mining part of the approach to
evaluate its applicability for the operationalization of context in cases where contex-
tual requirements might be affect by an unpredictable environment and unpredictable
monitoring infrastructure. We assume that users would be willing to help train the
classifier to deal with uncertainty and therefore do not evaluate the cases that only
relate to user-system interactions, but simulate when such events would happen. To
illustrate these cases of uncertainty, we explored an extremely demanding situation
(with threat to life) in a wild environment where lots of variables are involved.

We examined in execution an activity scheduling system, ToTEM, to support a
crew of four athletes rowing in extreme conditions crossing the Atlantic Ocean, from
Dakar (Africa) to Miami (USA). In the following we refer to this rowing trip as DtM
- Dakar to Miami. To reach Miami within 60 to 100 days the rowers had to adhere
to a strict schedule of required activities and daily routines (e.g., sleeping/rowing in
four-hour shifts, and also adequate rest time to maintain their biometric rhythms
[112], [75]), hence the reliance on ToTEM that ideally would consider the uncertain
environmental conditions when adapting at runtime.

The rowers volunteered to provide feedback in situations in which they needed
new system behavior during the trip, which presented us with a unique opportunity
to record and examine the situations when new requirements were needed and in
which context they should be valid in. Our interviews with the rowers after the trip
as well as the analysis of their input at runtime allowed us to identify a number of
contextual requirements.

In the remainder of this section, we describe the post-trip analysis we conducted
of the runtime contextual data in relation to these contextual requirements. More
specifically, we applied data mining on the contextual data to operationalize the con-
text (i.e., identify measurable context conditions) in which the rowers’ contextual
requirements were valid. The post-trip analysis allowed us to apply data mining al-
gorithms on parts of the contextual data and evaluate the results on the rest of the
data (representing future contextual data from the viewpoint of this time). Imple-
menting ACon and using it at runtime would not allow us to evaluate the applicability
of data mining algorithms (which is crucial to show that implementing data mining

in ACon is actually fulfilling the intended purpose).

89

We manually went through the following activities (that ACon would automate)
to operationalize and evaluate the context in which the contextual requirements were

valid:
1. Preparation for the application of data mining algorithms:

(a) Elicitation of requirements: Based on the knowledge from the past trip as
well as through interviews, and prototyping we elicited requirements and
developed ToTEM for DtM.

(b) Collecting end-user needs and sensor data: ToTEM was used by the rowers
during DtM. We collected contextual data and users’ runtime adaptation

needs in context.

(c) Identification of contextual requirements: We used the collected data to

elicit and understand contextual requirements.

2. Operationalization of context: We applied data mining for the operationalization

of the context in which the contextual requirements were valid.

3. Ewvaluation of data mining (rules): We validated the results of our data mining

algorithms 1) through statistical analysis and 2) in interviews with the rowers.

6.4.1 Preparation for the Application of Data Mining Algo-

rithms
(a) Elicitation of requirements

Drawing on the domain knowledge gained in the analysis of the contextual data when
shaping the ACon approach, we elicited the rowers’ goals and requirements for the
ToTEM scheduler to be used in their DtM trip.

The major ToOTEM functionality was to alert the rowers about scheduled activities
according to the current local (boat) time. Other requirements included the system
allowing the rowers to manually assign activities, alerting rowers by using configured
alarms, and allowing the rowers to configure the representations of the alerts. Besides
one contextual requirement, however, we were not able to understand the impact the
context would have on ToTEM requirements. The rowers indicated their preference
for automated rescheduling in certain context conditions but were unable to indicate

which activities were to be rescheduled or under which conditions.

90

(b) Collecting end-user needs and sensor data

We implemented ToTEM which was used during DtM. The boat was configured
with 46 onboard sensors that recorded biometric and environmental data. Biometric
data was captured through ReadiBands' on the arm of each rower, and measured
actigraphy (movement), effectiveness (fatigue level), and whether the rower was in
bed. Environmental data included GPS position, ship roll, wind direction/speed, and
altitude.

Unfortunately the trip did not reach its destination due to capsizing at about 1600
km from Miami. However the rowers recovered measurements from all 46 sensors,
containing about 90,748 measurements per sensor, from the first 64 days of the trip.
The rowers also recorded (in daily audio and written logs), as much as their busy
schedule and harsh conditions allowed, their desired functionality for system self-

adaptation in particular context conditions.

(c) Identification of contextual requirements

After the trip we analyzed these adaptation scenarios from the rowers’ audio files as
well as from interviews we conducted with the rowers. We identified that the rowers’
goals for ToTEM adaptation to certain context conditions at sea became clearer
during the trip, and we were able to identify five contextual requirements (shown in
Figure 6.5).

We model the five contextual requirements in a contextual goal model (Figure
6.6). To integrate the contextual requirements into an adaptive system, we have
to make contextual requirements runtime entities (as suggested by Bencomo et al.
[19]). Contextual goal models have been recognized as a modeling technique to model
requirements together with context conditions [7]. The goal model presents the system
behavior as tasks (e.g., turn alarms off for crq) and the context of validity as boxes
close to the arrows which connect the task with the goal. For the first contextual

requirement the context (C1) is on sea anchor at night.

6.4.2 Operationalization of Context

With knowledge of these five contextual requirements, we turned our endeavors to

the application of ACon. To operationalize context for each contextual requirement,

Thttp:/ /fatiguescience.com /solutions/readiband

91

Trip / —EA—S\(——“i
obligations | activities
Rower fulfilled __assigned / CR3: Assign \
T easy)
rs

Keep effor) \, activities /
=)
Manual
rescheduling Trip activities
Carry out supported scheduled
assigned Reschedule
activities

activities
s pat of < R4: Manual '\
Activity Assigned rescheduling / C1
Activity N\ /
[Perceive '\

Alert / / a:ts\s/:tg:s \
\ { ivities) N
Communicate '\ to rowers / CRL: Turn
lert \ A alarms off
e / R2: Alert - -
\ rowers / RS: Adapt
/ { actvitiesto ' /CRa: Assign sea
e — b, i anchor daytime) wds
completed . Coherent info Activity __time activities
— \’ provided mode
|

DI

Harmony in configured CR2: No non-
/— team / R1: Manual \ sleeping ~
activity * ~
Tt e alerts Unobtrusive

/" Decide R3: Alarm \
e Ay Activities to be mode CRS: Set alerts to s
— \Essignment’y e contiguisay, visible (no tone)
4 U ¢/ Choosea Y
.“-, ressources % way to alert \ /—
b Configure / R3:Makea

A sound

\ alarm / /T /\Rz-.\‘ “‘«.

“ i .‘} llv
board zely, usable
e =

Context: C1: On sea anchor at night; C2: Two rowers are sleeping; C3: Low performance; C4: On sea anchor during the day; C5: One rower is sleeping

Figure 6.6: Contextual goal model representing the five contextual requirements for
ToTEM.

we analyzed the contextual data from the entire trip, as well as the rowers’ input, to
identify correlations between contexts in which contextual requirements appeared to
be valid and the actual sensor data collected from such contexts.

For cry, crs, and crs (shown in Figure 6.5), where certain sensors clearly indi-
cated relevant context conditions, the operationalization was trivial. ¢y (two rowers
are sleeping) and c; (one rower is sleeping) directly correlated with the row-
ers band sensors capturing the times the rowers were sleeping; similarly for c; (1low
performance) we used the fatigue sensor-measurements to determine the rowers per-
formance. The outstanding research challenge for measuring context for these contex-
tual requirements was when there was loss of these sensors and different sensors had
to be identified. Such cases appeared in the sensor data and ACon would have recog-
nized such situations and would have (re-)operationalized the context, using sensors
that are currently available. Because ACon uses data collected in the past, it can
exactly give correlations to other sensors that are not malfunctioning with the help
of data mining algorithms. Using the new operationalization the system now is able
to recognize the context situations cs, c3, and cs.

In contrast, for ¢ry and ¢4 the situation was completely different because the boat

was not equipped with a sensor to directly detect sea anchor conditions. As rowers

92

Table 6.5: Contextual requirements with most important sensors (sorted based on
the importance calculated through data mining) and number of rules generated for

day 53.
ID Valid Expect. Most important sensors # Rules
context behavior (up to first 13 important)
cry On sea Turn alarms Rower1InBed, Rower2InBed, Rower3- 29
anchor at off InBed, Hour, WindDirectionRelative,
night Rower2Effectiveness, RowerlEffective-
ness, ShipPitch, Rower4InBed, Rower3-
Effectiveness, GPSSpeedOverGround,
WindSpeedRelative, GPSCourse
OverGround
cry Two rowers No non- Rower2SleepWake, Rower3SleepWake, 7
are sleeping sleeping alerts RowerlSleepWake, Rower4SleepWake
crs Low Assign easy RowerlEffectiveness, WindDirection- 8
performance activities Relative, GPSSpeedOverGround,
DistanceOverGround, Atmospheric-
Pressure, Rower3InBed, Hour,
RowerlInBed, WindDirectionBow,
Rower4Effectiveness
cry On sea Assign sea WindDirectionRelative, Rower4- 29
anchor during anchor day- Effectiveness, Hour, ShipRoll, Rower4-
the day time activities InBed, RowerlEffectiveness, Rower3-
Effectiveness, GPSCourseOverGround,
SpeedOverGround, Atmospheric-
Temperature, WindDirectionBow,
RowerlInBed, WindSpeedRelative
ors One rower Set alerts to RowerlSleepWake, Rower2InBed, 6

is sleeping

visible (no tone)

Rower4SleepWake, Rower3SleepWake,
Rower2SleepWake, Rower4InBed,
RowerlInBed

reported, the contexts for sea anchor (at day or night) were totally unpredictable
and variable. Possible (though not fully understood) conditions for (sea) anchoring
could be rower fatigue or sickness or bad weather conditions. In any of these cases,
identifying which sensors would indicate sea anchor was not possible at design time.

Following the steps in ACon we first had to identify contextual data in which
the contextual requirement appeared to be valid. We manually identified sea anchor
conditions through an iterative process of inspecting log data, listening to audio files,
and analyzing the sensor data visually. The Speed Over Ground sensor was not
relevant as its values close to 0 could have indicated sea anchor but also rowing

against heavy winds. The visual inspection of the graph showing the combination of

93

031114 311214 081314 1 @514 14 031514 03116 14

Figure 6.7: Anomalous user behavior indicates sea anchor conditions

actigraphy measurements for all four rowers was more useful. Figure 6.7 shows the
rowers movements in different colors for each rower on the y-axis over a period of eight
days (x-axis). Alternating clusters of similar movements show normal user behavior
in the right dotted box — two pairs of rowers rowing in alternating shifts of 4 hours,
24 hours a day. The left continuous lined box shows anomalous user behavior for three
sequential days. This anomalous behavior coincided with the times when the daily
logs indicated that the rowers were actually on sea anchor. These are the conditions
that represent the context for sea anchor at night and during the day. For the shown
time at night it was discovered that at least three rowers are resting/sleeping during
the times shown in "night" boxes. Given that there were only two sleeping spots in
the cabin, these conditions could not be predicted by the analyst at design time.

Having identified the context "on sea anchor at night" we next had to identify
the sensors and their values that correlated with this context. We used data mining
algorithms on the sensor readings to identify frequent patterns that correlated with
this context. First, we preprocessed the sensor data for the data mining by merging
sensor data from all sensors into a single data set. As some sensors had measurements
every minute, some every couple of minutes, and some every 15 minutes, we filled the
entries in between by taking the last sensed measurement. Finally, we normalized all
sensor readings.

Next, we considered data mining algorithms appropriate to the system’s available
processing resources (e.g., battery power and CPU). Because ToTEM is implemented

on a mobile smartphone we choose JRip [128, 79|, a rule-based classifier that uses

94

Cry crs

1 L] L2 L 1 o o
05 05 ¢ 0ed
0 0 0 «‘WM 0

01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26

1 . 1 1 . 1 . L d . 1 Wl
0.5 \’/\I\W‘ osf\ f 0.5 05 W 05
0 0 0 0 0

01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26

. 1 1 . 1 . . . 1 W’
0.5 g 0.5 0.5 0.5

0 0 0 NW 0

01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26 01/22 02/04 02/16 03/01 03/13 03/26

11 40 90-00000-0000900009 1
0.5 0.5

Precision
o
o
7 ﬁ
g
w
L]

[

|

Recall

1

0.5

5
i

F-Measure

0

Figure 6.8: Time series analysis of contextual rules generated by the JRip algorithm
for the five contextual requirements from Table 6.5. Fach column shows precision,
recall, and f-measure of correctly identified context related to each contextual require-
ment.

relatively few system resources. JRip produces a series of rules that can be converted
into a series of "if...then statements" for system implementation. These represent the
sensors and associated threshold values that characterize the context conditions for a
particular contextual requirement.

Table 6.5 shows the first 13 sensors with the highest frequency in the rules gener-
ated by JRip for each of the five contextual requirements for day 53 in the trip. These
rules represent the operationalization of context for the contextual requirements in

our case study.

6.4.3 Evaluation of Data Mining (Rules):

We validated our context operationalization results on all five contextual requirements
through 1) statistical analysis of the data mining algorithms and 2) interviews with
the rowers.

1) Statistical analysis. We performed two statistical analyses based on accumu-
lated data to validate the rules (operationalized context) generated by the JRip al-
gorithm.

(A) For any day of the trip, we used the accumulated data to up to that day in
a 10-fold cross validation to check the data mining algorithms’ performance on the
data collected up to that point. During the 10-fold cross validation the collected data
is randomly partitioned into 10 data sets of equal size. The data mining classifier is

trained on 9 data sets (the training data set) and tested on the data set that is left

95

(validation data set). This procedure is repeated 10 times, making sure that each of
the 10 data sets is used only once as the validation data set. The means is determined
out of the 10 results.

For the 10-fold cross validation we used Weka?, which accounts for skewed data sets
(relevant for most of our contextual requirements) by stratifying the folds accordingly
(see |57], page 50). The 10-fold cross validation trains and classifies the context
conditions on past collected data. The results were very high with average values
between 98-99% for each of the precision, recall, and f-measure respectively for all five
contextual requirements. We conclude from this analysis that the classifier performs
well if applied on past data to classify events in the past.

(B) To assess the predictive power of the data mining classifier, we also applied
the classifier on "future sensor data". We were interested in how rules, produced at
one point in time, would classify context conditions at future points during the rowing
trip. An accurate runtime classification of ACon is the major step for the satisfaction
of contextual requirements. Therefore, we conducted a time series analysis of the
classifier which trains on past contextual data and tests on future contextual data
for the evaluation of the data mining approach in ACon. This is a stricter, but more
realistic evaluation of the generated rules as it shows results as if ToTEM would have
been used at runtime during the rowers trip. For our evaluation of the classifier we
use the measurements precision, recall and F-measure. Precision shows how many of
the cases that were identified as the desired context condition by the classifier are
actually correct (compared to real life). Recall shows how many of all desired context
instances existing in the sensor data set are also found by the classifier. F-measure is
the harmonic means of precision and recall.

We demonstrate our results from the analysis for precision, recall and F-measure
for each of the five contextual requirements (cr; - crs) in Figure 6.8, represented
each in a separate sub-graph. The x-axis of each sub-graph shows the time of the
trip for which we had sensor data (January 22nd to March 26th), the y-axis the
normalization of the represented measures precision/recall/F-measure. Each grey
diamond that occurs along the x-axis indicates our evaluation of the data mining
classifier produced at that date (e.g., the first grey diamond represents our analysis
for the day January 25th). The measurement is determined based on a classifier built
on the sensor data up to that day (e.g., January 25th) and tested on the rest of the
sensor data from that point on to March 26th.

Zhttp:/ /www.cs.waikato.ac.nz/ml/weka

96

The times when we did the validation of the operationalization (grey diamonds)
represent times when ACon could have triggered the (re-)operationalization based
on the four cases of the ACRFL when used at runtime. In our post-trip analysis
we chose to operationalize the context on day three for the first time, followed by
a (re-)operationalization every third day. Hence, day three covers case 1 as there
did not exist an operationalization before. Because the classification results of the
10-fold cross validation are quite good for these instances already, ACon would store
this operationalization in the knowledge base. Every following grey diamond (besides
the ones that are following the circles) represents cases where the users might have
indicated cases where contextual requirements are not satisfied (case &) or indicate
effects of uncertainty (case 4). In the absence of real-time data on the user-system-
interaction we applied heuristics in which such cases would appear every third day
and therefore operationalize the context for these days.

In Figure 6.8, the times when sensor loss occurred are indicated by black filled
circles. The first sensor loss (representing case 2 a)) was due to the need for energy
conservation and affected the environmental measurements (wind speed, wind direc-
tion, ship roll, ship pitch, atmospheric temperature, and atmospheric pressure). The
second black filled circle shows sensors gained for the previously lost environmental
sensors (representing case 2 ¢)). The third circle shows the second sensor loss (again
case 2 a)), the biometric sensor for one of the rowers.

For cry, crs, and crs we observe that the classifier results improved in the first
18 days, going up to over 95% for each measurement. This indicates that ACon
adapts to the runtime conditions and shows great results for the three contextual
requirements after a learning phase of about 18 days. After the first sensor loss (first
black filled circle) cry drops in recall, but recovers very fast. Similar with crs, which
also drops precision a bit, again it recovers fast. For the second sensor loss we do not
have enough sensor data to evaluate the effect of this sensor loss for all contextual
requirements, besides cry. For cry recall drops about 10%, whereas precision stays the
same. For contextual requirements that are prone to an unpredictable environment
(cry and cry), precision, recall, and f-measure fluctuate more than for the other three
contextual requirements over time. Recall of c¢r; is better than for cry. This might
be due to the fact that being on sea anchor allows the rowers to have an additional
rest, resulting in patterns in the sensor data that measure the sleeping times, whereas
the daily activities of the rowers when on sea anchor seem to be quite unpredictable

(e.g., cleaning the boat, catching up with activities that they do not have time for on

97

regular days).

In summary, the time series analysis shows that for three out of five contextual
requirements ACon would have adapted at runtime after 20 days if used in our ocean
rowing example, producing very high results for precision, recall and F-measure. For
all three contextual requirements it was possible to achieve similar results even after
(the first) sensor loss occured which seemed to affect the classification of the context
conditions in first place. For cr; the data mining classifier achieved at certain time
periods results of about 90% and even more after 27 days of the trip for recall, but
only about 60% in precision. Depending on the circumstances this result is better
than having no support for the adaptation. Only for c¢ry the data mining classifier
delivered poor results over the entire trip.

2) Two interviews with the rowers to validate the discovery and operationalization
of the five contextual requirements confirmed that the context we identified was cor-
rect and that the rules produced by data mining were appropriate (we discussed an
excerpt of them). Furthermore, the rowers indicated that they would like to use the
functionality of the contextual requirements (even if the classification of the context
delivers low performance results) as early as possible during their next trip. They
were willing to help train the classifier (by giving feedback about the correctness of

the classification) rather than not using the systems adaptation.

6.5 Discussion

In this chapter we presented ACon, an approach that uses data mining techniques to
operationalize context in contextual requirements at runtime. ACon uses a feedback
loop to maintain an up-to-date knowledge about contextual requirements based on an
up-to-date information about the context in which contextual requirements are valid
at runtime. Upon detecting that contextual requirements are affected by runtime
uncertainty, ACon integrates data mining algorithms that analyze contextual data to
determine the context in which contextual requirements are valid, thus adapting the
context information in the knowledge base. ACon includes the interaction with end-
users as part of a semi-automatic approach in which the human is in the loop. In a
preliminary evaluation, we evaluated the performance of the data mining algorithms,
which lie at the core of ACon. In discussing our approach, we first review the threats
to validity in our evaluation, then discuss the applicability of ACon to other domains,

ACon’s relationship to other research approaches in the literature, as well as possible

98

extensions of ACon.

6.5.1 Threats to Validity
Internal Validity

With respect to internal validity, we see possible threats in the fact that we might have
been biased in our evaluation. While we took great care to not influence the outcome
during (manual) preparation of data, it cannot be guaranteed that no problem was
introduced in this step. Also, we relied on interviews with the rowers for establishing
the usefulness of our results. Although we carefully designed the interview guide, it
is possible that the way we asked could have influenced the outcome. In addition, the
rowers might have been biased towards helping the researchers and towards confirming
the researchers goal. We believe that plans to actually use the system on the rowers’

next trip mitigated this problem to a large extend.

Construct Validity

A threat to construct validity is that our evaluation of ACon was conducted through
a post-trip analysis of the runtime contextual data in relation to the identified contex-
tual requirements. We applied data mining on the contextual data to operationalize
the context (i.e. identify measurable context conditions) in which the rowers’ contex-
tual requirements were valid. ACon was not used during TOTEM’s runtime execution
and our evaluation could be affected by our interpretation of the context where the
contextual requirements appeared to be valid. At the same time however, the post-
trip analysis provided us with an unique evaluation setup not possible if ACon would
have been implemented and evaluated at runtime. It enabled us to apply data mining
algorithms on part of the contextual data and evaluate the results on the rest of the
data (which would have been future contextual data if ACon had been evaluated at

runtime).

Conclusion Validity

In our evaluation we used five contextual requirements that we identified after the
trip. We achieved results of over 90% for three out of five contextual requirements for
the measurements precision, recall and F-measurement. The classifier for the other

two requirements was at about 90% and even higher after 27 days of the trip for

99

recall, and about 60% for precision. However, for one contextual requirement the
results were very poor. This might be due to two reasons: 1) the data set for the
contextual data that had to be classified as the valid context was the smallest data
set of all five contextual requirements and might not have been sufficient to find a
correlation, and 2) the data points that we had for the valid context consisted of
times with little repeatability (i.e., the rowers being on sea anchor during the day

and executing random activities).

External Validity

Our evaluation is highly specific to the case study and provides one example of how it
is possible to automatically update context operationalization to improve the mapping
of system behavior to valid context. In the specific case, even moderate accuracy
promised value to the rowers and failure to execute a requirement would not imply
immediate danger. For safety critical systems, an extensive assessment would be
needed, which might prove difficult because of the high level of uncertainty in system,
environment, and technical approach (i.e. machine learning). In any case we suggest
to provide an option for users to override a decision of the system in the case that
it fails to adapt correctly to the users’ needs. Observing such user interference could
prove to be a valuable information source for the adaptive system by itself and we

encourage future research in that direction.

6.5.2 Application of ACon to other domains

ACon is well suited for domains with an unobservable environment, like the ocean
rowing domain —which represents a dynamic, uncertain environment. We found that
ACon can be applied for the operationalization of context and also trigger continuous
adaptation of contextual requirements when runtime uncertainty is identified. Nev-
ertheless, ACon only works semi-automatically as it needs the help of end-users in
using the functionality manually before ACon starts to adapt to the context in which
the user executes the functionality. Additionally, the end-user has to correct the sys-
tem when requirements are not satisfied by the system or affected by environmental
uncertainty.

ACon requires human-system interaction to achieve best results. Therefore, Acon
is suited for not safety-critical systems, where human intervention is possible and

timely responses not critical. The applicability of ACon for safety-critical systems

100

would require further research on validation and verification of the data mining results.
Additionally, other artificial intelligence techniques might be better suited in the area
of safety-critical system (e.g., Artificial Neural Networks [80]).

The applicability of ACon to complex environments deserves some reflection. On
the one hand, though the operational setting and direct users of ToTEM are relatively
unique (i.e., four elite athletes on an open-ocean rowing trip), the overall challenge
of developing a system for an uncertain operating environment is not. The analysis
of uncertain operating environments for context becomes increasingly significant as
mobile and cloud system developers create products that are used by extremely broad
audiences in unexpected settings. Considering the example of a typical smart city sce-
nario, with literally thousands of sensors continuously sending information that may
be used for example by e-mobility services, ACon may provide significant value. For
instance, one of the most important challenges that smart cities face is to counteract
sensor damage or calibration loss. Since the cost to repair an individual unit is high
due to the human involvement required, it is often the case that the sensor is discon-
nected until there are several damaged sensors in a relatively small area. Developers
in these cases cannot anticipate the full scope of scenarios, and context changes that
may occur at runtime. ACon can support developers in designing and implementing
systems for such uncertain environments to support self-adaptive systems in changing
contexts evolving under unknown conditions.

The smart city example naturally raises the concern of scalability of ACon. On the
one hand, it becomes necessary to manage hundreds of contextual requirements that
are represented in the system. Managing a large amount of contextual requirements is
inherently complex, but ACon partially mitigates this problem thanks to the feedback
loop and due to having one central place where adaptation is triggered and updates
are executed.

On the other hand, we need to consider the behavior of data mining techniques for
these large data sets. Jacobs discusses performance for big data, including examples
of sensor data bases [71]. Jacobs argues that sequential access is very fast and is
suitable for big data. The algorithm we used in our evaluation (JRip) performs
only "sequential passes" over contextual data. Therefore, we may reasonably expect
that ACon would scale even in this extreme smart city setting, although of course

validation by experimentation is required.

101

6.6 Chapter Summary and Future Work on Evolu-

tion of Contextual Requirements

In this chapter we presented ACon, a novel approach for effective integration of opera-
tionalization and continuous evolution of the context in which contextual requirements
are valid. ACon is targeted to systems that operate in uncertain environments and it
uses data mining techniques to analyze sensor data to determine an up-to-date opera-
tionalization of context. ACon supports (semi-)automatically the long-term evolution
of contextual requirements through the use of a feedback loop to detect contextual
requirements affected by runtime uncertainty:.

The development of ACon was based on the framework presented in Chapter
4 and focused on identifying contextual requirements that are affected by runtime
uncertainty and supporting the evolution of the context (operationalization) of such
contextual requirements at runtime. The application of data mining techniques in the
evaluation scenario of the ocean rowing domain has demonstrated its great potential
and has shown that supporting the evolution of contextual requirements leads to a

better adaptation to end-users’ needs over time.

Future Work on Evolution of Contextual Requirements

Further research on the evolution of contextual requirements has to include, based
on the framework, support for two tasks: the evolution of the system behavior and
the context in which the behavior is valid. For the purpose of evaluation, existing

implementations could be used (e.g., the Tele Asisstance System [136]).

Transition (1) - Evolution of the Context of a Contextual Requirement

We have presented an approach (ACon) as a first step towards using machine learning
techniques to support self-adaptive systems in the evolution of contextual require-
ments. Our evaluation of ACon showed great results for four out of five contextual
requirements. The next step would be to further explore the strengths and limitations
of ACon, as well as to explore the application of ACon to other domains. An ex-
tensive evaluation would allow us to experiment with different options and improve
details of ACon. For example, one area to explore is the application of adaptive mon-
itoring. We could monitor the context more often in cases where many requirements

are violated. Furthermore, we can investigate different policies in the determination

102

of the quality of data mining results. Currently, we are suggesting to use a threshold
for the characteristics of data mining as policy.

In ACon we have viewed the context on the lower level, on the sensor level, while
keeping the context description firm. The next step would be to support the evolution
of the higher level context. There will be cases at runtime in which the context has to
evolve on the higher level (completely new context of validity). We need techniques
to identify the need for the evolution of the higher level context and to support its
evolution.

Conteztual requirements that are never executed are a source for contextual re-
quirements that need evolution. Reasons for never executed contextual requirements
might be a context (in which the contextual requirement is valid) that never appears
in reality. It is important that a self-adaptive system identifies such cases and acts on
them, potentially with humans in the loop to investigate this situation. This would
extend our ACon approach, which so far triggers operationalization for cases when
no operationalization is given, problems with the monitoring infrastructure occur, a
contextual requirement is violated, or a contextual requirement is executed in a wrong
context.

Another research direction in the area of evolution of contextual requirements is
to combine ACon with RELAX-based approaches to uncertainty mitigation [105]. In
particular, we could consider applying the principle of goal relaxation for the particular
situations where the data mining techniques applied in ACon are not able to discover a
clear correlation between context conditions and contextual requirement satisfaction.
Hence, the evolution of the context description would be a relaxation of the context
conditions.

It would be worth exploring how the evolution of the social contert in contex-
tual requirements can be supported at runtime. Understanding the human context
is an important part of requirements elicitation activities [60]. Recently, Georg et
al. [62] have presented the use of Activity Theory and goal/scenario modeling for
requirements evolution, considering the social context. Their methodology uses mon-
itoring capabilities to determine the effects of potential changes in the system (e.g.,
changes in the stakeholders’ social constraints). These changes are used to determine
system evolution. It would be worth exploring how such approaches, that consider
the evolution of requirements due to social constraints could be used to support the
(automatic) evolution of the (social) context in which contextual requirements are

valid.

103

Transition (2) - Evolution of the System Behavior in a Particular Context

At runtime, the system behavior for some of the contextual requirements might be
outdated, for example because the end-user needs have changed. Support for the
evolution of the system behavior might consider the context of validity and observe
the end-users in their needs in this particular context. For example, the interaction
of the end-users with a cyber-physical system can be observed [24]. We can derive
the expected user behavior through considerations of the expected system behavior.
Tracking deviations from expected end-user behavior in the particular context might

indicate the need for the evolution of the corresponding contextual requirement.

For example, imagine the expected system behavior is “alarming the end-user
about a task”. During the alarm we expect the end-user to pick up the phone, switch
the alarm off and execute the task. If the user does not execute this task, but instead
focuses on another task, this might require the system to consider the "new" task

and evolve.

Furthermore, the exploration of automated support for the automatic identifica-
tion of outdated requirements might be a valuable input to support the evolution
of contextual requirements. Daun et al. [44, 45| recently presented an approach
that supports the automatic identification of outdated requirements to support the
requirements engineer in validating requirements against stakeholder intentions and
correcting the system behavior. It is worth exploring whether and how such tech-
niques can be used in adaptive systems to identify and evolve system behavior of
contextual requirements. Recently, Vassev and Hinchev [131] introduced autonomy
requirements — requirements that are able to learn and adapt autonomously. The
presented concepts might be helpful in the case of contextual requirements as well.

End-users might be a valuable source for information concerning the evolution
of the system behavior in contextual requirements. Almaliki et al. [15] recently
presented an empirical study in which they explore the adaptive acquisition of user
feedback at runtime. Such source of information might be valuable in developing

support for the evolution of contextual requirements.

104

Chapter 7
Conclusion

In this chapter we summarize this dissertation, and outline its contributions and

future work.

7.1 Dissertation Summary

Based on our preliminary works as well as a literature review, we identified the need
for requirements that are only valid in a specific context, which we call contextual
requirements. The capture and evolution of contextual requirements poses significant
challenges for research in requirements engineering. These challenges include the
capture of contextual requirements at design time as well as runtime when additional
information about operational environment and end-user needs becomes available. In
addition, we have to support the evolution of contextual requirements at runtime,
for example in cases where runtime uncertainty affects the satisfaction of existing
contextual requirements, to ensure the system is able to satisfy all end-user require-
ments and not fail due to uncertainty that it will encounter in its lifetime. Hence,
the goal of this dissertation was to investigate how to capture contextual requirements
and support their evolution to address uncertainty during the design and operation of

adaptive systems.

In addressing this research goal, the dissertation tackled the following research
questions:
Research question 1: What are the essential elements of the capture and evolution

of contextual requirements for adaptive systems?

105

The research methodology included a literature survey in the area of requirements
engineering and context management for self-adaptive systems. We studied this lit-
erature and derived the essential elements of the capture and evolution of contextual
requirements for adaptive systems.

Research question 2: How can existing requirements elicitation techniques help
elicit contextual requirements at design time?

In a case study we explored the use of existing requirements elicitation techniques in
the elicitation of contextual requirements. Taking the role of the requirements ana-
lyst, we explored this question within a software project at the University of Victoria
and applied different requirements elicitation techniques (e.g., interviews, prototyp-
ing, scenarios, goal-based approaches).

Research question 3: How can the evolution of contextual requirements that are
affected by uncertainty be supported at runtime?

In this research question we explored the use of existing techniques such as data min-
ing algorithms and feedback loops to support the evolution of contextual requirements
in the face of uncertainty (i.e., unpredictable environment and sensor failure). We

concentrated on the evolution of the context part of contextual requirements.

This dissertation therefore brings contributions of both theoretical and empirical
nature, as follows:

Contribution 1 (theoretical): This dissertation presented a framework for the
capture and evolution of contextual requirements for adaptive systems (cf. Section
7.1.1). We applied parts of the framework in two investigations, which result in two
further contributions.

Contribution 2 (empirical): Findings from an empirical investigation on the
usefulness of existing requirements elicitation techniques for the capture of contextual
requirements at design time result in the second contribution of this dissertation (cf.
Section 7.1.2).

Contribution 3 (theoretical): As the third contribution, we present an ap-
proach for supporting the runtime evolution of the context in which contextual re-

quirements are valid (cf. Section 7.1.3).

106

7.1.1 Contribution 1: A Framework for the Capture and Evo-
lution of Contextual Requirements
We presented a framework for the capture and evolution of contextual requirements.

Figure 7.1 summarizes the concepts of the framework, which is based on three ele-

ments:

Capture Evolution

awsghun - a2l | = NOL needed

Contextugal ~ |

Design Elicitation:

Time Partial to complete knowledge H requiremen; | ReaUreme
Tdesign ti design tim
Path 1: (3) + (2) = contextual req.
Path 2: (4) + (1) = contextual req. e Context _gesiop

i - Partial knowledge
Discovery: Path 1: (3) or path 2: (4)

runtim

Contextual >

" Requirement
Requirement

funime | _aesign ||| Eyolution:
e
Context___|

désigritimel
runtimp

Partial to complete knowledge (reuse knowledge from
design time)

Path 1: (3 from design time) + (2) = contextual req.

Path 2: (4 from design time) + (1) = contextual req.

Known Req

Known Context Unknown
runtimé

Runtime

Contextlal
Requirement

Unknown

Unknown Known Req

Partial to complete knowledge
Path 1: contextual req. + (2) = evolved

Partial to complete knowledge (only runtime) context in contextual req.
Path 1: (3) + (2) = contextual req. Path 2: contextual req. + (1) = evolved
Path 2: (4) + (1) = contextual req. requirement in contextual req.

Figure 7.1: Summary of the framework on the capture and evolution of contextual
requirements.

1) Context vs. system behavior in contextual requirements: Adaptive systems need
to handle runtime uncertainty, which makes it impossible to have complete knowledge
at design time about end-user needs and operational environment. Therefore, adap-
tive systems require a flexible approach in the capture and evolution of contextual
requirements. To enable flexibility, our framework defined a contextual requirement
consisting of two parts: the system behavior and the context in which the contex-
tual requirement is valid. By considering the system behavior and context as two
separate entities in contextual requirements we are able to capture and evolve only
parts of contextual requirements, for example when more information on the context
of validity is available at runtime.

2) Runtime vs. design time activities: Adaptive systems are developed at design
time and can be extended as well as evolve at runtime. Hence, we have to consider
design and runtime activities in capturing and supporting the evolution of contextual

requirements. Motivated by the literature, the framework differentiates between the

107

capture of contextual requirements at design and runtime. We referred to the capture
at design time as elicitation of contextual requirements, and the capture at runtime
as discovery of contextual requirements. The evolution of contextual requirements
takes place at runtime and is related to existing contextual requirements.

3) Partial vs. complete knowledge of contextual requirements: Based on the previ-
ous concept of conceptually separating requirement and context, we had to consider
partial knowledge of contextual requirements. Studying the capture and evolution
of contextual requirements involved two parts: capture and evolution of the system
behavior, and capture and evolution of the context in which the system behavior is
valid. To enable the capture and evolution of a part of contextual requirements, the
framework included a model that transitioned from partial knowledge to complete
knowledge of contextual requirements for both, elicitation and discovery of contex-
tual requirements. In supporting the evolution of contextual requirements we assumed
that both, the context and system behavior, are known at runtime and the evolution
is supported for (a part of) the contextual requirement.

The framework facilitates reasoning about the activities necessary for the elic-
itation, discovery, and evolution of contextual requirements. It facilitates decisions
about which techniques to use for each of these activities. The three essential elements
of the capture and evolution of contextual requirements offer value for practitioners
as well as researchers in the field. Practitioners can use the framework to set up the
requirements capture process for adaptive systems. For researchers the framework
provides guidance to focus research activities and define research questions.

The framework tackles a gap in current requirements engineering research activ-
ities for adaptive systems. Most research in requirements engineering for adaptive
systems focuses on requirements specifications, requirements modeling, and require-
ments monitoring (e.g., contextual goal modeling |7], requirements monitoring [96])
leaving a gap in the early phases of requirements engineering. A recent literature re-
view has shown that there exist only three publications on the topic of requirements
elicitation as well as three for system evolution of self-adaptive systems [124].

The next two contributions are dedicated to investigations of techniques for the
capture (i.e., elicitation) and evolution of contextual requirements. Both contribu-
tions focused on the context part of contextual requirements (i.e., transition (1)).
The elicitation and evolution of requirements are both quite well studied topics. For
the elicitation and evolution of contextual requirements the challenge is to extend re-

quirements with the context of validity. Therefore, we chose to focus on the elicitation

108

and evolution especially of the context part in contextual requirements.

7.1.2 Contribution 2: Empirical Findings from Using Existing
Requirements Elicitation Techniques for the Elicitation

of Contextual Requirements

This dissertation brings empirical evidence from using and assessing the usefulness of
existing requirements elicitation techniques for the elicitation of contextual require-
ments in a real software acquisition project. The techniques we used were interviews,
focus groups, prototyping, scenarios, and goal-based analysis. Our findings suggest
that there is no need for new elicitation techniques for the elicitation of contextual
requirements. However, none of the existing requirements elicitation techniques used
in our case study was sufficient on its own. A combination of these techniques was
sufficient to elicit contextual requirements.

In the exploration in our case study we were able to document a number of contex-
tual requirements when applying particular requirements elicitation techniques. We
presented a step-based approach that helped us elicit contextual requirements. The
approach combined the elicitation techniques — interviews, prototyping, and focus
groups — in a particular order: After identifying requirements, we used interviews
to understand priorities of requirements. In the next step, prototyping was used to
gain a detailed understanding and establish a reference for negotiation. Finally, re-
quirements were prioritized in focus group. Conflicts between end-users concerning
requirements with different end-user priorities indicated requirements that were only
valid in a specific context. The specific context was further explored in interviews to
define contextual requirements.

Actual requirements engineering practice is rarely studied in real projects due to
the difficulty to carry out such studies given the human, organizational, and political
aspects that surround software projects [86]. Therefore, this case study is extra valu-
able as it contributes first hand insights on the application of requirements engineering

techniques in eliciting contextual requirements.

109

7.1.3 Contribution 3: Approach for Supporting the Evolution

of Contextual Requirements at Runtime

We presented an approach, ACon, that supports the evolution of contextual require-
ments affected by uncertainty. ACon updates the knowledge of contextual require-
ments by up-to-date information about the operationalization of context in which
contextual requirements are valid at runtime. In ACon, we used a feedback loop to
monitor contextual requirements and detect contextual requirements affected by un-
certainty. We applied data mining algorithms on contextual data (i.e., sensor data)
to update the context in which the system behavior was valid.

For evaluation, we used a wild and unpredictable environment (the ocean) with a
high impact on the volatility of requirements. Based on five contextual requirements
and contextual data from 46 sensors we applied data mining to make the context,
in which contextual requirements were valid, measurable. Further, we analyzed the
cases in which ACon would trigger the evolution of contextual requirements that are
affected by uncertainty. We could show that our approach would achieve excellent
results for four out of five contextual requirements after a period of 20 days into the
rowing trip.

When applying ACon, contextual requirements are continuously kept updated in
reaction to situations in which contextual requirements are affected by runtime un-
certainty. ACon covers a current gap in the state of the art and nourishes related
lines of research. For instance, it complements existing requirements monitoring ap-
proaches (e.g., the work by Oriol et al. [96]): The context operationalizations, derived
through ACon, can be used as monitoring specifications for contextual requirements,
thus allowing timely adaptation of the monitor in response to context changes. Thus,
ACon adds to the field of evolution requirements [121] by enabling systems to evolve

requirements flexible at runtime, instead of defining possible evolution at design time.

7.2 Future Work

In the following we sketch future work to devise support for the discovery of contextual
requirements at runtime. Future work for the elicitation and evolution of contextual

requirements has been presented in Chapter 5 and Chapter 6 respectively.

110

7.2.1 Discovery of Contextual Requirements at Runtime

We have investigated techniques for the elicitation and evolution of contextual re-
quirements. The discovery of contextual requirements is so far a relatively unexplored
research area and leaves room for future work. We have to develop techniques for
each of the four transitions described in the framework. Figure 7.1 gives an overview

of the framework.

Transition (4) - Discovery of Requirements

Traditional requirements elicitation techniques can be used for the purpose of cap-
turing the requirement. However, techniques that automate the discovery of (new)
requirements at runtime will be needed in self-adaptive systems. The discovery of a

requirement is a first step in the discovery of contextual requirements.

Transition (1) - From Requirement to Contextual Requirement

Existing requirements might require to be contextual requirements at runtime. Sup-
port for the discovery of requirements that are contextual has to be investigated.
Automatic support to identify such requirements, as well as automatic discovery of
the context in which such requirements are valid is challenging, but would be helpful
for self-adaptation of systems. Machine learning is worth exploring in this scenario,
similar to our application of data mining in the ACon approach. Cluster analysis
might help in discovering requirements that are always executed in one specific con-

text.

Transition (3) - Discovery of Context

In this step we start with the discovery of a context in which a system behavior
is needed. Again, at runtime techniques are needed for the discovery of context in
which a system behavior is needed. An automation of this task would be helpful, but

is challenging for self-adaptation of systems.

Transition (2) - From Context to Contextual Requirement

After discovering the context in which a particular system behavior is needed, we

have to discover the particular system behavior for this context. An automation

111

of this task would allow systems to self-adapt and discover new contextual require-
ments at runtime. For the automation of each of the transitions data mining and
feedback loops might be useful, similar to our ACon approach. While developing
ACon, we have partly applied data mining to operationalize the context in which
contextual requirements were valid (transition from context to contextual require-
ments). We captured the higher level context (and requirements) manually through
interviews with the users and runtime data analysis. Further investigation on this
topic is needed to develop a structured approach for the different tasks of contextual

requirements discovery.

The new area of self-adaptive systems is an exciting research domain that has al-
ready arrived. The limits of traditional requirements engineering are being stretched.
However, luckily new methods such as data mining show promise to leverage the
large amounts of runtime data and thus open up new directions for research into
requirements engineering at runtime. In the last couple of years, workshops emerged
on "Artificial Intelligence for Requirements Engineering (AIRE)", "Requirements at
Runtime", "Just-in-Time Requirements (JIT RE)", and "Requirements Engineering
for Self-Adaptive and Cyber Physical systems", which show the importance and at-
tention of the community on the topic of requirements engineering at runtime. This
thesis has provided a first, though hopefully significant step to support this exciting

future.

112

Bibliography

1]

2l

13l

4]

5]

(6]

17l

8]

Effectiveness of Requirements Elicitation Techniques: Empirical Results De-
rived from a Systematic Review. In Proceedings of the International Require-
ments Engineering Conference (RE’06), pages 179-188. IEEE , 2006.

Gregory D. Abowd and Elizabeth D. Mynatt. Charting Past, Present, and
Future Research in Ubiquitous Computing. ACM Transactions on Computer-
Human Interaction, 7(1):29-58, 2000.

Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, Sabine
Moisan, and Jean Paul Rigault. Modeling Context and Dynamic Adaptations
with Feature Models. In International Workshop Models@run.time at Models
(MRT 2009), pages 89-98, 2009.

Mikhail Afanasov, Luca Mottola, and Carlo Ghezzi. Towards Context-oriented
Self-adaptation in Resource-constrained Cyberphysical Systems. In Proceedings

of the International Computer Software and Applications Conference Workshop
(COMPSACW), pages 372-377, 2014.

Charu C. Aggarwal, editor. Managing and Mining Sensor Data. Springer, San
Mateo, USA, 2013.

[IA Al-Fataftah and AA Issa. A Systematic Review for the Latest Develop-
ment in Requirement Engineering. World Academy of Science, Engineering
and Technology, 64:800-807, 2012.

Raian Ali. Modeling and Reasoning about Contextual Requirements: Goal-based
Framework. PhD thesis, University of Trento, Italy, 2010.

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A goal-based framework for

contextual requirements modeling and analysis. Requirements FEngineering,
15(4):439-458, July 2010.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

113

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Reasoning with contextual
requirements: Detecting inconsistency and conflicts. Information and Software
Technology, 55(1):35-57, January 2013.

Raian Ali, Fabiano Dalpiaz, Paolo Giorgini, and Vitor E. Silva Souza. Re-
quirements evolution: From assumptions to reality. In Enterprise, Business-
Process and Information Systems Modeling, volume 81 of LNBIP, pages 372—
382. Springer, 2011.

Raian Ali, Alberto Griggio, Anders Franz, Fabiano Dalpiaz, and Paolo Giorgini.
Optimizing Monitoring Requirements in Self-adaptive Systems. In BPMDS
2012 and EMMSAD 2012, pages 362-377, 2012.

Raian Ali, Carlos Solis, Inah Omoronyia, Mazeiar Salehie, and Bashar Nu-
seibeh. Social Adaptation: When Software Gives Users a Voice. In Proceedings
of International Conference on Evaluation of Novel Approaches to Software En-

gineering, pages 28-30, 2012.

Raian Ali, Carlos Solis, Mazeiar Salehie, Inah Omoronyia, Bashar Nuseibeh,
and Walid Maalej. Social Sensing: When Users Become Monitors. In Proceed-
ings of European Software Engineering Conference (ESEC 2011), pages 476—
479, 2011.

Raian Ali, Yijun Yu, Ruzanna Chitchyan, Armstrong Nhlabatsi, and Paolo
Giorgini. Towards a Unified Framework for Contextual Variability in Require-
ments. International Workshop on Software Product Management, pages 31-34,
2009.

Malik Almaliki, Cornelius Ncube, and Raian Ali. The Design of Adaptive Acqui-
sition of Users Feedback: an Empirical Study. In Proceedings of International

Conference on Research Challenges in Information Science, pages 1-12, 2014.

Annie I. Anton. Goal-Based Requirements Analysis. In Proceedings of Interna-
tional Requirements Engineering Conference (RE 1996), pages 136-144. IEEE,
1996.

Annie I. Antéon and Colin Potts. Functional Paleontology: System Evolution
as the User Sees It. In Proceedings of International Conference on Software
Engineering (ICSE 2001), pages 421-430, 2001.

[18]

[19]

[20]

21

[22]

23]

[24]

[25]

[26]

[27]

114

Twan Basten, Roelof Hamberg, Frans Reckers, and Jacques Verriet, editors.
Model-Based Design of Adaptive Embedded Systems. Springer, 2013.

N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier. Requirements
Reflection: Requirements as Runtime Entities. In International Conference on

Software Engineering, pages 199-202, 2010.

Hugh Beyer and Karen Holtzblatt. Contextual Design: Defining Customer-

centered Systems. Interactive Technologies Series. Morgan Kaufmann, 1998.

N. Uday Bhaskar and Dr. P. Govindarajulu. Context Exploration For Require-
ments Elicitation In Mobile Learning Application Development. International
Journal of Computer Science and Network Security, 8(8):292-299, 2008.

Patrick Brézillon. Using Context for Supporting Users Efficiently. In Proceed-
ings of Hawaii International Conference on System Sciences, pages 1-9. IEEE,
2003.

Olesia Brill, Constanze Deiters, Ursula Goltz, Sandra Lange, Benjamin
Mensing, and Kurt Schneider. The RuleIT Methodology. Technical Report
December, NTH Focused Research School for IT Ecosystems, 2010.

Olesia Brill and Eric Knauss. Structured and Unobtrusive Observation of
Anonymous Users and their Context for Requirements Elicitation. In Proceed-
ings of International Requirements Engineering Conference (RE 2011), pages
175-184. IEEE, 2011.

Olesia Brill, Kurt Schneider, and Eric Knauss. Videos vs. Use Cases: Can
Videos Capture More Requirements Under Time Pressure? In Proceedings of
International Working Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ 2010), pages 30—44. Springer, 2010.

Manfred Broy. The 'Grand Challenge’ in Informatics: Engineering Software-
Intensive Systems. Computer, 39(10):72-80, 2006.

Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Hol-
ger Kienle, Marin Litoiu, Hausi A. Miiller, Mauro Pezzé, and Mary Shaw. Engi-
neering Self-Adaptive Systems through Feedback Loops. In Self-Adaptive Sys-
tems, pages 48-70, 2009.

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

115

Oscar Cabrera, Xavier Franch, and Jordi Marco. A Context Ontology for Service
Provisioning and Consumption. 2014 IEEFE Fighth International Conference on
Research Challenges in Information Science (RCIS), pages 1-12, May 2014.

Kyle R. Canavera, Naeem Esfahani, and Sam Malek. Mining the Execution
History of a Software System to Infer the Best Time for Its Adaptation. In
Proceedings of International Symposium on the Foundations of Software Engi-
neering (FSE 2012), pages 1-11. ACM, 2012.

Lorena Castaneda, Norha M Villegas, and Hausi a Miiller. Self-Adaptive Ap-
plications: On The Development Of Personalized Web-Tasking Systems. In

Proceedings of the 9th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems (SEAMS 2014), pages 49-54, 2014.

Viviana Castelli, Rodolfo Bertone, Pablo Thomas, and Alejandro Oliveros. A
Requirements Engineering Process extended to Context Information Manage-

ment. In Proceedings of International Conference on Research Challenges in
Information Science (RCIS 2011), pages 1-6. IEEE, 2011.

Guanling Chen and David Kotz. A survey of context-aware mobile computing
research. Technical report, Dartmouth Computer Science Technical Report
TR2000-381, 2000.

Betty H. C. Cheng and Joanne M. Atlee. Current and Future Research Di-
rections in Requirements Engineering. In Workshop on Design Requirements,
pages 11-43, 2009.

Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, and Jeff
Magee. Software Engineering for Self-Adaptive Systems: A Research Roadmap.
In Betty H. C. Cheng, editor, Self-Adaptive Systems, pages 1-26, Dagstuhl,
Germany, 2009. Springer-Verlag Berlin Heidelberg.

Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos Efs-
tratiou. Developing a Context-aware Electronic Tourist Guide: Some Issues and
Experiences. In Proceeding of annual SIGCHI Conference on Human Factors
in Computing Systems, pages 17-24. ACM Press, 2000.

Bee Bee Chua, Dan Bernardo, and June Verner. Understanding the Use of

Elicitation Approaches for Effective Requirements Gathering. In Proceedings

[37]

[38]

[39]

[40]

|41]

[42]

[43]

[44]

[45]

|46]

116

of International Conference on Software Engineering Advances (ICSEA 2010),
pages 325-330. IEEE, 2010.

Andreas Classen, Arnaud Hubaux, Franciscus Sanen, Eddy Truyen, Jorge Valle-
jos, Pascal Costanza, Wolfgang De Meuter, Patrick Heymans, and Wouter
Joosen. Modelling Variability in Self-Adaptive Systems: Towards a Research
Agenda. Workshop on Modularization, Composition and Generative Techniques
for Product-Line Engineering, 1(2):19-26, 2008.

IBM Corporation. An architectural blueprint for autonomic computing. White
paper, Fourth Edition, 2006.

IBM Corporation. Symptoms Reference specification, 2006.

John W. Creswell. Research Design - Qualitative, Quantitative, and Mized
Methods Approaches. SAGE Publications, 2nd edition, 2008.

Fabiano Dalpiaz. Fxploiting Contextual and Social Variability for Software
Adaptation. PhD thesis, University of Trento, Italy, 2011.

Renata Paola Dameri and Camille Rosenthal-Sabroux, editors. Smart City.

Progress in IS. Springer International Publishing, 2014.

Marian Daun, Bastian Tenbergen, Jennifer Brings, and Thorsten Weyer. Docu-
menting Assumptions about the Operational Context of Long - Living Collab-
orative Embedded Systems. In Gemeinsamer Tagungsband der Workshops der

Tagung Software Engineering, pages 115-117, 2015.

Marian Daun, Thorsten Weyer, and Klaus Pohl. Validating the Functional De-
sign of Embedded Systems against Stakeholder Intentions. In Proceedings of
the International Model-Driven Engineering and Software Development (MOD-
ELSWARD 201/), pages 333-339, 2014.

Marian Daun, Thorsten Weyer, and Klaus Pohl. Detecting and Correcting
Outdated Requirements in Function-Centered Engineering of Embedded Sys-
tems. In Proceedings of the International Working Conference on Requirements

Engineering: Foundations for Software Quality, pages 65-80, 2015.

Alan M. Davis. : A New Development Approach. IEEE Software, 9(5):70-78,
September 1992.

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

117

Oscar Dieste and Natalia Juristo. Systematic review and aggregation of em-

pirical studies on elicitation techniques. Transactions on Software Engineering,
37(2):283-304.

Tore Dybaand Daniela S. Cruzes. Process Research in Requirements Elici-
tation. In Proceedings of International Workshop on Empirical Requirements
Engineering (EmpiRE 2013), pages 3639, 2013.

Steve Easterbrook. Handling Conflict Between Domain Descriptions With
Computer-Supported Negotiation. Knowledge Acquisition: An International
Journal, 3:255-289, 1991.

Steve Easterbrook. Domain Modelling with Hierarchies of Alternative View-
points. In Proceedings of International Symposium on Requirements Engineer-
ing, pages 65-72. IEEE, 1993.

Sahar Ebrahimi, Norha M Villegas, Hausi A. Miiller, and Alex Thomo. Smarter-
Deals: A Context-aware Deal Recommendation System based on the Smarter-
Context Engine. In Conf. of the Center for Advanced Studies on Collaborative
Research, pages 116-130. IBM Corp., 2012.

Yonet a. Eracar and Mieczyslaw M. Kokar. Architecture for software that
adapts to changes in requirements. Journal of Systems and Software, 50(3):209—
219, 2000.

Naeem Esfahani, Ahmed Elkhodary, and Sam Malek. A Learning-Based Frame-
work for Engineering Feature-Oriented Self-Adaptive Software Systems. Trans-
actions on Software Engineering, 39(11):1467-1493, 2013.

Michael Fahrmair, Bernd Spanfelner, and Wassiou Sitou. Unwanted Behavior
and its Impact on Adaptive Systems in Ubiquitous Computing. In Workshop on
Adaptivity and User Modeling in Interactive Systems, Hildesheimer Informatik-
Berichte, pages 36—41, 2006.

Stephen Fickas and Martin S. Feather. Requirements Monitoring in Dynamic
Environments. In Proceedings of International Symposium on Requirements
Engineering (RE 1995), pages 140-147, 1995.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

118

Anthony Finkelstein and Andrea Savigni. A Framework for Requirements Engi-
neering for Context-Aware Services. In Proceedings of International Workshop

From Software Requirements to Architectures, pages 2-7, 2001.

George Forman and Martin Scholz. Apples-to-Apples in Cross-Validation Stud-
ies: Pitfalls in Classifier Performance Measurement. Special Interest Group on
Knowledge Discovery and Data Mining, 12(1):49-57, 2010.

Konstantinos G. Fouskas, Adamantia G. Pateli, Diomidis D. Spinellis, and Heli
Virola. Applying Contextual Inquiry for Capturing End-Users Behaviour Re-

quirements for Mobile Exhibition Services. In M-Business, volume 81, pages
1-23, 2002.

Xavier Franch, Paul Grunbacher, Marc Oriol, Benedikt Burgstaller, Deepak
Dhungana, Lidia Loépez, Jordi Marco, and Joao Pimentel. Goal-Driven Adap-
tation of Service-Based Systems from Runtime Monitoring Data. Proceedings

of Annual Computer Software and Applications Conference Workshops, pages
458-463, 2011.

Rubén Fuentes-Fernandez, Jorge J. Gomez-Sanz, and Juan Pavon. Understand-

ing the human context in requirements elicitation. Requirements Engineering,
15(3):267-283, August 2009.

Hans W. Gellersen, Albrecht Schmidt, and Michael Beigl. Multi-Sensor
Context-Awareness in Mobile Devices and Smart Artifacts. In Mobile Networks
and Applications 7, pages 341-351. Kluwer Academic Publishers, 2002.

Geri Georg, Gunter Mussbacher, Daniel Amyot, Dorina Petriu, Lucy Troup,
Saul Lozano-fuentes, and Robert France. Synergy between Activity Theory
and goal /scenario modeling for requirements elicitation, analysis, and evolution.
Information and Software Technology, 59:109-135, 2015.

Ravi Kumar Gullapalli, Chelliah Muthusamy, and A. Vinaya Babu. Data Min-
ing in Adaptive Control of Distributed Computing System Performance. Journal
of Computer Trends and Technology, 2(2):128-133, 2011.

Emitza Guzman and Walid Maalej. Do Users Like this Feature? A Fine Grained
Sentiment Analysis of App Reviews. In Proceedings of the International Require-
ments Engineering Conference (RE 2014), pages 153-162. IEEE, 2014.

[65]

[66]

[67]

|68

[69]

[70]

[71]

[72]

73]

119

Sara Hassan, Nelly Bencomo, and Rami Bahsoon. Minimizing Nasty Surprises
with Better Informed Decision-Making in Self-Adaptive Systems. In Proceedings
of the International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2015), pages 134-144, 2015.

Jong-Yi Hong, Eui-Ho Suh, and Sung-Jin Kim. Context-aware systems: A lit-
erature review and classification. Expert Systems with Applications, 36(4):8509—
8522, May 2009.

Jennifer Horkoff, Rick Salay, Marsha Chechik, and Alessio Di Sandro. Sup-
porting Early Decision-Making in the Presence of Uncertainty. In Proceedings
of the International Requirements Engineering Conference (RE 201/), pages
33-42. IEEE, 2014.

Burkhard Igel, Erik Kamsties, Fabian Kneer, Bernd Kolb, and Markus Voelter.
Feedback-Aware Requirements Documents for Smart Devices. In Proceedings

of International Working Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ 2014), pages 119-134. Springer, 2014.

Paola Inverardi and Marco Mori. Feature Oriented Evolutions for Context-
Aware Adaptive Systems. In Proceedings of the Joint ERCIM Workshop on
Software Evolution (EVOL) and International Workshop on Principles of Soft-
ware FEvolution (IWPSE), pages 93-97, Antwerp, Belgium, 2010. ACM.

Paola Inverardi and Marco Mori. Requirements Models at Run-time to Support
Consistent System Evolutions. In Proceedings of International Workshop on
Requirements@Run. Time, pages 1-8. IEEE, 2011.

Adam Jacobs. The Pathologies of Big Data. Communications of the ACM,
52(8):36-44, 2009.

C’amara Javier, Gabriel A. Moreno, and David Garlan. Reasoning about Hu-
man Participation in Self-Adaptive Systems. In Proceedings of the International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2015), pages 146-156, 2015.

Joachim Karlsson, Claes Wohlin, and Bjorn Regnell. An evaluation of methods
for prioritizing software requirements. Information and Software Technology,
39(14-15):939-947, January 1998.

[74]

[75]

[76]

[77]

78]

[79]

[30]

[81]

[82]

[83]

120

Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
IEEE Computer, 36(1):41-50, January 2003.

Karl E. Klein and Hans M. Wegmann. Significance of Circadian Rhythms in
Aerospace Operations. Technical report, Neuilly-Sur-Seine: NATO-AGARD,
AGARDograph No.247, 1980.

Alessia Knauss. On the Usage of Context for Requirements Elicitation: FEnd-
User Involvement in IT-Ecosystems. In Proceedings of International Require-
ments Engineering Conference (RE 2012), Doctoral Symposium, pages 345 —
348. IEEE, 2012.

Alessia Knauss and Daniela Damian. Requirements Elicitation Driven by End-
Users. In Proceedings of Requirements Engineering: Foundation for Software
Quality (REFSQ 2012), 2012.

Alessia Knauss, Daniela Damian, and Kurt Schneider. Eliciting Contextual
Requirements at Design Time: A Case Study. In Proceedings of International
Workshop on Empirical Requirements Engineering (EmpiRE 2014), pages 56—
63. IEEE, 2014.

Sotiris B. Kotsiantis. Supervised Machine Learning: A Review of Classification
Techniques. Informatica, 31:249-268, 2007.

Zeshan Kurd, Tim Kelly, and Jim Austin. Developing artificial neural networks
for safety critical systems. Neural Computing and Applications, 16(1):11-19,
2007.

Alexei Lapouchnian and John Mylopoulos. Modeling domain variability in
requirements engineering with contexts. In Proceedings of 28th International

Conference on Conceptual Modeling, pages 115 — 130, 2009.

Timothy C. Lethbridge, Susan Elliott Sim, and Janice Singer. Studying soft-
ware engineers: Data collection techniques for software field studies. Empirical
Software Engineering, 10:311-341, 2005.

Tong Li, Jennifer Horko, and John Mylopoulos. Integrating Security Patterns
with Security Requirements Analysis Using Contextual Goal Models. In The
Practice of Enterprise Modeling, pages 208-223. Springer Berlin Heidelberg,
2014.

[84]

[85]

[36]

[87]

[33]

[89]

[90]

[91]

[92]

193]

[94]

121

Walid Maalej and Dennis Pagano. On the Socialness of Software. In Pro-
ceedings of the International Conference on Dependable, Autonomic and Secure
Computing (DASC 2011), pages 864 — 871. IEEE, 2011.

Martin Maguire. Context of Use within usability activities. International Jour-
nal of Human-Computer Studies, 55(4):453-483, October 2001.

Neil Maiden. Exactly How Are Requirements Written? IEEFE Software,
29(1):26-27, 2012.

Neil Maiden, Alexis Gizikis, and Suzanne Robertson. Provoking Creativity :
Imagine What Your Requirements Could Be Like. IEEE Software, 21(5):68 —
75, 2004.

Neil Maiden and Gordon Rugg. ACRE: selecting methods for requirements
acquisition. Software Engineering Journal, 11(3):183-192, 1996.

Neil Maiden, Norbert Seyff, Paul Griinbacher, Omo Otojare, and Karl Mit-
teregger. Making Mobile Requirements Engineering Tools Usable and Useful. In

Proceedings of International Requirements Engineering Conference (RE 2006),
pages 29-38. IEEE, 2006.

Jose Luis Mate and Andres Silva. Requirements Engineering for Sociotechnical
Systems. 2005.

Marina Mongiello, Patrizio Pelliccione, and Massimo Sciancalepore. AC-
contract: Run-time verification of context-aware applications. In Proceedings
of the International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2015), pages 24-34, 2015.

Hausi A. Miiller and Norha M. Villegas. Runtime Evolution of Highly Dynamic
Software. In Evolving Software Systems, pages 229-264. Springer, 2014.

Linda Northrop, Richard P. Gabriel, Mark Klein, and Douglas Schmidt. Ultra-
Large-Scale Systems: The Software Challenge. Software Engineering Institute,
2006.

OAR Northwest. http://oarnorthwest.com/, last visit March 8th, 2015.

[95]

[96]

[97]

(98]

[99]

[100]

1101

[102]

103

104]

122

Bashar Nuseibeh and Steve Easterbrook. Requirements Engineering: A
Roadmap. In Proceedings of the International Conference on Software Engi-
neering (ICSE 2000), pages 35-46. ACM Press, 2000.

Marc Oriol, Nauman A. Qureshi, Xavier Franch, Anna Perini, and Jordi Marco.
Requirements Monitoring for Adaptive Service-Based Applications. Proceedings
of International Working Conference on Requirements Engineering: Foundation

for Software Quality (REFSQ 2012), pages 280-287, 2012.

Shari Lawrence Pfleeger and Joanne M. Atlee. Capturing the Requirements. In

Software Engineering: Theory and Practice, Fourth Edition. 2010.

Colin Potts and Idris Hsi. Abstraction and context in requirements engineering:

toward a synthesis. Annals of Software Engineering, 3:23-61, 1997.

Nauman Qureshi and Anna Perini. Engineering Adaptive Requirements. In Pro-
ceedings of Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2009), pages 126-131. IEEE, 20009.

Nauman A. Qureshi. Requirements Engineering for Self-Adaptive Software:
Bridging the Gap between Design-Time and Run-Time. PhD thesis, Univer-
sity of Trento, Italy.

Nauman A. Qureshi, Ivan J. Jureta, and Anna Perini. Requirements Engi-
neering for Self-Adaptive Systems: Core Ontology and Problem Statement. In
Proceedings of the International Conference on Advanced Information Systems
Engineering (CAiSE’11), pages 33-47, 2011.

Nauman A. Qureshi and Anna Perini. Requirements Engineering for Adap-
tive Service Based Applications. In Proceedings of International Requirements
Engineering Conference (RE 2010), pages 108-111. IEEE, 2010.

Nauman A. Qureshi, Anna Perini, Fondazione Bruno, Kessler Irst, Neil A.
Ernst, and John Mylopoulos. Towards a Continuous Requirements Engineering
Framework for Self-Adaptive Systems. In Proceedings of International Workshop
on Requirements@RunTime, pages 9-16, 2010.

Mona Rahimi, Mehdi Mirakhorli, and Jane Cleland-Huang. Automated Extrac-

tion and Visualization of Quality Concerns from Requirements Specifications.

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

123

In Proceedings of the International Requirements Engineering Conference (RE

2014), pages 253-262. IEEE, 2014.

Andres J. Ramirez, Erik M. Fredericks, Adam C. Jensen, and Betty H.C. Cheng.
Automatically RELAXing a Goal Model to Cope with Uncertainty. In Pro-
ceedings of Symposium on Search-Based Software Engineering, pages 198-212.
Springer, 2012.

Andres J. Ramirez, Adam C. Jensen, and Betty H. C. Cheng. A Taxonomy of
Uncertainty for Dynamically Adaptive Systems. In Proceedings of International

Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2012), pages 99-108. IEEE, 2012.

Andres J. Ramirez, Adam C. Jensen, Betty H. C. Cheng, and David B.
Knoester. Automatically Exploring How Uncertainty Impacts Goal Satisfaction.

In Proceedings of International Conference on Automated Software Engineering
(ASE 2011), pages 568 — 571. IEEE, 2011.

Per Runeson and Martin Host. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engineering,
14(2):131-164, December 2008.

Rick Salay, Marsha Chechik, Jennifer Horkoff, and Alessio Di Sandro. Manag-
ing requirements uncertainty with partial models. Requirements Engineering,

18(2):107-128, 2013.

Magzeiar Salehie and Ladan Tahvildari. Self-Adaptive Software: Landscape
and Research Challenges. Transactions on Autonomous and Adaptive Systems,
V(N):1-40.

Mohammed Salifu, Yijun Yu, and Bashar Nuseibeh. Specifying Monitoring and
Switching Problems in Context. In Proceedings of International Requirements
Engineering Conference (RE 2007), pages 211-220. IEEE, 2007.

Charles Samuels. Sleep, Recovery, and Performance: The New Frontier in High-
Performance Athletics. Physical medicine and rehabilitation clinics of North
America, 20(1):149-159, 2009.

[113]

114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

124

Peter Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel Letier, and Anthony
Finkelstein. Requirements-Aware Systems: A research agenda for RE for Self-

adaptive Systems. In Proceedings of International Requirements Engineering
Conference (RE 2010), pages 95-103. IEEE, September 2010.

Albrecht Schmidt. Ubiquitous Computing — Computing in Context. PhD thesis,
Lancaster University, 2002.

Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more to
Context than Location. Computers € Graphics, 23(6):893-901, 1999.

Kurt Schneider, Sebastian Meyer, Maximilian Peters, Felix Schliephacke, Jonas
Moérschbach, and Lukas Aguirre. Feedback in Context: Supporting the Evo-
lution of IT-Ecosystems. In Proceedings of International Conference on Prod-
uct Focused Software Process Improvement (PROFES 2010), pages 191-205.
Springer, 2010.

Norbert Seyff and Florian Graf. Mobile Discovery of Requirements for Context-
Aware Systems. In Conference on Requirements Engineering: Foundations for
Software Quality (REFSQ 2008), pages 183-197, 2008.

Norbert Seyff, Florian Graf, and Neil Maiden. Using Mobile RE Tools to Give
End-Users their Own Voice. In Proceedings of International Conference on

Requirements Engineering, pages 37-46, 2010.

Norbert Seyff, Neil Maiden, Kristine Karlsen, James Lockerbie, Paul Griin-
bacher, Florian Graf, and Cornelius Ncube. Exploring how to use scenarios to

discover requirements. Requirements Engineering, 14(2):91-111, 2009.

Boris Shishkov and Marten Van Sinderen. From User Context States to Context-
Aware Applications. In Proceedings of International Conference on Enterprise
Information Systems (ICEIS 2008), pages 225-239, 2008.

Vitor E. Silva Souza, Alexei Lapouchnian, and John Mylopoulos. (Requirement)
Evolution Requirements for Adaptive Systems. In Proceedings of International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2012), pages 155-164. IEEE, 2012.

[122]

[123]

124]

[125]

[126]

[127]

[128]

[129]

[130]

131

125

Leif Singer, Olesia Brill, Sebastian Meyer, and Kurt Schneider. Utilizing Rule
Deviations in I'T Ecosystems for Implicit Requirements Elicitation. In Proceed-

ings of International Workshop on Managing Requirements Knowledge (MaRK
2009), pages 22 — 26. IEEE, 2009.

Wassiou Sitou and Bernd Spanfelner. Towards Requirements Engineering for
Context Adaptive Systems. In Proceedings of Annual International Computer
Software and Applications Conference, volume 2, pages 593-600. IEEE, 2007.

Slamet Sucipto and Romi S. Wahono. A Systematic Literature Review of Re-
quirements Engineering for Self-Adaptive Systems. Journal of Software Engi-
neering, 1(1):17-27, 2015.

Alistair Sutcliffe, Stephen Fickas, and McKay Moore Sohlberg. Personal and
Contextual Requirements Engineering. In Proceedings of International Confer-
ence on Requirements Engineering (RE 2005), pages 19-28. IEEE, Aug. 2005.

Alistair Sutcliffe, Stephen Fickas, and McKay Moore Sohlberg. PC-RE: a
method for personal and contextual requirements engineering with some ex-

perience. Requirements Engineering, 11(3):157-173, 2006.

Alistair Sutcliffe and Pete Sawyer. Requirements Elicitation: Towards the Un-
known Unknowns. In Proceedings of International Requirements Engineering
Conference (RE 2013), pages 92-104, 2013.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Pearson Publishing, 2005.

Le M. S. Tran and Fabio Massacci. An Approach for Decision Support on the
Uncertainty in Feature Model Evolution. In Proceedings of the International
Conference on Requirements Engineering (RE 201/), pages 93-102. IEEE, 2014.

Guido van der Zanden. Requirements Engineering for Context-Aware applica-
tions. In Twente Student Conference on IT, 2008.

Emil Vassev and Mike Hinchey. Autonomy Requirements Engineering: A Case
Study on the BepiColombo Mission. In Proceedings of the International C*
Conference on Computer Science and Software Engineering, pages 31-41, 2013.

[132]

133

[134]

[135]

[136]

[137]

[138]

[139)]

126

Norha M. Villegas. Context Management and Self-Adaptivity for Situation-
Aware Smart Software Systems. Phd thesis, University of Victoria, Victoria
BC, Canada, 2013.

Norha M. Villegas and Hausi A. Miiller. Managing Dynamic Context to Op-
timize Smart Interactions and Services. In M. Chignell, editor, The Smart
Internet, pages 289-318. Springer Berlin Heidelberg, 2010.

Norha M. Villegas, Gabriel Tamura, Hausi A. Miiller, Laurence Duchien, and
Ruby Casallas. DYNAMICO: A Reference Model for Governing Control Ob-
jectives and Context Relevance in Self-Adaptive Software Systems. Software
Engineering for Self-Adaptive Systems II - Lecure Notes in Computer Science,
7475:265-293, 2013.

Kristopher Welsh and Peter Sawyer. Understanding the Scope of Uncertainty
in Dynamically Adaptive Systems. In Proceedings of International Working
Conference on Requirements Engineering: Foundation for Software Quality
(REFSQ 2010), pages 2-16. Springer, 2010.

Danny Weyns and Radu Calinescu. Tele Assistance : A Self-Adaptive Service-
Based System Examplar. In Proceedings of the International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2015),
pages 88-92, 2015.

Danny Weyns, M. Usman Iftikhar, Sam Malek, and Jesper Andersson. Claims
and Supporting Evidence for Self-Adaptive Systems: A Literature Study.
In Proceedings of Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2012), pages 89-98, 2012.

John Whittle, Peter Sawyer, and Nelly Bencomo. RELAX: a Language to
Address Uncertainty in Self-Adaptive Systems Requirements. Requirement En-
gineering, 15 (2):177-196, 2010.

Andreas Zimmermann, Andreas Lorenz, Reinhard Oppermann, and Sankt Au-
gustin. An Operational Definition of Context. In CONTEXT, pages 558-571.
Springer-Verlag Berlin Heidelberg, 2007.

127

[140] Didar Zowghi and Chad Coulin. Requirements Elicitation: A Survey of Tech-
niques, Approaches, and Tools. In Engineering and Managing Software Require-
ments, pages 19-46. 2005.

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Problem Statement
	Research Goal and Questions
	Dissertation Structure

	Background and Related Work
	Capturing Requirements and Context in Requirements Engineering
	Requirements Engineering for Adaptive Systems
	Uncertainty in Adaptive Systems
	Requirements Evolution in Adaptive Systems
	Context in Requirements Engineering and Adaptive Systems
	Contextual Requirements
	Chapter Summary

	Research Design
	Phase 1: Exploration of Research Area and Development of Framework
	Phase 2: Application of the Framework

	A Framework for the Capture and Evolution of Contextual Requirements
	Contextual Requirements: Definition and Example
	From Partial to Complete Knowledge of Contextual Requirements
	The Capture and Evolution of Contextual Requirements at Design vs. Runtime
	Elicitation of Contextual Requirements
	Discovery of Contextual Requirements
	Evolution of Contextual Requirements
	Chapter Summary

	Elicitation of Contextual Requirements at Design Time
	Example and Related Work
	Case Study on Eliciting Contextual Requirements at Design Time
	The Use of Requirements Elicitation Techniques to Elicit Contextual Requirements
	Threats to Validity
	Chapter Summary and Future Work on Elicitation of Contextual Requirements

	Supporting Evolution of Contextual Requirements at Runtime
	Background and Related Work
	Preconditions for the Application of ACon
	ACon - An Approach to Support the Evolution of Contextual Requirements
	Evaluation of ACon
	Discussion
	Chapter Summary and Future Work on Evolution of Contextual Requirements

	Conclusion
	Dissertation Summary
	Future Work

	Bibliography

