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SUMMARY

Many tasks require surveillance and analysis in order to make decisions re-

garding the next course of action. The people responsible for these tasks are usually

concerned with any event that affects their bottom-line. Traditionally, human oper-

ators have had to either actively man a set of video displays to determine if specific

events were occurring or manually review hours of collected video data to see if a

specific event occurred. Actively monitoring video stream or manually reviewing and

analyzing the data collected, however, is a tedious and long process which is prone

to errors due to biases and inattention. Automatically processing and analyzing the

video provides an alternate way of getting more accurate results because it can re-

duce the likelihood of missing important events and the human factors that lead to

decreased efficiency.

Generating these statistics require an appropriate detection, tracking, and event

representation framework that allows for identification of the targets of interest and

determination of how long they spent in proximity of an object of interest. The

challenge associated with this is keeping track of targets over a long period of time.

Keeping track of targets over a long period of time is complicated due to occlusions

and a constantly changing scene. Standard methods usually put together independent

components that, while optimized for individual tasks, do not provide much feedback

to each other.

The thesis aims to contribute to the area of using computer vision as a decision

support tool by integrating detector, tracker, re-identification, activity status estima-

tion, and event processor modules to generate the necessary event statistics needed

by a human operator. The contribution of this thesis is a system that uses feedback

xi



from each of the modules to provide better target detection, and tracking results for

event statistics generation over an extended period of time.

To demonstrate the efficacy of the proposed system, it is first used to generate

event statistics that measure productivity on multiple construction work sites. Results

demonstrate that it’s possible use the system to generate event statistics that show

productivity on a construction site. Having these statistics available will be of great

help to project managers when it comes to increasing their productivity and reducing

cost. It will assist their decisions regarding the best way to utilize their resources.

The versatility of the proposed system is also demonstrated in an indoor assisted

living environment by using it to determine how much of an influence a technology

intervention had on promoting interactions amongst older adults in a shared space.

The system is used to generate statistics regarding the usage of the shared space. Re-

sults show that the system reduces the time spent for analysis by a human operator to

confirm or disprove their hypothesis regarding the intervention. This allows the oper-

ator to quickly make decisions regarding the changes necessary for the technological

intervention to achieve the desired effect.
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CHAPTER I

INTRODUCTION

Many tasks require some type of feedback in order to make decisions regarding the

next course of action. Video surveillance can be employed as a tool to monitor events

of interest for feedback regarding how implemented methods are working. Video has

long been used in surveillance for applications such as activity recognition, event

detection, human-computer interactions, productivity measurement, and safety, to

name a few [2, 3, 4, 5, 6, 7, 8]. The number of cameras now available and the data

collected makes manual review and analysis of the data an arduous and error-prone

task. Traditionally, in surveillance settings, human operators have had to monitor

the video streams and their effectiveness is mostly determined by how vigilant they

are. These applications and the massive amount of data generated by continuously

running video cameras drive the need to create intelligent visual surveillance systems.

Having a manually operated surveillance system results in many events being miss-

detected which can be caused by the excess number of videos to monitor, boredom

and tiredness due to prolonged monitoring, lack of a-priori and readily accessible

knowledge for what to look for, and distraction by additional responsibilities [9].

Automating the process reduces the amount of work operators have to do so it reduces

the likelihood of missing important events. The main objective of an automatic video

surveillance system is then to automatically detect, track, and analyze the activities

of the objects of interest to generate necessary event statistics.

Automating the process, however, can be quite a difficult task, so this thesis aims

to contribute to the area of automatic generation and analysis of event statistics

by developing a system that integrates target detector, target tracker, target re-

identification, activity status estimation, and event processor modules. Each module
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is necessary for this system since they are all dependent on each other to provide accu-

rate results. To perform event detection, the system must be able to detect and track

targets over extended periods of time. The target detector module feeds its detection

results to the tracker module which in turn feeds its results to the re-identification

module, the activity estimation module and also back to the detector module for

updating. The re-identification module uses the tracking results to determine when

the target has changed significantly in order to re-initialize the tracker. The event

processor module then combines the results from the different modules to generate

the event statistics needed by the human operator. These statistics then enable the

operator to make the necessary decisions for the task at hand.

1.1 Objectives and Contributions

The goal of this thesis is to create an analysis method which generates statistics

that allows users to make decisions regarding their next course of action. The event

features and statistics of interest necessary for decision support are the number of

targets that entered the scene, the amount of time they spent in the scene, the

amount of time they spent in a region of interest, and their proximity to the region

of interest and other targets. Generating these statistics requires an appropriate

target detection, target tracking, and event representation framework that allows for

identification of the targets of interest and determination of how long they spent in

the scene and the regions of interest.

The challenge associated with this is keeping track of targets over a long period

of time. Long term visual tracking is a challenging task primarily due to target

occlusion, illumination changes, scale changes, shadows, deformations, and target re-

identification. Previous work attempts to address one or two of these drawbacks, but

these solutions don’t do it long enough to generate the event statistics needed for

decision support. Video sequences used to demonstrate concepts in current literature

2



are typically less than 10,000 frames, and with a typical frame rate of 12 frames per

second, this is approximately 14 minutes long [2].

One reason why current systems face these drawbacks is that the flow of pro-

cessing in most computer vision systems for surveillance is often hierarchical and

unidirectional, as shown in Figure 1(a); most systems usually put together indepen-

dent components that while highly optimized for individual tasks, do not provide

much feedback to each other, and therefore do not work together in concert [3]. The

goal of the proposed system is to address these problems by using feedback, as shown

in Figure 1(b), from the different interconnected modules to induce robustness for

estimation.

This goal will be achieved through the following contributions:

1. a generic system that uses feedback from each of the modules to provide better

target detection and tracking results for event detection. The tracking module

feeds back into the target detection module to update the background. The

tracking module also provides feedback to the re-identification module in order

to update the target’s model. The re-identification module gives feedback to the

tracking module regarding whether the target’s model has sufficiently changed

enough to warrant a new tracking model. It is also provides feedback to the

target detection module on whether a detected target is a new or previously

seen target.

2. generation of event statistics over a long period of time using identification

of targets of interest, tracking of their movement within the scene, and their

proximity to pre-determined objects. These objects could be other targets, or

they could be static regions of the scene that have been provided by the user at

run-time.

The input to the system will be the videos to be processed and a site layout which
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Figure 1: Process flow for traditional and proposed automatic surveillance system.

defines the entrance and regions of interest. The entrances are used by the target

detection module to create a tracking and re-identification model whenever it detects

objects in that location, while the region of interest is used by the event detection

module to generate statistics for the videos. The statistics of interest are identified

by the user of the system when they provide the site layout.

The scope of the work done in this thesis is limited to application domains that

require knowledge of the proximity of targets to a region of interest or other targets

over an extended period of time for decision support. The use of the generic system

is demonstrated in two application domains: construction sites and assisted living.

First, the efficacy of the proposed system is demonstrated on multiple construc-

tion sites. Automatically generating event statistics is extremely useful to project

managers since productivity measurement and improvement still remains a difficult

and expensive task for construction companies due to the need for manual data col-

lection and analysis from the construction site. The scope of this thesis with regards

to construction work sites are activities that support some kind of work which can
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be detected or quantified by current surveillance algorithms. For now, this involves

collaborative work between machines, such as excavators and dump trucks engaged

in an earth-moving operation, since the activity states of these machines are more

easily tracked.

Earthwork processes are often subject to unanticipated delays [10], which are likely

to propagate through the entire remaining schedule and adversely impact progress,

productivity, and costs [11]. The presented work impacts research into site operations

by enabling the automated monitoring and tracking of on-site resources. Video-based

monitoring and processing algorithms provide a non-intrusive, easy, inexpensive, and

rapid mechanism for generating a body of operational information and knowledge.

If made available to project managers, the information and knowledge would enable

inquiry into construction operations that is currently not possible [12].

Analyzing the event features and statistics extracted by the system allows project

managers to measure progress and productivity. The primary focus is analyzing the

states of the Region of Interest (ROI), figuring out how long it takes in between

dump trucks dumping and getting filled, and how many bucket loads it takes to fill

the dump trucks by the excavator. Interactions between machines on the worksite are

the most important factors to productivity since they determine the speed tasks on

the worksite are performed. The ability to automatically analyze the event statistics

reliably leads to less expensive means of productivity measurement and it also allows

the project manager to efficiently manage resources which also reduces cost. The

work done in this thesis differs from everything else in literature because longer video

sequences covering majority of the construction site are used. To date, we are unaware

of any vision-based solutions that provide productivity estimation of construction site

operations through the measurement of progress and activity states over an extended

period of time. The results demonstrate that it is possible to generate event statistics

that show productivity associated to earthwork processes on construction sites.
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Second, the proposed system is used to measure the effects of a technology inter-

vention designed to promote interactions amongst older adults in a retirement com-

munity. Researchers have found that loneliness and social isolation is a cause of great

discomfort among older adults in retirement communities. To combat this problem,

a technology intervention was designed, and video cameras were set up to monitor

the area surrounding the intervention to determine its effects. The long term goal

is to achieve quantitative analysis of long-term responses to designed technological

interventions by older adults in retirement communities. Specifically to demonstrate

positive socialization impacts through these interventions.

The system is used to monitor the number of people present in the scene to de-

tect if and how many of them go into the common area. The system tracks people’s

trajectories within the scene to understand how they localize themselves in the mon-

itored space. The system also quantifies the interactions among older adults with

and without the technology intervention. The amount of older adults who come out

of their room and the amount of interactions that take place will show whether or

not the technology intervention is having the desired effect. The scope of this thesis

with regards to the senior housing surveillance is limited to interactions that can be

determined using the proximity of targets to each other. The results demonstrates

that the developed system can be used to quantify interaction statistics associated

to interventions in a retirement community in less time than it takes for a human to

manually annotate the same amount of time, thereby proving it as a valid decision

support tool.

1.2 Literature Review

A literature review of the different modules in an automatic video surveillance system

is given below.
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1.2.1 Video Surveillance

Video surveillance in dynamic scenes, especially for humans, is currently a very active

research topic in computer vision. It is preformed in retail outlets, traffic monitoring,

banks, city centers, airports, building security. Typical video surveillance systems

are monitored by human operators to determine the actions to take given a specific

event of interest. Many studies, however, have shown the limits of human-based

surveillance [9, 13]; they show that events are missed due to large amounts of data,

bored and tiredness due to prolonged monitoring, lack of knowledge for what to look

for, and distractions [4]. These studies reveal the need for an automated system that

takes some of the burden off human operators while producing accurate results. An

automated system would reduce the amount of work operators have to do and the

likelihood of missing important events.

Collins et al. [14] developed a system for video surveillance and monitoring that

uses a combination of temporal differencing and template tracking to accurately track

a target in a video sequence. Multiple cameras were used to cooperatively track the

object through the area of surveillance. Objects were detected and classified into

semantic categories, which allow for temporal consistency contraints. Haritaoglu

et al. [15] developed a system that employs a combination of shape analysis and

tracking and construct models of people’s appearances in order to detect and track

groups of people as well as monitor their behaviors even in the presence of occlusion

and in outdoor environments. Javed and Shah [16] developed an automated wide

area surveillance system that detects, tracks, and classifies moving objects across

multiple cameras. It uses single cameras to detect objects and then tracks using a

voting scheme that utilizes color and shape cues to establish correspondence. The

system combines tracking results from individual cameras with overlapping and/or

non-overlapping field of views and it does not need calibration. The system can de-

tect unusual activities happening in the surveilled area. Tian et. al [17] developed
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a surveillance system that provides the capability to automatically monitor a scene,

manage the surveillance data, perform event-based retrieval, receive real-time event

alerts through the internet and extract statistical patterns of activity. The framework

utilized in the aforementioned systems all share a similar structure. The structure is

broken into the following stages: background modeling, target detection and identifi-

cation, tracking, and understanding and description of behaviors [5, 6, 7, 8, 13, 14, 15].

As mentioned earlier, the framework is usually hierarchical and unidirectional. The

following subsections give a review of the components that make up the system.

1.2.2 Background Modeling

Background subtraction is an important aspect of any computer vision system since

it allows for detection of foreground objects of interest. To perform background sub-

traction, a background model is needed. The foreground objects in an incoming frame

are detected by finding regions that deviate from the background model. Background

models can be divided into the following categories: mixture of Gaussians (MOG)

models, subspace learning models, fuzzy models, and robust PCA models [18].

The MOG model introduced by Stauffer and Grimson [19] is the most common

approach used for background subtraction. For this model, each pixel’s history is

modeled using a mixture of K Gaussian distributions; the probability of belonging

to the background is calculated and used to determine the foreground. The model’s

mean, variance, and weights are then updated using the detection results. Several

researchers have modified this algorithm to make it more robust to situations such

as: noisy images, camera jitter, time of day, bootstrapping, camouflage, foreground

aperture, etc [18, 20, 21].

Subspace learning methods create a model using dimension reduction and fore-

ground is detected by comparing the input image and its reconstruction [22]. The first

subspace learning method using Principal Component Analysis (PCA) was proposed
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by Oliver at al. [23]. Subspace learning is applied on N images to construction a

background model, which is represented by the mean image and the projection matrix

comprising the first p significant eigenvectors of PCA. Foreground detection is per-

formed by thresholding the difference between the input image and the reconstructed

background image (using the input image, mean image, and projection matrix).

Fuzzy models and robust PCA models are more recent background models which

are more robust to challenges faced in dynamic scenes but they are too sophisticated

and complex for the needs of this proposal. The MOG model is used in this proposal

because it provides enough accuracy with fast speed for the data being analyzed. A

more comprehensive review on these models is given in the survey by Bouwmans [18].

1.2.3 Target Re-identification

Once the targets have been detected, they need to be identified for re-identification

and tracking purposes. Target re-identification is important in video surveillance

because it allows for accurate computation of statistics of events in the video. Re-

identification algorithms need to be robust to challenging situations such as changes

in camera viewpoints and orientations, illumination changes, pose changes, and rapid

change in clothes appearance. Existing work can be classified into biometrics based

methods and appearance based methods. Biometric methods such as face [24, 25] and

gait [26, 27, 28], have been used for re-identification but these method requires features

that can only be extract in high resolution images. Appearance based methods are

commonly used for person re-identification. Appearance based methods usually focus

on the selection of discriminative features and the combination of various features to

create invariant signatures [29, 30]. Yang’s approach [30] is improved upon in this

proposal since it has the same KPCA framework as the tracker used thereby saving

computation time.
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(a) Face [25] (b) Gait [28]

Figure 2: Example of biometric re-identification methods

Figure 3: Example of appearance based re-identification [1]

1.2.4 Target Tracking

Tracking algorithms can be split into four different categories: kernel based, feature

based, contour based, and association based [31, 32]. Kernel-based tracking typically

tracks using a target region stored as a template. It finds the target’s new region

by maximizing a similarity measure. Similarity measures such as the Bhattacharya

coefficient [33], sum of squared differences [34], normalized cross correlation [35], and

robust maximum mean discrepancy [36] have been used. Based on the motion of

the target, a parametric motion model such as translation, affine, coformal affine,

projective model is chosen. The simplest kernel based method is template matching.

Template matching uses gradient descent to find the location of the target in a frame.

Cheng [37] introduced mean shift for tracking and since then it has been improved

by multiple researchers who incorporate different similarity measures [33, 38, 39].

Feature-based tracking algorithms extract the target’s features and matches the
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(a) Template-based (b) Contour-based [40]

(c) Feature-based [41] (d) Association-based [42]

Figure 4: Examples of different types of tracking.

features in subsequent frames . The displacement of the target is then estimated

using the collective motion of the features. Edges [43, 44, 45], texture [46],corners [44],

scale-invariant [47, 48], and affine-invariant [49] features are examples of features that

have been used for tracking. Optical flow, Kalman filters, Extended Kalman filters,

Unscented Kalman filters, Hidden Markov Models, boostrap filters, and particle filters

are examples of feature trackers. Feature-based trackers depend on detecting features

in subsequent frames so they fail when feature extraction become impossible due to

the features missing.

Contour-based trackers are based on the temporal deformation of a contour ac-

cording to the variations of an energy functional. Contour-based trackers fail when-

ever the target is similar to another target or the background. Contour based tracking

can be done using an explicit representation or an implicit representation of the con-

tour. It is done by iteratively evolving an initial contour. Most recent approaches
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use an implicit representation of contours using level sets and iteratively evolve the

contour by directly minimizing the contour energy function. The contour energy

function can be motion-based [50] or segmentation-based [40]. The energy is defined

with respect to the evolving contour and its minimum is attained when segmentation

is achieved. The contour is commonly embedded as the zero level set of a higher-

dimensional function, e.g. a signed distance function, and iteratively deformed until

the energy reaches its minimum.

Association based trackers operate by finding the proper linking affinities based on

multiple cues between object detection responses or tracklets [32, 42, 51, 52]. Associ-

ation based trackers depend heavily on the object detection algorithm so they provide

inaccurate results when the detection is not reliable. Although kernel-based trackers

tend to fail whenever the target changes its orientation or pose, a kernel-based tracker

is used in this proposal because of the potential to use multiple templates to represent

the target. The last module of an automatic surveillance system is the understanding

and description of behaviors and activities, the following two sections give a literature

review on the behaviors and activities of interest in the two application fields.

1.2.5 Construction Site Work Sampling

Construction sites are locations where the building or assembling of infrastructure

takes place, usually entailing a high usage of resources and manpower. Due to the

high complexity of large scale construction projects, project schedules are sensitive

to delays. Since these projects are usually an expensive undertaking, managers are

always looking for ways to measure and improve labor productivity. Proper coordina-

tion of resources and manpower positively impacts on-site productivity, which in turn

influences construction safety, costs, and schedule [53, 54]. To measure productivity

at such construction work sites, one needs to attribute a quantitative measure to the

amount of work performed. Awareness of labor productivity leads to improvements
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on direct work rate [55] therefore, the existence of productivity analysis methods

improves onsite operations and mitigates any adverse conditions that may impede

progress. The ability to provide feedback on the duration of activities on the work

site would allow project managers to be more aware of delays, determine their causes,

and respond accordingly. Additionally, a project manager would have a better idea

of efficiently managing resources if provided with metrics like the idle time of each

machine, and time spent performing direct and support work. The construction com-

pany with the most efficient operations has a great chance of making more money

and delivering a faster construction project to the project owner [56].

According to Gong and Caldas [57], traditional data collection methods for pro-

ductivity analysis can generally be divided into four categories: 1) cost report and

project schedule, 2) work measurement based on direct observation, 3) survey or in-

terview based methods, 4) video-review based methods. The only common thread

between these categories is that they require labor intensive, time-consuming, and ex-

pensive manual analysis. Currently work sampling, which falls under work measure-

ment based on direct observation, is the method most used by construction companies

to determine productivity. Work sampling is a method that evaluates the amount

of time workers spend on direct work, support work, and no work. Traditionally,

this is done by an observer following a pre-planned route and recording the activity,

called a work sample, the instant they come in contact with whoever is performing

the activity [56]. An additional drawback of this method is that the samples are

acquired discretely and the observer might miss some activities as they moves about

the pre-planned route. Due to the drawbacks mentioned above, researchers have been

researching ways of automatically performing productivity analysis by monitoring the

resources and manpower used on the work site.

Researchers have attempted to use Global Positioning Systems (GPS) [58, 59,

60, 61, 62], Radio Frequency Identification (RFID) [63, 64, 65], and Ultra Wideband
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technology (UWB) [66, 67, 68] to perform productivity analysis and while they are

capable of tracking the location of resources, there are several drawbacks. They all

require the resources be manually tagged which can be quite intrusive, and problem-

atic when there is a significant amount of resources to be tracked. GPS systems are

not accurate indoors and RFID only operate within a fixed radius. These methods

are also not able to provide information regarding the type of activities the resources

are engaged in. Video surveillance is a natural approach used to address this issue

since it provides a continuous data feed for the construction site. However, manually

reviewing the video to determine how resources on the construction site are being

utilized is an arduous and expensive task. Computer vision can be used to overcome

these shortfalls by automating the process of performing work sampling.

Using computer vision as a tool for work site analysis is a fairly recent research

area. Many current research efforts associated to progress and productivity monitor-

ing seek to prove the hypothesis that it is possible to reliably track multiple resources

with images (video and/or time-lapse) in order to reproduce the daily workflow activi-

ties associated to a construction site. The intent behind such monitoring and analysis

is to automatically provide critical information, through computer-vision algorithms,

on construction operations for improved decision making in construction engineering

and management [69]. The information obtained from such automated systems gener-

ates knowledge about work site operations. In an information-based framework, much

effort is spent acquiring and interpreting information. In a knowledge-based frame-

work, efforts are allocated to making decisions based on the interpreted information.

If successful, computer-vision based methods will transform the review of construc-

tion operations from being information-based to knowledge-based, thus saving human

resources and improving decision effectiveness [70].

Using passive imaging cameras aimed at a worksite for performing resource track-

ing and activity monitoring relies on applying methods and tools from surveillance
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research [14]. As detailed in Section 2, video surveillance systems require the connec-

tion of several modules, which perform object detection, identification, tracking, and

reidentification (needed when an object leaves and returns the scene). Once these

basic components are functional, an additional interpretation module may be added

in order to identify behaviors or activities engaged by the tracked objects within the

sensed scene [15]. These may be further decomposed into typical or unusual [16].

Further analysis of the behaviors and activities over time may be performed in order

to identify key events, which can then be entered into a database or spreadsheet for

reporting or query purposes. For example, the system in [17] performs event-based

retrieval, provides real-time event alerts through the internet, and extracts long term

statistical patterns of activity.

Detection. Resource detection on construction site videos is broadly categoriz-

able into two approaches: specific object detection algorithms and general foreground

estimation algorithms. Detection algorithms, usually relying on machine learning

techniques, involve training to learn the unique signature of a given object. Algo-

rithms include neural networks [71], support vector machines with specific feature

models [72], random forests [73], and parts-based models [74]. Parts-based model-

ing approaches work best for articulated objects since their appearance geometry

has high variation, which can be compensated through multiple, individual part de-

tectors. Rigid targets with sufficiently discriminative appearance characteristics can

be detected in real-time, however more complex targets require processing that pre-

vents real-time processing. Since detection-based methods often seek specific targets,

the resource type will typically be known from the detection itself. Foreground es-

timation algorithms tend to be simpler, as they generate a model of the expected

scene and classify as continuous regions that do not match as target regions [75, 57].

Foreground estimation works well when the entrance into the scene of the object is

controlled, or the object of interest is not occluded by other foreground objects [76].
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In less controlled settings, strong results are obtained by combining the two tech-

niques [77, 75, 71]. Since foreground detection methods do not classify the detected

objects, the addition of a detection algorithm for these scenarios has the added benefit

of rejecting irrelevent foreground detections and of identifying the resource category

(if there is a detector for it).

Tracking. There have been comparative papers studying the performance of

specific tracking algorithms on construction worksites [78, 70] with probabilistic and

kernel-based methods showing strong performance. Kernel-based methods have been

used since for tracking on-site resources [79]. [80] used a probabilistic kernel method

to track multiple workers with overlapping trajectories, showing that these methods

can be modified to handle occlusions. Follow-up research [81] extended these results to

rigid construction machines observed from a distance. While most tracking papers are

on tracking with a single camera view, [82] demonstrated 3D tracking of construction

site resources using stereo video.

Activity Analysis. For a detected and tracked construction resource, further

analysis of the object’s visual stream provides important information regarding the

role and contribution of the resource to the construction process. Deciphering this

information falls within the category of activity analysis. Activity analysis on a

construction site involves determining the action each target in the scene is engaged in

over a period of time. Early activity analysis utilized sensors installed on the resource

of interest [83]. However, since then vision-based strategies have been demonstrated

by applying advances in computer vision. The vision-based research literature, both

in construction and more generally, can be split into activity identification through

analysis of specific spatio-temporal visual features of the resource or through analysis

of the trajectory and proximity information.

The former category has mostly focused on articulated resources, such as personnel

and machines [84, 85]. By decoding the articulation poses or target feature elements
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over time, the activity category can be inferred [86, 87]. Work activities may be

broken into effective work, ineffective work, or contributory work for productivity

analysis [84].

For rigid objects, or those without discernable pose properties, alternative means

are needed, leading to the latter category. The addition of a-priori information about

the targets and their work packages, the location of regions of interest plus their

meaning, and the trajectories of each target enables the decoding of activities through

Markov models based on work process diagrams [57, 76]. Whole site analysis is

possible for earthworking processes [81] since the quantity and types of machines are

somewhat limited during this part of the construction phase, and the activities are

inferrable from the interaction dynamics of the machines.

Productivity Estimation. Analysis of activity state estimates over time, when

connected to specific work packages, provides productivity data for the work packages

[77]. Over short time intervals, with specific work packages, productivity can be

inferred through the activity states coupled with some minimal information regarding

the task [88]. For longer time intervals, however, it is more useful to connect activity

statistics to actual progress, which requires progress tracking. To date, we are unaware

of any vision-based solutions that provide productivity estimation of construction site

operations through the measurement of progress and activity states over time.

1.2.6 Senior Housing Surveillance

The older adult population (65 and older) of the United States has been dramatically

increasing and is expected to increase further in the next decade [89]. According to

estimations, older adults will represent 20% of the total population by 2030, and by

2050, the number of older adults is expected to outnumber children 14 and under for

the first time in history. It is estimated that by 2050, 50% of older adults who require
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care will not have children [90]. To date, 2.3% of older adults are housed in indepen-

dent living retirement facilities [91]. These communities are an affordable option for

older adults to become part of a community. However, even though these communi-

ties provide social exposure, depression and isolation are present [92]. Depression is

strongly linked to morbidity for the older adult population [93], while social isolation

is connected to decreased quality of life, depression, and morbidity [94, 95, 96, 97].

Thus, for the communities to be places where older adults can thrive, mechanisms

must exist within the facility that successfully promote social interaction, increase the

well-being of the population, and reduce the incidence of depression. Environmental

[98], activities-based [99, 100], technological [101], and social robotics [102, 103] in-

terventions are all seen and being investigated as mechanisms that can achieve these

objectives. At the same time, contemporary research in these areas does not involve

the population base, time duration, and quantitative results [102, 104, 105] found in

more traditional areas of gerontological research, e.g. compared to [95, 97]. With the

above observations and ideas in mind, this thesis covers the first steps towards a more

comprehensive, quantitative, and long-term assessment of technology-based interven-

tions in an independent living community. In particular, it presents a semi-automated

surveillance system used to codify and quantify the social interactions found within

public spaces in an independent living community. The semi-automated system aims

to provide a summary of the events that take place within the public spaces to al-

low researchers/caregivers to determine how much of an effect their interventions are

having, which in turn allows them to make decisions regarding the next steps.

Socialization and Older adults. Loneliness has been found to be a cause

of great discomfort among retirement community residents. Social interaction and

social support impact both quality of life and health [94, 106, 107], and lack of either

leads to higher mortality rates amongst lonely older adults [108]. Shared common

areas in retirement communities should provide spaces for interaction, yet they are
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underutilized from the perspective of social interaction. Based on an observational

study of residents in assisted living facilities Zimmerman et al [109] found that about

half of awake residents make use of public spaces. Furthermore, the study noted

that residents who are cognitively and functionally impaired are more likely to be in

public spaces yet less likely to be engaged, while residents who are awake and alone

in private spaces are less likely to be impaired yet more likely to have and develop

medical conditions. Observational remarks by researchers in social robotics have also

noted that while public spaces may be occupied, the occupants are not necessarily

socially engaged [103, 110]. There is a disconnect between occupancy of shared spaces

and socialization in shared spaces. If social interactions can increase an older adult’s

quality of life and their health as well, then means to encourage socialization are

imperative, especially in shared common areas. Caregivers are constantly looking

for ways to encourage and improve social interactions amongst their residents. They

need to be able to evaluate the effects of of their chosen interventions on socialization.

Behavior Mapping in Environments. Evaluating utilization and socialization

in and nearby common areas of retirement communities will require observation of

the shared environment and the interactions of the population that utilize it. As

mentioned in Chapter 1, human operators have traditionally had to actively man a set

of monitors, or review video after the fact [103, 105, 110], to determine if specific events

were occurring or to analyze subject behavior. To facilitate the collection of statistics,

software such as Observer XT by Noldus provides professional and user-friendly event

logging system for the collection, analysis, and presentation of observational data

[111]. This system codes and describes behavior in an accurate and quantitative way,

but the process is lengthy due to the need for manually annotating the observations.

Manual approaches are not feasible for long term, all day surveillance. As such

there is a need to develop system that can automatically detect human behavior

and interaction in environments. Semi-automated video processing algorithms are
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essential for rapidly providing summaries of daily interactions or activities occurring

within the sensed space [112].

The proposed semi-automated behavioral mapping surveillance and interaction-

processing system will serve as a tool to monitor the social interactions affected by

the technology interventions. The goal of the system is to identify how people utilize

the space, understand if and how technologies designed for, and placed in, the space

promote socialization. A social interaction is a mutual or reciprocal action that

involves two or more people and produces various characteristic visual/audio patterns.

Current Behavioral Mapping Technologies. Due to the challenges of video-

based technology, research on the use of sensor systems to determine interactions

within a group may involve active or tag-based sensors. These sensors are integrated

into the environment to provide activity recognition [113, 114, 115]; such setups are

sometimes called smart homes. As sample case, Lymberopoulos, et al. [116] used

cameras, door sensors, and passive infrared sensors to create a spatiotemporal human

activity model for activity detection. These approaches require extensive retrofitting

of environments and are not feasible for existing independent living communities.

Within the context of wearable sensors, the use of wrist-worn devices with on-board

sensing (acceleration, voice, etc.) and local wireless communication enables the quan-

tification of activities or social interaction [117, 118]. Potential issues with tag-based

approaches, such as RFID, for daily surveillance of a building’s residents are their

intrusiveness (they are always on), potential economic cost, and/or lack of complete

anonymity. Connecting a person to their tag automatically provides knowledge of

their entire history, seamlessly removing anonymity.

Video-based methods provide a means to record the interactions, but require ad-

ditional processing in order to provide activity and interaction statistics. Wu et al.

[119] and Park et al. [120] use video data to perform activity recognition, with RFIDs

tags being used as a supervised training strategy. As a processing method, Wu et
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al. [119] used Dynamic Bayesian Networks (DBNs) to determine the most likely

activity and object labels in their work. Wu et al. [121] use multiple cameras to

collect spatial-temporal data and perform activity recognition. These works focus

on individual activities rather than interaction between individuals. To detect social

interaction, audio is an essential sensor modality. Chen et al. [122] evaluated various

machine-learning algorithms with fused video and audio data for detecting social in-

teractions; the algorithms evaluated were decision trees, naive Bayes classifiers, naive

Bayesian networks, Adaboost, and logistic region. Hauptmann et al. [123] also use

video and audio data for activity recognition. They use the mean shift tracker and

support vector machines (SVM) to train the system to recognize activities. Machine

learning tools typically require extensive manual annotation to work well, yet it can

be the case that the supervised training does not provide sufficient detection accuracy

to be considered reliable. Another class of research using video combines active range

imaging sensors with passive visual imaging sensors for activity awareness [124, 125].

The fused color+depth images, called RGB-D, have been used to count people and

to re-identify people [126, 127]. A current limitation of depth sensors is that most

cost-effective indoor depth sensors are range limited (Microsoft Kinect’s maximum

range is about 15 feet).

Given the characteristics of available sensor technology and the desire to cost

effectively install surveillance setups on multiple floors, and possibly across multiple

building, passive video and audio sensors appear to be the best choice. Video only was

chosen over RGB-D sensors due to the distances involved. For interaction detection,

the work done in this thesis takes a simplified approach to detecting social interactions

amongst individuals, which relies on geometric and mathematical descriptions of basic

activities that can be tested using the tracked trajectories of the sensed participants.

The video data is processed using the surveillance system described in Section 2. The

last step of the video processing pipeline is an interactive post-processing correction
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step, used to correct any improper trajectory correspondences when people leave and

re-enter the scene.

The remainder of this thesis is organized as follows. Chapter 2 gives more details

about the algorithms used in this work. Chapter 3 describes the work performed on

construction work sampling and the results achieved. Chapter 4 describes the work

performed on detecting interaction induced by a technology intervention. Chapter 5

concludes and discusses future work.
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CHAPTER II

SYSTEM OVERVIEW

This section gives an overview of the proposed system. The problem setup involves

a single monocular camera configured to view a scene where activities of interest

could occur. These activities involve interactions between different targets or within

a region of interest (ROI). The proposed automated system processes the video given

a-priori information about the layout of the scene, and provides an automated report

of the activity states of the targets and the state of each region of interest.

As shown in Figure 5, the first step in analyzing the video is modeling the back-

ground so that foreground detection can be performed to detect the targets of interest.

Once a target has been detected, its appearance model is learned for re-identification

and tracking. The tracking result for each frame is used to perform foreground seg-

mentation for updating the background model, detecting new targets, and re-learning

the target’s appearance model. Once the whole video sequence is tracked, the results

are passed to an event detection processor that outputs the event statistics such as

the average time spent in the region of interest, the number of targets that entered

the region of interest, the number of targets that entered the scene, how long they

spent in each region of interest, each target’s deviation from the average time spent

in the region of interest, pie charts showing how targets spent their time, state plots

for each individual target, and state plots for the region of interests. Below is a de-

scription of the different components of the proposed system used in the preliminary

research to determine the feasibility of the approach.

2.1 Detector

The first step in any automated visual tracking system is detecting when new fore-

ground objects appear. Once the foreground object has been detected, its appearance
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Figure 5: Outline of the framework

template is used to initialize a tracker. A foreground detector using Gaussian Mixture

Models (GMM) is utilized for the work done in this thesis. GMMs store multimodal

representations of background so that more complex dynamic scenes can be handled.

To perform foreground detection using GMMs, each pixel is modeled separately by

a mixture of k Gaussians [19]. Each k Gaussian distribution describes a background

pixel. The probability of observing a pixel value, x, belonging to the background at

time t is given by:

P (xt) =
k∑
i=1

ωi,tη(xt;µi,t,Σi,t) (1)
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where k is the number of distributions, ωi,t is the estimated weight of the ith Gaussian

in the mixture at time t, µi,t is the mean value of the ith Gaussian in the mixture at

time t, Σi,t is the covariance matrix of the ith Gaussian in the mixture at time t, it

is assumed to be Σi,t = σ2
kI and η is a Gaussian probability density function. If the

probability of a pixel belonging to the background is less than the given threshold, it

is considered foreground.

The prior weights of the k distributions at time t, ωk,t are updated as follows:

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (2)

where α is the learning rate, and Mk,t is 1 for the matched model, and 0 for the

remaining models.

The mean and variance of the matched distribution are updated as follows:

µi,t = (1− ρ)µi,t−1 + ρxt (3)

σ2
i,t = (1− ρ)σ2

t−1 + ρ(xt − µt)T (xt − µt) (4)

where ρ = αη(xt|µk, σk).

The mean, variance and weights are only updated for the pixels not classified

as foreground by the foreground segmentation step of the tracker. This allows the

detector to incorporate anything that isn’t tracked from the entrance region into the

background model while assuring the tracked objects will never be included in the

background model no matter how long they spend in the scene. Figure 6 shows

the effects of using feedback to update the background over a long period of time.

Without feedback, the background model becomes too noisy, leading to extraneous

tracks, which leads to inaccurate statistics.

A three stage background estimation technique [128] is utilized at three different

intervals whatever video is being processed to create the initial k distributions for the
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(a) No feedback (b) Extraneous tracks (c) With feedback

Figure 6: Effects of feedback on background model

background model. For the first stage, each image from the learning, each image from

the evaluated interval is divided into blocks, with each block location in the image

being compared to all other image blocks in the same location. The set of all blocks

at a location (i, j) defines the representative set R(i, j). The set R(i, j) contains

only unique representative blocks rk(i, j), where k is the image frame number. A

block rk(i, j) is kept after it has appeared for at least two consecutive frames. The

uniqueness of a block is determined using the correlation coefficient and the mean

of absolute differences with other blocks in the location. One element of R(i, j) is

assumed to be the background block.

After generating the set R(i, j), the second stage initializes the background model

by filling it in with the blocks from representative sets having just one block at that

location. In the third stage uninitialized background blocks r(i, j) are filled with a

representative block from the representative set R(i, j). The uniqueness of a block is

determined by evaluating it correlation coefficient and mean absolute difference with

another block. An empty background block will only be estimated if the background

is available in at least 2 neighboring blocks of its 4-connected neighbors, which are

adjacent to each other and also in the diagonal block located between them. The best

candidate for the background is acquired by comparing the discrete cosine transforms

of its superblock (block appended to its neighboring blocks). The candidate with a

smoother distribution is selected as the best fit. The estimated background at the
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specified intervals serves to initialize Gaussian mixture model (GMM).

To deal with shadows that might occur during the tracking process, a shadow

removal method [129] that uses color constancy between pixel, color constancy within

pixels, and temporal consistency between frames is utilized. The color constancy

between pixel assumes that the intensity ratios between neighboring shadow pixels in

the current image should be the same as those in the background image. The ratio

map is computed using equation 5, and the error score, equation 6, for discriminating

the pixel as shadow can be calculated by summing the absolute difference between

d and d′ over all pixels in a small neighborhood window ω centered at (x, y). The

overall error score, equation 7, is the sum of the error score for each channel.

 d(x, y) = ln I(x,y)
I(x+1,y)

= ln I(x, y)− ln I(x+ 1, y)

d′(x, y) = ln I′(x,y)
I′(x+1,y)

= ln I ′(x, y)− ln I ′(x+ 1, y)
(5)

D(x, y) =
∑

(i,j)∈ω(x,y)

|d(i, j)− d′(i, j)| (6)

Ψ(x, y) =
∑

i∈R,G,B

Di(x, y) (7)

The color constancy within pixel assumes that the color of a pixel stays roughly

the same when a shadow is casted on it. The brightness and color information of

a pixel is acquired by transferring the color space from RGB to the normalized r-g

using the following equations Cr(x, y) = ln IR(x,y)
IR(x,y)+IG(x,y)+IB(x,y)

Cg(x, y) = ln IG(x,y)
IR(x,y)+IG(x,y)+IB(x,y)

(8)

The error score for discriminating the pixel (x, y) as shadow is defined as

Λ(x, y) = |Cr(x, y)− C ′r(x, y)|+ |Cg(x, y)− C ′g(x, y)| (9)
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where C contains the color information of the current image and C ′ contains the

color information of the background region. If Λ(x, y) is small, it means the color of

the pixel does not change much, and it is more likely to be a shadow pixel.

Foreground objects with uniform color and its shadow on a uniform background

cannot be distinguished using just color constancy between pixels. Foreground regions

with color similar to its background region would be wrongly classified as shadow

regions using just the color constancy within pixels. Assuming that shadow pixels

tend to remain in a shadow region in the next frame, and also assuming that the

foreground object moves slowly, temoporal consistency between frames can be used

to get a clue for potential shadow regions. The error scores are fused together using

the following recursive linear equation

Θt(x, y) = α · σ
2
Λ(x, y) + σ2

Ψ(x, y) · Λt(x, y)

σ2
Ψ(x, y) + σ2

Λ(x, y)
+ (1− α) ·Θt(x, y) (10)

where α is a constant that controls the speed of the recursive update. σ2
Ψ(x, y)

and σ2
Λ(x, y) are the temporal variances and are inversely proportional to the weights

that control the importance of each factor. They are updated recursively in a manner

similar to equation 3. Θt(x, y) is the total error score for discriminating the pixel as a

shadow pixel. It is thresholded to determine whether a pixel belongs to a foreground

object or to a cast shadow region. Figure 7 shows the effectiveness of the shadow

removal technique.

2.2 Tracker

An improvement on the kernel covariance tracker proposed by Arif and Vela [36] is

utilized for tracking detected targets. In the original kernel covariance tracker, the

target’s feature vector is a joint color-spatial vector, ui = [I(xi), xi]
T , where I(xi) is

the color data at location xi. The target’s model is learned by mapping its feature

vector into the a higher dimensional feature space H using the Gaussian kernel,

k(ui, uj) = exp(−1
2

(ui − uj)TΣ−1(ui − uj)). The eigenvectors, αk = [αki , . . . , α
k
N ], and
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Figure 7: Sample shadow removal results

eigenvalues, λk, of the kernel matrix are computed and the eigenvectors are normalized

by the eigenvalues. All the mapped points are then projected onto the normalized

eigenvectors (11).

fk(ui) =
n∑
j=1

αki√
λk

k(ui, uj) (11)

The target is then tracked by finding the region R that best matches the target. The

similarity score of a region to the target is given by,

SC(R) =
n∑
i=1

m∑
k=1

(fk(ui))
2, (12)

where n is the number of feature vectors in the target’s template and m is the number

of eigenvectors retained. For every frame and each target, a gradient ascent procedure

localizes the target by comparing the foreground image data with the targets’ learned

model in order to optimize the region similarity.

The process of computing the map from the feature vector space to the higher-

dimensional feature space H utilized by the kernel covariance tracker is known as

kernel PCA [130]. This method is the prototypical example of a powerful class of

algorithms known as kernel methods: these methods are powerful, but they suffer

from significant challenges when dealing with large amounts of data. In particular,

kernel PCA, as seen above, requires the computation of an n × n kernel matrix:
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diagonalizing this matrix (i.e. computing its eigendecomposition for the purposes of

computing the eigenfunctions of the integral operator associated to the kernel for the

nonlinear feature mapping) requires O(n3) operations. Furthermore, projecting new

data onto the approximate feature space requires O(nm) operations, where m is the

number of retained eigenfunctions. There exist many methods for speeding up both

the training and projections times separately but the technique known as shadow

densities speeds both up at the same time [131, 132].

Shadow densities connect kernel PCA to the eigendecomposition of kernel smooth-

ing operators. In particular, given a sampled data set {xi}ni=1 , the spectral decom-

position of the kernel matrix K can be related to the kernel density estimate p̂(x)

of the underlying probability density p(x) generating the data. Shadow densities

generate an estimate p̃(x) of the kernel density estimate p̂(x) that has cardinality

r � n, and then use the lower-cardinality estimate to construct an approximation

to the feature space using only r points, resulting in O(r3) training complexity, and

only O(rm) computations for projection. Furthermore, unlike methods such as the

Nyström method [133] and random Fourier features [134], the cardinality r is gener-

ated naturally by a user-provided parameter ` that controls the approximation to the

kernel in an intuitive manner (large values of ` ensure better approximation at the

cost of more basis functions). For the tracking purposes in this thesis, ` = 3, which

is guaranteed to produce good results both theoretically and empirically, is utilized.

2.3 Target Re-Identification

Target re-identification is performed using KPCA in a fashion similar to the approach

of Jun et al. [30]. Once the target is detected, key templates for re-identification are

acquired as the target is being tracked. Key templates are chosen to represent the

target’s change in appearance and pose due to movement, illumination changes, and

scale changes. Key templates are selected based on how distinctively they represent
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the target. The first key template of a new target is initialized when it first enters

the scene. They are selected based on the combination modified Haussdorf distance

and the Bhattacharrya coefficient between the tracked target’s foreground and other

key templates.

Once the target is detected, key templates for re-identification are acquired as the

target is being tracked. Key templates are chosen to represent the target’s change in

appearance and pose due to movement, illumination changes, and scale changes. Key

templates are selected based on how distinctively they represent the target. The first

key template of a new target is initialized when it first enters the scene.

A two phase process is used to determine a key frame. The first phase uses the

velocity to determine how well the target’s shape fits the tracking model. Velocity

is used to determine the direction the target is moving. This is important since we

are using a template tracker, a change in orientation means the template no longer

fits the target. A significant change in direction means the tracker will most likely

lose the target. As a target moves in a different direction, its orientation changes,

which signifies the need for a new key frame. The angle of change θ = cos−1( yc−yp
xc−xp ) is

thresholded to determine if significant change has occurred. If the speed is low, the

key frame is not selected.

The first check is a measure of how well the orientation of the tracked target

matches the orientation of the key frame used to initialize the tracker.

The first score is a measure of how well the target’s new foreground, determined

from the foreground detection, fits the tracking model. This is a measure of when the

tracker will lose the target.Equation 12 is thresholded to determine when the tracking

model no longer fits the target.

The second phase uses the color information to determine whether or not this is

a good enough representation of the target to be used as a key frame. A fragmented

GMM is used to determine this. The fragments are parts of the targets segmented
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according to their color and location. Using fragments slightly encodes the spatial

information but the color is the most important. It uses the probability of the target

being similar to the candidate key frame to determine whether or not it is acceptable.

Because objects go through occlusion some times, it might not fit the tracking model,

the second phase determines that this is not actually a key frame we want. The

Edison package [135] is used to segment the target into fragments.

The closed form of the L2 norm is used to determine whether or not targets fit

each other. Fragments are compared using the equations below.

CS = 1−
∫
f1f2

‖
∫
f 2

1dx‖ ∗ ‖
∫
f 2

2dx‖
(13)

Let target 1 be represented by GMM f1 =
∑n

i=1 ωiη(x;µi,Σi) and target 2 be

represented by GMM f2 =
∑m

i=1 vjη(x;µi,Σi).

∫
f 2

1dx =
n∑
i=1

m∑
j=1

ωiωj√
(2π)d|Σi + Σj|

e−
1
2

(µi−µj)T (Σi+Σj)−1(µi−µj) (14)

∫
f 2

2dx =
n∑
i=1

m∑
j=1

vivj√
(2π)d|Σi + Σj|

e−
1
2

(µi−µj)T (Σi+Σj)−1(µi−µj) (15)

∫
f1f2dx =

n∑
i=1

m∑
j=1

ωivj√
(2π)d|Σi + Σj|

e−
1
2

(µi−µj)T (Σi+Σj)−1(µi−µj) (16)

If the distance is above a given threshold, the current template is stored as a key

template. As the target traverses the scene, key templates are acquired as needed

and concatenated. The target’s re-identification model is then learned using shadow

densities. Figure 8 shows an example of the key template selection for a target as it

traversed the scene. Figure 9 shows an example of thee key template selection when

the target changes orientation while tracking.

The target’s dominant visual features are learned using KPCA as described in

section 2.2. The training data is vectorized and mapped into a higher dimensional
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Figure 8: Different key templates of the same target as it traversed the scene

(a) Frame 19795 (b) Frame 19798

Figure 9: New key template selected when target changes orientation

space using the Gaussian kernel. The eigenvectors and eigenvalues are computed and

the eigenvectors with the largest eigenvalues are retained. When a target is detected

at the entrance locations, its feature vectors are projected to the learned models of

previously seen targets. The similarity score is given by Equation 12. If score, SC,

is above the given threshold, the target is declared new and it’s first key template is

initialized. If the score is below the given threshold, it is declared as the target with

the minimum score. The target’s tracker is then re-initialized and tracking continues.

This thesis also relies on the re-identification to solve the moving and static occlu-

sion problem. Moving occlusions occur when two moving targets occlude each other

in the camera’s view. Static occlusion occurs when a target gets occluded by a back-

ground object. To detect a static occlusion, after localizing the target in frame, the

bounding box for the target is checked against the detected foreground. If the bound-

ing box does not contain a certain amount of foreground pixels, and the target is not
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Figure 10: Target as it goes through a static occlusion and gets re-identified correctly
when it re-appears

near an entrance/exit region, it is assumed the target is occluded and the tracker is

temporarily suspended. The detector now expects the target to show up somewhere

around the region where it became occluded. If a target detected around that region,

the model of the occluded target will be compared to this target to see if it was the

disappeared target. For moving occlusions, the proximity of each target’s bounding

box to other targets’ bounding boxes is used to determine when they occlude each

other. As the bounding box separates, or if a new target is detected around the region

where the targets started occluding each other, the re-identification module is used to

determine which tracker to associate the target to. Figure 10 demonstrates a dump

truck going through occlusion, and being re-identified correctly after re-appearing.

2.4 Activity Status Estimation

The construction work sites require an activity status estimator to determine their

activity status. The movement of the excavators spatio-temporal features provides

an indication of excavator activity. The movement of the excavator in the proximity

zone of a dump truck establishes when an excavator is filling a dump truck. This

state can only be triggered when the two machines are in close proximity and the

dump truck is static. The change in the dump truck’s location, ~̇x(t), over time is

used to determine whether it is moving or idle. The excavator’s arm movement is

determined using optical flow. Once the system detects that the dump truck is static

34



in a region near the excavator, optical flow is performed on a window extracted above

the dump truck’s centroid. The optical flow vectors are thresholded to determine if

there is enough movement if the excavator is filling the dump truck.

(a) Tracked targets and activity state (b) Optical Flow

(c) Tracked targets and activity state (d) Optical Flow

Figure 11: Activity status of a dump truck getting filled by an excavator

The results of this online activity status estimation will be used by the event

processor to determine what happened in the video

2.5 Event Detection Processor

The proposed surveillance system is used to gather event statistics for work sampling

on a construction site and an art installation in a retirement community.
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2.5.1 Work Sampling Processor

Four work metrics were measured by the work sampling processor. The amount

of time spent on direct work, support work, no work, and absent. Direct work is

determined by the amount of time the trucks spend in a region of interest. Different

regions of interest correspond to different work activities for different machines. For

example, a dump truck’s region of interest can be the same as a bulldozer’s region

of interest but when the dump truck is in that region of interest, its direct work is

dumping dirt, and the bulldozer’s direct work in that region of interest is leveling

the dirt. Multiple construction machines that have a different designated functions

are tracked and the work sampling processor produces the amount of time spent

performing these different functions. If the truck becomes idle outside the regions of

interest, then no work is being performed. If the truck moves outside of the region of

interest, then it is performing support work. The change in the truck’s location over

time is used to determine whether it is moving or idle.The truck is performing direct

work when it is inside the region of interest. If the truck is not visible in the scene,

then it is considered absent.

The work sampling processor takes as input, tracking results, activity status esti-

mation (if available), entrances/exits, and regions of interest and uses this to generate

the statistics needed to determine the time spans of the work activities of the exca-

vators and dump trucks. The metrics computed are the number of dump trucks that

entered the scene (ntrucks), how much time they spent in the scene (tscene), how much

time they spent in the region of interest getting filled (troi), how many bucket loads of

soil were placed in each dump truck (nbuckets), and how long the machines spent idle

while in the scene (tidle). Depending in the machine’s ID, the processor will determine

the work being performed.

The number of dump trucks that entered the scene, ntrucks, is computed by count-

ing the number of trackers initialized for detected dump trucks. Their duration in
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Figure 12: Dump truck state estimates for a video segment of 6 minutes duration,
plus activity states in a pie chart.

Table 1: Sample event statistics table
Truck # Entered Moving Static Filling Exited Total # of Buckets
3 26.75 .36 3.2 1.43 31.74 4.99 8
4 32.85 .59 1.35 2.06 36.85 3.99 9

the scene, tscene, is obtained by subtracting the time stamp they left the scene from

the time stamp they entered the scene. The time spent being loaded by the exca-

vator, troi, is determined using the results from the activity estimation. It sums up

the total amount of time the activity estimation detected that the dump truck was

being loaded. The number of bucket loads, nbuckets, is also determined by the activ-

ity estimation module by counting how many times it detected the excavator bucket

over the dump truck using optical flow (optical flow measures the apparent motion

of pixels from one frame to the next). The time the machines spent idle in the scene,

tidle, is determined by checking how much movement has happened between frames.

Movement below a threshold triggers the idle state.

The event processor tabulates the temporal statistics of the activities and also

identifies events, such as filling cycles and outlier time spans. A sample activity

timeline and summary pie chart is given in Figure 12 for a 6 minute segment of

processed video. Table 1 shows a sample event statistics table that can be generated

by the processor.
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2.5.2 Interaction Processor

The interaction processor for the retirement community takes as input the tracking

results, entrances, and a region of interest. It returns the number of targets that en-

tered the scene, the number of times each target entered and left the scene, how many

times they visited the art piece, how long they spent observing the piece, how many

times they passed the art piece without stopping, how many targets interacted, which

targets interacted, and how many times they interacted. Observations {moving, idle,

in ROI, multiple entities}, are acquired from the tracking results. These observa-

tions are used to determine the states {observing, no interaction, passing, leaving,

approaching} of the targets and the art piece. The change in the target’s location,

~̇x(t), over time is used to determine whether the target is moving or idle.
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CHAPTER III

CONSTRUCTION SITE WORK SAMPLING

3.1 Introduction

This chapter focuses on a vision-based approach to the automatic estimation of pro-

ductivity associated to excavation processes on a construction site. Earthwork pro-

cesses are often subject to unanticipated delays [10], which are likely to propagate

through the entire remaining schedule and adversely impact progress, productivity,

and costs [11]. The presented work impacts research into site operations by enabling

the automated monitoring and tracking of on-site resources. Video-based monitor-

ing and processing algorithms provide a non-intrusive, easy, inexpensive, and rapid

mechanism for generating a body of operational information and knowledge. If made

available to project stakeholders, the information and knowledge would enable in-

quiry into construction operations that is currently not possible [12]. Longer term,

vision-based research can serve as a valuable aid to project management by enabling

tighter control and greater efficiency.

Video sequences used to demonstrate concepts in current literature are typically

less than 10,000 frames, and with a typical frame rate of 12 frames per second, this

is approximately 14 minutes long [2]. The videos used to demonstrate the proposed

system are significantly longer than what is typically used in literature. This thesis

shows that event statistics can be generated for longer video sequences by presenting

a system that integrates different modules that provide feedback to one another, thus

enabling more accurate results.

This chapter demonstrates that the designed system can generate robust statistics

necessary to determine work activities and productivity levels. Demonstrating that an

active vision system can effectively analyze and assess work-site progress will assist
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project managers by reducing the time spent monitoring and interpreting project

status and performance, thus enabling increased attention to the control of cost and

schedule. By making project management and the workforce more aware of the

performance status of their project and their work environment, potential savings to

the industry are envisioned. Since benefits in construction often impact a broader

theme of issues, they are likely to impact schedule, cost, safety, and quality at the

same time.

3.2 Methodology

Video input

Site layout Background
modeling

Target
detection

Activity status
estimation

Tracking Event detection
processor

Video analysis

Figure 13: Process flow for the automatic surveillance system.

The proposed system, as seen in Figure 13, was used to process three different

construction sites. The videos are from surveillance cameras mounted atop buildings

facing the construction sites. The first video contains a loader moving items from one

location to another. The second video contains a dump truck and a bulldozer. The

third, fourth, and fifth video contains multiple dump trucks and excavators.

The first two videos were videos of the Georgia Tech Clough Undergraduate Learn-

ing Commons (CLC) building at different views, and they both contained more than

80,000 frames, or around 1 hour and 51 minutes. The loader moved material from

one region to the other. The bulldozer and the dump truck were engaged together

in the activity of ground leveling, where the dump truck hauled dirt to a pile, and
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(a) Loader ROI (b) Dump Truck and Bulldozer ROI

Figure 14: ROI for CLC views 1 and 2.

the bulldozer attempted to level the pile. Figure 14 show the regions of interest high-

lighted in yellow for the two videos. Figure 15 and Figure 16 shows the estimated

backgrounds for the two videos.

Figure 15: Estimated background models for Clough construction site (view 1).

Figure 16: Estimated background models for Clough construction site (view 2).

The third video is of the Georgia Tech Engineered Biosystems Building (EBB).
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The video is 3.5 hours long and it contains over 360,000 frames. Figure 17 shows the

highlighted regions of interest. Figure 18 shows the estimated backgrounds for the

video. The filling ROI is where the dump truck gets filled by the excavator. The

hosing ROI is at the exit of construction site. The machines need to get hosed down

so that they do not spread dirt all over the streets. The machines are engaged in

earth-moving operations. The activity of status of the machines are static, moving,

absent, filling, and hosing. The event statistics of interest are the number of trucks

that entered the scene, the inter-arrival times, the time spent in the scene, and the

time spent in the region of interest getting filled and get hosed down.

Figure 17: EBB entrance/exit region and ROI

Figure 18: Estimated background models for EBB construction site.

The fourth video is of the Josephsplatz parking garaged being built in Munich,

Germany. Figure 19 shows the plan view of the construction site. The video is 6 hours
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Figure 19: Plan view of the Josephsplatz construction site with camera view overlay
(opaque trapezoid).

long and it contains over 700,000 frames. Figure 20 shows the estimated backgrounds

for the video. The machines in these two videos are also engaged in earth-moving

operations. The activity of status of the machines are static, moving, absent, and

filling. The event statistics of interest are the number of trucks that entered the

scene, the inter-arrival times, the time spent in the scene, the time spent in the

region of interest getting filled, and the number of bucket loads (since the bucket size

is provided with this video) removed from the work site.

Figure 20: Estimated background models for Josephsplatz construction site.

The fifth and sixth video are of the translaTUM hospital building located in

Munich, Germany. The layout of the site is illustrated in Figure 21, with an overlay

of the region depicting the video camera perspective (trapezoidal region) and double-

arrows indicating the entrance/exit region of interest for the dump-trucks. Both
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Figure 21: The translaTUM construction site information, video geometry, and im-
age view.

Figure 22: Estimated background models for translaTUM construction site.

videos are 11 hours, 31 minutes, and 4 seconds long and they contain over 400,000

frames. Figure 22 shows the estimated backgrounds for the videos. The machines in

these two videos are also engaged in earth-moving operations. The activity of status

of the machines are static, moving, absent, and filling. The event statistics of interest

are the number of trucks that entered the scene, the inter-arrival times, the time spent

in the scene, the time spent in the region of interest getting filled, and the number of

bucket loads removed from the work site.

3.3 Results

The system, Figure 13, is used to process the videos described above. Ground truth

was collected by manually reviewing and annotating the videos.
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3.3.1 Clough Undergraduate Learning Commons (CLC) Construction
Site

The loader was tracked for 86,400 frames at a 5 frame interval. Of those frames, it

was visible in 64,740 frames and absent for 21,720 frames. It was detected entering

and leaving the worksite 5 times. It visited the ROI 18 times and spent 35,695 frames

in the ROI. The system was able to accurately determine the amount of times the

loader entered and exited the camera’s field of view to pick up materials to be moved

to another location. It was idle for 27,670 frames and it spent an average of 1,982

frames in the ROI during each visit and an average of 2,983 frames in between ROI

visits. Figure 24 shows a more detailed output from the work sampling processor.

(a) Loader Trajectory (b) Dump Truck Trajectory (c) Bulldozer Trajectory

Figure 23: Trajectories for the different machines tracked (CLC).

Table 2: Automated and manual tabulation of ground leveling task (minutes)

Cycle
Leveling Dumping No Work

GT Estimated GT Estimated GT Estimated
1 5.77 5.89 0.97 1.01 1.18 1.06
2 6.65 6.72 1.02 1.06 1.36 1.25
3 4.64 4.67 0.95 0.95 2.03 1.97
4 5.55 5.72 1.28 1.34 3.67 3.44
5 3.04 3.16 0.97 0.97 3.88 3.75
6 5.21 5.23 1.00 1.04 0.91 0.85
7 5.33 5.55 0.98 1.00 2.23 1.99
8 4.65 4.68 0.93 1.00 0.79 0.70
Error 1.87% 3.23% 6.93%
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The loader was detected 5 times 
   Entered at frame 1 and left at frame 1050 
   Entered at frame 15400 and left at frame 15605 
   Entered at frame 23855 and left at frame 24035 
   Entered at frame 33595 and left at frame 34665 
   Entered at frame 76350 and left at frame 76545 
  
The loader was in the region of interest for 35695 frames 
At intervals  
           1         205 
        5490       14785 
       14850       14950 
       18430       23680 
       33975       34035 
       38155       39345 
       40255       44510 
       57100       58450 
       60805       63740 
       65915       66635 
       70170       70995 
       71230       75415 
       75650       75810 
       76025       76115 
       80200       82120 
       82770       85315 
       85415       85850 
       86235       86400 
 
  
  
The loader visited the worksite 18 times 
The loader was not visible in 21720 frames 
The loader was visible in 64740 frames 
The loader was idle in 27670 frames 
The loader was working in 35695 frames 
The loader spent an average of 1982 frames in the ROI 
The loader spent an average of 2983 frames in between ROI visits 
The loader spent an average of 18461 frames out of view 

Figure 24: Loader text output (CLC).

Figure 25: Loader States (CLC).

Figure 25 shows the states of the loader as a plot. Figure 27 and Figure 28 show

the work states of the machines over time and Figure 29 shows the activity state in

the ROI over time. The dump truck and bulldozer were tracked for 119,740 frames

at a 5 frame interval. The bulldozer was detected 10 times and the dump truck
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(a) Ground Truth for ROI (b) Estimates for ROI

Figure 26: Pie chart of the ROI for the Clough construction work site (view 2).

was detected 8 times. The dump truck was detected more times than the bulldozer

because the dump truck would exit the camera’s field of view in order to turn and

head back to pick up more dirt. The bulldozer was visible in 85,180 frames and the

dump truck was visible in 48,420 frames. The bulldozer and the dump truck were

in the ROI for 80,850 and 16,050 frames, respectively. The bulldozer and the dump

truck visited the ROI a total of 16 and 14 times. The estimated average time spent

leveling is 5.1 minutes, compared to a ground truth of 5.2 minutes, there was a 1.87%

error. The estimated average time spent dumping is 1.01 minutes, compared to a

ground truth of 1.05 minutes, there was a 3.22% error. The estimated average time

with no work in between the cycles is 2.00 minutes, compared to a ground truth

of 2.01 minutes, there was a 0.25% error. As expected, the bulldozer became idle

as the dump truck approached the pile and it became active after the dump truck

left. Table 2 shows the breakdown of the activities in the ROI. More time was spent

leveling than dumping. The states alternated beween leveling and dumping with

periods of inactivity between. The results showed that the bulldozer spent majority

of its time on the scene, 95%, working while the dump truck spent majority of its

time on the scene, 77%, idle.
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Figure 27: Dump Truck States (CLC).

Figure 28: Bulldozer States (CLC).

Figure 29: Ground leveling States (CLC).

3.3.2 Engineered Biosystems Building

Figure 30: Tracking results for the EBB construction site

A total of 33 dump trucks were detected. Figure 30 shows the trajectories as they

traversed the scene. Figure 33 and 34 shows the time they spent in the different ROIs

compared to the manually observed ground truth. Excluding the outliers, the red and
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magenta line indicates the estimated and ground truth average, respectively. They

spent an estimated combined total of 188 minutes in the filling ROI, compared to

the ground truth of 169 minutes, there is a 11.2% error. The average estimated time

spent by each truck in the filling ROI is 4.8 minutes, compared to the ground truth

4.1 minutes, there is a 16.6% error. The error here is slightly high because there were

a lot of moving occlusions. The dump trucks were lining up, waiting to get filled by

the excavator around the filling ROI. As the trucks are moving around trying to get

correctly lined up, they occlude one another for a short period of time. This results

in delay in the system recognizing that a dump truck has left the ROI. The trucks

spent an estimated combined total of 83 minutes in the hosing ROI, compared to

the ground truth of 80 minutes, there is 4% error. The average estimated time spent

by each truck in the hosing ROI is 2.4 minutes, compared to the ground truth 2.3

minutes, there is a 4% error.

32%

15%

53%

Ground truth

Filling Hosing No Work

29%

13%

59%

Estimate

Figure 31: Aggregate statistics for the EBB construction site.

Figure 31 shows the percentage of time spent performing hosing, filling, or no

work. It shows that the machines spend half of their time on the scene, waiting,

not performing any work. This can be seen by also be seen by the inter-arrival
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time between the trucks in Figure 32. The inter-arrival time is the time duration

between when the previous dump truck enters and the next dump truck enters. The

average estimated inter-arrival time is 3.81 minutes, compared to the ground truth

3.81 minutes, gives a 0.05% error which shows that system was able to accurately

detect when the trucks entered the scene. The average inter-arrival time is less than

the time each dump truck spends in the filling and hosing ROI. This means that there

will be more waiting. The manager could take this information and use it to decide

to either reduce the number of dump trucks employed, or get more excavators for

performing the earth-moving operation.
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Figure 32: Inter-arrival times between trucks (EBB).
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Figure 33: Time spent in the filling ROI (EBB).
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Figure 34: Time spent in the hosing ROI (EBB).

Figure 35: Tracking results for the Josephsplatz construction site
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Figure 36: Dump truck states (Josephsplatz).
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Figure 37: Loading time per truck (Josephsplatz).
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Figure 38: Inter-arrival times between dump trucks (Josephsplatz).

3.3.3 Underground Parking Garage Josephsplatz

For the recorded four hour period an excavated volume of ∆v = 418m3 was calculated.

This yields a performance factor of τp = 418m3

4h
= 104.5m

3

h
The event processor com-

bined the tracking and activity estimation results to generate the illustrated statistics.

A total of ntrucks = 22 were detected in the processed video, with 0% error compared

to the ground truth. A total of nbuckets = 171 bucket loads were detected compared to

the ground truth of nbuckets = 177 bucket loads (3.4% error). The total volume of the

excavator’s bucket was 2.5m3. Using the ground truth nbuckets,gt = 177, results in a

performance factor of τv,gt = 2.5m3·177
4h

= 110.63m
3

h
. Using the estimated nbuckets = 171,

results in a performance factor of τv = 2.5m3·171
4h

= 106.88m
3

h
.

Calculating the corrected volume of soil excavated per bucket, using the ground

truth, results in vbucket cor,gt = 418m3

177
= 2.36m3. Calculating the corrected volume of

soil excavated per bucket, using the estimation, results in vbucket cor = 418m3

171
= 2.44m3.
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Figure 37 shows the total time each dump truck spent in the scene for loading,

compared to the manually observed ground truth. The red line indicates the estimated

average loading time per dump truck, excluding outliers, which was 3.67 minutes,

while the pink line indicates the ground truth average time per dump truck which was

3.76 minutes, for a 2.4% error between the estimated results and ground truth. There

were five identified outliers taking 4.8 minutes or more. The estimated total amount

of time the dump trucks were in the scene was 88.3 minutes out of 240 minutes of

video (39% of video duration), compared to the ground truth of 89.9 minutes (37.5%

of video duration), with 1.7% error between the estimated results and ground truth.

The inter-arrival time is the time duration between when the previous dump truck

enters and the next dump truck enters. The inter-arrival time for this video sequence

is shown in Figure 38. For the first dump truck, the inter-arrival time quantity

measures the amount of time from the start of the video to when the dump truck

first entered. The estimated average inter-arrival time between the dump trucks was

7.317 minutes excluding the automatically identified outliers, while the ground truth

was 7.315 minutes for a 0.02% error.
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Figure 39: Soil removal statistics for Josephsplatz site

The statistical evaluation of the video analysis results is depicted in Figure 36. It

indicates what percentage of total recording time the different activity states of the
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dumper trucks were observed. The aggregate statistics indicate that it is possible to

improve on the efficiency of the process by incorporating more dump trucks to reduce

the idle times of the excavator and increase the amount of soil removed from the site

since only 39% of the available filling time was used. Analyzing further, the fairly

steady arrival of dump trucks, with the exception of the few outliers, indicates that

there were no transportation issues. The average loading time, 3.76 minutes, and the

average inter-arrival time, 7.315 minutes, also show that it’s possible to incorporate

additional dump trucks. The inter-arrival times did increase in the latter half of the

day, the source of which should be investigated further by the project manager.

Using the corrected bucket capacity vbucket cor = 2.36m3 together with the detected

bucket load provides soil removal estimates. Figure 39 shows a plot of the cumulative

soil removed over the 240 minutes of recorded video compared to the ground truth.

The volume versus time plot provides information on the overall productivity of the

excavator and dumper collaboration. Progress was steady for the first three hours,

then stalled.

3.3.4 Hospital Building translaTUM

Figure 40: Tracking results for day 8 of the translaTUM construction site.

Video recorded on days 8 and 11 of the earth-moving operation was processed
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Figure 41: Tracking results for day 11 of the translaTUM construction site.

(days 9 and 10 fell on the weekend). The ground truth was again manually annotated

for the activity information sought. On day 8, 37 out of 38 trucks were detected by

the system. The system detected 305 out of 313 bucket loads (2.56% error). On

day 11, the system detected 74 trucks when there were actually 73 trucks, and 334

out of 596 bucket loads (55.04% error). The total volume of the excavator’s bucket

was 1m3. Using the ground truth nbuckets = 909, results in a performance factor of

τv,gt = 1m3·909
24h

= 37.88m
3

h
. Using the estimated nbuckets = 639, results in a performance

factor of τv = 1m3·639
24h

= 26.63m
3

h
. The measurement errors on day 11 lead to a 29.70%

error in the performance factor.

Calculating the corrected volume of soil excavated per bucket, using the ground

truth, results in vbucket corgt = 774m3

909
= 0.85m3. Calculating the corrected volume of

soil excavated per bucket, using the estimation, results in vbucket cor = 774m3

639
= 1.21m3.

The performance factor error leads to a larger, unrealistic excavation volume for the

bucket.

Figures 43 and 42 contains charts of the amount of time each truck spent in the

scene as part of the loading process, for the two days analyzed. The average estimated

loading time for day 8 is 4.87 minutes, with a ground truth time of 4.23 minutes, for
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(b) Day 8 ground truth

Figure 42: Time spent per dump truck in the scene while being filled for day 8
(translaTUM) (Log scale).

a 15.1% error. The average estimated loading time for day 11 is 3.03 minutes, with a

ground truth loading time of 3.85 minutes, for a 21.30% error.

The major outliers over the average red line in Figure 42(a) were due to the

tracker losing the targets and drifting to another foreground object in the scene.

Track loss was caused by the excavator moving behind the fence. Such errors can be

prevented by better camera placement. The major outliers below the average red line

in Figure 43(a) were due to occlusion-based track loss. The detector detected trucks

it had missed when they first entered the scene, and it also re-detected the trucks the

tracker lost as they exited the scene.

Figures 45 and 44 charts the inter-arrival times of the trucks tracked as well as the

ground truth (the red line is the averge value). The average estimated inter-arrival

time for day 8 is 6.07 minutes, with a ground truth time of 6.24 minutes, for a 2.72%
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(b) Day 11 ground truth

Figure 43: Time spent per dump truck in the scene while being filled for day 11
(translaTUM) (Log scale).

error. The average estimated inter-arrival time for day 11 is 6.07, with a ground truth

time of 6.4 minutes, for a 5.44% error.

The event processor generated the pie charts in Figure 46 of the aggregate statistics

for the two days. The statistics for the two days are similar when considering the

amount of time that dump trucks were absent versus within the scene. Much like the

Josephsplatz case, the high percentage of dump truck absence means that additional

dump trucks should improve progress.

Using the bucket capacity of 1m3 obtained from capping the corrected bucket

capacity vbucket cor to the maximum possible, together with the detected bucket loads

over time provides the soil removal statistics as depicted in Figures 47-48. Figure

47 shows the estimated amount of soil removed per hour on both days, and Figure

48 shows the cumulative soil removed on both days. The first day does a good job
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Figure 44: Inter-arrival times between trucks for day 8 (translaTUM) (Log scale).

matching the ground truth. Due to near total occlusions of one of the excavators

on the second day, many of the shovel loads were missed. The estimated volume

excavated is 639 m3 which is 17.44% off from the photogrammetry measurement. In

both cases, consideration of the slopes without regard to the actual values provides

a high-level indication of productivity throughout the day. On Day 8, productivity

was quite good up until the fourth hour (240 minutes in) at which point it practically

halted. Day 11 productivity experienced a lull at about 5 hours in (300 minutes),

then resumed for about 3 hours before dying off.

3.3.5 Discussion

The goal of this chapter was to demonstrate that a vision-based approach can be

used for automatic estimation of productivity associated to earthwork processes on

a construction site. As mentioned, earthwork processes are usually subjected to
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(b) Day 11 ground truth

Figure 45: Inter-arrival times between trucks for day 11 (translaTUM) (Log scale).
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Figure 46: Aggregate statistics for translaTUM.
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Figure 47: Performance factor over time (translaTUM) .

Detection Time in scene Time in ROI Inter-arrival
CLC 0 2.83 2.10 0
EBB 0 10.60 9.30 0.05

JosephPlatz 0 1.70 2.4 0.02
translaTUM 1.80 3.46 18.07 3.96

Table 3: Error % for the different construction sites

unanticipated delays that can adversely impact progress, therefore, having a way to

measure the amount of work performed by the machines is useful to project managers.

As shown in Table 3, the system is able to detect whenever machines are present in the

scene, which is useful to managers who need to know the exact amount of resources

being used. The system was able to provide the statistics on the total amount of time

each machine spent on the construction site with less than 11% error. The system was

able to give the total time in the ROI with less than 19% error and the inter-arrival

times between the trucks with less than 4% error. The errors were mostly due to

severe occlusion and illumination changes because of sudden cloud movement. The
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(a) Day 8 estimate and ground truth.
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(b) Day 11 estimate and ground truth.

Figure 48: Estimated cumulative soil removed per 20 minute interval (translaTUM).

system was able to correctly associate a target lost due to occlusion to its tracker

once it was no longer occluded but the amount of time the target is lost however is

not accounted for in the statistics since the target’s whereabout is unknown during

the occlusion.

Although the system was not 100% accurate, a skilled project manager can still

identify the productivity levels given the results provided. For instance, given the

results from the EBB construction site, they can tell that there is definitely a large

amount of time spent waiting by the dump truck drivers. For the JosephPlatz and

translaTUM construction site, the opposite is true. The excavator spends a lot of
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time waiting for the dump trucks to come in. Given the information provided by

this thesis, improvements can be made to the productivity of earth-work processes

on these construction sites.

Future work can consider utilizing multiple cameras to handle occlusions. Future

work can also consider performing event detection on other machines on the con-

struction work site to create a more comprehensive report of the construction site as

a whole. The results can be connected to progress information in order to generate

productivity estimates and determine ways to increase productivity.
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CHAPTER IV

SENIOR HOUSING SURVEILLANCE

4.1 Introduction

Social interactions in retirement communities’ shared spaces are a key component

to preventing social isolation and loneliness among older people. Given the under-

utilization of these spaces, placing technologies to promote utilization of- and social-

ization in- shared spaces might improve independence and quality of life among older

adults. This chapter describes the use of the proposed semi-automated system to

generate statistics regarding the effect of a proposed technological intervention. The

long term goal is to achieve quantitative analysis of long-term responses to designed

technological interventions by older adults in retirement communities. Specifically to

demonstrate positive socialization impacts through these interventions. This chap-

ter communicates the initial efforts towards that goal, focusing on two aspects: (1)

observing the resulting effects of a designed technology installed in retirement com-

munity shared spaces, and (2) the design and demonstration of a surveillance system

for quantitative evaluation of social interactions. The preliminary research showed

that the designed system is capable of generating statistics from video data over a

short period of time. This chapter demonstrates that developed system can be used

to quantify interaction statistics associated to interventions in a retirement commu-

nity in less time than it takes for a human to manually annotate the same amount of

time, thereby demonstrating it as a valid decision support tool.

4.2 Methodology

This section describes the current understanding of the use of public spaces in two

local independent retirement communities (with populations of about 200 each). Be-

ing an independent retirement community means, the population is considered to be

63



in good physical and mental health, and each member has a private living space.

Each floor has a shared common area furnished much like a living room (see Figure

49, right). They have access to a shared dining hall with predefined meal times,

and are free to participate in the communities’ activities. The community activities

are organized to promote socialization amongst the older adults and vary from being

single-time events, to being weekly or monthly events. This section describes a mixed

methods study involving both qualitative observations, to understand the state of

the existing communities with regards to socialization, as well as a technological in-

tervention study, to analyze the potential impact of introducing designed technology

and its impact on socialization.

4.2.1 Qualitative Observations

Unstructured observations were performed by students conducting research in the

Industrial Design Department of Georgia tech visiting the two local retirement com-

munities. The observations were conducted at different times of the day and different

days over the course of a year (with almost weekly visits, or multiple visits during

the week, during some portions of the study). The focus was to document the living

spaces and their utilization. Researchers had the opportunity to observe older adults

and assess their use of common areas. The qualitative studies involved collecting

photographic evidence, such as depicted in Figure 49, and personal notes regarding

older adults and their activities in the community and in the shared spaces. They

spoke to the older adults informally as the occasion arose, in efforts to preserve the

natural feel of the environment. They also spoke to staff at the communities.

Shared spaces were consistently empty (see Figure 49, right) and the spaces that

afforded higher rates of use (i.e. main floor gathering living rooms) were utilized by

a small percentage of the community population. Much like was seen in [110], the

televisions in the shared spaces did not promote social interaction. However here, they
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Figure 49: Qualitative studies in retirement communities.

were predominantly powered off and thus merely occupied space. In one instance, the

residents indicated that the television was non-functional, had been so for a while,

and then asked if the researchers could fix it.

The observations regarding social interaction indicated many members had diffi-

culty interacting or did not at all, with a small percentage of the community being

social. It was common to see two, or more, older adults co-located in the same shared

spaced but not interacting socially (as noted in other literature [110]), or doing so

unsuccessfully. For example, we observed some community members repeatedly us-

ing the same topic (typically children) to initiate conversation, even if it had been

attempted with the recipient before.

Even though social activities were promoted in the community by staff coordina-

tors and publicized through bulletin boards (Figure 49, middle), attendance was poor.

This observation was also confirmed from feedback provided by staff members. Yet,

there was a definitive need by the members to socialize. Aside from the scheduled

activities, the only other event of the day common to all residents is lunch time, which

is at the same time daily. Residents would consistently arrive considerably earlier to

sit in chairs lined along the corridors and wait for lunch service to commence (Figure

49, left). The waiting time and available chairs become a mechanism for older adults

to interact with one another on a daily basis. This observation was also confirmed

by community staff noting that the behavior was mainly performed for socialization,
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and that the space had been filled with chairs as a consequence of their behavior.

In summary, it was found that the spaces designated for social activities in retire-

ment communities were underutilized to the extent of being neglected. These spaces

are suitable for social interactions but they are not effective in their current condi-

tions, due to underutilization. Further, there was a need for socialization as indicated

by a repurposed public area, and potentially also a need for mechanisms to induce

diversity in the conversation topics.

4.2.2 Technology Interventions Implications

To better understand the current shared spaces and how modifications, specifically

design and technology interventions, to the shared spaces could promote their use

and ultimately impact socialization, the qualitative studies were followed up with an

experiment implementing a designed technology in the shared spaces of one of the

retirement communities. As an initial study on the impact of technologies among

older adults in retirement communities, we designed an intervention consisting of an

iPad tower, Figure 50. The tower was about waist height and had embedded in it an

iPad for viewing. The iPad displayed a looped slideshow consisting of 180 images from

two categories: 1) images of landscapes, flowers, monuments, historical events, and

of powerful/impactful events from Times magazine and from Pulitzer Prize winning

photographs; and 2) images of residents’ decorations in the community, taken during

the qualitative study.

The iPad tower and its display contents were chosen to address the previous

observations, as well as those from the social robotics literature. Given that the

television and VCR combination in the shared spaces is too complicated for the

residents to interface with when things go wrong, and that it does not in general

promote interaction, a simpler design with no controlling interface was preferred.

Further, as the social robotics literature indicates that robots are more effective at
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Figure 50: Designed technology intervention.

promoting social interaction when a caregiver is present [110], or requires a caregiver

to fulfill its purpose [103], it was believed that the choice of a simple technology with

a slideshow would provide more diverse stimulation than a functionally limited robot

would, while not requiring a caregiver for continual stimulation of the older adults.

Currently, social robotics cannot fulfill the expectations of older adults with regards

to their capabilities [102, 136, 137, 110, 138], thus motivating a simple technology

with easily met power requirements, that did not produce unrealistic expectations,

and yet that was also quickly and intuitively understood. The photo choices were

meant to elicit memories from the past and the present. Memories were noted to be

effective at eliciting discussion in [110].

4.2.3 Experimental Intervention

The experimental intervention was implemented one of the local retirement commu-

nities studied; a gated community offering apartment homes for adults aged 62 and

older. The community is an 11-story building in which all floors are equally arranged

including a common shared space near the elevators and long corridors for accessing
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individual apartments. Each floor has approximately 20 units with most of the older

adults living alone. This building provides an ideal setting for experimentation to

randomly sample floors in order to study older adults’ behaviors in the space. Resi-

dents’ behavior was observed under two conditions: no technology intervention in the

shared space and technology intervention in the shared space.

The observations were performed on three floors, one with a pre-existing enter-

tainment activity (a puzzle), Floor 7, and one with only the standard furnishings,

Floor 3 (randomly chosen), and one chosen to never receive the intervention, Floor

2 (randomly chosen). Further, the two intervention-receiving floors were initially ob-

served for a period of time in their natural configuration to get a measurement of the

naturally occurring utilization, after which the technology intervention was placed in

the area. The floors do not vary in structure, thus the floor selections are expected

to be representative with regards to the population of the community, which consists

of male and female older adults. The population was informed that there would be

an experiment, that it would involve a technological intervention, and that the social

responses to it were being studied. During the surveillance period, a flyer was posted

for all to be aware of the recorded. As shown in Table 4, the floors receiving the

technology intervention were monitored for a week to get a measure of their baseline

utilization before the intervention was introduced. Since the three floors have iden-

tical structures, the same equipment layout shown in Figure 51 was used. The iPad

tower was installed in front of the white structure in the middle of the common area,

next to an elevator in the retirement home. The cameras were strategically positioned

to give the best coverage of the common area and the all its access routes.

For data collection, a script to record video data at 12 frames per second over a

period of days was written in PERL. The video data was collected over a period of 4

weeks as indicated in the table below. Video data is approximated to be 21GB a day,

so for recording 4 weeks of data, a 1TB hard drive was needed for each computer.
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Figure 51: Equipment Layout

The total equipment needed for the set-up consisted of 4 PTZ cameras, 2 computers,

and 2 1TB hard drives.

Table 4: Data collection table
Floor Week 1 Week 2 Week 3 Week 4
2 C C C C
3 C T
7 C T

C - Current behavioral patterns without intervention
T - Technology intervention

4.3 User Interfaces

While the data was being collected, the simple graphical user interface (GUI) shown

in Figure 52 was developed to collect ground truth. The GUI was better suited for

collecting the necessary ground truth than off-the-shelf data annotation software since

it was designed specifically for this application. The user first enters the base path
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Figure 52: Simple ground truth GUI

where the video data is stored, whereupon the list of directories in the base path

and the videos in each directory are displayed in the directories and files list boxes.

The user can then select which file to process (each hour of video was placed in a

file). The GUI collects 6 types of information: the number of people who pass the

common area without entering, the number of people who enter the common area, the

number of people who interact inside of the common area, the number of people who

interact outside of the common area, the number of people that are in the scene, and

the number of unique people who enter the scene. ”Add pass” increments the pass

without entering the common area counter, ”Add common” increments the entered
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the common area counter, ”Add Int. Pass” increments the interaction while passing

the common area counter, ”Add Unique” increments the unique people who have

entered the scene counter, and ”Add Mult. Ppl.” increments the counter when there

are multiple people in the scene. In addition to incrementing the counters, the frame

numbers are also recorded. If the user mistakenly increments the counter, they can

adjust it by clicking on the subtract buttons. The time step can be changed to speed

up the video when there are periods of inactivity.

A second GUI, shown in Figure 53, was also designed to review and correct the

automated system’s results. It shows the user all the different visualization options

available for the data sequence. Additionally, it allows the user to fix errors due to

the re-identification module by merging or splitting the trajectories of a target given

its history. Given that contemporary visual processing and surveillance algorithms

cannot achieve 100% accuracy, the ability to correct false information is essential. The

user is able to enter the base path containing the folders for each day processed. A

list of folders in the base path is loaded under the directories listbox, and whenever a

folder is clicked, the videos for each hour of the day in the folder are displayed under

the files listbox. Once a file is selected, it can be loaded using the ”Load Video”

button. The current file loaded is displayed right next the ”Current File” textbox.

The user then enters the name of the file where the automated results are stored

and loads it using the ”Load Results” button to get started. Once the results are

loaded, the ”Targets List” listbox is populated with the targets detected throughout

the day and the trajectories for all the targets are plotted. The time is also marked

in order to know how long it takes to correct each days results. When a target is

selected, the video in which it was first detected is loaded, the current file is updated

so that the user knows which file is currently being viewed, the slider is updated to

the entrance point so that the user can hit the Play button to see how the target

traverses the scene, its trajectory is plotted, and its entrance and exit frames into
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Figure 53: Visualization/Correction GUI

the scene and region of interest, along with its interactions list are displayed. Other

targets that potentially match the selected targets are also displayed in the potential

matches listbox. This allows the user to merge disjointed tracks of the same target.

The ”Merge Tracks” button allows the user to merge two trajectory segments to-

gether, the ”Split Tracks” button allows the user to remove an inconsistent trajectory

segment from the targets history. The ”Delete Track(s)” button allows the user to

delete a track in case of a false positive. The ”Interacting” button allows the user

to declare an interaction between different targets that was not identified by the au-

tomated system. The ”Interactions List” listbox shows the targets that the selected

target interacted with, and it allows the user to delete an erroneous interaction. The

updated results are saved when the user selects a different days folder, or when the

user clicks the ”Save” or ”Quit” button.
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Figure 54: Process flow for the automatic surveillance system.

4.4 Experimental Results

4.4.1 Video Sequence 1

The video test sequence contained 10,800 frames with students walking in and out

and observing the technology or interacting with each other. Four targets entered

and exited the scene a total of 18 times. The system was able to track these targets

throughout the scene. Figure 55(a) shows the trajectories of the targets through the

space. The system was able to detect when foreground targets entered the scene but

the re-identification module could not always correctly identify a previously seen tar-

get. Of the 18 entrances, the system correctly identified 5 as previously seen targets

and incorrectly instantiated 9 new trackers. The post-processing step corrected for

these errors. For two of the targets, the trajectories simply needed to be merged to

result in two extended trajectories from 7 disjoint trajectory segments. For the other

two targets, the resemblance required some disambiguation of the target trajectories.

The graphical interface simplified the correction step. The interaction processor de-

tected that the technology intervention was being observed in 7,172 frames. It also

detected 19 instances of interactions amongst the targets for a total of 2,676 frames.

Figure 55(b) shows the heat map for the experiment. The whiter regions show where
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the targets spent most of their time. Figure 55(c) shows a sample tracked frame with

the targets bounding boxes and segmentations. Figure 55(d) shows the interaction

matrix for this test sequence. The interaction matrix shows which targets interacted

with each other, and how often. Targets 1 and 3 interacted the most, while targets 3

and 4 did not interact at all. Figure 56 and 57 shows the states versus time of the art

piece and a target. The states indicate which type of activity the target was engaging

in, as well as the type of attention the art piece/region of interest was receiving.

(a) Accumulated trajectories (b) Heat map of target locations

(c) Sample frame with tracking results (d) Interaction matrix

Figure 55: Sample Outputs from sequence 1

Figure 56: Art Piece States
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Figure 57: Target 1 States

4.4.2 Video Sequence 2

A second test sequence consisting of 23,727 frames with users walking in and out

without observing the technology nor interacting with each other. Five targets entered

and exited the scene a total of 21 times. The system identified six targets in total,

meaning that two trajectories required merging. Figure 58(a) shows the trajectories

of the targets through the space. Figure 58(b) shows the resulting heat map which, in

contrast to Sequence 1, indicates that little time was spent near the art piece. Figure

58(c) depicts a sample frame and the tracking result, while the interaction matrix in

Figure 58(d) correctly indicates that no interactions occurred.

4.4.3 Calvin Court

The semi-automated system was used to process 10 days for each floor. The au-

tomated video analysis system is first utilized via a script containing the days and

videos to process, and the layout information of the floor. A new background model

is initialized at the beginning of each day, and updated as the rest of the day is

processed. The targets’ state at every frame is stored for use by the event detection

processor. When all the videos in a particular day are processed, all the models are

cleared, and the system processes the next day. After processing all the days in the

script, the results are saved for the user to load and correct using the correction GUI.

4.4.3.1 Floor 2

The results of the experiment for Floor 2 is depicted in Figure 59. The statistics

associated to this floor are depicted in Tables 5 and 6. The estimated total number
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(a) Accumulated trajectories (b) Heat map of target locations

(c) Sample frame with tracking results (d) Interaction matrix

Figure 58: Sample Outputs from sequence 2

of traffic in Week 1 was 425, compared to the ground truth of 372, gives an error

of 14.25%. The estimated total number of traffic in Week 2 was 383, compared to

the ground truth of 321, gives an error of 19.35%. The estimated total number of

interactions in Week 1 was 74, compared to the ground truth of 61, gives an error

of 21.31%. The estimated total number of interactions in Week 2 was 45, compared

to the ground truth of 35, gives an error of 28.57%. The estimated total number of

interactions is 17.41% and 11.75% of the total traffic for week 1 and week 2. Compared

to the ground truth of 16.4% and 10.9% of the total traffic for week 1 and week 2

gives an error of 6.18% and 7.76%.

The estimated number of times people passed through the scene without entering

the common area for week one was 370 for week 1 and 358 for week 2. Compared to

the ground truth of 330 and 307, the errors were 12.12% and 16.61%. The estimated
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number of times people entered common area for week one was 55 for week 1 and

25 for week 2. Compared to the ground truth of 42 and 14, the errors were 30.95%

and 78.57%. The estimated total number of traffic in the common area is 12.94%

and 6.5%of the total traffic for week 1 and week 2. Compared to the ground truth of

11.29% and 4.3% for week 1 and week 2, this gives an error of 14% and 51%.

Table 5: Total daily traffic and interactions on the 2nd floor.
Total Daily Traffic Total Daily Interactions
Week 1 Week 2 Week 1 Week 2

GT Est. GT Est. GT Est. GT Est.
M 88 99 39 50 14 16 2 4
T 93 101 62 75 18 20 6 7
W 95 107 72 88 23 27 11 14
Th 52 67 74 87 4 7 4 6
F 44 51 74 83 2 4 12 14

Total 372 425 321 383 61 74 35 45
Error 14.25% 19.35% 21.31% 28.57%

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150
Total Number of Traffic

Week 1(GT)
Week 2(Est)
Week 1 (GT)
Week 2 (Est)

Figure 59: Total traffic on the 2nd Floor
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Table 6: Total number of common area entrances and passes on the 2nd floor.
Passed w/o Entering CA Entered CA
Baseline Technology Baseline Technology

GT Est. GT Est. GT Est. GT Est.
M 67 75 35 44 21 24 4 6
T 82 89 60 70 11 12 2 5
W 93 102 70 83 2 5 2 5
Th 50 61 70 81 2 6 4 6
F 38 43 72 80 6 8 2 3

Total 330 370 307 358 42 55 14 25
Error 12.12% 16.61% 30.95% 78.57%

4.4.3.2 Floor 3

The results of the experiment for Floor 3 is depicted in Figures 60. The statistics

associated to this floor are depicted in Tables 7 and 8. Week 1 was the baseline

week and week 2 was the technology intervention week. The estimated total number

of traffic in Week 1 was 402, compared to the ground truth of 351, gives an error

of 14.53%. The estimated total number of traffic in Week 2 was 313, compared to

the ground truth of 294, gives an error of 6.46%. The estimated total number of

interactions in Week 1 was 76, compared to the ground truth of 62, gives an error

of 22.58%. The estimated total number of interactions in Week 2 was 37, compared

to the ground truth of 28, gives an error of 32.14%. The estimated total number of

interactions is 18.91% and 11.82% of the total traffic for week 1 and week 2. Compared

to the ground truth of 17.66% and 9.52% of the total traffic for week 1 and week 2

gives an error of 7.08% and 24.16%. It should be noted that there was a medical

emergency on Tuesday for the baseline condition of floor 3 which increased the number

of total traffic and interactions. Removing the anomaly, the estimated total number

of interactions becomes 14.74% of the total traffic and the ground truth becomes

13.15%. This still shows that there was a decrease in the number of interactions on

the third floor.

The estimated number of times people passed through the scene without entering
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the common area for week one was 359 for week 1 and 275 for week 2. Compared to

the ground truth of 319 and 261, the errors were 12.54% and 5.36%. The estimated

number of times people entered common area for week one was 43 for week 1 and

38 for week 2. Compared to the ground truth of 32 and 33, the errors were 34.38%

and 15.15%. The estimated total number of traffic in the common area is 10.7% and

12.14% of the total traffic for week 1 and week 2. Compared to the ground truth of

9.12% and 11.22% for week 1 and week 2, this gives an error of 17.32% and 8.2%.

As mentioned earlier, there was a medical emergency which inflated the number of

people who entered the common area. If this anomaly is removed, the estimated total

number of traffic in the common area is 6.38% of the total traffic and the ground truth

becomes 4.38%. This shows that although the percentage of interactions went down

during the technology intervention, the number of people who visited the common

area increased.

Table 7: Total daily traffic and interactions on the 3rd floor.
Total Daily Traffic Total Daily Interactions

Baseline Technology Baseline Technology
GT Est. GT Est. GT Est. GT Est.

M 47 55 44 50 13 15 0 2
T 100 117 63 66 29 34 10 12
W 74 79 61 66 6 8 2 5
Th 90 107 55 57 8 12 2 3
F 40 44 71 74 6 7 14 15

351 402 294 313 62 76 28 37
Error 14.53% 6.46% 22.58% 32.14%

4.4.3.3 Floor 7

The results of the experiment for Floor 7 is depicted in Figures 61. The statistics

associated to this floor are depicted in Tables 9 and 10. As with floor 3, week 1 was

the baseline week and week 2 was the technology intervention week. The estimated

total number of traffic in Week 1 was 459, compared to the ground truth of 415,
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Figure 60: Total traffic on the 3rd Floor

Table 8: Total number of common area entrances and passes on the 3rd floor.
Passed w/o Entering CA Entered CA
Baseline Technology Baseline Technology

GT Est. GT Est. GT Est. GT Est.
M 42 48 34 37 5 7 10 13
T 79 92 56 59 21 25 7 7
W 71 75 55 59 3 4 6 7
Th 90 104 50 52 0 3 5 5
F 37 40 66 68 3 4 5 6

319 359 261 275 32 43 33 38
Error 12.54% 5.36% 34.38% 15.15%

gives an error of 10.6%. The estimated total number of traffic in Week 2 was 541,

compared to the ground truth of 505, gives an error of 7.13%. The estimated total

number of interactions in Week 1 was 59, compared to the ground truth of 48, gives

an error of 22.92%. The estimated total number of interactions in Week 2 was 118,

compared to the ground truth of 100, gives an error of 18%. The estimated total

number of interactions is 12.85% and 21.81% of the total traffic for week 1 and week

2. Compared to the ground truth of 11.57% and 19.8% of the total traffic for week
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1 and week 2 gives an error of 11.06% and 10.1%. This shows that the intervention

had the desired effect on this floor.

The estimated number of times people passed through the scene without entering

the common area for week one was 407 for week 1 and 469 for week 2. Compared

to the ground truth of 371 and 443, the errors were 9.7% and 5.54%. The estimated

number of times people entered common area for week one was 52 for week 1 and 72

for week 2. Compared to the ground truth of 44 and 62, the errors were 18.18% and

16.13%. The estimated total number of traffic in the common area is 12.78% and

15.35% of the total traffic for week 1 and week 2. Compared to the ground truth of

11.86% and 14% for week 1 and week 2, this gives an error of 7.76% and 9.6%. This

shows that the number of people who visited the common area increased.

Table 9: Total daily traffic and interactions on the 7th floor.
Total Daily Traffic Total Daily Interactions

Baseline Technology Baseline Technology
GT Est. GT Est. GT Est. GT Est.

M 80 92 114 121 9 12 24 28
T 101 112 120 125 8 10 37 40
W 92 104 103 112 13 16 17 21
Th 62 67 80 88 8 10 8 11
F 80 84 88 95 10 11 14 18

415 459 505 541 48 59 100 118
Error 10.6% 7.13% 22.92% 18.00%

Table 10: Total number of common area entrances and passes on the 7th floor.
Passed w/o Entering CA Entered CA
Baseline Technology Baseline Technology

GT Est. GT Est. GT Est. GT Est.
M 69 78 104 107 11 14 10 14
T 97 106 101 106 4 6 19 19
W 84 94 92 97 8 10 11 15
Th 58 62 70 77 4 5 10 11
F 63 67 76 82 17 17 12 13

371 407 443 469 44 52 62 72
Error 9.7% 5.54 18.18% 16.13
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Figure 61: Total traffic on the 7th Floor

4.4.4 User Interface Correction

Table 11 shows the time it took to generate the event statistics using the custom GUI,

Noldus Observer XT, and the Semi-Automated tool. The custom GUI time was com-

puted by taking an average of the time it took to manually generate the ground truth

results in Tables 5,7, and 9. The Observer time was computed by taking an average

of the time it took to process 8 hours of the video using the Observer XT program.

The semi-automated tool time shows the average time it takes to process the video

automatically, and the time it takes for the user corrections. As hypothesized, the

time required for the user to generate statistics using the semi-automated tool is sig-

nificantly less than manual processing. This shows that the combining the automated

system with the correction GUI would save a lot of manpower when used to process

weeks worth of information. The semi-automated system also has the additional ca-

pabilities of letting the user view each target’s trajectory history. Manually selecting

the location in each frame to get this information would have been significantly time

consuming.
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Table 11: Average time it takes to process 60 minutes of video.

Custom GUI Noldus Observer XT
Semi Automated

Surveillance System User Corrections
22.62 minutes 73.8 minutes 65.7 minutes 5.8 minutes

4.5 Discussion

The automated system detected and tracked 2523 target entries across the whole

experiment, which is a 11.8% more than the 2258 entries recorded in the ground

truth. The correction tool was used to correct the errors generated by the automated

system to generate results with 100% accuracy. The automated system usually gen-

erated more false positives as a result of sudden illumination changes. Although the

targets have their designated entrance regions, there are windows and light switches

located in the common area. Whenever the illumination changes because of sudden

cloud movement or someone turning on/off the light switch, the system sometimes

erroneously detects and starts tracking a foreground object in the entrance region.

This kind of error was corrected using the delete tracks button in the correction GUI.

There were also some errors regarding when the targets left the scene. Sometimes,

the system is not able to determine that the target has left the scene since it relies

on the detection algorithm which sometimes produces false positives to due to the

sudden illumination change not being incorporated into the model. This in turns

creates false positives when it comes to detecting the number of interactions taking

place. To fix this error, the split tracks button was used to split a targets track at the

moment it leaves the scene, the excess trajectory in the split track is then deleted.

This chapter presented a tool for semi-automated coding of social interactions

from recorded video. The purpose of this chapter was to show that the developed

tools were useful in meeting the goals of determining the effect of technology inter-

vention on socialization. To this end, a ground truth collection GUI was developed

to show how the space was utilized before and after the technology intervention. An
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automated system was developed and validated by demonstrating that it could detect

the traffic and interaction taking place. With regards to the desired output, the auto-

mated system was 88.26% correct in detecting and tracking targets thereby effectively

requiring annotation of a significantly smaller portion of the overall video. With the

system, a coder can process 4x more video than with a custom interface, and 13x

more video versus with a general purpose software package, given the same amount

of labor input. In particular, one 8-hour period of time can be coded in just over

45 minutes. Future work will be to improve the performance of the automated video

analysis system so that its processing time is significantly reduced and its accuracy

is increased, as well as to evaluate user interface modifications that could reduce the

time spent during the correction step.
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CHAPTER V

CONCLUSION

The purpose of this thesis was to demonstrate the use of an automatic surveillance

system to generate event statistics which can provide help with decision support

for interested parties. The system was used to process six different videos from

three different construction sites and 6 weeks of data from a retirement community.

The main concern for construction sites is the improvement of productivity. This

thesis was able to show that although the system was not 100% accurate, it was still

able to generate statistics of interest that would allow an operator to make decisions

regarding productivity. For the senior housing, this thesis shows that the system was

accurate enough to support more efficient video coding to save time when analyzing

the data. The system was able to show how much of an effect the intervention had

on interactions between people in the retirement community.

Future work can incorporate more layers into the system that will allow for de-

tection of more complex events. For instance, audio or gaze detection could be added

to the system to improve the accuracy of interaction detection in the senior housing

setting. Adding the ability to track other machines on the construction site perform-

ing different tasks will also provide a more comprehensive analysis of the site and

allow project managers to make well-informed decisions regarding their next course

of action.
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