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ABSTRACT

On the Performance Analysis of Free-Space Optical Links under

Generalized Turbulence and Misalignment Models

Hessa AlQuwaiee

One of the potential solutions to the radio frequency (RF) spectrum scarcity

problem is optical wireless communications (OWC), which utilizes the unlicensed op-

tical spectrum. Long-range outdoor OWC are usually referred to in the literature

as free-space optical (FSO) communications. Unlike RF systems, FSO is immune to

interference and multi-path fading. Also, the deployment of FSO systems is flexible

and much faster than optical fibers. These attractive features make FSO applicable

for broadband wireless transmission such as optical fiber backup, metropolitan area

network, and last mile access. Although FSO communication is a promising technol-

ogy, it is negatively affected by two physical phenomenon, namely, scintillation due to

atmospheric turbulence and pointing errors. These two critical issues have prompted

intensive research in the last decade. To quantify the effect of these two factors on

FSO system performance, we need effective mathematical models. In this work, we

propose and study a generalized pointing error model based on the Beckmann distri-

bution. Then, we aim to generalize the FSO channel model to span all turbulence

conditions from weak to strong while taking pointing errors into consideration. Since

scintillation in FSO is analogous to the fading phenomena in RF, diversity has been

proposed too to overcome the effect of irradiance fluctuations. Thus, several com-

bining techniques of not necessarily independent dual-branch free-space optical links

were investigated over both weak and strong turbulence channels in the presence of

pointing errors. On another front, improving the performance, enhancing the capac-

ity and reducing the delay of the communication link has been the motivation of



5

any newly developed schemes, especially for backhauling. Recently, there has been a

growing interest in practical systems to integrate RF and FSO technologies to solve

the last mile bottleneck. As such, we also study in this thesis asymmetric an RF-FSO

dual-hop relay transmission system with both fixed and variable gain relay.
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Chapter 1

Introduction

1.1 Background and Motivation

For the human being, communication is important for establishing a sense of social

cohesion. Communication is defined as the activity of information exchange between

two or more parties by speaking, writing, or using another medium through the same

system of signs. Since man appeared on earth, communication took various forms

starting from cave paintings. Other forms of long-distance communication have also

existed such as drums, smoke signals, and pigeon post. Because these forms cannot be

standardized, other forms were developed through writing, printed books and press,

and sending mails.

As things evolve, there was a desire to transfer messages quickly and efficiently

over longer distances. This desire was accommodated through the invention of the

telegraph. The main principle behind the telegraph is to send electrostatically gen-

erated signals through a wire. The communication system consists of three main

components, a battery for electricity generation, a key to break the circuit and an

electromagnet at the receiving side. Using the telegraph was very popular, especially

in the military services as it allowed sending instant messages across long distances.

However, the cost associated with sending a telegraph was relatively high leading to

its exclusion as a technology.

In 1876, Alexander Graham Bell noticed that sound vibrations travel through

the air and can be received at a different end. By this observation, he patented the
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telephone in which these vibrations could be transferred across a wire by a continuous

current. His discovery was widely accepted and is still used today.

During World War I, short-wave communications were utilized to transfer mili-

tary messages. Once the war ended, this new form of communication unexpectedly

took the world by storm. In 1920, commercial broadcasting started and by 1925 ra-

dio transmission was regulated by the Federal Communications Commission (FCC).

Radio technology advanced so fast to become the hottest communication technology

enabling transmission over long distances with better quality, less power and smaller

devices. It was so popular that radios were to be found in every house.

The popularity of radio transmission demonstrated that the voice could be trans-

mitted through air wirelessly, without the need for wires utilizing the electromagnetic

spectrum. It also broadens the desire to transmit images and text instantly. Hence, in

1927 voice and images were available to be transferred via television. Since then and

until 1960s, the technology advanced rapidly such that commercial telecommunica-

tion satellite was enabled and made a significantly major change in the market. The

television became the source of accurate and timely news. Moreover, people relied on

the television for constant entertainment.

After such a development in telecommunication, the market needed more full-

duplex technologies allowing both parties to communicate simultaneously. In fact, the

drive for most of these developments was for military purposes. As such, in 1967 the

Internet, in which computers are allowed to exchange information, was originated. In

the beginning, it was limited and then it went viral after several decades. The Internet

usage includes information exchange via email and websites. Moreover, depending

on the radio frequency carrier again, Martin Cooper invented the first mobile phone

in 1973, allowing placing and receiving calls within a telephone service area. Mobile

phones were widely accepted, as it is more convenient than landlines since they remove

the need for wires.
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During the early 2000s, wireless communications were attractive as network-

enabled handled devices were evolving. Conventional wireless communication ap-

plications, involve both cellular and data, depend on the radio frequency (RF) to

modulate the electrical signal whose range varies between 30 kHz and 300 GHz in

the electromagnetic spectrum. RF communications are attractive since the waves are

easily generated, spread in omni-directions, can travel long distances and finally can

penetrate buildings, providing wider coverage. However, all these new applications

require things to be taken into consideration. First concern is the bandwidth alloca-

tion which can be defined as the process of designating radio frequencies to different

operators. Moreover, the RF spectrum is a national source that governments usually

regulate, license and optimize to be used in radio broadcasting, industry, and com-

mercial services for the public. In the United States as an example, the spectrum is

regulated by the FCC.

Since the radio spectrum is a limited resource, it requires an effective and effi-

cient allocation. Recent high demand of services and increases in the wireless data

usage have led to two major issues in the communication industry, namely, the spec-

trum exhaustion and last mile access bottleneck. Spectrum exhaustion, crunch or

congestion, is defined as the shortage of available wireless frequencies within the ra-

dio spectrum to accommodate a growing number of consumer devices, along with

different government and private sector uses. This crunch is considered as a risk in

wireless networking and telecommunication, leading to some undesirable future im-

plications. On the other hand, last mile access bottleneck can be defined as the last

mile link connecting the network to the Internet service providers (ISPs) network.

For example, Internet connectivity is not available to some rural areas due to the lack

of telecommunications infrastructure.

The research community, represented by scholars across universities, are driven to

find realistic and effective solutions to these rising problems. One of the first trails



21

was the cognitive radio (CR) that is based on the temporal use of the unoccupied

spectrum. CR aims to increase the capacity per channel usage. Another interesting

direction of solutions was proposed including the spatial usage of the spectrum via

femtocells and multiple-input multiple-output (MIMO) systems, which enhance the

capacity per square meter. The third solution proposed is to utilize different parts

of the spectrum. It is achieved by optical wireless communication (OWC) systems.

Our interest and main focus in this dissertation is the third direction as is described

in the following sections.

1.1.1 Optical Wireless Communications

OWC offers an appealing, powerful, and attractive solution to replace and/or com-

plement the conventional RF wireless communications for several reasons [2]. The

first and most important reason is that the optical band in the electromagnetic spec-

trum is not licensed nor regulated, which reduces the operation cost since licensing

fees are not needed anymore. In RF systems, it is required to design high-frequency

circuits to perform back-and-forth conversion between baseband and transmission

frequencies, whereas in OWC, this task is implemented by inexpensive light-emitting

diodes (LED) and photodiodes. In comparison to RF, the range of the optical ra-

diation can be easily controlled. Furthermore, the radiation cannot penetrate walls.

All these properties cut down the interference between adjacent systems and enhance

the security of the system. Lastly, utilizing the optical band implies the usage of

unregulated frequencies at the terahertz (THz) range, leading to much higher data

rates than conventional RF rates approaching gigabits per second, according to some

experiments.
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1.1.1.1 Historical Overview

Using OWC as a form of communication is not a new emerging technology. The

earliest form was sunlight when the ancient Greeks and Romans utilized their shields

to reflect sunlight. In 1880, Alexander Graham Bell, after patenting the telephone,

invented the photophone that can be considered as the first wireless telephone sys-

tem [3].

The photophone transfers sound on a beam of light. The voice is first projected

via an instrument toward a mirror leading to noticeable vibrations. When sunlight

is directed onto the mirror, the photophone receiver captures the oscillations and

translates them back as voice. The photophone works similarly to the telephone but

instead of relying on electricity, the information is transmitted using light. The pho-

tophone continued to be developed for military usage. However, after the invention

of lasers in 1960s, there were many attempts for optical transmission. Goodwin in [4]

listed various OWC demonstrations that have been performed using different types of

lasers and modulation schemes during 1960-1970. Most of the experiments failed due

to two reasons, namely, laser beam divergence and atmospheric turbulence. In the

1970s, fiber optics was developed to be a good choice for long-distance optical trans-

mission. Hence, the interest in OWC shifted away and for years, remained limited to

military and space applications only.

1.1.1.2 Current Status and Future Development

After the RF spectrum crunch, a number of companies have shown novel and efficient

developments in OWC links that can be promising. These developments can be

suitable for building future heterogeneous communication networks to support a wide

range of service types and to meet the demands for higher data rates. Variations of

OWC can be potentially employed in different communication applications, ranging

from optical interconnects within integrated circuits through outdoor inter-building
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links to satellite communications. Based on the frequency range, the OWC can be

divided into 3 types. The first is the near infrared (NIR) band (of wavelength 750-

1550 nm) used in most terrestrial point-to-point OWC systems, that is called free-

space optical (FSO) communications. These systems are applicable for inter-building

connections. The second type is the visible band (of wavelength 390− 750 nm) that

is used to operate the visible light communications (VLC), taking advantage of LEDs

to transmit and receive data ensuring human eye safety. The third type is the ultra

violet band used by ultraviolet communication (UVC) systems for applications that

require non-line-of-sight configurations. Also the OWC can be divided according to

the applications as follows [5]:

� OWC is suitable for ultra-short range links such as inter-chip and intra-chip

communications because of its higher bandwidth and low latency. This makes

it a great replacement to copper-based interconnections which are considered a

major bottleneck in system design.

� In the wireless body area network (WBAN), the RF technology is commonly

used but it can cause some issues due to electromagnetic interference (EMI).

Hence, VLC via LEDs is suitable for such short range links (order of 10 cm) [6].

� Due to recent development in solid state lighting, such as long life expectancy,

high tolerance to humidity, lower power consumption, and reduced heat dis-

sipation, OWC is applicable to medium range links (order of meters) as in

wireless local area networks (WLANs). Some implementations are available in

the literature as:

– VLC can provide very high speeds up to 3.5 Gbps according to recent

work [7, 8].

– Some start-up companies based on the UK, France and Japan namely
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PureVLC, Oledcomm, and Visilink have also been exploring the commer-

cialization of this technology [5].

� OWC, in particular FSO, can also be utilized for longer distances up to sev-

eral kilometers, providing high data rates and offering potential solutions for

various problems, such as last mile access, cellular backhaul bottleneck, local

area network (LAN) interconnections in enterprises or on campuses, broadband

access to remote or/and rural areas [9], wireless video surveillance and backup

links in disaster situations where existing infrastructure could be damaged or

unreliable. Real-life events have proven the efficiency of deploying FSO tech-

nology as redundant links. Specifically, after the 9/11 terrorist attacks in New

York City, FSO links were utilized to provide an emergency gateway to financial

corporations in the Wall Street region, in which landlines were out of service [5].

� Moreover, the range of OWC links can extend to 104 kilometers from ground-

to-satellite and satellite-to-satellite. In October 2013 as an example, NASA’s

Lunar Laser Communication Demonstration (LLCD) has shown the capability

of establishing FSO links between the moon and earth while achieving a data

rate of 622 Mbps over a distance of 384, 600 kilometers [10].

1.1.2 Free-space Optical Communications

In this dissertation, we focus mainly on FSO communication, since it is a potential

solution for the bottleneck and spectrum exhaustion issues. FSO communications is

a line-of-sight (LOS) and unidirectional technology that uses a modulated laser beam

through the atmosphere to establish a communication link for several kilometers,

providing data rates of giga-bits per seconds. For instance, state-of-the-art FSO

systems support 10 Gb/s Ethernet that equals the bandwidth provided by the metro

fiber optic systems [11]. Compared to fiber-optics, FSO systems deployment are both
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cost-and time-effective. On the other hand, FSO systems provide higher bandwidth

compared to RF, license-free usage, inherited security and interference immunity.

These features make FSO initially attractive for last mile access that connects the

end user to exiting fiber optics networks.

Although FSO seems promising, there are still some challenges that need to be

addressed. Indeed, as a laser beam propagates through the atmosphere, it is expected

to experience some distortions in its power, which of course affects the stability of the

receiving signal. In the following, further details on system loss factors are provided.

Absorption and Scattering The earth’s atmosphere is an absorbing medium. In par-

ticular, any radiating photon is absorbed by a gaseous molecule and turned into ki-

netic energy and then the atmosphere becomes heated. Moreover, the wavelength is

a major element in the absorption process. For example, O2 and O3 molecules can

cancel the propagation of signals at a wavelength below 200 nm while it can be less

effective at the visible wavelengths (i.e., 400− 700 nm).

Similarly, signal propagation through the atmosphere is prone to scattering which

is also a function of wavelength. For instance, Rayleigh scattering is considered

when air particles are smaller than the wavelength. In addition, when the size of

the particles is much higher than the wavelength, such as in rain and snow, FSO

transmission is relatively unaffected [12]. Generally, within the scale of metropolitan

deployments (links are less than 1 km), typical rain can lead to attenuation on the

order of 3 dB/km. However, severe rain can cause more attenuation, only in the case

of deployments higher than 1 km [13]. On the other hand, Mie scattering is considered

when the particles are of the same size as the wavelength, as in fog and haze. In this

case, the signal can be highly attenuated even for short distances. As an example,

experiments have shown that moderate fog over a distance of 50m leads to 90% loss

in transmission power [14]. Another experiment in [15] conducted on the range of
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785 to 1550 nm wavelength has shown that for foggy conditions, the attenuation is

independent of the wavelength, while for haze it is not. In particular, fog particles

(1000 nm - 20000 nm) are smaller than haze (10nm - 1000nm) and therefore haze

conditions have low impact on the attenuation of the light beam.

Scattering and absorption lead to reduction and/or attenuation of the radiation

in the atmosphere. This can be measured through the transmittance of the laser

radiation, which is also related to the propagation path, described by Beer’s law as:

τ = exp(−a(λ)L), (1.1)

where L is the propagation path length and a(λ) is called the attenuation coefficient

defined as

a(λ) = Aa + Sa, (1.2)

where As and Sa are the absorption and the scattering coefficient respectively.

It can be concluded from studying the impact of absorption and scattering effects

on FSO systems that rain has a low effect on FSO while it is not the case for fog. It

is totally the opposite in RF [13, 14]. This has motivated the integration of RF and

FSO in communication networks.

Moreover, channel coherence bandwidth, which is inversely proportionally to the

delay spread, is an important factor in modeling the communication channel. Under

clear weather, there is negligible delay spread. However, fog and rain can increase the

delay spread, which consequently induce inter-symbol interference (ISI). However,

with the FSO high data rate, delay spread due to rain and fog scattering can be

ignored. In some experiments, it has been reported that for a 1 km link, the delay

spread due to rain is equal to less than 10 picoseconds, while it is limited to 50

picoseconds in the case of the presence of fog. Hence, the FSO channel is considered



27

as frequency non-selective with no ISI.

Atmospheric Turbulence Induced Fading During transmission, the laser beam suf-

fers from scintillation which can be defined as the temporal fluctuations of the laser

beam intensity (irradiance), Ia, at the receiving end. More specifically, due to temper-

ature and pressure inhomogeneity’s caused by solar heat, the refractive index (defined

as the ratio between the speed of light in a vacuum and the phase velocity of light in

the medium) varies along the transmission path, leading to fluctuations in the signal

amplitude and phase. The refractive index C2
n is considered as one of the most crit-

ical parameters to measure the strength of turbulence. It is an altitude dependent

parameter defined as [16]:

C2
n(h) = 0.00594

( v
27

)2 (
10−5h

)10
exp

(
− h

1000

)
+ 2.7× 10−16 exp

(
− h

1500

)
+ A exp

(
− h

100

)
, (1.3)

such that h is the height, v is the wind speed in meters per second and C0 is the

nominal value of the refractive index at the ground which is estimated to be 1.7 ∗

10−14. Typical C2
n values can vary between 10−14 m2/3 indicating weak atmospheric

turbulence and 10−12 m
2
3 for strong conditions. These fluctuations can definitely

impact the system performance.

To quantify the effect of intensity fluctuations, the scintillation index is frequently

considered in the studies. It can be defined as the normalized variance of irradiance

fluctuations and can be expressed as

σ2
Ia =

E[I2
a ]− E[Ia]

2

E[Ia]2
=

E[I2
a ]

E[I2
a ]
− 1, (1.4)

such that Ia denotes the beam irradiance and E[.] stands for the expectation operator.

Another critical parameter to characterize the strength of turbulence is the Rytov
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variance

σ2
R = δC2

n

(
2π

λ

)7/6

L11/6, (1.5)

such that L is the propagation path length, λ is the operational wavelength, C2
n is the

refractive index, while δ = 1.23 for plane waves and δ = 0.5 for spherical waves. For

weak turbulence conditions, the Rytov variance is proportional to the scintillation

index, since it is the solution to Maxwell equations for electromagnetic wave propa-

gation through a random medium. In stronger regimes, it indicates the turbulence

strength by the increase of the refractive index or/and the path length. Hence, at weak

turbulence conditions, the scintillation index is proportional to the Rytov variance.

When turbulence gets worse, both the Rytov variance and scintillation index increase

accordingly, reaching strong turbulence conditions. At this stage, the scintillation

index reaches a maximum value and the Rytov variance is no longer a solution to the

Maxwell equations. With the continuous increase in path length or inhomogeneity

strength, the scintillation index reaches a saturation value close to unity. Saturation

occurs because of the self-interference of the beam, so it loses its coherence. It can

be concluded that the two major quantities are not independent as the optical wave

propagates. Thus, the variations in both σ2
R and σ2

Ia
could characterize the turbulence

into 3 regimes as following [17–20]:

� When the Rytov variance is below 1, it describes the weak turbulence regime.

In that case, the scintillation index becomes proportional to the Rytov variance.

� When the Rytov variance exceeds 1, the scintillation index increases to reach a

maximum value of about 5 and 6 in spherical waves and 2 in plane waves [19].

This condition describes the moderate-to-strong turbulence, which can be called

as well as focusing regime [17].

� Due to the continuous inhomogeneity’s of temperature and increase of propa-
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gation path, σ2
R continues to increase [20], which leads to the saturation regime

in which σ2
Ia

= 1.

Assuming plane wave propagation, the turbulence conditions can be categorized into

three regimes according to the Rytov variance, σ2
R [21]: a weak fluctuation regime

(σ2
R < 0.3), a moderate-fluctuation regime (0.3 ≤ σ2

R < 5), and a strong fluctuations

regime (σ2
R ≥ 5).

It is obvious that the performance of FSO communication systems can be severely

affected by turbulence-induced scintillation. In other words, scintillation results in

power loss at the photodetetor and random fluctuations of the received signal [22].

To capture the effect of such phenomena, mathematical models for the probability

density function (PDF) of the instantaneous fading irradiance of the optical signal is

introduced as to be illustrated in Chapter 2.

Geometric and Misalignment Loss The beam is prone to divergence when travels

through the atmosphere leading to geometric loss. Beam divergence can be calculated

using the link distance, divergence angle and aperture size. To effectively calculate

the geometric loss, it is important to identify the optical wave model. For horizontal

FSO transmissions, in the literature, it was shown that a Gaussian profile for the

beam intensity is a good approximation. When the Gaussian bean has relatively high

beam divergence in which it statistical characteristics is similar to point source. Thus,

the approximations of plane or spherical wave can be used.

Moreover, beam divergence can affect the alignment between the transmitter and

the receiver. Beam misalignment can also occur due to beam wander in which the

large-scale eddies that deviates the beam from original path. Also, misalignment can

be resulted from building sway, thermal expansion, and small earth quakes.

Eye safety Optical devices can pose critical health concerns if used incorrectly.

Hence, eye safety is an important aspect when employing optical wireless commu-
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650nm 880nm 1310nm 1550nm

Class 1 up to 0.2 mW up to 0.5 mW up to 8.8 mW up to 10 mW
Class 2 0.2-1 mW N/A N/A N/A
Class 3A 1-5 mW 0.5-2.5 mW 8.8-45 mW 10-50 mW
Class 3B 5-500 mW 2.5-500 mW 45-500 mW 50-500 mW

Table 1.1: Laser safety classifications for a point-source emitter.

nication systems. Moreover, safety standards have been imposed in which the optical

sources are classified with respect to the total emitting power as seen in Table. 1.1.

In general, the optical power emitted from the transmitter can be increased in

order to overcome all obstacles facing the beam as propagates. However, the power

must be limited to be complied with safety standards. All segments of OWC lead to

eye damage of the energy at specific wavelength exceeds safety levels. For outdoor

applications, high-power lasers are required for operation which are classified in the

Class 3B band. Therefore, these systems are advised to be placed away from human

contact preferably in rooftops. On the other hand, safety standards impose that

indoor applications must be class 1 safe under all circumstances making it another

challenges [23]. According to the table, launching power of indoor laser sources should

not exceed 0.5 mW which is considered very low. However, using LEDs instead of

laser sources offer much higher power while remaining Class 1 eye safe. It is because

LEDs are large-area devices unlike lasers that are point source devices. Hence, using

low cost LEDs as emitters either singly or in arrays become preferable in most indoor

systems.

1.2 Thesis Objective

The aim of this thesis is to provide generalized models for the turbulence and misalign-

ment. Also, scintillation mitigation methods are investigated using space diversity

and relaying. In particular, this thesis contributes to the literature as follows:
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� A performance analysis of generalized turbulence model based on double gen-

eralized Gamma distribution is provided taking into account the effect of sym-

metric pointing error effects.

� Generalized misalignment model statistics based on the Beckmann distribution

is provided along with the asymptotic ergodic capacity based on the moment

approach.

� A performance analysis of selection combining diversity technique over dual-

branch FSO system is offered.

� A performance analysis of asymmetric amplify-and-forward relay-assisted FSO

links is given.

1.3 Thesis Structure

This thesis is organized as follows. It first starts with the introduction in Chapter 1.

In Chapter 2, the system and channel model considered in this work are proposed.

Next, the performance analysis of a single FSO link over the double generalized

Gamma channel is investigated in Chapter 3. Chapter 4 focuses on the asymptotic

capacity, assuming a generalized model of pointing error. Following this, Chapters

5 and 6 study some diversity combining techniques over dual-branch FSO for weak

and strong turbulence conditions, respectively. The performance analysis of dual-hop

relay-assisted FSO link is then provided in Chapter 7. This work is finally concluded

with a summary of contributions in Chapter 8. [24]
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Chapter 2

Free-Space Optical Communication Channel

Characterization and Modeling

2.1 Introduction

Mathematical modeling is crucial in the performance analysis of communication sys-

tems. It enables the prediction of the capabilities of the system before real employ-

ment. For FSO systems, the scintillation index in 1.4 is first utilized to categorize the

turbulence strength. It can be used for further investigation to identify the distribu-

tion of turbulence-induced fading. This problem was widely tackled in the literature.

For instant, log-normal (LN) model is accepted to describe the turbulence in weak

regime [18]. On the other hand, different statistical models were investigated to fully

characterize moderate-to-strong turbulence conditions. First, the negative exponen-

tial model was identified to describe the limit distribution for the intensity in the

saturation regime [17]. Furthermore, The K-distribution was studied to characterize

the channel in the strong regime [25]. Later, there has been notable research work

that aim to come up with a universal model to span all turbulence conditions. These

efforts depend on doubly stochastic theory of scintillation in which the large-scale and

small-scale fluctuations of the beam are assumed to be generated from refractive and

diffractive effects [18]. Hence, the K-distribution was extended to double-stochastic

I-K distribution in [26, 27]. However, it was shown in [28] that I-K model might not

match experimental work. Several distributions such as Log-normally-modulated ex-

ponential, exponential Weibull and Log-normal Rice have been studied in [17,29–31].
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In the current literature, the Gamma-Gamma (ΓΓ) scintillation model has gained a

wide acceptance to describe moderate-to-strong turbulence conditions [17, 18]. In a

recent study by [32], the double generalized Gamma (DGG) was proposed as a general

model to span different turbulence conditions. According to some simulation results,

the double generalized Gamma showed some superiority over the Gamma-Gamma

model.

In addition to the turbulence effect, a misalignment between the transmitter and

the receiver can lead to pointing errors and additional performance degradation. The

misalignment originates from either mechanical error in the tracking system or me-

chanical vibrations in the system due to winds or/and building sway [33]. More

specifically, pointing error results from the displacement of the laser beam along ver-

tical (elevation) and horizontal (azimuth) directions that are typically assumed to be

independent Gaussian random variables. A pointing error has two main components:

the boresight and the jitter. The boresight is caused by thermal expansion of the

laser beam and defined as the fixed displacement between the beam footprint cen-

ter and the center of detection plane. On the other hand, the jitter is the random

offset of the beam center at the detector plane, typically caused by building sway,

weak earthquakes, and dynamic wind loads [34]. In the literature, several studies

have been reported to model the pointing error effectively. For example, Farid and

Hranilovic in [35] assumed zero boresight and same jitter variance for vertical and

horizontal displacements. In the same fashion, Wang et al [34] generalized the model

in [35] by considering a nonzero boresight. On the other hand, Gappmair et al in [36]

considered zero boresight but different jitter variances for the two directions. In our

work, we consider a generalized pointing error model taking into account a nonzero

boresight component and different jitter variances.

To capture the effect of these drawbacks on the performance of FSO systems,

combined statistics of turbulence and pointing errors is essential. Significant attempts
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were reported in the literature for Gamma-Gamma\Rayleigh channel model in [37],

for double generalized Gamma\Rayleigh channel in [38], for Log-Normal\Rician in

[34], and for Málaga (M)\Rayleigh channel model in [39]. Finding the combined effect

of pointing errors and turbulence becomes a harder task when considering general

models of each (i.e. considering Beckmann model for the pointing error effect).

In this chapter, we present the models for turbulence and pointing errors consid-

ered throughout the work. In particular, we first investigate the most well-known

models of different atmospheric turbulence conditions. Then, we focus on the point-

ing errors effect to explore the various models visited in the literature. In particular,

we introduce our general model to cover different scenarios of misalignment. Finally,

closed-form for a composite channel model is proposed.

2.2 Modeling of FSO Atmospheric Turbulence

The irradiance of the received optical wave I is defined as I = I0IaIp where I0 is the

path loss effect and it is assumed to be normalized to 1, while Ia and Ip reflect the

turbulence-induced fading and the pointing error effect, respectively [40]. The fading

due to the atmospheric turbulence conditions Ia can be viewed as the modulation of

large-scale (refractive) and small-scale (diffractive) fluctuations (i.e. if the turbulence

cells are larger than the beam diameter and vise versa). Mathematically, it can be

written as [17]

Ia = IxIy , (2.1)

where Ix and Iy are statistically independent unit mean processes representing large-

scale and small-scale effects, respectively.

In this section, various turbulence models are visited. In specific, the irradiance

Ia which is considered as a random variable (RV) can follow different distributions

according to the turbulence conditions.
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2.2.1 Weak Turbulence Channel Model

For weak turbulence conditions, in which large-scale fluctuations dominate, Ia is

modeled as [16]

Ia = exp(2X) , (2.2)

where X ∼ N (µX , σ
2
X) is the log-amplitude of the optical intensity such that σ2

X ≈

σ2
R/4 = 0.30545 k7/6 C2

nz
11/6 [35] where σ2

R is the Rytov variance1, C2
n is the index of

refraction structure parameter of atmosphere defined in (1.3), and k = 2π/λ is the

optical wavenumber with λ being the wavelength [41]. Then the PDF of Ia can be

given as

fIa(I) =
1

IσI
√

2π
exp

{
−(ln(I)− µI)2

2σ2
I

}
, (2.3)

where µI = 2µX and σ2
I = 4σ2

X are the mean and standard deviation of Ia. To ensure

that the average power is not amplified by fading, the irradiance is normalized (i.e

E[Ia] = 1 and µI = −2σ2
X) [42]. The nth moment for a LN RV Ia can then be

calculated as

E[Ina ] = exp

(
nµI +

n2σ2
I

2

)
= exp

(
2nσ2

X(n− 1)
)
, (2.4)

where E[.] is the expectation operation.

2.2.2 Moderate-to-Strong Turbulence Channel Model

Moderate-to-strong turbulence conditions result from combined effect of the large-

scale and small-scale fluctuations as in (2.1). Hence, the second moment of the

1For plane wave propagation, the Rytov variance is given as σ2
R = 1.23 k7/6 C2

nz
11/6 and σ2

X =
0.30545 k7/6 C2

nz
11/6. However, for spherical wave propagation, the Rytov variance is equal to

σ2
R = 0.5 k7/6 C2

nz
11/6 and therefore, σ2

X = 0.1250 k7/6 C2
nz

11/6 [16, Eq. (97)].
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irradiance can be defined as

E[I2
a ] = E[I2

x]E[I2
y ]. (2.5)

Since Ix and Iy are assumed to be unit mean independent random variables, then

(2.5) can be written as

E[I2
a ] = (1 + σ2

Ix)(1 + σ2
Iy), (2.6)

where σ2
Ix

and σ2
Iy

are normalized variances of Ix and Iy, respectively. Then, the

scintillation index in (1.4) is expressed as

σ2
Ia = (1 + σ2

Ix)(1 + σ2
Iy)− 1 = σ2

Ix + σ2
Iy + σ2

Ixσ
2
Iy . (2.7)

According to the novel work by [17], Ix and Iy are generally modeled as Gamma

random variables leading to Ia modeled as a ΓΓ RV with a PDF given by [17, Eq. 13]

fIa(I) =
2(αβI)

α+β
2

Γ(α)Γ(β)I
Kα−β

(
2
√
αβI

)
. (2.8)

The PDF in (2.8) can be rewritten as

fIi(I) =
(αiβiI)

αi+βi
2

Γ(αi)Γ(βi)I
G2,0

0,2

αiβiI
∣∣∣∣∣ −
αi−βi

2
, βi−αi

2

 , (2.9)

where Gm,n
p,q [.] is the Meijer’s G-function as defined in [43, Eq.(9.301)], Γ(.) is the

Gamma function defined in [43, Eq.(8.310)], Ki(.) is the modified Bessel function of

order i, α and β are the fading parameters of large-scale and small-scale fluctuations2.

2α represents the effective number of large-scale eddies while β is the effective number of small-
scale eddies. The condition α > β always applies.
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The nth moment of Ia can be derived by utilizing [44, Eq. 07.34.21.0009.01] as

E[Ina ] =
Γ(α + n)Γ(β + n)

(αβ)nΓ(α)Γ(β)
, (2.10)

and the second moment can be written as

E[I2
a ] =

(
1 +

1

α

)(
1 +

1

β

)
. (2.11)

Comparing (2.6) and (2.11), the following relations are trivial

α =
1

σ2
Ix

, β =
1

σ2
Iy

, (2.12)

σ2
Ia =

1

α
+

1

β
+

1

αβ
. (2.13)

The variances of small-scale and large-scale fluctuations are expressed in terms of the

Rytov variance in [17, Eqs. (18) and Eq. (19) ]. In the case of plane wave as an

example, the turbulence parameters α and β can be defined as

α =

[
exp

(
0.94σ2

R

(1 + 1.11σ
12/5
R )7/6

)
− 1

]−1

,

β =

[
exp

(
0.51σ2

R

(1 + 0.69σ
12/5
R )7/6

)
− 1

]−1

. (2.14)

2.2.3 Generalized Turbulence Channel Model

In this section, we discuss a newly proposed model, namely the double generalized

Gamma developed by [32]. The model spans a wide range of turbulence conditions and

perfectly matches the simulation data as seen in [32, Figs. (1), (2) and (3)]. Under this

model, the large-scale and small-scale fluctuations, Ix and Iy respectively, are assumed

to follow generalized Gamma (GG) distribution [45, 46] i.e. Ix ∼ GG(α1, β1,Ω1) and

Iy ∼ GG(α2, β2,Ω2), where β1 and β2 are shaping parameters defining the turbulence-
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induced fading while α1, α2,Ω1,Ω2 are identified using the variance of the small and

large scale fluctuations from [17, Eq. (18)-(20)] inserted in [46, Eq. (8a), (8b), (9)].

Hence, the PDF of Ia can be written as [46, Eq. (4)]

fIa(Ia) =
α2λσ

β1− 1
2λβ2−

1
2 (2π)1−σ+λ

2

Γ(β1)Γ(β2)Ia
G0,λ+σ
λ+σ,0

( Ω2

Iα2
a

)λ
λλσσΩσ

1

βσ1 β
λ
2

∣∣∣∣∣1− κ0

−

 , (2.15)

where κ0 = ∆(σ : β1),∆(λ : β2), λ and σ are positive integers such as λ
σ

= α1

α2
and

∆(x : y) , y
x
, y+1

x
. . . , y+x−1

x
.

The parameters λ and σ can be easily identified by first taking some possible

values of λ (or σ) then calculate the other parameter using the relation σ = dλ×α2

α1
e(

λ = dσ×α1

α2
e
)

. This results in different combinations of λ and σ as shown in Table.

2.1. The perfect pair is chosen when the ratio error (i.e. error = |α1

α2
− λ

σ
| × α2

α1
) is the

minimum as marked in blue in Table. 2.1. Moreover, Fig. 2.1 shows that different

values of λ and σ lead to the same result.

It is very important to note that ((2.15) coincides numerically with Extended

Generalized-K (EGK) PDF given in [47, Eq. (3)] and [48, Eq. (26)]. Also, the

Malaga distribution [49] that has been proposed as a unifying model for all turbulence

conditions reduces to the double GG by setting the appropriate parameters based on

the amount of fading (AoF) matching.

2.3 Pointing Error Impairments Mathematical Modeling

Pointing error impairments can lead to considerable loss. In this section, the statistical

model of the pointing error random variable, Ip, is discussed in details.
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Table 2.1: Possible values of λ and σ.

λ σ Error σ λ Error

1 1 58.98 1 3 23.05
2 1 17.96 2 5 2.55
3 2 38.47 3 8 9.38
4 2 17.96 4 10 2.55
5 3 31.63 5 13 6.65
6 3 17.96 6 15 2.55
7 3 4.29 7 18 5.48
8 4 17.96 8 20 2.55
9 4 7.70 9 22 0.27
10 5 17.96 10 25 2.55
11 5 9.76 11 27 0.69
12 5 1.56 12 30 2.55
13 6 11.13 13 32 0.97
14 6 4.21 14 35 2.55
15 7 12.10 15 37 1.18
16 7 6.24 16 40 2.55
17 7 0.38 17 42 1.34
18 8 7.71 18 44 0.27
19 8 2.59 19 47 1.47
20 9 8.85 20 49 0.50



40

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

I

P
ro

b
a
b
il
it
y
D
e
n
si
ty

fu
n
c
ti
o
n
,
f I
(I
)

 

 
Monte−Carlo
 λ =17, σ =7
λ = 22, σ = 9

Strong Turbulence conditions

β
1
 = 0.5, β

2
 = 1.8

α
1
 = 1.8621, α

2
 = 0.7638

Figure 2.1: Comparison between PDFs obtained analytically and via Monte-Carlo
simulations for different values of λ and σ.

2.3.1 Generalized Misalignment Channel Model

Assuming Gaussian beam with initial beamwaist, w0, and radius of curvature, F0,

propagating through atmospheric turbulence of distance z, the beam waist at the

receiver of radius a in long term, wz, can be defined [18, Eq. 45, p.238]. Given a radial

displacement r, the fraction of collected power at distance z can be approximated by

Ip(r : z) ≈ A0 exp

(
− 2r2

w2
zeq

)
, (2.16)

where wzeq is the equivalent beamwidth defined as wzeq = w2
z

√
A0π

2v exp{−v2} such that

A0 = [erf(v)]2 is the maximum fraction of the collected power (i.e. the fraction of

power at r = 0) , v =
√

a2π
2w2

z
is the ratio between the aperture radius a and the
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(a) Zero boresight: No misalignment

(b) Bi-Directional misalignment: zero
boresight and identical jitters [35]

(c) Uni-Directional misalignment:
zero boresight [50]

(d) Bi-Directional misalignment: non-
zero boresight and identical jitters

(e) Bi-Directional misalignment: zero
boresight and non-identical jitters

Figure 2.2: Beam footprint on the detector plane.
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beamwidth wz [35]. It is important to note that the approximation in (2.16) is valid

when wz > 6a [34]. At the receiver, the radial displacement vector can be expressed

as r = [ x y ]T , where x and y represent the vertical and horizontal displacements of

the beam in the detector plane. Thus, the distribution of r = |r| =
√
x2 + y2 depends

on the distribution of x and y. Assuming independent Gaussian displacements along

the horizontal and elevation axes, then r can be distributed according to the following

distributions.

2.3.1.1 Beckmann Distribution

The Beckmann distribution3 is a versatile model that includes many distributions

as special cases. It is a four-parameter distribution modeling the envelope of two

independent Gaussian RVs. In our case, if both displacements are nonzero mean

Gaussian RVs with different jitters, i.e. x ∼ N (µx, σx) and y ∼ N (µy, σy), then

r = |r| =
√
x2 + y2 follows the Beckmann distribution [1, Eq. 2.37] [51, Eq. (31)]

with PDF given by

fr(r) =
r

2πσxσy

∫ 2π

0

exp

(
−(r cos θ − µx)2

2σ2
x

− (r sin θ − µy)2

2σ2
y

)
dθ. (2.17)

With the PDF of r, we can calculate the nth moment of Ip defined in (2.16) as

E[Inp ] = E

[
An0 exp

(
−2nr2

w2
zeq

)]
= An0Mr2

(
− 2n

w2
zeq

)
, (2.18)

3The Beckmann distribution [51] is a four-parameter distribution corresponding to the envelope
of two independent Gaussian RVs, each with their own mean and variance. It is different than the
Log-Normal Rican distribution which can be also called as Beckamann distribution [17].
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whereMr2(.) is the moment-generating function of the random variable r2 and given

by [1, Eq. (2.38)]

Mr2(s) =
1√

(1− σ2
xs)(1− σ2

ys)
exp

(
µ2
xs

1− 2σ2
xs

+
µ2
ys

1− 2σ2
ys

)
. (2.19)

Therefore, the nth moment of Ip becomes in this case

E[Inp ] =
An0ξxξy√

(n+ ξ2
x)(n+ ξ2

y)
exp

(
− 2n

w2
zeq

[
µ2
x

1 + n
ξ2
x

+
µ2
y

1 + n
ξ2
y

])
, (2.20)

where ξx =
wzeq
2σx

and ξy =
wzeq
2σy

, are the ratio between the equivalent beam width and

the jitter variance for each direction.

2.3.1.2 Rayleigh Distribution

When both displacements have zero mean and common variance, i.e. µx = µy = 0

and σx = σy = σ as illustrated in Fig. 2.2b, r is a Rayleigh distributed RV whose

PDF is given by

fr(r) =
r

σ2
exp

(
− r2

2σ2

)
. (2.21)

The PDF of Ip reduces in this case to [35]

fIp(Ip) =
ξ2

Aξ
2

0

Iξ
2−1
p , (2.22)

where ξ =
wzeq
2σ

. The nth moment can be deduced from (2.20) as

E[Inp ] =
An0ξ

2

n+ ξ2
. (2.23)
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2.3.1.3 Rician Distribution

If both displacements have distinct nonzero mean and common variance, i.e. µx 6= µy,

σx = σy = σ, as shown in Fig. 2.2d, then r is a Rician distributed RV with PDF

given by

fr(r) =
r

σ2
exp

(
−(r2 + s2)

2σ2

)
I0

(rs
σ2

)
, (2.24)

where s =
√
µ2
x + µ2

y and I0(.) is the modified Bessel function of the first kind of

order zero. This case has been visited in [34] and the PDF of the pointing error has

been derived as

fIp(Ip) =
ξ2 exp

(
−s2
2σ2

)
Aξ

2

0

Iξ
2−1
p I0

(
s√
2σ2

√
−wzeq ln

(
Ip
A0

))
. (2.25)

The nth moment can be deduced also from (2.20) as

E[Inp ] =
An0ξ

2

n+ ξ2
exp

(
− 2n ξ2 s

w2
zeq(n+ ξ2)

)
, (2.26)

which matches [34, Eq. 6].

2.3.1.4 Hoyt Distribution

Here, zero mean but different variances are assumed for the two displacements direc-

tions (i.e. µx = µy = 0 and σx 6= σy) as shown in Fig. 2.2e. In this case, r becomes a

Hoyt distributed RV with PDF given by

fr(r) =
r

qσ2
y

exp

(
−r

2(1 + q2)

4q2σ2
y

)
I0

(
r2(1− q2)

4q2σ2
y

)
, (2.27)
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where q = σx
σy

= ξy
ξx

. This special case was studied in [36] and the PDF of Ip was found

to be given by

fIp(Ip) =
ξxξy
A0

(
Ip
A0

) ξ2x(1+q2)

2
−1

I0

(
ξ2
x(1− q2)

2
ln
Ip
A

)
, 0 ≤ Ip ≤ A. (2.28)

The nth moment can be deduced from (2.20) as

E[Inp ] =
An0ξxξy√

(ξ2
x + n)(ξ2

y + n)
. (2.29)

2.3.1.5 Zero-mean Single-sided Gaussian Distribution

In this scenario, the displacement occurs in only one direction either parallel or or-

thogonal to the detection plane (i.e. µx = µy = 0, σx = σ, and σy = 0). This model

was first introduced in [50] and the PDF of Ip can be derived in this case by simple

RV transformation of (2.16), yielding

fIp(Ip) =
ξIξ

2−1
p

Aξ
2

0

√
π ln

(
A0

Ip

) , (2.30)

and the resulting nth moment can be expressed as

E[Inp ] =
ξAn0√
n+ ξ2

. (2.31)

2.3.1.6 Non-zero Mean Single-sided Gaussian Distribution

In this case, we assume µx = µy = µ, σx = σ, and σy = 0 and we can obtain the PDF

of Ip as

fIp(Ip) = Iξ
2−1
p ξ2

√√√√ µ
√

2

w
√

ln A0

Ip

exp

(
−2µ2ξ2

w2

)
I− 1

2

(
2µξ2

w

√
2 ln

A0

Ip

)
, (2.32)
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and then the nth moment can as a result be expressed as

E[Inp ] =
An0ξ√
n+ ξ2

exp

(
−2nµ2(n+ 2ξ2)

w2(n+ ξ2)

)
. (2.33)

2.4 Modeling of Composite Channels

In this section, the combined effect of turbulence and pointing errors is presented.

Due to some mathematical restrictions, the turbulence is modeled by double GG

and the pointing error is modeled by the Rayleigh distribution. In specific, the joint

distribution of I = IaIp is given by [40,52,53]

fI(I) =

∫
Ip

fI|Ip(I|Ip)fIp(Ip) dIp , 0 ≤ Ip ≤ A0 , (2.34)

with

f(I|Ip) =
1

Ip
fIa

(
I

Ip

)
, 0 ≤ I ≤ A0Ia . (2.35)

Inserting (2.22) and (2.15) in (2.34), and using [44, Eq. (07.34.21.0084.01)] yields

fI(I) =
ξ2σβ1− 1

2λβ2− 1
2 (2π)1−λ+σ

2

Γ(β1)Γ(β2)I
G0,λ+σ+1
λ+σ+1,1

λλσσΩσ
1Ωλ

2

βσ1 β
λ
2

(
A0

I

)α2λ
∣∣∣∣∣κ1

κ2

 , (2.36)

where κ1 = 1 − ξ2

α2λ
,∆(σ : 1 − β1),∆(λ : 1 − β2), and κ2 = −ξ2

α2λ
. It is important to note

that when the pointing error effect approaches zero4, (2.36) coincides mathematically and

numerically with [46, Eq. (4)].

4Non-pointing error case occurs when ξ →∞ and A0 → 1.
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2.5 Conclusion

In this chapter, we focused on two impairments which affect FSO systems and which typ-

ically lead to considerable loss namely, atmospheric turbulence and beam misalignment.

First, different statistical distributions of atmospheric conditions were visited. Then, a new

and general model for the pointing error impairments based on the generalized Beckmann

distribution was discussed. The pointing error model is generic and includes previously

published models as special cases. Then, we derived the joint PDF of the irradiance un-

der the impact of Rayleigh pointing errors over double GG turbulence channel. Our PDF

expression matches Kashani et al. [32] results mathematically and numerically when the

pointing errors effect approaches zero.
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Chapter 3

Performance of FSO Links over Double Generalized Gamma

Channels with Pointing Errors

3.1 Introduction

In this chapter, we propose a new unified model for the performance analysis of a single

FSO communication link that accounts for the impact of pointing errors and type of receiver

detector. More specifically, we present unified closed-form expressions for the cumulative

distribution function, the probability density function, the moment-generating function, and

the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission

system. We then use these unified expressions to evaluate performance measures such as

the average bit error rate (BER), the outage probability (OP), and the ergodic capacity

(EC) of a single FSO link operating over double GG fading channel model and under the

impact of pointing errors.

3.2 System Model

Let us consider a single FSO link with two types of detection techniques, namely heterodyne

and Intensity Modulation/Direct Detection (IM/DD)1. Data transmission is affected by

path loss, atmospheric turbulence conditions, pointing errors, and additive white Gaussian

1Heterodyne detection mixes the optical field once it is received with locally generated signal and
then detection is carried on. Heterodyne provides better performance, however, it is complex to
implement. On the other hand, IM/DD is widely used in current FSO systems due to its simplicity.
IM/DD depends on the intensity of the optical field to detect the transmitted data.
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noise (AWGN)2 that can be modeled as

y = ηIx+ w , (3.1)

where y is the received signal, η is the effective photoelectric conversion ratio, x ∈ {0, 2Pt}

is the on-off keying (OOK) modulated transmitted signal (i.e. Pt = 1/2), w refers to the

AWGN sample with power spectral density equals to N0, and I is the receiver irradiance

that is defined as I = IaIp where Ia reflects the turbulence-induced fading and follows

double GG distribution with PDF given by (2.15) and Ip reflects the pointing error effect

with PDF equals to (2.22). The joint PDF of I is expressed in (2.36) [40].

3.3 Statistical Properties of the Signal-to-Noise Ratio

In order to carry out a performance analysis of any FSO communication system, it is

crucial to identify the statistics of the end-to-end SNR, γ. Examining several research work

reported in the literature, it is noticed that the SNR is defined differently with respect to the

receiver detector. In this section, we first examine each definition of the SNR to conclude

with a unified expression accounting for any receiver detector. Then, based on the general

definition of the electrical SNR, we find the statistical properties.

3.3.1 Probability Density Function

Heterodyne Detection In the case of this receiver, the average SNR µ1 is defined as [53]

µ1 =
ηE[I]

N0
, (3.2)

2Most optical wireless systems operate in shot-noise limited regime and in that case the ambient
light shot noise component dominants the shot noise generated from signal and the circuit. Thus, the
resulting noise of the channel becomes white shot noise and can be distributed as Poisson random
variables. By the central limit theorem, as the number of random variables approaches infinity, the
cumulative distribution function is approximated by Gaussian distribution [2].
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where E[I] is the first moment of I which can be found by

E[I] ,
∫ ∞

0
IfI(I)dI, (3.3)

where fI(I) is defined in (2.36). After solving the integration followed by some mathematical

manipulations, E[I] is expressed as

E[I] =
A1B1A0

(1 + ξ2)A
1
α2λ

2

= hA0 , (3.4)

where A1 = ξ2σβ1−
1
2 λβ2−

1
2 (2π)1−λ+σ

2

Γ(β1)Γ(β2) , A2 =
βσ1 β

λ
2

λλσσΩσ1 Ωλ2
, B1 =

∏σ+λ
i=1 Γ

(
1
α2λ

+ κ0,i

)
, where κu,v

is the vth-term of κu, and h = A1B1/(1 + ξ2)A
1
α2λ

2 . It can be deduced from (3.2) that the

SNR at the output of heterodyne receiver is defined as

γ =
ηI

N0
, (3.5)

where η
N0

= µ1

hA0
. Following simple RV transformation of (2.36), the PDF of γ can be then

expressed as

fγ(γ) =
A1

γ
G0,λ+σ+1
λ+σ+1,1

A−1
2 h−α2λ

(
µ1

γ

)α2λ
∣∣∣∣∣κ1

κ2

 . (3.6)

Intensity Modulation/Direct Detection Under this type of detection, the average elec-

trical SNR is given by [40]

µ2 =
(ηE[I])2

N0
, (3.7)

where E[I] is defined in (3.4). This leads to define the electrical SNR as

γ =
(ηI)2

N0
, (3.8)
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where η2

N0
= µ2

h2A2
0
. Again, the PDF of γ can be derived by RV transformation of (2.36)

fγ(γ) =
A1

2γ
G0,λ+σ+1
λ+σ+1,1

A−1
2 h−α2λ

(
µ2

γ

)α2λ
2

∣∣∣∣∣κ1

κ2

 . (3.9)

Unified Expression Observing (3.6) and (3.9) and utilizing [44, Eq. (07.34.17.0012.01)],

a unified PDF can be obtained as

fγ(γ) =
A1

rγ
Gλ+σ+1,0

1,λ+σ+1

A2h
α2λ

(
γ

µr

)α2λ
r

∣∣∣∣∣κ̃2

κ̃1

 , (3.10)

with3

E[γ] = γr =
E[Ir]

E[I]r
µr, (3.11)

where κ̃1 = 1 − κ1 = ξ2

α2λ
,∆(σ : β1),∆(λ : β2), κ̃2 = 1 − κ2 = α2λ+ξ2

α2λ
, µr = (ηE[I])r/N0,

and r refers to the detection method (i.e. r = 1 represents heterodyne detection and r

= 2 represents IM/DD). This resulting PDF is generic and it reduces to the Gamma-

Gamma fading model with pointing errors case when α1 = α2 = 1, Ω1 = Ω2 = 1,

λ = σ = 1, β1 = α, and β2 = β as in [37, Eq. (3)] [37, Eq. (1)].

3.3.2 Cumulative Distribution Function

The cumulative distribution function (CDF) is defined as

Fγ(γ) =

γ∫
0

fγ(γ) dγ, (3.12)

3The average SNR γ is defined as γr = ηrE[Ir]/N0 while the average electrical SNR µr is given
by µr = ηrE[I]r/N0 [54]. Thus, the relation between the average SNR and the average electrical

SNR is trivial given that E[I2]
E[I]2 , σ2

si + 1, where σ2
si is the scintillation index [55].
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can be obtained by utilizing [44, Eq. (07.34.21.0084.01)] yielding

Fγ(γ) =
ξ2σβ1−

1
2λβ2−

1
2 (2π)1− r(λ+σ)

2 rβ1+β2−2

α2λΓ(β1)Γ(β2)
Gu,1
r+1,u+1

C ( γ

µr

)v ∣∣∣∣∣1, κ3

κ4, 0

 , (3.13)

where v = α2λ, u = r(λ+ σ+ 1), C =
(
A2h

α2λ/rλ+σ
)r
, κ3 = [∆(r : κ̃2)] comprised of

r terms, and κ4 = [∆(r : κ̃1)] comprised of r(λ+ σ + 1) terms such that [∆(z : am)] ,

∆(z : a1),∆(z : a2) . . . ,∆(z : am). The CDF can be given in a simpler form in terms of

basic elementary functions by first inverting the argument of the Meijer’s G function

using [43, Eq. (9.31.2)] and then applying [37, Eq. (24)] as

lim
x→∞

Gm,n
p,q

x ∣∣∣∣∣a1, . . . , an, . . . , ap

b1, . . . , bm, . . . , bq

 =
n∑
k=1

xak−1

∏n
l=1;l 6=k Γ(ak − al)

∏m
l=1 Γ(1 + bl − ak)∏p

l=n+1 Γ(1 + al − ak)
∏q

l=m+1 Γ(ak − bl)
,

(3.14)

with ak − al 6= 0,±1,±2, · · · : (k, l = 1, . . . n; k 6= l) and ak − bl 6= 1, 2, 3, . . . ; (k =

1, . . . , n; l = 1, . . . ,m). Thus, the CDF in (3.13) can be expressed asymptotically at

high SNR as

Fγ(γ) u
µr�1

ξ2σβ1−
1
2λβ2−

1
2 (2π)1− r(λ+σ)

2 rβ1+β2−2

α2λΓ(β1)Γ(β2)

×
u∑
k=1

[
C−1

(
µr
γ

)v]−κ4,k
∏u

l=1,l 6=k Γ (κ4,l − κ4,k)

κ4,k

∏r
l=1 Γ (κ3,l − κ4,k)

. (3.15)

Hence, the asymptotic expression of the CDF is dominated by min( ξ
2

rv
, β1

rσ
, β2

rλ
), where

ξ2

rv
represents the first term, β1

rσ
represents the (r + 1)th term and β2

rλ
represents the

(r + rσ + 1)th term in κ4 i.e. when the difference between the parameters is large

enough then the asymptotic expression of the CDF in (??) is dominated by a single

term corresponding to the minimum of the three parameters. On the other hand,

if the difference between any two parameters is not significant, then the asymptotic
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expression of the CDF in (??) is dominated by the summation of two terms corre-

sponding to the first and second ranked minimum of the three parameters mentioned

above.

3.3.3 Moment Generating Function

The moment generating function (MGF) that is defined as

Mγ(s) , E[e−γs], (3.16)

can be expressed in terms of the CDF using integration by parts as [37, Eq. (6)]

Mγ(s) = s

∫ ∞
0

exp(−γs)Fγ(γ). (3.17)

Substituting (3.13) in (3.17) and utilizing [44, Eq. (07.34.21.0088.01)], the MGF can

be expressed as

Mγ(s) =
ξ2σβ1−

1
2λβ2−

1
2 (2π)

3−r(λ+σ)−α2λ
2 rβ1+β2−2

√
α2λΓ(β1)Γ(β2)

Gu,v
r+v,u

C ( v

sµr

)v ∣∣∣∣∣∆(v : 1), κ3

κ4

 .

(3.18)

In a similar fashion, the MGF can be expressed asymptotically at high SNRs as

Mγ(s) u
µr�1

ξ2σβ1−
1
2λβ2−

1
2 (2π)

3−r(λ+σ)−α2λ
2 rβ1+β2−2

√
α2λΓ(β1)Γ(β2)

×
u∑
k=1

[
C−1

(sµr
v

)v]−κ4,k

∏u
l=1,l 6=k Γ (κ4,l − κ4,k)

∏v
l=1 Γ ({∆(v : 0)}l + κ4,k)∏r

l=1 Γ (κ3,l − κ4,k)
.

(3.19)

Again, the dominant terms can be derived in a similar fashion as the CDF in Section

3.3.2.



54

3.3.4 Moments

The moments of γ is defined as

E[γn] ,
∫ ∞

0

γnfγ(γ)dγ. (3.20)

Placing (3.10) in (3.20) and utilizing [43, Eq. (7.813.1)], the moments can be obtained

in a simple closed-form expression as

E[γn] =
A1B2µ

n
r

(nr + ξ2)hnrA
nr
α2λ

2

, (3.21)

where B2 =
∏σ+λ

i=1 Γ
(
nr
v

+ κ0,i

)
.

3.4 Performance Analysis Measures

In this section, the performance of a single FSO link operating over double GG fading

channel is studied based on the results provided in Section 3.3. In specific, closed-form

expressions of the OP, AoF, BER and EC are derived.

3.4.1 Outage Probability

The outage probability Pout is defined as follows:

Pout = Pr[γ < γth] = Fγ(γth). (3.22)

Accordingly, the OP of the link is obtained by substituting (3.13) into (3.22).

3.4.2 Higher-Order Amount of Fading

In this section, the amount of fading that can be considered as an important measure

to assess the performance of any wireless communication system is presented. The
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Parameters p and q Modulation scheme

p = 0.5 and q = 0.5 Orthogonal coherent binary frequency shift keying (CBFSK)

p = 0.5 and q = 1 Antipodal coherent binary phase shift keying (CBPSK)

p = 1 and q = 0.5 Orthogonal noncoherent binary frequency shift keying (NCBFSK)

p = 1 and q = 1 Antipodal differentially coherent binary phase shift keying (DBPSK)

Table 3.1: Different Modulation schemes with respect to the parameters p and q [1].

AoF aims to define the distribution of the SNR of the received signal [56]. The

nth-order AoF for γ is defined as [57]

AFγ =
E[γn]

E[γ]n
− 1. (3.23)

Using this definition and substituting (3.21) into it, the nth-order AF can be rewritten

as

AF (n)
γ =

(r + ξ2)n

An−1
1 Bn−1

2 (nr + ξ2)
− 1 . (3.24)

3.4.3 Average Bit Error Rate

The average bit error rate, P b, is the average number of bit errors per unit time. To

obtain an analytical expression of the average BER of the system, the conditional

error probability (CEP) formula for an AWGN channel is averaged over the fading

distribution. In other words, Wojnar in [58] unified the CEP to span coherent, differ-

entially coherent and noncoherent modulations of binary signaling transmitted over

the AWGN channel as

Pe(ε|γ) =
Γ(p, qγ)

2Γ(p)
, (3.25)

where p and q refer to different modulation/detection schemes as shown in Table.

3.1 and Γ(., .) is the complementary incomplete gamma function. Hence, the average



56

BER is then obtained by averaging (3.25) over the fading PDF as

P b =

∫ ∞
0

Γ(p, qγ)

2Γ(p)
fγ(γ)dγ, (3.26)

=

∫ ∞
0

Γ(p, qγ)

2Γ(p)
dFγ(γ), (3.27)

and after applying integration part in (3.27), the average BER can be expressed in

terms of the CDF of the fading RV as [59, Eq. (12)]

P b =
qp

2Γ(p)

∫ ∞
0

exp(−qγ)γp−1Fγ(γ)dγ . (3.28)

Assuming double GG fading channel with pointing error impairments, P b can be

derived by placing (3.13) into (3.28) and utilizing [44, Eq. (07.34.21.0088.01)] as

P b =
ξ2σβ1−

1
2λβ2−

1
2 (2π)

3−r(λ+σ)−α2λ
2 rβ1+β2−2

2Γ(p)Γ(β1)Γ(β2)(α2λ)
3
2
−p

Gu,v+1
r+v+1,u+1

C ( v

qµr

)v ∣∣∣∣∣∆(v : 1− p), 1, κ3

κ4, 0

 .

(3.29)

Interestingly, the expression in (3.29) can be also approximated at high SNR using

elementary functions as follows

P b u
µr�1

ξ2σβ1−
1
2λβ2−

1
2 (2π)

3−r(λ+σ)−α2λ
2 rβ1+β2−2

2Γ(p)Γ(β1)Γ(β2)(α2λ)
3
2
−p

×
u∑
k=1

[
C−1

(qµr
v

)v]−κ4,k

∏u
l=1,l 6=k Γ (κ4,l − κ4,k)

∏v
l=1 Γ ({∆(v : p)}l + κ4,k)

κ4,k

∏r
l=1 Γ (κ3,l − κ4,k)

.

(3.30)

The dominant terms for P b are obtained the same way as the CDF was treated in

Section 3.3.2. If the conditions of a single dominant term are satisfied then (3.30) can
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be reduced to the very simple form as [60]

P b u (Gc · µr)−Gd , (3.31)

where Gc refers to the coding gain while Gd is referred to as the diversity gain.

Therefore, the diversity and coding gains of the system under consideration can be

simply expressed in terms of elementary functions as follows

Gd = vmin

(
ξ2

rv
,
β1

rσ
,
β2

rλ

)
, (3.32)

and

Gc =
C−1/vq

v
×

[
ξ2σβ1−

1
2λβ2−

1
2 (2π)

3−r(λ+σ)−α2λ
2 rβ1+β2−2

2Γ(p)Γ(β1)Γ(β2)(α2λ)
3
2
−p

×
∏u

l=1,l 6=k Γ (κ4,l − κ4,k)
∏v

l=1 Γ ({∆(v : p)}l + κ4,k)

κ4,k

∏r
l=1 Γ (κ3,l − κ4,k)

]−1/Gd

, (3.33)

where k is the index of the min
(
ξ2

rv
, β1

rσ
, β2

rλ

)
which can be one of the following possi-

bilities k = 1 or k = r + 1 or k = r + rσ + 1.

3.4.4 Ergodic Capacity

The Shannon capacity of a communication channel is defined as the upper bound for

the maximum rate of transmission at small BER. Applying the theorem to AWGN

channel, the capacity can be written as

C = B log2(1 + γend), (3.34)

where B is the channel bandwidth and γend is the end-to-end SNR of the communica-

tion channel. Since the end-to-end SNR for fast fading channel is a random variable,
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then the channel capacity must be considered as random too and its average, known

as ergodic capacity, is defined as the average practical best rate for error-free trans-

mission4.

Considering that perfect channel-state information (CSI) at both the receiver and

the transmitter of an FSO communication system, the ergodic capacity can be defined

as

C , E[log2(1 + δγ)] (3.35)

=

∫ ∞
0

log2(1 + δγ)fγ(γ)dγ, (3.36)

where δ = 1 for heterodyne detection (r = 1) and δ = e/2π for IM/DD (r = 2). It

is very important to note that the expression in (3.35) is exact for r = 1 while it is a

lower bound for the case of r = 2 [62, Eq. (26)] [63, Eq. (7.43)].

Expressing log2(1 + δγ) as ln(1+δγ)
ln(2)

, C is obtained by using (3.36) along with the

identities [44, Eq. (07.34.21.0013.01)] and

ln(1 + x) = G1,2
2,2

x ∣∣∣∣∣1, 11, 0

 , (3.37)

yielding

C =
ξ2σβ1−

1
2λβ2−

1
2 (2π)2−α2λ− r(λ+σ)

2 rβ1+β2−2

ln(2)Γ(β1)Γ(β2)α2λ
Gu+v+1,v
r+v+1,u+v+1

C ( 1

δµr

)v ∣∣∣∣∣∆(v : 0), 1, κ3

κ4,∆(v : 0), 0

 .

(3.38)

4Although optical channel is well described as slow varying channel where coherence time is much
greater than transmission time, ergodic capacity is still a widely adopted metric. The suitability of
ergodic capacity as performance metric improves in this work as we consider pointing errors which
typically increase the rate of channel fluctuations. In the case of heterodyne detection (r = 1) the
expression C = E[log2(1 + δγend)] represents the exact ergodic capacity where δ = 1. However, in
the case of IM/DD (r = 2) the expression C = E[log2(1 + δγ)] where δ = e/2π represents a tight
lower bound for capacity is given as [61] [62, Eq. (26)] [63, Eq. (7.43)].
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Moreover, C can be written asymptotically at high SNR as

C u
µr�1

ξ2σβ1−
1
2λβ2−

1
2 (2π)2−α2λ− r(λ+σ)

2 rβ1+β2−2

ln(2)Γ(β1)Γ(β2)α2λ

×
u+v+1∑
k=1

[
C−1 (δµr)

v]−κ7,k

∏u+v+1
l=1,l 6=k Γ (κ7,l − κ7,k)

∏v
l=1 Γ ({∆(v : 1)}l + κ7,k)

Γ(1− κ7,k)
∏r

l=1 Γ (κ3,l − κ7,k)
,

(3.39)

where κ7 = κ4,∆(v : 0), 0 and can be reduced to the dominant terms slightly different

then in the case of Sec. 3.3.2. The asymptotic expression of the capacity in (3.39)

is dominated by the summation of two terms, one corresponds to min
(
ξ2

rv
, β1

rσ
, β2

rλ
, ε
v

)
such that ε

v
is the (u+ 1)th term in κ7 where ε is a small error introduced to validate

the conditions of [37, Eq. (24)]. The second term corresponds to the (u+ 2)th of κ7.

In another way, the channel capacity can be written in terms of the AoF at high

SNR as [48, Eqs. (8) and (9)]

C u
µr�1

log(γ) +
∂

∂n
AF (n)

γ

∣∣∣∣∣
n=0

, (3.40)

and with simple algebraic manipulation, it can be simplified further to [37]

C u
µr�1

log(γ) +
∂

∂n

(
E[γn]

E[γ]n
− 1

) ∣∣∣∣∣
n=0

, (3.41)

= log(γ) +

(
1

E[γ]n
∂

∂n
E[γn] + E[γn]

∂

∂n

1

E[γ]n

) ∣∣∣∣∣
n=0

,

= log(γ) +

(
1

E[γ]n
∂

∂n
E[γn]− E[γn]

E[γ]n
log(E[γ])

) ∣∣∣∣∣
n=0

,

= log(γ) +

(
1

E[γ]n
∂

∂n
E[γn]− E[γn]

E[γ]n
log(γ)

) ∣∣∣∣∣
n=0

,

=
∂

∂n
E[γn]

∣∣∣∣∣
n=0

. (3.42)

Thus, high SNR approximation for the ergodic capacity can be obtained by evaluating
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the first derivative of the moments (3.21) at n = 0 which is given by

∂

∂n
E[γn] =

A1B2µ
n
r

(nr + ξ2)hnrA
nr
v

2

[
log(µr)− r log(h)− r log(A2)

v
+
r

v
B3 −

r

nr + ξ2

]
,

(3.43)

where B3 =
∑σ+λ

i=1 ψ
(
nr
v

+ κ0,i

)
, such that ψ(.) is the digamma function [43, Eq.

(8.360.1)]. Evaluating (3.43) at n = 0, the ergodic capacity at high SNR can be

simply expressed as

C u
µr�1

A1B2|n=0

ξ2

[
log(δµr)− r log(h)− r log(A2)

v
+
r

v
B3|n=0 −

r

ξ2

]
. (3.44)

In addition, the ergodic capacity at low SNR regime can be approximated by the first

moment of the SNR. Placing n = 1 in the moments (3.21), the asymptotic ergodic

capacity at low SNR can be expressed in terms of elementary functions as

C u
µr�1

A1B2δµr

(r + ξ2)hrA
r
α2λ

2

. (3.45)

3.5 Numerical Examples

In this section, we present some selected numerical examples to prove the validity of

the analytical results. Also, the impact of turbulence conditions and pointing errors

on the performance of the system under both detection techniques (i.e heterodyne

and IM/DD) is shown. In the simulations, two scenarios of atmospheric turbulence

conditions are considered, namely strong (i.e lower values of β1 and β2) and moderate

based on the results reported in [32]. For strong turbulence, we consider the following

set of parameters: β1 = 0.5, β2 = 1.8, α1 = 1.8621, α2 = 1, Ω1 = 1.5074, and Ω2 = 1

such that λ and σ are chosen to satisfy the conditions to be 17 and 9, respectively. On

the other hand, for moderate turbulence conditions, we assume α1 = 2.1690, α2 = 1,
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β1 = 0.55, β2 = 2.35, Ω1 = 1.5793, and Ω2 = 1 where λ and σ are chosen to be 28

and 13, respectively [46]. In both cases, it is assumed that α2 is an integer to satisfy

the condition α2λ being an integer.
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Figure 3.1: Outage probability of a single FSO link under strong and moderate
turbulence conditions for both detection techniques, heterodyne (r = 1) and IM/DD
(r = 2) with ξ = 1.

Starting with the outage probability of a single FSO link under two types of

detection techniques experiencing different turbulence condition is presented in Fig.

3.1. Moreover, the impact of pointing error is presented in Fig. 3.2. It is worthy of

note that simulation results match the analytical work. In particular, the asymptotic

results based on all terms match the analytical ones perfectly while the rest of the

results (based on two or single terms) converge very fast even for low SNR values. It is

observed as well that when the system operates on IM/DD, it is prone to outage more

than if heterodyne is considered. Moreover, high pointing errors effect (i.e ξ → 0)
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Figure 3.2: The impact of pointing errors on the outage probability of a single FSO
link under strong and moderate turbulence conditions using IM/DD technique (r = 2)
with varying pointing errors.

leads to higher probability of system outage.

In addition, the average BER performance under differential binary phase shift

keying (DBPSK) modulation, where p = 1 and q = 1, for single link FSO system

was evaluated in Figs. 3.3 and 3.4. We can observe that the simulation results along

with the asymptotic (utilizing all terms in the summation as in (3.30)) are match-

ing with the exact analytical results. However, lower values of ξ (i.e. high pointing

errors effect) affect the convergence of asymptotic results (utilizing only the domi-

nant terms). Specifically, in Fig. 3.4, we get asymptotic results by utilizing a single

dominant term of Eq. (3.15) only for the case of ξ = 6.7. This is mainly due to a

significance difference between ξ2

rv
, β1

rσ
, β2

rλ
which leads to a dominate term correspond-

ing to min( ξ
2

rv
, β1

rσ
, β2

rλ
). In general, turbulence conditions and pointing errors result
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Figure 3.3: Average bit error rate of a single FSO link under strong and moderate
turbulence conditions for both detection techniques, heterodyne (r = 1) and IM/DD
(r = 2) with ξ = 1.

in a considerable degradation in the error performance. Yet, heterodyne detection

provides better performance than IM/DD.

Finally, we show the impact of pointing errors on the ergodic capacity of a single

FSO link under double GG strong turbulence for IM/DD with varying ξ in Fig. 3.5.

We can notice that high pointing errors effect reduces the capacity of the system. In

addition, we have evaluated the asymptotic results via two methods (i.e Meijer’s G-

function expansion and moments approximation). The asymptotic results derived in

(3.39) (utilizing all terms in the summation) match the exact results perfectly while

the other asymptotic (utilizing the dominant terms) converge faster for the case of

low pointing errors effect. In the same way, the exact ergodic capacity and asymptotic

results for low SNR regime is presented in Fig. 3.6 as derived earlier in (3.45).
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Figure 3.4: The impact of pointing errors on the average bit error rate of a single
FSO link under strong and moderate turbulence conditions using IM/DD technique
(r = 2) with varying pointing errors.

3.6 Conclusion

In this chapter, we derived unified, novel, and closed-form expressions for statistical

properties of the end-to-end SNR of a single FSO link transmission system taking

pointing errors into account. Moreover, we presented link performance analysis by

offering closed-form expressions for the outage probability, the average BER, the

higher amount of fading in addition to the ergodic capacity in terms of the Meijer’s

G-function. Finally, for high SNR regime we expressed all of our derivations in terms

of elementary functions utilizing an asymptotic expansion for the Meijer’s G-function.
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Figure 3.5: Ergodic capacity of a single FSO link under strong turbulence conditions
for IM/DD (r = 2) with varying ξ along with asymptotic results at high SNR.
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Figure 3.6: Ergodic capacity of a single FSO link under strong turbulence conditions
for IM/DD (r = 2) with varying ξ along with asymptotic results at low SNR.
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Chapter 4

Performance of FSO Links Under a Generalized Pointing

Error Model

4.1 Introduction

Identifying the statistical model of the received irradiance that counts for both scin-

tillation and pointing error facilities the performance analysis of FSO systems. To

illustrate, the scintillation effect is widely modeled as Log-Normal for weak turbu-

lence, Gamma-Gamma for strong turbulence [16,17,64–68], and double GG for wide

range of turbulence conditions [46]. In terms of the pointing error, it was first modeled

in [35] by a Rayleigh distribution, in [36] by a Hoyt distribution, in [34] by a Rician

distribution and more generally by a Beckmann distribution [51,69]. Considering ag-

gregated channels in which the combined effect of the pointing errors and turbulence

is taken into account becomes a harder task, especially when considering general mod-

els of each. However, there are some attempts reported in the literature. Namely, the

Gamma-Gamma\Rayleigh channel model was investigated in [37], the double gener-

alized Gamma\Rayleigh channel was investigated in [38], the Log-Normal\Rician was

investigated in [34], and the Málaga (M) \Rayleigh channel model was investigated

in [39]. So far, there is lack of studies on the performance analysis FSO systems

assuming Beckmann distribution for the pointing error. Moreover, obtaining closed-

form expressions of any of the performance measures might not be feasible especially

in the case of the irradiance being a mixture of two independent processes. This has

raised the interest to investigate the asymptotic limit at high signal-to-noise ratio.
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- Turbulence Only
Turbulence and Pointing

Error
IM/DD ΓΓ [66,70,71] [40], [37]

LN [66,70] *
Other [72] [73] [38]

Heterodyne ΓΓ * [74], [37]
Detection LN * *

Other * [38]

Table 4.1: Summary of research work on ergodic capacity.

In this chapter, the focus is on of the fundamental information-theoretic measures,

namely on the channel capacity as explained in Sec. 3.4.4. Several research works

have been reported in the literature aiming to find closed-form expressions of the

ergodic capacity of FSO systems as summarized in Table. 4.1. It is noticed that

the studies focusing on the joint effect of turbulence and pointing errors assume zero

boresight and the same jitter variance for horizontal and vertical misalignment.

4.2 Outline and Objective

In this chapter, based on the generalized pointing error model introduced in Sec.

2.3.1.1. We derive the asymptotic ergodic capacity of FSO systems under the joint

impact of turbulence and generalized pointing error impairments.

4.3 System Model

In this section, we assume that the beam is not perfectly aligned to the center of

the detection plane as seen in Fig. 4.1. In specific, the beam is initially pointing

at A = [q p]t in the detection plane and it is detected by the aperture of radius a

placed at B = [u v]t. Moreover, due to important initialization or other effect, A may

not collocated with B. Also, the beam may experience random displacements in two

directions namely, horizontal, x and vertical, y as the result of building sway. It is

commonly assumed that both displacements are modeled as independent Gaussian
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Figure 4.1: A general setup of Fig. 2.2a.

random variable i.e. x ∼ N (µx, σx) and y ∼ N (µy, σy). Then the distance between

the center of the beam footprint and the center of the ith aperture can be expressed

as

r =

∥∥∥∥A− Bi +

x
y

∥∥∥∥ =

∥∥∥∥
x̂
ŷ

∥∥∥∥. (4.1)

It follows that the attenuation due to geometric spread and pointing errors can be ap-

proximated by 2.16 where ri =
√
x̂2 + ŷ2 such that x̂ ∼ N (µ̂x, σ

2
x) and ŷ ∼ N (µ̂y, σ

2
y),

µ̂x = µx + q − ui, µ̂y = µy + p− vi,

4.4 Asymptotic Ergodic Capacity

In the high SNR regime, the channel capacity can be easily derived by utilizing the nth

moment of the effective receive SNR as in (3.42). The nth moment of the electrical

SNR is given as

E[γn] =

(
ηr

N0

)n
E[Irn] , (4.2)
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such that the nth moment of the irradiance, assuming Ia and Ip being statistically

independent processes, can be written as

E[In] = E[Ina ]E[Inp ] = An0E[Ina ]Mr2

(
− 2n

w2
zeq

)
, (4.3)

whereMr2 is defined in (2.19). Inserting (4.3) into (4.2) and following up from (3.42),

the asymptotic capacity can be further expressed as

C u
µ�1
W − r log(E[Ia]) +

∂

∂n
E[Irna ]

∣∣∣∣
n=0

, (4.4)

such that

W = log

(
δµAr0
E[Ip]

r

)
− 2r

wzeq
M′

r2(0) . (4.5)

Hence, (4.4) is generic meaning that it is applicable to describe any turbulence by

inserting the moments of Ia which can follow many distributions as seen in Sec. 2.

Moreover, Mr2 can take multiple forms depending on the misalignment. Beam mis-

alignment can be categorized into two types namely, bidirectional and unidirectional.

The bidirectional misalignment occurs in both horizontal and vertical directions and

r can follow different distributions such as Beckmann, Rayleigh, and Rician. On the

other hand, the unidirectional misalignment only happens in one direction, either

horizontal or vertical. In this case, r can only follows the one-sided Gaussian distri-

bution. Therefore, W can take several forms as listed in Table 4.2 according to the

specific pointing error model adopted. For example, for the most general case, W

becomes

W = log

([
(1 + ξ2

x)(1 + ξ2
y)

ξ2
xξ

2
y

] r
2

δµ

)
− r

2ξ2
x

− r

2ξ2
y

− 2r

w2
zeq

(
µ̂2
x

1 + ξ2
x

+
µ̂2
y

1 + ξ2
y

)
. (4.6)
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4.4.1 Bi-Directional Misalignment

Here, we list the results of asymptotic ergodic capacity of FSO system over weak

and strong turbulence under pointing errors along both directions (i.e. elevation and

horizontal). The most general case of the pointing error is when the boresight and

jitter are taken into account. Taking the first derivative of (2.4), (2.10), and (2.19)

and substituting it in (4.4) and after doing some simple manipulations the following

results is reached

C|ΓΓ u
γ�1

log

([
(1 + ξ2

x)(1 + ξ2
y)

ξ2
xξ

2
y

] r
2

δµ

)
− r
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C|LN u
γ�1

log

([
(1 + ξ2

x)(1 + ξ2
y)

ξ2
xξ

2
y

] r
2

δµ

)
− r

2ξ2
x

− r

2ξ2
y

− 2r

w2
zeq

(
µ̂2
x

1 + ξ2
x

+
µ̂2
y

1 + ξ2
y

)
− 2rσ2

X . (4.8)

This result is generic and can specialize to different cases according to the pointing

error impairments model. For example, for zero-boresight and identical jitter in both

displacement directions (i.e. µx = µy = 0 and ξx = ξy = ξ), the general result reduces

to

C|ΓΓ u
γ�1
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X . (4.10)
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On the other hand, when nonzero-boresight component is taken into account (i.e.

µx 6= µy and ξx = ξy = ξ), then (4.7) and (4.8) reduce to

C|ΓΓ u
γ�1

log

([
1 + ξ2

ξ2

]r
δµ

)
− r

ξ2
− 2rs2

w2
zeq

+
2rs2ξ2

w2
zeq(1 + ξ2)

− r log(αβ)

+ rψ(α) + rψ(β), (4.11)

C|LN u
γ�1
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([
1 + ξ2

ξ2

]r
δµ

)
− r

ξ2
− 2rs2

w2
zeq

+
2rs2ξ2

w2
zeq(1 + ξ2)

− 2rσ2
X . (4.12)

It is important to note that when s = 0, both (4.11) and (4.12) reduces to (4.9)

and (4.10). When zero boresight but non-identical jitter for the two directions of the

displacement are assumed (i.e. µx = µy = 0 and ξx 6= ξy ), (4.7) becomes

C|ΓΓ u
γ�1

log

([
1 + ξ2

x

ξ2
x

] r
2
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1 + ξ2
y

ξ2
y

] r
2

δµ
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2ξ2
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2ξ2
y

− r log(αβ) + rψ(α) + rψ(β),

(4.13)
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2ξ2
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− r

2ξ2
y

− 2rσ2
X . (4.14)

4.4.2 Uni-Directional Misalignment

In this section, we consider the pointing errors along one direction either the eleva-

tion or the horizontal and we derive the asymptotic ergodic capacity accordingly by

utilizing (4.4). For the zero boresight case (i.e. µx = µy = 0, ξx = ξ, and ξy = 0), we

can obtain the result by utilizing (4.4), (2.31), and (2.10) as

C|ΓΓ u
γ�1

log

([
1 + ξ2

ξ2

] r
2

δµ

)
− r

2ξ2
− r log(αβ) + rψ(α) + rψ(β), (4.15)

C|LN u
γ�1

log

([
1 + ξ2

ξ2

] r
2

δµ

)
− r

2ξ2
− 2rσ2

X . (4.16)

It is meaningful to say that (4.13) and (4.14) reduces to (4.15) and (4.16), respectively

if either ξx or ξy tends to infinity (i.e. zero pointing errors effect). In addition, if
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boresight is considered (i.e. µx = µy = µ, ξx = ξ, and ξy = 0), we reach to the

following result by utilizing (2.33)

C|ΓΓ u
γ�1

log
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1 + ξ2

ξ2

] r
2

δµ

)
− r

2ξ2
−

4rµ2
p

w2
zeq

+
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p(1 + 2ξ2)

w2
zeq(1 + ξ2)

− r log(αβ) + rψ(α) + rψ(β), (4.17)
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log
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p

w2
zeq

+
2rµ2

p(1 + 2ξ2)
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− 2rσ2
X . (4.18)

4.5 Numerical Examples

In this section, we validate and evaluate our analytical expressions of the channel

capacity for the single link FSO system over Log-Normal and ΓΓ channels with gen-

eralized pointing error model. It is important to mention that Monte-Carlo computer

based simulations are utilized to obtain all exact results. In each plot, we specify all

parameters considered in the simulation i.e. the beamwaist, w0, phase front F0, the

distance z, aperture radius a, refractive index C2
n, jitter variances σ2

x σ
2
y and bore-

sight mean µx and µy. First, we compare between the single link and dual-aperture

FSO systems for different distances, z, as shown in Fig. 4.2. It is expected that the

diversity link can enhance the capacity when the turbulence conditions get severe

since the distance is directly proportional to the Rytov variance (i.e. as distance

increases, more turbulence eddies are added). Also, our asymptotic results are tight

at high SNR. However, as the channel gets more turbulent, the convergence of the

asymptotic results to the exact ones happen at larger SNR. In Fig. 4.3 we plot the

ergodic capacity of a single link versus the average electrical SNR over weak turbu-

lence modeled as Log-normal fading channel. Assuming no-boresight, we consider

different scenarios of jitter variance i.e. high pointing error effect is presented by high

values of σ2
x and σ2

y. Clearly, highly varying beam due to winds or other factor results

in performance degradation. Interestingly, our asymptotic analytical results show an
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Figure 4.2: Comparison between the channel capacity of a single aperture and dual-
aperture FSO system.

excellent match with the exact ones generated by Monte-Carlo computer based sim-

ulation. Next, we show the effect of beam waist at the transmitter on the capacity

of the link in Fig. 4.4. First thing to observe is that our asymptotic results converge

well to the ones generated by Monte-Carlo simulation. A wide beam delivers the best

result as it is robust to the pointing errors, in contrast to narrow beams. Lastly, for

the single link, we compare between unidirectional and bidirectional misalignments

over Gamma-Gamma turbulence in Fig. 4.5. Clearly, for low jitter variance i.e. high

values of ξ, both directions of misalignment have the same effect of the channel ca-

pacity. In contrast with high jitter variance case, channel capacity is less affected by

the unidirectional misalignment.
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Figure 4.3: The effect of jitter variance on the capacity of a single link over Log-
Normal turbulence.

4.6 Conclusion

In this chapter, closed-form asymptotic expressions of the FSO channel capacity were

derived subject to generalized pointing error impairments. The results are generic

and novel in the sense that they account for a variety of turbulence models and

misalignment scenarios. In specific, we calculated the asymptotic ergodic capacity

of FSO systems operating over the log-normal and Gamma-Gamma channels subject

to generalized pointing error impairments. However, our formula can be applied to

any turbulence channel such as K-distributed, double Weibull, double Generalized

Gamma and M channels. Numerical results, validated by computer simulations,

show that our asymptotic results can accurately predict the performance of FSO

system in the high SNR regime.



77

Average electrical Signal-to-Noise Ratio (SNR), µr (dB)
0 10 20 30 40 50 60

E
rg
o
d
ic

C
ap

ac
it
y,

C
(N

at
s/
S
ec
/H

z)
)

0

2

4

6

8

10

12

14

Exact result, w
0
 = 1.66 cm

Exact results, w
0
 = 1 cm

Exact result, w
0
 = 0.8 cm.

Asymptotic results

a = 10 cm, z = 1KM,

C
n
2 = 10-15, F

0
 = -10,

w
0
= 1.66 cm, µ

x
 = 0.5,

µ
y
 = 0.1, σ

x
2 = σ

y
2 = 0.1

Figure 4.4: The effect of beam waist at the transmitter on the capacity over Log-
Normal turbulence under boresight error.



78

Average electrical Signal-to-Noise Ratio (SNR), µr (dB)
0 50 100

E
rg
o
d
ic

C
ap

ac
it
y,

C
(N

at
s/
S
ec
/H

z)
)

0

2

4

6

8

10

12

14

16

18

20
ξ  = 2.5

Exact results, 1D

Exact results, 2D

Asymptotic results

0 50 100
0

2

4

6

8

10

12

14

16

18

20
ξ  = 0.6

a = 10 cm, z = 1KM,

C
n

2
 = 10

-15
, F

0
 = -10,

w
0
= 1.66 cm, µ

x
 = µ

y

= 0

Figure 4.5: Comparison between unidirectional and bidirectional misalignment over
Gamma-Gamma turbulence.
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Chapter 5

On the Channel Capacity of Dual-Receive FSO Link over

Correlated Weak Atmospheric Channels

5.1 Introduction

As widely adopted in RF, spatial diversity, in which multiple transmitters and/or

multiple receivers are employed, is usually utilized to suppress the effect of channel

fading. Similarly, this technique can efficiently mitigate scintillation according to

some reported work in the literature [54, 75]. However, when considering diversity

links and due to system design, it is crucial to take into account the correlation of

the underlying channels since the spacing between beams or apertures cannot always

ensure uncorrelated signals [76]. Furthermore, identifying the statistical model of

the received irradiance that accounts for both scintillation and pointing error facili-

tate the performance analysis of FSO systems, especially in diversity links. Finding

the combined effect of pointing errors and turbulence becomes more complicated for

spatial diversity systems [42,50,77,78].

Due to the complexity of obtaining closed-form expressions of any of the perfor-

mance measures, the interest to investigate the asymptotic limit at high SNR has

been raised. In this chapter, the results derived in Chapter 4 are extended to obtain

the channel capacity of FSO systems with diversity reception. In particular, we aim

to develop closed-form asymptotic expressions of the capacity of dual-branch corre-

lated FSO channels operating over weak turbulence considering general model of the

pointing error.
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5.2 System Model

In this work, we consider dual-branch single-input multiple-output (SIMO) configu-

rations of the FSO system with two types of detection techniques, heterodyne and

IM/DD. Data transmission is affected by path loss, atmospheric turbulence condi-

tions, pointing errors, and AWGN. As such, the received vector y = [y1 y2]T , with

(.)T is the transpose operator, is given by

y = ηIaIpx+ ω , (5.1)

where Ia = diag(I1 , I2) is a 2×2 diagonal matrix reflects the turbulence-induced fad-

ing such that Ii represents the irradiance received at the ith aperture, Ip = [Ip1 Ip2 ]T

is the 2×1 pointing error matrix consists of independent random variables where each

component represents the misalignment between the center of the beam footprint and

the center of the ith aperture, and x ∈ {0, 2Pt} is the OOK modulated transmitted

signal with Pt being average transmitted optical power. The vector ω = [ω1 ω2]T is a

noise vector of independent components modeled as white and Gaussian distributed

RVs. The received irradiance captured by each aperture is assumed to be following a

Log-Normal distribution with PDF equals to (2.3). Furthermore, it is important to

note that Ii’s are not necessarily independent random variables. The spatial matrix

R can be of the form

R =

1 ρ

ρ 1

 , (5.2)
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where ρ is the correlation between I1 and I2 that is a function of the separation

distance, d, and the coherence length [79,80], given by

ρ = exp

[
−
(

d

ρo(z)

)−3
5

]
, (5.3)

where ρo(z) = (1.46C2
nk

2z)(−3/5) is the coherence length of a plane wave propagation1.

It is clear from the expression that the links are correlated when the spacing between

apertures is less than the coherence length of the beam. The electrical SNR of the

ith branch can be defined as

γi =
(ηIiIpi)

r

N0

. (5.4)

The pointing error components at each aperture, Ip1 and Ip2 , mainly depend on the

Figure 5.1: Beam foot-print of the dual-aperture FSO system.

distance ri. As observed from 5.1, the beam is originally pointing at A = [0 0]T

while the apertures are placed in B1 = [d
2

0]T and B2 = [−d
2

0]T such that d is the

separation distance between the centers of the apertures. Note that due to building

1Physically, the coherence parameter is the measure of light coherence across each transverse
plane along the propagation path [81]. The coherence length of a spherical wave propagation is
equal to ρo(z) = (0.55C2

nk
2z)(−3/5) [16, Eq. (65)].
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sway or other factors, the center of the beam moved to a random location A+ [x y]T .

Then, the distance to the center of the ith aperture can be given as (4.1)

r1 =

√(
d

2
− x
)2

+ y2, (5.5)

r2 =

√(
d

2
+ x

)2

+ y2. (5.6)

The displacements r1 and r2 are related as

r2
2 = r2

1 + 2dx. (5.7)

At the receive end, two signals are captured. In order to detect the transmitted signal,

They are combined using two well-known techniques namely, selection combining (SC)

and switch-and-stay combining (SSC).

5.2.1 Selection-Combining

In this technique, the branch with the larger instantaneous SNR is selected and

therefore the output SNR can be written as

γSC = max(γ1, γ2), (5.8)

where γi is defined in Eq. (5.4). Thus, Eq. 5.8 can be rewritten as

γSC = max

(
ηIr1I

r
p1

N0

,
ηIr2I

r
p2

N0

)
=

η

N0

max (I1Ip1 , I2Ip2)r . (5.9)

Inserting the definition of Ip1 and Ip2 (2.16), (5.9) can be rewritten as

γSC =
η

N0

max

(
I1A0 exp

(
−2r2

1

w2
zeq

)
, I2A0 exp

(
−2r2

2

w2
zeq

))r

. (5.10)
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Utilizing the relationship between r1 and r2 in (5.7), the definition of γSC can be

further expanded to

γSC =
η

N0

max

(
I1A0 exp

(
−2r2

1

w2
zeq

)
, I2A0 exp

(
−2(r2

1 + 2dx)

w2
zeq

))r

,

=
η

N0

(
A0 exp

(
−2r2

1

w2
zeq

))r

max

(
I1, I2 exp

(
−4dx

w2
zeq

))r

,

=
η

N0

Ip1 max
(
I1, Î2

)r
=

η

N0

Irp1
IrSC , (5.11)

where Î2 = exp
(

2X2 − 4d
w2
zeq
x
)

leading to Î2 ∼ lnN (−2σ2
x2
− λ1, 4σ

2
x2

+ λ2
2) such that

λ1 = 4dµx
w2
zeq

and λ2 = 4dσx
w2
zeq

. Furthermore, the nth moment of γSC can be expressed as

E[γnSC ] =
E[Irnp1

]E[IrnSC ]

E[Ip1 ]rnE[ISC ]rn
µnSC , (5.12)

where E[Inp1
] can be derived using (2.18), and E[InSC ] can be expressed as

E[InSC ] = exp

(
1

2
n2κ− n

(
λ1 + 2σ2

x2

))
Q

(
ζ − nκ (1− ρφ)

P1

)
+ exp

(
2n2σ2

x1
− 2nσ2

x1

)
Q

(−ζ − 4nσ2
x1

(1− ρφ−1)

P1

)
, (5.13)

where ζ = λ1− 2σ2
x1

+ 2σ2
x2

, κ = λ2
2 + 4σ2

x2
, φ =

2σx1√
κ

, and P2
1 = f(2σx1 ,

√
κ,−ρ) such

that f(a, b, c) = a2 + b2 + 2abc.

5.2.2 Switch-and-Stay Combining

In this combining technique, the first branch is by default considered for signal detec-

tion. However, if the SNR of first branch falls belows a certain threshold, the receiver

shifts to the second branch to detect the signal. In fact, the SNR at the output of a
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dual-branch SSC receiver, γSSC , can be expressed as [1, 82]

γSSC =


γ1 , γ1 ≥ γt

γ2 , γ1 < γt

=


ηIr1 I

r
p1

N0
I1Ip1 ≥ It

ηIr2 I
r
p2

N0
I1Ip1 < It

(5.14)

where γt is the switching threshold below which the receiver switches to the other

diversity branch and It = r

√
N0γt
η

. Following similar analysis in Sec. 5.2.1 taking

turbulence and pointing errors into consideration, we have γSSC = η
N0
Irp1
IrSSC , where

IrSSC is given by

ISSC =


I1 , Ip1I1 ≥ It

Î2 , Ip1I1 < It

(5.15)

Then, the nth moment of the γSSC can be expressed as

E[γnSSC ] =
E[Irnp1

]E[InSSC ]

E[Ip1 ]rnE[ISSC ]n
µnSSC , (5.16)

where the moments of ISSC can be derived by utilizing earlier results in [83] as

E(InSSC) = ε1 exp
(
2n2σ2

x1
− 2nσ2

x1

)
(Q (2nρσx1 −K1) +Q(K1 − 2nσx1))

+ γnt ε2 exp

(
κn2

2
− nK2

)(
Q

(
κnρ−K2√

κ

)
+Q

(
−κn+K2√

κ

))
. (5.17)
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such that

K1 =
2σ2

x1
+ log(γt)

2σx1

, (5.18)

K2 = λ1 + 2σ2
x2

+ log(γt) , (5.19)

ε1 =
Q (−K1)

Q (−K1) +Q
(
−K2√

κ

) , (5.20)

ε2 =
Q
(
−K2√

κ

)
Q (−K1) +Q

(
−K2√

κ

) . (5.21)

5.3 Ergodic capacity

Based on (3.42), the asymptotic capacity of a dual branch FSO system with SC can

be written as shown in Eq. (5.22)

C|SC u
µ�1
W +

r√
2π

exp

(
−ζ2

2P2
1

)√
λ2

2 + 4λ2(σx2 − ρσx1) + 4P2 − 2rσ2
x1
− rζQ

(
ζ

P1

)
− r log

[
Q

(−ζ − 4σ2
x1

(1− ρφ−1)

P1

)
+ exp

(
−(ζ + 2σ2

x1
) +

1

2
κ2

)
Q

(
ζ − κ(1− ρφ)

P1

)]
.

(5.22)

where P2 = f(σx1 , σx2 ,−ρ) . Since the moment of the irradiance ISSC is available,

we can directly apply (3.42) to get the asymptotic capacity for SSC case as in Eq.

(5.23).

C|SSC u
µ�1
W +

r(1− ρ)√
π

(√
2ε1σx1 exp

(
−K2

1

2

)
+
ε2

√
κ√

2π
exp

(
−K2

2

2κ

))
− r

(
ε1σ

2
x1

+ ε2σ
2
x2

+
1

2
ε2λ1

)
− r log

[
ε1Q (−2σx1 + σx1K1) + ε1Q

(
2ρσ2

x1
−K1

σx1

)
+ε2 exp

(
λ2

2 − 2λ1

2

)(
Q

(
ρκ−K2√

κ

)
+Q

(
−κ+K2√

κ

))]
. (5.23)
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5.4 Numerical Examples

In this section, we validate and evaluate our analytical expressions of the channel

capacity for the dual-aperture FSO system over correlated Log-Normal channels. It

is important to mention that Monte-Carlo computer based simulations are utilized

to obtain all exact results. In each plot, we specify all parameters considered in the

simulation i.e. the beamwaist, w0, phase front F0, the distance z, aperture radius a,

refractive index C2
n, jitter variances σ2

x σ
2
y and boresight mean µx and µy.
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Figure 5.2: The effect of boresight and jitter variance on the channel capacity of
dual-branch FSO link.

First, we show the effect of boresight on the channel capacity of selection combined

FSO link with two scenarios of jitter variance and beam waist in Fig. 5.2 and Fig.

5.3, respectively. We can conclude that low varying beam and wide beam are more

resistant to the boresight. The main purpose of diversity is to overcome scintillation.
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Figure 5.3: The effect of boresight and beam waist on the channel capacity of dual-
branch FSO link.

It can also help suppressing the effect of beam boresight error. From our observation

in Fig. 5.4, with small boresight error, the distance does not make any difference

to the channel capacity. On the other hand, larger boresight, spacing distance can

be helpful in diminishing the effect of boresight. Finally, we show in Fig. 5.5 the

effect of the pointing error on the channel capacity if SSC are employed to combine

the signal at the receive side. Here, we consider only unidirectional misalignment, so

we can obtain the optimal threshold γt = exp(−2σ2
X). It is clear that even with the

misalignment being in one direction, performance degradation is expected.
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FSO link.

5.5 Conclusion

In this chapter, we have successfully derived the asymptotic capacity of dual-aperture

FSO systems over correlated Log-Normal channels based on two combining technique

and under a general pointing error model. Numerical examples, validated by computer

simulations, were utilized to show the effect of boresight error, beam waist, separation

distance, and the jitter variance on the link capacity. Finally, the numerical examples

demonstrated that our asymptotic results can accurately predict the performance of

FSO systems in the high SNR regime.
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Chapter 6

Performance of Multichannel Reception over Generalized

Atmospheric Channels

6.1 Introduction

Diversity, in which multiple copies of the same data is transmitted to the receiver

such that each copy experiences different path/channel, has shown a great deal in

mitigating fading effects in RF systems in addition to improving both performance

and capacity [1, 84, 85]. For diversity combining techniques, SC is one of the most

efficient and simple combining schemes. In SC, the receiver aims to process the

branch with maximum SNR. Diversity schemes in FSO systems was first introduced by

Ibrahim [86] followed by great number of research instigating diversity over weak and

strong turbulence conditions. Some investigated the spatial diversity and combining

techniques of correlated and independent log-normal turbulence channels [75,87–89].

Also, spatial diversity was studied over K-distributed channels for different combining

schemes in [54]. Moreover, SC over Gamma-Gamma under the impact of pointing

errors has been investigated [90].

Double generalized gamma channel model for free-space optical communication

systems developed by [32] covers a very wide range of turbulence conditions and

makes it generic to describe the FSO channel. Also, pointing errors was integrated

to this model to better show the impact of pointing error impairments on the FSO

system [38]. Hence, in this chapter, the dual-branch FSO selection combining scheme

operating on such channels is investigated to show diversity enhancement on the
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system performance and capacity.

In particular, we first express the statistical properties of the maximum of double

Generalized Gamma random variable under the impact of pointing errors in terms of

H-function and G-function. The statistical properties include finding the CDF, PDF,

MGF, and the moments in closed-form. Then, these results are exploited to evaluate

performance measures such as the average BER and the ergodic capacity of the FSO

system.

6.2 System Model

In this chapter, we consider two independent not necessarily identical FSO branches

over double GG turbulence and subject to pointing error impairments. The signal at

the receive end is then combined for detection. The system model analysis explained

further is suitable for any detection technique.

6.2.1 Selection Combining

Among different combining techniques, selection combining is utilized to mix the two

received signals. In other words, the end-to-end SNR of the system can be expressed

similar to (5.8) as

γM = max(γa, γb), (6.1)

such that γa and γb are independent not necessarily identically distributed (i.n.i.d)

modified double GG1 RVs whose PDF and CDF is listed in (3.10) and (3.13), respec-

tively. It is important to note that by setting the follwoing parameters σi = λi =

Ωi = 1, β1i = αi, β2i = βi, hi =
ξ2
i

ξ2
i+1

, ξi >> 1 then hi = 1, Ci =
(
αiβi
r2
i

)ri
, ui = 3ri,

vi = 1, κ3i = ∆(ri : ξ2
i + 1), κ4i = ∆(ri : ξ2

i ),∆(ri : αi),∆(ri : βi), double GG reduces

1Modified double GG RV term refers to the joint effect of turbulence and pointing errors. In other
words, the irradiance becomes a mixture of two independent processes and is written as I = IaIp
where Ia is modeled as double generalized Gamma RV whose PDF is expressed in (2.15) and Ip is
the pointing error RV whose PDF can be found in (2.22). The PDF of I has been derived in (2.36).
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to the case of ΓΓ turbulence perturbed by pointing errors [90].

6.2.2 Statistical Properties

For a complete performance analysis of the system considered in this chapter, identi-

fying the statistical characteristics of the end-to-end SNR, γM , is crucial.

6.2.2.1 Cumulative Distribution Function

The CDF of the maximum of two random variables can be written as

FγM
(γ) = Pr (γa ≤ γ and γb ≤ γ) . (6.2)

Since the branches are separated enough to make the random variables independent,

then (6.2) turns to be

FγM
(γ) = Pr (γa ≤ γ) Pr (γb ≤ γ) ,

= Fγb(γ)Fγb(γ). (6.3)

Then, the CDF of γM can be easily derived as

FγM
(γ) = A3aA3bG

ua,1
ra+1,ua+1

Ca( γ

µra,a

)va ∣∣∣∣∣1, κ3a

κ4a, 0

Gub,1
rb+1,ub+1

Cb( γ

µrb,b

)vb ∣∣∣∣∣1, κ3b

κ4b, 0

 ,

(6.4)

where A3i =
ξ2
i σ
β1i−

1
2

i λ
β2i−

1
2

i (2π)1− ri(λi+σi)
2 r

β1i+β2i−2
i

α2iλiΓ(β1i)Γ(β2i)
. For the case of Gamma-Gamma tur-

bulence model, we have A3i =
ξ2
i r
α1+β1−2
i

Γ(αi)Γ(βi)(2π)ri−1 .

Moreover, an asymptotic expression can be obtained via the expansion of the
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Meijer’s G-function in (3.14) as Ci(
γ

µri,i
)vi → 0 (i.e high SNR regime) as

F̃γM
(γ) u

µri,i>>1
A3aA3b

ua∑
k=1

ub∑
x=1

(
γvaCa
µvara,a

)κ4a,k

(
γvbCb
µvbrb,b

)κ4b,x

×
∏ua

l=1;l 6=k Γ(κ4a,l − κ4a,k)
∏ub

l=1;l 6=x Γ(κ4b,l − κ4b,x)

κ4a,kκ4b,x

∏ra
l=1 Γ(κ3a,l − κ4a,k)

∏rb
l=1 Γ(κ3b,l − κ4b,k)

. (6.5)

The asymptotic expression in (6.5) is simple and is in terms of elementary functions

that can be evaluated using any computer software.

6.2.2.2 Probability Density Function

The PDF is then obtained by differentiating (6.4) with respect to γ yielding

fγM
(γ) =

A3aA3b

γ

vbGub,0
rb,ub

Cb( γ

µrb,b

)vb ∣∣∣∣∣κ3b

κ4b

 Gua,1
ra+1,ua+1

Ca( γ

µra,a

)va ∣∣∣∣∣1, κ3a

κ4a, 0


+ vaG

ua,0
ra,ua

Ca( γ

µra,a

)va ∣∣∣∣∣κ3a

κ4a

 Gub,1
rb+1,ub+1

Cb( γ

µrb,b

)vb ∣∣∣∣∣1, κ3b

κ4b, 0


 . (6.6)

This derived PDF was verified via Monte-Carlo simulations as shown in Fig. 6.1.

An asymptotic expression of the PDF can be obtained by the same way done in

(6.5) for the CDF. In other words, by using the expansion of the Meijer’s G-function,

we can reach to an asymptotic result as

f̃γM
(γ) u

µri,i>>1
A3aA3b

ua∑
k=1

ub∑
x=1

(
Ca
µvara,a

)κ4a,k
(

Cb
µrb,b

vb

)κ4b,x
(

vb
κ4a,k

+
va
κ4b,x

)
×
∏ub

l=1;l 6=x Γ(κ4b,l − κ4b,x)
∏ua

l=1;l 6=k Γ(κ4a,l − κ4a,k)∏rb
l=1 Γ(κ3b,l − κ4b,x)

∏ra
l=1 Γ(κ3a,l − κ4a,k)

γvaκ4a,k+vbκ4b,x−1 (6.7)
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Figure 6.1: PDF validation for the maximum of two double GG variates

6.2.2.3 Moment Generating Function

In this section, the MGF of γM is derived in exact and asymptotic approach. First, the

CDF in (6.4) is expressed in terms of the Fox’s H-function2 using the property [44, Eq.

(07.34.26.0008.01)]

1

C
Gm,n
p,q

z1/C

∣∣∣∣∣ab
 = Hm,n

p,q

z ∣∣∣∣∣(a, C)

(b, C)

 . (6.8)

2Fox’s H-function is a special function and defined in Appendix A. The function can be easily
valuated using MATHEMATICAr [91]
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As such, the CDF in (6.4) can be rewritten as

FγM
(γ) =

A3aA3b

vavb
Hua,1
ra+1,ua+1

C1/va
a γ

µra,a

∣∣∣∣∣(κ5a, 1/va)

(κ6a, 1/va)

Hub,1
rb+1,ub+1

C1/vb
b γ

µrb,b

∣∣∣∣∣(κ5b, 1/vb)

(κ6b, 1/vb)

 ,

(6.9)

where κ5i = 1, κ3i and κ6i = κ4i, 0. Afterward, (6.9) is inserted in (3.17) and with

applying the identity [92, Eq. (2.2)] to obtain

MγM
(s) =

A3aA3b

vavb
H




0,1

1,0




ua,1

ra+1,ua+1




ub,1

rb+1,ub+1



(0;1,1)

(−;−,−)

(κ5a,[v
−1
a ])

(κ6a,[v
−1
a ])

(κ5b,[v
−1
b ])

(κ6b,[v
−1
b ])

C
1/va
a

sµra,a

C
1/vb
b

sµrb,b


, (6.10)

where H[.] is the bivariate H-function defined in the appendix A based on [92].

Simplified expression can be obtained if solving the integral in (3.17) but using

the asymptotic CDF (6.5) to reach to the following result

M̃γM
(s) u

µri,i>>1
A3aA3b

ua∑
k=1

ub∑
x=1

(
Ca
µvara,a

)κ4a,k

(
Cb
µvbrb,b

)κ4b,x

Γ(vaκ4a,k + vbκ4b,x + 1)

×
∏ua

l=1;l 6=k Γ(κ4a,l − κ4a,k)
∏ub

l=1;l 6=x Γ(κ4b,l − κ4b,x)

κ4a,kκ4b,x

∏ra
l=1 Γ(κ3a,l − κ4a,k)

∏rb
l=1 Γ(κ3b,l − κ4b,k)

s−(vaκ4a,k+vbκ4b,x). (6.11)

By setting σi = λi = Ωi = 1, β1i = αi, β2i = βi, hi =
ξ2
i

ξ2
i+1

, ξi >> 1 then hi = 1,

Ci =
(
αiβi
r2
i

)ri
, ui = 3ri, vi = 1, κ3i = ∆(ri : ξ2

i + 1), κ4i = ∆(ri : ξ2
i ),∆(ri : αi),∆(ri :

βi) we have the special case of Gamma-Gamma turbulence perturbed by pointing

errors [90]. Setting the special parameters for the Gamma-Gamma case, the MGF
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can be expressed as

M∗
γM

(s) = A3aA3b G1,0:3ra,1:3rb,1
1,0:ra+1,3ra+1:rb+1,3rb+1

1

−

∣∣∣∣∣κ5a

κ6a

∣∣∣∣∣κ5b

κ6b

∣∣∣∣∣ Ca
sµra,a

, Cb
sµrb,b

, (6.12)

where G−,−:−,−:−,−
−,−:−,−:−,−[.] is the extended generalized bivariate Meijer’s G-function (EGB-

MGF) defined in the appendix (A).

6.2.2.4 Moments

The moments of a random variable is defined in (3.20). For γM specifically, it can be

easily found by first placing (6.6) in (3.20) and utilizing equation [93, Eq. (1.7)], we

obtain the following

E[γnM] = A3aA3b

[(
µra,a

C
1/va
a

)n
vb Hub+1,ua

ua+rb+1,ub+ra+1

(C
1/vb
b

µra,a

C
1/va
a µrb,b

)vavb ∣∣∣∣∣(κ7a, vb), (κ3b, va)

(κ4b, va), (κ8a, vb)


+

(
µrb,b

C
1/vb
b

)n

va Hua+1,ub
ub+ra+1,ua+rb+1

(C
1/va
a µrb,b

C
1/vb
b

µra,a

)vavb ∣∣∣∣∣(κ7b, va), (κ3a, vb)

(κ4a, vb), (κ8b, va)


 . (6.13)

where κ7i = 1 − κ6i − n
vi

and κ8i = 1 − κ5i − n
vi

. For Gamma-Gamma case, (6.13)

simplifies to

E[γnM]∗ = A3aA3b

[(
µra,a
Ca

)n
G3rb+1,3ra

3ra+rb+1,3rb+ra+1

Cbµra,a
Caµrb,b

∣∣∣∣∣κ7a, κ3b

κ4b, κ8a


+

(
µrb,b
Cb

)n
×G3ra+1,3rb

3rb+ra+1,3ra+rb+1

Caµrb,b

Cbµra,a

∣∣∣∣∣κ7b, κ3a

κ4a, κ8b


 . (6.14)
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6.2.3 Performance Analysis Measures

Based on the results obtained in Section 6.2.2, the performance of the selection com-

bining scheme over dual-branch FSO links is studied.

6.2.3.1 Outage Probability

The outage probability is simply derived by substituting (6.4) into (3.22).

6.2.3.2 Average Bit Error Rate

To find the average BER of the system, (6.4) is inserted into (3.28) then the iden-

tity [92, Eq. (2.2)] is utilized. Then, the result can be written as

P SC =
A3aA3b

2Γ(p)vavb
H




0,1

1,0




ua,1

ra+1,ua+1




ub,1

rb+1,ub+1



(1−p;1,1)

(−;−,−)

(κ5a,[v
−1
a ])

(κ6a,[v
−1
a ])

(κ5b,[v
−1
b ])

(κ6b,[v
−1
b ])

C
1/va
a

qµra,a

C
1/vb
b

qµrb,b


, (6.15)

where p and q indicate different modulation schemes parameters in [1, Table 8.1] .

An asymptotic expression of P SC at high SNR can be derived as

P SC u
µri,i>>1

qp

2Γ(p)

∫ ∞
0

exp(−qγ) γp−1F̃γM (γ) dγ, (6.16)

where F̃γM is the asymptotic CDF of γM and defined in (6.5). Solving the integrals
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leads to the following

P SC u
µri,i>>1

A3aA3b

2Γ(p)

ua∑
k=1

ub∑
x=1

(
Ca
µvara,a

)κ4a,k

(
Cb
µvbrb,b

)κ4b,x

Γ(vaκ4a,k + vbκ4b,x + p)

×
∏ua

l=1;l 6=k Γ(κ4a,l − κ4a,k)
∏ub

l=1;l 6=x Γ(κ4b,l − κ4b,x)

κ4a,k κ4b,x

∏ra
l=1 Γ(κ3a,l − κ4a,k)

∏rb
l=1 Γ(κ3b,l − κ4b,k)

q−(vaκ4a,k+vbκ4b,x). (6.17)

Above expression can facilitate extracting the diversity and coding gain of the system.

First, the formula (6.17) can be rewritten in the form of (3.31). Upon our observation,

this is possible if the absolute difference between { ξ2
i

viri
, β1i

riσi
, β2i

riλi
} ∈ κ4i is significance.

If so, then the summation in (6.17) reduces to a single dominant term results from

the min
(

ξ2
i

viri
, β1i

riσi
, β2i

riλi

)
. In this case, the diversity and coding gain can be written as

Gd = vaκ4a,k + vbκ4b,x,

Gc = q

(
A3aA3bCa

κ4a,kCb
κ4b,xΓ(vaκ4a,k + vbκ4b,x + p)

2Γ(p)κ4a,k κ4b,x

×
∏ua

l=1;l 6=k Γ(κ4a,l − κ4a,k)
∏ub

l=1;l 6=x Γ(κ4b,l − κ4b,x)∏ra
l=1 Γ(κ3a,l − κ4a,k)

∏rb
l=1 Γ(κ3b,l − κ4b,k)

)−1/Gd

, (6.18)

where k ∈ {1, ra + 1, ra + raσa + 1} and x ∈ {1, rb + 1, rb + rbσb + 1}.

For the Gamma-Gamma case, the result reduces to

P
∗
SC =

A3aA3b

2Γ(p)
G1,0:3ra,1:3rb,1

1,0:ra+1,3ra+1:rb+1,3rb+1

p
−

∣∣∣∣∣κ5a

κ6a

∣∣∣∣∣κ5b

κ6b

∣∣∣∣∣ Ca
qµra,a

, Cb
qµrb,b

. (6.19)

6.2.3.3 Ergodic Capacity

The ergodic capacity of FSO systems is defined in (3.36). To find the the channel

capacity for the selection combining scheme, first (3.37) is expressed in terms of the
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H-function as

ln(1 + x) = G1,2
2,2

x ∣∣∣∣∣1, 11, 0

 = H1,2
2,2

x ∣∣∣∣∣(1, 1), (1, 1)

(1, 1), (0, 1)

 . (6.20)

Afterward CSC is obtained by using (3.36) along with the identities and [92, Eq. (2.3)]

yielding

CSC =
A3aA3b

vavb ln(2)
×


vbH




0,ub

ub,rb




1,2

2,2




ua,1

ra+1,ua+1



(1−κ4b;[v
−1
b ],[v−1

b ])

(1−κ3b;[v
−1
b ],[v−1

b ])

(1,1;1,1)

(1,0;1,1)

(κ5a,[v
−1
a ])

(κ6a,[v
−1
a ])

cµrb,b

C
1/vb
b

C
1/va
a µrb,b

C
1/vb
b µra,a



+ vaH




0,ua

ua,ra




1,2

2,2




ub,1

rb+1,ub+1



(1−κ4a;[v−1
a ],[v−1

a ])

(1−κ3a;[v−1
a ],[v−1

a ])

(1,1;1,1)

(1,0;1,1)

(κ5b,[v
−1
b ])

(κ6b,[v
−1
b ])

cµra,a

C
1/va
a

C
1/vb
b µra,a

C
1/va
a µrb,b




. (6.21)

For the Gamma-Gamma case, the expression is reduced to

C
∗
SC =

A3aA3b

ln(2)
×

G3rb,0:3ra,1:1,2
3rb,rb:ra+1,3ra+1:2,2

κ4b

κ3b

∣∣∣∣∣κ5a

κ6a

∣∣∣∣∣1,1
1,0

∣∣∣∣∣Caµrb,bCbµra,a
,
cµrb,b
Cb


+ G3ra,0:3rb,1:1,2

3ra,ra:rb+1,3rb+1:2,2

κ4a

κ3a

∣∣∣∣∣κ5b

κ6b

∣∣∣∣∣1,1
1,0

∣∣∣∣∣Bbµra,aBaµrb,b
, cµra,a

Ba


 . (6.22)
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6.3 Numerical Analysis

In this section, we verify and validate our analytical results of hybrid FSO communi-

cation systems3 using computer-based simulations.

First, we investigate the BER performance of dual-branch FSO/FSO (ra = rb ∈

{1, 2}) and RF/FSO (ra = 1 and rb ∈ {1, 2}) SC systems under DPSK modulation

in which p = 1 and q = 1. In this work, we consider two scenarios of atmospheric

turbulence conditions, strong (consider the following set of parameters: α1,i = 1.8621,

α2,i = 1, β1,i = 0.5, β2,i = 1.8, Ω1,i = 1.5074, and Ω2,i = 0.9280 such that λi = 17

and σi = 9) and moderate (consider the following set of parameters:α1,i = 2.1690,

α2,i = 1, β1,i = 0.55, β2,i = 2.35, Ω1,i = 1.5793, and Ω2,i = 0.9671 where λi = 28 and

σi = 13).

Starting with Fig. 6.2 to show the impact of pointing errors on the performance

of single FSO link and dual-branch SC of FSO/FSO and RF/FSO. We can notice

instantly that SC helps to improve the performance comparing to the single link with

expense of utilizing more hardware at the receive side. Also, dual-branch RF/FSO SC

performance better than symmetric branches FSO/FSO. This encourages the inte-

gration of RF into FSO systems or vice verse. Regarding the asymptotic results, they

converge fast to exact ones even for low SNR (i.e starting at 30 dB). Interestingly, the

asymptotic results representing of all terms in the summation matches perfectly the

exact results which give our expression more value instead of using special functions.

In the same fashion, two dominants terms asymptotic results provide better match

than single dominant term.

Moreover, Fig. 6.3 shows the impact of the turbulence conditions on the perfor-

mance of FSO systems. Clearly, they lead to some degradation. Again, the asymp-

totic results including all terms in the summation provide an excellent match with

3Hybrid systems are defined as systems in which RF and FSO technologies are employed to
enhance the communication link.
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Figure 6.2: The impact of pointing error (ξ = 1.2) on the average BER of DPSK
over (a) single FSO link, (b) dual-branch FSO/FSO and (c) RF/FSO SC in strong
turbulence conditions.

the exact result. It is noticeable that for strong conditions the asymptotic expressions

including single dominant terms is better than for the moderate conditions and that

is due to the fact that the differences between { ξ2
i

viri
, β1i

riσi
, β2i

riλi
}, i ∈ {a, b}, for moderate

conditions is not significant.

Lastly, we evaluate another performance metric that is the ergodic capacity of

dual-branch SC FSO/FSO and RF/FSO SC as shown in Fig. 6.4. Generally, SC

systems provides higher data rate than a single link system. Also, we can notice that

behavior of RF/FSO and FSO/FSO capacity are not in big difference in contrast with

BER.
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Figure 6.3: The effect of turbulence conditions ((a) Strong turbulence and (b) Mod-
erate conditions) on the average BER of DPSK over single FSO link, dual-branch
FSO/FSO and RF/FSO SC with severe pointing error, ξ = 1.2

6.4 Conclusion

Closed-form expressions for the CDF, the PDF, the MGF, and the moments of the

maximum of two modified double generalized gamma variates were obtained. Based

on that, we derived analytical exact and asymptotic expressions for the average bit er-

ror rate and the ergodic capacity of dual-branch hybrid FSO SC systems. In addition,

Monte-Carlo computer simulations were carried out to validate our results.
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Chapter 7

Performance of FSO Dual-Hop Relaying Systems

7.1 Introduction

Improving the performance and enhancing the capacity has been the motivation of

any newly developed scheme. For instance, relaying technology over the last decade

has received a great deal of interest as it enhances the capacity of the system in

addition to providing a wider coverage. The basic idea behind relaying is that a relay

node is positioned in the way between transmitter and receiver to support direct data

transmission. In other words, the dual-hop (DH) relay system consists of three main

nodes namely, a source (S) that intends to transmit the signal, a relay (R) node that

aims to cooperate in sending the signal to the end node, and the destination (D) that

is the receiver.

Relaying can take several modes depending on the requirements of the implemen-

tations. For example, the system can be symmetric and asymmetric (i.e. symmetric

system is when source-relay (S∼R) and relay-destination (R∼D) links fall under the

same fading model). Asymmetric link is more practical and can be expected in a

real-life environment as the received signals can be transmitted via different com-

munication systems. In addition, the main task of the intermediate entity in the

dual-hop system is to cooperate in transmitting the signal to the receiver. The co-

operation can be classified into two techniques namely, amplified-and-forward (AF)

and decode-and-forward (DF). The AF is particularly investigated in this work. In

AF technique, the relay hears the signal from the source, amplifies it and transmits it
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again in order to reach the destination. The amplification is usually associated with

a gain which can be either fixed or variable.

Multiple research works have been reported to analyze the relay system on both

symmetric and asymmetric links [94–97]. Moreover, relaying over FSO system was in-

troduced and then followed by several research work concerning symmetric multi-hop

FSO systems over K-distributed, Gaussian and Gamma-Gamma turbulence chan-

nel [98–100]. On the other hand, several studies have been conducted to analyze

asymmetric fixed and variable gain FSO relay systems as such integrating RF links

in FSO systems. Specifically, assuming that RF and FSO links are, respectively, sub-

ject to Rayleigh and Gamma-Gamma or M-distributed turbulence channels [101–103].

Analyzing variable gain relay system analytically might not be tractable and math-

ematically not feasible. Throughout the years, the end-to-end SNR has been upper

bounded by the minimum SNR among the sublinks [104] and harmonic mean of the

each link SNR [105]. Few research work have been reported focusing on variable gain

FSO relay systems over Gamma-Gamma with pointing errors [90,106,107].

7.2 Outline

In this chapter, we consider both symmetric and asymmetric dual-hop FSO link. For

the symmetric link, we assume that both FSO links experience double GG fading

model and under the effect of pointing error. On other hand, when asymmetric link

is investigated, it is assumed that the S∼ R link is operated via RF and experience

Rayleigh fading [56, 101] while the R∼D link is an FSO link and experience double

GG fading.



106

7.3 RF-FSO Fixed Gain Dual-Hop Transmission Systems

7.3.1 Channel and System Model

In this section, we consider asymmetric fixed gain dual-hop system in which the RF

link (S∼R) experiences Rayleigh fading whose SNR can be modeled by an exponential

distribution with a PDF given as [1]

fγ1(γ1) =
1

γ1

exp

(
−γ1

γ1

)
, (7.1)

such that γ1 is the average SNR. On the other hand, the FSO link (R∼D) is assumed

to experience turbulence induced fading with the impact of pointing errors whose SNR

PDF fγ21(γ2)is given in (3.10). As a result, the end-to-end SNR, γ of the dual-hop

fixed gain transmission system cane be given as [56,101,108]

γ =
γ1γ2

γ2 +G
, (7.2)

such that G is a fixed relay gain.

7.3.2 Statistical Properties

In this section, we derive the statistics of the end-to-end SNR, γ.

7.3.2.1 Cumulative Distribution Function

The CDF of γ is defined as [108]

Fγ(γ) = Pr

[
γ1γ2

γ2 +G
< γ

]
, (7.3)

=

∫ ∞
0

Pr

[
γ1γ2

γ2 +G
< γ

∣∣∣∣γ2

]
fγ2(γ2) dγ2,

= 1− exp

(
− γ

γ1

)∫ ∞
0

exp

(
− γ G

γ1γ2

)
fγ2(γ2) dγ2.
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Utilizing [44, Eq. (07.34.03.0228.01)] along with [43, Eq. (9.31.2)] to express the

exponential function in terms of the Meijer’s G-function as

exp

(
− γ G

γ1γ2

)
= G0,1

1,0

γ1γ2

γ G

∣∣∣∣∣1−
 , (7.4)

and then applying it on [44, Eq. (07.34.21.0013.01)], the CDF of γ can be expressed

as

Fγ(γ) = 1− A3 exp

(
− γ

γ1

)
Gu+v,0
r,u+v

C ( γ G

vµ2,rγ1

)v ∣∣∣∣∣ κ3

κ4,∆(v : 0)

 , (7.5)

where

A3 =
ξ2σβ1−1/2λβ2−1/2(2π)

3−r(λ+σ)−α2λ
2 rβ1+β2−2

√
α2λΓ(β1)Γ(β2)

. (7.6)

The CDF can be expressed at high SNR as

Fγ(γ) u
µr�1

1− A3 exp

(
− γ

γ1

) u+v∑
k=1

[
C−1

(
vµ2,rγ1

γ G

)v]−κ8,k
∏u+v

l=1,l 6=k Γ (κ8,l − κ8,k)∏r
l=1 Γ (κ3,l − κ8,k)

,

(7.7)

where κ8 = κ4,∆(v : 0). In the case of the relay link, the dominant terms for (7.7)

and for the asymptotic expressions derived ahead are dominated by the summation

of two terms. The first term corresponds to min
(
ξ2

rv
, β1

rσ
, β2

rλ
, ε
v

)
while the second term

corresponds to ε+v−1
v

that is the (u+ v)th term in κ8.
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7.3.2.2 Probability Density Function

The PDF is obtained by differentiating (7.5) with respect to γ, using the product

rule, and then utilizing [44, Eq. (07.34.20.0002.01)] as

fγ(γ) = exp

(
−γ
γ 1

)A3

γ1

Gu+v,0
r,u+v

C ( γ G

vµ2,rγ1

)v ∣∣∣∣∣ κ3

κ4,∆(v : 0)


−A3v

γ
Gu+v,1
r+1,m+n+1

C ( γ G

vµ2,rγ1

)v ∣∣∣∣∣ 0, κ3

κ4,∆(v : 0), 1


 . (7.8)

7.3.2.3 Moment Generating Function

Substituting (7.5) in (3.17) and utilizing [44, Eq. (07.34.21.0088.01)], the MGF can

be expressed as

Mγ(s) = 1− sξ2σβ1−1/2λβ2−1/2(2π)
4−r(λ+σ)−2α2λ

2 rβ1+β2−2

(1/γ1 + s)Γ(β1)Γ(β2)

×Gu+v,v
r+v,u+v

C ( G

(1/γ1 + s)µ2,rγ1

)v ∣∣∣∣∣∆(v : 0), κ3

κ4,∆(v : 0)

 . (7.9)

Using the asymptotic expansion of the Meijer’s G-function (3.14), the MGF can be

approximated at high SNR with

Mγ(s) u
µr�1

1− σβ1−1/2λβ2−1/2(2π)
4−r(λ+σ)−2α2λ

2 rβ1+β2−2

ξ−2s−1(1/γ1 + s)Γ(β1)Γ(β2)

×
u+v∑
k=1

[
C−1

(
(1/γ1 + s)µ2,rγ1

G

)v]−κ8,k
∏u+v

l=1,l 6=k Γ (κ8,l − κ8,k)
∏v

l=1 Γ ({∆(v : 1)}l + κ8,k)∏r
l=1 Γ (κ3,l − κ8,k)

.

(7.10)



109

7.3.2.4 Moments

The moments is defined as (3.20) can be expressed in terms of the complementary

CDF, F c
γ (γ) = 1− Fγ(γ) as

E[γn] , n

∫ ∞
0

γn−1F c
γ (γ)dγ. (7.11)

By using this definition (7.11) and placing the complementary of (7.5) into it, we

obtain the moments after utilizing [44, Eq. (07.34.21.0088.01)] as

E[γn] =
γn1nξ

2σβ1−1/2λβ2−1/2(2π)
4−r(λ+σ)−2α2λ

2 rβ1+β2−2

(α2λ)1−nΓ(β1)Γ(β2)
Gu+v,v
r+v,u+v

C ( G

µ2,r

)v ∣∣∣∣∣∆(v : 1− n), κ3

κ4,∆(v : 0)

 .

(7.12)

Using again the asymptotic expansion of the Meijer’s function (3.14), we can express

(7.12) asymptotically at high SNR as

E[γn] u
µr�1

γn1nξ
2σβ1−1/2λβ2−1/2(2π)

4−r(λ+σ)−2α2λ
2 rβ1+β2−2

(α2λ)1−nΓ(β1)Γ(β2)

u+v∑
k=1

[
C−1

(µ2,r

G

)v]−κ8,k

×
∏u+v

l=1,l 6=k Γ (κ8,l − κ8,k)
∏v

l=1 Γ ({∆(v : n)}l + κ8,k)∏r
l=1 Γ (κ3,l − κ8,k)

. (7.13)

7.3.3 Performance Metrics

In this section, we evaluate the performance measures of the dual-hop RF-FSO relay

transmission system.

7.3.3.1 Outage Probability

The outage probability is obtained by substituting (7.5) into (3.22).
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7.3.3.2 Average Bit Error Rate

Placing (7.5) into (3.28) and utilizing [44, Eq. (07.34.21.0088.01)], we obtain P b as

P b =
1

2
− qpξ2σβ1−1/2λβ2−1/2(2π)

4−r(λ+σ)−2α2λ
2 rβ1+β2−2

2(α2λ)1−p(1/γ1 + q)pΓ(β1)Γ(β2)Γ(p)

×Gu+v,v
r+v,u+v

C ( G

(1/γ1 + q)µ2,rγ1

)v ∣∣∣∣∣∆(v : 1− p), κ3

κ4,∆(v : 0)

 . (7.14)

P b can be expressed at high SNR as

P b u
µr�1

1

2
− qpξ2σβ1−1/2λβ2−1/2(2π)

4−r(λ+σ)−2α2λ
2 rβ1+β2−2

2(α2λ)1−p(1/γ1 + q)pΓ(β1)Γ(β2)Γ(p)

×
u+v∑
k=1

[
C−1

(
(1/γ1 + q)µ2,rγ1

G

)v]−κ8,k

×
∏u+v

l=1,l 6=k Γ (κ8,l − κ8,k)
∏v

l=1 Γ ({∆(v : p)}l + κ8,k)∏r
l=1 Γ (κ3,l − κ8,k)

. (7.15)

7.3.3.3 Ergodic Capacity

The ergodic capacity in (3.36) can be expressed in terms of the complementary CDF

[109, Eq. (15)] as

C =

∫ ∞
0

1

ln(2)
(1 + δγ)−1F c

γ (γ)dγ. (7.16)

We utilize the identities [44, Eq. (07.34.03.0271.01), Eq. (07.34.03.0228.01)] to ex-

press (1+δγ)−1 and exp(γ/γ1) in terms of the Meijer’s G-function, respectively. Next,

to solve the integral with the product of three G-functions, we transformed each term

into the Fox H-function [110] using [44, Eq. (07.34.26.0008.01)] and then we use the

identity [92, Eq. (2.3)] to obtain C in terms of the H-function of two variables [92, Eq.
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(1.1)]

C =
A3δγ1

ln(2)v
H0,1:1,1:u+v,0

1,0:1,1:r,u+v

(0;1,1)

−

∣∣∣∣∣(0,1)

(0,1)

∣∣∣∣∣ (κ3,[(v)−1]r)

(κ8,[(v)−1]u+v)

∣∣∣∣∣δγ1,
GC1/v

vµ2,r
, ,

 (7.17)

where [x]i = x, x, . . . x, comprising of i terms and H−,−:−,−:−,−
−,−:−,−:−,−[.] is another form of

the bivariate H-function.

In addition, we can obtain an asymptotic expression of the ergodic capacity utiliz-

ing the expansion of the Meijer’s G-function. In other words, exploiting the asymp-

totic expression of the CDF in (7.7) to be then inserted in (7.16) leading to

C u
µr�1

A3

ln(2)
exp

(
1

δγ1

) u+v∑
k=1

Cκ8,k

(
G

vδγ1µ2,r

)vκ8,k

Γ(−vκ8,k, 1/δγ)

×
∏u+v

l=1,l 6=k Γ (κ8,l − κ8,k) Γ(1 + κ8,k)∏r
l=1 Γ (κ3,l − κ8,k)

, (7.18)

where Γ(., .) is the upper incomplete Gamma function.

7.4 FSO-FSO Variable Gain Dual-Hop Transmission Systems

7.4.1 System Model

In this section, we present the performance analysis of symmetric dual-hop FSO

variable gain relay transmission system over double GG fading and under the impact

of pointing error. The end-to-end SNR of the system is known to be given by

γ =
γ1γ2

1 + γ1 + γ2

, (7.19)

where γ1 and γ2 corresponds to the SNR of S∼R and R∼D links, respectively. The

definition of the SNR in (7.19) is mathematically not easy to handle. Therefore, it is
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typically approximated by [104]

γm ' min(γ1, γ2), (7.20)

such that the statistics if γ1 and γ2 can be found in Sec. 3.3.

7.4.2 Statistical Properties

In this section, we list the statistical properties of the minimum of two modified

double generalized gamma random variables, γm.

7.4.2.1 Cumulative Distribution Function

The CDF of the minimum of two random variables is given by

Fγm(γ) = 1− Pr(min(γ1, γ2) > γ)

= 1− Pr (γ1 > γ and γ2 > γ)

= 1− Pr (γ1 > γ) Pr (γ2 > γ)

= 1− (1− Pr (γ1 < γ)) Pr (1− (γ2 < γ))

= 1− (1− Fγ1(γ)) (1− Fγ2(γ))

= Fγ1(γ) + Fγ2(γ)− Fγ1(γ)Fγ2(γ), (7.21)
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under the assumption that γ1 and γ2 are i.n.i.d. Substituting (3.13) in (7.21), the

follwoing result is obtained

Fγm(γ) = A3aG
ua,1
ra+1,ua+1

Ca( γ

µra,a

)va ∣∣∣∣∣1, κ3a

κ4a, 0

+ A3bG
ub,1
rb+1,ub+1

Cb( γ

µrb,b

)vb ∣∣∣∣∣1, κ3b

κ4b, 0


− A3aA3bG

ua,1
ra+1,ua+1

Ca( γ

µra,a

)va ∣∣∣∣∣1, κ3a

κ4a, 0

Gub,1
rb+1,ub+1

Cb( γ

µrb,b

)vb ∣∣∣∣∣1, κ3b

κ4b, 0

 .

(7.22)

In addition, an asymptotic expression can be obtained via the expansion of the Mei-

jer’s G function as

F̃γm(γ) u
µri,i>>1

A3a

ua∑
k=1

(
γvaCa
µvara,a

)κ4a,k
∏ua
l=1;l 6=k Γ(κ4a,l − κ4a,k)

κ4a,k
∏ra
l=1 Γ(κ3a,l − κ4a,k)

+A3b

ub∑
x=1

(
γvbCb
µvbrb,b

)κ4b,x ∏ub
l=1;l 6=x Γ(κ4b,l − κ4b,x)

κ4b,x
∏rb
l=1 Γ(κ3b,l − κ4b,x)

− F̃γM(γ), (7.23)

where F̃γM(γ) is defined in (6.5).

7.4.2.2 Probability Density Function

Differentiating (7.22) with respect to γ, a closed-form expression of the PDF of γm is

obtained as

fγm(γ) =
A3a

γ
vaG

ua,0
ra,ua

Ca( γ

µra,a

)va ∣∣∣∣∣κ3a

κ4a

+
A3b

γ
vbG

ub,0
rb,ub

Cb( γ

µrb,b

)vb ∣∣∣∣∣κ3b

κ4b

− fγM (γ) ,

(7.24)

where fγM
(γ) is defined in (6.7). Monte-Carlo simulations were utilized to verify the

PDF as in Fig. 7.1.

Similarly, an asymptotic expression of the PDF can be obtained when expanding
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the Meijer’s G-function leading to

f̃γm(γ) u
µri,i>>1

A3ava

ua∑
k=1

(
Ca
µvara,a

)κ4a,k
∏ua

l=1;l 6=k Γ(κ4a,l − κ4a,k)∏ra
l=1 Γ(κ3a,l − κ4a,k)

γvaκ4a,k−1

+ A3bvb

ub∑
x=1

(
Cb
µvbrb,b

)κ4b,x ∏ub
l=1;l 6=x Γ(κ4b,l − κ4b,x)∏rb
l=1 Γ(κ3b,l − κ4b,x)

γvbκ4b,x−1 − f̃γM
(γ), (7.25)

where f̃γM
(γ) is defined in (6.7).
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7.4.2.3 Moment Generating Function

Placing (7.22) in the definition of the MGF (3.17), and utilizing Eq. (6.10) and [44,

Eq. (07.34.21.0088.01)], the MGF can be expressed as

Mγm(s) =
A3a
√
va

(2π)
va−1

2

Gua,va
ra+va,ua

Ca( va
sµra,a

)va ∣∣∣∣∣∆(va, 1), κ3a

κ4a


+

A3b
√
vb

(2π)
vb−1

2

Gub,vb
rb+vb,ub

Cb( vb
sµrb,b

)vb ∣∣∣∣∣∆(vb, 1), κ3b

κ4b

−MγM
(s). (7.26)

More simplified expression for the MGF can be obtained if the expansion of the

Meijer’s G-function (3.14) was utilized as follows

M̃γm(s) u
µri,i>>1

A3ava

ua∑
k=1

(
Ca

(sµra,a)
va

)κ4a,k Γ(vaκ4a,k)
∏ua

l=1;l 6=k Γ(κ4a,l − κ4a,k)∏ra
l=1 Γ(κ3a,l − κ4a,k)

+ A3bvb

ub∑
x=1

(
Cb

(sµrb,b)
vb

)κ4b,x Γ(vbκ4b,x)
∏ub

l=1;l 6=x Γ(κ4b,l − κ4b,x)∏rb
l=1 Γ(κ3b,l − κ4b,x)

− M̃γM
(s), (7.27)

where M̃γM
(s) is defined in (6.11). The MGF for Gamma-Gamma model can be

obtained by setting the same parameters listed in Sec.

M∗
γm

(s) = A3aG
3ra,1
ra+1,3ra

 Ca
sµra,a

∣∣∣∣∣1, κ3a

κ4a

+ A3b G3rb,1
rb+1,3rb

 Cb
sµrb,b

∣∣∣∣∣1, κ3b

κ4b


− A3aA3b ×G1,0:3ra,1:3rb,1

1,0:ra+1,3ra+1:rb+1,3rb+1

1

−

∣∣∣∣∣κ5a

κ6a

∣∣∣∣∣κ5b

κ6b

∣∣∣∣∣ Ca
sµra,a

, Cb
sµrb,b

. (7.28)
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7.4.2.4 Moments

Substituting (7.24) in the definition of the moments (3.20) and utilizing [44, Eq.

(2.25.2.1)] and Eq. (6.13), the moments is obtained as

E[γnm] = A3a

(
µra,a

C
1/va
a

)n
Γ

κ4a+ n
va

κ3a+ n
va

+ A3b

(
µrb,b

C
1/vb
b

)n

Γ

κ4b+
n
vb

κ3b+
n
vb

− E[γnM] , (7.29)

where E[γnM] is defined in (6.13) and Γ

x

y

 =
m∏
i=1

Γ(xi)/
n∏
i=1

Γ(yi) such that m and n

are the lengths of x and y, respectively.

In the Gamma-Gamma case, (7.29) simplifies to

E[γnm]∗ = A3a

(
µra,a

C
1/va
a

)n
Γ

κ4a+n

κ3a+n

+ A3b

(
µrb,b

C
1/vb
b

)n

Γ

κ4b+n

κ3b+n


− A3aA3b

[(
µra,a
Ca

)n
G3rb+1,3ra

3ra+rb+1,3rb+ra+1

Cbµra,a
Caµrb,b

∣∣∣∣∣κ7a, κ3b

κ4b, κ8a


+

(
µrb,b
Cb

)n
G3ra+1,3rb

3rb+ra+1,3ra+rb+1

Caµrb,b

Cbµra,a

∣∣∣∣∣κ7b, κ3a

κ4a, κ8b


 . (7.30)

as found in [90, Eq. (16)].

7.4.3 Performance Measures

In this section, we present the performance analysis of a dual-hop FSO variable gain

relay transmission systems.

7.4.3.1 Outage Probability

The outage probability of the system is obtained by substituting (7.22) into (3.22).
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7.4.3.2 Average Bit Error Rate

P b is obtained by placing (7.22) into (3.28), and utilizing (6.15) and [59, Eq. (20)]

yielding

P b =
A3av

p−1/2
a

2Γ(p)(2π)
va−1

2

Gua,va+1
ra+va+1,ua+1

Ca( va
qµra,a

)va ∣∣∣∣∣∆(va, 1− p), κ5a

κ6a


+

A3bv
p−1/2
b

2Γ(p)(2π)
vb−1

2

Gub,vb+1
rb+vb+1,ub+1

Cb( vb
qµrb,b

)vb ∣∣∣∣∣∆(vb, 1− p), κ5b

κ6b

− P SC. (7.31)

Furthermore, an asymptotic expression of the BER via Meijer’s G-function expansion

(3.14) is obtained by solving (6.16) as follows

PDH u
µri,i>>1

A3a

2Γ(p)

ua∑
k=1

(
Ca

(qµra,a)
va

)κ4a,k Γ(vaκ4a,k + p)
∏ua

l=1;l 6=k Γ(κ4a,l − κ4a,k)

κ4a,k

∏ra
l=1 Γ(κ3a,l − κ4a,k)

+
A3b

2Γ(p)

ub∑
x=1

(
Cb

qµrb,b
vb

)κ4b,x Γ(vbκ4b,x + p)
∏ub

l=1;l 6=x Γ(κ4b,l − κ4b,x)

κ4b,x

∏rb
l=1 Γ(κ3b,l − κ4b,x)

− P SC , (7.32)

where P SC is defined in (6.15). In this case, diversity or coding can not be extracted

due to the fact that the expression consists of 3 terms and can not be reduced to the

form of (3.31).

For the case of Gamma-Gamma, we have

P
∗
DH =

A3a

2Γ(p)
G3ra,2
ra+2,3a+1

 Ca
qµra,a

∣∣∣∣∣1− p, κ5a

κ6a

+
A3b

2Γ(p)
G3rb,2
rb+2,rbub+1

 Cb
qµrb,b

∣∣∣∣∣1− p, κ5b

κ6b

− P ∗SC.

(7.33)
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7.4.3.3 Ergodic Capacity

Using (3.36), (3.37), along with the identities [111, Eq. (12)], and [44, Eq. (07.34.21.0011.01)],

we obtain the ergodic capacity in closed- form as

CDH =
A3b

ln(2)(2π)vb−1
Gub+2vb,vb
rb+2vb,ub+2vb

 Cb
(δµrb,b)

vb

∣∣∣∣∣ κ9b, κ3b

κ4b, κ10b


+

A3a

ln(2)(2π)va−1
Gua+2va,va
ra+2va,ua+2va

 Ca
(δµra,a)

va

∣∣∣∣∣ κ9a, κ3a

κ4a, κ10a

− CSC , (7.34)

where κ9i = ∆(vi, 0),∆(vi, 1) and κ10i = ∆(vi, 0),∆(vi, 0).

For the special case of Gamma-Gamma, we have

C
∗
DH =

A3b

ln(2)
G3rb+2,1
rb+2,3rb+2

 Cb
δµrb,b

∣∣∣∣∣0, 1, κ3b

κ4b, 0, 0

+
A3a

ln(2)
G3ra+2,1
ra+2,3ra+2

 Ca
δµra,a

∣∣∣∣∣0, 1, κ3a

κ4a, 0, 0

− C∗SC.

(7.35)

7.5 Numerical Analysis

In this section, we validate our analytical results and compare it with computer-based

Monte Carlo simulations. In fact, we present selected examples of the performance

of the two proposed systems.

7.5.1 RF-FSO Fixed Gain Dual-Hop Transmission Systems

The outage probability of mixed RF-FSO dual-hop relay transmission system expe-

riencing different turbulence conditions is presented in Figs. 7.2, 7.3, and 7.4 with

varying ξ and r to show the impact of pointing errors and the detection technique. In

Figs 7.2 and 7.3, the average SNR of the second link is fixed to µr,2 = 27 dB and the

OP is evaluated with respect to the average SNR of the first link, γ1. It is observed
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Figure 7.2: Outage probability of mixed RF-FSO system link under strong and mod-
erate turbulence conditions for both detection techniques, heterodyne (r = 1) and
IM/DD (r = 2) with ξ = 1.

that considering heterodyne detection for the FSO link leads to reduction in the OP

of the system. Moreover, high effect of pointing errors results in higher outage of the

system. In Fig. 7.4, however, the average SNR of the RF link is fixed as γ1 ∈ {20, 40}

dB and the average of the second link, µ2,2 is varied. It is shown that for lower γ1,

the system saturates very fast and the asymptotic results converge fast as well.

Similarly, the average bit error rate performance under DBPSK modulation where

p = 1 and q = 1 for RF-FSO dual hop relay was evaluated in Figs. 7.5, 7.6, and 7.7.

More specifically, in Figs. 7.5 and 7.6, the BER is evaluated with respect to the first

hop average SNR, γ1. As expected, utilizing heterodyne detection for the FSO link

provides better error performance than if IM/DD is considered. Also, high pointing

errors effect lowers the system performance. On the other hand, in Fig. 7.7, the BER
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Figure 7.3: The impact of pointing errors on the outage probability of mixed FR-FSO
relay link under strong and moderate turbulence conditions using IM/DD technique
(r = 2) with varying pointing errors.

is evaluated with respect to µ2,2 along with asymptotic results. Similar to the OP,

low values of γ1 leads to system saturation and better convergence for the asymptotic

results (utilizing the dominant terms).

Furthermore, the ergodic capacity of mixed RF-FSO dual-hop system operating

over double GG turbulence channel under the impact of pointing errors is evaluated

in Figs. 7.8, 7.9, and 7.10. Specifically, in Figs. 7.8 and 7.9, the capacity is evaluated

with respect to γ1. It is clear that heterodyne detection technique provides higher

capacity than IM/DD. However, the capacity is still low when the pointing errors

effect is high. Furthermore, in Fig. 7.10, we compare the capacity of the system

for γ1 = 20 dB and γ1 = 40 dB. It is observed that higher γ1 yields better system

capacity. Finally, in Figs. 7.8, 7.9, and 7.10, the asymptotic results based in all terms
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Figure 7.4: The impact of γ1 on the outage probability of mixed RF-FSO relay link
under strong turbulence conditions using IM/DD technique (r = 2) with varying
pointing errors.

as in Eq. (7.18) are presented. Interestingly, they perfectly agrees with the analytical

results.

7.5.2 FSO-FSO Variable Gain Dual-Hop Transmission Sys-

tems

The BER over DPSK modulation and ergodic capacity of variable gain FSO relay

systems Figs. 7.11 and 7.12. We had to compare the performance of a single FSO link

that suffers both strong turbulence conditions and severe pointing errors with relay

assisted link of RF-FSO and FSO-FSO experiencing moderate turbulence conditions

with ξ >> 1. Clearly, relay links outperform the single link in addition to providing

higher data rate. Moreover, the asymptotic analysis shows an excellent match with
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Figure 7.5: Average bit error rate of mixed RF-FSO relay link under strong and
moderate turbulence conditions for both detection techniques, heterodyne (r = 1)
and IM/DD (r = 2) with ξ = 1.

the exact results even for low SNR values (i.e starting at 20 dB).

7.6 Conclusion

Closed-form expressions for the CDF, the PDF, the MGF, and the moments of the

end-to-end SNR of RF-FSO fixed gain and FSO-FSO variable gain dual-hop relay-

ing systems were obtained. Furthermore, we developed analytical expressions for the

average bit error rate and the ergodic capacity to evaluate the performance of both

systems. Monte-Carlo computer simulations were carried out to validate our analyt-

ical results. Our results are expressed in terms of some special functions, however,

relatively simple asymptotic limits at high SNR were provided. Finally, it can be

concluded that relaying can be helpful in supporting FSO links.
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Chapter 8

Summary of Contributions and Future Work

8.1 Summary of Contributions

A general model for scintillation and misalignment is crucial in order to effectively an-

alyze and assess FSO systems. In this thesis, first a general model for turbulence with

the effect of pointing errors is provided in order to evaluate the major performance

metrics in exact and asymptotic ways. Then, generalized model for misalignment was

investigated to facilitate finding the asymptotic ergodic capacity of a single FSO link

which agrees with the exact results at high SNR.

The next part of the thesis aims to examine several ways to mitigate the effect

of scintillation and pointing errors. First, the performance analysis of selection com-

bining diversity techniques is studied and it has been shown that it can effectively

be used to overcome the scintillation. Finally, amplify-and-forward FSO relaying is

investigated and it has shown great potential, especially with the integration of RF

links.

8.2 Future Research Directions

This research work of this thesis can be extended in different directions. First, for the

double generalized Gamma model, there is still a need to link the parameters of the

distribution with the scintillation index to fully characterize the turbulence channel

and to model real-life scenario. Second, the pointing error definition is an approxi-

mation which motivates research direction in the area of finding the exact definition
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in terms of the radial displacement. Third, closed-form statistics and performance

metrics of a generalized channel model considering the Beckmann distribution can be

further investigated.

Since the FSO channel can be considered as composite channel taking the large-

scale and small-scale effects into consideration in addition the pointing errors effect,

an approximation of either double generalized Gamma or Gamma-Gamma model will

be further studied.
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APPENDICES

A Special Functions

Meijer’s G-function The Meijer’s G-function can be defined as a line integrals in the

complex plane as follows [112]

Gm,n
p,q

z ∣∣∣∣∣a1, . . . , an, . . . , ap

b1, . . . , bm, . . . , bq

 =
1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
z−s ds.

(A.1)

The definition of the Meijer’s G-function is satisfied under some conditions as

� The variables m, n, p and q are integer numbers i.e. 0 ≤ m ≤ q and 0 ≤ n ≤ p.

� z 6= 0.

� For k = 1, 2, . . . , n and j = 1, 2, . . . ,m, ak − bj 6= 1, 2, 3, . . . .

The Meijer’s G-function can be simply evaluated using a built-in function in MATHEMATICAr.

Fox’s H-function The Fox’s H-function is considered as a generalized form of the

Meijer’s G-function that can be defined as

Hm,n
p,q

z ∣∣∣∣∣ (a1, A1), (a2, A2), . . . (an, An), . . . , (ap, Ap)

(b1, B1), (b2, B2), . . . , (bm, Bm), . . . , (bq, Bp)


=

∫
L

∏m
j=1 Γ(bj −Bjs)

∏n
j=1 Γ(1− aj + Ajs)∏q

j=m+1 Γ(1− bj +Bjs)
∏p

j=n+1 Γ(aj − Ajs)
z−s ds. (A.2)
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The Fox H-function can be evaluated using the MATHEMATICAr script available

in [91, Appendix A]. Furthermore, the Fox H-function reduces to the Meijer’s G-

function when Aj = Bk = C > 0 for j = 1, . . . , p and k = 1, . . . , q as

Hm,n
p,q

z ∣∣∣∣∣(a1, C), (a2, C), . . . (an, C), . . . , (ap, C)

(b1, C), (b2, C), . . . , (bm, C), . . . , (bq, C)

 =
1

C
Gm,n
p,q

z1/C

∣∣∣∣∣a1, . . . , an, . . . , ap

b1, . . . , bm, . . . , bq

 .

(A.3)

Extended Generalized Bivariate Meijer’s G-function A general form of the Meijer’s

G-function was defined as

Gm1,0:n2,m2:n3,m3
p1,q1:p2,q2,p3,q3

(a)

(b)

∣∣∣∣∣(c)

(d)

∣∣∣∣∣(e)

(f)

∣∣∣∣∣x, y
 =

1

(2πi)2

∫
L1

∫
L2

Φ(s+ t)Ψ(s, t)xsyt ds dt, (A.4)

where notation (a), (b) and (d) stand for

(a) = a1, . . . , am1 , . . . , ap1 , (A.5)

(b) = b1, . . . , bq1 , (A.6)

(d) = d1, . . . , dn1 , . . . , aq1 (A.7)

with similar interpretations for (c), (e), and (f).

In A.4, L1 and L2 are suitable contour lines

Φ(s+ t) =

∏m1

j=1 Γ(aj + s+ t)∏p1

j=m1+1 Γ(1− aj − s− t)
∏q1

j=1 Γ(bj + s+ t)
, (A.8)

Ψ(s, t) =

∏m2

j=1 Γ(1− cj + s)
∏m3

j=1 Γ(1− ej + t)
∏n2

j=1 Γ(dj − s)∏p2

j=m2+1 Γ(cj − s)
∏p3

j=m3+2 Γ(ej − t)

×
∏n3

j=1 Γ(fj − t)∏q2
j=n2+1 Γ(1− dj + s)

∏q3
j=n3+1 Γ(1− fj + t)

. (A.9)

The EGBMG function can be written in another presentation as [59, Table. I] and
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easily evaluated in MATHEMATICAr using the code given in [59, Table II].

H-function of Two Variables The bivariate H-function was first introduced in [92]

and is defined as

H




0, n1

p1, q1



m2, n2

p2, q2



m3, n3

p3, q3



(ap1 ;αp1 ,Ap1)

(bq1 ;βq1 ,Bq1)

(cp2 ;rp2)

(dq1 ,δq2)

(ep3 ,Ep3)

(fq3 ,Fq3)

x

y


=

1

(2πi)2

∫
L1

∫
L2

φ1(s, t)φ2(s)φ3(t)xs yt ds dt.

(A.10)

where φ1(s, t), φ2(s) and φ3(t) are defined as follows:

φ1(s, t) =

∏n1

j=1 Γ(1− aj + αjs+ Ajt)∏p1

j=m1+1 Γ(aj − αjs− Ajt)
∏q1

j=1 Γ(1− bj + βjs+Bjt)
, (A.11)

φ2(s) =

∏n2

j=1 Γ(1− cj + rjs)
∏m2

j=1 Γ(dj − δjs)∏p2

j=m2+1 Γ(cj − rjs)
∏q2

j=n2+1 Γ(1− dj + δjs)
, (A.12)

φ3(t) =

∏n3

j=1 Γ(1− ej + Ejt)
∏m3

j=1 Γ(fj − Fjt)∏p3

j=n3+2 Γ(ej − Ejt)
∏q3

j=m3+1 Γ(1− fj + Fjt)
. (A.13)

Such that x and y are not equal to zero and the set of variables {p1, p2, p3, q1, q2, q3, n1,

n2, n3,m1,m2,m3} are non-negative integers satisfying the following conditions p1 ≥

n1 ≥ 0; p2 ≥ n2 ≥ 0; p3 ≥ n3 ≥ 0; q1 ≥ 0; q2 ≥ m2 ≥ 0 and q3 ≥ m3 ≥ 0. The

function can be evaluated efficiently using the MATHEMATICAr implementation

in [59] or the MATLABr implementation in [113]. In this work, the bivariate H-

function was implemented and easily evaluated in MATHEMATICAr.
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B The relationship between the extended generalized-K

and double generalized Gamma distributions

Statistically, the extended Generalized-K (EGK) [47] and double Generalized Gamma

(DGG) developed by [46] models are equivalent. The EGK is originated from the

Generalized Nakagami-m (GNM) random variable (RV) i.e. Ri ∼ GNM(mi, ξi, ωi)

where mi, ξi, and ωi are the fading, shaping parameters, and the average power,

respectively. On the other hand, the double Generalized Gamma RV I is based on

the generalized Gamma RVs Ii ∼ GG(αi, βi,Ωi) where βi is the fading parameter, αi

is the shaping parameter that can be derived from variance of the small and large

scale fluctuations [17, Eq. (18)-(20)] inserted in [46, Eq. (8a), (8b)] and Ωi given

as [46, Eq. (9)]

Ωi =

(
Γ(mi)

Γ(βi + 1/αi)

)αi
βi. (B.1)

It is well known that the square of GNM, R2
i , is Generalized Gamma RV, Ii [91].

The probability density function (PDF) of R2
i given in [91, Eq. (7)] after some

mathematical manipulation can be equal to

fR2
i
(z) =

ξiz
miξi−1

Γ(mi)

(
Bi

ωi

)miξi
exp

{
−
(
Biz

ωi

)ξi}
, (B.2)

where Γ(.) is the Gamma function as defined in [43, Eq.(8.310)] and Bi = Γ(mi+1/ξi)
Γ(mi)

.

Comparing (B.2) to the Generalized Gamma PDF in [45, Eq. (2)]

fx(x) =
pxd−1

Γ(d/p)ad
exp

{(x
a

)p}
, (B.3)
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we can reach to the following

pi = ξi, di = miξi, and ai =
ωi
Bi

. (B.4)

In addition, the PDF of Ii can be found in [46, Eq. (1) or (2)]

fIi(I) =
αiI

βiαi−1

Γ(βi)

(
βi
Ωi

)βi
exp

{
− βi

Ωi

Iαi
}

(B.5)

Comparing it to (B.3), we reach to the following

pi = αi, di = βiαi, and ai =

(
Ωi

βi

)1/αi

. (B.6)

Then, given that ωi = E[R2
i ] = E[Ii] = 1 we can relate the parameters as

ξi = αi, mi = βi, Bi =

(
βi
Ωi

)1/αi

. (B.7)

Next, let

R = R2
1R2

2, (B.8)

where R1 and R2 are a pair of independent Generalized Nakagami-m RVs represent-

ing the shadowing (large-scale) and multi-path-fading (small-scale) with normalized

average powers (i.e. E[R2
1] = ω1 = 1 and E[R2

2] = ω2 = 1) leading to R being an

extended Generalized-k random variable [47] i.e. R ∼ KG(m1, ξ1,m2, ξ2, ω1, ω2) with

PDF equals to [47, Eq. (3)] [48, Eq. (26)].

fR(z) =
2

zΓ(m1)Γ(m2)
H2,0

0,2

z2B2
1B

2
2

∣∣∣∣∣ −

(m1,
2
ξ1

), (m2,
2
ξ2

)

 , (B.9)
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where Hm,n
p,q [.] is the Fox’s H-function that can be evaluated efficiently using MATHEMATICAr

code listed in [91]. Now, let

I = I1I2, (B.10)

where I1 and I2 are independent RVs representing the large-scale and small-scale

fluctuations, respectively. I is identified as a double GG RV whose PDF is given

in [46, Eq. (4)] as

fI(I) =
α2λσ

β1− 1
2λβ2−

1
2 (2π)1−σ+λ

2

Γ(β1)Γ(β2)I
G0,λ+σ
λ+σ,0

( Ω2

Iα2

)λ
λλσσΩσ

1

βσ1 β
λ
2

∣∣∣∣∣∆(σ : 1− β1),∆(λ : 1− β2)

−

 ,

(B.11)

where Gm,n
p,q [.] is the Meijer’s G-function as defined in [43, Eq.(9.301)], λ and σ are

positive integers such as λ
σ

= α1

α2
and ∆(x : y) , y

x
, y+1

x
. . . , y+x−1

x
. Numerically (B.9)

coincides with (B.11) as shown in Fig. B.1.

Although they are equal, the EGK distribution was mentioned in the literature

to describe the fading model in radio frequency (RF) communications. To our best

knowledge, double generalized Gamma was first mentioned to model the optical ir-

radiance in [46]. The PDF in (B.11) is in terms of the Meijer’s G-function that

can be easily evaluated by MATHEMATICAr built-in function compared to the Fox

H-function.
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Figure B.1: Comparison between PDFs obtained analytically and via Monte Carlo
simulations for EGK and double GG distributions.
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C The relationship between the Málaga and double

generalized Gamma distributions

The Málaga distribution (i.e. IM(α̂, β̂, γ, Ω̂)) and double generalized Gamma distri-

bution (i.e. IGG(α1, β1, α2, β2,Ω1,Ω2) where Ωi =
(

Γ(mi)
Γ(βi+1/αi)

)αi
βi) are statistically

different. In other words, the DGG distribution is based on a doubly stochastic the-

ory of scintillation and assumes that small-scale irradiance fluctuations Ix are coupled

with large-scale irradiance fluctuations of the propagating wave Iy [49]

IGG = IxIy. (C.1)

However, the Málaga distribution models the small-scale into three parts: the first

one is the LOS component UL, the second one is coupled to the LOS contribution and

is quasi-forward scattered by the eddies on the propagation axis UC
S , and the third

one is the energy which is scattered to the receiver by off-axis eddies UG
S [49]. Thus,

the irradiance can be written as

IM = |UL + UC
S + UG

S |2 exp(2X) (C.2)

= IxIy. (C.3)

Interestingly, the ΓΓ model (i.e. IΓΓ(α, β)) is a special case of both. Hence, both

distributions can be linked to each other through the Gamma-Gamma model. First,

the DGG model is a four-parameter distribution, we can map these parameters into
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the Gamma-Gamma using the higher-order amount of fading given as

AF
(n)
I =

E[In]

E[I]n
− 1 , (C.4)

where the moments of the DGG and the Gamma-Gamma distributions can be written

as

E[InGG] =

(
Ω1

β1

) n
α1 Γ

(
n+α1β1

α1

)(
Ω2

β2

) n
α2 Γ

(
n+α2β2

α2

)
Γ(β2)Γ(β2)

, (C.5)

E[InΓΓ] =
Γ(n+ α)Γ(n+ β)

αnβnΓ(α)Γ(β)
. (C.6)

By solving the following system

AF
(2)
IΓΓ

= AF
(2)
IGG

,

AF
(3)
IΓΓ

= AF
(3)
IGG

, (C.7)

we can get α and β equal to

α =
X −

√
X2 − 4Y

2Y
, (C.8)

β =

√
X2 − 4Y +X

2Y
, (C.9)

where

X =
4(AF

(2)
IGG

)2 − AF (3)
IGG

+ 5AF
(2)
IGG

2AF
(2)
IGG

+ 2
, (C.10)

Y =
AF

(3)
IGG
− 2(AF

(2)
IGG

)2 − 3AF
(2)
IGG

2AF
(2)
IGG

+ 2
. (C.11)
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In addition, if we set the following parameters into the Málaga distribution: α̂ = α

obtained in (C.8), β̂ = β obtained in (C.9), γ = 0 and Ω̂ = 1, the Málaga distribution

reduces to double GG.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
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Figure C.1: Comparison between PDFs obtained analytically and via Monte Carlo
simulations for Gamma-Gamma, the Málaga and double GG distributions under
strong turbulence conditions.

For example, in Fig. C.1 we show the Monte-Carlo simulation of double gen-

eralized Gamma distributed irradiance in strong turbulence conditions. Then, we

numerically evaluated the Gamma-Gamma irradiance PDF (2.9) with α and β ob-

tained in (C.8) and (C.9), respectively. After that we set the appropriate parameters

for the Málaga PDF [49, Eq. 24] to reduce to double generalized Gamma. The small

difference between the PDFs in Fig. C.1 can be due to the approximation of β to be

a natural number. Overall, the mapping is simple and accurate. Furthermore, the

same methodology is performed for moderate turbulence as shown in Fig. C.2. Com-
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Figure C.2: Comparison between PDFs obtained analytically and via Monte Carlo
simulations for Gamma-Gamma, the Málaga and double GG distributions under mod-
erate turbulence conditions

paring the two figures, it can be concluded that the approximation is more accurate

for moderate conditions.
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