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ABSTRACT 
 

Identification of enhancers in human: Advances in computational 
studies 

 
 

by Dimitrios Kleftogiannis  
 

 
Roughly ~50% of the human genome, contains noncoding sequences 

serving as regulatory elements responsible for the diverse gene 

expression of the cells in the body. One very well studied category of 

regulatory elements is the category of enhancers. Enhancers increase the 

transcriptional output in cells through chromatin remodeling or recruitment 

of complexes of binding proteins. Identification of enhancer using 

computational techniques is an interesting area of research and up to 

now several approaches have been proposed. However, the current 

state-of-the-art methods face limitations since the function of enhancers is 

clarified, but their mechanism of function is not well understood.  

 This PhD thesis presents a bioinformatics/computer science 

study that focuses on the problem of identifying enhancers in different 

human cells using computational techniques. The dissertation is 

decomposed into four main tasks that we present in different chapters. 

First, since many of the enhancer’s functions are not well understood, we 

study the basic biological models by which enhancers trigger 

transcriptional functions and we survey comprehensively over 30 

bioinformatics approaches for identifying enhancers.  

Next, we elaborate more on the availability of enhancer data as 

produced by different enhancer identification methods and experimental 

procedures. In particular, we analyze advantages and disadvantages of 



	 5	

existing solutions and we report obstacles that require further 

consideration. To mitigate these problems we developed the Database of 

Integrated Human Enhancers (DENdb), a centralized online repository 

that archives enhancer data from 16 ENCODE cell-lines. The integrated 

enhancer data are also combined with many other experimental data that 

can be used to interpret the enhancers content and generate a novel 

enhancer annotation that complements the existing integrative annotation 

proposed by the ENCODE consortium.  

Next, we propose the first deep-learning computational 

framework for identifying enhancers. The proposed system called Dragon 

Ensemble Enhancer Predictor (DEEP) is based on the novel deep 

learning two-layer ensemble algorithm capable of identifying enhancers 

characterized by different cellular conditions. Experimental results using 

data from ENCODE and FANTOM5, demonstrate that DEEP surpasses 

in terms of recognition performance the major systems for enhancer 

prediction and shows very good generalization capabilities in unknown 

cell-lines and tissues. 

 Finally, we take a step further by developing a novel feature 

selection method suitable for defining a computational framework  

capable of analyzing the genomic content of enhancers and reporting 

cell-line specific predictive signatures.  
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CHAPTER 1: INTRODUCTION AND BACKGROUND 
 

1.1 Basic background on biology 
	
Fifteen years have been past since the draft assembly of the human genome 

was released and analyzed for the very first time (Lander et al. 2001; Venter 

et al. 2001). Roughly ~50% of the human genome, contains non-coding 

sequences serving as regulatory elements responsible for the diverse gene 

expression of the cells in the body. Thanks to the recent advances in 

biotechnology many questions related to transcription regulation mechanisms 

have been in sight. 

Transcription regulation in human genes is a complex process 

orchestrated by a number of different DNA functional elements located at 

gene regulatory regions  (Maston et al. 2006). Although these regions have 

been extensively studied, their underlying functional mechanism is not yet 

fully understood (Lee et al. 2000). Recent advances in high-throughput 

experiments indicate that interactions between proximal and distal regulatory 

elements elaborate different gene expression programs between different 

cells in the body (Hatzis and Talianidis 2002).  

In contrast to proximal elements, distal elements are not located near 

to the genes whose activity they affect, and can be located 20 kilo-bases (kb) 

or further away, or even can be located at different chromosomes. In addition, 

their functional mechanism appears to be independent of the 

upstream/downstream location of the genes they target.  The better-

characterized distal regulatory elements in eukaryotes are enhancers, 

silencers, and insulators (Arnone and Davidson 1997; Heintzman and Ren 

2009; Glass and Rosenfeld 2000; West, Gaszner and Felsenfeld 2002). 



	 16	

Providing an accurate definition of enhancers is not an easy task since they 

may have different roles depending on the cellular state (i.e. can be active or 

inactive, or can assume non-enhancer function) and their functional 

mechanism as derived from experimental procedures is not yet fully known 

(Pennacchio et al. 2013). To explain this in some more details, one can see in 

Figure 1.1 (A-D) an illustration of different interaction models of proximal and 

distal regulatory elements thought chromatin looping (Plank and Dean 2014). 

In all of these cases, enhancers interact with different molecules such as 

mediator complex, cohesion complex, proteins or complexes of Transcription 

Factors (TFs) to activate genes via “long-range interactions”. Also, Figure 1.2 

depicts different classes of cis-regulatory elements in the human genome and 

their relative distance from the Transcription Start Site (TSS) of protein-coding 

genes (Heintzman and Ren 2009).  
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Figure	 1.1:	 	 Different	 interaction	 models	 of	 enhancers	 and	 promoters	 via	 chromatin	
looping.	 (A)	 Left:	 Two	 lineage-specific	 genes	 and	 an	 enhancer	 are	 depicted	 along	
unfolded	 chromatin	 with	 neither	 gene	 being	 transcribed.	 Right:	 Lineage	 specific	
transcription	factors	mediate	long-range	interaction	between	then	enhancer	and	one	of	
the	 genes	 through	 homotypic	 and/or	 heterotypic	 protein	 interaction.	 The	 gene	 in	
contact	with	 the	 enhancer	 is	 activated;	 the	other	 gene	 (inactive)	 is	 looped	away	 from	
the	elements	 that	are	 in	proximity.	 (B)	Left:	A	CTCF	binding	 site	and	an	enhancer	are	
depicted	with	an	 inactive	gene	along	unfolded	chromatin.	Right:	The	gene	 is	activated	
by	 lineage-specific	 activators	 that	 co-opt	 CTCF	 into	 long-range	 interaction	 with	 the	
gene.	(C)	Left:	A	non	interacting	enhancer	and	gene.	Right:	The	enhancer	 is	bridged	to	
the	 gene	 promoter	 by	 Mediator	 and	 cohesin	 with	 participation	 of	 lineage	 specific	
factors,	activating	the	gene.	(D)	Left:	A	 locus	containing	a	gene	and	enhancer	reside	 in	
an	unfolded	and	inactive	state.	Center	and	right:	Enhancer-gene	 looping	 is	depicted	as	
being	 mediated	 by	 lineage-specific	 activators	 before	 accumulation	 of	 POL2	 and	 the	
appearance	of	a	transcription	factory	and	transcription.	Image	and	caption	(c)	Plank	and	
Dean	2014.	
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Figure	 1.2:	 Different	 classes	 of	 regulatory	 elements	 in	 the	 human	 genome	 and	 their	
relative	 distance	 from	 protein-coding	 genes	 (blue	 region).	 Image	 and	 caption	 (c)	
Heintzman	and	Ren	2009.		
 

The most simple and accurate way is to define enhancers as the cis-

acting DNA regulatory regions that increase the transcriptional output in cells. 

Typically, enhancers present the following properties (Banerji Rusconi and 

Schaffner 1981; Plank and Dean 2014; Visel, Rubin and Pennacchio 2009; 

Bulger and Groudine 2010; Kim et al. 2010):  

a) Reside thousands of base pairs upstream or downstream from 

the TSSs of their target genes or they can even be on different 

chromosomes relative to their targets  

b) Play a key role in tissue-specific gene expression 

c) Manifest distinct properties across different tissues, organs and 

cellular conditions;  

d) May initiate RNA polymerase II (RNAP II or POL2) transcription, 

producing a new class of non-coding RNAs, non-spliced and 

non-polyadenylated, called eRNAs.  

 

On the other hand, silencers, repressors and insulators have 

practically negative effects on the cellular transcriptional output either through 
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recruitment of transcriptional repressor proteins, or by preventing the spread 

of heterochromatin (Plank and Dean 2014). 

Identification of enhancers is a challenging problem to be answered by 

current biology and up to now several studies, (experimental and 

computational) aiming at identifying enhancers and deciphering their 

functional mechanisms, have been proposed. In addition, several studies 

(Altshuler et al 2010; Dawson and Kouzarides 2012) have linked variations in 

enhancer sequences to cancer and other diseases. In particular, identifying 

enhancers and understanding their mechanisms of functioning is an area of 

great interest that may enrich our current knowledge about diseases and 

therapeutic strategies (Herz, Hu and Shilatifard 2014; Smith and Shilatifard 

2014).  

However, the traditional experimental analyses are low-scale, 

expensive and low throughput. On the other hand, the computational 

techniques have some advantages over the experimental but still there are 

some problems. Since the properties of enhancers vary a lot between 

different cellular conditions, very often the developed computational 

methodologies are cell-specific or consider a very small subset of enhancer’s 

functional mechanisms (Heinz et al. 2015). In addition, the available 

repositories and databases are not centralized and capture only specific 

angles of the general problem of identifying enhancers.  Considering the 

example presented in Figure 1.3 we observe that the enhancers’ activity 

characterized by few epigenetic features (e.g., H3K27me3 and/or H3K4me2) 

varies a lot between different cellular conditions. Specifically, we observe that 

the epigenetic profiles of different markers in one particular cell-line (e.g., 
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K562) across different enhancer regions (in brown boxes) vary a lot. This is 

also the case if we focus on the profiles of different epigenetic markers in one 

particular enhancer regions (say the +51 kb enhancer) considered across all 

seven cell-lines. Consequently, it becomes very challenging to develop a 

unified computational system to describe such properties (Heinz et al. 2015). 

 

Figure	 1.3:	 In	 this	 figure	 we	 have	 marked	 three	 enhancer	 regions	 and	 we	 study	 the	
epigenetic	profiles	of	 four	markers	 (with	pink,	purple,	green	and	orange	color)	across	
sever	 cell-lines.	 It	 is	 apparent	 that	 the	 epigenetic	 profiles	 are	 very	 different	 and	 thus	
relying	on	epigenetic	markers	is	not	sufficient	for	developing	computational	systems	for	
predicting	enhancers.	Image	and	caption	(c)	Heinz	et	al.	2015.	
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1.2 Objectives of this dissertation 
  

With these issues in mind this PhD thesis focuses on the development of 

novel computational methods suitable for the identification of enhancers in the 

human genome and on the analysis of enhancers’ properties using these and 

other advanced computational techniques. Identification of enhancers and 

interpretation of their functional mechanisms is an important area of research 

that may shed light to the incomplete picture of different gene expression 

programs that characterize normal or pathogenic cellular conditions. In 

addition, the outcome of this thesis may open possibilities for use in 

subsequent gene regulation studies for human, and may serve as a paradigm 

for similar approaches for other organisms.    

 

1.3 Navigation through and contribution of this dissertation 
 

The reminder of this dissertation is organized as follows: In Chapter 2 we 

present the related work. First, we describe the basic biological properties of 

enhancers and reports three different mechanisms by which enhancers 

activate the transcriptional procedure at their target genes. These functional 

mechanisms are governed by the activation of different proteins and cofactors. 

Then, we focused our efforts on bioinformatics approaches for enhancer 

identification published from 2000-2015, characterized by the use of data 

from high-throughput experiments for the development of enhancer prediction 

models. First, we formulate the computational problem of identifying 

enhancers and we present the basic principles of a general framework for 

enhancer identification. Next, we cover a comprehensive list of over 30 
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existing enhancer recognition tools and methods that have been developed in 

the considered period. Our aim is to analyse the existing approaches in order 

to provide useful comments regarding the datasets used and the prevalent 

computational solutions. In a separate sub-section we comment on obstacles 

that the existing methods face, address challenges and open questions 

related to enhancer identification, and hint on promising directions for future 

research.  The considered methods can be categorized into three streams 

based on the type of data they utilize and based on their underlying 

computational techniques and algorithms. For example, the most popular 

category utilizes supervised learning techniques to train models that are 

capable of identifying enhancers in unknown cell-lines. However, since 

enhancer’s functional mechanisms are cell-dependent and not fully 

understood, these models are very cell-dependent and they do not present 

good generalization capabilities in unknown cells.  

 The work presented in Chapter 2 has important contribution for the 

scientific community and serves as an educational and training resource on 

the advanced topic of enhancer identification. The contributions of Chapter 2 

can be summarized as follows: 

a) It is the first comprehensive survey of the existing methods that 

provides practical guidelines for utilization of relevant high-throughput 

data and computational techniques. 

b) It presents the first ‘test-drive’ and benchmarking of state-of-the-art 

methods for enhancer identification.  

c) Summarizes the most important problems related to enhancer 

identification.  
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Subsequently, we introduce Chapters 3, 4 and 5, each presenting 

specific novelties. In Chapter 3, we present the most important gene 

regulation repositories that contain enhancer-relevant data and we survey the 

existing databases that archive enhancer data derived from different tissues, 

cellular conditions or cell-lines. By investigating the advantages and 

disadvantages of the existing repositories for enhancers, we discovered 

certain limitations that required further consideration. The most important one 

is the lack of a centralized on-line repository of enhancers as derived from 

multiple human cell-lines and computational techniques that present different 

properties. To mitigate these problems we contributed to the development of 

Database of Integrated Human Enhancers (DENdb). DENdb integrates 

putative enhancer regions identified by different methods generating an 

enriched catalogue of putative enhancers from multiple human cell-lines. It 

also provides automatic utilities to explore genes neighboring enhancers, as 

well as tools for finding overlaps of enhancers with DNase I hypersensitive 

sites (DHS) and transcription factor binding sites (TFBSs) from chromatin 

immunoprecipitation (ChIP) with massively parallel DNA sequencing data 

(ChIP-seq) or computational models as derive from Positional Weight 

Matrices (PWM).  

The contributions of Chapter 3 can be summarized as follows: 

a) DENdb is the first repository of enhancers that archives human 

enhancer data obtained by different computational techniques 

from different cell-lines.  
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b) It provides the first link of putative enhancer regions with 

candidate target genes on a large-scale based on chromatin 

conformation data.  

c) DENdb is the first on-line resource for enhancers, which 

combines data from different sources and offers several 

automated analysis utilities.    

d) A novel annotation method of enhancers is proposed based on 

different computational techniques and in this way it 

complements the existing integrative annotation of enhancers.  

In Chapter 4, by studying the limitations of existing enhancer 

identification systems, we introduce a general computational framework for 

predicting enhancers, we name DEEP (Dragon Ensemble Enhancer 

Predictor). We developed the first deep learning algorithm for identification of 

enhancers based on which DEEP is developed. DEEP is a novel ensemble 

prediction method that integrates three components with diverse 

characteristics that streamline the analysis of enhancer’s properties in a great 

variety of cellular conditions. In particular, DEEP is a stacked-generalized 

technique that trains an ensemble of individual classification models (tissue 

specific or cell-line specific) that are combined to classify DNA regions as 

enhancers or non-enhancers (Tsai 2005; Wolpert 1992). DEEP uses features 

derived from histone modification markers (i.e., ChIP-seq data) and attributes 

coming from sequence characteristics (i.e., motifs or kmers). Experimental 

results across different cell-lines and tissues and comparison analysis with 

the state-of-the-art methods convincingly demonstrate that DEEP is a general 
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and robust framework for predicting enhancers, and can be used to 

complement other methods in enhancer prediction tasks.  

The contributions of Chapter 4 can be summarized as follows: 

a) DEEP is the first deep-learning method for enhancer 

identification. 

b) For the computational point of view DEEP is a novel algorithm 

that is suitable for the enhancer identification problem since it 

solves effectively problems that existing methods fail to tackle 

effectively (e.g., class-imbalance). 

c) DEEP achieves higher recognition capabilities than the existing 

methods. 

d) DEEP is the first model developed on a superset of enhancer 

regions that include chromatin-defined enhancers (data from 

ENCODE); enhancers defined based on quantification of 

expression (data from FANTOM5); and experimentally verified 

enhancers from developmental stages. 

e) DEEP is a very ‘flexible’ model meaning that it can be uzed with 

ChIP-seq data or sequence characteristics as inputs.  

f) We are the first to report combinations of histone modification 

markers to characterize in an optimized manner enhancers from 

different cell-lines. 

Chapter 5 of this dissertation is a meta-analysis using methods and 

datasets we have already studied in the previous chapters. In particular, we 

focus on the cell-line specific properties of enhancers and we investigate the 

possibility of identifying enhancer predictive signatures based on the state-of-
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the-art computational techniques. To do so, we first assess the effectiveness 

of several existing approaches for feature selection and we report cell-line 

specific predictive signatures for six ENCODE cell-lines. In the next step in 

this analysis we combined the cell-line specific results and present some 

global fingerprints that characterize the broad category of enhancers. This is 

the first study that reports cell-line specific predictive signatures for six 

ENCODE cell-lines. We are also planning to test in practice the effectiveness 

of our findings by performing a comprehensive validation analysis with data 

from different gene regulation consortia.  

The contributions of Chapter 5 can be summarized as follows: 

a. We are the first to identify cell-line specific sequence fingerprints 

that characterize in an optimized way enhancers from six 

ENCODE cell-lines. 

b. We were the first to identify a small set of properties that are 

candidates for global enhancer signatures common across 

different cell-lines.  

The dissertation concludes with the summary of the contributions 

presented in chapters 2-5.  

As future work we present some preliminary results about an on-going 

research project that studies the dynamics of different enhancers classes in a 

MCF-7 breast cancer time course. Figure 1.4 provides the roadmap of this 

PhD dissertation. 
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Figure	1.4:	Thesis	Roadmap.	
 

1.4 Paper declaration 
 

This PhD thesis contains work already published as well as work that is 

currently under preparation. Specifically, Chapter 2 is a published review 

paper in Briefings in Bioinformatics entitled ”Progress and challenges in 

bioinformatics approaches for enhancer identification” by Dimitrios 

Kleftogiannis, Panos Kalnis and Vladimir B. Bajic (Kleftogiannis, Kalnis and 

Bajic 2015a). Chapter 3 is a published paper in Database: The journal of 

biological database and curation entitled “DENdb: Database of 

Integrated Human Enhancers“ by Haitham Ashoor, Dimitrios Kleftogiannis, 

Alexandar Radovanovic and Vladimir B. Bajic (Ashoor et al. 2015). The DEEP 

framework presented in Chapter 4 is a published paper in Nucleic Acids 

Research entitled “DEEP: A general computational framework for 

predicting enhancers“ by Dimitrios Kleftogiannis, Panos Kalnis and Vladimir 
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B. Bajic (Kleftogiannis, Kalnis, Bajic 2015b). The work in Chapter 5 is 

currently under preparation for publication and the future work described in 

Chapter 6 is part of an ongoing research project in collaboration with Dr. Erik 

Arner from the RIKEN institute, Japan.  

Furthermore, our earlier research in ensemble techniques in 

bioinformatics problems has provided us with important insights on related 

problems (tackled as general Machine Learning problems) resulted in a 

journal paper entitled “EnsembleGASVR: a novel ensemble method for 

classifying missense single nucleotide polymorphisms“ published in 

Bioinformatics journal (Rapakoulia et al. 2013). Finally, our research with 

feature selection (FS) techniques in bioinformatics problems resulted in two 

journal papers entitled “DWFS: A Wrapper Feature Selection Tool Based 

on a Parallel Genetic Algorithm“ published in PloS ONE (Soufan et al. 

2015) and “YamiPred: a novel evolutionary method for predicting pre-

miRNAs and selecting relevant features” published in IEEE/ACM 

Transactions on Computational Biology and Bioinformatics (Kleftogiannis et 

al. 2015c). The last three papers are cited in the related work of this 

dissertation, but they do not focus on the enhancer identification problem.    
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CHAPTER 2: COMPUTATIONAL IDENTIFICATION OF 
ENHANCERS 

 

2.1 Introduction 
 

The aim of this chapter is to describe basic functional mechanisms of 

enhancers and report some of their properties that trigger the initiation of 

transcription in their target genes. Next, we survey the basic streams of 

computational methods that distinguish enhancers from non-enhancer 

regions (i.e., negative control samples). So far, some review articles have 

focused on different aspects of enhancer functions that characterize cell 

identity or pathogenic states (Heinz et al 2015; Hatzis and Tailanidis 2002). In 

addition, the enhancer mechanistic properties aimed at identifying active 

enhancers are well documented in several studies and reviews including 

advances in high throughput experimental technologies (Plank and Dean 

2014; Shlyueva, Stampfel and Stark 2014; Calo and Wysocka 2013). 

However, since active enhancers are characterized by specific cellular 

properties, and since there are numerous cellular conditions, experimental 

identification of enhancers faces certain limitations (Shlyueva, Stampfel and 

Stark 2014). For this reason, computational identification of enhancers has 

been extensively studied in recent years and has resulted in a number of 

computational methods that complement the experimental techniques (Yip, 

Cheng and Gerstein 2013; Visel, Bristow and Pennacchio 2007). Moreover, 

the generation of new types of high throughput data helped to improve 

prediction models for enhancers. However, in spite of the efforts to develop 

accurate enhancer prediction methods (Heintzman, Stuart and Hon 2009; 

Hon, Ren and Wang 2007; Rye et al. 2011; Ucar, Hu and Tan 2011; Boyle et 
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al. 2011; Pique-Regi et al. 2011, Piper et al. 2013, Visel et al. 2009; Won, 

Ren and Wang 2010; Ernst and Kellis 2012; Hoffman et al. 2012a; Won, 

Zhang and Wang 2013; Firpi, Ucar and Tan 2010; Fernandez and Miranda-

Saavedra 2012; Erwin et al. 2014; Kleftogiannis, Kalnis and Bajic 2105b, 

Rajogopal et al. 2013; Lu et al. 2015; Fletez-Brant et al. 2013; Andersson et 

al. 2014; Danko et al. 2015; Kheradpour et al. 2013; Kwasnieski et al. 2014; 

Arnold et al. 2013; Murtha et al. 2014; Gisselbrecht et al. 2013; Melnikov et al. 

2012; Patwardhan et al. 2012), the current solutions generate significantly 

different enhancer predictions (Ashoor et al. 2015). Consequently, it will be 

beneficial for the research community to have an overview of the strategies 

and solutions developed in this field.  

With this issue in mind, we focused our efforts on bioinformatics 

approaches for enhancer identification published from 2000 to 2015, 

characterized by the use of data from high-throughput experiments for the 

development of enhancer prediction models. First, we present the basic 

principles of a general framework for enhancer identification. Next, we cover a 

comprehensive list of over 30 existing enhancer recognition tools and 

methods that have been developed in the considered period. Our aim is to 

analyse the existing approaches in order to provide useful comments 

regarding the datasets used and the prevalent computational solutions. In a 

separate sub-section we comment on obstacles that the existing methods 

face, address challenges and open questions related to enhancer 

identification, and hint on promising directions for future research. 
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2.2 Functional Mechanisms and Properties of Enhancers  
	
The initialization of transcription in cells requires overcoming the ‘negative 

effects’ of chromatin. With these ‘negative effects’ we mean that chromatin is 

a highly compact level of organization of the DNA inside the cell (Heintzman 

and Ren 2009). This highly dense organization prevents the protein-DNA 

interactions required for transcription to happen and practically ‘protects’ DNA 

from TFs and POL2 (Shlyueva, Stampfel and Stark 2014). Enhancers have 

the ability to recruit complexes of binding proteins and or initiate chromatin 

modifications activities to trigger gene expression in mRNA promoters and 

thus increase the transcriptional output in cells. These activities make DNA 

accessible to the transcriptional machinery (POL2) via three main 

mechanisms (Heintzman and Ren 2009).  

a) The first mechanism modifies the chromatin structure of DNA 

using specific protein complexes called SWI/SNF. These 

specific complexes once recruited to the enhancer region, they 

remodel the structure of some specific ‘protector’ proteins called 

nucleosomes and practically they expose the TSSs of the target 

genes to the transcriptional mechanism.  

b) The basic principle of remodeling the DNA chromatin structure 

is also apparent in the second enhancer functional mechanism. 

Here, the activation is triggered via another class of cofactors 

that introduce modifications to DNA histones. These cofactors 

called histone acetyltransferase (HATs) introduce acetylation of 

histones H3 and H4 and practically they ‘open‘ binding surface 
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for other activator proteins. The prevalent HATs are considered 

PCAF, CBP, P300 and TRRAP.   

c) The third category operates via a third class of cofactors so-

called mediator complexes. These proteins facilitate 

transcription by serving as interfaces between sequence-

specific transcription factors and the general transcription 

mechanism in eukaryotes. Examples of mediators include 

MED1, p160 and Asc2.  

A summary of the enhancer functional mechanisms described above is 

presented in Figure 2.1 (Heintzman and Ren 2009). Also, in Figure 2.2 

(Shlyueva, Stampfel and Stark 2014) depicts different enhancer 

characteristics and their activity patterns at different stages of embryo 

development. It also marks the importance of different histone modification 

markers such as H3K27ac or H3K4me1 as well as cases where binding of 

relevant TFs brings enhancers in close proximity to promoters of protein-

coding genes.  
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Figure	 2.1:	 Enhancer	 functional	 mechanisms	 via	 interactions	 with	 SWI/SNF	 complex,	
HATs	and	the	mediator	complex.	Image	and	caption	(c)	Heintzman	and	Ren	2009.	
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Figure	2.2:	Enhancer	characteristics.	a|	Enhancers	are	distinct	genomic	regions	(or	the	
DNA	 sequences	 thereof)	 that	 contain	 binding	 site	 sequences	 for	 transcription	 factors	
(TFs)	and	that	can	upregulate	(that	is,	enhance)	the	transcription	of	a	target	gene	from	
its	transcription	start	site	(TSS).	Along	the	linear	genomic	DNA	sequence,	enhancers	can	
be	 located	 at	 any	 distance	 from	 their	 target	 genes,	 which	 makes	 their	 identification	
challenging.	b,c|	In	a	given	tissue,	active	enhancers	(Enhancer	A	in	part	b	or	Enhancer	B	
in	part	c)	are	bound	by	activating	TFs	and	are	brought	into	proximity	of	their	respective	
target	 promoters	 by	 looping,	 which	 is	 thought	 to	 be	 mediated	 by	 cohesin	 and	 other	
protein	complexes.	Moreover,	active	and	inactive	gene	regulatory	elements	are	marked	
by	various	biochemical	features:	active	promoters	and	enhancers	are	characterized	by	a	
depletion	 of	 nucleosomes,	 which	 is	 the	 structural	 unit	 of	 eukaryotic	 chromatin.	
Nucleosomes	 that	 flank	 active	 enhancers	 show	 specific	 histone	 modifications,	 for	
example,	 histone	 H3	 lysine	 4	 monomethylation	 (H3K4me1)	 and	 H3K27	 acetylation	
(H3K27ac).	 Inactive	enhancers	might	be	 silenced	by	different	mechanisms,	 such	as	by	
the	Polycomb	protein-associated	repressive	H3K27me3	mark	(part	b)	or	by	repressive	
TF	binding	(part	c).	d,f	 |	Complex	patterns	of	gene	expression	result	 from	the	additive	
action	 of	 different	 enhancers	 with	 cell-type-	 or	 tissue-specific	 activities.	 Image	 and	
caption	(c)	Shlyueva,	Stampfel	and	Stark	2014.	
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2.3 The framework of computational identification of enhancers 
	

The problem of computational identification of enhancers can be 

formulated as follows: ‘Given a DNA region described by multiple data 

types, determine if it can function as an enhancer’.  Figure 2.3 depicts a 

schematic diagram of the general enhancer identification process.      

The first step concerns integration of different data types coming from 

different data sources and pre-processing in order to generate feature vectors 

that serve as input for the enhancer identification and analysis system. The 

feature vectors contain information that describes data instances. Typically, 

these feature vectors capture information about evolutionary conservation 

(Visel, Bristow and Pennacchio 2007) (e.g., regions or motifs that are highly 

conserved across different species), and/or chromatin profiles of histone 

markers as derived from ChIP-seq data (Visel et al. 2009), and/or chromatin 

accessibility information as derived from DHS. The above data types are 

frequently combined with TFBSs for identifying different classes of regulatory 

elements (e.g., enhancers, promoters, etc.) (Boyle et al. 2011). Note that with 

the acronym TFBSs, we refer to both the actual and the predicted DNA 

binding sites of DNA-binding proteins that facilitate transcription, including 

TFs and additional binding proteins or protein complexes such as the 

nucleosome remodelling complex (e.g., SWI/SNF), or histone 

acetyltransferases (e.g., P300 from HATs) and histone methyltransferases 

(e.g., ASH1L from HMTs). Recently, enhancer screening data, as well as 

expression of eRNAs, can serve as input for identifying enhancers and 

analysing their properties. In Table 2.1 we present an overview of the features 
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used by different computational methods for enhancers’ identification. Figure 

2.4 complements Table 2.1 and provides a graphical representation of 

different data types used for enhancer identification (Cao and Yip 2015).  The 

process of generating feature vectors may include additional steps of 

normalization or re-scaling of the feature values.  

 

 

Figure	 2.3:	 This	 figure	 shows	 basic	 components	 of	 a	 general	 enhancer	 identification	
system.	 The	 first	 block	 (purple	 color)	 handles	 integration	 and	 pre-processing	 of	
different	data	types.	These	data	types	(summarized	in	Table	2.1	and	Figure	2.4)	can	be	
combined	in	different	ways	to	generate	feature	vectors	that	describe	DNA	regions.	The	
feature	 values	 can	 be	 normalized	 or	 re-scaled	 (red	 color).	 Then,	 feature	 selection	
techniques	can	be	applied	 to	 reduce	 the	number	of	 features	and	select	 smaller	sets	of	
features	with	higher	discriminative	capabilities.	The	feature	vectors	feed	computational	
models	 that	make	 decisions	 using	 unsupervised	 and/or	 supervised	 algorithms	 (green	
color).	 Outcome	 is	 a	 list	 of	 identified	 enhancer	 regions	 (orange	 color)	 that	 can	 be	
analysed	 further	 using	 computational	 techniques.	 Image	and	caption	 (c)	Kleftogiannis,	
Kalnis	and	Bajic	2015a.	
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Figure	 2.4:	 Schematic	 representation	 of	 data	 and	 features	 used	 for	 enhancer	
identification.	 Motifs	 and	 TFBSs	 can	 be	 identified	 ab-initio	 or	 using	 PWM.	 	 Histone	
modifications	and	chromatin	accessibility	can	be	determined	by	ChIP-seq	technologies	
whereas	 transcription	 on	 enhancer	 regions	 can	 be	 identified	 using	 CAGE	 technology.	
Image	and	caption	(c)	Cao	and	Yip	2015. 
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In the second step, different computational models use feature vectors 

to annotate DNA regions. The computational models are developed by 

computational methods, unsupervised or supervised, using the same feature 

vectors to describe the data. The methods used include state-of-the-art 

clustering algorithms such as K-means (Heintzman et al. 2007) or bi-

clustering (Ucar, Hu and Tan 2011), probabilistic graphical models (PGMs) 

such as Hidden Markov Models (HMMs) (Ernst and Kellis 2012) or Dynamic 

Bayesian Networks (DBNs) (Hoffaman et al. 2012), regression models such 

as Least Absolute Shrinkage and Selection Operator (LASSO) (Narlikar et al. 

2012), and more advanced supervised classification systems such as Support 

Vector Machines (SVMs) (Fernandez and Miranda-Saavedra 2012), Artificial 

Neural Networks (ANNs) (Firpi, Ucar and Tan 2011), Decision Trees (DTs) 

and Random Forests (RFs) (Rajagopal et al. 2013; Lu et al. 2015). 

The most important difference between supervised and unsupervised 

techniques, is the fact that supervised methods require prior knowledge (e.g., 

some representative enhancers and when available non-enhancer examples) 

for training. In contrast, this is not the case for unsupervised methods where 

enhancer regions (and other regulatory elements in general) can be identified 

ab-initio and without any prior-knowledge. Unsupervised techniques rely 

strongly on some ad-hoc rules for assigning regions to the class of enhancers 

and thus their predictive abilities have some limitations. An example is 

identification of enhancers using only H3K4me1 profiles, which of course is 

correct, but is insufficient, since there is no guarantee that they can 

characterize in the same way enhancers from different cell-lines and tissues. 
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The main outcome of an enhancer identification system is a catalogue of 

predicted enhancers. The identified enhancers can be further analysed 

computationally for their properties, deciphering their regulatory roles and 

associating them with target genes and eRNAs. 

Table	2.1:	Examples	of	data	and	features	used	for	enhancer	identification	
Data	sources	 Feature	Example		 Advantage	 Disadvantage	
Evolutionary	
conservation	

Conserved	motifs	
across	species	

Easy	to	compute	 Insufficient	
information	for	
predicting	enhancers	
tissue-specific	
activity	

Histone	markers	 ChIP-seq	for	
H3K4me1	and/or	
H3K27ac	

Provides	cell-
line/tissue	specific	
information	that	
characterize	
enhancers	and	also	
different	categories	
of	enhancers	(e.g.,	
poised	vs.	active)	

Different	cell-
lines/tissues	are	
associated	with	
different	
combination	of	
histone	markers	

TFBSs	 ChIP-seq	for	P300		 Provides	cell-
line/tissue	specific	
information	that	
characterize	
enhancers.	High	
resolution	data	for	
testing	activity	of	
enhancer-related	
TFs	

Not	available	for	
many	cell-
lines/tissues	

Open	chromatin	 DHS		 High	discriminative	
capacity	when	
combined	with	
other	data	types	e.g.,	
P300	binding	sites	

Regions	with	
enriched	DHS	
activity	do	not	
necessarily	
correspond	to	
enhancers	

Sequence	
characteristics	

Kmers	of	size	5	 Easy	to	compute	 Insufficient	
information	for	
predicting	
enhancers’	activity	
across	different	
tissues	

eRNA	expression	 CAGE	data	 High	accuracy	 eRNA	regulation	
mechanisms	are	
unknown	and	not	all	
of	the	enhances	are	
known	to	produce	
eRNAs	

Enhancer	
screening	data	

STARR-seq	 High	accuracy	for	
testing	enhancer	
activity	

Not	very	useful	for	
ab-initio	discovery	of	
enhancers		

 

A conceptually simple way to classify enhancer identification methods 

can be based on the available data sources (e.g., grouping together all 

methods that rely on evolutionary conservation). However, this is not readily 
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applicable since different methods rely on a mixture of different 

datasets/features and frequently the deployed algorithms combine supervised 

and unsupervised components.  In this review we group the available 

methods into the following three categories: 

a) The first category includes computational methods that identify 

DNA regulatory elements (including enhancers) using 

epigenetic signatures such as ChIP-seq of histone markers, 

DHS peaks and/or TFBSs mainly through unsupervised 

learning and clustering techniques.  

b) The second category represents systems based on supervised 

Machine Learning (ML) classification that utilize mainly ChIP-

seq data of histone markers frequently combined with 

sequence motifs, to distinguish enhancers from non-enhancers 

and identify features that characterize enhancers in an 

optimized way. In this category we also cover methods based 

on PGMs that are in the group of supervised learning methods.  

c) As the third category, we consider recent bioinformatics 

methods that identify enhancers using as input experimental 

enhancer-screening data and data from some more targeted 

experiments. Although these methods are in principle 

experimental, the analysis of the results relies strongly on 

advanced bioinformatics methods combined with ML algorithms 

for deciphering the enhancer context. Figure 2.5 gives the 

outline of existing bioinformatics approaches for enhancer 

identification. In Table 2.2 we further highlight the most popular 
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approaches that are accessible and functional (at the time this 

study was conducted). 

	

	

	

	

	

	

	

	

	

Figure	 2.5:	 The	 roadmap	 of	 existing	 approaches	 for	 enhancer	 identification.	We	 have	
categorized	the	methods	into	three	basic	streams	that	we	partitioned	further	into	sub-
categories	 based	 on	 the	 underlying	 computational	 solutions	 and	 the	 combination	 of	
relevant	enhancer	data.	Image	and	caption	(c)	Kleftogiannis,	Kalnis	and	Bajic	2015a.		
 

2.4 Identification of enhancers based on clustering of epigenetic profiles, 
DHS and TFBSs 
 

Over the past years, advances in high throughput experiments such as ChIP-

seq have generated vast amounts of data describing the epigenetic 

landscape of different human and non-human cells and tissues (Heintzman et 

al. 2009; Rada-Iglesias et al. 2011; Ram et al. 2011). The produced data 

characterize profiles of different epigenetic markers, identify or estimate many 

TFBSs and describe the chromatin accessibility of DNA. Systematic analysis 

of this data generated global epigenetic maps for different cell-lines and 

tissues and enabled inference of the core principles that characterize different 

categories of DNA regulatory elements (Ernst and Kellis 2013). For example, 

based on data from ChIP-seq experiments, it is found that active enhancers 

are frequently associated with H3K27ac, while active and poised enhancers 
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are associated with H3K4me1 (Shlyueva, Stampfel and Stark 2014). Such 

information made space for the development of several computational 

methods for identification of enhancers and other regulatory elements in a 

cell-line/tissue specific context. Essentially, all of the methods that fall into this 

category initially estimate the profiles (so called epigenetic signatures) of 

histone markers and/or the profile of DHS from different genomic regions. In a 

later step, these genomic regions are assigned into different regulatory 

classes via unsupervised learning techniques (e.g., grouping of similar 

epigenetic profiles) or by the binding fingerprint of enhancer-related TFBSs 

(Hallikas et al. 2006; Jolma et al. 2013; Yip et al. 2012).  

 

2.4.1 Methods based on Clustering of Chromatin Profiles  

Typical example of this sub-category is the bioinformatics analysis presented 

in Heintzman et al. (Heintzman et al. 2007) which studied the chromatin 

landscape of promoters and enhancers in HeLa cell-line from ENCODE 

experiments. In the first stage, the analysis revealed that promoters are 

characterized by H3K4me3, while enhancers are characterized by H3K4me1, 

but not H3K4me3. In the second stage, the outcome of this analysis served 

as a basis for developing a two-step algorithm that scans genomic regions 

from new cell-lines and classifies genomic segments as promoters and 

enhancers based on the similarity of chromatin profiles with existing 

annotated segments. Although the reported enhancers (Heintzman et al. 

2007) were derived from a single dataset, the main findings have served as a 

baseline for many subsequent studies for enhancers characterized by the 

presence of P300 binding sites. Another example is ChromaSig (Hon, Ren 

and Wang 2008) that uses signatures of nine core chromatin markers to 
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generate groups of distinct histone modification profiles that can be further 

assigned to different classes of regulatory elements. Analysis over HeLa and 

CD4+T cells identified eight and 16 clusters of chromatin profiles, respectively, 

that were enriched in enhancer and promoter related TFBSs. Overall, 

ChromaSig is sensitive enough to distinguish different classes of enhancers 

and the results are in agreement with the enhancer lists reported by previous 

studies (Heintzman et al. 2007).  

Following the above-mentioned concepts, several other methods 

utilized diverse datasets and different clustering techniques to identify 

enhancers. As an example, clustering of TFBS profiles from 67 binding 

factors and nine histone markers from ENCODE Gm12878 and K562 cell-

lines, revealed that between those two cell-lines, H3K4me1 marker is more 

frequent in enhancer clusters compared to P300 or H3K27ac (Rye et al. 

2011). The main outcome of this study indicates that an adequate selection of 

TFs may be used to identify different regulatory elements in the genome. In 

another study, the problem of describing more effectively combinatorial 

histone modification patterns was studied using a novel algorithm for 

clustering called CoSBI (Ucar, Hu and Tan 2011). CoSBI follows the concept 

of coherent bi-clustering applied to 39 chromatin modification maps from 

CD4+T cells (Wang et al. 2009). The algorithm reported 843 patterns of core 

chromatin modification markers that effectively distinguish different regulatory 

elements including the category of enhancers.  

 

2.4.2 Methods based on Chromatin Accessibility and TFBSs  

There are several other studies for enhancer recognition that rely mainly on 

the effective combination of DHS footprints with TFBSs of enhancer-related 
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binding factors like P300 or CREBBP (so called CBP) (Lickwar et al. 

2012;Thurman et al. 2012). Here we highlight the high-resolution identification 

of DNA regulatory elements in seven lymphoblastoid cell lines and other five 

human cells/cell lines with diverse characteristics (K562, HeLa, HUVEC, 

NHEK, and embryonic stem cells-ESCs) (Boyle et al. 2011). Active enhancers 

were found to overlap with DHS. Note, that not all highly accessible DNA 

regions correspond to enhancers. To mitigate the above-mentioned limitation, 

DHS information can also be combined with more advanced algorithms such 

as CENTIPEDE (Pique-Regi et al. 2011) and Wellington (Piper et al. 2013) for 

identifying binding sites of enhancer related binding factors. We note that 

TFBSs and ChIP-seq data from histone markers combined with probabilistic 

graphical models and clustering techniques, have been successfully applied 

to studies of the mouse genome (Won, Ren and Wang 2010; Visel et al. 

2009). Finally, an algorithm called Prestige (Corradin et al. 2014 ) utilizes 

histone H3K4me1 profiles from ChIP-seq data, combined with gene 

expression from RNA-seq, to identify enhancers and associate variations of 

the enhancer region sequences with diseases through Genome Wide 

Association Studies (GWAS).  

 

2.5 Identification based on ML classification methods 
	
Methods of this category reformulate the enhancer identification problem as a 

binary classification task for predicting enhancer regions as being different 

from non-enhancer (negative control) regions. So far, SVMs, ANNs, DTs, RFs, 

PGMs and ensemble techniques have successfully been applied. All these 

methods have found use in bioinformatics (Yang 2004; Lancashire, Lemetre 
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and Ball 2009; Lin and Chen 2013) and could be applied to enhancer 

prediction problems. We also note that ensemble-learning methods have 

documented advantages for the class-imbalance problem, which is also 

present in enhancer identification (Lin and Chen 2013). Briefly, the class-

imbalance problem occurs when the number of samples from the class of 

interest (e.g., enhancers) differs significantly from the number of samples 

from other classes (e.g., non-enhancers). 

Typically, supervised ML classification systems are combined with 

feature selection (FS) techniques to extract small sets of features (in our case 

histone modification markers and/or sequence characteristics and/or 

TFBS/binding motifs), which, all together, are capable of maximizing the 

separation between enhancers and non-enhancers [67, 68] (Gola et al. 2015; 

Wu and Ma 2014). In addition, a combination of supervised classification 

systems with global optimization techniques such as Genetic Algorithms (GA) 

or Simulated Annealing (SA) can be used for tuning the model parameters 

and optimizing several steps of the enhancer recognition process (Larranaga 

et al. 2006; Soufan et al. 2015). 	

	

2.5.1 Solutions that use PGMs  

The methods we survey here are used for genome-wide annotation purposes. 

In principle, some of these tools, segment genome into intervals and develop 

PGMs from large numbers of chromatin modifications coming from multiple 

cell-lines and tissues (Ernst and Kellis 2012; Hoffman et al. 2012). The 

identified chromatin-states are then grouped and annotated as enhancers, 
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promoters, repressed regions or transcribed regions based on the known 

functional sites.    

 The most popular genome-wide annotation tool for genome 

segmentation in the above-mentioned manner proposed by the ENCODE 

consortium is ChromHMM (Ernst and Kellis 2012). ChromHMM uses a 

probabilistic model based on a multivariate HMMs. ChromHMM segments the 

genome into 200 bp intervals and a single model is trained on data from six 

available cell-lines. Segway (Hoffman et al. 2012) on the other hand, is an 

alternative genome annotation tool based on DBNs.  Segway offers a higher-

resolution analysis because it annotates the genome for every single base 

(e.g., has one bp resolution). In addition, it trains cell-specific models and is 

more computationally demanding than ChromHMM.  

Although ChromHMM and Segway were developed independently, the 

ENCODE consortium combined these programs to annotate the human 

genome in a more comprehensive way. The annotation proposed by Hoffman 

et al. (Hoffman et al. 2013) combines the results produced by ChromHMM 

and Segway with other relevant experimental data such as DHS, FAIRE 

assays (Formaldehyde-Assisted Isolation of Regulatory Elements), and 

several ChIP-seq datasets for transcription regulators (e.g., CTCF, POL2, 

P300) to generate annotation maps for Gm12878, K562, H1, HeLa, HepG2 

and Huvec cell-lines. Note that this annotation serves as the baseline 

annotation proposed by the ENCODE consortium. Specifically, the integrative 

annotation categorizes enhancers into three states, Enh, EnhF and EnhWF, 

with Enh representing the class of enhancers with the strongest enrichment of 

TFBS (so called strong enhancers) (Hoffman et al. 2013).  Finally, other 
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probabilistic graphical methods for enhancer identification exist, as well as 

many independent genome annotation tools (Won et al. 2013; Sinha, van 

Nimwegen and Siggia 2003; Won et al. 2008; Mammana and Chung 2015). 

Here we highlight ChroModule (Won et al. 2013), which annotated human 

genome characteristics for eight cell-lines and reported higher recognition 

performance compared to (Ernst and Kellis 2012) as indicated by the Area 

Under Curve (AUC).   

	

2.5.2 Solutions that use ANNs 

In particular, CSI-ANN (Firpi, Ucar and Tan 2010) is one of the first enhancer 

classification systems that rely on an ANN using chromatin signatures as 

input. Putative enhancers derived from human CD4+T cell data from Wang et 

al. (Wang et al. 2009) based on P300 ChIP-seq peaks distal to TSS 

overlapping with computationally predicted enhancers from PreMod database 

(Ferretti et al. 2007). The FS component of CSI-ANN, based on Fisher 

Discriminant Analysis (FDA) reported several histone markers such as 

H3K4me3, H4Ac and H3 that separate enhancers from background 

sequences in an optimized way. In terms of recognition performance, CSI-

ANN reported higher Positive Predictive Value (PPV) on untreated HeLa cells 

(maximum PPV of 66.3% based on the overlap of predictions with P300 or 

DHS or TRAP220 binding sites) as compared to (Heintzman et al. 2007) and 

(Won et al. 2008).  

 

2.5.3 Solutions that use SVMs 

ChromaGenSVM (Fernandez and Miranda-Saavedra 2012) is a typical 

enhancer classification system that uses SVMs. ChromaGenSVM is trained 
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on HeLa enhancer data (the authors also developed a second model on 

CD4+T cells from Wang et al. 2009) from (Heintzman et al. 2007) using core 

ChIP-seq histone modification markers. For FS and SVMs, parameters 

optimization ChromaGenSVM utilizes a global optimization technique based 

on a GA. The optimal ChromaGenSVM model identified histones H3, 

H3K4me1 and H3K4me3 as the most prominent features for describing 

enhancers versus the background sequences. In terms of recognition 

performance, ChromaGenSVM reported PPV ~90% on CD4+T and on 

untreated HeLa cells achieved comparable PPV to (Heintzman et al. 2007) 

and CSI-ANN (Firpi, Ucar and Tan 2010) and (Won et al. 2008) (maximum 

PPV of ~57% based on the overlap of predictions with P300 or DHS or 

TRAP220 binding sites).   

The idea of integrating diverse datasets from multiple sources to 

accurately identify developmental enhancers is the main contribution 

introduced by EnhancerFinder (Erwin et al. 2014). EnhancerFinder’s 

underlying classification method is based on the use of Multiple Kernel 

Learning (MKL), with the training datasets derived from VISTA database 

(Visel et al. 2007). EnhancerFinder also investigates the discriminative power 

of features using different datasets, concluding that sequence motifs 

combined with functional genomics data (e.g., H3K4me1 or P300) are 

adequate of identifying enhancers. This, of course, relates only to a subset of 

enhancers. In terms of recognition performance, when applied to the entire 

genome, EnhancerFinder predicted 84,031 developmental enhancers and 

achieved much higher recognition performance compared to ChromHMM and 

Segway. 
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To achieve better generalization capabilities in unknown tissues and 

cell-lines, DEEP (Dragon Ensemble Enhancer Predictor) (Kleftogiannis, 

Kalnis and Bajic 2015a) developed the first deep learning method for 

enhancer identification, as a two-layer classification algorithm based on SVMs 

and ANNs and trained for the first time on data from multiple cell-lines and 

tissues. In its first step, DEEP trains multiple SVM models on data from 

different cell-lines and tissues that are combined in a second step via an ANN 

for finally distinguishing enhancers from non-enhancers. DEEP uses putative 

enhancers from the ENCODE annotation proposed by Hoffman et al. 2013, 

actively transcribed enhancers from FANTOM5 Atlas (Andersson et al. 2014), 

and a small set of developmental enhancers achieved in VISTA database 

(Visel et al. 2007). An exhaustive search technique applied on the set of 11 

core histone modification markers revealed that different ENCODE cell-lines 

are characterized by different optimized sets of histone markers. In these sets, 

only H3K4me1 characterizes enhancer regions from different cell-lines 

studied in DEEP. In terms of performance DEEP reported higher PPV 

compared to ChromHMM, Segway, CSI-ANN, and RFECS on HeLa and 

K562 cell-lines (PPV was computed based on the overlap of predictions with 

P300 binding sites or DHS). When considering the number of predicted 

enhancers that overlap with promoters, DEEP achieved lower or comparable 

overlap to the competitor methods. 

 

2.5.4 Solutions that use DTs and RFs  

For reducing the effects of class-imbalance between enhancer/non-enhancer 

samples and eliminating limitations coming from the small size of the training 

data, RFECS (Rajagopal et al. 2013) introduces a RF-based classification 
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system trained on H1 and IMR90 data from the NIH Epigenome Roadmap 

project (Bernstein et al. 2010). RFECS introduces additional novelties in the 

way putative enhancer regions are selected and in the way genome-wide 

predictions are validated. Overall, RFECS tested on CD4+T and H1-hESC 

cell-lines achieves higher true positive rate and lower false positive rate 

compared to state-of-the-art enhancer recognition systems CSI-ANN, 

ChromaGenSVM and Won et al. 2008 (RFECS achieved true positive rate of 

~70% and ~82.5% and false positive rate of ~7% and ~4.9% respectively). 

We note that the true positive rate was measured by the overlap of 

predictions with DHS, P300, and CBP binding sites and the false positive rate 

was measured by the overlap of predictions with TSSs as annotated by 

UCSC Genome Browser. In addition, an out-of-bag FS technique reported 

histone markers H3K4me3, H3K4me1 and H3K4me2 as the most important 

features for the enhancer’s recognition problem by this approach. DTs have 

been successfully applied in another method called DELTA (Li et al. 2015). 

DELTA is based on the AdaBoost algorithm applied to a set of features 

characterizing the shape of ChIP-seq peaks of core chromatin markers. In 

terms of performance, DELTA further improved the prediction accuracy of 

RFECS on CD4+T and H1-hESC cell-lines, achieving a misclassification rate 

of 2% and 1.6% respectively.  

 

2.5.5 Solutions that use classification algorithms to study the enhancer 

sequence context  

The problem of identifying enhancers based solely on sequence 

characteristics (e.g., motifs or kmers) is dealt with in (Leung and Eisen 2009). 

To note that with the term kmers we define DNA substrings of fixed length k.  
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In another study (Lee, Karchin and Beer 2011), sequence features capable of 

discriminating mammalian enhancer sequences from random genomic loci 

are systematically identified. The proposed ‘kmer-frequency vector’ (Fletez-

Brant et al. 2013) that captures the full set of kmers of varying length 3-10 

nucleotides and its refined version called ‘gapped kmer-vector’ (Ghandi et al. 

2014) were used in SVM models to predict enhancers.  

 

2.6 Identification of enhancers using high-resolution experimental data 
	
The presence of deep sequence data has enabled development of a variety 

of bioinformatics methods to detect active enhancers and test directly their 

ability to trigger transcription in mRNA promoters. Nowadays several 

enhancer testing and in-vivo screening methods exist for human, mouse, flies 

and yeast such as STARR-seq (Arnold et al. 2013), CRE-seq (Mogno, 

Kwasnieski and Cohen 2013), FIREWACh (Murtha et al. 2014) and several 

others (Gisselbrecht et al. 2013; Melnikov et al. 2012; Patwardhan et al. 2012) 

that are surveyed comprehensively in (Shlyueva, Stampfel and Stark 2014). 

Figure 2.6 presents the most important enhancer screening techniques and 

we report advantages/disadvantages as well as the model systems that they 

are applicable.  
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Figure	2.6:	Overview	of	existing	enhancer-screening	technologies.	Image	and	caption	(c)	
Shlyueva,	Stampfel	and	Stark	2014.	

 

2.6.1 Methods based on Enhancer Screening Data 

 This sub-category of methods describes bioinformatics analyses for 

investigating mechanisms that trigger regulation activities related to 

enhancers and promoters combining several high-throughput datasets, 

sequence characteristics or TFBSs, and more targeted mutation experiments 

(Sharon et al. 2012; Pengelly et al. 2013). A typical example is an analysis 

based on MPRA (massively parallel reporter assay) derived data from K562 

and Hep cell-lines that re-confirmed previously published results for cell type-

specificity of enhancer chromatin states (Kheradpour et al. 2013). In a similar 

fashion, functional testing of computationally predicted enhancers with CRE-

seq data in K562 cell-line revealed that previously reported chromatin states 

can distinguish active enhancers from negative samples, but TFBS motifs 

have also high discriminative power and characterize in a better way the most 

active enhancer regions (Kwasnieski et al. 2014). Note that an analysis based 
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on STARR-seq data from Drosophila cells reported interesting mechanistic 

properties of enhancers and can serve as a paradigm for similar studies in 

human (Yanez-Cuna et al. 2014).  

 

2.6.2 Identification based on Quantification Analysis of RNA  

A popular sub-category identifies enhancer regions using high throughput 

techniques that measure the production of RNA based on CAGE (Cap 

Analysis of Gene Expression) or GRO-seq (calculation of transcription rate 

using Genomic Run-on). In particular, using bidirectional CAGE tags over 135 

tissues and 241 cell-lines were analysed in FANTOM (Functional Annotation 

of the Mammalian Genomes) experiments, 43,011 putative enhancer regions 

that were depleted in CpG islands were reported (Andersson et al. 2014). The 

so-called ‘Atlas of actively transcribed enhancers’ also reported some core 

differences between enhancers and mRNA promoters, whereas the results 

complement findings reported by the ENCODE consortium. Note, that another 

CAGE analysis from FANTOM5 data revealed that transcription in enhancer 

regions is the earliest event that leads to many subsequent transcriptional 

changes during cellular differentiation (Arner et al. 2015). Finally, a high-

throughput recognition system called dREG (Danko et al. 2015) utilizes GRO-

seq data (Core et al. 2014) and Support Vector Regression (SVR) to identify 

and characterize effectively active transcriptional regulatory elements 

including the category of enhancers.   
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Table	 2.2:	 Summary	 of	 the	 most	 popular	 bioinformatics	 approaches	 for	 enhancer	
identification.	With	(*)	are	marked	the	methods	that	provide	source	codes	or	executable	
files.	
	
Name	 Computationa

l	Method	
Publication	
information	

Highlight	 Link	

Heintzman	et	
al.		

Clustering	and	
correlation	of	
histone	
markers	
profiles	

Nature	Genetics,	2007,	
doi:10.1038/ng1966	
	

High	recognition	
performance	in	HeLa	

-	

ChromaSig	(*)	 Identification	
of	specific	
histone	mark	
motifs	and	
clustering		

PLoS	Computational	
Biology,	2008,	
doi:	
10.1371/journal.pcbi.1
000201	
	

The	method	is	sensitive	
enough	to	capture	
patterns	characterizing	
different	classes	of	
enhancers.	

http://bioinform
atics-
renlab.ucsd.edu/
rentrac/wiki/Ch
romaSig	

Rye	et	al.	 Clustering	of	
profiles	

BMC	Bioinformatics,	
2011,	doi:	
10.1186/1741-7007-9-
80	
	

The	results	indicate	
that	selection	of	
relevant	TFs	may	be	
sufficient	to	identify	
regulatory	elements	

-	

Won	et.	al.		 HMMs	 BMC	Bioinformatics,	
2008,	doi:	
10.1186/1471-2105-9-
547	
	

State-of-the-art	method	
suggesting	that	HMM	
are	capable	of	
integrating	information	
from	multiple	histone	
mark	for	predicting	
regulatory	elements	

http://http/nash
.ucsd.edu/chrom
atin.tar.gz	

Boyle	et	al.	 Combination	of	
DHS	with	
TFBSs	

Genome	Research,	
2011,	doi:	
10.1101/gr.112656	
	

Active	enhancers	
usually	overlap	with	
open	chromatin	
regions	but	not	all	of	
the	DNA	accessible	
regions	correspond	to	
enhancers	

-	

ChromHMM	(*)	 HMMs	 Nature	Methods,	2012,	
doi:	
10.1038/nmeth.1906	
	

State-of-the-art	
genome	annotation	
method	by	ENCODE	

http://compbio.
mit.edu/ChromH
MM	

Segway	(*)	 DBNs	 Nature	Methods,	2012,	
doi:	
10.1038/nmeth.1937	
	

State-of-the-art	
genome	annotation	
method	by	ENCODE	

http://www.pmg
enomics.ca/hoff
manlab/proj/seg
way/	

ChroModule	 HMMs	 Nucleic	Acids	Research,	
2013,	doi:	
10.1093/nar/gkt143	
	

Annotated	human	
genome	for	eight	cell-
lines	and	improved	the	
AUC	compared	to	state-
of-the-art	HMM	based	
methods	

-	

CSI-ANN	(*)	 ANNs	 Bioinformatics,	2010	
doi:	
10.1093/bioinformatic
s/btq248	
	

Effective	combination	
of	ANNs	with	FDA	for	
feature	selection	

http://www.heal
thcare.uiowa.edu
/labs/tan/CSIAN
NWebpage.html	

ChromaGenSV
M	(*)	

SVMs	 Nucleic	Acids	Research,	
2012,	doi:	
10.1093/nar/gks149	
	

Effective	combination	
of	SVMs	with	GA	for	
optimization	and	
feature	selection	

http://sysimm.if
rec.osaka-
u.ac.jp/downloa
d/Diego/	

EnhancerFinde
r	

MKL	 Plos	Computational	
Biology,	2014,	doi:	
10.1371/journal.pcbi.1
003677	
	

Functional	genomics	
combined	with	
sequence	motifs	can	
accurately	identify	
developmental	

-	
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enhancers	
RFECS	(*)	 RFs	 Plos	Computational	

Biology,	2013,	doi:	
10.1371/journal.pcbi.1
002968	
	

Method	less	prone	to	
overfitting	that	
introduces	additional	
novelties	on	the	way	
enhancer	predictions	
are	validated	

http://enhancer.
ucsd.edu/renlab
/RFECS_enhance
r_prediction/	

DEEP	(*)	 SVMs	and	ANNs	 Nucleic	Acids	Research,	
2015,	doi:	
10.1093/nar/gku1058	
	

Novel	ensemble-
learning	based	
algorithm	with	good	
generalization	
capabilities	in	
unknown	cell-lines..	

http://cbrc.kaust
.edu.sa/deep/	

kmer-SVM	(*)	 SVMs	 Nucleic	Acids	Research,	
2013,	doi:	
10.1093/nar/gkt519	
	

Study	extensively	the	
enhancer	sequence	
context	

http://kmersvm.
beerlab.org/	

dREG	(*)	 SVR	 Nature	Methods,	2015,	
doi:	
10.1038/nmeth.3329	
	

Usage	of	GRO-seq	data	
combined	with	
regression	analysis	

https://github.co
m/Danko-
Lab/dREG/	

DELTA	(*)	 AdaBoost	 PloS	ONE,	2015,	doi:	
10.1371/journal.pone.
0130622	
	

Introduces	the	concept	
of	shape	features	from	
ChiP-seq	data	

https://github.co
m/drlu/delta	

Andersson	et	
al.		(*)	

eRNA	
expression	
analysis		

Nature,	2014,	doi:	
10.1038/nature12787	
	

Introduces	one	of	the	
most	accurate	feature	s	
for	enhancer	
identification	

http://enhancer.
binf.ku.dk/enhan
cers.php	

CoSBI	(*)	 Bi-clustering	 Nucleic	Acids	Research,	
2011,	doi:	
10.1093/nar/gkr016	
	

Reports	combination	of	
histone	markers	with	
high	discriminative	
power	for	the	category	
of	enhancers	

http://www.heal
thcare.uiowa.edu
/labs/tan/CoSBI
Webpage.html	

 

2.7 Challenges and obstacles in computational identification of 
enhancers 
	
Here we address several challenges and open questions related to the 

enhancer identification.  

 

2.7.1 Challenges and open questions  

Computational prediction of enhancers does not guarantee that the identified 

enhancers are real. Since there exist no large, sufficiently comprehensive and 

experimentally validated enhancer set for human (or other species), one of 

the major issues related to enhancer identification is how to assess the 

correctness of predictions. One possible way of validation is to link the 

predicted enhancers to their target genes. This, complementary to 
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computational prediction of enhancers, is without a doubt the most difficult 

challenge. Below we summarize the most important streams for enhancer 

target identification and we discuss relevant sub-problems:  

a) Enhancers can be located relatively close (e.g., few thousands of 

bases) or much further away (e.g., hundred thousands of bases) to the 

genes they affect (He et al. 2014). Consequently, some methods 

identify enhancer targets based on their relative location to enhancers 

(e.g., an enhancer interacts with its neighbouring mRNA promoter). 

These models are oversimplified since there are no clear distance 

boundaries for the enhancer-promoter interactions. Some of the 

existing approaches (Ernst et al. 2011) have defined arbitrary 

thresholds for the relative location of enhancers and mRNA promoters 

(e.g., minimum distance 5,000 bases and maximum 125,000 bases). 

Although these approaches are easy to implement they generate a 

trade-off between distance threshold and number of true and false 

positives. 

b) More sophisticated approaches for identifying enhancer targets can be 

based on correlated activity of enhancers and mRNA promoters. This 

category is promising since it is based on cell-line/tissue specific 

information. However, the largest obstacle stems from the limited 

knowledge about enhancer and mRNA promoter co-activity 

(Andersson et al. 2014; Thurman et al. 2012).  One possible solution 

can be based on the identification of all possible pairs of enhancers 

and promoters within a pre-defined distance threshold combined with 

correlation analysis and representative datasets and markers (e.g., 
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correlated expression activity between eRNAs and target genes or 

correlated DHS activity) (Arner et al. 2015). However, this is also 

challenging since enhancers and mRNA promoters have many-to-

many relationships meaning that one promoter can be associated with 

multiple enhancers, and one enhancer can be associated with different 

promoters. Thus, the problem becomes computationally expensive and 

efficient pruning techniques are required to restrict the number of 

candidate associations between enhancers and promoters. 

c) The most promising direction for identifying enhancer-promoter 

associations can be based on chromatin conformation data as 

captured by 3C/5C (Dostie et al. 2007) or ChIA-PET (Fullwood et al. 

2009). These datasets can be used to identify associations of 

enhancers with known mRNA promoters in the 3D space. A typical 

example of this category is the method introduced in (He et al. 2014) 

that combines ChIA-PET data with supervised learning based on RFs 

for linking enhancers to their target genes. 

Except for the enhancer target identification, identifying the tissue specific 

activity of enhancers is another promising area of research. For example, 

histone modification mark data, DHSs, different TFBSs as derived from ChIP-

seq experiments, and expression of eRNAs can characterize enhancers in a 

cell-line/tissue specific context. In contrast, sequence characteristics or 

evolutionary conserved motifs do not contain sufficient information to describe 

enhancer activity in different tissues. Consequently, methods that rely solely 

on ChIP-seq data from histone markers, DHS and/or TFBSs may maximize 

the enhancer recognition performance in specific cell-lines and tissues, but 
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frequently the developed models achieve lower generalization capabilities in 

unknown cell-lines (Heintzman et al. 2007; Firpi, Ucar and Tan 2010; 

Fernandez, Miranda-Saavedra et al. 2012;) To mitigate this trade-off, 

mixtures of cell-specific features and sequence characteristics appear to be a 

promising direction (Kleftogiannis, Kalnis and Bajic 2015b; Erwin et al. 2014).  

Another important challenge related to the enhancer identification 

problem, concerns the role of eRNAs in transcription regulation. Recent 

evidences (Weingarten-Gabbay and Segal 2014) indicate that many TSSs of 

eRNAs and protein-coding genes present similar architecture that is 

differentiated only at the post-transcriptional regulatory layer. Consequently, 

understanding the functional mechanisms of eRNAs and inferring rules that 

link eRNA transcription with transcription initiation through mRNA promoters 

is a question warranting further exploration (Arner et al. 2015).  

 

2.7.2 Obstacles of existing approaches  

Many difficulties of the existing enhancer identification methods, derived from 

the used input datasets and the fact that an optimal combination of features 

for describing enhancers across different cell-lines and tissues does not exist 

(Kleftogiannis, Kalnis and Bajic 2015b). There are also specific technical 

limitations introduced by the existing computational solutions.  

Regarding the utilized datasets and features, it is documented that 

information on evolutionary conservation cannot help much (Meireles-Filho 

and Stark 2009) in the prediction of enhancers’ activity since very few non-

coding elements and motifs appear to be well conserved in other species, and 

because enhancers are largely tissue specific. On the other hand, ChIP-seq 

data for histone markers and TFBSs captures cell-line/tissue specific 
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information. Using these ChIP-seq data as an input in computational systems, 

however, requires a demanding data pre-processing phase. This pre-

processing phase usually segments genome into small intervals (e.g., 100 bp 

or 200 bp) but a clear answer to the optimal way of selecting this interval size 

does not exist. The step of identifying significant ChIP-seq peaks (so call 

peak-calling step), as derived from programs like MACS (Zhang et al. 2008) 

or SICER (Zang et al. 2009) is sensitive to the selection of parameters, which 

are usually dataset dependent and different among different cellular 

conditions (e.g., HeLa vs. K562). Guidelines about the optimal selection of 

publicly available peak calling programs for ChIP-seq data can be found in 

(Koohy et al. 2014) and (Wilbanks and Facciotti 2010). Note that some of the 

existing approaches for enhancer prediction recommend use of specific ChIP-

seq peak calling programs (Fernandez and Miranda-Saavedra 2012; 

Rajogopal et al. 2013), which represent a limitation since different and 

possibly better solutions for peak calling could be available in future. 

Furthermore, ChIP-seq data are not available for many of the existing cell-

lines and tissues. This represents a real obstacle as it limits the scope of 

potential studies that rely on such information. To mitigate this problem, data 

imputation techniques for histone modification markers have been proposed 

(Ernst and Kellis 2015).   

Moreover, methods that rely on DHS footprints for finding regulatory 

elements usually lack specificity between different functional categories (e.g., 

promoters vs. enhancers vs. insulators) (Teytelman et al. 2013). In other 

words, DNA regions with enriched DHS activation are not necessarily 

enhancers. Also, the identification step of TFBSs is also problematic since not 
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all of the enhancers are marked by the same combination of regulatory 

proteins or present similar histone modification patterns. This simply means 

that genomic regions with enrichment in specific histone markers (e.g., 

H3K4me1) or binding factors (e.g. P300) are not necessarily enhancers.  To 

complicate the problem even more, even the antibodies that are used by 

ChIP related experiments may not be always available since enhancers are 

characterized by different (and maybe unknown) combinations of enhancer 

co-activators (Heintzman and Ren 2009). On the other hand, identification of 

binding sites based on PWMs, prediction models faces limitations and 

frequently achieves poor recognition performance (Bajic 2000; Budden, 

Hurley and Crampin 2015).   

Further, supervised and unsupervised ML methods also face 

limitations. For the unsupervised clustering of histone mark profiles, rules that 

have been applied for identifying enhancers are not sufficient since different 

combinations of histone markers and enhancer-related TFBSs characterize 

enhancers in different cell-lines and tissues. This argumentation raises 

several questions that have to be addressed. For example, to what extent 

chromatin-defined enhancers in multiple cell-lines/tissues have exactly the 

same chromatin states? Or which cell-lines and tissues have exactly the 

same sets of active enhancers?   

 In addition, the main challenge that all of the ML-based classification 

methods face, is the selection of high-quality samples to represent adequately 

the positive (enhancers) and negative classes (non-enhancers). In the 

absence of a ‘ground truth enhancer’ dataset, the very first ML-based 

classification systems introduced rules to select enhancer regions for training 
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(Firpi, Ucar and Tan 2010; Fernandez and Miranda-Saavedra 2012; 

Rajogopal et al. 2013). The most prominent rule is the selection of DNA 

segments distal, to protein-coding TSSs characterized by open chromatin as 

indicated by DHS data that are also enriched in enhancer-related TFBSs (e.g., 

P300 and/or CBP). For the selection of negative samples, random sequences 

not annotated as enhancers or promoters are frequently used. An alternative 

way to generate negative control samples is to shuffle the genomic content of 

existing enhancer regions (e.g., scrambled enhancers). However, with the 

recent advances on computational and experimental techniques, the 

ENCODE integrative annotation (Hoffman et al. 2013), the Atlas of actively 

transcribed enhancers (Andersson et al. 2014), the VISTA enhancer browser 

(Visel et al. 2007) and the outcome of individual studies based on enhancer 

screening data (similar to those we summarized before) can serve as 

baseline sources for implementing more reliable ML-based recognition 

systems (Kleftogiannis, Kalnis and Bajic 2015b, Rajogopal et al. 2013 ).  

Finally, the class-imbalance problem, tuning of classification model 

parameters (e.g., number of neurons or hidden layers for ANNs or parameter 

C and gamma for SVMs), overfitting issues, poor generalization capabilities of 

the developed models in unknown cell-lines/tissues and ad-hoc rules for 

validating genome-wide predictions of enhancers, are some technical 

problems related to enhancer recognition via ML-based classification systems.  

	

2.8 Conclusion 
 

Without doubt Bioinformatics approaches for enhancer identification are 

valuable for validating hypotheses and assumptions in gene regulation 
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studies. Here, we went through more than 30 bioinformatics approaches that 

have been developed over the past few years. We covered three basic 

streams of computational methods including: (a) methods that identify DNA 

regulatory elements via clustering of histone markers profiles, open chromatin 

information and TFBSs; (b) ML-based classification systems; and (c) 

bioinformatics analyses based on high-resolution enhancer-screening 

datasets.  

During our review process, we identified and reported limitations and 

advantages of the existing computational methods. A large-scale comparison 

analysis of the performance of the existing methods may provide meaningful 

insights about the discriminative capacity of different genomic and epigenetic 

datasets that feed different computational solutions.  

We also commented on some promising areas of research and we 

reported challenges that require further investigation. Among them, linking 

enhancers with their in-vivo target genes and understanding the role of 

eRNAs for transcription regulation are among the most challenging topics for 

future research.  

To conclude, we anticipate that our review will complement 

subsequent gene regulation studies aimed at resolving questions regarding 

the role of enhancers into cellular transcriptional activities.  
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CHAPTER 3:THE DATABASE OF INTEGRATED HUMAN 
ENHANCERS (DENdb) 

 

3.1 Introduction  
	
Genome regulation consortia produce massive amounts of data to improve 

our understanding about gene regulation processes at genome-wide scale. 

This increase in data volume has changed the way we tackle the problem of 

identifying DNA regulatory elements including the problem of enhancer 

identification in human.  

The aim of this chapter is to present first the available data sources 

including databases of enhancers that can be utilized by subsequent gene 

regulation studies. By addressing some limitations of the state-of-the-art 

databases, we introduce next the concept of Database of Integrated Human 

Enhancers. The idea behind this is to develop a user-friendly online repository 

of enhancers predicted by different ML methods in various human cell-lines. 

Combining this data, we will generate a comprehensive catalogue of 

enhancers for all the available human cell-lines. Beyond the integrated set of 

enhancers, the repository will also contain other sources of information to 

help researchers explore enhancer’s functional context and decipher possible 

enhancer activities. These sources include TFBSs predicted by models from 

PWM, DHS information from ENCODE experiments and association of 

enhancers with candidate gene targets based on chromatin conformation 

data. 
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3.2 Existing Enhancer Resources 
	

3.2.1 Genome Regulation Consortia 
	
Recent experimental procedures shed light on distal regulatory element 

interactions and decipher parts of their underlying operational mechanism. 

For instance, ChIP-seq technologies determine the spatial chromatin 

organization in different organisms, tissues and under different conditions. On 

the other hand, CAGE technology estimates the quantity of 5’ ends of 

messenger RNA in a cell.  

Taking advantage of the above-mentioned biotechnologies, several 

consortia worldwide aiming at analyzing the functional elements of the human 

genome. Projects such as the ENCODE and the NIH Epigenome Roadmap 

released libraries of histone modification markers in human genome, whereas 

the FANTOM5 project released CAGE-based TSSs in different cell types and 

tissues and enabled for the comprehensive identification of functional 

regulatory elements.  

 

3.2.2 Existing Enhancer Databases 
	
In this sub-section we report available on-line resources related to enhancers 

that include databases, repositories of experimental data, computational tools 

and other material useful for subsequent enhancer identification studies. 

 Regarding the enhancer databases, PReMod (Ferretti et al. 2007) 

(http://genomequebec.mcgill.ca/PReMod/) and PEDB (Kumaki et al. 2008) 

(http://promoter.cdb.riken.jp/) are two of the first resources that archived 

computationally predicted enhancers in human and mouse. Currently, the 

state-of-the-art database for enhancers is the “Human Transcribed Enhancer 
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Atlas” that contains actively transcribed enhancers based on the analysis of 

eRNA expression (Andersson et al. 2014) 

(http://enhancer.binf.ku.dk/enhancers.php). Except for the list of human 

enhancers in multiple tissues and organs, the Atlas contains utilities for 

downstream analysis such as TF motif enrichment in enhancer sequences, as 

well as a selection of enhancers based on expression levels. In addition, all 

the results are publicly available as flat files or can be visualized in the 

Genome Browser. On the other hand, VISTA enhancer browser (Visel et al. 

2007)(http://enhancer.lbl.gov/) contains a set of developmental enhancers 

extremely conserved in mouse and human. This list of developmental 

enhancers is experimentally validated in mouse (Visel et al. 2007). There are 

also some other enhancer sources that archive enhancers in an integrative 

way. Examples are dbSUPER 

(http://bioinfo.au.tsinghua.edu.cn/dbsuper/index.php) that contains 66,033 

super enhancer regions predicted (Loven et al. 2013) from 96 human and five 

mouse tissues and DENdb (Ashoor et al. 2015) 

(http://www.cbrc.kaust.edu.sa/dendb/) which is the first online repository of 

putative enhancers, from 16 ENCODE cell-lines computationally predicted by 

five state-of-the-art ML enhancer recognition systems. DENdb also 

incorporates utilities such as overlap of enhancers with TFBS from ChIP-seq 

data or predictions of TFBSs obtained by PWM from HOCOMOCO database 

(Kulakovskiy et al. 2013), interactions of enhancers with other genomic loci as 

captured by chromatin conformation technologies such as 3C/5C or ChIA-

PET archived in 4DGenome database (Teng et al. 2015) 
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(http://4dgenome.int-med.uiowa.edu/) and overlap of enhancers with open 

chromatin regions via DHS.   

3.2.3 Limitations of the Existing Databases 
	
Although the above-mentioned data sources increased the set of 

computationally predicted enhancers in a large number of available cell-lines, 

this information could be misleading and cannot be easily utilized due to 

specific technical limitations that frequently prevent or restrict the usage and 

the analysis of the data. As an example, the ENCODE project has released 

huge amounts of data but there is not a dedicated database for ENCODE-

derived enhancers. There are also some other more specific obstacles that 

we list below: 

a) The available computationally predicted enhancers generated by 

different prediction methods differ significantly from method to method; 

this would benefit from integration of these predicted enhancers into a 

centralized repository based on large-scale archiving that would enable 

systematic searching, browsing, comparing, combining and visualizing 

relevant information. As a proof of concept in Figures 3.1 to 3.6 we 

present the pairwise intersection of enhancer predictions as obtained 

by five state-of-the-art methods (ChromHMM, Segway, CSI-ANN, 

RFECS and ENCODE integrative annotation) across six ENCODE cell-

lines. It is apparent that the overlap of computationally predicted sets 

of enhancers is relatively small (Ashoor et al. 2015). 

b) Since different methods are trained on some cell-lines and tested on 

others, it makes sense to combine the available predictions and 

generate cell-specific annotation maps of enhancers based on different 
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levels of confidence and overlaps between predictions; however, up to 

now, to the best of our knowledge, the only available integrated 

annotation of enhancers is based on ChromHMM and Segway. 

c) Current enhancer databases (Ferretti et al. 2007; Kumaki et al. 2008; 

Andersson et al. 2014; Visel et al. 2007) do not provide many 

automated utilities to analyse archived enhancers in a number of 

important aspects that would facilitate exploration of gene regulation 

mechanisms, such as: 1/ overlaps of enhancers with TFBSs; 2/ 

overlaps of enhancers with relevant experimental data such as 

chromatin accessibility as captured by DHSs; 3/ linking enhancers to 

closest genes (that in the first approximation could be considered as 

candidate target genes of an enhancer). 

Such utilities will help obtaining information that can describe more 

completely functional context of enhancer activities in different cell-lines and 

thus help to increase our understanding of gene regulation processes under 

different cellular conditions.  
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Figure	3.1:	Pairwise	intersection	of	enhancer	predictions	for	H1-hesc	ENCODE	cell	line.	
(a)	 Bar	 plot	 represents	 genome	 coverage	 in	 million	 base	 pairs	 by	 each	 method	
individually.	(b)Venn	diagrams	show	the	pairwise	intersection	between	the	predictions	
of	 five	 tools	 used	 in	 DENdb.	 Size	 of	 the	 circle	 represents	 relative	 proportion	 of	
predictions	for	a	method	compared	to	the	union	of	both	methods.	Image	and	caption	(c)	
Ashoor	et	al	2015.		
 

 

Figure	 3.2:	 Pairwise	 intersection	 of	 enhancer	 predictions	 for	 Gm12878	 ENCODE	 cell	
line.	 (a)	 Bar	 plot	 represents	 genome	 coverage	 in	 million	 base	 pairs	 by	 each	 method	
individually.	(b)Venn	diagrams	show	the	pairwise	intersection	between	the	predictions	
of	 five	 tools	 used	 in	 DENdb.	 Size	 of	 the	 circle	 represents	 relative	 proportion	 of	
predictions	for	a	method	compared	to	the	union	of	both	methods.	Image	and	caption	(c)	
Ashoor	et	al	2015.	
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Figure	3.3:	Pairwise	intersection	of	enhancer	predictions	for	HeLa	ENCODE	cell	line.	(a)	
Bar	plot	represents	genome	coverage	in	million	base	pairs	by	each	method	individually.	
(b)Venn	diagrams	show	the	pairwise	intersection	between	the	predictions	of	five	tools	
used	 in	 DENdb.	 Size	 of	 the	 circle	 represents	 relative	 proportion	 of	 predictions	 for	 a	
method	 compared	 to	 the	 union	 of	 both	 methods.	 Image	 and	 caption	 (c)	 Ashoor	 et	 al	
2015.	
 

 

Figure	3.4:	Pairwise	intersection	of	enhancer	predictions	for	Hep	ENCODE	cell	line.	(a)	
Bar	plot	represents	genome	coverage	in	million	base	pairs	by	each	method	individually.	
(b)Venn	diagrams	show	the	pairwise	intersection	between	the	predictions	of	five	tools	
used	 in	 DENdb.	 Size	 of	 the	 circle	 represents	 relative	 proportion	 of	 predictions	 for	 a	
method	 compared	 to	 the	 union	 of	 both	 methods.	 Image	 and	 caption	 (c)	 Ashoor	 et	 al	
2015.	
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Figure	 3.5:	 Pairwise	 intersection	 of	 enhancer	 predictions	 for	Huvec	ENCODE	 cell	 line.	
(a)	 Bar	 plot	 represents	 genome	 coverage	 in	 million	 base	 pairs	 by	 each	 method	
individually.	(b)Venn	diagrams	show	the	pairwise	intersection	between	the	predictions	
of	 five	 tools	 used	 in	 DENdb.	 Size	 of	 the	 circle	 represents	 relative	 proportion	 of	
predictions	for	a	method	compared	to	the	union	of	both	methods.	Image	and	caption	(c)	
Ashoor	et	al	2015.	
 

 

Figure	3.6:	Pairwise	intersection	of	enhancer	predictions	for	K562	ENCODE	cell	line.	(a)	
Bar	plot	represents	genome	coverage	in	million	base	pairs	by	each	method	individually.	
(b)Venn	diagrams	show	the	pairwise	intersection	between	the	predictions	of	five	tools	
used	 in	 DENdb.	 Size	 of	 the	 circle	 represents	 relative	 proportion	 of	 predictions	 for	 a	
method	 compared	 to	 the	 union	 of	 both	 methods.	 Image	 and	 caption	 (c)	 Ashoor	 et	 al	
2015.	
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With all these issues in mind, we introduce DENdb, Dragon Enhancers 

database. DENdb, a user-friendly online repository of enhancers predicted by 

different methods in various human cell-lines. Combining this data, DENdb 

generates an integrated comprehensive catalogue of enhancers for 16 human 

cell-lines. Beyond the integrated set of enhancers, DENdb integrates other 

sources of information to help researchers explore functional context of 

possible enhancer activities. These sources include TF ChIP-seq data from 

ENCODE and TF binding motifs based on HOCOMOCO TF binding sites 

(TFBS) models, DHS information from ENCODE experiments and eRNA 

(enhancer RNA) expression values from FANTOM. Finally, DENdb links 

enhancers to their target genes by integrating chromatin interaction assays 

and defining the closest gene for each enhancer. DENdb is freely available at 

http://www.cbrc.kaust.edu.sa/DENdb/.  

3.3 Materials and Methods 
	

3.3.1 Enhancer predictions 
	
DENdb enhancer collection contains computationally predicted regions 

obtained by five different methods, namely: CSI-ANN, Segway, ChromHMM, 

RFECS, and the ENCODE integrative annotation. To obtain these enhancer 

predictions we focused mainly on ENCODE ChIP-seq histone modifications 

data. In addition all of the selected methods are reliable and represent 

different trends in the enhancer identification developed from 2010 to 2015.  

CSI-ANN (Firpi, Ucar and Tan 2010) feeds a linear combination of 

histone modifications information at a certain window to a time-delay neural 

network in order to predict enhancers. CSI-ANN model used in DENdb is 

based on P300 binding sites distal to TSS as determined by CD4+T cells. 
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CSI-ANN model was trained on data from three histone modifications 

(H3K4me1, H3K4me2 and H3K4me3) obtained from (Wang et al. 2009). 

RFECS (Rajagopal et al. 2013) uses a multivariate random forest to capture 

chromatin signatures at enhancer regions. RFECS uses regions with P300 

binding sites distal to TSS and overlapping with DHS sites from H1 and 

IMR90 cell-lines as their enhancer regions. RFECS model is trained using 

three histone modification markers H4K4me1, H3K4me2, H3K4me3. 

ChromHMM (Ernst and Kellis 2012) uses a semi-automated approach to 

segment the genome. Initially, it uses Hidden Markov Model (HMM) to 

segment the genome into multiple clusters. Later on, domain experts have 

annotated each cluster manually.  It uses histone modifications ChIP-seq data 

to perform this operation. ChromHMM builds a single model by cascading 

data from nine different cell-lines. Segway (Hoffman et al. 2012) uses a 

similar semi-automated approach. However, it utilizes dynamic Bayesian 

networks to construct genome segments. It uses 1% of the genome to 

construct its model. Also, it constructs a single model for each cell-line. To 

capture characteristics from both genome segmentations, an integrative 

annotation (Hoffman et al. 2013) is used based on ChromHMM and Segway 

annotations as well as a set of other experimental data. The integration 

process was done manually for both segmentations.  

In DENdb we used original CSI-ANN and RFECS models to predict 

enhancers for all the ENCODE cell-lines that contain histone modification 

markers required as input for these programs. In addition, we extracted 

enhancer’s related states from the three segmentation models. Table 3.1 

shows the links for enhancer sources used in DENdb.  
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Table	3.1:	DENdb	enhancer	data	links	
Enhancer	source	 Link	
CSI-ANN	program		 http://www.healthcare.uiowa.edu/labs/tan/CSIANNWebpage.html	
RFECS	program	 http://enhancer.ucsd.edu/renlab/RFECS_enhancer_prediction/	
ChromHMM	
segmentations		

http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/by
DataType/segmentations/jan2011/hub/	

Segway	 http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/by
DataType/segmentations/jan2011/hub/	

ENCODE	integrative	
segmentation	

http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/by
DataType/segmentations/jan2011/hub/	

 

In DENdb, based on the number of methods used for predicting enhancers in 

each cell-line, cell-lines are categorized into two tiers. Tier 1 includes cell-

lines that have predictions from all five methods, while Tier 2 includes cell-

lines that have predictions from two (CSI-ANN and RFECS) methods.  

3.3.2 Integrating enhancer predictions 
	
Initially, we binned the genome into 50 bp non-overlapping intervals. Then we 

mapped enhancer predictions from all different methods to obtain enhancers 

super track that has predictions from all methods for each cell-line. We 

grouped regions that contain one prediction or more into our integrated 

enhancers. For each region we define the support by maximum number of 

methods whose predictions cover at least M bins. In the current 

implementation of DENdb we set M to be 2 (100 bp).  

3.3.3 DHS data 
	
In addition to enhancers, DENdb integrates DHS information obtained from 

http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/

byDataType/openchrom/jan2011/fdrPeaks/. DHS data can be used to 

increase the confidence of enhancer predictions.  
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3.3.4 Information for TF binding 
	
In DENdb, we integrate two types of TF binding information: 1/ TF binding 

regions based on ChIP-seq data, and 2/ predicted TF binding motifs using 

HOCOMOCO TFBS models.  

For TF binding region from ChIP-seq data, we integrated all uniform 

ChIP-seq peaks for TFs produced by ENCODE consortium that overlaps with 

DENdb integrated enhancers.  

We mapped 426 (A-D quality) models from HOCOMOCO database to 

our integrated enhancers. We used FIMO (Grant, Bailey and Noble 2011) to 

map PWM derived from binding sites for each TF to all enhancers. We set the 

false discovery rate  (FDR) for accepting predicted binding motif occurrence 

to 0.1. 

3.3.5 Defining the closest gene target 
	
We used ClosestBed library from Bedtools (Quinlan and Hall 2010) to 

associate each enhancer with its closest gene from Refseq (release 68) 

(Pruitt et al. 2014). In DENdb for each enhancer we report its closest gene 

and its distance from the gene.   

3.3.6 Chromatin interaction information 
	
DENdb integrates chromatin interaction information from different high 

throughput assays namely 3C, 4C, 5C, and ChIA-PET obtained from 

4DGenome database (Teng et al. 2015). We used Bedtools (Quinlan and Hall 

2010) to associate, enhancers with existing interacting DNA regions. If 
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available, we also reported known genes that lie within the interaction pairs 

regions.  

 

3.3.7 FANTOM enhancer expression 
	
FANTOM5 enhancers are obtained from Atlas of transcribed enhancers 

(Andersson et al. 2014). We reported cell-specific expression of all FANTOM5 

permissive enhancers that overlap with DENdb integrated enhancers. 

Expression values are provided as log2 (Tag per Million).  

3.3.8 Implementation 
	
DENdb architecture is built around three-tier model shown in Figure 3.7. This 

architecture provide scalable, easy to maintain high performing software. The 

data tier includes PostgreSQL relational database (http://www.postgresql.org/) 

with PostGIS (http://postgis.refractions.net/) extension to effectively handle 

integer range queries. The logic tier contains most of the application logics 

and handles data transfer between data and presentation tiers. It is 

implemented in PHP scripting language by using object-oriented approach. 

Presentation tier handles user interaction, requests and display results 

obtained from the bottom tiers. It is implemented in HTML5/CSS3 and jQuery 

(http://jquery.com/). 
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Figure	3.7:	DENdb’s	implementation	employs	the	three-tier	architecture	approach.	This	
includes	data,	logic	and	presentation	tiers.	Image	and	caption	(c)	Ashoor	et	al	2015.	
 

3.4 Utilities and Functions 
	
DENdb allows users to perform multiple explorations of data, which span from 

simple browsing of the database to more customized queries that may include, 

for example, search for enhancers based on the simultaneous use of many 

criteria. DENdb queries can be customized by chromosome, coordinates 

range, cell-line, enhancer support, as well as the method that has generated 

the enhancer predictions.  

DENdb allows user to query enhancers that overlap with some 

genomic features or has a specific property. For example DENdb allows user 
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to explore overlapping of enhancers with DHS region, TF ChIP-seq peaks, 

prediction of TF binding motifs by HOCOMOCO TFBS models or chromatin 

interaction region, and can also provide information about eRNA expression 

and enhancer’s closest gene. For example, the following three criteria may be 

requested: a/ location on a specific chromosome, b/ overlap with DHS regions, 

and c/ support greater than the user defined threshold. Figure 3.8 shows a 

snapshot of DENdb showing some of its utilities.  

Users can explore each enhancer obtained from any of DENdb queries 

by inspecting all its basic details, such as cell-line, support, tools predicting 

this enhancer, and coverage by DHS region. In addition, query specific 

information are available for each query such as size of overlap with DHS 

regions actual loci of predicted TF binding motifs, and the source of TF ChIP-

seq data.  

DENdb query results can be downloaded in the BED format. Also, 

DENdb provides the means to visualize query results using UCSC genome 

browser. A user manual for DENdb is available at the DENdb website.  

 

3.5 Conclusion 
	
Identifying enhancers are critical starting-points for understanding their 

functional mechanism and decrypting complex molecular principles that drive 

cell-specific gene activities. Studying enhancer’s activity across different cell-

lines may also provide new insights about different gene expression programs 

that characterize physiological, as well as pathogenic conditions in cells. On 

the other hand, the previous enhancer databases have some limitations that 

were addressed comprehensively in sub-section 3.2. 



	 78	

To enhance the capacity of users to analyse the enhancer information, 

we developed DENdb, a database of computationally predicted human 

enhancers. DENdb is an on-line archive of enhancer regions obtained by five 

prediction methods and currently covers 16 different ENCODE cell-lines. The 

prediction methods all rely on ChIP-seq histone modification markers data 

obtained by ENCODE experiments. DENdb provides users the utility to 

explore some aspects of gene regulation mechanisms by overlapping 

enhancer predictions with DHS data and TFBSs. Different subsets of 

enhancers could be selected based on the level of support from different 

prediction methods. In addition, DENdb provides possibility for more complex 

queries about functional context of enhancer activity across cell-lines. These 

requirements are achieved by focusing on regions that are supported by 

predictions of multiple methods. Integrating these datasets into a single data 

repository enables development of a new enhancer annotation based on 

various methods that have been developed under different assumptions.  

In future, we plan to further improve DENdb. We plan to integrate 

single nucleotide polymorphisms information and associate enhancers with 

specific phenotypes. We also plan to derive set of super enhancers based on 

set of integrated enhancers. We hope that DENdb will help researchers in 

gene regulation domain in studying genome-wide human regulatory regions 

of interest and in decrypting the complex gene transcriptional mechanisms.  
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Figure	3.8:	Snapshot	of	DENdb.	We	show	an	example	of	querying	enhancers	that	overlap	
with	DHS	 regions.	Queried	 enhancers	 on	 chromosome	4	 from	GM12878	 cell-line.	 The	
query	example	specifies	enhancers	having	support	of	4	or	5	only	and	being	predicted	by	
CSI-ANN	and	ENCODE	ChromHMM.	After	step	1,	results	appear	in	a	tabular	format.	Step	
2	shows	exploring	details	of	a	specific	enhancer.	Step	3	shows	visualizing	enhancers	in	
current	page	in	genome	browser.	Image	and	caption	(c)	Ashoor	et	al	2015.	
 

 

 

 

 

 
	
	
	



	 80	

CHAPTER 4: A GENERAL DEEP LEARNING-BASED 
FRAMEWORK FOR PREDICTING ENHANCERS (DEEP) 

 

4.1 Introduction 
 

Although the ML-based methodologies presented in Chapter 2 increased the 

pool of predicted enhancers in various cell-lines, some key questions require 

further examination. These include lack of systematic analysis in enhancer’s 

usage, performance inconsistency of computational models across different 

cell-lines, class imbalance within the learning sets required for development 

of enhancer prediction models, limited number of training samples, data 

availability, strong dependencies on ad-hoc rules from chromatin signatures 

and dominant dependencies on P300 binding sites and DHSs.  

To overcome some of the above-mentioned limitations in this chapter 

we present a general ML framework for predicting enhancers called DEEP 

(Kleftogiannis, Kalnis and Bajic 2015b). For this framework, we developed the 

first deep learning algorithm for enhancer prediction problem that also for the 

first time combines data from multiple cell-lines and tissues, and we 

demonstrated the algorithm’s superior predictive performance compared to 

other methods. The DEEP framework contains three components, DEEP-

ENCODE, DEEP-FANTOM5 and DEEP-VISTA. The components of DEEP 

are trained on data with diverse properties that describe enhancer’s activity 

under different cellular conditions. From the technical point of view, DEEP 

utilizes a two-phase algorithm that reformulates the prediction problem into a 

binary classification task of chromosomal regions as being enhancer 

candidates or not. The first phase of DEEP uses an ensemble of SVMs, 

where many SVM models are trained using different subsets of the original 
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data. In the second phase, decisions are aggregated and a simple ANN is 

used for deriving the final prediction. Experimental results across different 

cell-lines/tissues and comparison analysis with state-of-the-art methods 

convincingly demonstrate that DEEP is a general and robust framework for 

predicting enhancers, and can be used to complement other methods in 

enhancer prediction tasks. 	

 

4.2 Materials and Methods 
	

4.2.1 The DEEP-ENCODE model  
	
The DEEP-ENCODE model specializes to predict enhancers from data 

coming from the ENCODE repository (http://genome.ucsc.edu/ENCODE/) 

from where we constructed the training and testing sets. For the training sets 

we used Gm12878, Hep, H1-hesc, and Huvec cell-lines data. For testing the 

performance of the developed models and for exploring the generalization 

capabilities in a genome-wide manner, we used data from HeLa and K562 

cell-lines. All the above-mentioned datasets are well studied and annotation 

maps for them also exist (Ernst and Kellis 2013). The construction of the 

enhancer set (positive set) was based on the ENCODE integrative genomic 

annotation (Hoffman et al. 2013). This annotation utilizes unsupervised 

clustering techniques, as well as experimental data (TFs like CTCF or POL2, 

DHS data and FAIRE arrays) to label non-overlapping genomic segments 

according to their functionality described by a total of 25 states. From this 

annotation we chose for training the set of most confident regions 

characterized as ‘strong’ enhancers.  On the other hand, the non-enhancers 

(negative) dataset contains random genomic loci (10 x the number of 
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enhancer bins) not annotated as promoters or enhancers. Since there is no 

‘gold standard’ of experimentally verified enhancers across variety of cellular 

conditions, cell types and tissues, we used as the reference the ENCODE 

annotation proposed by Hoffman et al. 2013 as it is widely accepted by the 

research community and complements recent findings presented by 

Andersson et al. 2014. We kept a ratio 1:10 between positive and negative 

samples/bins and the data generation process followed the procedure 

proposed by CSI-ANN model. However, the original CSI-ANN model was 

trained using only 394 positive data samples from Wang et al. 2009, while we 

used all strong enhancers from the training cell-lines. For the construction of 

DEEP-ENCODE model we performed experiments with different sets of 

attributes including 11 histones and 351 sequence characteristics (described 

in the next section and summarized in Tables 4.1 and 4.2). Note that the 

proposed list of 351 sequence characteristics is novel and we are the first to 

apply this particular feature vector for the enhancer identification problem. We 

found that models trained using mixture of sequence and histone-derived 

attributes were not as effective as those obtained using only histone mark-

derived characteristics. In addition, the small set of histone markers enabled 

for the application of a feature selection based on an exhaustive search that 

identified optimal set of attributes that differentiates considerably between 

different cell-lines. In Table 4.3 we highlight with green color the combinations 

of selected histone markers and with the grey color we have marked those 

that do not contribute to the increase in performance.  Our final feature vector 

was compiled from ENCODE ChIP-seq data containing the following 11 

histone modification markers:  H2AFZ, H3K27ac, H3K27me3, H3K36me3, 



	 83	

H3K4me1 H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3, 

H4K20me1. During data pre-processing we generated bins corresponding to 

200 bp regions. Each row (histone mark) in a feature vector was scaled using 

min-max normalization to the [0,1] interval. This normalization technique does 

not affect the scaling of the testing data since it is applied independently to 

each cell-line. Thus the quality of the results is unbiased. Note that the results 

obtained from our experimentation with histone markers are in agreement 

with recent findings, which manifest that, the chromatin states that describe 

enhancers present cell-specific properties that vary across different cell-lines 

(Ernst and Kellis 2013). The DEEP-ENCODE model trained with sequence 

characteristics is also available (although it has lower performance) and it has 

advantages for new cell-lines where histone modification mark data are not 

provided.   

Table	4.1:	Description	of	histone	modification	markers	used	by	DEEP	models.	
	

Histone	modification		 Brief	Description	

H2AFZ	 Variant	of	H2A	

H3K27ac	 Detects	Acetylation	

H3K27me3	 Detects	trimethylation	of	Lysine	27	

H3K36me3	 Marks	actively	transcribed	regions	

H3K4me1	 Associated	with	enhancers	

H3K4me2	 Marks	promoters	and	enhancers	

H3K4me3	 Associated	with	active	promoters	

H3K79me2	 Marks	transcriptional	transition	regions	

H3K9ac	 Marks	promoters	in	chromatin	regions	

H3K9me3	 Associated	with	silenced	chromatin		

H4K20me1	 Associated	with	active	and	accessible	regions	
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Table	4.2:	Description	of	sequence	characteristics	used	by	DEEP	models.	
	

Category	 Number	of	features	 Description	
Di-nucleotide	frequency	 16	 XY	where	X,Y	ε	{A,C,G,T}		

Tri-nucleotide	frequency	 64	 XYZ	where	X,Y,Z	ε	{A,C,G,T}	

Tetra-nucleotide	frequency	 256	 XYZK	where	X,Y,Z,K	ε	{A,C,G,T}		

Single	Base	frequencies	 4	 X		where	X	ε	{A,C,G,T}	

Aggregate	frequencies	 2	 A+T,	C+G	

Base	pairs	 1	 The	number	of	base	pairs	in	the	sequence	

Length	of	sequence	 1	 The	actual	length	of	the	sequence	

CpG	islands	 1	 GC/(sum(C)*sum(G)*length)	

Miscellaneous		 6	 1.	|sum(C)-sum(G)|/base	pairs	

2.	|sum(A)-sum(T)|/base	pairs	

3.	sum(A)/sum(T)	

4.	sum(C)/sum(G)	

5.	(sum(G)*sum(C)	)/length		

6.	(sum(A)*sum(T))/length	

	

 

Table	 4.3:	 Optimal	 sets	 of	 histone	 markers	 as	 derived	 from	 an	 exhaustive	 search	
algorithm.	Green	color	corresponds	to	selected	features,	while	gray	indicate	feature	that	
is	not	selected	by	feature	selection	algorithm.	In	other	terms,	the	combination	of	histone	
markers	 highlighted	 by	 green	 color	 contributes	 to	 the	 performance	 increase	whereas	
those	marked	with	gray	color	do	not.		
	
ENCODE	data	
	

H2az	 H3K4me1	 H3K4me2	 H3K4me3	 H3K9ac	 H3K9me3	 H3K20me1	 H3K27ac	 H3K27me3	 H3K36me3	 H3K79me2	

Gm12878	 	 	 	 	 	 	 	 	 	 	 	

H1	 	 	 	 	 	 	 	 	 	 	 	

Hep	 	 	 	 	 	 	 	 	 	 	 	

Huvec	 	 	 	 	 	 	 	 	 	 	 	

HeLa	 	 	 	 	 	 	 	 	 	 	 	

K562	 	 	 	 	 	 	 	 	 	 	 	
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4.2.2 The DEEP-FANTOM5 model  
	
The DEEP-FANTOM5 model was implemented to predict enhancers that are 

specifically expressed in various organs and tissues. We used ‘genuine‘ 

enhancers recently published by the FANTOM5 consortium (Andersson et al. 

2014). The data is publicly available at http://enhancer.binf.ku.dk/Pre-

defined_tracks.html. For training models we chose without loss of generality 

enhancers coming from five vital organs: heart, brain, liver, lung and kidney. 

For testing the performance of the developed model we made predictions to 

all the other available FANTOM5 tissues. The negative set (non-enhancers) 

contains random genomic regions with the same minimum, maximum and 

mean length of the previous tissue-specific enhancers  (10 x the number of 

enhancers) not included in any other list of enhancers published by the 

FANTOM5 consortium. For describing enhancers, we used 351 attributes 

derived from the sequences themselves. These include frequencies of 4 

mono-nucleotides, 16 di-nucleotides, 64 tri-nucleotides, 256 tetra-nucleotides, 

as well as information on CpG islands, 2 aggregate frequencies for C+G, 

A+T, sequence length, number of bp, and other 6 attributes coming from 

suitable combinations of the above-mentioned characteristics. The detailed 

description of the feature vector is provided in Table 4.2. It is worth noting that 

in this model we did not apply any normalization procedure in the training and 

testing processes. For the construction of DEEP-FANTOM5 model we did not 

include histone markers information. The reason is that such data for the 

organs and tissues we studied is not available. 
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4.2.3 The DEEP-VISTA model  
	
The DEEP-VISTA model was trained on human in vivo derived 

developmental enhancers that present extreme evolutionary conservation 

with mouse. We used enhancer data archived in VISTA enhancer browser 

(Visel et al. 2007). Datasets are publicly available at 

http://enhancer.lbl.gov/frnt_page_n.shtml. For training SVM models we 

selected all 1729 human enhancers. The negative set (non-enhancers) 

contains random genomic regions with the same minimum, maximum and 

mean length of the selected human enhancer regions  (10 x the number of 

enhancers) not included in any list of enhancers published in VISTA. Similarly 

to DEEP-FANTOM5 model, we used 351 attributes derived from the 

sequences themselves. We did not apply any normalization procedure in the 

training and testing processes. Again we note that we did not include histone 

mark information since such data for the developmental enhancers set is not 

available. 

 

4.2.4 Implementing DEEP  
	
Ensemble techniques have been successfully applied in several 

bioinformatics problems for training classifiers with highly unbalanced classes 

(Batuwita and Palade 2013). Typically, in the ensemble approaches the 

majority class is partitioned into several sub-sets such that each of them has 

approximately equal number of samples as the minority class. When dealing 

with millions of samples in the minority class, a well-know variant partitions 

the minority class as well into disjoin subsets such that each of them contains 

the same ratio between positive and negative samples. Our DEEP-FANTOM5 
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and DEEP-VISTA models follow the first approach and partitions the majority 

class (non-enhancers) into 10 disjoint subsets. In order to achieve faster 

training and to handle millions of positive and negative samples, the DEEP-

ENCODE model follows the second variant and partitions both positive and 

negative training samples into 1000 disjoint subsets so that each learning 

subset contains positive and negative samples in the proportion 1:10.  For 

data sampling and partitioning we used simple random sampling without 

replacement. After data partitioning, each of the learning subsets is used to 

develop an SVM model with Gaussian kernel function. The development of 

multiple classifiers covering different partitions of the original data provides a 

better approximation of the original data distribution (Scholkopf, Burges and 

Smola 1999). Predictions of individual SVM classifiers are combined through 

an ANN to generate a final prediction. Notably, the prototype implementation 

of DEEP was using majority voting for the decision-making (supplement 

results are presented at the original paper). However, we found in practice 

that usage of ANN in the second layer achieves much higher performance 

(Wolpert 1992). The inputs to this ANN are confidence scores (confidence 

scores are defined as the proportion of positive votes versus all votes for 

models from each cell-line) obtained in the first layer of DEEP from the four 

cell-line/tissue specific ensemble models. For DEEP-ENCODE 4 confidence 

scores are aggregated whereas for DEEP-FANTOM5 we collect 5 scores 

from the underlying tissue specific models. In the case of DEEP-VISTA, since 

we do not use data from multiple tissues/cell-lines, the confidence scores are 

the votes aggregated from an individual ensemble SVMs. For tuning the ANN 

topology and select the optimal number of neurons we applied 5-fold cross-
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validation to the union of the data we used for training. For DEEP-ENCODE 

we trained on the union of data derived from Gm12878, H1, Hep and Huvec 

whereas for DEEP-FANTOM5 we utilized brain, heart, lung, liver and kidney 

tissue data. The DEEP-VISTA model is trained on the union of subsets used 

for training individual SVMs. The best-trained model in terms of classification 

performance was utilized further for taking final decisions for all the cell-lines 

and tissues we tested.  

For the DEEP-ENCODE component, an ensemble SVM classifier was 

constructed for 4 cell-lines (Gm12878, H1-hesc, Huvec and Hep). In total we 

trained 4,000 (4x1000) classifiers. To do that, we partitioned the data 

randomly and we selected 20% of the samples for training and for tuning the 

model-specific classification parameters, while the remaining 80% of samples 

was kept for evaluating the performance of each individual ensemble model. 

For the DEEP-FANTOM5 component we followed the same logic and we 

trained an ensemble model with 10 classifiers for each of the lung, brain, 

heart, kidney and liver tissues (in total we trained 5x10=50 classifiers). We 

chose 40% of the original data for training and tuning and 60% for testing. For 

the DEEP-VISTA component again we followed the same approach and we 

trained an ensemble model with 10 classifiers using 20% of the original data 

for training and tuning and 80% for testing. The ratio between training and 

testing sets for each model was experimentally tuned taking into account the 

run time required for training DEEP model. Each model derived from one of 

the training data partitions utilizes an SVM classifier with Gaussian kernel 

function. When dealing with data containing unbalanced classes, SVM tend to 
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be biased towards the majority class, but since we used an ensemble 

approach in both components of DEEP, this problem is reduced.  

Tuning the SVM regularization parameter ‘C’ and the Gaussian kernel 

parameter ‘gamma’ was accomplished using a simple grid search algorithm 

(Wu and Chang 2003). For every training round for simplicity and for saving 

time (note that we are training multiple SVM models) we selected randomly 

70% of the training data for optimizing these two parameters. We computed 

all grid combinations of parameters and then we performed classification. We 

selected the case that maximizes the geometric mean (GM) of Specificity and 

Sensitivity. GM is a performance metric suitable for imbalanced datasets 

(Akbani, Kwek, and Japkowicz 2003).  In the second round of optimization, 

the same idea is applied to a fine-grained search space by increasing 10 

times the step resolution. In the first step of the optimization technique the 

resolution of grid search was set to 0.2. Note that we applied logarithmic 

resolution in the range of (1,500] for parameter C and (0,50000] for parameter 

gamma, but any other resolution could also been applied. Figure 4.1 presents 

the DEEP workflow and describes DEEP utilization for classifying unknown 

data items. 

 



	 90	

	

Figure	 4.1:	 Schematic	 representation	 of	 the	 DEEP	 framework.	 The	 input	 to	 DEEP	 is	
either	ChIP-seq	data	for	11	histone	markers	or	DNA	sequences.	After	the	feature	vector	
computation,	 DEEP	 classifies	 the	 unknown	 instances	 using	 cell-line	 specific	 multiple	
SVM	models	or	tissue	specific	multiple	SVM	model.	For	each	sample	a	confidence	score	
is	 created	 based	 on	 the	 number	 of	 votes	 derived	 from	 each	model.	 These	 confidence	
scores	are	passed	to	an	ANN	that	takes	the	final	decision	and	classifies	each	sample	as	
candidate	enhancer	or	not.	Image	and	caption	(c)	Kleftogiannis,	Kalnis	and	Bajic	2015b.	
 

A drawback we faced during the development of DEEP was the 

computational time required for training and tuning multiple individual SVM 

models. Similarly, the time required for predictions in unknown samples is 

significant because it requires classification over multiple individual SVM 

models. However, since the training data subsets and the models are totally 

independent, the implementation is fully parallelized. The most expensive part 

of our work was the training of DEEP-ENCODE component, because it 

requires training of 1000 individual models coming from each cell-line (4,000 

in total). The computational time for training sequentially a cell-specific DEEP-

ENCODE model is on average 12.8 hours, which can be reduced to an 
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average of 1.9 hours in a workstation with 8 CPU cores and 196 GB RAM 

(Intel Xeon 2.6 GHz). Similarly, an optimized implementation for testing 

includes efficient partitioning of the data in chunks that fit into the main 

memory and can be fully parallelized as well.  

The fact that we incorporated models derived from different ENCODE 

cell-lines, various FANTOM5 tissues, and developmental enhancers from 

VISTA into a unified framework for predicting enhancers increases the 

generalization ability and maximizes the capability of predicting enhancers in 

new cell-lines, tissues and cellular conditions. The implementation of DEEP 

was made in Matlab R2012b and the standalone programs with the datasets 

used in this study are available at http://cbrc.kaust.edu.sa/deep/. 

 

4.3 Results 

4.2.1. Studying the performance of DEEP-ENCODE component  
	
To explore the effectiveness of individual models trained on information form 

one cell-line to predict enhancers in other cell-lines, we tested the 

performance of Gm12878, H1-hesc, Hep and Huvec ensemble classifiers on 

data from HeLa and K562. The data normalization process required for the 

testing data has a limitation that it requires whole-genome ChIP-seq signals in 

bigwig format for the unknown data items for testing (or an equivalent data 

format to convert). However, this is allowed because the ENCODE project 

releases whole-genome ChIP-seq signals for the studied cell-lines. Figure 4.2 

presents the ROC (Receiver Operating Characteristic) performance curve for 

these cell-line specific trained models for different decision thresholds. Briefly, 
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in statistics, a ROC curve is a graphical plot that illustrates the performance of 

a binary classifier system as its discrimination threshold is varied.  

 

 

Figure	4.2:	ROC	performance	 curve	 for	 ensemble	models	 trained	on	ENCODE	 cell-line	
specific	 data	 and	 tested	 on	 independent	 data	 coming	 from	HeLa	 and	 K562	 cell-lines.	
Image	and	caption	(c)	Kleftogiannis,	Kalnis	and	Bajic	2015b.	
	
 

A more thorough analysis of the generalization capabilities of individually 

deployed models revealed that few cell-lines share a lot of the common 

properties and thus generalization becomes easier for such cases. In these 

situations, a prediction model derived for one cell-line can be used to predict 

enhancers in such other cell-lines. However, this is not a general property. 

For example, Gm12878 cell-line has better predicting capabilities in K562 

rather than in HeLa. On the other hand, model derived from Huvec data 

generalizes well on data from HeLa cell-line, but achieves very poor 

performance on K562 data. Surprisingly, the H1 cell-line derived model 

generalizes well according to the ROC curve on data from both test cell-lines, 

but more extensive analysis revealed very poor PPV. It becomes apparent 
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that no model derived from single cell-line data (of the type and within the 

framework we used) can effectively predict enhancers in all the other cell-

lines. That fact suggests a significant performance consistency challenge 

across various cell-lines. 

The DEEP-ENCODE component resolves the above-mentioned issues 

and manifests greater generalization capabilities in both cell-lines we used for 

testing. Figure 4.3 presents the ROC curve and the Precision and Recall (PR) 

performance curve (PR curve is the analogous of ROC curve created by 

plotting precision and recall in Y and X axes for different thresholds). The 

decision-making schema we used, offers a threshold-free decision 

mechanism (threshold-free here refers to the thresholds that can be applied in 

steps 1 and 2 of the framework) by utilizing a simple ANN as the final output 

block of the DEEP-ENCODE component. The results illustrate that the 

combined 2-layers framework with an ANN as the final decision-maker 

generalizes better than individual models and achieves on average much 

better performance than other decision-making schemas that we evaluated. 

Comparing the results of DEEP-ENCODE with those obtained by the cell-

specific models, we conclude that the combination of models achieves much 

better generalization capabilities. This advantage makes DEEP a robust tool 

for predicting enhancers in multiple cell-lines.  
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Figure	4.3:	ROC	and	Precision-Recall	performance	curves	for	DEEP-ENCODE	component	
tested	on	 independent	data	 coming	 from	HeLa	and	K562	cell-lines.	 Image	and	caption	
(c)	Kleftogiannis,	Kalnis	and	Bajic	2015b.	

	

4.3.2. Performance comparison of DEEP-ENCODE with existing methods  
	
To assess the capability of DEEP-ENCODE to predict effectively enhancers 

in a genome-wide manner, we used HeLa and K562 cell-line data and 

associated annotation from the ENCODE repository. These two cell-line data 

were not used in the training process at all, so they are independent testing 

data for our evaluation. Here, in order to eliminate potential performance 

overestimation we eliminated enhancers that are common across the training 

sets of Gm12878, H1-hesc, Hep and Huvec models and the enhancer sets of 

HeLa and K562 cell-line data. To eliminate the over-estimation of 

performance we excluded common bins between any of the Gm12878, H1, 

Hep and Huvec, training sets and the HeLa and K562 testing sets. We also 

excluded from all training datasets, the enhancer regions that are described 

by exactly the same feature vectors as the enhancer regions in the test sets. 

After that filtering, we obtained 23,666,553 bp (0.764% of the genome) of 
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enhancer predictions for HeLa and 28,238,758 bp of enhancer predictions 

(0.912% of the genome) for K562. Since there is no baseline set of 

experimentally verified enhancers for these ENCODE cell-lines, in order to 

have a fair comparison with respect to other methods, we evaluated 

predictions of enhancers through their overlap with experimental data that 

includes P300 ChIP-seq peaks, DHS markers support (Firpi, Ucar and Tan 

2010; Rajogapal et al. 2013; Fernandez and Miranda-Saavedra 2012) as well 

as POL2 and TATA-binding protein (TBP) ChIP-seq peaks. We computed 

different performance indicators. To provide a clear definition for them, first 

we define the following sets:  

A = the number of predicted enhancer bases that have P300/DHS 

experimental support 

B = the total number of predicted enhancer bases 

C = the total number of bases for P300/DHS experimental data 

D = the number of predicted enhancer bases that overlap with 

promoters 

Using the above annotation we determine the following performance 

indicators: 

a) Positive Predictive Value (PPV) = A/B 

b) Jaccard Index = A / (B + C - A) 

c)  F1-score = 2*A / (B + C) 

d) Promoter overlap fraction (POF) = D / B 

There are certain problems with the promoter overlap fraction indicator since 

it is not straightforward to identify the promoter. The only real difference 

between the enhancers and promoters is the distance from the target genes, 
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but in most cases we do not know the targets of enhancers. One should note 

that an enhancer that has remote target genes can contain a promoter of a 

proximal non-protein coding RNA (eRNA) genes (Ren 2010), thus making it 

impossible in such cases to distinguish between the two. In fact, a large 

fraction of POL2 targets transcription in enhancers resulting in this overlap. In 

addition, DNA regions characterized as promoters or enhancers in one 

phenotype could change in another phenotype (Ernst and Kellis 2013) as 

chromatin states change. Further, there is no clear definition of the promoter 

boundaries. The upstream boundary of a promoter could be from 400 bp up 

to 15,000 bp upstream of TSS as used across different studies. To complicate 

the problem even more, there is no unique TSS for a gene (The FANTOM 

Consortium and the RIKEN PMI and CLST-DGT 2014), so it is difficult to 

define promoter relative to a gene loci. Due to all above-mentioned reasons, 

we measured the overlap through ChIP-seq data for POL2 and TBP. All 

human protein-coding genes and many non-coding RNA genes are 

transcribed via POL2, which positions over TSS. TBP binds to TATA-box and 

it is found in approximately 24% of human genes in their core promoters 

(Yang et al. 2007). Therefore, we combined the presence of both POL2 ChIP-

peak signals with TBP ChIP-peak signals to have a stronger evidence of 

promoter type regions. Next, we mapped the candidate promoter regions we 

found to the predictions obtained by the studied programs. However, the 

results should be considered with caution as the promoter overlap fraction 

indicator defined using POL2 and TBP data has above-mentioned 

weaknesses.  
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Note that, for the HeLa cell-line we used ENCODE P300 ChIP-seq 

peaks (set C for P300) covering 8,199,111 bp, DHS markers (set C for DHS) 

covering 38,580,135 bp and 4,078,010 bp belonging to POL2 and TBP ChIP-

seq peaks. Regarding the K562 cell-line, 987,378,856 bp belong to P300 

ChIP-seq peaks (set C for P300), 43,893,777 bp belong to DHS markers (set 

C for DHS) and 3,747,145 bp belong to POL2 and TBP ChIP-seq peaks. 

Next, we compared our predictions with those generated by four state-of-the-

art predictors, namely, CSI-ANN, RFECS, ChromHMM and Segway on the 

same cell-lines (HeLa, K562) that represent independent test data for our 

method. For CSI-ANN, all predictions were obtained based on the optimal 

model proposed by the authors, trained on CD4+T cell-line data (Wang et al. 

2009). For RFECS the best model was based on the optimal subset of 

histone markers derived from H1-hesc cell-line data. Predictions of Segway 

and ChromHMM can be found at 

http://www.broadinstitute.org/~jernst/ROUND8_ChromHMM/. However, the 

way these ML-based methods generated their training sets (except for 

ChromHMM and Segway that use un-supervised learning) does not 

guarantee that there is no overlap of ‘genuine‘ enhancer regions between 

their deployed training sets and the HeLa and K562 testing sets used in our 

study. We are aware of this potential over-estimation of performance for these 

two methods. For the HeLa cell-line, CSI-ANN made 26,721,354 bp enhancer 

predictions covering 0.863% of the genome; RFECS predictions covered 

87,487,722 bp (2.826% of the genome size), ChromHMM predicted 

71,098,730 bp (2.296%) and Segway 125,256,834 bp (4.046%). For K562 

cell-line, CSI-ANN predicted 34,635,309 bp (1.118% of the genome size), 
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RFECS predicted 130,723,329 bp (4.222%), ChromHMM predicted 

111,659,937 bp (3.606%) and Segway predicted 283,814,425 bp (9.168%). 

The comparison analysis is summarized in Tables 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 

and 4.10. 

Table	4.4:	PPV	with	P300/DHS	data	for	HeLa	cell-line.	
	
HeLa	 E	=	number	of	

predicted	enhancer	
bases		

E	overlapped	with	
P300	peaks	

PPV	based	on	
the	overlap	
with	P300	
peaks	(%)	

E	overlapped	
with	DHS	peaks	

PPV	based	on	
the	overlap	
with	DHS	
peaks	(%)	

DEEP-ENCODE	 23,666,553	 1,925,158	 8.13	 11,795,822	 49.84	
CSI-ANN	 26,721,354	 1,475,323	 5.52	 12,088,783	 45.24	
RFECS	 87,487,722	 5,241,662	 5.99	 18,149,583	 20.74	
ChromHMM	 71,098,730	 5,697,282	 8.01	 19,195,950	 26.99	
Segway	 125,256,834	 7,345,767	 5.86	 26,772,699	 21.37	

	

Table	4.5:	PPV	with	P300/DHS	data	for	K562	cell-line.	
	
K562	 E	=	number	of	

predicted	
enhancer	bases		

E	overlapped	
with	P300	peaks	

PPV	based	on	
the	overlap	
with	P300	
peaks	(%)	

E	overlapped	
with	DHS	peaks	

PPV	based	on	
the	overlap	
with	DHS	
peaks	(%)	

DEEP-
ENCODE	

28,238,758	 22,884,991	 81.04	 14,743,218	 52.20	

CSI-ANN	 34,635,309	 29,524,533	 85.24	 17,977,798	 51.90	
RFECS	 130,723,329	 92,392,750	 70.67	 19,082,602	 14.59	
ChromHMM	 111,659,937	 77,861,594	 69.73	 20,037,473	 17.94	
Segway	 283,814,425	 181,013,092	 63.77	 29,728,154	 10.47	
	

Table	4.6:	Jaccard	Index	with	P300/DHS	data	for	HeLa	cell-line.		
	

Program	
Jaccard	Index	based	on	the	
overlap	with	P300	peaks		

Jaccard	Index	based	on	the	
overlap	with	DHS	peaks		

DEEP-
ENCODE	 0.064	 0.233	
CSI-ANN	 0.041	 0.226	
RFECS	 0.055	 0.161	

ChromHMM	 0.077	 0.212	
Segway	 0.058	 0.195	

	

Table	4.7:	Jaccard	Index	with	P300/DHS	data	for	K562	cell-line.	
	

Program	 Jaccard	Index	based	on	the	
overlap	with	P300	peaks		

Jaccard	Index	based	on	the	
overlap	with	DHS	peaks		

DEEP-
ENCODE	 0.023	 0.256	
CSI-ANN	 0.029	 0.296	
RFECS	 0.090	 0.122	

ChromHMM	 0.076	 0.147	
Segway	 0.166	 0.099	
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Table	4.8:	F1-score	for	genome	wide	predictions	in	ENCODE	HeLa	cell-line.		
	

Program	
F1-score	based	on	the	overlap	

with	P300	peaks	(%)	
F1-score	based	on	the	overlap	

with	DHS	peaks	(%)	
DEEP-

ENCODE	 12.12	 37.90	
CSI-ANN	 7.99	 37.02	
RFECS	 10.87	 28.49	

ChromHMM	 14.36	 35.00	
Segway	 11.00	 32.68	

	

Table	4.9:	F1-score	for	genome	wide	predictions	in	ENCODE	K562	cell-line.	
	
	

	

Table	4.10:	Promoter	Overlap	Fraction	in	actual	number	of	bases.	In	the	parenthesis	we	
report	%	fraction.		
	

Program	 Percentage	of	predicted	enhancer	
bases	with	POL2+TBP	regions	in	

HeLa	

Percentage	of	predicted	enhancer	
bases	with	POL2+TBP	regions	in	

K562	
DEEP-

ENCODE	 1,934,940	(8.17%)	 1,831,793	(6.84%)	

CSI-ANN	 3,047,118	(11.40%)	 2,785,755	(8.04%)	
RFECS	 620,220	(0.70%)	 299,129	(0.22%)	

ChromHMM	 430,345	(0.60%)	 160,847	(0.14%)	
Segway	 1,579,545	(1.26%)	 1,330,238	(0.46%)	

 

The comparison of the performances revealed that DEEP-ENCODE covers 

the smallest portion of the genome for both test cell-lines followed by CSI-

ANN, ChromHMM, RFECS and Segway. Based on PPV, DEEP-ENCODE 

always performs better than all the other methods relative to P300 and DHS 

support in both evaluated cell-lines. Based on Jaccard Index, DEEP-

ENCODE and ChromHMM share the best results followed by CSI-ANN, 

Segway and RFECS. Based on F1-score, DEEP-ENCODE and ChromHMM 

again are ranked first followed by CSI-ANN, RFECS and Segway in both 

Program	
F1-score	based	on	the	overlap	

with	P300	peaks	(%)	
F1-score	based	on	the	overlap	

with	DHS	peaks	(%)	
DEEP-

ENCODE	 4.51	 40.88	
CSI-ANN	 5.78	 45.78	
RFECS	 16.52	 21.84	

ChromHMM	 14.17	 25.76	
Segway	 28.48	 18.14	
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evaluated cell-lines. Finally, the smallest promoter overlap fraction is 

achieved by ChromHMM method followed by RFECS and Segway. 

Since, using different performance indicators the studied programs 

present advantages and disadvantages we rank their performance according 

to the four metrics described earlier. In total, 14 different tests were made 

(including 5 methods, 2 cell-lines and 4 performance indicators). Following 

the ideas of (Bajic 2000; Soufan et al. 2015) we averaged the ranked position 

of each of the five methods used in comparison in all of the 14 tests. Table 

4.11 shows the overall score and average rank position for each of the 

methods. The lower the average rank position the better is the method. The 

analysis revealed that across the different performance tests DEEP-ENCODE 

is ranked first, followed by ChromHMM, CSI-ANN, Segway and RFECS. This 

fact convincingly demonstrates that DEEP-ENCODE performs well relative to 

the existing methods for enhancer predictions and can usefully complement 

them in this challenging task. All P300 data, TBP data, DHS markers, 

candidate promoter regions, predictions obtained by the different programs, 

as well as scripts for reproducing the results are provided at 

http://cbrc.kaust.edu.sa/deep/.  

 

4.3.3. Validating DEEP-ENCODE genome-wide predictions using enhancer-
related TF binding models 
 

Another indirect way of validating predicted enhancers involves enrichment of 

specific TFs described by Positional Weight Matrixes (PWM) that bind to 

enhancer predicted regions. Here, we tested binding of several TFs to 
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genome-wide predictions obtained by DEEP-ENCODE model for HeLa and 

K562 cell-lines. We utilized HOCOMOCO database, which contains PWM 

models for 476 distinct TFs. From them, we selected a small subset that 

contains well-known enhancer-related TFs like Oct2 (PO5F1), Sox2, Nanog, 

P300 (EP300), CBP (Creb1), TEAD1, TEAD2, TEAD3, TEAD4 (TEAD family), 

STAT1, STAT2, STAT3, STAT4 (STAT family), TRAP220 (ESR1). Next we 

mapped the enhancer sequences (and their reverse complements) against 

the subset of TFs using MOODS software [50]. Figures 4.4 and 4.5 present 

an overview of the results for HeLa and K562 cell-lines. We reported % 

proportion of enhancer predictions in bins that have at least one TF hit as 

obtained by the PWM models divided by the total number of predicted bins. 

These results were obtained using a P-value threshold for binding equal to 

0.0005. Results for P-value equal to 0.005 as well as the detailed list of hits 

are available in our web repository http://cbrc.kaust.edu.sa/deep/. We found 

that predictions obtained for both cell-lines are enriched with putative binding 

sites of all selected TFs which all have been found in more than 5% of cases, 

with P300, STAT family TFs and TRAP220 being most prominent and being 

present in at least 15% of the cases. 
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Table	4.11:	Relative	ranking	of	ML	methods	used	in	the	comparison	study.	The	last	row	
shows	the	overall	raking	where	we	show	the	rank	position,	the	sum	of	ranked	points	(in	
partenthesis)	and	after	 that	we	present	 the	average	ranking	points	across	all	 tests	we	
performed.	
	

	 DEEP-ENCODE	 CSI-ANN	 RFECS	 ChromHMM	 Segway	
PPV	P300	
(HeLa)	

1	 5	 3	 2	 4	

PPV	P300	
(K562)	

1	 2	 3	 4	 5	

PPV	DHS		
(HeLa)	

1	 2	 5	 3	 4	

PPV	DHS	
(K562)	

1	 2	 4	 3	 5	

Jaccard	Index	
P300	(HeLa)	

2	 5	 4	 1	 3	

Jaccard	Index	
P300	(K562)	

5	 4	 2	 3	 1	

Jaccard	Index	
DHS	(HeLa)	

1	 2	 5	 3	 4	

Jaccard	Index	
DHS	(K562)	

2	 1	 4	 3	 5	

F1-score	P300	
(HeLa)	

2	 5	 4	 1	 3	

F1-score	P300	
(K562)	

5	 4	 4	 3	 5	

F1-score		
DHS	(HeLa)	

1	 2	 5	 3	 4	

F1-score		
DHS	(K562)	

2	 1	 4	 3	 5	

	POF	(HeLa)	 4	 5	 2	 1	 3	
POF	(K562)	 4	 5	 2	 1	 5	
OVERALL	
RANKING	 1st	(32),	2.2	 3rd	(45),	3.2	 5th	(51),	3.6	 2nd	(34),	2.4	 5th		(56),	4	
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Figure	4.4:	Number	(%)	of	enhancer	predictions	(in	bins)	for	HeLa	cell-line	that	have	at	
least	 one	 TF	 binding	 site	 divided	 by	 the	 total	 number	 of	 enhancer	 predictions	 (PWM	
with	threshold	0.0005).	Image	and	caption	(c)	Kleftogiannis,	Kalnis	and	Bajic	2015b.	
	
	

	

Figure	4.5:	Number	(%)	of	enhancer	predictions	(in	bins)	for	K562	cell-line	that	have	at	
least	 one	 TF	 binding	 site	 divided	 by	 the	 total	 number	 of	 enhancer	 predictions	 (PWM	
with	threshold	0.0005.	Image	and	caption	(c)	Kleftogiannis,	Kalnis	and	Bajic	2015b.	
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4.3.4.The performance of DEEP-FANTOM5 component on all available 
FANTOM5 tissues  
	
Similarly to DEEP-ENCODE experiments, we explored the capacity of 

individual models trained in one tissue to predict enhancers in other tissues. 

To do so, we tested the performance of ensemble classifiers developed 

separately from brain, heart, lung, kidney and liver data, on data coming from 

adipose and salivary tissues.  Figure 4.6 presents ROC performance curves 

for models trained on tissue-specific data for different decision thresholds. 

Note that the adipose and salivary tissues were chosen randomly for 

illustration purposes for Figures 4.6 and 4.7. Later, to assess the 

generalization capabilities of DEEP-FANTOM5 trained on data from a small 

subset of vital organs, we tested the performance on all the other available 

tissues from FANTOM5 repository. All the tested tissues are independent 

datasets and they did not take part in any training process deployed in DEEP. 

Figure 4.7 shows the ROC and Precision-Recall performance curves for 

DEEP-FANTOM5 model tested on adipose and salivary tissues.  

4.3.5. Studying the performance of the DEEP-VISTA component 
	
Similarly to the previous sections, here we explored the capability of DEEP-

VISTA to predict developmental enhancers and discriminate them from other 

genomic regions. In the absence of multiple cell-lines or tissues, we did not 

add multiple ensemble models in the first layer of DEEP-VISTA. In simpler 

words, DEEP-VISTA in its current implementation has only one ensemble 

SVM in its first layer (i.e., 10 individual SVMs) and the scores of these SVM 

models are aggregated through the second ANN layer to generate a 

prediction. Under this relation, we did not test the capability of DEEP-VISTA 

to predict enhancers in multiple tissues/cell-lines as we did before. Figure 4.8 
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presents ROC performance curve and Precision-Recall curve. For this, we 

partitioned the original data to 20% for training and 80% for testing and we 

utilized the 20% for training and tuning SVM and ANN architectures. On the 

testing set DEEP-VISTA achieved GM of 80.1% and accuracy of 89.64%. 

Optimizing further the DEEP-VISTA component is an interesting task for the 

future when data from other cellular conditions become available.    

	

Figure	 4.6:	 ROC	performance	 curve	 for	 ensemble	models	 trained	 on	 FANTOM5	 tissue	
specific	data	and	tested	on	independent	data	coming	from	adipose	and	salivary.	Image	
and	caption	(c)	Kleftogiannis,	Kalnis	and	Bajic	2015b.	
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Figure	4.7:	ROC	and	Precision-Recall	performance	curves	for	DEEP-FANTOM5	component	tested	on	
independent	data	coming	from	adipose	and	salivary.	Image	and	caption	(c)	Kleftogiannis,	Kalnis	and	
Bajic	2015b.	

	

	

Figure	 4.8:	 ROC	 and	Precision-Recall	 performance	 curves	 for	DEEP-VISTA	 component	
tested	on	independent	data.	Image	and	caption	(c)	Kleftogiannis,	Kalnis	and	Bajic	2015b.	
	

4.4 Conclusion  
	
A novel computational framework involving three independent models is 

introduced for predicting enhancers based on ENCODE histone modification 
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profiles and FANTOM5 or VISTA derived sequence characteristics. To 

increase the generalization capabilities of the enhancer prediction models, we 

used, when available, either multiple cell-lines/cell types or multiple 

tissues/organ as the training data, contrary to all previous enhancer predictors 

that used only single cell-line/cell type data.  The core component of the 

framework is the utilization of a two-layer ensemble classifier that trains 

multiple SVM cell-line or tissue/organ models under the ensemble setting. 

The combination of different classification models under the ensemble setting 

provides greater generalization properties, reduces the class-imbalance 

problem, guarantees faster execution than training single models sequentially 

and achieves reliable performance across different datasets. Experimental 

results demonstrate that the DEEP framework applied on ChIP-seq ENCODE 

data achieves higher performance than individual cell-specific ensemble 

models. Also, when it is applied for genome-wide predictions, it identifies 

enhancer candidates with higher precision than predictions obtained by four 

state-of-the-art programs. Moreover, DEEP integrates two additional 

components called DEEP-FANTOM5 and DEEP-VISTA, which streamline the 

analysis of enhancer’s properties in multiple FANTOM5 tissues/organs and a 

specific set of developmental enhancers, respectively. DEEP-FANTOM5, 

when tested on identified enhancers regions from 36 different tissues 

achieves 90% GM and 90.2% accuracy on average. When tested on an 

independent test set, DEEP-VISTA achieved GM of 80.1% and accuracy of 

89.64%. The incorporation of tissue-specific expressed enhancers in the 

DEEP framework shows that DEEP could have useful application in human 

genetics.  
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CHAPTER 5: IN SEARCH OF PREDICTIVE CELL-SPECIFIC 
SEQUENCE SIGNATURES FOR ENHANCERS 

 

5.1 Introduction 
 

In chapters 2 and 3 we have reported several high-throughput experimental 

techniques capable of answering major questions about enhancer-promoter 

interactions and establishing new knowledge about enhancers’ activation 

mechanisms (Shlyueva, Stampfel and Stark 2014). Based on these rapidly 

growing datasets, identification of enhancer’s properties and interpretation of 

their genomic context is now feasible (Kwasnieski et al. 2014;	Kheradpour et 

al. 2013; Yanez-Cuna et al. 2014). Under this relation, reporting attributes that 

can distinguish active enhancers from negative control samples and revealing 

signatures that describe this activity across different cellular conditions are 

active area of research and challenging questions to be answered by current 

computational biology.  

 In this chapter we investigate the possibility of identifying 

enhancer signatures based solely on computational techniques. To do so, 

first we compare the effectiveness of several state-of-the-art techniques for 

FS applied on recent ENCODE-derived enhancer data. The experimentation 

is applied to a broad set of 87,432 enhancer features derived from six 

ENCODE cell-line specific datasets that contain DNA sequence attributes, 

kmers and TFBS motifs, but no histone modification characteristics derived 

from ChIP-seq data. The outcome of our experimentation is cell-line specific 

catalogs of minimal feature sets. The next step to be done is to combine the 
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cell-line specific results and report some global enhancer signatures that 

characterize the broad set of enhancers.  

5.2 Materials and Methods 

5.2.1. Enhancer Datasets 
	
For feeding our analysis with representative data and identify enhancer 

signatures across different cell-lines, we used well-annotated enhancers 

(positive data) and we generated non-enhancer control samples (negative 

data).  

As positive data we focus on six datasets that describe different 

cellular conditions coming from tier-1 and tier-2 ENCODE experiments. The 

positive dataset contains samples from Gm12878 (B-lymphocyte, 

lymphoblastoid), H1-hESC (embryonic stem cells), K562 (leukemia), HeLa 

(cervical carcinoma), HepG2 (hepatocellular carcinoma) and Huvec (umbilical 

vein endothelial) cell-lines. For annotating these enhancer data (positive data) 

we used the ENCODE integrative genomic annotation proposed by Hoffman 

et al. 2013. This annotation utilizes unsupervised clustering techniques, and a 

batch of experimental datasets to annotate non-overlapping genomic 

segments according to their functionality. From this annotation we selected 

the most confident set of enhancers that is characterized as “strong 

enhancers”. Figure 5.1 presents the number of strong enhancers per dataset, 

minimum-maximum enhancer lengths as well as median, mean and standard 

deviation of length. We have also plotted the distribution of enhancer’s length 

for all of the deployed datasets. We observe that the enhancer length 

distribution is not normal (using both Kolmogorov-Smirnov and Jarque-Bera 

statistical tests) and in particular we conclude that most of the sequences 
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have small length (less than 1000 bp) and much fewer sequences have long 

length (this property characterizes a power-law distribution).       

 

 

Figure	5.1:	Histograms	that	represent	distribution	of	the	enhancer’s	length	for	6	distinct	
ENCODE	 cell-lines.	 The	 x-axis	 corresponds	 to	 the	 length	 and	 the	 y-axis	 shows	 the	
number	of	enhancer’s	samples.	We	have	also	plotted	some	statistics	about	the	min-max	
enhancer	length,	mean	and	median	values	as	well	as	the	standard	deviation.		
 

For, the non-enhancers (negative data) dataset we generated random 

genomic loci (10 x the number of cell-line specific enhancers) not annotated 

as promoters or enhancers. Overall, we deployed 6 negative datasets, one 

per cell-line, that contain sequences with lengths that follow the same 

distribution as the positive using properties (min-max length, same std and 

mean and similar base content) presented in Figure 5.1. Overall, we 

generated 11,532,700 random genomic sequences that do not belong to the 

class of enhancers.  
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5.2.2. Enhancer Features  
	
For representing the available enhancer and non-enhancer data we 

generated a vast feature vector that contains attributes that capture 

information deriving from the sequence itself. In other words, the current 

study does not contain features related to epigenetic markers as described by 

ChIP-seq experiments. Although it is well known that specific histone mark 

act as signatures for enhancers (e.g., enhancers have higher levels of 

H3K4me1) we decided not to include such features in the process for several 

reasons. First, previous studies have concluded that histone modification 

mark features mixed with sequence characteristics usually lead to results in 

favor to histone markers (Kleftogiannis, Kalnis and Bajic 2015b). Second, the 

fact that the ChIP-seq preprocessing phase requires binning (usually in the 

range of 100 to 250 bp) of the information from DNA regions in segments of 

predefined size is a limiting factor that reduces significantly the contribution of 

other attributes like TFBS motifs or sequence characteristics. Moreover, the 

peak-calling determination of histone mark data is very dependent on the 

software used and their internal parameters. Third, the data availability issue, 

and the fact that non all of the histone mark data are available for all of the 

training and testing datasets is a limiting factor for the applicability of 

computational models that are based exclusively on histone markers (Ernst 

and Kellis 2015).  Finally our main goal is to extract knowledge that 

complements what is well documented so far regarding the contribution of 

specific histone modification markers in the enhancer identification problem 

(Lee, Karchin and Beer 2011).  
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 The deployed feature vector is an integrative collection of 

attributes that have been proposed by existing studies such as Kleftogiannis 

et al. 2015a; Kleftogiannis et al. 2015b; Lee, Karchin and Beer 2011; Fletez-

Brant et al. 2013; Yanez-Cuna et al. 2014). It contains in total 87,432 

features. From them 95 attributes have been proposed by (Kleftogiannis et al. 

2015b) and 87,296 attributes representing the kmer frequency vector 

introduced by (Fletez-Brant et al. 2013). For the kmer size we selected k in 

the range [2,8], which is sufficiently enough to capture all the important 

sequence content. Note that di-nucleotides and tri-nucleotides frequencies 

are also included in the feature set proposed by (Kleftogiannis et al. 2015b). 

In addition, following recent findings presented in (Kwasnieski et al. 2014;	

Kheradpour et al. 2013; Yanez-Cuna et al. 2014) we included 40 features that 

correspond to TFBSs of some well-known TFs such as SOX, NANOG, 

EP300, CREB, CBP and many other that belong to well-known TF families 

such as GATA, STAT, MEF and TEAD. The computational models for these 

TFs have obtained from HOCOMOCO database. HOCOMOCO is a 

comprehensive collection of models based on Positional Weight Matrices 

(PWM) and the DNA sequence-scanning step has performed using MOODS 

software (Pizzi et al. 2011). More details about the complete feature vector 

can be found in Table 5.1.				
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Table	5.1:	Detailed	feature	vector	description	
Category	 Number	of	features	 Description	
Single	Base	frequencies	 4	 X		where	X	ε	{A,C,G,T}	
Di-nucleotide	frequency	 16	 XY	where	X,Y	ε	{A,C,G,T}		
Tri-nucleotide	frequency	 64	 XYZ	where	X,Y,Z	ε	{A,C,G,T}	
Tetra-nucleotide	frequency	 256	 XYZK	where	X,Y,Z,K	ε	{A,C,G,T}		
5-nucleotide	frequency	 1024	 XYZKL	where	X,Y,Z,K,L	ε	{A,C,G,T}	
6-	nucleotide	frequency	 4096	 XYZKLM	where	X,Y,Z,K,L,M	ε	{A,C,G,T}	
7-	nucleotide	frequency	 16384	 XYZKLMN	where	X,Y,Z,K,K,L,M,N	ε	

{A,C,G,T}	
8-nucleotide	frequency	 65536	 XYZKLMNP	where	X,Y,Z,K,K,L,M,N,P	ε	

{A,C,G,T}	
Aggregate	frequencies	 2	 A+T,	C+G	
Base	pairs	 1	 The	number	of	base	pairs	in	the	

sequence	
Length	of	sequence	 1	 The	actual	length	of	the	sequence	
CpG	islands	 1	 GC/(sum(C)*sum(G)*length)	
Miscellaneous		 6	 1.	|sum(C)-sum(G)|/base	pairs	

2.	|sum(A)-sum(T)|/base	pairs	
3.	sum(A)/sum(T)	
4.	sum(C)/sum(G)	
5.	(sum(G)*sum(C)	)/length		
6.	(sum(A)*sum(T))/length	
	

TFBS	 40	 Binding	of	TFs:	PO5F1,	SOX2,	NANOG,	
EP300,	CBP,	CREB1,	TEAD1,	TEAD3,	
TEAD4,	STAT1,	STAT2,	STAT3,	STAT4,	
ESR1,	CTCF,	HNF1A,	HNF1B,	
HNF4A,HNF4G,	FOXA1,	FOXA2,	FOXA3,	
GATA1,	GATA2,	GATA3,	GATA4,	GATA5,	
GATA6,	NF2L2,	FOSB,	FOS,FOSL1,	
FOSL2,	JUNB,	JUND,JUN,	MEF2A,	
MEF2C,	MEF2D	

Total	number	of	TFBS		 1	 Sum		of	TFBS	hits	
 

5.2.3. Background on FS techniques 
	
The FS problem is a fundamental problem for the development of efficient 

data-driven computational models (Soufan et al. 2015; Kleftogiannis et al. 

2015; Gola et al. 2015). FS techniques can be categorized in three main 

categories:  

a) Filtering approaches that are mostly fast statistical methods that rank 

features according to specific criteria;  

b) Wrapper models where the FS is tied to the performance of a specific 

classification model and selection is made using some optimization 

methods and various search strategies  

c) Embedded methods that incorporate FS components into the model 

development process. It is well documented that there is no clear 
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answer to the best FS method. However, when dealing with “big data” 

characterized by very large number of features, filtering techniques 

present some advantages since the conventional wrapper and 

embedded methods become very computationally demanding and the 

run time can be prohibitive. 

FS has a great use in biology and other biomedical domains for 

knowledge discovery purposes. In principle, the reduced number of features 

may lead to a better description of the underlying biological processes from 

which data is generated and, thus, may reveal better biological insights. In 

addition, attributes that are frequently selected by multiple FS processes with 

diverse characteristics usually are considered “important“ meaning that are 

capable of describing sufficiently the data samples and distinguishing them 

from other negative control samples. Also, these frequently selected features 

fulfill some well-documented properties in ML and this is the reason why 

ensemble feature selection techniques that report frequently occurring 

attributes appear effective in several biomedical applications (Rapakoulia et 

al. 2014).  

5.2.4. Identification of enhancer signatures 
	
With all these issues in mind, we focus on the category of filtering FS 

methods. The first step in this analysis is to compare different fast filtering FS 

methods that rank the attributes based on different criteria. Our analysis 

includes five filtering techniques with different properties namely: Fisher test 

FS, Gini-Index, Kruskal-Wallis FS, mRMR and T-test FS. To achieve better 

separation between positive and negative samples we tested the 

classification performance achieved several K-top ranked feature subsets (K 
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denotes the size of the feature set) with K a varying parameter. For selecting 

the best K-top ranked feature subset, the objective is to maximize the 

geometric mean (GM) of Specificity and Sensitivity. GM is a performance 

metric suitable for imbalanced datasets and has widely applied in several 

bioinformatics problems (Akbani, Kwek, and Japkowicz 2004). For this 

optimization step the underlying classification approach is SVM with Radial 

Basis kernel function (RBF) but without loss of generality any classification 

technique can be used. The value for the K top ranked features is selected in 

the range [5, 87,432], but depending on the resources and the computational 

cost we are willing to spend, the number of the top-K feature subsets can be 

increased accordingly. In the current experimental setup we included not all 

but a large number of cases with K equals to 5,10,20 up to 90 and then from 

K starting from 100,200,300 up to 1000. Following this strategy, progressively 

we reached more and more features up to the total number of 87,432 

features. In addition we estimate the effectiveness of a heuristic technique 

that reports the minimum subset of features that achieve performance non-

less than 5% less from the maximum performance that can be achieved. 

Consequently, our experimentation is driven by two objectives:  

a) one that finds feature sets that maximize the classification performance 

irrespective of the feature set size (this algorithm is called baseline);  

b) another that finds the minimum number of features that achieves 

performance close to the best that can be achieved (this algorithm is 

called heuristic).  

In a second step, we will combine the reported feature sets derived 

from all the above-mentioned FS algorithms and we will infer findings based 
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on the frequency of occurrence within individual cell-lines but also across all 

the studied cell-lines. By aggregating the best-performing results (i.e., feature 

sets) we will report a global set of ENCODE cell-line specific predictive 

signatures that will be always selected by the heuristic algorithm. We will also 

report a global set of common features that will be always selected in all of 

the studied ENCODE cell-lines as derived from the baseline search algorithm. 

Figure 5.2 shows a graphical representation of the FS procedure we will 

apply.  

 

Figure	5.2:	Flowchart	of	the	FS	procedure	we	applied.	
 

5.2.5. Identification of enhancer signatures 
	
To gain practical insights about the predictive capacity of the reported feature 

sets we will perform a comprehensive validation process. The main 

hypothesis we are investigating is whether or not optimal results achieved 
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with enhancer data derived from ENCODE project sufficient to predict 

enhancers from multiple tissues as obtained from FANTOM5 experiments. 

For this purpose we will use DEEP method presented in chapter 4 that 

performs relatively well with data coming from both ENCODE and FANTOM5 

projects. For this experimental setup, we will map the reported global 

ENCODE features to five FANTOM5 tissues that correspond to vital organs 

(brain, heart, lungs, liver, kidney) and we will train DEEP’s first layer using: a/ 

the set heuristically selected features that are present in all of the studied 

ENCODE cell-lines; and b/ the set features selected by the baseline search 

algorithm that are present in all of the studied ENCODE cell-lines. Next we 

will predict enhancers coming from 32 distinct FANTOM5 tissues and we will 

report representative performance indicators for predicting systems namely: 

1. Accuracy = TP +TN
P + N

, where TP stands for True Positives, TN for True 

Negatives, P for all Positives and N for all Negatives 

2. F1− score = 2*Sensitivity*Pr ecision
Sensitivity + Pr ecision

 

3. Distance from the Ideal predictor - 

DFIP = (1− Sensitivity)2 + (1− Specificity)2 , assuming that the ideal 

predictor achieves always perfect Sensitivity and perfect Specificity 

4. Geometric Mean of Specificity and Sensitivity - 

GM = Sensitivity*Specificity  
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5.3 Preliminary Results 
	

5.3.1. Comparing the effectiveness of individual FS techniques on ENCODE 
enhancer data 
	
The first phase of the FS framework we proposed identifies sets that 

maximize classification performance per cell-line as indicated by the GM 

metric. Thus, it becomes straightforward to test the effectiveness of individual 

filtering FS methods for all of the deployed datasets. Figure 5.3 present the 

GM metric for all the training datasets using multiple feature subsets of 

different size. In Figure 5.3 we have also highlighted the features subsets that 

achieve the maximum actual performance and the best performance 

achieved by enabling the heuristic technique we described earlier. We found 

that Gini-Index FS achieves the best results followed by mRMR. Kruskal-

Wallis FS is the slowest and performs relative close to Gini and mRMR 

whereas ttest and Fisher FS achieve the worst performance.  

Overall, we observe that the performance maximization is achieved 

with feature subsets that contain from 300 features and up 800 with an 

average of 600 attributes. The performance, is on average 77.4%, with the 

exception of Huvec cell-line that performs really well (87.22% GM), and does 

not exceed 77.4% GM giving us an indication of the predictive capability of 

the cell-specific models we developed. In addition, we observe that the 

heuristic technique we introduced is effective since it achieves on average 

74.36 % GM but with much less features ranging from 10 to 100 with an 

average of 41.6 features across all the studied cell-lines. Note that in all of the 
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tested cell-lines and for all of the studied FS methods we observe a dramatic 

drop in the performance using more than 15,000 features.   

	

	
Figure	5.3:	Geometric	mean	of	Specificity	and	Sensitivity	of	the	studied	ENCODE	cell-line	
data	using	different	size	feature	subsets.	
	

5.3.2. Perspectives 
	
In this chapter, we focus on the identification of global and cell-line specific 

enhancer signatures based solely on computational techniques. We 

compared the effectiveness of individual filtering FS methods on recent 

enhancer data using a simple search algorithm and a heuristic approach. Our 

preliminary results include catalogs of cell-line specific feature sets that 

maximize the separation between enhancer data and negative control 

samples coming for six ENCODE cell-lines. We are planning to continue this 

research, by combining the best-performing feature sets and present two sets 
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of global predictive signatures that characterize the broad category of 

ENCODE enhancers. Next we will perform a comprehensive validation 

analysis using data from FANTOM5 project to prove weather or not the 

reported ENCODE enhancer signatures have the potential to increase the 

predicting capacity of existing classification systems in totally unseen tissues. 

We anticipate that our findings can effectively complement other 

computational techniques and experimental procedures generating significant 

biological insights about complex cell-specific gene regulatory mechanisms.  
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CHAPTER 6: SUMMARY 
 

 

6.1 Recap of the work done 
 

In this dissertation, we have conducted a systematic study focusing on the 

category of enhancers. We have studied extensively the related work and we 

have elaborated on the functional mechanisms of enhancers that trigger the 

activation of their target genes. In addition we have reviewed the state-of-the-

art computational methods that identify enhancers in unknown cell-lines and 

tissues. Since the problem of identifying DNA regulatory elements is directly 

linked with the usage of relevant high-throughput data that are growing rapidly, 

we have further presented the most important data sources related to 

enhancers and we have identified advantages and disadvantages of the 

existing repositories for enhancers. We have also identified the most 

important limitations of the existing ML methods for predicting enhancers, we 

have commented about open questions and challenges related to enhancer 

identification and we have constructed some solutions to the problem. 

In summary our contributions are: 

a) We provide the first comprehensive review study that covers 

over 30 bioinformatics approaches that have been developed 

during the period 2000-2015. We have also highlighted 

advantages and disadvantages of the existing methods, used 
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datasets and features commenting also about open problems to 

be tackled by current Computational Biology. 

b) We were first to develop the Database of Integrated Human 

Enhancer (DENdb). Database of Integrated Human Enhancer is 

a centralized online repository dedicated to enhancers as 

derived from multiple computational methods applied in a 

variety of different cell-lines. We have also proposed a novel 

annotation of enhancers in human based on state-of-the-art 

prediction systems. 

c) We developed the first deep learning algorithm for predicting 

enhancers that also for the first time combines data from 

multiple cell-lines and tissues, which is used as a core of a 

general computational framework for predicting enhancers 

(DEEP). DEEP is a novel ensemble prediction system that 

integrates three components with diverse characteristics that 

streamline the analysis of enhancer’s properties in a great 

variety of cellular conditions. In our method we train many 

individual classification models that we combine to classify DNA 

regions as enhancers or non-enhancers.  A comprehensive 

validation analysis has proven that DEEP surpasses existing 

methods applied on ENCODE data whereas is the first method 

that reports computational enhancer prediction in data coming 

from FANTOM5 and VISTA databases.  

d) We identified subsets of histone modification markers that 

characterize optimally six ENCODE cell-lines. These subsets 
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have been found using an exhaustive search algorithm and 

appeared very different between different cell-lines. 

e) We presented another computational framework based on 

state-of-the-art feature selection techniques capable of 

identifying cell-line specific sequence fingerprints for enhancers. 

A case study on the six well annotated ENCODE cell-lines 

revealed six cell-specific and compact feature sets that 

maximize classification performance.     

 

6.2 Future work 
 

Identification of regulatory elements is without doubt the most important step 

for deciphering complex gene regulation mechanisms. Thanks to the recent 

advances in biotechnology (i.e., CAGE) it became apparent that enhancers 

and promoters share a unified architecture (i.e., recruitment of POL2 and 

transcription) and they can be considered as a single class of regulatory 

elements (Weingarten-Gabbay and Segal 2014). Although promoters and 

enhancers have many similarities, the properties of RNA they produce is 

different and in particular mRNAs are multi-exonic and polyadenylated 

whereas eRNAS are typically non-spliced, non-polyadenylated and appear in 

low copy numbers in the nucleus (Andersson, Sandelin and Danko 2015).  

 In addition recent findings from CAGE experiments indicate that 

transcription in enhancers is the first event that leads to a number of 

coordinated transcription in gene promoters (Arner et al. 2015). In particular 

CAGE analysis on enhancers and promoters indicates that they can be 
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categorized into six different response classes namely Rapid short, Rapid 

long, Early standard, Late standard, Long and Late.   

 Consequently there are many interesting on-going topics in enhancer 

and promoter studies that deserve more attention. Specifically, my on-going 

research project focuses on MCF-7 enhancers and promoters. MCF-7 is a 

breast cancer cell-line that is a very well studied and reproducible 

experimental model. As an initial step in this analysis, we obtained MCF-7 the 

list of enhancer and promoter from (Arner et al. 2015) that are categorized 

into six response classes described before.  

To study the properties of enhancers and promoters that belong to 

different response classes we downloaded from ENCODE representative 

ChIP-seq datasets in BAM format (two replicates that we combined) namely 

H3K4me3 (promoter marker), H3K27ac (enhancer marker), P300 (enhancer 

marker), CTCF (enhancer blocker with important interactions with promoters), 

POL2 and DHS. We generated feature vectors of size six and we estimated 

the number of ChIP-seq reads that overlap the centre of expression for all the 

enhancers and promoters. Figure 6.1 shows the computational framework we 

applied.  
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Figure	6.1:	Proposed	computational	framework	for	identifying	enhancer	and	promoter	
response	classes.	
 

Next we are planning to apply Linear Discriminant Analysis (LDA) and 

KNN in order to discriminate enhancer from promoters that belong to the 

same response class but also enhancers and promoters from one particular 

response class versus all the other MCF-7 enhancers and promoters. At the 

end by applying FS techniques (e.g., brute force search or heuristic search) 

we will identify fingerprints that characterize optimally different enhancer and 

promoter response classes.  
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Preliminary results presented in Figure 6.2 indicate (1000 runs with 5 

fold cross validation) that LDA can distinguish effectively enhancers from 

promoters in MCF-7 cells.    

 

Figure	 6.2:	 ROC	 performance	 curve	 for	 separating	 MCF-7	 enhancers	 from	 promoters	
using	LDA.	
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