
Towards Optimal Bu↵er Size in Wi-Fi Networks

Thesis by

Ahmad J. Showail

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

Computer Science Program

Computer, Electrical and Mathematical Sciences and Engineering Division

King Abdullah University of Science and Technology (KAUST)

Thuwal, Kingdom of Saudi Arabia

January, 2016

2

The thesis of Ahmad J. Showail: Examination Committee

Committee Chairperson: Prof. Basem Shihada, KAUST

Committee Member: Prof. Arif Ghafoor, Purdue University

Committee Member: Prof. Mohamed-Slim Alouini, KAUST

Committee Member: Prof. Panos Kalnis, KAUST

3

Copyright ©Year

Ahmad J. Showail

All Rights Reserved

4

ABSTRACT

Towards Optimal Bu↵er Size in Wi-Fi Networks

Ahmad J. Showail

Bu↵er sizing is an important network configuration parameter that impacts the

quality of data tra�c. Falling memory cost and the fallacy that ‘more is better’

lead to over provisioning network devices with large bu↵ers. Over-bu↵ering or the

so called ‘bu↵erbloat’ phenomenon creates excessive end-to-end delay in today’s net-

works. On the other hand, under-bu↵ering results in frequent packet loss and sub-

sequent under-utilization of network resources. The bu↵er sizing problem has been

studied extensively for wired networks. However, there is little work addressing the

unique challenges of wireless environment. In this dissertation, we discuss bu↵er

sizing challenges in wireless networks, classify the state-of-the-art solutions, and pro-

pose two novel bu↵er sizing schemes. The first scheme targets bu↵er sizing in wireless

multi-hop networks where the radio spectral resource is shared among a set of con-

tending nodes. Hence, it sizes the bu↵er collectively and distributes it over a set of

interfering devices. The second bu↵er sizing scheme is designed to cope up with recent

Wi-Fi enhancements. It adapts the bu↵er size based on measured link characteristics

and network load. Also, it enforces limits on the bu↵er size to maximize frame aggre-

gation benefits. Both mechanisms are evaluated using simulation as well as testbed

implementation over half-duplex and full-duplex wireless networks. Experimental

evaluation shows that our proposal reduces latency by an order of magnitude.

5

ACKNOWLEDGEMENTS

All praise is due to Allah, the Lord of the worlds. The Entirely Merciful, the Especially

Merciful. I thank him for all his bounties. Peace and blessing of Allah be upon our

beloved Prophet Muhammad and his family and companions.

Having a PhD was a dream. It would never be true with out the support, patience

and motivation of many people who are close to my heart. Truly, the secret to my

success is my wife Doha, who promised me to be supportive and indeed she was. She

showed patience at di�cult moments.

The PhD is a long journey. It requires a lot of dedication, motivation and last

but least inspiration. My kids, Elyas and Batool, missed me a lot as a father in the

past several years. They were, and always are, a source of joy and prosperity in my

life. To them I dedicate this dissertation.

My parents nurture in me the passion to be a life long learner. They were always

pushing me to accept nothing but the best. Their guidance, support and prayers were

invaluable for me. I would like to gift them a warm kiss on their foreheads.

This achievement was not possible with out the guidance of Prof. Basem Shiahada.

To me, he is more than supervisor, he is a friend, colleague and a kind mentor. His

usual and continuous support was vital to my success.

Many more are in my thank you list, my twin Dr. Mahmood, my friends Hatim

and Majid, and my direct mentor Dr. Kamran and many more. These people were

stars when I felt that the night is too dark.

6

TABLE OF CONTENTS

Examination Committee Approval 2

Copyright 3

Abstract 4

Acknowledgements 5

List of Figures 9

List of Tables 13

List of Abbreviations 15

1 Introduction 19

1.1 Problem Statement and Motivation 19

1.2 Thesis Objectives . 21

1.3 Thesis Organization . 24

2 State-of-the-Art of Bu↵er Sizing in Wireless Networks 26

2.1 Introduction to Bu↵erbloat . 27

2.2 Bu↵er Sizing Challenges . 31

2.2.1 Link scheduling . 31

2.2.2 Adaptive link rates . 32

2.2.3 Frame aggregation . 35

2.2.4 Variable packet inter-service rate 40

2.2.5 Power management . 40

2.2.6 Network management . 41

2.2.7 Multi-hop challenges . 41

2.2.8 Implementation challenges . 44

2.3 Bu↵erbloat Solutions . 46

2.3.1 Network centric methods . 46

7

2.3.2 End-to-end methods . 53

3 System Description 56

3.1 Testbed Specifications . 56

3.1.1 IEEE 802.11a/b/g testbed . 57

3.1.2 IEEE 802.11n testbed . 58

3.2 Bu↵ering Layers . 59

3.2.1 Bu↵ering in Linux network stack 59

3.2.2 Which bu↵er to tune? . 62

3.2.3 Simulation Bu↵ering . 63

4 Distributed Neighborhood Bu↵er 64

4.1 Overview . 64

4.2 Design . 65

4.2.1 Bottleneck collision domain 65

4.2.2 Distributed neighborhood bu↵ers 67

4.2.3 Determining network parameters 68

4.3 System Model . 70

4.3.1 Neighborhood bu↵er size B 71

4.3.2 Distributing the neighborhood bu↵er among nodes 74

4.4 Performance Analysis . 79

4.4.1 Simulations . 79

4.4.2 Testbed . 87

5 Aggregation-Aware Queue Management 91

5.1 Overview . 91

5.2 Motivation . 92

5.3 Approach . 104

5.3.1 WQM Operation . 105

5.3.2 WQM Analysis . 107

5.4 Experimental Analysis . 110

5.4.1 Implementation Details . 110

5.4.2 Experimental Evaluation . 113

6 Bu↵er Management in Wireless Full-Duplex Systems 124

6.1 Introduction . 124

6.2 Approach . 127

8

6.3 Implementation . 128

6.4 Performance evaluation . 131

6.4.1 Single flow scenario . 132

6.4.2 Bidirectional flows scenario . 134

7 Concluding Remarks 138

8 Future Research Work 141

8.1 Frame aggregation schedulers . 141

8.2 Wireless compatible active queue management 142

8.3 Virtual queueing . 143

8.4 Fine-tuning TCP . 143

References 143

Appendices 154

9

LIST OF FIGURES

1.1 TCP congestion window, RTT, and egress queue utilization with a

one-hop TCP flow in our 802.11n wireless testbed with 6.5 Mb/s link

rate. Bu↵er size values correspond to values in the stock Linux kernel. 20

2.1 TCP congestion window, RTT, egress queue utilization and the number

of dropped packets for a TCP flow in an IEEE 802.11n wireless testbed

with varying link rates over time. The bu↵er size corresponds to the

default value in Linux. 30

2.2 Queue utilization for a TCP flow over 4-hop topology in our IEEE

802.11n wireless testbed with 144.4 Mb/s links. A-MPDU frame ag-

gregation is enabled at the source and the first hop only. 31

2.3 Delay experienced by a large file transfer while varying link rate and

bu↵er size. 33

2.4 Goodput of a TCP large file transfer over various link rates and bu↵er

sizes. 33

2.5 Packet drops of a TCP large file transfer over various link rates and

bu↵er sizes. 34

2.6 Frame format for A-MSDU aggregation in IEEE 802.11n networks [1]. 36

2.7 Frame format with and without A-MPDU aggregation in IEEE 802.11n

networks [1]. 37

2.8 Average A-MPDU length of a TCP large file transfer for various link

rates and bu↵er sizes. 39

2.9 Delay and goodput comparison of both TCP and UPD flows with and

without A-MPDU frame aggregation. 40

2.10 End-to-end delay CDF of a large file transfer over topologies with in-

creasing number of hops. 42

2.11 TCP congestion window and end-to-end delay of a large file transfer

over topologies with increasing number of hops. 43

3.1 Our testbed node positions are identified by radio icons. 57

10

3.2 Simplified architecture of bu↵ers used in packet transmission/reception

in Linux hosts as well as simulator mobile nodes. 60

4.1 With a two-hop interference model, the collision domain of link l3 in-

cludes links l1, l2, l4, and l5. 66

4.2 The distributed neighborhood bu↵er of a collision domain includes the

bu↵ers associated with the constituent nodes in that collision domain. 68

4.3 Flowchart for DNB bu↵er sizing heuristics. 70

4.4 802.11a/b/g MAC overhead per TCP segment transmission. 72

4.5 Queue occupancy state transition for a wireless node ni with a bu↵er

of size bi. 74

4.6 Delay distribution CDF for the parking lot topology. 80

4.7 Queue drops at mesh routers in a 4-hop chain. 81

4.8 Multi-flow topologies . 84

4.9 Flow goodput and delay across various testbed topologies. Goodput

results are normalized with default bu↵er sizes to the goodput achieved

with DNB. Round Trip Time (RTT) measurements are normalized

with default bu↵ers to the RTT measured with DNB. Error bars are

the 95% confidence intervals. 89

5.1 Flow throughput and RTT for wireless links without A-MPDU aggre-

gation. 94

5.2 TCP congestion window, RTT, and egress queue utilization for a 1-hop

TCP flow over a 300 Mb/s wireless link. 95

5.3 TCP congestion window size, RTT, and txqueue size distribution for

a TCP flow in a 4-hop chain topology with 6.5 Mb/s wireless links. . 96

5.4 Flow throughput and RTT for wireless links with A-MPDU aggregation. 97

5.5 Average A-MPDU size. For multi-hop networks, A-MPDU size is mea-

sured at each hop along the path to the destination. ath9k does not

support Tx A-MPDU aggregation at 6.5 Mb/s link rate. 98

5.6 Flow throughput and RTT for a network with partial links supporting

A-MPDU aggregation. 99

5.7 TCP congestion window size, RTT, and txqueue size distribution for

a TCP flow in a 4-hop chain topology with 144.4 Mb/s wireless links.

The source and 1-hop relay node use Tx A-MPDU aggregation. . . . 100

5.8 Flow throughput and RTT for parking lot topologies without A-MPDU

aggregation. 102

11

5.9 Flow throughput and RTT for parking lot topologies with A-MPDU

aggregation. 103

5.10 802.11n MAC overhead per A-MPDU transmission. 108

5.11 WQM bu↵er size adaptation in response to variation in queue occu-

pancy. This figure represents the AIMD behaviour of WQM. 111

5.12 Comparing the round trip delay of various versions of WQM algorithm. 112

5.13 RTT CDF for a single flow while varying the hop count. 114

5.14 Goodput of a single flow while varying the hop count. 114

5.15 RTT CDF for a single flow while varying the hop count after disabling

A-MPDU frame aggregation. 116

5.16 Goodput of a single flow while varying the hop count after disabling

A-MPDU frame aggregation. 116

5.17 RTT CDF while varying the distance between nodes in the testbed. 117

5.18 Average goodput achieved while varying the distance between nodes. 117

5.19 RTT CDF while varying the flow duration. 118

5.20 Average goodput achieved while varying the flow duration. 118

5.21 RTT CDF of various concurrent flows over a single hop topology. . . 119

5.22 Average goodput with multiple flows over a single hop topology. . . . 119

5.23 RTT CDF of various concurrent flows over a single hop topology after

disabling A-MPDU aggregation. 120

5.24 Average goodput with multiple flows over a single hop topology after

disabling A-MPDU aggregation. 121

5.25 Illustration of the parking lot topology used in our experiments. . . . 121

5.26 Average end-to-end delay per flow and total goodput in the parking

lot topology. 122

6.1 Bidirectional full-duplexing and relay full-duplexing. 125

6.2 RFD-MAC time sequence. 129

6.3 Topology of single flow scenario. 131

6.4 Topology of bidirectional flows scenario. 131

6.5 End-to-end latency while varying source rate for the single flow scenario.133

6.6 Goodput while varying source rate for the single flow scenario. 133

6.7 Collision rate while varying source rate for the single flow scenario. . 134

6.8 End-to-end latency while varying source rate for the bidirectional flows

scenario. 135

6.9 Goodput while varying source rate for the bidirectional flows scenario. 135

12

6.10 Collision rate while varying source rate for the bidirectional flows sce-

nario. 136

6.11 Full-duplex Ratio for the four nodes scheme. 136

13

LIST OF TABLES

2.1 Per flow goodput for a bidirectional file transfer over a multihop wire-

less network. 43

3.1 Experimental setup for both testbed versions. 59

3.2 Direct Memory Access (DMA) ring bu↵ers in stock 2.6.35 Linux kernel. 62

4.1 System parameters of IEEE 802.11b [2]. 73

4.2 Performance comparison for a 4-hop TCP flow with 11 Mb/s wireless

links. All nodes are within mutual carrier sense range. 80

4.3 Performance comparison for a 4-hop TCP flow with 11 Mb/s wireless

links. The two end nodes outside mutual carrier sense range. 81

4.4 Performance statistics averaged over multiple topologies with varying

hop count. Goodput results are normalized to the goodput achieved

with the base case for a 50 packet bu↵er for that simulation. RTT

results are normalized to the RTT measured with TCP pacing for that

simulation. Averages computed over multiple di↵erent topologies. . . 82

4.5 Parking lot topology. 3 FTP streams. 85

4.6 Parking lot topology. 3 FTP and 3 VoIP streams. 85

4.7 Cross topology. 4 FTP streams. 86

4.8 Cross topology. 4 FTP and 4 VoIP streams. 86

4.9 Multi-flow experimental results. A 3-hop and a 4-hop flow together

share the network along disjoint paths. 88

4.10 A 4-hop 802.11n mesh topology connected via 65 Mb/s links. 90

4.11 Evaluating goodput and RTT for the proposed bu↵er distribution scheme

over various number of hops . 90

5.1 System parameters of IEEE 802.11n [2]. 109

5.2 Average goodput of WQM, CoDel, PIE, DNB, and Linux default set-

tings over various number of hops. 113

14

5.3 Mean RTT of WQM, CoDel, PIE, DNB, and Linux default settings

over various number of hops. 113

6.1 Simulation parameters summary. 132

15

LIST OF ABBREVIATIONS

A-MPDU Aggregate MAC Protocol Data Unit

A-MSDU Aggregate MAC Service Data Unit

AARF Adaptive Auto Rate Fallback

AC Access Category

ACK Acknowledgement

AIMD Additive Increase Multiplicative Decrease

ALT Adaptive Limit Tuning

AODV Ad-hoc On Demand Distance Vector

AP Access Point

AQM Active Queue Management

ARQ Automatic Repeat Request

BA Block Acknowledgement

BDP Bandwidth Delay Product

BER Bit Error Rate

BQL Byte Queue Limit

BSD Berkeley Software Distribution

CBR Constant Bit Rate

CDF Cumulative Distribution Function

CoDel Controlled Delay

CPU Central Processing Unit

CSMA/CA Carrier Sense Multiple Access with Collision

Avoidance

CTS Clear To Send

DCF Distributed Coordination Function

DIFS Distributed Inter-Frame Space

DMA Direct Memory Access

16

DNB Distributed Neighborhood Bu↵er

DQL Dynamic Queue Limit

DRWA Dynamic Receive Window Adjustment

DSL Digital Subscriber Line

eBDP emulating Bandwidth Delay Product

EDCA Enhanced Distributed Channel Access

FCS Frame Check Sequence

FIFO First In First Out

FTP File Transfer Protocol

GI Guard Interval

GigE Gigabit Ethernet

HT-SIG High Throughput Signal

HWMP Hybrid Wireless Mesh Protocol

IEEE Institute of Electrical and Electronics Engi-

neers

IFQ Interface Queue

IP Internet Protocol

IPTV Internet Protocol Television

ISP Internet Service Provider

JFI Jain’s Fairness Index

LAN Local Area Network

LFN Long Fat Network

MAC Media Access Control

MCS Modulation and Coding Scheme

MIMO Multiple Input Multiple Output

MPDU MAC Protocol Data Unit

MSS Maximum Segment Size

MTU Maximum Transmission Unit

17

NRED Neighborhood Random Early Detection

NS-2 The Network Simulator

OFDM Orthogonal Frequency-Division Multiplexing

OS Operating System

PHY Physical layer

PIE Proportional Integral controller Enhanced

qdisc queueing discipline

QoE Quality of Experience

QoS Quality of Service

RED Random Early Detection

RFD-MAC Relay Full-Duplex MAC

RTS Request To Send

RTT Round Trip Time

SIFS Shortest Inter-Frame Space

SISO Single Input Single Output

TCP Transmission Control Protocol

TCP-AP TCP with Adaptive Pacing

TXOP Transmission Opportunity

txqueue transmit queue

U-NII Unlicensed National Information Infrastruc-

ture

UDP User Datagram Protocol

VoIP Voice over IP

WaRP Wearable Reference Platform

WLAN Wireless Local Area Network

WMN Wireless Mesh Network

18

WQM Wireless Queue Management

19

Chapter 1

Introduction

It is di�cult to believe that the time to send a packet between two wireless nodes

that are several meters away from each other may be longer than the time to send

the same packet to the moon? Earth-to-Moon communication delay is around one

second, whereas many packets in today’s Internet experience delay of several seconds

due to waiting in deep queues until they get transmitted [3, 4].

1.1 Problem Statement and Motivation

Nowadays, many real-time applications such as Voice over IP (VoIP) and online gam-

ing are latency-sensitive. To achieve a satisfactory performance, these applications

need to operate under controlled latencies in the order of milliseconds or even mi-

croseconds. Unfortunately, a large file download from the Internet may increase the

network end-to-end delay upto several seconds. One reason for this behavior is over

bu↵ering in the network stack.

Bu↵ers are designed to absorb transient tra�c bursts. However, arbitrarily sized

bu↵ers can degrade network performance. Large bu↵ers lead to long queuing delays,

while very small bu↵ers may result in network under-utilization. Ideally, the bu↵ers

need to be sized just large enough to keep the link saturated at close to full utilization.

The purpose of all bu↵er sizing techniques is to find the optimal bu↵er size that

20













         
















































         




Figure 1.1: TCP congestion window, RTT, and egress queue utilization with a one-
hop TCP flow in our 802.11n wireless testbed with 6.5 Mb/s link rate. Bu↵er size
values correspond to values in the stock Linux kernel.

maximize network capacity while minimizing queueing delays.

With declining memory prices and the fallacy that ‘more is better’, network de-

vices are increasingly being over provisioned with large bu↵ers that aim to improve

throughput by limiting packet drops. While throughput is the dominant performance

metric, packet forwarding latency also impacts user experience. This includes not only

real-time tra�c such as VoIP, video conferencing, and networked games, but also web

browsing, which is sensitive to latencies in the order of hundreds of milliseconds.

Recent studies indicated that a one second delay in page load times of e-commerce

websites can significantly impact customer conversion [5, 6]. Further, large queueing

delays also impact the stability of core internet protocols such as TCP, which rely on

timely notification of congestion information to respond e↵ectively.

The goal of the following experiment is to show the significance of high latency in

today’s wireless networks. In this experiment, a large file is transferred between two

21

Linux hosts connected wirelessly via Institute of Electrical and Electronics Engineers

(IEEE) 802.11n (Wi-Fi) wireless interfaces. The two hosts are connected at a link

rate of 6.5 Mb/s, which is the lowest rate supported by IEEE 802.11n. The detailed

experimental setup is described in Chapter 3. The growth of the Transmission Control

Protocol (TCP) congestion window as well at the RTT between the two hosts are

monitored. The queue utilization of the File Transfer Protocol (FTP) server is also

measured. Our results are shown in Fig. 1.1. The TCP congestion window peaks at

1.6 million bytes (window scaling [7] is enabled by default in Linux hosts), with RTT

peaking at around 2.4 s. Most of these ‘in-flight’ TCP segments are queued up at the

txqueue interface (Linux default size of 1000 packets), contributing to large queueing

delays that lead to the high RTT delays. Most of the widely-deployed operating

systems use some variant of loss-based TCP congestion control algorithms. Having

large bu↵ers prevents a timely dropping of a packet that is required for conveying

network congestion to the TCP sender, leading the TCP congestion window to shoot

up to the high values observed in our experiment. It could be noted that with these

large bu↵ers, the queue utilization never drops to 0 despite the TCP congestion

window halving multiple time over the course of the experiment.

1.2 Thesis Objectives

The main goal of this work is to attain certain Quality of Service (QoS) guarantees in

wireless networks. Basically, we are interested in minimizing wireless network latency.

One way to achieve this goal is to limit the queueing delay by distinguishing good and

bad bu↵ers. The former are bu↵ers that absorbs bursty tra�c. On the other hand,

bad bu↵er only contribute to network latency without any noticeable improvement

in throughput. In fact, finding the optimal bu↵er size in any wireless network is

challenging due to the special features of wireless networks. For example, the wireless

22

link is often shared among several nodes, hence only a single node can transmit at

any given time. According to the widely used Media Access Control (MAC) protocol

named Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), the

node is going to reschedule its transmission after a random amount of time in case

the the medium is found busy. As a result, packet service time varies from one node to

the other. Moreover, the capacity of this shared link is not fixed as it varies over time

in response to sporadic noise and interference from neighbor wireless nodes. Also,

recent MAC enhancements such as frame aggregation allow transmission of large

frame aggregates creating further challenges in e�cient managing of bu↵er sizing

techniques in wireless networks. Our contributions to address the above mentioned

challenges are as follows:

1. Investigate the major bu↵ering layers encountered by a packet through a Linux

host and discuss the performance implications of their size. In fact, managing

these bu↵ers in a commodity Operating System (OS), such as Linux, is chal-

lenging because they are scattered over multiple layers in the software stack.

The major sources of bu↵ering encountered by a packet through a Linux ker-

nel have been described. Through careful sizing of the right bu↵er, the goal

is to achieve high utilization of the bottleneck spectrum while maintaining low

queueing delays.

2. Describe in details the challenges of bu↵er sizing in wireless data networks. Not

only that we present a summary of bu↵er sizing solutions available in the lit-

erature, but also classify these solutions based on where and how bu↵er sizing

is done. Similarly, we discuss recent Active Queue Management (AQM) tech-

niques in the wired domain. Moreover, we discuss their limitations and why we

believe they are not suitable for today’s wireless networks.

3. Account for the shared nature of wireless spectrum by formulating the bu↵er siz-

23

ing problem in wireless multihop networks as sizing a distributed queue spread

over multiple nodes constituting the bottleneck radio neighborhood. Moreover,

using a simple cost function, a mechanism for sizing the transmission bu↵er at

individual nodes in the bottleneck neighborhood queue has been proposed. This

approach is called Distributed Neighborhood Bu↵er (DNB). Using simulation

and experimental evaluation, it has been verified that DNB achieves close to

full network utilization with a significant reduction in the end-to-end delay.

4. Account for wireless channel variable capacity by adjusting the bu↵er size based

on the time needed to drain the bu↵er. This bu↵er draining time is recalcu-

lated periodically using the current transmission rate. Determining the bu↵er

size adaptively reduce the queueing delays significantly while allowing su�cient

bu↵ers to saturate available network capacity. This approach is called Wireless

Queue Management (WQM). WQM is both practical and incrementally deploy-

able; it uses existing data tra�c as probe for network measurements and does

not incur any additional overhead such as time-stamping the packets at their

arrival to the queue. Furthermore, WQM improves network fairness as it limits

the ability of a single flow to saturate the bu↵ers. WQM is implemented and

evaluated in Linux based wireless routers.

5. Analyze the e↵ects of frame aggregation in the IEEE 802.11n/ac standards stan-

dard on the optimal bu↵er size selection. The impact of over-bu↵ering is char-

acterized using both single-hop and multi-hop topologies on an IEEE 802.11n

testbed. Also, it is shown that a suitably designed aggregation scheduler can

substantially reduce delays, while simultaneously increasing throughput. This

is important since it helps us understand the impact of aggregation schedulers in

balancing e�cient use of channel utilization while minimizing queueing delays.

Our proposed queue management scheme, WQM, factors in frame aggregation

24

to get accurate estimates of queue draining time when deciding about the op-

timal queue size. Also, WQM enforces high and low limits on queue size based

on the length of the transmitted aggregates.

6. Tackle the problem of bu↵er management in wireless full-duplex systems. In this

kind of networks, radios are able to transmit and receive simultaneously using

the same channel. This poses additional challenges when trying to optimize

the bu↵er size in the network. We modify WQM to suite wireless full-duplex

networks. Performance evaluation shows that our proposed scheme reduces the

end-to-end delay significantly at the cost of minimal packet dropping.

1.3 Thesis Organization

The main theme of this dissertation is limiting network latency by optimizing the

bu↵er size in wireless networks. This thesis proposal is organized as follows. In

Chapter 2, the “bu↵erbloat” concept is introduced and a real life example of bloated

bu↵ers and their e↵ects is given. After that, bu↵er sizing challenges in the wireless

domain are detailed. This chapter is concluded with a survey of the state-of-the-art

solutions to battle bu↵erbloat and their limitations. Our testbed and experimental

methodology are described in Chapter 3. Also in this chapter, various bu↵ering layers

in both The Network Simulator (NS-2)[8] and Linux software stack are examined to

identify which bu↵er to tune. Chapter 4 presents the proposed queue sizing mecha-

nism for multihop wireless networks that is called DNB. It starts by describing the

notion of a wireless network bottleneck. Then it shows the model for sizing the dis-

tributed bu↵er collectively and allocating this bu↵er among the contending nodes.

Towards the end, it demonstrates the e�cacy of our model via simulations and ex-

perimental evaluation on an IEEE 802.11s testbed. WQM is introduced in Chapter 5,

which is a customized queue management and scheduling scheme that is compatible

25

with recent enhancements in the wireless standards. This chapter discuses the design

and implementation of WQM on real wireless routers. It also shows the experimental

evaluation of this approach compared with the default Linux scheme. Our proposal to

solve the problem of bu↵er management in wireless full-duplex networks is described

in Chapter 6. This chapter starts by giving some background material on wireless

full-duplexing. After that, the proposed approach is detailed. Towards the end, per-

formance evaluation is shown. This dissertation is concluded in Chapter 7. Finally,

our planned future work is listed in Chapter 8.

26

Chapter 2

State-of-the-Art of Bu↵er Sizing in

Wireless Networks

In this chapter, we start by illustrating the “buferbloat” phenomenon [9] and its

implication on wireless networks. After that, we describe the challenges of bu↵er

sizing in wireless data networks. We then present a summary of bu↵er sizing solutions

available in literature. We also provide a taxonomy of other mechanisms proposed

in the literature to limit queuing delays in wireless networks. These can be broadly

classified as follows:

1. Network-centric techniques used on routers and intermediate network nodes.

2. End-to-end techniques which require tuning higher-layer protocols at the end-

hosts to limit the amount of bu↵ering in the network.

We also discuss recent Active Queue Management (AQM) techniques. Since these

operate at a di↵erent control point, they may be used to complement direct ma-

nipulation of bu↵er sizes. To ground our discussion, we present some performance

measurements from our wireless network testbed.

27

2.1 Introduction to Bu↵erbloat

Packet-switched networks use bu↵ers to accommodate transient tra�c bursts. These

bu↵ers aim to prevent packet loss and maintain high output link utilization. Bu↵er

sizing is an important network configuration parameter: under-bu↵ered networks lead

to frequent packet loss and subsequent under-utilization of network resources, while

over-bu↵ered networks lead to increased queueing delays.

The impact of ‘persistently-full’, large bu↵ers on network performance have been

known for many years. These bu↵ers build up at network bottlenecks along the

routing path of a flow. Recently, the term ‘bu↵erbloat’ [9] has been used to describe

the performance impact when these large bu↵ers are used with simplistic First In First

Out (FIFO) queue management with drop tail packet scheduling. Several research

papers discuss bu↵erbloat root causes and the scope of this phenomena in today‘s

Internet [10, 11, 12]. While large bu↵ers may potentially increase throughput by

limiting packet drops, big queues can result in high latency. With falling memory

prices and the fallacy that ‘more is better’, this performance degradation from large

bu↵ers can be observed in many networking devices, including end-user equipment

such as Digital Subscriber Line (DSL), wireless Access Point (AP) or cable routers.

In today’s networks, bloated bu↵ers may create delays in the order of seconds [3, 12].

Alternatively, some researchers believed that bu↵erbloat created unnecessary buzz in

the community [13, 10, 14]. In a systemic evaluation of bu↵erbloat, Cardozo et al. [13]

suggested that bu↵erbloat might not be a significant problem in practice. Considering

the microscopic view of the bu↵er architecture of typical network devices, they drew

attention to the impact of varying the bu↵er size of various bu↵ers in the network

transmit stack. They found out that the occurrence of the bu↵erbloat phenomenon is

not common. This is in agreement with what Allman found in his empirical evaluation

of bu↵erbloat [10]. In his study, he concluded that although bu↵erbloat might happen,

it does not happen that often. Also, Hohlfeld et al. [14] evaluated bu↵erbloat from

28

a Quality of Experience (QoE) prospective. They concluded that bloated bu↵ers

degrade users QoE only when they are persistently filled.

Most of the existing work on bu↵er sizing in the literature has been studied in the

context of core Internet routers with a large number of flows (e.g., [15, 16, 17], among

others). With the network core increasingly being over-provisioned and popularity

of wireless hand-held devices, the bottlenecks often lie in the access network. For

example, many of the current users, who are accessing server applications via their

corporate Wireless Local Area Network (WLAN), are bottlenecked by the wireless

link capacity. Similarly, users accessing the Internet via a Wi-Fi based Wireless Mesh

Network (WMN) or a 3G/4G cellular network, are likely to be bottlenecked by the

slow wireless link capacity. Thus, it is important to study the impact of bu↵erbloat

on wireless network performance.

The wireless environment brings new challenges to our understanding of bu↵er

sizing requirements [18]. In particular, wireless networks have time-varying link rates

and variable packet inter-service time. Furthermore, wireless nodes experience inter-

ference from other devices sharing the same frequency spectrum. In addition, various

enhancements for improving e�ciency, such as frame aggregation, also impact packet

scheduling dynamics that need to be considered while designing bu↵er sizing mech-

anisms. These challenges are discussed in more details in Sec. 2.2. As discussed in

Sec. 2.3, there is currently very limited work in the literature on the impact of bu↵er

size on wireless network performance.

To motivate the study of bu↵erbloat in wireless networks, we conduct several

experiments using our Linux-based wireless testbed. The first experiment includes a

large file transfer between two hosts connected wirelessly via IEEE 802.11n radios.

To simulate the dynamic rate selection of the wireless nodes, the wireless link rate

has been changed every 50 seconds: it starts at 144.4 Mb/s, then it drops to 65

Mb/s, 6.5 Mb/s, and finally 13 Mb/s. The growth of the TCP congestion window as

29

well as the RTT between the two hosts has been monitored. Also, we measure the

queue utilization of the FTP server and the amount of dropped packets by the sender.

Results are shown in Fig. 2.1. It could be observed that the TCP congestion window

peaks at 1.6 million bytes (window scaling [7] is enabled by default on Linux hosts),

with RTT peaking at around 2.6 seconds. Most of these ‘in-flight’ TCP segments

are queued up at the Linux transmit queue (txqueue) interface (default size of 1000

packets), contributing to large queueing delays and hence long RTTs. Nowadays,

most OSs use some variant of loss-based TCP congestion control algorithms. Having

large bu↵ers prevent timely dropping of packets that is required for conveying network

congestion to the TCP sender, leading the TCP congestion window to shoot up to

the high values observed in our experiment. We note that with these large bu↵ers,

the queue utilization never drops to 0 although the TCP congestion window halves

multiple times over the course of the experiment. As expected, slower links lead to

the longest queueing delays. The huge variation in RTT values clearly suggests that a

uniform static bu↵er size cannot be used for wireless networks that are fundamentally

dynamic in nature. Similar performance degradation due to bloated bu↵ers has also

been reported for cellular networks [19]. Fig. 2.1 also shows that number of dropped

packets increases with network load. This is in agreement with what Fu et al. found

earlier [20].

Bu↵ers build up at network bottlenecks where the egress rate is below the ingress

rate. One example is last mile access for a typical home network: wireless clients

connect to a home AP over hundreds of Mb/s using IEEE 802.11n and emerging

IEEE 802.11ac radios, but then the uplink to the network of the Internet Service

Provider (ISP) is throttled to only tens of Mb/s. These bottlenecks also build up in

multihop wireless networks with a mix of radios configurations. This is illustrated

using a 4-hop topology in our 802.11n testbed which is shown in Fig 3.1. Frame

aggregation, described in details in Sec. 2.2, is enabled at the source and the first hop

30

Figure 2.1: TCP congestion window, RTT, egress queue utilization and the number
of dropped packets for a TCP flow in an IEEE 802.11n wireless testbed with varying
link rates over time. The bu↵er size corresponds to the default value in Linux.

node, whereas aggregation is disabled in all remaining nodes. Obviously, nodes with

aggregation enabled will be transmitting with higher rates. Fig. 2.2 shows that with

aggregation disabled on the second relay node, it forms a bottleneck with large queue

buildup compared to other nodes in the network. Similar queues also build up when

IEEE 802.11n radios are used in conjunction with legacy IEEE 802.11a/b/g radios

as the latter are not able to support frame aggregation.

31





 

























 







          




Figure 2.2: Queue utilization for a TCP flow over 4-hop topology in our IEEE 802.11n
wireless testbed with 144.4 Mb/s links. A-MPDU frame aggregation is enabled at
the source and the first hop only.

2.2 Bu↵er Sizing Challenges

Bu↵er sizing techniques and their impact on performance of wired networks is well-

understood [15] [16] [17] [21]. However, these techniques cannot be directly applied

to the wireless domain because of several unique challenges described below.

2.2.1 Link scheduling

The wireless spectrum is considered a shared resource between a set of neighboring

nodes. Interference considerations may require that only one of these nodes transmit

at a time. The number of transmit opportunities available to a node is partly depen-

dent on the number of neighboring nodes that are also actively contending for channel

access. Thus, unlike a wired link, a wireless link cannot be scheduled independently

of its neighboring nodes. This limits the available, usable capacity of a wireless link,

32

as it now varies depending on the network topology and the number of competing

flows. Thus while the physical wireless link rate may reach 600 Mb/s, the actual rate

achievable by a flow may be significantly less and would further vary over time based

on the link scheduling constraints.

2.2.2 Adaptive link rates

Wired link rates are constant and often known apriori. In contrast, link rate adapta-

tion algorithms dynamically set the wireless link rate in response to changing network

conditions. These link rates may exhibit significant variations over time, e.g., the link

rate for an IEEE 802.11n radio may vary from 6.5 Mb/s to 600 Mb/s. Depending on

the link rate adaptation algorithm, these link rates may vary on time scales ranging

from seconds to minutes. This has serious implication on the network Bandwidth

Delay Product (BDP) which determines the bu↵er size required for saturating the

link.

The default rate control algorithm in stock Linux kernel is Minstrel [22]. Minstrel

relies on active measurements to select the appropriate link rate. The basic idea

behind Minstrel is to search for the best rate by sending packets over fixed rates

every 100 ms and decide which one to use based on the packet transmission success

rate. The success rate is calculated by dividing the amount of data transmitted by

the time for a single try of one packet to be sent on the air. This should be then

multiplied by the probability of successful transmission which is the percentage of

packets sent successfully out of all packets sent in a given look around.

We perform various experiments in order to evaluate the impact of variable link

rate on wireless network dynamics. Our IEEE 802.11n testbed detailed hardware

specification could be found in Sec. 3.1. The basic idea is to transfer a large file

between two wireless nodes at fixed rate while monitoring goodput as well as other

TCP statistics. To examine the e↵ect of dynamic link rates, this experiment has

33

















     
















(a) without A-MPDU aggregation













     
















(b) with A-MPDU aggregation

Figure 2.3: Delay experienced by a large file transfer while varying link rate and
bu↵er size.

(a) without A-MPDU aggregation (b) with A-MPDU aggregation

Figure 2.4: Goodput of a TCP large file transfer over various link rates and bu↵er
sizes.

been repeated at multiple static link rates and (txqueue) bu↵er sizes while enabling

and disabling wireless frame aggregation. Fig. 2.3 and Fig. 2.4 show the end-to-end

delay and network goodput respectively over a single-hop wireless network. It can be

observed that there is no optimal bu↵er size that works across the four link rates used

in the experiment. Large bu↵ers work well with fast links where they can saturate the

link capacity while maintaining acceptable RTT. Small bu↵ers are better suited for

slow links, where they limit the queueing delays while giving similar throughput as

large bu↵ers. As illustrated in Fig. 2.3b and 2.4b, changing the bu↵er size from 10 to

34















     


















(a) without A-MPDU aggregation



















     


















(b) with A-MPDU aggregation

Figure 2.5: Packet drops of a TCP large file transfer over various link rates and bu↵er
sizes.

50 packets result in minor throughput improvement for 13 Mb/s to 144.4 Mb/s link,

yet come with a 30% increase in throughput for the 300 Mb/s link. However, this

bu↵er size cannot be used across all link rates as the RTT with 13 Mb/s link already

exceeds 250 ms over a single wireless hop. Such delays are unacceptable when these

queues are shared with real-time tra�c. Fig. 2.5 shows the percentage of packet drop

for each bu↵er size used in the experiment. We observe that shrinking the bu↵er

size increases the number of dropped packets. This is in agreement with the results

of Dhamdhere and Dovrolis [23], who showed that extremely small bu↵ers lead to

high loss rates. Given that even real-time applications require a bounded loss rate to

perform well, use of fixed-sized bu↵ers may be infeasible in this case. We also observe

that faster links experience lower packet loss as fast links can deflate the queue more

quickly, resulting in reduced packet dropping. It is worth noting that bigger bu↵ers

always result in higher goodput. For example, we observed a 10% increase in goodput

for the 13 Mb/s link moving from 10 to 1000 packet bu↵er, though this may not be

visually apparent in Fig. 2.4b because of the scale of the y-axis on the graph.

35

2.2.3 Frame aggregation

While the previously mentioned challenges are generally common across wireless net-

works, standard-specific enhancements introduce additional complexity. The MAC

layer in IEEE 802.11n/ac standards introduces two types of frame aggregation tech-

niques [2]: Aggregate MAC Service Data Unit (A-MSDU) and Aggregate MAC Proto-

col Data Unit (A-MPDU). As shown in Fig. 2.6 [1], an A-MSDU aggregates multiple

Internet Protocol (IP) packets into a single frame (up to a maximum implementation

dependent A-MSDU frame size of 3,839 B or 7,935 B), and appends Physical layer

(PHY) and MAC layer headers as well as a Frame Check Sequence (FCS) trailer. On

the other hand, an A-MPDU gathers multiple IP packets back-to-back. A-MPDU

is illustrated in Fig. 2.7 [1] and is limited in size to 65,535 B (bound by the 16-bit

length field in the High Throughput Signal (HT-SIG) field in the headers). A single

A-MPDU can carry a maximum of 64 subframes (limited by the Block Acknowledge-

ment (BA) frame). Each MAC Protocol Data Unit (MPDU) has its own FCS field.

This allows the receiver to request a retransmission of corrupted MPDUs by transmit-

ting a BA frame containing a bitmap to identify the status of individual MPDUs. The

actual A-MPDU size used for communication may further be limited by the receiver,

as advertised in its HT capabilities element. An important di↵erence between these

two aggregation methods is the support of QoS tra�c classes. A-MPDU sub-frames

may belong to various tra�c classes. Alternatively, all the sub-frames in an A-MSDU

must belong to the same tra�c class. As A-MSDU aggregation is not implemented

in Linux wireless drivers yet, the experimental work described in this document will

be limited to A-MPDU aggregation only.

The impact of packet aggregation in IEEE 802.11n is discussed in prior work [24,

25]. The authors showed that frame aggregation is capable of increasing the network

capacity. Also, the authors in [26] proposed a scheme to adaptively change the aggre-

gate size based on nodes mobility patters. However, the impact of frame aggregation

36

Figure 2.6: Frame format for A-MSDU aggregation in IEEE 802.11n networks [1].

on end-to-end delays, and in particular, its relation to bu↵er size is not considered.

Fig. 2.4 shows that A-MPDU aggregation increases the network goodput by 5⇥ for

300 Mb/s link with large bu↵ers, and up to 3⇥ with small bu↵ers. Fig. 2.5 shows that

big bu↵ers lead to slightly higher packet drop rate when A-MPDU frame aggregation

is enabled. Both of these observations are attributed to the fact that big bu↵ers allow

large aggregates, as shown in Fig. 2.8.

802.11ac, the emerging standard from the IEEE, also supports frame aggregation.

The maximum size of an A-MPDU aggregate in IEEE 802.11ac is 1MB whereas an

IEEE 802.11n based device is capable of sending aggregates as big as 64KB only.

Another major di↵erence between aggregation in IEEE 802.11n and 802.11ac is the

fact that the latter always sends frames as aggregates even if the sender has only a

single frame to send. Hence, the use of constant small bu↵ers will be ine�cient as it

is going to increase the MAC overhead of sending out these aggregates.

The A-MPDU aggregation logic is not specified in the standard and is implemen-

tation dependant. Ideally, these algorithms need to balance the requirements between

making e�cient use of channel resources using large frame aggregates when the chan-

nel quality is good while trying to minimize queueing delays by processing packets

37

Figure 2.7: Frame format with and without A-MPDU aggregation in IEEE 802.11n
networks [1].

quickly. A näıve packet scheduler that always waits to assemble a maximum sized

A-MPDU may maximize network capacity, but is going to increase the latency de-

spite this. Furthermore, our experimental analysis confirms that using such scheduler

does not allow end nodes to establish TCP connection due to long delays. In fact,

the ath9k [27] driver scheduler, used in our setup, prefers timeliness over capacity;

instead of waiting to assemble maximal allowable A-MPDU aggregates which may

maximize throughput, it aggregates as many MPDUs as available at that time in the

bu↵er subject to the regulatory and receiver constraints. This A-MPDU aggregation

logic is listed in Algo. 1. Thus, while it may not use optimal A-MPDU sizes, the

fact that it never spends time waiting for new frames to arrive from higher layers

can result in minimizing end-to-end delays. Fig. 2.3 shows that this technique may

reduce the delay by up to 5⇥.

To understand the relation between bu↵er sizing and A-MPDU length, we fix the

transmission rate in our IEEE 802.11n wireless testbed and monitor the A-MPDU

length over a large file transfer between two nodes while varying the length of Linux

38

Input: Number of frames in bu↵er (Q), Regulatory A-MPDU size limit (�1),
Receiver A-MPDU limit advertised in its HT Capabilities element (�2),
Number of frames in this A-MPDU (n)

Output: Assemble A-MPDU for transmission

1 n = 0, A-MPDU = 0;
2 While Q 6= 0 do
3 // Check for regulatory or receiver limits;
4 if (n > �1 or n > �2) then
5 break;

6 Add padding (if necesary) to align A-MPDU frame boundry;
7 Link this frame to the aggregate A-MPDU;
8 Q- -; // Decrement buffer count by 1;
9 n++; // Increment frame count by 1;

10 Deliver assembled A-MPDU to driver transmit function;

Algorithm 1: A-MPDU aggregation logic as implemented in ath9k [27]
driver.

Transmit Queue (txqueue) after each run. Fig. 2.8 shows that higher transmission

rate and bigger bu↵er allow the sender to transmit longer A-MPDUs. Error bars

in this figure, which represent maximum and minimum aggregate length, prove that

IEEE 802.11n devices do not always send aggregates with the same size. In fact,

this figure also shows that link rate directly determines the maximum A-MPDU size.

For example, aggregation is disabled at the 6.5 Mb/s link rate as transmitting a

large A-MPDU at this rate may violate the 4 ms frame transmit duration regulatory

requirement in the 5 GHz band.

User Datagram Protocol (UDP) flows are used in real-time communication, such as

online games, Internet Protocol Television (IPTV), and VoIP. Hence, it is important

to compare such flows to other flows that favor reliable delivery over timely delivery.

We repeat the same experiment with UDP instead of TCP to evaluate the interaction

of frame aggregation with UDP flows. The only di↵erence in the experiment setup

is enabling the default rate control algorithm in Linux (Minstrel) instead of fixed

link rates. Latency and goodput results are shown in Fig. 2.9. UDP consistently

achieves higher goodput compared to TCP. This is due to multiple factors: Firstly,

39

Figure 2.8: Average A-MPDU length of a TCP large file transfer for various link rates
and bu↵er sizes.

UDP does not incur the overhead of transmitting TCP Acknowledgement (ACK)

segments, and thus the capacity spared can be used to send additional data packets.

Secondly, TCP employs congestion control algorithms, while UDP can saturate the

medium with a sustained tra�c rate. In fact, the only case where TCP goodput

outperforms UDP happens when using the 10 packets bu↵er; we attribute this to the

high UDP drop rate (around 9%) which limits the performance of A-MPDU frame

aggregation. Fig. 2.9b shows that UDP goodput stabilizes when the aggregation is

disabled, though we observe slight variation in results with aggregation for bu↵ers

larger than 10 packets. This is because large bu↵ers allow longer aggregates. For

example, the average number of frames per aggregate increases from 16.1 for the 50

packets bu↵er to 17.6 for a 2000 packets bu↵er. Fig. 2.9a shows that UDP delays

40















     















(a) Latency analysis













     

















(b) Goodput analysis

Figure 2.9: Delay and goodput comparison of both TCP and UPD flows with and
without A-MPDU frame aggregation.

are always smaller than TCP; this is because UDP does not incur extra delays for

connection management and reliability.

2.2.4 Variable packet inter-service rate

The packet inter-service rate of a wired link is deterministic for a given packet size.

In contrast, the packet inter-service rate of a wireless link is variable due to several

reason. First, MAC protocols such as CSMA/CA use random backo↵s to reduce the

probability of a collision. Second, the Bit Error Rate (BER) of a wireless link is

typically orders of magnitude higher than a wired link (BER of 10�5 to 10�3 for a

wireless link vs. 10�15 to 10�12 for a wired link) [28]. Wireless MAC protocols use

Automatic Repeat Request (ARQ) to maintain packet transmission reliability. As a

result, a packet may be transmitted multiple times (e.g., up to 7 retries per IEEE

802.11 standard specifications [2]) before it is successfully received, contributing to

variation in inter-service delays.

2.2.5 Power management

Power management strategies of portable wireless devices can also a↵ect bu↵er sizing.

Transmit power control can reduce co-channel interference as well as conserve device

41

battery. However, transmit power also impacts link reliability and subsequently the

link rate selected by the rate control algorithm, which then determines the appropriate

bu↵er size as described earlier. Other features, such as Power Save Mode in IEEE

802.11, also impact bu↵er sizing as the transmitter needs to factor in the sleep cycle

of the receiver.

2.2.6 Network management

Resource-constrained wireless networks, enforced by wireless network management

layer, use mechanisms for QoS provisioning, which may produce additional delays

before a packet is processed. Other middleboxes in the network path can further delay

packets, such as security inspection performed by some cellular network providers.

Finally, mobile devices may also encounter large delays during the hand-o↵ process

between base stations. These requirements introduce additional considerations for

optimal bu↵er sizing in wireless networks.

2.2.7 Multi-hop challenges

Multi-hop wireless networks further exacerbate the challenges described above. Due

to the shared nature of wireless spectrum, a flow not only competes for transmission

opportunities with other flows (inter-flow contention), but also contends with its own

packet transmissions along the hops to the destination (intra-flow contention). This

adds to the link scheduling and variable packet inter-service time challenges described

above. Further, the abstraction of a ‘bottleneck’ in a shared wireless medium trans-

lates to a set of nodes in the network that experiences high channel contention. Since

a tra�c flow may traverse multiple hops in the network, the bottleneck is going to be

scattered over multiple nodes [29]. It is unclear how to size bu↵ers in this distributed

environment. Moreover, a node in a multi-hop network may need to relay tra�c

to other nodes in the network. Hence, additional measures is required to provide

42

Figure 2.10: End-to-end delay CDF of a large file transfer over topologies with in-
creasing number of hops.

isolation and fairness between flows in this kind of networks.

In order to illustrate the e↵ects of mulit-hop topologies on network dynamics, a

large file is transferred between two hosts in our IEEE 802.11n testbed while varying

the number of intermediate hops from one to four. We use static routing in this

experiment. We observe from Fig. 2.10 that the peak RTT increases by 3⇥ (from

2.69 to 7.95 seconds) when the hop count changes from one to two while the network

goodput decreases by half (from 4.87 to only 2.41 Mb/s). It could be observed from

Fig. 2.11 that while the network capacity is decreased by half when moving from 1-

hop to 2-hop topology, the TCP congestion window is actually increased to fill up the

43








































































             














Figure 2.11: TCP congestion window and end-to-end delay of a large file transfer over
topologies with increasing number of hops.

Flow # 1 hop 2 hops 3 hops
Flow 1 18.53 Mb/s 16.98 Mb/s 9.85 Mb/s
Flow 2 18.45 Mb/s 0.10 Mb/s 0.77 Mb/s

Table 2.1: Per flow goodput for a bidirectional file transfer over a multihop wireless
network.

additional available bu↵er on the intermediate relay node, reflecting this large increase

in RTT. Similar behavior, i.e., longer delays and lower goodput, is experienced when

we look at the 3-hops and 4-hops topologies. To study the e↵ect of these persistently

full bu↵ers on the network fairness characteristics, we repeat the same experiment

with a bidirectional file transfer instead of a single file transfer. Table 2.1 lists the

goodput per flow over various hops. We observe severe unfairness between the two

flows, with the flow starting first starving out the flow starting later in the experiment.

This is because the flow starting first quickly saturates intermediate hosts bu↵ers,

resulting in dropped packets and timeouts for the flow starting later.

Routing protocols play a significant role in the performance of multi-hop wireless

44

networks. Adaptive load-aware routing protocols that route around the congested

parts of the network may yield better performance than static routing. Multi-path

routing protocols can also be used, where a data stream is distributed as multiple

data flows that can take link-disjoint or even node-disjoint paths. However, the

performance gains of these protocols may be limited by the network topology. For

example, in infrastructure WMNs where the bulk of tra�c is routed either towards

or away from a single gateway router providing Internet connectivity, load-aware or

multi-path routing has limited leeway. Routing protocols can also be used to address

channel contention issues such as hidden terminal or exposed terminal problems. To

address some of these issues, Dousse [30] proposed a hole routing scheme. The main

idea behind this scheme is to reduce the queue size on relay nodes to only one packet

to mitigate the problem of low goodput in multi-hop networks. Hence, every node in

this scheme has either a packet or a hole. In fact, this routing scheme helps solving

bandwidth allocation problem. Similarly, Xue and Ekici [31] used adaptive routing,

among other techniques, to increase energy e�ciency in multi-hop networks. Finally,

Draves et al. [32] tackled the problem of routing multi-radio devices. They came up

with a routing protocol that takes into consideration loss rate and channel bandwidth

to be able to choose a high throughput path.

2.2.8 Implementation challenges

Implementing bu↵er sizing mechanisms on modern operating systems represents an-

other challenge as bu↵ers exist on multiple layers in the software stack. It is unclear

as to which of these bu↵ers should be tuned. For example, the Linux network stack

uses txqueue to bu↵er packets between the kernel network subsystem and the device

driver. txqueue may be scheduled using a variety of queueing disciplines. Its typ-

ical size is 1000 packets in order to support networks with high BDP. In addition

to txqueue, packets may also be queued at the device driver ring bu↵ers (also called

45

Tx/Rx descriptors). These bu↵ers are used to hide the latency of the interrupt pro-

cessing overhead. One of the main issues with device driver ring bu↵ers is the fact

that it is sized by the number of descriptors which vary in size. As a result, the ac-

tual time to empty the bu↵er cannot be estimated precisely. Moreover, IEEE 802.11

Enhanced Distributed Channel Access (EDCA) implementation uses a di↵erent ring

bu↵er for each separate tra�c class, making the bu↵er sizing problem even more com-

plicated. For example, small bu↵ers for real time voice and video provide the required

QoS, whereas background and best e↵ort tra�c prefers bigger bu↵ers to achieve high

throughput. In reality, the size of ring bu↵ers are driver dependent. For example, Tx

ring size is 200 packets for ath5k driver [33], and 512 packets for ath9k [27]. There

is an inherent trade o↵ between small and large device driver rings. Small device

driver bu↵ers help in lowering memory consumption. However, they result in packet

dropping if the system is Central Processing Unit (CPU) bound or the memory bus

is saturated. Linux bu↵ering layers are discussed in greater details in Sec. 3.2.

Unsurprisingly, a significant disparity has been found in the bu↵er size used in

various research platforms. Many papers that presented results using the NS-2 [8]

simulator use a bu↵er size of 50 packets which is the default size for the queue object

in this simulator. The legacy open source MadWifi driver [34] for Atheros chipset

uses a transmission bu↵er of 200 packets. The newer ath5k driver [33] for the same

hardware divides this 200 packet bu↵er equally among four queues representing the

tra�c Access Category (AC) as defined in EDCA mechanism. The ath9k [27] drivers

for IEEE 802.11n Atheros radios use a bu↵er of 512 packets equally divided among

the four ACs. This shows that bu↵er sizing is a platform dependent problem in the

wireless domain.

46

2.3 Bu↵erbloat Solutions

Wireless networks bu↵er sizing e↵orts in the literature could be categorized based on

how and where to tackle the problem of excess bu↵ering into two categories: Network

centric and end-to-end centric methods. Actual sizing of bu↵ers inside routers and

middleboxes is what meant by network centric methods. The latter includes e↵orts to

control the amount of bu↵ering in the network by tuning TCP parameters on network

edges. To put it another way, they modify the transport layer of the end hosts.

2.3.1 Network centric methods

Bu↵er sizing has been extensively studied for core Internet routers. A widely used

rule-of-thumb is to set the bu↵er size to be larger than the BDP of the network [21],

i.e., B � RTT ⇥ C, where C is the bottleneck link capacity along the path, and

RTT is the e↵ective round-trip propagation delay through the bottleneck link. This

bu↵er size B represents the number of packets required in order to fully utilize the

bottleneck link while the TCP source recovers from a loss-induced window reduction.

This rule-of-thumb holds for a single TCP flow in a wired network. When a large

number of flows share a bottleneck router, the window size is going to be synchronized

in lockstep. As a result, the aggregate window size is still a sawtooth pattern, and the

BDP guideline for sizing the bottleneck bu↵er still holds. However, when there are

N desynchronized flows and the window processes are independent, the bu↵er size B

can be reduced to B = RTT ⇥C/
p
N while still achieving near 100% utilization [15].

Enachescu et al. [16] suggested that B can be further reduced to O(log W), where

W is the window size of each flow, resulting in bu↵er sizes of only 10 � 20 packets

while achieving 85� 90% of link utilization.

Van Jacobson drew attention to the importance of persistently full bu↵er in 1989,

leading to the development of Random Early Detection (RED) [35] algorithm. This

47

technique prevents the formation of large queues at the bottleneck by dropping pack-

ets probabilistically when the queue size reaches certain threshold. RED represents

one of the early AQM techniques. These techniques attempt to avoid large queue

build-up at intermediary network hosts through proactive, probabilistic packet drop.

In spite of the fact that several versions of RED were proposed in the literature, none

of them succeeded to gain traction because they tend to be hard to configure. Not

to mention their slow response to fast changes in the environment [36].

Recently, a no-knobs AQM technique called Controlled Delay (CoDel) [36] has

been proposed. This algorithm was essentially designed to detect bad queues, which

are defined as the queues that last longer than one RTT resulting in a constantly

high bu↵ering latency. CoDel is a self-configurable algorithm and has shown good

performance over other AQMs [37]. Unlike traditional AQM techniques, CoDel does

not monitor the queue size or queue occupancy directly. Instead, it keeps track of the

packet sojourn time through the queue. In other words, it monitors how long each

packet stays in the queue. This makes the algorithm independent of link rate and

has clear reflection of user experience. For a given interval, the algorithm finds the

lowest queuing delay experienced by all packets. Once the minimum queuing delay

exceeds a predefined value for a fixed amount of time, the algorithm goes into the

dropping phase. Packet dropping is going to be stopped only once the queuing delay

falls under the predefined value. Furthermore, CoDel keeps track of the minimum

queue length for a period that is longer than the nominal RTT. This is important

because the algorithm does not allow packet dropping if the queue has less than one

Maximum Transmission Unit (MTU) worth of bytes. On eof the limitations of CoDel

is that all the packets are going to be dropped at the queue egress which is clearly a

waste of network resources. Another key point to remember is that CoDel allows the

bu↵er to be as small as one frame which will restrict aggregate formation resulting in

lower utilization.

48

Another no-knobs AQM variant, called Proportional Integral controller Enhanced

(PIE) [38], that combines the benefits of both RED and CoDel has been proposed

in the literature recently. Similar to RED, PIE randomly drops a packet when expe-

riencing congestion. However, congestion detection in PIE is based on the queuing

delay instead of the queue length. PIE determines the level of network congestion

based on latency moving trends. Upon packet arrival, the packet may be dropped

according to a dropping probability that is determined by the dequeue rate and the

length of the queue. Both PIE and CoDel target queuing delay directly without nec-

essarily restricting the bu↵er size. However, unlike CoDel, PIE does not keep track

of the per packet timestamp. Moreover, it decides whether or not to drop a packet

before actually queuing it.

While neither CoDel nor PIE are specifically designed for wireless networks, sim-

ulation results show that they manage to respond to changes in link rates while

achieving a utilization similar to the traditional tail drop approach. This, however,

may not be enough to support fast mobility in wireless devices such as vehicular speed

mobility. Furthermore, it is unclear how AQM based techniques can be e↵ectively

used in multi-hop wireless networks where the bottleneck spans multiple distributed

nodes [39]. A recent study compared several AQMs in terms of latency over wired

and wireless networks and showed that both CoDel and PIE perform worse than the

well-known RED technique with auto-tuning capabilities [40].

Another e↵ort that also targets bu↵erbloat and is considered complementary to

CoDel is Network Transmit Queue Limits [41] designed by Tom Herbert from Google.

This patch deals with device internal transmit queue which is the last step in Linux

bu↵ering architecture. Device driver queue usually supports a ring of descriptors

that hold several packets. These ring descriptors are used to keep the transmitter

busy instead of waiting for the kernel before transmitting each and every packet.

Network Transmit Queue Limits is composed of two complementing parts: Byte

49

Queue Limit (BQL) and Dynamic Queue Limit (DQL). Each one of these parts is

targeting a specific problem. BQL solves the issue of ambiguity of queue limits in

the device driver. Traditionally, queue limits are specified by the number of hardware

descriptors which vary in size. Instead, BQL specifies the size of the queue in bytes,

rather than packets, which indicates the time to empty the queue more accurately.

On the other hand, DQL tires to set the limit on queue size dynamically in order to

adapt to changes in the system load. It does so by monitoring the queue occupancy

and tuning the queue size accordingly. Unfortunately, these schemes are implemented

for wired networks only and could not be extended directly to wireless networks due

to the variable link capacity nature of the wireless channel [42]. Finally, both of these

schemes never take frame aggregation into consideration when selecting the optimal

bu↵er size.

Calculating the BDP of a wireless network is di↵erent from a wired network be-

cause of coupling between the bandwidth and delay of a wireless link [43]. In long-haul

wired links, the transmission delay is small compared to the propagation delay; thus

a source can often inject multiple packets back-to-back into the pipe. The same is not

true for CSMA/CA based wireless links; first, the transmitter has to contend for chan-

nel access for each transmission, and second, the IEEE 802.11 transmitter requires an

ACK before it can transmit the next frame. As a result, the delay of transmitting a

packet over wireless network is strongly coupled with the link’s e↵ective bandwidth.

There is very limited amount of work on bu↵er sizing for wireless networks. For

single-hop IEEE 802.11 WLANs, the AP bu↵er can be sized dynamically to strike

a balance between channel utilization and delay requirements of various flows. Li et

al. [44] studied adaptive tuning of IEEE 802.11 AP bu↵ers using three algorithms:

emulating Bandwidth Delay Product (eBDP), Adaptive Limit Tuning (ALT), and A*

algorithm.

eBDP extends the classical BDP rule to AP bu↵ers. Due to the variation in

50

wireless link rates, eBDP adaptively sets the bu↵er size limit based on the current

mean service time of the packet, Tserv. Tserv is nothing but the time di↵erence between

the packet getting to the head of the queue and its successful transmission. The goal

is to limit Tserv to some predefined maximum Tmax. The algorithm decreases the AP

bu↵er size, QeBDP , when Tserv is increased, and vice versa. eBDP could be formalized

according to the following equation:

QeBDP = min(Tmax/Tserv + c, QeBDP
max) (2.1)

where QeBDP
max is the maximum allowable bu↵er size and c is a constant added to

accommodate short-term packet bursts.

Although simple in concept, eBDP has a fundamental limitation. Despite that

packet service time is a good indication of channel contention, it does not capture

queueing delays. To put it another way, an AP with multiple download flows and

with no (or few) competing upload streams experiences small packet transmission

service time, allowing eBDP to build up large bu↵ers that will never be empty, thus

increasing queuing delays. ALT feedback algorithm improves on eBDP as follows:

it monitors bu↵er occupancy and modifies the size accordingly. Let tb(k) and ti(k)

represent the queue busy and idle durations respectively during the measurement

interval k. Then the queue size for the interval k + 1, q(k + 1), is set as follows:

q(k + 1) = q(k) + a ti(k)� b tb(k) (2.2)

where a and b are design parameters. The algorithm tries to balance the time the

queue is idle (ti) and the time it is busy (tb). That is to say, if a ti(k) = b tb(k), then

the bu↵er size in the k + 1 interval is kept unchanged. Furthermore, the maximum

queuing delay Tmax is set to 200 ms instead of the mean RTT. According to the

authors, this value is considered to be an approximate upper bound of usual Internet

51

flows. However, this raises a question on how valid this assumption will be on other

types of wireless networks. ALT essentially operates based on a feedback loop: the

bu↵er size depends on measured link utilization, which in turn depends on the bu↵er

size. However, it su↵ers from low convergence rate. ALT needs around three minutes

to converge to small bu↵er size when the number of competing upload flows increase

from 0 to 10.

A* is a hybrid approach that combines the two previously mentioned methods.

This algorithm calculates two queue sizes: (1) QeBDP , by monitoring the mean service

time of packet transmissions, and (2) QALT , by monitoring the bu↵er occupancy

percentage. It then simply chooses the minimum of these two values.

Qsize = min(QeBDP , QALT) (2.3)

Thus A* uses eBDP in order to react quickly to sudden changes in the packet service

time. Statistical multiplexing makes further reduction in AP bu↵er size feasible. The

ALT part of A* can be used to further tune the bu↵er size.

A* is evaluated through NS-2 simulation and testbed implementation. The simu-

lation results show that A* is able to reduce the bu↵er size from 350 packets to only

100 packets when the number of concurrent flows increases from 0 to 10. By varying

the number of concurrent flows and link rates in simulation runs, it was shown that

A* is able to maintain good balance between throughput and delay under various net-

work conditions. Real testbed implementation of A* recommends the use of bu↵er

sizes that is smaller than the standard 400 packets bu↵er. These smaller bu↵ers result

in significant reduction in queuing delay while achieving similar throughput compared

to fixed bu↵er scenarios. This reduction in delay holds also in the case of short-lived

TCP flows. It was also shown that the mean completion time for these short-lived

flows is reduced by a factor of two which in-turn results in better user experience.

52

One of the main limitations of the A* algorithm is that it only works on AP

bu↵ers; it is unclear if this scheme can also be implemented on client devices to

manage queueing delays for uplink flows. Moreover, A* attaches a timestamp to

each packet entering the queue to be able to calculate the service time of the packet.

This is clearly an overhead that a↵ects the overall network performance. Further,

A* performance was not evaluated using real IEEE 802.11n devices and hence it is

unclear if the small bu↵er sizing approach recommended in this work will scale with

frame aggregation (such as in IEEE 802.11n radios), where su�cient bu↵ers may be

required to assemble the large aggregates supported by the standards. Indeed, some

results suggest that eBDP, which forms the basis of A*, yields sub-par performance

for some practical IEEE 802.11g/n networks [45]. Above all, A* was not evaluated

over multi-hop environments. In fact, extending this scheme for multi-hop networks

is not straightforward due to the fact that each node in the A* algorithm selects its

bu↵er size independently. As the bottleneck in multi-hop networks spans multiple

nodes, some coordination between nodes may be needed to find the optimal bu↵er

size.

Bruno et al. [46] suggested having a large bu↵er at the AP to improve fairness

between upstream and downstream TCP flows in single-hop wireless networks. The

intuition behind this idea is to increase the queuing delay for the ACK’s in order

to limit the rate of the upstream wireless source. However, TCP stability will be

disturbed by ACK’s long queuing delays. For multi-hop wireless networks, a number

of publications (e.g. , [47] among others) proposed using the queue size for detecting

network congestion and enforcing subsequent rate adjustments. Moreover, Xu et al.

[48] targeted the unfairness problem using bu↵er sizing methods. They solved the

unfairness issue by monitoring the size of the distributed neighborhood queue. They

extended RED into Neighborhood Random Early Detection (NRED). NRED drops

packets probabilistically if the size of the distributed neighborhood queue exceeds cer-

53

tain threshold. Although the performance of our proposed scheme was not compared

to NRED, we show that it outperforms the state of the art AQM techniques in the

literature such as PIE [38], which is similar to NRED in the fact that it drop packets

randomly. Furthermore, PIE showed better performance compared to Random Early

Detection. Also for mobile adhoc networks, Dousse [30] proposed the reduction of

queue sizes on relay nodes to only one packet to mitigate the problem of low through-

put in multi-hop networks. Obviously, this is infeasible for IEEE 802.11n networks

with A-MPDU size of tens of subframes.

Finally, we would like to highlight that several other papers studied the problem of

wireless networks bu↵er sizing from other aspects. Thottan and Weigle [49] studied

the e↵ect of tuning several AP parameters to meet various application QoS as well

as ensuring flow level fairness. One of the studied parameters is queue size of EDCA

di↵erent access categories. Chen et al. [43] investigated the BDP in mobile adhoc

networks as well. In fact, they did not focus on the bu↵er sizing problem. Instead,

they come up with an upper bound for BDP that is determined by the number of

round-trip hops on the path. This upper bound is also used in calculating the TCP

congestion window limit to avoid TCP’s congestion window overshooting problem.

Since this upper bound on BDP is based on the coupling of delay and bandwidth of

the wireless link, it is not going to hold in case of packet aggregation that is introduced

in IEEE 802.11n standard.

2.3.2 End-to-end methods

Various enhancements to end hosts, including modifications to the TCP stack, have

been proposed over the years. In particular, delay-based TCP variants, such as Vegas,

try to avoid congestion while maximizing network capacity. Unlike loss-based TCP

flavors, such as Reno, delay-based schemes use the di↵erence between the actual and

expected flow rate to infer the amount of congestion in the network and adjust the

54

window size linearly. However, TCP Vegas su↵ers from several limitations. Firstly,

the accuracy of base RTT in TCP Vegas is e↵ected by path re-routing. Based RTT is

used for indicating network congestion and over-estimating this value due to network

persistent congestion only prolongs the congestion. Secondly, Vegas leads to unfair

rate allocation due to over-estimation of the connection propagation delay [50]. Fi-

nally, mixing Vegas with other loss-based based TCP flows may further exacerbate

the fairness issues.

TCP’s window-based congestion control algorithm can trigger a burst of packet

transmissions. To give an example, when a node receives a cumulative ACK or several

back-to-back ACKs. Sustained bursts can lead to packet losses with subsequent drop

in throughput. TCP pacing [51] addresses this by spacing out the transmission of a

congestion window (cwnd) worth of packets over the estimated RTT interval, i.e., the

packets are injected into the network at a rate cwnd/RTT. While this minimizes tra�c

burstiness (and subsequent queueing delays), it may reduce throughput compared to

unmodified TCP because of delayed congestion signals and synchronized losses [52].

ElRakabawy and Lindemann [53] observed that the inherent variability in the RTT

of multi-hop wireless flows may o↵set these synchronization issues. They proposed

a rate-based transmission algorithm over TCP called TCP with Adaptive Pacing

(TCP-AP): instead of spacing the transmission of cwnd worth of packets over the

RTT of a flow, the transmission rate is computed using 4-hop propagation delay,

determined by spatial reuse in a chain of wireless nodes, and coe�cient of variation of

recent RTTs to identify incipient congestion along network path. TCP-AP improves

goodput by reducing collisions at the link layer and also improves fairness between

flows. However, paced tra�c fares poorly when competing with non-paced tra�c for

network resources, creating a significant impediment in wide-spread deployment of

pacing-based protocols [52]. Moreover, all the benefits of TCP-AP are linked with

the accurate estimation of the 4-hops propagation delay which is di�cult to estimate

55

in wireless networks [54].

Warrier et al. [55] proposed a di↵erential backlog congestion control for wireless

networks. The idea is to throttle the flow control of the sender based on the queue

back pressure. Hence, if the queue grows beyond certain threshold, the sender is

going to reduce its transmit rate and vice versa. One limitation of such approach

is the need of the queue occupancy information from several hops in the multi-hop

networks. Transferring this information over multiple hops is a considerable overhead

that will a↵ect the practicality of the proposed approach. Alternatively, our proposed

method works with local knowledge even for multi-hop networks [56].

Recently, Jiang et al. [19] proposed a receiver based TCP solution targeting

bu↵erbloat in cellular networks called Dynamic Receive Window Adjustment (DRWA).

It adaptively adjusts the size of receive window which indirectly manages the amount

of bu↵ering in the network. The authors showed that DRWA is more e�cient than

setting a fixed upper bound on sender’s congestion window which may be suboptimal

under varying channel conditions. They claimed that DRWA outperforms delay-based

TCP versions that su↵er from throughput degradation. However, requiring changes

to the client network stack limits the application of this scheme to networks where

the devices are managed by the service provider such as operator-locked smartphones

in cellular networks. Also for cellular networks, Chan et al. proposed a scheme called

Sum-of-Delay (SoD) [57] that tackles the problem of link bu↵er size estimation in

3G/4G mobile data networks. The main idea behind (SoD) is to modify TCP con-

gestion control to function based on estimated queue length instead of packet loss

events. Similarly, this scheme has practical limitations because of the large deployed

base of TCP.

56

Chapter 3

System Description

This chapter is dedicated to the description of our experimental testbed. Both hard-

ware and software setups are described in details. Furthermore, packet bu↵ering lay-

ers in Linux networking stack are analyzed. This is an important milestone towards

designing an optimal bu↵er sizing scheme targeting real hardware implementation.

3.1 Testbed Specifications

We deploy a 10-node WMN testbed in our campus. Node locations are shown in

Fig. 3.1 and were determined, in part, by availability of power and Ethernet sockets.

Our testbed consists of small form-factor Shuttle [58] computers. Each one of these

computers, or Shuttle boxes, have an Intel E7500 Core 2 Duo processor, and 1 GB

of memory. This testbed was initially equipped with IEEE 802.11 a/b/g radios,

represented as blue radio icons in Fig. 3.1. Later, the wireless interface cards have

been upgraded to support several PHY and MAC enhancements introduced by the

IEEE 802.11n standard. This upgrade requires several testbed design modifications

in both hardware and software sides. The main di↵erences between the two testbed

versions are highlighted in Table 3.1.

57

Figure 3.1: Our testbed node positions are identified by radio icons.

3.1.1 IEEE 802.11a/b/g testbed

Wireless nodes in this testbed are equipped with TP-LinkWN350G (Atheros AR2417)

IEEE 802.11 a/b/g cards. Our network uses the 2.4 GHz band and shares the spec-

trum with the production wireless Local Area Network (LAN) in our campus. Nodes

run a custom 2.6.35 Linux kernel with web100 [59] instrumentation to monitor the

state characteristics of the TCP streams. We use ath5k drivers [33] to configure the

nodes’ wireless interfaces. The platform runs the open80211s [60] implementation of

the IEEE 802.11s standard. This was partly driven by our desire to understand and

contribute to the ongoing development of the framework. This testbed uses Hybrid

Wireless Mesh Protocol (HWMP) routing protocol with airtime metric [61] for path

selection. Wireless link rates are fixed to 11 Mb/s to avoid flow rate fluctuations

due to link rate adaptation algorithm that may try to adapt to interference from our

campus production WLAN.

In the software side, iperf [62] is used to generate test tra�c. The segment size of

the generated TCP streams is 1448 bytes. The kernel then couples this with a 20-byte

TCP header, a 10-byte TCP timestamp option header, a 2-byte padding field, and

a 20-byte Internet Protocol version 4 (IPv4) header for a total Maximum Segment

Size (MSS) of 1500 bytes. Cubic [63] is the default TCP congestion control algorithm

in Linux kernels since 2.6.18. It replaces the linear window growth function of TCP

58

variants such as NewReno and SACK by a cubic function so as to better improve the

utilization of Long Fat Network (LFN)s.

3.1.2 IEEE 802.11n testbed

The testbed wireless cards have been replaced with TP-Link WDN4800 (Atheros

AR9380) IEEE 802.11a/b/g/n wireless cards in order to utilize IEEE 802.11n MAC-

layer enhancements. This chipset supports three spatial Multiple Input Multiple Out-

put (MIMO) streams for a maximum wireless link rate of 450 Mb/s. It also supports

dual band radio operation. Hence, we use the 5 GHz Unlicensed National Information

Infrastructure (U-NII) radio band as it does not interfere with the production WLAN

on our campus which uses the 2.4 GHz spectrum. Since the transmission range of the

5 GHz radios is shorter than the 2.4 GHz radios, the testbed nodes have been brought

closer to each other. The new locations of the nodes are represented by red radio icons

in Fig. 3.1. These locations are again determined by the availability of power and

Ethernet drops. Unless otherwise stated, the nodes are placed around 10 m apart

from each other. The experiments are repeated along various source and destination

pairs across the testbed to o↵set any location-specific wireless idiosyncrasies.

Adding IEEE 802.11n wireless interface cards requires several modifications to

the software setup of the tesbed. Wireless nodes in the testbed run a custom 3.17.7

Linux kernel with web10g [64] instrumentation to monitor the state characteristics of

our TCP streams. Web10g uses an e�cient Netlink-based kernel Application Binary

Interface to make the TCP statistics available in userspace. We use ath9k drivers [27]

to configure the wireless interfaces. Minstrel [22], the default rate control algorithm

in stock Linux kernel, is enabled in the boxes. For some experiments, we disable

Minstrel and vary the link rate manually in the testbed in order to monitor the e↵ect

of adaptive link rate on various network dynamics .Both iperf [62] and netperf [65] are

used to generate tra�c. The Linux distribution in our testbed nodes uses TCP Cubic

59

Parameter Value
Standard IEEE 802.11a/b/g IEEE 802.11n

Link rates 11 Mb/s 6.5 Mb/s, 144.4 Mb/s, 300 Mb/s
Radio band 2.4 GHz ISM 5 GHz U-NII
Spatial streams SISO stream 3 MIMO streams
Frame aggregation Not supported A-MPDU
Linux kernel Custom 2.6.35 with web100 Custom 3.17.7 with web10g
Tra�c source iperf iperf, netperf
Packet size 1500 Bytes 1500 Bytes
txqueue size 1000 packets (Default size) 1000 packets (Default size)
TCP Flavor Cubic Cubic
Routing HWMP Fixed path routing

Table 3.1: Experimental setup for both testbed versions.

by default. Likewise, window scaling [7] is enabled, as per the default configuration

on all recent Linux kernels. This allows TCP to support large receive window sizes.

3.2 Bu↵ering Layers

In this section, an overview of various layers of bu↵ering is provided. This is important

as it helps identifying which bu↵er to tune when trying to control the bu↵erbloat

phenomenon.

3.2.1 Bu↵ering in Linux network stack

Packets in a contemporary modern OS encounter bu↵ers at multiple layers in the

software stack. Each of these bu↵ers may introduce queueing delays. In this section,

we describe the major bu↵ering layers encountered by a packet as it traverses a Linux

host. Furthermore, we discuss the performance implications of sizing various types

of bu↵ers. Although the focus in this document is on the Linux kernel, the impact

of multi-layered bu↵ering is also present in others OSs such as the Berkeley Software

Distribution (BSD) and Windows. Thus, the design guidelines we are providing are

60

Network stack
txqueue

IP layer and above

Egress packet Ingress packet

DMA Controller

NIC Memory

Tx ring
buffer

Rx ring
buffer

Optional ingress
qdisc

Kernel
memory

Tx packet data

Rx packet data

Device driver

Kernel space

(a) Linux packet transmission and reception

Logical Link

Interface
Queue

MAC

IP layer
and above

Network interface
& channel model

Egress packet Ingress packet

(b) ns-2 mobile node

Figure 3.2: Simplified architecture of bu↵ers used in packet transmission/reception
in Linux hosts as well as simulator mobile nodes.

also applicable to these systems.

A packet transmission through Linux host encounters bu↵ers at multiple layers.

At the radio interface side, there are hardware queues inside the physical adapter.

Without these queues, the communication between the host and the adapter nec-

essarily follows a ‘stop-and-wait’ approach, which is ine�cient considering the large

transfer latency between the host and the adapter. At the software side, the Linux

network stack includes multiple layers of bu↵ers.

Network stack’s transmit queue: The Linux kernel introduces a transmit queue

(txqueue) between the kernel network subsystem and the device drivers. This queue

can be scheduled by a rich set of queueing discipline (qdisc) tools, providing a flexible

tra�c control framework.

Typical size: Most current Linux distributions set the default transmit queue length

to 1000 packets. Older distributions generally used a 100 packet transmit queue for

61

Fast Ethernet; the queue size has since been scaled up for 1 Gigabit Ethernet (GigE)

interfaces.

Impact of size: A large enough transmission queue is necessary to support line rate

transfers for networks with high BDP. The value should be lowered for slower de-

vices with a high latency as to prevent fast bulk transfers from disturbing real-time

interactive tra�c.

Device driver ring bu↵ers: Device drivers use queues to amortize interrupt pro-

cessing overhead. This includes the Tx and Rx ring bu↵ers (also called Tx/Rx de-

scriptors). Each descriptor represents a data structure that describes a bu↵er and

its attributes to the network controller. The controller then uses this information to

transfer data between the controller and the host memory. Typically, device drivers

use a single Tx ring bu↵er. However, drivers with multiple queues are increasingly

being used. For instance, IEEE 802.11 EDCA implementation uses separate queues

for each of the four tra�c ACs in the standard: Background, Best e↵ort, Video, and

Voice. Typically, these tra�c classes have di↵erent bu↵ering requirements: real-time

voice and video tra�c prefers timeliness over reliability, and hence small bu↵ers; back-

ground and best e↵ort tra�c can build relatively longer queues to take advantage of

lull in transmission of higher priority tra�c.

These queues may also be involved in performing MAC-specific tasks. For exam-

ple, packet aggregation in IEEE 802.11n is performed at the MAC layer and thus

needs a separate aggregation bu↵er. This bu↵er size is usually limited to a maximum

of 64 MPDUs as per the limitation of the BA response frame as defined in the IEEE

802.11 standard specifications, though some drivers use smaller values.

Typical bu↵er sizes: The Tx/Rx ring size is driver dependent. Table 3.2 shows the

default ring bu↵er size for ath5k and ath9k drivers in the 2.6.35 kernel. The mac80211

Linux subsystem supports drivers with up to 4 queues per EDCA ACs. The ath5k

driver has a total bu↵er size of 200 packets divided equally amongst the four ACs.

62

Driver Tx descriptors Rx descriptors

ath5k (Atheros 802.11 a/b/g) 200 (50 for each AC) 40
ath9k (Atheros 802.11n) 512 (128 for each AC) 512

Table 3.2: DMA ring bu↵ers in stock 2.6.35 Linux kernel.

Similarly, the ath9k driver equally distributes a bu↵er size of 512 packets amongst

the ACs.

Impact of size: These values reflect various design and performance considerations.

On one hand, memory consumption can be lowered by using small bu↵ers. However,

if the system is CPU bound or has a saturated memory bus, then small bu↵ers may

result in dropped or missed packets. The routers used in our testbed deployment are

not CPU or memory bound (our system hardware specifications are listed in Sec. 3.1),

and thus bu↵er sizing considerations ignore hardware bottlenecks.

3.2.2 Which bu↵er to tune?

One of the main issues with device driver ring bu↵ers is the fact that it is sized by

the number of descriptors which vary in size. As a result, the actual time to empty

the bu↵er cannot be estimated precisely. Hence, in all our experiments the device

driver Tx ring bu↵er is kept at a constant value and the txqueue size is tuned per the

proposed framework requirements. Furthermore, this approach helps in maintaining

some bu↵ers at the transmit queue layer so as to allow the flexibility of using Linux’s

tra�c control framework, if required. The size of txqueue bu↵er is varied using the

ifconfig userspace utility. In a similar manner, the size of the Tx ring descriptor is

fixed to a static value by extending the Linux ethtool utility.

63

3.2.3 Simulation Bu↵ering

To make the discussion about bu↵ering layers complete, bu↵ering in network simula-

tors should be considered. A simplified architecture of the NS-2 [8] wireless node is

shown in Fig. 3.2b. The Interface Queue (IFQ) sits between the logical link layer and

the MAC layer. The default queue object is a FIFO queue of size 50 packets. The

MAC layer uses callback functions to pull packets out of the IFQ when it is ready to

transmit. A software framework has been instrumented to monitor the queue size of

the IFQ and to modify it at run time.

64

Chapter 4

Distributed Neighborhood Bu↵er

4.1 Overview

In this chapter, we study the impact of bu↵er sizing in IEEE 802.11-based WMNs

providing backhaul connectivity for last mile Internet access [66]. These multihop

networks have stationary mesh routers a�xed to rooftops and building structures,

forming a multi-hop wireless backhaul. Client devices connect to their preferred mesh

router via wire or an orthogonal wireless channel. The capacity of this link is higher

than the capacity achievable along the multi-hop path of wireless mesh routers, and

thus bu↵ers are more likely to build up at the mesh routers. Most of the tra�c in

this network is directed towards or away from the gateway mesh router that bridges

tra�c to the wired Internet.

We solve the bu↵er sizing problem in WMNs using the notion of distributed queues

spread over a contention neighborhood. For a TCP flow traversing multihop wireless

links, the end-to-end rate is determined by the contention neighborhood that allocates

the minimum transmission time to member links. For optimal network utilization,

this bottleneck contention neighborhood needs to be fully utilized. Thus, the bu↵er

sizing problem has been mapped as a distributed bu↵er management problem for

nodes sharing the bottleneck contention neighborhood. A packet transmission by any

of these nodes fully utilizes the bottleneck spectral resource for the duration of this

65

transmission. A novel mechanism for sizing and distributing these bu↵ers has been

proposed to keep the bottleneck close to full utilization while minimizing queueing

delays. This mechanism considers the network topology and wireless link rates, and

is thus adaptive to changing network conditions. In contrast, a fixed, pre-set bu↵er

size does not su�ce across the range of configurations achievable with IEEE 802.11

platform [44]. That is to say, a single IEEE 802.11n radio interface can connect at

link rates varying from 600 Mb/s (with 4 spatial streams) to 1 Mb/s (for backward

compatibility with IEEE 802.11b), and thus requires widely di↵erent bu↵er sizes for

saturating the wireless channel. Using analysis and performance evaluation with

simulations and a testbed prototype, It has been shown that the proposed scheme

reduces the end-to-end delay of a TCP flow by a factor of 6⇥ or more for the evaluated

scenarios, while maintaining close to full network utilization.

4.2 Design

First of all, we identify the bottlenecks that limit the end-to-end rate of a multihop

wireless network. Then, we show how distributed bu↵ers are associated with this

bottleneck. Finally, we discuss the practicality of the proposed design.

4.2.1 Bottleneck collision domain

The wireless medium is a shared resource. This limits the set of nodes that can

transmit concurrently. The notion of collision domain [67] has been used to identify

these interfering links. The collision domain of link li is defined as the set of all

links that contend with link li. In general, identifying the interfering links is a hard

problem, as links exhibit varying degree of interference [68]. Additional mechanisms

requiring active or passive monitoring may have to be used [69]. In this work, the

two-hop interference model [70] has been utilized to identify interfering links; two

66

contention

l
1

l
2

l
3

l
4

l
5

12345 GW

l
6

6

Figure 4.1: With a two-hop interference model, the collision domain of link l3 includes
links l1, l2, l4, and l5.

links interfere if they operate on the same channel and one endpoint of one link is

within the transmission range of one endpoint of the other link. The two-hop model

approximates the interference avoidance in an IEEE 802.11 network with Request

To Send (RTS)/Clear To Send (CTS) enabled. While the model has limitations in

representing complex topologies, it has simply been used it for ease of exposition and

the proposed bu↵er sizing mechanism is independent of the underlying interference

model. In Fig. 4.1, the collision domain of link l3 includes links l1, l2, l4, and l5. It

could be noted that this notion of interference domain overestimates the impact of

interference by limiting the number of nodes that can concurrently transmit. However,

the actual interference between nodes is determined by the interference range, which

is typically longer than the 1-hop communication range. The combined model o↵ers

acceptable accuracy with computational simplicity and practical feasibility.

The utilization of a collision domain is the sum total of transmission times for

all links in a collision domain. The feasibility constraints on scheduling require that

this utilization cannot exceed 1. Mathematically, it could be represented as follows:

Let R(m,n) be the link rate between neighboring nodes (m,n) and let r(m,n) be the

tra�c carried by this link. Let ri be the end-to-end rate for flow fi. Then r(m,n) =
X

i:f
i

traverses (m,n)

ri. Let C = {C1, C2, ..., Cj} be the set of j collision domains in this

network. Ignoring physical and MAC layer headers, the feasibility constraints require

X

8 (m,n) inC
p

r(m,n)

R(m,n)
 1, 8p 2 {1, 2, ..., j}

67

A saturated collision domain is defined as a collision domain which is fully utilized.

A saturated collision domain becomes a bottleneck for a flow if that flow has a maximal

rate amongst all other flows using this collision domain. A multi-hop flow may be part

of one or more collision domains; its end-to-end rate is then bound by the collision

domain that assigns it the lowest rate.

4.2.2 Distributed neighborhood bu↵ers

Since the bottleneck collision domain limits the end-to-end rate of a multi-hop flow,

it is important that the spectral resource in this bottleneck be fully utilized. From

a bu↵ering perspective, this is achieved if at least one node in the bottleneck always

has packets to send. A packet transmission by any of these nodes fully utilizes the

available spectral resource for the duration of the transmission. Thus, instead of

considering bu↵ers at individual nodes, sizing the collective bu↵er of the bottleneck

collision domain has been proposed so as to saturate its available spectral resource.

This neighborhood bu↵er is distributed over the set of nodes constituting the bottle-

neck. Its size is the sum of the bu↵er sizes of all the constituent nodes. Similarly,

its packet arrival rate is the sum of the arrival rates at individual nodes. However,

this neighborhood bu↵er does not exhibit the FIFO characteristics due to distributed

queues and stochastic scheduling of IEEE 802.11 MAC protocol. Fig. 4.2, shows the

distributed FIFO bu↵er at nodes constituting the bottleneck collision domain for a

6-hop chain topology.

It is important to note that the definition of distributed FIFO bu↵ers includes all

packets queued at a node. For instance, packets queued at node 5 for transmission

to node 6 via link l6 in Fig. 4.2 are included. This can be mitigated by maintaining

a virtual per-link queue at each node, and including only the virtual queues in the

distributed bu↵er that directly correspond to the links in the collision domain. In this

current work, however, the entire FIFO bu↵er at a node in the distributed queue has

68

Figure 4.2: The distributed neighborhood bu↵er of a collision domain includes the
bu↵ers associated with the constituent nodes in that collision domain.

been included. This allows node 6 to transmit to 5 (but not vice versa) when there is

an active transmission on link l3. Limiting node 5’s transmission to 6 over-estimates

the impact of interference when 3 transmits to 2, but may be necessary to prevent

interference at 3 when it receives a packet from 2 (as interference range is typically

larger than transmission range, a concurrent transmission from node 5 may corrupt

reception at node 3).

One simple (though naive) way to enhance the utilization of bottleneck spectrum

is to make the bottleneck neighborhood bu↵er arbitrarily large, and then hope that it

will always have su�cient packets in queue to saturate the bottleneck even when the

TCP source recovers from a packet loss. However, it is easy to visualize that if this

bu↵er is any larger than the rate supported by the network, it will only add to the

queueing delay experienced by the flow. At the same time, if the bottleneck is under-

bu↵ered, it will not always be fully utilized. The challenge, thus, is to determine the

size of this neighborhood bu↵er that maintains the bottleneck near 100% utilization

while minimizing the queueing delay.

4.2.3 Determining network parameters

A mesh node needs current network information to compute its bu↵er per our pro-

posed framework. Below are some guidelines to determine this information in an

e�cient, distributed manner.

E�cient techniques for building interference maps [69, 71] can be used to deter-

69

mine collision domains. Simpler models, like the two-hop interference model consid-

ered in this work, can be captured using local information at a node. For example,

we can use routing information to determine one and two-hop neighbors both up

and down the routing tree, or monitor the relay of tra�c by neighboring nodes to

determine two-hop neighbors. The utilization of each collision domain can then be

monitored locally (e.g. Atheros hardware maintains a 32-bit register counter for

medium busy utilization), and the collision domain with a utilization higher than

some threshold (e.g. say 90%) constitutes the bottleneck for a flow.

Once the collision domain is identified, wireless link rates can be inferred as fol-

lows: Device drivers maintain various wireless link statistics (including PHY rate

information) between a node and its neighbors. Two-hop link rate information can

be determined through capture and analysis of PHY frame header when the neigh-

boring nodes relay the packet up or down the routing tree. This link rate information

along with the packet size for a flow (again, known locally) is used to compute the

RTT for propagating the packet through the collision domain.

The available BDP of a wireless network changes over time. Nodes recompute

their bu↵er when network conditions change, such as changes in routing path or link

rates, or when there are changes in flow activity information. This change in flow

activity can be detected by a node using packet analysis for flows that originate

locally or monitoring the wireless medium for flows in the neighborhood. If a flow

is considered as a sum of various subflows originating from client devices associated

with a mesh node, then this flow activity information may be stable for durations of

tens of seconds (the large delay values discussed in this work are observed for long-

lived flows such as large file transfers). A mesh node monitors its state for changes

in network state or flow information, and recomputes the bu↵er when necessary. A

system flowchart for this cycle is shown in Fig. 4.3.

Finally, it could be noted that inaccurate estimation of various network parameters

70

Determine the bottleneck
collision domain

Infer link rates and RTT

Compute the buffer at
each node in the bottleneck

Changes in the
bottleneck or BDP?

Monitor network for changes
in the bottleneck capacity

Yes No

Compute the
neighborhood buffer

Figure 4.3: Flowchart for DNB bu↵er sizing heuristics.

yields suboptimal BDP for the bottleneck collision domain which is used to estimate

the neighborhood and the per-node bu↵er. This suboptimal bu↵er size impacts the

bandwidth-delay tradeo↵ performance for a flow. The approximations considered in

Sec. 4.3 err on the side of overestimating BDP, thus preferring bandwidth at the cost

of slight increase in end-to-end delay.

4.3 System Model

Consider a WMN with N = {n1, n2, ..., nN} be the set of wireless mesh routers.

Assume that the set M, where M ✓ N, represents the set of nodes in the bottleneck

collision domain. Let M = |M|, i.e., a node in a bottleneck collision domain contends

with M�1 other nodes for channel access. The node ni has a bu↵er of size bi packets.

Let B =
P

8 i inM bi be the cumulative distributed bu↵er for this collision domain.

The first step in the analysis below is to determine B, and then propose a model

for distributing it as bi units amongst the M contending nodes.

71

4.3.1 Neighborhood bu↵er size B

Consider a single multi-hop TCP stream. Assume that the wireless network can sup-

port this stream at a maximum rate of � packets/s.1 Let the stream be in Additive

Increase Multiplicative Decrease (AIMD) congestion avoidance phase. The TCP win-

dow size reaches a value of Wmax packets before experiencing a loss. As a result, the

sender halves the window size to Wmax/2 packets. Since the window size limits the

number of unacknowledged packets in flight, the sender, on average, waits for a time

interval W
max

/2
� before starting to retransmit. At the same time, the distributed bu↵er

B takes B/� s. to drain. For full utilization of the bottleneck spectrum, the source

should start retransmitting before the bu↵er is fully drained, i.e., W
max

/2
�  B/�, or

B � Wmax

2
(4.1)

When the TCP source starts retransmitting, its rate (i.e., cwnd/RTT) should be

higher than �, as otherwise the network capacity is under-utilized. Thus W
max

/2
RTT � �,

or,

Wmax

2
� RTT · � (4.2)

From (4.1) and (4.2),

B � RTT · � (4.3)

This equation is similar to that of wired networks [15]. The main di↵erence is in �,

the maximum carrying capacity of the network. In wired networks, � is determined

by the bottleneck link capacity. In multi-hop wireless networks, it is limited by

the bottleneck collision domain. The exact values of � and RTT depend on the

1We use packets instead of bits for ease of exposition.

72

Source

Destination

Back off SIFS

Figure 4.4: 802.11a/b/g MAC overhead per TCP segment transmission.

network topology and wireless channel characteristics. As per Eq. (4.3), however, the

distributed bu↵er B should be sized higher than these instantaneously precise values.

This is necessary to account for the time-varying capacity of the wireless channel, and

non-deterministic IEEE 802.11 Distributed Coordination Function (DCF) scheduling.

In this work the loose upper bounds have been estimated on � and RTT for a given

network. The resulting larger-than optimal bu↵er trades-o↵ queueing delay for higher

channel utilization. Experimental results in Sec. 4.4.2 confirm that the impact of this

trade-o↵ is minimal, while maintaining bu↵ers as small as 2-3 packets at most mesh

nodes.

For a given flow, the upper bound on � is obtained when there is no competing

tra�c. Let the wireless link rates for the M nodes in the collision domain be repre-

sented by the vector W = {w1, w2, ..., wM}. The bottleneck bandwidth of the path is

determined by wmin = min(w1, w2, ..., wM). Let � = wmin be a loose upper bound on

the network carrying capacity.

The RTT in (4.3) should only include the propagation delay, and not the queueing

delays, for the wireless links. The propagation delays are dominated by transmission

delays in wireless networks. Where applicable, other delays, such as those introduced

by access links bridging to the wired Internet (e.g. DSL), may also need to be in-

cluded. To compute the wireless transmission delays, consider the MAC overhead for

transmitting a TCP segment and its associated ACK in Fig. 4.4. Let Td�DATA and

Td�ACK represent the total transmission time for TCP segment and ACK, respectively.

73

Parameter Value
Tslot 20 µs
TSIFS 10 µs
TDIFS 50 µs
CWmin 31
CWmax 1023

Table 4.1: System parameters of IEEE 802.11b [2].

Td�DATA = TBO + TDIFS + TDATA + TSIFS + TACK (4.4)

Td�ACK = TBO + TDIFS + TTCP�ACK + TSIFS + TACK (4.5)

where TBO is the backo↵ interval. The average TBO, TBO = (CWmin � 1) ⇥ Tslot/2,

where CWmin is the minimum MAC contention window and Tslot is the slot duration.

TSIFS and TDIFS are the Shortest Inter-Frame Space (SIFS) and the Distributed

Inter-Frame Space (DIFS) deferral, respectively. TDATA, TTCP�ACK , and TACK are

the transmission times to transmit a TCP segment, ACK, and MAC-level ACK,

respectively. Based on the configured RTS threshold, additional time of TRTS +

TCTS +2⇥TSIFS may be added to Td�DATA as well as Td�ACK , where TRTS and TCTS

is the time to transmit an RTS and a CTS frame, respectively. Various IEEE 802.11b

system parameters are listed in Table 4.1. For transmitting a TCP segment of size

1460 B and its ACK as per the exchange shown in Fig. 4.4, it takes approximately

15 ms at 1 Mb/s link rate and 2.7 ms at 11 Mb/s link rate.

RTT through the bottleneck collision domain can then be computed as follows:

RTT =
MX

i=1

Td�DATA + Td�ACK (4.6)

= M · (Td�DATA + Td�ACK)

74

bi3210

p
0

p
1,0

p
1,+

p
0

p
0

p
0

p
1,+

p
1,+

b
i-1

p
of

Figure 4.5: Queue occupancy state transition for a wireless node ni with a bu↵er of
size bi.

4.3.2 Distributing the neighborhood bu↵er among nodes

Once the neighborhood bu↵er size B is computed, it will be distributed amongst the

set of nodes in the bottleneck collision domain. One simple strategy is to divide B

equally amongst the nodes. However, this does not consider the fact that a queue

drop closer to the source has consumed fewer network resources than a queue drop

near the destination. The proposed model uses a cost function to capture this bias.

Fig. 4.5 shows the queue occupancy state transition for a mesh node. A node ni

can queue at most bi packets corresponding to its allocated bu↵er. Let ⇡k represent

the steady state probability that the node queue size is k, for 0  k  bi. In particular,

⇡0 and ⇡b
i

represent the probabilities that the bu↵er is empty or full, respectively.

The node successfully transmits a packet with probability p0, transitioning to a state

with one less packet queued. With probability p1,+, a relay node receives a packet

from its parent in the routing tree, and then queues it locally for transmission to the

next hop. The transition probability p1,0 is a special case for packet reception when

the current queue size is zero. Finally, probability pof represents a packet drop due

to bu↵er overflow.

A node can transmit a packet with probability 1 if all other nodes have an empty

bu↵er (i.e., they are in state ⇡0); else it contends fairly for the channel with other

75

nodes that also have packet(s) bu↵ered for transmission. Thus,

p0 = 1 · ⇡M�1
0 +

1

2
·
✓
M � 1

1

◆
· ⇡M�2

0 (1� ⇡0)

+
1

3
·
✓
M � 1

2

◆
· ⇡M�3

0 (1� ⇡0)
2 + . . . +

+
1

M
·
✓
M � 1

M � 1

◆
· (1� ⇡0)

M�1

=
MX

i=1

1

i
·
✓
M � 1

i� 1

◆
· ⇡M�i

0 · (1� ⇡0)
i�1 (4.7)

The probability of receiving a packet from a parent is 0 if the parent bu↵er is

empty. If it is not empty (i.e., in state 1 � ⇡0), the parent contends fairly with the

other nodes that also have packet(s) bu↵ered for transmission.

p1,0 = 0 · ⇡0 + (1� ⇡0)


1 · ⇡M�2

0 +
1

2
·
✓
M � 2

1

◆
· ⇡M�3

0 (1� ⇡0)

+
1

3
·
✓
M � 2

2

◆
· ⇡M�2

0 (1� ⇡0)
2 + . . . +

+
1

M � 1
·
✓
M � 2

M � 2

◆
· (1� ⇡0)

M�2

�

= (1� ⇡0)
M�1X

i=1

1

i
·
✓
M � 2

i� 1

◆
· ⇡M�1�i

0 · (1� ⇡0)
i�1 (4.8)

If the child queue is not empty, it always contends for transmission with its parent.

Thus p1,+ is computed as follows:

p1,+ = 0 · ⇡0 + (1� ⇡0)


1

2
· ⇡M�2

0 +
1

3
·
✓
M � 2

1

◆
· ⇡M�3

0 (1� ⇡0)

+
1

4
·
✓
M � 2

2

◆
· ⇡M�4

0 (1� ⇡0)
2 + . . . +

+
1

M
·
✓
M � 2

M � 2

◆
· (1� ⇡0)

M�2

�

= (1� ⇡0)
M�1X

i=1

1

i+ 1
·
✓
M � 2

i� 1

◆
· ⇡M�1�i

0 (1� ⇡0)
i�1 (4.9)

76

The bu↵er at a node overflows when a node in state ⇡b
i

receives a packet. Thus,

pof = ⇡b
i

· p1,+ (4.10)

The cost associated with this drop due to network resources already consumed by

this packet increase with the hop distance of ni from the source along the routing

path, i.e., packet dropped closer to source wastes fewer network resources compared

to a packet dropped closer to destination. Assume the nodes ni are ordered such that

they represent an increasing hop distance from the source, i.e., the hop count from

the source for ni < ni+1. Thus, the index i could be used for i = {1, 2, ...,M} as a

simple cost function to represent the bias associated with a packet drop at node ni.

Thus the optimization problem can be formulated as follows:

min
b
i

MX

i=1

⇡b
i

· p1,+ · i (4.11)

subject to
PM

i=1 bi = B

and bi � 0, 8i 2 M

The steady state flow balance leads to the following:

⇡0 · p1,0 = ⇡1 · p0

⇡1 · p1,+ = ⇡2 · p0 (4.12)

. . .

⇡b
i�1 · p1,+ = ⇡b

i

· p0

Therefore,

⇡k = ⇡0

✓
p1,+
p0

◆k�1

· p1,0
p0

77

when k > 0. Substituting this in
Pb

i

k=0 ⇡k = 1, ⇡0 can be calculated since p1,0, p1,+, and p0

can also be represented by ⇡0.

The above analysis is based on the assumption that all nodes experience identical

transition probabilities. This assumption holds, irrespective of the bu↵er bi allocated

to node ni, as long as the probability of a node bu↵er being empty is small, i.e.,

⇡0 ⇡ 0. This allows p0, p1,0, and p1,+ from (4.7), (4.8), and (4.9) to converge to 1
M

(for simplicity, p1,0 is approximate from 1
M�1 as 1

M). This behavior is consistent with

the IEEE 802.11 MAC that provides an equal Transmission Opportunity (TXOP) to

all nodes in a collision domain.

From Eq. (4.12) it could be observed that ⇡b
i

= 1
b
i

+1 . Substituting into Eq. (4.10),

pof = ⇡b
i

· p1,+ =
1

bi + 1
· 1

M
(4.13)

The optimization problem then becomes

min
b
i

MX

i=1

1

bi + 1
· 1

M
· i (4.14)

subject to
PM

i=1 bi = B

and bi � 0, 8i 2 M (4.15)

The objective function in (4.14) can be expanded as follows:

1

M
min

b1,b2,...,b
M

✓
1

b1 + 1
+

2

b2 + 1
+ . . .+

M

bM + 1

◆

Let

f ,
✓

1

b1 + 1
+

2

b2 + 1
+ . . .+

M

bM + 1

◆
(4.16)

78

From analytical algebra, the optimal bi satisfies

@f

@bi
= 0, 8i 2 M, (4.17)

or the optimal bi are the boundary values, i.e., bi = 0 or B. Using substitution, it

could be verified that the boundary values do not minimize the cost function f . The

last equation, (4.17), is composed of a set of M linear equations with M unknowns

whose solution is as follows:

b1 =
B + 5

1 +
p
2 +

p
3 + . . .+

p
M

� 1

b2 =

p
2(B + 5)

1 +
p
2 +

p
3 + . . .+

p
M

� 1

. . . (4.18)

bM =

p
M(B + 5)

1 +
p
2 +

p
3 + . . .+

p
M

� 1

When B is large, i.e., B >> 1, this could be approximated as:

b1 : b2 : · · · : bM = 1 :
p
2 : . . . :

p
M (4.19)

It could be noted that the results in (4.19) hold for any cost function that increases

linearly with the hop count. We believe that our proposed cost function should be

viewed as an example of a bu↵er allocation for a specific interference model and a

cost function that we considered. In fact, the core contribution of the dissertation

is more general: the distributed bottleneck in a wireless network should consider the

cumulative bu↵er size of contending nodes to balance throughput and delay trade-o↵.

It’s possible to come up with a more accurate albeit complicated interference model

and cost function, but the underlying contribution of the thesis is more general and

would still apply.

79

4.4 Performance Analysis

DNB is evaluated using both simulation and real testbed implementation.

4.4.1 Simulations

DNB performance results have been benchmarked against the following: (1) A 50-

packets bu↵er at all mesh routers. This is the default NS-2 configuration commonly

used in research publications; (2) TCP-AP [72], a TCP pacing mechanism for multi-

hop wireless networks (see Sec. 2.3 for a brief description of TCP-AP). Pacing TCP

tra�c minimizes bursts that lead to large queueing delays. TCP-AP paces its tra�c

using 4-hop propagation delay, thus minimizing queueing along the interfering links.

Consistent with [72], a 50-packets bu↵er for TCP-AP has been used, though we find

that queues hardly build up beyond a few packets. A large file transfer is used to

simulate backlogged TCP tra�c. The TCP segment size used in this simulations is

1460 bytes. Wireless link rates are 11 Mb/s, unless specified otherwise. RTS/CTS

control frames are disabled.

Single flow topologies

First, two variants of a 4-hop chain are analyzed: (1) when all nodes are within mutual

carrier sense range, and (2) when the edge nodes are outside carrier sense range. The

two scenarios experience di↵erent sources of packet loss: queue overflows in the first

topology (as most collisions are resolved by MAC-layer ARQs) and collisions due to

asymmetric information about the channel state [66] in the latter. The neighborhood

bu↵er size B computed per (4.3) depends on the wireless link rates. For the testbed

experimentation, B ⇡ 15 packets for 54 Mb/s links (IEEE 802.11a/g) or B ⇡ 85

packets for 600 Mb/s links (IEEE 802.11n). For 11 Mb/s links (IEEE 802.11b) used

in the simulations, B ⇡ 10 packets. Per (4.19), this is distributed as bu↵er of size

80

Scheme Goodput Kb/s Mean RTT (Std. Dev.) ms

50 pkts bu↵er 930 316 (68)
TCP-AP 850 15 (0.5)
Bu↵er per (4.3) &
(4.19)

878 22 (2)

Table 4.2: Performance comparison for a 4-hop TCP flow with 11 Mb/s wireless links.
All nodes are within mutual carrier sense range.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800

C
D

F

Delay (ms)

50 pkts buffer

TCP segments
TCP ACKs

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 4 6 8 10 12 14 16 18 20

C
D

F

Delay (ms)

TCP pacing

TCP segments
TCP ACKs

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25 30 35

C
D

F

Delay (ms)

Distributed neighborhood buffer

TCP segments
TCP ACKs

Figure 4.6: Delay distribution CDF for the parking lot topology.

2, 2, 3, and 3 packets at 1, 2, 3, and 4-hop nodes from the source, respectively. For

symmetric wireless links, the performance for upload flows is similar to that obtained

for download flows between the gateway and a given mesh node.

Simulation results are summarized in Tables 4.2 and 4.3. Also, the Cumulative

Distribution Function (CDF) plots for the delay distribution are shown in Fig. 4.6.

These results confirm that the base case with a 50-packets bu↵er yields the highest

aggregate throughput, albeit with large RTT delays. This may be immaterial for large

file transfers where the objective is to maximize throughput. Regardless, a network

81

Scheme Goodput Kb/s Mean RTT (Std. Dev.) ms

50 pkts bu↵er 910 200 (49)
TCP-AP 825 15 (0.5)
Bu↵er per (4.3) &
(4.19)

830 23 (1.3)

Table 4.3: Performance comparison for a 4-hop TCP flow with 11 Mb/s wireless links.
The two end nodes outside mutual carrier sense range.

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 2 3 4 1 2 3 4

%
 q

u
e
u
e
 d

ro
p
s

hops from the destination

The impact of cost function

Equal distributed buffer

Distributed buffer per cost function

Figure 4.7: Queue drops at mesh routers in a 4-hop chain.

should be able to provide low-delay services, especially when TCP flows share bu↵ers

with real-time flows. DNB lowers the base case RTT by a factor of 15 and 9 across the

two topologies, at the cost of about 6% to 9% drop in throughput. TCP-AP achieves

the lowest delay among the three schemes. In general, however, there are practical

limitations of deploying pacing in real networks: First, while WMN service providers

can configure the bu↵ers on their mesh routers, but they often have no control on the

TCP/IP stack on the client devices. Second, paced flows fare poorly when sharing a

network with non-paced flows [52], thus limiting the incentive for a user to migrate.

We evaluate this further for multi-flow topologies in Sec. 4.4.1 below.

Further, the performance improvements of the proposed cost function is analyzed.

Using a 4-hop chain topology, a 12-packet neighborhood bu↵er has been distributed

equally among the relay nodes (a 3-packet bu↵er at each relay) and compare its

performance to a bu↵er distribution using the proposed cost function. The experiment

have been repeated 5 times; the average queue drops (with the standard deviation)

82

Scheme Normalized Goodput Normalized RTT

50 pkts bu↵er 1 20.3
TCP-AP 0.90 1
Bu↵er per (4.3) &
(4.19)

0.96 2.2

Table 4.4: Performance statistics averaged over multiple topologies with varying hop
count. Goodput results are normalized to the goodput achieved with the base case
for a 50 packet bu↵er for that simulation. RTT results are normalized to the RTT
measured with TCP pacing for that simulation. Averages computed over multiple
di↵erent topologies.

at each node is shown in Fig. 4.7. With equal-sized bu↵ers, up to 42% queue drops

happen at the node 1-hop away from the destination. In contrast, with the proposed

cost function, over 70% of the queue drops occur at the node closest to the source.

In this set of simulations, the proposed scheme further reduced RTT by about 10%

with a slight improvement in throughput of 2-3%.

The proposed bu↵er sizing approach has been validated on multiple other topolo-

gies by varying the flow hop count, including topologies where packet losses occur

due to both bu↵er overflows as well as collisions. In all simulations, the base case

with the 50-packets bu↵er yielded the highest goodput, while TCP-AP yielded the

least delay. The goodput and RTT for a given simulation run have been normalized

to these values, and then average those up over di↵erent topologies. Results are tab-

ulated in Table 4.4. In general, DNB achieves about 96% goodput of the base case

with a 50-packets bu↵er, while reducing the RTT by a factor of 10.

Multi-flow topologies

The problem formulation in Sec. 4.3 considers a single TCP stream. Let us investigate

if the underlying behavior is also sustainable in a multi-flow network. The motive

here is not to determine the optimal cumulative neighborhood bu↵er in multi-flow

83

environments; instead, the goal is to evaluate whether small bu↵ers also work well

with multiple flows. Two illustrative scenarios have been considered: (1) a parking

lot topology where multiple flows pass through shared relay nodes, and (2) a cross

topology when multiple flows share the bottleneck spectrum but not the relay nodes.

Each flow in the performed experiments represents either (i) a large file transfer with

TCP, or (ii) a bundle containing a large file transfer with TCP and a VoIP stream.

VoIP streams has been simulated with G.729 codec characteristics using Constant

Bit Rate (CBR) UDP tra�c: a stream bit rate of 8 Kb/s with a packet size of 40

bytes each. For toll quality service, VoIP streams should maintain a one-way latency

(mouth to ear) of less than 150 ms and a delay jitter of less than 30 ms [73].

Parking lot topology

The first set of experiments have been done with the parking lot topology illus-

trated in Fig. 4.8a. It has data flows originating from nodes 4, 5, and 6-hop away

from the gateway. These flows share a common bottleneck collision domain. Con-

sidering each flow in isolation, The proposed bu↵er sizing strategy in Sec. 4.3 can be

used to compute a neighborhood bu↵er size B1, B2, and B3 corresponding to each

flow. Then, these bu↵ers can be distributed such that a mesh node in the collision

domain has a per-flow bu↵er of size determined by (4.19). Per-flow queueing requires

flow classification at relay nodes; it has performed using source node IP address and

port numbers. These queues are using fair queueing [74] on top of DCF scheduling.

DNB considerably overestimates the cumulative bu↵er required for saturating the

bottleneck spectrum; however, the per-flow bu↵er (of 1–3 packets) at each relay node

is still small. Determining the optimal bu↵er size in such multi-flow networks is left

for future work.

The results for the three large file transfer streams are summarized in Table 4.5.

The mean and the standard deviation are listed for goodput and RTT averaged

over the three flows. TCP pacing lowers RTT by a factor of 9 at a cost of 8%

84

GW

Flow 1
Flow 2

Flow 3

(a) Parking lot topology

GW

Flow 1 Flow 2

Flow 3

Flow 4

(b) Cross topology

Figure 4.8: Multi-flow topologies

drop in goodput. In contrast, DNB improves RTT by a factor of 6 at the cost of

less than 4% drop in average goodput. These improvements may appear relatively

modest compared to the results for networks with single TCP streams. This is partly

because multiple streams sharing a 50 packet bu↵er do not let TCP congestion window

for individual streams grow quickly to unsustainable large values. Finally, DNB

improvements with distributed bu↵ers are obtained despite the suboptimal (though

small) bu↵er sizes used in this experiment.

As mentioned earlier, paced TCP tra�c fares poorly when competing with non-

85

Scheme Avg. Goodput (Std. Dev.) Kb/s Mean RTT (Std. Dev.) ms.

50 pkts bu↵er 285 (68) 354 (35)
TCP-AP 264 (32) 38 (3)
Bu↵er per (4.3) &
(4.19)

275 (22) 58 (3)

Table 4.5: Parking lot topology. 3 FTP streams.

Scheme
FTP VoIP

Mean Good-
put (Std.
Dev.) Kb/s

Mean RTT
(Std. Dev.)
ms.

Mean Bit
Rate Kb/s

Mean Delay
(Jitter) ms.

50 pkts bu↵er 261 (58) 388 (32) 7.8 239 (8)
TCP-AP 240 (17) 54 (6) 8 37 (5)
Bu↵er per (4.3) & (4.19) 250 (33) 87 (6) 8 40 (6)

Table 4.6: Parking lot topology. 3 FTP and 3 VoIP streams.

paced TCP streams. This has been highlighted using a TCP-AP stream for the 4-hop

flow and non-paced TCP for the 5 and 6-hop flows in Fig. 4.8a. Simulation results

show that the paced flow achieves less than 1
10th of the throughput of the other flows.

No such unfairness is observed when none of the three flows are paced. Note that this

behavior is very di↵erent from the unfairness observed in prior work [66], as it is the

stream closest to the gateway that is losing throughput. This performance challenge

is an impediment in wide-spread deployment of pacing-based protocols.

Table 4.6 shows the results when each flow in Fig. 4.8a represents a bundle con-

taining a large file transfer with TCP and a VoIP stream. For the VoIP tra�c, the

mean bit rate (stream goodput), one way delay, and delay jitter averaged over the

three streams are listed. With large network bu↵ers, TCP streams can quickly build

a large congestion window. This increases the queueing delay for the VoIP tra�c that

shares the bu↵er with the TCP streams. With 50 packet bu↵ers, the average delay

for the three VoIP streams far exceeds the 150 ms delay bound. In contrast, both

TCP-AP and our proposed distributed bu↵er sizing mechanism limit this unchecked

86

Scheme Mean Goodput (Std. Dev.) Kb/s Mean RTT (Std. Dev.) ms.

50 pkts bu↵er 465 (44) 260 (53)
TCP-AP 417 (24) 28 (5)
Bu↵er per (4.3) &
(4.19)

455 (27) 56 (13)

Table 4.7: Cross topology. 4 FTP streams.

Scheme
FTP VoIP

Mean Good-
put (Std.
Dev.) Kb/s

Mean RTT
(Std. Dev.)
ms.

Mean Bit
Rate Kb/s

Mean Delay
(Jitter) ms.

50 pkts bu↵er 382 (17) 309 (72) 7.8 187 (30)
TCP-AP 339 (15) 33 (6) 7.9 24 (4)
Bu↵er per (4.3) & (4.19) 368 (5) 71 (8) 7.9 35 (4)

Table 4.8: Cross topology. 4 FTP and 4 VoIP streams.

growth of the TCP congestion window. TCP-AP throttles the TCP streams more

aggressively, roughly incurring a loss of 5% in goodput compared to our proposed

bu↵er sizing mechanism. As a final observation, we note that the combined goodput

of the FTP and VoIP streams in Table 4.6 is less than the corresponding entries in

Table 4.5. This is because the IEEE 802.11 overhead is better amortized over the

larger 1460 byte TCP segments used in the FTP simulations. Various optimizations

for reducing this overhead have been discussed in prior work [75].

Cross topology

Next, the cross topology has been considered in Fig. 4.8b. A source node 5-hops

along each edge sends a data flow to the gateway in the center. Using a 2-hop inter-

ference model, the 1 and 2-hop nodes around the gateway along each edge constitute

the shared bottleneck collision domain between the four flows. With uniform 11 Mb/s

links, this distributed bu↵er size is B = 18 packets per (4.3). Since the number of

hops (and consequently the cost of packet drop) are similar for each edge, B should

be distributed as 2 and 3 packets at the 3 and 4-hop nodes from source along each

87

edge.

Simulation results for the FTP streams are summarized in Table 4.7. The mean

and the standard deviation for the four flows are listed. TCP pacing lowers RTT

10-fold at a cost of 10% drop in goodput. DNB improves RTT by 5⇥ with 2% drop

in average goodput of the four flows.

Table 4.8 shows the simulation results when each flow in Fig. 4.8b represents a

bundle containing a large file transfer with TCP and a VoIP stream. Consistent with

the previous observations for the parking lot topology, TCP fills up available network

bu↵ers, leading to unacceptable VoIP delays when large network bu↵ers are shared

with the TCP stream. Right sizing the network bu↵ers per our proposed mechanism

reduces the VoIP delays by more than a factor of 5, at a cost of less than 3% loss in

goodput for the TCP streams.

4.4.2 Testbed

DNB has also been evaluated using our IEEE 802.11a/b/g testbed over multiple

scenarios. The testbed hardware setup and software parameters are described in

details in Sec. 3.1. For comparative analysis, the performance results have been

benchmarked with the default bu↵er sizes used in our Linux distribution. In the

first set of experiments, the hop length of a path has been varied from 2 to 4 hops.

These experiments were repeated along various source and destination pairs across

the testbed to o↵set any location-specific wireless idiosyncrasies. For a 3-hop chain

and 11 Mb/s wireless links, the neighborhood bu↵er size B computed from (4.3) is

approximately 8 packets. As per (4.19), this is distributed as a txqueue bu↵er of

size 2, 3, and 3 packets at 1, 2, and 3-hop nodes from the source, respectively. The

bu↵er sizes for other topologies were similarly calculated. Testbed results are shown

in Fig. 4.9. The goodput measured with DNB is normalized to the goodput for the

same topology with default bu↵er sizes in the Linux distribution. For RTT, the

88

Scheme Avg. Goodput (Std. Dev.) Kb/s Mean RTT (Std. Dev.) ms.

Default, large bu↵ers 786 (45) 1653 (327)
Bu↵er per (4.3) &
(4.19)

712 (6) 91 (19)

Table 4.9: Multi-flow experimental results. A 3-hop and a 4-hop flow together share
the network along disjoint paths.

delays with large bu↵ers is normalized to the delay values measured with DNB. The

error bars in these graphs are the 95% confidence intervals. Testbed results show a

two-orders of magnitude improvement in two-hop and 25⇥ improvement in three-hop

delays while obtaining upwards of 92% goodput achieved with large bu↵ers in both

cases. The results with a 4-hop chain show a 6⇥ improvement in delay while achieving

90% of the large-bu↵er goodput. These results show that wireless specific losses are

minimal in smaller topologies (thanks to MAC-level retransmissions in IEEE 802.11)

where most nodes can carrier sense each other, and hence TCP congestion avoidance

algorithms mostly reacts to losses when large bu↵ers overflow. In contrast, in larger

topologies wireless losses tend to dominate and prevent TCP congestion window from

completely filling up intermediate router bu↵ers. However, the window still grows to

suboptimal large values that increases queueing delays beyond those acceptable for

real-time tra�c. To give an example, the average RTT with large bu↵ers in our 4-hop

topology is 431 ms as compared to 67 ms with DNB.

Now it is time to investigate if the underlying performance improvements are also

sustainable in a multi-flow network using small bu↵ers. The next set of experiments

considers a 3-hop and a 4-hop flow in our 10-node IEEE 802.11a/b/g testbed. The two

flows traverse disparate (though interfering) nodes along their path to the destination.

Considering each flow in isolation, the bu↵er sizing strategy in Sec. 4.3 can be used

to compute a neighborhood bu↵er size B1 and B2 corresponding to each flow. Then

distribute these bu↵ers such that a mesh node in the collision domain has a per-flow

bu↵er of size determined by (4.19).

89

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

2-hop 3-hop 4-hop

N
o
rm

a
liz

e
d

 g
o

o
d

p
u

t

Topology

Goodput normalized to results with default buffer sizes

(a) Flow goodput

 0

 20

 40

 60

 80

 100

 120

 140

2-hop 3-hop 4-hop

N
o
rm

a
liz

e
d
 d

e
la

y

Topology

Delays normalized to results with proposed buffer sizes

(b) RTT

Figure 4.9: Flow goodput and delay across various testbed topologies. Goodput
results are normalized with default bu↵er sizes to the goodput achieved with DNB.
RTT measurements are normalized with default bu↵ers to the RTT measured with
DNB. Error bars are the 95% confidence intervals.

Testbed results are summarized in Table 4.9. The mean goodput and the RTT

for the two flows, as well as their standard deviation are listed. IEEE DNB reduces

the average RTT of the two flows by a factor of 20, at the cost of about 9% drop in

aggregate goodput.

Finally, the performance of DNB is also validated using our IEEE 802.11n testbed.

In this set of experiments, TCP download flows (file transfer from the server to the

wireless client) are used over a 4-hop chain topology. Our results are summarized in

90

Scheme Avg. Goodput (Std. Dev.) Mb/s Mean RTT (Std. Dev.) ms.

Default, large bu↵ers 8.8 (0.3) 1113 (91)
Bu↵er per (4.3) &
(4.19)

8.1 (0.04) 153 (9)

Table 4.10: A 4-hop 802.11n mesh topology connected via 65 Mb/s links.

Num. of hops
Equal Bu↵ers Cost Function Bu↵ers

Goodput (Mb/s) RTT (ms) Goodput (Mb/s) RTT (ms)

1-hop 61.76 16.628 69.05 14.128
2-hops 28.14 42.55 29.45 39.674
3-hops 17.02 69.47 17.53 64.077

Table 4.11: Evaluating goodput and RTT for the proposed bu↵er distribution scheme
over various number of hops

Table 4.10. With 65 Mb/s links, the default bu↵er size in Linux yields an average

throughput of 8.8 Mb/s with a mean RTT of 1113 s over the 4-hop topology. With

DNB, the neighborhood bu↵er size is approximately 14 packets. Using the linear cost

function in Sec. 4.3 to distribute the bu↵ers over the bottleneck, DNB reduces RTT

by 7⇥ at the cost of about 8% drop in flow throughput. Using the same testbed,

we also evaluate the performance of our proposed method to distribute the optimal

bu↵er over nodes in the bottleneck collision domain. We enable the rate control

algorithm in the testbed and repeat the same experiment twice. In the first run, the

optimal bu↵er is distributed equally among the nodes in the neighborhood whereas

the bu↵er is distributed according to our cost function as per (4.19) in the second run.

Table 4.11 shows the goodput and RTT of the two schemes over an increasing hop

count. It is clear from these results that the proposed methodology in distributing the

bu↵er achieves higher goodput and lower delay compared to the equal distribution

method over all scenarios. This is because our scheme favours dropping packets near

to the source by assigning slightly bigger bu↵ers to nodes closer to the destination.

91

Chapter 5

Aggregation-Aware Queue

Management

5.1 Overview

The IEEE 802.11n standard specifications introduced MAC-layer frame aggregation

to improve network performance. Using A-MPDU, a wireless node can transmit

up to 64 MPDUs or sub-frames. The aggregation logic or scheduler is left open to

the vendor’s implementation. Always transmitting a maximum sized A-MPDU may

maximize throughput, but this will increase delays if a node needs to wait to assemble

64 MPDUs from higher layers. In contrast, the current Linux implementation sends as

many frames as currently available in the bu↵ers, resulting in A-MPDUs with variable

frame sizes. This variability in frame size poses a new challenge to accurately estimate

the queue draining time based on the current transmission rate. Other enhancements

in IEEE 802.11n, such as channel bonding and MIMO streams, allow IEEE 802.11n

radios to operate at link rates as high as 600 Mb/s. Thus, there is a huge variation in

the queue draining time between the highest and lowest possible rates. For example,

assume a single sender and receiver, both configured with the default Linux bu↵er size

of 1000 packets. The 600 Mb/s link needs only 20 ms to empty the bu↵er; however,

this bu↵er drain time is two orders of magnitude higher for a 6.5 Mb/s link.

92

To address these challenges, we have designed and implementedWQM, an aggregation-

aware queue management scheme for wireless networks. WQM identifies and distin-

guishes between ‘good’ and ‘bad’ bu↵ers. Good bu↵ers are bu↵ers needed to absorb

bursty tra�c, while bad bu↵ers only contribute to network latency without any no-

ticeable improvement in throughput. WQM is both practical and incrementally de-

ployable; it uses existing data tra�c as probe for network measurements and does not

incur any additional overhead. To account for channel variability, WQM periodically

recalculates the time needed to drain the bu↵er based on the current transmission

rate. It then adjusts the bu↵er size to maintain the network QoS guarantees, reducing

queueing delays where necessary, while allowing su�cient bu↵ers to saturate avail-

able network capacity. Further, WQM incorporates MAC behavior, such as A-MPDU

frame aggregation, to get accurate estimates of queue draining time. WQM has been

implemented and evaluated in our IEEE 802.11n testbed and the experimental results

in Sec. 5.4 show that it reduces the end-to-end delay by by an order of magnitude

compared to the default bu↵er size used in stock Linux. Moreover, it reduces end-

to-end latency by up to 7⇥ compared to state of the art bu↵erbloat solutions in the

literature. In the worst case, this reduction comes at the cost of 8% drop in goodput.

To the best of our knowledge, this is the first attempt to address the queue sizing

problem for IEEE 802.11n networks. Compared to other e↵orts in the wired and

the wireless domain, WQM is considered more practical as it does not involve time-

stamping the packets at their arrival to the queue. It also accounts for the MAC-layer

behavior when deciding about the optimal bu↵er size.

5.2 Motivation

To motivate WQM, we have evaluated the impact of A-MPDU frame aggregation

on bu↵erbloat over multiple fixed link rates using our IEEE 802.11n wireless testbed

93

deployed in our campus. The detailed experimental setup is illustrated in Sec. 3.1.

The maximum aggregate size achievable in practice in ath9k is limited to a frame

duration of 4 ms to comply with regulatory requirements for operation in the 5 GHz

U-NII band. Thus the actual density of MPDUs in an A-MPDU is partly dependent

on the wireless link rate which determines the frame transmit duration. Experiments

both with and without A-MPDU aggregation have been conducted to understand

the impact of aggregation on wireless network performance. Each experiment for

a given link rate and network topology is performed 5 times. The throughput and

RTT results are then averaged across these runs. Three link rates have been used

for these experiments: 6.5 Mb/s (Modulation and Coding Scheme (MCS) index 0,

20 MHz channel bandwidth, 800 ns Guard Interval (GI)), 144.4 Mb/s (MCS 15, 20

MHz channel, 400 ns GI), and 300 Mb/s (MCS 15, 40 MHz channel, 400 ns GI). This

configuration parameter set allows us to experiment with varying channel bandwidth

as well as GI values.

Single-flow topologies

In the first set of experiments, transmit A-MPDU aggregation has been disabled.

Then, the path length of the flow has been varied from a single-hop network to a

4-hop chain topology. A given experiment uses a uniform wireless link rate between

adjoining nodes. This rate is varied from 6.5 Mb/s, 144.4 Mb/s, and 300 Mb/s in

di↵erent experiments. Throughput and delay for various hop-counts are shown in

Figs. 5.1a and 5.1b respectively. The error bars represent the standard deviation.

As expected, throughput increases with the link rate, and shows a decreasing

trend with the hop-count. The throughput drops by 1
2 ,

1
3 , and 1

4 , for 2, 3, and

4-hop networks, suggesting sparse spatial reuse in our topologies. The di↵erence

in throughput between 144.4 Mb/s links and 300 Mb/s links is small, and almost

within error bounds of the measurements for 3 and 4-hop topologies. The RTT delay

94

















           






















(a) Throughput














           


















(b) RTT

Figure 5.1: Flow throughput and RTT for wireless links without A-MPDU aggrega-
tion.

measurements clearly show the impact of bu↵erbloat. The average 1-hop RTT delay

measurements are 1853 ms, 328 ms, and 286 ms for 6.5 Mb/s, 144.4 Mb/s, and 300

Mbp/s links. These delays show that a single file-transfer between two wireless nodes

can saturate the device bu↵ers, even at the 300 Mb/s link rate, as shown in Fig. 5.2.

It could be observed that the bu↵er size grows up to its limit of a 1000 packets (each

packet of 1500 bytes), before registering a queue drop and triggering TCP’s congestion

control algorithm.

In general, it has been found that while RTT measurements increase with the

hop count, they do not always exhibit a proportionate increase, e.g. , for 6.5 Mb/s

links, a 3-hop and a 4-hop network shows an increase of only 4.5% and 10% over the

95











         












































         

 





Figure 5.2: TCP congestion window, RTT, and egress queue utilization for a 1-hop
TCP flow over a 300 Mb/s wireless link.

2-hop delays. This suggests that with slow speed links, TCP’s feedback mechanism

is unable to saturate all bu↵ers along the multi-hop path. This is also validated by

the bu↵er utilization plots shown in Fig. 5.3, where none of the bu↵ers fills up to

the capacity. In such networks, TCP’s congestion control mechanisms are triggered

by losses other than queue drops, such as wireless collisions. In contrast, topologies

using 144 Mb/s or 300 Mb/s links show a more uniform, consistent increase in RTT

with increasing hop-count.

Next, A-MPDU transmit aggregation has been enabled. Measurement results are

shown in Figs. 5.4a and 5.4b. The ath9k release used in our testbed nodes does not

support A-MPDU aggregation at 6.5 Mb/s, as transmitting a large A-MPDU at this

link rate may violate the 4 ms frame transmit duration regulatory requirement in 5

GHz band. Thus, only the results for 144.4 Mb/s and 300 Mb/s link rates have been

shown. A-MPDU aggregation significantly increases the network throughput. For a

1-hop network, 144.4 Mb/s link shows a throughput improvement of 3⇥, while a 300

Mb/s link shows an improvement of 5⇥. For multi-hop networks using 144.4 Mb/s,

the throughput roughly decreases by 1
2 ,

1
3 , and

1
4 for 2, 3, and 4-hop chain topologies.

96







          





























          

 











          

 











          

 






          

 





Figure 5.3: TCP congestion window size, RTT, and txqueue size distribution for a
TCP flow in a 4-hop chain topology with 6.5 Mb/s wireless links.

However, the throughput drop is higher when using the 300 Mb/s link rate, averaging

across 60% for each additional hop. To investigate further, the A-MPDU size (in terms

of MPDUs per A-MPDU) at each hop along the path to the destination have been

measured . The average A-MPDU size is shown in Fig. 5.5. For 1-hop networks, the

A-MPDU size approaches the maximum limit of 32 MPDUs imposed by the device

driver. However, the average A-MPDU size is smaller in multi-hop networks. This

is because the packets are dispersed in queues at multiple nodes along the path to

the destination, and thus a given node may not always have the maximum number

of MPDUs ready to transmit together. In particular, 300 Mb/s links use a smaller

A-MPDU size compared to 144 Mb/s links for the 2nd, 3rd, and 4th relay nodes in

97



















       




















(a) Throughput



















       

















(b) RTT

Figure 5.4: Flow throughput and RTT for wireless links with A-MPDU aggregation.

the multi-hop topologies, leading to higher than 50% drop in throughput over a 1-hop

300 Mb/s link.

In addition to the increase in throughput, A-MPDU aggregation also lowers the

RTT across all topologies as shown in Fig. 5.4b. To give an example, the 4-hop RTT

is improved by over 3⇥ for both link rates. As illustrated in Fig. 5.5, the A-MPDU

scheduler does not always transmit a maximum sized A-MPDU. Many A-MPDUs

were transmitted with a smaller size based on the number of frames available in the

bu↵er at a given time. Transmitting multiple MPDUs together debloats the txqueue

size, leading to smaller queueing delays and the subsequent reduction in RTT.

Finally, additional set of experiments have been conducted for multi-hop topolo-

gies where only part of the nodes used transmit A-MPDU aggregation. Such networks

98

Figure 5.5: Average A-MPDU size. For multi-hop networks, A-MPDU size is mea-
sured at each hop along the path to the destination. ath9k does not support Tx
A-MPDU aggregation at 6.5 Mb/s link rate.

are likely in heterogeneous environments with a mix of equipment from di↵erent ven-

dors or support for backward compatibility with IEEE 802.11 a/b/g technologies.

The source node and the first relay node had A-MPDU aggregation enabled, while all

subsequent relay nodes had A-MPDU aggregation disabled. Throughput and RTT

measurement results are shown in Figs. 5.6a and 5.6b respectively. 1-hop and 2-hop

results have been omitted as those are similar to results in Figs. 5.4a and 5.4b.

It could be observed that throughput drops below the values observed when all

links used transmit A-MPDU aggregation (Fig. 5.4a), though its still higher than

values obtained when A-MPDU aggregation is disabled for all links (Fig. 5.1a). Sim-

ilarly, RTT measurements also fall in between the values obtained with these two

cases. This suggests that even having some partial nodes using A-MPDU transmis-

sion in a network can increase the throughput and reduce delays. In such scenarios,

the network is bottlenecked by the nodes that do not transmit using A-MPDU ag-

gregation. The queue utilizations across these topologies are shown in Fig. 5.7 for

a 4-hop chain topology using 144.4 Mb/s wireless links. This analysis shows that

sustained queues mostly build up at the first node that does not support A-MPDU

99













   




















(a) Throughput

















   
















(b) RTT

Figure 5.6: Flow throughput and RTT for a network with partial links supporting
A-MPDU aggregation.

transmit aggregation. For the 4-hop chain topology, this is the relay node 2-hops

from the source. A bu↵er sizing strategy for reducing queueing delays would need to

identify and manage similar set of bottlenecks in the network.

Multi-flow topologies

In this set of experiments, the goal is to characterize the impact of bu↵erbloat in

wireless networks with multiple backlogged TCP flows. A 4-hop parking lot topology

has been used with TCP flows sourced at each successive nodes in a chain and ter-

100










    

































          

 











          

 














          

 











          

 





Figure 5.7: TCP congestion window size, RTT, and txqueue size distribution for a
TCP flow in a 4-hop chain topology with 144.4 Mb/s wireless links. The source and
1-hop relay node use Tx A-MPDU aggregation.

minating at the final node. Similar to the single-flow experiments, uniform link rates

have been used for a given experiment, varying the link rates from 6.5 Mb/s, 144.4

Mb/s, and 300 Mb/s in di↵erent experiments.

The first set of experiments have been performed with transmit A-MPDU ag-

gregation disabled. Throughput and RTT results are summarized in Fig. 5.8. This

figure shows the flow throughput dropping with increasing hop-count. Across all sce-

narios, the 1-hop flow obtained the highest throughput, followed by the 2-hop flow,

and so on. This is the well-known fairness problem in WMN [76]. To quantify the

degree of fairness in rate allocation, Jain’s Fairness Index (JFI) is computed for the

101

6.5 Mb/s, 144.4 Mb/s, and 300 Mb/s links as 0.86, 0.81, and 0.46 respectively. It

could be observed that the rate allocation becomes more unfair with faster link rates.

At these high rates, the 1-hop node can quickly build up a large TCP congestion

window, saturating its bu↵ers and starving out flows that traverse more hops. The

propagation delay for a 4-flow hop is at least 4 times larger than that of a 1-hop flow.

Although that some unfairness in flow rates is expected since TCP allocates rates in

proportion to the RTT, results revealed that the throughput is significantly smaller,

e.g. the 1-hop flow throughput is approximately 2.3⇥, 4.7⇥, and 33⇥ the 4-hop flow

throughput with the 6.5 Mb/s, 144.4 Mb/s, and 300 Mb/s link rates, respectively.

This throughput imbalance persists because of the disproportionate queueing delays

experienced by di↵erent flows (we would like to note that nodes in our network do

not su↵er from the hidden terminal or related wireless challenges).

Next, the same experiments have been repeated with transmit A-MPDU aggrega-

tion enabled. Results are shown in Fig. 5.9. Experiments with 6.5 Mb/s link rates are

omitted since the ath9k driver does not support transmit A-MPDU aggregation at

that rate. It could be observed that the unfairness in rate allocation persists, as ex-

pected. The JFI for 144.4 Mb/s and 300 Mb/s link rate is 0.77 and 0.50, respectively.

The 1-hop flow throughput is 3.38⇥ and 150⇥ the 4-hop flow throughput for the 144.4

Mb/s and 300 Mb/s, respectively. This reinforces the observation that unfairness in

rate allocation increases with faster link rates, as both 1-hop and 2-hop flows can

quickly saturate the local node bu↵ers. Indeed, in some of the experimental runs, the

distant hop flows took a long time just to establish a single TCP connection, with

initial TCP setup control messages encountering full bu↵ers along the routing path.

This unfairness problem may be addressed using the proposed queue management

scheme size as shown later in this chapter.

102









           




















(a) Throughput









           


















(b) RTT

Figure 5.8: Flow throughput and RTT for parking lot topologies without A-MPDU
aggregation.

Experiments Summary

In this empirical evaluation the impact of A-MPDU frame aggregation on wireless

network performance has been studied over various link rates. It has been shown

that the default Linux configuration with A-MPDU aggregation enabled can produce

large queueing delays, with RTT values averaging 1700 ms for a single backlogged

TCP stream on a 1-hop network with a 6.5 Mb/s wireless link rate. Multi-hop

wireless networks have additional bu↵ers at each hop. These large bu↵ers further

increase the queueing delays, with RTT values approaching 4600 ms for a 4-hop

chain topology with uniform 6.5 Mb/s wireless link rates. The queue utilization

analysis shows that while RTT measurements increase with the hop count, they do

103










       




















(a) Throughput













       

















(b) RTT

Figure 5.9: Flow throughput and RTT for parking lot topologies with A-MPDU
aggregation.

not always exhibit a proportionate increase, especially at low wireless link rates where

TCP’s feedback mechanism is unable to saturate all bu↵ers. Also, it has been shown

that A-MPDU aggregation can be used to reduce RTT values, while simultaneously

improving throughput. However, the RTT values still approach 350 ms over a 4-hop

network. Such delays are catastrophic when queues are shared with real-time flows

such as VoIP with strict latency and jitter requirements. Furthermore, aggregates

detailed analysis showed a smaller A-MPDU size in multi-hop networks; here, packets

are dispersed over multiple nodes, and thus a given node may not always have the

maximum number of MPDUs ready to transmit together. As a result, the bu↵er

should be sized carefully taking into consideration A-MPDU size variability in order

104

1 Set the max. acceptable queuing delay limit
2 Calculate the initial Binitial based on the current Tx rate (R) and the round
trip delay for a single A-MPDU transmission (ARTT):

3 Binitial = R ⇤ ARTT
4 for every measurement interval do
5 Calculate queue drain time Tdrain based on the total number of bits in the

queue (BL) and the percentage of time the channel is not busy (F)
6 Tdrain = BL/R

F
7 Adjust the queue size B based on whether the network is bloated or not
8 if Tdrain > limit and B > Bmin then
9 if alarmhigh is ON then

10 decrease queue size B

11 else
12 set alarmhigh to ON and alarmlow is OFF

13 else if Tdrain < limit and B < Bmax then
14 if alarmlow is ON then
15 increase queue size B

16 else
17 set alarmlow to ON and alarmhigh is OFF

Algorithm 2: WQM Operation Pseudo Code.

to maximize flow throughput and minimize the overall end-to-end delay. Moreover,

this analysis revealed that large bu↵er sizes can also impact the fair rate allocation.

The presented experimental results showed that 1-hop and 2-hop flows can quickly

saturate their local bu↵ers, especially at high wireless link rates, starving distant

flows. As shown later in this chapter, the proposed bu↵er sizing technique is able to

limit the unbridled growth of the TCP congestion window for small hop-count flows

to improve flow rate fairness.

5.3 Approach

In this section, we describe WQM operation and show how we select various WQM

parameters.

105

5.3.1 WQM Operation

WQM algorithm is described in Algo. 2. One of the key design principles in WQM is

to make minimal assumptions and take decisions based on measured statistics. For

example, WQM uses the link rate to calculate the expected queueing delay. The

operation of WQM can be divided into an initial stage and an adjustment stage. In

the initial stage, WQM selects a starting bu↵er size. This size is calculated based on a

variation of BDP [21]: the bu↵er size should be greater than or equal to the product of

the bottleneck link capacity with e↵ective end-to-end delay over that link. However,

this rule was designed initially for wired networks, and cannot be used directly in

IEEE 802.11n based networks as it does not account for A-MPDU frame aggregation.

It is obvious that the transmission time, and hence RTT, for a single frame will be

less than the transmission time of a single A-MPDU. In fact, it is not always possible

to obtain the end-to-end delay. Hence, WQM initializes the bu↵er using a single-hop

RTT that is known. Then, it uses an adaptation algorithm to increase the bu↵er size

if the actual RTT is found larger. This should minimize latency for short bursts of

tra�c and maximize utilization without sacrificing latency for longer-running tra�c.

Hence, the initial queue size can be calculated as:

Binitial = R ⇤ ARTT (5.1)

where Binitial is the initial queue size, R is the current Minstrel transmission rate,

and ARTT is the aggregate round-trip delay of a single A-MPDU transmission as

illustrated in Fig. 5.10. ARTT can be calculated as per equations 5.6 and 5.7.

After assigning the initial bu↵er size, the adjustment phase of WQM kicks in. In

this phase, the bu↵er size is tuned to match the current network load. Periodically,

106

the queueing delay is calculated using:

Tdrain =
(BL/R)

F
(5.2)

where Tdrain is queue drain time, BL is the queue backlog in bits, and F is the

percentage of time the channel is free for the sender to transmit i.e., channel is not

busy. We divide the queue draining time by the estimate of channel free time to

account for the fact that the wireless channel is a shared medium. To illustrate, if

three stations are simultaneously contending for the channel, each of them will roughly

get 1/3 of the time to transmit. Hence, the time to drain the queue is approximately

3⇥ higher compared to the case where only a single node is transmitting.

If the time to drain the queue Tdrain exceeds the predefined maximum limit for

two consecutive measurement intervals, then this is an indication that the bu↵er is

bloated. As a result, the bu↵er size is decreased to limit the amount of bu↵ering and

hence limit the queueing delay. On the other hand, if Tdrain is lower than limit for

two consecutive measurement intervals, then the queue size is increased allowing

more frames to be bu↵ered. Observing the network statistics over two consecutive

cycles before taking a corrective action helps in accounting for temporary bursty

tra�c. This corrective action cannot alter the bu↵er size beyond a minimum and a

maximum value, (i.e., Bmax > B > Bmin as described in Sec. 5.3.2 below).

Finally, we highlight that a larger Binitial may be needed to achieve maximum

utilization for multi-hop networks. However, we prefer low latency by starting with

a smaller than optimal bu↵er size that will eventually grow in the adjustment phase.

As shown in our experimental analysis in Sec. 5.4, this approach works well with both

long-lived and short-lived flows.

107

5.3.2 WQM Analysis

In this section, we define an upper and lower bound for the bu↵er size (Bmax and

Bmin, respectively) and define the maximum allowed queueing delay (limit). To find

an upper bound on the bu↵er size, Bmax, let us consider an IEEE 802.11n network

with a single TCP stream. Assume that the maximum possible transmission rate is �

packets1/s. Assuming that the TCP stream is in the congestion avoidance phase, the

congestion window is going to grow until it reaches Wmax when a packet loss happens.

As a result, the sender halves its TCP congestion window. It will wait for W
max

/2
�

before going to the transmit phase again. The bu↵er drain time is B/� s. Ideally,

the sender always transmits just before the bu↵er gets empty in order to make sure

the link is fully utilized, (i.e., W
max

/2
�  B/�), or

B � Wmax

2
(5.3)

Also, to maintain full link utilization, the sender TCP transmission rate (i.e., cwnd/ARTT)

should be at least � . Hence, W
max

/2
ARTT � �, or,

Wmax

2
� ARTT · � (5.4)

From (5.3) and (5.4),

B � � · ARTT (5.5)

Hence, the maximum bu↵er size Bmax is equal to the BDP using the maximum

possible transmission rate and the corresponding packet RTT. Mainly, ARTT repre-

sents the transmission delay as propagation delay is considered negligible in wireless

networks. Fig. 5.10 shows the MAC overhead of a single A-MPDU transmission over

1We use packets instead of bits for ease of exposition.

108

Figure 5.10: 802.11n MAC overhead per A-MPDU transmission.

IEEE 802.11n network. As per this figure, ARTT is the sum of the TCP segment

transmission time Td�DATA and the TCP ACK transmission time Td�ACK which can

be calculated as per the following equations:

Td�DATA =TBO + TDIFS + 2 ⇤ TPHY + TSIFS + TBACK

+K ⇤ (TMAC + TDATA)
(5.6)

Td�ACK =TBO + TDIFS + 2 ⇤ TPHY + TSIFS + TBACK

+K/2 ⇤ (TMAC + TTCP�ACK)
(5.7)

The system parameters for the used IEEE 802.11n network are listed in Table 5.1.

TBO is the backo↵ interval in case the channel is found to be busy. Based on both

MAC contention window and slot duration Tslot, the average backo↵ time could be

calculated as TBO = (CWmin�1)⇥Tslot/2. SIFS time interval is TSIFS and DIFS time

interval is TDIFS. TDATA and TMAC are aggregate frame and MAC header transmis-

sion times respectively. A single A-MPDU may contain K TCP segments, potentially

as large as 64kB or a total of 64 segments whichever is smaller, each with its own

MAC header. Hence, a transmission duration of K ⇤ (TDATA+TMAC) is added per A-

MPDU. The TCP ACK transmission time is TTCP�ACK whereas TBACK is the time to

109

Parameter Value
Tslot slot time = 9 µs
TSIFS shortest inter-frame space = 16 µs
TDIFS distributed inter-frame space = 34 µs
TPHY PHY preamble and header time = 33 µs
CWmin minimum contention window size = 15
CWmax maximum contention window size = 1023
TBO average back-o↵ interval = (CWmin � 1) ⇤ Tslot/2
R physical rate based on rate control algorithm (Mb/s)

Rbasic basic physical rate = 6 Mb/s
K maximum A-MPDU length

TMAC MAC header time = LMAC/R
LMAC MAC overhead = 38 bytes = 304 bits
TDATA data frame time = LDATA/R
LDATA data frame length = 1500 bytes = 12000 bits

TTCP�ACK TCP ACK time = LTCP�ACK/R
LTCP�ACK TCP ACK length = 40 bytes = 320 bits
TBACK block ACK frame time = LBACK/Rbasic

LBACK block ACK frame length = 30 bytes = 240 bits

Table 5.1: System parameters of IEEE 802.11n [2].

transmit a MAC-level block ACK frame. Assuming that TCP delayed acknowledge-

ment is used, only K/2 frames are acknowledged. TPHY is the transmission duration

of both PHY preamble and header.

The maximum bu↵er size is needed when the sender transmits with the highest

possible Tx rate, 600 Mb/s for IEEE 802.11n, and all frames are sent with maximum

A-MPDU length, i.e., K = 64 subframes. The delay for transmitting an A-MPDU

with maximum length and its block ACK (per the exchange shown in Fig. 5.10) over

a single hop is about 1.9 ms using a 600 Mb/s link. According to (5.5), the upper

bound on the bu↵er size Bmax should be 95 packets. As a lower bound, the minimum

bu↵er size Bmin should be equal to the maximum A-MPDU length allowed by the

link rate. This is because permitting the queue size to be smaller than the number

of subframes in a single A-MPDU will result in sending shorter aggregates which in

turn limits the network throughput.

110

We now compute a lower bound on the allowed queueing delay (limit). As shown

earlier, the maximum allowable aggregate length varies with the link rate. Consider

a wireless channel with high interference where the rate control algorithm chooses to

transmit at the lowest possible link rate (6.5 Mb/s for IEEE 802.11n radios). As per

the ath9k [27] aggregation implementation logic, A-MPDU aggregation is disabled

when transmitting at 6.5 Mb/s. As a result, limit should be greater than or equal to

the transmission time of one frame at the lowest possible rate. As per (5.6) and (5.7),

limit should be greater than or equal to 2.5 ms. Although di↵erent sessions may

require di↵erent value of limit, we prefer to fix the value of limit in order to enhance

the practicality of our algorithm. In fact, we test the value of limit = 2.5 ms in our

testbed experiments over multiple scenarios and find that this value allows for huge

reduction in latency while preserving the network throughput across a wide range of

bandwidths, RTTs, and tra�c loads.

5.4 Experimental Analysis

5.4.1 Implementation Details

WQM is implemented as a daemon running in Linux user space. The source code is

available at [77]. WQM controls the length of txqueue using the ifconfig utility and

gathers channel related information using the iw utility. An important parameter in

WQM is the frequency of obtaining channel statistics. WQM uses the same look-

around interval as Minstrel [22], which is the default rate control algorithm in Linux,

because the link rate is guaranteed to be fixed over this interval. Every 100 ms,

WQM obtains a sample of the current transmission rate, the bu↵er backlog, the

average A-MPDU length, and the percentage of time the channel was busy in the last

look-around. In reality, this look-around interval is found to be su�cient to collect

meaningful samples without wasting too many CPU cycles. Further, our experimental

111

Figure 5.11: WQM bu↵er size adaptation in response to variation in queue occupancy.
This figure represents the AIMD behaviour of WQM.

analysis in Sec. 5.4.2 shows that this interval is su�cient to respond quickly to changes

in the environment.

As explained earlier, if WQM estimates the queueing delay to be longer than the

desired target, then it is going to reduce the bu↵er size to lower the delay. However,

the bu↵er should not be smaller than the maximum number of subframes per ag-

gregate as this may only limit the utilization without any reduction in the latency.

On the other hand, if the queue draining time is less than target, WQM can safely

increase the bu↵er size. Our WQM implementation uses a conservative approach in

which the bu↵er size grows linearly (i.e., the bu↵er size is increased by one packet) in

response to measurements outlined in Algorithm 2. When required by the algorithm,

WQM decreases the bu↵er size by half to make sure the network latency remains

bounded. Thus, WQM strictly prefers low latency over high goodput. Fig. 5.11 il-

lustrates this behavior by showing the variation of bu↵er size over time. This AIMD

behavior of the algorithm is chosen as it experimentally outperforms all other possible

alternatives, namely AIAD, MIAD, and MIMD in terms of end-to-end delay as shown

112

Figure 5.12: Comparing the round trip delay of various versions of WQM algorithm.

in Fig. 5.12. Our testbed specification are summarized in Table 3.1.

We compare the performance of WQM to the default Linux configuration, where

the bu↵er size is set to 1000 packets, and two state of the art bu↵erbloat solution in the

literature, namely CoDel [36] and PIE [38]. Both CoDel and PIE are considered to be

parameterless with auto-tuning functionalities. Hence, we do not need to specify any

additional parameters for them. Also, both of them were evaluated only over wired

networks using the Network Simulator NS-2. It is well known that network simulators

do not represent precisely the real world because of many unrealistic assumptions. It

is good for preliminary results and/or for checking scalability on very large networks.

Similar to WQM, CoDel was evaluated while running several FTPs using TCP CUBIC

over various link rates. In a similar way, PIE was evaluated while running 5 TCP

NewReno flows over a 10 Mbps link. PIE was also evaluated while running 20 TCP

NewReno flows for 100 seconds in a small testbed. This is similar to the mutiflow

experiments we did using our testbed. We also compare the performance of WQM to

DNB which was proposed in the previous chapter.

113

Hops
Goodput (Mb/s)

Default WQM CoDel PIE DNB

1-hop 155.7 135.78 134.47 145.735 58.05
2-hops 66.67 62.64 63.89 59.226 27.8
3-hops 41.17 39.176 41.876 38.203 15.66

Table 5.2: Average goodput of WQM, CoDel, PIE, DNB, and Linux default settings
over various number of hops.

Hops
RTT (ms)

Default WQM CoDel PIE DNB

1-hop 61.51 12.98 22.19 75.7 18.33
2-hops 169.44 30.84 57.1 185.027 40.89
3-hops 224.387 49.471 90.428 261.256 74.44

Table 5.3: Mean RTT of WQM, CoDel, PIE, DNB, and Linux default settings over
various number of hops.

5.4.2 Experimental Evaluation

In this section, we present our experimental performance evaluation of WQM. WQM

performance is evaluated in a wireless testbed on our campus. The testbed hard-

ware ans software specifications are detailed in Sec. 3.1. Our experiments could be

classified into two main groups based on the number of concurrent flows used in the

experiments, namely single flow scenarios and multi flow scenarios.

Single Flow Scenarios

In this set of experiments, we run a single flow between the sender and the receiver

and measure its goodput and latency. We compare the performance of WQM to

CoDel, PIE, DNB, and the default static bu↵er size. We start by evaluating WQM in

multi-hop wireless scenarios, where we vary the number of hops between the sender

and the receiver from one to three. Hence, packets are queued multiple times before

reaching their destinations. The CDF for RTT over various topologies is shown in

Fig. 5.13 and the corresponding goodput is shown in Fig. 5.14. We would like to

114

(a) One hop (b) Two hops (c) Three hops

Figure 5.13: RTT CDF for a single flow while varying the hop count.

Figure 5.14: Goodput of a single flow while varying the hop count.

note that unless otherwise stated, all the results in this section are averaged over at

least three runs and the error bars represent the minimum and maximum values. To

make the comparison easier, we list average goodput and latency results for the all

the schemes in Tables 5.2 and 5.3, respectively. For various number of hops between

the sender the receiver, WQM reduces the network latency by at least 5⇥ compared

to both PIE and the default bu↵er size and 2⇥ compared to CoDel. To give an

example, WQM manages to reduce the mean delay in the three hops scenario from

261.3 ms in the case of PIE to only 49.47 ms at the cost of less than 5% goodput

115

reduction in the worst case. As expected, DNB su↵ers from low goodput compared to

WQM as well as other schemes. This is due to the fact that DNB chooses very small

neighbourhood bu↵er size which prevents building large frame aggregates. Hence, the

utilization of the network is going to be a↵ected due to low level of frame aggregation

in the network. We attribute the ability of WQM to outperform other schemes in

controlling the queuing delay to the achieved level of frame aggregation. Suppressing

frame aggregation increases the end-to-end delay under all scenarios as shown in

Table 5.3. This is in agreement with our earlier findings in [78]. Furthermore, it is

clear that the needed bu↵er size in wireless networks is much lower than the bu↵er

size limit in PIE which is 1000 packets.

In order to support backward compatibility, IEEE 802.11n devices disable frame

aggregation if the receiver is not capable of dealing with aggregates. To test this sce-

nario, we repeat the previous set of experiments after disabling A-MPDU aggregation.

For various hop counts, the RTT CDF and average goodput are shown in Fig. 5.15

and 5.16 respectively. Compared to the default case with 1000 packets bu↵er, WQM

achieves upto 7⇥ reduction in latency while having similar goodput. As expected,

WQM performs as good as CoDel and PIE in terms of delay and goodput when ag-

gregation is disabled. This set of experiments show that even if the Wi-Fi devices are

not deployed in green field mode, i.e., the network is not solely composed of IEEE

802.11n devices, WQM can still maintain an acceptable network latency. It is also

worth noting that these experiments show that A-MPDU frame aggregation helps

deflating the bu↵er which results in significant queueing delay reduction from about

two seconds to only half a second in the worst case.

To evaluate WQM under various channel conditions, the same set of experiment

are repeated three times while varying the distance between the testbed nodes. We

start with the default distance in our testbed which is 10 m, then increase it to 20

m, and finally to 30 m. Delay and goodput results are shown in Fig. 5.17 and 5.18

116

(a) One hop (b) Two hops (c) Three hops

Figure 5.15: RTT CDF for a single flow while varying the hop count after disabling
A-MPDU frame aggregation.

Figure 5.16: Goodput of a single flow while varying the hop count after disabling
A-MPDU frame aggregation.

respectively. As expected, nodes that are far from each other su↵er from longer delay

compared to closer nodes. In all the three cases, WQM outperforms CoDel, PIE

and the default bu↵er size in terms of RTT at the cost of 7% drop in goodput in

the worst case. It is interesting to note that the gap in goodput between WQM

and the other schemes shrinks as the distance between the nodes gets longer. This

happens because the rate control algorithm, which is enabled by default in our testbed,

reduces the transmission rate when the transmitter and the receiver are far from each

other in order to increase the link reliability. This in turn lowers the BDP i.e., the

117

(a) 10m (b) 20m (c) 30m

Figure 5.17: RTT CDF while varying the distance between nodes in the testbed.

Figure 5.18: Average goodput achieved while varying the distance between nodes.

needed bu↵er in the network. As a result, the e↵ect of WQM small bu↵er on network

utilization is going to be minimal in this case.

Finally, we evaluate the performance of WQM using short flows. In all previous

experiments, long flows of 100 s are used to simulate large file transfers that are able

to saturate the channel and fill the bu↵ers. However, short flows are also common in

real life. To test this scenario we repeat the same set of experiments while varying the

flow duration from 5, 10, to 15 s and observe the delay and goodput. To get accurate

results, we repeat every experiment 10 times and report the average. The CDF of

RTT is shown in Fig. 5.19 and the average goodput is shown in Fig. 5.20. It can be

118

(a) 5s (b) 10s (c) 15s

Figure 5.19: RTT CDF while varying the flow duration.

Figure 5.20: Average goodput achieved while varying the flow duration.

observed that in all cases the delay is bounded to 150 ms which is a direct implication

of not building the bu↵ers. However, WQM is still achieving the best reduction in

RTT compared to all other schemes. In the worst case, this reduction comes at the

price of 8% drop in goodput.

Multi Flow Scenarios

In this section, we evaluate the performance of WQM while running multiple concur-

rent flows instead of only one between the transmitter and the receiver. In the first

119

(a) One flow (b) Three flows (c) Five flows

Figure 5.21: RTT CDF of various concurrent flows over a single hop topology.

Figure 5.22: Average goodput with multiple flows over a single hop topology.

set of experiments, we increase the number of concurrent flows from one to five, and

measure the overall network goodput and latency for WQM, CoDel, PIE as well as

the default static bu↵er. The RTT CDF for 1, 3, and 5 flows are shown in Fig. 5.21

and the average per flow goodput for the three cases are shown in Fig. 5.22. For

all scenarios, WQM reduces the network latency by at least 5⇥ compared to both

PIE and the 1000 packets bu↵er at the cost of 13% goodput reduction in the worst

case. Compared to CoDel, WQM reduces the delay by almost 2⇥. Goodput results

of WQM and CoDel are within error bounds of each other. Note that as the number

120

(a) One flow (b) Three flows (c) Five flows

Figure 5.23: RTT CDF of various concurrent flows over a single hop topology after
disabling A-MPDU aggregation.

Figure 5.24: Average goodput with multiple flows over a single hop topology after
disabling A-MPDU aggregation.

of flows increases, the default scheme su↵ers from severe unfairness (including starva-

tion) between the flows, as reflected by the error bars. For example, JFI value for the

default case is 0.7 for the 3 flows case, compared to 0.99 for all other schemes. Large

bu↵ers in the default scheme lead to severe unfairness because one or more flows

can fill up the bu↵er quickly while starving others. WQM prevents this behavior by

simply controlling the number of bu↵ered packets.

As mentioned earlier, frame aggregation might be disabled in certain cases. To

test the performance of WQM under these scenarios, we repeat the previous set

121

Source 1st Hop 2nd Hop 3rd Hop

Flow # 1

Flow # 2

Flow # 3

Figure 5.25: Illustration of the parking lot topology used in our experiments.

of experiments while disabling A-MPDU aggregation. The latency performance is

shown in Fig. 5.23 and the average per flow goodput is shown in Fig. 5.24. When

compared to the default static bu↵er size, WQM reduces the delay by around 7⇥

while getting similar goodput. WQM is performing as good as both CoDel and PIE

in this case. This is happening because WQM accounts for frame aggregation when

selecting the optimal bu↵er size. As illustrated in Sec. 5.3.2, the number of sub-

frames per aggregate, which is one packet in this case, will be used as a lower bound

to bu↵er size in WQM. In fact, this one packet limit is what CoDel and PIE use in

their bu↵ers. After all, this set of experiments show that WQM still performs as good

as the state of the art even at border cases.

Finally, we analyze the performance of WQM over both multi-hop and multi-flow

scenarios. In this experiment, nodes are organized in a parking lot topology, as shown

in Fig. 5.25, where three flows starts simultaneously from the same source but are

destined to di↵erent nodes in the network. In our case, we use three flows in a three

hop topology where the 1st flow ends at the first hop from the destination, the 2nd

flow stops at the second hop and the 3rd flow is the only one that reaches the third

hop. This experiment is repeated several times while enabling and disabling Minstrel

which is the default rate control algorithm. When disabled, the rate is set manually

to either 6.5, 13, 65 or 144.4 Mb/s. The mean RTT per flow as well as the total

122

(a) One hop flow (b) Two hops flow

(c) Three hops flow (d) Net goodput

Figure 5.26: Average end-to-end delay per flow and total goodput in the parking lot
topology.

goodput achieved by the three flows combined are shown in Fig. 5.26. Similar to

the previous experiments, error bars represent maximum and minimum values over

at least three runs. When compared to the default bu↵ering scheme, WQM reduces

end-to-end delay by 8⇥ for the one hop flow, 6⇥ for the two hops flow and at least 4⇥

for the three hops flow regardless of the transmission rate. This reduction in queuing

delay does not come at the price of significant goodput reduction. This is another

proof that such a large bu↵er is not always needed. Also, WQM outperforms CoDel

in terms of delay and goodput in all the cases. For example, WQM reduces queueing

delay by 2⇥ compared to CoDel when Minstrel is enabled while achieving slightly

123

better goodput. Since aggregation is disabled at 6.5 Mb/s link rate, PIE performance

is close to WQM performance. As the rate increases, the gap between PIE and WQM

gets bigger as longer aggregates are being transmitted. In the worst case, PIE su↵ers

from 7⇥ more latency compared to WQM.

124

Chapter 6

Bu↵er Management in Wireless

Full-Duplex Systems

6.1 Introduction

The long-held assumption that wireless devices can only operate in half-duplex mode

is not true after the appearance of the full-duplex wireless systems. Traditionally,

a radio is not able to transmit and receive simultaneously using the same channel

because the antenna at the receiver side is going to hear its own transmission which

is hundreds or thousands of times stronger than the signals coming from other nodes.

In fact, full-duplex systems [79] [80] have succeeded in challenging this assumption

by using cancellation techniques to cancel self-interference and eliminate the noise

created by transmit signal.

Recent research e↵orts proved the feasibility of wireless full-duplexing as illus-

trated in Fig. 6.1, thanks to interference cancellation techniques. Choi et al. [79]

achieved a single channel full-duplex wireless communication by introducing a novel

self-interference cancellation scheme called “Antenna Cancellation”. The insight be-

hind antenna cancellation is that the transmissions from multiple antennas could be

added destructively when placing the receive antenna in a specific location. How-

ever, this design su↵ers from many limitations. First of all, the prototype requires 7

125

Figure 6.1: Bidirectional full-duplexing and relay full-duplexing.

inches of spacing between antennas which makes it unsuitable for today’s tiny wireless

cards. In addition, it supports neither wide bandwidths, such as the 20 MHz IEEE

802.11 Wi-Fi signals, nor high transmit powers. Moreover, antenna cancellation is

very sensitive to antennas placement mismatch.

To overcome these limitations, Jain et al. [80] proposed a full-duplex radio de-

sign based on a balanced/unbalanced (Balun) transformer. The mechanism known

as “balun cancellation” exploits signal inversion using a balun circuit in an adaptive

manner to match the self-interference signal. This design, unlike the antenna cancel-

lation based design, eliminates the bandwidth constraint and supports high transmit

powers. While it solves many problems related to wireless full-duplex systems, this

cancellation mechanism is very sensitive to delays and needs very sophisticated elec-

tronic components. Further, TX and RX antennas are separated by 20 cm which

represents an engineering limitation especially for mobile devices like tablets and

mobile phones.

In 2012, a group of researchers form Rice University [81] implemented a practi-

cal 20 MHz IEEE 802.11 multi-antenna full-duplex system. Their design achieves

almost the intended doubling of throughput. In addition, Hong et al. [82] introduced

a transparent spectrum slicing scheme called “Picasso” which allows simultaneous

transmission and reception on separate and arbitrary spectrum fragments using a

126

single antenna. Picasso solves the problem of leaking of interference into adjacent

spectrum especially in Wi-Fi Orthogonal Frequency-Division Multiplexing (OFDM)

signals. After that, several other implementations of full-duplex systems appeared

such as the implementation of full-duplex IEEE 802.11ac radio using a single antenna

for both transmit and receive [83]. This achievement was made possible thanks to

the use of an analog cancellation board and a circulator.

The research about full-duplex did not stop at this point. Bharadia & Katti [84]

demonstrated that full duplex can be combined with MIMO putting an end to compar-

isons between the performance of MIMO half-duplex and full-duplex systems. Con-

ceiving a MIMO full-duplex design was not a simple task because a single antenna in

the MIMO full-duplex system may su↵er not only from the ordinary self-interference

but also from a very strong cross-talk coming from neighboring antennas in the TX

chain. In fact, the use of multiple Single Input Single Output (SISO) full-duplex

replicas to implement full-duplex MIMO is ine↵ective due to several complexity and

scalability issues. In order to reduce complexity, the proposed design exploits the

fact that neighboring MIMO antennas share a similar radio environment. Hence, this

solution is based on creating a cascaded filter structure.

Full-duplex systems have shown great potential to solve important challenges in

wireless networks such as hidden terminals, loss of throughput due to congestion, and

large end-to-end delays [79]. In fact, the idea of receiving and forwarding simultane-

ously can reduce the large end-to-end delays in multi-hop networks since a full-duplex

node can simultaneously start forwarding a packet to the next hop while receiving

it. However, full-duplex relaying is not su�cient to completely solve the problem of

high latency in today’s networks. For instance, wired networks operate in full-duplex

mode and still su↵er from unacceptable delays. If we take into consideration the fact

that wireless spectrum is a shared resource between a set of neighboring nodes even in

full-duplex mode, the situation will be worse. In order for existing wireless full-duplex

127

designs to have large scale deployments, they should address such challenges. To ad-

dress the issue of bu↵erbloat in wireless full-duplex systems, we propose using WQM

mechanism to manage the bu↵ers in the full-duplex nodes. As explained in Ch. 5,

WQM dynamically adjusts the bu↵er size according to queue draining time and cur-

rent size. To the best of our knowledge, this is the first attempt to address the bu↵er

management issue in wireless full-duplex systems. We demonstrate through simula-

tion that WQM has succeeded to decrease latency by two orders of magnitudes while

achieving better throughput compared to the conventional Drop Tail mechanism.

6.2 Approach

Typically, wireless devices have two types of bu↵ers, namely transmit bu↵ers and

receive bu↵ers. The latter usually do not get bloated due to good processing capabil-

ities in today’s wireless devices. In the case of multi-hop networks, the wireless node

processes incoming packets and may forward some of them to the transmit queue in

case this node is not their final destination. Since bloated transmit bu↵er may cause

long queuing delay, we focus on managing this kind of bu↵er in full duplex systems.

We believe that adaptive bu↵er sizing techniques for half-duplex systems could be

reused in the full-duplex domain. However, in order to do so we must address several

challenges in designing a bu↵er sizing method that is suitable for wireless full-duplex.

Moreover, adaptive bu↵er sizing can be used to improve the energy e�ciency of radio

design.

The majority of AQM based bu↵er management techniques that we discuss previ-

ously in Sec. 2.3 are not initially designed for wireless networks. Hence, they are not

capable to support various challenges related to the wireless medium such as adaptive

transmission rate, frame aggregation, link scheduling etc. In the previous chapters,

we present two bu↵er management methods that are specifically designed to comply

128

with the requirements of wireless networks. We show that these techniques performs

well over wireless half-duplex systems. Nevertheless, there is a lack in the literature

about the suitable methods to manage the bu↵er of a full-duplex node. Moreover,

the impact of such techniques on network metrics such as latency and throughput

needs to be analyzed. Our primary goal in this chapter is to study the interaction

between bu↵er management techniques and wireless full-duplex systems. To be able

to analyze the performance of bu↵er management methods in a wireless full-duplex

environment, we need to modify the bu↵er module in our wireless full-duplex testbed

in order to stimulate the adaptive bu↵er management behavior.

In Chapter 5, we propose a queue management scheme for wireless networks called

WQM. It uses an adaptive bu↵er sizing algorithm that estimates periodically the

bu↵er draining time using current transmission rate, backlog queue and the number

of neighboring nodes. In fact, WQM varies the bu↵er size depending on bu↵er drain-

ing time. Once this draining time exceeds a predefined value, an alarm is raised and

the bu↵er size is going to be reduced. In comparison to CoDel and PIE, WQM demon-

strates better performance using an ordinary IEEE 802.11n half-duplex testbed. The

novelty of WQM lies in the fact that it is designed to address the unique challenges of

bu↵er sizing in wireless networks [85]. This is what motivates us to implement WQM

on top of our wireless full-duplex deployment with minor changes as detailed in the

next section.

6.3 Implementation

We based our work on a simulation of full-duplex communication in a multi-hop

environment using the discrete-event network simulator NS-3 [86]. In our implemen-

tation, we deploy Relay Full-Duplex MAC (RFD-MAC) protocol [87] by extending

the Wi-Fi module in NS-3.20 [88]. RFD-MAC is a media access control protocol

129

Figure 6.2: RFD-MAC time sequence.

that is specifically designed for relay full-duplexing. Multi-hop networks can handle

bidirectional full-duplexing as well as relay full-duplexing. The di↵erence between

these two schemes is illustrated in Fig. 6.1. Bidirectional full-duplexing means that

the wireless node is able to send and receive to/from the same node simultaneously.

In Relay full-duplex scenario, node 2 can receive a frame from node 1 and forward

a frame to node 3 at the same time. To maximize full-duplex capability, RFD-MAC

must choose a secondary transmission node properly. For example, node 2 has two

candidates for a secondary transmission node: nodes 1 and 3. If it selects a node that

does not have a frame, then relay full-duplexing does not occur.

RFD-MAC takes into account the possibility of collisions between primary and

secondary transmissions. A collision may occur at the receiver node when a primary

transmission node is placed within the transmission range of a secondary transmission

node and vice versa. Every node builds its own surrounding node table and exploits

this table to choose a secondary transmission node. By doing so, RFD-MAC avoids

collisions between primary and secondary transmissions. The algorithm of selecting

the secondary node is based on a priority set. Whenever a node completes the trans-

mission of a frame before the receiving is done, RFD-MAC uses a busytone until the

reception is complete. Then, the primary and secondary transmission nodes exchange

ACK frames to finalize the full-duplex transmission session as shown in Fig. 6.2. This

scheme does not completely eliminate collisions because the receiver is susceptible to

collisions until the reception of the packet header is complete.

130

We choose to implement our proposed method using NS-3 because it was built to

improve the realism of the transmit stack of Linux based computers [89]. In the Wi-Fi

module of NS-3, the internal queues of Wi-Fi Net Devices have di↵erent architecture

compared to the traditional bu↵ers used elsewhere. In fact, to implement WQM in

NS-3, we need to modify the source files of the Wi-Fi module. The insight behind

our work is to adaptively size the transmit packet queue and enforce upper and lower

limits on its size. After doing the required analysis, we find that the maximum needed

bu↵er size based on our network setup is 24 packets and the initial bu↵er size should

be set to 2 packets. In WQM, the bu↵er size is not allowed to be less than one

packet. We drew the attention of the reader that the default bu↵er size for Drop Tail

in NS-3 is 400 packets. Also, it is important to mention that WQM does not operate

at the physical layer. Hence, it is not going to be directly a↵ected by the level of

self-interference in the network.

We would like to note that our current implementation is slightly di↵erent from

the original WQM implementation. First, in our implementation we use an Ad-Hoc

Wi-Fi network based on IEEE 802.11a standard [90] in which the link rate can vary

between 6 Mb/s and 54 Mb/s. All devices are configured with Adaptive Auto Rate

Fallback (AARF) rate control algorithm [91] instead of Minstrel. AARF attempts to

increase the transmission rate after a predefined number of successful transmissions

at the current rate. To ensure the stability of the channel, AARF increases its success

threshold before attempting to switch to a higher rate by remembering the number

of failed probes. In case of two consecutive packet losses, it lowers the transmission

rate one step and resets the success threshold to 10. In its original version, WQM

is synchronized with Minstrel which is tuned every 100 ms. This is not the case for

our current setup since AARF is based on packet transfer status. Thus, we choose

to tune the bu↵er size for every incoming packet to the transmit queue. Second, the

simulation of full-duplex communication [86] is not QoS-enabled and hence it doesn’t

131

Figure 6.3: Topology of single flow scenario.

Figure 6.4: Topology of bidirectional flows scenario.

support frame aggregation. So, we modify the WQM algorithm to deal with disabled

frame aggregation.

6.4 Performance evaluation

In this section, we compare the performance of WQM to Drop Tail mechanism in

the full-duplex environment. We choose Drop Tail because it is the default bu↵ering

scheme in NS3. We test our implementation over two scenarios: single flow scenario

as illustrated in Fig. 6.3 and bidirectional flows scenario as illustrated in Fig. 6.4.

These topologies represent typical relay full-duplex networks in the Ad-Hoc mode.

The distance between nodes in the network is fixed to 90 m. The routing protocol

used in the simulation is Ad-hoc On Demand Distance Vector (AODV). We repeat

all the experiments multiple times while varying the number of nodes in the network

and the sender transmission rate. The simulation parameters are summarized in

Table 6.1.

132

Prameter Value

Wi-Fi Standard IEEE 802.11a

Radio Band 5 GHz

Packet size 1500 Bytes

Default m queue size 400 packets

Amount of data transferred 100 MB

Distance between nodes 90 m

Routing protocol AODV

Rate control algorithm AARF

Table 6.1: Simulation parameters summary.

6.4.1 Single flow scenario

As shown in Fig. 6.3, when the simulation starts, node 1 transmits a flow of packets

towards node n, which is the last node in the network. This setup tries to mimic the

transfer of a large file between nodes in the network. Every packet carries 1500 bytes

worth of data. The simulation ends when node n receives 100 MB worth of bytes

or when 1000 seconds is elapsed from the start of simulation, whichever happens

first. We start collecting various network metrics after the receiver node receives the

first 100 packets. In all our experiments, we vary the source rate gradually from 100

packets/s to 1000 packets/s. We repeat each experiment multiple times while varying

the number of nodes in the network from three to five. To increase the reliability

of our results, we run every experiment at least twice and report the average of the

results. The end-to-end delay is shown in Fig. 6.5, goodput results are shown in

Fig. 6.6 and the collision rate is shown in Fig. 6.7. We would like to note that we

use the logarithmic scale for the y-axis in the latency figures to be able to show the

di↵erence between the two schemes.

As expected, WQM outperforms Drop Tail in terms of latency reduction. When

the bu↵er is bloated, WQM reduces the latency by an average of 109⇥ for the three

nodes case, 208⇥ for the four nodes case and 49⇥ for the five nodes case. In compari-

133

Figure 6.5: End-to-end latency while varying source rate for the single flow scenario.

Figure 6.6: Goodput while varying source rate for the single flow scenario.

son to Drop Tail, WQM manages to reduce up to 99% of the encountered latency. For

example, in the four nodes case and using a transmission rate of 800 packets/s, WQM

reduces the end-to-end delay from 4094.51 ms to only 18.91 ms, which represents two

orders of magnitude reduction. In fact, the default bu↵ering scheme leads to latency

in the order of seconds in all scenarios. When the source rate reaches more than

300 packets/s, the end-to-end latency reaches 1 s for the three nodes case, around

4 s for the four nodes case and approximately 1.5 s for the five nodes case. On the

contrary, WQM maintains a delay less than 10.27 ms for the three nodes topology,

less than 20.69 ms for the four nodes topology and less than 29.32 ms for the five

nodes topology. It is obvious from these figures that selecting the optimal bu↵er size

results in significant queuing delay reduction.

As shown in Fig. 6.6, the goodput results of WQM su↵er from less variation

compared to Drop Tail. In the case of three nodes topology, WQM drops the goodput

by an average of 9% compared to the default bu↵ering scheme in NS-3. However,

134

Figure 6.7: Collision rate while varying source rate for the single flow scenario.

when the number of hops is increased, WQM improves the network goodput. On

average, it increases the goodput by 7.7% and 25% for the four and five nodes scenario

respectively when the network is congested. Furthermore, We attribute this to the

ability of WQM to reduce the collision rate between the primary and secondary

transmissions when the number of hops is increased as illustrated in Fig. 6.7. In fact,

as the source rate increases, the bu↵er in the case of Drop Tail fills up quickly leading

to extra latency and higher collision rates. The bu↵erbloat point in our experiments

is located between 300 packets/s and 400 packets/s which is very close to the default

static bu↵er size in our implementation (400 packets). As expected, the situation gets

worse when there are more nodes in the network. This is a clear proof that static

bu↵ers are not suitable for full-duplex wireless networks.

6.4.2 Bidirectional flows scenario

In this section, we evaluate the performance of WQM in the presence of bidirectional

flows in the network. We run two 50 MB flows simultaneously in opposite directions

between the edge nodes in the network as illustrated in Fig. 6.4. Similar to the single

flow scenario, we vary the number of nodes from three up to five and vary the source

rate gradually from 100 packets/s to 1000 packets/s. The end-to-end latency, goodput

and collision rate between the primary and the secondary transmission are shown in

Fig. 6.8, 6.9 and 6.10 respectively.

135

Figure 6.8: End-to-end latency while varying source rate for the bidirectional flows
scenario.

Figure 6.9: Goodput while varying source rate for the bidirectional flows scenario.

Similar to the single flow scenario, when the source rate is equal to or higher

than 300 packets/s, WQM reduces network latency by an average of 126⇥ for the

three nodes case, 181⇥ for the four nodes case and 40⇥ for the five nodes case. For

instance, when the network consists of three nodes and both the sources operate at

600 packets/s, WQM manages to drop the end-to-end latency from 1646.15 ms in

Drop Tail case to only 12.61 ms which represents two orders of magnitudes delay

reduction. This achievement comes at the cost of around 10% reduction in goodput.

It could be noticed that when the sources are operating at high transmit rates, WQM

su↵ers from 50% drop in goodput in the three nodes case. We attribute this to the

high collision rate in this case as shown in Fig. 6.10.

As we increase the number of nodes in the network, we notice that WQM out-

performs Drop Tail in terms of network goodput. In the five nodes case, the average

increase in goodput is about 24%. We would like to note that in the four nodes

136

Figure 6.10: Collision rate while varying source rate for the bidirectional flows sce-
nario.

Figure 6.11: Full-duplex Ratio for the four nodes scheme.

topology, Drop Tail have slightly better goodput than WQM in several cases even

though the latter achieves lower collision rate as shown in Fig. 6.10. We investigate

this issue and find that WQM have inferior full-duplex ratio in this case as illustrated

in Fig. 6.11. This reduction varies between 2.87% and 8.81% in comparison to Drop

Tail and may limit the ability of WQM to utilize the drop in collision rate. Despite

this limitation, WQM manages to enhance goodput from 2.48 Mbps to 5.92 Mbps

when both sources are transmitting 800 packets/s.

The collision rate for both WQM and Drop Tail are shown in Fig. 6.10. For

the three nodes case, WQM has higher collision rate compared to Drop Tail. On

average, WQM su↵ers from 1.15% more collisions. This fact combined with limited

bu↵er size may explain the significant drop in goodput mentioned before. However,

137

with larger topologies, WQM achieves an average of 1.46% and 7.63% reduction in

collision rate for four and five nodes topology, respectively. The ability of WQM to

increase the goodput with larger networks compared to Drop Tail is undoubtedly a

great achievement.

Overall, WQM keeps the end-to-end latency below 15.57 ms for the three nodes

topology, below 20.81 ms for the four nodes topology and below 34.84 ms for the five

nodes topology which is an acceptable delay for real time applications such as VoIP,

online gaming, video streaming, etc. As mentioned earlier, WQM manages the bu↵er

in an e↵ective manner and prevents building up large bu↵ers at the bottleneck links.

138

Chapter 7

Concluding Remarks

In the last few years, the world witnessed a dramatic growth in using mobile and

wireless networks. Mobile devices such as smart phones and tablets are replacing

the traditional desktops and becoming principal computing devices. Recent studies

reveal that the number of wireless users in a any given country exceeds its own

population [92]. As a result, improving the performance of wireless systems in terms

of latency and capacity is extremely important.

Bu↵er sizing has extensively been studied in the context of core Internet routers

handling a large number of flows. These networks have a large BDP. On the other

hand, wireless networks usually have a much smaller BDP, translating to small bu↵er

sizes. However, very small bu↵ers may degrade the network utilization. In fact, con-

figuring these bu↵ers in commodity OS (such as Linux) is challenging because bu↵ers

are spread over multiple layers in the software stack. Moreover, new enhancements in

the IEEE 802.11n/ac standard, such as frame aggregation, complicates this problem

even further. We show that optimally sizing bu↵ers is not only important for real-

time tra�c, but also for TCP flows sharing the bottleneck bu↵er as well. We classify

wireless bu↵er sizing schemes into two categories: network centric and end-to-end

centric methods. As shown in this dissertation, it is very di�cult to have a single

optimal bu↵er that suites all types of wireless networks. Through careful sizing of

various bu↵ers, the goal is to achieve high utilization of the bottleneck spectrum while

139

maintaining short queueing delays. In this context, two bu↵er sizing schemes have

been proposed, namely DNB and WQM. The former focuses on solving the bu↵er

sizing for WMNs whereas the latter accounts for frame aggregation while deciding

about the optimal bu↵er size to be used.

DNB introduces the concept of a neighborhood bu↵er. This bu↵er is going to be

distributed over multiple nodes in order to determine the cumulative bu↵er size that

can saturate the spectral resource constituting the network bottleneck. It uses heuris-

tics for sizing the cumulative neighborhood bu↵er, and for distributing it amongst

the contending nodes. Performance evaluation using simulations and testbed exper-

iments show that DNB can e↵ectively maintain high network utilization with short

delay. There are interesting avenues for future work in this area. DNB distributes

the neighborhood bu↵er among the nodes using a simple cost function where the cost

of a packet drop along a path increases linearly with the hop count. With multi-rate

hops along a path, this cost may not increase linearly. Other alternatives, such as

dropping packets only on the first hop, may perform better. Further, DNB uses a

loose upper bound on achievable network capacity to size the neighborhood bu↵er. A

possible extension to DNB is to add an adaptive component in which the nodes in a

radio neighborhood measure the current flow rates to estimate the network carrying

capacity and adjust their allocated bu↵er sizes in response. This adaptive scheme

would fare better in multi-flow networks as well as in wireless networks susceptible

to large variability in channel noise and interference.

Enhancements in IEEE 802.11n/ac standards, such as frame aggregation, exac-

erbate the challenges of optimal bu↵er sizing in wireless networks. Large bu↵ers

may lead to long end-to-end delays in the order of seconds. To address this issue,

we propose a practical, adaptive, and lightweight queue management scheme called

WQM. It chooses the bu↵er size based on network load, channel condition, and frame

aggregation level. WQM is implemented in Linux and tested on a wireless testbed.

140

We prove through experiments over various single-hop and multi-hop scenarios that

WQM can reduce the end-to-end latency by a factor of 8⇥ compared to the default

Linux configuration. Further, WQM outperforms other state of the art bu↵erbloat

solutions such as CoDel and PIE by a factor of 7⇥ in terms of delay reduction. In

the worst case, this reduction comes at the cost of 8% drop in goodput. Finally, we

show that WQM improves flow fairness as it limits the ability of one of the flows to

saturate the bu↵ers. We are pursuing a number of interesting avenues for future work.

We are currently evaluating WQM using a combination of both short and long-lived

flows across multiple topologies. Further, we plan to evaluate WQM using flow sep-

aration as well as by replacing its drop tail approach with selective drop algorithms.

Moreover, we would like to study the interaction between TCP pacing and frame

aggregation and its consequences for bu↵erbloat in wireless networks. Also, it would

be interesting to evaluate the e↵ect of having an adaptive look-around interval in our

algorithm. Finally, we would also like to test WQM using wireless devices with IEEE

802.11ac compatible radios.

Recently, wireless full-duplexing imposes itself as a reality turning on very promis-

ing area of research. We tackle the problem of bu↵er management in full-duplex sys-

tems and analyse the gains in terms of latency of implementing AQM on top of such

systems. We prove through simulation over multiple scenarios that WQM can de-

crease latency in relay full-duplex networks by two orders of magnitudes. We believe

that this opens a new research direction as it evaluates the interaction between bu↵er

management and full-duplex design. In the future, we will consider other methods

to evaluate WQM using real testbed such as Wearable Reference Platform (WaRP)

boards and also test the performance using the most recent Wi-Fi standard. Further,

we aim to design a novel bu↵ering scheme for full-duplex devices that takes into con-

sideration internal queues as well as ring bu↵ers. Finally, we would like to investigate

the e↵ect of bu↵er management on the energy e�ciency of full-duplex systems.

141

Chapter 8

Future Research Work

We believe that fixing bu↵erbloat at the wireless edge requires work along multiple

lines, creating complementary solutions that, taken together, may address the myriad

challenges described in this dissertation.

8.1 Frame aggregation schedulers

IEEE 802.11 standard specifications have left the design of A-MPDU aggregation

schedulers open to vendor implementation, creating the space for well-designed sched-

ulers that can balance the various performance tradeo↵s in a wireless network. Our

analysis shows that e�cient design of A-MPDU aggregation schedulers can boost

goodput while simultaneously reduce end-to-end delays [78]. This can be attributed

to two factors: (1) Each A-MPDU includes a single PHY preamble and header, sig-

nificantly reducing this overhead as these headers are usually transmitted at base

rate for backward compatibility with 802.11 a/b/g nodes. (2) A single channel access

can transmit as many as 64 subframes, and in response receive a single block ACK.

However, even with aggregation enabled, RTT values can still exceed approximately

100 ms over a single wireless hop. We anticipate that the performance will dete-

riorate further in noisy radio environment as well as in multi-hop networks. These

delays may potentially further exacerbate with the emerging 802.11ac standard which

142

also supports A-MPDU frame aggregation with the following main di↵erences from

802.11n:

1. Supports aggregates as large as 1 MBytes compared to 64 KBytes for 802.11n.

2. Always transmits frames as A-MPDUs, even if the sender is transmitting a

single frame only.

We believe some of these challenges may be addressed through a cross-layer ap-

proach where the impact of frame aggregation scheduler is considered at multiple

layers in the protocol stack. In particular, bu↵er sizing mechanisms may need to

account for the current A-MPDU sizes, among other wireless channel characteristics.

It may need to ensure that the wireless driver will always have su�cient packets in

queue to maximize the gains that can be achieved through frame aggregation.

8.2 Wireless compatible active queue management

Bu↵er sizing and AQM algorithms may be considered as complementary solutions

that can be used in conjunction. As such, the combined e↵ect of the two schemes

needs to be studied through both analyses and experimentation. Traditional AQM

algorithms may fail in a wireless environment where the queue size may not always be

the best indicator of network congestion. Newer algorithms, such as CoDel, address

this challenge by using the packet sojourn time to interpret congestion. Thus, the

optimal queue backlog is a function of the bu↵er drain time, and this varies in re-

sponse to changing channel conditions. Analyzing and adapting the behavior of AQM

algorithms with dynamic bu↵er sizing under this environment needs to be studied in

more details.

143

8.3 Virtual queueing

The AP or BS transmits data to multiple client devices, each experiencing di↵erent

channel conditions. As a result, the bu↵er size suitable for one client device may

deteriorate the performance of another. One solution is to implement a per station

virtual queue to segregate the tra�c for di↵erent nodes. We believe that some variant

of fair queuing is necessary to isolate the impact of one wireless device from the other.

This can also help improve fairness between flows with di↵erent congestion window

sizes.

8.4 Fine-tuning TCP

End-to-end solutions may be easier to deploy in controlled networks, such as cellular

networks. This is particularly beneficial when the operator cannot access/configure

bottleneck router bu↵ers along the tra�c route. The TCP stack on client devices can

be modified through updates pushed out to smartphones locked by the operator. It

is more beneficial to implement these changes at the client side (than at the BS) as

the client has more accurate information about the last-hop wireless link.

144

REFERENCES

[1] M. Gast, 802.11n: A Survival Guide. O’Reilly Media, Inc., 2012.

[2] IEEE LAN/MAN Standards Committee, IEEE 802.11 Wireless LAN medium

access control (MAC) and physical layer (PHY) specifications, IEEE, 2012.

[3] C. Sta↵, “Bu↵erbloat: what’s wrong with the internet?” Commun. ACM, vol. 55,

no. 2, pp. 40–47, Feb. 2012.

[4] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: illuminating

the edge network,” in Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, ser. IMC ’10, 2010, pp. 246–259.

[5] G. Linden, “Make data useful,” 2006.

[6] S. Stefanov, “Exceptional website performance with YSlow 2.0,” China Software

Developers Network (CSDN), 2008.

[7] V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High

Performance,” Internet Engineering Task Force, RFC 1323, May 1992. [Online].

Available: http://www.rfc-editor.org/rfc/rfc1323.txt

[8] The network simulator - ns-2. http://www.isi.edu/nsnam/ns.

[9] Bu↵erbloat. http://www.bu↵erbloat.net/.

[10] M. Allman, “Comments on bu↵erbloat,” SIGCOMM Comput. Commun. Rev.,

vol. 43, no. 1, pp. 30–37, Jan. 2012.

[11] A. Araldo and D. Rossi, “Bu↵erbloat: passive inference and root cause analysis,”

Telecom ParisTech, Tech. Rep. TECHREP-13b, 2013.

http://www.rfc-editor.org/rfc/rfc1323.txt
http://www.isi.edu/nsnam/ns
http://www.bufferbloat.net/

145

[12] J. Gettys and K. Nichols, “Bu↵erbloat: dark bu↵ers in the internet,” Commun.

ACM, vol. 55, no. 1, pp. 57–65, Jan. 2012.

[13] T. Cardozo, A. da Silva, A. Vieira, and A. Ziviani, “Bu↵erbloat systematic

analysis,” in Telecommunications Symposium (ITS), 2014 International, Aug

2014, pp. 1–5.

[14] O. Hohlfeld, E. Pujol, F. Ciucu, A. Feldmann, and P. Barford, “A QoE per-

spective on sizing network bu↵ers,” in Proceedings of the 2014 Conference on

Internet Measurement Conference, ser. IMC ’14, 2014.

[15] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router bu↵ers,” in Pro-

ceedings of the 2004 conference on Applications, technologies, architectures, and

protocols for computer communications, ser. SIGCOMM ’04, 2004, pp. 281–292.

[16] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden, “Routers

with very small bu↵ers,” in Proc. of the IEEE INFOCOM ’06, Apr. 2006.

[17] G. Raina and D. Wischik, “Bu↵er sizes for large multiplexers: Tcp queueing

theory and instability analysis,” in Next Generation Internet Networks, 2005,

April 2005, pp. 173 – 180.

[18] K. Jamshaid, B. Shihada, L. Xia, and P. Levis, “Bu↵er sizing in 802.11 wireless

mesh networks,” in Mobile Adhoc and Sensor Systems (MASS), 2011 IEEE 8th

International Conference on, Oct. 2011, pp. 272 –281.

[19] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling bu↵erbloat in 3g/4g net-

works,” in Proceedings of the 2012 ACM conference on Internet measurement

conference, ser. IMC ’12, 2012, pp. 329–342.

[20] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla, “The impact of multihop

wireless channel on TCP throughput and loss,” in INFOCOM 2003. Twenty-

Second Annual Joint Conference of the IEEE Computer and Communications.

IEEE Societies, vol. 3, March 2003, pp. 1744–1753 vol.3.

[21] C. Villamizar and C. Song, “High performance TCP in ANSNET,” SIGCOMM

Comput. Commun. Rev., vol. 24, no. 5, pp. 45–60, Oct. 1994.

146

[22] D. Smithies and F. Fietkau, “Minstrel rate control algorithm,” http://wireless.

kernel.org/en/developers/Documentation/mac80211/RateControl/minstrel.

[23] A. Dhamdhere and C. Dovrolis, “Open issues in router bu↵er sizing,” SIGCOMM

Comput. Commun. Rev., vol. 36, no. 1, pp. 87–92, Jan. 2006.

[24] D. Skordoulis, Q. NI, H. Chen, A. Stephens, C. Liu, and A. Jamalipur,

“IEEE 802.11N MAC frame aggregation mechanisms for next-generation high-

throughput WLANs,” IEEE Wireless Communications, pp. 40–47, February

2008.

[25] J. Friedrich, S. Frohn, S. Gubner, and C. Lindemann, “Understanding IEEE

802.11n Multi-hop Communication in Wireless Networks,” inWorkshop on Wire-

less Network Measurements, May 2011, pp. 321–326.

[26] S. Byeon, K. Yoon, O. Lee, S. Choi, W. Cho, and S. Oh, “MoFA: Mobility-aware

frame aggregation in Wi-Fi,” in Proceedings of the Tenth ACM Conference on

Emerging Networking Experiments and Technologies, ser. CoNEXT ’14, 2014.

[27] Ath9k FOSS drivers. http://wireless.kernel.org/en/users/Drivers/ath9k.

[28] K. Jamshaid, “Centralized Rate Allocation and Control in 802.11-based Wireless

Mesh Networks,” Ph.D. dissertation, University of Waterloo, Jan. 2010.

[29] K. Jamshaid, B. Shihada, A. Showail, and P. Levis, “Deflating link bu↵ers in a

wireless mesh network,” Ad Hoc Networks, vol. 16, no. 0, pp. 266 – 280, 2014.

[30] O. Dousse, “Revising bu↵ering in CSMA/CA wireless multihop networks,” in

Proc. of the IEEE SECON ’07, Jun. 2007.

[31] D. Xue and E. Ekici, “Optimal power allocation in multi-hop wireless networks

with finite bu↵ers,” in Communications (ICC), 2011 IEEE International Con-

ference on, June 2011, pp. 1–5.

[32] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless

mesh networks,” in Proceedings of the 10th Annual International Conference on

Mobile Computing and Networking, ser. MobiCom ’04, 2004, pp. 114–128.

http://wireless.kernel.org/en/developers/Documentation/mac80211/RateControl/minstrel
http://wireless.kernel.org/en/developers/Documentation/mac80211/RateControl/minstrel
http://wireless.kernel.org/en/users/Drivers/ath9k

147

[33] Ath5k FOSS drivers. http://wireless.kernel.org/en/users/Drivers/ath5k.

[34] Madwifi: Multiband Atheros driver for WiFi. http://www.madwifi-project.org.

[35] S. Floyd and V. Jacobson, “Random early detection gateways for congestion

avoidance,” IEEE/ACM Trans. Netw., vol. 1, no. 4, Aug. 1993.

[36] K. Nichols and V. Jacobson, “Controlling queue delay,” Queue, vol. 10, no. 5,

pp. 20:20–20:34, May 2012.

[37] T. Hiland-Jrgensen, “Battling bu↵erbloat: An experimental comparison of four

approaches to queue management in linux.” Project Report, Dec. 2012. [Online].

Available: http://rudar.ruc.dk/handle/1800/9322

[38] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian, F. Baker, and

B. VerSteeg, “PIE: A lightweight control scheme to address the bu↵erbloat prob-

lem,” in High Performance Switching and Routing (HPSR), 2013 IEEE 14th

International Conference on, 2013.

[39] K. Jamshaid, P. Ward, M. Karsten, and B. Shihada, “The e�cacy of centralized

flow rate control in Wireless Mesh Networks,” EURASIP journal on Wireless

Communications and Networking, vol. 2013, no. 63, pp. 1–17, 2013.

[40] N. Khademi, D. Ros, and M. Welzl, “The new AQM kids on the block: Much

ado about nothing?” Dept. of Informatics, University of Oslo, Norway, Tech.

Rep. TR-434, October 2013.

[41] T. Herbert, “Byte queue limits,” Linux Plumbers Conference, 2011.

[42] “Linux 3.3: Finally a little good news for bu↵erbloat.” http://www.cringely.

com/2012/03/25/linux-3-3-finally-a-little-good-news-for-bu↵erbloat/.

[43] K. Chen, Y. Xue, S. Shah, and K. Nahrstedt, “Understanding bandwidth-

delay product in mobile ad hoc networks,” Elsevier Computer Communications,

vol. 27, no. 10, pp. 923–934, June 2004.

http://wireless.kernel.org/en/users/Drivers/ath5k
http://www.madwifi-project.org
http://rudar.ruc.dk/handle/1800/9322
http://www.cringely.com/2012/03/25/linux-3-3-finally-a-little-good-news-for-bufferbloat/.
http://www.cringely.com/2012/03/25/linux-3-3-finally-a-little-good-news-for-bufferbloat/.

148

[44] T. Li, D. Leith, and D. Malone, “Bu↵er sizing for 802.11-based networks,”

IEEE/ACM Transactions on Networking, vol. 19, no. 1, pp. 156 –169, Feb. 2011.

[45] D. Taht, “What I think is wrong with eBDP in debloat-testing,” https://lists.

bu↵erbloat.net/pipermail/bloat-devel/2011-November/000280.html.

[46] R. Bruno, M. Conti, and E. Gregori, “Analytical modeling of TCP clients in

Wi-Fi hot spot networks,” in Proc. of the IFIP Networking ’04, May 2004, pp.

626–637.

[47] B. Hull, K. Jamieson, and H. Balakrishnan, “Mitigating congestion in wireless

sensor networks,” in Proc. of the ACM SenSys ’04, Baltimore, MD, Nov. 2004.

[48] K. Xu, M. Gerla, L. Qi, and Y. Shu, “Enhancing TCP fairness in ad hoc wireless

networks using neighborhood RED,” in Proc. of the ACM MobiCom ’03, Sep.

2003, pp. 16–28.

[49] M. Thottan and M. C. Weigle, “Impact of 802.11e EDCA on mixed TCP-based

applications,” in Proceedings of the 2nd annual international workshop on Wire-

less internet, ser. WICON ’06, 2006.

[50] C. Boutremans and J.-Y. Le Boudec, “A note on the fairness of TCP Vegas,” in

Broadband Communications, 2000. Proceedings. 2000 International Zurich Sem-

inar on, 2000, pp. 163–170.

[51] L. Zhang, S. Shenker, and D. D. Clark, “Observations on the dynamics of a

congestion control algorithm: the e↵ects of two-way tra�c,” in Proceedings of

the conference on Communications architecture & protocols, ser. SIGCOMM ’91,

1991, pp. 133–147.

[52] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the performance of

TCP pacing,” in INFOCOM 2000. Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies. Proceedings. IEEE, vol. 3, Mar

2000, pp. 1157 –1165 vol.3.

https://lists.bufferbloat.net/pipermail/bloat-devel/2011-November/000280.html
https://lists.bufferbloat.net/pipermail/bloat-devel/2011-November/000280.html

149

[53] S. ElRakabawy and C. Lindemann, “A practical adaptive pacing scheme for

TCP in multihop wireless networks,” Networking, IEEE/ACM Transactions on,

vol. 19, no. 4, pp. 975 –988, Aug. 2011.

[54] Y. Xu, Y. Wang, J. Lui, and D.-M. Chiu, “Balancing throughput and fairness

for TCP flows in multihop ad-hoc networks,” in Modeling and Optimization in

Mobile, Ad Hoc and Wireless Networks and Workshops, 2007. WiOpt 2007. 5th

International Symposium on. IEEE, 2007, pp. 1–10.

[55] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “Di↵Q: Practical di↵erential

backlog congestion control for wireless networks,” in INFOCOM 2009, IEEE,

2009, pp. 262–270.

[56] A. Showail, K. Jamshaid, and B. Shihada, “WQM: An aggregation-aware queue

management scheme for IEEE 802.11n based networks,” in Proceedings of the

2014 ACM SIGCOMM Workshop on Capacity Sharing Workshop, ser. CSWS

’14, 2014, pp. 15–20.

[57] S. Chan, K. Chan, K. Liu, and J. Lee, “On queue length and link bu↵er size esti-

mation in 3G/4G mobile data networks,” Mobile Computing, IEEE Transactions

on, vol. 13, no. 6, pp. 1298–1311, June 2014.

[58] Shuttle Inc. http://www.shuttle.com.

[59] The web100 project. http://www.web100.org/.

[60] Open80211s. http://open80211s.org.

[61] J. Camp and E. Knightly, “The IEEE 802.11s extended service set mesh network-

ing standard,” Communications Magazine, IEEE, vol. 46, no. 8, pp. 120–126,

2008.

[62] Iperf. http://dast.nlanr.net/Projects/Iperf/.

[63] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP vari-

ant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul. 2008.

http://www.shuttle.com
http://www.web100.org/
http://open80211s.org
http://dast.nlanr.net/Projects/Iperf/

150

[64] The Web10g Project. http://www.web10g.org/.

[65] Netperf. http://www.netperf.org/netperf/.

[66] V. Gambiroza, B. Sadeghi, and E. Knightly, “End-to-end performance and fair-

ness in multihop wireless backhaul networks,” in Proc. of the ACM MobiCom

’04, Sep. 2004, pp. 287–301.

[67] J. Jun and M. L. Sichitiu, “The nominal capacity of wireless mesh networks,”

IEEE Wireless Communications, pp. 8–14, Oct. 2003.

[68] J. Padhye, S. Agarwal, V. N. Padmanabhan, L. Qiu, A. Rao, and B. Zill, “Es-

timation of link interference in static multi-hop wireless networks,” in Proc. of

the ACM/USENIX IMC ’05, Oct. 2005, pp. 305–310.

[69] A. Kashyap, U. Paul, and S. R. Das, “Deconstructing interference relations in

WiFi networks,” in Proc. of the IEEE SECON ’10, Jun. 2010, pp. 73–81.

[70] H. Balakrishnan, C. L. Barrett, V. S. A. Kumar, M. Marathe, and S. Thite, “The

distance-2 matching problem and its relationship to the MAC-layer capacity of

ad hoc networks,” IEEE Journal on Selected Areas in Communication, vol. 22,

no. 6, pp. 1069–1079, Aug. 2004.

[71] L. Qiu, Y. Zhang, F. Wang, M. K. Han, and R. Mahajan, “A general model

of wireless interference,” in Proceedings of the 13th annual ACM international

conference on Mobile computing and networking, ser. MobiCom ’07, 2007, pp.

171–182.

[72] S. M. ElRakabawy, A. Klemm, and C. Lindemann, “TCP with adaptive pacing

for multihop wireless networks,” in Proc. of the ACM MobiHoc ’05, May 2005,

pp. 288–299.

[73] T. Szigeti and C. Hattingh, End-to-end QoS network design: Quality of Service

in LANs, WANs, and VPNs, 1st ed. Cisco Press, 2004.

[74] A. J. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair

queueing algorithm,” in Proc. of the ACM SIGCOMM ’89, Sep. 1989, pp. 1–12.

http://www.web10g.org/
http://www.netperf.org/netperf/

151

[75] S. Ganguly, V. Navda, K. Kim, A. Kashyap, D. Niculescu, R. Izmailov, S. Hong,

and S. R. Das, “Performance optimizations for deploying VoIP services in mesh

networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 11,

pp. 2147 –2158, 2006.

[76] K. Jamshaid, P. Ward, and M. Karsten, “Mechanisms for centralized flow rate

control in 802.11-based wireless mesh networks,” Computer Networks, vol. 56,

no. 2, pp. 884–901, February 2012.

[77] WQM source code. http://www.shihada.com/download.php?file=wqm.zip.

[78] A. Showail, K. Jamshaid, and B. Shihada, “An empirical evaluation of bu↵erbloat

in IEEE 802.11n wireless networks,” in IEEE Wireless Communications and

Networking Conference (WCNC), April 2014, pp. 3088–3093.

[79] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single chan-

nel, full duplex wireless communication,” in Proceedings of the Sixteenth Annual

International Conference on Mobile Computing and Networking, ser. MobiCom

’10, 2010.

[80] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis,

S. Katti, and P. Sinha, “Practical, real-time, full duplex wireless,” in Proceedings

of the 17th Annual International Conference on Mobile Computing and Network-

ing, ser. MobiCom ’11, 2011, pp. 301–312.

[81] M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. Ramakrishnan, C. Rice,

and N. Shankaranarayanan, “Design and characterization of a full-duplex multi-

antenna system for WiFi networks,” Vehicular Technology, IEEE Transactions

on, vol. 63, no. 3, pp. 1160–1177, March 2014.

[82] S. S. Hong, J. Mehlman, and S. Katti, “Picasso: Flexible RF and spectrum slic-

ing,” in Proceedings of the ACM SIGCOMM 2012 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communication, ser.

SIGCOMM ’12, 2012, pp. 37–48.

http://www.shihada.com/download.php?file=wqm.zip

152

[83] D. Bharadia, E. McMilin, and S. Katti, “Full duplex radios,” in Proceedings of

the ACM SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM ’13, 2013,

pp. 375–386.

[84] D. Bharadia and S. Katti, “Full duplex MIMO radios,” in Proceedings of the

11th USENIX Conference on Networked Systems Design and Implementation,

ser. NSDI’14, 2014, pp. 359–372.

[85] A. Showail, K. Jamshaid, and B. Shihada, “Bu↵er sizing in wireless networks:

Challenges, solutions, and opportunities,” IEEE Communications Magazine,

Accepted, 2014. [Online]. Available: http://hdl.handle.net/10754/348555

[86] Implement wireless full-duplex communication in the ns-3 network simulator.

https://github.com/yusuke-sugiyama/ns-3-fdwifi, accessed April, 2015.

[87] K. Tamaki, H. Ari Raptino, Y. Sugiyama, M. Bandai, S. Saruwatari, and

T. Watanabe, “Full duplex media access control for wireless multi-hop networks,”

in Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, June 2013,

pp. 1–5.

[88] Wi-Fi Model Library - ns-3. https://www.nsnam.org/docs/models/html/wifi.

html, accessed April, 2015.

[89] G. F. Riley and T. R. Henderson, “The ns-3 network simulator.” in Modeling and

Tools for Network Simulation, K. Wehrle, M. Gnes, and J. Gross, Eds. Springer,

2010, pp. 15–34.

[90] “IEEE standard for information technology–telecommunications and informa-

tion exchange between systems local and metropolitan area networks–specific

requirements part 11: Wireless lan medium access control (MAC) and physi-

cal layer (PHY) specifications,” IEEE Std 802.11-2012 (Revision of IEEE Std

802.11-2007), pp. 1–2793, March 2012.

[91] M. Lacage, M. H. Manshaei, and T. Turletti, “IEEE 802.11 rate adaptation: A

practical approach,” in Proceedings of the 7th ACM International Symposium on

Modeling, Analysis and Simulation of Wireless and Mobile Systems, ser. MSWiM

’04, 2004, pp. 126–134.

http://hdl.handle.net/10754/348555
https://github.com/yusuke-sugiyama/ns-3-fdwifi
https://www.nsnam.org/docs/models/html/wifi.html
https://www.nsnam.org/docs/models/html/wifi.html

153

[92] CTIA-The Wireless Association. http://www.ctia.org/.

http://www.ctia.org/

154

APPENDICES

A Papers Published and Under

Review

Journal Publications

• A. Showail, K. Jamshaid, and B. Shihada, “Bu↵er Sizing in Wireless Networks:

Challenges, Solutions, and Opportunities”, IEEE Communication Magazine, to ap-

pear, 2015. I.F. (4.46)

• A. Daghistani, A. Ben Khalifa, A. Showail, and B. Shihada, “Green Partial Packet

Recovery in Wireless Sensor Networks, Journal of Network and Computer Applica-

tions, SI: Green Network Protocols and Algorithms, to appear, 2015. I. F. (2.229)

• A. Showail, and B. Shihada, “Batteling Bu↵erbloat in Wi-Fi Based Networks”,

IEEE Transactions on Networking (TON), under review, 2015.

• A. Showail, A. Elrasad, A. Meer, A. Daghistani, K. Jamshaid, and B. Shihada,

“iFrag: Interference-Aware Frame Fragmentation Scheme for Wireless Sensor Net-

works”, ACM journal of Wireless Networks, Vol. 20, No. 4, pp. 1-18, 2014.

• K. Jamshaid, B. Shihada, A. Showail, and P. Levis, “Deflating Link Bu↵ers in a

Wireless Mesh Network”, journal of Wireless AdHoc Networks, Vol. 16, pp. 266-280,

2014. I. F. (1.957).

155

Conference Proceedings

• N. Bouacida, A. Showail, and B. Shihada, “Bu↵er Management in Wireless Full-

Duplex Systems”, IEEE International Conference on Wireless and Mobile Computing,

Networking and Communications., accepted, 2015.

• M. Alaslani, A. Showail, and B. Shihada, “Green Frame Aggregation Scheme for

Wi-Fi Networks”, IEEE International Conference on High Performance Switching

and Routing (HPSR), accepted, 2015.

• A. Showail, K. Jamshaid, and B. Shihada, “WQM: An Aggregation-aware Queue

Management Scheme for IEEE 802.11n based Networks”, in Proc. ACM Sigcomm

Capacity Sharing Workshop (CSWS), pp. 15-20, 2014.

• A. Showail, K. Jamshaid, and B. Shihada, “An Empirical Evaluation of Bu↵erbloat

in IEEE 802.11n Wireless Networks”, in Proc. IEEE Wireless Communications and

Networking Conference (WCNC), pp. 3088-3093, 2014.

Patent

• B. Shihada and A. Showail, “Bu↵er sizing for multi-hop networks”, Continuing U.S.

Provisional Patent no. US20140140209 A1. 2014.

	Examination Committee Approval
	Copyright
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Statement and Motivation
	Thesis Objectives
	Thesis Organization

	State-of-the-Art of Buffer Sizing in Wireless Networks
	Introduction to Bufferbloat
	Buffer Sizing Challenges
	Link scheduling
	Adaptive link rates
	Frame aggregation
	Variable packet inter-service rate
	Power management
	Network management
	Multi-hop challenges
	Implementation challenges

	Bufferbloat Solutions
	Network centric methods
	End-to-end methods

	System Description
	Testbed Specifications
	IEEE 802.11a/b/g testbed
	IEEE 802.11n testbed

	Buffering Layers
	Buffering in Linux network stack
	Which buffer to tune?
	Simulation Buffering

	Distributed Neighborhood Buffer
	Overview
	Design
	Bottleneck collision domain
	Distributed neighborhood buffers
	Determining network parameters

	System Model
	Neighborhood buffer size B
	Distributing the neighborhood buffer among nodes

	Performance Analysis
	Simulations
	Testbed

	Aggregation-Aware Queue Management
	Overview
	Motivation
	Approach
	WQM Operation
	WQM Analysis

	Experimental Analysis
	Implementation Details
	Experimental Evaluation

	Buffer Management in Wireless Full-Duplex Systems
	Introduction
	Approach
	Implementation
	Performance evaluation
	Single flow scenario
	Bidirectional flows scenario

	Concluding Remarks
	Future Research Work
	Frame aggregation schedulers
	Wireless compatible active queue management
	Virtual queueing
	Fine-tuning TCP

	References
	Appendices

