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SUMMARY

The interconnection of molecular machines with di↵erent functionalities to form

molecular communication systems can increase the number of design possibilities and over-

come the limited reliability of the individual molecular machines. Artificial information

exchange using molecular signals would also expand the capabilities of single engineered

cell populations by providing them a way to cooperate across heterogeneous cell popula-

tions for the applications of synthetic biology and lab-on-a-chip systems. The realization

of molecular communication systems necessitates analysis and design of the communication

channel, where the information carrying molecular signal is transported from the transmit-

ter to the receiver.

In this thesis, significant progress towards the use of microfluidic channels to intercon-

nect molecular transmitter and receiver pairs is presented. System-theoretic analysis of the

microfluidic channels are performed, and a finite-impulse response filter is designed using

microfluidic channels. The spectral density of the propagation noise is studied and the

additive white Gaussian noise channel model is developed. Memory due to inter-di↵usion

of the transmitted molecular signals is also modeled. Furthermore, the interference model-

ing is performed for multiple transmitters and its impact on the communication capacity

is shown. Finally, the e�cient sampling of the signal transduction by engineered bacte-

rial receivers connected to a microfluidic channel is investigated for the detection of the

pulse-amplitude modulated molecular signals. This work lays the foundation for molecular

communication over microfluidic channels that will enable interconnection of engineered

molecular machines.
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CHAPTER I

INTRODUCTION

Molecular communication (MC) is one of the fundamental approaches towards enabling

biocompatible communication systems. It can provide advantages for biochemical signal

sensing including higher accuracy, high-throughput analysis, compactness, point-of-care

diagnostics, and extraction of localized features at nano-scale in biological environments

and lab-on-a-chip systems. In the literature, there exist di↵erent molecular communication

options [5, 6, 37]. For example, the use of di↵erent types of molecules is suggested for

information encoding. Intercellular Ca2+ waves are suggested as an alternative mechanism

for molecular signal propagation. The di↵usion-based signal propagation has been a focus

of interest for MC research so far, in which molecules are transported solely by di↵usion

through the fluidic medium [7]. The concentration of molecules are used as information

carrying signal for molecular communication. The concentration signal is transmitted,

i.e., released, into the fluidic channel and is propagated, i.e., transported, to the receiver.

According to the received concentration signal, the receiver performs the desired chemical

reaction, such as synthesis of molecules.

Molecular communication is not just a miniaturization of the classical communication

systems. On the contrary, it requires the development of innovative solutions and the

revision of the well-established concepts in the communication theory. Specifically, to elicit

highly sophisticated behavior of engineered cells, a physical platform is needed to host

molecular transmitter and receiver.

The objective of this thesis has been to establish the foundations of molecular commu-

nication over microfluidic channels. A micro channel with fluid flow (microfluidic channel)

can serve as a communication channel that connects patches of molecular transmitter and

receiver, such as engineered cells. Molecular communication can also expand the capabil-

ities of engineered cell populations by providing them a way to cooperate and coordinate
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tasks across heterogeneous cells. For example, the interconnection of engineered cells with

di↵erent functionalities to form artificial cell-to-cell molecular communication systems can

increase the number of design possibilities and overcome the limited precision of individual

engineered cells for the applications of synthetic biology and lab-on-a-chip systems including

adaptive control of photosynthesis in biofuel cells and diagnosis of cancer by the network of

chemist cells on a chip.

1.1 Microfluidic Molecular Communication System

Spectacular evolution of the microfluidic chip technologies has enabled miniaturization,

parallelization, automation, and integration of chemical assays for detection, separation,

reaction, and sample manipulation operations. Microfluidic platforms for chemical analysis

systems have been planned to enable rapid and cost-e�cient processing of the application-

specific distinct molecules with low reagent consumption [28, 40, 52, 53, 54]. These advances

in the microfluidic chip technologies and their salient features for entirely molecular sensing

and computation have further entailed the networking of distinct microfluidic systems, i.e.,

lab on a chip [25, 55, 56]. For this purpose, the emerging field of molecular communication,

in which the molecular concentration signals are modulated to carry information, stands as

a promising solution to enable information transfer among distinct chemical systems [5, 6].

Consequently, molecular communication networks on chip may emerge as the convergence

of the large-scale integration of microfluidic systems and molecular communication over

microfluidic channels with the objective of high throughput, multi-step on chip chemical

automation in a microfluidic platform.

A molecular communication architecture on a microfluidic chip is illustrated in Fig. 1.

In this architecture, the transmitter and the receiver chambers, where the transmitter and

the receiver nodes can be hosted, respectively, are connected over a microfluidic channel with

fluid flow. In response to a specific stimulus, e.g., external molecular input, the transmitter

node releases a concentration of molecules, i.e., transmits the information carrying molecular

signal, which propagates through the transmitter chamber, the microfluidic channel, and the

receiver chamber via di↵usion, convection, and di↵usion again, respectively, until reaching
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Figure 1: The conceptual illustration of the microfluidic channel with transmitter and
receiver channels. lch is the microfluidic channel distance between the transmitter and the
receiver, ach is the height of the microfluidic channel, ltx/rx is the distance from the molecular
transmitter to the microfluidic channel (the distance from the microfluidic channel to the
molecular receiver), and atx/rx is the chamber width.

to the receiver node. To realize potential gains and design e�cient yet practical molecular

communication systems, the understanding of the mass transport mechanisms behind the

molecular signal propagation from the transmitter to the receiver is imperative.

1.2 Bacteria-based Molecular Receivers

Molecular communication can facilitate the automation of biochemical assays that would

otherwise require the intervention of an external human operator. For example, the distinct

patches of chambers can be connected through microfluidic channels to develop bacteria-

based chemical analysis systems [27, 57]. Bacteria are extremely capable of detecting

biomolecules [58, 59, 60, 61, 62, 63, 64]. Furthermore, bacteria can be genetically engi-

neered to function as a biological molecular oscillator, so that, they can be utilized as the

transmitter and the receiver nodes for MC in a microfluidic platform [9, 27, 71, 73]. There-

fore, bacteria-based molecular nanonetworks can be utilized in microfluidic platforms to

enable integrated assay operations in multiple steps via on-chip information transfer. Using

bacteria as the chemist inside microfluidic platform, MC between bacteria populations can

combine multi-stage reactions on a single microfluidic chip.

The envisioned applications of molecular communication have originated research on
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Figure 2: The block diagram representation of the bacteria-based molecular receiver system.

the utilization of the available signaling mechanisms in the cells for information transmis-

sion. Molecular communication is ubiquitous in biological systems including populations of

microorganisms and organs [6, 9]. For example, bacteria form biofilms and exchange signals

to initiate gene expression based on the population density, i.e., quorum sensing. Molecular

signals are also present in multicellular organisms, e.g., hormones and neurotransmitters are

used to regulate physiological activities. Genetic engineering of cells, specifically bacteria,

has been prompted to develop molecular oscillators and transceivers for the information

transmission using molecular signals [27, 69, 70, 71]. The study of bacteria and its response

to the external environment is critical for understanding cellular response due to the relative

ease of engineering and testing, which already gained a wide attention in the literature for

sensing and monitoring [60, 62, 64, 72, 73].

The block diagram for the considered bacteria-based molecular receivers is given in Fig.

2. Molecular source releases PAM molecular signals with level H
i

. The bacteria transduce

the molecular signal to green fluorescent protein (GFP), recorded illumination of which

denoted as received signal r(t). The continuous-time received signal r(t) is sampled and

the discrete-time r[k] is obtained. Finally, thresholding is applied based on the predefined

decision rules. Accordingly, the input molecular signal H
i

is decided.

1.3 Research Objectives

In this thesis, we specifically investigate the communication performance of microfluidic

channels to connect molecular transmitter and receiver pairs as well as engineered bacteria

populations as a molecular receiver. A considerable portion of this thesis addresses the

distortion and noise e↵ects that microfluidic channels cause on the transmitted molecular

concentration signal. The developed models of attenuation and noise are used to evaluate
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the performance (information rates) of molecular communication over microfluidic channels.

In addition, the signal transduction of bacteria is investigated for e�cient sampling and

detection of molecular signals with biological receivers.

The following four areas are investigated under this research and each of them is de-

scribed in the following subsections:

1. System-Theoretic Microfluidic Channel Modeling and FIR Filter Design

2. End-to-End Propagation Noise and Memory Analysis for Microfluidic Channels

3. Interference Modeling and Capacity Analysis for Microfluidic Multiple Access Channel

4. Detection of PAM Molecular Signals with Bacterial Receivers on a Microfluidic Chan-

nel

1.3.1 System-Theoretic Microfluidic Channel Modeling and FIR Filter Design

Flow-induced Molecular Communication (FMC), where molecular transport is performed

via flow, is utilized in microfluidic channels to enhance di↵usion-based molecular commu-

nication. The incorporation of the microfluidic channel and the transport of molecules by

flow, i.e., convection, require a rigorous analysis to develop an end-to-end concentration

propagation model and a design for microfluidic channels. Therefore, we perform a system-

theoretic analysis of molecular transport first. The system-theoretic model incorporates the

solution of flow velocity in microfluidic channels and yields an end-to-end transfer function

for concentration propagation based on building blocks of microfluidic channels. Then, the

design of microfluidic channels is performed based on the least-squares Finite Impulse Re-

sponse (FIR) filtering to achieve the desired end-to-end transfer function in FMC. According

to the desired pass and stop bands, the required length and aspect-ratio parameters of the

microfluidic channels are obtained for FIR filtering. The transfer functions for FMC is elab-

orated via numerical results. Furthermore, two example designs of microfluidic channels are

presented for least-squares FIR band-pass and band-stop filtering in FMC.
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1.3.2 End-to-End Propagation Noise and Memory Analysis for Microfluidic
Channels

Molecular Communication (MC) between a transmitter and a receiver placed in the cham-

bers attached to a microfluidic channel is investigated. A linear end-to-end channel model is

developed capturing the e↵ects of the di↵usion and the junction transition at the chambers

as well as the microfluidic channel shapes and the fluid flow. The spectral density of the

propagation noise is studied and the flat frequency bands are identified for the chambers

and the microfluidic channel. This suggests that in certain microfluidic design choices, the

spectral density of noise may end up naturally being flat. Motivated by this result, the

Additive White Gaussian Noise (AWGN) model is developed based on the chamber, the

microfluidic channel, and the fluid flow parameters for the end-to-end propagation noise.

Furthermore, the molecular memory is modeled due to inter-di↵usion among transmitted

molecular signals. The e↵ect of the molecular memory on the end-to-end propagation noise

is also analyzed. To substantiate our analytical results, the ranges of physical parameters

that yield linear end-to-end MC channel are investigated. These results show validity of

the AWGN model for MC over microfluidic channels, and characterize the impact of the

microfluidic channel and chamber geometry on the propagation noise and memory.

1.3.3 Interference Modeling and Capacity Analysis for Microfluidic Multiple
Access Channel

The impact of the interference on the Molecular Communication (MC) between a transmit-

ter and receiver pair which are connected through a microfluidic channel containing fluid

flow is investigated. The interference modeling and the capacity analysis is performed based

on the microfluidic channel geometry, the flow velocity, and the distance. During the analy-

sis, time-scale of biological oscillators is specifically targeted, which is in the range of several

minutes to a few hours. The Signal-to-Interference and Noise Ratio (SINR) is shown to be

constant with respect to the location of the interfering transmitter. The capacity of the

MC link between the designated transmitter and the corresponding receiver is shown to be

upper bounded by 1 bit/per channel use when exposed to a single interfering transmitter.

For the multiple, i.e., N, transmitters, the decay of pairwise MC capacity is also studied as

6



a factor of N. Finally, placement of the two transmitter and receiver pairs on the opposite

sides of the microfluidic channel is studied. Three di↵erent microfluidic interference channel

configurations, i.e., both-sided interference (microfluidic X channel), one-sided interference

(microfluidic Z channel), and interference-free, are proposed based on the distance of the

receiver from the interfering transmitter, microfluidic channel cross-section, and the fluid

flow velocity.

1.3.4 Detection of PAM Molecular Signals with Bacterial Receivers on a Mi-
crofluidic Channel

The sampling of the bacterial signal transduction is investigated for molecular communica-

tion (MC). It is assumed that the finite-duration amplitude modulated, i.e., pulse-amplitude

modulated (PAM), concentration of a certain type of molecule is used for information trans-

mission. The bacterial signaling pathway is modified to transduce the input molecules to

the output signal, i.e., produce green fluorescent protein (GFP). The bacterial signal trans-

duction is composed of a set of biochemical reactions which impose randomness on the

response. Therefore, the input-output relation, the timing issues, and the noise e↵ects for

the bacteria response are characterized based on both analytical and experimental obser-

vations. Sampling schemes for the raw bacteria response are proposed based on the total

response duration, the peak value, the ramp-up slope, and the ramp-down slope. Each

sampling scheme is shown to be providing a one-to-one and monotonic function of the in-

put. The sampling based on the ramp-up slope is shown to be statistically favorable for

the detection of PAM molecular signals. Accordingly, the time interval selection and non-

coherent sampling are studied for the e�cient calculation of the ramp-up slope from the raw

bacteria response. This work provides a basis for the sampling of the raw bacteria response

and enables accurate detection of PAM molecular signals via bacterial response for MC and

sensing applications.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. In Section 2, system-theoretic analysis

of the microfluidic channels are performed, and a finite-impulse response filter is designed

7



using microfluidic channels. In Section 3, noise and memory models are developed for the

molecular communication between a transmitter and a receiver placed in the chambers

attached to a microfluidic channel. In Section 4, we perform interference modeling and

capacity analysis for multiple transmitters connected to a microfluidic channel. In Section

5, the e�cient sampling of the signal transduction by the bacterial receivers placed in

the chambers attached to a microfluidic channel is investigated. Finally, the Section 6

summarizes the research results and suggests a number of problems for future investigation.
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CHAPTER II

SYSTEM-THEORETIC MICROFLUIDIC CHANNEL MODELING

AND FIR FILTER DESIGN

In this chapter, a system-theoretic analysis of molecular transport is presented. Addi-

tionally, the design of microfluidic channels is performed based on the least-squares Finite

Impulse Response (FIR) filtering to achieve the desired end-to-end transfer function. This

work was first presented in [1]. In Section 2.2, the characteristics of fluid flow in microflu-

idic channels and the lumped parameter model is introduced. The analysis of molecular

transport in microfluidic channels via flow is presented in Section 2.3. Building blocks of

microfluidic channels are analyzed for concentration propagation and end-to-end concen-

tration propagation model is presented in Section 2.4 for each building block, as well as for

the overall end-to-end model. In Section 2.5, the design of microfluidic channels for finite

impulse filtering via least-squares is presented. Numerical results are presented in Section

2.6.

2.1 Motivation

Microfluidic channels and flow can jointly provide control over propagation of molecules

from transmitter to the receiver in MC. Here, we focus on the communication between

transmitter and receiver placed in a microfluidic channel in which the fluid flows which

constitutes a new MC paradigm, i.e., the Flow-induced Molecular Communications (FMC).

In FMC, the fluid flowing through a microfluidic channel serves as a communication

channel and connects patches of molecular transmitter and receiver, such as bacterial habi-

tat [9]. A basic MC scheme over microfludic channel is presented in Fig. 3 where the

convection provides transport of released molecules by the transmitter to the receiver over

a microfluidic channel. Overall, FMC brings significant advantages over traditional MC,

including utilization of flow for enhancing molecular transport and guiding concentration
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Figure 3: Propagation of the concentration signal from the transmitter (Tx) to the receiver
(Rx) patch through the microfluidic channel based on the convection (a) and the di↵usion
(b). At an arbitrary position, the propagation time of convection based transport with
flow velocity u is much less than di↵usion based transport, i.e., ⌧

d

� ⌧
c

, which alleviates
dispersion of molecules in (a) compared to (b).

propagation via the microfluidic channel. FMC can be used to provide nano communica-

tions for a very wide range of emerging applications, specifically in nanomedicine, medical

microbiology, and immediate point-of-care testing of samples for biochemical toxins and

dangerous pathogens. However, the realization of these envisioned applications depends on

an accurate analysis and e�cient design of microfluidic channels for FMC.

For the realization of FMC, it is imperative to develop new and e�cient communication

techniques. The challenges and requirements to be addressed for the analysis and design of

microfluidic channels for FMC can be summarized as follows:

• Modeling the Molecular Transport via Flow inside Microfluidic Channels: The con-

centration propagation inside the microfluidic channels must be investigated from

the FMC perspective. The solution of the flow rate inside the microfluidic channels

must be determined, and the microfluidic channel configurations must be studied to

understand the propagation of transmitted molecules.

• Enhancing the Concentration Propagation via Microfluidic Channel Design: The

shape of microfluidic channels must be optimized to alleviate the dispersion and the
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delay between the transmitter and the receiver. The microfluidic channel parame-

ters, i.e., length and cross-section, must be adjusted to enhance the FMC via filtering

spectrum of the concentration signal.

All these challenges coupled with the physical limitations of microfluidic channels, im-

mediate diagnosis and treatment requirements for mission critical clinical applications call

for a thorough analysis and e�cient design of FMC to realize nano communications in bio-

compatible environments. So far, to the best of our knowledge, there is no prior work on

analytical modeling of concentration propagation and design of microfluidic channels from

the FMC point of view.

While a channel model solely based on di↵usion is proposed in [7], the analysis of noise

sources and the communication capacity in di↵usion-based concentration propagation have

been the main approaches for molecular communication research [10], [11], [12], [13], [37].

Recently, modeling and simulation of concentration propagation in microfluidic channels

have been a field of interest [29], [33], [30], [31], [32], [34], [36]. While these studies on mi-

crofluidics have been adequate for the analysis of separation, dispersion, and the generation

of concentration profiles via microfluidic devices, they do not focus on the communica-

tion perspective, which requires the propagation characteristics of the FMC channel to be

revealed based on the transmitted concentration signal and the channel parameters. Fur-

thermore, the microfluidics has been considered for networking of lab-on-a-chip systems [14],

where possible di↵erent configurations of microfluidic technologies are surveyed for droplet-

based nano communication. Overall, the incorporation of convection and the inherited

features from microfluidics require a new analysis for an accurate and e�cient development

of communication techniques and design of microfluidic channels.

In this chapter, first, system-theoretic analysis of the FMC is performed which provides

a framework to determine the end-to-end concentration propagation in microfluidic channels

based on flow velocity and channel configurations, i.e., straight, turning, and interconnec-

tions. Then, the least-squares design of microfluidic channels is presented in which physical

parameters of microfluidic channels, i.e., interconnection, cross-section and length, are opti-

mized to obtain desired transfer function at the receiver via Finite Impulse Response (FIR)
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filtering. To the best of our knowledge, this is the first work on the FMC focusing on the

analysis and design of microfluidic channels for end-to-end concentration propagation and

finite impulse filtering, respectively. The distinctive features of our work are as follows:

1. A Flow Model in Microfluidic Channels: A contemporary overview of fluid flow

inside microfluidic channels is presented, and a general technique for deriving flow

rate in microfluidic channels is developed. This technique is used to determine the

flow rate inside a specific channel for a given microfluidic channel topology.

2. An End-to-end Concentration Propagation Model: The molecular transport

models are developed by incorporating convection to reveal the attenuation, delay,

and the transfer function for the basic microfluidic channel and the interconnection

configurations. Using systems theory, the end-to-end concentration propagation model

is presented for FMC.

3. Design of Microfluidic Channels for FIR Filtering: To enhance the end-to-end

FMC, an FIR filtering structure is developed based on the microfluidic channels. For

a desired frequency response, the FIR filter coe�cients are optimized via least-squares

method. The obtained filter coe�cients are mapped to transfer function of individual

microfluidic channels to determine the length and aspect-ratio.

2.2 Fluid Flow Model

To understand and work with the microfluidic channels, the hydrodynamic behavior of

fluids in microchannels must be first understood. Here, we provide a comprehensive look

at the physical phenomena of the fluid flow inside microfluidic channels and how it makes

the utilization of convection for FMC possible.

The Navier-Stokes equation relating the velocity field u of the fluid flow to pressure p

under the constant density ⇢, constant viscosity µ, and conservation of mass (r · u = 0)

assumptions is as

⇢

✓
@u

@t
+ (u ·r)u

◆
= �rp+ µr2u+ F (1)

where F represents the body forces. We assume there is no electrical field acting on the
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fluid, and the gravitational body force diminishes due to the hydrostatic pressure gradient

[15]. The density ⇢ of a liquid is in the order of ⇡ 103kg/m3 which is comparable to a

solid’s density for many practical purposes [15]. Therefore, the fluid flows, such as water

and aqueous solutions, are well approximated as incompressible, i.e., constant density ⇢, in

microfluidic channels [16].

To guide design of microfluidic channels for FMC, Navier-Stokes equation is solved

analytically in the particular cases. Specifically, the simplification of the Navier-Stokes

equation is performed under unidirectional flow through an infinite channel assumption,

where the fluid velocity field and the velocity field gradient are orthogonal, i.e., (u ·r)u = 0.

Fluid flow is said to be laminar under this condition, and the total flow is formed by the

addition of contribution from each lamina. In the following subsections, the fluid flow

characteristics and the solution steps of the fluid flow rate for given microfluidic channels

are presented.

2.2.1 Characteristics of Flow in Microfluidic Channels

The Reynolds number (Re), which gives the relative importance of inertial and viscous

forces, is used to characterize laminar flow in microfluidic channels and is defined as [15]

Re , ⇢uDH

µ
⇡ intertial forces

viscous forces
(2)

where µ is the viscosity, DH is the hydraulic diameter of the channel, and u is the char-

acteristic area-averaged velocity depending on the volumetric flow rate Q of the fluid and

cross-section area A of the channel. DH is given by

DH =
4A

�
(3)

where � is the perimeter of the channel. In a circular cross-section channel with radius r,

DH = 2r and u = Q/(⇡r2). For a square channel with the width w, DH = w and u = Q/w2.

For a rectangular channel with width much greater than height, i.e., w � h, DH = 2w and

u = Q/(wh).

In the laminar flow case, i.e., at small Reynolds numbers (Re < 2300) for the smooth

channels, the viscous forces are large enough to overcome the inertial forces and to keep the
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fluid in line and prevent random rapid fluctuations of the fluid [17]. The fluid flows in mi-

crochannels are almost always at low Reynolds number, i.e., Re < 1, due to small hydraulic

diameters DH and relatively slow volumetric flow rates Q. Furthermore, in microfluidic

channels the inertial e↵ects such as gravity, and turbulence are negligible [18, 19, 20]. The

laminar flow and the absence of turbulence are essential to minimize unsteady-state flows

at turning channels and connection nodes in microfluidic channels [21]. Moreover, when the

distance l from the inlet of a channel with radius r satisfies the condition l/r � Re, the

laminar flow can be taken as fully-developed, and analysis of infinite channels can be used

to analyze flows in finite length channels [16, 15].

2.2.2 Poiseuille Flow

Poiseuille flow is the solution of steady laminar flow in microfluidic channels [16, 15]. Flow

in microfluidic channels is defined by perturbation or superposition of Poiseuille flow. In

a Poiseuille flow, the flow is driven by pressure, i.e., pressure di↵erence causes the flow,

unidirectional, i.e., through only single direction and orthogonal to other axes, and taken

to be in steady-state, i.e., there is no acceleration of the fluid [15].

The channel is taken to be parallel to x axis, and its cross-section is invariant. Using

the steady flow (@u/@t = 0), unidirectional velocity field (u
y

= u
z

= 0), fully developed

laminar flow (@u
x

/@x = 0), and smooth channel (u ·r)u = 0 assumptions, Navier-Stokes

equation (1) is simplified as

@
x

p(x) = µ(@2
y

+ @2
z

)u
x

(y, z) (4)

where u
x

(y, z) is the only non-zero component of fluid velocity field which is independent of

position in x direction and changes based on position in y, and z directions. Furthermore,

since velocity field in y, and z directions are zero, the pressure drops in y and z directions

are 0. Therefore, due to the constant pressure gradient in the x direction in (4), the pressure

di↵erence �p between the two ends of the microfluidic channel is a linear function of x as

p(x) = p(x0)� �p

l
(x� x0) (5)
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Figure 4: Hydraulic conductance model.

where �p is equal to p(l)� p(x0). Replacing (5) into (4), we obtain

(@2
y

+ @2
z

)u
x

(y, z) = ��p

µl
(6)

The flow velocity field is taken as zero at the boundaries of the channel, i.e., no-slip boundary

condition is employed [15]. The flow in microfluidic channels is characterized by a parabolic

velocity field, and the velocity of flow increases towards the center of the channel from the

boundaries. The analytic solution of (6) for a rectangular cross-section channel, i.e., urect
x

,

is as [15]

urect
x

(y, z) =
4h2�p

⇡3µl

·
1X

n=1,3,5,···

1

n3


1� cosh(n⇡y

h

)

cosh(n⇡w2h )

�
sin(

n⇡z

h
) (7)

where h and w are the height and width of the microfluidic channel, respectively. For an

elliptical cross-section, analytic solution of (6), i.e., uelps
x

, is found as [15]

uelps
x

(y, z) =
�p(a2b2)

2µl(a2 + b2)

✓
1� y2

a2
� z2

b2

◆
(8)

To have an accurate analysis and prosperous design of microfluidic channels, disruption

of laminar flow should be prevented. For low Reynold numbers, i.e. Re < 1, which is

typical in microfluidic channels, fluid flow is not exposed to lateral mixing, i.e., turbulence,

in turning channels. Due to viscous forces, velocity field gradients in the direction of the

axial direction is prevented, i.e., (u · r)u = 0, and laminar flow is conserved for turning

microfluidic channel [22, 23].
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2.2.3 Volumetric Flow Rate

Using flow velocity solutions of microchannels, volumetric flow rate Q can be determined

as

Q ,
Z

S

u
x

(y, z)dydz (9)

where S is the area of the cross-section of the microfluidic channel. Therefore, to get the

volumetric flow rate in the rectangular channel n, i.e., Qrect
n

, we need to spatially integrate

the velocity contributions (7) of each lamina as

Qrect
n

=

Z
w

n

0

Z
h

n

0
urect
x

(y, z)dzdy

=
8h3

n

w
n

⇡4µl
n

1X

i=1,3,5,···


1

i4
� 2h

n

⇡w
n

i5
tanh(

i⇡w
n

2h
n

)

�
�p

n

(10)

Using
P1

i=1,3,5,···
1
i

4

= ⇡4/96, and for channels with w � h using tanh(1) = 1, Qrect
n

in (10)

can be further simplified as [15]

Qrect
n

⇡ h3
n

w
n

12µl
n

✓
1� 0.630

h
n

w
n

◆
�p

n

(11)

Furthermore, flow rate in square channels can easily be obtained via setting h = w as

Qsqre
n

⇡ 0.370
h4
n

12µl
n

�p
n

(12)

However, due to assumption of w � h for approximation, flow rate calculations for square

channels exposed to error about 13%, while as the w/h ratio increases, this error diminishes,

such as for w/h = 2 error is about 0.2% [15].

For the elliptical cross-section channel, flow rate is formulated via integration over an

elliptically shaped cross-section with major axis radius a and minor axis radius b as

Qelps
n

=

Z
a

n

�a

n

Z
b

n

p
1�x

2

/a

2

n

�b

n

p
1�x

2

/a

2

n

uelps
x

(y, z)dydz

=
⇡

4µl
n

a3
n

b3
n

a2
n

+ b2
n

�p
n

(13)

Flow rate for a circular cross-section with radius a can be obtained via setting radius

r = b = a in (13) as

Qcirc
n

=
⇡r4

n

8µl
n

�p
n

(14)
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Table 1: Summary of Hydraulic Conductance for Di↵erent Microchannel Cross-sections

Cross-section Hydraulic Conductance

Rectangular (Grect
n

)
h3
n

w
n

12µl
n

✓
1� 0.630

h
n

w
n

◆

Square (Gsqre
n

) 0.370
h4
n

12µl
n

Elliptical (Gelps
n

)
⇡

4µl
n

a3
n

b3
n

a2
n

+ b2
n

Circular (Gcirc
n

)
⇡r4

n

8µl
n

It is shown that for Pouseuille flow in microfluidic channels, there exists a linear rela-

tionship between volumetric flow rate Q and pressure drop �p across the channel. This

result is called Pouseuille-Hagen law and will be used to develop equivalent circuit theory

for flow modeling in FMC.

2.2.4 Hydraulic Conductance and Equivalent Circuit Theory

So far, the calculation of the average flow rate in microfluidic channels is presented. In (11),

(12), (13), and (14), for a pressure drop of �p across the microfluidic channel, a constant

flow rate Q is found. This linear relationship yields well-known circuit theory analysis tools

applicable to microfluidic channels. The linear relation between flow in the channel and

pressure drop across channel, i.e., Hagen-Poiseuille law, is given as

Q = G�p (15)

where G is the hydraulic conductance of the microfluidic channel. The hydraulic con-

ductance of various cross-sections is presented in the Table 1. For the high aspect ratio

rectangular channels, i.e., h/w ! 0), the hydraulic conductance of a channel becomes

Grect
n

= h3
n

w
n

/(12µl
n

).

For low Re numbers in microfluidics, the addition of two finite length channels with

di↵erent cross-section are shown to be still following the Pouiseulle flow definition, i.e., non-

accelerating and laminar flow [15, 29]. Therefore, Hagen-Poiseuille law can still be applied,

and equivalent conductance of the series added channels can be calculated using circuit
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theory as

Geq =
1

1
G

1

+ 1
G

2

+ · · ·+ 1
G

N

=

NY

n=1

G
n

NX

n=1

NY

i=1
i 6=n

G
i

(16)

where G
n

is the conductance of channel n with length l
n

, width w
n

, and height h
n

, i.e.,

G
n

= G(l
n

, w
n

, h
n

). The equivalent conductance for parallel connected microfluidic channels

can be obtained as

Geq =G1 +G2 + · · ·+G
N

=
NX

n=1

G
n

(17)

For serial and parallel channels, the flow rate can be obtained from total pressure drop

across the channels using (15). Furthermore, since the pressure drop across all parallel

connected channels are the same by circuit theory, the total flow is divided among parallel

sub-branches directly proportional to hydraulic conductance, as

Q
n

=
G

n

Geq
Q+ (18)

where Q+ is the entering total flow rate to parallel branches. Moreover, hydraulic resistance

of turning microchannels is shown to be equal to the one of the straight channel with the

same cross-section and length [22, 23].

Here, we complete the lumped parameter modeling of flow rate in microfluidic chan-

nels. The microfluidic channels are modeled by hydraulic conductance based on the linear

relation between the flow rate inside and the pressure drop across the channel. In the

next subsection, the solution for flow velocity at each channel is formulated by utilizing the

presented equivalent circuit model.

2.2.5 Analysis of Microfluidic Circuits for Flow Velocity

To analyze the microfluidic circuit, we use nodal formulation. A conservation of flow equa-

tion, i.e., KCL equation, is written for each node, where microfluidic channel n connects two
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nodes. There exists one KCL equation for each node k. In matrix form, nodal equations

are represented as

Gp = Qs (19)

where p = [p1, p2, · · · , pK ]T for a microfluidic circuit of K nodes, entries of matrix G are the

conductance between two nodes that are connected via single channel, and Qs represents

the sum of entering flow from flow sources to node k.

When p is determined, pressure drop across microchannels �p is determined via the

node-to-branch matrix B as

�p = Bp (20)

where B is an N -by-K matrix containing two entries of valued 1 with opposite signs at each

row, which indicate pressure at which nodes should be subtracted to calculate pressure drop

�p
n

for channel n. Then, multiplying pressure drop with hydraulic conductance of channels,

flow rate across channels is found as

Q = Gc�p (21)

where Q = [Q1, Q2, · · · , QN

] with Q
n

is the flow rate in channel n, and Gc is a diagonal

matrix with entries G
n

for n = 1, · · · , N .

Finally, area-averaged velocity u of fluid is obtained via dividing volumetric flow rate Q

by cross-section area A of the microfluidic channels as

u = A�1Q (22)

where u = [u1, u2, · · · , uN ] with u
n

is the area-averaged flow velocity in channel n, and

A�1 is a diagonal matrix whose entries are reciprocal of channel cross-section area, i.e.,

A�1
n

= 1/A
n

. Next, molecular transport analysis is conducted by incorporating flow velocity

model tailored for FMC.

2.3 Molecular Transport Analysis

Molecules are subject to the convection-di↵usion through the microfluidic channels with the

e↵ect of flow. We assume there is no existing concentration in the channel, i.e., system is
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at rest. Molecules are released to or collected from the microfluidic channels by molecular

transmitter and receiver, respectively. Here, we, first, formulate impulse response, trans-

fer function, and delay of the concentration propagation through microfluidic channels for

the FMC. Then, we investigate the duality of time-invariant and transnational-invariant

properties of concentration propagation.

2.3.1 Impulse Response

The convection-di↵usion equation is used to define behavior of mass transport inside flowing

fluid. It is a linear partial di↵erential equation defined as

@�

@t
= �ur�+Dr2� (23)

where D is the di↵usion constant adjusted based on the cross-section parameters of the

microfluidic channel due to the Taylor dispersion [24]. The convection-di↵usion equation

relates to the change of concentration � in time on the left hand side, i.e., @�/@t, to convec-

tion (ur�) and di↵usion (Dr2�) terms on the right hand side. Due to linearity property,

solution for end-to-end concentration propagation can be written as linear combination of

propagation in building blocks, such as straight and turning channels, and interconnections.

In Section 2.2, it is shown that fluid flow is unidirectional and is in x direction in

microfluidic channels. Therefore, the concentration is invariant in the other directions. To

analyze the molecular transport in microfluidic channels, the one-dimensional solution of

convection-di↵usion in the direction of flow, i.e., x, is su�cient to capture the convection-

driven transport of molecules [29, 33, 30, 31, 32]. The finite amount of concentration injected

� into the flow in microfluidic channel at an instant t0 by a point source located at x0 can

be modeled as an impulse using the Dirac delta function � as

�(x, t) =
M

A
�(x� x0, t� t0) (24)

where M is the amount of the mass, and A is the cross-section area, then M/A gives the

mass per unit area. For a unity concentration, i.e., M/A = 1, response to such an input,

i.e., impulse response, is obtained as [15]

h(x, t) =
1p

4⇡D(t� t0)
exp

⇣
� (x� (x0 + u(t� t0)))2

4D(t� t0)

⌘
(25)
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Defining l = x� x0, and ⌧ = t� t0, impulse response becomes

h(l, ⌧) =
1p

4⇡D⌧
exp

�� (l � u⌧)2

4D⌧

�
(26)

2.3.2 Transfer Function

The frequency response of the channel to an impulse, i.e., transfer function, can be found

via solving the frequency domain equivalent of convection-di↵usion equation (23). Fourier

transform of (23) is found by converting the derivative in time domain to multiplication

with j2⇡f in frequency domain as

j2⇡f�(l, f) = �u
@�(l, f)

@l
+D

@2�(l, f)

@l2
(27)

where � is the concentration spectral density, which is found by Fourier transform of con-

centration, i.e., � = F{�}. Using boundary conditions �(0, f) = 1 and �(1, f) = 0, the

transfer function is obtained as

H
t

(l,!) = e
(u(1�

q
1+ j4!D

u

2

) l

2D

)
(28)

where the temporal frequency f is converted to angular frequency ! using identity ! = 2⇡f .

Assuming |j4!D/u2| < 1, to have a converging series expansion,
p
1 + j4!D/u2 can be

approximated as 1 + j2!D/u2 + 2!2D2/u4. Finally, we approximate the transfer function

as

H
t

(l,!) ⇡ e�(!
2

D

u

3

+j

!

u

)l (29)

where we assume 4!D/u2 < 1 during the derivation, the implication and the practicality

of which is further elaborated in Section 2.3.4.

2.3.3 Delay

Propagation delay ⌧ for traveling time of peak concentration level max
⌧

||�|| to a distance

l is found via setting @h(l, ⌧)/@⌧ = 0 as

De�
(l�⌧u)

2

4D⌧

�
l2 � ⌧(2D + ⌧u2)

�

8
p
⇡(D⌧)5/2

= 0 (30)

which yields

⌧ =
1

u

r
D2

u2
+ l2 � D

u2
(31)
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The dominance of convection over di↵usion is determined by the dimensionless Peclet

number (Pe) which is defined as Pe = ul/D. For a large value of Pe, the molecular trans-

port is said to be dominated by the convection, and for small Pe values, the transport is

dominated by the di↵usion. Using definition of Pe number, (31) is rewritten. Furthermore,

since the molecular transport is dominated by the convection, i.e., Pe � 1, and l is in the

order of ⇠ 10�2m, ⌧ is approximated as

⌧ =
1

u

r
l2

Pe2
+ l2 � l

u

1

Pe

⇡ l

u
(1 +

1

Pe
)

⇡ l

u
(32)

Since the delay is characterized by the length of the channel l and fluid flow velocity u, we

express concentration, and impulse response for microfluidic channels based on distance l.

Next, we investigate the spatial frequency response H
s

due to translational-invariance apart

from temporal frequency response H
t

derived previously based on time-invariance.

2.3.4 Duality of Transfer Function

Here, we focus on derivation of spatial transfer function H
s

and relate it to temporal fre-

quency response H
t

. To obtain H
s

, we take the Fourier Transform of the impulse response

with respect to spatial parameter l as

H
s

(⌫) =

Z 1

�1

1p
4⇡D⌧

e�
(l�u⌧)

2

4D⌧ e�j2⇡⌫ldl (33)

where ⌫ is the spatial frequency and given by ⌫ = 1/� for a concentration signal with

wavelength �. We obtain transfer function based spatial frequency as

H
s

(k) = e�(k2D + jku)⌧ (34)

where k is the wave number defined as k = 2⇡⌫. The obtained transfer functions based on

spatial frequency H
s

and temporal frequency H
t

, can be converted using the identity

�f = u (35)
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which is the dual of the equality �f = c in electromagnetic waves, where c is the speed of

light. Wave number k based on spatial frequency ⌫ is converted to angular frequency !

based on temporal frequency f as

k =
!

u
(36)

and temporal transfer function H
t

can be obtained from spatial transfer function H
s

by

changing k to !/u and ⌧ to l/u. We use transfer function based on spatial frequency for

analysis of concentration in microfluidic building blocks, and refer it as transfer function

H.

During the derivation of the transfer function based on the temporal frequency, we

assume 4!D/u2 < 1, which is related to the Pe as

k <
Pe

4l
(37)

In the microfluidic devices, Pe is in the range of 10 < Pe < 105 [25], and the considered

distances are in the order of ⇡ 10mm. Therefore, the given upper limit on the frequency,

i.e., Pe/(4l), is far beyond the physically achievable frequencies due to the attenuation,

which yields the assumption of 4!D/u2 < 1 practically meaningful.

2.4 Microfluidic Building Blocks and End-to-end Concentration Propa-
gation in FMC

Closed-form and end-to-end models simplify the analysis and enable e�cient-design of

molecular communication techniques. In this section, our objective is to obtain the end-

to-end concentration propagation model of FMC based on microfluidic building blocks.

Therefore, we investigate the channels based on straight and turning configurations, and

interconnections based on bifurcation and combining connections.

2.4.1 Channel Configurations

Here, we develop end-to-end propagation models for straight and turning channel configura-

tions, which are illustrated in Fig. 5(a) and (b), respectively. To this end, impulse response,

delay, and transfer function are determined.
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Figure 5: The building block shapes for straight (a) and turning (b) microfluidic channel
configurations.

2.4.1.1 Straight Channels

Concentration propagation inside straight channel is illustrated in Fig. 5(a). Impulse

response of the straight channel is found in (26), here we parametrize it according to channel

specific variables as

hstr(l) =
1p

4⇡D⌧
exp

✓
�(l � u⌧)2

4D⌧

◆
(38)

where u is the flow velocity in the microfluidic channel, and ⌧ is the delay of the microfluidic

channel given by ⌧str = l/u. For an input concentration �+ into straight microfluidic

channel, the output concentration �� can be obtained via convolution of input and impulse

response (hstr ⇤ �+)(l) as

��(l) =

Z +1

�1
hstr(x)�+(l � x)dx (39)

Transfer function of straight channel is derived in (34), and it is parametrized as

Hstr(k) = e�(k2D+jku)⌧ (40)

Spectrum of the output concentration can be obtained via multiplication of transfer function

and input concentration spectrum ��(k) = H(k)�+(k).

2.4.1.2 Turning Channels

Here, we extend our model for straight channels to turning channels. In Section 2.2.2,

we have pointed out the invariance of flow velocity at turning channels in microfluidics
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[22, 23]. Due to turning, inner and outer radius of the channel are di↵erent, which causes

di↵erent laminas to travel di↵erent lengths [26]. Using the linearity property, we calculate

propagation of concentration for each lamina using the straight channel model, then add

the contribution from each lamina to reach impulse response of the turning channel. The

concentration propagation inside the turning microfluidic channel is illustrated in Fig. 5(b),

in which turning angle ✓, and the radius of the inner and the outer wall of the turning

microfluidic channel, i.e., rin and rout, respectively, are depicted as well.

Vertex of ✓ is defined as the intersection point O of the lines drawn orthogonal to the

inner or outer walls at the end of the straight microfluidic channels. Lengths of these drawn

lines give radiuses of the the inner or outer wall of the turning microfluidic channel, i.e.,

rin or rout, based on whether they are drawn orthogonal to the inner or the outer wall,

respectively. When circles are drawn using defined inner and outer radiuses with centre

point O, the arcs that are subtending angle ✓ give the inner and outer walls, respectively,

of the turning channel which connects two straight microfluidic channels.

We define r� as the di↵erence of the radius of the outer and the inner wall of the

microfluidic channel as

r� = rout � rin (41)

Using (38), for each lamina in the flow, impulse response is

h�(l) =
1

r�✓

1p
4⇡D⌧

e�
(l�u⌧+x

0
)

2

4D⌧ (42)

where ✓ is the angle of turn, x0 is the change in the traveled path with respect to the

axial length l due to turning shape. Contributions from each lamina are integrated and the

impulse response for the turning channel is found as

hturn(l) =
1

r�✓

Z r

�

✓

2

� r

�

✓

2

1p
4⇡D⌧turn

e
� (l�u⌧+x

0
)

2

4D⌧

turn dx0 (43)

where ⌧turn is taken as the average delay of the laminas in the turning microfluidic channel

and is found according to the symmetry around central lamina as ⌧turn = (l + r�✓/2)/u.

Impulse response of a turning channel hturn is the same as an ideal integrator with an
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equivalent axial length straight microfluidic channel

hturn(l) = (hstr ⇤ hint
r�✓

)(l) (44)

where hstr is the impulse response of a straight channel having same length with the central

arc length of the turning channel, and hint is

hint(l) =

8
><

>:

1, |l|  r

�

✓

2

0, |l| > r

�

✓

2

The transfer function of a turning channel is obtained via Fourier Transform of the (43)

as

Hturn(k) =

Z 1

�1

1

r�✓

·
Z r

�

✓

2

� r

�

✓

2

1p
4⇡D⌧turn

e
� (l�u⌧

turn

+x

0
)

2

4D⌧

turn dx0e�jkldl

=e�(k2D+jku)⌧
turn · sin(r�✓k/2)

r�✓k/2
(45)

which is the frequency response of corresponding integrator

Hturn(k) = Hstr(k)Hint(k) (46)

where Hint is defined using normalized sinc function as

Hint(k) =
sin(r�✓k/2)

r�✓k/2

=sinc(
r�✓

2⇡
k) (47)

Therefore, turning channel can be seen as an integrator which is a low-pass filter.

Since the obtained impulse response, delay, and transfer function formulations respond

to a signal in a future position, we shift them by r�✓/2 to make them causal and obtain

the impulse response, delay, and transfer function for turning channel as

hturn(l) =
1

r�✓

Z
r

�

✓

0

1p
4⇡D⌧turn

e
� (l�u⌧

turn

+x

0
)

2

4D⌧

turn dx0 (48)

where delay is given by ⌧turn = (l + r�✓)/u. Furthermore, shifted transfer function is as

Hturn(k) = e�(k2D+jku)⌧
turnsinc(

r�✓

2⇡
k)e�jkr

�

✓/2 (49)
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Figure 6: Building block shapes for bifurcation (a) and combining (b) interconnection
configurations.

2.4.2 Interconnection Configurations

Here, we model concentration propagation for interconnection of multiple channels, which

are illustrated in Fig. 5(a) and (b) for bifurcation and combining, respectively. There is no

pressure drop and delay in interconnection models. Pressure drop and delay are given by

the channels connected to the interconnection node. Overall, we find e↵ect of bifurcation

and combining on concentration and spectral density.

2.4.2.1 Bifurcating Interconnection

In bifurcating connection, flow is separated proportional to conductance G
n

of the diverging

microfluidic channels. By conservation of mass, concentration divergence to channels, i.e.,

��
n

, from inlet concentration �+, is formulated as

��
n

(l) =
G

n

Geq
�+(l) (50)

Similarly, bifurcating channel results in down scale of the output concentration spectral

density as

��
n

(k) =
G

n

Geq
�+(k) (51)

Therefore we define transfer function of the bifurcating channel as

Hbif
n

=
G

n

Geq
(52)
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Figure 7: Building blocks of microfluidic channels for end-to-end molecular transport anal-
ysis.

2.4.2.2 Combining Interconnection

Combining connection is composed of converging channels. Output concentration �� is

given by the addition of entering concentration from connected channels, i.e., �+
n

, as

��(l) =
NX

n=0

�+
n

(l) (53)

Accordingly, output spectrum becomes the addition of the converging concentrations

��(l) =
NX

n=0

�+
n

(l) (54)

2.4.3 The End-to-end Model of Concentration Propagation

The end-to-end model is developed using the system-theoretic molecular transport analysis

of the microfluidic building blocks, which are summarized in Fig. 7, and provides the

impulse response, delay, and transfer function for concentration propagation in FMC.

End-to-end impulse response of an arbitrary microfluidic circuit he2e is determined via

convolution of the impulse response of each building block as

he2e(l) = (h1 ⇤ h2 ⇤ · · · ⇤ hN )(l) (55)
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Figure 8: Microfluidic and building block representation of FIR filter.

and for a given transmitted molecular concentration, received concentration level is obtained

as

��(l) = (he2e ⇤ �+)(l) (56)

where �� and �+ are received and transmitter concentration levels, respectively. Performed

system-theoretic analysis for molecular transport in FMC is also utilized to determine end-

to-end propagation delay ⌧e2e via addition of delay of each building blocks as

⌧e2e =
X

n

⌧
n

(57)

Lastly, the end-to-end transfer function can be determined using performed system-theoretic

analysis via multiplying frequency response of building blocks of microfluidic circuit as

He2e(k) =
Y

n

H
n

(k) (58)

and the spectrum of the received molecular concentration is obtained for a given transmitted

concentration as

��(k) = He2e(k)�+(k) (59)

where �� and �+ are the received and transmitted concentration spectrum, respectively.

The developed end-to-end model is used to design microfluidic circuits to yield desired

end-to-end transfer function He2e at the receiver.

2.5 Least-squares FIR Filtering via Microfluidics

In this section, the utilization of microfluidic channels to create an FIR filter is presented.

Specifically, least-squares FIR filtering is used to optimize microfluidic channel parameters

29



according to desired concentration spectral density (CSD).

Suppose we want to design an FIR filter for a given set of frequency domain constraints,

i.e., pass and stop bands. For a given constant pressure drop across the microfluidic channels

that are first bifurcating then combining as in Fig. 8 between transmitter and receiver,

transfer function of individual channels can be adjusted via proper design of length and

the cross-section of the channels such that desired FIR filtering operation can be achieved.

To this end, first, we give overview of linear least-squares filter design, then show mapping

of channel parameters according to obtained filter coe�cients, and we derive the required

aspect-ratio of the channel. Lastly, we outline design steps for microfluidic channels, and

formulate end-to-end transfer function.

2.5.1 Overview of Linear Least-squares Filter Design

Transfer function of an FIR filter is given by

H(k) =
NX

n=�N

↵
n

e�jkn (60)

where 2N + 1 is the order of the FIR filter. An empirical FIR filtering structure using

microfluidic channels is illustrated in Fig. 8. The coe�cient sequence ↵
n

is symmetric,

i.e., ↵
n

= ↵�n

, to have a linear phase filter. The desired frequency response is represented

in terms of pass- and stop-bands in the frequency domain [0,⇡]. In each pass- and stop-

band, the frequency is sampled with ksample spacing, and M = ⇡/ksample is the number of

frequencies resulting from frequency domain sampling, such that the frequency response is

discretized into M linear equations of the form

H(k
m

) = ↵0 + 2
NX

n=1

↵
n

cos(k
m

n) (61)

where k
m

s are the frequencies whose frequency responses are calculated for m = 1, · · · ,M .

To determine the corresponding filter coe�cients to the given desired output concentration

spectrum, we define ↵ which contains filter coe�cients to be found, z as the vector con-

taining desired magnitude of the transfer function at frequencies k
m

. Overall, state space

representation of the system is given as

z ⇠= ⇤↵ (62)

30



where ↵ = [↵0, · · · ,↵N

]T, z = [H(k1), · · · , H(k
M

)]T, and ⇤ is an M -by-(N + 1) matrix as

⇤ =

2

6666666664

1 2 cos(k1) 2 cos(2k1) · · · 2 cos(Nk1)

1 2 cos(k2) 2 cos(2k2) · · · 2 cos(Nk2)

...
...

...
. . .

...

1 2 cos(k
M

) 2 cos(2k
M

) · · · 2 cos(Nk
M

)

3

7777777775

(63)

The least-squares optimization problem is formulated as

min
↵

||⇤↵� z||2 (64)

which is equivalent to minimizing quadratic error function J defined as

J(↵) ,||⇤↵� z||22
=↵T⇤T⇤↵�↵T⇤Tz� zT⇤↵+ zTz (65)

To minimize J , by taking derivative with respect to ↵ and equating to 0, it is found that

⇤T⇤↵ = ⇤Tz (66)

For a given desired frequency response constraints composed of desired magnitude at pass-

band frequency ranges and suppression at stop-band frequency ranges, the FIR filter coef-

ficients can be determined via least-squares method as

↵ =
h�
⇤T⇤

��1
⇤T
i
z (67)

where ↵ contains the obtained filter coe�cients via least-squares method. Non-positive ↵
n

values are dropped, as well as non-positive length channels as

H(k) =
NX

n=1

↵
n

e�j�

n (68)

where �
n

= kn, and linear phase property no longer holds. Obtained filter coe�cients,

i.e., ↵
n

, and complex exponential exponents, i.e., �
n

, are mapped to length and cross-

section parameters of microfluidic channels to achieve the desired transfer function between

transmitter and receiver in FMC.
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2.5.2 Length and Area Design of Microfluidic Channels

Here, we map the filter parameters, i.e., ↵ and �, in (68) to microfluidic channel parameters,

i.e., length and cross-section area, based on the transfer function of microfluidic building

blocks in Fig. 7 and pressure drop constraint �p. The FIR filter consisting of tapped

microfluidic channels in the shape of nested isosceles triangles is depicted in Fig. 8.

The obtained ↵
n

values using least-squares optimization in (67) are normalized due to

dropped non-positive values and mapped to the microfluidic channel transfer function (40)

as

↵
n

= e�k

2

D⌧

n (69)

from which we obtain the desired delay in microfluidic channel n as

⌧
n

= � ln(↵
n

)

k2D
(70)

The complex exponential exponents, i.e., �
n

, are mapped using (40) and (68) as

�
n

= ku
n

⌧
n

(71)

Using l
n

= u
n

⌧
n

, and �
n

= kn, the required length of the microfluidic channel n is found as

l
n

= Ln (72)

where n = 1, · · · , N , and L is defined as the scaling factor for length of the microfluidic

channels, i.e. l
n

values are calculated as integer multiples of L as l
n

= Ln. Furthermore,

L provides frequency scaling of the overall frequency response of the FIR filter, such that

fine-tuning of pass- and stop-band frequencies of the FIR filter can be performed, which is

further elaborated via numerical results in Section 2.6.2.

Using (32), (70), and (72), the required area-averaged flow velocity u
n

at the microfluidic

channel n is found as

u
n

= � k2Dn

ln(↵
n

)
(73)

Furthermore, the cross-section area of the channel must be adjusted accordingly by equating

flow velocity u
n

to pressure drop constraint �p
n

. Using (15), (22), and (73), required cross-

section area is formulated as

A
n

= � ln(↵
n

)Q
n

k2Dn
(74)
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Next, based on formulated cross-section area of microfluidic channels, we derive required

aspect ratio of them.

2.5.3 Aspect Ratio Design of Microfluidic Channels

In this section, using (74) and formulated linear conductance relation between �p and

u for rectangular, square, elliptical, and circular cross-sections in Section 2.2.3, required

aspect-ratio of microfluidic channels are determined.

2.5.3.1 Rectangular and Square Cross-sections

Using conductance for a rectangular channel Grect
n

given in the Table 1 and (74), we end up

with the equality

w
n

h
n

= � ln(↵
n

)h3
n

w
n

�p
n

12µk2Dn2

✓
1� 0.630

h
n

w
n

◆
(75)

We define aspect ratio of the rectangular channel as � = w/h, and replacing width w with

�h, we obtain � as

�rect
n

=
0.63h2

n

�p
n

h2
n

�p
n

+ 12µk2Dn

2

ln(↵
n

)

(76)

Using the determined ↵
n

in (67), for a given height h
n

and �p
n

, the channel cross-sections

can be designed according to desired filtering operation. Furthermore, for a square channel

�
n

is equal to 1, and h
n

can be obtained as

h
n

=

s

� 12µk2Dn2

0.37�p
n

ln(↵
n

)
(77)

2.5.3.2 Elliptical and Circular Cross-sections

Using conductance for an elliptical microfluidic channel Gellps
n

given in the Table 1 and

area formulation in (74), the following equality is found for cross-section of the microfluidic

channel

a
n

b
n

= � ln(↵
n

)

4µk2Dn2

a3
n

b3
n

a2
n

+ b2
n

�p
n

(78)

Aspect ratio of the elliptical microfluidic channel is defined as the ratio of the major axis

length to minor axes as � = a/b from which we can obtain desired aspect ratio �ellps
n

as

follows

�ellps
n

=

s

� 4µk2Dn2

ln(↵
n

)b2
n

�p
n

+ 4µk2Dn2
(79)
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For a circular channel radius r = a = b, desired radius can be found as

r
n

= 2

s

� 2µk2Dn2

ln(↵
n

)�p
n

(80)

2.5.4 Overview of Microfluidic Channel Design

Here, we summarize the design procedure for microfluidic channels. The calculation of

required microfluidic channel length and aspect ratio corresponding the desired frequency

response is presented step-by-step.

To form the tapped delay line FIR filter via linear least-squares filtering, overall design

procedure can be grouped under three main steps as follows

1. From the given desired pass and stop bands of the frequency response, the channel

design problem is formulated as a least-squares FIR filtering problem as presented in

(62).

2. From the formulated least-squares problem, required ↵ and � values are determined

for each microfluidic channel to be mapped to microfluidic channel parameters.

3. Obtained ↵ and � values enable the design of a tapped delay line filter using mi-

crofluidic channels. Length and cross-section aspect ratio of channels are designed

according to the found ↵ and �, and the given cross-section shape and pressure-drop

between the transmitter and the receiver.

The output spectrum of the devised microfluidic FIR filter is given by

��(k) =
NX

n=1

Hstr
n

(k)H int
n

(k)�+(k)

=
NX

n=1

e�k

2

D⌧

ne�jkLnsinc(
r�
n

✓
n

2⇡
k)�+(k) (81)

where Hstr
n

is the transfer function of the microfluidic channel n with the length l
n

, the

aspect ratio �
n

, and the pressure drop �p
n

; H int
n

is the transfer function of the turn n with

the angle ✓
n

= ⇡ � 2 arcsin(l1/(2ln)), and the di↵erence of inner and outer radius r�
n

.
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This concludes our discussion on design of microfluidic circuits. Next, we present nu-

merical results, and discuss the accuracy and practical issues regarding the performance of

the microfluidic channel design.
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Figure 9: Attenuation of the concentration propagation in the straight channel. The mag-
nitude of the transfer functions with di↵erent cross-sections against wave number k, for the
channel lengths of 10mm and 100mm in (a) and (b), respectively.
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Table 2: Summary of Flow Velocities (u) in Di↵erent Channel Cross-sections

Cross-section l = 10 · 10�3m l = 100 · 10�3m
Rectangular 1.27 · 10�4 m/s 1.27 · 10�5 m/s

Square 5.55 · 10�5 m/s 5.55 · 10�6 m/s
Elliptical 4.25 · 10�4 m/s 4.25 · 10�5 m/s
Circular 2.25 · 10�4 m/s 2.25 · 10�5 m/s

2.6 Numerical Results

In this section, we, first, study the transfer functions developed for FMC in microfluidic

channels. Specifically, we investigate the e↵ect of channel cross-section and length for

straight channels, and e↵ect of turning angle ✓ and di↵erence of inner and outer turning

radius r� for turning channels. Then, example design of band-pass and band-stop filters via

least-squares FIR filtering are presented for FMC. During numerical evaluations, viscosity µ

of the fluid is set to 10�3Pa·s, and di↵usion constantD is set to 10·10�10m2/s. Furthermore,

the results presented in Fig. 9�12 with respect to the wave number k can be converted to

the angular frequency ! using the identity given in (36).

2.6.1 Concentration Propagation

The concentration propagation is studied in two parts, i.e., straight and turning channels.

For straight channels with rectangular, square, elliptical, and circular cross-sections, trans-

fer function is investigated for channel length l of 10 and 100mm. For turning channels

with varying turn angles ✓, the transfer function is investigated for inner and outer radius

di↵erences r� of 50 and 100µm. The pressure drop �p across channels is set to 500Pa.

2.6.1.1 Straight Channel

For rectangular channels, height is h = 6µm and width is w = 25µm. For the square

microfluidic channels, height is h = 6µm. For the elliptical microfluidic channels, major

axis radius is a = 25µm, minor axis radius is b = 6µm. For circular channel, radius is

r = 6µm. Results for channel length l = 10mm and 100mm are presented in Fig. 9. The

corresponding flow velocities u are tabulated in the Table 2.
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Figure 10: Attenuation of the concentration propagation for a low range of frequencies
representing the spectrum of interest for the bacteria-based biological oscillator applica-
tions. The magnitude of the transfer functions with di↵erent cross-sections against the
wave number k, for a straight channel with a length of 100mm.

The concentration signals with higher frequency can be transported with less attenuation

between a transmitter and receiver pair in the elliptical and the circular channels compared

to the rectangular and the square channels. When the channel length is increased from

10mm to 100mm, the achievable frequencies are decreased in the order of 10 from Fig. 9(a)

to (b). The achievable frequencies in the channels are inversely scaled by the rate of increase

in the distance between transmitter and receiver.

The presented results in Fig. 9 for attenuation can be utilized to assess performance of

the MC among di↵erent bacteria populations in the microfluidic channels. A biological os-

cillator development is performed in [27] based on the quorum sensing, where the period of

concentration signal is in the order of minutes and even hours, i.e., the frequency of the signal

is in the order of 10�2 and 10�4 s�1. Accordingly, the attenuation of concentration is pre-

sented in the Fig. 10 for the low range of frequencies, i.e., up to k = 100 radians per meter

which is equal to the temporal frequency of f = 2.02 · 10�4, 8.83 · 10�5, 6.76 · 10�4, and

3.58 · 10�4 s�1 for rectangular, square, elliptic, and circular channels, respectively. It is

observed in Fig. 10 that for the frequencies below 10 radians per meter, attenuation in the
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Figure 11: Attenuation of concentration propagation in turning channel. The magnitude
of the transfer functions with di↵erent turning angles against wave number k, for radius
di↵erence of 50 and 100µm in (a) and (b), respectively.

microfluidic channels becomes negligible.

2.6.1.2 Turning Channel

The turning channel results for rectangular channels are presented in Fig. 11. The channel

height h is taken to be 10µm, width w is taken as 50µm, and channel length is 5mm. The
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Figure 12: The frequency response of devised band-pass (a) and band-stop (b) filters.

inner and outer radius di↵erences of r� = 50 and 100µm are used. The turning angle ✓ is

selected as ⇡/3, 3⇡/4, 5⇡/6, and ⇡.

As the turning angle increases from ⇡/3 to ⇡, achievable frequencies in the turning

channel decreases. When the inner and outer radius of turn r� is increased from 50 to

100µm, achievable frequencies decrease for the same channel length in Fig. 11(a) and (b),

respectively. Furthermore, the achievable frequencies in the channels is adversely e↵ected
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by increasing turning angle, and this e↵ect is further amplified for higher r�.

The frequency response becomes 0 when the wave number k is a positive integer i

multiple of the reciprocal of the di↵erence of the traveled paths by the outermost lamina

and the innermost lamina, i.e., 1/(r�✓), as

k =
1

r�✓
i (82)

This e↵ect is peculiar to the concentration propagation in turning microfluidic channels, and

it is due to the addition of phase shifted laminas that cancel out the frequency components

given by (82) at the output signal. From the mathematical point of view, the turning

channel performs integration of the input signal, and since integration of a sinusoidal signal

over a complete period, or multiple complete periods would yield 0, frequency components

matching this definition vanish, which are characterized in (82).

2.6.2 Microfluidic FIR Filtering

Here, we present two example designs of microfluidic channels for FIR filtering in FMC.

The FIR filter structure is illustrated in Fig. 8. The value of N is set to 10. Pressure drop

across channels is set to �P = 100Pa. The rectangular channels are used for design. The

height of channels is selected as h = 5µm. The width w of channels is determined according

to desired aspect ratio based on the filter constraints. The di↵erence of inner and outer

radius at turn is taken as r� = 5µm. In each stop and pass band, the frequency is sampled

with 0.01 spacing. Magnitude in pass bands is set to 1, and suppression amount in stop

bands is set to 10�2. After least-squares optimization of filter coe�cients ↵
n

, only positive

coe�cients are used for channel design. Branches of filter with non-positive coe�cient are

removed, i.e., ↵
n

is set to 0 for those channels. For aspect ratio design, k in (76) is set to

⇡. Results for band-pass and band-stop filtering are presented in Fig. 12.

The band-pass filter has one pass band, i.e., 0.5⇡ � 0.7⇡, and two stop bands, i.e.,

0 � 0.3⇡ and 0.85⇡ � ⇡. The objective frequency response of the band-pass filter and its

least-squares approximation are presented in Fig. 12(a). For band-pass filtering, the e↵ect

of scaling factor L is studied for L = 0.75, 0.7, 0.65, and 0.5. The band-stop filter has

one stop band, i.e., 0.5⇡ � 0.7⇡, and two pass bands, i.e., 0 � 0.3⇡ and 0.85⇡ � ⇡. The
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objective frequency response of the band-stop filter and its least-squares approximation are

presented in Fig. 12(b). For band-stop filtering, the e↵ect of scaling factor L is studied for

L = 0.4, 0.35, 0.3, and 0.25. Transfer function of the devised microfluidic FIR filter can be

fine-tuned to a desired pass and stop bands via adjusting L appropriately. Magnitude of

the frequencies in the received CSD can be controlled, and the unwanted frequencies can be

suppressed by placing the devised microfluidic FIR filter between the transmitter and the

receiver patches, such as a biological oscillator based on bacteria population [27].

2.7 Highlights

This chapter provides a comprehensive coverage of the microfluidic channels with fluid

flow for molecular communication systems. An analytical study of the propagation of the

molecules is performed incorporating the physical system parameters.

The goal of the propagation modeling is to determine the distortion e↵ects caused on

the molecular signal with respect to the distance, fluid flow parameters (pressure drop,

flow velocity, microfluidic channel geometry, fluid type), and type of the molecule (di↵usion

constant). Even though the emphasis of the chapter is on channel modeling and design,

necessary fluid flow fundamentals are also included, since the molecules are carried by fluid

flow in the microfluidic channel. Linear systems theory is applied to physical laws of mass

transport. Propagation models for the basic microfluidic channel shapes (straight and turn-

ing) and cross-sections (rectangular, square, elliptical, circular) are developed incorporating

the characteristics of the fluid flow and mass transport in the microfluidic channels.

A linear channel model can be solved directly, and the methodologies developed to assess

performance of linear communication systems can also be applicable for molecular commu-

nication over microfluidic channels, e.g., detection and estimation theory and information

theory for linear communication channels. The noise e↵ects on the molecular propagation

over microfluidic channels can a↵ect the performance of a molecular communication system,

which will be the subject of the next chapter.

Time-varying molecular signals are common in biology. The time scales for many of

these signals range from a fraction of a second to several hours, e.g., protein activation
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and signaling, paracrine and endocrine cell-cell communication, inflammatory response). In

the second part of this work, an interconnection configuration of microfluidic channels is

proposed to filter out the unwanted fluctuations (di↵erentiate between fast or slow changes)

in the transmitted molecular signal.

The developed models of molecular propagation over microfluidic channels are integrated

with the frequency selective signal processing techniques. A mathematical framework is de-

veloped to design length and cross-section of interconnected microfluidic channels. Two

example designs are presented for the filtering of the unwanted fluctuations using intercon-

nected microfluidic channels.
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CHAPTER III

END-TO-END PROPAGATION NOISE AND MEMORY ANALYSIS

FOR MICROFLUIDIC CHANNELS

In this chapter, a linear end-to-end channel model is developed capturing the e↵ects of the

di↵usion and the junction transition at the chambers as well as the microfluidic channel

shapes and the fluid flow. The spectral density of the propagation noise is studied and

the flat frequency bands are identified for the chambers and the microfluidic channel. The

Additive White Gaussian Noise (AWGN) model is developed based on the chamber, the

microfluidic channel, and the fluid flow parameters for the end-to-end propagation noise.

Additionally, the molecular memory due to inter-di↵usion among transmitted molecular

signals is modeled. This work was first presented in [2] In Section 3.2, we present a review

of related work on noise analysis. We present the propagation model for FMC in Section 3.3.

The building blocks of noises in FMC are formulated, and noise spectrum is investigated in

Section 3.4. In Section 3.5, molecular memory analysis is presented. Numeric results are

presented in Section 3.6.

3.1 Motivation

The analysis of the noise e↵ects for undergoing mass transport mechanisms at the chambers

and the microfluidic channel is essential to facilitate development of e�cient and practical

MC techniques. So far, the propagation modeling and the chemical noise analysis for trans-

mitter and receiver for MC have been a research focus in recent years[7],[13],[11]. The noise

e↵ects on the di↵usion-based concentration signal propagation in a free space MC system

are studied in [10], under the assumption that the molecules propagate from the transmitter

to the receiver solely via di↵usion. Furthermore, the utilization of the microfluidic channels

with fluid flow for FMC is investigated in [1]. While the microfluidic channels with fluid flow

enhances the propagation of concentration signal, the FMC paradigm necessitates a new

propagation noise notion. This new notion should address the noise e↵ects on the received
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signal: 1) transition from/to molecular transport by di↵usion in the transmitter/receiver

chamber to/from molecular transport by flow in the microfluidic channel; and 2) the ran-

dom di↵usion of molecules inside the chambers and microfluidic channel. Additionally, the

investigation of the molecular memory e↵ect due to self-interference created by di↵usion of

molecules between the transmitted molecular signals is vital.

Our work is motivated by the fact that an e�cient FMC system can be devised when

the noise and memory e↵ects are understood and predicted by using the developed analytic

framework. The notion of controlling the noise and memory e↵ects for e�cient FMC via

design of chambers and microfluidic channels distinguishes our work from other existing

noise analyses that solely focus on identification of noise sources and developing models on

top of them [10, 11]. To the best of our knowledge, the noise and memory e↵ects in MC

have not been studied from this perspective before.

In this work, first, the propagation model presented in [1] is extended, and a linear

end-to-end model incorporating the propagation through the chambers is proposed. Then,

the building blocks of the propagation noise is developed based on the autocorrelation func-

tion of the molecular signal under the e↵ects of the transition from chamber to microfluidic

channel, and vice versa, at junctions, and the di↵usion at the chambers and microfluidic

channel. Spectral densities of the propagation noise for the transmitter chamber, the mi-

crofluidic channel, and the receiver chamber are formulated. Frequency ranges at which

spectral density of noise is flat-band are investigated based on the chamber, microfluidic

channel, and flow parameters. An Additive White Gaussian Noise (AWGN) model is pro-

posed for FMC in accordance with the flat-band frequency range in the spectral density

of the end-to-end propagation noise. Furthermore, the memory due to the di↵usion of

transmitted molecular signal is analyzed. The statistical properties of the received memory

component is studied based on the transmission, the transmitter/receiver chamber, the mi-

crofluidic channel, and the fluid flow parameters. Moreover, the e↵ect of molecular memory

on end-to-end propagation noise is revealed. Some of the salient features of this study are

listed as follows:

• An Analysis of the Propagation Noise: Building blocks for the spectral density
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of the propagation noise are defined. The end-to-end propagation noise is obtained

based on the spectral density of noise at the transmitter chamber, the microfluidic

channel, and the receiver chamber. AWGN model for the FMC paradigm is developed.

• A Linear Molecular Memory Model: The memory e↵ect due to inter-di↵usion of

the previously transmitted molecules signals inside microfluidic channel and chambers

is analyzed. The memory level is characterized based on the transmission frequency

and the distance. The amplitude and the variance of the memory component in the

received signal is derived based on the FMC system parameters. Furthermore, the

e↵ect of memory on molecular noise is studied, and the end-to-end propagation noise

is extended to include this e↵ect.

These are the truly novel aspects of our work and are the main contribution of the proposed

analysis of the propagation noise and the memory for MC over microfluidic channels.

3.2 Related Work

The molecular transport over microfluidic channels is investigated in depth in many papers

in the last decade [29, 30, 31, 32, 33, 34, 35] where the microfluidic device aspects are ex-

plored in depth for the concentration propagation via di↵usion and flow, i.e., convection.

These contributions aim to find the optimum device parameters to shape the input con-

centration through the microfluidic channels. More recently, the generation of the higher

harmonics of the input concentration wave is investigated based on the microfluidic channel

parameters and the interconnection of microfluidic channels [36]. However, the utilization of

concentration as a signal for communication between a transmitter and receiver pair is not

considered. As a consequence, none of the above studies investigate the noise or memory

e↵ects on the concentration signal in microfluidic channels to empower the FMC systems.

On the other hand, there was an extensive research e↵ort on propagation modeling for

MC in recent years [7, 1, 37]. For example, solutions have been proposed independent from

noise and memory e↵ects for solely di↵usion-based free space concentration propagation

[7]. Although the investigation of molecular signaling based on the di↵usion and convection

mechanisms is extremely important, the research on the noise and memory e↵ects is vital
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to design e�cient yet practical FMC systems. In [10], the molecular noise is studied for a

di↵usion-based MC system. However, the e↵ects of fluid flow, the chamber, and the mi-

crofluidic channel parameters on molecular noise have not been investigated so far. In [11],

the noise analysis is performed on the receiver side neglecting molecular noise e↵ects and

assuming a specific chemical receiver architecture based on receptor-ligand kinetics. Addi-

tionally, MC using individual molecules is studied based on simulation experiments without

analytic formulation under ideal transmitter and di↵usion-based propagation assumptions

[38, 39].

In contrast, in our work we present the propagation noise and memory e↵ects for an FMC

system, where the transmitter and the receiver chambers are connected via the microfluidic

channel with the fluid flow. The microfluidic channel configurations that yield flat-band

noise spectral density are investigated, and the design principles for physical parameters of

the MC system to have a valid linear MC model are highlighted.

3.3 End-to-end Molecular Propagation in FMC

In the following discussions, we formally define the physical model of the molecular com-

munication over microfluidic channels. Before proceeding to the analysis of the propagation

noise and the memory e↵ects on the received concentration signal, we introduce the notion

of the transmitter and the receiver chambers, and develop a linear end-to-end model for the

propagation of the released molecules from the transmitter in the transmitter chamber to

the receiver in the receiver chamber. We also incorporate the delays, and the transfer func-

tions for the transmitter and the receiver chambers into the developed end-to-end model,

and set the stage for the noise and memory analysis by defining the noise and the memory

e↵ects on the concentration signal.

3.3.1 Physical Model

Consider the typical MC applications involving the sensing of the chemical signals by the

transmitter, and communication of event features with the receiver. We assume that the

molecular transmitter and receiver are placed in transmitter and receiver chambers, respec-

tively, which are connected via a microfluidic channel with fluid flow as shown in Fig.1.
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Figure 13: Molecular propagation inside the turning microfluidic channel with angle ✓ (a)
and block diagram representation (b).

The main rationale behind such a flow-induced molecular communication notion is that the

propagation of the input concentration signal �+ generated by the transmitter is enhanced

by the fluid flow, which alleviates dispersion of the molecules, i.e., path-loss, and propaga-

tion time, i.e., the delay ⌧ , of the received concentration signal ��. The transmitter and

the receiver chambers contain the application specific molecular systems such as a bacteria

population [9]. The transmitter generates a concentration signal to communicate the fea-

tures of the sensed chemical event with the receiver. Here, our focus is on the molecular

transport, i.e., the propagation, the mechanisms, hence, the specifics of such a concentration

generation process based on chemical kinetics are application dependent and beyond the

scope of our work.

In fact, the impulse response, the delay, and the transfer function for molecular prop-

agation in microfluidic channels are derived as functions of the channel length lch, height

ach, width bch, turning angle ✓, and pressure drop across the channel �p in [1]. The fluid

flow in the microfluidic channel is taken to be laminar, steady, unidirectional, and driven

by the pressure drop across the microfluidic channel [16]. The area-averaged flow velocity

u for a rectangular cross-section microfluidic channel is given by [15]

u =
a2ch

12µlch

✓
1� 0.63

ach
bch

◆
�p (83)

where µ is the viscosity of the fluid. We also assume that due to very short distance in the

order of ⇠ µm at transmitter and receiver chambers, propagation velocity by di↵usion at

chambers is comparable to propagation via flow in microfluidic channel. One-dimensional
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solution of the convection-di↵usion equation is used to analyze molecular transport via flow

in the microfluidic channels [29],[30],[31],[32],[33]. The concentration propagation in the

microfluidic channel is illustrated in Fig. 13(a). In the turning channels, the inner and

the outer radius of the microfluidic channel, i.e., rin and rout, are di↵erent, which causes

di↵erent laminas to travel di↵erent lengths. The cross-section of the microfluidic channel is

invariant, and hence, the di↵erence rout � rin is equal to ach. The impulse response of the

turning channel, i.e., ✓ > 0, is given by [1]

hch(l) =
1

ach✓

Z
a

ch

✓

0

1p
4⇡D⌧ch

e
� (l�u⌧

ch

+x

0
)

2

4D⌧

ch dx0 (84)

where the height ach, and length lch parameters are illustrated in Fig. 14(a), ⌧ch is given

by ⌧ch = (lch + ach✓)/u, which is the average delay based on the symmetry around central

lamina in the turning channel, and D is the e↵ective di↵usion coe�cient adjusted according

to the Taylor dispersion in rectangular channels based on the intrinsic molecular di↵usion

coe�cient D0 as [51]

D =

✓
1 +

8.5u2a2chb
2
ch

210D2
0(a

2
ch + 2.4achbch + b2ch)

◆
D0 (85)

The turning microfluidic channel depicted in Fig. 13(a) can be seen as an integrator due

to its impulse response, which is also a low-pass filter. The impulse response of a straight

microfluidic channel, i.e., ✓ = 0, is given by

hstrch (l) = lim
✓!0

1

ach✓

Z
a

ch

✓

0

1p
4⇡D⌧ch

e
� (l�u⌧

ch

+x

0
)

2

4D⌧

ch dx0

=
1p

4⇡D⌧ch
e
� (l�u⌧

ch

)

2

4D⌧

ch (86)

Furthermore, the transfer function of the turning microfluidic channel is found by taking

the Fourier Transform of (84) and expressed using normalized sinc function as

Hch(k) = e�(k2D+jku)⌧
chsinc(

ach✓

2⇡
k)e�jka

ch

✓/2 (87)

where k is the angular spatial frequency, i.e., wave number. The transfer function Hch(k)

can be simplified for a straight channel using ✓ = 0 as

Hstr
ch (k) = e�(k2D+jku)⌧

ch (88)
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Figure 14: The illustration of length lch, ltx, and lrx parameters, and height ach, atx, and arx
parameters for the microfluidic channel (a), the transmitter chamber (b), and the receiver
chamber (c), respectively.

Overall, the molecular propagation inside microfluidic channel can be represented using

block diagrams via a series connection of attenuator, delay, and integrator elements as

depicted in Fig. 13(b). Next, we model the concentration propagation in the chambers,

and the e↵ect of transition at the junctions to/from the microfluidic channel from the

transmitter chamber and to the receiver chamber, respectively.

3.3.2 Impact of the Chambers on the Molecular Propagation

The received concentration signal can be obtained via convolution of the input signal with

the transmitter, the microfluidic channel, and the receiver impulse responses. Although,

the concentration propagation in the microfluidic channel is investigated in [1], the impulse

responses, the transfer functions, and the delays of the transmitter and the receiver chambers

are yet to be explored. Here, we provide a model including molecular propagation in

chambers as well as from/to chambers to/from microfluidic channel at the junctions.

3.3.2.1 Transmitter Chamber

To model the concentration propagation in the transmitter chamber, the solution of the

di↵usion equation for a point source placed in the chamber, i.e., impulse response, is used.

The di↵usion equation is defined as [15]

@�

@⌧
= D0

@2�

@l2
(89)

which relates the variation of concentration in time domain to variation of concentration

in space domain. The solution of the di↵usion equation for a point source input, i.e.,
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Figure 15: Block diagram representation of linear end-to-end signal model.

�+(l) = �(l); where � is the Dirac delta function, is given by

h0tx(l) =
1p

4⇡D0⌧tx
e
� l

2

4D

0

⌧

tx (90)

where ⌧tx is the delay at the transmitter chamber, which is calculated based on the travel

time of peak level of concentration, i.e., max
⌧

tx

||�|| via setting

@h0tx
@⌧tx

����
l=l

tx

= 0, (91)

which gives

l2tx � 2D0⌧tx
8
p
⇡(D0⌧tx)5/2

D0e
� l

2

tx

4D

0

⌧

tx = 0 (92)

from which ⌧tx is found as

⌧tx =
ltx
2D0

(93)

Due to the finite size height atx of the transmitter chamber, which is illustrated in Fig.

14(b), the transmitted concentration signal has a pulse width as large as the chamber height

atx at the junction between the transmitter chamber and the microfluidic channel, where the

center of the transmitter junction is taken as the origin of the transmitter coordinate axis.
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The impulse response of a such behavior, i.e., the junction impulse response, is captured by

a scaled rect function to match the chamber height as

hjcttx (l) =
1

atx
rect(

1

atx
l � 1

2
) (94)

where the signal is shifted by half chamber height atx/2 to keep system causality, and rect(l)

is

rect(l) =

8
><

>:

1, |l|  1/2

0, |l| > 1/2

The delay due to shifting of the signal, i.e., atx/(2u), is incorporated into microfluidic

channel delay in Section 3.3.3.

The overall impulse response of transmitter chamber is formulated as

htx(l) =(hjcttx ⇤ h0tx)(l)

=
1

atx

Z
a

tx

0

1p
4⇡D⌧tx

e
� (l�x)

2

4D⌧

tx dx (95)

where ⌧tx is as given in (93). For a transmitter chamber with a height of atx = 0, the impulse

response of the transmitter chamber reduces to (90). The transfer function for transmitter

chamber Htx is found by taking Fourier Transform of the impulse response, i.e., F{htx},
and using normalized sinc function as

Htx(k) = e�k

2

D⌧

txsinc(
atx
2⇡

k)e�jka

tx

/2 (96)

3.3.2.2 Receiver Chamber

Similar to the transmitter chamber, for the concentration propagation in the receiver cham-

ber, we also utilize the solution of the di↵usion equation (89) for a point source according

to the receiver chamber parameters, i..e, the receiver chamber length lrx, and the receiver

chamber height arx. The receiver chamber performs as an integrator during the transition

of concentration from the microfluidic channel to the chamber, whose behavior can be cap-

tured by an auxiliary rect function similar to transmitter side (94), where the center of

the receiver junction is taken as the origin of the receiver coordinate axis, and hence, the

concentration signal is shifted by half chamber height arx/2 to achieve causality, as

hjctrx (l) =
1

arx
rect(

1

arx
l � 1

2
) (97)
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The delay due to shifting of the signal, i.e., arx/(2u), is incorporated into the microfluidic

channel delay in Section 3.3.3. Using the solution of the di↵usion equation at the transmitter

chamber for a point source in (90), the impulse response for the concentration propagation

in the receiver chamber is obtained as

h0rx(l) =
1p

4⇡D0⌧rx
e
� l

2

4D

0

⌧

rx (98)

The impulse response of the receiver chamber incorporating the e↵ect of the receiver junction

is formulated as

hrx(l) =(h0rx ⇤ hjctrx )(l)

=
1

arx

Z
a

rx

0

1p
4⇡D0⌧rx

e�
(l�x)

2

4D⌧

rx dx (99)

where the delay of the receiver chamber ⌧rx can be obtained by solving (92) for the receiver

chamber as

⌧rx =
lrx
2D0

(100)

Similar to the transmitter chamber case, it is observed that for a receiver chamber with a

height of arx = 0, the impulse response of the transmitter chamber reduces to (98). Finally,

the transfer function of the receiver chamber is given by F{hrx} as

Hrx(k) = e�(k2D+jku)⌧
rxsinc(

arx
2⇡

k)e�jka

rx

/2 (101)

Overall, the impulse responses, the delays, and the transfer functions are provided for

the chambers and the microfluidic channel. Next, we propose the linear end-to-end model

for FMC and identify the noise and memory e↵ects on the end-to-end signal propagation.

3.3.3 Linear End-to-end Signal Model

The transmitted molecular signal �+ can be represented by

�+(l) = m(l)ej2k0l (102)

where k0 is the carrier frequency of the molecular oscillators placed in the transmitter and

receiver chambers, m(l) is the message signal, which is a wide-sense stationary process
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subject to variance constraint  2 as

E[m2(l)] =  2 (103)

For signal reception, we consider the propagation of the leading edge of the molecular

signal at carrier frequency k0. Therefore, for MC channel response, gain of the system is

calculated for a delay of ⌧tx, ⌧ch, and ⌧rx in transmitter chamber, microfluidic channel, and

receiver chamber, respectively. The signal gain at the transmission frequency k0 and delay

⌧tx for the transmitter chamber ↵tx is found using Wiener-Khinchin theorem as

↵tx =|Htx(k0)|

=exp(�k20D0⌧tx)sinc(
atx
2⇡

k0) (104)

For the microfluidic channel, the signal gain at the transmission frequency k0 and delay ⌧ch,

is found as

↵ch =|Hch(k0)|

=exp(�k20D⌧ch)sinc(
ach✓

2⇡
k0) (105)

For the receiver chamber, the signal gain at the transmission frequency k0 and delay ⌧rx is

found as

↵rx =|Hrx(k0)|

=exp(�k20D0⌧rx)sinc(
arx
2⇡

k0) (106)

Combining the attenuation at the chambers and the microfluidic channel, the linear end-

to-end model of the FMC is illustrated in Fig. 15. Using the developed system-theoretic

model, we incorporate the noise and the memory e↵ects into a linear end-to-end signal

model. The linear received signal model for the molecular receiver is formulated as

� =↵rx (↵ch (↵tx'+ ntx) + nch) + nrx

=↵e2e'+ ne2e (107)

where ' and � are the magnitudes of the transmitted and received signals, i.e., ' = |�+(k0)|
and � = |��(k0)|, respectively; ↵e2e is the end-to-end signal gain given by ↵tx↵ch↵rx; ntx,
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nch, and nrx are the the noise e↵ects at the output of the transmitter chamber, microfluidic

channel, and receiver chamber; ne2e is the end-to-end noise term given by

ne2e = ↵rx↵chntx + ↵rxnch + nrx (108)

Incorporating the transmitter and the receiver chamber delays, the end-to-end delay is

formulated as

⌧e2e = ⌧rx +
arx
2u

+ ⌧ch +
atx
2u

+ ⌧tx (109)

where atx/(2u) and arx/(2u) are the delays added to provide causality for the transmitter

and the receiver chamber impulse responses. We add these delays into ⌧ch to incorporate

into travel time inside microfluidic channel, and define the extended microfluidic channel

delay ⌧⇤ch as

⌧⇤ch = ⌧ch +
atx + arx

2u
(110)

The memory e↵ects due to di↵usion of previously transmitted molecular signals inside

microfluidic channel and chambers will be elaborated and incorporated into linear end-to-

end model in Section 3.5. Next, we derive the building blocks of the propagation noise,

and investigate the spectral density of the end-to-end propagation noise on the received

concentration.

3.4 Propagation Noise Analysis

In this section, for the linear signal model in (107), the noise e↵ects on the received con-

centration signal are characterized using the autocorrelation of the corresponding impulse

responses of the transmitter chamber (96), the microfluidic channel (84), and the receiver

chamber (99). To this end, first, building blocks of noise autocorrelations are defined based

on the propagation of the concentration signal by di↵usion and at the junction transition,

which are similar to thermal and shot noise e↵ects, respectively, in electronic circuits. Then,

autocorrelation of the propagation noise at the chambers and the microfluidic channel are

formulated. Finally, spectral density of the end-to-end propagation noise is obtained, and

statistical properties are studied.
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3.4.1 Building Blocks of the Molecular Noise

The molecules forming a concentration signal are under continuous displacement due to

the Brownian motion. Therefore, discrete and independent motion of molecules results in

a noncontinuous concentration signal, and the molecules passing at the junction between

the microfluidic channel and the chambers vary in an unpredictable way. Di↵usion noise

defined as the noise e↵ect due to Brownian motion of the molecules during di↵usion-based

and convection-based transport of molecules. Junction transition noise is observed when the

molecules are transported by the flow in the only one direction. The molecular propagation

at the junctions between the chambers and the microfluidic channel are exposed to such

noise e↵ects. In the following subsections, to characterize the propagation noise e↵ects,

autocorrelation functions of the di↵usion noise and the junction transition noise, i.e., Rdi↵

and Rjct, are formulated as the building blocks of the propagation noise at the chambers

and the microfluidic channel.

3.4.1.1 Di↵usion Noise Autocorrelation Function

For the di↵usion noise, using the given solutions of the di↵usion equation for the transmitter

and receiver chambers in (90) and (98), respectively, we define the generalized impulse

response of the propagation by di↵usion as

hdi↵(l) =
1p

4⇡D0⌧di↵
e
� l

2

4D

0

⌧

di↵ (111)

where ⌧di↵ is the di↵usion duration. The autocorrelation of the concentration signal for the

di↵usion noise is given by

Rdi↵(⇠) = (��(l) ⇤ ��(�l))(⇠) (112)

where ��(l) = (hdi↵ ⇤�+)(l). For an input concentration of �+(l) = �(l), the autocorrelation

function of the di↵usion noise is obtained as

Rdi↵(⇠) =

Z 1

�1
hdi↵(l + ⇠)hdi↵(l)dl

=
1p

8⇡D0⌧di↵
e
� ⇠

2

8D

0

⌧

di↵ (113)
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Furthermore, spectral density of di↵usion noise is given by F{Rdi↵} as

Sdi↵(k) = e�2k2D⌧

di↵ (114)

3.4.1.2 Junction Transition Noise Autocorrelation Function

Based on impulse responses of the transmitter and the receiver junctions, i.e., htxjct and hrxjct,

respectively, a generic impulse response is defined as

hjct(l) =
1

ajct
rect(

1

ajct
l) (115)

where ajct is the chamber height. Similar to the calculation of the autocorrelation function

Rdi↵ for di↵usion noise in (112), the autocorrelation of junction transition noise Rjct is given

by

Rjct(⇠) = (��(l) ⇤ ��(�l))(⇠) (116)

where concentration signal ��(l) = (hjct ⇤ �+)(l). For an input signal of �+(l) = �(l), Rjct

is found as

Rjct(⇠) =

Z 1

�1
hjct(l + ⇠)hjct(l)dl

=
1

a2jct

Z 1

�1
rect(⇠ +

1

ajct
l)rect(

1

ajct
l)dl (117)

which is evaluated as

Rjct(⇠) =

8
><

>:

1
a

jct

� |⇠|
a

2

jct

, |⇠|  ajct

0, otherwise
(118)

Furthermore, the spectral density for the junction transition noise is found via Fourier

Transform of the autocorrelation function F{Rjct} as

Sjct(k) =sinc2(
ajct
2⇡

k)

=
sin2(ajctk/2)

a2jctk
2/4

(119)

3.4.2 Autocorrelation Analysis

Here, we formulate the autocorrelation of the propagation noise at the transmitter chamber,

the microfluidic channel, and the receiver chamber using the developed building blocks of

the propagation noise in the previous subsection.
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3.4.2.1 Transmitter Chamber

The noise variance in the transmitter chamber is given by the di↵usion of the transmitted

concentration as

⇤2
tx =

�
1� exp(�2k20D⌧tx)

�
 2

⇡ �1� ��2k20D0⌧tx + 1
��
 2

=2k20D0⌧tx 
2 (120)

where the Taylor series expansion of exp(x) ⇡ x+1 for x ⇡ 0 is used. Combining the Fourier

Transform of the di↵usion and junction transition autocorrelation functions in (114) and

(119), respectively, the spectral density of the transmitter chamber noise is obtained as

Stx(k) =⇤2
txS

tx
di↵(k)S

tx
jct(k)

=2k20D0⌧tx 
2e�2k2D⌧

txsinc2(
atx
2⇡

k) (121)

where Stx
di↵ and Stx

jct are the Fourier Transform of the autocorrelation of di↵usion and junction

transition adjusted to the transmitter chamber parameters.

3.4.2.2 Microfluidic Channel

Di↵usion of the concentration signal through microfluidic channel gives the noise variance

in the microfluidic channel as

⇤2
ch =↵2

tx

✓
1� exp(�2k20D⌧

⇤
ch)sinc

2(
ach✓

2⇡
k0)

◆
 2

⇡↵2
tx 

2 + ↵2
txk

2
0D⌧

⇤
chsinc

2(
ach✓

2⇡
k0) 

2

� ↵2
txsinc

2(
ach✓

2⇡
k0) 

2 (122)

where the Taylor series expansion of exp(x) ⇡ x+1 for x ⇡ 0 is used. The spectral density

of the straight microfluidic channel, i.e., ✓ = 0, is as

Sch(k) = ⇤2
chS

ch
di↵(k) (123)

where Sch
di↵ is the Fourier Transform of the autocorrelation of di↵usion noise adjusted to

microfluidic channel parameters, which is given by

Sch
di↵(k) = ↵2

tx2k
2
0D⌧

⇤
ch 

2e�2k2D⌧

ch (124)
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Figure 16: Transmitter and receiver chamber noise spectral densities for various chamber
length ltx/rx (a) and chamber height atx/rx (b) values.

3.4.2.3 Receiver Chamber

Di↵usion of the concentration signal in the receiver chamber gives the the receiver chamber

noise variance as

⇤2
rx =↵2

tx↵
2
ch

�
1� exp(�2k20D0⌧rx)

�
 2

⇡↵tx↵ch2k
2
0D0⌧rx 

2 (125)
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Figure 17: Spectral density of the microfluidic channel noise for various length lch values.

where the Taylor series expansion of exp(x) ⇡ x+1 for x ⇡ 0 is used. Combining the Fourier

Transform of the di↵usion and junction transition noise autocorrelation functions in (114)

and (119), respectively, the spectral density of the receiver chamber noise is obtained as

Srx(k) =⇤2
rxS

rx
di↵(k)S

rx
jct(k)

=↵2
tx↵

2
ch2k

2
0D0⌧rx 

2e�2k2D⌧

rxsinc2(
arx
2⇡

k) (126)

where Srx
di↵ and Srx

jct are the Fourier Transform of the autocorrelation of di↵usion and junction

transition adjusted to receiver chamber parameters.

3.4.3 The Noise Model for FMC

Here, we investigate the spectral densities of the three propagation noises, i.e., transmitter

chamber noise ntx, microfluidic channel noise nch, and the receiver chamber noise nrx. In

Fig. 16(a) and (b), the normalized chamber noise spectral density is depicted for various

chamber length ltx/rx and chamber height atx/rx values, respectively. It is shown that for

su�ciently small wave number k, noise CSD can be taken as flat-band for transmitter

and receiver chamber noises. Due to flat-band noise spectral density, the amplitude of the

propagation noise can be taken as Gaussian distributed for the transmitter and receiver

59



chambers. For the transmitter chamber noise, probability distribution is given by

ntx ⇠ N �
0,⇤2

tx

�
(127)

where ⇤2
tx is the transmitter chamber noise variance given by

⇤2
tx = 2k20D0⌧tx 

2 (128)

For the receiver chamber noise, probability distribution is given by

nrx ⇠ N �
0,⇤2

rx

�
(129)

where ⇤2
rx is the receiver chamber noise variance given by

⇤2
rx = 2k20D0⌧rx↵

2
ch↵

2
tx 

2 (130)

Furthermore, in Fig. 17, it is shown that the spectral density of the noise at microfluidic

channel can be taken as a flat-band for su�ciently small k values. Therefore, the amplitude

distribution of the microfluidic channel noise can also be taken as Gaussian, i.e.,

nch ⇠ N �
0,⇤2

ch

�
(131)

where ⇤2
ch is the microfluidic channel noise variance and can be approximated for a straight

microfluidic channel as

⇤2
ch = 2k20D⌧

⇤
ch↵

2
tx 

2 (132)

Therefore, the end-to-end propagation noise can be approximated as Additive White

Gaussian Noise (AWGN) based on the chamber and microfluidic channel parameters. Based

on the end-to-end model given in (108), the distribution of the end-to-end propagation noise

is obtained as

ne2e ⇠↵rx↵chntx + ↵rxnch + nrx

⇠N �
0,⇤2

e2e

�
(133)

where ⇤2
e2e is the variance of the end-to-end propagation noise and is given by

⇤2
e2e = 2k20(D0⌧tx↵ch↵

2
rx + ↵2

txD⌧
⇤
ch↵

2
rx + ↵2

tx↵
2
chD0⌧rx) 

2 (134)
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Since the frequency range of the flat-band noise spectral density is much smaller for

microfluidic channel noise compared to the chamber noises, we will further investigate the

frequency ranges where the end-to-end propagation noise spectral density is flat-band in

Section 3.6.2 for various microfluidic channel lengths, turning angles, and pressure drop

values. Next, we investigate the memory e↵ects in FMC.

ne2e

Σ

τch ch

\+

\-

αe2e

τch chτch ch

αe2eαe2e αe2e

*

Figure 18: Block diagram representation of the linear memory model.

3.5 Memory Analysis

Memory e↵ect is caused by the self-interference of the molecular signal through the trans-

mitter/receiver chambers and microfluidic channel due to the di↵usion of the transmitted

signal. In this section, we present a linear model of memory for FMC. Furthermore, we also

investigate the e↵ect of memory on the end-to-end propagation noise. Finally, we present

the end-to-end signal model with memory.

3.5.1 Linear Memory Model

The transmitted signal di↵uses throughout the transmitter camber, microfluidic channel,

and receiver chamber, respectively. Therefore, when the transmission wave number is suf-

ficiently large, transmitted signal will be exposed to the self-interference. For transmission

wave number k0, required propagation time for channel memory ⌧mem is defined equal to

period of the transmitted signal as

⌧mem =
1

f0

=
2⇡

k0u
(135)
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where identity ku = 2⇡f for molecular signals is used [1]. When propagation time is higher

than the ⌧mem, the received signal becomes exposed to the memory. The linear memory

model is given in Fig. 18. Based on the wave number k and the distance, the multiple mem-

ory branches may become active. The memory coe�cient �tx/rx for transmitter/receiver

chambers is defined as

�tx/rx = e(�k

0

D

0

2⇡

u

) (136)

and the memory coe�cient �ch for microfluidic channel is defined as

�ch = e(�k

0

D

2⇡

u

) (137)

The memory is composed of three parts, i.e., the transmitter camber, the microfluidic

channel, and the receiver chamber, as

I = Irx + Ich + Itx (138)

For the memory at the chambers, required condition on channel for memory is given by

⌧mem < ⌧tx/rx (139)

Accordingly, the memory level, i.e., the number of active branches in the presented model

shown in Fig. 18, is given by

⌘tx/rx =

�
⌧tx/rx
⌧mem

⌫
(140)

For the memory at the microfluidic channel, required condition for memory is given by

⌧mem < ⌧ch (141)

Accordingly, the memory level at the microfluidic channel is equal to

⌘ch =

�
⌧ch
⌧mem

⌫
(142)

In Fig. 19, memory level for chambers and microfluidic channel is presented with respect

to the transmission frequency. For numerical results, chamber length ltx/rx is 1µm, flow

velocity is 10�4m/s, and the microfluidic channel length lch is taken as 50mm. It is observed

that memory level ⌘tx/rx is 0 for the whole frequency ranges of interest, meanwhile the
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Figure 19: Memory level at transmitter/receiver chambers ⌘tx/rx and microfluidic channels
⌘ch versus the wave number k.

memory level for the microfluidic channel ⌘ch increases with frequency as a step function

and enables more memory branches at the microfluidic channel. Therefore, the end-to-end

memory magnitude in (138) can be approximated based on the microfluidic channel memory

as

I ⇡ Ich (143)

Based on the end-to-end signal model given in (107), magnitude of the memory component

in received molecular signal is given by

I =
⌘

chX

i=1

↵rx�
i

ch↵ch↵tx'

=↵rx↵ch↵tx
e�k

0

D

⇡

u � e�k

0

D

2⇡

u

(⌘
ch

+1)

1� e�k

0

D

2⇡

u

' (144)

Furthermore, the variance of the memory component in the received molecular signal is

given by

E[I2] =
⌘

chX

i=1

↵2
rx�

2i
ch↵

2
ch↵

2
tx 

2

=↵rx↵ch↵tx
e�2k

0

D

2⇡

u � e�2k
0

D

2⇡

u

(⌘
ch

+1)

1� e�2k
0

D

2⇡

u

 2 (145)
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Next, we continue our memory analysis with the e↵ect of memory on the end-to-end

molecular propagation noise.

3.5.2 End-to-end Propagation Noise due to Memory

In addition to the memory model presented in the previous subsection, the end-to-end

propagation noise variance is further amplified due to the self-interference of the transmitted

signal molecules at the transmitter/receiver chambers and the microfluidic channel. Since

the memory level at the chambers is shown to be taken as 0 in the previous subsection, to

incorporate the e↵ect of memory into the end-to-end propagation noise, we use the definition

of the microfluidic channel noise in Section 3.4.2.2. For a ⌧mem satisfying (141), the noise

variance due to memory is found as

⇤2
MEM =

⌘

chX

i=1

↵2
tx

�
1� ↵2

ch�
2i
ch

�
↵2
rx 

2

=
⌘

chX

i=1

↵2
tx

⇣
1� e�2k2

0

D(⌧
ch

+ 1

f

c

i)
⌘
↵2
rx 

2

⇡↵2
tx↵

2
rx2k

2
0D

✓
⌘⌧ch +

⌘(⌘ + 1)

2f0

◆
 2 (146)

where the first order Taylor series expansion of exp(x) ⇡ x+ 1 for x ⇡ 0 is used.

Furthermore, similar to the microfluidic channel noise spectral density, the spectral

density of the propagation noise due to memory is obtained as

SMEM(k) =⇤2
MEMSch

di↵(k)

=↵2
tx↵

2
rxk

2
0D

✓
2⌘⌧ch +

⌘(⌘ + 1)

f0

◆
 2e�2k2D⌧

ch (147)

The noise spectral density with memory, i.e., spectral density of the unified end-to-end

propagation noise, can also be taken as flat-band for su�ciently small k. Therefore, the

unified end-to-end propagation noise n⇤
e2e can be taken as Gaussian distributed. Based on

the end-to-end model given in (108), the distribution of the unified end-to-end propagation

noise is found as

n⇤
e2e ⇠ N �

0,⇤2
e2e + ⇤2

MEM

�
(148)

64



0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

k (radians per meter)

|H
tx

/r
x(k

)|

 

 
a

tx/rx
=100µ m

a
tx/rx

=150µ m

a
tx/rx

=200µ m

a
tx/rx

=250µ m

(a)

0 2 4 6 8 10

x 10
4

0

0.2

0.4

0.6

0.8

1

k (radians per meter)

|H
tx

/r
x(k

)|

 

 
l
tx/rx

=1µ m

l
tx/rx

=50µ m

l
tx/rx

=100µ m

l
tx/rx

=200µ m

(b)

Figure 20: Chamber attenuation based on chamber height atx/rx (a) and chamber length
ltx/rx (b).

3.5.3 End-to-end Signal Model with Memory

The tapped delay-line model of molecular memory is illustrated in Fig. 18. The linear

end-to-end model in (107) can be rearranged using (144) and (148) as

� =↵rx↵ch↵tx'+ n⇤
e2e + I

=

 
1� e�k

0

D

2⇡

u

(⌘
ch

+1)

1� e�k

0

D

2⇡

u

!
↵rx↵ch↵tx'+ n⇤

e2e (149)
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Figure 21: The end-to-end propagation noise CSD based on length lch (a) and turning
angle ✓ (b).

Overall, the performed analyses for the end-to-end propagation noise and molecular

memory provide an analytical framework to devise communication schemes for molecular

communication over the microfluidic channels. Furthermore, the noise and memory models

presented here complement the propagation analysis in [1].
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3.6 Numerical Results

In this section, obtained analytical results are numerically elaborated. We, first, study the

signal propagation at the transmitter and receiver chambers. Specifically, we investigate

the e↵ect of the chamber height and length for the transmitter and receiver chambers in

Fig. 20(a) and (b). Then, we investigate the CSD of end-to-end propagation noise for

microfluidic channel length lch, turning angle ✓, and pressure drop �p in Fig. 21(a) and

(b), and Fig. 22, respecitvely. During numerical evaluations, viscosity µ of the fluid is set

to 10�3Pa · s, and di↵usion constant D0 is set to 10 · 10�10m2/s.

3.6.1 Attenuation at the Transmitter and Receiver Chambers

The concentration propagation in chambers is studied in two parts, i.e., chamber height

and length. To elaborate e↵ect of chamber height atx/rx, chamber transfer function is

investigated for channel length lch of 10µm with respect to various chamber heights from

100µm to 250µm in Fig. 20(a). To illustrate the e↵ect of chamber length ltx/rx, chamber

transfer function is investigated for a chamber height atx/rx of 150µm with respect to various

chamber lengths from 1µm to 200µm in Fig. 20(b).

In Fig. 20(a), it is observed that as the chamber height decreases, i.e., for a shorter

chamber height, the signal is exposed to less attenuation. The concentration signals with

higher frequency can be transported with less attenuation at the transition junction from/to

the shorter height chambers to/from microfluidic channel compared to the longer height

chambers. In Fig. 20(b), when the chamber length is decreased from 200µm to 1µm, the

achievable frequencies are decreased as well. While ltx/rx is equal to 50, 100, and 200 µm

attenuation due to di↵usion dominates and junction transition e↵ect is negligible, however,

for ltx/rx = 1µm, attenuation due to junction transition outweighs the di↵usion attenuation.

Overall, the chamber transfer function is equal to 0 when the wave number k is a positive

integer, i.e., i, multiple of the reciprocal of the chamber height, i.e., 1/(atx/rx), as

k =
1

atx/rx
i (150)

This e↵ect is peculiar to the concentration propagation at the chamber junction, and it is

due to the transition that cancel out the frequency components given by (150) at the output
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Figure 22: The end-to-end propagation noise CSD based on the pressure drop across the
microfluidic channel.

signal. To explain quantitatively, the chamber junction transition performs the integration

of the input signal, and since the integration of a sinusoidal signal over a complete period,

or the multiple complete periods would yield 0, the frequency components matching this

definition vanish, which are stated in (150).

3.6.2 End-to-end Propagation Noise

In Section 3.4.3, it is shown that the CSD of noise at microfluidic channel dominates the

CSD of the noises at chambers. Therefore, the end-to-end propagation noise CSD is studied

in three parts, i.e., the microfluidic channel length lch, the turning angle ✓, and the pressure

drop �p. To elaborate e↵ect of the microfluidic channel length lch, the end-to-end CSD is

investigated for a pressure drop �p of 500Pa, height ach and width bch of 25 and 5 µm with

respect to the various lengths from 20mm to 100mm in Fig. 21(a). To illustrate e↵ect of the

turning angle ✓ on the end-to-end noise CSD, lch is assumed as 100 mm, and the end-to-end

CSD is investigated with respect to various turning angles from ⇡/6 to ⇡ radians in Fig.

21(b). To illustrate e↵ect of the pressure drop �p on end-to-end noise CSD, end-to-end

CSD is investigated with respect to various pressure drop values from 100 Pa to 1000 Pa in

Fig. 22.
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It is observed in Fig. 21(a) that as the distance between transmitter and receiver

chambers increases, frequency range of the flat-band CSD decreases, i.e., as the microfluidic

channel length decreases, the flat-band region of the end-to-end propagation noise CSD

increases. Therefore, AWGN channel assumption for FMC holds for a limited range of

frequencies based on the lch. Furthermore, the noise variance decreases by 10 times while

the distance is decreased from 100 mm to 20 mm. Moreover, in Fig. 21(b), it is shown that

turning channel e↵ect is negligible for the end-to-end propagation noise CSD. In Fig. 22, it

is shown that the flat-band region of end-to-end CSD increases from a few radians per meter

to the order of 100 radians per meter, while pressure drop is increased from 100 to 1000 Pa.

The end-to-end propagation noise variance is reduced while the pressure drop is increased

from 100 to 1000 Pa, as well. Furthermore, these frequency ranges also conform with the

biological oscillators based on quorum sensing [27]. Therefore, end-to-end propagation noise

in FMC over microfluidic channels can be approximated as AWGN for microfluidic channels

with su�cient channel length lch and pressure drop �p.

Overall, the performed CSD analysis provides a basis for characterization of noise at

the receiver based on the microfluidic channel parameters. Here, we focus on flat-band

region, and the AWGN channel model for FMC over microfluidic channels. However, using

proposed end-to-end propagation noise CSD, analysis of frequencies beyond flat-band region

can also be performed for MC, such as colored noise models can be developed.

3.7 Highlights

In this chapter, first, the propagation model for microfluidic channels is extended to incor-

porate the impact of the molecular transmitter and receiver placed in the chambers (see Fig.

1). Di↵usion-based molecular propagation and transition from chambers to the microfluidic

channel are studied and mathematically modeled.

In communication systems, noise represents the imperfections or random errors that

negatively e↵ects the communication performance (information rates). The noise e↵ects in

the microfluidic molecular communication system are identified as: 1) transition from/to

molecular transport by di↵usion in the transmitter/receiver chamber to/from molecular
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transport by flow in the microfluidic channel; and 2) the random di↵usion of molecules

inside the chambers and microfluidic channel. These two noise e↵ects are treated as the

building blocks of the overall noise on the molecular signal.

To model the noise e↵ects, spectral density of the molecular signal is formulated. The

spectral density incorporates the physical parameters of the microfluidic channels. Flat-

band frequency ranges in the spectral density are identified. It is shown that for the varying

molecular signals, noise distribution can be approximated as white Gaussian.

In the second part of this work, transmission of a sequence of molecular signals is in-

vestigated. Previously transmitted molecular signals in a sequence di↵use throughout the

microfluidic channel and cause disturbance on the current transmission. Utilizing the devel-

oped propagation model for molecular communication over microfluidic channels, the impact

memory on the current transmission is analytically modeled incorporating the transmission

period parameters (duration between the molecular signals in a sequence) and the distance

between the transmitter and receiver.

The analysis of the noise and memory e↵ects in this work using mathematical modeling

expand the knowledge on molecular communication over microfluidic channels and aims to

further support the investigation on communication performance in terms of information

rates and bit-error rate. The results provided in this chapter of the thesis constitute an

initial study on the noise e↵ects on a basic design of a microfluidic molecular communication

system (see Fig. 1), and further study is expected in the future to utilize these results to

analyze more specific microfluidic molecular communication system implementations.
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CHAPTER IV

INTERFERENCE MODELING AND CAPACITY ANALYSIS FOR

MICROFLUIDIC MULTIPLE ACCESS CHANNEL

In this chapter, the impact of the interference on the molecular communication (MC) be-

tween a transmitter and receiver pair which are connected through a microfluidic channel

containing fluid flow is investigated. The interference modeling and the capacity analysis is

performed based on the microfluidic channel geometry, the flow velocity, and the distance.

Additionally, three di↵erent microfluidic interference channel configurations, i.e., both-sided

interference (microfluidic X channel), one-sided interference (microfluidic Z channel), and

interference-free, are proposed based on the distance of the receiver from the interfering

transmitter, microfluidic channel cross-section, and the fluid flow velocity. This work was

first presented in [3]. In Section 4.2, we provide the system model for the MC over mi-

crofluidic channels. In Section 4.3, we model the interference in the microfluidic channels.

In Section 4.4, capacity of the microfluidic MC channel under interference is investigated.

In Section 4.5, MIC configurations are presented.

4.1 Motivation

Towards enabling the parallel molecular processing and computation on a chip, microfluidic

channels can also be used to connect multiple transmitter and receiver pairs. The microflu-

idic MC channel, can empower parallel testing, processing, and preparation of the chemical

samples on a microfluidic chip. In the multi-pair MC communication system, we consider

that each transmitter is aimed to communicate using same type of molecules with only its

designated receiver. However, the transmissions of multiple transmitters using same type of

molecules yield interference to each other. The interference e↵ect coupled with the physical

limitations of microfluidic channels call for a thorough analysis and e�cient design of MC

schemes to realize nano communications in microfluidic platforms. The research on the

information-theoretic study of the MC has been a field of interest recently [12], [41], [65],
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[66]. So far, to the best of our knowledge, there is no prior work on analytical modeling of

interference and capacity analysis for microfluidic channels from the MC point of view.

In [67], for the MC based on free-space di↵usion, modeling of interference is performed

for multiple transmitting nanomachines. The transmitters are taken to be spatial Poisson

distributed, and the statistics of the received signal is studied. The provided analysis aims

to characterize interference in free-space MC under random distribution of transmitters,

which is not applicable to microfluidic MC channels. In [12], the information capacity of

a free-space MC system is investigated. The capacity is expressed based on the di↵usion

constant, the distance between the transmitter and the receiver, and the bandwidth of

the transmitted signal. Additionally, the thermodynamic power spent at the transmitter

for molecule emission is used for capacity evaluation. The capacity formulation for MC is

applicable only for single molecular transmitter and receiver pair, and for purposes of solely

di↵usion-based molecular propagation. In [41], the information capacity in a molecular

nanonetwork is investigated based on stochastic models in chemically reacting systems. The

free-space MC models for a transmitter and receiver pair, single transmitter and multiple

receivers, and multiple transmitter and single receiver scenarios are proposed. For each of

these models, the capacity expressions are derived for molecular transport solely based on

di↵usion. However, the capacity analyses in [12, 41] do not capture the attenuation, and

the noise characteristics of the flow-induced molecular transport and are not suitable for

the MC over microfluidic channels.

In this chapter, based on the channel modeling and the noise analysis performed in [1]

and [2], respectively, we investigate the interference e↵ects and the capacity of the microflu-

idic MC channel, i.e., Microfluidic Interference Channel (MIC). The interference amplitude

and variance, and the interference-induced noise at the receiver are modeled first. In the

course of this work, we focus on the received signal level and do not assume any underlying

encoding and modulation schemes. Then, the MC link capacity under interference is stud-

ied for the single interfering transmitter and the multiple interfering transmitter cases. The

impact of the distance as well as the number of interfering transmitters are investigated.
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The microfluidic MC channel capacity is shown to be severely constrained under the inter-

ference, which requires development of practical detection schemes considering capabilities

of the biological molecular receivers, e.g., genetically engineered bacteria, to distinguish

transmission of designated transmitter from interferer signals.

Furthermore, the placement of the chambers on the opposite sides of the microfluidic

channel is also investigated for two pairs of transmitter and receiver. Each transmitter

communicates with its designated receiver on the same side of the microfluidic channel,

and causes interference to the undesignated receiver on the opposite side based on the flow

velocity and the microfluidic channel configuration. Accordingly, three microfluidic channel

configurations are presented based on the distance of the receiver from the interfering trans-

mitter, microfluidic channel cross-section and the fluid flow: 1) microfluidic X channel, i.e.,

both receivers are exposed to interference, 2) microfluidic Z channel, i.e., only one of the

receivers is exposed to the interference, and 3) microfluidic interference-free channel, i.e.,

none of the receivers is exposed to interference. The provided analysis for capacity, enables

information-theoretic evaluation of the microfluidic MC systems. The throughput and the

accuracy of these systems can be assessed via the information theory.

4.2 Microfluidic Molecular Communication Channel

In this section, we present the system model for the microfluidic MC channel, which forms

the basis of interference modeling and capacity analysis. The microfluidic channel and

chamber dimensions are illustrated in Fig. 1. The molecular transmitter and the receiver

are placed in the chambers which are attached to a connecting microfluidic channel with fluid

flow. It can be inferred from [2] that the microfluidic MC channel can be reasonably modeled

as a linear communication channel, and the memoryless AWGN model of a microfluidic MC

system can be developed when the range of frequencies for a molecular signal is limited to

a few mHz, which conforms with the capabilities of biological oscillators such as genetically

engineered bacteria [27, 71, 73, 43].

The transmitter node modulates information on the molecular signal x by changing the

level, i.e., the amount, of the released molecular concentration. We assume the transmitter
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nodes are adjusted to change the released concentration level with a rate of f0 = 1/T0, and

T0 is the period of the signal. Furthermore, we assume the bandwidth of the molecular

receiver is greater or equal to f0, i.e., the molecular receiver is capable of responding the

changes in the received signal level with a frequency of f0. Therefore, the molecular receiver

can respond to changes in the input signal with frequency f0 by the transmitter. The

transmitted molecular signal x is subject to a variance constraint �2 for each transmission

as

E[x2]  �2 (151)

The received molecular signal y is given by

y =↵x+ n (152)

where ↵ is the channel gain, and n is AWGN [2]. We provide below the complete channel

model for the MC link between a transmitter and a receiver pair, i.e., point-to-point MC

link.

4.2.1 Attenuation

The fluid flow is characterized as laminar, steady, unidirectional, and driven by the pressure

drop across the microfluidic channel [16]. For the rectangular cross-section microfluidic

channel, the area-averaged flow velocity uch, which is also the propagation velocity through

the microfluidic channel, is given by [15]

uch =
a2ch

12µlch

✓
1� 0.63

ach
bch

◆
�p (153)

where µ is the viscosity of the fluid, lch is the microfluidic channel length, ach is the mi-

crofluidic channel height, bch is the microfluidic channel width, and �p is the pressure drop

across the microfluidic channel. Molecular transport via the fluid flow is modeled via the

one-dimensional solution of the convection-di↵usion equation for the microfluidic channel

[29, 30, 31, 32, 33].

In this chapter, we use the temporal frequency f for analysis, apart from our former

works based on spatial frequency ⌫, i.e., in radians k = 2⇡⌫ [1, 2]. The equality of both
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Figure 23: Block diagram representation of the microfluidic AWGN channel.

representations for molecular propagation is presented in [1]. The conversion is provided by

[1]

f =
k

2⇡u
(154)

where u is the propagation velocity in the medium. While spatial frequency provides com-

pact representation for formulations, temporal frequency is preferred during the course of

this work to relate our results to time-scale and the operating frequency of the molecular

transmitters and receivers.

The block diagram representation of signal propagation between the transmitter and

the receiver pair is given in Fig. 23. We take the transmitter and the receiver chambers

identical, i.e., the gains of the transmitter and the receiver chambers are equal. The end-

to-end channel gain ↵ is defined as

↵ = ↵ch↵
2
tx/rx (155)

where ↵ch is the gain of the microfluidic channel, ↵tx/rx is the gain of the transmitter and

the receiver chambers. Both chambers have equal gain, i.e., ↵tx/rx = ↵tx = ↵rx, since the

transmitter and chambers are taken to be identical. For the microfluidic channel, the signal

gain is given in [2] based on the obtained impulse response for the microfluidic channel with

the laminar flow in [1]. Here, we assume the microfluidic channel is straight, and hence, the
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signal gain ↵ch in [2] reduces to

↵ch = exp(�4⇡2f2
0

u2ch
D⌧ch) (156)

where D is the Taylor dispersion adjusted di↵usion coe�cient for the rectangular microflu-

idic channels, which is given by [51]

D =

✓
1 +

8.5u2cha
2
chb

2
ch

210D2
0(a

2
ch + 2.4achbch + b2ch)

◆
D0, (157)

and ⌧ch is the propagation delay from the transmitter chamber to the receiver chamber,

which is referred as extended microfluidic channel delay in [2] and given by

⌧ch =
lch + atx/rx

uch
(158)

where atx/rx is the width of transmitter and receiver chambers. Both chambers have equal

width, i.e., atx/rx = atx = arx, since the transmitter and the receiver chambers are taken to

be identical, which is illustrated in Fig. 1.

lch$
(11)$

lch$
(12)$

Rx$1$Tx$1$Tx$2$Tx$N$

lch$
(1N)$

.$.$.$

Figure 24: The illustration of the multiple transmitters (Tx1, Tx 2, · · · , Tx N), and the

receiver (Rx 1) placed on the microfluidic channel. The distances l(11)ch , · · · , l(1N)
ch represent

the separation between the transmitters and the Rx 1.

For the identical transmitter and the receiver chambers, the signal gain is obtained as

[2]

↵tx/rx = exp(�4⇡2f2
0

u2tx/rx
D0⌧tx/rx)sinc(

atx/rx
utx/rx

f0) (159)

where ⌧tx/rx and utx/rx is the propagation delay and the propagation velocity, respectively, at

the transmitter and the receiver chambers. Due to the identical dimensions, the propagation

delays at the both chambers are equal, i.e., ⌧tx/rx = ⌧tx = ⌧rx, which is given by [2]

⌧tx/rx =
l2tx/rx
2D0

(160)
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where ltx/rx is the distance of the transmitter and the receiver placed in the chambers to

the microfluidic channel, which is illustrated in Fig. 1. The distances inside the identical

chambers are equal for both transmitter and receiver, i.e., ltx/rx = ltx = lrx. The propagation

velocity at the both chambers are also equal, i.e., utx/rx = utx = urx, which is obtained using

(160) as

utx/rx =
ltx/rx
⌧tx/rx

=
2D0

ltx/rx
(161)

The received signal is said to be under the e↵ect of memory when the molecular signal

period is less than the propagation duration of the signal through the microfluidic channel,

i.e., the following condition is satisfied [2]

1

f0
< ⌧ch (162)

During this study, we focus on the frequencies in the range of a few millihertz (mHz) based

on the capabilities and time-scale of the bacteria-based receivers, which are proposed as the

potential nanomachines to test and implement molecular receivers [9, 71, 73]. Therefore, for

the physical system we have, 1 � f0⌧ch, and hence, MC channel can be taken as memoryless.

4.2.2 Molecular Noise

For su�ciently small frequencies, i.e., the frequency range of biological oscillators based

on the genetically engineered bacteria, spectral density of the received molecular signal is

shown to be flat, and hence, the Gaussian distribution assumption is valid for molecular

noise [2]. Therefore, the microfluidic MC channel can be treated as a AWGN channel for

su�ciently small transmission frequency ranges.

The noise e↵ects on the received signal are illustrated in the block diagram in Fig.

23. The propagation noise n is composed of the transmitter/receiver chamber, and the mi-

crofluidic channel noises. The molecular propagation noise is shown to be well-approximated

based on microfluidic channel noise in [2]. The variance of the microfluidic channel noise
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�2 of the n is derived in [2] as

�2 = (2↵4
tx/rx

D⌧ch
u2ch

+ 4
D0⌧tx/rx
u2tx/rx

↵2
ch↵

2
tx/rx)4⇡

2f2
0�

2 (163)

The distribution of propagation noise n is taken as

n ⇠ N �
0,�2

�
(164)

Next, we model interference in microfluidic channels before proceeding to the capacity

analysis.

4.3 Interference in Microfluidic Molecular Communication Channel

In this section, an interference model for MIC is presented. Each transmitter attempts to

communicate with the receiver, meanwhile causing interference to other transmitters signal

at the receiver, which is illustrated in Fig. 24. We assume there is no coordination among

the transmitters.

We characterize the interference based on the received signal rather than assuming

employed modulation and coding techniques. The interference e↵ect is modeled based on

the flow velocity, channel dimensions, and the distance between the transmitters and the

receiver. In the following subsections, we present an analytic model for the interference

magnitude and interference-induced noise.

4.3.1 Interference Magnitude and Variance at the Receiver

For the interference modeling, we assume that all chambers are identical. The channel gain

↵
ij

for the interfering signal from transmitter j at the receiver i is obtained based on (155)

as

↵
ij

= ↵(ij)
ch ↵2

tx/rx (165)

where ↵tx/rx is given in (159), and ↵(ij)
ch is the microfluidic channel gain between the trans-

mitter j and the receiver i, which is given based on (156) as

↵(ij)
ch = exp(�4⇡2f2

0

u2ch
D⌧ (ij)ch ) (166)
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where ⌧ (ij)ch is the delay between the transmitter j and receiver i, which is given based on

the distance l(ij)ch between interferer chamber j and the receiver chamber i using (158) as

⌧ (ij)ch =
l(ij)ch

uch
(167)

The variance ⇣2
ij

of the interference from interferer j at the receiver i is defined to

incorporate the interference at the receiver i as

⇣2
ij

= (↵(ij)
ch )2↵4

tx/rx�
2
j

(168)

where �2
j

is the interferer signal variance. Furthermore, the memory condition given in

(162) also does not hold for interferer signals, i.e.,

1

f0
� ⌧ (ij)ch (169)

Therefore, all transmissions in the MIC are memoryless. Next, we analyze the interference-

induced noise of the MIC link using the performed modeling for interference magnitude

here.

4.3.2 Interference-induced Molecular Noise

In MIC, the receiver i is also exposed to the interference-induced noise n
ij

from transmitter

j. The noise in the microfluidic channel is shown to be dominating the noise in the chambers

[2]. The interference-induced noise variance ⇠2
ij

at the receiver i due to the interference

caused by transmitter j can be obtained based on the attenuation in the microfluidic channel

as

⇠2
ij

= (1� (↵(ij)
ch )2)↵4

tx/rx�
2
j

(170)

For the frequency range of interest, i.e., a few mHz, the molecular noise is shown to be

taken distributed as white Gaussian [2]. Thus, the distribution interference-induced noise

n
ij

is given by

n
ij

⇠ N �
0, ⇠2

ij

�
(171)
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Table 3: The values of the Physical Parameters

Parameter Value
D0 (Di↵usion constant) 10�9m2/s

ach (microfluidic channel width) 250µm
bch (microfluidic channel height) 10µm

atx/rx (chamber width) 150µm
ltx/rx (chamber length) 1µm

uch (flow velocity) 10�2m/s

4.3.3 Multiple Transmitters

Due to received signal from multiple transmitters, we assume that the molecular receiver is

capable of detecting and producing a distinct response for multiple levels of received con-

centration signal. Furthermore, the largest distance between transmitters and the receiver,

i.e., the distance between Tx N and the RX in Fig. 24, is su�ciently small, i.e.,

T0 �
l(1N)
ch + atx/rx

uch
, (172)

that all signals can be taken as received all together, and then, a total response is produced

by the molecular receiver. Moreover, the di↵erence in transmission instants of multiple

transmitters is negligible due to low rate of change in the signal level f0, i.e., large signal

period T0 compared to the total propagation delay as stated in (172).

4.4 Capacity Analysis

In this section, we analyze the capacity of the microfluidic MC channel under the interference

from single and multiple interferer transmitter cases. The Signal-to-Interference and Noise

Ratio (SINR) and capacity expressions are derived for the MIC, and the impact of physical

parameters is elaborated.

4.4.1 Single Interferer

Here, we assume there are two transmitters that are attached to the microfluidic channel,

i.e., Tx 1 and Tx 2 in Fig. 24. The transmitters cause interference to each other at

the receiver. We focus on the individual MC capacity of the transmitters with a receiver
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connected to the microfluidic channel, i.e., RX in Fig. 24. Therefore, the impact of the

interference from a single interferer transmission on the MIC capacity is investigated.

4.4.1.1 SINR

The variance of the received signal at the receiver i under the interference is given by

 2
i

= ↵2
i

�2
i

+ �2
i

+ ⇣2
ij

+ ⇠2
ij

(173)

where ↵
i

and �2
i

represent the channel gain and the variance of the transmitted molecular

signal, respectively; ⇣2
ij

represent the variance of the interference component in the received

signal caused by the interferer j at the receiver i; �2
i

is the variance of the molecular

propagation noise at receiver i; ⇠2
ij

represents the variance of the interference-induced noise

in the received signal caused by the interferer j at the receiver i. The computation of ↵
i

,

�2
i

, ⇣2
ij

, and ⇠2
ij

are given in (155), (163), (168) and (170) respectively. Overall, the noise

distribution for MIC is given by

n
i

⇠n
ii

+ n
ij

⇠N �
0,�2

i

+ ⇠2
ij

�
(174)

Signal-to-Interference and Noise Ratio (SINR) at receiver i under interference from interferer

j is obtained as

SINR
i

=
 2
i

�2
i

+ ⇣2
ij

+ ⇠2
ij

(175)

4.4.1.2 Capacity

In our analysis, we look at the frequencies in the range of few mHz such that MC channel

can be taken as linear [2]. We further assume that the transmitted signal is drawn from a

Gaussian distribution. Accordingly, we utilize the AWGN channel capacity as the basis of

our analysis.

The mutual information among the transmitter i and the receiver i under the interference

from transmitter j can be found via definition of the mutual information and the entropy
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Figure 25: SINR with respect to the interferer distance l(ij)ch .

of a Gaussian random variable given in [68] as

I(x
i

; y) =
1

2
log2

�
2⇡e

�
↵2
ii

�2
i

+ ⇣2
ij

+ �2
i

+ ⇠2
ij

��

� 1

2
log2

�
2⇡e

�
⇣2
ii

+ ⇣2
ij

+ �2
i

+ ⇠2
ij

��

=
1

2
log2

 
1 +

↵2
ii

�2
i

⇣2
ij

+ �2
i

+ ⇠2
ij

!
bits per channel use (176)

Based on the fact that transmitter changes the transmitted signal level with an interval of

1/f0, i.e., degrees of freedom per second is f0, which can also be perceived as the channel

use duration, so the capacity is

C
i

=
1

T0
log2

 
1 +

↵2
i

�2
i

�2
i

+ ⇣2
ij

+ ⇠2
ij

!
bits/second (177)

Under the assumption that the variance of the transmitted signals from both transmitters

are equal, i.e., �2
i

= �2
j

, the capacity of the MC link between the designated transmitter i

and the receiver i under a single interferer j can be obtained based on the physical system
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parameters as

C
i

=
1

T0
log2

 
1 + ↵2

i

�✓
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2↵4

tx/rx

D⌧ (ii)ch

u2ch
+ 4

D⌧tx/rx
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(↵(ii)
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tx/rx�
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j

◆!
bits/second (178)

The SINR and the capacity for the single interferer case are studied numerically in Fig. 25

and Fig. 26, respectively. For the evaluations, the parameter values given in Table 3 are

used. We characterize the SINR and the capacity with respect to the distance l(ij)ch between

the interfering transmitter j and the designated receiver i. The distance l(ii)ch between the

designated transmitter i and the designated receiver i is evaluated at 1mm and 50mm. The

period T0 of the receiver is evaluated at 30sec and 50min.

In Fig. 25, the SINR at the receiver i is presented with respect to the distance of the

interferer transmitter. The SINR curves are shown to be upper bounded by 1 and stay

constant for various T0 and l(ii)ch pairs. In Fig. 26, we study of the capacity under a single

interferer with respect to f0. Since the SINR is constant and almost equal to 1, capacity is
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shown to be linearly scaling with the reciprocal of the channel use duration. Additionally,

it should be noted that the channel capacity curves in Fig. 26 overlaps for di↵erent l(ij)ch

values due to negligible change in the SINR.
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Figure 27: The capacity under multiple interferers in (182) versus the upper limit in (183)
for T0 = 10sec (a), T0 = 30sec (b), and T0 = 10min (c).

4.4.2 Multiple Interferers

Here, we assume there are multiple transmitters that are attached to the microfluidic chan-

nel, i.e., Tx 1 to Tx N in Fig. 24. The impact of interference from multiple interferers on

the MC capacity of a single transmitter and receiver pair is studied.
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4.4.2.1 SINR

Under multiple interferers, the variance of the received signal at the receiver i is given by

 2
i

= ↵2
i

�2
i

+ �2
i

+
NX

j=2

⇣2
ij

+ ⇠2
ij

(179)

where N is the number of transmitters. We take Tx 1 as the designated transmitter with

N � 1 remaining interferers. Overall, the noise distribution under multiple interferers is

given by

n
i

⇠n
ii

+
NX

j=2

n
ij

⇠N
0

@0,�2
i

+
NX

j=2

⇠2
ij

1

A (180)

Accordingly, the SINR at receiver i under interference is obtained as

SINR
i

=
 2
i

�2
i

+
P

N

j=2 ⇣
2
ij

+ ⇠2
ij

(181)

4.4.2.2 Capacity

Similar to single interferer case, based on the AWGN model, the capacity under multiple

interferers is obtained as

C
i

=
1

T0
log2

0

BBBBB@
1 +

↵2
ii

�2
i

�2
i

+
NX

j=2

⇣2
ij

+ ⇠2
ij

1

CCCCCA
bits/second (182)

We further extend our analysis over the case where the variances of the input signals from

all transmitters are equal in value, i.e., �
i

= �
j

for all i, j 2 {1 · · ·N}. The capacity of the
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receiver i is obtained based on physical system parameters as

C
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=
1
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log2
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where we utilized the fact that attenuation is negligible due to signal period and practical

distance values in the range of 1� 100mm, hence, ↵2
ii

⇡ 1, ↵tx/rx ⇡ 1, and (2↵4
tx/rx

D⌧

(ii)

ch

u

2

ch

+

4
D⌧

tx/rx

u

2

tx/rx

(↵(ii)
ch )2↵2

tx/rx)4⇡
2 1
T

2

0

⇡ 0.

In (183), it is observed that channel capacity decays from 1 bit/per channel use to 0 as

N increases from 2 to infinity. Furthermore, similar to single interferer case, capacity scales

linearly with reciprocal with the channel use duration.

Numerical results are provided for capacity under multiple interferers in Fig. 27(a), Fig.

27(b), and Fig. 27(c) for T0 = 10sec, T0 = 30sec, and T0 = 10min, respectively. The values

of the physical parameters are listed in Table 3, l(11)ch is set to 50mm, and the displacement

between interfering Tx nodes is taken 0.5mm. The upper limit on capacity under multiple

interferers in (183) is shown to be providing a better approximate of the capacity in (182) as

T0 is increased from 10sec to 10min. Accordingly, the provided upper limit can be regarded

as a good approximation of the MC capacity under interference for the frequencies in the

range of a few mHz and below, where biological molecular transceivers are expected to

operate [43].
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4.5 Microfluidic Interference Channel Configurations

Microfluidic interference channels can be realized via various design choices such as uti-

lizing the concentration of distinct type of molecules for communication between di↵erent

transmitter and receiver pairs, or placing di↵erent pairs on distinct microfluidic channels.

The use of distinct molecules requires engineering of the specific transmitter and the re-

ceiver nodes capable of processing di↵erent types of molecular concentrations, meanwhile,

the separation of di↵erent transmitter and receiver pairs onto distinct microfluidic channels

requires larger microfluidic chip size area as well as additional micropumps. Here, we specif-

ically investigate the placement of the two transmitter and receiver pairs on the opposite

sides of the microfluidic channel, which use the concentration of same type of molecules for

MC.

Each receiver is exposed to the interference from its undesignated transmitter on the

opposite side, when its distance to the chamber of the undesignated transmitter is large

enough, such that the transmitted signal by the undesignated transmitter j can traverse,

i.e., di↵use across the microfluidic channel, and reach to the receiver placed at the opposing

side. Using the delay expression for the di↵usion-based propagation in (160), the condition

for the distance between the transmitter j and the receiver i for the interference from the

transmitter j at the receiver i is given by

l(ij)ch � uch⌧int (184)

where i 6= j, and ⌧int is the needed duration to have the interference by di↵usion of the

molecules from the one side of the channel to the opposing side, which is obtained via the

di↵usion delay as

⌧int =
a2ch
2D0

(185)

In the following, we describe di↵erent MIC configurations based on the distance of the

receivers to their corresponding interfering transmitter. Three MIC configurations, namely,

the both-sided interference, i.e., the microfluidic X channel, the one-sided interference, i.e.,

the microfluidic Z channel, and the interference-free configuration are defined.
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Figure 28: The microfluidic X, i.e., the both-sided interference, channel.
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Figure 29: The microfluidic Z, i.e., the one-sided interference, channel.
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Figure 30: The microfluidic interference-free channel.

4.5.1 Microfluidic X Channel

In this configuration, both receivers are exposed to the interference from the non-designated

transmitter, which is illustrated in Fig. 28. The necessary condition defined in (184) is

satisfied for both receivers. The distances between both receivers and their corresponding

undesignated transmitters are su�ciently large so that transmitted molecular signal can

traverse across the microfluidic channel, i.e.,

l(12)ch � uch⌧int, and l(21)ch � uch⌧int (186)
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Figure 31: Block diagram representation of the three MIC configurations: both-sided in-
terference (a), one-sided interference (b), and inferference-free (c).

The block diagram representation of the microfluidic X channel is given in Fig. 31(a). The

capacity of the MC between the Tx 1 and the Rx 1 is obtained via (178) as
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1
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log2
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and likewise the capacity of the MC between the Tx 2 and the Rx 2 is
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1
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log2
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(188)

4.5.2 Microfluidic Z Channel

In this configuration, only one of the receivers is exposed to the interference, which is

illustrated in Fig. 29. The required condition in (184) for interference holds only for

one of the receivers. One of the receivers is placed su�ciently close to its undesignated

transmitter such that the molecules released from undesignated transmitter do not travel

to the opposing side of the microfluidic channel. Meanwhile the other receiver and its

corresponding undesignated transmitter is su�ciently far apart so that the transmitted

molecular signal can traverse the microfluidic channel from one side to the other. Thereby,

based on Fig.29 the following conditions are satisfied:

l(12)ch � uch⌧int, and l(21)ch ⌧ uch⌧int (189)

The block diagram representation of the microfluidic Z channel is presented in Fig. 31(b),

where ↵12 = 0. In this MIC configuration, the capacity of the MC between the Tx 1 and

the Rx 1 is as in (187), while the MC capacity expression for Tx 2 and the Rx 2 in (188)

reduces to

C2 =
1

T0
log2

✓
1 + ↵2

2

�

⇣�
2↵4

tx/rx

D⌧ (22)ch
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+ 4

D⌧tx/rx
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(↵(22)
ch )2↵2

tx/rx

�
4⇡2

1

T 2
0

⌘◆
(190)

4.5.3 Interference-free Configuration

When both receivers are at a distance to their corresponding undesignated transmitters

closer than the required distance for the interference, none of the receivers are exposed
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to the interference from its non-designated receiver, which is illustrated in Fig. 30. The

condition given in (184) does not hold for both receivers, i.e.,

l(12)ch ⌧ uch⌧int, and l(21)ch ⌧ uch⌧int (191)

This placement of the receivers is called the interference-free configuration. The interference-

free configuration is illustrated in Fig. 31(c), where ↵12 = 0 and where ↵21 = 0. In this

MIC configuration, the capacity of the MC between the Tx 1 and the Rx 1 is as in (190),

while the MC capacity expression for Tx 1 and the Rx 1 in (187) reduces to

C1 =
1

T0
log2

✓
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4.6 Highlights

Multiple transmitters connected to the same microfluidic channel can enable parallel pro-

cessing and computation for the applicatios of synthetic biology. However, when multiple

transmitters access the microfluidic channel simultaneously, they cause multiple access in-

terference to each other’s molecular signals at their corresponding receiver.

In this work, the objective is the analysis of the communication performance under

multiple access interference. Therefore, first, a model of the multiple access interference is

developed utilizing the developed propagation and noise models in the previous chapters

of this thesis. The developed multiple access interference model allows us to study the

communication performance under arbitrary number of interfering transmitters.

Combining the developed models for propagation, noise, and interference with the in-

formation theory, an upper bound on the maximum achievable information rate (Shannon

capacity) is obtained for single interferer and arbitrary number of interferers. Furthermore,

for the double-sided placement of two transmitter and receiver pairs, microfluidic channel

configurations are defined analogous to two-user interference channels in telecommunication

systems: 1) both-sided interference (X channel), 2) one-sided interference (Z channel), 3)

interference-free configuration.
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CHAPTER V

DETECTION OF PAM MOLECULAR SIGNALS WITH BACTERIAL

RECEIVERS ON A MICROFLUIDIC CHANNEL

In this chapter, the detection of the molecular signals using bacterial signal transduction

is investigated. The input-output relation, the timing issues, and the noise e↵ects for the

bacteria response are characterized based on both analytical and experimental observations.

Sampling schemes for the raw bacteria response are proposed based on the total response

duration, the peak value, the ramp-up slope, and the ramp-down slope. The sampling

based on the ramp-up slope is shown to be statistically favorable for the detection of PAM

molecular signals. This work provides a basis for the sampling of the raw bacteria response

and enables accurate detection of PAM molecular signals via bacterial response for MC

and sensing applications. This work was first presented in [4]. In Section 5.2, the bacterial

signal transduction is theoretically studied. In Section 5.3, the timing and noise issues in

the bacteria response is investigated empirically based on experiments from a microfluidic

platform. In Section 5.4, the sampling of the raw bacteria response is discussed, and the

statistical characterization is performed. The detection of molecular signals via sampling

the ramp-up slope is elaborated in Section 5.5.

5.1 Motivation

The molecular propagation have been extensively studied and can be found in many works

[7, 10, 1, 2]. The information-theoretic fundamental limits related to MC are analyzed

in [12, 3, 41]. A commonly taken approach is to consider nanomachines equipped with

nanoscale molecular sensors that are capable of measuring received concentration [74, 75].

The undergoing biochemical processes for transmission and reception of molecular signals

in the synthetic biological transceivers and their signal transduction pathways prove much

more di�cult to model and circumscribe [76, 77, 78, 79].

The goal of this work is to determine how the synthetic bacteria respond to external
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variation in a molecular signal, e.g., in concentration of a certain type of molecule, by signal

transduction and how this variation can be detected based on the bacteria response, e.g.,

green fluorescent protein (GFP) illumination. We, first, examine the raw bacteria response

both theoretically and experimentally for the one-to-one input-output relation, the noise,

and the timing of the bacterial signal transduction. We, second, investigate statistically the

sampling of the bacteria response as the received signal and the detection of the molecular

signals. We consider one molecular source releasing finite duration concentration signals

with a specific type of molecule, i.e., pulse-amplitude modulation (PAM), and a single

bacterial receiver. The information is modulated onto the amount of the specific molecule

in the concentration, which the bacteria cannot synthesize.

The challenge on which we concentrate in this chapter is the e↵ect of the signal trans-

duction on the sampling of the continuous output signal in MC systems with bacterial

receivers. Of particular interest is the issue of the e↵ect of the noise and the timing on

the detection of the PAM molecular signal. The issues of the signal transduction in cells

have been broadly reviewed and can be found in many books [44, Chapter 2],[80, Chapter

24],[81, Chapter 5],[82, Chapter 2]. The biochemical modeling of the signal transduction

has been often studied in the context of reaction-rate equations (RRE). Di↵erent cases have

been considered, among them: the bacterial signal transduction is modeled using a set of

RRE to predict the bacteria response in a microfluidic platform [73], or simplification of an

RRE model of signal transduction is utilized under quasi-equilibrium condition to design

biological circuits with both analog and digital signaling functionalities [43]. Close to our

work, [71] investigates performance of pulse-based on-o↵ keying (OOK) modulation, i.e.,

single bit transmission per pulse, for bacterial receivers, where the binary one is represented

by the input signal, and the binary zero is represented by the removal of the input from the

channel. Therefore, detection of the multi-level input signals by bacterial signal transduc-

tion has been an open problem to date and has not been addressed yet to the best of our

knowledge.

In this chapter, we consider the issues of the one-to-one input-ouput relation, noise,

and timing in the context of detection via sampling the bacterial signal transduction at the
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receiver. The transient variations in the noise and timing issues are tightly linked with the

sampling of the raw bacteria response. The random jitter in the beginning, peak, and the

ending of the bacteria response entails that the sampling of the bacteria response at a fixed

instant will be exposed to additional distortion apart from the noise. The noise and the

timing together are responsible for the distortion observed on the bacteria response. The

following questions are sought to be investigated throughout the course of this work.

• When is the input-output relation one-to-one?

• How does the noise in the bacteria response vary with the time?

• What are the randomness e↵ects on the timing of the response beginning, the peak

instant, and the response ending?

• How should the raw bacteria response be sampled to minimize noise and timing e↵ects

for the detection of the input molecular signal?

The question regarding the sampling of the bacteria response for the detection of the

input signal is principally significant, since the noise and the timing issues of the biological

receivers have not been studied empirically for M-ary PAM molecular signals based on the

experimental data. Theoretical analysis of biological transceivers has been performed based

on RRE models in [43], where the biological noise and the timing issues are neglected.

The robust design of biochemical signaling pathways with kinetic parameter uncertainties

and external disturbances is studied based on control theory in [83, 84, 85]. However, the

inference of information from the biochemical signal transduction has been an open debate.

The provided performance analysis of the on-o↵ keying modulation for bacterial receivers in

[71] is only valid for binary PAM with transmission of a fixed level for 1 and transmission of

no signal for 0. The sampling of the received signal from raw bacteria response is a subject

yet to be studied for M-ary detection in the course of this work.

5.2 Bacterial Signal Transduction

The bacteria can generate a controlled response to an external molecular stimuli by signal

transduction. For example, the gene sequence of bacteria can be modified such that output
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protein production can be controlled in response to an input molecular signal [44, Chapter

2]. Here, we provide an overview of the biochemical phenomena of the bacterial response

to external stimuli and how it makes the detection of the input signal possible.

To guide the detection of molecular signals, the basics of the input-output relation, e.g.,

input controlled synthesis of GFP, by bacteria must be first understood. Therefore, the

bacterial signal transduction is analytically investigated focusing on the gene expression.

In the following subsections, first, the specific model of the bacteria signal transduction is

overviewed, and then, the input-output relation of the bacteria response is discussed along

with the error analysis.

5.2.1 Model

The gene expression is regulated, e.g., activated, by the control of inducer molecules, which

are supposed to be externally provided. To analytically study the bacteria response, we

focus on the protein production as the output signal. The output signal is analyzed with

respect to the externally provided inducer molecules, which is the input signal. Specifi-

cally, simplification of the RREs for the gene expression under the quasi steady-state and

equilibrium approximations is considered for modeling [82, Chapter 2],[44, Chapter 2]. The

detailed explanation for the modeling of gene expression and the simplifications of the RREs

can be found in [82, Chapter 2],[44, Chapter 2]. Accordingly, the output signal is related

to the input signal via the RRE given by

@y(t)

@t
=

�xn

✓n + xn
� ↵y(t) (193)

where y is the output signal, x is the input signal level, ✓ is the activation coe�cient. For

example, when the expression is significantly activated when x > ✓, n determines steepness

of the bacteria signal transduction, � is the empirical rate parameter defining the maximum

expression level when x � ✓, and ↵ is the degradation rate of the output signal y. Although

this model is a simplified version of the bacterial signal transduction, it captures the input-

output behavior of the bacteria response based on the gene expression.

To solve (193) for the step response with the zero initial conditions, i.e., the input is

changed from zero to its desired level, Laplace transform of y, i.e., Y (s) = L{y(t)}, is used,
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Figure 32: The input-output relation of the bacteria response based on (196). The activa-
tion coe�cient ✓ is taken as 10, 15, and 20µM, n = 4, and the input amount varied from 0
to 50µM. The output signal is normalized by ↵/�.

and after partial fraction decomposition Y is found as

Y (s) = (
�xn

✓n + xn
)
1

↵
(
1

s
� 1

s+ ↵
) (194)

Finally, by taking the inverse Laplace transform of Y , i.e., y(t) = L�1{Y (s)}, y is found as

y(t) =
�xn

↵(✓n + xn)
(1� e�↵t) (195)

5.2.2 Input-Output Relation and Error Analysis

To study the input-output relation, the normalized steady-state response of the bacteria is

obtained using (195) as

lim
t!1

↵

�
y(t) =

xn

✓n + xn
(196)

In Fig. 32, it is observed that the bacteria response is a one-to-one function of the input

within an acceptable range. For example, when input is in the range from 15 to 25 µM for

✓ = 20µM in Fig. 32, the output can even be approximated as a linear function of the input.

As the input signal level kept increasing, the bacteria response is observed to be saturating
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in Fig. 32. After saturation, the further increasing the input signal makes no di↵erence on

the output signal, i.e., input signal is indistinguishable based on the output signal. On the

other hand, the output signal stays approximately zero for small input values, e.g., a few

µM in Fig. 32. However, when the input signal range is kept both su�ciently large and

below saturation level, a one-to-one input-output relation can be achieved.

We also analytically study the transient response of the bacteria to point out the impact

of error in the maximum expression level �. To this end, the linear approximation of the

y(t) in (195) for t = 0 is used. First order Taylor series expansion of the exponential term,

i.e., e�↵t ⇡ 1� ↵t for ↵t ⇡ 0, gives

y(t) ⇡ xn

(✓n + xn)
�t (197)

where the term xn/(✓n + xn) is constant with respect to time. We define �̂ = � + ✏ as

the erroneous version of the maximum production level �, and ✏ incorporates the arbitrary

error factor. Accordingly, the erroneous output ŷ(t) can be rewritten by plugging �̂ into

(197) as

ŷ(t) =
xn

(✓n + xn)
�t+

xn

(✓n + xn)
✏t

=y(t) +
xn

(✓n + xn)
✏t (198)

The absolute error in the output, i.e., |ŷ(t)� y(t)|, is

|ŷ(t)� y(t)| = xn

(✓n + xn)
✏t (199)

Note that the error term evolves with time. Accordingly, the error on the output is ex-

pected to increase during the ramp-up behavior of the bacteria response, i.e., the impact of

erroneous protein production rate �̂ on the output is more severe as time elapses. In the

next section, we will investigate the bacteria signal transduction experimentally for PAM

molecular signals.

5.3 Experimental Analysis of Bacteria Response

We perform tests with Escherichia coli (E. coli) bacteria strains on a microfluidic platform

[71, 73]. The microfluidic platform provides control over the input molecular signal, i.e.,
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Figure 33: The chamber that is connected to the microfluidic channel and hosts the
genetically-engineered bacteria.

the concentration pulse level and duration. Furthermore, the microfluidic platform hosts

bacteria strains in chambers, where a microfluidic channel with flow carries the media

composed of both the required nutrients and the input signal (Fig. 33).

The E. coli bacteria are genetically engineered to express genes from the autoinducer

system of Vibrio fischeri (V. fischeri) bacteria and produce a variant of the green flouresence

protein (GFP) under the presence of the autoinducer N-Acyl homoserine lactone (AHL)

molecules. The produced GFP represents the bacteria response, i.e., output signal, and

measured using the fluorescence microscopy. The autoinducer AHL molecules represent the

input signal. Since the E. coli bacteria cannot encode the genes to produce AHL, the output

signal can be utilized to detect the amplitude of the externally provided PAM molecular

signal, i.e., the level of a finite duration AHL concentration pulse.

The specifics of the experimental system composed of the genetically engineered E.

coli bacteria and the microfluidic platform were previously presented in [71, 73]. In the

preceding discussions, we start with the study of the molecular signal propagation through

the microfluidic channel. The negligible propagation delay, and invariance of the pulse

amplitude and duration are pointed out for the multiple chambers hosting the bacteria.

Then, the timing and the noise issues of the bacteria signal transduction are investigated

based on measurements from the experimental platform. We provide a comprehensive look

at the raw bacteria response for molecular signal detection and set the stage for statistical
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Table 4: Concentration Pulse Prolongation through the Microfluidic Channel

Distance Delay Prolongation Duration
Chamber 1 1.16 mm 0.0260 sec 0.0438 sec
Chamber 2 1.66 mm 0.0262 sec 0.0440 sec
Chamber 3 2.16 mm 0.0264 sec 0.0441 sec
Chamber 4 2.66 mm 0.0266 sec 0.0443 sec
Chamber 5 3.16 mm 0.0268 sec 0.0445 sec

comparison of the di↵erent strategies for sampling of the raw bacteria response.

5.3.1 Pulse Prolongation between Multiple Chambers

Having bacteria response from the di↵erent chambers attached to the same microfludic

channel is useful to obtain multiple measurements and alleviate noise e↵ects on the output

signal for detection purposes. The microfluidic channel has a cross-section of 250µm x

10µm, and flow rate is 360µl/hr. The chambers are placed on the microfluidic channel with

a constant separation distance, e.g., 0.5mm.

To obtain the prolongation of the concentration pulse until it reaches to the chamber k,

we first calculate the molecular propagation delay (⌧ (k)delay) until the chamber k as [1]

⌧ (k)delay =
l1 + k · lsep

u
(200)

where l1 is the distance of the closest chamber to the source, lsep is the separation distance

between chambers, and u is the area averaged flow velocity. The dispersion length (l(k)disp)

until the chamber k is obtained using the di↵usion equation as

l(k)disp =
q
2D⌧ (k)delay (201)

where D is the Taylor dispersion adjusted di↵usion constant. Finally, the pulse prolongation

duration ⌧prolong is obtained as

⌧ (k)prolong =
l(k)disp

u
(202)

The molecular propagation delay and the pulse prolongation durations are tabulated

in Table 4, which are in the range of a few 10ms. The calculated delay and prolongation
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durations are much less compared to the required pulse duration to get a response from the

bacteria, which is in the order of 10min [71, 73].

The separation distance between the source and the chambers is in the range of a few

mm, and the considered pulse durations are in the range of a few 10min to get response from

the bacteria in the experimental microfluidic platform. Accordingly, the input molecular

signal can be taken invariant with respect to the propagation through the microfluidic

channel. Therefore, the bacteria in di↵erent chambers are exposed to the same concentration

pulse duration. Furthermore, the delay due to molecular propagation is also negligible since

the bacteria response is in the hours scale [73, 43], which will be investigated in the following

subsections.

5.3.2 Timing Analysis

The timing of the bacterial response behavior has importance to be able to e�ciently sample

and process the output signal for detection of the amplitude of the PAM molecular signal.

The bacterial signal transduction involves ordered set of biochemical reactions. A set of

biochemical reactions produces fluctuating number of intermediate molecules in short bursts

at random time intervals, which need to reach an e↵ective level to activate the next step in

the signal transduction pathway. Therefore, there can be large di↵erences in the time delay

required for signal transduction, especially across the bacteria population [76]. Here, we

investigate the timing specifically with respect to the response beginning, i.e., the instant

that bacteria starts to produce the output signal, and the peak instant, i.e., the moment

when the bacteria response reaches its peak, and the total response duration, i.e., the time

elapses from the beginning of the bacteria response to the end.

The transient bacteria response behavior for PAM molecular signals of 15, 20, 22.5µM

is shown in Fig. 34, which are averaged over 4, 7, and 5 experiments, respectively. The

reason for the di↵erent number of measurements for the di↵erent concentration inputs is as

follows. Once loaded, a few bacteria will settle in the trapping chambers. Not all chambers

will have bacteria in them, which means the number of measurements can change from

experiment to experiment. The molecular signals have a finite duration of 50min.
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Figure 34: The transient response of the bacteria for di↵erent PAM molecular signal am-
plitudes.

The output signal is the relative fluorescence illumination. Fluorescent images were

captured once every 10 min and post-processed using MATLAB. The intensity of the pixels

within the bacteria chamber was averaged and the background fluorescence was subtracted,

yielding the relative fluorescence (arbitrary units, or a.u.). Each run represents a single

chamber that was imaged over time. Each data point for that run is calculated using

the image processing mentioned above. The average for a concentration represents the

averaging of all runs for that concentration. Therefore the standard deviations are the

deviations between the individual chambers.

5.3.2.1 Bacteria Response Beginning

The di↵erence of the response beginning and input molecular signal start (t = 0) times

in Fig. 34 gives the bacteria response beginning delay. The response beginning delay is

shown to be depending on the input molecular signal amplitude in Fig. 34. For 22.5µM

and 20µM, the mean response beginning delay is shown to be converging and less than the

one for 15µM. The input dependent beginning time of the bacteria response makes the

sampling of the output signal at that particular instant challenging. Furthermore, since the
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Figure 35: The standard deviation of the bacteria response with respect to time for di↵erent
PAM molecular signal amplitudes.

response beginning delay is not always providing a one-to-one input-output relation as the

input signal amplitude is further increased, it is not an e�cient option for the detection of

PAM molecular signals. For example, consider 2a.u. is selected as the reference to decide

on the beginning of the bacteria response, the response reaches the output level of 2a.u. at

the same instant for both input levels of 20µM to 22.5µM.

5.3.2.2 Peak Instant

The peak time of the bacteria response behavior is shown to be varying based on the

amplitude of the input molecular signal in Fig. 34. Furthermore, the input dependance

of the peak time is observed to be non-monotonic. Therefore, determination of a fixed

time instant for sampling of the peak of the bacteria response is not trivial. For example,

the peak instant for the input level 20µM is later than both 22.5µM and 15µM input

levels. The experimental data in Fig. 34 suggest that the tight timing requirements on the

sampling of the bacteria response is not favorable, since the bacteria response behavior is

not synchronized to the input signal source.
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5.3.2.3 Total Response Duration

Lastly, the total response duration, i.e., the time elapses form the beginning of the response

to the ending, is observed in Fig. 34. The total response duration increases monotonically

with input molecular signal amplitude. Furthermore, the total response duration is shown

to be providing a one-to-one relation between the input and output in in Fig. 34. The use

of the total response duration for sampling of the received signal and the detection of the

input PAM molecular signal is further discussed in Section 5.4.

5.3.3 Transient Noise Analysis

In Fig. 34, the bacteria response behavior is identified to be composed of three regions, i.e.,

ramp-up region which takes place from beginning of the response to the peak, peak region

where the response reaches its peak value, and the ramp-down region which takes place from

the peak to the end of response. Here, the impact of noise on the bacteria response during

ramp-up, peak, and ramp-down regions is studied. To this end, the standard deviation of

the bacteria response behavior with respect to time for PAM molecular signals of 15, 20,

and 22.5µM is shown in Fig. 35.

The higher standard deviation implies higher noise e↵ect on the output signal. The

standard deviation of the response is observed to be increasing as it reaches its peak in the

ramp-up region. Then, the standard deviation of the response decays until the response

ends. For di↵erent input levels, i.e., 15, 20, and 22.5µM, the same trend in the bacteria

response behavior is observed in Fig. 35. Increasing noise from the response beginning to

the peak in the ramp-up region conforms with the theoretical insights provided in Section

5.2.2. In (198), the absolute error in the output signal, i.e., |ŷ(t) � y(t)|, due to the error

✏ in the maximum protein production level � is identified to be increasing over time t. In

the line with our theoretical investigations, it is shown experimentally that the increase in

the output protein amount yields increased error contribution in the output, i.e., the error

in the output signal is amplified as it reaches to the peak response value.

The study of the stochasticity in the gene expression has recently been a research field

of interest [77, 86]. The impact of perturbation, i.e., stimulus, on the noise in the signal
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Figure 36: Input-output relation for the sampling of the received signal using total response
duration.
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Figure 37: Input-output relation for the sampling of the received signal using the peak
value.

transduction is investigated in [86], and directly proportional scaling of the noise variance

with the protein abundance is reported, which are normalized with respect to the pre-

stimulus values. Similarly, in Fig. 35, it is observed that the standard deviation of the

bacteria response increases proportional to the magnitude of the response, i.e., standard
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deviation increases as the input level is increased from 15µM to 22.5µM. Next, the di↵erent

sampling strategies of the received signal are investigated to facilitate accurate and timely

detection of the PAM molecular signals.

5.4 Sampling of the Received Signal based on the Bacterial Signal Trans-
duction

So far, both analytical and experimental characterizations of the bacteria response are per-

formed. However, the sampling of the received signal, i.e., mapping of the recorded raw

bacteria response to the decision space, is missing such that the PAM input signal can be

detected accurately. The input signal can be detected via applying thresholding on the re-

ceived signal, i.e., comparing the received signal with the predefined thresholds for di↵erent

input signal amplitudes. In this section, we extend our theoretical and experimental anal-

yses in the former sections by proposing and comparing four di↵erent sampling strategies

for the raw bacteria response, namely, the total response duration, the peak level of the

response, the ramp-up slope, and the ramp-down slope.

5.4.1 Sampling Strategies for the Raw Bacteria Response

In the following, we study the sampling of the received signal (r
k

(t)) from the raw bac-

teria response based on the total response duration (rtotal[k]), the peak value (rpeak[k]),

ramp-up slope (rup[k]), and the ramp-down slope (rdown[k]). The sample sample index

k indicates the kth transmission of the PAM molecular signal. It should be noted that

while the received signal r
k

(t) from the bacteria response is a continuous function of t, the

sampled responses rtotal[k], rpeak[k], rup[k], rdown[k] are discrete-time and a function with

sample index k. The one-to-one input-output relation of the di↵erent sampling strategies

is specifically investigated for the detection purposes.

To sample the raw bacteria response r(t) for the total response duration rtotal[k], the

duration between the instant when the response exceeds a predefined threshold ⌘total and
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Figure 38: Input-output relation for the sampling of the received signal using the ramp-up
slope.
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Figure 39: Input-output relation for the sampling of the received signal using ramp-down
slope.

the instant the response goes below the threshold ⌘total is used, which is given by

rtotal[k] = sup
t

argmin
t

|r
k

(t)� ⌘total|

� inf
t

argmin
t

|r
k

(t)� ⌘total| (203)
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For evaluations, we set the threshold for output flouresence illumination to ⌘total = 1 a.u.,

i.e., the response beginning is taken as the instant when the measured bacteria response

exceeds ⌘total = 1 a.u. and the response ending is taken as the instant when the measured

bacteria response reduces below ⌘total = 1 a.u.. The peak value is taken as the maximum

of the raw bacteria response as

rpeak[k] = sup
t

r
k

(t) (204)

Apart from the total response duration and the peak value, the slope of the ramp-up and

the ramp-down behavior in the bacteria response can also be utilized to decide on the input

signal level. Accordingly, ramp-up slope rup[k] can be calculated as

rup[k] =
r
k

(t2)� r
k

(t1)

t2 � t1
(205)

The ramp-up slope is calculated for the interval of t1 = 60 and t2 = 70 mins. The ramp-

down slope is calculated as

rdown[k] =
r
k

(t2)� r
k

(t1)

t2 � t1
(206)

where we use the interval of t1 = 160 and t2 = 170 mins for the evaluations.

The mean of the sampled received signal using total response duration, the peak value,

the ramp-up slope, and the ramp-down slope are shown in Fig. 36, Fig. 37, Fig. 38, and

Fig. 39, respectively, with respect to di↵erent input signal levels. It should be noted that

the received signal is in di↵erent units for di↵erent sampling strategies, i.e., minutes for the

total response duration, a.u. for the peak value, and a.u./mins for the slope of ramp-up and

the ramp-down. It is observed that there is a one-to-one relation between the received signal

and the input signal for all four sampling strategies of the received signal. Furthermore,

the mean of the received signal monotonically increases as the input level increased for all

four strategies of the received signal, which enables non-overlapping mapping of the received

signal to the decision space. The input signal can be detected via comparison of the received

signal with the predetermined thresholds based on the selected sampling strategy. However,

each sampling strategy yields di↵erent statistical properties for the sampled received signal,

i.e., mean and variance. Therefore, in the next subsection, we study the distinguishability

of the sampled received signals to detect distinct input levels.
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Table 5: p-values for the Sampling Strategies of the Received Signal

Sampling 15� 20 15� 22.5 20� 22.5
Scheme µM µM µM

Total Response Duration 2.11 · 10�2 6.91 · 10�2 0.266
Peak Value 5.68 · 10�6 4.9 · 10�3 0.131

Ramp-up slope 3.41 · 10�5 2.35 · 10�4 1.17 · 10�3

Ramp-down slope 4.1 · 10�3 2.11 · 10�4 0.131

5.4.2 Statistical Distinguishability

Here, the detection performance of the four sampling strategies for the received signal are

statistically compared. We utilize the t-test with unequal variances [87, Chapter 4], where

obtained samples from the raw bacteria response are assumed to be normally distributed.

The probability that the obtained two samples are belonging to the same input level, i.e.,

p-value, is specifically studied. The smaller the p-value, the more unlikely the compared

samples are belonging to the same input signal level. In the following, the obtained p-values

are examined for the decision between the di↵erent input level pairs.

The p-values are tabulated in Table 5. For decision between 15µM and 20µM, the lowest

p-values are provided by peak value and the ramp-up slope, i.e., 5.68 · 10�6 and 3.41 · 10�5,

respectively, where the later one is 6 times larger than the former. For the decision between

15µM and 22.5µM, the lowest p-value is provided by the ramp-up and the ramp-down

slope, i.e., 2.35 · 10�4 where the p-value by sampling the peak is about 20 times larger than

them. For the decision between 20µM and 22.5µM, the lowest p-value, i.e., 1.17 · 10�3, is

provided by the ramp-up slope, where the other interpretations of the bacteria response

have an approximately 100 times larger p-value. On the other hand, the total response

duration provides the worst performance for detection purposes as a sampling strategy of

the received signal based on the p-value results.

While the ramp-up slope and the peak value provides a close p-value for the decision

between 15µM and 20µM, the p-value of the input pulse pairs is further amplified as the

input levels are increased, i.e., the peak value has the third smallest p-value for the other

input combinations. Meanwhile, the ramp-up slope performs either the lowest or the second
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Table 6: Mean (µ) of the Sampled Bacteria Response

Sampling Scheme (unit) 15µM 20µM 22.5µM
Total Response Duration (mins) 185 268 362

Peak Value (a.u.) 5.03 11.66 15.32
Ramp-up Slope (a.u./mins) 0.097 0.18 0.35

Ramp-down Slope (a.u./mins) �0.035 �0.083 �0.1

Table 7: Variance (�2) of the Sampled Bacteria Response

Sampling Scheme (unit2) 15µM 20µM 22.5µM
Total Response Duration (mins2) 1630 247 26100

Peak Value (a.u.2) 0.75 2.04 18.48
Ramp-up Slope (a.u.2/mins2) 0.00019 0.00048 0.0029

Ramp-down Slope (a.u.2/mins2) 0.000027 0.00082 0.00023

lowest p-value.

Based on the statistical analysis of the received signal interpretations in Table 5 and

the experimental transient analysis of standard deviation in Fig. 35, as well as theoretical

insights provided in (198), the ramp-up slope is selected to be further investigated for the

sampling of the received signal among others in Section 5.5.

5.4.3 Probability of Error for Detection of Binary and 3-ary PAM

The probability of error for the PAM molecular signals is studied with respect to the four

sampling schemes. Each di↵erent input pulse levelH
i

has a specified di↵erent mean sampled

received signal level µ
i

. We assume the sampled received signal for each di↵erent H
i

is

corrupted by Gaussian noise, i.e.,

p(r|H
i

) ⇠ N (µ
i

,�2
i

) (207)

where index k is dropped from the sampled bacteria response r for the ease of notation, and

�2
i

is the variance of the sampled response. The obtained µ
i

and �2
i

values from experimental

measurements are given in Table 6 and Table 7, respectively, for the four sampling schemes.

In the following, we, first, give the formulation of the probability of error for the detection

of the binary and the 3-ary PAM molecular signals [88, Chapter 2]. Then, we investigate
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Figure 40: The signal points for binary and 3-ary PAM signals in (a) and (b), respectively.

the detection performance of the four sampling strategies based on the data obtained from

experimental measurements for the bacterial signal transduction.

5.4.3.1 Binary Transmission

For the binary transmission case, only two di↵erent signal levels, i.e., H1 and H2, are

considered to be transmitted. During the formulation, the corresponding signal level to H1

is taken to be lower than the one for H2. In the line with signal levels, the bacteria response

corresponding to H1 is lower than H2, e.g., consider the bacteria response for 15µM and

20µM in Fig. 34. In Fig. 40(a), the signal points for the binary PAM signals is shown.

We should note again that r is a scalar value and corresponds to obtained received

signal via sampling the bacteria response using one of the four sampling strategies. The

probability distribution of the received signal for H1 is as

p(r|H1) =
1p
2⇡�21

e
� (r�µ

1

)

2

2�

2

1 (208)

and for the transmission signal level corresponding to H2, the distribution of the received

signal is given as

p(r|H2) =
1p
2⇡�22

e
� (r�µ

2

)

2

2�

2

2 (209)
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Figure 41: Comparison of the sampling schemes with respect to probability of error for
binary PAM. Input pairs of 15�20µM (a), 20�22.5µM (b), and 20�22.5µM (c) with 50 mins
pulse width are considered. Threshold ⇣ is varied. To present results for di↵erent sampling
schemes in the same plot, the threshold ⇣ is normalized using ⇣N = (⇣ � µ1)/(µ2 � µ1).

The probability of error for H1, i.e., the received signal is greater than the detection thresh-

old ⇣, is given by

P (r > ⇣|H1) =

Z 1

⇣

p(r|H1) (210)

and similarly the probability of error for H2 is given by

P (r < ⇣|H2) =

Z
⇣

�1
p(r|H2) (211)

The transmission of both signal levels are taken to be equally likely, and hence, the proba-

bility of error for binary PAM is obtained using (210) and (211) by

P
b

= P (r > ⇣|H1) + P (r < ⇣|H2) (212)
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5.4.3.2 3-ary Transmission

In 3-ary PAM, the transmission of 3 di↵erent pulse amplitudes, i.e., H1, H2, and H3, are

considered. We assume corresponding bacteria responses to H1, H2, and H3 are sorted in

the ascending order. In Fig. 40(b), signal points for the 3-ary PAM is shown. For the 3-ary

transmission case, i.e., three transmission levels, the formulation of the p(r|H1) and p(r|H2)

follows (208) and (209) in the binary case. For H3, p(r|H3) is as

p(r|H3) =
1p
2⇡�23

e
� (r�µ

3

)

2

2�

2

3 (213)

The probability of error for H1, i.e., P (r > ⇣1|H1) is

P (r > ⇣1|H1) =

Z 1

⇣

1

p(r|H1) (214)

The probability of error for H2, i.e., P (r < ⇣1 [ r > ⇣2|H2) is given as

P (r < ⇣1 [ r > ⇣2|H2) =

Z
⇣

1

�1
p(r|H2) +

Z 1

⇣

2

p(r|H2) (215)

Lastly, the probability of error for H3, i.e., P (r < ⇣2|H3), is as

P (r < ⇣2|H3) =

Z
⇣

2

�1
p(r|H3) (216)

With equal transmission probability for all three levels, probability of error for 3-ary PAM

is obtained using (214), (215) and (216) as

P
b

=
1

3
P (r > ⇣1|H1) +

1

3
P (r < ⇣1 [ r > ⇣2|H2)

+
1

3
P (r < ⇣2|H3) (217)

In the following, we present results on probability of error for both binary and 3-ary PAM

cases.

5.4.3.3 Discussion

In Fig. 41, the probability of error is evaluated for the binary PAM. The threshold ⇣

to decide between di↵erent input levels H1 and H2 is varied between the corresponding

specified mean sampled response levels µ1 and µ2. Since the threshold ⇣ has a di↵erent unit

and scale for each sampling scheme, it is normalized to the interval [0, 1].
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Table 8: Minimum Probability of Error for Binary PAM

Sampling 15� 20 15� 22.5 20� 22.5
Scheme µM µM µM

Total Response Duration 0.0605 0.1478 0.1859
Peak Value 0.002 0.0178 0.2147

Ramp-up Slope 0.0095 0.0001 0.0114
Ramp-down Slope 0.0595 0.0004 0.2885

For the input level pairs of 15�20µM, 15�22.5µM, and 20�22.5µM, the sampling based

on the peak value and the ramp-up slope is shown to be achieving lower error probability

than the sampling based on the ramp-down slope and the total response duration in Fig.

41(a), Fig. 41(b), and Fig. 41(c), respectively. The minimum probability of error achieved

by each sampling scheme for the binary PAM is given in Table 8. For the input level pair

of 15 � 20µM, sampling based on the peak value achieves the lowest probability of error,

i.e., 0.002, whereas the probability of error for sampling based on ramp-up slope is 0.0095.

For the input pairs of 15 � 22.5µM and 20 � 22.5µM, the minimum probability of error is

achieved by sampling based on ramp-up slope, which outperforms peak value sampling by

100x and 10x in terms of probability of error, respectively. Additionally, the selection of

proper threshold ⇣ is essential to minimize the probability of error as observed in Fig. 41.

For 3-ary PAM, all experimentally tested input levels, i.e., 15µM, 20µM, and 22.5µM are

allowed to be transmitted. The results on error probability for the four sampling schemes

are presented with respect to the normalized threshold ⇣1, which is to decide between H1

and H2, and normalized threshold ⇣2, which is to decide between H2 and H3, in Fig. 42(a),

and Fig. 42(b), respectively. The sampling based on the ramp-up slope is shown to be

achieving the lowest error probability compared to the other sampling schemes for the all

evaluated choices for the detection thresholds ⇣1 and ⇣2 in Fig. 42(a) and Fig. 42 (b),

respectively. The minimum probability of error achieved by each sampling scheme for the

3-ary PAM is given in Table 9. The sampling via ramp-up slope achieves more than 5x and

10x improvement in the probability of error over the sampling based on peak value for both

studies with respect to the detection thresholds ⇣1 and ⇣2, respectively. The proper selection
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Figure 42: Comparison of the sampling schemes with respect to probability of error for
3-ary PAM with 50 mins pulse width. Thresholds ⇣1 and ⇣2 are varied. To present results
for di↵erent sampling schemes in the same plot, the thresholds ⇣1 and ⇣2 are normalized
using ⇣N1 = (⇣1 � µ1)/(µ2 � µ1) and ⇣N2 = (⇣2 � µ2)/(µ3 � µ2), respectively.

of the detection thresholds ⇣1 and ⇣2 is essential to optimize the detection performance.

5.4.4 Response Observation Duration

The required observation duration on the bacteria response is discussed in the descending

order for the four sampling strategies of the received signal. To determine the total response
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Table 9: Minimum Probability of Error for 3-ary PAM

Sampling Scheme ⇣1 varied, ⇣N2 = 0.5 ⇣2 varied, ⇣N1 = 0.5
Total Response Duration 0.1696 0.1755

Peak Value 0.1466 0.1465
Ramp-up Slope 0.0254 0.0172

Ramp-down Slope 0.2403 0.26

duration, bacteria response needs to end, thus, it has the longest observation duration

with respect to the other interpretations of the received signal. The ramp-down slope

requires the bacteria response to be in the decay behavior, hence, it requires less observation

duration than the total response. However, the required observation duration is still longer

than the one for peak value. To sample the peak value, the bacteria response needs to

reach its maximum value which happens before the decay behavior but later than the

ramp-up behavior. The ramp-up slope provides the earliest opportunity for instantaneous

detection purposes, since the bacteria response enters first to this behavior after it starts.

The required observation durations for the di↵erent sampling strategies of the received

signal are summarized as

⌧total�response > ⌧ramp�down > ⌧peak > ⌧ramp�up (218)

where ⌧total�response, ⌧ramp�down, ⌧peak, and ⌧ramp�up represent the required observation du-

ration for the received signal sampling based on the total response duration, the ramp-down

slope, the peak value, and the ramp-up slope, respectively. Next, we further investigate the

detection of molecular signals using the ramp-up slope.

5.5 Detection of Molecular Signals via Ramp-up Slope of the Bacterial
Signal Transduction

During the course of this work, we have found the following answers to the questions listed

in the introduction section through both analytical and experimental investigation:

• The input-output relation of the signal transduction is one-to-one for su�ciently small

input ranges. (Section 5.2.2).
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Figure 43: Standard deviation of ramp-up slope with respect to input level for di↵erent
time interval selections.

• The noise in the bacteria response scales directly proportional to the time elapses until

the response reaches peak. Then, the noise reduces as the bacteria response decays

(Section 5.2.2 and Section 5.3.3).

• The time delay for the response beginning, the peak instant, and the response ending

are shown to be randomly varying (Section 5.3.2).

• The sampling based on the ramp-up slope is shown to be favorable according to the

comparisons based on the p-values and the probability of error for the detection of

binary and 3-ary PAM molecular signals (Section 5.4.2 and Section 5.4.3).

Motivated by the results of comparisons based on p-test and probability of error, we

further study the detection of molecular signals by sampling the raw bacteria response via

the ramp-up slope.

5.5.1 Decision

We consider the use of t-test for the decision on whether a specific input level H
i

is trans-

mitted. µ
i

corresponds to the mean of the sampled received signal for each input pulse level

116



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

2

4

6

8

10

12

Time (Minutes)

O
u

tp
u

t 
si

g
n

a
l G

F
P

 (
a

.u
.)

t
0

η
up

r
k
(t

0
+T

int
)

T
int

t
0
+T

int

Figure 44: The sampling of the raw bacteria response for the ramp-up slope rup[k] (the
raw bacteria response curve is taken from an individual experiment for 20µM input).

H
i

. Considering multiple repeated experiments, the t-statistic ⇠ is given by

⇠
i

=
rup � µ

i

s/
p
K

(219)

where K is the number of samples, x is the sample mean given by

rup =
1

K

KX

k=1

rup[k] (220)

and s is the sample standard deviation given by

s =

vuut 1

K

KX

k=1

(rup[k]� µ
i

)2 (221)

The signal level H
i

corresponding to the µ
i

providing the minimum t-statistic ⇠
i

is decided

as the input molecular signal.

5.5.2 Time Interval Selection for Ramp-up Slope

The selection of time interval in bacteria response for the calculation of the mean ramp-up

slope is of critical importance. In Fig. 34, it is observed that the instants when bacteria
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1: if r
k

(t) == ⌘up then
2: t0 = current time
3: while t  t+ Tint do
4: if t = Tint then
5: rup[k] =

r

k

(t
0

+T

int

)�⌘

up

T

int

6: end if
7: end while
8: end if

Figure 45: Non-coherent calculation of the ramp-up slope rup[k].

response enters and leaves ramp-up region vary based on input level. Furthermore, based

on the results presented in Fig. 35, standard deviation of the bacteria response increases

with the evolving time during the ramp-up behavior. Moreover, in Section 5.2.2, it is shown

analytically that the error is amplified with the evolving time during the ramp-up behavior.

This suggests the earlier calculation of the ramp-up slope µ
i

during the ramp-up behavior.

For di↵erent intervals, the standard deviation of the ramp-up slope is studied in Fig. 43.

Tint is taken as 10 min, and the ramp-up slope is calculated for 60-70 min, and 70-80 min.

It is shown that the standard deviation of the ramp-up slope is less for earlier intervals of

bacteria response, e.g., 60� 70min interval has a lower standard deviation compared to the

70� 80min interval.

5.5.3 Non-coherent Sampling for the Ramp-up Slope

While earliest calculation of the ramp-up slope provides better prediction of the input level,

the randomness in entering the ramp-up behavior yield strict timing requirements for de-

tection impractical. Therefore, a non-coherent scheme for detection of molecular signals via

bacteria response is needed to mitigate delay uncertainty and eliminate timing requirements

at the receiver. To remove timing requirement for sampling, a di↵erential detection scheme

can be utilized, which is illustrated in Fig. 44. A su�ciently large threshold level ⌘up, for

which all di↵erent input levels i enter to the ramp-up region, can be determined, and the

instant t0 bacteria response reaches rup(t0) = ⌘up level can be recorded. After waiting for

the interval duration Tint, another sample can be taken from the response r
k

(t0 + Tint).

Accordingly, the ramp-up slope can be calculated, and t-test can be applied to detect the

transmitted signal level. The proposed algorithm is summarized in Fig. 45.
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5.5.4 A Linear Noisy Model of Bacterial Receiver

A linear channel model can be solved directly, and the methodologies developed to assess

performance of linear communication systems can also be applicable for MC with bacterial

receivers, e.g., detection and estimation theory and information theory for linear channels

[88, 68]. Here, a linear noisy model of bacterial receiver is proposed which aims to capture

the noise in the ramp-up slope and in the timing of the bacterial signal transduction.

For finite duration pulse-amplitude modulated concentration signals, rup[k] is unique for

di↵erent transmitted signal levels. Both experimental and theoretical evidences are provided

in this section for the one-to-one input-output relation of bacterial signal transduction.

Based on the ramp-up slope calculation algorithm given in (45), the bacteria response

in the ramp-up region can be expressed as

rup[k] =
r
k

(t0 + Tint)� ⌘up
Tint

(222)

To incorporate the randomness e↵ects into the bacteria response, the noise terms wup and

wint are added to model. The linear noisy model of r
k

(t0 + Tint) is obtained as

r
k

(t0 + Tint) = [rup[k] + wup][Tint + wint] + ⌘up (223)

where wup is the noise in the ramp-up slope rup[k] and wint is the noise in the timing of the

bacterial signal transduction.

5.6 Highlights

In this work, detection of discrete messages with a bacteria-based molecular receiver is

investigated for molecular communication over microfluidic channels. Discrete messages

are represented by the amplitude of the transmitted finite-duration concentration pulses.

Engineered bacteria transduce the concentration pulse to green fluorescent protein, which

can be observed using fluorescence microscopy. Detection of the transmitted message is

performed based on the fluorescence microscopy of the bacteria response.

There were several challenges on which we specifically focused during the course of this

work. To detect the transmitted message, given fixed pulse duration, a unique response
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level (one-to-one input-output relation) is required. Imperfections (noise e↵ects) which are

present in the bacteria response level as well as timing issues (randomly varying response

beginning, peak instant, and response ending) make it di�cult to distinguish which message

was transmitted. The presence of noise e↵ects have a detrimental e↵ect on the detection

performance and should be minimized. Furthermore, bacteria response can take several

hours to complete. In some applications of synthetic biology, the timely communication

of the transmitted message can be of great importance, such as in the case of real-time

monitoring of chemical changes. Therefore, instead of waiting for the bacteria response to

finish, it can be critical to decide on the transmitted signal as early as possible or within a

delay constraint.

The goal of the molecular receiver (see Fig. 2) is to determine from a noise perturbed

signal which of the finite set of discrete messages had been sent by the transmitter. To

enable detection of the transmitted discrete messages, e�cient sampling of bacteria response

is studied addressing 1) the one-to-one input-output relation requirement, 2) noise on the

sampled response, and 3) required response observation duration for detection.

Four di↵erent sampling schemes are defined: 1) total response duration, 2) peak value,

3) ramp-up slope, 4) ramp-down slope. The one-to-one relation between the transmitted

discrete messages (pulse amplitudes) and the bacteria response are shown for all sampling

schemes. The e�ciency of each sampling scheme is assessed with respect to the impact of

noise on the detection performance and the required bacteria response observation duration.

Sampling of the ramp-up slope is shown to be less vulnerable to noise and providing the most

accurate detection performance among others. Sampling of ramp-up slope also requires the

minimum bacteria response observation duration.

The results of this study motivate the use of ramp-up slope of the bacteria response

as an e�cient sampling scheme for the detection of the transmitted discrete messages. To

facilitate the detection while bacteria response is being observed, an algorithm is also devised

for the calculation of the ramp-up slope.
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CHAPTER VI

CONCLUSION

In this thesis, communication channel models are developed and performance analyses are

performed for microfluidic molecular communication systems, as well as bacteria-based

molecular receivers. The following four areas have been investigated under this research

and each of them is described in the following subsections:

1. System-Theoretic Microfluidic Channel Modeling and FIR Filter Design

2. End-to-End Propagation Noise and Memory Analysis for Microfluidic Channels

3. Interference Modeling and Capacity Analysis for Microfluidic Multiple Access Channel

4. Detection of PAM Molecular Signals with Bacterial Receivers on a Microfluidic Chan-

nel

6.1 Research Contributions

6.1.1 System-Theoretic Microfluidic Channel Modeling and FIR Filter Design

In this research direction, system-theoretic analysis and least-squares design of microfluidic

channels are performed for Flow-induced Molecular Communications (FMC). The objec-

tive of this work is the development of end-to-end concentration propagation model based

on microfluidic channel configurations, i.e., building blocks of FMC. To the best of our

knowledge, this is the first study of concentration propagation in FMC. Furthermore, using

the developed system-theoretic end-to-end model for building blocks of FMC, the Finite

Impulse Response (FIR) filters are devised. Specifically, the least-squares method is used

to map channel parameters to the desired FIR filter frequency response. A parallel con-

nection of microfluidic channels scheme is proposed similar to tapped delay lines. The

transfer functions of straight and turning channels are investigated for various length and

turning angles, and example design of microfluidic channels are presented for band-pass and

band-stop filtering of concentration signal.
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6.1.2 End-to-End Propagation Noise and Memory Analysis for Microfluidic
Channels

In this work, the propagation noise and memory analyses are performed for Flow-induced

Molecular Communications (FMC). The objective of this work is the investigation of end-

to-end propagation noise based on the chamber and microfluidic channel parameters. To

the best of our knowledge, this is the first study of propagation noise in FMC. Motivated by

the flat spectral density of the noise, an Additive White Gaussian Noise (AWGN) model is

proposed for FMC. Furthermore, we model the molecular memory due to the inter-di↵usion

of transmitted concentration signals and show the e↵ect of the memory on the propagation

noise. We also investigate the signal propagation at the chambers, and the noise spectrum

for various chambers, the microfluidic channel, and the transmission parameters.

The derived mathematical framework provides a complete analysis of the propagation

characteristics for the combination of di↵erent mass transport phenomenons, i.e., di↵usion

in the chambers and convection in the microfluidic channels. Using developed building

blocks for molecular noise, spectral density of the end-to-end propagation noise for any

MC architecture can be analyzed. Accordingly, suitable noise model for the transmission

frequency range of interest can be developed.

The memory e↵ect is investigated from both impact of di↵erent molecular transport

phenomenons and impact on molecular noise perspectives. Necessary conditions for mem-

oryless MC are defined for both di↵usion-based and convection-based molecular transport.

Developed memory analysis for proposed microfluidic MC architecture can be applied to

any combination of the molecular transport mechanisms as well.

Therefore, our analysis is universal, and independent of the microfluidic MC architec-

ture. The developed linear end-to-end channel model sets the stage for capacity analysis,

and design of complex modulation, coding, and receiver schemes for MC over microfluidic

channels. On the other hand, to model generation of molecular signal and distortion e↵ects

on it, analysis and design biological transceivers are imperative as well.
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6.1.3 Interference Modeling and Capacity Analysis for Microfluidic Multiple
Access Channel

In this work, the interference modeling and capacity analysis for the microfluidic MC chan-

nel are presented. The impact of interferer signal on the MC capacity is studied for single

and multiple interferer cases. The MC capacity is shown to be severely limited under inter-

ference, which requires development of practical interference-aware communication schemes

considering the capabilities of the biological molecular transmitters and receivers. Further-

more, three di↵erent microfluidic interference channel configurations are introduced based

on the flow velocity and the receiver placement on the microfluidic channel, namely, the

microfluidic both-sided interference configuration, the microfluidic one-sided interference

configuration, and the microfluidic interference-free configuration.

MC over microfluidic channels can enable in parallel sensing and processing of chemicals

by molecular transmitters, and these transmitters can engage in multi-stage chemical re-

actions with the receivers via sending their message molecules over a common microfluidic

channel. For large-scale integration of chemical analysis systems on a microfluidic chip, the

provided information-theoretic analysis and the capacity expressions for the MIC can be

utilized to analyze the throughput of the chip, which can lead to improvement in e�ciency

and optimization of the design. The modeling of the molecular transmitter and receivers is

still an open research problem which can help to design a complete microfluidic MC system.

To distinguish the designated signal from interference, the development of modulation and

detection schemes based on constraints of biological transmitters and receivers, respectively,

is essential.

6.1.4 Detection of PAM Molecular Signals with Bacterial Receivers on a Mi-
crofluidic Channel

We have investigated the utilization of the bacterial signal transduction for the detection of

pulse-amplitude modulated (PAM) molecular signals. The one-to-one input-output relation,

the noise, and the timing issues on the bacteria response are examined based on both the

measurements from the experiments and the analytical evaluations of a biochemical model of

bacteria signal transduction. To sample the raw bacteria response, four di↵erent strategies,
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i.e., the total response duration, the peak value, the ramp-up slope, and the ramp-down

slope, are statistically compared. Based on the statistical comparisons, the sampling of

the bacteria response via the ramp-up slope is selected for further investigation. The time-

interval selection and non-coherent sampling for ramp-up slope calculation from the raw

bacteria response are studied to address noise and timing issues, respectively. The provided

analyses and results in this work provide a basis for e�cient detection of the PAM molecular

signals in molecular communication and sensing applications.

6.2 Future Research Directions

6.2.1 Modeling and Prediction for Intra/Inter Cellular Signaling

Noise in the biological pathways is due to the intracellular, intercellular, and extracellular

stochastic biochemical elements, each having a di↵erent importance for the metabolism,

gene regulation, and signal transduction of the cell. Synthetic biological systems similarly

perform tasks by a population of cells to utilize intercellular communication for synchroniza-

tion. Therefore, the prediction of the output signal given the input signal and the detection

of the input signal from the output signal require a comprehensive modeling of intra/inter

cellular signaling mechanisms.

By expanding the work presented in this thesis on engineered bacteria, the impact of

noise from di↵erent sources at di↵erent time-scales including biofilm formation, mutation,

and cell cycle on the processing of biochemical signals within biological circuits need to

be investigated. Additionally, the interdependence of the diseases and the noise in the

biological pathways should be investigated. The models to accurately predict the response

or detect the excitation level of the engineered and natural intra/inter cellular signaling

mechanisms are needed.

6.2.2 Computation with Interconnection of Biological Circuits

The synthetic biological systems can operate both as analog and digital devices. For exam-

ple, biological circuits can perform as a switch as well as an amplifier based on their design.

In the nature, input signals are usually in the analog form, and analog design can elimi-

nate analog-to-digital/digital-to-analog conversion requirements for the circuit design and
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can provide faster operation. However, digital processing is robust to noise at the expense

of processing delay and complex circuit design due to the conversion between analog and

digital signals. On the other hand, the required precision level depends on the time-scale

and the nature of the computational process. The design trade-o↵s between the analog

and digital computation within biological circuits for the precision, the delay, and the com-

plexity of the process need to be investigated. Utilizing the developed methodologies for

molecular communication over microfluidic channels and engineered bacteria, the theoret-

ical limits for the intra/inter process communication need to be investigated addressing

the unique communication challenges and requirements for the interconnection of biological

circuits on a chip. Additionally, modulation, detection, medium access control, and ad-

dressing schemes should be developed for distributed molecular computation with networks

of distinct populations of cells on a chip.

6.2.3 Continuous Monitoring of Intra-Body Biochemical Signals

To monitor the diseases and the disorders in the body, the concentration changes of bi-

ological markers can be sensed at di↵erent scales and converted to electronic signals by

the bioelectronic interfaces implanted under the tissue. Furthermore, these interfaces can

communicate with programmable cells to restore health and fight diseases. By merging my

research on biological circuits and modeling of the intra/inter cellular signaling, the interfac-

ing of the biological pathways with the cyber-human systems to dynamically track cellular

physiology and function, and intervene to tune metabolism, gene regulation, and signal

transduction is required. Furthermore, the interpretation of accumulated big data from

continuously monitored people requires a new perspective for biomedical signal processing.

For example, the daily fluctuations of hormone levels can be monitored for hundreds of

thousands of individuals to determine a baseline for the extraction of the abnormalities

and patterns. The methods are required to e�ciently correlate the data and understand

the changing intra-body biochemical signals at di↵erent time-scales in response to stress,

medication, and infection.
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