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ABSTRACT 

Machine Learning Identification of Protein Properties Useful for Specific Applications 

Abdullah Mohammed Abdullah Khamis 

 

Proteins play critical roles in cellular processes of living organisms. It is therefore 

important to identify and characterize their key properties associated with their 

functions.  Correlating protein’s  structural,  sequence  and  physicochemical  properties  of  

its amino acids (aa) with protein functions could identify some of the critical factors 

governing the specific functionality. We point out that not all functions of even well 

studied proteins are known. This, complemented by the huge increase in the number of 

newly discovered and predicted proteins, makes challenging the experimental 

characterization of the whole spectrum of possible protein functions for all proteins of 

interest. Consequently, the use of computational methods has become more attractive.  

Here we address two questions. The first one is how to use protein aa sequence and 

physicochemical properties to characterize a family of proteins. The second one focuses 

on how to use transcription factor (TF) protein’s domains to enhance accuracy of 

predicting TF DNA binding sites (TFBSs).   

To address the first question, we developed a novel method using computational 

representation of proteins based on characteristics of different protein regions (N-

terminal, M-region and C-terminal) and combined these with the properties of protein aa 
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sequences. We show that this description provides important biological insight about 

characterization of the protein functional groups. Using feature selection techniques, we 

identified key properties of proteins that allow for very accurate characterization of 

different protein families. We demonstrated efficiency of our method in application to a 

number of antimicrobial peptide families.  

To address the second question we developed another novel method that uses a 

combination of aa properties of DNA binding domains of TFs and their TFBS properties to 

develop machine learning models for predicting TFBSs. Feature selection is used to 

identify the most relevant characteristics of the aa for such modeling. In addition to 

reducing the number of required models to only 14 for several hundred TFs, the final 

prediction accuracy of our models appears dramatically better than with other methods.  

Overall, we show how to efficiently utilize properties of proteins in deriving more 

accurate solutions for two important problems of computational biology and 

bioinformatics.  
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Introduction 

 

1.1 Background 

Cells are the basic building blocks of living organisms. A cell is the smallest unit of life 

that can replicate itself during the cell division process. Organisms differ in the type and 

number of cells they have. Unicellular organisms e.g. bacteria consist of a single cell. On 

the other hand, multicellular organisms consist of numerous cells. A human body, for 

example, is composed of trillions of cells.  

A typical cell in a eukaryotic organism contains Deoxyribonucleic Acid (DNA) packed into 

multiple chromosomes inside its nucleus. The DNA harbors the hereditary information 

of the living organism. According to the Central Dogma of Molecular Biology, genes on 

DNA are transcribed into RNA, which is processed into mRNA and later used in the 

process of protein synthesis (Figure 1.1). Today, however, we know that protein-coding 

genes cover only a few percentages of the human genome and that most of the human 

genome is transcribed generating transcripts of various functionality (Carninci, et al., 

2005; Consortium, 2012; Consortium, et al., 2014; Gerstein, et al., 2012; Ravasi, et al., 

2010).  
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Figure 1.1 Central Dogma of Molecular Biology. Genes on DNA are transcribed into 

RNA, which is processed into mRNA and later used in the process of protein synthesis. 

 

Proteins are the workhorse molecules of life as they play critical roles in cellular 

processes of living organisms. They exist in all types of cells, perform main activities that 

sustain life and they form a major structural component of muscles, skin, hair, organs 

and other tissues of the body. Currently, there are tens of millions of protein sequences 

available in numerous protein databases, such as, Uniprot (UniProt, 2015) and Protein 

Data Bank (wwPDB) (Berman, et al., 2003). 

A typical protein is a large molecule composed of amino acids (also referred to as 

residues), which serve as building blocks for the protein (Raven and Johnson, 2002). 
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Amino acids are attached to each other through peptide bonds in a long chain to form 

the protein sequence. The primary structure of the protein is represented in terms of 

this linear chain of amino acid residues (Voet, et al., 1999). The arrangement of these 

amino acids in different orders within a long sequence can produce huge number of 

proteins. If the sequence of an amino acid chain consists of fewer than 50 amino acids, 

then it is called peptide sequence (McKee and McKee, 2012). There are 20 different 

amino acids that have a common internal structure of carbon, oxygen, hydrogen and 

nitrogen atoms.   However,   amino   acids   differ   from   each   other   based   on   “R”   group  

attached to the fourth covalent bond of the central carbon.  

Proteins are described in terms of their primary, secondary, tertiary and quaternary 

structures (Lieberman, et al., 2013). The primary structure of a protein is represented by 

its sequence of amino acids. The protein secondary structure is the three-dimensional 

(3D) folding structure of local segments inside the protein sequence. However, the 

tertiary structure of a protein refers to its overall 3D folding structure. Because many 

proteins contain multiple polypeptide chains, the quaternary structure of such proteins 

refers to the way these subunits interact with each other. Consequently, proteins differ 

between each other in terms of their amino acid sequence composition (i.e. primary 

structure) and their local and overall structures. This difference allows for and enables 

different functions performed by the proteins. 

 

 



26 
 

1.2 Protein Functions 

Proteins perform wide variety of major functions in the cells. Because many proteins 

execute the same or similar functions, they can be classified into specific categories 

according to the function they perform. For example, the set of proteins that build and 

repair the structure of the cells are known as “Structural   Components”   of   the   cell.  

“Antibodies  and  antimicrobial”  proteins  are components of the immune system of the 

body and they are responsible specific defense against certain groups of pathogens. 

Proteins that are required for enabling chemical reactions inside the cells are called 

“enzymes”.   “Transport”   proteins   carry   molecules   between   different   parts   of   the  

organism. Biological processes that of activation of transcripts and gene regulation 

involve proteins  called  “Transcription  Factors (TFs)”. 

A classification of protein functions using well-defined ontology of functions was 

provided by the Gene Ontology Consortium (Ashburner, et al., 2000). According to this 

classification, the protein functions are grouped into biological processes, molecular 

functions, and cellular components (Ashburner, et al., 2000), where each of these broad 

categories contains different granularity of descriptions of protein functions from a 

particular perspective (Lee, et al., 2007).  
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1.3 Inferring Protein Function 

To understand what roles proteins play in cells and under which conditions, we need 

first to know what functions they could have. Many proteins do not have known 

functions and even for the well-studied proteins all their functions are not known. In 

addition, many novel proteins are discovered and need annotation of their function. As 

a result of the rapid increase in the number of discovered proteins, the experimental 

annotation of this huge number proteins has become more challenging and time 

consuming task (Bromberg, et al., 2009). Consequently, substantial amount of 

computational research has been performed to assist in annotating these proteins and 

studying their properties (Friedberg, 2006). 

Explaining the protein function comes through a hierarchy that starts from the protein 

sequence through the protein structure up to the protein dynamics and exerted 

function, as shown in Figure 1.2 (Hensen, et al., 2012). Because the identification of 

protein function through its structure is more reliable (Pascual-Garcia, et al., 2010), 

there are many studies done on so called structure-function modeling. Predicting the 

protein function from its structure can be achieved by analyzing the global 3D structure 

of protein folds (Hegyi and Gerstein, 1999), or by using the local substructure of the 

protein (Hvidsten, et al., 2009). One direction to model protein structure-function 

relationship is by integrating multiple mass spectrometry (MS) data (Landreh, et al., 

2011). Studying the ligand-binding sites on the protein surface to model their binding 

activity is another direction (Yuan, et al., 2013). Recent works utilize protein structure 
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information in computer-aided drug design (CADD) to improve the hit rate of drugs 

(Zheng, et al., 2013) and more accurate binding with receptors (Garcia, et al., 2012). 

 

Figure 1.2 Hierarchy of protein sequence, structure, dynamics and function. 

Correlation between different levels of protein properties enable protein function 

prediction (Hensen, et al., 2012). 

Despite the importance of protein structure in understanding protein function, very 

small percentage of proteins have their 3D structures experimentally confirmed 

(Berman, et al., 2000; Lee, et al., 2007). As of 2011, from over 80 million protein 

sequences, only 70,000 protein structures exist in protein data bank (Leszczynski, 2012). 

As a result, studying protein function through the analysis of protein sequence is 

remaining a common approach. This is supported by the following reasons. First, it is 

Protein  Sequence 

Protein  Structure 

Protein  Dynamics 

Protein  Function 
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widely   accepted   that   the   protein’s   functions   depends   on   its   3D   structure   which   is 

determined by its amino acids sequences (Berg, et al., 2002), so the primary sequence of 

a protein is the crucial contributor to its function. Second, it has been shown that the 

predicted functions for proteins with more than 50% sequence identity to the reference 

protein determined based on homology are valid in majority of cases (Sangar, et al., 

2007). Third, protein function cannot be reliably predicted from its structure alone (i.e. 

in the absence of information from its sequence). It has been found that proteins with 

very different structure have similar function, and some proteins with very similar 

structure have different functions (Hensen, et al., 2012). Consequently, considerable 

efforts have been made to study different properties of amino acids in the protein 

sequence. One purpose of such research is to explain different functions of proteins 

based on properties extracted from their primary sequence (Clark and Radivojac, 2011). 

Taking into account that each of the twenty amino acids is characterized by a wide 

variety of properties, some databases have been created containing quantitative 

parameters of individual amino acids. For example, AAIndex (Kawashima, et al., 2008) 

database contains numerical indices of 544 different physicochemical properties of 

amino acids. 

There are 4,343 publications indexed in Thompson Reuters Web of Science Core 

Collection  on  “protein function from primary  sequence”  and  767  publications  on  “model  

protein  function  from  primary  sequence”  as of February 26, 2016. This is a large volume 

of work in this field and it is difficult to address all relevant aspects of it. We will thus 
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only refer to few references that are most directly related to our work. To model protein 

functions based on characteristics of their amino acid sequences, some of the previous 

work used only amino acid composition features extracted from different segments of 

the primary sequence e.g. (Matsuda, et al., 2005), while some other work used 

physicochemical properties of amino acids e.g. (Cai, et al., 2009; Cai, et al., 2010). 

However, a study of all available properties of amino acids in different regions of the 

protein sequence is yet to be done. The utilization of this analysis of protein properties 

in different regions of protein amino acid sequences to study their characteristics and 

predict their function will definitely result in better models for predicting protein 

functions. 

1.4 Contribution of the Dissertation 

In this research we addressed two questions. The first one is how to use protein amino 

acid sequence and physicochemical properties to characterize a family of proteins. The 

second   one   focuses   on   how   to   use   transcription   factor   (TF)   protein’s   domains   to  

enhance accuracy of predicting TF DNA binding sites (TFBSs).  In dealing with both of 

these questions we used a simple framework (Figure 1.3) for identifying relevant 

characteristics of proteins based on their amino acid sequence that could serve as good 

protein representation in relation to their function.  
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Figure 1.3 Proposed framework in this study. The process starts by representing 

numerically functional regions of proteins using amino acid physicochemical properties. 

Then, ML feature selection is performed to determine properties to be used to build a 

model for characterizing proteins in relation to their function. 

 

To address the first question, we developed a novel method using computational 

representation of proteins based on characteristics of different protein regions (N-

terminal, M-region and C-terminal) and combined these with the properties of protein 

amino acid sequences. We show that this description provides important biological 

insight about characterization of the protein functional groups. Using feature selection 

techniques, we identified key properties of proteins that allow for very accurate 

characterization of different protein families. We demonstrated efficiency of our 

Develop numerical 
representation of protein 

functional regions 

Use ML feature selection 
techniques to select 
important properties 

Use selected 
properties to 

prediction 
protein function 
/ characteristics
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method in application to a number of antimicrobial peptide (AMP) families and achieved 

extraordinary accuracy in discrimination of these families. This is based on a very small 

set of distinguishing properties for different AMP families that our method identified as 

relevant for this purpose. Details are given in Chapter 3.  

To address the second question we developed another novel method that uses a 

combination of amino acid properties of DNA binding domains of TFs and their TFBS 

properties to develop machine learning models for predicting TFBSs. Feature selection is 

used to identify the most relevant characteristics of the amino acid for such modeling. In 

addition to reducing the number of required models to only 14 for several hundred TFs, 

the final prediction accuracy of our models appears dramatically better than with other 

methods. Details are provided in Chapter 4. 

Overall, we show how to efficiently utilize properties of proteins in deriving more 

accurate solutions for two important problems of computational biology and 

bioinformatics. 
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Protein Functional Regions, Numerical Representation and Property Selection Methods 

 

2.1 Amino Acid Properties 

An amino acids chain forms the primary sequence of a protein. There are twenty amino 

acids used in protein sequences. Each amino acid can be suitably annotated by a single 

letter (Table 2.1). All amino acids have common structure of carbon, hydrogen, oxygen 

and nitrogen. Each amino acid differs from other amino acids by the side chain, known 

as an R group.  

Amino acids are characterized by different set of physicochemical properties and can 

have values of these properties assigned to them. Because of the difference in the R 

group between amino acids, each amino acid differs from other amino acids in some 

properties. There are many attempts to measure and quantify the properties of amino 

acids (Gromiha, 2010). For example, (Kidera, et al., 1985) collected 188 physical 

properties of amino acids, while (Palliser and Parry, 2001) collected 127 hydrophobicity 

scales. Yet, AAIndex (Kawashima, et al., 2008) remains the most comprehensive 

database of physicochemical properties of amino acids. The latest update of the 

database contained 544 properties of amino acids (indices). Table 2.1 shows the values 

of two properties (hydrophobicity index and normalized frequency of alpha-helix) for 

each of the twenty amino acids. 
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Table 2.1. List of amino acids and values of two of their properties. A list of twenty 

amino acids, their 1-letter abbreviation and two of their physicochemical properties as 

in AAIndex database. 

Amino Acid Letter Hydrophobicity index 
Normalized frequency 

of alpha-helix 

Alanine A 0.61 1.42 

Arginine R 0.60 0.98 

Asparagine N 0.06 0.67 

Aspartic acid D 0.46 1.01 

Cysteine C 1.07 0.70 

Glutamic acid E 0.47 1.51 

Glutamine Q 0 1.11 

Glycine G 0.07 0.57 

Histidine H 0.61 1.00 

Isoleucine I 2.22 1.08 

Leucine L 1.53 1.21 

Lysine K 1.15 1.16 

Methionine M 1.18 1.45 

Phenylalanine F 2.02 1.13 

Proline P 1.95 0.57 

Serine S 0.05 0.77 

Threonine T 0.05 0.83 

Tryptophan W 2.65 1.08 

Tyrosine Y 1.88 0.69 

Valine V 1.32 1.06 

http://en.wikipedia.org/wiki/Alanine
http://en.wikipedia.org/wiki/Arginine
http://en.wikipedia.org/wiki/Asparagine
http://en.wikipedia.org/wiki/Aspartic_acid
http://en.wikipedia.org/wiki/Cysteine
http://en.wikipedia.org/wiki/Glutamic_acid
http://en.wikipedia.org/wiki/Glutamine
http://en.wikipedia.org/wiki/Glycine
http://en.wikipedia.org/wiki/Histidine
http://en.wikipedia.org/wiki/Isoleucine
http://en.wikipedia.org/wiki/Leucine
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Methionine
http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Serine
http://en.wikipedia.org/wiki/Threonine
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Tyrosine
http://en.wikipedia.org/wiki/Valine
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2.2 Protein Functional Regions  

There are different regions in the protein sequence that contain various patterns and 

consequently may associate to different functions. For example, the N-terminal and C-

terminal of the protein sequence are useful to identify protein cellular location 

(Emanuelsson, et al., 2000; Matsuda, et al., 2005; Reczko and Hatzigerrorgiou, 2004). 

The binding characteristics of the TF proteins to DNA are highly determined by the DNA 

binding domain regions in the TF protein sequence. 

2.2.1 Dividing Protein Sequence into Regions 

Proteins have different functions and different regions inside a protein sequence may 

have different characteristics. The motivation behind dividing a protein sequence into 

regions is to be able to study the local effects of region characteristics of protein 

sequence. For example, in a protein sequence one can distinguish three segments: N-

terminal, M-region and C-terminal. While there is no confident method to identify 

precisely these regions, there are different computational methods that approximately 

identify these regions within the protein sequence. As an example, (Matsuda, et al., 

2005) selected these regions based on the protein length L. In their method, N terminal 

was divided into sub sections (n1, n2, n3 and n4). Two parameters, dn (which refers to 

the length of a sub region inside the N terminal) and dc (refers to the length of C 

terminal) were used to control the selection of these regions. The definition of the 

protein regions based on the protein length is illustrated in Figure 2.1. 
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Figure 2.1. Different regions of a protein sequence. Definition of the N-terminal, M 

region and C-terminal regions (Matsuda, et al., 2005) 

 

2.2.2 Protein DNA Binding Domains 

A protein domain is a functional and conserved part of the protein associated to a 

particular function and contributes to the overall protein function. A protein may have 

more than one domain. The protein domain associated to the protein binding to the 

DNA is  called  ‘DNA  Binding  Domain’.   
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Determining the DNA binding domains is useful for prediction of TF affinity to its binding 

sites on the DNA. There are several databases that contain lists of predicted domain 

sequences. For example, PFAM (Finn, et al., 2014) database contains a large collection 

of proteins families and their predicted domains. Other databases include, SMART 

(Letunic, et al., 2015), COG (Tatusov, et al., 2000) and CDD (Marchler-Bauer, et al., 

2015). 

2.3 Computational Representation of Proteins 

There are different methods to represent proteins numerically using characteristics 

extracted from their primary sequence or general annotation of the protein functional 

properties. In this section, we summarize some of the common numerical 

representation methods for proteins. 

2.3.1 Basic Representation Using Amino Acid Composition (AAC) 

Here, a protein 𝑃 is represented by the following: 

 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒௜(𝑃) =
𝐹𝑟𝑒𝑞௜

𝐿𝑒𝑛𝑔𝑡ℎ(𝑃)
 (2.1) 

where 𝐹𝑟𝑒𝑞௜ is the total count of an amino acid 𝑖 in the sequence of protein 𝑃. The 

length of the primary sequence of protein P is denoted as 𝐿𝑒𝑛𝑔𝑡ℎ(𝑃). 
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2.3.2 Using Physicochemical Properties Weighted by Amino Acid Occurrences 

In this representation, a protein 𝑃 is represented by a set of features such that each 

feature 𝑖 corresponds to a physicochemical property 𝑖. That is, a feature 𝑖 of 𝑃 is the 

average value of the physicochemical characteristics 𝑖 weighted by the relative 

occurrences of individual amino acids in the sequence, according to the following: 

 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒௜(𝑃) = ෍
𝐹𝑟𝑒𝑞௞

𝐿𝑒𝑛𝑔𝑡ℎ(𝑃)

ଶ଴

஺௠௜௡௢  ௔௖௜ௗ  ௞ୀଵ

∗ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦  𝑉𝑎𝑙𝑢𝑒௜(𝑘) (2.2) 

where 𝐹𝑟𝑒𝑞௞ is the total count of amino acid 𝑘 in the primary sequence of the protein 

𝑃; 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦  𝑉𝑎𝑙𝑢𝑒௜(𝑘) is the value of physicochemical property 𝑖 for amino acid 𝑘; 

𝐿𝑒𝑛𝑔𝑡ℎ(𝑃) is the length of 𝑃. This score is calculated for all features 𝑖 = 1,2, … ,𝑚  , 

generating a feature vector of length m for each protein 𝑃. 

2.3.3 Using Pseudo Amino Acid Composition Features 

Pseudo amino acid composition (PseAAC) was first introduced by (Chou, 2001) to 

predict protein subcellular localization. We follow here his annotation. In this 

representation, a protein 𝑃 of length 𝐿 is represented as: 

 
𝑃 = [𝑝ଵ, 𝑝ଶ, … , 𝑝ଶ଴, 𝑝ଶ଴ାଵ,… . , 𝑝ଶ଴ାఒ]       ,      (  𝜆 < 𝐿) (2.3) 

where the 20 + 𝜆 elements are given by 
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𝑝௨ =

⎩
⎪
⎨

⎪
⎧ 𝑓௨
∑ 𝑓௜ଶ଴
௜ୀଵ + 𝑤∑ 𝑇௞ఒ

௞ୀଵ
                              ,                      (1 ≤ 𝑢 ≤ 20)

𝑤𝑇௨ିଶ଴
∑ 𝑓௜ଶ଴
௜ୀଵ + 𝑤∑ 𝑇௞ఒ

௞ୀଵ
    ,          (20 + 1 ≤ 𝑢 ≤ 20 + 𝜆)

 (2.4) 

and where 𝑓௨ is the frequency of amino acid at position 𝑢 . The weight factor is 

represented by 𝑤. Also, 𝑇௞ represents the k-th tier correlation between the k-th most 

contiguous residues. This correlation is calculated as follows: 

 

𝑇௞ =
1

𝐿 − 𝑘
෍𝐽௜,௜ା௞

௅ି௞

௜ୀଵ

          (𝑘 < 𝐿) (2.5) 

The factor 𝐽௜,௜ା௞ is shown in Figure 2.2 and is calculated as follows: 

 

𝐽௜,௜ା௞ =
1
Γ
෍[Φ௤(𝑅௜ା௞) − Φ௤(𝑅௜)]ଶ
୻

௤ୀଵ

 (2.6) 

where Φ௤(𝑅௜) is the q-th property value (e.g. hydrophobicity value) of amino acid 𝑅௜ at 

position 𝑖 . The total number of properties considered is represented by Γ.  
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Figure 2.2. Correlation between residues. The 1st-tier, 2nd-tier and 3rd-tier correlation 

along the protein sequence (Chou, 2001). 

 

2.3.4 Numerical Representation of Protein Annotation 

This representation has been proposed in (Qian, et al., 2007) to model TFs in order to 

predict their DNA binding sites. Each TF-target gene-binding site (TF-TFT-TFBS) triplet is 

represented by a feature vector with the structure: 

TF Properties (8151 Values) TFT Properties (8151 Values) TFBS Properties (125 values) 
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where TF properties is a vector with 8151 values of all possible annotations in Interpro 

(Apweiler, et al., 2001). Each value in this vector is set to either 0 or 1 to mark the 

presence or absence, respectively, of protein existence in the corresponding Interpro 

entry. A similar vector of 8151 values is used to represent the TF target gene. The TFBS 

sequence is represented in 125 binary values as follows. The TFBS sequence is limited to 

the length 25 bp, such that if the sequence is shorter than 25 bp, it is extended to the 

length 25 by adding suffix of Ns. However, if the sequence is larger than 25 bp, the first 

25 bp are only encoded. Then, each nucleotide is represented by 5 binary values as 

A=00001, C=00010, G=00100, T=01000, N=10000. 

2.3.5 Using Physicochemical Properties to Represent Proteins 

The amino acid properties of TFs were included in the TF-TFBS model in a study by (Cai, 

et al., 2009). In addition to the 20 amino acid composition features, only six 

physicochemical properties of amino acids were used to generate a 132-dimensional 

feature vector for a TF. These properties are hydrophobicity, polarizability, predicted 

solvent accessibility, predicted secondary structure, normalized van der Waals volume, 

and polarity. The TFBS of length 25 bp is represented in a 100 element vector where 

each nucleotide is represented by 4 binary digits. This representation is illustrated as 

follows: 

TF Properties (132 Values) TFBS Properties (100 Values) 
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2.3.6 Using Physicochemical Properties and Neighboring Amino Acids Positions to 

Represent Proteins 

This representation was suggested in (Cai, et al., 2010) to predict protein DNA-binding 

residues on the protein sequences. 506 AAIndex properties were used to represent each 

amino acid and its eight surrounding amino acids (four from upstream and four from 

downstream). As a result, 4554 features are used to represent a particular amino acid. 

In addition, nine conservation scores are used to represent that amino acid as follows. 

PSI-BLAST (Altschul, et al., 1997) is used to find homologous proteins to a particular 

protein. Then, ClustalW (Larkin, et al., 2007) is used to make multiple alignment of these 

sequences. Finally, the conservation score is calculated using CONSCORE (Valdar, 2002) 

approach. 

TF Properties (506 x 9) Values) TF Conserved Properties (9 Values) 

 

2.4 Techniques of Feature Selection for Protein Properties Related to Problem in 

Question  

Here we discuss some methods that can be used to select subset of protein properties 

that are more relevant to problem in question. It is assumed that proteins are 

represented by feature vectors suitable for the problem analyzed.   
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2.4.1 Unsupervised Feature Selection Techniques 

Unsupervised feature selection techniques aim to select features using unsupervised 

methods such as clustering or matrix factorization techniques. The unsupervised 

methods are less likely to suffer from overfitting and are useful when there are more 

unlabeled data than labeled data (Guyon and Elisseeff, 2003). In the clustering 

approach, the features are grouped into clusters using some of the clustering algorithms 

(e.g. K-means or hierarchical clustering). Then, similar features within a particular 

cluster are replaced by a representative feature from the cluster (e.g. the centroid 

point). The matrix factorization methods include different methods that reduce the 

dimensionality of the data by mapping the data from the original space to a different 

space. Principal Component Analysis (PCA) (Jolliffe, 2002), Singular Value Decomposition 

(SVD) (Golub and Van Loan, 1983) and Non-negative Matrix Factorization (NMF) (Sra 

and Inderjit, 2006) are examples of the linear matrix factorization methods. Isomap 

(Tenenbaum, et al., 2000) is an example of nonlinear methods for dimensionality 

reduction. 

2.4.2 Supervised Feature Selection Techniques 

The supervised feature selection techniques use class labels of the data to guide the 

process of feature selection from the training data. These methods are classified into 

two broad categories, individual feature ranking and feature subset selection methods.  

2.4.2.1  ‘Univariate’  Individual Feature Selection Methods 
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Individual feature ranking methods evaluate each feature independently, one feature at 

a time, to select the most relevant features to the class label. These methods are fast as 

they evaluate features one at time and each feature is evaluated independently of other 

features. Individual feature ranking methods differ in the metrics used to evaluate and 

rank individual features, such as, Area Under Curve (AUC), mutual information, Pearson 

correlation coefficient, T-test and Fisher scores.  

2.4.2.2 Subset ‘Multivariate’ Feature Selection Methods 

While individual feature ranking methods are fast and easy to understand, the ranked 

features may not necessarily represent the best subset of features. A feature that is 

ranked very low in the list of relevant features for a class label, may be very useful when 

combined with other features. For this reason, subset feature selection methods aim to 

evaluate different combination of features to select the subset of features that can 

improved the prediction accuracy or other performance metrics of the model. 

The subset feature selection methods are classified into two main categories according 

to the explicit usage of the learning model in the feature selection step. These two 

categories are the filter and the wrapper methods. If the learning model is used as a 

part of the evaluation function for the subset of features then it is called the wrapper 

method, otherwise it is the filter method.  

One category of filter methods is the correlation based feature selection (CFS) where 

the selected subset of features represent features which are highly correlated with the 



45 
 

prediction class and minimally correlated with each other. An example of such methods 

is the Minimum Redundancy Maximum Relevance (mRMR) (Peng, et al., 2005) method. 

Wrapper methods can work as the   ‘forward’  or   ‘backward’   feature selection mode. In 

the forward selection, the feature subset selection process starts with an empty set of 

features and the features are evaluated and the best is added to the subset. The process 

iteratively progresses until the satisfactory set is determined or some other constraints 

are reached. On the hand, in the backward selection, the initial subset consists of all 

features. Then, the worst feature is removed and this process goes iteratively until the 

satisfactory feature set is obtained or some other constraints are reached.   

The wrapper methods are powerful and demonstrated their usefulness in different 

applications (Saeys, et al., 2007). The population-based heuristics methods, e.g. Particle 

Swarm Optimization (PSO) (Kennedy, 2010; Kennedy and Eberhart, 1995) and Genetic 

Algorithms (GA) (Holland, 1992) are examples of these methods. While the predictive 

power of the wrapper methods comes from the usage of the learning model during the 

feature selection process, they are time consuming and are more prone to over-fitting. 

In the next two subsections we explain two of the feature subset selection methods. 

Firstly, we will discuss the mRMR method. Secondly, we will discuss a global 

optimization method, Genetic Algorithm, which can be used to select the set of 

properties that yield the highest score for the objective function. In the case of selecting 

protein properties, the objective function can be designed to evaluate properties based 

on their relevance to the problem in question. 
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2.4.2.2.1 Minimum Redundancy Maximum Relevance (mRMR) 

mRMR method was proposed in (Peng, et al., 2005) to select subset of properties that are non-

redundant (i.e. dissimilar to each other) and at the same time have maximum relevance to the 

prediction class of the sample. Following (Peng, et al., 2005) the minimum redundancy is 

defined as: 

 

min𝑅(𝑆) =
1
|𝑆|ଶ

෍ 𝐼(𝑥௜, 𝑥௝)
௫೔,௫ೕ∈ௌ

 (2.7) 

Here 𝐼(𝑥௜, 𝑥௝) is the mutual information between features 𝑖 and 𝑗, and 𝑆 is the subset of 

features (properties) that we want to select, and |𝑆| represents the total number of 

features in the subset 𝑆. The maximum relevance aims to maximize the total relevance 

of the selected features to the sample class label. It is defined by: 

 

𝑚𝑎𝑥𝐷(𝑆, 𝑐) =
1
|𝑆|

෍ 𝐼(𝑥௜, 𝑐)
௫೔∈ௌ

 (2.8) 

where 𝑐 = (𝑐ଵ, 𝑐ଶ, … 𝑐௜) is the class label for the sample. Then, the mRMR is defined as 

the maximum difference between (2.8) and (2.7) as follows: 

 
mRMR = max  (𝐷 − 𝑅) (2.9) 
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2.4.2.2.2 Genetic Algorithms 

Genetic algorithm (GA) is a heuristic search – based optimization method that uses 

historical information about previous population to produce a new population. GA 

concept is motivated by natural evolution, so it is part of a broad range of Evolution 

Algorithms (EA).  

Initially, a GA algorithm generates a random population (set of random solutions) that 

consists of different hypotheses (members of the population). Then, in each iteration, 

each hypothesis of the population is assigned a score using a fitness function. Part of the 

population which have the highest fitness score are used to generate the new 

population after applying crossover and mutation operations. The GA algorithm is 

described in Table 2.2 follwoing (Mitchell, 1997):  

Table 2.2. Genetic Algorithm. Pseudo code for the GA algorithm as described in 

(Mitchell, 1997)  

Let:  

P is the initial population consists of n hypotheses (members h) 

r is the fraction of the population to be replaced by crossover operation 

m is the mutation rate 

Initialization: Generate a population (P) consists of (n) random hypotheses (h) 

Evaluation: For each hypothesis in P compute Fitness(h) 

While ( maxh Fitness(h) < stop_threshold )  
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      Generate new population Ps as follows: 

1. Select: (1-r) n members of P to be added to the new generation of population 

           such that:         𝑃𝑟(ℎ௜) =
ி௜௧௡௘௦௦(௛೔)

∑ ி௜௧௡௘௦௦(௛ೖ)೙
ೖసభ

 

2. Crossover: select ௥  ∗  ௡
ଶ

 pairs of hypotheses from P, and for each pair of 

hypotheses (hi , hj) apply Crossover operator to generate two offspring which 

later is added to Ps 

3. Mutate: for each of (m * n) hypotheses of Ps selected at random, mutate a 

random bit in its representation 

4. Update: P ← Ps 

5. Evaluate: For each hypothesis in P compute Fitness(h) 

Return the hypothesis having the highest Fitness(h) 

 

The flowchart for this algorithm is shown in Figure 2.3: 
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P = initial population
r = fraction of population for 

crossover
m = mutation rate

Initialization
Generate a population (P) consists of (n) random 

hypotheses (h)

Evaluation
For each hypothesis in P compute Fitness(h)

maxh Fitness(h) < stop_threshold

Select
(1-r) n members of P to be added to the 

new population Ps

Crossover
Select (r*n)/2 pairs of hypotheses for 

crossover and add result to Ps

Mutate
Mutate randomly single bit in (m*n) 

hypotheses of Ps

P ←  Ps

Return
the hypothesis having the 

highest Fitness(h)

END

START

 

Figure 2.3. Genetic Algorithm Flowchart. A flowchart shows different steps of the 

genetic algorithm. 
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The crossover operation aims to create in the new population from a pair of parental 

hypotheses a pair of successor hypotheses,   called   “offspring”. This is achieved by 

exchanging bits between the parents to make the offspring. There are different 

techniques for making the crossover as summarized in Table 2.3. 

Table 2.3. Crossover in genetic algorithm. Three common types of crossover operation 

during the genetic algorithm processing. 

Single-
point 

crossover 

 
A B C D E F G H 

                                                                →     
I J K L M N O P 

  

A B C D M N O P 
                                                                 

I J K L E F G H 
 

Two-point 
crossover 

 
A B C D E F G H 

                                                                →     
I J K L M N O P 

  

I J C D E F O P 
                                                                 

A B K L M N G H 
 

Uniform 
crossover 

 
A B C D E F G H 

                                                                →     
I J K L M N O P 

  

A J C L E N G P 
                                                                 

I B K D M F O H 
 

 

To ensure diversity among the hypotheses of the new generation, the mutation method 

is   implemented.   A   simple   form   of   the  mutation   is   the   “Single   bit  mutation“  where   a  

single bit is a flipped in the new generation, as follows: 

1 1 0 1 0  0  0  1        →        1  1  0  0 0 0 0 1 
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2.5 Machine Learning Classification Models 

Given a collection of labeled samples represented by feature vectors (training data), the 

classification task aims to build a model for the class label of the data as a function of 

features used to compile feature vectors. Later, this learned model is used to predict the 

class label for previously unseen samples (testing data). There are numerous 

classification models, such as, Decision Trees (Quinlan, 1987), Neural Networks (NN) 

(Rumelhart, et al., 1986), Bayesian Network Classifiers (Friedman, et al., 1997), K-

Nearest Neighbors (Altman, 1992), Support Vector Machines (SVM) (Cortes and Vapnik, 

1995), etc.. 

2.5.1 K-Nearest Neighbors  

The K-Nearest Neighbors method is a simple classification algorithm where a test 

sample belongs to the same class as its K-nearest samples. The determination of the k-

nearest samples to the test sample is performed by computing the distance between 

the test sample and each of the training samples. Euclidean distance is an example of 

such distance metric between two samples A and B, defined as in the following: 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵) = ඨ෍(𝐴௜ − 𝐵௜)ଶ
௜ୀଵ

  , (2.10) 
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2.5.2 Artificial Neural Networks 

The Artificial Neural Network (NN) model is a collection of nodes (arranged in layers) 

and connected with weighted links. In the example if Figure 2.4 in the output node its 

input the weights of its input links are summed up generating an output signal: 

 

𝑓(𝑊,𝑋) = ൭෍𝑤௜𝑋௜
௜

൱, (2.11) 

∑ 

W(x1)1

W(x5)3

X1

X2

X3

X4

X5

f(W,X)

 

Figure 2.4 An Example of a Neural Network Structure. A typical NN is composed of 

different layers, each of which consists of several nodes. Nodes within different layers 

are connected by links that have assigned weights. 
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In the beginning, the NN learning algorithm initializes the weights wi of the links in the 

NN. Then, it adjusts the weights to minimize the following objective function: 

 
𝐸 =෍ (𝑌௜ − 𝑓(𝑤௜, 𝑋௜))ଶ

௜
, (2.12) 

Where Yi represents the desired output of the NN and 𝑓(𝑤௜, 𝑋௜) is the predicted value 

from the NN when the input is Xi . This objective function can be optimized using 

different algorithms. The back-propagation algorithm is widely used for this purpose. 

2.5.3 Deep Learning  

Deep learning (Deng and Yu, 2014) is a branch of machine learning that aims to model 

data abstraction by building a complex structure composed of numerous processing 

layers. The deep learning may discover the information structures within the large 

datasets by building distributed representation for the data. Deep learning proved to 

improve in some cases the performance in different applications based on large 

datasets, such as, speech recognition and image processing. 

2.5.4 Ensemble Methods 

The idea of the ensemble methods is to construct a set of classifiers from the training 

data and then to combine their predictions into the final prediction. An apparent 

advantage of the ensemble of classifiers is the frequently the overall improvement of 

prediction performance. There are different types of the ensemble methods. The first is 

based on the Bagging (Bootstrap) algorithm. In the Bagging algorithm, N classifiers are 
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trained on subset of samples (sampling with replacement) and all classifiers are trained 

on the same set of features (M). A test sample is assigned to the class with the most (or 

averaged) votes by the N classifiers. 

The second type of ensemble methods is Random Subspace Method, which in training 

uses subset of features (m) for a subset of the samples. A special case of it is known as 

the Random Forest method (Ho, 1998) where decision trees are used together with the 

whole set of training samples but with different features for each decision tree.  

The third type of ensemble methods is Boosting which focuses on the misclassified 

samples. Initially, all samples are equally weighted and trained by a classifier. In the 

second phase, another classifier is trained on the samples but the misclassified samples 

by the first classifier are given higher weight. This process continue to create N 

classifiers. The prediction of a test sample is the weighted sum of all the predictions of 

the N classifiers. Boosting yields higher accuracy than bagging, however, it has a risk of 

overfitting the data. 

2.5.4.1 Random Forests 

Random forests are simply an ensemble of decision trees. The training data is divided 

between N trees (Figure 2.5) and each tree is trained with subset of the data. This 

division on the data occurs on the features (not the samples), such that each tree 

received the entire training data for M randomly selected features (with replacement). 

In the testing phase, the class prediction of an unknown sample is provided by each tree 
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and the random forest counts the votes and assigns the class label to the most voted 

class. As most of the ensemble methods, random forests usually yield better accuracy 

than other classifiers. It is fast and can handle high dimensional data easily. 

Original Data

Subset Dataset 1 Subset Dataset 2 Subset Dataset 4Subset Dataset 3

...

Combined decision trees

Tree 1 Tree 2 Tree 3 Tree 4

 

Figure 2.5 Illustration of a Typical Structure of Random Forests. The Random Forest 

model is an ensemble of N trees, each of which learn from data using part of the 

features. All predictions from these sub-trees are combined to produce the Random 

Forest model prediction. 
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Distinct Profiling of Antimicrobial Peptides Using their Compositional and 

Physicochemical Properties 

This chapter is based on a published study:  

Distinct profiling of antimicrobial peptide families (Khamis AM, Essack M, Gao X, Bajic 

VB) (2015) Distinct Profiling of Antimicrobial Peptide Families. Bioinformatics 31(6):849-

856. doi:10.1093/bioinformatics/btu738 

 
3.1 Summary  

The spread of multi-drug resistant (MDR) pathogens raised the demand to design novel 

antimicrobial peptides (AMPs). AMPs kill rapidly and show broad-spectrum efficiency 

against MDR pathogens, therefore making AMPs being considered as a possible 

complement and substitute for conventional antibiotics. It is challenging to use current 

in-silico techniques to design novel AMPs due to numerous design parameters, absence 

of models, testing procedures, cost and production time of the design. AMPs are 

categorized into families/sub-families based on their sequences, 3D structures and 

functions. The capability to identify properties that can discriminate each of the AMP 

families from all other AMPs can facilitate discovering the main characteristics of these 

AMP families. This will help in the in-silico design of synthetic AMPs. In this study we 

considered 14 different AMP families and sub-families. We described all peptides that 

belong to these 14 different AMP families and sub-families using their amino acid 

sequence compositional and physicochemical properties. Then, using Genetic Algorithm 
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(GA), we identified the subset of properties that accurately discriminate each of the 

AMP families from all other AMPs with an average specificity, sensitivity and precision of 

99.86%, 92.88% and 95.96%, respectively. We further explored the selected 

discriminative properties using information available in literature and found that many 

of them have been shown to be characteristics (either compositional or functional) of 

these AMP families. This set of the selected properties could assist as guides for novel 

synthetic AMPs in-silico designs. The method that we developed is generic as it can be 

applied to characterize different groups of properties families. This work was published 

in (Khamis, et al., 2015). 

3.2 Introduction 

With the evolution and rapid increase of multi-drug resistant (MDR) pathogens, it has 

become important to look for alternatives medications that can effectively attack these 

pathogens (Saxena and Gomber, 2010). Due to the broad-spectrum activity against 

Gram-positive and Gram-negative bacteria, protozoa, fungi and many enveloped viruses 

(Hancock and Scott, 2000; Thomas, et al., 2010; Zasloff, 2002), antimicrobial peptides 

(AMPs) have been considered to have potential use in treatment of MDR pathogens 

because of their effectiveness on wide range of pathogens and the ability to rapidly kill 

these microbes (Brahmachary, et al., 2004; Gordon, et al., 2005; Hancock and Diamond, 

2000; Hancock and Lehrer, 1998; Hancock and Sahl, 2006; Peters, et al., 2010; 

Sundararajan, et al., 2012; Thomas, et al., 2010). Synthetic AMPs were also found to 

destroy MDR pathogens (Yeaman and Yount, 2003). AMPs permeate and penetrate the 
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target pathogen (Andreu and Rivas, 1998; Brogden, 2005; Radek and Gallo, 2007), 

consequently disrupting the formation of the cytoplasmic membrane septum, which 

leads eventually to killing the microbe (Chen, et al., 2012; Fjell, et al., 2012; Frecer, et al., 

2004; Peters, et al., 2010). AMPs can easily differentiate between membrane structure 

of pathogens and other organisms because of the differences between them in the 

membrane structure. This makes microbes to be simply known and targeted by AMPs 

(Thomas, et al., 2010).  

Typically, AMPs have relatively short sequence of fewer than 100 amino acids in length 

(Jenssen, et al., 2006; Pasupuleti, et al., 2012; Peters, et al., 2010; Sang and Blecha, 

2008). Majority of these amino acids are cationic and amphipathic (Epand and Vogel, 

1999; Lehrer and Ganz, 1999). While AMPs are evolutionarily conserved (Hancock and 

Sahl, 2006; Yeaman and Yount, 2003), minor variations in their structure can result in 

major differences in their functional characteristics (Ganz, 2003; Thomas, et al., 2010). 

Based on their primary sequence and structure, AMPs were categorized into 

families/sub-families (Kaiser and Diamond, 2000; Yeaman and Yount, 2003). 

Several databases focused on AMPS were built and contain hundreds of AMPs, e.g. 

DAMPD (Sundararajan, et al., 2012), APD2 (Wang, et al., 2009) , CAMP (Thomas, et al., 

2010; Waghu, et al., 2014), ANTIMIC (Brahmachary, et al., 2004) and APD (Wang and 

Wang, 2004). In spite of these numerous databases, the increased demand for AMPs, 

boosted increased attention to the in-vitro design of synthetic AMPs (Marcos, et al., 

2008; Nusslein, et al., 2006). It is challenging to design AMPs because of the many 
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properties that characterize AMP families (Guralp, et al., 2013). Consequently, in-silico 

method is recommended to subselect the properties that can serve as a guide for the 

design process of novel AMPs (Juretic, et al., 2011). Such computational approaches to 

identify the properties that characterize different AMP families have gained more 

interest (Fjell, et al., 2012; Maccari, et al., 2013). 

While, several methods were proposed to characterize AMPs using their amino acid 

compositional characteristics and sequence alignment information (Lata, et al., 2010; 

Lata, et al., 2007; Wang, et al., 2011), such information is not sufficient to characterize 

AMPs. Rather, the structural and physicochemical properties of AMPs can provide more 

insight about the activities of these AMPs (Fjell, et al., 2012). Consequently, several 

studies were performed on the physicochemical properties of AMPs (Langham, et al., 

2008; Maccari, et al., 2013; Porto, et al., 2010; Torrent, et al., 2011). Though, to the best 

of our knowledge, a comprehensive study of these properties, their effectiveness within 

different regions of AMP sequences, and using these properties to characterize AMP 

families is yet to be done. 

In this study, a novel computational model is proposed to represent AMP amino acid 

sequences and a method to determine the most discriminative properties (either 

compositional or physicochemical) of AMPs that can discriminate each of the AMP 

families from all other AMPs. For this purpose, we used Genetic Algorithms (GA) to 

optimize an objective function based on unsupervised clustering. Using the selected 

properties, enabled high accuracy discrimination of the AMP families and for most of 
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the AMP families, 100% specificity in peptides separation of a particular AMP family 

from all other AMPs has been achieved. This is associated with sensitivity range from 

~62% to 100%. We found although not all many of the selected properties were 

reported in the literature as functional or compositional characteristics of the associated 

AMP family. These findings suggest that the identified properties can serve as a guide 

during the in-silico design process of synthetic novel AMPs. 

3.3 Methods 

3.3.1 Datasets 

We obtained the sequences of 753 non-redundant mature and natural peptides from 

the DAMPD database (Sundararajan, et al., 2012). These peptides belong to 128 

families/sub-families. We selected DAMPD database because all the deposited peptides 

were curated manually and previously validated experimentally to have antimicrobial 

activity. These peptides were classified into families and sub-families using the UniProt 

(UniProt, 2014) annotation. From the initial set of AMPs we eliminated all families/sub-

families that have less than 10 peptides. The remaining AMP families we name “target  

AMP   families”.   As a result of this filtration process, we considered 14 target AMP 

families containing a total of 465 peptides. The remaining 114 AMP families/sub-families 

with total of 288 peptides served as a portion of  the  “negative  dataset”.  For each target 

AMP family, its negative dataset is specific. That is, the negative dataset contains in 

addition to the above-mentioned 288 peptides determined by the filtering process, all 

peptides from the other 13 target AMP families (where target AMP family peptides are 
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eliminated). We used these negative datasets within the iterative procedure to identify 

the properties that characterize each AMP family. That is, in each iteration of the GA 

optimization, an unsupervised clustering is performed to compare the peptides of a 

specific AMP family to its negative dataset composed of all other AMPs. The number of 

peptides in each of the 14 AMP families/sub-families is shown in Table 3.1, and the 

composition of amino acids of these families/sub-families is provided in Appendix 1.  

Table 3.1. Number of peptides in each of the 14 AMP families/sub-families. 

Distribution of the obtained peptides from DAMPD database among 128 AMP families 

and sub-families. 

AMP family/sub-family Number of 
peptides 

Alpha-defensin 34 
Bacteriocin 24 

Beta-defensin 41 
Bombinin 31 

Cathelicidin 27 
Cecropin 30 

Cyclotide (Bracelet sub-family) 12 
DEFL 37 

FSAP (Brevinin sub-family) 143 
FSAP (Caerin sub-family) 11 

FSAP (Dermaseptin sub-family) 30 
Invertebrate defensin (Type 1 sub-

family) 21 

Invertebrate defensin (Type 2 sub-
family) 13 

Type A lantibiotic 11 
All Other AMP Families with less than 

10 peptides (114 Families/sub-
families) 

288 

Total 753 
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For the purpose of comparing AMP vs. non-AMPs, a set of non-AMPs were compiled as 

in the following: 

1. We extracted from UniProt sequences of all proteins whose length was between 10 

and 212 amino acids (the same AMP length interval as in our datasets). We retained the 

sequences whose ontology annotation keywords do not contain any keyword connected 

to antimicrobial activity (e.g. Antifungal, Antimicrobial, Fungicide, Antibacterial, 

Antiviral, Defensin, etc.). This resulted in 18,082 non-AMP sequences. 

2. To remove identical sequences and reduce redundancy among the selected 

sequences, we performed clustering by the h-cd-hit tool (Li and Godzik, 2006) in three 

steps. We used the three identity thresholds (≥90%,  ≥60%,  ≥30%). After this, 7,066 non-

AMP sequences were obtained. 

3. Finally, we removed all sequences that contain any of the non-canonical amino acids 

(e.g. nonstandard letters O, B, J, X, U and Z). This yielded 6,740 non-AMP sequences. 

3.3.2 Peptide/Protein Sequence Models 

The representation method that we developed for peptides/proteins is described in 

what follows. We adopted the protein representation method used to describe 

numerically proteins of different lengths for the purpose of identifying protein cellular 

localization (Matsuda, et al., 2005). In this model, different proteins will differ in the 

model parameters inferred from properties of amino acid composition within different 

protein regions. We extended Matsuda et. al. model by adding to this representation a 
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description for the physicochemical properties in different protein sequence regions. 

That is, in each region identified by the model from Matsuda et. al., we added for that 

regions its restrictive physicochemical properties (these properties are characterized as 

being highly invariant within peptides that belong to the same family). Then, using the 

GA optimization, we selected subset of the properties from the entire description that 

best discriminate AMP families. Consequently, as explained above, the method that we 

developed can handle different lengths of protein/peptide sequences and it can 

represent the sequencing using compositional and physicochemical properties extracted 

from different regions.  

This method is explained as follows. We divided AMP amino acid sequences into three 

regions. This is supported by the fact that there are numerous properties enriched 

within the N and C terminals of the amino acid sequences that discriminate peptides of 

a particular AMP family all other AMP families (Hayes, et al., 2006; Lata, et al., 2010; 

Minervini, et al., 2003). Then, we encoded each peptide using a two-part feature vector. 

The first part of the feature vector represents mostly the composition features of the 

peptide amino acid sequence. The second part contains the restrictive physicochemical 

properties within predetermined regions in the peptide sequence. We explain each 

feature vector part as in the following. 

Basic Peptide Features Representation. Peptides from all AMP families were represented 

by the same set of features. As mentioned above, we borrowed the method for protein 

sequence representation in (Matsuda, et al., 2005). In this representation, the amino 
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acid sequence of each peptide was separated into three regions, N-terminal (N), middle 

region (M) and C-terminal (C). Then, the N-terminal is also separated into four sub-

regions (n1, n2, n3 and n4). Determination of each region size is based on the sequence 

length L. Consequently, long N and C termini are assigned for long sequences and vice 

versa for short sequence. Because AMP peptides have typically shorter protein 

sequences than most of the other groups of proteins and also because peptides that 

belong to different AMP families differ in their sequence length, we tested the 

performance of the model that we developed with different dn values (length of one 

sub-region from the four N-terminal sub-regions) and dC (length of C-terminal) 

parameters for every AMP family. We selected the values of dn and dC (Table 3.2 and 

Appendix 2) that were experimentally found to be the most suitable for discriminating 

the AMP families. Then, 184 features were used to represent the peptide sequence as 

follows: 140 features were used to represent the composition of amino acids in all the 

regions/sub-regions n1, n2, n3, n4, M, C and the whole sequence (20 features in 7 

regions); 20 features for the twin amino acids composition (two consecutive of the 

identical amino acids, e.g. MM, KK) in the M-region; 6 features for the frequency of 

different distances of basic amino acids (K, H and R) in each of N and M regions 

providing altogether 12 features; additional 6 features for the frequency of different 

distances of hydrophobic amino acids (A, F, G, I, L, M, P, V and W) in the M-region; the 

latest 6 features were used to represent for the frequency of different distances of 

other amino acids (C, D, E, N, Q, S, T and Y) in the M-region. The 6 values of frequency of 

different distances are calculated as in the subsequent text. The distance (H) between 
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two consecutive amino acids in the stated class is assigned to one of six categories of 

distance (H = 1, 1 < H ≤ 6, 6 < H ≤ 11, 11 < H ≤ 16, 16 < H ≤ 21, H > 21). After that, 

frequency of different distances are represented by the number of incidences of the 

distances in these six groups. For instance, the distances between basic amino acids (K, 

H and R) in the sequence (MRAMRSKNNGGNPAKHMTTNNAK) are 3, 2, 8, 1, and 7. The 6 

frequency values of these distance values are (1, 3, 2, 0, 0, and 0). This representation 

from (Matsuda, et al., 2005) can capture the signal sequences from different peptide 

sequence regions. 

Addition of Family Specific Properties. Family specific properties refer to a collection of 

restrictive properties that exist within different regions of the peptide sequence of the 

considered AMP family. This set of properties differs from region to region within the 

sequence. To select properties that are restrictive with different regions, 544 amino acid 

physicochemical properties provided in the AAIndex (version 9.1) database (Kawashima 

and Kanehisa, 2000) were used. We reduced this initial set to 294 features by 

eliminating properties that have mutual Pearson correlation coefficient of 0.9 or higher 

and selecting randomly selected one property from such mutually highly correlated 

properties. Then, to extract the features, first we used progressive multiple sequence 

alignment algorithm (Thompson, et al., 1994) to align all peptide sequences of a 

particular family. After that, from the aligned peptide sequences, we identified the 

restrictive physicochemical properties by removing from a particular family one peptide 

at a time. After that, we tested if the value of the property for all amino acids of the 
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removed peptide (for each region of the n1, n2, n3, n4, M and C regions) is inside the 

min/max values range for the same property (min/max values are defined from the 

other peptides of the same family in that region). We repeated this test for all peptides 

(using leave one out approach). After that, the physicochemical properties that we 

found conserved/restricted in at least 90% of peptides for a specific region particular 

family were used to represent that region. Finally, we used in the feature vector the 

median values of these properties for individual amino acids in the region. The following 

algorithm explains this method for selecting the region specific restrictive 

physicochemical properties of AMP peptides of a specific family. 

Let N be the set of L peptide sequences in AMP family Fi such that N=(N1, N2,  …,  NL) 
Let Ti be one of the peptide regions T=(n1, n2, n3, n4, M, C) 
Let Pj be amino acid property in P=(P1, P2, ..., P294) 
For each region Ti in T 
      Scores=[] 

      For each property Pj in P 

            For each sequence Nk in N 

                  Let S be all sequences of Ti region in N excluding Nk ,S=(xi , xi ∈ N & xi ≠ Nk) 

                  Let Mn be a vector of minimum values of Pj within individual positions of S 

                  Let Mx be a vector of maximum values of Pj within individual positions of S 

                  If property value P(Nka) of every amino acid Nka in Ti region of Nk satisfy the following 

  P(Nka) >= Mna and P(Nka) <= Mxa , then  
   Scores[j , k]= 1  
  Otherwise 
   Scores[j , k]= 0 

                  END IF 

            END FOR 

      END FOR 
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      Let R be the vector of overall scores such that 𝑅௝   = (∑ 𝑆𝑐𝑜𝑟𝑒𝑠[𝑗, 𝑘]௞ୀଵ ) 𝑘⁄  for each 
property Pj  

      Select as restrictive properties in Ti to be those which have overall score 𝑅௝ ≥ 0.9 

END FOR 

   

3.3.3 Data Preparation 

Normalization. Each feature was normalized to eliminate the bias that comes from 

variant ranges of values as in the following: 

 𝑥௜ᇱ =
𝑥௜ − 𝑢௜
𝜎௜

 (3.1) 

where xi is the original value for the feature, and xi is the normalized value; 𝑢௜  is the 

mean value of the xi values for all  AMP  peptides,  and  σi refers to the standard deviation. 

Filtering Data. We excluded from the feature vectors the features that have constant 

values in all peptides of AMP families. 

Target and Non-Target Classes. To identify the most discriminant properties of a 

particular AMP family, we performed unsupervised clustering using k-means algorithm. 

All the peptides that belong to the target AMP family represent the target class, 

whereas the peptides from other AMP families (i.e. the remaining 13 target AMP 

families in addition to the 291 peptides from the other 114 AMP families) represent the 

non-target class. We repeated this process independently for each of the 14 target AMP 

families. 
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3.3.4 AMP Family-Specific Feature Selection 

We selected compositional and physicochemical properties that are most discriminant 

for a particular AMP family using global optimization based on Genetic Algorithm (GA). 

This optimization aims to minimize the following fitness function: 

 𝐹 = 1 − 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 + 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (3.2) 

where  

 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

=
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (3.3) 

 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
𝑇𝑜𝑡𝑎𝑙  𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠

 (3.4) 

We ran the GA with the following settings. The population size was 1000 and the 

number of generations were 1000 as well. The mutation rate was set to 0.01 and the 

crossover rate was 0.8. The F-measure in the fitness function is calculated for each 

individual in every generation. This is performed using unsupervised clustering with k-

means clustering algorithm using Euclidean distance. Evaluation of the clustering 

performance was performed using the known class label of each peptide by computing 

the true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN). 

The F-measure is calculated from these quantities. Because k-means algorithm is 

sensitive to the selection of initial cluster centroids, we removed the bias that may arise 

from this random selection by initializing the cluster centroids with the actual mean 

values in the positive and negative classes. The k-means clustering was performed using 
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different number of clusters (2 to 15 clusters). We selected the number of clusters that 

provided the highest F-measure. In the case of optimum clustering, peptides that belong 

to a particular target AMP family will be grouped together in one cluster (target class) 

while all peptides from all other AMP families will reside in one or more other clusters 

(non-target class clusters). We added the regularization constraint to the optimization 

function to help the GA to select the minimum set of features that provided highest F-

measure value. The purpose of this study is not to build a predictive AMP model, 

however, we use this procedure to profile AMP families by identifying the properties 

that accurately discriminate AMP families.  

3.3.5 Clustering AMPs into Antimicrobial Families 

After selecting the properties, we examined their capability to group the peptides of 

each AMP family and discriminate that family from all other AMPs. For a particular AMP 

family X that we want to evaluate, all peptides of all AMP families were represented 

using the selected properties for the family X. Then, k-means clustering was performed. 

In the case of perfect clustering, all peptides that belong to the family X will be grouped 

in one cluster while all other peptides that belong to other AMP families will be grouped 

in one or more of the other clusters. We used this criterion to measure the performance 

of the clustering based on the selected properties. 

3.3.6 Evaluation of Model Results  
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After performing the clustering of AMPs, we selected the cluster that contain the 

maximum number of target class peptides as the cluster of the target class. All the 

remaining non-target clusters may group different AMPs from either non-target or 

target class. We used accuracy, sensitivity, specificity, precision, Jaccard Index and F-

measure to evaluate the performance of the clustering.  The measures are defined as in 

the following: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 (3.5) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (3.7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.8) 

 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑  𝐼𝑛𝑑𝑒𝑥 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (3.9) 

 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (3.10) 
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TP represents the number of peptides from the target class in the target class cluster; 

TN represents the number of peptides from the non-target class in the non-target class 

clusters; FP represents the number of peptides from the non-target class that belong to 

the target class cluster; and FN represents the number of peptides from the target class 

that belong to the non-target class clusters. 

We added to the evaluation measures the entropy and purity measures defined in (Tan, 

et al., 2006). The entropy is calculated as follows. First, the probability that a peptide in 

cluster 𝑖 is a member of class 𝑗 is defined as: 

 
𝑝௜௝ =

௠೔ೕ

௠೔
, (3.11) 

 

where the number of objects in cluster 𝑖 were represented by 𝑚௜. The number of 

objects of class 𝑗 in cluster 𝑖 were represented by 𝑚௜௝. Then, the entropy of each cluster 

𝑖 is: 

 
𝑒௜ = −∑ 𝑝௜௝  𝑙𝑜𝑔ଶ  𝑝௜௝௅

௝ୀଵ , (3.12) 

where 𝐿 is the number of classes (in our case we have two classes, target and non-

target). The total entropy of a set of clusters is: 

 
e = ∑ ௠೔

௠
௄
௜ୀଵ   𝑒௜, (3.13) 
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where 𝑚 is the total number of peptides and 𝐾 is the number of clusters. The purity is 

calculated as follows: 

 
𝑝௜ = 𝑚𝑎𝑥௝  𝑝௜௝ (3.14) 

 

purity =෍
𝑚௜

𝑚

௄

௜ୀଵ
  𝑝௜ 

(3.15) 

We used MATLAB (MATLAB, 2012) to develop all parts of this computational model. 

 

3.4 Results 

3.4.1 Using Global Optimization of Unsupervised K-means Clustering for AMP Feature 

Selection 

Two sets of features were used to describe peptides of a particular AMP family (see 

Methods). 184 features in the first set represent mainly the composition of amino acids 

in different regions of the AMP peptide sequences. The second set of features represent 

restrictive physicochemical properties within different regions of the AMP peptide 

sequences. Because features have different contribution levels to the discrimination of a 

particular AMP family from all other AMP families, we performed feature selection using 

a GA for global optimization of unsupervised clustering. As compared to other 

optimization methods such as Particle Swarm Optimization (PSO) (Kennedy, 2010; 

Kennedy and Eberhart, 1995) and Differential Evolution (DE) (Chakraborty, 2008), the 



73 
 

GA has better performance than these methods and is more suitable for optimization of 

discrete variables (see Section 3.4.3). Also, we compared k-means clustering algorithm 

with other algorithms, e.g. Affinity Propagation (AP) (Frey and Dueck, 2007) and found 

that it provided better clustering results than AP (Section 3.4.4). In addition, we 

compared different distance measures (Euclidean, correlation, cosine and city block) 

within the k-means clustering and found that Euclidean distance yielded better 

performance than other measures (Section 3.4.5). Because AMP sequences have variant 

lengths (Figure 3.1), we used different lengths for the N and C terminal to perform 

feature selection for each AMP family, i.e., dn = 10, 12, 14, 16 and dc = 8, 10. The 

clustering performance of different settings for the terminal length parameters, dn and 

dc, is shown in (Appendix 2). Furthermore, we used for the feature selection different 

number of clusters (K  =  2,  3,  …,  15). Columns 2-7 in Table 3.2 contain parameter values 

that provided the highest value for the F-measure. 
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Figure 3.1. AMP length distribution. A histogram of the distribution of lengths of 478 

AMPs from 14 target AMP families. 

As shown in Table 3.2, a subset of 394 features from the total set of 9162 features used 

to represent peptide sequences of all 14 target AMP families, were selected to 

distinguish each AMP family peptides from any other AMP. 

Table 3.2. The number of selected properties for AMP families. The number of features 

that characterize different regions of AMP sequence is selected using GA optimization of 

unsupervised k-means clustering. Annotations of columns are as follows: N-terminal 

length (dn), C-terminal length (dc), number of peptides (NP), original number of features 



75 
 

(NF), number of selected features (NSF), number of clusters (NC), number of 

compositional features (NCF) and number of physicochemical features (NPF). 

AMP family/sub-family dn dc NP NF NSF NC NCF NPF 

Alpha-defensin 10 10 34 299 14 14 12 2 
Bacteriocin 14 10 24 225 9 12 7 2 

Beta-defensin 10 10 41 261 36 14 29 7 
Bombinin 16 10 31 1095 13 9 4 9 

Cathelicidin 16 8 27 521 36 11 17 19 
Cecropin 12 8 30 835 33 11 8 25 

Cyclotide (Bracelet) 12 10 12 350 7 14 2 5 
DEFL 12 8 37 252 26 14 20 6 

FSAP (Brevinin sub-family) 14 10 143 1945 118 12 18 100 
FSAP (Caerin sub-family) 14 10 11 1946 28 14 1 27 

FSAP (Dermaseptin) 16 10 30 327 25 15 16 9 
Invertebrate def. (Type 1) 10 10 21 402 14 14 8 6 
Invertebrate def. (Type 2) 16 8 13 510 9 15 4 5 

Type A lantibiotic 16 10 11 194 26 14 26 0 

Total    9162 394  172 222 
 

 

3.4.2 Using Selected Feature Subsets to Cluster AMPs 

We performed clustering using the subset of selected features that characterize each 

target AMP family. Then, we tested if the peptides belong to that family will fall in one 

cluster and other AMPs will be grouped in other clusters. The performance of the 

clustering was measured using the known labels of the peptides. The clustering results 

for each target AMP family are shown in Table 3.3. As noticed in Table 3.3, for 9 of the 

14 AMP families, 100% specificity was achieved in the clustering, while the specificity of 
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the other five AMP families ranged between 99.17% and 99.86%. This provides an 

evidence of the capability of the selected features to distinguish each of the AMP 

families. The obtained values of sensitivity, specificity and precision averaged for all 14 

target AMP families were 92.88%, 99.86% and 95.96%, respectively. The sensitivity vs. 

precision results for the clustering using the selected features are shown in Figure 3.2. 

 

Figure 3.2. K-means clustering performance (sensitivity vs. precision). Plot of sensitivity 

vs. precision obtained from k-means clustering of 14 target AMP families using 

optimized set of selected features. 

Results in Table 3.3 shows the advantages of using physicochemical properties to 

characterize peptide sequences. The long distance interactions in the peptide sequence 

between residues and the similarity in function between distantly related proteins are 

likely captured at least partly using physicochemical properties (Du and Li, 2006; Liu, et 
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al., 2012). Consequently, the information of amino acid composition only might be 

insufficient to accurately distinguish AMP families, specify their target cell interaction, 

and characterize their activities (Maccari, et al., 2013; Pushpanathan, et al., 2013). To 

test the importance of characterizing AMP peptide families using physicochemical 

properties, we used 184 features that represent mainly amino acid composition (part1 

of the feature vector only) to represent AMP peptides. Table 3.4 shows the clustering 

performance using this representation. The average obtained values of sensitivity, 

specificity and precision for all 14 target AMP families were 73.08%, 94.50% and 40.65%, 

respectively. We notice that both of the sensitivity and precision are significantly weaker 

than when using the restrictive physicochemical and compositional properties selected 

with GA (Table 3.3). 

 

Table 3.3. K-means clustering performance using selected properties by GA algorithm. 

K-means clustering performance of 14 target AMP families using GA selected features. 

Target AMP family Number of 
features 

Accuracy Sensitivity Specificity Precision 
Jaccard 
Index 

F-Measure Entropy 
Purity 

Alpha-defensin 14 99.73% 94.12% 100.00% 100.00% 94.12% 96.97% 0.0165 
99.73% 

Bacteriocin 9 99.87% 95.83% 100.00% 100.00% 95.83% 97.87% 0.0116 
99.87% 

Beta-defensin 36 99.60% 95.12% 99.86% 97.50% 92.86% 96.30% 0.0289 
99.60% 

Bombinin 13 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cathelicidin 36 98.80% 88.89% 99.17% 80.00% 72.73% 84.21% 0.058 
98.80% 

Cecropin 33 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cyclotide (Bracelet subfamily) 7 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

DEFL 26 99.47% 89.19% 100.00% 100.00% 89.19% 94.29% 0.0325 
99.47% 
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FSAP (Brevinin subfamily) 118 95.88% 79.02% 99.84% 99.12% 78.47% 87.94% 0.1478 
95.88% 

FSAP (Caerin subfamily) 28 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

FSAP (Dermaseptin subfamily) 25 99.60% 96.67% 99.72% 93.55% 90.62% 95.08% 0.0254 
99.60% 

Invertebrate defensin (Type 1 subfamily) 14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Invertebrate defensin (Type 2 subfamily) 9 99.34% 61.54% 100.00% 100.00% 61.54% 76.19% 0.0426 
99.34% 

Type A lantibiotic 26 99.47% 100.00% 99.46% 73.33% 73.33% 84.62% 0.0167 
99.47% 

Average  99.41% 92.88% 99.86% 95.96% 89.19% 93.82% 2.71% 
99.41% 

 

Table 3.4. K-means clustering performance using amino acid composition properties. 

The k-means clustering performance of 14 target AMP families using 184 features that 

represent information about amino acid composition. 

Target AMP family Number of 
features 

Accuracy Sensitivity Specificity Precision Jaccard 
Index 

F-Measure Entropy 
Purity 

Alpha-defensin 184 96.55% 85.29% 97.08% 58.00% 52.73% 69.05% 0.1085 
96.55% 

Bacteriocin 184 98.54% 91.67% 98.77% 70.97% 66.67% 80.00% 0.0589 
98.54% 

Beta-defensin 184 93.89% 68.29% 95.37% 45.90% 37.84% 54.90% 0.1646 
94.56% 

Bombinin 184 96.81% 70.97% 97.92% 59.46% 47.83% 64.71% 0.1248 
96.81% 

Cathelicidin 184 87.12% 37.04% 88.98% 11.11% 9.35% 17.09% 0.1983 
96.41% 

Cecropin 184 91.37% 100.00% 91.01% 31.58% 31.58% 48.00% 0.1135 
96.02% 

Cyclotide (Bracelet subfamily) 184 94.42% 100.00% 94.33% 22.22% 22.22% 36.36% 0.0548 
98.41% 

DEFL 184 92.70% 54.05% 94.69% 34.48% 26.67% 42.11% 0.1928 
95.09% 

FSAP (Brevinin subfamily) 184 90.17% 71.33% 94.59% 75.56% 57.95% 73.38% 0.3618 
90.17% 

FSAP (Caerin subfamily) 184 87.92% 72.73% 88.14% 8.33% 8.08% 14.95% 0.0809 
98.54% 

FSAP (Dermaseptin subfamily) 184 93.23% 86.67% 93.50% 35.62% 33.77% 50.49% 0.1267 
96.02% 

Invertebrate defensin (Type 1 subfamily) 184 97.21% 85.71% 97.54% 50.00% 46.15% 63.16% 0.075 
97.21% 

Invertebrate defensin (Type 2 subfamily) 184 98.54% 53.85% 99.32% 58.33% 38.89% 56.00% 0.0656 
98.54% 

Type A lantibiotic 184 91.10% 45.45% 91.78% 7.58% 6.94% 12.99% 0.0907 
98.54% 

Average  93.54% 73.08% 94.50% 40.65% 34.76% 48.80% 12.98% 
96.53% 
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Additionally, we demonstrated that using both parts of the feature vector in the 

clustering (i.e. the compositional features along with the restrictive features), but 

without feature subset selection, did not distinguish well peptides of any AMP family, as 

shown in (Table 3.5). The average obtained values of sensitivity, specificity and precision 

for all 14 target AMP families were 73.55%, 91.74% and 31.12%, respectively. We notice 

again the significant drop in sensitivity and precision as compared when using the 

selected restrictive physicochemical and compositional properties (Table 3.3). These 

findings indicated the value of feature subset selection to determine family-specific 

amino acid composition and physicochemical properties that characterize the peptides 

of the family and discriminate the AMP family from other AMPs. 

 

Table 3.5. Performance of k-means clustering using all properties. The k-means 

clustering performance of 14 target AMP families using the entire set of features to 

represent each family. 

Target AMP family Number of 
features 

Accuracy Sensitivity Specificity Precision Jaccard 
Index 

F-Measure Entropy 
Purity 

Alpha-defensin 299 95.62% 85.29% 96.11% 50.88% 46.77% 63.74% 0.1182 
95.62% 

Bacteriocin 225 98.54% 87.50% 98.90% 72.41% 65.62% 79.25% 0.0659 
98.54% 

Beta-defensin 261 90.44% 85.37% 90.73% 34.65% 32.71% 49.30% 0.1752 
94.56% 

Bombinin 1095 89.77% 83.87% 90.03% 26.53% 25.24% 40.31% 0.1486 
95.88% 

Cathelicidin 521 88.31% 33.33% 90.36% 11.39% 9.28% 16.98% 0.1949 
96.41% 

Cecropin 835 93.23% 80.00% 93.78% 34.78% 32.00% 48.48% 0.1457 
96.02% 

Cyclotide (Bracelet subfamily) 350 94.02% 100.00% 93.93% 21.05% 21.05% 34.78% 0.0562 
98.41% 

DEFL 252 92.43% 56.76% 94.27% 33.87% 26.92% 42.42% 0.1699 
95.09% 

FSAP (Brevinin subfamily) 1945 81.54% 43.36% 90.49% 51.67% 30.85% 47.15% 0.4433 
83.53% 
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FSAP (Caerin subfamily) 1946 91.63% 63.64% 92.05% 10.61% 10.00% 18.18% 0.0786 
98.54% 

FSAP (Dermaseptin subfamily) 327 89.51% 76.67% 90.04% 24.21% 22.55% 36.80% 0.1584 
96.02% 

Invertebrate defensin (Type 1 subfamily) 402 95.09% 90.48% 95.22% 35.19% 33.93% 50.67% 0.0872 
97.21% 

Invertebrate defensin (Type 2 subfamily) 510 96.02% 61.54% 96.62% 24.24% 21.05% 34.78% 0.0775 
98.27% 

Type A lantibiotic 194 71.98% 81.82% 71.83% 4.13% 4.09% 7.86% 0.0944 
98.54% 

Average  90.58% 73.55% 91.74% 31.12% 27.29% 40.76% 14.39% 
95.90% 

 

Our representation method of peptide sequences is characterized by the identification 

of restrictive physicochemical properties in different regions of the peptide sequence. 

We compared this method of representation with another simple representation 

method that uses all physicochemical and compositional properties in different regions 

within the peptide sequence. Consequently, the entire set of 294 amino acids features 

in each of the 6 peptide regions (n1,n2,n3,n4,M and C) were used. This resulted into a 

total of 1948=184 + (294x6) features without performing any additional feature 

selection. The clustering results in (Table 3.6) provided average sensitivity, specificity 

and precision for all 14 target AMP families of 63.91%, 93.54% and 32.51%, respectively. 

We again noticed significance drop in sensitivity and precision as compared with the 

values obtained when features were selected by our method (Table 3.3). This confirms 

the importance of identifying the restrictive physicochemical properties in different 

regions of the peptide sequence followed by feature subset selection to select subset of 

restrictive properties. Since huge percentage of properties do not contribute to 

distinguishing the AMP families, if we use these properties they will affect the distance 
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measure. The precision and the sensitivity obtained by four different methods used to 

represent the AMPs are compared in (Figure 3.3 and Figure 3.4). 

 

Table 3.6. K-means clustering performance using all physicochemical properties. The k-

means clustering performance of 14 target AMP families using all the 294 

physicochemical properties in each of the 6 regions (n1,n2,n3,n4,M and C). 

Target AMP family Number of 
features 

Accuracy Sensitivity Specificity Precision Jaccard 
Index 

F-Measure Entropy 
Purity 

Alpha-defensin 1948 94.82% 67.65% 96.11% 45.10% 37.10% 54.12% 0.157 
95.48% 

Bacteriocin 1948 96.55% 70.83% 97.39% 47.22% 39.53% 56.67% 0.116 
96.81% 

Beta-defensin 1948 87.92% 36.59% 90.87% 18.75% 14.15% 24.79% 0.241 
94.56% 

Bombinin 1948 88.71% 80.65% 89.06% 24.04% 22.73% 37.04% 0.1598 
95.88% 

Cathelicidin 1948 96.02% 33.33% 98.35% 42.86% 23.08% 37.50% 0.1611 
96.41% 

Cecropin 1948 93.49% 66.67% 94.61% 33.90% 28.99% 44.94% 0.1487 
96.02% 

Cyclotide (Bracelet subfamily) 1948 99.07% 100.00% 99.06% 63.16% 63.16% 77.42% 0.024 
99.07% 

DEFL 1948 90.04% 54.05% 91.90% 25.64% 21.05% 34.78% 0.1996 
95.09% 

FSAP (Brevinin subfamily) 1948 81.54% 43.36% 90.49% 51.67% 30.85% 47.15% 0.4429 
83.53% 

FSAP (Caerin subfamily) 1948 91.63% 63.64% 92.05% 10.61% 10.00% 18.18% 0.0786 
98.54% 

FSAP (Dermaseptin subfamily) 1948 95.22% 80.00% 95.85% 44.44% 40.00% 57.14% 0.1234 
96.02% 

Invertebrate defensin (Type 1 subfamily) 1948 91.24% 100.00% 90.98% 24.14% 24.14% 38.89% 0.0921 
97.21% 

Invertebrate defensin (Type 2 subfamily) 1948 85.13% 61.54% 85.54% 6.96% 6.67% 12.50% 0.0925 
98.27% 

Type A lantibiotic 1948 96.41% 36.36% 97.30% 16.67% 12.90% 22.86% 0.0876 
98.54% 

Average  91.99% 63.91% 93.54% 32.51% 26.74% 40.28% 15.17% 
95.82% 
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Figure 3.3. Comparison between AMP representation methods (precision). Bar plots of 

the precision of four AMP representation methods. 

 

 

Figure 3.4. Comparison between AMP representation methods (sensitivity). Bar plots 

of the sensitivity of four AMP representation methods. 
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3.4.3 Comparison between Genetic Algorithm (GA), Particle Swarm Optimization (PSO) 

and Differential Evolution (DE) optimization algorithms 

We compared the clustering performance using the features selected by three different 

global optimization algorithms, Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO) and Differential Evolution (DE). We found the following: 

1. The majority of the features selected by GA were among features selected by 

PSO and DE. 

2. While we tested many different parameter values for both of PSO and DE, and 

selected the best results for both of them, GA gives the minimum set of 

features that yielded the highest accuracy among the three methods.  

The results of PSO and DE are provided below in Tables 3.7 and 3.8, respectively, while 

the results of GA are provided in Table 3.3 in the previous section. 

 

Table 3.7. K-means clustering performance using PSO algorithm. The performance of 

the k-means clustering of 14 target AMP families using features selected by the Particle 

Swarm Optimization (PSO) algorithm. 

Target AMP family Number of 
features Accuracy Sensitivity Specificity Precision 

Jaccard 
Index F-Measure Entropy 

Purity 

Alpha-defensin 101 99.34% 91.18% 99.72% 93.94% 86.11% 92.54% 0.0442 
99.34% 

Bacteriocin 60 99.73% 91.67% 100.00% 100.00% 91.67% 95.65% 0.0226 
99.73% 

Beta-defensin 92 98.80% 85.37% 99.58% 92.11% 79.55% 88.61% 0.0676 
98.80% 

Bombinin 134 99.61% 95.12% 99.86% 97.50% 92.86% 96.30% 0.0271 
99.61% 

Cathelicidin 204 97.21% 59.26% 98.62% 61.54% 43.24% 60.38% 0.1318 
97.21% 
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Cecropin 143 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cyclotide (Bracelet subfamily) 113 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

DEFL 90 98.80% 89.19% 99.30% 86.84% 78.57% 88.00% 0.0596 
98.80% 

FSAP (Brevinin subfamily) 485 88.56% 53.15% 96.65% 78.35% 46.34% 63.33% 0.3161 
91.81% 

FSAP (Caerin subfamily) 876 98.94% 81.82% 99.19% 60.00% 52.94% 69.23% 0.036 
98.94% 

FSAP (Dermaseptin subfamily) 121 99.07% 90.00% 99.45% 87.10% 79.41% 88.52% 0.0498 
99.07% 

Invertebrate defensin (Type 1 subfamily) 168 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Invertebrate defensin (Type 2 subfamily) 209 98.94% 61.54% 99.59% 72.73% 50.00% 66.67% 0.0548 
98.94% 

Type A lantibiotic 74 98.94% 90.91% 99.06% 58.82% 55.56% 71.43% 0.0299 
98.94% 

Average  98.42% 84.94% 99.36% 84.92% 75.45% 84.33% 6.00% 
98.66% 

 

Table 3.8. K-means clustering performance using DE algorithm. The performance of the 

k-means clustering of 14 target AMP families using features selected by the Differential 

Evolution (DE) optimization algorithm. 

Target AMP family Number of 
features Accuracy Sensitivity Specificity Precision 

Jaccard 
Index F-Measure Entropy 

Purity 

Alpha-defensin 73 99.20% 88.24% 99.72% 93.75% 83.33% 90.91% 0.0474 
99.20% 

Bacteriocin 57 99.20% 91.67% 99.45% 84.62% 78.57% 88.00% 0.0443 
99.20% 

Beta-defensin 85 98.01% 80.49% 99.02% 82.50% 68.75% 81.48% 0.0991 
98.01% 

Bombinin 246 99.87% 96.77% 100.00% 100.00% 96.77% 98.36% 0.0097 
99.87% 

Cathelicidin 129 97.08% 55.56% 98.62% 60.00% 40.54% 57.69% 0.135 
97.08% 

Cecropin 211 98.94% 86.67% 99.45% 86.67% 76.47% 86.67% 0.0581 
98.94% 

Cyclotide (Bracelet subfamily) 126 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

DEFL 72 97.88% 72.97% 99.16% 81.82% 62.79% 77.14% 0.1123 
97.88% 

FSAP (Brevinin subfamily) 299 93.63% 72.73% 98.40% 91.23% 67.97% 80.93% 0.26 
94.54% 

FSAP (Caerin subfamily) 392 99.74% 81.82% 100.00% 100.00% 81.82% 90.00% 0.0165 
99.74% 

FSAP (Dermaseptin subfamily) 73 97.61% 86.67% 98.06% 65.00% 59.09% 74.29% 0.0835 
97.61% 

Invertebrate defensin (Type 1 subfamily) 126 99.07% 95.24% 99.18% 76.92% 74.07% 85.11% 0.0359 
99.07% 

Invertebrate defensin (Type 2 subfamily) 133 99.07% 61.54% 99.73% 80.00% 53.33% 69.57% 0.0478 
99.07% 

Type A lantibiotic 52 95.88% 81.82% 96.09% 23.68% 22.50% 36.73% 0.0612 
98.54% 
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Average  98.23% 82.30% 99.06% 80.44% 69.00% 79.78% 7.22% 
98.48% 

 

 

3.4.4 Comparison of k-means clustering with Affinity Propagation (AP) clustering 

Algorithm 

We compared the performance of clustering 14 target AMP families using Affinity 

Propagation (AP) and k-means algorithms. The clustering results in Table 3.9 for AP as 

compared to the clustering results of k-means algorithm in Table 3.3 shows the k-means 

clustering provided higher accuracy than AP for most of the AMP families. 

 

Table 3.9. Affinity Propagation clustering performance. The performance of the Affinity 

Propagation (AP) clustering of 14 target AMP families using features selected by the 

Genetic Algorithm. 

Target AMP family Number of 
features 

Accuracy Sensitivity Specificity Precision 
Jaccard 
Index 

F-Measure Entropy 
Purity 

Alpha-defensin 68 98.67% 79.41% 99.58% 90.00% 72.97% 84.38% 0.0719 
98.67% 

Bacteriocin 70 99.20% 83.33% 99.73% 90.91% 76.92% 86.96% 0.0583 
99.20% 

Beta-defensin 62 96.81% 85.37% 97.47% 66.04% 59.32% 74.47% 0.1165 
96.81% 

Bombinin 113 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cathelicidin 71 98.54% 70.37% 99.59% 86.36% 63.33% 77.55% 0.0891 
98.54% 

Cecropin 190 98.94% 93.33% 99.17% 82.35% 77.78% 87.50% 0.0469 
98.94% 

Cyclotide (Bracelet subfamily) 93 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

DEFL 51 97.34% 67.57% 98.88% 75.76% 55.56% 71.43% 0.1484 
97.34% 

FSAP (Brevinin subfamily) 254 96.15% 83.92% 99.02% 95.24% 80.54% 89.22% 0.2278 
96.15% 

FSAP (Caerin subfamily) 241 98.67% 81.82% 98.92% 52.94% 47.37% 64.29% 0.0423 
98.67% 
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FSAP (Dermaseptin subfamily) 95 98.54% 83.33% 99.17% 80.65% 69.44% 81.97% 0.0739 
98.54% 

Invertebrate defensin (Type 1 subfamily) 71 99.60% 90.48% 99.86% 95.00% 86.36% 92.68% 0.0276 
99.60% 

Invertebrate defensin (Type 2 subfamily) 78 99.47% 69.23% 100.00% 100.00% 69.23% 81.82% 0.0269 
99.47% 

Type A lantibiotic 48 99.20% 54.55% 99.87% 85.71% 50.00% 66.67% 0.0452 
99.20% 

Average  98.65% 81.62% 99.38% 85.78% 72.06% 82.78% 6.96% 
98.65% 

 

3.4.5 Comparison of clustering using different distance measures 

We performed k-means clustering of 14 target AMP families using three different 

distance measures (correlation, cosine and city block) as shown in Tables 3.10-3.12. The 

comparison of these results with the clustering results using Euclidean distance (Table 

3.3) shows that the clustering results using these measures are comparable to those 

obtained by the Euclidean distance, but better results with minimum number of 

features were obtained with the Euclidean distance. 

 

Table 3.10. K-means clustering performance using city block distance. The 

performance of the k-means clustering (using city block distance measure) of 14 target 

AMP families using features selected by the Genetic Algorithm. 

Target AMP family Number of 
features 

Accuracy Sensitivity Specificity Precision Jaccard 
Index 

F-Measure Entropy 
Purity 

Alpha-defensin 13 99.73% 94.12% 100.00% 100.00% 94.12% 96.97% 0.0209 
99.73% 

Bacteriocin 11 99.87% 95.83% 100.00% 100.00% 95.83% 97.87% 0.0102 
99.87% 

Beta-defensin 28 99.60% 92.68% 100.00% 100.00% 92.68% 96.20% 0.0251 
99.60% 

Bombinin 17 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cathelicidin 39 99.47% 88.89% 99.86% 96.00% 85.71% 92.31% 0.037 
99.47% 
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Cecropin 42 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cyclotide (Bracelet subfamily) 4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

DEFL 17 99.34% 86.49% 100.00% 100.00% 86.49% 92.75% 0.0485 
99.34% 

FSAP (Brevinin subfamily) 110 97.92% 90.21% 99.68% 98.47% 88.97% 94.16% 0.1268 
97.92% 

FSAP (Caerin subfamily) 484 99.60% 81.82% 99.87% 90.00% 75.00% 85.71% 0.0228 
99.60% 

FSAP (Dermaseptin subfamily) 29 99.07% 90.00% 99.45% 87.10% 79.41% 88.52% 0.0524 
99.07% 

Invertebrate defensin (Type 1 subfamily) 9 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Invertebrate defensin (Type 2 subfamily) 8 99.34% 61.54% 100.00% 100.00% 61.54% 76.19% 0.0455 
99.34% 

Type A lantibiotic 16 99.73% 90.91% 99.87% 90.91% 83.33% 90.91% 0.0156 
99.73% 

Average  99.55% 90.89% 99.91% 97.32% 88.79% 93.69% 2.89% 
99.55% 

 

Table 3.11. K-means clustering performance using cosine distance. The performance of 

the k-means clustering (using cosine distance measure) of 14 target AMP families using 

features selected by the Genetic Algorithm.  

Target AMP family Number of 
features Accuracy Sensitivity Specificity Precision 

Jaccard 
Index F-Measure Entropy 

Purity 

Alpha-defensin 23 99.73% 94.12% 100.00% 100.00% 94.12% 96.97% 0.0187 
99.73% 

Bacteriocin 23 99.87% 95.83% 100.00% 100.00% 95.83% 97.87% 0.0096 
99.87% 

Beta-defensin 43 98.94% 85.37% 99.72% 94.59% 81.40% 89.74% 0.062 
98.94% 

Bombinin 33 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cathelicidin 51 98.27% 77.78% 99.04% 75.00% 61.76% 76.36% 0.0899 
98.27% 

Cecropin 55 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cyclotide (Bracelet subfamily) 17 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

DEFL 29 99.47% 89.19% 100.00% 100.00% 89.19% 94.29% 0.038 
99.47% 

FSAP (Brevinin subfamily) 261 92.43% 70.63% 97.54% 87.07% 63.92% 77.99% 0.3356 
92.43% 

FSAP (Caerin subfamily) 199 99.60% 81.82% 99.87% 90.00% 75.00% 85.71% 0.022 
99.60% 

FSAP (Dermaseptin subfamily) 36 99.20% 96.67% 99.31% 85.29% 82.86% 90.62% 0.0367 
99.20% 

Invertebrate defensin (Type 1 subfamily) 17 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Invertebrate defensin (Type 2 subfamily) 44 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Type A lantibiotic 37 99.60% 100.00% 99.60% 78.57% 78.57% 88.00% 0.0139 
99.60% 
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Average  99.08% 92.24% 99.65% 93.61% 87.33% 92.68% 4.47% 
99.08% 

 

Table 3.12. K-means clustering performance using correlation distance. The 

performance of the k-means clustering (using correlation distance measure) of 14 target 

AMP families using features selected by the Genetic Algorithm. 

Target AMP family Number of 
features 

Accuracy Sensitivity Specificity Precision 
Jaccard 
Index 

F-Measure Entropy 
Purity 

Alpha-defensin 24 99.73% 94.12% 100.00% 100.00% 94.12% 96.97% 0.0195 
99.73% 

Bacteriocin 26 99.87% 95.83% 100.00% 100.00% 95.83% 97.87% 0.0095 
99.87% 

Beta-defensin 41 99.60% 92.68% 100.00% 100.00% 92.68% 96.20% 0.0285 
99.60% 

Bombinin 45 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cathelicidin 45 98.67% 88.89% 99.04% 77.42% 70.59% 82.76% 0.0603 
98.67% 

Cecropin 36 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Cyclotide (Bracelet subfamily) 30 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

DEFL 38 99.60% 94.59% 99.86% 97.22% 92.11% 95.89% 0.0291 
99.60% 

FSAP (Brevinin subfamily) 370 88.84% 45.45% 99.02% 91.55% 43.62% 60.75% 0.3225 
89.91% 

FSAP (Caerin subfamily) 112 99.87% 90.91% 100.00% 100.00% 90.91% 95.24% 0.0094 
99.87% 

FSAP (Dermaseptin subfamily) 41 99.73% 96.67% 99.86% 96.67% 93.55% 96.67% 0.0183 
99.73% 

Invertebrate defensin (Type 1 subfamily) 30 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 
100.00% 

Invertebrate defensin (Type 2 subfamily) 35 99.60% 92.31% 99.73% 85.71% 80.00% 88.89% 0.0205 
99.60% 

Type A lantibiotic 35 99.34% 90.91% 99.46% 71.43% 66.67% 80.00% 0.0255 
99.34% 

Average  98.92% 91.60% 99.78% 94.29% 87.15% 92.23% 3.88% 
98.99% 

 

3.4.6 Testing the Selected Properties on Non-AMPs and other AMP Databases 

We checked if the features determined for AMP families would separate AMPs from 

non-AMPs. If this is not possible, then the non-AMPs would have similar feature profiles 

as some classes of AMPs. We found that this distinguishing of AMPs from non-AMPs was 
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possible with an average accuracy, sensitivity, specificity and cluster purity of 96.72%, 

67.62%, 96.85% and 99.56%, respectively, confirming that features selected for AMP 

families are highly specific to AMPs. One should note that our selection of features was 

not made with the aim to distinguish AMP families from non-AMPs. Rather, they were 

selected to distinguish different AMP families from other AMPs. 

Furthermore, we evaluated another database CAMP (Waghu, et al., 2014). We 

considered only experimentally validated mature AMP peptide sequences with UNIPROT 

IDs from CAMP. We tested if the selected features based on DAMPD database entries 

would separate AMP families from CAMP and found that this is possible with an average 

accuracy, sensitivity, specificity and cluster purity of 94.03%, 76.91%, 94.58% and 

97.96%, respectively. This suggests that the features selected based on DAMPD entries 

discriminate well between different AMP families in the CAMP database. It should be 

mentioned, however, that the criteria for inclusion of AMPs into CAMP and into DAMPD 

are not necessarily the same, so very strict comparison is not possible. 

3.4.7 Selected Properties that Discriminate AMP Families 

We identified, in total, 394 properties to discriminate each family of the 14 target AMP 

families from all other AMPs (Table 3.2, column 6). The whole set of these properties is 

provided in (Appendix 3). Different amounts of properties were recognized as being 

characteristic for different AMP families. For instance, seven properties can distinguish 

cyclotides (bracelet subfamily) from all other AMPs with 100% accuracy. Though, 

additional number of properties were required to discriminate certain AMP families 
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from all other AMPs, especially sub-families belong to the same super family. E.g., s 

brevinin, caerin and dermaseptin sub-families of the frog skin active peptide (FSAP) 

family needed 118, 28 and 25 properties, respectively. 

The selected properties within the peptide sequence are region-specific. Specifically, the 

properties are determined from the N terminal, M region, C terminal or the entire AMP 

sequence. Part of the selected properties are associated to compositional features of 

amino acid sequence, while other part of the selected properties are associated to 

physicochemical properties. The selected properties distribution among these two 

groups of features is illustrated in (Table 3.2, columns 8-9). Amino acid composition 

properties can distinguish highly separable AMP family from other AMPs, such as type A 

lantibiotic family. Though, other 13 AMP families need a mixture of amino acid 

composition and physicochemical properties to discern their peptides from other AMPs. 

Certain selected properties show the enrichment of a particular amino acid(s) or 

physicochemical property in a specific region, these properties are so-called “enriched”.  

Conversely, some other properties indicate the importance of the depletion or absence 

of a specific amino acid(s) or physicochemical property in a specific region, which we 

name these properties as “depleted”.   For   instance, in alpha defensins, arginine is 

enriched and lysine is depleted in the C terminal, and these two composition properties 

were identified as significant properties to characterize this family. 
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3.5 Discussion 

We developed here a novel computational model for identification of AMP 

characteristics that discern peptides of AMP families using compositional and 

physicochemical properties. The identified properties can serve as potential design 

guides for synthetic AMPs development. In addition, these properties can be utilized for 

the development of a classification model to predict the class (category) of a new 

candidate AMP. In the following text, enrichment and depletion are considered related 

to one target AMP family relative to all other AMP families. We comment here on the 

selected properties for all of the 14 AMP families. 

Alpha-defensins. We found enrichment of cysteine (C) in the n3 and n4 regions, arginine 

(R) in the M region, and arginine and tyrosine (Y) in the C region, while glycine (G) was 

found depleted in the n2 region as well as lysine (K) in the C region. Numerous studies 

have demonstrated that bactericidal activity is independent of highly conserved 

features, such as invariant disulfide array, Arg-Glu salt bridge, or Gly residue at CysIII+8 I, 

with exception to the high arginine content relative to lysine (Lehrer, 2007; Rajabi, et al., 

2008; Schmidt, et al., 2012), which complies with our finding. Moreover, Schmidt et al. 

(2012) demonstrated that the replacement of arginine with lysine decreases the activity 

of these peptides (Schmidt, et al., 2012). Also, AMPs disrupt membranes through a 

combination of electrostatic interactions between cationic amino acid side chains and 

electronegative components of the microbial cell envelope, followed by the insertion of 

hydrophobic patches into the nonpolar interior of the membrane bilayer (Brogden, 
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2005). The mouse alpha-defensin cryptdin-4 (Crp4) was demonstrated to induce 

bactericidal activity via this mechanism (Satchell, et al., 2003). NMR structure of Crp4 

demonstrated its cationic amino acids to be arginine, lysine and histidine (H) and its 

hydrophobic patches to include isoleucine (I), leucine (L), valine (V), phenylalanine (F) 

and tyrosine. Similar to these findings, we found for alpha-defensins the enrichment of 

cysteine in the N region, which, taking into account their hydropathy index, may suggest 

that it is a key component of the hydrophobic patch. The enrichment of arginine and 

tyrosine likely adds to the electrostatic interaction that contributes to membrane 

disruption. 

Bacteriocins. We found an enrichment of glycine, valine, asparagine and tyrosine in the 

n2, n2, n3 and n3 regions, respectively. Alanine (A) was found depleted in the N region. 

If we only consider the amino acids identified in our study as enriched, we pinpoint 

valine, glycine and tyrosine as key hydrophobic residues for bacteriocins. Findings 

reported by (Jabrane, et al., 2002) partially support our results as they demonstrated 

that leucine and asparagine are enriched in bacteriocin serracin P. Oppegard et al. 

additionally demonstrated by mutation analysis that substituting tyrosine with glycine 

or leucine significantly decreases bactericidal activity (Oppegard, et al., 2008). 

Beta-defensins. We found arginine, valine, phenylalanine, asparagine (N), cysteine and 

glycine enriched in the n1, n2, n3, n4, n4, and n4 regions, respectively. Also, for the 

properties extracted from the n4 sub-region an enrichment for the parameter of charge 

transfer donor capacity was found (Charton and Charton, 1983). The M region exhibited 



93 
 

enrichment, of cysteine, while the C region had enrichment of arginine and cysteine. It 

was proposed that the beta-defensin N-terminal helix with many hydrophobic residues 

is inserted inside the micelle, while the C-terminal helix with one large positive charge 

patch is located outside the micelle and interacts with the charged head groups of the 

micelle (Chandrababu, et al., 2009).  Of the array of amino acids, we identified valine, 

phenylalanine and cysteine as key hydrophobic residues enriched in the N-terminal that 

likely facilitate the insertion of the beta-defensins N-terminal helix into the micelles, 

whilst for the C-terminal helix arginine is the key amino acid forming the positive charge 

patch. Finally, if we only consider amino acids that our study identified as enriched, we 

observe cysteine glycine and arginine most enriched. Our findings are partly 

corroborated by the results of (Midorikawa, et al., 2003) and (Chandrababu, et al., 2009) 

as they demonstrated that the beta-defensins are characterized by the enrichment of 

cysteine. That is the existence of six conserved cysteine residues (Midorikawa, et al., 

2003) and that the arrangement of cysteine residues in the three-dimensional space is 

important to the antimicrobial selectivity and salt-dependent activity by mutating all six 

cysteine residues of human beta-defensin-3 (HBD-3) (Chandrababu, et al., 2009).  

Bombinins. We only identified a few properties related to composition and distance 

such as the enrichment of glycine and threonine (T) in the n1 and n4 regions, 

respectively, and of glycine and leucine in the C region. Our findings are in part 

supported by bombinins being characterized as glycine-rich and Zangger et al. 
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demonstrated via NMR the presence of a glycine ridge that is believed to provide unique 

functionality (Zangger, et al., 2008). 

Cathelicidins. We identified the enrichment of arginine in the n1, and n2 regions, 

respectively. Lysine was identified depleted in the C region, while proline (P) was 

enriched in the C region. Also, for the properties extracted from the n3 sub-region, the 

enrichment for the linker propensity from 1-linker and normalized frequency of beta-

sheet, were found (George and Heringa, 2002; Levitt, 1978). Our findings are supported 

by cathelidins being characterized as proline-rich and having a highly conserved N-

terminal preprosequences followed by variable C-terminal sequences that are 

biologically active effectors (Chan, et al., 2001; Zanetti, et al., 1995). Moreover, the 

proline was proved to sustain the antimicrobial activity of mammalian cathelicidins by 

resisting serine proteases cleavage of the scissile bond (Shinnar, et al., 2003). Our 

finding are further supported by cathelicidins from hagfish exhibiting four arginines 

positioned between the cathelin domain and the antimicrobial sequences (Uzzell, et al., 

2002). The arginine tetrads of these latent zymogens are believed to be specifically 

processes by prohormone convertases such as furin proteases in specific cells as an 

activity switch (Rockwell, et al., 2002; Steiner, 1998). 

Cecropins. We identified enrichment of lysine and glutamic acid (E) in the n3 and n4 

regions, respectively, while alanine was enriched in the C region. Andreu et al. produced 

synthetic cecropin A that induces comparable antibacterial activity and is 

indistinguishable by chemical and physical criteria from the naturally occurring cecropin 
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A (Andreu, et al., 1983). In partial corroboration with our findings, it has been 

demonstrated that cecropin analogues with an impaired N-terminal helix, such as 

cecropin A-(3-37) with removed lysine and tryptophan has reduced membrane 

disrupting abilities that correlate with their lower antibacterial activity that was 

rationalized in terms of reduced binding to bacteria (Andreu, et al., 1983; Steiner, et al., 

1988). Similarly, Fink et al. demonstrated via a chemically synthesized cecropin D analog 

(9-37) that no activity is observed without phenylalanine and glutamic acid in the N-

terminal (Fink, et al., 1989). Moreover, Lee et al. demonstrated that lysine, glutamic 

acid, and arginine are conserved in cecropins and that alanine is enriched (Lee, et al., 

1989). 

Cyclotides. We only identified a few properties related to composition, such as 

enrichment of glutamic acid and glycine in the n4 and C regions, respectively. For the 

properties extracted from the C region enrichment for normalized frequency of turn in 

alpha+beta class was found (Palau, et al., 1982). Work by Hermann et al. partially 

supports these finding as they demonstrated that methylation of charged glutamic acid 

residue of cyclotide cycloviolacin O2 decreased its potency 48-fold. They additionally 

showed conserved cysteine residues and demonstrated that acetylation of the two 

lysine residues also reduced the potency 3-fold (Herrmann, et al., 2006). Koehbach et al. 

elucidated the structure of kalata B7 to determine its associated ligand–receptor 

interaction. They inferred an interaction with the oxytocin receptor owing to loop 3 of 

kalata B7 (-CYTQGC-) being homologous to the six-residue ring sequence of oxytocin. 
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They further exhibited the crucial role of the tyrosine and glutamine residues (loop 3) by 

generating mutated variants (Y replaced by A, S, or F; Q was replaced by A or E), all of 

which were inactive or did not bind to the receptor (Koehbach, et al., 2013). Moreover, 

Rosengren et al. demonstrated that most cyclotides have a glycine positioned before 

the cysteine residue to form the f angle required for the type II b-turn needed for 

cyclization (Rosengren, et al., 2003). 

Defensin-like (DEFL) peptides. We found glutamic acid, serine, threonine, cysteine, 

cysteine, glutamic acid, cysteine, glycine and serine to be enriched in the n1, n1, n1, n2, 

n3, n3, n4, n4, n4 regions, respectively. Cysteine was enriched in the C region. We also 

found for the properties extracted from the n4 sub-region such as conformational 

parameter of inner helix (Beghin and Dirkx, 1975) and ratio of average and computed 

composition (Nakashima, et al., 1990) to be depleted. If we only consider the amino 

acids that our study identified as enriched we observe the N-terminal is negatively 

charged (glutamic acid) and enriched with cysteine and serine. Our findings are in part 

supported by Correa and Oguiura findings in which they produced a phylogenetic 

analysis of beta-defensin-like genes of Bothrops, Crotalus and Lachesis snakes and 

observed that these have conserved cysteine residues (Correa and Oguiura, 2013). 

Frog skin active peptides. We additionally discriminated sub-families, such as the 

brevinin, caerin and dermaseptin, belonging to the frog skin active peptide (FSAP) 

family. For the brevinin sub-family, we found enrichment of phenylalanine in the n1 

region, and cysteine and isoleusine in the C region. Glutamic acid and serine were 
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identified depleted in the n1 and n4 sub-regions, respectively. We also found the 

enrichment of physicochemical properties such as normalized positional residue 

frequency at helix termini N (n1 region), weights for alpha-helix at the window position 

of -6 (n2 region), normalized composition from fungi and plant (n2 region), normalized 

composition from mt-proteins (n3 region), pK(-COOH) (n3 region), normalized 

composition of membrane proteins (n4 region), weights for alpha-helix at the window 

position 1 (M region). Work by Pal et al. partially corroborates these findings as they 

demonstrated that replacement of the cysteine residues with serine in brevinin-1BYa, a 

cationic alpha-helical peptide present in skin secretions of the foothill yellow-legged frog 

Rana boylii, reduced its haemolytic activity and activities against Gram-negative bacteria 

and yeast species. However, high potency against Gram-positive bacteria was retained 

(Pal, et al., 2006). Conlon et al. (2009) demonstrated via structure-activity relationship 

of the brevinin family peptides, that brevinin-1BLc is more potent than brevinin-1Ya and 

-1Yc and that the appreciably lower antimicrobial potencies of brevinin-1Ya and -1Yc 

correlates with decreased cationicity produced by the amino acid substitutions Lys(11)--

>Asn (brevinin-1Ya) and Pro(14)-->Glu (brevinin-1Yc) (Conlon, et al., 2009).  

For the Caerin sub-family we identified fewer properties related to composition and 

distance of amino acid residues, such as the enrichment of valine in the C region, and 

enrichment of  physicochemical properties such as normalized hydrophobicity scales for 

alpha-proteins (n1 region), weights for alpha-helix at the window position of 5 (n1 

region), van der Waals parameter R0 (n1 region), surrounding hydrophobicity in turn (n1 
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region), Optical rotation (C region) and Normalized positional residue frequency at helix 

termini N" (C region). Our findings are supported in part as valine (Wong, et al., 1997) 

was shown to play a role in the activity of caerins.  

Lastly, dermaseptin sub-family showed enrichment of tryptophan in n1 and n4 regions. 

Alanine is enriched in a negatively charged M region, as well as glutamine and leucine in 

the C region. Properties that were depleted in this family include phenylalanine in the 

n1 region. We found enrichment of physicochemical properties such as weights for 

alpha-helix at the window position of -6 (n4 region), average interactions per side chain 

atom (M region) and AA composition of EXT of multi-spanning proteins (C region). Our 

finds are partially corroborated by Moll et al. demonstrating that tryptophan is 

important for this peptides ability to penetrate membranes (Moll, et al., 2000). Lequin 

et al. further showed via comparison of dermaseptin B2 and S9 structures its common 

cationic amino acids to be lysine and glutamic acid, and key hydrophobic residues to be 

isoleucine, leucine and valine (Lequin, et al., 2006). Moreover, Cao et al. compared the 

antimicrobial activities of recombinant adenoregulin with C-amidated terminus to that 

without an amidated C-terminus and demonstrated that the amide of glutamine at C-

terminus increased its potency against microorganisms such as Tritirachium album and 

Saccharomyces cerevisiae (Cao, et al., 2005). 

Type A lantibiotics. We found valine and threonine enriched in the n2 and n4 regions, 

respectively, methionine in the M region and asparagine, cysteine, phenylalanine, serine 

and threonine enriched in the C region. Cysteine and methionine are also enriched in 
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the entire sequence. Properties that appear depleted in Type A lantibiotics include 

alanine the N region and arginine in the entire sequence as well as the frequency of (>1 

aa and <=6 aa) Distances of basic amino acids (RHK) in N region. Work by Slootweg et al. 

demonstrated that C-terminal modification of nisin does not deteriorate biological 

activity in sharp contrast to N-terminal modification (Slootweg, et al., 2013). Since 

lantibiotics are a class of more extensively modified bacteriocins, characterized by the 

presence   of   lanthionine   (Lan)   and   methyllanthionine   (MeLan)   ‘hinge’   regions   that  

originate from cysteine and serine (Dischinger, et al., 2014; Lohans and Vederas, 2014), 

our findings of enriched serine and threonine in this family compared to others are 

partially supported. Moreover, Chen et al. demonstrated using mutacin II that these 

hinge regions are essential for biological activity and biosynthesis or export of the 

peptide (Chen, et al., 1998). 

Invertebrate defensins. We additionally discriminated sub-familes (Type 1 and Type 2) 

of invertebrate defensins. For the invertebrate defensin Type 1 sub-family we found 

enrichment of aspartic acid, alanine, cysteine, cysteine, leucine, cysteine and valine in 

the n1, n2, n2, n4, n4, C and C regions, respectively.  For the invertebrate defensin Type 

2 sub-family (arthropods) we found histidine, cysteine, cysteine and threonine enriched 

in the n1, n2, n3 and C regions, respectively.  
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3.6 Conclusion 

The rapid increase of MDR pathogens fostered more interest in design of novel AMPs 

using in-silico methods. In this work, we developed a method to profile different AMP 

families using compositional and physicochemical properties extracted from AMP 

sequences. We used GA to optimize an objective function based on unsupervised k-

means clustering to select the properties that strongly discriminate each AMP family 

from all other AMPs. Our results suggest that the properties that we identified to profile 

each AMP family can be a useful guide during the in-silico design process for novel 

synthetic AMPs. The method that we developed is generic and it can be applied to 

profile different protein families. 
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Novel ML Method of Prediction of Transcription Factor DNA Binding Sites 

This chapter is prepared as a manuscript:  

New method for transcription factor binding site prediction (Abdullah M. Khamis, Olaa 

Motwalli, Romina Oliva, Boris R. Jankovic, Yulia A. Medvedeva, Xin Gao, Vladimir B. 

Bajic), intended for submission 

4.1 Summary 

Identification of transcription factor (TF) binding sites (TFBSs) is important in 

computational inference of gene regulation. Classical widely used computational TFBSs 

predictions based on variants of Position Weight Matrix (PWM), frequently suffer from 

high false positive rates. In a typical computational study of transcription regulation in 

higher organisms, numerous TFBS models are used due to a large number of involved 

TFs. To overcome these problems we developed a novel method, DRAF, for TFBS 

prediction that requires only 14 prediction models for 232 human TFs and dramatically 

improves accuracy. DRAF combines information from TFBS sequence and 

physicochemical properties of the TF DNA binding domains. Computational evaluation 

of DRAF on 321 human ChIP-seq datasets shows 14-, 15- and 16-fold reduction of false 

positives relative to the models from HOCOMOCO, TRANSFAC and DeepBind, 

respectively, suggesting that conventional PWM models for TFBS prediction can be 

efficiently replaced by small number of models that significantly improve prediction 

accuracy. 
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4.2 Introduction 

Information on regulation of transcription forms a basis for understanding regulatory 

mechanisms of gene activation or repression in living organisms. Transcription factors 

(TFs) are a key component of gene regulatory networks. They bind promoters and other 

DNA regulatory regions in a sequence-specific manner and control gene expression 

through such interactions (Blancafort, et al., 2004). TF binding sites (TFBSs) on DNA are 

short sequences located in the gene regulation regions (Cawley, et al., 2004) being 

usually 5-20 base-pairs (bp) in length (Das and Dai, 2007). Accurate detection of TFBSs is 

frequently a central step in computational reconstruction of gene regulatory networks. 

Both computational and experimental methods have been used for TFBS detection. For 

experimental approaches, there are numerous in vivo and in vitro high-throughput 

methods that have been developed (Geertz and Maerkl, 2010; Weirauch, et al., 2013), 

such as, for example, DNA microarray (Bulyk, et al., 1999) and microfluidic technologies 

(Maerkl and Quake, 2007) for in vitro approaches, and ChIP-chip (Horak and Snyder, 

2002) and the more recent ChIP-seq (Park, 2009) technologies for in vivo approaches. 

High-throughput ChIP-seq experiments from the ENCODE project (Consortium, 2012; 

Gerstein, et al., 2012) have investigated only about 200 human TFs in less than a 

hundred cell lines. Despite the progress that has been made, these numbers are far 

lower than the estimated number of TFs that are encoded in the human genome or that 

might regulate a single cell type (Vaquerizas, et al., 2009). Therefore, the need for 

efficient computational methods to predict TFBS remains (Hoglund and Kohlbacher, 
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2004). Indeed, computational approaches for identifying TFBSs have been used 

successfully (Bulyk, 2003; Qiu, 2003) varying from simple pattern matching methods to 

more complex models (Elnitski, et al., 2006). As an illustration, cursory search for articles 

on   “computational transcription factor binding site models”   in   Web   of   Science   of  

Thomson Reuters yielded over 43,000 citations on December 07, 2015. The actual 

number of citations is significantly higher. 

Pattern matching methods attempt to predict a TFBS by screening a candidate sequence 

of interest with a model derived from experimentally determined binding sites for a TF. 

Although suggested three decades ago (Stormo, et al., 1982), position-specific weight 

matrix (PWM) type models still remains the most widely used models for TFBS 

predictions, primarily due to their simplicity. However, a PWM model has several 

disadvantages. First, it is very sensitive to the quality and size of the set of TFBSs DNA 

sequences used to derive the PWM model (Roulet, et al., 1998). Secondly, the PWM 

prediction models of TFBSs frequently result in a high rate of false-positive predictions 

(Bi, et al., 2011). Thirdly, conventional PWMs do not model dependencies between 

individual positions within the TFBS (Stormo, 2000). Fourthly, usually for a TF one or 

more models for their TFBSs are developed to capture variability among TFBS sequences 

and to improve model performance. This results in a large number of TFBS models in 

major resources. For Example, 426 TFBS models are used to represent 401 TFs in 

HOCOMOCO (Kulakovskiy, et al., 2013), while 1,082 TFBS models in JASPAR (Mathelier, 

et al., 2015) represent 1,059 TFs. In TRANSFAC, for 5,760 TFs a total of 2,170 TFBS 

models are used. Further, PWM models of TFBSs do not utilize any information about 
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the TFs that bind to them. As a consequence, these models may not discriminate 

between slightly different binding sites that belong to different TFs with different 

structures and DNA affinity properties. 

Obviously, there has been a challenge to develop models that predicts TFBSs with high 

specificity and sensitivity. Classical TFBS PWM models have been improved to 

incorporate nucleotide k-mer relationships (Gershenzon, et al., 2005; Mordelet, et al., 

2013). Also, more flexible approaches have been implemented to develop customized 

models of TFBSs, such as those based on Markov Chain (Ellrott, et al., 2002), Bayesian 

networks (Ben-Gal, et al., 2005), undirected graphs (Reddy, et al., 2007), Hidden Markov 

Models (HMM) (Mathelier and Wasserman, 2013) and most recently deep learning 

(Alipanahi, et al., 2015). Various methods incorporated sequence-specific and structural 

features of DNA for prediction of TFBSs, for example, DNA shape (Zhou, et al., 2015) and 

local chemical and structural properties (Bauer, et al., 2010; Meysman, et al., 2011).  

However, the above approaches did not use information from TFs that bind TFBSs. A lot 

of research was done on incorporating suitable TFs properties into models for TFBS 

predictions with a hope to improve models and their prediction accuracy. Some 

examples of such work are the use of empirical protein–DNA binding energies 

(Alamanova, et al., 2010; Chen, et al., 2012; Gabdoulline, et al., 2012; Kono and Sarai, 

1999; Liu, et al., 2008), also based on structural knowledge (Endres, et al., 2004; Kaplan, 

et al., 2005). 

In addition, a variety of computational approaches have been developed based on 

modeling TF-TFBS interactions. Qian and colleagues (Qian, et al., 2006) used gene 
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ontology (GO) annotations of TFs, represented in a binary vector to denote presence or 

absence of each GO term in the TF, and a binary representation of TFBSs (Bhasin, et al., 

2005) to describe TF-TFBS pairs. This work was later extended (Qian, et al., 2007) to 

include GO annotations of the TF target genes (TFT) to the TF-TFBS pairs, resulting in the 

use of TF-TFT-TFBS triplets. This improved the accuracy of predictions. An apparent 

deficiency of this approach occurs when two TFs share the same GO features but have 

different binding sites. An associated problem is that GO annotation of TFs does not 

have sufficient resolution, so this additionally reduces capability to predict distinct 

TFBSs. Moreover, such methods are not applicable for studies of TFs that do not possess 

enough GO functional annotations. Another approach that includes the amino acid 

properties of TFs in a model was implemented in (Cai, et al., 2009), where only six 

physicochemical properties of amino acids were used to for feature vectors that 

describe a TF. 

The previously mentioned deficiencies of PWM models for TFBS predictions reduce 

significantly utility of such models. In order to overcome these deficiencies, in this work, 

we developed a novel method, DRAF, for predicting TFBSs based on the physicochemical 

properties of the DNA binding domains of TFs and the nucleotides sequence 

characteristics of target TFBSs of TFs. DRAF dramatically reduces both the number of 

required TFBS models and the false positive rate of TFBS prediction. It required only 14 

prediction models for 232 TFs. In a comprehensive evaluation we demonstrate that 

DRAF models, on the ChIP-seq data of 321 human cell types obtained from ENCODE 

(Consortium, 2012), at the same sensitivity level generate many fold higher specificity 
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than PWMs from HOCOMOCO and TRANSFAC (Matys, et al., 2006) databases, or the 

DeepBind (Alipanahi, et al., 2015) models. 

4.3 Methods 

4.3.1 Datasets 

TF and TFBS Sequences. We used TFBS sequences from the HOCOMOCO (Kulakovskiy, et 

al., 2013) database version 9, where TFBSs were selected based on the PWM thresholds 

with P-value < 0.0005 (as explained in (Kulakovskiy, et al., 2013)). P-values were 

computed by the MACRO-APE (http://autosome.ru/macroape, (Vorontsov, et al., 

2013)). Consequently, 139,085 TFBS sequences of 426 TFBS models corresponding to 

401 human TFs were obtained. Due to the large number of parameters in the DRAF 

models as compared to PWM models, we requested that the minimum required 

number of TFBSs per a single TF is 15. We further discarded all TFs that did not have 

DNA binding domains in the Pfam database (Finn, et al., 2014). This reduced the initial 

set of 426 TFBS models (associated with 401 TFs) to 250 TFBS models (associated with 

232 TFs) with a total of 110,399 corresponding TFBS sequences (Table 4.1). The amino 

acid sequences for these 232 TFs were obtained from UniProt (UniProt, 2015). 

http://autosome.ru/macroape
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Table 4.1. TFBS model distribution according to TFBS length. Total of 250 TFBS models 

distributed in 14 models represent 14 distinct TFBS lengths. 

TFBS Length Number of Tfs Total Number of 
TFBSs 

7 18 3,521 

8 13 4,927 

9 37 20,818 

10 28 7,338 

11 29 12,645 

12 27 13,211 

13 33 11,672 

14 21 7,534 

15 12 7,721 

16 8 4,389 

17 9 4,245 

18 7 3,946 

19 5 6,719 

20 3 1,713 

Total 250 110,399 

 

TF Domains: Protein domain information was obtained from the Pfam database. We 

used domains that  are  annotated  as  “DNA  binding  domain”  in  at  least  three  out  of  total  
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five annotation sections used in Pfam (Pfam, Seq-info, Pdb, GO and Interpro). We 

restricted our study to manually curated DNA binding domains (that is Pfam-A) having 

the highest significance score and E-value less than 0.1. Finally, each TF was represented 

by the amino acid sequence of its DNA binding domains. 

 

4.3.2 Modeling TF-TFBS sequence pairs 

Encoding TF Properties. Each TF was encoded by three sets of characteristics: a/ the 

physicochemical properties of amino acids obtained from the AAindex database 

(Kawashima and Kanehisa, 2000), last database update March 31, 2008 (Kawashima, et 

al., 2008), b/ the DNA binding domain family classification, and c/ the amino acid 

binding mode preference to DNA bases obtained from (Luscombe and Thornton, 2002). 

For the first set of properties, we used numerical values of 544 physicochemical 

properties of amino acids available in the AAindex database version 9.1. A feature 𝑖 of 

𝑇𝐹௝ is the average value of the physicochemical property 𝑖 in the sequence of the DNA 

binding domain of 𝑇𝐹௝ weighted by the relative occurrences of individual amino acids in 

the sequence: 

 

Feature௜൫𝑇𝐹௝൯ = ෍
𝐹𝑟𝑒𝑞௞

𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝐹௝)
∗ 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦  𝑉𝑎𝑙𝑢𝑒௜(𝑘)

ଶ଴

஺௠௜௡௢  ஺௖௜ௗ  ௞ୀଵ

  , (4.1) 

where Freqk is the number of times amino acid k is found in the sequence of the DNA 

binding domain of 𝑇𝐹௝; 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦  𝑉𝑎𝑙𝑢𝑒௜  (𝑘) is the numerical value of physicochemical 
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property 𝑖 for amino acid 𝑘;  𝑙𝑒𝑛𝑔𝑡ℎ  ൫𝑇𝐹௝൯ is the number of amino acids in the sequence 

of the DNA binding domain of 𝑇𝐹௝. We used the same formula for each of the 544 

features, which resulted in a 544-dimensional vector for each 𝑇𝐹௝. 

Since all TF DNA binding domains obtained from the Pfam database belong to 72 

domain families, we used 7-binary digits to encode them and this represents the second 

set of properties of TFs that we used. While 55% of TFs have only a single DNA binding 

domain, the remaining 45% have more than one. In such cases, we encode the 

corresponding part of the feature vector with the domain with the lowest E-value, as 

such domains should be more statistically significant. The third set of TF properties were 

determined and encoded as follows. Amino acids were classified into three categories 

according to their binding mode preference to the DNA bases as in (Luscombe and 

Thornton, 2002) (Table 4.2). These categories are: i) they bind to DNA bases through 

hydrogen bonds, ii) they bind to DNA bases through van der Waals contacts, or iii) they 

do not interact with DNA bases in significant numbers. As the last three features to 

describe a TF we used the weighted occurrence of amino acids in these three categories 

of amino acid binding preferences to DNA bases: 

 

Feature௞ୀଵ,ଶ,ଷ൫𝑇𝐹௝൯ =   
𝐹𝑟𝑒𝑞௞

𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝐹௝)
  , (4.2) 

where Freqk is the total number occurrences of amino acids that belong to category k 

(there are three categories, Table 4.2) in the sequence of the DNA binding domain of 
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𝑇𝐹௝; 𝑙𝑒𝑛𝑔𝑡ℎ  ൫𝑇𝐹௝൯ is the number of amino acids in the sequence of the DNA binding 

domain of 𝑇𝐹௝. The final set of properties to represent a TF consists thus of 554 

(544+7+3) properties. 

 

Table 4.2. Amino acid classification. Distribution of 20 Amino acids according to their 

binding mode preference to DNA bases, adopted from Table 4 in (Luscombe and 

Thornton, 2002). 

Category Amino acids Mode of interaction 

i) Arg, Lys, His, Ser, Asn, Gln, Asp, Glu Hydrogen bonds 

ii) Phe, Pro, Thr, Gly, Ala, Val, Leu, Iso, Tyr van der Waals contacts 

iii) Cys, met, Trp No base contact 

 

TFBS Representation. Each TFBS that consists of L nucleotides was represented using a 

vector of length 4*L obtained as follows. Each of the four nucleotides (A, C, G, T) in the 

TFBS sequence was encoded by a 4-digits binary number as follows: A as 0001, C as 

0010, G as 0100 and T as 1000. A TFBS is then represented as a vector of length 4*L by 

concatenating the binary sequences corresponding to its nucleotide sequence as 

described.   For   example,   ‘ACTCCGAT’   will   be   represented   by  

‘00010010100000100010010000011000’.  The  TFBSs  of  the  selected  232  TFs  (associated 

with 250 TFBS models) have 14 distinct lengths 𝐿 = 7  𝑛𝑡, 8  𝑛𝑡, 9  𝑛𝑡, … , 19  𝑛𝑡, 20  𝑛𝑡. 



111 
 

Combining TF and TFBS Descriptions. Both TF and TFBS properties were combined in one 

TF-TFBS feature vector as follows. Suppose that 𝑇௜ and 𝐵௝ are the feature row-vectors 

for 𝑇𝐹௜ and 𝑇𝐹𝐵𝑆௝, respectively. We define the combined TF-TFBS feature vector D as: 

 
𝐷 = ൣ𝑇௜, 𝐵௝൧  , (4.3) 

For example, when 𝐿 = 12, the TF-TFBS pair is coded by a 602-dimensional (554 TF 

properties plus 12×4 TFBS properties) vector. If a TF is associated with N TFBSs, then we 

will have N TF-TFBS pair vectors, where the first part, TF vector, remains the same 

across all N vectors. 

4.3.3 Data preparation 

Normalization. To remove the bias that arises from different ranges of values used for 

TF and TFBS features, we normalized each feature by scaling minimum and maximum 

values to 0 and 1, respectively, as follows: 

 

𝑥௜ᇱ =
𝑥௜ − 𝑚𝑖𝑛  (𝑋)

𝑚𝑎𝑥(𝑋) − 𝑚𝑖𝑛  (𝑋)
   (4.4) 

where xi is the original feature value, 𝑥௜ᇱ is the value after normalization. X is the list of 

feature values xi across all samples. min(X) and max(X) are the minimum and the 

maximum values of X, respectively. In addition, the feature vectors are of different 

lengths due to varying TFBS lengths. Since a separate model is built for each of the 14 

TFBS lengths, this does not cause any problems in the analysis. 
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TF Feature Selection. It is widely acknowledged that irrelevant and weakly relevant 

features may decrease the accuracy of predictors (Kohavi, 1994). Among different 

feature selection methods that we examined, namely, the Minimum Redundancy 

Maximum Relevance (mRMR) method, individual features providing highest AUC (Area 

Under Curve) and forward sequential subset feature selection methods, we found that 

mRMR method yielded the highest accuracy. Consequently, we used the mRMR method 

to identify TF properties of relevance to distinguish between the two classes of data, 

binder to a TFBS and non-binders to considered TFBS (see the next section). We select 

the top N=150 features with the highest mRMR scores out of the initial set of 554 

features. This threshold of 150 top ranked features was subjective, but we are focusing 

on the best features suggested by mRMR. 

4.3.4 Positive (true) and negative (false) data 

Positive Data. The  ‘positive’  set  consists  of  110,399  TF-TFBS  pairs  (‘positive’  pairs)  that  

correspond to 232 TFs and their associated 110,399 TFBS targets. 

Negative Data. For each TF-TFBS pair we produced a presumably  ‘false’  TF-TFBS pair by 

preserving the TF feature part of the feature vector, but randomly selecting sequences 

from  human  chromosomes  4  and  22  to  correspond  to  the   ‘TFBS’  sequence  part   in  the  

feature vector. These two chromosomes were used because chromosome 4 has the 

lowest (~38%) GC content, while chromosome 22 is one of the two chromosomes that 

have the highest (~48%) GC content across all human chromosomes. From the initial 

‘negative’   TF-TFBS set, we excluded all TF-TFBS pairs that were also contained in the 
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‘positive’   dataset,  which   resulted   in   the   final   ‘negative’   data.   ‘Positive’   and   ‘negative’  

data   were   given   different   class   labels.   Finally,   for   each   ‘positive’   TF-TFBS pair, we 

created  in  this  way  10  ‘negative’  TF-TFBS pairs to make the ratio between the number of 

‘negative’  and  ‘positive’  samples  10  to  1. 

Training and test sets. We split all data into 14 groups corresponding to the 14 different 

TFBS lengths that we considered. Then, separately for each of these groups, we 

generated training and test data, and based on that we developed one prediction model 

for each of the groups. Note that for 214 out of the 232 TFs, each of the groups was 

associated with mutually distinct sets of TFs assigned to the group based on length of 

their TFBSs, i.e. if a TF was associated with one of the groups, it did not appear 

associated with any of the other groups. However, for the remaining 18 TFs, they were 

associated with two groups because they have two sets of TFBSs corresponding to 

different TFBS lengths.  We  pooled  ‘positive’  and  ‘negative’  data  together,  and  used  70%  

of the data for training and the 30% for testing. This division was made at random on 

the TF level such that 70% of the TF-TFBS pairs of a particular TF were used for training 

and the remaining 30% were used for testing. Within the group, such training and 

testing data were pooled separately. Separately from this test, we performed 5-fold and 

10-fold cross-validation on the whole datasets, and reported the obtained results from 

each experiment. We set thresholds on the model outputs that yield the highest 

accuracy on the training data and used these thresholds when evaluated the model 

performance on the test data. The same is done in cross-validation. 
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4.3.5 Random forests TFBS prediction model 

DRAF uses random forests (RF) (Breiman, 2001) to model the relationship between TFs 

and their TFBSs represented as TF-TFBSs pairs. The 250 TFBS models associated with 232 

TFs fall into 14 groups according to the length of their TFBS sequences (Table 4.1). We 

built 14 prediction models accordingly, such that one model represents all TF-TFBS pairs 

with  a  common  TFBS  length.  Each  prediction  model  is  represented  as  “random  forests”  

composed of an ensemble of 80 decision trees. We tested a range of decision trees in 

the  ensemble  (10,  20,…,  150)  and  found  that  a  random forest composed of 80 decision 

trees demonstrated the highest accuracy on the training data. In the training phase, the 

model was trained with all TF-TFBS  pairs  in  the  training  set  that  belong  to  ‘positive’  and  

‘negative’   classes.   In   the   testing   phase, the trained model was used to predict the 

‘positive’  or  ‘negative’  class  of  a  particular  TF-TFBS pair sample in the test set after the 

features in the test set were normalized using parameters of obtained from scaling on 

the training set. Tests by cross-validation were done in a standard way using the scaling 

as explained above, and the test results reported here were the average across all the 

folds. 

4.3.6 Model evaluation metrics 

The quality of the model was evaluated by accuracy, sensitivity, specificity, precision, F-

measure   and   Matthew’s   correlation   coefficient   (MCC),   partially   motivated   by an 

objective to allow for comparison with other existing prediction methods. These 

performance measures are defined as follows: 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
 (4.5) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.6) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (4.7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.8) 

 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

=   
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 (4.9) 

 

𝑀𝐶𝐶 =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

ඥ(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 (4.10) 

TP   (true   positive)   represents   correctly   predicted   ‘positive’   TF-TFBS pairs, TN (true 

negative)   represents   correctly  predicted   ‘negative’   pairs,   FP   (false  positive)   represents  

‘negative’   pairs   incorrectly   predicted   as   ‘positive’   pairs,   and   FN   (false   negative)  

represents  ‘positive’  pairs  incorrectly  predicted  as  ‘negative’  pairs. 

4.3.7 Comparison of DRAF RF models with other model types 

We compared the prediction results of the DRAF models with three other types of 

machine learning models, namely Neural Networks (NN), Support Vector Machines 
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(SVM) and Gaussian Mixture Regression (GMR) models. For each model, we set 

parameters to provide the highest accuracy on the training data. For Neural Networks, 

we tested feed-forward back-propagation network with two and three hidden layers 

each with either 100 or 200 neurons, and using sigmoid functions for hidden layers and 

linear transfer function for output layer. Based on the accuracy obtained from testing 

these options on the training data, we used feed-forward back-propagation network 

with three hidden layers using the sigmoid transfer function, each with 100 neurons, 

and a linear output layer. The maximum number of epochs to train was set to 500 and 

the learning rate was set to 0.05 with the performance goal of 1*10-5. For Support 

Vector Machines (Cortes and Vapnik, 1995), we tried four different types of kernels 

namely, linear, polynomial, radial basis and sigmoid. We used the radial basis function 

(Burges, 1998; Schölkopf and Smola, 2002) within the LIBSVM (Chang and Lin, 2011) 

implementation of SVM which provided the highest accuracy on the training data. We 

tested different values for the gamma (0.0625, 0.125, 0.25, 0.5, 1 and 2) and the 

regularization (cost) (0.5, 1, 2, 4 and 8) parameters. The kernel parameter values, which 

provided highest accuracy on the training data, were set to 0.125 and 8 for the gamma 

and regularization parameters, respectively. For Gaussian Mixture Regression, we used 

(Calinon, 2009; Calinon, et al., 2007) implementation and tested different number of 

Gaussian components (5, 10, 15, 20 and 25). We finally set the number of Gaussian 

components to 20 as this provided the best performance on the training data. 

4.3.8 DRAF model validation on ChIP-seq data 
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ChIP-seq data. To measure the capability of the DRAF models to predict TFBSs with high 

sensitivity and specificity, we evaluated the DRAF models using independent ChIP-seq 

datasets. For this purpose, we used sequences of all human ENCODE ChIP-seq peaks 

that were processed and assigned signal scores by the ENCODE uniform processing 

pipeline (Consortium, 2012). Consequently, we retrieved 690 ChIP-seq datasets that 

related to 165 unique TFs evaluated in different cell types, and 58 of these 165 TFs were 

among the 232 TFs we used to construct the DRAF models. For each of these 58 TFs, we 

selected all corresponding ChIP-seq datasets from all available cell types. From each 

dataset, we used the top 500 sequences having the highest peak enrichment scores. 

This resulted in a total of 321 ChIP-seq datasets, each of which consists of 500 

sequences.  

TFBS extraction from ChIP-seq data. TFBS part in the TF-TFBS feature vector was 

constructed from each ChIP-seq peak of length N by extracting sequences of length L 

starting from the first position until the end of the sequence and moving each time by 

one nucleotide. This resulted in a total of N-L+1 TFBS sequence parts. The same number 

of TFBS sequence parts was extracted from the reverse complement sequence of the 

ChIP-seq peak, resulting in a total of 2*(N-L+1) TFBS sequence parts. For example, if a 

particular ChIP-seq peak has (N=100 bp), and the TFBS length (L=10), then we will 

extract 91 TFBS sequence parts from this ChIP-seq peak and 91 TFBS sequence parts 

from the reverse complement sequence. Then, each of these TFBS sequence parts was 

represented in the same binary representation explained above. The TF part of the 
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feature vector consists of the properties of the TF for which this ChIP-seq data belongs 

to. Then, TF-TFBS pairs were constructed by associating the TF part of the feature vector 

with each of the TFBS parts. Finally, we used DRAF model to examine all these TF-TFBS 

pairs and predict correct TF-TFBS associations. A ChIP-seq peak was declared to be 

correctly predicted (i.e. true positive) if at least one of the 2*(N-L+1) TF-TFBS pairs were 

identified by the DRAF model to be a correct pair (i.e. the TFBS is a correct binding site 

for the associated TF). If none of the 2*(N-L+1) TF-TFBS pairs that belong to a particular 

ChIP-seq peak were identified by the DRAF model to be a correct pair, then this ChIP-seq 

peak was considered as a false negative. To visually evaluate the quality of DRAF model 

predictions on the ChIP-seq data, we plotted the sequence logo for all the ChIP-seq 

predictions made by the DRAF model for each TF using WebLogo tool (Crooks, et al., 

2004) and compared the sequence logo with the standard TF sequence logo obtained 

from HOCOMOCO. 

‘Negative’  data. The ChIP-seq data enables the estimation of the DRAF model sensitivity. 

However,   to   estimate   the  model’s   specificity,  we   constructed   ‘negative’   (background,  

false) TFBS sequence parts from human chromosome 21 (average CG content ~41%). 

First, we excluded from chromosome 21 all regions covered by ENCODE ChIP-seq peaks 

that belong to any cell type for a specific TF. For this reason, preparation of the 

‘negative’   data   from   chromosome   21   differs   from   one   TF   to   another.   Then,   TFBS  

sequence parts of length L were extracted starting from the first position until the end 

of chromosome 21 sequence and moving each time by one nucleotide. This extraction 
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process was repeated on the reverse complement sequence of chromosome 21. TFBS 

sequence parts that contained ambiguous nucleotides were not considered. Feature 

vectors describing TF-TFBS pairs were compiled in the same way as explained previously 

by associating the TF properties with TFBS representation for all TFBS sequence parts. 

After that, we removed from TF-TFBS collection all pairs that were found among the 

training set of the corresponding DRAF model. Consequently, the number of TF-TFBS 

pairs   in   the   ‘negative’   set   varies   from   one   TF   to   another   depending   on   the   excluded  

regions from chromosome 21 due to the overlap with ChIP-seq peaks, the excluded TF-

TFBS pairs due to the overlap with the training set and the TFBS length L. Finally, we 

used the DRAF models to examine all these TF-TFBS pairs. If a particular TF-TFBS pair of 

the   ‘negative’   set  was   incorrectly   predicted   as   ‘positive’,  we   considered   this   pair   as a 

false positive prediction. Similarly, if the TF-TFBS pair was correctly predicted as a 

‘negative’  pair,  we  considered  this  pair  as  a  true  negative  prediction. 

4.3.9 Comparison between DRAF models, PWM models (HOCOMOCO, TRANSFAC) and 

DeepBind models on ChIP-seq datasets 

Position Weight Matrix (PWM) models. We compared the predictive performance of the 

DRAF models with the PWM models obtained from the HOCOMOCO (version 9) and 

TRANSFAC (version 2012.2) databases. For each of the 58 TFs that we considered, we 

used the corresponding HOCOMOCO and TRANSFAC PWMs that model the respective 

TFBSs. Then, we scanned the ChIP-seq peaks and the chromosome 21 (as explained in 

the previous section) using MEME FIMO (Grant, et al., 2011) to report PWM matching 
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scores on these sequences. At different sensitivity levels (10%, 20%, …, 90%) we 

compared the scores obtained from the DRAF models with those obtained from the 

PWM models by monitoring the change in specificity and the average distance in 

nucleotides   (nt)   between   false   positive   prediction   occurrences   on   the   ‘negative’  

sequences (derived from chromosome 21). 

DeepBind Models: We repeated the same comparison that we performed between 

DRAF models and PWM models but this time with DeepBind (Alipanahi, et al., 2015) 

models. We found 54 out of the 58 TFs that we tested using ENCODE ChIP-seq data to 

have a DeepBind model. This resulted in a comparison of the DRAF models with the 

DeepBind models in 302 out of the total 321 ChIP-Seq datasets that we retrieved from 

ENCODE data. 

4.4 Results 

4.4.1 Selected properties of TFs 

To describe each TF, we used 150 features including AAindex properties, DNA binding 

domain family classification, and amino acid binding mode preference to DNA bases. 

These properties were selected as top 150 ranked ones based on the mRMR method 

(Peng, et al., 2005). In the 14 models corresponding to different TFBS lengths, on 

average, out of these 150 selected features, 145 are AAindex properties, while 5 reflect 

other properties we introduced (see below). Therefore, on average, one out of four 

AAindex properties (27% = 145/544) and one out of two other features were selected 
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through filtering. Of the 145 selected AAindex properties, on average, 115 can be 

classified into six groups, while 30   are   ‘unclassified’,   according   to   (Kawashima, et al., 

2008) (see Figure 4.1). We notice from Figure 4.1 that almost half of the selected 

features from AAindex (46%) can be classified as belonging to the hydrophobicity or 

alpha and turn propensity groups. Although this may highlight the role of these two 

categories of features relevant to our models for predicting the TF affinity to TFBSs, we 

also notice that the distribution in groups of our AAindex selected features reflects well 

distribution of all the 544 AAindex properties (Kawashima, et al., 2008). 

The remaining 5 selected features represent the other properties we introduced, 

namely the DNA binding domain family classification and the amino acid binding mode 

preference to DNA bases. In particular, on average, 4 out of 7 features (57%), used to 

describe the DNA binding domain family, and 1 out of 3 features (33%), used to 

represent the amino acid binding mode preference, were selected in the 150 top ranked 

ones. This suggests a high information value of the features we added to those from 

AAindex for predicting TF-TFBS links in the method we used. 
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Figure 4.1. Distribution of the selected properties used by DRAF models. Distribution 

of 145 selected AAindex properties; 115 (79%) properties belong to six biological 

classes,  while  other  30  (21%)  properties  are   ‘unclassified’  according  to   (Kawashima, et 

al., 2008). 

 

4.4.2 TF-TFBS predictions by DRAF models 

DRAF models were first trained using sets of TF-TFBS pairs and then used to predict 

TFBSs of TFs (Figure 4.2). In order to measure the capability of the DRAF models in 

predicting the TF-TFBS pairs, we applied two different testing strategies using holdout 

and cross-validation methods. In the first experiment, based on the holdout approach, 

the average accuracy, sensitivity, specificity and precision obtained from applying all the 
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14 DRAF models to the test data were 99.16%, 92.53%, 99.86% and 98.57%, respectively 

(Figure 4.3, Appendix Table A4.1). These results were obtained using thresholds on the 

model output scores that provided the highest accuracy on the training data. We 

repeated the same experiment using the thresholds that provided the highest specificity 

and the highest sensitivity on the training data (Figure 4.3, Appendix Table A4.2 and 

A4.3).  

 

Figure 4.2. The input data, training procedure and usage of DRAF models for 

prediction of TF-TFBS pairs. Sequences of TFs and their TFBS are represented in TF-TFBS 

pairs using physicochemical properties of TFs and binary representation of TFBSs. Then, 

DRAF models were constructed for each group of TFs depending on the TFBS length. 

Finally, DRAF models were tested using the test data and another set of independent 

ChIP-seq validation datasets. The DRAF models predict which TF-TFBS pair represent a 

valid target TFBS for a particular TF. 
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Figure 4.3. The prediction performance of DRAF models on the test data. DRAF models 

were applied on the test data using different settings for selecting thresholds on the 

models’   prediction   score   that   provided   (A)   the   highest   accuracy, (B) the highest 

sensitivity and (C) the highest specificity, on the training set. 

 

In addition, Figure 4.4 demonstrates that receiver operating characteristic (ROC) curve 

for 14 models (AUC=0.9991). This high value of AUC and the ROC curve in Figure 4 

suggest that the DRAF models could predict the TF-TFBS relationship with very high 

accuracy for all modeled TFs. 
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Figure 4.4. The ROC curve for the evaluation of the DRAF models on the test set. The 

ROC curve (true positive rate vs. false positive rate) was performed for the prediction 

outputs obtained from all the 14 DRAF models on the test set. The AUC for the DRAF 

models is 0.9991. 

 

We repeated the evaluation experiments using 5-fold and 10-fold cross validation in 

addition to the holdout method. Appendix Tables A4.4-6 shows the prediction results 

using 10-fold cross validation for all the 14 models using the thresholds giving the 

highest accuracy, specificity and sensitivity, respectively, on the training data. Appendix 
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Tables A4.7-9 show similar results to those viewed in Appendix Tables A4.4-6 but 

obtained using 5-fold cross validation. 

Finally, we compared the prediction results of the DRAF models with NN, SVM and GMR 

models (see Methods). DRAF models outperformed other models in terms of accuracy, 

specificity and precision (Figure 4.5, Table 4.3). It, however, yielded lower sensitivity 

than NN and SVM but higher than the GMR models. 

 

Figure 4.5. Comparison between RF, NN, GMR and SVM models. All the four types of 

models were trained using the same training data and applied on the same test data. 

The models were compared using performance measures calculated on the test data. 
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Table 4.3. Comparison between DRAF and other model types. The average prediction 

results on the test data using 4 model types, DRAF, Neural Networks (NN), Gaussian 

Mixture Regression (GMR) and Support Vector Machines (SVM). 

 
DRAF NN GMR SVM 

Accuracy 99.16% 99.06% 96.62% 96.66% 

Sensitivity 92.53% 95.19% 76.83% 98.20% 

Specificity 99.86% 99.49% 98.63% 96.48% 

Precision 98.57% 95.08% 87.63% 81.25% 

 

4.4.3 Model evaluation on ChIP-seq data 

We evaluated the predictive performance of the DRAF models on 321 ENCODE ChIP-seq 

datasets derived from 321 different human cell types (see Methods). We changed the 

thresholds on the model output scores to obtain the predictions at different sensitivity 

levels (10%, 20%…  90%)  and  monitored  the  capability  of  the  DRAF  models  to  recognize  

background sequences (this was measured using the average distance between 

predictions on the background sequences). The results show that the DRAF models 

accurately predict TFBSs on sequences of ChIP-seq peaks, while maintaining high 

specificity of predictions on the background sequences.  

We examined the similarity of the predicted TFBSs on the ChIP-seq peaks to the known 

TFBSs of each TF. The sequence logos for TFBS predictions at different sensitivity levels 

showed high similarity to known sequence logos obtained from HOCOMOCO 
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(Kulakovskiy, et al., 2013) for the corresponding TFs (Figure 4.6, Appendix Table A5.1). 

This suggests that each of the 14 DRAF models was capable to capture the DNA binding 

patterns of the TFs encoded by that model. 

TF Cell 
Type 

Original TFBS 
Sequence Logo Sensitivity 60% Sensitivity 70% Sensitivity 80% Sensitivity 90% 

ATF1 K562 
     

ATF3 A549 
     

BATF GM12878 
     

BRCA1 GM12878 
     

CEBPB A549 
     

 

Figure 4.6. Sequence logos for the predicted TFBS sequences on the human ChIP-seq 

datasets using DRAF models. The figure shows different sequence logos obtained from 

the DRAF predicted TFBS sequences from ChIP-seq datasets at different sensitivity 

levels. The complete set of sequence logos for the 321 ENCODE ChIP-seq datasets is 

provided in Appendix Table A5.1. 

 

We next compared the performance of the DRAF models with HOCOMOCO PWM 

models, TRANSFAC PWM models and DeepBind models on the 321 ChIP-seq datasets 
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(see Methods). For this purpose, we set thresholds on the DRAF model prediction scores 

that yielded highest F-measure scores on the training data and used these thresholds 

when evaluated the model performance on the ChIP-seq datasets (see Methods). The 

results show that DRAF models got higher specificity on the background data as 

compared to the other three types of models, while having better or at least the same 

sensitivity levels as the other methods. That is, the DRAF models provided (on average 

of all sensitivity levels) 14-, 15- and 16-folds less frequent false positive predictions on 

the background data than HOCOMOCO PWMs, TRANSFAC PWMs and DeepBind models, 

respectively (Figure 4.7). 

 

Figure 4.7. Comparison of DRAF, HOCOMOCO, TRANSFAC and DeepBind models using 

thresholds on the DRAFM model output scores that provided the highest F-measure. 

Comparison of performance of 14 DRAF models and 321 HOCOMOCO PWMs, 319 

TRANSFAC PWMs and 302 DeepBind models on 321 ChIP-seq datasets obtained from 
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ENCODE using thresholds on the DRAF model prediction scores that yielded highest F-

measure scores on the training data. In A, the Y-axis represents the logarithm of 

distance (in nt) between false positive prediction occurrences on the background 

sequences (chromosome 21) averaged over all the tested ChIP-seq datasets. The labels 

on the top of the blue bars indicate the average sensitivity on the ChIP-seq datasets 

using the corresponding model. In B, the box plots show distance (in nt) between false 

positive prediction occurrences on the background sequences (chromosome 21) across 

all the tested ChIP-seq datasets. 

 

The previous results were obtained by comparing DRAF and other models on ENCODE 

ChIP-seq datasets using thresholds that provided the highest F-measure scores on the 

training data. We repeated this comparison between all types of models by monitoring 

their performance at different sensitivity levels (see Methods). At all studied sensitivity 

levels the DRAF models outperformed HOCOMOCO, TRANSFAC and DeepBind models, 

providing higher specificity on the background datasets. That is, the DRAF models 

yielded higher specificity (averaged over all sensitivity levels) than each of the 

HOCOMOCO and TRANSFAC and DeepBind models in 89.41% (287 out of 321 ChIP-seq 

datasets), 93.35% (298 out of 319 ChIP-seq datasets) and 91.91% (278 out of 302 ChIP-

seq datasets), respectively, of the tested ChIP-seq datasets by each model type. DRAF 

models provided higher specificity (averaged over all sensitivity levels) than any of the 

other three model types together in 80.24% of the tested ChIP-seq datasets. Another 
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measure that we used to compare the models was by calculating the average distance 

between false positive predictions on the background datasets (see Methods) and 

averaged that over all the tested background datasets. We found that at each of the 

tested sensitivity levels, DRAF models provided smaller number of false positive 

predictions than all of the other three models (Figure 4.8 and 4.9). These results show 

that DRAF models provided false positive predictions (averaged over all sensitivity 

levels) 2-, 3- and 5-folds less frequent than HOCOMOCO PWMs, TRANSFAC PWMs and 

DeepBind models, respectively (Figure 4.10, Table 4.4). 



132 
 

 

Figure 4.8. Comparison of DRAF, HOCOMOCO, TRANSFAC and DeepBind models at 

different sensitivity levels (averaged over all ChIP-seq datasets). Comparison of 14 

DRAF models and 321 HOCOMOCO PWMs, 319 TRANSFAC PWMs and 302 DeepBind 

models on 321 ChIP-seq datasets obtained from ENCODE. The X-axis represents 

different sensitivity levels (A: 10%, 20%...50% and B: 60%, 70%...90%) and the Y-axis 

represents the distance (in nt) between false positive prediction occurrences on the 

background sequences (chromosome 21) averaged over all the tested ChIP-seq 

datasets. 
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Figure 4.9. Comparison of DRAF, HOCOMOCO, TRANSFAC and DeepBind models at 

different sensitivity levels. Comparison of 14 DRAF models and 321 HOCOMOCO 

PWMs, 319 TRANSFAC PWMs and 302 DeepBind models on 321 ChIP-seq datasets 

obtained from ENCODE at different sensitivity levels (10%, 20%...90%). The Y-axis 

represents the logarithm of the distance (in nt) between false positive prediction 

occurrences on the background sequences (chromosome 21) across all the tested ChIP-

seq datasets. 
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Figure 4.10. Summary of Comparison between DRAF, HOCOMOCO, TRANSFAC and 

DeepBind models. A: boxplots show the average distance (in nt) between false positive 

prediction occurrences on the background sequences (chromosome 21) at different 

sensitivity levels obtained from testing corresponding models on the ChIP-seq datasets 

and averaged over all the datasets at each sensitivity level. B: boxplots show the folds-

reduction in false positive predictions obtained in by DRAF models as compared to the 

corresponding HOCOMOCO, TRANSFAC and DeepBind models. 
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Table 4.4. Average distance (in nt) between false prediction occurrences on the 

background sequences. 

A B C D E    

Sensitivity DRAF TRANSFAC HOCOMOCO DeepBind B/C B/D B/E 

10% 83,682 24,488 41,782 20,871 3.42 2 4.01 

20% 35,682 12,161 17,471 7,464 2.93 2.04 4.78 

30% 20,601 6,916 10,064 3,825 2.98 2.05 5.39 

40% 12,874 4,369 6,377 2,315 2.95 2.02 5.56 

50% 8,250 2,820 4,063 1,436 2.93 2.03 5.75 

60% 5,365 1,815 2,695 913 2.96 1.99 5.88 

70% 3,431 1,256 1,771 564 2.73 1.94 6.08 

80% 2,038 834 1,107 347 2.44 1.84 5.87 

90% 1,021 464 593 245 2.2 1.72 4.17 

    
Average 2.84 1.96 5.28 

 

4.4.4 Comparative performance of DRAF models 

Comparison of the performance of our models with other similar works is not 

straightforward, due to the differences between approaches and criteria used in 

different studies. Some models were assessed only for individual TFs or specific TF 

families. For example, the model created by Ellrott and colleagues (Ellrott, et al., 2002) 

was evaluated on HNF4; the model developed by Endress (Endres, et al., 2004) was 

evaluated only on Zif268; Alamanova and colleagues (Alamanova, et al., 2010) tested 

their model on few TFs such as P53 and NF-κB.   Liu   and   Bader   (Liu and Bader, 2007) 
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reported results on Mat-2 and GCN4 bZIP. Chen and others used six TFs to test their 

model (Chen, et al., 2012).  

Therefore, we focused on the comparison of the DRAF performance and the reported 

results in (Cai, et al., 2009; Qian, et al., 2006; Qian, et al., 2007) as these studies used 

more than 100 TFs each. The summary of this comparison is given in Table 4.5. For this, 

we evaluated DRAF performance on a much more comprehensive and significantly 

larger test datasets (Table 4.5, Columns 2 and 3) than in these publications and results 

show that the DRAF models outperformed other models reported in the above-

mentioned three studies (Table 4.5). 

 

Table 4.5. Comparison of prediction results from different studies. This table shows the 

prediction accuracy of DRAF models and other models on different TF-TFBS test 

datasets. 

Study 

Number of 

TFs 

Number of 

unique 

TFBSs 

‘Positive’  

data 

‘Negative’  

data 

Highest 

accuracy 

(Qian, et al., 2006) 480 2,341 3,356 6,850 76.6% 

(Qian, et al., 2007) 143 571 3,430 7,000 87.9% 

(Cai, et al., 2009) 599 2,402 3,541 31,869 91.1% 

DRAF models 232 44,710 110,399 1,103,990 99.16% 

 

 



137 
 

4.5 Discussion 

We developed DRAF models to capture the relationship between TFs and their TFBSs. 

One DRAF model is developed to capture relationships of all TFs whose associated TFBSs 

have the same length. Consequently, we needed 14 DRAF models to represent TF-TFBS 

pairs that covered 250 TFBS sets and 232 TFs. These TFBSs have 14 distinct lengths (7 nt, 

8   nt,   …,   20   nt).   PWMs   and   other   model   types   (e.g.   DeepBind   models)   are   usually  

developed for TFBSs for individual TFs, resulting in numerous models (one or more 

models for a single TF). This is the reason that major TFBS model databases 

(HOCOMOCO, TRANSFAC or JASPAR) have a very large number of TFBS models. DRAF, 

however, successfully reduces the number of required models to only 14 models, based 

on the length of the TFBSs. So one such model captures many TFs. For 232 TFs, DRAF 

requires only 14 models, ~18 times less than the corresponding 250 TFBS models in 

HOCOMOCO, ~54 times less than the corresponding 749 TFBS models in TRANSFAC (231 

TFs of the 232 TFs were found TRANSFAC) and ~50 times less than the 704 TFBS models 

in DeepBind (124 TFs of the 232 TFs were found in DeepBind). 

This dramatic reduction in the number of models did not decrease the performance. On 

the contrary, the results showed that DRAF models significantly outperformed all three: 

HOCOMOCO PWMs, TRANSFAC PWMs and the DeepBind models in 80.24% of the 321 

ENCODE ChIP-seq data of human cell types. Even more, DRAF models increased 

specificity by generating on average false positive predictions 14-, 15- and 16-folds less 

frequent than the HOCOMOCO PWMs, TRANSFAC PWMs and DeepBind models, 
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respectively. This confirmed the capability of DRAF models for prediction of TFBSs of 

TFs.  

It should be noted that our testing methodology involved validating models on 

background data composed of the entire chromosome 21 (excluding data used in 

training and those overlapped with ChIP-seq peaks when specific cell type was used). 

Such chromosome-wide testing is useful to assess in an unbiased way TFBS prediction 

models, as it does not involve creation of artificial background sequences. For example, 

the background sequences used by DeepBind models were the top 500 even-numbered 

ChIP-seq peaks that were randomly shuffled.  

Although our model demonstrates the lowest false positive rates among the tested 

models, the absolute number of false positive predictions is still noticeable. It is worth 

mentioning that our models predict binding sites in a non-cell-specific manner, thus 

some of them may not be available for binding in a given cell type and therefore do not 

intersect with ChIP-seq peaks for that cell type. Chromatin structure interferes with the 

TF binding via modifications of histones (Consortium, 2012; Wang, et al., 2012) and to a 

less extend via DNA methylation (Medvedeva, et al., 2014). Commonly used 

computational strategies to compensate for the specifics of the chromatin structure 

would be a subsequent filtering of unavailable binding sites using histone modification 

data (e.g. (Ramsey, et al., 2010)) or DNase I hypersensitivity regions (DNase-seq) for a 

cell type of interest (Alam, et al., 2014; Boyle, et al., 2008). 
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4.6 Conclusion 

In this work, we modeled TF-TFBS interactions using properties extracted from 

sequences of DNA binding domains   of   TFs   and   TFs’   DNA   binding   sites   using   a   new  

methodology (DRAF). A random forests DRAF model was built for all TFs sharing a 

common TFBS length. That is, for all 250 TFBS models obtained from the HOCOMOCO 

database we developed 14 DRAF models representing 14 distinct TFBS lengths. The 

average prediction accuracy of 99.16%, which, to the best of our knowledge is the 

highest of those currently reported, clearly demonstrates the advantages of our 

methodology for TFBS prediction.  

Using our method we reduced the number of required models approximately 18, 54 and 

50 times compared to the HOCOMOCO, TRANSFAC and DeepBind models, respectively. 

Yet, we demonstrated higher specificity of DRAF models than with the HOCOMOCO, 

TRANSFAC and DeepBind models for >80% of ChiP-seq datasets for all sensitivity levels. 
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Conclusions and Future Work 

 

5.1 Introducing remarks 

In this study, we described proteins by feature vectors derived from converting 

sequence properties and physicochemical properties of amino acids from specific 

protein regions into numerical values. In specific applications we sub-selected features 

of so described proteins in order make the description more suitable for the problems 

analyzed. Such description allowed for very discriminating characterization of proteins 

that in some cases may be related to protein functions. We used this approach in two 

different applications. In the first application, we aimed to characterize AMPs using their 

physicochemical properties and sub-select important properties that discriminate 

between AMP families. In the other application, we use the same method to extract TF 

properties that help in identifying TF affinity to its binding sites. 

5.2 Comments on the Developed Methods 

It has been a challenge to represent proteins by a suitable numerical form that is also 

efficient for the types of problems we analyzed. Various number of the previous studies 

represented proteins using their amino acid composition properties. However, such 

representations do not include the physicochemical features that capture different 

aspects of the amino acid properties such as their structure and hydrophobicity. Such 
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properties are important and highly correlated with some characteristics and functions 

that proteins perform. Consequently, in the methods that we developed in this study we 

used physicochemical properties of amino acids to represent the proteins numerically.  

Also, not all amino acids within the protein sequence are of the same importance in 

characterizing protein families and in predicting protein functions. Consequently, the 

functional regions within the protein sequence are likely more important than other 

regions. These regions vary depending on the specific function of the protein we intend 

to study. For example, the N-terminal and C-terminal regions are very important to 

model the protein cellular location and in characterizing AMPs. The protein DNA binding 

domains regions are very important to control the TF affinity to its DNA binding sites. 

Our numerical representation of the proteins focuses on these functional regions during 

the feature representation for the proteins under study. 

In addition, it is very important to select the subset of amino acid properties that are 

more relevant to the prediction of protein function because some properties are more 

important than others. For this purpose, our method relies on feature selection after 

representing proteins by feature vectors. The feature selection was aimed to reduce the 

total number of features to a smaller and likely more relevant set of features for the 

problems we studied. For this reason, in Chapter 3, we performed a pre-filtering step in 

our representation to maintain in the protein numerical representation only those 

properties that are conserved with the protein families (restricted properties). Such 

properties are more likely to characterize well the protein families under study. 
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We did not use all possible protein properties such as protein 3D structure properties in 

our representation of the proteins. Such properties are very important to understand 

the overall protein characteristics and function, but we did not include them as they are 

missing for a large number of proteins. Consequently, we resorted using 

physicochemical properties of individual amino acids instead.  

5.3 Contribution summary 

The usage of the protein 3D structure properties is very important to understand the 

protein characteristics and predict its function. However, as mentioned earlier, this 

information is available only for very small percentage of known proteins. Consequently, 

in such a situation we resorted to the use of physicochemical properties of amino acids 

in the protein functional regions.  

We developed a novel method using computational representation of proteins based on 

characteristics of different protein regions (N-terminal, M-region and C-terminal) and 

combined these with the compositional and physicochemical properties of protein 

amino acids sequences. We show that this description provides important biological 

insight about characterization of the protein functional groups. Using feature selection 

techniques, we identified key properties of proteins that allow for very accurate 

characterization of different protein families. We demonstrated efficiency of our 

method in application to a number of AMP families.  
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We developed another novel method that uses a combination of amino acids 

physicochemical properties of DNA binding domains of TFs and their TFBS properties to 

develop machine learning models for predicting TFBSs. Feature selection is used to 

identify the most relevant characteristics of the amino acids for such modeling. In 

addition to reducing the number of required models to only 14 for several hundred TFs, 

the final prediction accuracy of our models appears dramatically better than with other 

methods.  

Overall, we did show how to efficiently utilize properties of proteins in deriving more 

accurate solutions for two important problems of computational biology and 

bioinformatics. 

5.4 Future Research 

The research performed in this study can be extended using the following strategies: 

a. Include protein structural properties: While we have shown that 

physicochemical properties of amino acids when combined with sequence 

properties are very useful for characterizing proteins and inferring their 

functions, accurate prediction of protein functions require information from the 

3D protein structure. Consequently, in addition to the physicochemical 

properties of the amino acids and their sequences, it will be beneficial to include 

the 3D structure properties of the proteins into the models we developed for the 

two problems we analyzed. 
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b. Correlation between selected properties: By applying our method on the AMPs, 

we selected properties that characterize different AMP families. These 

properties can help in the in-silico design of novel AMPs. However, a very useful 

extension to our work and ahead of the in-silico design of novel AMPs, is the 

study of the correlation between different properties in order to determine 

which properties may be redundant in relation to the problem in question and to 

rank these properties accordingly. This will be useful information during the 

design process of novel AMPs. 

c. Prediction of DNA binding sites for new TFs: In this study we build models that 

learn from known binding sites of TFs and then can be used to detect new 

binding sites for these TFs. A normal extension to this work is to predict binding 

sites for new TFs that do not have known binding sites yet. The DRAF modeling is 

generic, so it can be used to detect binding sites for TFs not used to train the 

model. To achieve this, we may look for the family class of the DNA binding 

domain of the new TF and search for the most homologous DNA binding domain 

in the TFs used in the training. Then, we can use the corresponding DRAF model 

to scan for novel TFBSs for this new TF. The motivation is as follows. TFs usually 

have DNA binding domains and these domains that belong to different classes. If 

two TFs have their DNA binding domains in the same class and are similar in their 

sequence, then we assume they are more likely binding to the same/similar 

TFBSs.  
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APPENDICES 

Appendix 1: Amino Acid Composition for 14 AMP Families  

 
Alpha-

defensin 
Bacteri

ocin 
Beta-

defensin 
Bombini

n 
Cathelici

din 
Cecropin 

Cyclotide 
(Bracelet 

sub-
family) 

DEFL 

Ala (A) 5.71% 8.95% 2.82% 9.96% 2.72% 16.42% 3.57% 6.95% 
Cys ( C) 16.19% 4.90% 12.37% 0.05% 1.85% 0.31% 19.78% 13.79% 
Asp (D) 1.75% 1.88% 1.39% 1.36% 1.75% 1.86% 0.82% 2.52% 
Glu ( E) 3.73% 2.07% 1.39% 5.89% 2.43% 4.42% 4.12% 4.21% 
Phe (F) 4.37% 1.41% 5.79% 1.36% 7.97% 3.80% 3.02% 4.98% 
Gly (G) 8.73% 16.48% 10.09% 17.27% 7.87% 10.07% 8.24% 8.26% 
His (H) 1.03% 2.07% 2.47% 1.51% 0.58% 0.54% 0.55% 3.01% 
Ile (I) 4.13% 5.84% 5.49% 8.35% 7.09% 9.45% 8.79% 3.17% 

Lys (K) 2.06% 8.29% 5.34% 10.75% 8.26% 11.39% 7.42% 8.21% 
Leu (L) 7.22% 3.48% 8.61% 16.64% 8.07% 6.51% 3.02% 4.87% 

Met (M) 1.03% 1.04% 1.78% 0.99% 0.29% 0.77% 0.27% 1.53% 
Asn (N) 2.46% 10.36% 3.32% 2.61% 1.94% 3.49% 5.77% 6.62% 
Pro (P) 2.06% 0.85% 5.94% 1.77% 17.20% 2.32% 5.49% 4.05% 
Gln (Q) 1.67% 2.07% 3.22% 0.94% 2.53% 4.96% 0.00% 2.79% 
Arg (R) 18.33% 1.60% 11.48% 4.54% 16.42% 6.35% 2.20% 5.36% 
Ser (S) 4.92% 6.12% 6.28% 6.10% 2.43% 3.25% 9.62% 6.35% 
Thr (T) 4.76% 5.56% 3.41% 3.23% 2.14% 3.18% 4.12% 5.20% 
Val (V) 3.73% 7.34% 5.05% 4.96% 4.86% 8.52% 8.52% 3.94% 
Trp (W) 0.71% 4.52% 1.63% 0.00% 1.94% 2.09% 1.10% 1.53% 
Xaa (X) 0.00% 0.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.33% 
Tyr (Y) 5.40% 4.71% 2.13% 1.72% 1.65% 0.31% 3.57% 2.35% 

 

FSAP 
(Brevini
n sub-
family) 

FSAP 
(Caerin 

sub-
family) 

FSAP 
(Dermas

eptin 
sub-

family) 

Invertebr
ate 

defensin 
(Type 1 

sub-
family) 

Invertebr
ate 

defensin 
(Type 2 

sub-
family) 

Type A 
lantibioti

c 

All Other 
AMP 

Families 
(114 

Families/
sub-

families) 

 

Ala (A) 10.16% 9.74% 19.96% 11.05% 3.06% 3.00% 8.57%  
Cys ( C) 5.94% 0.00% 0.00% 14.21% 14.59% 12.61% 3.49%  
Asp (D) 2.15% 0.75% 2.12% 3.38% 2.70% 0.60% 4.22%  
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Glu ( E) 1.13% 5.24% 2.01% 1.58% 1.80% 2.40% 4.43%  
Phe (F) 5.63% 2.25% 1.34% 2.59% 3.96% 4.20% 3.72%  
Gly (G) 11.03% 10.11% 12.93% 11.84% 15.32% 7.51% 8.81%  
His (H) 0.54% 6.37% 0.89% 3.95% 4.32% 3.00% 2.11%  
Ile (I) 7.65% 5.24% 4.35% 3.49% 3.06% 5.41% 4.97%  

Lys (K) 15.00% 10.11% 14.38% 5.86% 4.14% 8.71% 8.11%  
Leu (L) 14.52% 16.48% 12.37% 8.00% 4.14% 6.01% 7.75%  

Met (M) 1.36% 0.00% 2.68% 0.23% 1.44% 3.00% 1.82%  
Asn (N) 2.74% 0.37% 3.23% 5.75% 5.59% 4.80% 4.59%  
Pro (P) 3.28% 6.37% 0.33% 0.11% 3.42% 2.40% 4.95%  
Gln (Q) 1.33% 0.75% 3.68% 1.47% 2.70% 2.40% 3.82%  
Arg (R) 1.74% 0.37% 1.56% 6.99% 8.83% 1.80% 5.59%  
Ser (S) 5.40% 6.74% 4.01% 5.98% 5.41% 10.51% 6.83%  
Thr (T) 3.74% 0.00% 4.35% 4.28% 4.32% 12.61% 4.95%  
Val (V) 5.81% 18.35% 6.80% 6.54% 3.06% 5.71% 6.11%  
Trp (W) 0.26% 0.75% 2.90% 0.79% 2.16% 2.40% 1.53%  
Xaa (X) 0.00% 0.00% 0.00% 0.00% 0.54% 0.00% 0.07%  
Tyr (Y) 0.59% 0.00% 0.11% 1.92% 5.41% 0.90% 3.55%  
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Appendix 2: Clustering Performance Using Different Values of Terminal Length 

Parameters  

The following tables show the clustering performance of selected properties using 

different values of terminal length parameters, dn and dc. Each row in a table refers to 

an AMP family of the 14 target AMP families in the same order as shown in table 3.1. 

dn = 10, dc=8 

Number 
of 

peptides 

Original 
number 

of 
features 

number 
of 

selected 
features 

Number 
of 

clusters Accuracy Sensitivity Specificity Precision Jaccard 
Index 

F-Measure Entropy 
Purity 

34 322 19 11 99.60% 97.06% 99.72% 94.29% 91.67% 95.65% 0.0239 99.60% 

24 216 15 9 99.73% 91.67% 100.00% 100.00% 91.67% 95.65% 0.0204 99.73% 

41 258 30 14 99.34% 90.24% 99.86% 97.37% 88.10% 93.67% 0.0436 99.34% 

31 1101 16 4 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

27 791 71 6 97.61% 66.67% 98.76% 66.67% 50.00% 66.67% 0.1216 97.61% 

30 712 21 12 98.94% 100.00% 98.89% 78.95% 78.95% 88.24% 0.0375 98.94% 

12 346 11 10 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

37 253 34 15 99.20% 86.49% 99.86% 96.97% 84.21% 91.43% 0.052 99.20% 

143 1941 346 11 88.71% 76.22% 91.64% 68.12% 56.19% 71.95% 0.3398 89.11% 

11 1942 54 15 99.73% 90.91% 99.87% 90.91% 83.33% 90.91% 0.0175 99.73% 

30 294 21 10 99.47% 90.00% 99.86% 96.43% 87.10% 93.10% 0.0397 99.47% 

21 299 20 9 99.87% 95.24% 100.00% 100.00% 95.24% 97.56% 0.0095 99.87% 

13 1078 36 15 99.20% 69.23% 99.73% 81.82% 60.00% 75.00% 0.0408 99.20% 

11 424 32 14 99.34% 72.73% 99.73% 80.00% 61.54% 76.19% 0.0372 99.34% 

 

dn = 10, dc=10 

Number 
of 

peptides 

Original 
number 

of 
features 

number 
of 

selected 
features 

Number 
of 

clusters Accuracy Sensitivity Specificity Precision Jaccard 
Index 

F-Measure Entropy 
Purity 

34 299 14 14 99.73% 94.12% 100.00% 100.00% 94.12% 96.97% 0.0165 99.73% 

24 228 19 13 99.87% 95.83% 100.00% 100.00% 95.83% 97.87% 0.0094 99.87% 

41 261 36 14 99.60% 95.12% 99.86% 97.50% 92.86% 96.30% 0.0289 99.60% 

31 1105 24 15 99.07% 77.42% 100.00% 100.00% 77.42% 87.27% 0.0592 99.07% 

27 794 43 12 97.34% 44.44% 99.31% 70.59% 37.50% 54.55% 0.1416 97.34% 

30 725 31 12 99.47% 86.67% 100.00% 100.00% 86.67% 92.86% 0.027 99.47% 

12 350 10 13 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 
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37 253 36 13 98.94% 91.89% 99.30% 87.18% 80.95% 89.47% 0.0595 98.94% 

143 1945 126 11 95.48% 77.62% 99.67% 98.23% 76.55% 86.72% 0.1732 95.48% 

11 1946 235 15 99.34% 81.82% 99.60% 75.00% 64.29% 78.26% 0.0295 99.34% 

30 327 27 11 99.60% 96.67% 99.72% 93.55% 90.62% 95.08% 0.0253 99.60% 

21 402 14 14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

13 1088 35 11 99.07% 69.23% 99.59% 75.00% 56.25% 72.00% 0.0498 99.07% 

11 194 17 15 98.54% 54.55% 99.19% 50.00% 35.29% 52.17% 0.0595 98.54% 

 

dn = 12, dc=8 

Number 
of 

peptides 

Original 
number 

of 
features 

number 
of 

selected 
features 

Number 
of 

clusters Accuracy Sensitivity Specificity Precision 
Jaccard 
Index F-Measure Entropy 

Purity 

34 322 7 12 99.47% 88.24% 100.00% 100.00% 88.24% 93.75% 0.0319 99.47% 

24 227 11 13 99.73% 91.67% 100.00% 100.00% 91.67% 95.65% 0.0195 99.73% 

41 271 30 14 99.47% 90.24% 100.00% 100.00% 90.24% 94.87% 0.0367 99.47% 

31 1092 16 13 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

27 789 81 15 97.74% 62.96% 99.04% 70.83% 50.00% 66.67% 0.1042 97.74% 

30 835 33 11 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

12 347 9 15 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

37 252 26 14 99.47% 89.19% 100.00% 100.00% 89.19% 94.29% 0.0325 99.47% 

143 1929 138 11 95.48% 80.42% 99.02% 95.04% 77.18% 87.12% 0.1738 95.88% 

11 1943 28 8 99.73% 81.82% 100.00% 100.00% 81.82% 90.00% 0.0188 99.73% 

30 295 19 12 99.47% 90.00% 99.86% 96.43% 87.10% 93.10% 0.0344 99.47% 

21 208 14 12 99.87% 95.24% 100.00% 100.00% 95.24% 97.56% 0.0082 99.87% 

13 795 15 12 99.34% 61.54% 100.00% 100.00% 61.54% 76.19% 0.0449 99.34% 

11 192 35 15 98.80% 81.82% 99.06% 56.25% 50.00% 66.67% 0.0415 98.80% 

 

dn = 12, dc=10 

Number 
of 

peptides 

Original 
number 

of 
features 

number 
of 

selected 
features 

Number 
of 

clusters Accuracy Sensitivity Specificity Precision 
Jaccard 
Index F-Measure Entropy 

Purity 

34 299 18 8 99.47% 88.24% 100.00% 100.00% 88.24% 93.75% 0.0411 99.47% 

24 240 12 15 99.73% 91.67% 100.00% 100.00% 91.67% 95.65% 0.0193 99.73% 

41 275 30 14 99.34% 87.80% 100.00% 100.00% 87.80% 93.51% 0.0362 99.34% 

31 1095 24 13 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

27 791 33 14 98.01% 48.15% 99.86% 92.86% 46.43% 63.41% 0.1106 98.01% 

30 781 32 14 99.73% 93.33% 100.00% 100.00% 93.33% 96.55% 0.017 99.73% 

12 350 7 14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

37 252 27 13 99.20% 83.78% 100.00% 100.00% 83.78% 91.18% 0.0532 99.20% 

143 1945 165 13 95.62% 78.32% 99.67% 98.25% 77.24% 87.16% 0.1549 96.15% 

11 1946 169 15 99.47% 72.73% 99.87% 88.89% 66.67% 80.00% 0.0293 99.47% 
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30 327 47 15 99.47% 96.67% 99.59% 90.62% 87.88% 93.55% 0.0293 99.47% 

21 208 19 14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

13 806 25 15 99.20% 69.23% 99.73% 81.82% 60.00% 75.00% 0.0427 99.20% 

11 194 30 14 99.20% 100.00% 99.19% 64.71% 64.71% 78.57% 0.0211 99.20% 

 

dn = 14, dc=8 

Number 
of 

peptides 

Original 
number 

of 
features 

number 
of 

selected 
features 

Number 
of 

clusters Accuracy Sensitivity Specificity Precision Jaccard 
Index 

F-Measure Entropy 
Purity 

34 321 12 15 99.47% 88.24% 100.00% 100.00% 88.24% 93.75% 0.0352 99.47% 

24 210 13 10 99.73% 91.67% 100.00% 100.00% 91.67% 95.65% 0.0227 99.73% 

41 348 53 15 99.20% 85.37% 100.00% 100.00% 85.37% 92.11% 0.046 99.20% 

31 1091 37 15 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

27 790 68 14 98.41% 77.78% 99.17% 77.78% 63.64% 77.78% 0.0784 98.41% 

30 894 53 13 99.73% 96.67% 99.86% 96.67% 93.55% 96.67% 0.018 99.73% 

12 346 12 15 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

37 246 30 9 98.94% 81.08% 99.86% 96.77% 78.95% 88.24% 0.0706 98.94% 

143 1941 179 14 91.24% 60.84% 98.36% 89.69% 56.86% 72.50% 0.221 93.63% 

11 1942 44 14 99.87% 90.91% 100.00% 100.00% 90.91% 95.24% 0.0098 99.87% 

30 294 26 12 99.60% 96.67% 99.72% 93.55% 90.62% 95.08% 0.026 99.60% 

21 208 15 12 99.87% 95.24% 100.00% 100.00% 95.24% 97.56% 0.0083 99.87% 

13 796 37 14 99.34% 69.23% 99.86% 90.00% 64.29% 78.26% 0.0385 99.34% 

11 192 44 15 98.67% 100.00% 98.65% 52.38% 52.38% 68.75% 0.0278 98.67% 

 

dn = 14, dc=10 

Number 
of 

peptides 

Original 
number 

of 
features 

number 
of 

selected 
features 

Number 
of 

clusters Accuracy Sensitivity Specificity Precision 
Jaccard 
Index 

F-Measure Entropy 
Purity 

34 299 13 13 99.47% 88.24% 100.00% 100.00% 88.24% 93.75% 0.0376 99.47% 

24 225 9 12 99.87% 95.83% 100.00% 100.00% 95.83% 97.87% 0.0116 99.87% 

41 354 58 14 98.27% 78.05% 99.44% 88.89% 71.11% 83.12% 0.1024 98.27% 

31 1095 17 10 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

27 793 47 13 97.74% 48.15% 99.59% 81.25% 43.33% 60.47% 0.1018 97.74% 

30 290 13 8 99.47% 86.67% 100.00% 100.00% 86.67% 92.86% 0.0302 99.47% 

12 350 10 14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

37 246 25 13 99.34% 86.49% 100.00% 100.00% 86.49% 92.75% 0.0424 99.34% 

143 1945 118 12 95.88% 79.02% 99.84% 99.12% 78.47% 87.94% 0.1478 95.88% 

11 1946 28 14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

30 327 29 15 99.60% 96.67% 99.72% 93.55% 90.62% 95.08% 0.025 99.60% 

21 208 19 15 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

13 807 27 15 99.07% 69.23% 99.59% 75.00% 56.25% 72.00% 0.0475 99.07% 
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11 194 33 15 99.34% 100.00% 99.33% 68.75% 68.75% 81.48% 0.019 99.34% 

 

dn = 16, dc=8 

Number 
of 

peptides 

Original 
number 

of 
features 

number 
of 

selected 
features 

Number 
of 

clusters Accuracy Sensitivity Specificity Precision 
Jaccard 
Index F-Measure Entropy 

Purity 

34 489 11 9 99.47% 88.24% 100.00% 100.00% 88.24% 93.75% 0.0403 99.47% 

24 244 17 13 99.60% 87.50% 100.00% 100.00% 87.50% 93.33% 0.0306 99.60% 

41 377 45 15 98.67% 80.49% 99.72% 94.29% 76.74% 86.84% 0.0808 98.67% 

31 1091 22 14 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

27 521 36 11 98.80% 88.89% 99.17% 80.00% 72.73% 84.21% 0.058 98.80% 

30 290 20 12 99.34% 83.33% 100.00% 100.00% 83.33% 90.91% 0.0417 99.34% 

12 346 11 10 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

37 234 27 15 99.20% 83.78% 100.00% 100.00% 83.78% 91.18% 0.0491 99.20% 

143 1941 222 14 89.64% 58.04% 97.05% 82.18% 51.55% 68.03% 0.2679 91.37% 

11 1942 29 15 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

30 294 31 10 99.47% 96.67% 99.59% 90.62% 87.88% 93.55% 0.0297 99.47% 

21 208 18 12 99.87% 95.24% 100.00% 100.00% 95.24% 97.56% 0.0094 99.87% 

13 510 9 15 99.34% 61.54% 100.00% 100.00% 61.54% 76.19% 0.0426 99.34% 

11 192 38 14 98.94% 100.00% 98.92% 57.89% 57.89% 73.33% 0.0248 98.94% 

 

dn = 16, dc=10 

Number 
of 

peptides 

Original 
number 

of 
features 

number 
of 

selected 
features 

Number 
of 

clusters Accuracy Sensitivity Specificity Precision 
Jaccard 
Index F-Measure Entropy 

Purity 

34 482 24 14 99.60% 91.18% 100.00% 100.00% 91.18% 95.38% 0.0233 99.60% 

24 313 12 13 99.60% 87.50% 100.00% 100.00% 87.50% 93.33% 0.0246 99.60% 

41 383 49 14 98.41% 75.61% 99.72% 93.94% 72.09% 83.78% 0.099 98.41% 

31 1095 13 9 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

27 524 27 9 97.34% 48.15% 99.17% 68.42% 39.39% 56.52% 0.1284 97.34% 

30 290 13 10 99.47% 86.67% 100.00% 100.00% 86.67% 92.86% 0.0325 99.47% 

12 350 10 11 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 0 100.00% 

37 269 27 15 98.80% 78.38% 99.86% 96.67% 76.32% 86.57% 0.0744 98.80% 

143 1945 125 12 94.16% 77.62% 98.03% 90.24% 71.61% 83.46% 0.2072 94.82% 

11 1946 101 14 99.87% 100.00% 99.87% 91.67% 91.67% 95.65% 0.0066 99.87% 

30 327 25 15 99.60% 96.67% 99.72% 93.55% 90.62% 95.08% 0.0254 99.60% 

21 208 18 11 99.87% 95.24% 100.00% 100.00% 95.24% 97.56% 0.0102 99.87% 

13 541 10 11 99.07% 53.85% 99.86% 87.50% 50.00% 66.67% 0.049 99.07% 

11 194 26 14 99.47% 100.00% 99.46% 73.33% 73.33% 84.62% 0.0167 99.47% 
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Appendix 3: Selected Properties Using GA to Discriminate 14 AMP Families 

The following table shows the entire set of the selected compositional and 

physicochemical properties by the GA. Different properties were selected for each AMP 

family. 

AMP Family 
Name 

Number 
of 

Selected 
Properti

es 

Selected Properties 

Alpha-defensin 14 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (Q) in n2 region 
Frequency of Amino Acid (G) in n2 region 
Frequency of Amino Acid (F) in n2 region 
Frequency of Amino Acid (C) in n3 region 
Frequency of Amino Acid (F) in n3 region 
Frequency of Amino Acid (Y) in n3 region 
Frequency of Amino Acid (N) in n4 region 
Frequency of Amino Acid (C) in n4 region 

Frequency of pairs Amino Acid (R) in M region 
Frequency of Amino Acid (R) in C region 
Frequency of Amino Acid (K) in C region 
Frequency of Amino Acid (Y) in C region 

Properties Extracted from n1 Sub-Region: 
Short and medium range non-bonded energy per atom 

(Oobatake-Ooi, 1977) 
Properties Extracted from C Region: 

Weights for beta-sheet at the window position of 2 (Qian-
Sejnowski, 1988) 

Bacteriocin 9 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (G) in n2 region 
Frequency of Amino Acid (V) in n2 region 
Frequency of Amino Acid (A) in n3 region 
Frequency of Amino Acid (N) in n3 region 
Frequency of Amino Acid (Y) in n3 region 

Frequency of (>16 aa and <=21 aa) Distances of basic amino 
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acids (RHK) in N region 
Frequency of Amino Acid (C) in the entire sequence region 

Properties Extracted from n4 Sub-Region: 
The number of atoms in the side chain labelled 2+1 (Charton-

Charton, 1983) 
Properties Extracted from M Region: 

van der Waals parameter epsilon (Levitt, 1976) 

Beta-defensin 36 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (R) in n1 region 
Frequency of Amino Acid (H) in n1 region 
Frequency of Amino Acid (N) in n2 region 
Frequency of Amino Acid (I) in n2 region 
Frequency of Amino Acid (L) in n2 region 
Frequency of Amino Acid (V) in n2 region 
Frequency of Amino Acid (L) in n3 region 
Frequency of Amino Acid (M) in n3 region 
Frequency of Amino Acid (F) in n3 region 
Frequency of Amino Acid (P) in n3 region 
Frequency of Amino Acid (T) in n3 region 
Frequency of Amino Acid (W) in n3 region 
Frequency of Amino Acid (Y) in n3 region 
Frequency of Amino Acid (N) in n4 region 
Frequency of Amino Acid (C) in n4 region 
Frequency of Amino Acid (G) in n4 region 
Frequency of Amino Acid (H) in n4 region 
Frequency of Amino Acid (L) in n4 region 
Frequency of Amino Acid (M) in n4 region 
Frequency of Amino Acid (T) in n4 region 
Frequency of Amino Acid (C) in M region 
Frequency of Amino Acid (R) in C region 
Frequency of Amino Acid (C) in C region 
Frequency of Amino Acid (M) in C region 
Frequency of Amino Acid (W) in C region 
Frequency of Amino Acid (Y) in C region 

Frequency of (1 aa) Distances of basic amino acids (RHK) in N 
region 

Frequency of (>11 aa and <=16 aa) Distances of other non-
hydrophobic amino acids (DNEQYSTC) in M region 

Frequency of Amino Acid (W) in the entire sequence region 
Properties Extracted from n1 Sub-Region: 

The number of atoms in the side chain labelled 2+1 (Charton-
Charton, 1983) 
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Properties Extracted from n2 Sub-Region: 
A parameter of charge transfer donor capability (Charton-

Charton, 1983) 
Properties Extracted from n3 Sub-Region: 

Average relative fractional occurrence in AL(i-1) (Rackovsky-
Scheraga, 1982) 

Normalized positional residue frequency at helix termini N" 
(Aurora-Rose, 

Properties Extracted from n4 Sub-Region: 
Average relative fractional occurrence in AL(i-1) (Rackovsky-

Scheraga, 1982) 
A parameter of charge transfer donor capability (Charton-

Charton, 1983) 
Linker propensity from all dataset (George-Heringa, 2003) 

Bombinin 13 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (G) in n1 region 
Frequency of Amino Acid (T) in n4 region 
Frequency of Amino Acid (G) in C region 
Frequency of Amino Acid (L) in C region 

Properties Extracted from n1 Sub-Region: 
Normalized frequency of beta-sheet (Crawford et al., 1973) 
Weights for alpha-helix at the window position of -4 (Qian-

Sejnowski, 1988) 
Properties Extracted from n4 Sub-Region: 
AA composition of membrane proteins (Nakashima et al., 1990) 
Slope in regression analysis x 1.0E1 (Prabhakaran-Ponnuswamy, 

1982) 
Distribution of amino acid residues in the alpha-helices in 

thermophilic 
Averaged turn propensities in a transmembrane helix (Monne 

et al., 1999) 
Properties Extracted from C Region: 
Normalized relative frequency of extended structure (Isogai et 

al., 1980) 
Surface composition of amino acids in extracellular proteins of 

mesophiles 
Weights for alpha-helix at the window position of -4 (Qian-

Sejnowski, 1988) 

Cathelicidin 36 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (R) in n1 region 
Frequency of Amino Acid (H) in n1 region 
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Frequency of Amino Acid (Y) in n1 region 
Frequency of Amino Acid (R) in n2 region 
Frequency of Amino Acid (Q) in n2 region 
Frequency of Amino Acid (T) in n2 region 
Frequency of Amino Acid (Y) in n2 region 
Frequency of Amino Acid (C) in n3 region 
Frequency of Amino Acid (H) in n3 region 
Frequency of Amino Acid (Y) in n3 region 
Frequency of Amino Acid (C) in n4 region 

Frequency of pairs Amino Acid (A) in M region 
Frequency of Amino Acid (A) in C region 
Frequency of Amino Acid (K) in C region 
Frequency of Amino Acid (F) in C region 
Frequency of Amino Acid (P) in C region 
Frequency of Amino Acid (Y) in C region 

Properties Extracted from n3 Sub-Region: 
Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986) 

N.m.r. chemical shift of alpha-carbon (Fauchere et al., 1988) 
Relative mutability (Jones et al., 1992) 

Normalized frequency of beta-sheet, with weights (Levitt, 1978) 
Frequency of occurrence in beta-bends (Lewis et al., 1971) 
Normalized frequency of alpha region (Maxfield-Scheraga, 

1976) 
AA composition of membrane proteins (Nakashima et al., 1990) 
Transmembrane regions of non-mt-proteins (Nakashima et al., 

1990) 
Weights for coil at the window position of -5 (Qian-Sejnowski, 

1988) 
Weights for coil at the window position of 5 (Qian-Sejnowski, 

1988) 
Relative preference value at N2 (Richardson-Richardson, 1988) 

Principal property value z3 (Wold et al., 1987) 
Normalized positional residue frequency at helix termini 

N4'(Aurora-Rose, 
Normalized positional residue frequency at helix termini N3 

(Aurora-Rose, 
Alpha-helix propensity derived from designed sequences (Koehl-

Levitt, 1999) 
Linker propensity from 1-linker dataset (George-Heringa, 2003) 

Properties Extracted from C Region: 
Helix initiation parameter at posision i,i+1,i+2 (Finkelstein et al., 

1991) 
Helix termination parameter at posision j+1 (Finkelstein et al., 
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1991) 
Relative preference value at C2 (Richardson-Richardson, 1988) 

Cecropin 33 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (A) in n1 region 
Frequency of Amino Acid (D) in n1 region 
Frequency of Amino Acid (D) in n2 region 
Frequency of Amino Acid (K) in n3 region 
Frequency of Amino Acid (E) in n4 region 
Frequency of Amino Acid (A) in C region 

Frequency of (>16 aa and <=21 aa) Distances of other non-
hydrophobic amino acids (DNEQYSTC) in M region 

Frequency of Amino Acid (Y) in the entire sequence region 
Properties Extracted from n1 Sub-Region: 

Positive charge (Fauchere et al., 1988) 
Conformational parameter of beta-turn (Beghin-Dirkx, 1975) 

Bitterness (Venanzi, 1984) 
Properties Extracted from n2 Sub-Region: 

Residue volume (Bigelow, 1967) 
Normalized frequency of beta-sheet (Crawford et al., 1973) 

Entropy of formation (Hutchens, 1970) 
Properties Extracted from n3 Sub-Region: 

Information measure for extended without H-bond (Robson-
Suzuki, 1976) 

Weights for alpha-helix at the window position of 6 (Qian-
Sejnowski, 1988) 

Weights for coil at the window position of 3 (Qian-Sejnowski, 
1988) 

Free energy in beta-strand conformation (Munoz-Serrano, 
1994) 

Distribution of amino acid residues in the 18 non-redundant 
families of 

Properties Extracted from n4 Sub-Region: 
Hydration number (Hopfinger, 1971), Cited by Charton-Charton 

(1982) 
Normalized positional residue frequency at helix termini N2 

(Aurora-Rose, 
Relative preference value at N3 (Richardson-Richardson, 1988) 

Hydrophobicity coefficient in RP-HPLC, C4 with 
0.1%TFA/MeCN/H2O (Wilce et al. 

AA composition of mt-proteins (Nakashima et al., 1990) 
Properties Extracted from M Region: 

Averaged turn propensities in a transmembrane helix (Monne 
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et al., 1999) 
Propensity of amino acids within pi-helices (Fodje-Al-Karadaghi, 

2002) 
Linker propensity from long dataset (linker length is greater 

than 14 
Optimized beta-structure-coil equilibrium constant (Oobatake 

et al., 1985) 
Weights for alpha-helix at the window position of 5 (Qian-

Sejnowski, 1988) 
Weights for coil at the window position of 5 (Qian-Sejnowski, 

1988) 
Relative preference value at N" (Richardson-Richardson, 1988) 

Properties Extracted from C Region: 
Hydration number (Hopfinger, 1971), Cited by Charton-Charton 

(1982) 
van der Waals parameter epsilon (Levitt, 1976) 

Cyclotide 
(Bracelet sub-

family) 
7 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (E) in n4 region 
Frequency of Amino Acid (G) in C region 

Properties Extracted from n1 Sub-Region: 
Normalized positional residue frequency at helix termini Cc 

(Aurora-Rose, 
Properties Extracted from n2 Sub-Region: 

The number of atoms in the side chain labelled 2+1 (Charton-
Charton, 1983) 

Properties Extracted from C Region: 
The Kerr-constant increments (Khanarian-Moore, 1980) 

Normalized frequency of turn in alpha+beta class (Palau et al., 
1981) 

Hydrostatic pressure asymmetry index, PAI (Di Giulio, 2005) 

DEFL 26 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (E) in n1 region 
Frequency of Amino Acid (K) in n1 region 
Frequency of Amino Acid (S) in n1 region 
Frequency of Amino Acid (T) in n1 region 
Frequency of Amino Acid (C) in n2 region 
Frequency of Amino Acid (C) in n3 region 
Frequency of Amino Acid (E) in n3 region 
Frequency of Amino Acid (L) in n3 region 
Frequency of Amino Acid (Y) in n3 region 
Frequency of Amino Acid (V) in n3 region 
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Frequency of Amino Acid (A) in n4 region 
Frequency of Amino Acid (C) in n4 region 
Frequency of Amino Acid (G) in n4 region 
Frequency of Amino Acid (K) in n4 region 
Frequency of Amino Acid (S) in n4 region 

Frequency of pairs Amino Acid (C) in M region 
Frequency of Amino Acid (C) in C region 
Frequency of Amino Acid (W) in C region 
Frequency of Amino Acid (V) in C region 

Frequency of Amino Acid (K) in the entire sequence region 
Properties Extracted from n3 Sub-Region: 

The number of atoms in the side chain labelled 2+1 (Charton-
Charton, 1983) 

Properties Extracted from n4 Sub-Region: 
A parameter of charge transfer donor capability (Charton-

Charton, 1983) 
Conformational parameter of inner helix (Beghin-Dirkx, 1975) 

Residue accessible surface area in folded protein (Chothia, 
1976) 

Ratio of average and computed composition (Nakashima et al., 
1990) 

Properties Extracted from M Region: 
The number of atoms in the side chain labelled 2+1 (Charton-

Charton, 1983) 

FSAP (Brevinin 
sub-family) 118 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (R) in n1 region 
Frequency of Amino Acid (E) in n1 region 
Frequency of Amino Acid (F) in n1 region 
Frequency of Amino Acid (V) in n1 region 
Frequency of Amino Acid (D) in n2 region 
Frequency of Amino Acid (Q) in n2 region 
Frequency of Amino Acid (P) in n2 region 
Frequency of Amino Acid (W) in n2 region 
Frequency of Amino Acid (R) in n3 region 
Frequency of Amino Acid (C) in n3 region 
Frequency of Amino Acid (S) in n4 region 
Frequency of Amino Acid (W) in n4 region 
Frequency of Amino Acid (V) in n4 region 

Frequency of pairs Amino Acid (M) in M region 
Frequency of Amino Acid (C) in C region 
Frequency of Amino Acid (I) in C region 
Frequency of Amino Acid (S) in C region 
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Frequency of Amino Acid (Y) in C region 
Properties Extracted from n1 Sub-Region: 

Normalized flexibility parameters (B-values) for each residue 
surrounded by 

Weights for beta-sheet at the window position of 3 (Qian-
Sejnowski, 1988) 

Weights for coil at the window position of 3 (Qian-Sejnowski, 
1988) 

Average relative fractional occurrence in EL(i-1) (Rackovsky-
Scheraga, 1982) 

Normalized positional residue frequency at helix termini 
N4'(Aurora-Rose, 

Average relative fractional occurrence in E0(i-1) (Rackovsky-
Scheraga, 1982) 

A parameter defined from the residuals obtained from the best 
correlation of 

Free energies of transfer of AcWl-X-LL peptides from bilayer 
interface to 

N.m.r. chemical shift of alpha-carbon (Fauchere et al., 1988) 
Information measure for C-terminal turn (Robson-Suzuki, 1976) 

Slopes tripeptide FDPB PARSE neutral (Avbelj, 2000) 
Screening coefficients gamma, local (Avbelj, 2000) 

Properties Extracted from n2 Sub-Region: 
Weights for alpha-helix at the window position of -6 (Qian-

Sejnowski, 1988) 
Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986) 
Direction of hydrophobic moment (Eisenberg-McLachlan, 1986) 

Side chain angle theta(AAR) (Levitt, 1976) 
Localized electrical effect (Fauchere et al., 1988) 

Normalized composition from fungi and plant (Nakashima et al., 
1990) 

Frequency of the 4th residue in turn (Chou-Fasman, 1978b) 
Normalized positional residue frequency at helix termini 

N'(Aurora-Rose, 
Normalized frequency of extended structure (Burgess et al., 

1974) 
Properties Extracted from n3 Sub-Region: 

Helix termination parameter at posision j-2,j-1,j (Finkelstein et 
al., 1991) 

Normalized composition of mt-proteins (Nakashima et al., 1990) 
Residue accessible surface area in folded protein (Chothia, 

1976) 
The number of atoms in the side chain labelled 1+1 (Charton-
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Charton, 1983) 
Normalized frequency of alpha region (Maxfield-Scheraga, 

1976) 
pK (-COOH) (Jones, 1975) 

Normalized frequency of beta-sheet in alpha+beta class (Palau 
et al., 1981) 

Information measure for extended without H-bond (Robson-
Suzuki, 1976) 

Weights for alpha-helix at the window position of 6 (Qian-
Sejnowski, 1988) 

Weights for coil at the window position of 4 (Qian-Sejnowski, 
1988) 

Optimized beta-structure-coil equilibrium constant (Oobatake 
et al., 1985) 

Linker propensity from helical (annotated by DSSP) dataset 
(George-Heringa, 

Optimized side chain interaction parameter (Oobatake et al., 
1985) 

Free energies of transfer of AcWl-X-LL peptides from bilayer 
interface to 

Normalized frequency of turn (Crawford et al., 1973) 
Information measure for C-terminal turn (Robson-Suzuki, 1976) 

Normalized frequency of extended structure (Burgess et al., 
1974) 

Properties Extracted from n4 Sub-Region: 
van der Waals parameter epsilon (Levitt, 1976) 

Normalized composition of membrane proteins (Nakashima et 
al., 1990) 

Electron-ion interaction potential (Veljkovic et al., 1985) 
Relative preference value at C1 (Richardson-Richardson, 1988) 
Relative population of conformational state E (Vasquez et al., 

1983) 
Frequency of the 3rd residue in turn (Chou-Fasman, 1978b) 
Free energy in beta-strand conformation (Munoz-Serrano, 

1994) 
Properties Extracted from M Region: 

Weights for beta-sheet at the window position of -3 (Qian-
Sejnowski, 1988) 

Bitterness (Venanzi, 1984) 
Information measure for extended without H-bond (Robson-

Suzuki, 1976) 
Entropy of formation (Hutchens, 1970) 

Relative preference value at C2 (Richardson-Richardson, 1988) 
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Normalized positional residue frequency at helix termini 
N'(Aurora-Rose, 

Residue accessible surface area in folded protein (Chothia, 
1976) 

Normalized frequency of beta-sheet (Chou-Fasman, 1978b) 
Relative mutability (Dayhoff et al., 1978b) 

Localized electrical effect (Fauchere et al., 1988) 
Weights for alpha-helix at the window position of 1 (Qian-

Sejnowski, 1988) 
Smoothed upsilon steric parameter (Fauchere et al., 1988) 

The Kerr-constant increments (Khanarian-Moore, 1980) 
Weights for alpha-helix at the window position of -4 (Qian-

Sejnowski, 1988) 
Average relative fractional occurrence in A0(i-1) (Rackovsky-

Scheraga, 1982) 
Relative preference value at C4 (Richardson-Richardson, 1988) 

Normalized positional residue frequency at helix termini N" 
(Aurora-Rose, 

Hydrophobicity coefficient in RP-HPLC, C18 with 
0.1%TFA/MeCN/H2O (Wilce et 

Information value for accessibility; average fraction 35% (Biou 
et al., 1988) 

The Chou-Fasman parameter of the coil conformation (Charton-
Charton, 1983) 

Weights for alpha-helix at the window position of 6 (Qian-
Sejnowski, 1988) 

Weights for beta-sheet at the window position of 6 (Qian-
Sejnowski, 1988) 

Weights for coil at the window position of 4 (Qian-Sejnowski, 
1988) 

Average relative fractional occurrence in E0(i) (Rackovsky-
Scheraga, 1982) 

Free energies of transfer of AcWl-X-LL peptides from bilayer 
interface to 

Weights for coil at the window position of -3 (Qian-Sejnowski, 
1988) 

Thermodynamic beta sheet propensity (Kim-Berg, 1993) 
Linker propensity from long dataset (linker length is greater 

than 14 
Optimized average non-bonded energy per atom (Oobatake et 

al., 1985) 
Hydropathy scale based on self-information values in the two-

state model (50% 
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Properties Extracted from C Region: 
Weights for alpha-helix at the window position of -6 (Qian-

Sejnowski, 1988) 
Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986) 
Relative preference value at C3 (Richardson-Richardson, 1988) 

Proportion of residues 95% buried (Chothia, 1976) 
Weights for alpha-helix at the window position of -3 (Qian-

Sejnowski, 1988) 
Weights for coil at the window position of -4 (Qian-Sejnowski, 

1988) 
Average relative fractional occurrence in ER(i-1) (Rackovsky-

Scheraga, 1982) 
Slopes tripeptide FDPB PARSE neutral (Avbelj, 2000) 

Hydrophobicity index (Argos et al., 1982) 
Short and medium range non-bonded energy per atom 

(Oobatake-Ooi, 1977) 
Value of theta(i-1) (Rackovsky-Scheraga, 1982) 

Relative preference value at N3 (Richardson-Richardson, 1988) 
Information measure for C-terminal turn (Robson-Suzuki, 1976) 

Normalized positional residue frequency at helix termini C" 
(Aurora-Rose, 

p-Values of thermophilic proteins based on the distributions of 
B values 

Weights for alpha-helix at the window position of -4 (Qian-
Sejnowski, 1988) 

Weights for beta-sheet at the window position of 2 (Qian-
Sejnowski, 1988) 

Normalized positional residue frequency at helix termini C5 
(Aurora-Rose, 

Hydropathy scale based on self-information values in the two-
state model (50% 

Normalized frequency of N-terminal helix (Chou-Fasman, 
1978b) 

Relative population of conformational state A (Vasquez et al., 
1983) 

Normalized positional residue frequency at helix termini N2 
(Aurora-Rose, 

Normalized frequency of beta-sheet in alpha+beta class (Palau 
et al., 1981) 

Hydrophobicity coefficient in RP-HPLC, C18 with 0.1%TFA/2-
PrOH/MeCN/H2O 

AA composition of EXT of multi-spanning proteins (Nakashima-
Nishikawa, 1992) 
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FSAP (Caerin sub-
family) 28 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (V) in C region 
Properties Extracted from n1 Sub-Region: 
Normalized hydrophobicity scales for alpha-proteins (Cid et al., 

1992) 
Weights for alpha-helix at the window position of 5 (Qian-

Sejnowski, 1988) 
van der Waals parameter R0 (Levitt, 1976) 

Surrounding hydrophobicity in turn (Ponnuswamy et al., 1980) 
Free energies of transfer of AcWl-X-LL peptides from bilayer 

interface to 
Properties Extracted from n2 Sub-Region: 
The Chou-Fasman parameter of the coil conformation (Charton-

Charton, 1983) 
Relative preference value at C5 (Richardson-Richardson, 1988) 

Normalized frequency of isolated helix (Tanaka-Scheraga, 1977) 
Properties Extracted from n3 Sub-Region: 
Information measure for N-terminal turn (Robson-Suzuki, 1976) 

Electron-ion interaction potential (Veljkovic et al., 1985) 
Properties Extracted from n4 Sub-Region: 
Transmembrane regions of non-mt-proteins (Nakashima et al., 

1990) 
Weights for alpha-helix at the window position of -6 (Qian-

Sejnowski, 1988) 
Average relative fractional occurrence in EL(i-1) (Rackovsky-

Scheraga, 1982) 
Relative preference value at C" (Richardson-Richardson, 1988) 

Properties Extracted from M Region: 
Helix initiation parameter at posision i-1 (Finkelstein et al., 

1991) 
Normalized relative frequency of helix end (Isogai et al., 1980) 

Weights for beta-sheet at the window position of -5 (Qian-
Sejnowski, 1988) 

Relative preference value at C2 (Richardson-Richardson, 1988) 
Slopes dekapeptide, FDPB VFF neutral (Avbelj, 2000) 

Weights for coil at the window position of -6 (Qian-Sejnowski, 
1988) 

Weights for coil at the window position of 6 (Qian-Sejnowski, 
1988) 

Information measure for N-terminal turn (Robson-Suzuki, 1976) 
Properties Extracted from C Region: 

Optical rotation (Fasman, 1976) 
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Beta-strand indices (Geisow-Roberts, 1980) 
Composition (Grantham, 1974) 

Normalized frequency of beta-sheet in alpha+beta class (Palau 
et al., 1981) 

Normalized positional residue frequency at helix termini N" 
(Aurora-Rose, 

FSAP 
(Dermaseptin 

sub-family) 
25 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (D) in n1 region 
Frequency of Amino Acid (F) in n1 region 
Frequency of Amino Acid (W) in n1 region 
Frequency of Amino Acid (D) in n2 region 
Frequency of Amino Acid (V) in n2 region 
Frequency of Amino Acid (D) in n3 region 
Frequency of Amino Acid (M) in n3 region 
Frequency of Amino Acid (R) in n4 region 
Frequency of Amino Acid (W) in n4 region 
Frequency of Amino Acid (V) in M region 

Frequency of pairs Amino Acid (A) in M region 
Frequency of Amino Acid (C) in C region 
Frequency of Amino Acid (Q) in C region 
Frequency of Amino Acid (L) in C region 
Frequency of Amino Acid (K) in C region 
Frequency of Amino Acid (M) in C region 

Properties Extracted from n1 Sub-Region: 
Optimized average non-bonded energy per atom (Oobatake et 

al., 1985) 
Bitterness (Venanzi, 1984) 

Properties Extracted from n2 Sub-Region: 
Helix termination parameter at posision j-2,j-1,j (Finkelstein et 

al., 1991) 
Properties Extracted from n4 Sub-Region: 

Weights for alpha-helix at the window position of -6 (Qian-
Sejnowski, 1988) 

Properties Extracted from M Region: 
van der Waals parameter epsilon (Levitt, 1976) 

Average interactions per side chain atom (Warme-Morgan, 
1978) 

Properties Extracted from C Region: 
Entropy of formation (Hutchens, 1970) 

AA composition of EXT of multi-spanning proteins (Nakashima-
Nishikawa, 1992) 

Information measure for extended without H-bond (Robson-
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Suzuki, 1976) 

Invertebrate 
defensin (Type 1 

sub-family) 
14 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (D) in n1 region 
Frequency of Amino Acid (A) in n2 region 
Frequency of Amino Acid (C) in n2 region 
Frequency of Amino Acid (C) in n4 region 
Frequency of Amino Acid (L) in n4 region 
Frequency of Amino Acid (C) in C region 
Frequency of Amino Acid (S) in C region 
Frequency of Amino Acid (V) in C region 

Properties Extracted from n4 Sub-Region: 
Linker propensity from 3-linker dataset (George-Heringa, 2003) 
Conformational parameter of inner helix (Beghin-Dirkx, 1975) 

The Chou-Fasman parameter of the coil conformation (Charton-
Charton, 1983) 

Frequency of occurrence in beta-bends (Lewis et al., 1971) 
Retention coefficient in HPLC, pH2.1 (Meek, 1980) 

Principal component III (Sneath, 1966) 

Invertebrate 
defensin (Type 2 

sub-family) 
9 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (H) in n1 region 
Frequency of Amino Acid (C) in n2 region 
Frequency of Amino Acid (C) in n3 region 
Frequency of Amino Acid (T) in C region 

Properties Extracted from n1 Sub-Region: 
AA composition of EXT of multi-spanning proteins (Nakashima-

Nishikawa, 1992) 
Value of theta(i) (Rackovsky-Scheraga, 1982) 

Loss of Side chain hydropathy by helix formation (Roseman, 
1988) 

Principal component IV (Sneath, 1966) 
Properties Extracted from n2 Sub-Region: 

Loss of Side chain hydropathy by helix formation (Roseman, 
1988) 

Type A lantibiotic 26 

Basic Properties Related To Composition and Distance 
Frequency: 

Frequency of Amino Acid (N) in n1 region 
Frequency of Amino Acid (D) in n1 region 
Frequency of Amino Acid (C) in n1 region 
Frequency of Amino Acid (S) in n1 region 
Frequency of Amino Acid (A) in n2 region 
Frequency of Amino Acid (C) in n2 region 



182 
 

Frequency of Amino Acid (G) in n2 region 
Frequency of Amino Acid (V) in n2 region 
Frequency of Amino Acid (N) in n3 region 
Frequency of Amino Acid (T) in n4 region 
Frequency of Amino Acid (M) in M region 

Frequency of pairs Amino Acid (C) in M region 
Frequency of pairs Amino Acid (M) in M region 
Frequency of pairs Amino Acid (F) in M region 

Frequency of Amino Acid (N) in C region 
Frequency of Amino Acid (C) in C region 
Frequency of Amino Acid (Q) in C region 
Frequency of Amino Acid (K) in C region 
Frequency of Amino Acid (F) in C region 
Frequency of Amino Acid (S) in C region 
Frequency of Amino Acid (T) in C region 
Frequency of Amino Acid (Y) in C region 

Frequency of (>1 aa and <=6 aa) Distances of basic amino acids 
(RHK) in N region 

Frequency of Amino Acid (R) in the entire sequence region 
Frequency of Amino Acid (C) in the entire sequence region 
Frequency of Amino Acid (M) in the entire sequence region 

 

  



Appendix 4: DRAF Models Performance and Comparison of Results 

Table A4.1.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,8,9…20)  using  the  holdout  method.  70%  of  the  

data were used for training, while 30% were used for testing. The results below were obtained using the thresholds giving the highest 

accuracy on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

threshold 0.3875 0.413 0.51 0.441 0.5105 0.568 0.5605 0.533 0.574 0.5745 0.5085 0.535 0.5215 0.314  

Total Number of 
Samples 

1433 2460 19787 17583 39233 62890 78933 63680 58043 37997 22813 34110 45240 17143  

Total Training 
Samples 

1003 1722 13851 12308 27463 44023 55253 44576 40630 26598 15969 23877 31668 12000  

Total Testing 
Samples 

430 738 5936 5275 11770 18867 23680 19104 17413 11399 6844 10233 13572 5143  

True Positive (TP) 36 64 502 471 1049 1626 2032 1599 1401 914 591 815 1200 467  

False Positive (FP) 0 4 7 8 16 17 22 16 8 12 4 15 8 7  

True Negative (TN) 382 666 5386 4778 10647 17121 21504 17402 15861 10387 6202 9322 12308 4661  

False Negative (FN) 12 4 41 18 58 103 122 87 143 86 47 81 56 8  

Accuracy 0.9721 0.9892 0.9919 0.9951 0.9937 0.9936 0.9939 0.9946 0.9913 0.9914 0.9925 0.9906 0.9953 0.9971 99.16% 

Sensitivity 0.7500 0.9412 0.9245 0.9632 0.9476 0.9404 0.9434 0.9484 0.9074 0.9140 0.9263 0.9096 0.9554 0.9832 92.53% 
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Specificity 1.0000 0.9940 0.9987 0.9983 0.9985 0.9990 0.9990 0.9991 0.9995 0.9988 0.9994 0.9984 0.9994 0.9985 99.86% 

Precision 1.0000 0.9412 0.9862 0.9833 0.9850 0.9897 0.9893 0.9901 0.9943 0.9870 0.9933 0.9819 0.9934 0.9852 98.57% 

F-Measure 0.8571 0.9412 0.9544 0.9731 0.9659 0.9644 0.9658 0.9688 0.9489 0.9491 0.9586 0.9444 0.9740 0.9842 95.36% 

MCC 0.8527 0.9352 0.9505 0.9705 0.9627 0.9613 0.9628 0.9661 0.9453 0.9453 0.9552 0.9401 0.9717 0.9826 95.01% 

 

 

Table A4.2.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,8,9…20)  using  the  holdout  method.  70%  of  the  

data were used for training, while 30% were used for testing. The results below were obtained using the thresholds giving the highest 

specificity on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

threshold 0.3875 0.5625 0.608 0.6265 0.651 0.793 0.823 0.6645 0.6585 0.7185 0.552 0.535 0.5215 0.314  

Total Number of 
Samples 

1433 2460 19787 17583 39233 62890 78933 63680 58043 37997 22813 34110 45240 17143  

Total Training 
Samples 

1003 1722 13851 12308 27463 44023 55253 44576 40630 26598 15969 23877 31668 12000  

Total Testing 
Samples 

430 738 5936 5275 11770 18867 23680 19104 17413 11399 6844 10233 13572 5143  

True Positive (TP) 36 56 454 414 915 1261 1534 1501 1298 779 579 815 1200 467  

False Positive (FP) 0 1 3 4 5 3 2 2 4 7 3 15 8 7  
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True Negative (TN) 382 669 5390 4782 10658 17135 21524 17416 15865 10392 6203 9322 12308 4661  

False Negative (FN) 12 12 89 75 192 468 620 185 246 221 59 81 56 8  

Accuracy 0.9721 0.9824 0.9845 0.9850 0.9833 0.9750 0.9737 0.9902 0.9856 0.9800 0.9909 0.9906 0.9953 0.9971 98.47% 

Sensitivity 0.7500 0.8235 0.8361 0.8466 0.8266 0.7293 0.7122 0.8903 0.8407 0.7790 0.9075 0.9096 0.9554 0.9832 84.21% 

Specificity 1.0000 0.9985 0.9994 0.9992 0.9995 0.9998 0.9999 0.9999 0.9997 0.9993 0.9995 0.9984 0.9994 0.9985 99.94% 

Precision 1.0000 0.9825 0.9934 0.9904 0.9946 0.9976 0.9987 0.9987 0.9969 0.9911 0.9948 0.9819 0.9934 0.9852 99.28% 

F-Measure 0.8571 0.8960 0.9080 0.9129 0.9028 0.8426 0.8314 0.9414 0.9122 0.8723 0.9492 0.9444 0.9740 0.9842 90.92% 

MCC 0.8527 0.8906 0.9036 0.9081 0.8983 0.8414 0.8314 0.9379 0.9083 0.8690 0.9454 0.9401 0.9717 0.9826 90.58% 

 

 

Table A4.3.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,8,9…20)  using  the  holdout  method.  70%  of  the  

data were used for training, while 30% were used for testing. The results below were obtained using the thresholds giving the highest 

sensitivity on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

threshold 0.4025 0.549 0.415 0.48 0.4855 0.488 0.474 0.504 0.5755 0.577 0.5505 0.578 0.5955 0.6295  

Total Number of 
Samples 

1433 2460 19787 17583 39233 62890 78933 63680 58043 37997 22813 34110 45240 17143  

Total Training 1003 1722 13851 12308 27463 44023 55253 44576 40630 26598 15969 23877 31668 12000  
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Samples 

Total Testing 
Samples 

430 738 5936 5275 11770 18867 23680 19104 17413 11399 6844 10233 13572 5143  

True Positive (TP) 33 58 531 465 1062 1681 2088 1614 1395 913 580 777 1143 426  

False Positive (FP) 0 1 18 6 19 24 42 18 8 12 3 10 5 0  

True Negative (TN) 382 669 5375 4780 10644 17114 21484 17400 15861 10387 6203 9327 12311 4668  

False Negative (FN) 15 10 12 24 45 48 66 72 149 87 58 119 113 49  

Accuracy 0.9651 0.9851 0.9949 0.9943 0.9946 0.9962 0.9954 0.9953 0.9910 0.9913 0.9911 0.9874 0.9913 0.9905 99.03% 

Sensitivity 0.6875 0.8529 0.9779 0.9509 0.9593 0.9722 0.9694 0.9573 0.9035 0.9130 0.9091 0.8672 0.9100 0.8968 90.91% 

Specificity 1.0000 0.9985 0.9967 0.9987 0.9982 0.9986 0.9980 0.9990 0.9995 0.9988 0.9995 0.9989 0.9996 1.0000 99.89% 

Precision 1.0000 0.9831 0.9672 0.9873 0.9824 0.9859 0.9803 0.9890 0.9943 0.9870 0.9949 0.9873 0.9956 1.0000 98.82% 

F-Measure 0.8148 0.9134 0.9725 0.9688 0.9707 0.9790 0.9748 0.9729 0.9467 0.9486 0.9500 0.9234 0.9509 0.9456 94.52% 

MCC 0.8133 0.9080 0.9698 0.9658 0.9678 0.9770 0.9723 0.9705 0.9431 0.9447 0.9463 0.9188 0.9473 0.9421 94.19% 

 

 

Table A4.4.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,  8,  9…20)  using  10-fold cross-validation. The 

results below were obtained using the thresholds giving the highest accuracy on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 
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threshold 0.2695 0.3575 0.421 0.4555 0.3975 0.41 0.466 0.3715 0.373 0.3775 0.349 0.3485 0.3925 0.3515  

Total Number of 
Samples 

3283 5720 46073 40947 91463 146710 184100 148540 135407 88637 53223 79577 105550 39993  

Total Samples for 
Cross Valdiation 

985 1716 13822 12284 27439 44013 55230 44562 40622 26591 15967 23873 31665 11998  

True Positive (TP) 85 152 1225 1104 2498 4022 4856 4006 3661 2396 1410 2144 2862 1074  

False Positive (FP) 16 9 45 23 75 94 100 94 118 118 31 129 65 22  

True Negative (TN) 878 1551 12519 11116 24830 39845 50126 40421 36802 24046 14483 21576 28698 10878  

False Negative (FN) 6 4 33 41 36 52 148 41 41 31 43 24 40 24  

Accuracy 0.9777 0.9924 0.9944 0.9948 0.9960 0.9967 0.9955 0.9970 0.9961 0.9944 0.9954 0.9936 0.9967 0.9962 0.9940 

Sensitivity 0.9341 0.9744 0.9738 0.9642 0.9858 0.9872 0.9704 0.9899 0.9889 0.9872 0.9704 0.9889 0.9862 0.9781 0.9771 

Specificity 0.9821 0.9942 0.9964 0.9979 0.9970 0.9976 0.9980 0.9977 0.9968 0.9951 0.9979 0.9941 0.9977 0.9980 0.9958 

Precision 0.8416 0.9441 0.9646 0.9796 0.9709 0.9772 0.9798 0.9771 0.9688 0.9531 0.9785 0.9432 0.9778 0.9799 0.9597 

F-Measure 0.8854 0.9590 0.9691 0.9718 0.9783 0.9822 0.9751 0.9834 0.9787 0.9698 0.9744 0.9655 0.9820 0.9790 0.9681 

MCC 0.8745 0.9550 0.9661 0.9690 0.9761 0.9804 0.9726 0.9818 0.9767 0.9669 0.9719 0.9623 0.9802 0.9769 0.9650 
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Table A4.5.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,  8,  9…20)  using  10-fold cross-validation. The 

results below were obtained using the thresholds giving the highest specificity on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

threshold 0.431 0.4195 0.75 0.7945 0.8525 0.9315 0.884 0.953 0.8305 0.8625 0.8275 0.9285 0.7765 0.4015  

Total Number of 
Samples 

3283 5720 46073 40947 91463 146710 184100 148540 135407 88637 53223 79577 105550 39993  

Total Samples for 
Cross Valdiation 

985 1716 13822 12284 27439 44013 55230 44562 40622 26591 15967 23873 31665 11998  

True Positive (TP) 70 142 635 609 1023 1131 2729 1404 2404 1216 1119 460 2096 1061  

False Positive (FP) 3 6 1 3 1 0 4 1 1 3 0 1 2 11  

True Negative (TN) 891 1554 12563 11136 24904 39939 50222 40514 36919 24161 14514 21704 28761 10889  

False Negative (FN) 21 14 623 536 1511 2943 2275 2643 1298 1211 334 1708 806 37  

Accuracy 0.9756 0.9883 0.9549 0.9561 0.9449 0.9331 0.9587 0.9407 0.9680 0.9543 0.9791 0.9284 0.9745 0.9960 0.9609 

Sensitivity 0.7692 0.9103 0.5048 0.5319 0.4037 0.2776 0.5454 0.3469 0.6494 0.5010 0.7701 0.2122 0.7223 0.9663 0.5794 

Specificity 0.9966 0.9962 0.9999 0.9997 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 0.9990 0.9994 

Precision 0.9589 0.9595 0.9984 0.9951 0.9990 1.0000 0.9985 0.9993 0.9996 0.9975 1.0000 0.9978 0.9990 0.9897 0.9923 

F-Measure 0.8537 0.9342 0.6705 0.6932 0.5750 0.4346 0.7054 0.5150 0.7873 0.6670 0.8701 0.3499 0.8384 0.9779 0.7052 

MCC 0.8466 0.9282 0.6929 0.7103 0.6166 0.5085 0.7217 0.5704 0.7919 0.6898 0.8676 0.4429 0.8377 0.9758 0.7286 
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Table A4.6.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,  8,  9…20)  using  10-fold cross-validation. The 

results below were obtained using the thresholds giving the highest sensitivity on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

threshold 0.2715 0.36 0.222 0.2825 0.2865 0.147 0.228 0.2 0.231 0.163 0.164 0.154 0.131 0.1495  

Total Number of 
Samples 

3283 5720 46073 40947 91463 146710 184100 148540 135407 88637 53223 79577 105550 39993  

Total Samples for 
Cross Valdiation 

985 1716 13822 12284 27439 44013 55230 44562 40622 26591 15967 23873 31665 11998  

True Positive (TP) 85 151 1258 1142 2530 4073 4997 4046 3700 2427 1449 2168 2901 1098  

False Positive (FP) 14 8 255 108 197 944 530 464 345 588 225 710 895 180  

True Negative (TN) 880 1552 12309 11031 24708 38995 49696 40051 36575 23576 14289 20995 27868 10720  

False Negative (FN) 6 5 0 3 4 1 7 1 2 0 4 0 1 0  

Accuracy 0.9797 0.9924 0.9816 0.9910 0.9927 0.9785 0.9903 0.9896 0.9915 0.9779 0.9857 0.9703 0.9717 0.9850 0.9841 

Sensitivity 0.9341 0.9679 1.0000 0.9974 0.9984 0.9998 0.9986 0.9998 0.9995 1.0000 0.9972 1.0000 0.9997 1.0000 0.9923 

Specificity 0.9843 0.9949 0.9797 0.9903 0.9921 0.9764 0.9894 0.9885 0.9907 0.9757 0.9845 0.9673 0.9689 0.9835 0.9833 

Precision 0.8586 0.9497 0.8315 0.9136 0.9278 0.8118 0.9041 0.8971 0.9147 0.8050 0.8656 0.7533 0.7642 0.8592 0.8612 

F-Measure 0.8947 0.9587 0.9080 0.9537 0.9618 0.8961 0.9490 0.9457 0.9552 0.8920 0.9268 0.8593 0.8662 0.9242 0.9208 

MCC 0.8845 0.9546 0.9025 0.9498 0.9585 0.8902 0.9451 0.9416 0.9516 0.8862 0.9217 0.8536 0.8603 0.9192 0.9157 
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Table A4.7.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,  8,  9…20)  using  5-fold cross-validation. The 

results below were obtained using the thresholds giving the highest accuracy on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

threshold 0.3165 0.4345 0.4125 0.404 0.3965 0.3995 0.3885 0.3815 0.3615 0.428 0.3145 0.404 0.361 0.2815  

Total Number of 
Samples 

3283 5720 46073 40947 91463 146710 184100 148540 135407 88637 53223 79577 105550 39993  

Total Samples for 
Cross Valdiation 

985 1716 13822 12284 27439 44013 55230 44562 40622 26591 15967 23873 31665 11998  

True Positive (TP) 81 141 1217 1119 2492 4022 4927 4002 3653 2370 1423 2115 2877 1085  

False Positive (FP) 12 8 51 34 77 109 173 92 123 89 43 80 82 36  

True Negative (TN) 882 1552 12513 11105 24828 39830 50053 40423 36797 24075 14471 21625 28681 10864  

False Negative (FN) 10 15 41 26 42 52 77 45 49 57 30 53 25 13  

Accuracy 0.9777 0.9866 0.9933 0.9951 0.9957 0.9963 0.9955 0.9969 0.9958 0.9945 0.9954 0.9944 0.9966 0.9959 0.9936 

Sensitivity 0.8901 0.9038 0.9674 0.9773 0.9834 0.9872 0.9846 0.9889 0.9868 0.9765 0.9794 0.9756 0.9914 0.9882 0.9700 

Specificity 0.9866 0.9949 0.9959 0.9969 0.9969 0.9973 0.9966 0.9977 0.9967 0.9963 0.9970 0.9963 0.9971 0.9967 0.9959 

Precision 0.8710 0.9463 0.9598 0.9705 0.9700 0.9736 0.9661 0.9775 0.9674 0.9638 0.9707 0.9636 0.9723 0.9679 0.9600 

F-Measure 0.8804 0.9246 0.9636 0.9739 0.9767 0.9804 0.9753 0.9832 0.9770 0.9701 0.9750 0.9695 0.9817 0.9779 0.9649 

MCC 0.8682 0.9175 0.9599 0.9712 0.9743 0.9784 0.9728 0.9815 0.9747 0.9671 0.9725 0.9665 0.9799 0.9757 0.9615 
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Table A4.8.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,  8,  9…20)  using  5-fold cross-validation. The 

results below were obtained using the thresholds giving the highest specificity on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

threshold 0.3165 0.4345 0.688 0.715 0.7595 0.896 0.884 0.958 0.812 0.8995 0.773 0.934 0.808 0.383  

Total Number of 
Samples 

3283 5720 46073 40947 91463 146710 184100 148540 135407 88637 53223 79577 105550 39993  

Total Samples for 
Cross Valdiation 

985 1716 13822 12284 27439 44013 55230 44562 40622 26591 15967 23873 31665 11998  

True Positive (TP) 81 141 815 816 1617 1848 2672 1275 2474 922 1158 408 1908 1068  

False Positive (FP) 12 8 2 4 6 0 5 1 2 1 0 1 2 13  

True Negative (TN) 882 1552 12562 11135 24899 39939 50221 40514 36918 24163 14514 21704 28761 10887  

False Negative (FN) 10 15 443 329 917 2226 2332 2772 1228 1505 295 1760 994 30  

Accuracy 0.9777 0.9866 0.9678 0.9729 0.9664 0.9494 0.9577 0.9378 0.9697 0.9434 0.9815 0.9262 0.9685 0.9964 0.9644 

Sensitivity 0.8901 0.9038 0.6479 0.7127 0.6381 0.4536 0.5340 0.3150 0.6683 0.3799 0.7970 0.1882 0.6575 0.9727 0.6256 

Specificity 0.9866 0.9949 0.9998 0.9996 0.9998 1.0000 0.9999 1.0000 0.9999 1.0000 1.0000 1.0000 0.9999 0.9988 0.9985 

Precision 0.8710 0.9463 0.9976 0.9951 0.9963 1.0000 0.9981 0.9992 0.9992 0.9989 1.0000 0.9976 0.9990 0.9880 0.9847 

F-Measure 0.8804 0.9246 0.7855 0.8305 0.7780 0.6241 0.6957 0.4791 0.8009 0.5504 0.8870 0.3166 0.7930 0.9803 0.7376 

MCC 0.8682 0.9175 0.7900 0.8297 0.7829 0.6555 0.7136 0.5428 0.8039 0.5976 0.8838 0.4166 0.7967 0.9783 0.7555 
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Table A4.9.  The  prediction  results  on  the  test  data  by  the  RF  models  for  TFBS  lengths  (L=7,  8,  9…20)  using  5-fold cross-validation. The 

results below were obtained using the thresholds giving the highest sensitivity on the training data 

TFBS Length 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Average 

threshold 0.321 0.3745 0.256 0.2525 0.2005 0.158 0.199 0.12 0.228 0.1595 0.2435 0.19 0.0995 0.2125  

Total Number of 
Samples 

3283 5720 46073 40947 91463 146710 184100 148540 135407 88637 53223 79577 105550 39993  

Total Samples for 
Cross Valdiation 

985 1716 13822 12284 27439 44013 55230 44562 40622 26591 15967 23873 31665 11998  

True Positive (TP) 80 151 1254 1143 2534 4074 4999 4047 3698 2427 1440 2168 2902 1094  

False Positive (FP) 11 11 188 132 495 917 752 1281 376 617 93 498 1434 84  

True Negative (TN) 883 1549 12376 11007 24410 39022 49474 39234 36544 23547 14421 21207 27329 10816  

False Negative (FN) 11 5 4 2 0 0 5 0 4 0 13 0 0 4  

Accuracy 0.9777 0.9907 0.9861 0.9891 0.9820 0.9792 0.9863 0.9713 0.9906 0.9768 0.9934 0.9791 0.9547 0.9927 0.9821 

Sensitivity 0.8791 0.9679 0.9968 0.9983 1.0000 1.0000 0.9990 1.0000 0.9989 1.0000 0.9911 1.0000 1.0000 0.9964 0.9877 

Specificity 0.9877 0.9929 0.9850 0.9881 0.9801 0.9770 0.9850 0.9684 0.9898 0.9745 0.9936 0.9771 0.9501 0.9923 0.9816 

Precision 0.8791 0.9321 0.8696 0.8965 0.8366 0.8163 0.8692 0.7596 0.9077 0.7973 0.9393 0.8132 0.6693 0.9287 0.8510 

F-Measure 0.8791 0.9497 0.9289 0.9446 0.9110 0.8988 0.9296 0.8634 0.9511 0.8872 0.9645 0.8970 0.8019 0.9613 0.9120 

MCC 0.8668 0.9448 0.9239 0.9403 0.9055 0.8930 0.9248 0.8576 0.9473 0.8814 0.9613 0.8914 0.7974 0.9580 0.9067 
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Appendix 5: Sequence Logos for 321 ChIP-seq Datasets 

Table A5.1.  The sequence logos for the predicted TFBS sequences by the DRAF models for 321 ChIP-seq datasets at different sensitivity 

thresholds. 

TF Cell Type Original TFBS Sequence 
Logo Sensitivity 60% Sensitivity 70% Sensitivity 80% Sensitivity 90% 

ATF1 K562 
     

ATF3 A549 
     

ATF3 GM12878 
     

ATF3 H1-hESC 
     

ATF3 HepG2 
     

ATF3 K562 
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ATF3 K562 
     

BATF GM12878 
     

BRCA1 GM12878 
     

BRCA1 H1-hESC 
     

BRCA1 HeLa-S3 
     

BRCA1 HepG2 
     

CEBPB A549 
     

CEBPB GM12878 
     

CEBPB H1-hESC 
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CEBPB HeLa-S3 
     

CEBPB HepG2 
     

CEBPB HepG2 
     

CEBPB HepG2 
     

CEBPB IMR90 
     

CEBPB K562 
     

CEBPB K562 
     

CEBPD HepG2 
     

CREB1 A549 
     



196 
 

CTCF A549 
     

CTCF A549 
     

CTCF A549 
     

CTCF A549 
     

CTCF AG04449 
     

CTCF AG04450 
     

CTCF AG09309 
     

CTCF AG09319 
     

CTCF AG10803 
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CTCF AoAF 
     

CTCF BJ 
     

CTCF Caco-2 
     

CTCF C 
     

CTCF Dnd41 
     

CTCF ECC-1 
     

CTCF Fibrobl 
     

CTCF Gliobla 
     

CTCF GM06990 
     



198 
 

CTCF GM12801 
     

CTCF GM12864 
     

CTCF GM12865 
     

CTCF GM12872 
     

CTCF GM12873 
     

CTCF GM12874 
     

CTCF GM12875 
     

CTCF GM12878 
     

CTCF GM12878 
     



199 
 

CTCF GM12878 
     

CTCF GM12878 
     

CTCF GM12891 
     

CTCF GM12892 
     

CTCF GM19238 
     

CTCF GM19239 
     

CTCF GM19240 
     

CTCF H1-hESC 
     

CTCF H1-hESC 
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CTCF H1-hESC 
     

CTCF HAc 
     

CTCF HA-sp 
     

CTCF HBMEC 
     

CTCF HCFaa 
     

CTCF HCM 
     

CTCF HCPEpiC 
     

CTCF HCT-116 
     

CTCF HEEpiC 
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CTCF HEK293 
     

CTCF HeLa-S3 
     

CTCF HeLa-S3 
     

CTCF HeLa-S3 
     

CTCF HepG2 
     

CTCF HepG2 
     

CTCF HepG2 
     

CTCF HepG2 
     

CTCF HFF-Myc 
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CTCF HFF 
     

CTCF HL-60 
     

CTCF HMEC 
     

CTCF HMEC 
     

CTCF HMF 
     

CTCF HPAF 
     

CTCF HPF 
     

CTCF HRE 
     

CTCF HRPEpiC 
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CTCF HSMMtube 
     

CTCF HSMM 
     

CTCF HUVEC 
     

CTCF HUVEC 
     

CTCF HUVEC 
     

CTCF HVMF 
     

CTCF IMR90 
     

CTCF K562 
     

CTCF K562 
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CTCF K562 
     

CTCF K562 
     

CTCF K562 
     

CTCF MCF-7 
     

CTCF MCF-7 
     

CTCF MCF-7 
     

CTCF MCF-7 
     

CTCF MCF-7 
     

CTCF MCF-7 
     



205 
 

CTCF NB4 
     

CTCF NH-A 
     

CTCF NHDF-Ad 
     

CTCF NHDF-neo 
     

CTCF NHEK 
     

CTCF NHEK 
     

CTCF NHEK 
     

CTCF NHLF 
     

CTCF NHLF 
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CTCF Osteobl 
     

CTCF ProgFib 
     

CTCF RA 
     

CTCF RA 
     

CTCF RPTEC 
     

CTCF SAEC 
     

CTCF T-47D 
     

CTCF WERI-Rb-1 
     

CTCF WI-38 
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E2F1 HeLa-S3 
     

E2F4 GM12878 
     

E2F4 HeLa-S3 
     

E2F4 K562 
     

E2F4 MCF10A-Er-
Src 

     

E2F6 HeLa-S3 
     

E2F6 K562 
     

E2F6 K562 
     

ELF1 A549 
     



208 
 

ELF1 GM12878 
     

ELF1 HepG2 
     

ELF1 K562 
     

ELK1 GM12878 
     

ELK1 HeLa-S3 
     

ELK1 K562 
     

ELK4 HEK293 
     

ELK4 HeLa-S3 
     

ESR1 ECC-1 
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ESR1 ECC-1 
     

ESR1 ECC-1 
     

ESR1 T-47D 
     

ESR1 T-47D 
     

ESR1 T-47D 
     

ETS1 A549 
     

ETS1 GM12878 
     

ETS1 K562 
     

FOS GM12878 
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FOS HeLa-S3 
     

FOS HUVEC 
     

FOS K562 
     

FOSL1 H1-hESC 
     

FOSL1 K562 
     

FOSL2 A549 
     

FOSL2 HepG2 
     

FOS MCF10A-Er-
Src 

     

FOS MCF10A-Er-
Src 
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FOS MCF10A-Er-
Src 

     

FOS MCF10A-Er-
Src 

     

FOXA1 A549 
     

FOXA1 ECC-1 
     

FOXA1 HepG2 
     

FOXA1 HepG2 
     

FOXA1 T-47D 
     

FOXA2 HepG2 
     

FOXP2 PFSK-1 
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FOXP2 SK-N-MC 
     

GABPA A549 
     

GABPA GM12878 
     

GABPA H1-hESC 
     

GABPA HeLa-S3 
     

GABPA HepG2 
     

GABPA K562 
     

GATA1 K562 
     

GATA1 PBDEFetal 
     



213 
 

GATA1 PBDE 
     

GATA2 HUVEC 
     

GATA2 K562 
     

GATA2 K562 
     

GATA2 SH-SY5Y 
     

GATA3 MCF-7 
     

GATA3 MCF-7 
     

GATA3 SH-SY5Y 
     

GATA3 T-47D 
     



214 
 

HNF4A HepG2 
     

HNF4A HepG2 
     

HSF1 HepG2 
     

IRF1 K562 
     

IRF1 K562 
     

IRF1 K562 
     

IRF1 K562 
     

IRF3 HeLa-S3 
     

IRF3 HepG2 
     



215 
 

IRF4 GM12878 
     

JUND GM12878 
     

JUND H1-hESC 
     

JUND H1-hESC 
     

JUND HeLa-S3 
     

JUND HepG2 
     

JUND HepG2 
     

JUND K562 
     

JUN H1-hESC 
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JUN HeLa-S3 
     

JUN HepG2 
     

JUN HUVEC 
     

JUN K562 
     

JUN K562 
     

JUN K562 
     

JUN K562 
     

JUN K562 
     

MAFK H1-hESC 
     



217 
 

MAFK HeLa-S3 
     

MAFK HepG2 
     

MAFK HepG2 
     

MAFK IMR90 
     

MAFK K562 
     

MAX A549 
     

MAX GM12878 
     

MAX H1-hESC 
     

MAX HeLa-S3 
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MAX HepG2 
     

MAX HUVEC 
     

MAX K562 
     

MAX K562 
     

MAX NB4 
     

MAZ GM12878 
     

MAZ HeLa-S3 
     

MAZ HepG2 
     

MAZ K562 
     



219 
 

MEF2A GM12878 
     

MEF2A K562 
     

MEF2C GM12878 
     

MYC GM12878 
     

MYC H1-hESC 
     

MYC H1-hESC 
     

MYC HeLa-S3 
     

MYC HeLa-S3 
     

MYC HepG2 
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MYC HUVEC 
     

MYC K562 
     

MYC K562 
     

MYC K562 
     

MYC K562 
     

MYC K562 
     

MYC K562 
     

MYC K562 
     

MYC MCF10A-Er-
Src 

     



221 
 

MYC MCF10A-Er-
Src 

     

MYC MCF-7 
     

MYC MCF-7 
     

MYC MCF-7 
     

MYC MCF-7 
     

MYC NB4 
     

NFE2 GM12878 
     

NFE2 K562 
     

NFYB GM12878 
     



222 
 

NFYB HeLa-S3 
     

NFYB K562 
     

NR2C2 GM12878 
     

NR2C2 HeLa-S3 
     

NR2C2 HepG2 
     

NR2C2 K562 
     

NRF1 GM12878 
     

NRF1 H1-hESC 
     

NRF1 HeLa-S3 
     



223 
 

NRF1 HepG2 
     

NRF1 K562 
     

PAX5 GM12878 
     

PAX5 GM12878 
     

PAX5 GM12891 
     

PAX5 GM12892 
     

PBX3 GM12878 
     

PRDM1 HeLa-S3 
     

RUNX3 GM12878 
     



224 
 

RXRA GM12878 
     

RXRA H1-hESC 
     

RXRA HepG2 
     

SPI1 GM12878 
     

SPI1 GM12891 
     

SPI1 K562 
     

SRF GM12878 
     

SRF H1-hESC 
     

SRF HepG2 
     



225 
 

SRF K562 
     

STAT1 GM12878 
     

STAT1 HeLa-S3 
     

STAT1 K562 
     

STAT1 K562 
     

STAT1 K562 
     

STAT1 K562 
     

STAT2 K562 
     

STAT2 K562 
     



226 
 

STAT3 GM12878 
     

STAT3 HeLa-S3 
     

STAT3 MCF10A-Er-
Src 

     

STAT3 MCF10A-Er-
Src 

     

STAT3 MCF10A-Er-
Src 

     

STAT3 MCF10A-Er-
Src 

     

STAT3 MCF10A-Er-
Src 

     

TAL1 K562 
     

TBP GM12878 
     



227 
 

TBP H1-hESC 
     

TBP HeLa-S3 
     

TBP HepG2 
     

TBP K562 
     

USF1 A549 
     

USF1 A549 
     

USF1 A549 
     

USF1 GM12878 
     

USF1 H1-hESC 
     



228 
 

USF1 HepG2 
     

USF1 K562 
     

USF1 RA 
     

USF2 GM12878 
     

USF2 H1-hESC 
     

USF2 HeLa-S3 
     

USF2 HepG2 
     

USF2 K562 
     

ZEB1 GM12878 
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