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ABSTRACT

Thermodynamically Consistent Algorithms for the Solution of

Phase-Field Models

Philippe Antoine Vignal Atherton

Phase-field models are emerging as a promising strategy to simulate interfacial

phenomena. Rather than tracking interfaces explicitly as done in sharp interface de-

scriptions, these models use a diffuse order parameter to monitor interfaces implicitly.

This implicit description, as well as solid physical and mathematical footings, allow

phase-field models to overcome problems found by predecessors. Nonetheless, the

method has significant drawbacks.

The phase-field framework relies on the solution of high-order, nonlinear partial

differential equations. Solving these equations entails a considerable computational

cost, so finding efficient strategies to handle them is important. Also, standard dis-

cretization strategies can many times lead to incorrect solutions. This happens be-

cause, for numerical solutions to phase-field equations to be valid, physical conditions

such as mass conservation and free energy monotonicity need to be guaranteed. In

this work, we focus on the development of thermodynamically consistent algorithms

for time integration of phase-field models.

The first part of this thesis focuses on an energy-stable numerical strategy de-
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veloped for the phase-field crystal equation. This model was put forward to model

microstructure evolution. The algorithm developed conserves, guarantees energy sta-

bility and is second order accurate in time. The second part of the thesis presents two

numerical schemes that generalize literature regarding energy-stable methods for con-

served and non-conserved phase-field models. The time discretization strategies can

conserve mass if needed, are energy-stable, and second order accurate in time. We also

develop an adaptive time-stepping strategy, which can be applied to any second-order

accurate scheme. This time-adaptive strategy relies on a backward approximation to

give an accurate error estimator. The spatial discretization, in both parts, relies on

a mixed finite element formulation and isogeometric analysis. The codes are avail-

able online and implemented in PetIGA, a high-performance isogeometric analysis

framework.



ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Victor M. Calo, for his continuous guid-

ance and unwavering support. He taught me how to think about problems and spent

countless hours doing so. He has given me every chance to succeed and for this, I am

truly thankful.

I would also like to thank Professors Aurélien Manchon, Suzana Nunes and Mazen
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Chapter 1

Introduction

The purpose of this thesis is to develop thermodynamically consistent algorithms to

evolve in time general classes of phase-field models. Phase-field models have become a

powerful tool in the field of computational materials science. As we shall demonstrate,

many popular phase-field models can be abstracted and solved using the framework

we introduce.

In this Introduction, we review some aspects on numerical modeling of interfacial

phenomena to justify the choice of phase-field methods as a modeling tool, as well as

the use of isogeometric analysis as a numerical method in high-order partial differen-

tial equation. In chapter 2, we go through the physical derivation of the Cahn–Hilliard

equation, one of the most successful phase-field models to date. This derivation ex-

plains the solid mathematical and physical footings that support the method, and

motivates the development of energy-stable methods capable of guaranteeing numer-

ical energy dissipation. In chapter 3, we cover a numerical scheme developed for the

phase-field crystal equation [5], which is provably energy-stable, guarantees mass con-

servation, and is second-order accurate in time. We ensure energy stability through

a convex splitting of the nonlinear term present in the equation and the use of a sta-

bilization parameter. In chapter 4, we go further and develop two implicit methods
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that generalize literature on the topic of stable methods for both conserved and non-

conserved phase-field models. In this chapter, we guarantee energy stability through

the use of Tayor expansions. We also develop an adaptive time-stepping scheme,

whose time step size control relies on the approximation of a local truncation error

through a backward differentiation procedure. This adaptive strategy has the added

advantage that it can be applied to any second-order accurate scheme, and in partic-

ular, to both methods developed in 4. The time discretization, in chapters 3 and 4,

relies on a mixed finite element formulation and isogeometric analysis. The codes

are available online and implemented in PetIGA, a high-performance isogeometric

analysis framework.

The main body of the dissertation is structured so that, to a large extent, each

chapter can be read independently. This requires repetition of content, but we believe

the advantages in readability outweigh the disadvantages.

1.1 Modeling interfacial phenomena

The boundary between two phases, the interface, can have very different properties

from that of the bulk phases [6] and is important in a variety of engineering processes.

The interface may control transport between the phases (liquid-liquid extraction),

reaction rates (heterogeneous catalysis), or accumulation of a component from one

of the bulk phases (adsorption). All of these are examples of interfacial phenomena

that are non-trivial to study experimentally, where modeling has allowed to make

meaningful discoveries [7, 8].

Modeling has become a ubiquitous part of state-of-the-art engineering design,

and its role in the materials setting is quite diverse. Modeling today plays a role

in the quest to control materials [9] and the processes used to produce them. At

the most fundamental level, modeling delivers an understanding of materials and
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tries to predict their response to external stimuli [10]. Most materials are heteroge-

neous at the mesoscale. Their microstructure consists of grains or domains, which

differ in structure, orientation, and chemical composition. The physical and me-

chanical properties at the macroscopic scale highly depend on the shape, size, and

distribution of the grains. Gaining insight into the mechanisms of microstructure

formation and evolution is, therefore, important. Given the diversity of processes

involved in microstructure evolution, extensive theoretical and experimental research

are required. Within this domain, the phase-field method has become a powerful tool

for simulating microstructural evolution in a variety of material processes, such as

solidification, solid-state phase transformations, precipitate growth and coarsening,

martensitic transformations and grain growth [1]. Computational results obtained

by solving some of the most popular phase-field models in recent years are shown in

figure 1.1.

The theory behind phase-field models, started by Van der Waals [11] over a century

ago, has taken off in the last couple of decades [1, 12]. One of the fundamental

postulates presented in [11] is that the interface possesses non-zero thickness, accross

which the physical properties are smoothly distributed. This is precisely what takes

place in the phase-field framework, and explains why this method is also known as

the diffuse-interface approach [1]. Interfaces are implicitly described by continuous

scalar-valued fields that take constant values in the bulk phases and vary continuously

but steeply across a diffuse front [13]. In this way, problems that come about due

to the explicit tracking of interfaces, as is the case in sharp-interface approaches,

are avoided. In these sharp-interface problems, explicit boundary conditions need to

be defined at the interfaces [14], which rely on complicated and expensive numerical

simulations. A popular sharp-interface model is the Stefan problem [15], which models

the temperature distribution in a homogeneous medium undergoing a phase transition
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(a) Crystal growth (b) Spinodal decomposition

(c) Pattern formation (d) Crack propagation

Figure 1.1: Understanding phase transitions through simulation. The phase-field
method has successfully been applied to a wide array of interfacial problems in-
cluding crystal growth and crack propagation with the phase-field crystal equa-
tion (figures 1.1(a) and 1.1(d)), spinodal decomposition with the Cahn-Hilliard equa-
tion (figure (1.1(b))) and pattern formation with the Swift-Hohenberg equation (fig-
ure (1.1(c))).
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(e.g., water turning into ice), and can be expressed as

∂T

∂t
= ∇ ·

(
k

ρcp
∇T
)
≡ ∇ · (α∇T ), (1.1)

ρLfVn = kS∇T · nS − kL∇T · nL, (1.2)

Tint = TM −
(
γTM
Lf

)
κ− vn

µ
, (1.3)

where T ≡ T (x, t) denotes temperature, k is the thermal conductivity, which assumes

different values in the solid (kS) and the liquid phases (kL), ρ is the density, cp is the

specific heat at constant pressure, α is the thermal diffusion coefficient, Lf the latent

heat of fusion for solidification, vn the local normal velocity of the interface (positive

for a growing solid), n is the normal vector at the interface of the solid (nS) or the

liquid (nL), γ is the solid-liquid surface energy, TM is the melting temperature, κ is the

local solid-liquid interface curvature and µ the local atomic interface mobility. This

model can be used to describe the solidification of a pure substance, where the motion

of the solidification front is limited by the diffusion of latent heat away from the solid-

liquid interface [16]. This moving front also depends on the ability of the interface

to maintain two specific boundary conditions. The first boundary condition involves

the flux of heat toward one side of the interface, which needs to be balanced by an

equivalent flux away from the interface as expressed in equation (1.2). The second

boundary condition, described through equation (1.3) involves the temperature at

the interface, which undergoes a curvature correction popularly known as the Gibbs-

Thompson condition.

Other diffusion-limited phase-transformations exist, whose interface properties can

be described by equations similar to (1.1)-(1.3). Models such as these usually oper-

ate on larger scales than the solid-liquid interface width, itself of atomic dimensions.

Consequently, relevant information from the atomic level can be taken into account

through effective constants such as the capillary length, which depends on surface en-
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ergy, the kinetic attachment coefficient, and the thermal impurity diffusion coefficient.

Nonetheless, these sharp-interface models face severe difficulties from both the simula-

tion as well as the physical point of view. From the numerical simulation standpoint,

solving equations (1.2)-(1.3) in a multidimensional setting is a nontrivial challenge.

Topologically complex interfaces can merge or pinch-off during a phase transforma-

tion, and these situations are usually addressed through somewhat arbitrary criteria,

as illustrated through figure 1.2. In extreme cases, the interface topology is adjusted

manually. From the physical standpoint, even though the general Stefan problem

described above is well suited to represent a simplified case of isotropic solidification

without convection, and heat transport only takes place by diffusion [13], similar

equations for more complicated problems are often unknown. This is the case of

phase separation when mobile dislocations and their effect on domain coarsening is

included [17], where further research is needed.

Other strategies had considerable success modeling interfacial phenomena, namely

the volume-of-fluid [18] and the level-set [19] methods. Even though these two

interface-capturing methods use additional unknowns to identify the different phases,

they tend to be less accurate than the interface-tracking strategies discussed previ-

ously. They are nonetheless far easier to implement, and more efficient computation-

ally speaking given that the mesh does not need to be constantly updated [20]. They

are also better suited to handle hard topological transitions without ad hoc tech-

niques. Unfortunately, both methods have important shortcomings. The volume-

of-fluid method requires the calculation of a curvature, which is hard to perform

accurately and leads to problems in the calculation of the physical quantities near

the interface [21] as it is artificially smoothed by the numerical method. The level-

set method captures a more accurate interface, but does not conserve mass as time

evolves [20]. The phase-field method can overcome these issues.

Other features that validate the use of phase-field methods include the method of
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Figure 1.2: Explicit interface tracking in a solidification process. Nodes are placed
on the interface, which evolves in time. Given the topologically complex structure it
has, the interface can undergo merging and pinch-off during the course of the phase
transformation. As velocities might differ along the solidification front, choices need
to be made when merging or pinch-off takes place.

matched asymptotic expansions. That is, some phase-field models under appropri-

ate assumptions asymptotically converge to their sharp-interface counterparts, when

decreasing the interface width [22, 23, 24]. The method of asymptotic expansions,

where the bulk and interfacial scales are separated by using expansions of the primary

variables, can be used to understand the model behavior, but more importantly, to

establish the link between the model parameters and the physical parameters of the

system that is represented. It is a variant of boundary-layer methods used in fields

such as fluid mechanics or porous media [25] where transition layers are present.

These facts support the use of the phase-field method to model phase transitions.

Within this context of solidification, the phase-field approach can be used to rep-

resent the interface between the liquid and solid phases. Within each one of the bulk

phases, the phase-field variable has nearly constant values, that relates to the degree

of ordering in each phase. The interface between the liquid and the solid is defined

as a narrow region where the phase-field variable varies continuously and steeply be-

tween the neighboring phases, as seen in figure 1.3. The temporal evolution of the

position of the interfaces, is implicitly given by the evolution of the phase-field vari-



26

Figure 1.3: Illustrating the phase-field parameter. Rather than dealing with an in-
finitesimal width as in the case of sharp-interface models, in phase-field models the
interface is spread over a larger domain, rendering it diffuse. This is why the method
is also known as the diffuse-interface approach [1].

ables. Herein lies one of the advantages of the phase-field method, as the interface

no longer needs to be tracked explicitly. Another advantage given by this method in-

volves its phenomenological character, as the equations governing the evolution of the

phase field are derived based on general thermodynamic and kinetic principles [26].

In the variational approach to the phase-field method, which leads to partial dif-

ferential equations (PDEs) that describe the temporal evolution of the phase field,

a potential to characterize the system is defined and minimized with respect to the

phase-field parameter. By coupling the phase-field parameter to an accurate thermo-

dynamic description of the system, no artificial choices need to be made. The diffuse

interface is introduced through an energetic variational procedure that results in a

thermodynamically consistent formulation [1]. This gives the method as a whole a

solid mathematical and physical background, and explains why applications range

from the spinodal decomposition of immiscible binary mixtures [27, 28, 29], solidi-

fication and crystal growth [30, 31, 32], tumour angiogenesis [33, 34], wetting [35],

image processing [36] to water infiltration in porous media [37].

Even though phase-field modeling has been qualitatively successful, it is not with-

out its drawbacks. Phase-field modeling usually requires the solution of high-order
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PDEs and including realistic features comes at the expense of nonlinear terms (such as

a nonlinear mobility for the different components involved [28, 29]). Given the nature

of the PDEs, using explicit methods is restrictive for stability reasons. This has moti-

vated research on implicit algorithms [28, 38] as well as adaptive algorithms [39, 40].

Another issue has to do with the resolution used to describe the interfacial thickness.

If the interfacial layer is not well resolved, the solution can have spurious oscillations,

particularly in the vicinity of the interface [37, 41]. Irrespective of the discretization

method used, these last two points lead to the need for robust and scalable software

to solve these types of problems. Last but not least, phase-field models should possess

strong energy stability [42]: free energy must decrease in time. Numerical techniques

to satisfy thermodynamic relations at the discrete level in phase-field models have

been developed for both conserved [28, 3] (i.e., phase-field associated with the concen-

tration of a component) and non-conserved phase-field models [4, 43] (i.e., phase-field

related to the magnetic moment). The main goal of this work is to devise stable time

discretization schemes that apply to general classes of phase-field models.

Regarding the spatial discretization, collocation methods such as the finite differ-

ence method [42, 44] and spectral methods [45, 46] are the standard methodologies

used to solve phase-field models. Nonetheless, these methods face challenges when

dealing with complex geometries. These issues can be overcome by using the finite

element method [47]. In this work, we solve the resulting PDEs using isogeomet-

ric analysis (IGA) [48]. IGA is a finite element method which uses Non-Uniform

Rational B-spines (NURBS) [49] as basis functions, rather than standard piecewise

polynomials. The method has successfully been applied in its Galerkin version to

solve the Cahn-Hilliard equation [28, 2], the advective [50] and Navier-Stokes-Cahn-

Hilliard equations [51], the Swift-Hohenberg equation [4] and the phase-field crystal

equation [3, 52, 5]. IGA possesses some advantages over conventional finite element

methods, which include being able to easily generate high-order, globally continuous
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basis functions as well as an exact geometrical representation as the space is refined.

However, when used to discretize these high-order partial differential equations, the

NURBS-based spaces result in expensive linear systems [53, 54, 55] that need ef-

ficient and scalable solvers that mitigate the increase of cost. For this reason, we

use PetIGA, a high-performance isogeometric analysis framework [56, 57]. Recently,

isogeometric collocation methods have also been used to discretize phase-field mod-

els [58, 59], as well as fast solution strategies to solve the resulting algebraic systems

of equations [60, 61, 62, 63].

1.2 Thesis layout

1.3 Objectives and Contributions

The contributions of this thesis fold in the following streams: (summarize the chap-

ters)

• Construction of a second-order accurate thermodynamically consistent algo-

rithm for time integration of general phase-field models.

• Development of an adaptive time-stepping strategy for second-order accurate

systems.

• Development of open-source applications for solving phase-field equations in a

high-performance computing framework.

• Application of these numerical schemes to material science problems.



Chapter 2

The Phase-Field Method

Variations in the development of phase-field equations exist [1, 14]. Many of the

key points needed in the description of the method as it relates to this work can be

showcased through the physical derivation of the Cahn–Hilliard equation. Essentially,

the phase-field framework requires the formulation of an appropriate thermodynamic

potential for a given system, which allows to describe mathematically a thermody-

namic equilibrium situation [64]. The equilibrium state is defined as the one for which

the governing thermodynamic potential becomes extremal. The homogeneous equi-

librium states the system takes can be described by defining an appropriate phase

field. To describe the inhomogeneity the interface entails, the gradients of the phase

field, and possibly higher-order derivatives of the phase field, can be included in the

free energy description of the system [27]. Then, by using the formulated free energy

functional within an irreversible-thermodynamics setting [26], evolution equations of

the phase field parameter can be derived. The transport equations used distinguish

between locally conserved and non-conserved quantities. Following the outlined pro-

cedure, it is possible to get diffuse-interface models that are both thermodynamically

and mathematically consistent.

The chapter is structured as follows: in section 2.1, we go through the derivation of
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the Cahn–Hilliard equation and present its mathematical formulation. In section 2.2,

we introduce three more phase-field models that have had considerable success in mod-

eling different phenomena. These are the Allen–Cahn [65], the Swift–Hohenberg [66]

and the phase-field crystal [30] equations. We conclude with section 2.3, which ex-

plains the motivation behind physically consistent algorithms that are the main focus

of this thesis.

2.1 Understanding the method through the Cahn–

Hilliard equation (CH)

The Cahn-Hilliard equation is a fourth-order, nonlinear partial differential equation.

Initially derived to model phase separation of immiscible fluids [27, 67], modified

versions of the equation have since then been used in the context of image process-

ing [36, 68], water infiltration in porous media [37], partial wetting [35], celestial

mechanics [69], and tumor angiogenesis [33, 34]. The ideas behind the Cahn–Hilliard

equation are responsible for what the field of phase-field modeling has become today.

2.1.1 Mathematical formulation

Let Ω ∈ Rd be an open set, where d = 2, 3. The boundary of Ω with unit outward

normal n is denoted ∂Ω and is composed of two complementary parts ∂Ωg and ∂Ωh,

such that ∂Ω = ∂Ωg ∪ ∂Ωh. The phase-field framework relies on finding the fields

that yield the minima within Ω of the free energy functionals under consideration.

The free energy functional used for the Cahn–Hilliard equation, FCH , often referred

to as the Ginzburg-Landau free energy [27], is given by

FCH [c(x, t)] =

∫
Ω

Ψ(c) +
γ

2
|∇c|2dΩ, (2.1)
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where c denotes the concentration of one of the components of the mixture, and

depends on space x and time t, γ is a positive constant such that
√
γ represents a

length scale of the problem related to the interface thickness between the two phases.

The term
γ

2
|∇c|2 represents the contribution to the free energy coming from the

interface [14], while Ψ(c) is the bulk free energy density that includes entropic effects,

given by

Ψ(c) =
1

θ
(c ln(c) + (1− c) ln(1− c)) + 2c(1− c). (2.2)

The dimensionless number θ represents the ratio between critical and absolute tem-

peratures. The equation can then be stated in strong form as: find c : Ω× (0, T ) 7→ R

such that

∂c

∂t
−∇ · (Mc∇ (Ψ′(c)− γ∆c)) = 0 in Ω× (0, T ),

c = g on ∂Ωg × (0, T ),

Mc∇ (Ψ′(c)− γ∆c) · n = h on ∂Ωh × (0, T ),

Mcγ∇c · n = 0 on ∂Ω× (0, T ),

c (x, 0) = c0 (x) in Ω,

where c0 is the initial concentration, Mc is the mobility, and Ψ′(c) is given by
∂Ψ(c)

∂c
.

The mobility and chemical potential are nonlinear functions of the concentration,

respectively defined as

Mc = Dc(1− c),

Ψ′(c) =
1

θ
ln

c

1− c
+ 2θ(1− 2c),



32

in which D is a positive constant with dimensions of diffusivity. This is the dimension-

less version of the equation, and we will derive it in the following section. We follow

the simplified version of [70] for the sake of brevity, but more thorough derivations

can be found in [27, 71, 1, 14].

2.1.2 Physical derivation

In this section, we derive the Ginzburg–Landau free energy presented in equation (2.1).

This equation expresses the total free energy of a volume Ω of an isotropic system

with a non-uniform composition, which we recast as

F (c) =

∫
Ω

V (c) +
γ

2
|∇c|2dΩ, (2.3)

where V is the free energy of the homogeneous system, ∇c represents the composition

gradient, and γ is a constant parameter for a regular solution [27]. Two parts make up

this equation for the free energy. The first contribution calculates the free energy this

same volume would have in a homogeneous solution, whereas the second contribution,

a gradient energy, accounts for the change in local composition [71].

To derive equation (2.3), assume a binary fluid composed of A and B particles in

the limit where diffusion is the major transport mechanism. Let us define the phase

field φ, such that φ = 0 is a phase completely made of A particles, and φ = 1 is a phase

completely made of B particles, with a linear interpolation between those two phases.

We assume the interactions of similar particles (A-A/B-B) to be favorable, while the

interaction between different particles is unfavorable. This unfavorable interaction

is taken into account by ∇φ. Due to inter-molecular interactions and interactions

with any external field, we assume a potential energy landscape, V (φ, T ), to have

a temperature dependent transition from a random, high temperature phase, to an

ordered, low temperature phase. Invoking mean field approximations [14] and regular
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solution theory [27], V can be expressed as

V (φ, T ) = kB

(
2Tcφ(1− φ) + T

(
φ ln(φ) + (1− φ) ln(1− φ)

))
. (2.4)

Plotting equation (2.4) for different values of temperature T results in figure 2.1.

The plot shows the existence of a single stable state for temperatures above the

critical temperature Tc, as well as the emergence of two continuous states when the

temperature goes below Tc. Through the double tangent construction [72], we can

determine the equilibrium position φeq of these two wells

∂V

∂φ

∣∣∣∣
φeq

= 0, (2.5)

which results in

φeq −
1

2
=

1

4

T

Tc
ln

(
φeq

1− φeq

)
. (2.6)

Two solutions exist for this equation, φ1 and φ2 in figure 2.1, when T < Tc. This

form of the potential is such that below a critical temperature two states emerge

continuously from one.

Then, consider a total free energy functional F, which is a function of the phase-

field φ, such that

F (φ) = NΩ

∫
Ω

h dΩ (2.7)

where the local energy per molecule, h, in a non-uniform composition region is given

by h(φ,∇φ,∆φ, · · · ). Moreover, we use a multivariate Taylor series to expand h

about φ0 = (φ, 0, 0, · · · ), the free energy per molecule of a solution with constant

composition (i.e., V (φ)). If we ignore terms of order higher than two, consider the
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Figure 2.1: Free energy diagram of a binary fluid as a function of the phase field.
When the temperature T is higher than the critical temperature Tc, the potential V
has one minimum energy state at φ = φ0, where ∂V

∂φ
= 0. When the temperature is

lowered to induce solidification, the potential V has two minima, located at φ1 and φ2.
This phase separation phenomena takes place when the binary fluids are immiscible,
with two stable states arising continuously from one for T < Tc. The pressure P is
assumed constant.
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medium as isotropic as well as the invariance to rotations and reflections the system

possesses, it can be shown that [27, 71]

h(φ,∇φ,∆φ, · · · ) = V (φ) + κ1∆φ+
κ2

2
|∇φ|2 + · · · , (2.8)

where

κ1 =
∂h(φ0)

∂φii
, κ2 =

∂h(φ0)

∂φii
for i = 1, 2, 3. (2.9)

with V (φ) now understood to be the Helmholtz free energy density. Integrating

equation (2.8) over Ω, we obtain that the total free energy of the volume is

F (φ) = NΩ

∫
Ω

h dΩ (2.10)

= NΩ

∫
Ω

(
V (φ) + κ1∆φ+

κ2

2
|∇φ|2 + · · ·

)
dΩ. (2.11)

Then, integrating the term κ1∆φ by parts under the assumption that the term
∂φ

∂n

vanishes at the boundary [27], we get that

∫
Ω

(κ1∆φ) dΩ = −
∫

Ω

(
∂κ1

∂φ
|∇φ|2

)
dΩ. (2.12)

Finally, substituting (2.12) in (2.10), we recover

F (φ)

NΩ

=

∫
Ω

(
V (φ) + κ1∆φ+

κ2

2
|∇φ|2 + · · ·

)
dΩ

=

∫
Ω

(
V (φ) +

(
−∂κ1

∂φ
+
κ2

2

)
|∇φ|2 + · · ·

)
dΩ

=

∫
Ω

(
V (φ) +

Γ

2
|∇φ|2 + · · ·

)
dΩ, (2.13)

with Γ ≡ 2

(
−∂κ1

∂φ
+
κ2

2

)
. Disregarding higher-order terms, and substituting equa-
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tion (2.4) in (2.13), we now have an energy functional for the entire field φ in space

and time [14, 70]

F∗ =

∫ [
1

θ

(
φ ln(φ) + (1− φ) ln(1− φ)

)
+ 2φ(1− φ) +

γ

2
|∇φ|2

]
dΩ, (2.14)

where F∗ ≡ F [φ(x, t)]

kBTc
, θ ≡ Tc

T
, and γ ≡ ΓkBTc a constant that penalizes phase

boundaries. If φ is understood as a measure of particle number, and F∗ is the energy

of a particular configuration of φ, then the variation in F∗ with respect to φ is

quantifying how the energy changes when particles change position (i.e., the chemical

potential µ)

δF∗

δφ
= µ, (2.15)

where
δ

δφ
defines the variational derivative operator, given by

δ

δφ
=

∂

∂φ
−∇ · ∂

∂∇φ
+ ∆

∂

∂∆φ
, (2.16)

where ∇·, ∇ and ∆ denote the divergence, gradient, and Laplacian operators, respec-

tively. Recalling Fick’s law, which states that the flux J of particles in a system is

proportional to the gradient of the chemical potential, we have that

J = −M∇µ, (2.17)

where M represents a diffusivity (mobility of the solute), usually defined as [28]

M = Dφ(1− φ). (2.18)

Considering particles need to be conserved, and as such, that the flux must obey a
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continuity equation, we have that

∂φ

∂t
+∇ · J = 0, (2.19)

or, using equation (2.17),

∂φ

∂t
= ∇ · (M∇µ) . (2.20)

To conclude the derivation, we need to calculate the chemical potential defined in

equation (2.15),

µ =
δF∗

δφ
=

1

θ
ln

φ

1− φ
+ 2(1− 2φ)− γ∆φ. (2.21)

Finally, substituting the previous expression for the chemical potential in equa-

tion (2.20), we have that

∂φ

∂t
= ∇ ·

(
M∇

(
1

θ
ln

φ

1− φ
+ 2(1− 2φ)− γ∆φ

))
, (2.22)

where M is playing the role of an effective diffusion coefficient. This is the Cahn–

Hilliard equation, which can be used to describe how a high temperature, disordered

phase with an average concentration set to φ0 will undergo phase separation when

the temperature goes below the melting temperature. Under these conditions, the

process is governed by the gradients in chemical potential between phases. The free

energy is built to reflect the symmetries present in the phase diagram of the transition

that is taking place [1, 14, 13]. This is one of the strengths of phase-field modeling,

as a correct free energy choice will yield physically meaningful results, given the

tight connection to the thermodynamics of the system. Non-conserved phase-field

parameters can also be considered. This can be done by considering a different
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evolution equation, defined as

∂φ

∂t
= −Mµ. (2.23)

This equation is known as the Allen–Cahn equation [13, 14], which has successfully

been used to model phase transitions involving ferromagnetic materials [73]. To

this point, we have only considered thermal equilibrium, but the partial differential

equation for the phase field can also be coupled to the change in temperature [1,

74], so that non-isothermal systems can be studied. A lot of ongoing work focuses

on modifying these models, as well as the physical parameters involved (interfacial

energies, correlation functions, mobilities) for particular purposes, in order to try to

recover accurate quantitative results. One of the modifications to deal with a model

that could capture elasticity, resulted in the phase-field crystal model [30]. This model

is discussed in the following section.

To simplify the numerical solution of the Cahn–Hilliard equation, given the pres-

ence of the logarithmic free energy and the existence of singularities at φ = 0 and

φ = 1, the logarithmic free energy density is generally approximated by a quartic

polynomial function [75]. Equation (2.2) in this case becomes

Ψ(φ) =
1

4
a0 −

1

2
a2φ

2 +
1

4
a4φ

4, (2.24)

where a0, a2 and a4 are real-valued constants, a2 and a4 are positive, and the physical

range of the phase-field parameter φ lies in

]
−
√
a2

a4

,

√
a2

a4

[
. This polynomial approx-

imation preserves various physical attributes required for phase separation (such as

the binodal and spinodal points) but comes at a cost. The dynamics are faster when

using the polynomial approximation of equation (2.24) while the interfacial thickness

is artificially affected [75]. Nonetheless, the quartic polynomial function is chosen for

this work as current physical and mathematical problems dealing with this version of
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the Cahn–Hilliard equation are being solved today [76, 77, 78] Other relevant phase-

field models being researched also employ it, such as the Swift–Hohenberg equation

and the phase-field crystal equation [14, 79]. These models will be addressed in the

following section, and are the ones this work focuses on.

2.2 Gradient flow equations

This section introduces three phase-field models that have had considerable success in

modeling different phenomena [14, 1, 12], as well as the simplified version of the Cahn–

Hilliard equation [43]. These are the Allen–Cahn [65], the Swift–Hohenberg [66] and

the phase-field crystal [30] equations. The Allen–Cahn and Cahn–Hilliard equations,

probably the most successful phase-field models to date, are derived as gradient flows

of the same free energy functional [43]. The same statement can be made regarding

the Swift–Hohenberg and the phase-field crystal equation, which are also derived

from the same free energy functional. We detail in the following the fundamental free

energy from which each phase-field model considered is derived from, as well as the

associated mathematical strong form.

2.2.1 The Allen–Cahn equation (AC)

The Allen–Cahn equation governs the behavior of the Ising ferromagnet [13], where

the competition between energy and entropy gives way to a phase transition below

some critical temperature [65]. The free energy functional for the system is given by

FAC =

∫
Ω

(
ΨAC +

1

2
|∇φ|2

)
dΩ,

where ΨAC =
1

4ε2
(φ2 − 1)

2
and ε is a parameter related to interface thickness. The

phase-field parameter is related to the ordering of the phase, which translates to it
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being a non-conserved quantity. The partial differential equation that describes this

order-disorder transition is given by

∂φ

∂t
= − (Ψ′AC (φ)−∆φ) ,

where a constant mobility of value one is commonly considered.

2.2.2 The Cahn–Hilliard equation (CH)

The Cahn–Hilliard equation governs the evolution of an immiscible binary mixture

undergoing phase separation [27]. This is the equation that popularized the use of the

phase-field method [14]. In this equation, the phase field represents the concentration

of one of the components of the mixture. The dimensionless free energy functional is

given by

FCH = FAC

=

∫
Ω

(
ΨCH +

1

2
|∇φ|2

)
dΩ (2.25)

where ΨCH =
1

4ε2
(φ2 − 1)

2
. The parameter ε is related to the thickness of the

interface. The partial differential equation, given that the phase-field is in this case

a conserved quantity, is given by

∂φ

∂t
= ∇ · (MCH∇Ψ′CH (φ)−∆φ) ,

with MCH = M̄ (1− φ2).
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2.2.3 The Swift–Hohenberg equation (SH)

The Swift–Hohenberg equation is derived from a phenomenon known as Rayleigh–

Bénard convection, in which a fluid is trapped between a hot and a cold plate. The

equation describes a convective instability, which occurs when the difference in tem-

perature between the plates becomes high enough. The Swift–Hohenberg equation,

a fourth-order, nonlinear partial differential equation, is derived as a gradient flow of

the dimensionless free energy functional FSH defined by [4, 66]

FSH =

∫
Ω

[
1

2

(
φ2 − 2|∇φ|2 + (∆φ)2

)
+ ΨSH(φ)

]
dΩ, (2.26)

where ΨSH(φ) = − ε
2
φ2 +

1

4
φ4. The evolution in time of φ

∂φ

∂t
= −

(
(1 + ∆)2 φ+ Ψ′SH (φ)

)
, (2.27)

where MSH = M̄SH = 1, (1 + ∆)2 = 1 + 2∆ + ∆∆, Ψ′SH is defined as Ψ′SH(φ) =

∂Ψ(φ)

∂φ
= φ3 − εφ, as well as the fact that the order parameter φ is not a conserved

quantity in the case of this equation such that a = 0.

2.2.4 The phase-field crystal equation (PFC)

The phase-field crystal equation is used to model the evolution of microstructures at

atomistic length scales and diffusive time scales. It is a sixth-order, nonlinear partial

differential equation. It can be derived by considering a conservative description of

the Rayleigh Bénard convection problem [30, 14]. It uses the same dimensionless free
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energy functional as the Swift–Hohenberg equation, such that

FPFC = FSH

=

∫
Ω

[
1

2

(
φ2 − 2|∇φ|2 + (∆φ)2

)
+ ΨPFC(φ)

]
dΩ, (2.28)

with ΨPFC(φ) = − ε
2
φ2 +

1

4
φ4. The evolution equation of the phase field φ, which

now represents an atomistic density field that is a conserved quantity, is given by

∂φ

∂t
= ∆

(
(1 + ∆)2 φ+ Ψ′PFC (φ)

)
,

where the mobility M = 1.

2.3 Physical consistency: energy stability and mass

conservation

The existence of a Lyapunov functional for the diffuse-interface problems presented in

section 2.2 implies strong energy stability [44], which can mathematically be expressed

through the inequality

dF
dt
≤ 0. (2.29)

This implies that energy must monotonically decrease in time. Equation (2.29) is

the fundamental stability property of the phase-field models considered in this work.

This important property can be lost if inadequate algorithms and/or spatial/tempo-

ral resolutions are used to solve the partial differential equations [4, 44, 37, 80, 81],

which can lead to incorrect numerical results. An example taken from [81] is shown

in figure 2.2, where the phase-field crystal equation is used to solve a solidification

problem. An initial nucleus is placed at the center of an undercooled liquid (fig-



43

(a) Initial condition (b) Correct final state (c) Incorrect final state

Figure 2.2: Crystal growth in an undercooled liquid. Snapshots of the atomistic
density field of the phase-field crystal equation. An initial nucleus is placed at the
center of an undercooled liquid (figure 2.2(a)), which is supposed to replicate its
triangular lattice structure over the whole domain. A correct steady state where free
energy has decreased in time is shown in figure 2.2(b), whereas an increase in free
energy can lead to the incorrect state shown in figure 2.2(c)

ure 2.2(a)), which is supposed to replicate its triangular lattice structure over the

whole domain. A correct steady state where free energy has decreased in time is

shown in figure 2.2(b), whereas a spike in free energy can lead to the incorrect state

shown in figure 2.2(c).

Another condition that needs to be satisfied in the case of conserved phase-field

models, such as the CH or the PFC equation, is mass conservation, expressed as

∫
Ω

(
∂φ

∂t

)
dΩ = 0. (2.30)

In order for numerical solutions to the partial differential equations to be valid, the

discrete versions of equations (2.29)-(2.30) need to be satisfied. The main objective of

this work is to develop fully discrete numerical methods which inherit these properties,

irrespectively of the mesh and time-step sizes.

This work addresses the nonlinear stability issue for both conserved and non-

conserved phase-field variables, and presents processes to handle the nonlinear terms

found in the partial differential equation. The equations presented in section 2.2 were
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selected because their stable time integration has garnered considerable interest in

recent years [2, 4, 5, 78], and this work generalizes some of the numerical schemes

that have been put forth in the context of the Cahn-Hilliard [43, 82] and phase-field

crystal equations [5].



Chapter 3

An Energy-Stable Method for the

Phase-field Crystal Equation

This chapter covers a numerical scheme developed for the phase-field crystal equa-

tion, published in [5]. As computational power has increased exponentially through

the years, bigger and bigger problems involving microstructure evolution have been

solved [83]. However, one of the bigger issues being addressed now is related to the

difference in scales: the driving forces in a problem like solidification can be well be-

low the micrometer range. On the one hand, models like the ones solved in molecular

dynamics for a many-body problem give an accurate account of what happens, but

the domain size that is handled is extremely small [84]. On the other hand, models

from continuum theory cannot hope to capture all of the physical effects, as their

continuum setting and the assumption of constitutive relationships is trying to model

something that is inherently discrete. Within the phase-field modelling setting, the

phase-field crystal equation tries to fill this gap by providing a continuum model with

an atomic resolution, which is able to evolve in time at diffusive timescales [30].

The phase-field crystal equation is a parabolic, sixth-order and nonlinear partial

differential equation, which has generated considerable interest as a possible solution
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to problems arising in molecular dynamics. The model was initially developed to

study the evolution of microstructures by considering a conservative description of

the Rayleigh-Bénard convection problem [14]. The numerical method presented in [5]

conserves mass, is energy stable, and is second-order accurate in time. The implemen-

tation is done in PetIGA, and the code developed can be found in [85]. The chapter is

structured as follows: In section 3.2, we describe the phase field crystal equation. In

section 3.3, we present our numerical scheme. Section 3.5 presents numerical exam-

ples dealing with crystal growth in a supercooled liquid. We give concluding remarks

in section 3.7.

3.1 Introduction

Even though the connection between material processing, structure and properties is

known and has been studied for years, a microstructural model taking into account

atomic scale features affecting the macroscale properties of a material has not yet to

be developed. This chapter tackles one of the recently proposed solution strategies to

address this issue, through a model popularly known as the phase-field crystal (PFC)

equation. This equation extends the phase-field formalism. Rather than minimizing

a free energy through spatially constant values at equilibrium [30, 31], the phase-field

variable minimizes the energy functional through periodic states. These periodic

minima allow this phase-field model to represent crystalline lattices in two and three

dimensions [14, 86]. Remarkably, this equation captures the interaction of atomic-

scale defects without the use of additional fields [87]. It features other essential

advantages, such as the bridging of time scales [88], possible because the phase-field

variable describes a coarse-grained temporal average (the number density of atoms).

These benefits justify the consideration of this tool for quantitative modeling [89, 90]:

these periodic density states naturally give rise to elasticity as well as to the motion
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and nucleation of dislocations, at a fraction of the computational cost of molecular

dynamics [14]. Nonetheless, the numerical solution of the PFC equation is far from

trivial.

The phase-field crystal equation is a sixth-order, nonlinear, partial differential

equation (see equation (2.28)), that must strictly verify the thermodynamic conditions

presented in section 2.3. Recent work on this topic includes [2, 3, 42, 44, 46, 91,

79]. Inspired by literature for the Cahn–Hilliard equation in the context of tumor-

growth [92], we present in this chapter a numerical formulation that conserves mass,

guarantees discrete energy stability and is second-order accurate in time. The time-

discrete versions of equations (2.29) and (2.30) are satisfied through

• a convex splitting of Ψ,

• the use of a stabilization term,

• a mixed formulation that segregates the PDE into a system of three, second-

order equations.

Although similar to the strategy presented in [3] that also employs a mixed form,

the well-posedness of the variational form we present does not require globally C1-

continuous basis functions. The fact that linear, C0 finite elements can be used is

advantageous regarding computational cost [53, 54, 55]. In the following, we de-

tail the derivation of the method, and mathematically prove the physical properties

our scheme guarantees. We also present numerical results in two and three spatial

dimensions that showcase the robustness of our algorithm.

3.2 Phase-field crystal model

The phase-field crystal equation uses a free energy functional that attains minimal

values through periodic density fields [30]. This periodicity allows the model to rep-
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resent and capture the evolution of crystalline lattices implicitly [30]. To achieve this,

the model uses a conserved phase-field variable related to the atomic number den-

sity, which is constant in the liquid phase and spatially periodic in the solid phase.

The phase-field crystal equation has been connected to other continuum field theo-

ries such as density-functional theory [88, 93]. This work shows examples related to

crystalline growth as the PFC equation has found much of its success in modelling

microstructural evolution [31, 94, 95, 88, 96], while it has also been used to model

other physical phenomena such as foam dynamics [97], glass formation [98], liquid

crystals [99], elasticity [30] and in the estimation of material properties [100].

Given some of the coarse approximations used to derive the model [88], it is not

surprising that experimental and computational results differ. Nonetheless, work is

being done to reduce the mismatch [101, 102, 100, 103]. By increasing the number

of critical wavelengths considered in the free energy functional, the accuracy of the

simplified model considered in this work [14, 104] can be improved. However, the

improved model increases the computational cost, as the partial differential equation

becomes harder to solve, as shown in [90, 102]. Also, molecular dynamics in a multi-

scale setting can be used to estimate some of the parameters going into the phase-field

crystal equation [105], and inverse formulations of the problem could be considered to

validate the calculations [106]. Eventually, these multi-scale approaches should allow

for more thorough studies on polycrystalline growth using the PFC equation, such as

the ones presented in [107, 108] in the setting of phase-field modeling.

3.2.1 Model formulation

The order parameter φ present in the free energy functional the phase-field crystal

equation represents an atomistic density field, which as previously mentioned is pe-

riodic in the solid state and constant in the liquid one. We recall the free energy

functional for the phase-field crystal equation in its dimensionless form [31, 3, 86],
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given by equation (2.28) is

F [φ(x)] =

∫
Ω

[
Ψ(φ) +

1

2

(
φ2 − 2|∇φ|2 + (∆φ)2

)]
dΩ, (3.1)

where Ω ∈ Rd represents an arbitrary open domain, with d = 2 or 3, and Ψ (φ) =

− ε
2
φ2 +

1

4
φ4. The parameter ε is related to the degree of undercooling. To minimize

the free energy functional, we solve the Euler–Lagrange equation of equation (3.1),

and take its variational derivative with respect to φ. Recalling equation (2.16), the

variational derivative is given by

δF
δφ

= (1 + ∆)2φ+ Ψ′(φ), (3.2)

where Ψ′(φ) = −εφ+ φ3 with (1 + ∆)2 = 1 + 2∆ + ∆∆. Considering mass conserva-

tion [31] and equation (2.19), the partial differential equation is formulated as

∂φ

∂t
= ∇ ·

(
M∇δF

δφ

)
, (3.3)

where φ ≡ φ (x, t) represents the phase field, x and t represent space and time,

respectively, M is the mobility, and F is the free energy functional of the system.

The partial differential equation, after substituting equation (3.2) into (3.3), becomes

∂φ

∂t
= ∇ · ∇

[
(1 + ∆)2 φ+ Ψ′(φ)

]
= ∆

[
(1 + ∆)2 φ+ Ψ′(φ)

]
,

where the mobility M is assumed equal to a constant of value one.
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3.2.2 Strong form

The initial value problem is stated as follows: over the spatial domain Ω and the time

interval ]0, T [, given φ0 : Ω 7−→ R, find φ : Ω× [0, T ] 7−→ R such that


∂φ

∂t
= ∆

[
(1 + ∆)2 φ+ Ψ′(φ)

]
on Ω×]0, T ],

φ(x, 0) = φ0(x) on Ω,

(3.4)

where the function φ0(x) approximates a crystalline nucleus, and periodic bound-

ary conditions are considered in all directions. We discuss the handling of initial

conditions further in section 3.5.

3.3 Stable time discretization for the phase-field

crystal equation

Current research on energy-stable, time integration schemes focuses on implicit [3,

42, 44, 91] and adaptive algorithms [40]. Explicit methods are not an obvious choice,

given their numerical stability issues. They face severe time step size restrictions

when solving a high-order partial differential equation such as the PFC equation (i.e.,

the time step size is on the order of the sixth power of the grid size). On top of this,

the discrete version of equation (2.29) defined as

F [φ (tn+1)] ≤ F [φ (tn)] ∀n = 1, 2, ..., N, (3.5)

related to energy stability, as well as the discrete version of (2.30), defined as

∫
Ω

(
∂φ

∂t

)
dΩ = 0 (3.6)
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involving mass conservation, need to be satisfied for numerical solutions to the equa-

tion to be valid. In the following, we detail an algorithm that extends ideas pre-

sented in [29, 91], guarantees the properties presented in equations (3.5) and (3.6),

and achieves second-order accuracy in time. As stated in chapter 1, the spatial

discretization is done using isogeometric analysis (IGA), a finite element method

based on NURBS as basis functions [48]. IGA provides a framework that improves

upon standard finite element analysis [47]. The method can better represent some

complex geometrical shapes, and provides systematic refinement procedures. IGA

allows us to control the spatial resolution of the mesh (h-refinement) and the poly-

nomial degree of the basis (p-refinement), and provides a refinement procedure (k-

refinement) that can increase the smoothness of element functions beyond standard

C0 continuity [109]. IGA has successfully been applied to multiple phase-field mod-

els [3, 50, 52, 110, 111, 112]. Given the high-order nature of the equations involved,

many choices are possible regarding discretizations and time stepping schemes [2, 28].

As high-order, globally continuous basis functions can be easily generated within the

IGA framework, it is possible to discretize straightforwardly high-order partial dif-

ferential equations. Primal formulations of the equations, which cannot always be

solved using standard C0-linear finite elements, can be handled using this technol-

ogy [28, 52]. Alternatively, mixed formulations can be employed to reduce continuity

requirements down to standard C0 spaces used in traditional finite element methods.

This work uses a mixed form, where the system solved involves a coupled system of

three second-order equations.
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3.3.1 Mixed form 2 + 2 + 2: triple second-order split

Equation (3.4) can be written as a system that consists of three coupled second-order

equations, given by

∂φ

∂t
= ∆σ in Ω×]0, T ], (3.7a)

σ = (1 + ∆) θ + Ψ′ (φ) in Ω×]0, T ], (3.7b)

θ = (1 + ∆)φ in Ω×]0, T ]. (3.7c)

3.3.2 Weak form

Let us denote by V1 a functional space, which is a subset of H1, where H1 is the

Sobolev space of square integrable functions with square integrable first derivatives.

Assuming periodic boundary conditions in all directions, a weak form can be derived

by multiplying (3.7a) to (3.7c) by test functions q, s, w ∈ V1, respectively, and inte-

grating the equations by parts. The variational problem can then be defined as that

of finding φ, θ, σ ∈ V1 such that for all q, s, w ∈ V1

0 =
(
q, φ̇
)

Ω
+ (∇q,∇σ)Ω

+ (s, σ −Ψ′ (φ)− θ)Ω + (∇s,∇θ)Ω

+ (w, θ − φ)Ω + (∇w,∇φ)Ω ,

where the dependence of φ on space and time is not explicitly stated, the L2 inner

product over the domain Ω is indicated by (., .)Ω and φ̇ :=
∂φ

∂t
.

3.3.3 Semi-discrete formulation

Splitting the equation with the help of the auxiliary variables σ and θ allows us to

use C0 finite elements, as only H1-conforming spaces are needed. We let Vh1 ⊂ V1
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denote the finite dimensional functional space spanned by these C0 B-spline basis

functions in two or three spatial dimensions. The problem is then stated as follows:

find φh, θh, σh ∈ Vh1 such that for all qh, sh, wh ∈ Vh1

0 =
(
qh, φ̇h

)
Ω

+ (∇qh,∇σh)Ω

+
(
sh, σh −Ψ′

(
φh
)
− θh

)
Ω

+
(
∇sh,∇θh

)
Ω

+
(
wh, θh − φh

)
Ω

+
(
∇wh,∇φh

)
Ω
, (3.8)

where the weighting functions qh, sh and wh, and trial solutions σh, θh and φh can be

defined as

qh =

nb∑
A=1

qANA, sh =

nb∑
A=1

sANA, wh =

nb∑
A=1

wANA,

σh =

nb∑
A=1

σANA, θh =

nb∑
A=1

θANA, φh =

nb∑
A=1

φANA,

where the B-spline basis functions NA define the discrete space Vh1 of dimension nb

and the coefficients qA, sA, wA, σA, θA and φA represent the control variables.

3.3.4 Time discretization

The time discretization proposed in this Chapter adapts what was done in [29] for

the Cahn–Hilliard equation, to the formulation presented in equation (3.8) for the

phase-field-crystal equation. To do this, the nonlinear term Ψ(φ) =
φ4

4
− εφ2

2
is split

as

Ψ(φ) = Ψc(φ)−Ψe(φ),

where Ψc(φ) =
φ4

4
and Ψe(φ) =

εφ2

2
. Both of these functions are convex, which al-

lows us to discretize the nonlinearity in time using a convex-implicit, concave-explicit
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treatment, giving the following fully discrete system

0 =

(
qh,

〚φhn〛
∆t

)
Ω

+
(
∇qh,∇σh

)
Ω

+

(
sh, σh − θh −

(
Ψ′c
(
φhn+1

)
−Ψ′′c

(
φhn+1

) 〚φhn〛
2

))
Ω

+

(
sh,

(
Ψ′e
(
φhn
)

+ Ψ′′e
(
φhn
) 〚φhn〛

2

))
Ω

+
(
∇sh,∇θh − αn∆t∇〚φhn〛

)
Ω

+
(
wh, θh − {φhn}

)
Ω

+
(
∇wh,∇{φhn}

)
Ω
, (3.9)

where

• 〚φhn〛 = φhn+1 − φhn,

• {φhn} =
1

2

(
φhn+1 + φhn

)
,

• Ψ′c(φ
h
n+1) =

(
φhn+1

)3
,

• Ψ′′c (φ
h
n+1) = 3

(
φhn+1

)2
,

• Ψ′e(φ
h
n) = εφhn,

• Ψ′′e(φ
h
n) = ε,

and the stabilization parameter αn needs to comply with

αn ≥
(
sup

(
Ψ′′c
(
φhn+1

)
+ Ψ′′e

(
φhn
)))2

16
=

(
sup

(
3
(
φhn+1

)2
+ ε
))2

16

3.4 Properties of the numerical scheme

The discretization presented in section 3.3.4 guarantees mass conservation, is second-

order accurate in time, and possesses energy stability by construction.
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3.4.1 Mass conservation

Mass conservation can be verified by taking equation (3.9), and letting the test func-

tion qh be equal to one while having sh = wh = 0, such that

0 =

(
1,

〚φhn〛
∆t

)
Ω

+
(
0,∇σh

)
=

∫
Ω

〚φhn〛
∆t

dΩ,

which implies that mass is conserved at the discrete time levels, that is

∫
Ω

φn+1dΩ =

∫
Ω

φndΩ.

3.4.2 Second-order accuracy in time

A bound on the local truncation error can be obtained by comparing our method to

the Crank-Nicolson scheme, a well-known second-order accurate time-stepping algo-

rithm. If we do not spatially discretize (3.4), but instead apply the Crank-Nicolson

scheme to it, we obtain

〚φn〛
∆t

= ∆
[
(1 + ∆)2 {φn}+ Ψ′({φn})

]
.

Substituting the discrete time solution {φn} by the time-continuous solution {φ(tn)}

into the above equation gives rise to the local truncation error. Indeed, we have

〚φ(tn)〛
∆t

= ∆
[
(1 + ∆)2 {φ(tn)}+ Ψ′({φ(tn)})

]
+ τ(tn), (3.10)

where τ(tn) represents the global truncation error. It can be shown, using Taylor

series, that such a scheme will give a bound τ(tn) ≤ C∆t2, as was done in [2] in a

similar context.

To prove second-order accuracy in time for our scheme, we compute the next
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time-step approximation via the scheme applied to the exact solution and compare

the result to Taylor expansions. A similar procedure was performed in [29] in the

context of Cahn–Hilliard equations. By looking at only the time discretization part

of (3.9), and reorganizing the splitting into one equation, we have that

φn+1 = φ(tn) + ∆t∆

(
(1 + ∆)2φ({t})

+ Ψ′c(φ(tn+1))−Ψ′e(φ(tn))

− 1

2
〚φ(t)〛Ψ

′′

c (φ(tn+1))− 1

2
〚φ(t)〛Ψ

′′

e (φ(tn))

− αn∆t∆〚φ(t)〛

)
, (3.11)

where φ({t}) is defined as the Crank-Nicolson (mid-point rule) approximation

φ({t}) = φ

(
tn+1 + tn

2

)
=
φ(tn+1) + φ(tn)

2
+O(∆t2).

We expand Ψ′c (φ (tn+1)) such that

Ψ′c(φ(tn+1)) = Ψ′c(φ({t}))−Ψ′′c (φ(tn+1))
(
φ({t})− φ(tn+1)

)
+O(∆t2)

= Ψ′c(φ({t})) +
〚φ(t)〛

2
Ψ′′c (φ(tn+1)) +O(∆t2).

Thus,

Ψ′c({φ}) = Ψ′c(φ(tn+1))− 〚φ(t)〛
2

Ψ′′c (φ(tn+1)) +O(∆t2). (3.12)

Similarly, we have for the explicit part

Ψ′e({φ}) = Ψ′e(φ(tn)) +
〚φ(t)〛

2
Ψ′′e(φ(tn)) +O(∆t2). (3.13)
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The stabilization term is of order O(∆t2) and can be written as

αn∆t∆〚φ(t)〛 = αn(∆t)2∆

(
〚φ(t)〛

∆t

)

= αn(∆t)2∆

(
∂φ

∂t
+O

(
∆t
))

= O(∆t2). (3.14)

Using (3.12)-(3.14), and substituting them into (3.11), we obtain

φn+1 = φ(tn) + ∆t∆

(
(1 + ∆)2φ({t})

+ Ψ′c({φ})−Ψ′e({φ}) +O(∆t2)

)
. (3.15)

Alternatively, by Taylor expansion of the solution, we have

φ({t}) = φ(tn+1)− ∆t

2
φ′({t})− 1

2

(
∆t

2

)
φ′′({t}) +O(∆t3),

φ({t}) = φ(tn) +
∆t

2
φ′({t})− 1

2

(
∆t

2

)
φ′′({t}) +O(∆t3).

Taking the difference of the above two equations and using (3.4) yields

φ(tn+1)− φ(tn) = ∆t
∂φ({t})
∂t

+O(∆t3)

= ∆t∆
(
(1 + ∆)2φ({t}) + Ψ′c({φ})−Ψ′e({φ}) +O(∆t3)

)
.

Finally, taking the difference of the above expression with (3.15), we obtain the local

truncation error

φ(tn+1)− φn+1 = O(∆t3).

Thus, using the fact that the global truncation error τ(tn) loses an order of ∆t, the
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scheme is second-order accurate in time.

3.4.3 Energy stability

To prove energy stability, we first consider the time-discrete form of the scheme, given

by

〚φn〛 = ∆t∆σ̃, (3.16)

σ̃ = (1 + ∆) θ̃ − αn∆t∆〚φn〛

+ Ψ′c (φn+1)− 1

2
〚φn〛Ψ′′c (φn+1)−Ψ′e (φn)− 1

2
〚φn〛Ψ′′e (φn) , (3.17)

θ̃ = (1 + ∆) {φn}. (3.18)

Considering that for any smooth function Ψ we have

〚Ψ〛 = Ψ′(φn)〚φn〛 + Ψ′′(ξ1(φn+1, φn))
〚φn〛

2

2

= Ψ′(φn+1)〚φn〛−Ψ′′(ξ2(φn+1, φn))
〚φn〛

2

2
,

for some ξ1(φn+1, φn) in between φn and φn+1, similarly for ξ2(φn+1, φn). The above

formula is the exact Taylor series with remainder term and no additional terms are

required in the expansion.

Applying these expansions to our particular form of the nonlinearity, by Taylor’s

theorem, for some ξc, ξe between φn and φn+1, we have that

〚Ψ〛 = 〚Ψc〛− 〚Ψe〛

= Ψ′c(φn+1)〚φn〛−Ψ′′c (ξc)
〚φn〛

2

2
−Ψ′e(φn)〚φn〛−Ψ′′e(ξe)

〚φn〛
2

2
.
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Since Ψc and Ψe are globally convex, we have that Ψ′′c ,Ψ
′′
e ≥ 0. Observe that

〚Ψ〛 = (Ψ′c(φn+1)−Ψ′e(φn)) 〚φn〛− (Ψ′′c (ξc) + Ψ′′e(ξe))
〚φ〛2

2

≤ (Ψ′c(φn+1)−Ψ′e(φn)) 〚φn〛. (3.19)

Here, we use the fact that the second derivatives are non-negative and the overall sign

of the second derivative terms is negative. Recalling equation (3.1), we have that the

free energy is given by

F [φ(x)] =

∫
Ω

[
Ψ(φ) +

1

2

(
φ2 − 2|∇φ|2 + (∆φ)2

)]
dΩ,

with which we can write, given equation (3.19), that

〚F [φ(x)]〛 = 〚F〛

=

∫
Ω

(
〚Ψ (φ) 〛 +

1

2
〚 (φ)2 − 2|∇φ|2 + (∆φ)2〛

)
dΩ

≤
∫

Ω

(Ψ′c (φn+1)−Ψ′e (φn)) 〚φ〛dΩ

+
1

2

∫
Ω

〚
(
(φ)2 − 2|∇φ|2 + (∆φ)2

)
〛dΩ,

given that Ψc and Ψe are convex. From equation (3.17), we have that

Ψ′c (φn+1)−Ψ′e (φn) = σ̃ − (1 + ∆) θ̃

+
1

2
〚φn〛Ψ′′c (φn+1) +

1

2
〚φn〛Ψ′′e (φn) + αn∆t∆〚φn〛. (3.20)

We now simplify the notation for the explicit-implicit treatment of the second deriva-



60

tive and write

Ψ′′n,n+1 = Ψ′′c (φn+1) + Ψ′′e (φn)

= 3φ2
n+1 + ε. (3.21)

We then multiply equation (3.20) by 〚φn〛 = φn+1 − φn, use equation (3.18), and

integrate over the domain, to obtain

∫
Ω

(Ψ′c (φn+1)−Ψ′e (φn)) 〚φn〛dΩ =

∫
Ω

(
σ̃〚φn〛− (1 + ∆)2 {φn}〚φn〛

)
dΩ

+

∫
Ω

(
1

2
〚φn〛

(
Ψ′′n,n+1

)
〚φn〛

)
dΩ

+

∫
Ω

(αn∆t∆〚φn〛〚φn〛) dΩ. (3.22)

We now proceed to expand the different terms on the right-hand side of equa-

tion (3.22). Integrating the first term by parts, we obtain

∫
Ω

〚φn〛σ̃dΩ =

∫
Ω

∆t (∆σ̃) σ̃dΩ

= −
∫

Ω

∆t|∇σ̃|2dΩ. (3.23)

Then, for the second term in equation (3.22), we have

∫
Ω

(1 + ∆)2 {φn}〚φn〛dΩ =

∫
Ω

(1 + ∆) {φn} (1 + ∆) 〚φn〛dΩ

=
1

2

∫
Ω

〚 (φn)2 − 2|∇φn|2 + (∆φn)2〛dΩ. (3.24)

Using 〚φn〛 = ∆t∆σ̃, taking the supremum, and integrating by parts the third term
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of equation (3.22), we have

∫
Ω

1

2
〚φn〛

2
(

Ψ′′n,n+1

)
dΩ ≤ sup

(
Ψ′′n,n+1

)∫
Ω

∆t

2
〚φn〛

2dΩ

= sup
(

Ψ′′n,n+1

)∫
Ω

∆t

2
〚φn〛∆σdΩ

=− ∆t

2
sup
(

Ψ′′n,n+1

)∫
Ω

∇〚φn〛∇σdΩ. (3.25)

Remark 1. Recalling equation (3.21), Ψ′′n,n+1 = 3φ2
n+1 + ε and the term is always

positive. Thus, we may pull out a supremum without an absolute value needed. More-

over, since we assume the existence of a solution at each time step in H3(Ω), such a

supremum exists.

Integrating the last term of equation (3.22) by parts results in

∫
Ω

αn∆t∆〚φn〛〚φn〛dΩ = −
∫

Ω

αn∆t |∇〚φn〛|2 dΩ. (3.26)

Finally, by collecting the terms in equations (3.23)-(3.26), and replacing them in

equation (3.22), we obtain

〚F〛 ≤
∫

Ω

(
−∆t|∇σ̃|2 − αn∆t (∇〚φn〛)

2

− ∆t

2
sup
(

Ψ′′n,n+1

)
∇〚φn〛∇σ̃

)
dΩ. (3.27)

Using Young’s inequality, 2fg ≤ βf 2 + β−1g2, with f = −∇〚φn〛 and g = ∇σ̃, we

then have that

∆t

2
sup
(

Ψ′′n,n+1

)
(−∇〚φn〛)∇σ̃ ≤

∆t

4
sup
(

Ψ′′n,n+1 (φ)
)(

β (∇〚φn〛)
2 +
|∇σ̃|2

β

)
,
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such that inequality (3.27) becomes

〚F〛 ≤
∫

Ω

(
−∆t|∇σ̃|2 − αn∆t (∇〚φn〛)

2 +
∆t

4β
sup

(
Ψ′′n,n+1 (φ)

)
|∇σ̃|2

+
∆t

4
sup

(
Ψ′′n,n+1 (φ)

)
β(∇〚φn〛)2

)
dΩ, (3.28)

which is verified as long as

β ≥
sup

(
Ψ′′n,n+1

)
4

and αn ≥
(
sup

(
Ψ′′n,n+1

))2

16
. (3.29)

Equation (3.28) and the fulfilment of the conditions in (3.29), guarantee free energy

stability.

Remark 2. The above condition is effectively nonlinear, since the choice of αn de-

pends on φn+1. However, since the smoothness at each time step is assumed to be

H3, it is continuous and a global supremum of Ψ′′n,n+1 =3φ2
n+1 + ε exists at each time

step. The supremum of such a quantity is however a priori unknown. Thus, in our

implementation the above stability condition is a lagging condition where αn is com-

puted using the current time step. Another approach involves truncating the second

derivative of Ψ outside the regions [−1, 1], and interpolating with polynomials as in

[92] in the context of Cahn–Hilliard to obtain a global bound, such that αn can be

evaluated independently from ∆t.

3.4.4 Alternative formulation

This stabilization procedure is also suitable for the following alternative formulation

∂φ

∂t
= ∆σ in Ω×]0, T ], (3.30a)

σ = (1 + ∆)2 φ+ Ψ′(φ) in Ω×]0, T ]. (3.30b)
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Let us denote by V2 a functional space belonging toH2, whereH2 is the Sobolev space

of square-integrable functions with square-integrable first and second derivatives. As-

suming periodic boundary conditions in all directions, a weak form can be derived

multiplying (3.30a)-(3.30b) by test functions q, w ∈ V2, respectively, and integrating

the equations by parts. The problem can then be defined as that of finding φ,σ ∈ V2

such that for all q, w ∈ V2

0 =
(
q, φ̇
)

Ω
+ (∇q,∇σ)Ω

+ (w, σ −Ψ′ (φ)− φ)Ω + 2 (∇w,∇φ)Ω − (∆w,∆φ)Ω . (3.31)

This formulation requires the use of at least C1 continuity, but the use of a convex-

implicit and concave-explicit discretization of the nonlinearity can also be done, such

that the fully discrete formulation becomes

0 =

(
qh,

〚φhn〛
∆t

)
Ω

+
(
∇qh,∇σh

)
Ω

+
(
wh, σh − {φhn}

)
Ω

−
(
wh,Ψ′c

(
φhn+1

)
−Ψ′′c

(
φhn+1

) 〚φhn〛
2

)
Ω

+

(
wh,Ψ′e

(
φhn
)

+ Ψ′′e
(
φhn
) 〚φhn〛

2

)
Ω

+
(
∇wh, 2∇{φhn} − αn∆t∇〚φhn〛

)
Ω
−
(
∆wh,∆{φhn}

)
Ω
,

where

• αn ≥
[
sup

(
Ψ′′n,n+1

)]2
16

,

• Ψ′′n,n+1 = 3φ2
n+1 + ε.
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3.4.5 Numerical implementation

With regards to the implementation, we let the global vectors of degrees of freedom

associated to φhn, σhn and θhn be Φn, Σn and Θn, respectively. The residual vectors for

this formulation are then given by

Rφ(Φn,Φn+1,Σn+1,Θn+1); Rφ = {Rφ
A}; A = 1, ..., nb,

Rσ(Φn,Φn+1,Σn+1,Θn+1); Rσ = {Rσ
A}; A = 1, ..., nb,

Rθ(Φn,Φn+1,Σn+1,Θn+1); Rθ = {Rθ
A}; A = 1, ..., nb,

where

Rφ
A =

(
NA,

〚φhn〛
∆t

)
+
(
∇NA,∇σh

)
,

Rσ
A =

(
NA, σ

h − θh −
(

Ψ′c
(
φhn+1

)
−Ψ′′c

(
φhn+1

) 〚φhn〛
2

))
+

(
NA,

(
Ψ′e
(
φhn
)

+ Ψ′′e
(
φhn
) 〚φhn〛

2

))
+
(
∇NA,∇θh − αn∆t∇〚φhn〛

)
,

Rθ
A =

(
NA, θ

h − {φhn}
)

+
(
∇NA,∇{φhn}

)
.

The resulting system of nonlinear equations for Φn+1, Σn+1 and Θn+1 is solved using

Newton’s method, where Φ
(i)
n+1, Σ

(i)
n+1 and Θ

(i)
n+1 correspond to the i -th iteration of

Newton’s algorithm. The iterative procedure is specified in Algorithm 2.

3.5 Numerical results

The implementation of the numerical scheme described in section 3.3 was done using

PetIGA [113, 56, 57], which is a software framework built on top of PETSc [114, 115],

that delivers a high-performance computational framework for IGA. Tutorials for the
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Algorithm 1 Iterative procedure to solve the 2 + 2 + 2 mixed form

Taking Φ
(0)
n+1 = Φn, Σ

(0)
n+1 = Σn, and Θ

(0)
n+1 = Θn, for i = 1, .., imax,

(1) Compute the residuals R
(i)
φ , R

(i)
σ , R

(i)
θ , using Φ

(i)
n+1, Σ

(i)
n+1, Θ

(i)
n+1.

(2) Compute the Jacobian matrix K(i) using the i -th iterates. This matrix is given
by

K(i) =

Kφφ Kφσ Kφθ

Kσφ Kσσ Kσθ

Kθφ Kθσ Kθθ

(i)

, (3.32)

where the individual components of each submatrix of the Jacobian are defined in
Appendix B.1 in equations (C.1) through (C.4).
(3) Solve the linear systemKφφ Kφσ Kφθ

Kσφ Kσσ Kσθ

Kθφ Kθσ Kθθ

(i)∆Φ
∆Σ
∆Θ

(i+1)

=

Rφ

Rσ

Rθ

(i)

.

(4) Update the solution such thatΦn+1

Σn+1

Θn+1

(i+1)

=

Φn+1

Σn+1

Θn+1

(i)

−

∆Φ
∆Σ
∆Θ

(i+1)

.

Steps (1) through (4) are repeated until the norms of the global residual vector are
reduced to a certain tolerance (10−8 in all the examples shown in this work) of their
initial value. Convergence is usually achieved in 2 or 3 nonlinear iterations per time
step.
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framework are being developed and can be found in [116]. This section describes the

calculation of the free energy for the discretization, presents numerical evidence to

verify the results in section 3.3.4 in two dimensions, and shows the performance of the

method on some more challenging three-dimensional problems related to the growth

of crystals in a supercooled liquid.

3.5.1 Free-energy computation

If one uses spaces that are at least C1-continuous, the free energy can be computed

as

F [φhn] =

∫
Ω

[
Ψ(φhn) +

1

2

((
φhn
)2 − 2|∇φhn|2 + (∆φhn)2

)]
dΩ.

Modifications are needed in the 2+2+2 case though, as the discrete atomistic density

φh only lives in H1. As such, ∆φhn is undefined. This obstacle can be overcome by

making use of the auxiliary variable θ, as

θ = (1 + ∆)φ ⇔ ∆φ = θ − φ,

such that the free energy functional can be computed as

F [φhn] =

∫
Ω

[
Ψ(φhn) +

1

2

((
φhn
)2 − 2|∇φhn|2 + (θhn − φhn)2

)]
dΩ.

Remark 3. The use of the auxiliary variables means that they also have to be ini-

tialised, as the initial condition is only specified for φ. A nonlinear L2 projection is

performed to solve the semidiscrete versions of equations (3.7b) and (3.7c), shown in

the last two lines of equation (3.8).
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3.5.2 Numerical validation of the stable scheme

As a test example, we simulate the two-dimensional growth of a crystal in a super-

cooled liquid, using one-mode approximations for the density profiles of the crystalline

structures [30, 31]. The one-mode approximation corresponding to a triangular con-

figuration is defined as

φS (x) = cos

(
q√
3
y

)
cos (qx)− 1

2
cos

(
2q√

3
y

)
, (3.33)

where q represents a wavelength related to the lattice constant [14], and x and y

represent the Cartesian coordinates. A solid crystallite is initially placed in the centre

of a liquid domain, which is assigned an average density φ̄. The initial condition

becomes

φ0 (x) = φ̄+ ω(x) (AφS (x)) , (3.34)

where A represents an amplitude of the fluctuations in density, and the scaling func-

tion ω(x) is defined as

ω(x) =


(

1−
(
||x− x0||

d0

)2
)2

if ||x− x0|| ≤ d0

0 otherwise

where x0 is the coordinate of the center of the domain, and d0 is 1/6 of the domain

length in the x-direction. Different lattices can be reproduced, depending on the

values used for ε and the average atomistic density φ̄. Phase diagrams have been

developed in both two [14] and three [103] dimensions. In order to avoid mismatches

on the boundaries when the grain boundaries meet, the computational domain Ω is

dimensioned in such a way as to make it periodic along both directions. To do this
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while keeping the problem within a reasonable size, we use the frequency present in

equation (3.33) to define the domain Ω as

Ω =

[
0,

2π

q
a

]
×

[
0,

√
3π

q
b

]
,

where a and b are assigned values of 10 and 12, respectively. These numbers are chosen

so that the domain is almost square. The number of elements in the y-direction, Ny,

is then defined as

Ny =

⌊
b
√

3

2a
Nx +

1

2

⌋
,

where Nx represents the number of elements in the x-direction. This adjustment is

made to account for the difference in length between both directions, and to have

the element size h in both directions be approximately equal. The variables q and

A are assigned their corresponding equilibrium values, obtained by minimizing the

free energy presented in equation (3.1), with respect to both A and q, while using

the approximation of equation (3.33) to define the atomistic density. For the results

presented in this section, the values used are

ε = 0.325, φ̄ =

√
ε

2
, A =

4

5

(
φ̄+

√
15ε− 36φ̄2

3

)
, q =

√
3

2
.

The parameter ε is chosen such that the triangular structure is stable [14, 103]. Snap-

shots of the simulation are shown in Fig. 3.1. The initial crystallite placed in the

centre of the domain grows at the expense of the supercooled liquid, a state which is

enforced by the degree of undercooling ε. The non-increasing free energy and mass

conservation, properties that need to be verified for a numerical scheme to be valid

when solving this equation, can be verified in Figs. 3.2 and 3.3, respectively.

This same example was used to perform the numerical validation of the results
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t = 0 t = 25 t = 150

Figure 3.1: Snapshots of the approximate dimensionless atomistic density field show-
ing its evolution throughout the simulation, which was run using a computational
mesh composed of 256× 266 C0 linear elements, with a time step size of 1.0.

presented in section 3.3.4. The stabilization term αn was assigned a value of 0.25

for the range of time and space resolutions covered in this section. This choice of

αn was made after a-priori numerical experimentation for this specific example using

equations (3.29) and (3.21).

In order to study the convergence in time of the proposed method, a reference

solution is required. We obtain this reference solution using a grid with [128× 133]

elements, p2C0 basis functions, and a time step size ∆t = 10−2. This solution was

obtained within a matter of hours using a workstation with 32 processor cores. The

order of the basis function p was elevated in the case of this solution, as it is a more

sensible choice than going for h-refinement with p1C0 basis functions, as shown in [81].

Then, to assess the quality of this reference solution in terms of the error in the free

energy, an overkill solution was calculated using a grid with [128× 133] elements,

p4C0 spaces, and an order of magnitude smaller time step size ∆t = 10−3. Using the

same machine as before, the overkill solution took a week and a half to be completed.

The free energy evolutions of the reference and overkill solutions are compared in

Fig. 3.4a, while the relative error evolution between the free energies is shown in
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Figure 3.2: Free energy evolution. The free energy is monotonically decreasing
throughout the simulation, which was run using a computational mesh composed
of 256 × 266 C0 linear elements. A time step size of 1 was used, with an αn value
of 0.25.
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Figure 3.3: Mass evolution. The changes in mass are below the criterion for numerical
convergence, which validates numerically that mass is indeed conserved. The error
can be attributed to quadrature as well as the iterative solver.
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Fig. 3.4b. This comparison allows us to conclude that the reference solution is refined

enough in space and time to proceed with the study of convergence in time.

We proceed to study the temporal order of accuracy of the method. Using the

same spatial resolution as our reference solution, we perform simulations over a range

of time step sizes, and focus on the L2-error norm in space

||e||2 =

(∫
Ω

(
φh − φh∗

)2
dΩ

)1/2

where φh are the coarse-in-time solutions and φh∗ corresponds to the reference solution.

We compute this error at t = 150, point in time at which the crystal lattice has already

grown over the whole domain. The convergence in time is shown in Fig. 3.5, where we

observe that the numerical scheme is indeed second-order accurate. The maximum

relative error in mass with different time step sizes is shown in Fig. 3.6. We conclude

that the mass is indeed conserved in all cases, as the maximum relative error in mass

for different time step sizes stays below 10−9. Fig. 3.7 shows the time evolution of

free energy with different time step sizes. Free-energy monotonicity is verified for all

the cases, as no increases in free energy are observed. The increase in time step size

nonetheless leads to a poorer dynamical representation of the free energy evolution,

which is consistent with other published results [40, 28]. Care has to be taken when

choosing αn, as increasing the stabilization parameter has a negative effect on the

free energy approximation. This can be seen in Figs. 3.8(a), 3.8(b), 3.8(c) and 3.8(d),

where free energy is plotted for different values of αn and ∆t. Nonetetheless, as long

as the stabilization parameter αn complies with the bound presented in equation (29),

free energy is dissipated. Even though the dynamics of the equation are influenced

by the time step size, the method converges to the right steady state solution. This

could be an advantage if what is looked for is the steady state solution to a problem,

such as in control of dynamical systems [117]. The use of αn slows down the dynamics
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(a) Free energy evolution of overkill and reference solutions.
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(b) Relative error between reference and overkill free energy evolutions.

Figure 3.4: Free energy evolutions of reference and overkill solutions. In (a), the free
energy evolution of an overkill solution using [128× 133] quartic C0 elements and a
time step size of 10−3 is shown along with the free energy evolution corresponding to
a reference solution obtained using [128× 133] quadratic C0 elements and a time step
size of 10−2. An inset plot is shown on the bottom right corner of (a), in the region
where the error is highest throughout the simulation as can be verified in (b), where
the relative error between the reference and overkill free energy evolutions is shown.
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Figure 3.5: Log of L2-norm of the error at time T = 150 versus the log of time step
size ∆t. The value of the slope confirms the method is second-order accurate in time.
The mesh used was made up of [128× 133] quadratic C0 elements, such that the
spatial error could be considered negligible in the simulations. The parameter αn was
given a value equal to 0.25, which complies with the bound presented in section 3.3.4
for this problem.
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Figure 3.6: Mass conservation. The maximum relative error over the entire evolution
of the system remained below 10−9 for the simulations considered in this work. The
mesh used was made up of [128× 133] quadratic C0 elements, such that the spatial
error could be considered negligible in the simulations. The parameter αn was given
a value equal to 0.25, which complies with the bound presented in section 3.3.4 for
this problem.

of the equation, and an effective time-step size needs to be determined. We plan to

study this point further in future work [81].

The results in this section validate numerically the theoretical results presented in

section 3.3.4 with regards to this numerical formulation, and prove that it is indeed

mass conserving, unconditionally energy-stable, and is second-order accurate in time.
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Figure 3.7: Free energy monotonicity. The free energy functional of the system ex-
hibits strong energy stability, such that F [φ (tn+1)] ≤ F [φ (tn)]. This is independent
of the time step size used as can be observed in the plot. The mesh used was made up
of [128× 133] quadratic C0 elements, such that the special error could be considered
negligible in the simulations. The parameter αn was given a value equal to 0.25,
which complies with the bound presented in section 3.3.4 for this problem.
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Figure 3.8: Stabilization parameter variation in two dimensions. The free energy
is plotted as a function of time using time step sizes (a) ∆t = 0.25, (b) ∆t = 0.5,
(c) ∆t = 0.75 and (d) ∆t = 1.0, respectively. Increasing the stabilization parameter
αn or the time step size ∆t results in a less accurate dynamical representation, but
converges to the correct steady state solution. The mesh consists of [128× 133]
quadratic C0 elements, such that the spatial error could be considered negligible in
the simulations.
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3.6 Three dimensional simulations: Crystalline growth

in a supercooled liquid

In this section, we deal with the three dimensional version of the example described

in section 3.5.2, as well as a more challenging case, where two crystallites oriented in

different directions are grown in the same domain. The PFC equation in this latter

case is able to capture the emergence of grain boundaries.

3.6.1 Crystalline growth in a supercooled liquid

In this example, the growth of a single crystal with a BCC structure is simulated.

Mathematically, the crystallite is now defined as [14, 86]

φBCC (x) = cos (xqBCC) cos (yqBCC) + cos (xqBCC) cos (zqBCC)

+ cos (yqBCC) cos (zqBCC) , (3.35)

where x, y and z represent the three-dimensional Cartesian coordinates and qBCC

represents a wavelength related to the BCC crystalline structure. The computational

domain is Ω = [0, 20π]3, with periodic boundary conditions being assumed again in

all directions. Similarly to what is done in equation (3.34) for the two-dimensional

case, the initial condition is defined as

φo (x) = φ̄BCC + ω (x) (AφBCC (x)) , (3.36)

where φ̄BCC represents again the average density of the liquid domain, and A repre-

sents an amplitude of the fluctuations in density. To ensure the stability of the BCC
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phase, the parameters of the equation are given the following values

ε = 0.35, φ̄BCC = −0.35, qBCC =
1√
2
, A = 1.

The initial crystallite is placed in the centre of the domain. Similarly to what happens

in the two dimensional case, the crystal grows at the expense of the liquid. Snapshots

of the solution can be observed in Fig. 3.9. The figure shows that the initial BCC

pattern is repeated over the whole domain, until reaching a steady state. The sim-

ulation uses a uniform grid composed of [150]3 linear elements, and a time step size

∆t = 0.5. The stabilization parameter αn is set to 0.5. The free energy evolution for

the simulation is shown in Fig. 3.10. There are no increases in free energy. The mass

also remains constant throughout the simulation.

3.6.2 Polycrystalline growth of BCC crystals

As a more challenging example, we present a case of polycrystalline growth, where

two initial crystallites with a BCC configuration oriented in different directions are

placed in the domain. They are set at different angles, so as to eventually observe

the emergence of grain boundaries when both crystallites meet. The computational

domain is Ω = [0, 40π]3, and periodic boundary conditions are imposed in all direc-

tions. A uniform mesh comprised of [150]3 linear elements is used, along with a time

step size ∆t = 0.5. The stabilization parameter αn is set to 0.5. A system of local

Cartesian coordinates (xC , yC , zC) was used to generate the crystallites in different

directions, by doing an affine transformation of the global coordinates (x, y, z) to
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(a) t = 0

(b) t = 100

(c) t = 250 (steady state)

Figure 3.9: Crystal growth in a supercooled liquid in three dimensions. The images
show the evolution of one crystallite surrounded by liquid. The labels indicate the
computational time. On the left-hand side, we show isosurfaces of the solution, in the
middle we present the same isosurfaces where a thresholding filter has been applied
to only show the atoms, such that the periodic nature of the lattice is clear, while on
the right-hand side we present slices of the solution across the indicated planes.
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Figure 3.10: Free energy evolution of a single crystal. The free energy is monotonically
decreasing while the mass remains constant throughout the simulation (the maximum
relative error stays below 10−9), which was run using a mesh composed of [150]3 linear
elements. A time step size of 0.5 was used, with an αn value of 0.5.
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produce a rotation β along the z axis, with


xC

yC

zC

 =


cos (β)x− sin (β) y

cos (β)x+ sin (β) y

z

 . (3.37)

The first crystallite was defined as in equation (3.35), with β = 0, while the second

one was rotated by an angle β =
π

8
. The same equation parameters that were

used in section 3.6.1 are used in this example, and result in the simulation shown in

Fig 3.11. Grain boundaries appear when the two crystals meet while growing, given

the orientation mismatch. The free energy evolution is shown in Fig. 3.12, where no

increases in free energy are seen.

Changing the rotation angle β can have an effect on the free energy of the system,

as it influences the grain boundary that is formed. The free energy evolution is plotted

in Fig. 3.13 for three different values of β. In the two cases where the rotation angle

is relatively small
(

i.e, β =
π

8
and β =

π

16

)
, the same steady state is reached, as

the equation leads both systems to the same energetically minimal state. On the

other hand, when the change in β is larger
(π

2

)
, the free energy value at steady state

differs significantly. The grain boundary formed is considerably different than the

ones considered before, as the two grains meet at a significantly different position.

Further studies are needed to conclude if the free energy differences are qualitatively

accurate and compare well with experiments.
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(a) t = 0. (b) t = 100.

(c) t = 250. (d) t = 500.

Figure 3.11: Polycrystalline growth in a supercooled liquid in three dimensions. The images show isocontours of the atomistic
density field, where two crystallites are initially placed in a domain with different orientations. Grain boundaries emerge once
the crystals meet. The labels indicate the computational time, while the mesh used [150]3 linear elements. A time step size of
0.5 was used, with an αn value of 0.5.



84

3.7 Discussion

In this chapter, we present a provably stable scheme to solve the phase-field crystal

equation. This algorithm conserves mass, guarantees energy stability and is second-

order accurate in time. Theoretical proofs are presented, along with numerical results

that corroborate them in two spatial dimensions. The method is based on a mixed

finite element formulation that involves three coupled, second-order equations. Three-

dimensional results involving polycrystalline growth are also presented, showcasing

the robustness of the method. The implementation is done using PetIGA, a high-

performance isogeometric analysis framework, and the codes are freely available to

download. 1

1https://bitbucket.org/dalcinl/petiga
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Figure 3.12: Free energy evolution of two crystals. The free energy is monotonically
decreasing while the mass remains constant throughout the simulation (the maximum
relative error stays below 10−9), which was run using a mesh composed of 1503C0 linear
elements. A time step size of 0.5 was used, with an αn value of 0.5.
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Figure 3.13: Effect of rotation angle on the crystallites. The plotted solutions use
a time step size ∆t = 0.5, a stabilization parameter αn = 0.5, and [150]3 linear
elements. Three different rotation angles β are considered.



Chapter 4

Linear, Unconditionally

Energy-Stable Time-Integrators for

Phase-Field Models

In this chapter, we introduce provably energy-stable time-integration methods for

general classes of phase-field models. We demonstrate how Taylor series expansions

of the nonlinear terms present in the partial differential equations of these models can

lead to expressions that guarantee energy-stability implicitly, which are second-order

accurate in time. Additionally, the system can be rendered linear, decreasing the

computationl time needed to obtain a solution considerably. The spatial discretiza-

tion relies on a mixed finite element formulation and isogeometric analysis. We also

propose an adaptive time-stepping discretization that relies on a first-order backward

approximation to give an error-estimator. This methodology can be applied to any

second-order accurate time-integration scheme. We present numerical examples in

two and three spatial dimensions, which confirm the stability and robustness of the

method. The implementation of the numerical schemes is done in PetIGA, a high-

performance isogeometric analysis framework.
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The chapter is structured as follows: in section 4.1, we give some background

on the general problem of numerical energy stability of phase-field problems. In

section 4.2, we describe the general class of phase-field models we consider, and present

the development of our unconditionally stable time integrator. In section 4.3, we

present our spatial discretization strategy, detail the numerical solution process, and

present the novel time-adaptive algorithm. In section 4.4, we re-introduce the four

phase-field models we briefly described in Chapter 2, which we proceed to solve in

section 4.5 using different time-stepping schemes. We conclude with section 4.6.

4.1 Background and Perspective

Numerical techniques that satisfy thermodynamic relations at the discrete level in

phase-field models have been developed for both conserved [2, 3] and non-conserved

phase-field models [4, 43]. The method we describe in this Chapter generalizes some

of these algorithms, and shows that the nonlinear terms present in the equations can

be discretized in time using Taylor series to guarantee both second-order accuracy

and strong energy stability. Additionally, the numerical schemes developed can be

rendered linear in time by keeping appropriate terms in the Taylor series expansions.

Given the difference in time scales that can exist in these models, we also present an

a posteriori error estimator that can be used to adapt the scheme in time.

Regarding the spatial discretization, we use isogeometric analysis (IGA) [48].The

method has successfully been applied in its Galerkin version to solve the Cahn-Hilliard

equation [28, 2], the advective [50] and Navier-Stokes-Cahn-Hilliard equations [51,

118], the Swift–Hohenberg equation [4] and the phase-field crystal equation [3, 52, 5].

IGA possesses some advantages over standard finite element methods, which include

being able to easily generate high-order, globally continuous basis functions as well

as exact geometrical representations as the finite element space is refined. However,
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when used to discretize the higher-order partial differential equations, the NURBS-

based spaces result in expensive linear systems [53, 54, 55] that need efficient and

scalable solvers that mitigate the increase of cost. For this reason, we implemented our

algorithm in a high-performance isogeometric analysis framework, PetIGA [56, 57].

Recently, isogeometric collocation methods have also been used to discretize phase-

field models [58, 59].

4.2 Energy stability of phase-field models

To model interfacial problems, phase-field methods represent the sharp interfaces

between the different phases through thin transition regions that distribute the in-

terfacial forces. In these models, the phase-field or order-parameter varies smoothly

(i.e., continuously) over the thin layers, with a key point being that the energy of

these models needs to be dissipated as time progresses. The existence of a Lyapunov

functional for these diffuse-interface problems implies strong energy stability [44], a

property which can be lost if inadequate algorithms and/or spatial/temporal reso-

lutions are used to solve the partial differential equation [44, 80, 4, 81]. This work

addresses the nonlinear stability issue for both conserved and non-conserved phase-

field variables, and presents a simple process that relies on Taylor series to handle the

nonlinear terms present in the partial differential equation.

4.2.1 An Abstract Model Problem

The phase-field framework relies on the minimization of a free energy functional that

models a system undergoing a phase transition. This functional depends on a phase-

field variable φ and its derivatives, and tries to capture both the bulk behavior of the

components involved as well as their interfacial behavior. The free energy functional
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F for many important phase-field models can generally be written as [14]

F
[
φ(x)

]
=

∫
Ω

(
f(φ,∇φ,∆φ) + Ψ(φ)

)
dΩ, (4.1)

where f is a function of φ and its derivatives, such that

f(φ,∇φ,∆φ) = f1(φ) + f2(∇φ) + f3(∆φ)

=
1

2

(
c0φ

2 + c1|∇φ|2 + c2 (∆φ)2) , (4.2)

where c0, c1, and c2 are real-valued constants, ∇ and ∆ represent the gradient and

Laplacian operators, respectively, and Ψ, a Landau-type free energy density [14], is a

polynomial function of φ given by

Ψ(φ) =
1

4
a0 −

1

2
a2φ

2 +
1

4
a4φ

4, (4.3)

where a0, a2 and a4 are real-valued constants, and a2 and a4 are strictly positive. This

implies that the fourth derivative of Ψ with respect to φ is a constant which verifies

∂ivΨ(φ)

∂φiv
= Ψiv(φ) ≥ 0.

To simplify notation, we write F [φ(x)] as F(φ), and f(φ,∇φ,∆φ) as f(φ). The

phase field models considered in this work are those obtained through variational

arguments, where the evolution in time of the phase-field variable is related to the

variational derivative of the free energy functional defined in equation (4.1). In such

cases, the initial boundary value problem over the spatial domain Ω and time interval

[0, T ] is formulated as: given φ0 : Ω→ R, find φ : Ω× [0, T ]→ R such that
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∂φ

∂t
= (−∇)a ·

(
−M∇a δF(φ)

δφ

)
on Ω×]0, T ],

φ(x, 0) = φ0(x) on Ω̄.

(4.4)

where t stands for a time-like variable, and the parameter a takes a value of one if

the phase-field represents a conserved quantity or zero otherwise. Here, M ≡ M(φ)

represents mobility and is defined as either M = M̄ , with M̄ a positive constant, or

through the nonlinear expression


M = M̄

(
a2

a4

− φ2

)
≥ 0 ∀ φ ∈

]
−
√
a2

a4

,

√
a2

a4

[
,

M = 0 otherwise.

(4.5)

The initial condition is given by φ0(x), and the variational derivative operator δ
δφ

is

defined formally as

δ

δφ
=

∂

∂φ
−∇ · ∂

∂∇φ
+ ∆

∂

∂∆φ
. (4.6)

for models including up to Laplacians in F . Higher order models can also be consid-

ered by extending equation (4.6). Periodic or no-flux boundary conditions are used

in all directions for all the problems considered in this work.

Remark 4. The discretization can introduce numerical error that makes the phase-

field take values outside of its physical range [119], i.e., φ ∈
]
−
√
a2

a4

,

√
a2

a4

[
. This

issue is simply addressed by setting the mobility to zero as done through equation (4.5).

Many phase-field models may be derived from Lyapunov functionals using varia-

tional arguments [120], which endows them with nonlinear stability. We satisfy this

property for a number of models by guaranteeing strong energy stability [44], defined
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discretely in time as

F
(
φ (tn+1)

)
≤ F

(
φ (tn)

)
∀ n = 1, 2, ..., r. (4.7)

Thermodynamically consistent algorithms (i.e., energy stable) are necessary. If in-

adequate discretizations are used to solve the partial differential equations involved,

unphysical results where free energy increases can follow [4, 5]. Considering equa-

tion (4.7), the jump in free energy 〚F〛 is defined as

〚F〛 = F
(
φ (tn+1)

)
−F

(
φ (tn)

)
,

=

∫
Ω

(
〚f〛 + 〚Ψ〛

)
dΩ (4.8)

where

〚f〛 = f
(
φ (tn+1)

)
− f

(
φ (tn)

)
,

〚Ψ〛 = Ψ
(
φ (tn+1)

)
−Ψ

(
φ (tn)

)
.

With the goal of proving that our method guarantees

〚F〛 ≤ 0,

irrespectively of the mesh and time step-sizes used, the free energy jump can be

obtained using the weak form of equation (4.4) as will be shown in section 4.2.3.
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4.2.2 A stable scheme

We propose a new second-order accurate, unconditionally energy-stable scheme for

phase field models, given by

〚φ〛
∆t

= (−∇)a ·
(
−M̃∇aσ

)
, (4.9)

σ =
∂

∂φ

(
f1({φ}) + Ψ̃

)
−∇ · ∂f2({φ})

∂∇φ
+ ∆

∂f3({φ})
∂∆φ

+ (−1)aα∆t∆a〚φ〛, (4.10)

where

〚φ〛 = φn+1 − φn; ∆t = tn+1 − tn;

M̃ = M

(
3

2
φn −

1

2
φn−1

)
; {φ} =

1

2
(φn+1 + φn) .

Here, the mobility function M̃ is approximated through a second-order accurate ex-

trapolation from time steps already computed [92], where M (·) is defined by equa-

tion (4.5). The parameter α is a stabilization constant whose value depends on the

approximation used for Ψ̃′. This parameter guarantees free energy stability. The

function Ψ̃′ represents an approximation to Ψ′ such that the scheme is stable given

sufficient stabilization. We choose the approximation to be either implicit

Ψ̃′ = Ψ′n+1 −Ψ′′n+1

〚φ〛
2

+ Ψ′′′n+1

〚φ〛2

6
, with α ≥ 0 (4.11)

or an explicit one, such that

Ψ̃′ = Ψ′n + Ψ′′n
〚φ〛
2
, with α ≥ M̄

a2

a4

(
a2∆t

6

)2

. (4.12)

where Ψ′m is written instead of Ψ′ (φm) for the sake of brevity.
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4.2.3 Building up 〚F〛 from the weak form

The auxiliary variable σ appearing in equations (4.9) and (4.10) is defined as

σ =
δF(φ)

δφ
,

which in turn modifies the definition of the partial differential equation (4.4), that

now reads

∂φ

∂t
= (−∇)a · (−M∇aσ) , (4.13)

σ =
δF(φ)

δφ
. (4.14)

Let us define the functional space V ∈ Hm, where Hm is the Sobolev space of square

integrable functions with square integrable derivatives up to order m. In the following,

we derive the weak form of equations (4.13)-(4.14), obtained by multiplying them by

test functions w, q ∈ V , respectively, and integrating by parts. The problem then

becomes to find φ, σ ∈ V , such that for all w, q ∈ V ,

(
w,
∂φ

∂t

)
Ω

+ (∇aw,M∇aσ)Ω = 0, (4.15)

(q, σ)Ω −
(
q,
δF(φ)

δφ

)
Ω

= 0, (4.16)



95

where the L2 inner product over the domain is indicated by (·, ·)Ω. Recalling equa-

tions (4.6) and (4.16), we have that

(q, σ)Ω =

(
q,
δF(φ)

δφ

)
Ω

=

(
q,

∂

∂φ

(
f1(φ) + Ψ(φ)

)
−∇ · ∂f2(φ)

∂∇φ
+ ∆

∂f3(φ)

∂∆φ

)
Ω

=

(
q,
∂f1(φ)

∂φ

)
Ω

+

(
∇q, ∂f2(φ)

∂∇φ

)
Ω

+

(
∆q,

∂f3(φ)

∂∆φ

)
Ω

+

(
q,
∂Ψ(φ)

∂φ

)
Ω

. (4.17)

Recalling the time integration scheme proposed, we substitute equation (4.9) in (4.15)

to obtain

(
w,

〚φ〛
∆t

)
Ω

+
(
∇aw, M̃∇aσ

)
Ω

= 0, (4.18)

and substitute equation (4.10) in (4.17) to recover

(q, σ)Ω =

(
q,
∂f1({φ})

∂φ

)
Ω

+

(
∇q, ∂f2({φ})

∂∇φ

)
Ω

+

(
∆q,

∂f3({φ})
∂∆φ

)
Ω

+
(
q, Ψ̃′

)
Ω

+ α∆t (∇aq,∇a〚φ〛)Ω . (4.19)

Now, by taking the test function q to be equal to 〚φ〛, and taking the test function w

as equal to σ, equations (4.18) and (4.19) become

(σ, 〚φ〛)Ω = −∆t
(
∇aσ, M̃∇aσ

)
Ω
, (4.20)

(〚φ〛, σ)Ω =

(
〚φ〛,

∂f1({φ})
∂φ

)
Ω

+

(
∇〚φ〛,

∂f2({φ})
∂∇φ

)
Ω

+

(
∆〚φ〛,

∂f3({φ})
∂∆φ

)
Ω

+
(
〚φ〛, Ψ̃′

)
Ω

+ α∆t (∇a〚φ〛,∇a〚φ〛)Ω . (4.21)
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Substituting (4.20) in (4.21), we recover that

−∆t
(
∇aσ, M̃∇aσ

)
Ω

=

(
〚φ〛,

∂f1({φ})
∂φ

)
Ω

+

(
∇〚φ〛,

∂f2({φ})
∂∇φ

)
Ω

+

(
∆〚φ〛,

∂f3({φ})
∂∆φ

)
Ω

+
(
〚φ〛, Ψ̃′

)
Ω

+ α∆t (∇a〚φ〛,∇a〚φ〛)Ω . (4.22)

Using equation (4.8), it follows that

∫
Ω

〚f〛dΩ = 〚F(φ)〛−
∫

Ω

〚Ψ〛dΩ

=

(
〚φ〛,

∂f1({φ})
∂φ

)
Ω

+

(
∇〚φ〛,

∂f2({φ})
∂∇φ

)
Ω

+

(
∆〚φ〛,

∂f3({φ})
∂∆φ

)
Ω

.

Substituting this result in equation (4.22), we recover that

〚F(φ)〛 = −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω

+

∫
Ω

〚Ψ〛dΩ−
(
〚φ〛, Ψ̃′

)
Ω

= −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω

+

∫
Ω

(
〚Ψ〛− 〚φ〛Ψ̃′

)
dΩ. (4.23)

Since M̃ is always a non-negative quantity within the range where φ is defined,

i.e.,

]
−
√
a2

a4

,

√
a2

a4

[
, the first two terms contribute only to energy decay at each time

step. As for the last two terms, the approximation for Ψ′ and the stabilization pa-

rameter α can be chosen to yield a stable scheme with second order accuracy in

time.

Remark 5. Even though the mixed formulation allows to recover the free energy jump

in the case of conserved phase-field models, primal formulations can be used in the

case of non-conserved phase-field variables.
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4.2.4 Handling nonlinearities: Taylor expansions guarantee

energy-stability

Assuming the free energy functionals to be analytic, the nonlinear term involving Ψ

in the free energy F can be expressed at time levels n or n + 1 as a Taylor series

expansion, from Ψn+1 = Ψ(φn+1) and Ψn = Ψ(φn), respectively. This allows us to

write:

Ψn+1 =
∞∑
a=0

Ψ(a)
n

〚φ〛a

a!
(4.24)

Ψn =
∞∑
a=0

Ψ
(a)
n+1

(−1)a 〚φ〛a

a!
(4.25)

where Ψ
(a)
n is the a-th derivative of Ψ at tn, such that

Ψ(a)
n =

daΨ(φ(tn))

dφa
.

and Ψ
(a)
n+1 is the a-th derivative of Ψ at tn+1, such that

Ψ
(a)
n+1 =

daΨ(φ(tn+1))

dφa
.

The jump in Ψ can then be equivalently expressed as:

〚Ψ〛 = Ψn+1 −Ψn =
∞∑
a=1

Ψ(a)
n

〚φ〛a

a!
(4.26)

=
∞∑
a=1

Ψ
(a)
n+1

(−1)a+1 〚φ〛a

a!
(4.27)
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4.2.4.1 Implicit expansions

Depending on how many terms of the expansions given in equations (4.26) and (4.27)

are kept, different approximations can be obtained. Given the definition of Ψ in

equation (4.3), 〚Ψ〛 can be expanded from tn+1 using equation (4.27) such that

〚Ψ〛 = Ψ′n+1〚φ〛−Ψ′′n+1

〚φ〛2

2
+ Ψ′′′n+1

〚φ〛3

6
−Ψiv

n+ε

〚φ〛4

24
, (4.28)

where Ψiv
n+ε represents the exact remainder term [121] of the Taylor series, and is

always greater than zero since a4 > 0. Recalling the implicit approximation to the

nonlinear function Ψ̃′ given by equation (4.11), 〚Ψ〛 can be expressed as

〚Ψ〛 = Ψ̃′〚φ〛−Ψiv
n+ε

〚φ〛4

24
.

Thus, if equation (4.11) is used to express Ψ′ as an approximation to 〚Ψ〛/〚φ〛, the

jump in free energy of equation (4.23) becomes

〚F(φ)〛 = −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω −

∫
Ω

Ψiv
n+ε

〚φ〛4

24
dΩ

≤ 0,

and energy stability is proven. Thus, we see that for the fully implicit expansion no

stabilization is needed, and α = 0.

4.2.4.2 Explicit expansions

To analyze the stability of this scheme, we now consider the explicit approximation to

Ψ defined in (4.26) with Lagrange remainder, more specifically, we let equation (4.12)
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be an approximation to Ψ̃′. Thus, we have

〚Ψ〛 =

(
Ψ′n + Ψ′′n

〚φ〛
2

)
〚φ〛 + Ψ′′′n

〚φ〛3

6
+ Ψiv

n+ε1

〚φ〛4

24

= Ψ̃′〚φ〛 + Ψ′′′n
〚φ〛3

6
+ Ψiv

n+ε1

〚φ〛4

24
.

Substituting this result in equation (4.23), we have that

〚F(φ)〛 = −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω

+

∫
Ω

(
Ψ′′′n

〚φ〛3

6
+ Ψiv 〚φ〛4

24

)
dΩ

= −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω

+

∫
Ω

〚φ〛2

(
Ψ′′′n

〚φ〛
6

+ Ψiv 〚φ〛2

24

)
dΩ. (4.29)

Using the fact that Ψ′′′n = 6a4φn, Ψiv = 6a4 and that φ ∈
]
−
√

a2/a4,
√

a2/a4

[
, we can

rewrite the last two terms in equation (4.29) such that

sup

(
Ψ′′′n

〚φ〛
6

+ Ψiv 〚φ〛2

24

)
= a4 sup

(
φn〚φ〛 +

〚φ〛2

4

)

≤ a2

3
.
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Applying the previous result to equation (4.29), recalling that 〚φ〛 = ∆t(−∇)a ·

(−M∇aσ), integrating by parts, and using the Cauchy–Schwarz inequality, we obtain

〚F(φ)〛 = −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω

+

∫
Ω

〚φ〛2

(
−〚φ〛2

24
Ψiv +

〚φ〛
6

Ψ′′′n

)
dΩ

≤ −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω +

a2

3

∫
Ω

〚φ〛2dΩ

≤ −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω

− a2

3
∆t

∫
Ω

∇a〚φ〛M̃∇aσdΩ

≤ −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω

+
a2

3
∆t

√∫
Ω

M̃ |∇a〚φ〛|2 dΩ

√∫
Ω

M̃ |∇aσ|2 dΩ.

Using Young’s inequality, fg ≤ 1

2
(δf 2 + δ−1g2) with δ > 0, as well as the fact that

sup
(
M̃
)

= M̄a2/a4, we have that

〚F(φ)〛 ≤ −∆t
(
∇aσ, M̃∇aσ

)
Ω
− α∆t (∇a〚φ〛,∇a〚φ〛)Ω

+
a2∆t

6

(
δsup

(
M̃
)∫

Ω

|∇a〚φ〛|2 dΩ + δ−1

∫
Ω

M̃ |∇aσ|2 dΩ

)
= −∆t

(
1− a2∆t

6δ

)(
∇aσ, M̃∇aσ

)
Ω

−∆t

(
α− a2∆t

6
sup

(
M̃
)
δ

)
(∇a〚φ〛,∇a〚φ〛)Ω .

Thus, taking

a2∆t

6
≤ δ and α ≥ sup

(
M̃
)(a2∆t

6

)2

, (4.30)

energy stability is guaranteed. Contrary to the scheme developed in [5], α is no longer

a lagging indicator. The stabilization parameter can be calculated at each time step
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as all quantities are known a priori.

4.2.5 Order of accuracy

As we did in section 3.4.2, we compare the method to the Crank–Nicolson scheme to

obtain a bound on the local truncation error. We use a second order approximation to

M , M̃ , which is explicit and thus remains constant for each time step [92]. Therefore,

for simplicity of presentation, we suppose that M is constant in this section. When

applied to equation (4.4), the scheme reads

〚φ〛
∆t

= (−∇)a ·
(
−M∇a δF ({φ})

δφ

)
,

= (−∇)a ·
(
−M∇a

(
δf({φ})
δφ

+
∂Ψ({φ})
∂φ

))
, (4.31)

where

δf{φ}
δφ

=
∂f1({φ})

∂φ
−∇ · ∂f2({φ})

∂∇φ
+ ∆

∂f3({φ})
∂∆φ

.

Substituting the discrete time solution {φ} by the time-continuous solution {φ (tn)}

into the above equation gives rise to the local truncation error. Indeed, we have

〚φ〛
∆t

= (−∇)a ·
(
−M∇a δF ({φ (tn)})

δφ

)
,

= (−∇)a ·
(
−M∇a

(
δf ({φ(tn)})

δφ
+
∂Ψ ({φ(tn)})

∂φ

))
+ τ (tn) , (4.32)

where τ (tn) represents the global truncation error. Such a scheme gives a bound

τ (tn) ≤ C∆t2 which can be shown using Taylor series.
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4.2.5.1 Implicit expansions

To prove second order accuracy in time for our scheme, we compute the next time-

step approximation via the scheme applied to the exact solution and compare the

result to Taylor expansions. A similar procedure was performed in [92] in the context

of the Cahn-Hilliard equations. Using equations (4.9)-(4.10), and reorganizing the

splitting into one equation, we have that

φn+1 = φ (tn) + ∆t (−∇)a ·

(
−M∇a

(
δf ({φ (t)})

δφ
− α∆t∆〚φ(t)〛

+ Ψ′ (φ (tn+1))−Ψ′′ (φ (tn+1))
〚φ(t)〛

2
+ Ψ′′′ (φ (tn+1))

〚φ(t)〛2

6

))
, (4.33)

when the first three terms of the implicit approximation (4.11) are used, and {φ(t)}

defines the Crank-Nicolson approximation

{φ(t)} =
φ (tn+1) + φ (tn)

2
+O

(
∆t2
)
.

If at least two terms are used in the implicit approximation of Ψ̃′, the rest of the

terms are at least of order (∆t2), such that equation (4.33) can be written as

φn+1 = φ (tn) + ∆t (−∇)a ·

(
−M∇a

(
δf ({φ (t)})

δφ
− α∆t∆〚φ(t)〛

+ Ψ′ (φ (tn+1))−Ψ′′ (φ (tn+1))
〚φ(t)〛

2
+O

(
∆t2
)))

, (4.34)

We expand Ψ′ (φ (tn+1)) such that

Ψ′ (φ (tn+1)) = Ψ′ ({φ (t)})−Ψ′′ (φ (tn+1)) ({φ (t)} − φ (tn+1)) +O
(
∆t2
)

= Ψ′ ({φ (t)}) + Ψ′′ (φ (tn+1))
〚φ(t)〛

2
+O

(
∆t2
)
.
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Thus,

Ψ′ ({φ (t)}) = Ψ′ (φ (tn+1))−Ψ′′ (φ (tn+1))
〚φ(t)〛

2
+O

(
∆t2
)
. (4.35)

The stabilization term is of order (∆t2) and can be written as

α∆t∆a〚φ(t)〛 = α (∆t)2 ∆a

(
〚φ(t)〛

∆t

)
= α (∆t)2 ∆a

(
∂φ

∂t
+O (∆t)

)
= O

(
∆t2
)
. (4.36)

Using equations (4.35)-(4.36), and substituting them into (4.34), we obtain

φn+1 = φ (tn)

+ ∆t (−∇)a ·

(
−M∇a

(
δf ({φ (t)})

δφ
+Ψ′ ({φ (t)})+O

(
∆t2
)))

, (4.37)

Alternatively, by Taylor expansion of the solution we have

{φ (t)} = φ (tn+1)−Ψ′ ({φ(t)})
(

∆t

2

)
−Ψ′′ ({φ(t)}) 1

2

(
∆t

2

)
+O

(
∆t3
)
,

{φ (t)} = φ (tn) + Ψ′({φ (t)})
(

∆t

2

)
−Ψ′′ ({φ(t)}) 1

2

(
∆t

2

)
+O

(
∆t3
)
.

Taking the difference of the above two equations and using equation (4.4) yields

φ (tn+1)−φ (tn) = ∆t
∂{φ (t)}
∂t

+O
(
∆t3
)

= ∆t (−∇)a ·

(
−M∇a

(
δf ({φ(t)})

δφ
+ Ψ′ ({φ(t)}) +O

(
∆t3
)))

,
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Finally, taking the difference of the above expression with equation (4.37), we obtain

the local truncation error

φ (tn+1)− φn+1 = O
(
∆t3
)
. (4.38)

As the global truncation error τ (tn) loses an order of accuracy of ∆t, the scheme is

second-order accurate in time.

4.2.5.2 Explicit expansions

Similarly, for the case of the explicit expansion of Ψ′, keeping the first two terms of

the approximation (4.12), we have that

φn+1 = φ (tn) + ∆t (−∇)a ·

(
−M∇a

(
δf ({φ(t)})

δφ
− α∆t∆〚φ(t)〛

+ Ψ′ (φ (tn)) + Ψ′′ (φ (tn))
〚φ(t)〛

2

))
, (4.39)

We expand Ψ′ ({φ(t)}) such that

Ψ′ ({φ (t)}) = Ψ′ (φ (tn)) + Ψ′′ (φ (tn)) ({φ(t)} − φ (tn)) +O
(
∆t2
)
.

= Ψ′ (φ (tn)) + Ψ′′ (φ (tn))
〚φ(t)〛

2
+O

(
∆t2
)
. (4.40)

Following the procedure described previously through equation (4.36)-(4.38), second-

order accuracy in time is also proved for the explicit expansion.

4.2.6 Conserving mass when a = 1

Mass conservation is verified for the case in which a = 1 by taking the time-discrete

version of equation (4.15) and letting the test function w be equal to one while having
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test function q equal to zero, such that

0 =

(
1,

〚φ〛
∆t

)
Ω

+ (0,M∇aσ)Ω =

∫
Ω

〚φ〛
∆t

dΩ,

which implies that mass is conserved at the discrete time levels, that is

∫
Ω

φn+1dΩ =

∫
Ω

φndΩ.

4.3 Numerical discretization and time-adaptivity

In this section, we discuss the spatial discretization used to solve equations (4.18)-

(4.19). We also introduce an adaptive algorithm in time that can be applied together

with the stable schemes proposed. This coupling decreases the computational time

needed to reach steady state solutions, and guarantees free energy stability during

the simulation.

4.3.1 Spatial discretization: semi-discrete formulation

Given the weak form presented in equations (4.18)-(4.19), H2-conforming spaces are

needed if the equation is solved with the Galerkin method. This requirement can

be fulfilled by using C1 finite elements. These finite elements are accessible through

isogeometric analysis [48]. Even though the equations addressed in this work are not

required to go above m = 2, it is possible to generate discrete spaces with a higher

degree of continuity [52]. As m = 2 allows us to tackle all the problems dealt with

in this work, we let Vh2 ⊂ V2 denote the finite dimensional functional space in two or

three dimensions. The problem can be stated as follows: find φh, σh ∈ Vh2 such that
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for all wh, qh ∈ Vh2

0 =

(
wh,

∂φh

∂t

)
Ω

+
(
∇aw,M

(
φh
)
∇aσh

)
Ω

(4.41)

0 =
(
qh, σh −Ψ′

(
φh
))

Ω

−
(
qh,

∂f1(φh)

∂φh

)
Ω

−
(
∇qh, ∂f2(φh)

∂∇φh

)
Ω

−
(

∆qh,
∂f3(φh)

∂∆φh

)
Ω

(4.42)

where the weighting functions wh and qh, trial solutions φh and σh, and their respec-

tive gradients and Laplacians, are defined as the linear combinations

wh =
∑
A

WANA(x), σh =
∑
A

ΣANA(x), (4.43)

∇wh =
∑
A

WA∇NA(x), ∇σh =
∑
A

ΣA∇NA(x), (4.44)

qh =
∑
A

QANA(x), φh =
∑
A

ΦANA(x), (4.45)

∇qh =
∑
A

QA∇NA(x), ∇φh =
∑
A

ΦA∇NA(x), (4.46)

∆qh =
∑
A

QA∆NA(x), ∆φh =
∑
A

ΦA∆NA(x), (4.47)

where NA are the multidimensional basis functions and WA, QA, ΣA and ΦA are the

control variables.

Remark 6. Linear finite elements can be used in phase-field equations where the

Laplacian term is absent from the free energy functional (i.e., c2 = 0 in equa-

tion (4.2)). Furthermore, the choice to use C1 finite elements simplifies the pre-

sentation of the method, but alternative mixed formulations that only require C0 finite

elements exist [5].



107

4.3.2 Fully discrete scheme

The fully discrete version of the general phase-field problem presented in equations (4.13)-

(4.14) may be described as follows: Let the time interval T =]0, T [ be divided into r

subintervals Tn = (tn, tn+1) for n = 0, ..., r−1. The fully discrete solutions are defined

as φhn and σhn. The problem can now be defined as follows: given φhn−1, φhn and σhn,

find φhn+1 and σhn+1 such that for all wh, qh ∈ Vh2

0 =

(
wh,

〚φ〛
∆t

)
Ω

+
(
∇awh, M̃

(
φh
)
∇aσhn+1

)
Ω
, (4.48)

0 =
(
qh, σhn+1 − Ψ̃′

(
φh
))

Ω
− α∆t

(
∇aqh,∇a〚φh〛

)
Ω

−

(
qh,

∂f1

({
φh
})

∂φh

)
Ω

−

(
∇q,

∂f2

({
φh
})

∂∇φh

)
Ω

−

(
∆qh,

∂f3

({
φh
})

∂∆φh

)
Ω

, (4.49)

where Ψ̃′
(
φh
)

represents the spatially-discrete version of equations (4.11)-(4.12), and

M̃
(
φh
)

= M

(
3

2
φhn −

1

2
φhn−1

)
.

4.3.3 Numerical implementation

With regards to the numerical implementation, we let the global vectors of degrees

of freedom associated to φhn and σhn be Φh
n and Σh

n, respectively. The residual vectors

for this formulation are then given by

Rφ (Φn−1,Φn,Φn+1,Σn+1) ; Rφ = {Rφ
A}; A = 1, ..., nb,

Rσ (Φn−1,Φn,Φn+1,Σn+1) ; Rσ = {Rσ
A}; A = 1, ..., nb,
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where

Rφ
A =

(
NA,

〚φ〛
∆t

)
Ω

+
(
∇aNA, M̃

(
φh
)
∇aσh

)
Ω
,

Rσ
A =

(
NA, σ

h − Ψ̃′
(
φh
))

Ω
− α∆t

(
∇aNA,∇a〚φh〛

)
Ω

−

(
NA,

∂f1

({
φh
})

∂φh

)
Ω

−

(
∇NA,

∂f2

({
φh
})

∂∇φh

)
Ω

−

(
∆NA,

∂f3

({
φh
})

∂∆φh

)
Ω

.

The resulting system of nonlinear equations for Φn+1 and Σn+1 is solved using New-

ton’s method, where Φ
(i)
n+1 and Σ

(i)
n+1 correspond to the i -th iteration of Newton’s

algorithm. The iterative procedure is specified in Algorithm 2. The codes are im-

plemented in PetIGA, a high-performance isogeometric analysis framework [56]. The

codes can be found in the demo section of the repository1, and are free to download.

4.3.4 Time adaptivity

Many processes modeled with phase-field models are controlled by different time scales

as they evolve, and each regime may be orders of magnitude different from the other.

Therefore, efficient numerical solutions for these problems usually involve adaptive

time stepping schemes. Different strategies have already been proposed, such as the

ones found in [43, 28] for the Allen–Cahn and Cahn–Hilliard equations and in [40] for

the phase-field crystal equation. Even though the methods presented therein success-

fully decrease the computational time taken to reach steady state solutions, they still

have room for considerable computational savings. In [28], a solution computed with

the generalized-α method is compared against a solution obtained with the backward-

Euler method. The difference between the two solutions is used as an error estimator

to modify the time step size. Even though shown to be robust and used since in other

works [2, 50, 122], this strategy is somewhat inefficient given that the solution must

be computed twice at each time step. In [43, 40], no recovery strategies are proposed

1https://bitbucket.org/dalcinl/petiga
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Algorithm 2 Iterative procedure to solve the mixed form

Taking Φ
(0)
n+1 = Φn, Σ

(0)
n+1 = Σn, for i = 0, . . . , imax,

(1) Compute the residuals R
(i)
φ , R

(i)
σ , using Φ

(i)
n+1, Σ

(i)
n+1.

(2) Compute the Jacobian matrix K(i) using the i -th iterates. This matrix is given
by

K(i) =

(
Kφφ Kφσ

Kσφ Kσσ

)(i)

, (4.50)

where the individual components of each submatrix of the Jacobian are defined in
the Appendix in equations (C.1) through (C.4).
(3) Solve the linear system(

Kφφ Kφσ

Kσφ Kσσ

)(i)(
∆Φ
∆Σ

)(i+1)

=

(
Rφ

Rσ

)(i)

.

(4) Update the solution such that(
Φn+1

Σn+1

)(i+1)

=

(
Φn+1

Σn+1

)(i)

−
(

∆Φ
∆Σ

)(i+1)

.

Steps (1) through (4) are repeated until the norms of the global residual vector are
reduced to a certain tolerance (10−8 in all the examples shown in this work) of their
initial value. Convergence is usually achieved in 2 or 3 nonlinear iterations per time
step. The linear system is solved with GMRES, to a specified tolerance (10−5 in this
work) with a restart criterion of 100 (i.e., the total number of Krylov directions to
orthogonalize against is set to 100; once this limit is reached, the Krylov space is
restarted from zero).
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when the numerical solver fails. This implies a period of trial and error is necessary

to tune the solver parameters for the specific equation being solved. In the following,

we propose an adaptive time-stepping strategy for any second order accurate time

integration scheme. In particular, our stable methods. This time adaptive scheme

addresses these issues, and is based on the generalized-α method. The method is

presented in algorithm 3.

Rather than computing the solution twice as done in [28], the solutions at tn

and tn−1 can be stored and used to estimate a posteriori the local truncation er-

ror of a lower-order method once the solution at tn+1 is obtained with the second-

order accurate generalized-α method (see Appendix C.1.2). The estimation of the

local truncation error is done through variable step-size backward differentiation.

Borrowing techniques from embedded Runge–Kutta methods [123], we consider the

second-order accurate generalized-α method as a high-order scheme, and the first-

order backward-Euler method as a lower-order scheme. Our time-adaptive scheme is

based on controlling the local truncation error for the lower-order method, i.e., the

backward-Euler method. By using Taylor series expansions, it can be shown [124]

that the local truncation error of the backward-Euler method is

τBE (tn+1) = −∆t2

2
U′′ (tn+1) +O

(
∆t3
)
. (4.51)

Given the approximate solutions Un+1, Un and Un−1, at times tn+1, tn and tn−1,

respectively, we can express the scaled second derivative 1/2∆t2U′′ (tn+1) using the

second order backward difference formula

∆t2

2
U′′ (tn+1) =

1

η
Un+1 −

1

η − 1
Un +

1

η(η − 1)
Un−1 +O

(
∆t3
)
, (4.52)

where η = (∆t+ ∆tp)/∆t = 1 + ∆tp/∆t, ∆t = tn+1 − tn and ∆tp = tn − tn−1.

From equations (4.51)-(4.52) the truncation error can be conveniently estimated
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as

En+1 = −1

η
Un+1 +

1

η − 1
Un −

1

η(η − 1)
Un−1 ≈ τBE (tn+1) .

Then, we can calculate a weighted local truncation error (WLTE) [123, equation 4.11]

as

WLTE =

√√√√ 1

N

N∑
i=1

(
Ei

τ abs
i + τ rel

i max (|Ui|, |Ui + Ei|)

)2

, (4.53)

where Ei = (En+1)i, Ui = (Un+1)i, τ
abs
i and τ rel

i define tunable absolute and relative

tolerances, respectively. The WLTE can be used to control the error at each time

step, by updating the time step size through

∆tnext = ρ WLTE−1/2 ∆t,

with ρ a safety factor. The default values for the safety factor ρ, the absolute and

relative tolerances τ abs
i and τ rel

i are set to 0.9, 10−4 and 10−4, respectively.

An initial time derivative V0 needs to be provided given the non-self-starting

nature of the algorithm. By using a finite difference strategy, a reasonable initial time

derivative can be estimated (i.e., O(∆t2)). To do this, the backward-Euler method on

the system dU
dt

= F (t,U) is used to estimate the value U∗1/2 at time t1/2 = t0 + 1/2∆t

U∗1/2 −U0

∆t/2
= F

(
∆t/2,U∗1/2

)
.

Using the approximation to U∗1/2, a second backward-Euler solve is done to get the

value U∗1 at time t1 = t0 + ∆t

U∗1 −U∗1/2
∆t/2

= F (∆t,U∗1) .
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Given U0, U∗1/2, U∗1, the initial time derivative can be approximated as

V0 =
1

∆t

(
−3U0 + 4U∗1/2 −U∗1

)
. (4.54)

Now, given a solution U0 at time t0, it is possible to compute a solution Uα
1 at

t1 = t0 + ∆t using the standard generalized-α method [125] for first-order systems.

Algorithm 3 Pseudocode for adaptive time-stepping.
kmax = 10, kmin = 0.1, ρ = 0.9.

1: Compute solution Uα
n+1 using ∆t through algorithm 2

2: if nonlinear solve failed to converge then
3: k = 0.25, update time step size ∆t⇐ k∆t
4: goto 1
5: end if
6: Calculate local truncation error En+1 using equation (4.51)
7: Calculate WLTE using equation (4.53)
8: Compute klte = ρWLTE−1/2

9: Set k = max
(
kmin,min (klte, kmax)

)
10: if WLTE > 1 then
11: Reject step, update time step size ∆t⇐ k∆t
12: goto 1
13: end if
14: Accept step, update time step size ∆t⇐ k∆t

The same strategy developed here for the generalized-α method can be applied to

any second-order accurate scheme, and, in particular, to both methods proposed in

section 4.2.2.

4.4 Phase-field models: weak forms

In this section, we focus on the four phase-field models we described in Chapter 2,

that have had considerable success in modeling different phenomena [14, 1, 12]. These

are the Allen–Cahn [65], the Cahn–Hilliard [27], the Swift–Hohenberg [66] and the

phase-field crystal [30] equations. The Allen–Cahn and Cahn–Hilliard equations, two

of the most successful phase-field models to date, are derived as gradient flows of the
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same free energy functional [43]. The same statement can be made regarding the

Swift–Hohenberg and the phase-field crystal equation, which are also derived from

the same free energy functional.

These equations were selected because their stable time integration has garnered

considerable interest in recent years [78, 2, 4, 5], and this work generalizes some of the

numerical schemes that have been put forth in the context of the Cahn-Hilliard [82,

43] and phase-field crystal equations [5]. Additionally, the discretization in space is

done using isogeometric analysis [48], which allows to easily generate high-order and

globally continuous basis functions. Given the higher-order nature of the equations

and the complicated geometries that can arise in phase-field problems [126], a finite

element discretization with improved geometrical properties [127] which allows for a

straightforward discretization of the high-order differential operators, seems to be the

most flexible and robust choice among the myriad of methods available.

4.4.1 The Allen–Cahn equation

The Allen–Cahn equation governs the behavior of the Ising ferromagnet [13], where

the competition between energy and entropy gives way to a phase transition below

some critical temperature [65]. The free energy functional for the system is given by

FAC =

∫
Ω

(
ΨAC +

1

2
|∇φ|2

)
dΩ,

where ΨAC =
1

4ε2
(φ2 − 1)

2
and ε is a parameter related to interface thickness. The

phase-field parameter is related to the ordering of the phase, which translates to it

being a non-conserved quantity. The partial differential equation that describes this
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order-disorder transition is given by

∂φ

∂t
= −σ,

σ = Ψ′AC (φ)−∆φ,

where a constant mobility of value one is considered. The weak formulation, following

equations (4.18)-(4.19), is given by

0 =

(
w,
∂φ

∂t
+ σ

)
Ω

, (4.55)

0 =
(
q, σ −Ψ′AC(φ)

)
Ω
−
(
∇w,∇φ

)
Ω
. (4.56)

The time discretization, using the stable scheme proposed in section 4.2.2, becomes

0 =

(
w,
∂φ

∂t
+ σ

)
Ω

,

0 =
(
q, σ − Ψ̃′AC(φ)

)
Ω
−
(
∇w,∇{φ}

)
Ω
− αAC∆t

(
q, 〚φ〛

)
Ω
.

4.4.2 The Cahn–Hilliard equation

The Cahn–Hilliard equation governs the evolution of an immiscible binary mixture

undergoing phase separation [27]. This is the equation that popularized the use of the

phase-field method [14]. In this equation, the phase field represents the concentration

of one of the components of the mixture. The dimensionless free energy functional is

given by

FCH = FAC

=

∫
Ω

(
ΨCH +

1

2
|∇φ|2

)
dΩ (4.57)
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where ΨCH =
1

4ε2
(φ2 − 1)

2
. The parameter ε is related to the thickness of the

interface. The partial differential equation, given that the phase-field is in this case

a conserved quantity, is given by

∂φ

∂t
= ∇ · (MCH∇σ) ,

σ = Ψ′CH (φ)−∆φ,

with MCH = M̄ (1− φ2). The variational formulation is then given by

0 =

(
w,
∂φ

∂t

)
Ω

+
(
∇w,MCH∇σ

)
Ω
, (4.58)

0 =
(
q, σ −Ψ′CH(φ)

)
Ω
−
(
∇w,∇φ

)
Ω
. (4.59)

The time discretization, using the stable scheme proposed, becomes

0 =

(
w,
∂φ

∂t

)
Ω

+
(
∇w, M̃CH∇σ

)
Ω
,

0 =
(
q, σ − Ψ̃′CH(φ)

)
Ω
−
(
∇w,∇{φ}

)
Ω
− αCH∆t

(
∇q,∇〚φ〛

)
Ω
,

where the nonlinear mobility M̃CH is defined using the extrapolation method pre-

sented in section 4.2.2, taken from [92].

4.4.3 The Swift–Hohenberg equation

The Swift–Hohenberg equation is derived from a phenomenon known as Rayleigh–

Bénard convection, in which a fluid is trapped between a hot and a cold plate. The

equation describes a convective instability, which occurs when the difference in tem-

perature between the plates becomes large enough. The Swift–Hohenberg equation,

a fourth order, nonlinear partial differential equation, is derived as a gradient flow of
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the dimensionless free energy functional FSH defined by [66, 4]

FSH =

∫
Ω

[
1

2

(
φ2 − 2|∇φ|2 + (∆φ)2

)
+ ΨSH(φ)

]
dΩ, (4.60)

where ΨSH(φ) = − ε
2
φ2 +

1

4
φ4. Using equations (4.4), (4.13), (4.14) along with the

definition of free energy given by equation (4.60) defines the evolution in time of φ

∂φ

∂t
= −σ, (4.61)

σ = (1 + ∆)2 φ+ Ψ′SH (φ) , (4.62)

where MSH = M̄SH = 1, (1 + ∆)2 = 1 + 2∆ + ∆∆, Ψ′SH is defined as Ψ′SH(φ) =

∂Ψ(φ)
∂φ

= φ3 − εφ, as well as the fact that the order parameter φ is not a conserved

quantity in the case of this equation such that a = 0. The corresponding weak form,

following equations (4.18)-(4.19), is given by

0 =

(
w,
∂φ

∂t
+ σ

)
Ω

, (4.63)

0 =
(
q, σ − φ−Ψ′SH(φ)

)
Ω

+ 2
(
∇w,∇φ

)
Ω
−
(
∆w,∆φ

)
Ω
. (4.64)

The time discretization, following section 4.2.2, is given by

0 =

(
w,

〚φ〛
∆t

+ σ

)
Ω

,

0 =
(
q, σ − {φ} − Ψ̃′SH

)
Ω

+ 2
(
∇q,∇{φ}

)
Ω
−
(
∆q,∆{φ}

)
Ω

− αSH∆t (q, 〚φ〛)Ω .

where Ψ̃′SH represents an approximation to Ψ′SH (φ), as defined in equations (4.11)

and (4.12).
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4.4.4 The phase-field crystal equation

The phase-field crystal equation is used to model the evolution of microstructures at

atomistic length scales and diffusive time scales. It is a sixth-order, nonlinear partial

differential equation. It can be derived by considering a conservative description of

the Rayleigh Bénard convection problem [30, 14]. It uses the same dimensionless free

energy functional as the Swift–Hohenberg equation, such that

FPFC = FSH

=

∫
Ω

[
1

2

(
φ2 − 2|∇φ|2 + (∆φ)2

)
+ ΨPFC(φ)

]
dΩ,

with ΨPFC(φ) = − ε
2
φ2 +

1

4
φ4. The evolution equation of the phase field φ, which

now represents an atomistic density field that is a conserved quantity, is given by

∂φ

∂t
= ∆σ,

σ = (1 + ∆)2 φ+ Ψ′PFC (φ) ,

where the mobility M = 1. This leads to the variational formulation

0 =

(
w,
∂φ

∂t

)
Ω

+ (∇w,∇σ)Ω , (4.65)

0 =
(
q, σ − φ−Ψ′PFC(φ)

)
Ω

+ 2
(
∇q,∇φ

)
Ω
−
(
∆q,∆φ

)
Ω
. (4.66)

with a time discretization given by

0 =

(
w,

〚φ〛
∆t

)
Ω

+ (∇w,∇σ)Ω ,

0 =
(
q, σ − {φ} − Ψ̃′PFC

)
Ω

+ 2
(
∇q,∇{φ}

)
Ω
− (∆q,∆{φ})Ω

− αPFC∆t
(
∇q,∇〚φ〛

)
Ω
.
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4.5 Numerical examples

In this section, we study the temporal approximation properties of the algorithms

resulting from the implicit and explicit expansions of Ψ′ presented in section 4.2.2.

We compare them with state-of-the-art algorithms developed by Gomez et al. for

the equations presented in section 4.4, as well as the backward-Euler scheme and

the generalized-α method [125] (using a spectral radius ρ∞ = 0.5). As previously

mentioned, the spatial discretization is done using isogeometric analysis, which allows

to easily generate the non-standard basis functions needed in the case of the Swift–

Hohenberg and phase-field crystal equations. The parameters for the equations that

are solved are summarized in table 4.1.

To focus on temporal error only, we use a uniform mesh with [512]2-C1 quadratic el-

ements. This is an overkill spatial resolution for the examples solved in this work [128,

2, 4, 5]. An exception is made with regards to the Cahn–Hilliard equation, which

uses [64]2-C1-quadratic elements, as the degenerate mobility increases the stiffness

of the system considerably. The solver requires a time step size on the order of

∆t = O (10−10) to be able to handle the fine mesh (i.e., [512]2-C1 quadratic elements).

The initial conditions specified in the following are only defined for φ, not for the

auxiliary variable σ presented through equation (4.14). To correctly initialize σ, a

nonlinear L2 projection is performed to solve equation (4.41), the semidiscrete version

of equation (4.14).
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Table 4.1: Summarizing the phase-field models from section 4.4 within the context of
equations (4.9) and (4.10).

Eq. M̃ Ψ=
1

4
a0−

1

2
a2φ

2+
1

4
a4φ

4 ε f α Mass conservation

AC 1 a0 = a2 = a4 =
1

ε2
0.01

1

2
|∇φ|2

9

4
∆t2 No (a = 0)

CH
1

2

(
1−φ2

)
a0 = a2 = a4 =

1

ε2
0.03

1

2
|∇φ|2

9

4
∆t2 Yes (a = 1)

SH 1 a0 = 0, a2 = ε, a4 = 1 2
1

2

(
φ2−2 |∇φ|2+(∆φ)2

) 9

4
(ε∆t)2 No (a = 0)

PFC 1 a0 = 0, a2 = ε, a4 = 1 0.325
1

2

(
φ2−2 |∇φ|2+(∆φ)2

) 9

4
(ε∆t)2 Yes (a = 1)

4.5.1 Allen–Cahn equation

We simulate the evolution of a star-shaped interface in a curvature-driven flow [128].

The initial condition is given by

φstar (x) = tanh

1/4 + 0.1 cos(7θ)−
√

(x− 0.5)2 + (y − 0.5)2

(3/4)
√

2

 , (4.67)

where x and y represent Cartesian coordinates, θ is defined as

θ =


tan−1

(
y − 0.5

x− 0.5

)
if x > 0.5,

π + tan−1

(
y − 0.5

x− 0.5

)
otherwise,

The computational domain is the unit square Ω̄ = [0, 1]2, and no-flux boundary

conditions are imposed. For the spatial discretization, we use a uniform mesh of

[512]2-C1-quadratic elements. The initial condition is shown in figure 4.1, along with

snapshots of the solution calculated with an overkill temporal resolution (∆t = 10−7).

The tips of the star move inward, while the gaps between the tips move outward. Once

the surface becomes circular, the radius of the circle shrinks with increasing speed

due to the increasing curvature.

To evaluate the performance of the schemes developed in this work, we compare
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φ

(a) t = 0 (b) t = 10−3

(c) t = 6× 10−3 (d) t = 2× 10−2

Figure 4.1: Evolution of a star-shaped interface in a curvature-driven flow using the
Allen–Cahn equation. The initial condition prescribed by equation (4.67) is shown, as
well as the solution evolution calculated with our implicit algorithm. The simulation
is run in a unit square domain Ω̄ = [0, 1]2 using a computational mesh composed of
512× 512 C1-quadratic elements, with a time step size ∆t = 10−7. We consider this
our reference solution.
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the the provably-stable implicit (Implicit) and explicit expansions (Linear) against

the backward-Euler method (BE), the generalized-α method (Generalized-α) and a

second-order, provably-stable, state-of-the-art algorithm of Gomez et al. adapted

from [4] to solve the Allen–Cahn equation. The temporal integration schemes are

applied to the variational formulation presented in equations (4.55)-(4.56). The fully

discrete formulations for the provably-stable methods can be defined as: given φhn,

σhn, find φhn+1, σhn+1 such that for all wh, qh ∈ Vh2

0 =

(
wh,

〚φ〛
∆t

)
Ω

+
(
wh, σhn+1

)
Ω
, (4.68)

0 =
(
qh, σhn+1 − Ψ̃′

)
Ω
−
(
∇qh,∇{φ}

)
Ω
− αAC∆t

(
qh, 〚φ〛

)
Ω
, (4.69)

where

• the implicit expansion scheme is recovered with

Ψ̃′ = Ψ′n+1 −Ψ′′n+1

〚φ〛
2

+ Ψ′′′n+1

〚φ〛2

6
, αAC = 0,

• the explicit expansion scheme is recovered with

Ψ̃′ = Ψ′n + Ψ′′n
〚φ〛
2
, αAC ≥

(
a2∆t

6

)2

,

• the scheme by Gomez et al. [4] is recovered with

Ψ̃′ =
1

2

(
Ψ′n + Ψ′n+1

)
−Ψ′′′n

〚φ〛2

12
, αAC = 0.

The function Ψ is defined in equation (4.3) with the coefficients given in row AC of

table 4.1. The solution evolution is shown in figure 4.2 with time step size ∆t = 10−4.

In the figure, rows correspond to a particular method (indicated in the leftmost
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column) while columns indicate the moment in time at which the solution snap-

shots are taken. Free energy evolutions are plotted in figures 4.3(a)-4.3(c). The only

discernible difference between the simulations is observed with the backward-Euler

method, which seems to reach the circular state faster. Even though counter intuitive,

as the scheme is first order accurate in nature, this behavior can be explained by the

inherent numerical dissipation introduced by the method. Simulations were also run

for ∆t = 10−5 and ∆t = 10−6, but the snapshots are not shown: this example con-

verges by ∆t = 10−5, confirmed by the free energy evolution seen in figure 4.3(b). The

computed solutions are correct, given that they respect the energy stability property

of the Allen–Cahn equation, namely,

FAC ≤ 0.

All the second-order accurate methods follow the same behavior for the time step

sizes studied, seemingly making the linear method the best choice. Given the explicit

nature of its Jacobian, the solution can be obtained in less than half the computational

time of the other second-order accurate methods considered, and also guarantees the

monotonic decrease of free energy.
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BE

Generalized-α

Implicit

Gomez et al.

Linear Method

t = 10−3 t = 6× 10−3 t = 2× 10−2

Figure 4.2: Evolution of a star-shaped interface in a curvature-driven flow. The
simulation is run in a unit square domain Ω̄ = [0, 1] using a computational mesh
composed of 512× 512 C1-quadratic elements, with a time step size ∆t = 10−4.
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(c) ∆t = 10−4

Figure 4.3: Free energy evolution comparison for the different methods analyzed to
solve the Allen–Cahn equation.
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4.5.2 Cahn–Hilliard equation

The phase-separation process we simulate with the Cahn–Hilliard equation starts

from the initial condition

φ(x) = φ̄+ r,

where φ̄ = 0.5 and r is a random variable with uniform distribution in [−0.01, 0.01].

Periodic boundary conditions are considered in both directions, in a unit square

domain Ω̄ = [0, 1]2. The uniform mesh uses [64]2-C1-quadratic elements. The initial

condition is shown in figure 4.4(a), and represents a mixture which is unstable under

those conditions [28]. The reference evolution of the phase is shown in figures 4.4(b)

through 4.4(d). The mixture goes through an initial spinodal decomposition, which

results in two coexisting phases being formed, and is followed by coarsening in later

stages, whereby the two distinct phases grow with time to decrease the total interfacial

area. The final state is reached when the phase separation is complete: a single

bubble remains immersed within the other phase (4.4(d)). This solution minimizes

the interfacial area for the average concentration proposed, a requirement stemming

from the free energy functional FCH (see equation (4.57)).

The performance of our provably-stable time-stepping algorithms is once again

compared with (BE) and (Generalized-α), as well as the second-order, provably-

stable, state-of-the-art algorithm presented in [2] by Gomez et al.. The temporal

integration schemes are applied to the variational formulation presented in equa-

tions (4.58)-(4.59). The state-of-the-art algorithm we compare against [2] can be

reinterpreted as a stabilized scheme. That is, this method can be stated as, given φhn,
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φ

(a) t = 0 (b) t = 10−3

(c) t = 10−2 (d) t = 2× 10−2

Figure 4.4: Spinodal decomposition using the Cahn–Hilliard equation. System evolves
from a randomly perturbed initial condition that results in a single bubble at steady
state. This solution minimizes the surface area of the interface. The unit square
domain considered, Ω̄ = [0, 1]2, is meshed using [64]2C1-quadratic elements. The
solution evolution is calculated with our implicit algorithm, with a time step size
∆t = 10−7. We consider this our reference solution.
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σhn, find φhn+1, σhn+1 such that for all wh, qh ∈ Vh2

0 =

(
wh,

〚φ〛
∆t

)
Ω

+
(
∇wh,M

(
φhn+α

)
∇σhn+1

)
Ω
,

0 =

(
qh, σhn+1 −

1

2

(
Ψ′n + Ψ′n+1

)
+ Ψ′′′n

〚φ〛2

12

)
Ω

−
(
∇qh,∇φhn+α

)
Ω
.

where

φhn+α = φhn + α〚φ〛, (4.70)

α =
1

2
+

1

2
tanh

(
∆t

Cε2

)
, (4.71)

C = 103. (4.72)

Substituting equations (4.71) and (4.72) in equation (4.70), we have that

φhn+α = φhn + α〚φ〛,

= {φ}+
1

2
tanh

(
∆t

103ε2

)
〚φ〛. (4.73)

Using equation (4.73), the fully discrete formulations for the provably-stable methods

to solve the Cahn–Hilliard equation can now be expressed as: given φhn, σhn, find φhn+1,

σhn+1 such that for all wh, qh ∈ Vh2

0 =

(
wh,

〚φ〛
∆t

)
Ω

+
(
∇wh,MCH∇σhn+1

)
Ω
,

0 =
(
qh, σhn+1 − Ψ̃′

)
Ω
−
(
∇qh,∇{φ}

)
Ω
− αCH

(
∇qh,∇〚φ〛

)
Ω
,

where

• the implicit expansion scheme is recovered with

MCH = M({φ}), Ψ̃′ = Ψ′n+1 −Ψ′′n+1

〚φ〛
2

+ Ψ′′′n+1

〚φ〛2

6
, αCH = 0,
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• the explicit expansion scheme is recovered with

MCH = M

(
3

2
φn −

1

2
φn−1

)
, Ψ̃′ = Ψ′n + Ψ′′n

〚φ〛
2
, αCH ≥ ∆t

(
a2∆t

6

)2

,

• the scheme by Gomez et al. [2] is recovered with

MCH = M

(
{φ}+

1

2
tanh

(
∆t

Cε2

))
, C = 1000,

Ψ̃′ =
1

2

(
Ψ′n + Ψ′n+1

)
−Ψ′′′n

〚φ〛2

12
, αCH =

1

2
tanh

(
∆t

Cε2

)
. (4.74)

The value of the constant C can be tuned to either increase the accuracy or the

robustness of the method [2]. The function Ψ is defined in equation (4.3) with the

coefficients given in row CH of table 4.1.

The solution evolution with the different methods considered is shown in figure 4.5

with time step size ∆t = 10−5. Free energy evolutions are shown in figure 4.6. All

methods seem to be converged at ∆t = 5 × 10−6, and the linear method seems

to be underestimating the dissipation rate when ∆t = 10−5. This is confirmed in

figure 4.6(c). None of the methods present free energy increases, confirming a correct

physical evolution.
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Backward-Euler

Generalized-α

Implicit Method

Linear Method

State-of-the-art

t = 10−3 t = 10−2 t = 2× 10−2

Figure 4.5: Evolution of the concentration φ from a randomly perturbed initial condi-
tion. The simulation is run in a unit square domain Ω̄ = [0, 1]2 using a computational
mesh comprised of 64× 64 C1-quadratic elements, with a time step size ∆t = 10−5.
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Figure 4.6: Free energy evolution comparison for the different methods analyzed to
solve the Cahn–Hilliard equation.



131

4.5.3 Swift–Hohenberg equation

For this example, we modify an initial condition found in [4] that can be used to study

pattern formation. Initially, a curvy horizontal stripe is embedded into a constant

state. A square domain Ω̄ = [0, 40]2 is used, and we mesh it uniformly with [512]2-

C1-quadratic elements. The stripes are created using two sinusoidal waves defined

by

C1(x) = sin

(
2π

40
4x+ 19

)
,

C2(x) = − sin

(
2π

40
5x+ 21

)
.

The phase field variable initially takes a value equal to one within the space created

by the two stripes, and a value of minus one outside of it. To create a smooth interface

between these two values, a rescaled Gaussian function is used, which leads to the

initial condition

φ0 =



1 if C1 < y < C2,

2 exp

(
−(y − C1)2

2ν

)
− 1 if y < C1,

2 exp

(
−(y − C2)2

2ν

)
− 1 if y < C2,

with ν = 4. To avoid oscillations generated by the projection of φ and ensure the

monotonic behavior of the phase field, we use a mass lumping technique [129]. This

procedure also avoids spurious oscillations generated by the temporal integration

schemes encountered in [4] for large time step sizes. The initial condition is shown

in 4.7(a), and snapshots of the phase field φ at three instances in time can be seen in

figures 4.7(b), 4.7(c) and 4.7(d). The pattern evolves developing vertical fingers that

can bifurcate.
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φ

(a) t = 0 (b) t = 10

(c) t = 30 (d) t = 70

Figure 4.7: Pattern formation using the Swift–Hohenberg equation. System evolves
from a curvy stripe embedded into a constant state. The pattern develops vertical
fingers that can bifurcate throughout the evolution. The square domain considered,
Ω̄ = [0, 40]2, is uniformly meshed using [512]2C1-quadratic elements. The bound-
ary conditions are periodic. The solution evolution is calculated with our implicit
algorithm, with a time step size ∆t = 10−2. We consider this our reference solution.
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The performance of our provably-stable time-stepping algorithms is once again

compared against (BE) and (Generalized-α), as well as the second-order, provably-

stable, state-of-the-art algorithm presented by Gomez et al. in [4]. The temporal

integration schemes are applied to the variational formulation presented in equa-

tions (4.63)-(4.64). The fully discrete formulations for the provably-stable methods

to solve the Swift–Hohenberg equation can be defined as: given φhn, σhn, find φhn+1,

σhn+1 such that for all wh, qh ∈ Vh2

0 =

(
wh,

〚φ〛
∆t

)
Ω

+
(
wh, σhn+1

)
Ω
,

0 =
(
qh, σhn+1 − Ψ̃′

)
Ω
− 2
(
∇qh,∇{φ}

)
Ω

+
(

∆qh,∆{φ}
)

Ω

− αSH∆t
(
qh, 〚φ〛

)
Ω
,

• the implicit expansion scheme is recovered with

Ψ̃′ = Ψ′n+1 −Ψ′′n+1

〚φ〛
2

+ Ψ′′′n+1

〚φ〛2

6
, αSH = 0,

• the explicit expansion scheme is recovered with

Ψ̃′ = Ψ′n + Ψ′′n
〚φ〛
2
, αSH ≥

(
a2∆t

6

)2

,

• the scheme by Gomez et al. [4] is recovered with

Ψ̃′ =
1

2

(
Ψ′n + Ψ′n+1

)
−Ψ′′′n

〚φ〛2

12
, αSH = 0.

The function Ψ is defined in equation (4.3) with the coefficients given in row SH of

table 4.1. Snapshots of the phase field φ calculated with the different methods and

time step sizes ∆t = 0.1, 1, are shown in figures 4.8 and 4.9, respectively. The free
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energy evolutions for ∆t = 0.1, 0.5 and 1, respectively, are plotted in figures 4.10(a),

4.10(b) and 4.10(c). As observed in previous cases, the underestimation of the dis-

sipation rate increases in the linear scheme with time step size. The opposite effect

is observed in the case of the backward-Euler method, which shows more dissipation

of the free energy with ∆t. The solver breaks-down for the case of backward-Euler

with ∆t = 1. The provably-stable methods also start separating from the reference

solution at that time step size. The explicit expansion of the free energy, which leads

to a linear method, separates the most from the reference solution.
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Gomez et al.
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t = 10 t = 30 t = 70

Figure 4.8: Pattern formation using the Swift–Hohenberg equation. The simulation
is run in a square domain Ω̄ = [0, 40]2 using a computational mesh comprised of
512×512 C1-quadratic elements, pediodic boundary conditions along both directions,
with a time step size ∆t = 0.1.



136

Generalized-α

Implicit Method

Linear Method

State-of-the-art

t = 10 t = 30 t = 70

Figure 4.9: Pattern formation using the Swift–Hohenberg equation. The simulation
is run in a square domain Ω̄ = [0, 40]2 using a computational mesh comprised of
512×512 C1-quadratic elements, pediodic boundary conditions along both directions,
with a time step size ∆t = 1.
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(b) ∆t = 0.5
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(c) ∆t = 1

Figure 4.10: Free energy evolution comparison for the different methods analyzed to
solve the Swift–Hohenberg equation. The case for backward-Euler with ∆t = 1 is not
shown as the solver broke down.
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4.5.4 Phase-field crystal equation

We simulate the two-dimensional growth of a crystal in a supercooled liquid, using

a one-mode approximation for the density profile of the crystalline structure [5]. We

use a triangular configuration, defined by

φS (x) = cos

(
q√
3
y

)
cos (qx)− 1

2
cos

(
2q√

3
y

)
, (4.75)

where q represents a wavelength related to the lattice constant [14], and x and y

represent the Cartesian coordinates. A solid crystallite is initially placed in the center

of a liquid domain, which is assigned an average density φ̄. The initial condition

becomes

φ0 (x) = φ̄+ ω(x) (AφS (x)) , (4.76)

where A represents an amplitude of the fluctuations in density, and the scaling func-

tion ω(x) is defined as

ω(x) =


(

1−
(
||x− x0||

d0

)2
)2

if ||x− x0|| ≤ d0,

0 otherwise,

where x0 is the coordinate of the center of the domain, and d0 is
1

6
of the domain

length in the x-direction. In order to avoid mismatches on the boundaries when the

grain boundaries meet, the computational domain Ω̄ is dimensioned in such a way

as to make it periodic along both directions. To do this while keeping the problem

within a reasonable size, we use the frequency present in equation (4.75) to define the
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domain Ω̄ as

Ω̄ =

[
0,

2π

q
a

]
×

[
0,

√
3π

q
b

]
,

where a and b are assigned values of 10 and 12, respectively. These numbers make

the domain almost square. The number of elements in the y-direction, Ny, is then

defined as

Ny =

⌊
b
√

3

2a
Nx +

1

2

⌋
,

where Nx represents the number of elements in the x-direction. This adjustment is

made to account for the difference in length between both directions, and to have

the element size h in both directions be approximately equal. The variables q and

A are assigned their corresponding equilibrium values, obtained by minimizing the

free energy presented in table 4.1, with respect to both A and q, while using the

approximation of equation (4.75) to define the atomistic density. For the results

presented in this example, the values used are

ε = 0.325, φ̄ =

√
ε

2
, A =

4

5

(
φ̄+

√
15ε− 36φ̄2

3

)
, q =

√
3

2
.

The parameter ε is chosen such that the triangular structure is stable [14, 103]. The

initial crystallite placed in the center of the domain grows at the expense of the

supercooled liquid. This is enforced by the degree of undercooling ε.

The performance of our provably-stable time-stepping algorithms is once again

compared against (BE) and (Generalized-α), as well as the second-order, provably-

stable, state-of-the-art algorithm presented by Gomez et al. in [3]. The temporal

integration schemes are applied to the variational formulation presented in equa-

tions (4.65)-(4.66). The fully discrete formulations for the provably-stable methods
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to solve the phase-field crystal equation can be defined as: given φhn, σhn, find φhn+1,

σhn+1 such that for all wh, qh ∈ Vh2

0 =

(
w,
∂φ

∂t

)
Ω

+ (∇w,∇σ)Ω ,

0 =
(
q, σ − φ− Ψ̃′

)
Ω

+ 2
(
∇qh,∇φ

)
Ω
−
(
∆qh,∆φ

)
Ω

− αPFC∆t
(
∇qh,∇〚φ〛

)
Ω
.

• the implicit expansion scheme is recovered with

Ψ̃′ = Ψ′n+1 −Ψ′′n+1

〚φ〛
2

+ Ψ′′′n+1

〚φ〛2

6
, αPFC = 0,

• the explicit expansion scheme is recovered with

Ψ̃′ = Ψ′n + Ψ′′n
〚φ〛
2
, αPFC ≥

(
a2∆t

6

)2

,

• the scheme by Gomez et al. [3] is recovered with

Ψ̃′ =
1

2

(
Ψ′n + Ψ′n+1

)
−Ψ′′′n

〚φ〛2

12
, αPFC = 0.

The function Ψ is defined in equation (4.3) with the coefficients given in row PFC

of table 4.1. The simulations with the different temporal schemes are shown in fig-

ures 4.12 and 4.13, for time step sizes ∆t = 0.1 and 1, respectively. Free energy

evolutions are shown in figure 4.14. This example follows the same trend as the one

shown for the Swift–Hohenberg equation, with the backward-Euler method dissipat-

ing more free energy with the increase in time step size than the other schemes. Also

with the increase in time size, the effectivity of the time step size for the linear case

decreases, as seen in figures 4.13 and 4.14(c). This effect is also observed in [130, 5].
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φ

(a) t = 0 (b) t = 15

(c) t = 45 (d) t = 150

Figure 4.11: Crystal growth using the phase-field crystal equation. A small crystallite
with a stable triangular structure is placed in the centre of the domain. Given the
undercooling enforced by ε, the crystallite grows and replicates the initial pattern
throughout the domain. The rectangular domain considered, Ω̄ = [0, 40π/

√
3]× [0, 24π],

is uniformly meshed using [512] × [532] C1-quadratic elements. Periodic boundary
conditions are considered along both directions. The solution evolution is calculated
with our implicit algorithm, with a time step size ∆t = 10−2. We consider this our
reference solution.
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t = 15 t = 45 t = 150

Figure 4.12: Snapshots of the approximate dimensionless atomistic density field show-
ing its evolution throughout the simulation, which was run using a computational
mesh composed of 512× 532 C1-quadratic elements, with a time step size ∆t = 0.1.
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t = 15 t = 45 t = 150

Figure 4.13: Snapshots of the approximate dimensionless atomistic density field show-
ing its evolution throughout the simulation, which was run using a computational
mesh composed of 512× 532 C1-quadratic elements, with a time step size ∆t = 1.
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(b) ∆t = 0.5
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(c) ∆t = 1

Figure 4.14: Free energy evolution comparison for the different methods analyzed to
solve the phase-field crystal equation.
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4.5.5 Methods: comparison and performance

The cases studied show similar features. The backward-Euler method is the first to

break down in every case with the increase in time step size, while the time step

effectivity of the linear method decreases with time step size. Still, to obtain overkill

solutions for the high-order equations studied, the linear method is a reasonable

choice. It offers significant computational savings as the expression for the Jacobian

is explicit (see Appendix C.1.1). Another feature that is worthwhile pointing out

involves the striking resemblance between the implicit method and the state-of-the-

art methods developed in [2, 3, 4]. This can be explained by analyzing the structure

of the approximation proposed for Ψ′ in equation (4.74). Recalling equation (4.25)

and using the Lagrange remainder, the terms Ψ′n and Ψ′′′n can be rewritten as

Ψ′n = Ψ′n+1 −Ψ′′n+1〚φ〛 + Ψ′′′n+1

〚φ〛2

2
−Ψiv

n+ε3

〚φ〛3

6
, (4.77)

Ψ′′′n = Ψ′′′n+1 −Ψiv
n+ε4

〚φ〛, (4.78)

where ε3, ε4 ∈ [0, 1]. Realizing that Ψiv
n+ε3

= Ψiv
n+ε4

= Ψiv
n+1 = Ψiv, and substituting

equations (4.77)-(4.78) in (4.74) results in

Ψ̃′ = Ψ′n+1 +

(
−Ψ′′n+1

〚φ〛
2

+ Ψ′′′n+1

〚φ〛2

4
−Ψiv 〚φ〛3

12

)

−

(
Ψ′′′n+1

〚φ〛2

12
−Ψiv 〚φ〛3

12

)
,

= Ψ′n+1 −Ψ′′n+1

〚φ〛
2

+ Ψ′′′n+1

〚φ〛2

6
.

Thus, the approximations proposed in [3, 4] and in (4.11) for Ψ̃′ are equivalent. This

expansion, to the best of our knowledge, was initially proposed in the context of

the Navier–Stokes–Cahn–Hilliard equation [82] but the connection between the two

had yet to be made. The linear expansion proposed through (4.12) was also previ-
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ously proposed in the context of the Allen–Cahn and Cahn–Hilliard equations [43]

and the Navier–Stokes–Cahn–Hilliard equation [131]. Nonetheless, the case with the

degenerate mobility was not treated in that work, nor was the value for the stabi-

lization parameter α determined. With regards to the scheme proposed in [2] for

the Cahn–Hilliard equation, recalling equation (4.73), considering
∆t

103ε2
≥ 0 and

1

2
tanh (x) ≤ x

2
, we have the inequality

0 ≤ 1

2
tanh

(
∆t

103ε2

)
≤ ∆t

2× 103ε2
.

Thus, the scheme proposed in [2] can be reinterpreted as a stabilized scheme that

uses the implicit approximation of equation (4.11). The value of the stabilization

parameter proposed in [2] verifies the bound presented in equation (4.30) for the linear

case given the ∆t considered. Still, as concluded in section 4.2.4.1, the stabilization

parameter can have a value of 0 for the polynomial version of the double well potential

when the implicit expansion is used. In the case of the logarithmic version of the

potential considered for Ψ in [2], it must have a value greater than 0 to guarantee

free energy stability.

Regarding computational performance, results are shown in in table 4.2. The

linear method takes less computational time than all the other methods for a given

time step size. The equivalence of the implicit method and the methods developed

by Gomez et al. is also confirmed numerically, given that the number of nonlinear

iterations is the same for all cases studied.
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Table 4.2: Computational performance of the different methods. We show the computational time of the different simulations
with respect to the linear method in each one of the different cases, as well as the number of nonlinear and linear iterations.
The linear method is faster than all the other methods for a given time step size. The number of nonlinear iterations is the same
for the implicit and the methods developed in [2, 3, 4] by Gomez et al., which numerically confirms the result of section 4.5.5:
the methods are equivalent.

AC CH SH PFC

Simulation time T 0.02 0.02 70 150

∆t 10−6 10−5 10−4 10−6 5× 10−6 10−5 0.1 0.5 1 0.1 0.5 1

Ref. comp. time 1.68 1.70 2.63 2.02 2.60 2.70 4.7 9.8 - 3.99 4.15 7.5

BE Nonlinear iterations 40002 4068 617 40872 9352 5096 2114 566 - 4502 900 518

Linear iterations 314378 32594 9362 289936 106169 71627 736547 414644 - 2668526 806003 562104

Ref. comp. time 1.82 1.71 2.44 2.09 2.36 2.26 3.68 7.38 14.60 3.63 3.51 5.4

G-α Nonlinear iterations 40002 4036 608 40623 8652 4748 2103 561 286 4499 900 450

Linear iterations 343589 30661 7684 251562 80766 54966 582343 312996 216314 2230008 691960 400426

Ref. comp. time 1.98 1.93 2.83 2.12 2.62 3.26 3.71 5.05 13.08 2.67 3.39 5.33

Implicit Nonlinear iterations 40002 4034 608 40987 9098 6028 2101 441 282 3752 897 450

Linear iterations 342864 30415 7675 246534 82039 68429 565271 207023 198043 1695227 649567 384345

Ref. comp. time 2.07 2.02 2.93 2.30 2.78 3.48 3.73 5.02 12.97 2.67 3.40 5.26

Gomez et al. Nonlinear iterations 40002 4034 608 40987 9098 6028 2101 441 282 3752 897 450

Linear iterations 342864 30415 7675 246531 82119 68451 565269 206931 198048 1695239 649553 384126

Ref. comp. time 1 1 1 1 1 1 1 1 1 1 1 1

Linear Nonlinear iterations - - - - - - - - - - - -

Linear iterations 156535 15580 2589 123315 35977 22400 142246 38155 12564 625111 190375 70346
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Table 4.3: Computational gains using the linear-adaptive algorithm to solve the
phase-field problems of sections 4.5.1-4.5.4. By using the linear-adaptive strategy,
the number of iterations taken to reach a high-quality solution is drastically reduced,
and on the order of the coarser simulations presented in table 4.2 for each one of the
four cases studied.

AC CH SH PFC
Simulation time T 0.02 0.02 70 150

Total number of steps 319 659 478 351
Linear iterations 3166 7992 95752 205931
Rejected steps 0 45 0 82
Maximum ∆t 1.59× 10−4 7.94× 10−3 2.48× 10−1 7.12
Minimum ∆t 10−8 10−11 10−5 10−6

4.5.6 Performance of the time-adaptive scheme and three-

dimensional simulation of the Cahn–Hilliard equation

The two-dimensional examples presented in sections 4.5.1-4.5.4 are solved using the

linear scheme within the context of algorithm 3, with the results shown in terms of

the free energy evolution in figure 4.15. With the exception of the phase-field crystal

equation, the linear-adaptive solution compares well with the overkill solution for

each one of the cases, and can be computed with fewer iterations as seen in table 4.3.

The number of iterations for the Swift–Hohenberg and phase-field crystal equations

can be reduced further by splitting the equation through the use of another auxiliary

variable, resulting in a similar weak form to the one presented in [5]. We plan to

study this point in future work.

Finally, to showcase the robustness of the linear-adaptive method, the three-

dimensional counterpart of the example solved in two dimensions for the Cahn–

Hilliard equation in section 4.5.2 is presented in figure 4.17. Periodic boundary condi-

tions are considered in all directions, in a unit cube domain Ω̄ = [0, 1]3. The uniform

mesh uses [64]3-C1 cubic elements. Similarly to what happens in the two-dimensional

case, the mixture initially undergoes a fast spinodal decomposition, which results in

the formation of two coexisting phases. Once completed, this physical phenomenon
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(c) Swift–Hohenberg equation
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Figure 4.15: Evaluating the adaptive-linear time stepping scheme: free energy evolu-
tion. The evolution of the free energy is accurately represented for the four phase-field
models studied.
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Figure 4.16: Evaluating the adaptive-linear time stepping scheme: time-adaptivity.
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Table 4.4: Computational performance of the three-dimensional Cahn–Hilliard sim-
ulation. Less than 5% of the steps are rejected, while the time-step size changes nine
orders of magnitude during the simulation.

Simulation time T 0.02
Total number of steps 1033

Linear iterations 85443
Rejected steps 30
Maximum ∆t 1.422× 10−4

Minimum ∆t 10−13

is followed by a coarsening stage, that ends when the interfacial area is minimized.

For the initial condition considered, the steady state is achieved when a single bubble

remains, as seen in figure 4.17(d). The free energy evolution of the solution is shown

in figure 4.18(a), and the evolution of the time step size is shown in 4.18(b). Less

than 5% of the steps are rejected, while the time-step size changes nine orders of

magnitude during the simulation, as seen in table 4.4.
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φ

(a) t = 0 (b) t ' 1.174× 10−3

(c) t ' 4.654× 10−3 (d) t ' 2.118× 10−2

Figure 4.17: Three-dimensional simulation of the Cahn–Hilliard equation. System
evolves from a randomly perturbed initial condition that results in a single bubble at
steady state. This solution minimizes the surface area of the interface. The unit cube
domain considered, Ω̄ = [0, 1]3, is meshed using [64]2C1-cubic elements. The solution
evolution is calculated with our linear-adaptive algorithm.
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Figure 4.18: Three-dimensional simulation of the Cahn–Hilliard equation. The equa-
tion is solved using the linear-adaptive algorithm. The free energy is decreasing
monotonically as seen in figure 4.18(a). The evolution of the time step size ∆t its
shown in figure 4.18(b), and seems reasonable: the fast changes in free energy match
the times at which the time size decreases. The mesh is comprised of [64]3-C1 cubic
elements.
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4.6 Discussion

We introduce an unconditionally energy-stable, second-order time accurate, mixed

variational method for general classes of phase-field models. The numerical strategy

relies on a mixed finite element formulation for the space discretization and on a

second-order accurate algorithm based on Taylor expansions for the time discretiza-

tion. This time-integration algorithm preserves mass by construction if needed, and

guarantees strong energy stability. The class of time integrators we introduce is

implicit by nature, and can be rendered linear to accelerate the solution process. Ad-

ditionally, an adaptive time-stepping strategy that can be combined with our method

is proposed, which overcomes some of the problems of adaptive time-stepping schemes

used in the literature. The time step size is controlled by approximating a local trun-

cation error a posteriori through a backward differentiation procedure. Several two-

dimensional numerical examples are shown, for both uniform and adaptive time-step

sizes, that deal with some of the more popular phase-field models available, such as

the Allen–Cahn, Cahn–Hilliard, Swift–Hohenberg, and phase-field crystal equations.

A three dimensional example involving the Cahn–Hilliard equation is also presented.

The examples support our theoretical findings, and show the efficiency, stability and

robustness of the new method, which is able to solve several high-order, nonlinear par-

tial using the same setting. The implementation uses PetIGA, a high-performance

isogeometric analysis framework, and the codes are freely available to download.



Chapter 5

Concluding Remarks

5.1 Summary

The main goal of this thesis was to develop thermodynamically-consistent algorithms

for time integration of phase-field models. The numerical challenges faced when deal-

ing with phase-field equations are common to several models. Thus, studying stable,

efficient and robust algorithms for these high-order partial differential equations is an

important goal in computational materials science.

Given the firm mathematical and physical footings of the diffuse-interface ap-

proach, detailed in chapter 2 through the derivation of the Cahn–Hilliard equation,

the broad range of applications should not come as a surprise. The phase-field crystal

equation, for example, arose as a possible solution to problems in molecular dynam-

ics to study solidification phenomena. Chapter 3 describes a numerical method to

solve the PFC equation that guarantees mass conservation, is energy-stable, and

second order accurate in time. The method, based on a mixed finite element formu-

lation, involves a system of three second-order equations. We ensure energy stability

through a convex splitting of the nonlinear term present in the equation and the

use of a stabilization parameter. Numerical examples implemented in our in-house,
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high-performance finite element framework PetIGA showcase the utilization of the

equation in simulating polycrystalline growth and the effect of the rotation angle on

free energy.

We go further in chapter 4 and develop an implicit method that generalizes many

methods published in literature on the topic of stable methods for both conserved and

non-conserved phase-field models. We rely on Taylor expansions to accomplish this

goal. What is more, we show how to render the system linear with the help of a sta-

bilization parameter. We also develop an adaptive time-stepping strategy that over-

comes many of the previously encountered problems in the literature. This approach

relies on the approximation of a local truncation error a posteriori through a backward

differentiation procedure to control the time step size. Several two-dimensional nu-

merical examples are shown, for both uniform and adaptive time-step sizes, that deal

with some of the more popular phase-field models available, such as the Allen–Cahn,

Cahn–Hilliard, Swift–Hohenberg and phase-field crystal equations.

It is common practice in research groups to write code from scratch. Still, reusable

software should be the norm in science. We hope PetIGA and our codes help the

community in this way, as they are freely available to download [113]. As knowledge

of physical phenomena keeps on being pushed forward, technological applications will

demand accurate and robust algorithms able to handle complicated geometries and

boundary conditions. Through this work, we hope to have addressed some of the

challenges encountered when tackling phase-field problems.

5.2 Future work

Even though the discretization method developed in this work is robust, challenges

remain. As shown in chapters 3 and 4, ensuring energy stability requires the use of a

stabilization parameter, whose effect on the solution remains unclear. Although we
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consider the simplified version of the polynomial approximation to the potential, a

connection with the logarithmic potential exists (see section 4.5.5). Also missing is

work comparing the different methods developed, as well as the ones available in the

literature. The linear method, the clear winner when running overkill resolutions,

loses accuracy as time step size increases. We hope to answer these questions in the

future [81, 132].

Given that our method is based on a midpoint approximation, it does not intro-

duce any numerical dissipation. Nonetheless, this feature may be critical depending

on the problem. Fortunately, our scheme can be modified to include it [80].

The time-adaptive strategy proposed needs to be studied further too. It possesses

many advantages over current methods. Given that we can use it in conjunction with

any second-order accurate method translates to a broad range of applicability. Our

time-adaptive method is by no means limited to phase-field models.

Lastly, we would like to incorporate these algorithms into a real experiment, and

have found a good candidate in [77]. In this work, the authors report a transition from

rings to spots with hexagonal symmetry in a periodic precipitation system, which

consists of sulfide/hydroxide ions diffusing into a gel matrix containing dissolved

cadmium(II) ions. The authors show that a scenario analogous to the Cahn-Hilliard

equation can capture the experimental results. However, this model can be improved,

and the phase-field framework can be used to understand some of the new physics

behind the experimental system. Some preliminary results solving this problem are

shown in figure 5.1.



158

(a) (b) (c)

Figure 5.1: Representing a diffusion-reation problem through the Cahn-Hilliard equa-
tion. The phase-field, representing a rescaled concentration, is used to represent the
precipitate that gets formed when the diffusing solvent reacts with the gel support.
As can be seen, rings emerge and give way to spots in the domain.
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[75] L. Goudenège, D. Martin, and G. Vial, “High Order Finite Element

Calculations for the Cahn–Hilliard equation,” Journal of Scientific Computing,

vol. 52, no. 2, pp. 294–321, 2012. [Online]. Available: http://dx.doi.org/10.

1007/s10915-011-9546-7

[76] A. Hawkins-Daarud, K. G. van der Zee, and J. T. Oden, “Numerical simulation

of a thermodynamically consistent four-species tumor growth model,”

International Journal for Numerical Methods in Biomedical Engineering, vol. 28,

no. 1, pp. 3–24, 2012. [Online]. Available: http://dx.doi.org/10.1002/cnm.1467

[77] M. Dayeh, M. Ammar, and M. Al-Ghoul, “Transition from rings to spots in a

precipitation reaction-diffusion system,” RSC Adv., vol. 4, pp. 60 034–60 038,

2014. [Online]. Available: http://dx.doi.org/10.1039/C4RA11223G
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for High-Performance Isogeometric Analysis,” Computer Methods in Applied

Mechanics and Engineering, 2015, submitted.

[86] A. Jaatinen and T. Ala-Nissila, “Extended phase diagram of the three-

dimensional phase field crystal model,” Journal of Physics: Condensed Matter,

vol. 22, no. 20, p. 205402, 2010.

[87] A. Karma and W.-J. Rappel, “Phase-field method for computationally

efficient modeling of solidification with arbitrary interface kinetics,” Phys.

Rev. E, vol. 53, pp. R3017–R3020, Apr 1996. [Online]. Available:

http://link.aps.org/doi/10.1103/PhysRevE.53.R3017

[88] K. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, “Phase-field

crystal modeling and classical density functional theory of freezing,” Phys. Rev.

B, vol. 75, p. 064107, Feb 2007.

[89] N. Provatas, J. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld,

and K. Elder, “Using the phase-field crystal method in the multi-scale

modeling of microstructure evolution,” Journal of Minerals, vol. 59, no. 7, pp.

83–90, 2007. [Online]. Available: http://dx.doi.org/10.1007/s11837-007-0095-3

[90] E. Asadi and M. Asle Zaeem, “A review of quantitative phase-field crystal

modeling of solidliquid structures,” JOM, vol. 67, no. 1, pp. 186–201, 2015.

[Online]. Available: http://dx.doi.org/10.1007/s11837-014-1232-4

http://www.sciencedirect.com/science/article/pii/S0022024813005241
http://link.aps.org/doi/10.1103/PhysRevB.39.1738
http://link.aps.org/doi/10.1103/PhysRevB.39.1738
http://link.aps.org/doi/10.1103/PhysRevE.53.R3017
http://dx.doi.org/10.1007/s11837-007-0095-3
http://dx.doi.org/10.1007/s11837-014-1232-4


170

[91] M. Elsey and B. Wirth, “A simple and efficient scheme for phase

field crystal simulation,” European Series in Applied and Industrial

Mathematics: Mathematical Modelling and Numerical Analysis, vol. 47, pp.

1413–1432, 9 2013. [Online]. Available: http://www.esaim-m2an.org/action/

article S0764583X13000745

[92] X. Wu, G. van Zwieten, and K. van der Zee, “Stabilized second-order convex

splitting schemes for Cahn-Hilliard models with application to diffuse-interface

tumor-growth models,” Int. J. Numer. Meth. Biomed. Engng., vol. 30, no. 2,

pp. 180–203, 2014. [Online]. Available: http://dx.doi.org/10.1002/cnm.2597

[93] T. Ramakrishnan and M. Yussouff, “First-principles order-parameter theory of

freezing,” Phys. Rev. B, vol. 19, pp. 2775–2794, Mar 1979.

[94] R. Backofen, A. Rätz, and A. Voigt, “Nucleation and growth by a phase field

crystal (PFC) model,” Philosophical Magazine Letters, vol. 87, no. 11, pp. 813–

820, 2007.

[95] R. Backofen and A. Voigt, “A phase-field-crystal approach to critical nuclei,”

Journal of Physics: Condensed Matter, vol. 22, no. 36, p. 364104, 2010.
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Appendix A

A.1 PetIGA

PetIGA is an in-house, scalable implementation of isogeometric analysis for lin-

ear/nonlinear and static/transient problems [85, 113]. The framework, which is built

on top of PETSc, gives users a robust and versatile platform to solve partial differ-

ential equations. The framework scales well on thousands of cores, and is well suited

for large scale applications. Even though primarily conceived for distributed-memory

computing environments, PetIGA is also able to extract excellent performance on

nowadays shared memory multicore laptop and desktop computers. Our software

is already being used by members of the community to tackle challenging problems

related to parallel multifrontal direct solvers [62], fast multipole-based precondition-

ers for elliptic equations [133], multilevel Monte Carlo algorithms geared towards the

approximation of stochastic models [134], fluid-structure interaction [135], and finite

strain gradient elasticity [136].

The numerical examples presented in this work are all implemented in PetIGA,

and can be found online.1

1https://bitbucket.org/dalcinl/petiga
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A.1.1 Motivation for the software

Isogeometric analysis, a finite element method originally proposed in 2005 [127, 48],

was originally motivated by the desire to find a technique for solving partial differ-

ential equations which would simplify or remove the problem of converting geometric

descriptions for discretizations in the engineering design process. Once a design is

born inside a Computer Aided Design (CAD) program, converting the CAD represen-

tation to an analysis-suitable form usually is a bottleneck of the engineering analysis

process. Isogeometric methods aim to use CAD representations directly by using the

Non-Uniform Rational B-spline (NURBS) basis, circumventing the need to generate

an intermediate geometrical description. The term isogeometric reflects that as the fi-

nite element space is refined, the geometrical representation can be preserved exactly.

NURBS technologies have been used in CAD for decades due to their properties,

particularly the smoothness and ability to represent conic sections. The key insight

of isogeometric analysis is to use the geometrical map of the NURBS representation

as a basis for the push forward used in analysis. This allows isogeometric modeling

to advance where predescessors have found limitations [137, 138, 139, 140].

In addition to the geometrical benefits, the basis is also well-suited to solving

higher-order partial differential equations, such as the ones related to phase-field prob-

lems [28, 141, 5] or large deformation shell formulations [142, 143, 144]. Classical finite

element spaces use basis functions which are C0 continuous across element boundaries,

making them unsuitable for higher-order problems using a primal Galerkin formula-

tion. The NURBS-based spaces may be constructed to possess arbitrary degrees of

inter-element continuity for any spatial dimension. These higher-order continuous

basis functions have been numerically [145, 146, 147, 148] and theoretically [149, 150]

observed to possess superior approximability per degree of freedom when compared

to their C0 counterparts. However, when used to discretize a Galerkin weak form,
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the higher-order continuous basis functions have also been shown to result in linear

systems which are more expensive to solve with multifrontal direct solvers [55, 53]

and iterative solvers [54]. These results motivate the development of efficient, scalable

software frameworks which can mitigate the increase of cost.

A.1.2 PETSc and PetIGA

PETSc [151, 152, 153], the Portable Extensible Toolkit for Scientific Computation, is

a collection of algorithms and data structures for the solution of scientific problems,

particularly those modeled by partial differential equations. PETSc is applicable

to a wide range of problem sizes, including extreme large-scale simulations, where

high-performance parallel computation is a must. PETSc uses the message-passing

interface (MPI) model for communication, but provides high-level interfaces with

collective semantics so that typical users rarely have to make message-passing calls

directly.

PETSc provides a rich environment for modeling scientific problems as well as for

rapid algorithm design and prototyping. The library enables easy customization and

extension of both algorithms and implementations. This approach promotes code

reuse and flexibility. PETSc is object-oriented in style, with components that may

be changed via a command-line interface at runtime. These components include:

• Index sets to describe permutations, indexing, renumbering, and communication

patterns;

• Matrices and vectors that provide basic linear algebra abstractions;

• Krylov subspace methods and preconditioners that include multigrid and sparse

direct solvers;

• Nonlinear solvers and time stepping algorithms; and
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• Distributed arrays for parallelizing structured grid-based problems.

PETSc is also designed to be highly modular, enabling the interoperability with

specialized parallel libraries like Hypre [154], Trilinos/ML [155], MUMPS [156], and

others through a unified interface. Other scientific packages geared towards solving

partial differential equations use components from PETSc (for example deal.II [157],

FEniCS [158], libMesh [159], and PETSc-FEM [160]).

PetIGA reuses PETSc algorithms and data structures to obtain a high-performance

framework designed for isogeometric analysis. Parallel vector and matrix assembly are

implemented within PetIGA using PETSc data structures and interface into PETSc’s

wide range of solvers. More details on implementation, applications, and performance

can be found in [85]. The software is freely available [113] and under active develop-

ment.

A.1.3 Solving the Bratu equation with PetIGA

In this section we solve the Bratu equation as a model application to highlight some

of the useful features users have access to when using our framework. The Bratu

equation is a nonlinear second-order boundary value problem [161]. The strong form

of the equation can be stated as: find u : Ω̄→ R such that

−∆u = λ exp(u), x ∈ Ω, (A.1)

u = 0, x ∈ ∂Ω, (A.2)

where Ω̄ is the unit square in [0, 1]2, ∂Ω denotes the domain boundary, ∆ represents

the Laplace operator, u ≡ u(x) is a scalar field defined in Ω and λ is a positive

constant. No solution exists when λ goes above λmax = 6.80812 as the equation

possesses a bifurcation point. This equation models the steady-state of a nonlinear

reaction and heat conduction problem, and results from a simplification of the solid-
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fuel ignition model.

Within the framework of Galerkin finite elements, let V denote the trial and

weighting function spaces, where V belongs to H1
0, i.e., the Sobolev space of square-

integrable functions with square-integrable first derivatives and zero value on ∂Ω.

The weak form is obtained by multiplying equation (A.1) by a test function w and

integrating by parts. The variational problem can then be defined as that of finding

u ∈ V such that for all w ∈ V

(∇w,∇u)Ω − (w, λ exp (u))Ω = 0, (A.3)

where (·, ·)Ω denotes the L2 inner product on domain Ω. The finite-dimensional

problem can then be formulated as: find uh ∈ Vh, where Vh ⊂ V , such that for all

wh ∈ Vh

(
∇wh,∇uh

)
Ω
−
(
wh, λ exp

(
uh
))

Ω
= 0, (A.4)

where wh, uh and their respective gradients are defined as the linear combinations

wh =
∑
A

WANA(x), uh =
∑
A

UANA(x), (A.5)

∇wh =
∑
A

WA∇NA(x), ∇uh =
∑
A

UA∇NA(x), (A.6)

where NA are the basis functions and WA, UA are the control variables. Denoting

U = {UA} the vector of coefficients, we define the residual vector as R (U) = {RA},

where RA is obtained from (A.4)–(A.6) as

RA =
(
∇NA,∇uh

)
Ω
−
(
NA, λ exp

(
uh
))

Ω
, (A.7)

As the problem is nonlinear, solving it with Newton’s method requires the specifi-
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cation of the Jacobian J = ∂R/∂U. In this particular problem, its entries are defined

as

JAB = (∇NA,∇NB)Ω −
(
NA, λ exp

(
uh
)
NB

)
Ω
. (A.8)

A.1.4 Implementation

To code a program within the framework, the user first needs to include the PetIGA

C header file

1 #include <petiga.h>

For the sake of simplicity, two macros are defined to set the dimensionality of the

problem to two and implement the dot product of two-vectors

3 #define dim 2

4 #define dot(a,b) (a[0]*b[0]+a[1]*b[1])

To change the dimensionality of the problem to one or three, these two lines should

be modified accordingly. Then, a C structure is used to handle the problem-specific

parameter λ. This approach is preferred to the alternative of using global variables.

6 typedef struct {

7 double lambda;

8 } Params;

The residual routine implementing equation (A.7) reads

10 int Residual(IGAPoint p,const double U[],double R[],void *ctx) {

11 int a,nen = p->nen;

12 double (*N0) = (typeof(N0)) p->shape [0];

13 double (*N1)[dim] = (typeof(N1)) p->shape [1];

14 double u,grad_u[dim],lambda = (( Params *)ctx)->lambda;

15 IGAPointFormValue(p,U,&u);

16 IGAPointFormGrad (p,U,grad_u );

17 for (a=0; a<nen; a++)

18 R[a] = dot(N1[a],grad_u) - lambda*exp(u)*N0[a];

19 return 0;

20 }

The residual routine constitutes the integrand to be evaluated at each quadrature

point to compute local contributions to the global residual vector. The Residual

routine has the following arguments



186

• an input pointer p, of type IGAPoint, used as a quadrature point context holding

discretization data required to perform the residual evaluation,

• an input floating point array U, which contains the local control variables gath-

ered from the global vector U, i.e., the coefficients corresponding to basis func-

tions whose support contains the quadrature point, recall equations (A.5) and (A.6),

• an output floating point array R, where the routine is expected to return lo-

cal contributions to be assembled in the global residual vector R, recall equa-

tion (A.7),

• an input opaque pointer ctx, used to pass problem-specific information to the

residual routine.

The code proceeds to declare the following local variables

• two integers a and nen, the first to be used as a loop index, while the second is

initialized to the number of local basis functions,

• two pointers N0 and N1, initialized from data within the IGAPoint, used in

the following for convenient access to the values of local basis functions (0th

derivatives) and their first derivatives,

• two floating point variables u and grad u to store the values of uh and ∇uh at

the quadrature point

• a floating point variable lambda to store the value of λ, initialized from the

Params structure through the opaque pointer ctx.

Next, the routines IGAPointFormValue and IGAPointFormGrad are invoked to com-

pute the values of uh and∇uh at the quadrature point, following equations (A.5) and (A.6).

Finally, local residual contributions are computed in a loop following equation (A.7)
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by using the previously defined dot macro as well as the exp routine from the stan-

dard library of the C programming language. The quadrature weights and Jacobian

determinant of the geometry mapping are handled internally, which slightly simplifies

the coding.

The Jacobian routine implementing equation (A.8) reads

22 int Jacobian(IGAPoint p,const double U[],double J[],void *ctx) {

23 int a,b,nen = p->nen;

24 double (*N0) = (typeof(N0)) p->shape [0];

25 double (*N1)[dim] = (typeof(N1)) p->shape [1];

26 double u,lambda = (( Params *)ctx)->lambda;

27 IGAPointFormValue(p,U,&u);

28 for (a=0; a<nen; a++)

29 for (b=0; b<nen; b++)

30 J[a*nen+b] = dot(N1[a],N1[b]) - lambda*exp(u)*N0[a]*N0[b];

31 return 0;

32 }

The Jacobian routine is almost the same as the previous Residual routine. The

main differences are the output floating point array J where the routine is expected

to return local contributions to be assembled in the global Jacobian matrix J, and

the double-loop computing these contributions following equation (A.8).

The code of the main program routine then begins

34 int main(int argc , char *argv []) {

35 PetscInitialize (&argc ,&argv ,NULL ,NULL);

The first statement invokes the PetscInitialize routine, which internally handles

the initialization of the PETSc library. This routine is fed with the command line

arguments to the program. PETSc uses these arguments to build a database of

options. These options are queried later.

The code proceeds to create and initialize an iga object of type IGA. The IGA type

is a key component in PetIGA. This core data structure contains all the information

related to discretization and parallel communication.

37 IGA iga;

38 IGACreate(PETSC_COMM_WORLD ,&iga);

39 IGASetDim(iga ,dim);

40 IGASetDof(iga ,1);

41 IGASetFromOptions(iga);
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42 IGASetUp(iga);

To properly setup the iga object, the user only needs to hardwire in code a couple

of problem-specific parameters, and ask the framework to handle the rest at runtime

through the options database

• the routine IGASetDim specifies the number of space dimensions, in this partic-

ular example it is set to two,

• the routine IGASetDof specifies the number of components in the solution, in

this particular example it is set to one as the code is dealing with a scalar

problem,

• the routine IGASetFromOptions queries the options database to let users change

different properties of the discretization such as number of elements, polynomial

degree and regularity of the approximation space, type of basis functions to use,

quadrature rules, number of quadrature points, among others. When values are

not specified by the user, PetIGA selects default values such as 16 elements per

direction, unit domain, uniform refinement, quadratic C1 spaces, and Gauss–

Legendre quadrature. Even though other ways to initialize an IGA object are

available, this is the simplest one. When more complex discretizations and/or

geometries are required, the IGA object can be initialized by loading binary

datafiles,

• finally, the routine IGASetUp prepares the data structure to be used in what

follows. This step handles the parallel partitioning of the domain and prepares

internal data structures that manage parallel communication.

Boundary conditions are handled in the code snippet that follows

44 int direction ,side;

45 for (direction =0; direction <dim; direction ++) {

46 for (side =0; side <2; side ++) {

47 int field = 0; double value = 0.0;
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48 IGASetBoundaryValue(iga ,direction ,side ,field ,value);

49 }

50 }

The routine IGASetBoundaryValue is used to set the Dirichlet boundary conditions

of this problem, as specified in equation (A.2), and takes as arguments

• the IGA context in which the boundary condition is to be set,

• the parametric direction, which takes values 0 or 1 to specify either the first or

second parametric directions, respectively,

• the boundary side, which takes values 0 or 1 to specify either the left or right

side along the parametric direction, respectively,

• the component index, which is 0 for scalar problems,

• finally, the value to be enforced at the boundary.

Although not highlighted in this example, PetIGA allows users to specify more general

and possibly nonlinear boundary conditions. These boundary conditions should be

handled in the user-defined residual and Jacobian routines.

The final step to configure the IGA context requires the specification of the user-

defined residual and Jacobian callbacks, as shown in the following lines of code

52 Params params;

53 params.lambda = IGAGetOptReal(NULL ,"-lambda" ,6.80);

54 IGASetFormFunction(iga ,Residual ,& params );

55 IGASetFormJacobian(iga ,Jacobian ,& params );

A local variable params of type Params is declared, the lambda member is initialized

from a user-specified command line option, or from a hardwired default value oth-

erwise. The calls to IGASetFormFunction and IGASetFormJacobian register within

the IGA context the user-defined residual and Jacobian routines. They also store the

pointer to the Params instance which is used in Residual and Jacobian to access

the λ parameter, as explained previously.

The code then proceeds to solve the nonlinear problem
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57 SNES snes;

58 IGACreateSNES(iga ,&snes);

59 SNESSetFromOptions(snes);

60

61 Vec U;

62 IGACreateVec(iga ,&U);

63 SNESSolve(snes ,NULL ,U);

The routine IGACreateSNES creates a nonlinear solver context and performs addi-

tional initialization such as associating the global vector to form the residual and the

global matrix in which to form the Jacobian within the solver context. The routine

SNESSetFromOptions enables users to further configure the nonlinear solver through

command line options. Finally, a global vector is created to store the solution coeffi-

cients and the routine SNESSolve is invoked to solve the problem.

A call to the routine VecViewFromOptions creates a viewer context which can

be used to visualize the solution vector in real-time, or store the solution as a VTK

datafile [162, 163]

65 VecViewFromOptions(U,NULL ,"-output");

Lastly, all PETSc and PetIGA objects created through the code are destroyed to

free resources and the routine PetscFinalize is invoked to properly shutdown the

framework

67 VecDestroy (&U);

68 SNESDestroy (&snes);

69 IGADestroy (&iga);

70 PetscFinalize ();

71 return 0;

72 }
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B.1 Energy stable formulation for the PFC equa-

tion

B.1.1 Jacobian for the 2 + 2 + 2 mixed form

The Jacobian components of K in equation (4.50) are defined as

Kφφ
AB =

(
NA,

NB

∆t

)
Ω

, (B.1)

Kφσ
AB = (∇NA,∇NB)Ω , (B.2)

Kφθ
AB = 0, (B.3)

Kσφ
AB =

1

2
(NA, NB)Ω

(
Ψ′′′c
(
φhn+1

)
〚φhn〛−Ψ′′c

(
φhn+1

)
+ Ψ′′e

(
φhn
))

− αn∆t (∇NA,∇NB)Ω , (B.4)

Kσσ
AB = (NA, NB)Ω , (B.5)

Kσθ
AB = − (NA, NB)Ω + (∇NA,∇NB)Ω , (B.6)

Kθφ
AB = −1

2
(NA, NB)Ω +

1

2
(∇NA,∇NB)Ω . (B.7)

Kθσ
AB = 0, (B.8)

Kθθ
AB = (NA, NB)Ω . (B.9)
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B.1.2 Running the code

Both PETSc and PetIGA are regularly maintained and updated, so it is worthwhile to

download their respective repositories through the version control systems Git1 and

Mercurial2. These tools can be used to clone the PETSc and PetIGA repositories

with the following commands

• git clone https://bitbucket.org/petsc/petsc

• hg clone https://bitbucket.org/dalcinl/PetIGA

PETSc must be configured and installed before installing PetIGA. After completing

the PetIGA installation, the igakit repository can be cloned.

• hg clone https://bitbucket.org/dalcinl/igakit

Igakit is a Python-based pre-processing and post-processing tool for PetIGA. Further

information on these software packages can be found in [114, 115, 56, 116, 113], and

the discretization proposed in this work can be found in the demo/ directory of the

PetIGA sources.

1http://git-scm.com
2http://mercurial.selenic.com/

http://git-scm.com
http://mercurial.selenic.com/
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C.1 Generalized formulation for phase-field prob-

lems

C.1.1 Jacobian for the mixed form

The Jacobian components of K in equation (4.50) are defined as

Kφφ
AB =

(
NA,

NB

∆t

)
Ω

, (C.1)

Kφσ
AB =

(
∇aNA, M̃

(
φh
)
∇aNB

)
Ω
, (C.2)

Kσφ
AB =

(
NA,

(
−Ψ̃′′ − c0

2

)
NB

)
Ω
− c1

2
(∇NA,∇NB)Ω −

c2

2
(∆NA,∆NB)Ω

− α∆t (∇aNA,∇aNB)Ω , (C.3)

Kσσ
AB = (NA, NB)Ω , (C.4)

recalling the expression for the function f defined through equation (4.2).

C.1.2 Generalized-α method for first order systems

The generalized-α method for first-order differential equations in time [125]

R
(
U, U̇

)
= 0,
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is defined as: given U̇n, Un, find U̇n+1, Un+1 such that

R
(
U̇n+αm ,Un+αf

)
= 0

U̇n+αm = U̇n + αm

(
U̇n+1 − U̇n

)
Un+αf = Un + αf (Un+1 −Un)

Un+1 = Un + ∆t
(
γU̇n+1 + (1− γ)U̇n

)

where ∆t = tn+1−tn is the time-step, and αf , αm and γ are parameters which control

numerical dissipation and define the method. These parameters can be chosen using

the spectral radius ρ∞ ∈ [0, 1]

αm =
1

2

(
3− ρ∞
1 + ρ∞

)
,

αf =
1

1 + ρ∞
,

γ =
1

2
+ αm − αf ,

to obtain a second-order accurate, unconditionally stable method.
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