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SUMMARY 

 

With the threatening of global warming and energy crises, searching for renewable 

and green energy resources with reduced carbon emissions is one of the most urgent 

challenges to the sustainable development of human civilization. In the past decades, 

increasing research efforts have been committed to seek for clean and renewable energy 

sources as well as to develop renewable energy technologies. 

Mechanical motion ubiquitously exists in ambient environment and people’s daily 

life. In recent years, it becomes an attractive target for energy harvesting as a promising 

supplement to traditional fuel sources and a potentially alternative power source to battery-

operated electronics. Until recently, the mechanisms of mechanical energy harvesting are 

limited to transductions based on piezoelectric effect, electromagnetic effect, electrostatic 

effect and magnetostrictive effect. Widespread usage of these techniques is likely to be 

shadowed by possible limitations, such as structure complexity, low power output, 

fabrication of high-quality materials, reliance on external power sources and little 

adaptability on structural design for different applications. In 2012, triboelectric 

nanogenerator (TENG), a creative invention for harvesting ambient mechanical energy 

based on the coupling between triboelectric effect and electrostatic effect has been 

launched as a new and renewable energy technology.  The concept and design presented in 

this thesis research can greatly promote the development of TENG as both sustainable 

power sources and self-powered active sensors. And it will greatly help to define the TENG 

as a fundamentally new green energy technology, featured as being simple, reliable, cost-

effective as well as high efficiency. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Mechanical energy harvesting 

With the threatening of global warming and energy crises, searching for renewable 

and green energy resources with reduced carbon emissions is one of the most urgent 

challenge to the sustainable development of human civilization.1-3 In the past decades, 

increasing research efforts have been committed to seek for clean and renewable energy 

sources as well as to develop renewable energy technologies. In the meanwhile, the 

tremendous development of portable electronics and sensor networks necessitates 

sustainable and stable energy sources for them.  

Mechanical motion ubiquitously exists in ambient environment and people’s daily 

life. In recent years, it becomes an attractive target for energy harvesting as a promising 

supplement to traditional fuel sources and a potentially alternative power source to battery-

operated electronics. Until recently, the mechanisms of mechanical energy harvesting are 

limited to transductions based on electromagnetic effect,4-6 electrostatic effect,7-9 

piezoelectric effect.10-15  

Based on the electromagnetic effect, an electromagnetic generator is capable of 

converting mechanical energy into electrical power for use in an external circuit. It usually 

consists of a magnet on a polyimide spring.  It is the current technology for large-scale 

mechanical energy harvesting. However, an obvious disadvantage of this technology was 

that the output voltage was very low, due to the single current path through the magnetic 

flux. Furthermore, it has a very low power output when miniaturized and little adaptability 
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on structural design for various applications. The device structure of a typical example of 

electromagnetic generator was shown in Figure 1.1a.5  It consisted of four magnets, which 

were attached to both the top and bottom surfaces of a cantilever beam. Designed for 

ambient vibration energy harvesting, its electrical output was illustrated in Figure 1.1b. 

And an output power of 10.82 W was delivered at a beam vibration frequency of 58.5 Hz.  

 

Figure 1.1 (a) A sketch showing the structural design of a typical electromagnetic 

generator for ambient vibration energy harvesting. (b) The excitation frequency depended 

power output of the micro-electromagnetic generator.5 

 

 By utilizing the electrostatic effect, an electrostatic generator develops electrostatic 

charges of opposite signs rendered to two conductors. And the external mechanical motions 

can carry electric charge to a high potential electrode, in this processing, it converts the 

mechanical motions into electricity. Wehrsen Machine and the Van de Graaff generator are 

popular traditional electrostatic generators. Recent efforts have been committed to 

minimize the total size of the device in the field of electrostatic generator. In this regards, 

separated by a passive spacing gap, an in-plane electrostatic generator based on electrets 

materials were develpped.8 As shown in Figure 1.2a, a repulsive electrostatic force was 

induced by a patterned electrets material, while a dual-phase electrode arrangement is 

adopted for reducing the horizontal electrostatic damping force. As demonstrated in Figure 

1.2b, a power output of 0.56 W was delivered by the reported electrostatic generator. 
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Figure 1.2 (a) The schematic structural design of an electrostatic generator. (b) 

Dependence of the output power on the external loading resistances.8  

 

While for the piezoelectric effect based generator, it harnesses the strain induced 

piezoelectric polarization in certain crystals, such as ZnO and PZT, the potential created 

by polarization charges can drive the flow of electrons across two electrodes placed on the 

top and bottom surfaces of the crystal. In this processing, the mechanical motion is thus 

converted into the electricity in the external circuit.  

In summary, widespread usage of these techniques is likely to be shadowed by 

possible limitations. For both the electromagnetic-based and electrostatic generator, they 

deliver low power output when miniaturized, and they both have little adaptability on 

structural design for various applications. With sophisticated structure and special 

fabrication materials, they also suffer from high manufacturing cost.  And for electrostatic-

based generator, it needs external DC voltage to maintain the static charge. While regarding 

the piezoelectric effect based generator, the low power output greatly limited its practical 

applications as sustainable power sources. 

 

1.2 Triboelectric nanogenerators 
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In 2012, triboelectric nanogenerator (TENG), a creative invention for harvesting 

ambient mechanical energy based on triboelectric effect,16, 17 has been launched as a new 

and renewable energy technology. The first triboelectric nanogenerator is demonstrated in 

Figure 1.3.18 

 

Figure 1.3 A schematic illustration of the device structure and working principle of the 

first triboelectric generator. (a) The structure of the triboelectric nanogenerator in bending 

and releasing process and experimental setup for electrical measurement. (b) An 

illustration of the working principle of the first triboelectric nanogenerator.18 

 

The first-reported triboelectric nanogenerator has a multilayer structure. Due to the 

coupling between triboelectric effect and electrostatic induction, the periodic contact and 

separation between PET and Kapton, triggered by external mechanical motion, 

alternatingly drives the induced electrons between electrodes. And a peak voltage of 3.3 V, 

a current of 0.6 A with a peak power density of 10.4 mW/cm3 was delivered. In this 

process, the mechanical energy is effectively converted into electricity. 
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Since the launching of the first triboelectric nanogenerator, it attracts growing 

scientific attentions, and has been proved to be a cost-effective, simple and robust 

technique in the field of mechanical energy harvesting.19-28 The past three years has 

witnessed the remarkable progress in the triboelectric nanogenerator based self-powered 

devices and systems.29-31 Currently, four fundamental operation modes of the triboelectric 

nanogenerator have been systematically developed, which respectively are vertical contact-

separation mode,26-28 in-plane linear sliding mode,32, 33 single electrode mode,34, 35 and 

freestanding triboelectric-layer mode,36 as schematically shown in Figure 1.4.  

 

Figure 1.4 The working mechanism of four modes of triboelectric nanogenerator.31  

 

In the following sections, we will elaborate each operation mode of the triboelectric 

nanogenerator in details as well as introduce corresponding unique applications. 
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1.2.1 The vertical contact-separation mode 

The vertical contact-separation mode is the first invented operation mode for the 

triboelectric nanogenerator. A physical contact between the two dielectric films with 

different electron affinity creates oppositely charged surfaces. Once the two surfaces are 

separated by a gap, a potential drop is created between electrodes deposited on the top and 

the bottom surfaces of two dielectric films, as shown in Figure 1.5a.28  If the two electrodes 

are electrically connected by a load, free electrons in one electrode would flow to the other 

electrode in order to balance the electrostatic field, as demonstrated in Figure 1.5b. Once 

the gap is closed, the triboelectric charge created potential disappears, the electrons flow 

back. In a word, the periodic contact and separation between two materials alternatingly 

drives induced electrons between electrodes. 

 

Figure 1.5 Sketches that illustrate the working principle of a typical vertical contact-

separation mode triboelectric nanogenerator. (a) Open-circuit condition. (b) Short-circuit 

condition. 28 
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1.2.2  The in-plane sliding mode 

The structure to start with is the same as that for the vertical contact-separation 

mode. When two materials with opposite triboelectric polarities, for instance PTFE and 

aluminum, are brought into contact, surface charge transfer takes place due to the 

triboelectric effect. Since PTFE is much more triboelectrically negative than aluminum, 

electrons are injected from aluminum into PTFE, as shown in Figure 1.6.33 

 

Figure 1.6 Triboelectric nanogenerator based on sliding electrification. (a) Schematic of 

the operation process of an in-plane sliding triboelectric nanogenerator. (b) A cycle of 

electricity generation process for illustrating the mechanism of the TENG.Electrical 

measurement results of an in-plane sliding triboelectric nanogenerator. (c) Short-circuit 

current and enlarged view of a cycle (d) highlighted in (c). Insets: relative positions 

between the two sliding surfaces that correspond to the current output. (d) Open-circuit 

voltage. (e) Rectified current by a full-wave diode bridge. (f) Accumulative inductive 

charges generated by the TENG.33 
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At aligned position, though triboelectric charges present on the surfaces, positive 

ones on aluminum are fully compensated by the negative ones on PTFE, producing no 

electric field in surrounding space if the electric field at the edge is ignored. Once a relative 

displacement is introduced by an externally applied force in the direction parallel to the 

surfaces, triboelectric charges are not compensated at the displaced/mismatched areas, 

resulting in the creation of an effective dipole polarization parallel to the direction of the 

displacement. Therefore, the uncompensated charges generate electric potential difference 

across the two electrodes, which will repulsively drive free electrons on the copper 

electrode to the aluminum electrode, neutralizing the positive triboelectric charges and 

leaving behind positive inductive charges. The flow of inductive electrons lasts until the 

displacement reaches the maximum. As the displacement is diminished by the 

reciprocating force, the inductive electrons flow back to the copper electrode until the fully 

aligned position is restored. Therefore, in the entire process, alternating current is produced 

through the external load. 

 

1.2.3 The single-electrode mode 

For both the vertical contact-separation mode and in-plane sliding mode 

triboelectric nanogenerators, the moving objects need to be bonded with an electrode and 

a lead wire. Such  a  device configuration largely limits TENGs’ versatility and 

applicability for  harvesting  energy  from  an  arbitrary  moving  object, because the object 

has to be connected to the entire system by an  interconnect. With this regards, the single 

electrode mode triboelectric nanogenerator was developed.34 A typical example of single-
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electrode TENGs is shown in Figure 1.7. In the original position, PTFE and aluminum fully 

contact each other, which will result in that electrons are injected from aluminum to PTFE, 

 

Figure 1.7  Sketches that illustrate the working principle of a typical single electrode mode 

triboelectric nanogenerator.34 

     

since PTFE is much more triboelectrically negative than aluminum. Once the negatively 

charged PTFE slides apart, a decrease of the induced positive charges on the Al will occur, 

and thus the electrons will flow from ground to aluminum till the two plates are entirely 

separated. Then, when the PTFE slides backward, the induced positive charges on the 

aluminum increase, driving the electrons to flow from aluminum to the ground till the two 

plates fully overlapped. This is a full cycle of electricity generation process of the single-

electrode mode triboelectric nanogenerator. 

 

1.2.4 The freestanding triboelectric-layer mode 

The freestanding triboelectric-layer mode triboelectric nanogenerator is also 

capable of scavenging energy from the mechanical motion without an attached electrode. 

If we make a pair of symmetric electrodes underneath a dielectric layer and the size of the 
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electrodes and the gap distance between the two are of the same order as the size of the 

moving object, the object’s approaching to and/or departing from the electrodes create an 

asymmetric charge distribution in the media, which causes the electrons to flow between 

the two electrodes to balance the local potential distribution. 

 

Figure 1.8 Sketch that illustrates the structure design of a typical freestanding triboelectric-

layer mode triboelectric nanogenerator and its application in harvesting mechanical energy 

from human walking.36 

 

The oscillation of the electrons between the pair electrodes produces electricity. 

One typical structure of freestanding triboelectric-layer mode triboelectric nanogenerator 

is shown in Figure 1.8.36 Given the unique applicability resulting from distinctive 

mechanism and device structure, the freestanding triboelectric-layer mode triboelectric 

nanogenerator can be utilized to harvest energy from a walking human or a moving 

automobile.  
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1.3 Objective of the research 

Mechanical motions, in various forms, is ubiquitous in ambient environment with 

wide-range of scale, from air flow, ocean wave to human activities such as walking, 

running, even heartbeat, throat vibration and breathing, from operating household 

appliances such as washing machines and refrigerators to bouncing automobile tires on a 

gravel road. With this regards, the objective of this thesis research is mainly devoted to 

developing and expanding the applicability of triboelectric nanogenerators, which is 

engaged in fundamental working mode development, functional materials synthesis as well 

as applications directed device design for various mechanical energy harvesting. The 

concept and design presented in this dissertation research can greatly promote the 

development of TENG as sustainable power sources and self-powered active sensors. 
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CHAPTER 2 

TENG AS SUSTAINABLE POWER SOURCES 

 

2.1 TENG for vibration energy harvesting 

Vibration, as a type of common mechanical motion, ubiquitously exists in people’s 

daily life. In recent years, it becomes an attractive target for energy harvesting as a 

potentially alternative power source to battery-operated electronics. Until recently, the 

mechanisms of vibrational energy harvesting are limited to transductions based on 

piezoelectric effect,11 electromagnetic effect,5 electrostatic effect7. Widespread usage of 

these techniques is likely to be shadowed by possible limitations, such as structure 

complexity,37 fabrication of high-quality materials,38 and reliance on external power 

source.7 Furthermore, all of the mechanisms require energy harvesting devices to operate 

at or within a very narrow range around resonance frequency. However, the majority of the 

ambient vibrations have a wide distribution of frequency spectrum, which may even drift 

over time, making the conventional mechanisms unsuitable in most circumstance.39 With 

this regards, we introduced a new principle in harvesting vibration energy by fabricating 

several triboelectric nanogenerators, as elaborated in the following sections. 

 

2.1.1 Harmonic-resonator-based TENG 

The harmonic-resonator-based TENG has a multilayer structure with acrylic as 

supporting substrates, as schematically shown in Figure 2.1a.40 Acrylic was selected as the 
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structural material owing to its decent strength, light weight, good machinability and low 

cost. A photograph of an as-fabricated TENG is shown in Figure 2.1b. 

 

Figure 2.1 Harmonic Resonator Based Triboelectric Nanogenerator. (a) Sketch and (b) 

photograph of a typical harmonic resonator based TENG. (c) SEM image of nanopores on 

aluminum electrode. (d) SEM image of PTFE nanowires. (e) Process flow for fabricating 

the Harmonic Resonator Based TENG.40 

 

On the upper substrate, aluminum thin film with nanoporous surface plays dual 

roles of an electrode and a contact surface. Scanning electron microscopy (SEM) image of 

nanopores on the aluminum is presented in Figure 2.1c. The average diameter of aluminum 

nanopores are 57± 5nm and a pore depth of 0.8±0.2 m with a distribution density of 212 

perm2. A layer of polytetrafluoroethylene (PTFE) film was adhered to the lower substrate 

with deposited copper as another electrode. PTFE nanowires arrays were created on the 

exposed PTFE surface by a top-down method through reactive ion etching.41 SEM image 
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of the PTFE nanowires is displayed in the Figure 2.1d. The average diameter of PTFE 

nanowires is 54±   nm with an average length of 1.5± 0.5 m.  A detailed fabrication 

process for the TENG is sketched in Figure 2.1e. 

To investigate the TENG’s performance of harvesting vibration energy, an 

electrodynamic shaker (Labworks Inc.) that provides sinusoidal wave was employed as a 

vibration source with tunable frequency and amplitude. The lower substrate of the TENG 

was anchored on the shaker, leaving the the upper part free-standing. At a fixed vibration 

amplitude, the reliance of electric output on the input vibration frequency is presented in 

Figure 2.2A and Figure 2.2B. The electric output can be measured with broad input 

frequency varying from 2 Hz to 200 Hz. Compared to state-of-the-art vibration energy 

harvesters that are based on nonlinear and topology variation,42-44 it has a considerably 

wider working bandwidth 13.4 Hz.    

Experimentally, both the open-circuit voltage (Voc) and the short-ciruit current (Isc) 

are maximized at the vibriation frequency of 14.5 Hz with maximum values of 287.4 V 

and 76.8 A, respectively, indicating that 14.5 Hz is the resonance frequency of the TENG. 

Theoretically, for a single degree-of-freedom vibration system, the natural frequency is 

given by 

𝑓0 = 
1

2𝜋
√

4𝑘

𝑚0
                                                                                                                     (2.1) 

where 𝑓0 is the natural frequency, 𝑚0 is the mass of the upper substrate plus the aluminum 

film, and k is the stiffness coefficient of each spring. For the TENG, 𝑚0 is 56.8 g, and 

spring stiffness coefficient is 112 N/m. Submitting the values into equation 2.1, we can 

obtain the natural frequency 𝑓0 of 14.1Hz, which is well consistent with the experimental 

result. 
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At the resonance frequency, the Voc is elaborated in Figure 2.2c. It has a uniform 

quasi-sinusoidal signal due to the fact that the upper substrate of the TENG vibrates in a 

harmonical manner. Theoretically, the harmonic-resonator-based TENG can be regarded 

as a damped system subjected to a harmonically varying force. Therefore, the maximum 

Voc at the resonance frequency can be expressed as 

Voc-rf  = 
𝜎

𝜀0
∙

𝑚0𝑎

2𝑘𝜁
                                                                                                                (2.2) 

where 𝜎 is the triboelectric charge density (0.00281C/cm2), 𝜀0 is the vacuum permittivty 

(8.85× 10−12 F/m),  𝜁 is the damping factor of the TENG system (0.34 by experimental 

measurement), and a is the acceleration of the electrodynamic shaker (a typical value of 

g/50 (g is the gravitational acceleration)).  

 

Figure 2.2 Electrical measurement results of a harmonic resonator based TENG. (a) Open-

circuit voltage (Voc) as a function of vibration frequency. The curve is the fitted result. (b) 

Short-circuit current (Isc) as a function of vibration frequency. The curve is a fitted result. 

(c) Open-circuit voltage (Voc) at vibration frequency of 14.5 Hz. (d) Short-circuit current 

(Isc) at vibration frequency of 14.5 Hz. Inset: enlarged view if one cycle. (e) Dependence 

of the voltage and current output on the external load resistance. The points represent peak 

value of electric signals while the lines are the fitted results. (f) Dependence of the peak 

power output on the resistance of the external load, indicating maximum power output 

when R = 5 MΩ. The curve is fitted result.40 
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The theoretical result of the Voc at the resonance frequency is calculated to be 464.2 

V, which is larger than the experimental result of 287.4 V.  The difference likely results 

from the assumptions made in the analytical model and non-ideal factors in the experiment. 

First, equation 2.2 is based on an assumption that the two contact surfaces are smooth. 

However, surface modification by nanomaterials is employed in the real case, leading to 

substantially enhanced contact area and thus higher triboelectric charge density. The value 

of triboelectric charge density submitted into equation 2.2 is obtained experimentally. 

Therefore, it is very likely to result in an overestimation of the theoretical Voc. In addtion, 

non-ideal factors such as humidity and particle contaminations in the air, which are not 

considered in the theoretical model, may potentially have negative impact on the actual 

voltage output. As shown in Figure 2.2d, the output current at the resonance frequency has 

an alternating behavior with asymmetrical amplitudes. It is found that the larger peaks 

correspond to the process in which the two contact surfaces move apart after collision; 

while the smaller ones are generated as the two surfaces approach each other. Given the 

same amount of charges transported back and forth, the faster separation is expected to 

produce larger current peaks than the slower approach, leading to the asymmetry.  

Resistors were utilized as external loads to further investigate the output power of 

the TENG at the resonance frequency. As displayed in Figure 2.2e, the current amplitude 

drops with increasing load resistance owing to the Ohmic loss, while the voltage follows a 

reverse trend.  As a result,  the instantanenous peak power (V2
peak/R) is maximized at a 

load resistance of 5 MΩ, coresponding to a peak power density of 726.1 mW/m2 (Figure 

2.2f). To prove the capability of the harmonic resonator based TENG as a sustainable 

http://dict.cn/alternating%20current%20%28AC%29
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power source and an active vibration sensor, four sets of practical applications were 

demonstrated.  

 

Figure 2.3. Demonstration of the harmonic resonator based TENG as a sustainable power 

source and self-powered active vibration sensor. (a) Photograph that shows TENG is 

working on an electrodynamic shaker at the vibration frequency of 60 Hz, which is the 

United States national power frequency. About 100 LEDs are being lighted up 

simultaneously without strobe perceived by a naked eye. (b) Photograph that shows TENG 

is working on an automotive engine. When the car starts up, the “NG” is being lighted up 

simultaneously. (c) Photograph that shows TENG works when a human hands slapping a 

firm table. Due to the table vibration, about 20 LEDs are being lighted up simultaneously. 

(d) TENG acts as active vibration sensor for distance measurement as well as ambient 

vibration detection. When a human walks naturally approaching the TENG, which is fixed 

on the floor, the output signal is exponentially increased.40 

 

First, as shown in Figure 2.3a,  the TENG was excited by an electrodynamic shaker 

at a vibration frequency of 60 Hz, lighting up almost 100 LED bulbs simultaneously and 

continuously without observable strobeflash. Secondly, shown in Figure 2.3b, the TENG 

was mounted onto an automotive engine. It sucessfully harvests vibrational energy from 
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the operating engine and powers about 20 LED bulbs simultaneously. The third practical 

application shows that the TENG, sitting on a table, generates electricity and drives small 

electronics as impact from a nearby human palm initiates vibration of the table (Figure 

2.3c). Lastly, as demonstrated in Figure 2.3d, the TENG  can also act as an active vibration 

sensor for detecting ambient vibration. When a human natually walks beside the TENG 

that is placed on the floor, electric output can be succesfully obtained. With the maximum 

effective range of 5 m, the electric output amplitude is exponentially related to the distance 

between the TENG and the footstep. These demonstrated applications prove that the TENG 

is sensitive to small ambient vibrations, making it suitable to a wide range of 

circumsntacnes for either energy-harvesting or sensing purposes, e.g. highways, bridges, 

and tunnels.    

 

2.1.2 Three-dimensional TENG 

Vibrations in our living environments are generally distributed over a wide 

frequency spectrum and exhibit multiple motion directions over time, which renders most 

of the current vibration energy harvesters unpractical for their purposes. With this regard, 

a three-dimensional triboelectric nanogenerator (3D-TENG) was developed, which can 

works in a hybridization mode of conjunctioning the vertical contact-separation mode and 

the in-plane sliding mode.45 The innovative design facilitates harvesting random vibration 

energy in multiple directions over a wide bandwidth. The 3D-TENG has a multilayer 

structure with circular acrylic as supporting substrates, as schematically shown in Figure 

2.4a. The cylindroid core of the 3D-TENG lies at the center of the acrylic substrate with a 

bottom diameter of 3 cm. 
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Figure 2.4 Three-dimensional triboelectric nanogenerator. (a) Schematic of a 3D-TENG. 

(b) SEM image of nanopores on aluminum electrode. (c) A photograph of the fabricated 

3D-TENG.45 

 

On the top of the core, an iron mass is mobile and suspended by three identical 

springs with an included angle of 1200 between each other. The designed structural 

symmetry assures that the whole system has a constant resonant frequency at arbitrary in-

plane directions. A layer of polytetrafluoroethylene (PTFE) film as one contact surface was 

adhered onto the bottom side of circular iron mass with deposited copper thin film as the 

back electrode. Attached to the bottom acrylic substrate, aluminum thin film with 

nanopores modification plays dual roles as a contact electrode and the other contact surface. 

The scanning electron microscopy (SEM) images of aluminum nanopores are shown in 

Figure 2.3b. Figure 2.3c is a photograph of the real 3D-TENG device.  

To operate, an electrodynamic shaker is still used as an external vibration source 

with controlled amplitude and acceleration. The supporting acrylic substrate of the 3D-

TENG is anchored on the shaker table to investigate the relationship between the electrical 

outputs and input frequency when it works in a vertical contact-separation mode. 
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Figure 2.5 Frequency responses of the 3D-TENG. (a) Frequency response of 3D-TENG 

under out-of-plane excitation. (b-f) Frequency responses of 3D-TENG at in-plane 

excitation angles of 00, 450, 900, 1350 and 1800, respectively.45 

 

As shown in Figure 2.5a, both the voltage and current present a rapid increasing 

with the increase of frequency from 10 to 36 Hz. The maximum values of the voltage and 

current respectively reach 123 V and 21 μA at the frequency of  6 Hz. Then, the voltage 

and current both gradually decrease to their minima as the frequency increases from 36 to 

140 Hz. The larger separation at 36 Hz would cause a larger contacting force when the two 

objects impact together. Since the aluminum surface was patterned with nanopores, a larger 

impact will largely increase the effective contact area between the two surfaces, and thus 

the total electric output. In addition, if the half peak voltage point is adopted as the criteria 

of the working bandwidth, 3D-TENG shows an extremely wide working bandwidth up to 

75 Hz in a low vibration frequency range under the out-of-plane excitation.  

When it comes to the in-plane sliding mode, the electric outputs were measured 

with the input excitation frequencies in a range from 10 to 55 Hz at different in-plane 
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excitation angles (00, 450, 900, 1350, 1800), as shown in Figures 2.5 b-f. The results proved 

that the 3D-TENG is capable of harvesting vibration energy from all of the in-plane 

directions. Considered the non-ideal experimental factors, such as the variation of the 

spring stiffness factors and the deviation of the fabricated structure symmetry, the 3D-

TENG has almost the same responses to the external vibrations at arbitrary in-plane 

directions. Furthermore, both the voltage and current are maximized at the frequency of 36 

Hz at all excitation angles. And slightly nonlinear behaviors are observed in all of the 

output responses mainly owing to the non-linear topology structure of the spring vibration 

system. In addition, the 3D-TENG also shows a considerably wide working bandwidth of 

14.4 Hz in a low vibration frequency range under the in-plane excitation. 

The practicability of harvesting energy from multiple directions with considerably 

wide working bandwidth enable the 3D-TENG have tremendous applications of building 

up self-powered systems by harvesting ambient vibration energy. To prove the capability 

of the 3D-TENG as a sustainable power source, three sets of practical applications were 

demonstrated. First, as shown in Figure 2.6a, the 3D-TENG works on a national grid 

transmission line which can effectively harvest wind or rain droplet induced line vibration 

energy. Forty serial-connected commercial LEDs were lighted up due to the line oscillating. 

Figure 2.6b plots the output voltages of the 3D-TENG under different line swing 

amplitudes. It can be seen that the voltages present an obvious increasing tendency with 

the increased swing amplitudes. This is because larger swing amplitude of the line will 

contribute to a larger out-of-plane separation of the two contact surface in the 3D-TENG, 

leading to higher output voltage.  
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Figure 2.6 Demonstration of the 3D-TENG (marked in red circles) as a sustainable power 

source and self-powered active sensors. (a) The photograph of line vibration energy 

harvesting. Forty commercial LED bulbs were lighted up simultaneously. (b) The output 

voltage of the 3D-TENG under different line swing amplitudes. (c) The photograph of 

human walking energy harvesting. Forty commercial LED bulbs were lighted up 

simultaneously. (d) The output voltages at different walking speeds. (e) The photograph of 

3D-TENG mounted on a still bicycle wheel. (f) Thirty commercial LED bulbs were lighted 

up simultaneously under the rotation of the bicycle wheel.45 

 

Secondly, shown in Figure 2.6c, the 3D-TENG is mounted on a human trail leg to 

harvest the vibration energy from human walking. This human motion induced vibration 

can be used as an external excitation to the 3D-TENG and 40 serial-connected commercial 

LEDs were lighted up. Figure 2.6d plots the output voltages under different walk speeds, 

which indicates that a faster speed leads to a larger voltage output. A third practical 

application is shown in Figure 2.6e. The 3D-TENG was anchored on a bicycle wheel to 

harvest the rotation energy. And 30 serial-connected commercial LEDs were lighted up 

during the wheel rotating (Figure 2.6f). This demonstration proves that the 3D-TENG not 

only can harvest wheel rotation energy but also can be developed as self-powered sensing 
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system to monitor the tire-pressure of automobiles, airplanes and other wheel-based 

vehicles. 

In a word, the 3D-TENG can effectively harvest ambient vibration energy in out-

of-plane direction with extremely wide working bandwidth up to 75 Hz and in arbitrary in-

plane directions with prepotent bandwidth of 14.4 Hz in low vibration frequency range. 

This superior capacity enable the 3D-TENG have tremendous practical applications, 

harvesting such as wind or rain droplet induced vibration energy from the national grid 

transmission lines, natural vibration energy from human walking, and rotation energy from 

the wheel-based vehicles. In addition, a large range of self-powered sensing systems can 

be also developed owing to the 3D-TENG’s high sensitivity to the external vibrations. This 

TENG design will find applications in powering portable electronics, environmental/ 

infrastructure monitoring, security and more. 

 

2.1.3 A triple-cantilever based TENG 

Still, we demonstrate a rationally designed triple-cantilever based TENG for 

ambient vibration energy harvesting.46 The basic structure of the triple-cantilever based 

TENG is shown in Figure 2.7a, in which, three metal plates of beryllium copper alloys foils 

are the three cantilevers. The bottom surface of the top cantilever and the top surface of the 

bottom cantilever are coated with Polydimethylsioxanes (PDMS) films.47 The surfaces of 

the middle cantilever are covered by ZnO nanowire arrays grown by chemical approach,48 

on the top of which a layer of Cu was evaporated. A mass is also attached at its end for 

effectiveness of vibration. Photos of a real device are shown in Figure 2.7b and d. This 

device has three unique characteristics. Firstly, the middle cantilever has two chances to 
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contact the top and bottom cantilevers in each cycle of the vibration, doubling the vibration 

energy conversion efficiency. Secondly, the PDMS film can be easily deformed to increase 

the effective contact area of TENG.25  

 

Figure 2.7 (a) Sketch and (b), (d) photographs of a typical triple-cantilever based TENG, 

with a size equivalent to a quarter. (c) SEM image of Cu film coated ZnO nanowire arrays. 

(e) Fabrication process of the TENG.46 

 

Lastly, the nanowire-arrays based surface modification plays an important role for 

the output power enhancement (Figure 2.7c). The nanowire arrays can deeply insert into 

the PDMS to increase the effective contact area and thus a substantially higher electric 

output. As sketched in Figure 2.7e, the fabrication process is simple and straightforward, 

without involving any complicated equipment or procedures.  

The triple-cantilever based TENG was tested by measuring its open-circuit voltages 

(VOC) and rectified short-circuit current (ISC) in a range of frequencies from 2.5 Hz to 5.0 
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Hz with the same amplitude. From Figure 2.8a and b, it is safe to conclude that the triple-

cantilever based TENG is suitable to harvest the low-frequency vibration energy such as 

ocean waves, motor vibration, highway, bridge and tunnel vibration when vehicles passing 

by. In addition, we also investigated the reliance of the electric output power on the external 

load under the vibration frequency of 3.7 Hz. As indicated in Figure 2.8c, increasing the 

resistance of the external load, the maximum current and voltage decreased and increased, 

respectively. Correspondingly, the instantaneous output power density (Pd = UI/Seff ) as a 

function of the external resistance is shown in Fig. 4d. The peak power density of 252.3 

mW/m2 can be achieved at a load resistance of 0.25 MΩ.  

 

Figure 2.8 The triple-cantilever based TENG as a direct power source to power electronic 

devices. (a) Open-circuit voltage (VOC) and (b) Rectified short-circuit current (ISC) of 

vibration frequency from 2.5 Hz to 5.0 Hz, showing that 3.7 Hz is the resonant frequency 

of the TENG. (c, d) When the TENG a load with rectification, the dependence of (c) the 

output voltage, current, and (d) instantaneous power density on the resistance of the load. 

TENG simultaneously lights up 40 LEDs in real time. (e) Photographs of LEDs when there 

is no vibration and (f) lit up LEDs by a vibration at a frequency of 3.7 Hz.46 
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Indeed, non-ideal experimental factors, such as humidity and particle 

contaminations in the air, may potentially have negative impact on the electric performance 

and thus the longevity of the triple-cantilever based TENG. As a result, the device 

packaging is critical when the TENG is applied outdoor and even in circumstances with 

harsh environment, which would greatly extend the life time of the device up to even 

several years. The performance of the triple-cantilever based TENG is affected by three 

factors. First, by growing ZnO nanowire arrays on the surface of the middle cantilever, the 

output is dramatically enhanced. The peak value of the TENG without nanowires is only 

about 42.6 % of the TENG with the nanowires. Secondly, the usage of beryllium copper 

alloys foils with high elasticity as the vibration energy conversion medium is also very 

critical to harvest vibration energy in ambient environment. Lastly, the resonance state of 

the device maximizes the amplitude of vibration and thus enhances output power.The 

triple-cantilever based TENG aims at powering electronic devices by harvesting small-

scale vibration energy. A total of 40 commercial LED bulbs were assembled in series on a 

piece of electric board (Figure 2.8e), connected to the triple-cantilever based TENG. As 

triggered by the shaker under a vibration frequency of 3.7 Hz, the TENG directly and 

simultaneously lights up all these forty LED bulbs (Figure 2.8f). The triple-cantilever based 

triboelectric nanogenerator provides a new approach for harvesting low-frequency 

vibration energy, opening its applications for self-powdered electronics and systems. 

 

2.1.4 Three-Dimensional Stack Integrated TENG 

The applications of a single-layer triboelectric nanogenerator for vibration energy 

harvesting may be challenged by its lower output current, and a possible solution is to use 
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three-dimensional (3D) stack integrated multilayered TENGs, but the most important point 

is to synchronize the outputs of all the TENGs so that the instantaneous output power can 

be maximized.49 With this regard, we take a further step to develop a multi-layered stacked 

TENG as a cost-effective, simple and robust approach for harvesting ambient vibration 

energy. The 3D-TENG has a multilayered structure with acrylic as supporting substrates, 

as schematically shown in Figure 2.9a. Acrylic was selected as the structural material due 

to its decent strength, light weight, good machinability and low cost. A photograph of an 

as-fabricated TENG is shown in Figure 2.9b, in which, the total number of the unit cells 

can be expressed as: 

4totalN n                                                                                                                       (2.3) 

where n is the number of pinned fingers of a TENG. Eight identical springs were employed 

to bridge the moveable and pinned fingers.  

 

Figure 2.9 Three-dimensional stack triboelectric nanogenerator. (a) Schematic of a 3D-

TENG. (b) SEM image of nanopores on aluminum electrode. (c) A photograph of the 

fabricated 3D-TENG.49 
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All fingers were made from acrylic sheets with a thickness of 3 mm and parallel to 

each other with identical but tuneable gap distance. The thickness of acrylic sheets is large 

enough to prevent the mutual charges influences among the unit cells. Moreover, all the 

unit cells are electrically connected in parallel. Aluminium thin films were deposited onto 

both sides of the pinned fingers, which played dual roles of a contact electrode and a contact 

surface. A layer of polytetrafluoroethylene (PTFE) film was adhered to the both sides of 

the movable fingers with deposited copper as another electrode. PTFE nanowires arrays 

were created on the exposed PTFE surface by a top-down method through reactive ion 

etching. SEM image of the PTFE nanowires is displayed in Figure 2.9c. Additionally, to 

promote the triboelectrification and to increase the effective contact area between the two 

contacting surfaces, PTFE nanowires are created as surface modifications, which greatly 

increases the triboelectric charges and thus the overall electrical output.  

Theoretically, the short-circuit current of the 3D-TENG can be expressed as: 
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                                                                                                           (2.4) 

where d0 is the thickness of PTFE, εr is the relative permittivity of PTFE, s is the effective 

contact area and v is the relative velocity at which they will contact, whose motion direction 

determines the flowing direction of the induced charge, and thus the direction of the short 

circuit current. n is the number of pinned fingers, S is the effective contact area and d  

is the gap distance between the two adjacent fingers. 

To evaluate the TENG’s performance for harvesting vibration energy, an 

electrodynamic shaker (Labworks Inc.) that provides sinusoidal wave was employed as an 

external vibration source with tunable frequency and amplitude. As shown in Figure 2.10a, 
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the voltage output is almost constant for 3D-TENG with n = 1 ~ 5, which is attributed to 

the electrically parallel connection among all the units. However, the current output is a 

monotonically increasing function of n throughout our experimental time window. And the 

current enhancement factor α is a function of n, α = bn, the measured result b is very close 

to the ideal coefficient of 2. Such a high coefficient b is mainly owing to the operating 

synchronicity of all units, which convincingly demonstrates the effectiveness of our 

approach for current output enhancement. Likewise, a monotonically increasing 

relationship was observed between the current output and the effective contact area S as 

well as parameter d, as shown in Figure 2.10b and c.  

 

Figure 2.10 A systematical study of the reliance of current electric output on the design 

parameters. (a) Dependence of electric output on the number of pinned fingers n. (b) 

Dependence of the short-circuit current on the gap distance between two adjacent pinned 

fingers for the TENG with n = 2. (c) Dependence of short-circuit current on effective 

contact area (S) of the TENG with n = 5. (d) The device natural frequency as a function 

of the number of pinned fingers n.49 
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A larger d will contribute to a larger relative velocity of the two contact plates, 

and thus renders us a higher output current, according to equation (2.4). In addition, as a 

vibration energy harvester, we also investigate the reliance of the natural frequency on the 

number of pinned fingers n for the 3D stack TENG. As indicated in Figure 2.10d, the 

resonance frequencies fr decrease as increasing n, which is well consistent with a typical 

vibration system that a larger mass will lead to a smaller system natural frequency.28-30 

 

Figure 2.11 Demonstration of the 3D stack TENG as a direct power source. (A) 

Dependence of the voltage and current output on the external load resistance for the TENG 

with n = 5. (B) Dependence of the peak power output on the resistance of the external load 

for the TENG with n = 5, indicating maximum power output at R = 2 MΩ. The curve is a 

fitted result. (C) Photograph of a white G16 globe light that is directly powered by the 

TENG (Input frequency 40 Hz). Inset is a photograph when a white G16 globe light is off.  

(D) Photograph of 20 spot lights (0.6 W ea.) connected in series that are lighted up 

simultaneously and continuously without observable stroboflash by the TENG (Input 

frequency 40 Hz). Inset is a photograph when the spot lights are off.49 

 

Resistors were utilized as external loads to further investigate the output power of 

the 3D-TENG at its resonance frequency. As displayed in Figure 2.11a, the current 

amplitude drops with increasing load resistance owing to the Ohmic loss, while the voltage 
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follows a reverse trend. Consequently, the instantanenous peak power (P = I2
peakR) is 

maximized at a load resistance of 2 MΩ, coresponding to a peak power density (Pd = 

I2
peakR/S) of 104.6 W·m-2 (Figure 2.11b).  

To prove the capability of the 3D-TENG as a sustainable power source, three sets 

of practical applications were demonstrated. First, as shown in Figure 2.11c, the TENG 

was excited by an electrodynamic shaker at a vibration frequency of 40 Hz, lighting up a 

white G16 globe light. Inset is a photograph when a white G16 globe light is off.  

Meanwhile, a total of 20 spot lights (0.6 W ea.) connected in series were lighted up 

simultaneously and continuously without observable flashing. Inset is a photograph when 

the spot lights are off.  (Figure 2.11d). 

 

Figure 2.12 Demonstration of the 3D-TENG as it is equipped inside a ball, which has great 

potential of scavenging the kinetic energy when people play basketball, football, baseball 

and so on. Large amount of these self-powered balls can be also woven into webs for ocean 

wave energy harvesting, which can be potentially applied for large-scale energy generation. 

A sketch (a) and a photograph (b) of a self-powered ball. (c) When shaking the ball, about 

32 commercial LEDs are lighted up simultaneously. (d) A photograph of 8 LEDs on a face 

of the device that are directly powered by the TENG in complete darkness (We equipped 

four faces of the devices with 8 LEDs on each face).49  
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In addition, with specific dimensional design, we integrated a 3D stack TENG into 

a ball with a diameter of 3 inches, as schematically shown in Figure 2.12a and a photograph 

of the as-fabricated devices in Figure 2.12b. In order to directly demonstrate the equipped 

ball as an energy harvester, we installed four faces of the inside TENG with 8 LEDs as 

indicators on each face. As shown in Figure 2.12c, the generated power by hand shaking 

simultaneously lighted up 32 commercial LEDs. And Figure 2.12d demonstrates that 8 

LEDs on one of the four faces were lighted up in complete darkness. This practical 

application greatly demonstrated the capability of our 3D stack TENG for harvesting 

kinetic energy when people play various kinds of ball sports. It is worth noting that, large 

amount of these self-powered balls can also be woven into webs for ocean wave energy 

harvesting, which can be potentially applied for large-scale energy generation. 

 

2.1.5   Integrated rhombic gridding based TENG 

To enhance the output current for the vibration energy harvesting, here, we also 

demonstrated another rationally designed TENG with integrated rhombic gridding, which 

can greatly improve the total current output owing to the structurally multiplied unit cells 

connected in parallel.50 The structure of integrated rhombic gridding based TENG is shown 

in Figure 2.13a, in which, the total number of unit cells in one TENG can be expressed as: 

𝑁total = 2𝑛2                                                             (2 .5 ) 

where n is the number of unit cells along the edge length. The plastic sheets of polyethylene 

terephthalate (PET) with a thickness of 600 µm are utilized. Each PET sheet is cut half 

through and then lock into each other to form the framework of TENG. On one side of the 

PET substrate, aluminium thin film with nanoporous modification plays dual roles as a 



33 

 

contact electrode and a contact surface. A scanning electron microscopy (SEM) image of 

aluminium nanopores is shown in Figure 2.13b. A layer of PTFE film with nanowires 

arrays was adhered onto the other side of the PET substrate with deposited copper thin film 

as the back electrode. An SEM image of PTFE nanowires arrays is presented in Figure 

2.13c. As demonstrated in Figure 2.13 d, e, f, there are 2, 8, and 18 unit cells in the TENGs 

(sketch and corresponding photograph of real devices) with n = 1, 2, and 3, respectively.  

 

Figure 2.13  Integrated rhombic gridding based triboelectric nanogenerator. (a) Sketch of 

a typical TENG with n = 3. (b) SEM image of nanopores on aluminum electrode. (c) SEM 

image of PTFE nanowires. (d-f) Sketch and corresponding photograph of integrated 

rhombic gridding based TENG with n = 1, 2, 3, respectively.50 

 

In order to enhance the total current output of the TENG, all of the unit cells are 

electrically connected in parallel. Under the fixed triggering frequencies and amplitude, the 

electric output measurement was performed on the integrated rhombic gridding based 

TENG with n = 1, 2, 3 (Figure 2.14). The effective contact area of TENG is 2n2 × 4.6 cm 

× 4.6 cm, which produces an open-circuit voltages (VOC) 445 V at n = 1 (Figure 2.14a), 
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439 V at n = 2 (Figure 2.14b) and 428 V at n = 3 (Figure 2.14c). The voltage output is 

almost constant for all the measurements, which is because that all of the rhombic unit cells 

are electrically connected in parallel. As shown in the inset of Figure 2.14c, a positive 

voltage peak is generated due to the immediate charge separation at the departure of 

aluminum from PTFE. Since the electrons cannot flow back to screen the induced electric 

potential difference between the two electrodes under the open-circuit condition, the 

voltage holds at a plateau until the next contact emerges.51-53  

 

Figure 2.14 Electrical measurement of the integrated rhombic gridding based TENG. 

Open-circuit voltage (VOC) (a, b, c) and short-circuit current (ISC) (d, e, f) of the TENG with 

n = 1, 2 and 3, respectively. Insets of (c) and (f) are enlarged view of VOC and ISC in one 

cycle for the TENG with n = 3, respectively.50 

 

Meanwhile, the peak values of the short-circuit current (ISC) reach up to 245 μA at 

n = 1 (Figure 2.14d), 801 μA at n = 2 (Figure 2.14e) and 1.395 mA at n = 3 (Figure 2.14f).  

In addition, as shown in the inset of Figure 2.14f, the output current has an alternating 

behavior with asymmetrical amplitudes, with the larger peaks correspond to the process in 

which the two contact surfaces move towards each other, while the smaller ones are 
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generated as the two surfaces move apart, which is attributed to a faster approaching is 

expected to produce larger current peaks than the slower separation. 

 

Figure 2.15. Electrical measurement of the integrated rhombic gridding based TENG. (a) 

The current’s enhancement factor 𝛼 is increasing as a function of number of unit cells along 

the edge length n. (b) Accumulative inductive charges generated by the TENG with n = 1, 

2 and 3, respectively. (c) Dependence of the voltage and current output on the external load 

resistance for the TENG with n = 3. The lines are the fitted results. (d) Dependence of the 

peak power output on the resistance of the external load for the TENG with n = 1, 2, and 

3, indicating maximum power output obtained at R = 2 MΩ. The curve is fitted result.  Inset: 

an enlarged view of peak power output with n = 1.50 

 

As indicated in Figure 2.15a, the current enhancement factor 𝛼 is a function of the 

number of unit cells along the edge length, 𝛼 = 𝑏 n2. The fitting result renders the 

coefficient 𝑏  a value of 1.66. Considering the non-ideal experimental factors, such as 

humidity, particle contaminations in the air, the imperfection from the device fabrication 

process, and the difficulty of working synchronization of all the device units, which may 

potentially have negative impact on the actual output, the experimental result of 
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enhancement factor is considerably approaching to the ideal value of 2n2, revealing that 

the integrated rhombic gridding structure can effectively enhance the total current output. 

As illustrated in Figure 2.15b, the accumulative induced charges increases with n,  

which reaches up to 142.68 µC within 2.75 s when n = 3, further indicating that the 

integrated rhombic gridding structure can dramatically enhance the electric output of 

TENG.  It is noteworthy that the accumulative induced charges are the sum of all the back-

and-forth induced charges in the entire process of the TENG working as a “charge pump”. 

Consequently, it is a monotonically increasing function of time throughout our 

experimental time window. 

Resistors were utilized as external loads to further investigate the output power of 

the integrated rhombic gridding based TENG with n = 3. As displayed in Figure 2.15c, the 

current amplitude drops with increasing load resistance owing to the ohmic loss, while the 

voltage follows a reverse trend. As demonstrated in Figure 2.15d, all of the instantaneous 

peak power (I2
peakR) for n = 1, 2, and 3 are maximized at a load resistance of 2 MΩ. 

Moreover, the peak power dramatically increases with the increase of n, which reaches up 

to 1.17 W at n = 3, corresponding to the peak power density and volumetric energy density 

of 30.7 W/m2 and 1.54 × 104 W/m3, respectively.  

The integrated rhombic gridding based TENG demonstrated here has three unique 

characteristics. First, by using the novel integrated rhombic gridding structure, the total 

number N of unit cells, which are electrically connected in parallel, theoretically follows a 

rule of N = 2n2. This is the key factor of dramatically enhancing the total electric output. 

Secondly, to promote the triboelectrification and to increase the effective contact area 

between the two contact surfaces, aluminum nanopores and PTFE nanowires are 
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simultaneously created as surface modifications. The rational design, coupled with 

nanomaterial modification, greatly increases the effective contact area and thus the 

triboelectric charges. Lastly, the structural coupling of nanopores and nanowires can also 

enhance the triboelectrification process for TENGs.  

 

Figure 2.16 Sketch (a) and photograph (b) of a self-powered backpack which is developed 

based on the integrated rhombic gridding based TENG. (c) Photograph of the backpack on 

the shoulder with human standing still. (d) Photograph of the backpack under normal 

human walking. Forty Commercial LED bulbs were lighted up simultaneously.50 

 

To prove the capability of the integrated rhombic gridding based TENG as a 

sustainable power source, a backpack was developed to harvest vibration energy from 

natural human walking. As indicated in Figure 2.16a, four acrylics plastics plates were  

built into a supporting shelf with a size of  5 cm × 7.5 cm × 20 cm ,which bridged the 

backpack and its two straps using four springs and two long screw shanks. The integrated 

rhombic gridding based TENG with n = 1 is sandwiched between two acrylic sheets and 

the photograph of a real backpack is shown in Figure 2.16b. A total of forty commercial 
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LED bulbs were assembled in series on a piece of electric board (Figure 2.16c), electrically 

connected to the newly designed backpack. When a people walks naturally carrying the 

designed backpack with a total weight of 2.0 kilograms, the power harvested from the body 

vibration is high enough to simultaneously light up all the 40 LEDs (Figure 2.16d). 

As an important figure of merit, we still investigated the vibration-to-electric 

energy conversion efficiency of the self-powered backpack. The conversion efficiency 

𝜂𝑑𝑖𝑟𝑒𝑐𝑡 is defined as the ratio of the electric energy delivered to the vibration energy of the 

backpack triggered by human walking. And the electric energy delivered by the TENG can 

be expressed as, 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 𝑄 = ∫ 𝐼2 ∙ 𝑅 ∙ 𝑑𝑡 = 𝑅 ∙ ∫ 𝐼2 ∙ 𝑑𝑡
5.8489

5.8217

𝑡2

𝑡1
= 3.18 𝑚𝐽                                     (2.6) 

where Q is the Joule heating energy, I is the instantaneous current, and R is the load 

resistance, which is 2 MΩ in the experimental measurement. In the course of backpack 

vibration, its gravitational potential energy (EG) is mainly converted into two parts, the 

elastic potential energy (Eelastic) and electric energy. The gravitational potential energy and 

elastic energy can be estimated as following, 

𝐸𝐺 = 𝑚𝑔∆𝑥 = 2.0 𝑘𝑔 × 9.8  𝑁 𝑘𝑔⁄ × 0.015 𝑚 = 294 𝑚𝐽                                          (2.7) 

𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐 =
1

2
∙ 𝑘 ∙ ∆𝑥2 ∙ 𝑁 = 264.09 𝑚𝐽                                                                          (2.8) 

where m is the total weight of the backpack, Δx is the displacement of each spring, k is the 

spring stiffness factor (k = 586.86 N/m), and N is the number of springs (N = 4). Since the 

elastic energy stored in the springs has no loss during the backpack vibration, thus the direct 

energy conversion efficiency can be calculated as, 

𝜂𝑑𝑖𝑟𝑒𝑐𝑡 =
𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

𝐸𝐺−𝐸𝑒𝑙𝑎𝑠𝑡𝑖𝑐
× 100% = 10.6%                                                                         (2.9) 

Such high energy conversion efficiency of the TENG enables tremendous potential 
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applications for powering some small electronics by harvesting the vibration energy from 

human motions. 

In summary, we demonstrated a novel integrated rhombic gridding based TENG. 

This innovative structure provides 2n2 unit cells electrically connected in parallel, which is 

able to greatly enhance the current output as well as the vibration-to-electric energy 

conversion efficiency. Based on the TENG, a self-powered backpack was developed with 

a considerably high vibration-to-electric energy conversion efficiency of 10.6%. When a 

people walks naturally carrying the designed backpack with a total weight of 2.0 kilograms, 

the power harvested from the body vibration is high enough to simultaneously light up all 

the 40 LEDs. Our newly designed TENG provides an innovative approach to effectively 

enhance the device current output and thus it is capable of harvesting vibration energy from 

natural human walking, which can have a range of applications for extending the lifetime 

of a battery as well as the possibility of replace battery for building self-powered systems. 

 

2.2 TENG for rotary energy harvesting 

Searching for renewable energy sources as well as to develop renewable energy 

technologies are urgent for the sustainable development of human civilization. Rotation, 

as a type of common mechanical motion, is ubiquitous in daily life, from operating 

household appliances, such as washing machines and electric fan, to automobile tires 

running on a road. Over the past decades, it has also become an attractive target for energy 

harvesting as a potentially alternative power source for battery-operated electronics.54-58 
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2.2.1 Radial-arrayed in-plane TENG 

Here, we firstly provide a solution by designing a two-dimensional planar-

structured triboelectric generator (TENG) on the basis of contact electrification, which is 

capable of producing energy from rotary surfaces with unprecedented performance. 

Enabled by a design of two radial-arrayed fine electrodes that are complementary on the 

same plane, the planar-structured TENG generates periodically changing triboelectric 

potential that induces alternating currents between electrodes.59 A TENG has a multi-

layered structure, which consists of mainly two parts, i.e., a rotator and a stator, as sketched 

in Figure 2.17a.  

 

Figure 2.17 Structural design of the triboelectric generator. (a) Schematic illustrations of 

the triboelectric generator, which has two parts, i.e., a rotator and a stator. The zoomed-in 

illustrations at the inner end (b) and the outer end (c) reveal that the two electrodes have 

complementary patterns, which are separated by fine trenches in between. It is noted that 

these drawings do not scale. (d) Photograph of a rotator (scale bar: 1 cm). (e) Photograph 

of a stator, in which the through-holes along edges are for mounting purpose (scale bar: 2 

cm).59 
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The rotator is a collection of radially-arrayed sectors separated by equal-degreed 

intervals in between. With each sector unit having a central angle of 3°, the rotator has a 

total of 60 units. For the stator, it is divided into three components. A layer of fluorinated 

ethylene propylene (FEP) as an electrification material, a layer of electrodes, and an 

underlying substrate are laminated along the vertical direction. The electrode layer is 

composed of two complementary-patterned electrode networks that are disconnected by 

fine trenches in between (Figure 2.17b and 2.17c). Having the same pattern as that of the 

rotator, each network is formed by a radial array of sectors that are mutually connected at 

one end. The electrode layer is fully imbedded and stationary. This rational design not only 

leads to structural simplicity but also accounts for excellent robustness, making the TENG 

practically reliable and durable. As exhibited in Figure 2.17d and e, both the rotator and 

the stator have two-dimensional planar structures, respectively, resulting in a small volume 

of the TENG.  

The operation of the TENG relies on relative rotation between the rotator and the 

stator, in which a unique coupling between triboelectrification and electrostatic induction 

gives rise to alternating flows of electrons between electrodes. The electricity-generating 

process is elaborated through a basic unit in Figure 2.18. We define the initial state (Figure 

2.18a) and the final state (Figure 2.18c) as the states when the rotator is aligned with 

electrode A and electrode B, respectively. The intermediate state (Figure 2.18b) represents 

the transitional process in which the rotator spins from the initial position to the final 

position. Since the rotator and the stator are in direct contact, triboelectrification creates 

charge transfer on contacting surfaces, with negative charges generated on the FEP and 

positive ones on the metal, as illustrated in the cross-sectional view defined by an arbitrary 
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intersection in Figure 2.18. Due to the law of charge conservation, the density of positive 

charges on the rotator is twice as much as that of negative ones on the stator because of 

unequal contact surface area of the two objects. 

 

Figure 2.18. Schematics of operating principle of the triboelectric generator. (a) Initial 

state in which the rotator is in alignment with electrode A. The three sections from top to 

bottom illustrate the three-dimensional schematic, charge distribution in open-circuit 

condition, and charge distribution in short-circuit condition, respectively. (b)Intermediate 

state in which the rotator is spinning away from the initial position at an angle of 𝛼. (c) 

Final state in which the rotator is in alignment with electrode B. The rotator has rotated 𝛼0 

away from the initial position.59  

 

In open-circuit condition, electrons cannot transfer between electrodes. The open-

circuit voltage is then defined as the electric potential difference between the two 

electrodes, i.e. Voc = UA -UB. The initial state corresponds to the maximum potential on 

electrode A and the minimum potential on electrode B, which results in the maximum Voc. 

Such a voltage then diminishes as the rotator starts to spin. Once the rotator passes the 

middle position, Voc with the opposite polarity starts to build up until the rotator reaches 

the final state. Further rotation beyond the final state induces the Voc to change in a reversed 

way because of the periodic structure. Based on the assumption that the thickness of the 
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dielectric layer is far smaller than the width dimension in Figure 2.18, an analytical model 

can be established, in which any overlapped region between the rotator and the electrodes 

can be treated as a parallel-plate capacitor without consideration of edge effect.60 Then the 

Voc can be analytically expressed by the following equations using Gauss Theorem. 

Initial state: 𝑽𝐨𝐜(𝟎) =
𝟐𝒅∙𝝈

𝜺𝟎𝜺𝐫
                                                                                           (2.10)                                                                                                             

Intermediate state: 𝑽𝐨𝐜(𝜶) =
𝒅∙𝝈

𝜺𝟎𝜺𝐫
∙ (

𝜶𝟎−𝜶

𝜶
−

𝜶

𝜶𝟎−𝜶
)  (𝜶 approaches neither 0 nor 𝜶𝟎) (2.11)                 

Final state: 𝑽𝐨𝐜(𝜶𝟎) = −
𝟐𝒅∙𝝈

𝜺𝟎𝜺𝐫
                                                                                       (2.12)                 

where 𝒅 is the thickness of the FEP layer, 𝝈 is the triboelectric charge density on top of the 

FEP layer, 𝜺𝟎 is the dielectric constant of vaccum, 𝜺𝐫 is the relative dielectric constant of 

FEP, 𝜶 is the angle at which the rotator rotates away from the initial state, and 𝜶𝟎 is the 

central angle of a single rotator unit.  

The equation (2.11) can only be used to illustrate the changing trend of the Voc. The 

theoretical peak-to-peak value of the Voc needs to be calculated by subtracting equation 

(2.12) from equation (2.10):  

𝑽𝐩−𝐩 =
𝟒𝒅∙𝝈

𝜺𝟎𝜺𝐫
                                                                                                                  (2.13) 

By substituting the known parameters into equation (2.13) (𝒅 = 25 µm, 𝝈 = ~200 

µCm-2, 𝜺𝐫 = 2.1), 33  the Voc (peak-to-peak) is theoretically estimated to be ~1000 V. 

If the two electrodes are connected as shown by the bottom row in Figure 2.18, free 

charges can redistribute between electrodes due to electrostatic induction. At the initial 

state, induced charges accumulate on electrode A and electrode B with charge density of -

𝝈 and 𝝈, respectively. As the rotation starts, free electrons keep flowing from electrode A 

to electrode B until the rotator reaches the final state where the charge density on both 
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electrodes is reversed in polarity compared to the initial state. As a result, the amount of 

charges in this transport process can be expressed by the following equation 

𝑸 =
𝜶𝟎

𝟏𝟖𝟎
∙ 𝝈 ∙ 𝝅(𝒓𝟐

𝟐 − 𝒓𝟏
𝟐)                                                                                              (2.14)                                                                                     

where 𝒓𝟐 and 𝒓𝟏 are the outer radius and inner radius of the TENG, respectively. Again, 

further rotation beyond the final state results in a current in the opposite direction. 

Therefore, alternating current is generated as a result of the periodically changing electric 

field, which has a frequency calculated as 

𝒇 =
𝟏𝟖𝟎𝒗

𝜶𝟎
                                                                                                                        (2.15)                                                                                                     

where 𝒗 is the roation rate (r/sec).  

 

Figure 2.19 Results of electric measurements. (a) Open-circuit voltage (Voc) at a rotation 

rate of 500 rmin-1. (b) Short-circuit current (Isc) at a rotation rate of 500 rmin-1. (c) Output 

charge at a rotation rate of 500 rmin-1. (d) Load matching test at a rotation rate of 500 rmin-

1. Maximum average output power is obtained at the matched load of 4.9 MΩ.59   
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To control the rotation rate for quantitative measurement, a programmable rotary 

motor was connected to the rotator that was in co-axial alignment with the stator. At a 

rotating rate of 500 rmin-1, short-circuit current (Isc) has a continuous AC output at an 

average amplitude of 0.5 mA (Figure 2.19a). The constant frequency of 500 Hz is 

consistent with the result calculated from equation (2.15).  For open-circuit voltage (Voc), 

it oscillates at the same frequency as that of Isc with a peak-to-peak value of 870 V (Figure 

2.19b), which corresponds well to the theoretical value obtained from equation (2.13) 

though the slight deviation is likely attributed to the fact that the actual contact area is less 

than the apparent device area because of surface roughness. In short-circuit condition, the 

amount of electrons in a single electron-transport process reaches 0.32 µC (Figure 2.19c), 

which corresponds to an effective DC current (Idc=ΔQ/Δt) of 0.32 mA. It is noticed that the 

duration of a current peak is determined by the ratio between the central angle of a sector 

and the rotation rate (Figure 2.19A). Once an external load is applied, the amplitude of the 

output current drops as the load resistance increases, as shown in Figure 2.19D. The 

average output power is equivalent to the Joule heating of the load resistor, which can be 

calculated as Ieffective
2·R, where Ieffective is the effective current defined as the root mean 

square value of the current amplitude, and R is the load resistance. At the matched load of 

4.9 MΩ, the average output power reaches 0.2  W at a rotation rate of 500 rmin-1 (Figure 

2.19d).  

Rotation rate is a major factor that determines electric output of the TENG. A linear 

relationship can be derived from Figure 2.20a between the amplitude of Isc and the rotation 

rate since higher rate linearly shortens the duration of a current peak and thus boosts the 

current amplitude. In comparison, the amplitude of Voc remains stable regardless of the 
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rotation rate (Figure 2.20a) because it is only dependent on the position of the rotator, as 

indicated in equation (2.11). It is found that the matched load is also a variable value, 

exhibiting a reversely proportional relationship with the rotation rate, as diagramed in 

Figure 2.20b. Consequently, linearly rising output power can be obtained at higher rotation 

rate (Figure 2.20b).  

 

Figure 2.20 Factors that influence the electric output of the triboelectric generator. (a) 

Amplitude of Isc and peak-to-peak value of Voc with increasing rotation rate. (b) Matched 

load resistance and average output power with increasing rotation rate. (c) Amplitude of Isc 

and peak-to-peak value of Voc with increasing outer radius of the triboelectric generator 

(500 rmin-1). (d) Matched load resistance and average output power with increasing outer 

radius of the triboelectric generator (500 rmin-1). (e) Amplitude of Isc and peak-to-peak 

value of Voc with increasing central angle of a unit sector (500 rmin-1). (f) Matched load 

resistance and average output power with increasing central angle of a unit sector (500 

rmin-1).59 
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Given the linear behavior of the TENG, it delivers an optimum average output 

power of ~1.5 W at the matched load of ~0.8 MΩ when operating at a rotation rate of  000 

rmin-1, which corresponds to an average output power density of 19 mWcm-2.  For the first 

time, the output power from triboelectrification-based generators boosts to a level where it 

is sufficiently powerful to drive daily used electronics, immediately resolving the most 

critical concern for the concept of power generation via triboelectrification. 

Design parameters, especially the size and the unit central angle, can largely 

influence the output power of TENG. Figure 2.20c shows an approximately quadratic 

dependence of the Isc and independence of the Voc on the radius of the TENG, which are 

consistent with the results in equations (2.13) and (2.14), respectively. With the matched 

load decreasing with the radius, the average output power exhibits a roughly quadratic 

relationship with the radius (Figure 2.20d). In other words, the output power linearly scales 

with the area of the TENG since the triboelectrification is a surface charging effect that is 

area-dependent. Compared to the device size, the unit central angle reversely affects the 

output power. As revealed in Figure 2.20e, the Isc linearly drops as the central angle 

increases, while the Voc still remains stable. Again, the measured results fit well with the 

theoretical model. Consequently, the average output power decreases in almost a linear 

way if devices with larger central angle are used. Therefore, fine feature size of the unit 

sector plays a key role in achieving high output power.  

To demonstrate the capability of the TENG as a power source, it was directly 

connected to regular light bulbs without using a storage or power regulation unit. The 

rotation rate was set at 1000 rmin-1. A total of 20 spot lights were simultaneously lighted 

up (Figure 2.21a), providing sufficient illumination even for reading printed text in 



48 

 

complete darkness (Figure 2.21b). Moreover, other types of light bulbs that could be driven 

by the TENG included a white globe light (Figure 2.21c) and 10 multi-color decoration 

candelabra lights (Figure 2.21d). It is noticed that the TENG has high voltage but relatively 

low current, resulting in large output impedance and thus affecting its applicability as a 

power source.  

 

Figure 2.21 Demonstrations of the triboelectric generator as a practical power source. (a) 

Photograph of 20 spot lights that are directly powered by the triboelectric generator in 

complete darkness (rotation rate: 1000 rmin-1; scale bar: 5 cm). Inset: demonstration setup 

(scale bar: 5 cm). (b) Photograph of printed text on a paper illuminated by the 20 spot lights 

in complete darkness with the triboelectric generator as a direct power source (rotation rate: 

1000 rmin-1; scale bar: 3 cm). The font size is 12 points. (c) Photograph of a G16 globe 

light that is directly powered by the triboelectric generator in complete darkness (rotation 

rate: 1000 rmin-1; scale bar: 3 cm). (d) Photograph of 10 multi-color decoration candelabra 

lights that are directly powered by the triboelectric generator in complete darkness (rotation 

rate: 1000 rmin-1; scale bar: 3 cm).59  

 

Besides, fluctuation in output power and the AC output current are also concerns 

in practical applications. These issues can be fully addressed by integrating the TENG with 
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a power management circuit to form a complete power-supplying system. Consisting of a 

transformer, a rectifier, a voltage regulator, and capacitors, the power management circuit 

as diagramed in Figure 2.22a can deliver a DC output at a constant voltage of 5 V in less 

than 0.5 sec after the TENG starts to operate (Figure 2.22b). The transformer shown in 

Figure 2.22a is able to tremendously boost the output current at the expense of the output 

voltage, which substantially reduces the output impedance of the TENG. 

 

Figure 2.22 Demonstrations of the integrated power-supplying system for driving and 

charging electronics. (a) Circuit diagram of the complete power-supplying system that 

consists of a triboelectric generator and a power management circuit. (b) Output voltage of 

the system reaches a constant value of 5 V in less than 0.5 sec as the triboelectric generator 

starts to rotate at 3000 rmin-1. (c) Photograph of 10 LEDs (0.75 mW ea.) in parallel that are 

powered to full brightness by the power-supplying system with ambient background 

lighting (rotation rate: 3000 rmin-1; scale bar: 3 cm). The dashed blue box indicates the 

power management circuit. Inset: Photograph of the lighted LEDs in complete darkness. 

(d) Photograph of an alarm triggered by a wireless emitter that relies on the power-

supplying system (scale bar: 3 cm). Inset: Photograph of the “panic” button that triggers 

the alarm. (e) Photograph of a multi-function digital clock driven by the power-supplying 

system (scale bar: 3 cm). (f) Photograph of a cellphone that is being charged by the power-

supplying system (scale bar: 3 cm).  As soon as the output voltage of the system reaches 5 

V, the cellphone turns on automatically.59 

 



50 

 

The power-supplying system is suited to a variety of purposes. On one hand, it 

could provide a continuous uniform DC power to drive various commercial electronics. As 

demonstrated in Figure 2.22c, 10 LED bulbs (0.75 mW ea.) connected parallel were 

continuously powered with full brightness. Moreover, once the output voltage reaches 5 V, 

the power-supplying system could sustain wireless transitions for 5 times (Figure 2.22d) 

as well as continuous operation of a multi-function digital clock for 60 seconds (Figure 

2.22e). On the other hand, the system is also able to serve as a charging source for batteries. 

Since 5 V is the standard charging voltage for most of the commercial portable electronics, 

a cellphone automatically turned on once the voltage output shot to 5 V due to the operation 

of the TENG, as visualized in Figure 2.22f. 

In addition to being driven by an electric motor for quantitative measurement, the 

TENG was further tested in normal environment where a series of ambient mechanical 

energy was harvested. Firstly, energy harvesting from light air flow (wind) was 

demonstrated (Figure 2.23 a). Artificial breeze was generated at a speed of 6 m·s-1 by an 

air mover. The wind perpendicularly blew on a miniaturized three-vane wind turbine (inset 

in Figure 2.23a). Driven by the turbine through a transmission shaft, the rotator of the 

TENG spun smoothly, directly providing a power source for lighting up an array of spot 

lights. Such a wind speed falls into class 4 defined by Beaufort scale and is much lower 

than the wind speed for normal operation of a large wind farm (~10 ms-1), indicating the 

effectiveness of the TENG in addressing mild agitation from air flow. Secondly, water flow 

was successfully demonstrated as a target mechanical source (Figure 2.23b). The TENG 

was connected to the central shaft of a miniaturized water turbine (bottom inset in Figure 

2.23b). Normal tap water at a flow rate of 5.5 Lmin-1 was directed into the turbine inlet 
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through a plastic pipe (top inset in Figure 2.23b), which served as a sufficient driving force 

for the TENG. Consequently, output power for the spot lights was continuously produced. 

Last but not least, the TENG could also effectively operate if the input mechanical energy 

originated from gentle body movement. As illustrated in Figure 2.23c, the compact-sized 

TENG in a hand had pieces of inertia mass fixed on the rotator. As the hand swung back 

and forth in small amplitude, asymmetric inertia resulting from the extra mass induced 

relative rotation between the hand-held stator and the free-standing rotator. The spot lights 

again served as an explicit indicator of the produced output power from the TENG.  

 

Figure 2.23 Demonstrations of the triboelectric generator for harvesting ambient energy. 

(a) Harvesting energy from light wind at a flow speed of 6 ms-1 by the triboelectric 

generator for powering an array of spot lights (scale bar: 3 cm). Inset: a wind turbine that 

transmits torque to the triboelectric generator (scale bar: 5 cm). (b) Harvesting energy from 

water flow at a flow rate of 5.5 Lmin-1 by the triboelectric generator for powering an array 

of spot lights (scale bar: 5 cm). Insets: tap water is directed into a water turbine through a 

water pipe (top; scale bar: 2 cm); upward view of the water turbine (bottom; scale bar: 7 

cm). (c) Harvesting energy from body motion by the triboelectric generator that is being 

gentle swung with a hand for powering an array of spot lights (scale bar: 5 cm). Inset: the 

hand-held triboelectric generator with two pieces of inertia mass attached to the rotator 

(scale bar: 5 cm). (d) Output voltage of the power-supplying system when the triboelectric 

generator is driven by the above three types of ambient mechanical energy.59 
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Furthermore, with input mechanical energy fed from the above ambient motions, 

the power management circuit was still functional and showed a linearly increasing output 

voltage as it was being charged up by the TENG (Figure 2.23d). Therefore, these 

demonstrations firmly prove that the TENG can fully operate in normal environment by 

utilizing ambient mechanical energy from a variety of sources, indicating its widespread 

applications in harvesting human motions and even natural energy.  

The efficiency of the TENG is defined as the ratio of the input mechanical power 

from the motor to the electric power that is delivered to the load. When driving the TENG 

at a rotation rate of 3000 rmin-1, the motor exhibits a load factor of approximately 20 %, 

corresponding to an actual torque of 0.02 Nm delivered to the TENG. Then we can derive 

the power input from the motor to be 6.28 W by using the above values. Given the electric 

output power of 1.5 W at the same rotation rate, the efficiency is calculated to be ~24%.  

The reliability of the TENG, especially the resistance against mechanical wear, is important 

in evaluating its performance. Here, adhesive wear that occurs when two nominally flat 

solid bodies are in sliding contact applies to the TENG. Therefore, the adhesion of the 

deposited metal on the rotator largely determines the wear resistance. Special treatment 

was taken in fabricating the TENG, including adding an adhesion layer and surface plasma 

treatment before metal deposition.61 As a result, the TENG shows excellent stability and 

durability. After continuously producing more than 10 million cycles of alternating current, 

the output current does not even exhibit any measurable decay or degradation, which firmly 

proves the reliability of the TENG as a feasible approach for practical applications. 

Compared to other existing technologies for power generation, the TENG is distinct 

in basic mechanism from fundamental point of view. The usual electric generator mostly 
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relies on electromagnetic induction, an effect from the coupling between bulk magnetic 

materials and conductors. In comparison, our generator depends on triboelectrification, a 

universally applicable charging effect that is confined only at contact surfaces. Such a 

distinction in fundamental mechanism differentiates our generator from the traditional 

generator in a number of major aspects. In general, the TENG is a complementary approach 

in parallel to the traditional electric generator. Its uniqueness as well as real advantages is 

elaborated below. 

From structure point of view, the usual generator has a bulky structure since the 

output power heavily depends on such factors as the number of coil turns, the diameter of 

metal coils, the coil geometry, and the size as well as weight of magnets. The shrinkage in 

size results in substantial deterioration in output power due to insufficient electromagnetic 

coupling and other parasitic effects. Therefore, the usual generator normally has relatively 

large size and weight for producing a decent output power. For example, our test on a 

commercial mini-sized generator of 8.2 cm3 in volume and 29 g in weight showed an 

optimum output power of 0.13 W when rotating at 1800 rmin-1. In comparison, our 

generator relies on triboelectrification, a surface charging effect. The simple stator-rotator 

structure has a two-dimensional planar configuration. In addition to using hard sheets as 

substrates, we can further extend the substrate materials to plastic thin-film materials that 

are flexible such as polyimide by using photolithography and laser patterning techniques 

(Figure 2.24). Having the same radius and radial periodicity as the device in Figure 2.17, 

the thin-film TENG gave the same level of output shown in Figure 2.18. It is only 75 µm 

in total thickness, 0.6 cm3 in volume, and 1.1 g in weight, similar to the weight of a few 

goose feathers.  



54 

 

 

Figure 2.24. A thin-film based triboelectric generator fabricated on flexible polyamide 

substrate. (a) and (b) are stator and rotator (The scale bars are 2cm), respectively.59  

 

From performance point of view, the TENG has substantially higher power density 

than the traditional generator in terms of both power-to-volume ratio and power-to-weight 

ratio due to much smaller volume and weight. The high power density imparts two major 

advantages to practical applications of the TENG. Firstly, it is superior to the conventional 

generator as a small-sized power source for self-powered electronics, e.g. harvesting 

human motions for powering or charging portable/wearable gadgets. In these applications, 

size and weight management become critical issues. Secondly, the significant power 

density makes the TENG potentially advantageous in large-scale power generation for 

stationary power plants, although the feasibility needs to be solidly validated with further 

investigations.  

From cost point of view, the TENG based on surface charging effect only needs 

very small amount of materials. They are conventional thin-film insulating materials and 

metals of various kinds that are abundantly available. Besides, it has a simple structure and 

straightforward fabrication process. As a consequence, the TENG is extremely cost-
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effective, which is an unparalleled advantage compared to any other power generation 

techniques. The significant low cost of the TENG is a key advantage for its potential 

widespread applications. 

Last but not least, the unique 2D-planar generator owns distinctive applicability in 

a variety of circumstances. The usual generator has difficulty being made into a planar 

structure due to reasons such as poor properties of planar magnets, limited number of turns 

achievable with planar coils, and restricted amplitude of displacement. In comparison, the 

TENG offers a straightforward and even sole solution to addressing rotation sliding 

between two surfaces. For example, it can be possibly integrated into a brake system in 

automotive and other applications where a brake rotor and brake pads have relative contact 

rotation. Moreover, due to the simple rotator-stator structure, our generator provides a 

much easier and more convenient way to address common rotating motions. For example, 

with very little modification, the TENG can take advantage of rotating shafts that are 

commonly found in transmission systems, as clearly demonstrated in Figure 2.23. Besides, 

enabled by broad choices of materials, the TENG with particular properties can meet 

special needs. For instance, it can be fabricated from organic biocompatible materials for 

health care and other bio-related applications. Finally, it is the unique solution when 

installation space is constrained. Therefore, our generator enables unique applications in 

many circumstances where the usual generator cannot be implemented, although both of 

them utilize rotation for power generation.  

In summary, we developed a new type of planar-structured electricity-generation 

method (TENG) that to convert rotary mechanical energy using triboelectrification effect, 

a universal phenomenon upon contact between two materials. Based on the stator-rotator 
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structure that has arrays of micro-sized radial sectors, the TENG produced significantly 

high output power for sufficiently powering as well as charging conventional consumer 

electronics. It could effectively harvest a variety of ambient energy from motions such as 

air flow, water flow, and even body motion. Furthermore, the combination of the TENG 

and a power management circuit demonstrated the immediate practicability of using TENG 

for everyday power needs. Given its exceptional power density, extremely low cost, and 

unique applicability, the TENG presented in this work is a practical approach in converting 

mechanical motions for self-powered electronics as well as possibly for producing 

electricity on a large scale. 

 

2.2.2 Automatic mode transition enabled robust TENG 

Although the TENG has been proven to be a renewable and effective route for 

ambient energy harvesting, its robustness remains a great challenge owning to the 

requirement of surface friction for a decent output, especially for the in-plane sliding mode 

TENG.32, 33, 59, 62-65 Here, we present a rationally designed TENG for achieving a high 

output performance without compromising the device robustness through firstly converting 

the in-plane sliding electrification into contact-separation working mode, and secondly an 

automatic transition between a contact working state and a non-contact working state.66 

The magnets assisted automatic-transition triboelectric nanogenerator (AT-TENG) was 

developed to effectively harness various ambient rotational motions to generate electricity 

with greatly improved device robustness. 

The device structure of the AT-TENG is schematically illustrated in Figure 2.25a, 

which mainly consists of two parts, a functional unit and a rotator. The functional unit has 
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a multilayer structure with acrylic as supporting substrates. Acrylic was selected as the 

structural material owing to its decent strength, light weight, good machinability and low 

cost.  

 

Figure 2.25 Structural design of the AT-TENG with one segment. (a) Schematic illustration 

of the triboelectric nanogenerator. (b) SEM image of the nanopores on aluminum electrode. 

The scale bar is 150 nm. (c) SEM image of the PTFE nanowires. The scale bar is 500 nm.66  

 

The two triboelectric layers are laminated with a full contact at their initial states. 

One end of them is secured by a piece of rubber while the other end stays open. On the 

upper triboelectric layer, aluminum thin film with nanoporous surface plays dual roles of 

an electrode and a contact surface. Scanning electron microscopy (SEM) image of the 

nanopores on the aluminum is presented in Figure 2.25b.  On the lower triboelectric layer, 

polytetrafluoroethylene (PTFE) film with deposited copper as back electrode was acting as 

another contact surface, and it was anchored onto the substrates. A top-down method 

through reactive ion etching was employed to create PTFE nanowires arrays on the PTFE 

surface.41 An SEM image of the PTFE nanowires is displayed in Figure 2.25c. Here, a pair 

of magnets was respectively adhered onto the top triboelectric layer and the rotator plane 
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with a same pole facing each other. It is worth noting that, the functional unit of AT-TENG 

for electricity generation was fully enclosed, and its operation relies on the external rotator 

with a magnet. This novel structure design renders it capable of performing adequately in 

harsh environmental conditions.  

The fundamental working principle of the AT-TENG is based on a two-way 

coupling of contact electrification and electrostatic induction.67-72 As presented in Figure 

2.26, both two-dimensional potential distribution by COMSOL (up) and schematic 

illustrations of charge distribution (down) were employed to elucidate the working 

principle of the AT-TENG, in which two working states were respectively depicted: 

contact working state (Figure 2.26a-c) and non-contact free-standing working state (Figure 

2.26d-f).  

Regarding the contact working state, the aluminum is initially aligned and in full 

contact with PTFE (Figure 2.26a). According to the triboelectric series, PTFE is much 

more triboelectrically negative than aluminum, electrons are injected from aluminum into 

PTFE, generating positive triboelectric charges on the aluminum and negative ones on the 

PTFE. When the external rotation brings the paired magnets to meet, the repulsion force 

will push the two triboelectric layers apart. The thus induced electric potential difference 

drives the electrons to flow from copper to aluminum (Figure 2.26b), screening the 

triboelectric charges and leaving behind the inductive charges. The flowing of electrons 

will be continued until the maximum separation distance was reached, and all the electrons 

are transferred from cooper to aluminum (Figure 2.26c). The increased separation distance 

between the layers leads the weakened magnetic repulsive force, thus, the restoring force 

of the elastic and the gravity of the top triboelectric layer will pull it downwards and back 
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to contact with the lower triboelectric layer. This is a full cycle of the operation for the AT-

TENG in the contact working state.  

 

Figure 2.26 Schematics of the operating principle of the AT-TENG. Both two-dimensional 

potential distribution by COMSOL (up) and schematic illustrations of charge distribution 

(down) were employed to elucidate the working principle of the TENG. And two states 

were respectively elucidated: (a-c) Contact-Separation working state and (d-f) Non-contact 

free-standing working state.  (a) Initial state in which the PTFE is negatively charged after 

contact with aluminum. (b) Magnetic repulsion force separates the PTFE and aluminum. 

Electric potential difference drives the electrons from copper to aluminum, screening the 

triboelectric charges and leaving behind the inductive charges. (c) With continuously 

increasing the separation, all the positive triboelectric charges gradually and almost entirely 

screened. When the magnetic repulsion force disappears, the top aluminum plate will be 

dragged back to contact again with the PTFE. While at a high rotation speed, another cycle 

of magnetic repulsion force will appear before the aluminum plate fully contact back with 

the PTFE. Under such a circumstance, the AT-TENG works in a Free-Standing state and 

the top aluminum will vibrate in a small range of separation distances with a high frequency. 

(d) At the minimum separation distance. (e) A transition state move upwards to the 

maximum separation state. (f) The top aluminum is raised up to the maximum separation 

distance.66 
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With further increasing the rotation speed, the AT-TENG can transit to a non-

contact free-standing working mode. At a higher rotation rate, the magnetic repulsive force 

has a shorter exertion time, which produces a much smaller momentum to the upper 

triboelectric layer. Therefore, the upper triboelectric layer will be pulled downwards 

slightly with considering the joining effect of centrifugal force and gravitation. In the 

meanwhile, with considering the fast rotation speed, the upper triboelectric layer will soon 

be magnetically repulsive again before it falls back to contact with the bottom triboelectric 

layer. As a consequence, the upper triboelectric layer will vibrate around its equilibrium 

position at the frequency of the rotation, which will change the capacitance of the structure, 

resulting in an alternating current across the electrodes. As shown in Figure 2.26d, when 

the upper triboelectric layer falls to the lowest point at the minimum separation distance at 

a certain rotation rate, the electrons flowing from aluminum to copper will not fully screen 

the triboelectric charges in the copper electrode. When the repulsive force pushes the upper 

triboelectric layer to move upwards, the electrons will keep flowing from the copper to the 

aluminum (Figure 2.26e), until it reaches at the highest point, corresponding to a maximum 

separation distance between the two (Figure 2.26f).  

To systematically investigate the performance of the AT-TENG as a new 

methodology in harvesting ambient mechanical energy, AT-TENGs with one segment and 

two segments were studied respectively. Figure 2.27a and 2.27b respectively show the 

dependence of the open-circuit voltage and short-circuit current on the rotation rate of the 

one-segment TENG. At a rotation rate lower than 240 rpm, the one-segment AT-TENG is 

in a contact-separation working state, and the open-circuit voltage is up to 530 V. The 

short-circuit current follows the same trend and constant around 0.26 mA.  
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Figure 2.27 Electrical output characterization of the AT-TENGs. For a systematic 

investigation, two type of AT-TENGs: one-segment and two-segment were respectively 

studied. Dependence of the (a) open-circuit voltage and (b) short-circuit current on the 

rotation rate of the one-segment AT-TENG. Dependence of the (c) open-circuit voltage 

and (d) short-circuit current on the rotation rate of the two-segment AT-TENG. 

Dependence of the average charges transfer rate on the rotation rate for the (e) one segment 

AT-TENG and (f) two-segment AT-TENG.66 

 

At this typical contact-separation working stage, the open-circuit voltage can be 

estimated as: 

𝑉𝑜𝑐 =
𝜎𝑑

𝜀𝑜
     (2.16) 
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where 𝜀𝑜  is the vacuum permittivity and σ is the triboelectric charge density, d is the 

maximum separation of two triboelectric layers in  a AT-TENG, which is designable and 

confined by the height of the device external packaging. Given a fabricated AT-TENG, d 

could be a fixed value, which determines the device output. At lower rotation rate, the AT-

TENG works at the contact-separation mode and the upper triboelectric layer can obtain a 

larger momentum to move upwards. Thus, the separation distance between the two 

triboelectric layers is confined and equates to d at lower rotation rate, which explained a 

constant electric output at this stage.  

With further increasing the rotation rate beyond the critical point, the AT-TENG 

will be automatically converted from the contact working state into a non-contact free-

standing working state. For each AT-TENG, the critical rotational speed is designable and 

can be estimated as  

𝜔𝑐𝑟𝑠 = √
𝐹

𝑀
(∆𝜃)2−4𝜋𝑔(∆𝜃−𝜋)

8𝑑
           (2.17) 

where F is the magnetical repulsion force, M is the total weight of the upper triboelectric 

layer, g is the gravitational acceleration, ∆𝜃 is field angle of the magnet on the rotator plane, 

which was determined by the magnet dimension. Based on the above analytical mode, it is 

safe to conclude that the critical rotational speed is highly correlated to a variety of 

parameters, including the weight of the upper substrate, the dimension and magnetism of 

the paired magnets, the height d of external package and so on.  

As shown in Figure 2.27a and b, experimentally, the critical rotation rate of the as-

fabricated AT-TENG with one-segment is measured to be 240 rpm. Beyond it, the AT-

TENG operates in a non-contact working state in a wide range up to 1800 rpm. In this stage, 
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both the voltage and current amplitudes show a decreasing function of the rotation rate 𝜔. 

Here, theoretically, the open circuit voltage of the AT-TENG can be calculated as  

𝑉𝑜𝑐 = (
𝜎

𝜀𝑜
)(

𝐹

𝑀
(∆𝜃)2−4𝜋𝑔(∆𝜃−𝜋)

8𝜔2
)   (2.18) 

According to equation (2.18), in the non-contact working state, the output voltage 

is also related to various parameters, such as the weight of the upper substrate, the 

dimension and magnetism of the paired magnets and so on. Particularly, it is also reversely 

proportional to the square of rotation rate, which is well consistent with the experimental 

observation.  

For a systematical study of the presented methodology, the dependence of the open-

circuit voltage and short-circuit current of the two-segment AT-TENG on the rotation rate 

were also investigated. As shown in Figure 2.27c and d, respectively, below the threshold 

rotation rate of 300 rpm, the two-segment AT-TENG was in a contact-separation working 

state. In this stage, similar to the one-segment case, the voltage and current are respectively 

constant at 246 V and 0.12 mA. With further increasing the rotation rate beyond 300 rpm, 

the AT-TENG with two-segment is working in a non-contact free-standing mode, and the 

peak amplitudes of the electrical output were decreasing with increase of the rotation rate, 

which shares a same trend of that with the one-segment AT-TENG. This is mainly 

attributed to the reduced separation distance between the two triboelectric layers of the AT-

TENGs at higher rotation rates.  

Here, it is worth noting that, for both one-segment and two-segment AT-TENGs, 

the reduced electric output amplitudes do not mean a reduction of the capability of the 

device for energy harvesting at higher rotation rates. Firstly, the peak density of the device 

electric output is dramatically increased with the increasing of the rotation rates. This leads 
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to an increasing amount of the transferred triboelectric charges across the electrodes. The 

dependence of the average charge transfer rate (IAC) on the rotation rate for the two types 

AT-TENGs are respectively presented in Figure 2.27e and f. Here, IAC is defined as the 

total transferred charges across the electrodes per unit operation time. As shown, at higher 

rotation rates beyond critical point, the devices are working at a non-contact state, they 

maintained a higher charge transfer rate than that in the contact working state. As a 

consequence, the capability of the AT-TENG for energy harvesting is actually enhanced at 

higher rotation rates. Furthermore, the dependence of the accumulative transferred charges 

(CAT) on the rotation rate for the two types of AT-TENG were also measured and 

respectively plotted in Figure 2.28a and b. Likewise, much higher CAT values were 

maintained for the AT-TENG in the non-contact working state, and especially at the 

rotation rates around the critical point or in the short range above it.  

Resistors were utilized as external load to further investigate the output power of 

the AT-TENG around the critical rotation rate. As displayed in Figure 2.28c, the 

instantaneous peak power is maximized at a load resistance of 1 MΩ, corresponding to a 

peak power density of 1 W/m2. The superior robustness is also an advantageous feature of 

the reported AT-TENG. As shown in Figure 2.28e, there is no observable output 

degradation after 300,000 cycles’ continuous operations when the AT-TENG is in the non-

contact free-standing working state, and a minor fluctuation of less than 6% was observed 

for the contact-separation working mode. However, an obvious degradation up to 26% of 

the electric output for the in-plane sliding mode was observed. As a consequence, on one 

hand, by converting the in-plane sliding electrification into the contact-separation mode, 

the device robustness of the AT-TENG was greatly improved. On the other hand, as long 
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as the AT-TENG works at the critical point or in the short-rang above critical point with 

an occasional transition into contact state for charge replenishment, the AT-TENGs could 

pave itself a way of keeping both high electric output and superior device robustness.   

 

Figure 2.28 Accumulative transferred charges and the delivered power of the AT-TENGs. 

Dependence of the accumulative transferred charges across the electrodes on the rotation 

rate for the (a) one segment AT-TENG and (b) two-segment AT-TENG. (c) Dependence 

of the peak power output on the external load resistances for the one-segment TENG at a 

rotation rate around 240 rpm, indicating maximum power output at R =1M. (d) Working 

state depended device robustness investigation.66 

 

To prove it as a robust and sustainable energy technology, the AT-TENG was 

demonstrated to efficiently harness various ambient mechanical motions for long-time 

continuous operations. Here, the first step was taken to develop the AT-TENG into a wind 

energy harvester by equipping it with a wind cup.  
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Figure 2.29 Demonstration of the AT-TENG for harvesting energy from ambient wind and 

water flow.  (a) Photograph of the as-developed AT-TENG-based wind energy harvester. 

(b) A device in the ambient environment. (c) Harvesting energy from light wind at a flow 

speed of 6.5 m/s by the AT-TENG and an array of 24 spot lights were lighted up 

simultaneously. (d) Harvesting energy from the water flow at a flow rate of 5.5 L/min. (e) 

Photograph of the upward view of the water turbine. (f) An array of 24 spot lights were 

lighted up simultaneously. (g) Charging a commercial capacitor when the AT-TENG is 

driven by the above light wind and water flow. All the scale bars are 2 cm.66 

 

Figure 2.29a is a photograph of the as-fabricated device, and Figure 2.29b shows 

the device in the ambient environment. Drove by the light wind at a flow speed of 6.5 m/s, 

the harvested energy by the AT-TENG is capable of simultaneously lighting up an array of 

24 spot lights (0.6 W each) connected in series(Figure 2.29c). Furthermore, the AT-TENG 

was also demonstrated to harvest energy from the environmental water flow.  Figure 2.29d 

and e are respectively the photographs showing the setup for water flow energy harvesting 

and the upward view of the water turbine employed. At a flow rate of 5.5 L/min via a water 

pipe, the harvested power can also be utilized to simultaneously light up an array of 24 spot 
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lights connected in series (Figure 2.29f).  In the meanwhile, as shown in Figure 2.29g, the 

harvested energy from the wind and water flow by the AT-TENG was also capable of 

charging a capacitor up to more than 120 V in 60 seconds.  

 

Figure 2.30 Demonstration of the AT-TENG for recycling mechanical energy from 

bicycling and moving car and acting as a self-powered active speedometer.  (a) Photograph 

of the AT-TENG for harvesting energy from bicycling. The scale bar is 5 cm.  (b) Up is an 

enlarged view of the installation of the AT-TENG onto a commercial bike. Down is a 

photograph showing that 24 spot lights are lighted up simultaneously when bicycling 

naturally. The scale bars are 2 cm. (c) Harvesting energy from a moving car at normal 

speed and about 104 LEDs were lighted up simultaneously. The scale bar is 10 cm. (d) A 

photograph showing the AT-TENG acting as a self-powered active sensor for both real-

time moving speed detection and travelled distance measurement.66   

 

The AT-TENG was also further demonstrated to recycle mechanical energy from 

bicycling and moving car. As shown in Figure 2.30a, an AT-TENG was equipped onto a 

commercial bicycle. An enlarged view of the installation is presented in Figure 2.30b. The 

harvested power is also capable of lighting up 24 spot lights simultaneously when a human 

rides a bike naturally. And still, the AT-TENG can also harvest energy from a moving car. 
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As shown in Figure 2.30c, about 104 LEDs were lighted up simultaneously when a car is 

running at normal speed.  

In addition, owing to the unique output characteristic, the AT-TENG was also 

demonstrated to be a self-powered speedometer with ultra-high measurement accuracy, 

which can measure not only the wheel moving speed, but also the travelled distance in a 

real-time manner. Read the acquired electric signals from an N-segment AT-TENG, the 

rotational speed in rpm at this moment can be expressed as  

𝑅𝑡 =  60 (𝑁 ∙ ∆𝑡)⁄     (2.19) 

where ∆𝑡 is the time lag in second between two adjacent peaks in the acquired electric 

signals. And the travelled distance till this moment can be calculated by: 

𝐿 =  ∫ 𝜋𝐷 ∙ 𝑅𝑡𝑑𝑡
𝑡

0
   (2.20) 

where 𝑅𝑡 and L are respectively the real-time rotation rate in rpm and travelled distance, N 

is the segment number of the AT-TENG, D is the tire diameter of the moving object. It is 

worth noting that, the self-powered speed or distance measurement does not require a 

uniform motion of the wheel. It can move at arbitrary time-varying velocity, which renders 

it a very practical application.  Figure 2.30d shows a real-time speedometer realized by 

Labview programming. Holding a novel but simple structural design, the ultra-robustness 

of the AT-TENG promises itself to have extensive applications in wheel-based transport 

systems for either energy harvesting or self-powered sensing purpose.  
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2.2.3 Rolling friction enhanced free-standing TENG 

In the meanwhile, to avoid the material abrasion and the consequently generated 

heat for TENG, a free standing working mode of the TENG is also developed recently.36 

The created free-standing gap between the two triboelectric layers largely assures the 

superior robustness of the device as well as unprecedentedly high energy conversion 

efficiency. However, an awkward dilemma emerges due to a low output performance as 

well as unavoidable elastic charge dissipation, which also obstructed the TENG towards 

practical applications.73  

Herein, we present an ultra-robust, high-performance route for rotational kinetic 

energy harvesting by fabricating a rolling friction enhanced free-standing mode 

triboelectric nanogenerator (RF-TENG).74 Creatively utilizing the rolling friction from a 

metal rod, the awkward predicament of elastic charge dissipation in the free standing model 

TENG is well resolved with no compromising of the device robustness.  

The device structure of the RF-TENG is schematically illustrated in Figure 2.31a, 

which consists of three parts, a rotator, a stator and an aluminum rod. The zoom-in 

illustration (middle left) demonstrates the functionality of the aluminum rod for charge 

replenishment via rolling friction with the rotator. An axial gap in between the rotator and 

stator, namely, the free-standing gap, is tunable. In the stator, a layer of copper electrodes, 

which are complementarily patterned and disconnected by fine trenches in between, were 

deposited onto the kapton film. While, in the rotator, a layer of paralleled identical copper 

stripes with equal space was uniformly deposited onto the FEP thin film. Photographs of 

the as-fabricated rotator and stator with a grating number of 30 were respectively 

demonstrated in Figures 2.31b and c. 
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Figure 2.31 Structural design of the rolling friction enhanced free-standing triboelectric 

nanogenerator (RF-TENG), which consists of three parts, a rotator, a stator and an 

aluminum rod. (a) A schematic illustration of a RF-TENG. The zoom-in illustration 

(middle left) demonstrates the functionality of the aluminum rod for charge replenishment 

via rolling friction. (b) A photograph of the rollable stator. The scale bar is 1cm. (c) A 

photograph of the rotator, which is made of evenly-spaced metal gratings on a FEP thin 

film. The scale bar is 1cm. (d) A SEM image of the FEP polymer nanowires. The scale bar 

is 500 nm.74 

 

In order to enhance the surface charge density of contact electrification, inductively 

coupled plasma (ICP) etching treatment was performed to create polymer nanowires array 

on the FEP surface. A scanning electron microscope (SEM) of the FEP nanowires is shown 

in Figure 2.31d, which indicates an average clustering diameter of FEP nanowires of 80 

nm with an average length of 250 nm. To operate, the thin film of the rotator was aligned 

onto a layer of sponge foam before being supported by an Acrylic rod with a diameter of 
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2.54 cm. The soft sponge foam here was acting as a buffer layer to assure an intimate 

contact between the aluminum rod and FEP film.    

 

Figure 2.32 Schematics of the operating principle of the RF-TENG. Both two-dimensional 

schematic illustrations of the charge distribution (up) and potential distribution by 

COMSOL (down) were employed to elucidate the working principle of the RF-TENG in a 

half cycle. (a) The initial state. (b) The intermediate state. (c) The final state.74 

 

The electricity generation of RF-TENG originates from a coupling effect of contact 

electrification and electrostatic induction,75-77 as depicted in Figure 2.32. Here, both two-

dimensional schematic illustrations of charge distribution (up) and potential distribution by 

COMSOL (down) were used for explanation. We define the initial state and the final state 

as the states when the FEP gratings of the rotator aligned with electrode 1 and electrode 2, 

respectively. While an intermediate state is the state when the rotator spins from the initial 

position to the final position. To begin with, when the rotator starts to spin, a rolling friction 

happens between the aluminum rod and FEP surface. And thus an equal amount of negative 

and positive charges will be respectively generated on the FEP parts and the metal parts 

due to a difference of the electron affinity between aluminum and FEP. The rolling friction 
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here can effectively avoid the sliding friction between the rod and FEP surface, which can 

not only assure the durability of the materials, but also provide an enduring charge density 

on the FEP surface, contributing to a time-lasting and constant output power. 

In the meanwhile, the rotation of the stator will also lead to an intimate contact 

between the aluminum rod and the copper gratings, which ends up a redistribution of the 

positive charges on both the aluminum rod and the copper electrodes of the rotator, 

according to the principle of equipotential body. Subsequently, owning to electrostatic 

induction, the negatively charged FEP will induce the equal amount of positive charges in 

the electrode 1, while the positively charged copper will induce the equal amount of 

negative charges in the electrode 2 in the stator, as illustrated in Figure 2.32a. A continuous 

rotation will bring to the intermediate state, where the positive charge on electrode 1 will 

transfer to electrode 2 through the external circuit (Figure 2.32b) till it reaches the final 

state (Figure 2.32c). Further rotation beyond the final state induces both the open circuit 

voltage and short-circuit current to change in a reversed way because of the periodic 

structure.  

To systematically investigate the performance of the RF-TENG in harvesting 

rotational kinetic energy, two key design parameters, the grating numbers and the free 

standing gap, are both experimentally and theoretically studied. To measure, the RF-TENG 

was anchored on a platform with one end was fixed by a bearing, and other end was 

connected to a programmable rotary motor. The center of the bearing and the rotary motor 

was tuned by a raising platform as well as a 3D-stage to guarantee a coaxial operation of 

the RF-TENG for a stable electric output. The motor is programmable for a quantitative 

measurement of the electric output, which was carried out under a relatively dry humidity 
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(RH=30%). To begin with, given a fixed free standing gap of 0.5 mm, the open circuit 

voltage shows a minor degradation with increasing the grating numbers, while a quasi-

linear increasing trend was experimentally observed for the short circuit current, as 

demonstrated in Figure 2.33a. Then, a further electric output characterization was 

systematically performed when the free standing gaps were set at 1 mm, 2 mm, 3 mm and 

6 mm, and the corresponding experimental observations were respectively presented in 

Figures 2.33b, c, d and e.  

 

Figure 2.33 Electrical output characterization of the RF-TENG. Dependence of the short-

circuit current and open-circuit voltage on the number of gratings under a various free 

standing gap distance D between the rotator and stator: (a) D=0.5 mm, (b) D=1 mm, (c) 

D=2 mm, (d) D=3 mm, (e) D=6mm. (f) Dependence of the maximum output power of the 

RF-TENG on the grating numbers at a fixed axial distance D = 0.5mm.74  

 

From the evolution of the output signals regarding the increasing grating numbers 

at various gap distances, certain trends can be derived to clearly profile the reported RF-

TENG. Firstly, current amplitudes are drastically increased with elevated grating numbers 

at a gap distances lower than 2 mm. Secondly, when the gap distance was larger than 2 
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mm, maximized current outputs emerge at an optimized grating numbers. And also, the 

maximized current points were shifted towards a larger grating numbers at smaller gap 

distances. Apparently, a monotone increasing relationship was no longer exhibited between 

the current output and the grating numbers for the RF-TENG. This is mainly attributed to 

the transferred charges across the electrodes were degraded with increasing of the grating 

numbers.78 

For the in-plane sliding mode, due to the intimate contact between the two 

triboelectric layers, the generated static electric fields by the triboelectric charges are 

mutually locked. As a consequence, the transferred charges Q across electrodes will not be 

reduced with further subdivided gratings. The output current is proportional to dQ⁄dt. With 

constant charge transfer across electrodes, a faster charge transfer will be resulted from the 

subdivide grating, which contributes to an enhanced current output. However, in the RF-

TENG, the static electric fields between triboelectric layer and electrode are no longer 

mutually locked due to the existence of a physical gap, which will lead to a reduced transfer 

charges across the electrodes. With further subdivided gratings, the increase of the output 

current due to a faster charge transfer will be undermined by the reduced amounts of the 

transferred charges. And the later will become more and more dominant on the current 

output with elevated subdivided gratings, which renders a maximized current output at an 

optimized grating number. In the meanwhile, this effect will also become more and more 

dominant at a fixed grating number with elevated gap distance, which contributes to a 

shifted peak current points towards a smaller grating numbers.78 Thirdly, at all gap distance, 

the open-circuit voltage shows a decreasing trend with increasing the grating numbers. 

Especially, at larger gap distances, the output voltage is decreased much more obviously. 
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Fourthly, both the current and voltage are apparently decreased with elevated free standing 

gap distances. These observations are mainly attributed to that a larger gap distance leads 

to a weaker electrostatic induction effect. More importantly, a more confined electrostatic 

field will exist with smaller gap distance between the charged surfaces and the electrodes. 

Additionally, the symmetrical neutralizing effect of the potential will become stronger at a 

larger gap distance.  

For a systematical study, a further step was taken to evaluate the output power of 

the RF-TENGs with elevated grating numbers. At a fixed gap distance of 0.5 mm, the 

output power density is obviously increased with grating numbers, as shown in Figure 2.33f. 

Here, each output power density is the maximized value at its optimized external load 

resistance. Furthermore, charge replenishment by a rod rolling friction is the driving force 

behind the enhanced electric output of the presented RF-TENG. To quantify the rolling 

induced performance improvement, both the open-circuit voltage and short-circuit current 

are measured with or without the rod under various rotating speeds, from 100 to 900 r/min. 

Here, the rotator of the tested RF-TENG has a diameter of 2.54 cm and a length of 10 cm. 

And the free standing gap is set to be 0.5 mm. As the experimental results presented in 

Figure 2.34a and b, both the open-circuit voltage and short-circuit current are doubled with 

the rolling friction induced charge replenishment. Absence of the rod rolling, the 

triboelectric charges on the FEP surface will decay continuously. After placing the 

aluminum rod, the output of the RF-TENG is obviously increased and keeps constant at a 

higher plateau. Not until removing of the metal rod, the electric output shows an obvious 

degradation. It is worth noting that the charge degradation rate is highly related to the 

ambient environment, such as temperature, humidity, pressure, floating particles in air and 
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so on. In the RF-TENG, the continuous charge replenishment will enable the device free 

from the environmental factors, rendering a consistent and constant electric output. This is 

also a critical advantage towards a sustainable practical power source. 

 

Figure 2.34 The rolling friction induced charge replenishment and device robustness. The 

current (a) and voltage (b) enhancement by introducing the aluminum rod rolling friction. 

(c) Mechanical robustness test of the RF-TENG. The output voltage only shows a minor 

fluctuation of less than 0.2% after 14.4 M cycles of rotations. (d) Comparison of the metal 

gratings surface morphology after the rolling friction and sliding friction up to 120000 

cycles. The scale bars are 1 cm.74 

 

The reliability is also a superior feature of the reported RF-TENG, which is 

primarily represented by its output stability and mechanical durability. On one hand, the 

output stability against the long-term continuous rotation has been investigated. To 

evaluate, a set of current output measurements were performed among three types of 

TENGs: RF-TENG, Non-contact free-standing mode TENG (NC-TENG), and Contact in-
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plane sliding mode TENG (C-TENG). The output current data of each TENG was 

normalized as shown in Figure 2.34c, the output of RF-TENG only shows a minor 

fluctuation of less than ±0.2% after 14.4 million cycles of rotations while the output of NC-

TENG decreased about 15%.  Noticeably, the output of the C-TENG dropped to 45 % only 

after 2.8 million cycles’ rotation.  

On the other hand, to investigate, the mechanical durability is also evaluated by 

comparing the surface material abrasion after 0.12 million cycles’ rotation. As exhibited in 

Figure 2.34d, the metal electrodes of the RF-TENG stay almost intact while those of the 

in-plane sliding mode TENG were almost worn out. The ultra-robustness of the RF-TENG 

is mainly attributed to the novel device structural design. In the operation of RF-TENG, 

there is no direct physical contact between the triboelectric layer and the electrode, and the 

rolling friction for the charges replenishment will hardly cause any damage to the durable 

FEP polymer surface. Moreover, the using of a soft sponge can largely reduce the rigid 

contact between aluminum rod and FEP, and it also can avoid the relative slip between 

aluminum rod and FEP film, which could further enhance the robustness of the device.  

To demonstrate the capability of the RF-TENG as a robust and sustainable power 

source, firstly, the output power of an as-fabricated RF-TENG with a grating number of 

30, diameter of 2.54 cm, length of 10 cm was quantified at the free standing gap of 0.5 mm. 

As shown in Figure 2.35a, the short-circuit current and open-circuit voltage (peak to peak) 

can respectively reach ~15 µA and ~ 320V. Resistors were utilized as external loads to 

further investigate the output power of the RF-TENG at a rotation rate of 1000 r/min. As 

displayed in Figure 2.35b, the current amplitude drops with increasing load resistances 

owing to the ohmic loss, while the voltage follows a reverse trend. As a result, the 
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instantanenous peak power is maximized at a load resistance of 20 MΩ, coresponding to a 

peak power density of 250 mW/m2. This long-term continuous output power is capable of 

simultaneously powering 16 spot lights connected in parallel (Figure 2.35c), charging a 

200 µF commercial capacitor to 120 V in 170 s as well as lighting up a G16 globe light 

(Figure 2.35d). 

 

Figure 2.35 Demonstrations of the RF-TENG as a practical power source. (a) Electric 

output characterization of a RF-TENG with a grating number of 30 and gap distance D = 

0.5 mm. (b) Dependence of the output current and peak power of the RF-TENG on the 

resistance of the external load, indicating the maximum power output is obtained at 20 M. 

The results were obtained under a fixed rotating speed of 900 r/min. (c) Photograph of 16 

spot lights that are directly powered by the RF-TENG in complete darkness under a rotating 

rate of 1500 r/min. The scale bar is 1 cm. (d) Demonstration of the RF-TENG charging a 

200 µF commercial capacitor and simultaneously lighted up a G16 globe light. The scale 

bar is 2 cm.74 
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2.3 TENG for acoustic energy harvesting 

As a clean, ubiquitous and sustainable energy source, acoustic waves, such as 

various sound noises from any living activities, airports, construction sites and traffic, are 

one of the wasted energies that are abundant in our daily life. Sound energy is usually taken 

as unwanted noise that is polluting our living environment. Acoustic energy harvesting was 

not as popular as other types of energy harvesting, such as solar energy and thermal electric 

energy, possibly because not only sound waves having much lower power density but also 

the lacking of effective technology for harvesting such energy.  

Harvesting acoustic energy has been demonstrated using approaches based on 

piezoelectric effect79 and electrostatic effect,80 but their performances are limited by low 

energy conversion efficiency, low power density, structure complexity and requirement of 

high-quality materials.80  Furthermore, most of the presented devices generally work at 

high frequencies from a few kHz to MHz,79, 80  while sound sources available in everyday 

life contain predominantly low frequency components, making the presented mechanisms 

unsuitable in most circumstances.81  Therefore, harvesting sound wave energy remains a 

challenge.  

 

2.3.1 Organic thin film based TENG 

To scavenge ambient acoustic energy as a sustainable power source, we firstly 

reported the first organic thin-film based triboelectric nanogenerator.82 Relying on a 

Helmholtz cavity with a size-tunable narrow neck on its back, the core of the nanogenerator 

is in a circular shape and embedded as the flexible front plate of the cavity, as schematically 

shown in Figure 2. 6a. For a better illustration, a cross-sectional view of the core is shown 
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in Figure 2. 6b, with a multilayered structure. Aluminum thin film with nanoporous 

surface plays dual roles as an electrode and a contact surface. A scanning electron 

microscopy (SEM) image of nanopores on the aluminum is presented in Figure 2. 6c. The 

nanopores were uniformly distributed on the surface of aluminum with an average diameter 

of 57 ± 5 nm and a density of 210 per μm2. A layer of polytetrafluoroethylene (PTFE) film 

with deposited copper was employed as another electrode. An SEM image of the PTFE 

nanowires is displayed in Figure 2. 6d. The average diameter of PTFE nanowires is 54 ± 

  nm with an average length of 1.1 ± 0.4 μm.  

 

Figure 2.36 Structural design of the organic film nanogenerators. (a) A sketch and (b) Cross 

sectional view of the nanogenerator. (c) A SEM image of nanopores on aluminum electrode. 

(d) An SEM image of PTFE nanowires fabricated on the film surface by plasma etching, 

which largely increase the triboelectrification.82  

 

When an external sound wave is incident on the core part of the nanogenerator, the 

air within the cavity is alternately compressed and expanded in responding to the 

magnitude and frequency of the sound wave, and thus the PTFE thin film will oscillate due 

to the initiated pressure difference on its two sides, while the aluminum film stays still. 
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Mathematically, the pressure difference can be expressed as 8  

 2cossin2 kdpp    (2.21) 

where k is the wavenumber, p is the incident acoustic pressure, d is the effective distance 

between the PTFE thin film and the opening of the neck, and θ is the sound wave incident 

angle, which is the angle between the sound propagation direction and the normal direction 

of the PTFE surface.  

A MATLAB simulation for the deformation of the PTFE film under the acoustic 

pressure difference is shown in Figure 2. 7a, where we assume that the uniformly 

distributed acoustic pressure difference is 0.1 Pa and the Young's Modulus of the cylindrical 

PTFE thin film (65 mm in diameter and 0.06 mm in thickness) is 420 MPa. The color 

represents the magnitude of the deformations of the PTFE thin film, of which a maximum 

displacement of 0.7 mm is obtained at the center. The average deformation is a 

monotonically increasing function of acoustic pressure difference throughout our 

experimental time window, as shown in Figure 2. 7b. 

A cycle of electricity generation process under acoustic pressure is schematically 

depicted in Figure 2. 7c, using the numerically simulated electrostatic potential 

distribution arising from triboelectric charges (using COMSOL package). At original state, 

the PTFE is in contact with aluminum thin film. Because PTFE is much more 

triboelectrically negative than aluminum, electrons are injected from aluminum into PTFE, 

generating positive triboelectric charges on the aluminum side and negative charges on the 

PTFE side (Figure 2. 7c Stage I). Due to the wave character of sound propagation, a 

resulted acoustic pressure separates the PTFE thin film away from the aluminum thin film. 

As a result, the positive triboelectric charges and the negative ones no longer coincide on 



82 

 

the same plane and an inner dipole moment between the two contact surfaces is 

consequently generated, which drives free electrons to flow from the copper electrode to 

the aluminum electrode to screen the local electric field, producing positively induced 

charges on the copper electrode (Figure 2.37c Stage II).  

 

Figure 2.37 Working principle of the organic film nanogenerators. (a) Simulation result of 

PTFE thin film oscillating mode. (b) Relationship between the average deformation of the 

PTFE thin film and the acoustic pressure difference. (c) COMSOL simulation of the 

periodic potential change between the two electrodes upon acoustically induced cyclic 

deformation, showing the driving force for the back-and-forth charge flow generated by 

the nanogenerator.82 

 

The flow of electrons lasts until the PTFE thin film reaches the highest point, where 

the corresponding separation is maximized (Figure 2.37c Stage III). Subsequently, due to 

the acoustic pressure difference change, the PTFE film is pushed back towards the 

aluminum film. In response to the reduced separation and thus the weakened potential drop, 

the free electrons in aluminum electrode flow back to the copper electrode until the two 
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surfaces come into contact, making a complete cycle of electricity generation (Figure 2.37c 

Stage IV). Then the PTFE thin film is bounced away from the aluminum thin film again 

after obtaining a momentum from the sound waves, starting another cycle of electricity 

generation. The output electric signal can be a power source or a sound sensor, as illustrated 

in follows. 

 

Figure 2.38 Electrical measurement of the organic film nanogenerators. (a) Open-circuit 

voltages (VOC) and (b) Short-circuit currents (ISC) as a function of acoustic frequency with 

different pre-stresses of 2.8 kPa, 5.6 kPa and 8.4 kPa. The curves are the fitted results. (c) 

VOC and (d) ISC as a function of acoustic frequency with different open ratios (ORs) of 0.1, 

0.  and 0.5. The curves are the fitted results.82  

 

To investigate the performance of the proposed nanogenerator in harvesting 

acoustic energy, a loudspeaker (Fostex Inc.) that provides sinusoidal sound waves was used 

as an acoustic source with tunable frequency and amplitude. A sound level meter (Extech 

Inc.) with 2 dB accuracy and 0.1 dB resolution is used to measure the incident acoustic 
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pressure. The meter is located near the harvester at a distance far less than the acoustic 

wavelength. Displacements in the radial direction are prescribed at the outer circular 

boundary of the PTFE film to intentionally introduce the initial in-plane pre-stress in order 

to tune the resonance frequency of the film, thus render it acting as an elastic element to 

oscillate under acoustic wave excitation. Under pre-stresses of 2.8 kPa, 5.6 kPa and 8.4 

kPa and a constant incident acoustic pressure of 110 dBSPL, the reliance of open-circuit 

voltages (Voc) and short-circuit currents (Isc) on the input acoustic frequency is presented 

in Figures 2.38a and 2.38b, respectively. At the resonance frequencies, the Voc under 

different pre-stresses are respectively 16.50 V, 60.50 V and 7.50 V, respectively. While Isc 

are 5.50 μA, 15.10 μA and 2.10 μA, respectively. The output voltage shows an 

enhancement of 3.7 times for the device with a pre-stress of 5.6 kPa than that with the pre-

stress of 2.8 kPa, and also an enhancement of 8.1 times is achieved compared to the device 

with pre-stress of 8.4 kPa. The results show that a suitable initial pre-stress can optimize 

the oscillation coupling between the air trapped in the cavity and PTFE thin film, and thus 

the electrical output. 

 Regarding the optimized design, namely, the device with pre-stress of 5.6 kPa, 

experimentally, both Voc and Isc are maximized at the acoustic frequency of 240 Hz, 

indicating that 240 Hz is the resonance frequency of the as-fabricated generator. 

Theoretically, if the dimensions of device are smaller than or comparable to the incident 

acoustic wavelength, its dynamic behavior can be modeled as a lumped system. And its 

resonant frequency can be expressed as84 

VL

Sc
fR




2
                                                                                                            (2.22) 

where S and L' are respectively the cross-sectional area and effective length of the neck. V 
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is the cavity volume and c is the speed of sound in air (343 m s-1). Submitting the values 

into Equation (2.22), we can obtain the theoretical natural frequency of 238.8 Hz, which is 

consistent with the experimental result.  

Besides the pre-stress has a marked impact on the electric output of the device, 

aimed at further improving the electric output, a serial of acoustic holes are punched 

through the aluminum electrode, which act as communicating vessels to integrate the air 

gap between two contact surfaces with the air in the cavity. The open ratio (OR) is defined 

as the area ratio of all acoustic holes’ area to the surface area of the aluminum electrode, 

which largely influences the damping of the air. A larger value of OR results in a higher 

flow velocity and lower damping,50 which will contribute to a larger deformation of the 

PTFE film under the same acoustic pressure excitation.  

Under a constant acoustic pressure of 110 dBSPL, the Voc and Isc of the generator 

with different ORs of 0.1, 0.3 and 0.5 were respectively measured, as shown in Figures 

2.38c and d. At the resonance frequencies, the Voc for open ratio of 0.1, 0.3 and 0.5, are 

respectively 35.20 V, 60.50 V and 18.70 V, and the corresponding Isc are 8.20 μA, 15.10 

μA and 5.50 μA. The results indicate that an enhancement of 1.7 times of the electric output 

is obtained for the device with OR value of 0.3, compared to that of 0.1, and also an 

enhancement of 3.2 times is achieved compared to that of 0.5. This experimental 

observation is resulted from a tradeoff between the PTFE deformation and the effective 

contact area. Larger OR leads to a larger deformation of the PTFE thin film, and thus a 

higher electric output. However, increased OR will reduce the effective contact area for 

triboelectrification, and thus a lower electrical output. Consequently, an optimum OR is 

needed to maximize the electrical output. 
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Figure 2.39 Demonstration of the organic film nanogenerator acting as a sustainable power 

source. (a) Dependence of the voltage and current output on the external load resistance. 

(b) Dependence of the peak power output on the resistance of the external load, indicating 

maximum power output at R = 6 MΩ. Inset is a photograph that shows nanogenerator 

works under the excitation from a sound box. Due to the external sound, 17 LEDs are being 

lighted up simultaneously. 82 

 

Resistors were utilized as external loads to further investigate the useful output 

power of the as-fabricated nanogenerator at the resonance frequency. As displayed in 

Figure 2. 9a, the voltage amplitudes increase with increasing load resistance, while the 

current follows a reverse trend owing to the ohmic loss. As a result, the instantaneous peak 

power (V2/R)peak is maximized at a load resistance of 6 MΩ, corresponding to a peak power 

density of 60.2 mWm-2 (Figure 2. 9b). To prove the capability of the proposed 

nanogenerator as a sustainable power source, powered by a nanogenerator with the cavity 

dimensions of 8 cm × 8 cm × 8 cm under acoustic pressure of 110 dBSPL at the resonant 

frequency of 240 Hz, 17 commercial LED bulbs were lighted up simultaneously, as 

demonstrated in the inset of Figure 2. 9b. 

In a word, we developed a new type of acoustic energy harvester that scavenges 

energy using triboelectrification effect, a universal phenomenon upon contact between two 

materials with opposite triboelectric polarities. Rationally designed structure, coupled with 
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nanomaterial modification, the as-fabricated nanogenerator enables superior performance 

in harvesting ambient acoustic energy. It produced a maximum electric power density of 

60.2 mW·m-2, which directly lighted up 17 commercial LEDs simultaneously. This work 

presents an adaptable, cost-effective and fundamentally new approach for ambient acoustic 

energy harvesting with potential applications in infrastructure monitoring, sensor networks, 

military surveillance and environmental noise reduction. 

 

2.3.2 Ultrathin, rollable, paper-based TENG 

The traditional acoustic energy harvester has a bulky structure due to the 

requirement of a resonance cavity, which greatly limited its wide-range application, such 

as harvesting acoustic energy from a commercial cell phone when playing music or from 

human talking on the phone. A further improved performance of the acoustic energy 

harvesting is on the basis of an ultrathin, rollable, and paper-based TENG, which 

innovatively employs arrays of micro holes for acoustic response enhancement.85 

An ultrathin TENG has a multilayered structure composed of thin film materials 

that are vertically laminated. A layer of multiholed paper forms the structural backbone of 

the TENG, which was coated with copper acting as an electrification layer that generates 

triboelectric charges upon contacting with a thin polytetrafluoroethylene (PTFE) 

membrane, as schematically shown in Figure 2.40a. Papers were selected as the structural 

materials owing to its flexibility, lightweight, good machinability, low cost as well as 

biodegradability. Of course, instead of papers, other expensive organic thin films can be 

chosen as well.  
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Figure 2.40 Structural design and operating principle of the ultrathin paper-based TENG. 

(a) Schematic illustrations of the paper-based TENG. (b) A photograph of the multi-hole 

paper electrode. (c) An SEM image of the PTFE polymer nanowires. (d) A photograph of 

an as-fabricated paper-based TENG. (e) The ANSYS software was employed to 

characterize the PTFE membrane vibrations under various sound frequencies. (f) An 

illustration to interpret the sound wave induced PTFE membrane vibration and electricity 

generation.85 

 

For purpose of enhancing a broad-band acoustic response, holes with diameters of 

400 μm were evenly punched and distributed on the paper substrate. A photograph of the 

multi-hole paper electrode is demonstrated in Figure 2.40b. In order to enhance the 

triboelectrification, the polymer nanowires array was purposely created onto the PTFE 

membrane, as the SEM image shown in Figure 2.40c. Figure 2.40d is a photograph of an 

as-fabricated paper-based TENG with a thickness less than 125 μm.  
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The working principle of the paper thin triboelectric nanogenerator can be 

elucidated from two aspects, namely, sound induced membrane vibration and vibration 

induced electricity generation. On one hand, when an external sound wave is continuously 

incident onto the paper thin TENG, the flexible PTFE membrane would vibrate accordingly. 

Namely, the propagation of the sound wave will cause a periodical air-pressure difference 

between two sides of the membrane, which leads to the membrane vibration. This 

vibrational mechanism is distinctly different from the traditional acoustic energy harvester 

that relies on a resonator cavity, for which the mechanical vibration is attributed to the 

alternative air compression-expansion within the cavity.84, 86 An ANSYS software is 

employed to simulate the sound wave induced PTFE membrane vibration under various 

frequencies, as shown in Figure 2.40e, assuming that the acoustic pressure difference of 20 

Pa is uniformly distributed over the 0.025 mm-thick PTFE membrane with Young’s 

modulus of 440 MPa. As it can be observed from the simulation results, the deformation 

regions and magnitudes of the PTFE membrane are highly related to the external sound 

excitation frequencies, which can be attributed to different resonance frequencies under 

different vibration modes. 

On the other hand, the vibration induced electricity generation is attributed to a 

coupling effect between contact electrification and electrostatic induction. A cycle of 

electricity generation process under external pressure is schematically depicted in Figure 

2.40f. At its maximum contact state, sound wave induced contact between PTFE and 

copper will generate electrical charges. The two materials have a different affinity for 

electrons, with the PTFE attracting electrons from copper, resulting in positive triboelectric 

charges on the copper side and negative ones on the PTFE side. Subsequently, the acoustic 
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pressure will separate the PTFE from copper. As a result, an inner dipole moment between 

the two contact surfaces is consequently altered, which drives free electrons to flow from 

the copper electrode on the PTFE membrane to the multi-hole paper electrode till the 

maximum separation state is reached. And the free electrons will flow in a reverse direction 

in the process from maximum separation state towards maximum contact state, which 

completes a full cycle of electricity generation process.  

The electric output of the as-fabricated paper thin TENG is highly related to the 

sound wave induced PTFE membrane vibration, while the air damping is acting as a 

negative impact, of which the influence on acoustic energy harvesting is still under-

estimated.87, 88 Introducing holes is a rational solution to minimizing the damping but it also 

reduces the effective contact area as a tradeoff. Thus, in order to obtain an optimized output 

for the paper thin TENG, arrays of micro holes are added, and the structural parameters of 

the holes, including shape, dimensions, and distributions, needs also to be systematically 

optimized. 

Firstly, the influence of the hole shape on the output performance is studied at a 

constant void-to-surface ratio. The transmitting ability of air flow through the holes, namely, 

the acoustic pressure difference is highly dependent on the hole shapes. As demonstrated 

in Figure 2.41a, both the peak distribution and peak values are various with hole shapes. 

And a best output performance is obtained from the evenly-distributed micro holes in a 

circle shape. It is worth noting that, for all the three hole-shapes, the frequency-response 

curves hold a multi-peak characters with all the maximum peak output occurring at ~320 

Hz, while the other peaks emerge at the frequencies around the integral multiples of ~80 

Hz. This observation is mainly attributed to that the thin membrane vibrates in a multi-
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modal manner under external acoustic pressure. And each vibration mode holds a natural 

frequency. At those resonance frequencies, a stable planar standing wave will form over 

the membrane to cause large deformations, corresponding to the peaks in the frequency-

response curves.89, 90 

 
Figure 2.41 Factors that influence the electric output of the triboelectric nanogenerator 

without Helmholtz resonator. (a) Influence of the hole shapes on the multihole electrode 

with constant void-to-surface ratio. (b) Influence of the central holes distribution on the 

electrical output. (c) Influence of hole diameters with constant void-to-surface ratio of 20%. 

(d) Influence of void-to-surface ratio on the device electrical output. (e) Influence of void-

to-surface ratio on the device frequency response. (f) Influence of the electrode thicknesses 

on the electrical output. (g) An illustration to interpret the influence of the electrode 

thickness. (h) Influence of electrode substrate materials on the electrical output. All of the 

measurements were under a constant sound pressure of 120 dBSPL.
85 

 

Secondly, the center structure is another critical parameter that determines the 
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output performance. Since the added holes on the electrode will reduce the effective contact 

area, a circular area without holes is purposely reserved in the center of the multi-hole 

electrode. As shown in Figure 2.41b, at a fixed excitation frequency of 320 Hz, the 

maximum peak output decreases as the hole-free area increases, which is mainly attributed 

to the weakened membrane vibration due to the air dumping effect in the hole-free part. 

This also further validates that the air damping is a determining factor for the paper thin 

TENG without a resonator.  

Thirdly, the influence of the hole diameter on the output performance is also 

systemically investigated at a constant void-to-surface ratio. As indicated in Figure 2.41c, 

experimentally, the peak output is an increasing function of the hole diameter in small hole 

range till an optimal hole diameter emerges (0.2 mm). And then, the output decreases as 

the hole diameter increases. Theoretically, the membrane vibration is an increasing 

function of the air-pressure difference across the PTFE membrane (ΔPmembrane). At a certain 

sound pressure (Psound), ΔPmembrane can be calculated as 

ΔPmembrane= Psound - ΔPhole -Pdamping                         (2.23) 

where Pdamping is the reduced pressure around PTFE due to air damping. Meanwhile, 

according to the Hagen-Poiseuille equation,91 the average air-pressure difference across the 

multihole electrode (ΔPhole) can be expressed as 

ΔPhole =8μLQ/(πr4)                                 (2.24) 

where, L is the thickness of the multihole electrode. μ and Q are the dynamic viscosity and 

volumetric flow rate of the air flow, respectively. r is the average radius of the hole. π is a 

mathematical constant. According to the equations (2.23) and (2.24), ΔPhole increased with 

the decreasing of the hole diameters, while Pdamping follows a reverse trend. Consequently, 
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an optimal hole diameter will lead to a maximum ΔPmembrane, thus an optimized output 

performance. 

Fourthly, a further step was taken to study the influence of the void-to-surface ratio 

of multihole paper electrode on its output performance. As demonstrated in Figure 2.41d, 

the electric output is firstly-increasing and then decreasing function of the void-to-surface 

ratio and it is maximized at a value of ~20%. A larger void-to-surface ratio will lead to a 

smaller damping effect of the air, thus, a larger vibration of the PTFE membrane; however, 

a smaller effective contact area. The tradeoff of larger membrane vibration and smaller 

effective contact area requires an optimal void-to-surface ratio, as experimentally observed. 

It is worth noting that the void-to-surface ratio also shows an evident impact on the device 

working bandwidth, as demonstrated in Figure 2.41e. As the void-to-surface ratio increases, 

the frequency response is widened and expanded to a higher frequency range, which is 

essential to the paper thin TENG for self-powered active sensing. 

Fifthly, the thickness of the multihole electrode is also another important design 

parameter that needs to be investigated. As shown in Figure 2.41f, a sharp and narrow 

output peak was observed for the device with thicker electrode, which is a typical character 

of a sound-response device based on Helmholtz resonator. However, the frequency-

response curve turns into a broad multi-peak waveform when the electrode thickness 

becomes thinner. Especially, the output at a higher frequency ranging up to 700 Hz is 

obviously increased with thinner electrode. Theoretically, when the electrode thickness is 

relatively large, a Helmholtz resonator is formed, which can improve the output at the 

resonance frequency while narrowing the frequency response range as the tradeoff,92, 93 as 

schematically shown in Figure 2.41g. Besides, according to the equations (2.23) and (2.24), 
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ΔPhole increased with the increasing of the electrode thickness, while Pdamping follows a 

reverse trend. Thus, there should be an optimized electrode thickness. And a thickness of 

2.4 mm is observed experimentally. 

Additionally, the paper based multi-hole electrode is capable of expanding the 

frequency response, comparing with the plastic sheet based multi-hole electrode with 

identical thickness, as indicated in Figure 2.41h. A possible reason is that the paper holds 

a micro textile structure with tiny communicating vessels, which would further weaken the 

air damping effect. In a word, in order to obtain a decent output for the acoustic energy 

harvester without a resonator, a paper thin electrode with evenly-distributed circular holes 

is highly desired.  

Resistors were utilized as external loads to further investigate the output power of 

the structurally optimized paper thin TENG at acoustic frequency of 250 Hz with an 

acoustic pressure of 114 dBSPL. As displayed in Figure 2.42a, the voltage amplitudes 

increase with increasing load resistance, while the current follows a reverse trend owing to 

the Ohmic loss. As a result, the instantaneous peak power is maximized at a load resistance 

of 800 KΩ, corresponding to a peak power density of 121 mW/m2 (volume power density 

of 968 W/m3), as shown in Figure 2.42b. Furthermore, the dependence of the electrical 

output on the incident sound pressures was also investigated and a direct proportional 

relationship was experimentally observed between the two, as indicated in Figure 2.42c. 

Holding a collection of compelling features, including paper thin, rollable, broad working 

bandwidth, independent of resonator, the proposed nanogenerator demonstrated its unique 

power in the field of acoustic energy harvesting. And it was demonstrated to recycle 

acoustic energy from a commercial cell phone when playing music, human talking on the 
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phone. As shown in Figure 2.42d, the recycled acoustic energy from a cell phone is capable 

of charging a commercial capacitor up to 1.8 V in about 12 seconds. Especially, when the 

paper thin triboelectric nanogenerator was installed on a wall or glass window, it can still 

recycle the environmental noise for electricity generation. 

 
Figure 2.42 Performance evaluation of the paper thin triboelectric nanogenerator as a 

sustainable power source. (a) Dependence of the peak-to-peak voltage (Vp-p) and current 

output on the external load resistance. (b) Dependence of the peak power output on the 

resistance of the external load, indicating the maximum power output at R = 800KΩ. (c) 

Dependence of the electrical output on the input sound pressures. (d) Recycling the 

acoustic energy from the cell phone via charging a 2 μF capacitor. Inset is a photograph 

that shows a commercial cell phone equipped with a paper thin triboelectric nanogenerator 

for capacitor charging.85 

 

Holding a collection of compelling features, including paper thin, rollable, broad 

working bandwidth, independent of resonator, the proposed nanogenerator demonstrated 

its unique power in the field of acoustic energy harvesting.  Compared to other existing 
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technologies for acoustic energy harvesting, the paper based TENG distinguishes itself in 

many aspects and brings about a number of advantages.  

From structure point of view, the traditional acoustic energy harvester has a bulky 

structure due to the requirement of a resonance cavity. Superiorly, the presented ultrathin 

triboelectric nanogenerator innovatively employs a multi-hole structure on the paper 

electrode, which effectively gets rid of the traditional resonator for acoustic energy 

harvesting. The paper thin TENG achieves a volume power density of ~1 kW/m3 at a sound 

pressure of 117 dBSPL. 

From cost point of view, the ultrathin TENG is fabricated mainly based on low-

cost, light-weight, and biodegradable paper materials with a simple structure. Besides, 

based on surface charging effect, the fabrication requires only very small amount of 

materials, which are conventional polymers or thin layer of metal as electrodes. 

Furthermore, the fabrication process of the paper-thin TENG is straightforward and 

compatible with possible large-scale manufacturing. Additionally, the backbone of paper 

thin TENG is made of commonly-used paper materials, which is biodegradable and greatly 

reduced the possible environmental costs. As a consequence, the paper-based TENG is 

extremely cost-effective, which is an unparalleled advantage compared to any other 

acoustic energy harvesting techniques.  
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CHAPTER 3 

TENG TOWARD LARGE-SCALE BLUE ENERGY 

 

Water wave, wind and solar irradiance, available in huge quantities, are clean and 

renewable energy sources with great potential.1, 94-97 In comparison with solar and wind 

energy, energy from water wave in ocean may have several advantages. Widely distributed 

across the globe, water kinetic energy is one of the richest energy sources for large-scope 

applications. The energy provided by water wave has a much less dependence on season, 

day or night, weather and/or temperature. Although numerous studies have concluded that 

water wave power could contribute massive amounts to the overall energy consumption of 

the world, the utilization of water wave energy is way under explored.90, 95, 97 

The general approach for harvesting mechanical kinetic energy is mainly based on 

electromagnetic effect, which, however, is likely to have possible limitations for harvesting 

water wave energy in ocean. First, the electromagnetic generator (EMG) is usually heavy 

and has a large mass density owing to the presence of magnets and metal coils, so it cannot 

naturally float on the surface of the water unless supported by a floater or a buoy platform. 

In ocean, the most dynamic energy presents at the surface of water. Secondly, the EMG is 

most effective to catch the power from a flowing stream, so that the wave energy of water 

cannot be effectively harvested. Lastly, the fabrication of EMG requires high-quality 

materials, so that it may not be cost-effective for applications at a large surface area. 

 

3.1 Networks of TENG for blue energy harvesting 

In this chapter, we presented a TENG network (TENG-NW) design as a potential 
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approach for harvesting large-scale water wave energy.98 Relying on surface contact 

electrification effect between the conventional polymers and very thin layer of metal as 

electrodes, the TENG-NW is extremely light-weight, low-cost, high anticorrosion to the 

marine environment and capable of floating on the surface of water for wave energy 

harvesting. By using the collision of a rolling ball caused contact and separation, the TENG 

converts the slow, random and high-force all-directional oscillatory motions into electricity. 

The basic unit of the TENG is arch-shaped top and bottom plates with a multilayer 

core, as schematically shown in Figure 3.1a. Both the top and bottom plates are made of 

polyethylene terephthalate, naturally bent by a heat treatment, which helps to carry out the 

action of effective charge separation and contact using the elasticity of the film.  A 

photograph of an as-fabricated unit is shown in Figure 3.1b. Holding a sandwiched 

structure, both the upper layer and bottom layer of the functional core is 

polytetrafluoroethylene (PTFE) film with deposited copper as back electrodes. PTFE 

nanowires arrays were created on the exposed PTFE surface by a top-down method through 

reactive ion etching, which largely enhance the charge density of contact electrification. A 

scanning electron microscopy (SEM) image of vertically aligned PTFE nanowires is 

displayed in Figure 3.1c, which indicates that the average clustering diameter of FEP 

nanowires is 54±   nm with an average length of 1.5±0.5 m. Aluminum thin film with 

nanoporous surface is sandwiched between the top and bottom layers of the functional core, 

playing dual roles as an electrode and a contact surface. An SEM image of nanopores on 

the aluminum is presented in Figure 3.1d. The average diameter and depth of the aluminum 

nanopores are 57± 5 nm and 0.8±0.2 m, respectively, with a distribution density of 212 

perm2.  
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Figure 3.1 A single unit in a TENG. (a) Schematic illustration and (b) photograph of an 

as-fabricated minimum functional unit. (c) SEM image of PTFE nanowires. (d) SEM image 

of nanopores on aluminum electrode.98 

 

The fundamental working principle of the reported TENG is based on the coupling 

between contact electrification and electrostatic induction,99-107 as depicted in Figure 3.2. 

Here, both two-dimensional schematic illustrations of charge distribution (up) and 

potential distribution by COMSOL (down) were used for illustration. When an external 

force, for example, the collision from a rolling ball, is applied to the top plate of the 

minimum functional unit, which brings the two layers of PTFE into contact with middle 

aluminum simultaneously; charge transfer occurs at the contact interfaces. According to 

the triboelectric series, electrons are injected from aluminum into PTFE, since PTFE is 

much more triboelectrically negative than aluminum, generating positive triboelectric 

charges on the aluminum and negative ones on the PTFE (Figure 3.2a). Subsequently, if 
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the collision disappeared, the elasticity of the arch-shaped plates will lead to a separation 

between the PTFE and the aluminum. 

 

Figure 3.2 Schematics of operating principle of the TENG. Both two-dimensional 

schematic illustrations of the charge distribution (up) and potential distribution by 

COMSOL(down) were employed to elucidate the working principle of the minimum 

functional unit. (a) Initial state in which the PTFE is negatively charged after contact with 

aluminum. (b) When the PTFE and aluminum separates, electric potential difference drives 

the electrons from back electrodes to the contact electrode, screening the triboelectric 

charges and leaving behind the inductive charges. (c) With continuously increasing the 

separation, all the positive triboelectric charges almost entirely screened. (d) A reduced 

separation between the contact surfaces will drive the free electrons flow back to the copper 

electrode until the two contact surfaces come into contact. Notes: Aluminum nanopores 

and PTFE nanowires are not shown in the sketch for the simplification of illustration.98 
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            As a result, the positive triboelectric charges and the negative ones no longer 

coincide on the same plane and generate an inner dipole moment between the two sets of 

contact surfaces. Such a dipole moment drives free electrons from the copper electrode to 

the aluminum electrode to balance out the electric field, producing positively induced 

charges on the copper electrode (Figure 3.2b). And the flow of electrons lasts until the 

upper plate reaches the highest point, where the corresponding separation is maximized 

(Figure 3.2c). Continuously, a reduced separation between the contact surfaces will 

weakened the dipole moment, free electrons flow back to the copper electrode until the two 

contact surfaces come into contact (Figure 3.2d), making a complete cycle of electricity 

generation process. Consequently, the kinetic energy from the water wave induced 

consecutive ball collisions result in a periodical-changing electric field that drives 

reciprocating flows of electrons between electrodes, producing alternating current in the 

external circuit. 

We first study the performance of a single unit of TENG-NW for energy harvesting, 

a first step was to trigger the TENG by a ball collision as driven by gravity. A simple 

measurement platform was established, resort to that a 160-gram metal ball was controlled 

to collide at the center of the top plate with tunable acceleration and displacement. 

Dependence of the open circuit voltage and short circuit current on the acceleration and 

displacement of the ball collision are respectively exhibited in Figures 3.3a and 3.3b.  As 

Figure 3.3a indicated, the voltage amplitude is an increasing function of the both 

acceleration and displacement of the rolling ball. Likewise, the current amplitude follows 

a same trend, as displayed in Figure 3.3b. And the open circuit voltage and short circuit 
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current, induced by the ball collision at acceleration of 10 m/s2 and a displacement of 9 cm, 

shot up to 569.9 V and 0.93 mA, as respectively shown in the Figures 3.3c and 3.3d. 

 

Figure 3.3 Electrical output characterization of a single unit of TENG. (a) Dependence of 

the open circuit voltage (a) and short circuit current (b) on the acceleration and 

displacement of a 160 grams metal ball collision. The open circuit voltage (c) and short 

circuit current (d) induced by the ball collision with an acceleration of 10 m/s2 and a 

displacement of 9 cm. (e) Dependence of the voltage and current output on the external 

load resistance. The points represent peak value of electric signals while the lines are the 

fitted results. (f) Dependence of the peak power output on the resistance of the external 

load. Blue curve is for the whole device, indicating the maximum power output is obtained 

at 1 MW. The yellow curve is for the single side output, indicating the maximum power 

output is obtained at 5 M.98 
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Resistors were utilized as external loads to further investigate the output power 

under the same condition. As displayed in Figure 3.3e, the current amplitude drops with 

increasing load resistance owing to the ohmic loss, while the voltage follows a reverse 

trend.  As a result, the instantaneous peak power is maximized at a load resistance of 1 MΩ, 

corresponding to a peak power density of 0.26 mW/cm2 (Figure 3.3f).   

 
Figure 3.4 Electric output of the one side of the basic unit.  (a) The current output 

comparison of the whole device with its single side, under a 160-gram metal ball collision 

from a displacement of 9 cm. (b) Dependence of the voltage and current output on the 

external load resistance. The points represent peak value of electric signals while the lines 

are the fitted results.98 

 

Here, a further step was taken to investigate of the effectiveness of the 

synchronization for current output enhancement. Here, the basic unit of the TENG actually 

is made of two back-to-back functional units separated by a middle acrylic substrate. As 

shown in Figure 3.4a, under a same collision condition, the current output of the single side 

of the device is about half of that of the whole device. Likewise, the output power of the 

single side was also investigated. As demonstrated in Figure 3.4b, the voltage amplitude 

increases with increasing of the external load resistance, while the current follows a reverse 

trend. And thus, the instantaneous peak power of single side of the device is maximized at 

a load resistance of 10 MΩ, with a peak power density of 0.1mW/cm2 (Figure 3.3f). 
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Consequently, the rational structure design effectively enhanced the current output as well 

as the energy conversion efficiency. 

 

Figure 3.5 TENG-NW and its electrical output characterization for water wave energy 

harvesting. (a) Photograph of an as-fabricated single unit of the TENG-NW. The scale bar 

is 5 cm. (b) Schematic illustration of the TENG-NW that is consisted of thousands of single 

units. (c) Rectified short circuit current of the TENG-NWs with unit number n =1, 2, 3, 4. 

(d) Open circuit voltage of the TENG-NWs with unit number n =1, 2, 3, 4. (e) 

Accumulative induced charges generated by the TENG-NWs with unit number n =1, 2, 3, 

4. (f) Dependence of the peak power output on the resistance of the unit numbers of TENGs. 

Here, all of the units are electrically connected in parallel.98 
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For wave energy harvesting, four basic units, vertically anchored, wall a metal ball 

to form a TENG, as the photograph shown in Figure 3.5a. Triggered by the water wave 

motion, the ball at the center of the single unit will collide with the walls, namely, the 

standing basic units. To develop a TENG-NW, thousands of TENGs will be electrically 

connected and wove into a network, as the sketch showing in Figure 3.5b. To deduce and 

demonstrate the law of the TENG-NW for blue energy harvesting, a further study was 

taken to investigate the output performance on the unit numbers. With this regards, four 

units were fabricated and wove into a small-scale network. The output characteristics 

regarding the scale of the TENG-NW were demonstrated in Figures 3.5c-3.5f.  The output 

current and voltage of the TENG-NW with unit number n = 1, 2, 3, 4 were respectively 

demonstrated in Figure 3.5c and 3.5d. From the evolution of the output signals regarding 

the increasing unit numbers, certain trends can be derived for the TENG-NW.  

Firstly, current amplitudes are drastically increased with elevated unit numbers. 

The average current amplitude at n = 1 is about 50.44 which is greatly increased to 

301.95at n = 4, as indicated in Figure 3.5c. Secondly, the peak density of current output 

is also obviously increased when the unit number increased from 1 to 4. Thirdly, the peak 

density of voltage signals is still an increasing function of the unit number. Here the average 

voltage peak amplitudes hold almost constant with elevated unit numbers, which is 

attributed to the electrically parallel-connected units. Based on the above observations, it 

can be inferred that a quasi-direct/ direct output signal could be obtained if thousands of 

units working together as a TENG-NW. And also the output power frequency is totally 

controllable and tunable by configuration design of the TENG-NW. With a diode bridge, 

the total accumulative induced charges can also be measured, as show in Figure 3.5e. And 
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a directly proportional relationship was found between the unit number and the charging 

accumulation rate. This is because more units in the TENG-NW means more collisions are 

launched in a unit period of time, thus faster of triboelectric charges generation, and higher 

charging accumulation rate is expected. Additionally, further effort was committed to 

investigate the dependence of the peak power output on the resistance of the TENG-NW 

unit numbers. As demonstrated in Figure 3.5f, the peak output power of the TENG-NW is 

exponentially increased with the elevated unit numbers. 

To extrapolate the capability of the TENG-NW for large scale blue energy 

harvesting, the TENG-NW with a single unit was considered. The generated average power 

E0 in a single current peak can be calculated as:  

E0 = α ∙ Isc∙ Voc  ∙ ∆t        (3.1) 

where Isc and Voc are the average short-circuit current and open-circuit voltage for the single 

unit, which are 50 and 180 V, respectively. ∆t is the peak width of the short-circuit 

current with a value of 0.0184 s. And α is a factor in a range of 0 to 1.  For a rough 

estimation, assuming α = 0.5. Submit all the value into eq 1, E0 is calculated to be 82.8 J. 

Regarding a single unit of the TENG-NW, one collision will generate two current 

peaks with identical Isc∙ ∆t , consequently, the generated average power Ec in one collision 

can be estimated as: 

Ec = 2 E0    (3.2) 

And the generated power per second per unit volume Ecv can be expressed as: 

Ecv = f ∙ 𝛽 ∙
𝐸𝑐

𝑉𝑜
  (3.3) 

where 𝛽 is the volume ratio of TENG-NW, since all of the units in the TENG-NW is not 

close packing. Here, 𝛽 is designed to be 0.6. 𝑉𝑜 as the effective volume of a single unit. 
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According to the experimental design, 𝑉𝑜  = 6cm∙ 12cm ∙12cm= 864 cm3. f  is the ball 

collision frequency, assuming an average collision frequency is 2 Hz for the ocean wave. 

Thus, Ecv is estimated to be 0.23 J/m3.  

Features as extremely light-weight, high anticorrosion to the marine environment, 

it is reasonable to construct the TENG-NW with a depth of 5 meters in the ocean, then, the 

generated energy in a water area of 1 square kilometer per second could be estimated as :  

E = 5m ∙ 1 km2 ∙ Ecv   (3.4) 

Submit equation (3.3) into (3.4), E is thus calculated to be 1.15 MJ. 

Consequently, an average power output of 1.15 MW was expected in a water area 

of 1 kilometer square for the reported TENG-NW. To demonstrate its feasibility as a 

practical power source, a small scale TENG-NW was developed with four units connected 

in parallel. As displayed in Figure 3.6a, a small TENG-NW with 4 units is floating on the 

water surface of a home swimming pool. As a light wind passed by, the aroused gentle 

wave can start to drive the TENG-NW, which is capable of realizing a self-powered SOS 

system for ocean emergency, as shown in Figure 3.6b.  

Figure 3.6c is a schematic illustration of the configuration of the TENG-NW for 

practical applications. Here, a multi-layer electrical connection is proposed. In a foot layer, 

thousands of single units are electrically connected in parallel to form a community, which 

could effectively enhance the output current. In the upper layer, thousands of communities 

could be electrically connected in series to obtain an enhanced output voltage. As a result, 

both the current and voltage, amplitude and peak density, will be greatly boosted up to a 

high level for practical applications.  Compared with current technologies for wave energy 

harvesting, the TENG-NW holds unprecedented advantages towards large-scale ocean 
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wave energy harvesting. Firstly, TENG-NW is suitable to harvest wave energy in a wide 

range of wave motions, from subtle to strong, transverse wave to lateral wave. 

 

Figure 3.6 Demonstration of a small scale TENG-NW as a sustainable power source. (a) 

Photograph of a small scale TENG-NW with 4 units in a swimming pool. The scale bar is 

10 cm. (b) Photograph shows the TENG-NW works and is capable of realizing a self-

powered SOS system for ocean emergency. The scale bar is 10 cm. (c) Schematic 

illustration of the configuration of the proposed TENG-NW for practical applications.98 

 

Furthermore, not like the electromagnetic effect based wave energy harvesting, 

which mainly relies on the undercurrents, the TENGs will show great potential in 
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harvesting energy from both the undercurrent and the surface waves. In addition, most of 

the wave motions are multidirectional, the TENG-NW, with a rationally designed structure, 

renders an innovative and effective approach to fully utilize the wave motion from all-

directions. And it can not only be applied in the epicontinental sea, but also can easily be 

implemented in almost all of the water area. 

Secondly, since the TENGs are mostly made from polymer materials without 

magnets, the load of the total device is expected to be decreased greatly compared to current 

electromagnetic generators, which are made from heavy materials (such as metals). 

Moreover, relying on the surface charging effect, only small amount of materials are 

needed. The TENG-NW is thus cost-effective as well as light-weight, which makes it 

possible high anticorrosion to the marine environment and floating on the water surface for 

wave energy harvesting, which will greatly eliminate the needs of building poles or towers 

for holding traditions electromagnetic generators for wave energy harvesting. 

Thirdly, with the network architecture and packaging of individual TENG, the 

failure rate of the structure could be greatly decreased compared to the state-of-art 

technologies. And besides, in a case if any of a single unit in the TENG-NW was broken, 

the entire network can tolerate the failed one and the working status of the rest of the 

TENGs will not be affected.  

In a word, with a distinctive working mechanism and rational designed device 

structures, the TENG-NW will distinguish itself in the field of energy harvesting with 

unique applicability, especially playing a complementary role in current development of 

wave energy harvesting. 
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CHAPTER 4 

TENG AS SELF-POWERED ACTIVE SENSORS 

 

Self-powered sensors can be generally realized by using the actively generated 

electrical signals in response to a stimulation/triggering from the ambient environment. 

Owing to the low-frequency sensitivity of TENG, it is ideally suited for sensing vibration 

and biological signals related to human health. The magnitude, frequency, number of 

periods and fine details in the voltage and current signals are directly determined by input 

mechanical behaviors. The voltage signal is a measure of the motion amplitude, and the 

current signal characterizes the dynamic processes of the mechanical motions. This 

Chapter systematically presents the applications of TENG for detection of sound waves, 

human cardiac signals as well as the ambient chemicals. 

 

4.1 TENG as active acoustic sensors 

In the previous section of 2.3, both organic thin-film based TENG and paper-thin 

based TENG were demonstrated to effectively recycle ambient acoustic energy. Actually, 

they are also capable of acting as self-powered active acoustic sensors with superior 

performance.  

4.1.1 Helmholtz-cavity-based acoustic sensor 

To justify the capability of organic thin-film based TENG as acoustic sensors, a 

first step is made towards investigating the response of the device to applied acoustic power 
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and frequency. To test, the acoustic frequencies are spreading from 0 Hz to 500 Hz. And 

corresponding acoustic pressure ranging from 70 dBSPL to 110 dBSPL in a step of 5 dBSPL 

is controlled and measured by the sound level meter. The electric output is highly related 

to the input acoustic pressures and frequencies, as demonstrated in Figures 4.1a and b.  

 

Figure 4.1 Electrical and acoustical performance evaluation of the organic film 

nanogenerators. (a) VOC and (b) ISC as a function of acoustic pressures and frequencies. (c) 

Nanogenerator acts as an active acoustic sensor for distance measurement as well as 

ambient acoustic source detection. When a sound source approaching the nanogenerator, 

the output signal is exponentially increased. (d) Directional pattern of the nanogenerator.82 

 

As shown, at the resonant frequency of 240 Hz, with the decreasing of acoustic 

pressure from 110 dBSPL to 70 dBSPL, the Voc is decreased from 60.50 V to 0.7  V, and the 

short-circuit current is decreased from 15.10 μA to 0.19 μA. Based on the experimental 

results, a MATLAB fitting renders a linear relationship between the open-circuit voltage 

(Voc) and the applied acoustic pressure Pin (in Pascal), which can be expressed as: 
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13.054.9oc  inPV                                                                                                      (4.1) 

The sensitivity of the generator as a pressure sensor was 9.54 V Pa-1 in the acoustic 

pressure range from 0.06  Pa (70 dBSPL) to 6. 2 Pa (110 dBSPL) at the frequency of 240 Hz. 

Furthermore, the acoustic waves decay in the course of propagation, thus the distance of 

the measured device to the acoustic source shows a tremendous impact on the electric 

output for acoustic energy harvesters. At a fixed acoustic pressure of 110 dBSPL and 

resonant frequency of 240 Hz, a distance depended electric output is measured, as shown 

in Figure 2.29C. The open-circuit voltage is decreased from 60.50 V to 0.81V, with short-

circuit current decreasing from 15.10 μA to 0.21 μA, when the distance is increased from 

1 cm to 100 cm. It is worth noting that the electric output attenuates at a rate of 6 dB each 

time when the distance from the acoustic source doubles. 

For a comprehensive study of the proposed acoustic energy harvester, we still make 

a further step to evaluate the directional dependence (directivity) pattern of the as-

fabricated devices. Anchor the device onto a rotary stage, then gradually increase the 

rotating angle from 0 to  60o, and measure the Voc at the resonant acoustic frequency of 

240 Hz. The corresponding directional pattern is obtained by normalizing relative to the 

peak response of voltage, as illustrated in Figure 4.1d. The test results show that the pattern 

is in shape of Cardioid and smooth as a function of rotating angle, and the -  dB points are 

at +260 and -260 off axis, producing a total response angle of 520. At an angle of 900, the 

sound pressure level is reduced to -28 dB from the maximum value on-axis. The acoustic 

response of the device has a dependence on the incident angle of the sound waves, which 

is actually the stage rotating angle in the measurement. As a sound filter, the as-fabricated 

device is sensitive to the sound coming from directions within the response angle and 
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rejects the contribution from other angles, which renders it a great potential in the 

application of directional microphones. 

A series of practical applications were demonstrated to show the capability of the 

TENG as active self-powered acoustic sensors. The first demonstration for the 

nanogenerators is to work as a self-powered microphone. The natural frequencies of the 

devices can be designed by parameters configuration, and their corresponding frequency 

bands are able to overlap with each other, rendering us a broadened working bandwidth. 

Here, as demonstrated in Figure 4.2a, four nanogenerators, NG1, NG2, NG  and NG4, 

respectively with varying resonance frequencies of  50 Hz, 650 Hz, 1100 Hz and 1400 Hz, 

were employed to widen the overall working bandwidth from 10 Hz to 1700 Hz, which 

assured the superior performance of the nanogenerators as a self-powered microphone for 

sound recording. For experimental measurement, a multi-channel signal acquisition 

implant was designed by LabVIEW to collect the electric outputs at a sampling rate of 44.1 

kHz. Figures 4.2b1 and 4.2b2 are respectively the time domain waveforms of the recorded 

sounds from NG1 and NG4.  

Although NG1 and NG4 share the same sound source, the waveforms of the two 

apparently exhibit different characteristics, which is attributed to a different frequency 

response ranges of the two. With a natural frequency of 350 Hz, the waveform of NG1 is 

smoother owing to its dominant response to lower frequency components from 10 Hz to 

600 Hz, as shown in Figure 4.2b3, which is the corresponding Short-Time Fourier 

Transform (STFT). While the waveform of NG4 with a natural frequency of 1400 Hz is 

rougher, due to its dominant response to the higher frequency components from 1100 Hz 

to 1700 Hz, as demonstrated in Figure 4.2b4 of its corresponding STFT. 
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Figure 4.2 Demonstration of the organic film nanogenerator acting as a self-powered 

microphone. (a) Frequency responses from the nanogenerators array, which consists of four 

NGs with various designed natural frequencies, aimed to enhance the overall working 

bandwidth. (b1, b2)Sound waveforms of the signals acquired by NG1 and NG2, respectively; 

(b , b4) Short-Time Fourier Transforms of the acquired signals by NG1 and NG2, 

respectively. (c) Sound waveform and corresponding Short-Time Fourier Transform of the 

signals acquired by the array of the NGs. (d) Photograph that shows a NG is working as a 

self-powered microphone for sound recording.82  

 

In order to reconstruct the original sound, the acquired acoustic signals of the array 

are weighted according to the relative amount of information available from each source. 

The reconstructed signal reS  can be mathematically expressed as:  





4

1

re

i

iisaS                                                                                                                  (4.2) 
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where ai is a weighting factor, which is a function of speech-to-noise following a rule of 





4

1

1
i

ia . And 
is  is the acquired output acoustic signal from NGi (i =1, 2,  , 4).  

The waveform of the reconstructed signal by equation (4.2) and its corresponding 

STFT are illustrated in Figures 4.2c1 and 4.2c2, respectively. The frequency components of 

the reconstructed signal cover all the frequencies ranging from 10 Hz to 1700 Hz, as 

demonstrated in Figure 4.2c2. As a practical demonstration, two songs are recorded and 

reconstructed by the array of as-fabricated nanogenerators. Figure 4.2d shows an as-

fabrication nanogernator is working as a self-powered microphone for sound recording. 

The second demonstration of the nanogenerator for sensing purpose is to act an 

acoustic source localization sensor. Experimentally, three as-fabricated nanogenerators 

arranged in an L shape, and anchored in a 2-dimensional (2D) plane with dimensions of 2 

m by 1.8 m, as schematically shown in Figure 4. a and a corresponding photograph in 

Figure 4. b. The sound was created by bursting a small balloon in the 2D plane as acoustic 

sources. A customized triple-channel data acquisition system based on LabVIEW was used 

to collect the sensing signals from the acoustic sensors (ASs). Figure 4.3c elucidates the 

acoustic signals acquired by the ASs when a balloon burst at the center of the 2D plane. 

When another balloon bursting spot is settled with various distances to the ASs, the three 

acoustic signals show obvious discrepancies in response starting time and magnitude. 

The acoustic localization algorithm presented in this work is based on the 

estimation of the time difference of arrival (TDOA) at pairs of acoustic sensors. Let Sk = 

[Xk,Yk]
T denote the location of kth AS with k=1, 2,  . And P=[x, y]T represents the location 

of the acoustic source. Then, the distance d(P, Sk) between acoustic source and the kth 

sensor can be expressed as: 
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d(P, Sk) = PS k                                                                                                            (4. ) 

And the time delay in TDOA at Si and Sj is given by:
  

       cdd jiij SPSPP ,,                                                                                          (4.4) 

where i, j =1, 2,  , and i≠ j. The in-pair evaluating TDOA of acquired signals by ASs can 

be achieved by computing the cross-correlation function of these two signals. Let zi(n) and 

zj(n) denote the signals acquired by ASi and ASj, respectively, where n is the sample time 

index. Then, the cross-correlation function  
ji zR ,z  between ASi and ASj is defined as: 

     



N

n

ijjiz nznR
ji

1

,z z                                                                                            (4.5) 

where N is the number of the sample points. The time difference between the two acquired 

signals is estimated by the time lag at the highest peaks of their cross-correlation functions. 

Two correlation functions of the three acquired acoustic signals in Figure 4.3c were 

derived from equation (4.5), as shown in Figure 4. d. It is worth noting that the time lags 

of the two cross-correlation functions between AS1 and AS2 as well as AS2 and AS3 are 

zero, indicating the same distance is travelled by the sound from the acoustic source to the 

ASs, which is well consistent with the real experimental case. Give the distances between 

the three acoustic sensors and also the in-pair time delay information, the acoustic source 

can be localized/positioned as the intersection of the two hyperbolic curves by virtue of the 

speed of sound and geometry.  

Experimentally, positioning within an average error circle of 7 cm in diameter is 

achieved based on multiple measurements, which mainly depends on the signal-to-noise 

ratio (SNR), if the SNR of the acquired signals is comparable with each other, and the error 

will stay within a same average error circle even if the distance between the source and the 
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ASs is more than hundreds of meters. The proposed acoustic sensors in this work have 

extensive applications in the fields such as military surveillance and reconnaissance, 

intruder detection, sniper localization, underwater acoustics, and auto talker detection in a 

web conferencing. 

 
Figure 4.3. Demonstration of the organic film nanogenerator acting as an active sensor for 

acoustic source localization. (a) Schematic illustrations and (b) photograph showing the 

working mechanism of nanogenerators for sound localization. (c) Acquired acoustic 

signals from the three nanogenerators when a balloon burst. (d) Correlation functions of 

the acquired acoustic signals from AS1, AS2 and AS .
82 

 

In summary, the as-fabricated Helmholtz-cavity-based organic thin film TENG was 

proved to be active self-powered acoustic sensors for both self-powered sound recording 

and acoustic source localization. This work presented a milestone progress in TENG-based 

active sensors.  
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4.1.2 Ultrathin paper-based acoustic sensor 

The bulky structure of the Helmholtz resonance cavity greatly limited the wide-

range application of the TENG as an acoustic sensor. A further improved performance of 

the acoustic sensor is on the basis of an ultrathin, rollable, and paper-based TENG, which 

innovatively employs arrays of micro holes for acoustic response, as detailed described in 

the Section 2.3.2. 

With a broad working bandwidth, the as-fabricated paper thin TENG is also capable 

of acting as an active self-powered microphone for sound recording.85 As demonstrated in 

Figure 4.4a, a low-cost ultra-thin self-powered microphone was developed, which can 

efficiently convert the human voice into electrical signals for the recording purpose. 

Compared to other existing technologies for acoustic energy harvesting, the paper based 

TENG distinguishes itself in many aspects and brings about a number of advantages, such 

as ultrathin, rollable, low-cost, environmentally friendly and extremely high volume power 

density.  

Owing to the superior advantages of structurally ultrathin and flexible, the paper 

based TENG is rollable. And, for the first time, a novel rolled type device is demonstrated. 

Figure 4.4b and 4.4c are the schematic illustrations to show the measurement of the 

directional patterns of the flat and rolled paper thin TENG with insets being the 

photographs of the as-fabricated devices. Figure 4.4d shows the corresponding shape 

dependent directional patterns of the TENG with flat and rolled structure, respectively. 

And a butterfly shaped directional pattern with mirror symmetry was observed for the flat 

type paper thin TENG. While the directional pattern of the rolled type is a highly symmetric 

circle, which indicates the output is independent of the sound wave incident direction. This 

is mainly attributed to the rigorous structural symmetry.  
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Figure 4.4 Demonstration of the paper thin TENG for self-powered sound recording. 

Schematic illustration to show the measurement of the directional patterns of the (a) flat 

and (b) rolled paper thin TENG. Right sides are the photographs of the as-fabricated 

devices. The scale bars are 2.5cm. (c) Shape dependent directional patterns of the paper 

thin TENG. (d) Photograph that shows a paper thin TENG is working as a self-powered 

microphone for sound recording. Inset is the acquired electrical signals.85 

 

Holding the advantage of directional independence, the paper thin TENG is suitable 

to a wide range of circumstances for self-powered acoustic sensing purposes, such as 

theatric stage omnibearing live recording, military surveillance and so on. 

 

4.2 An intelligent keyboard 

Computer keyboard is one of the most common, reliable, accessible and effective 

approaches used for human-machine interfacing and information exchange. Although 

keyboard has been used for hundreds of years for advancing human civilization, studying 

human behavior by keystroke dynamics using smart keyboard remains a great challenge. 
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Here we report a self-powered, non-mechanical-punching keyboard enabled by contact 

electrification, a ubiquitous but underexplored phenomenon,108-111 between human fingers 

and keys, which converts mechanical stimuli applied onto the keyboard into local 

electronic signals without applying an external power.  

The key functional element (KFE) of the IKB is composed of vertically-stacked 

transparent thin film materials.112 A layer of polyethylene terephthalate (PET) sits between 

two layers of ITO that are the bottom and the top electrodes. Then, a layer of fluorinated 

ethylene propylene (FEP) is applied onto the ITO surface as an electrification layer that 

generates triboelectric charges upon contact with human fingers, as schematically shown 

in Figure 4.5a. FEP nanowires arrays were created on the exposed FEP surface by a top-

down method through reactive ion etching.  

A scanning electron microscopy (SEM) image of vertically aligned FEP nanowires 

is displayed in Figure 4.5b, which indicates that the average clustering diameter of FEP 

nanowires is 104 ± 21 nm with an average length of 0.8 ± 0.2m. The static contact angle 

of the FEP surface was measured by a sessile droplet method with a 2l water droplet. 

Inset of Figure 4.5b is the contour of the resting droplet, which indicates a contact angle of 

160o by Young-Laplace fitting. Meanwhile, a tilting base method was employed to 

investigate the surface sliding angle of the IKB. The superhydrophobicity of the IKB 

surface assures its self-cleaning property, which can effectively keep the keyboard free of 

dirt and grime. 
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Figure 4.5 Structural design of the KFE of the intelligent keyboard. (a) Schematic 

illustrations of the KFE. Inset: enlarged schematic of FEP nanowires on the top surface. It 

is noted that these drawings do not scale. (b) SEM image of FEP nanowires. Inset is the 

contour of resting droplet for surface static contact angle measurement. The scale bar is 

500 nm. (c, d) Photograph of a flexible and transparent KFE. The scale bars are 3 cm. (e) 

Photograph of an as-fabricated IKB, which is system integration of KFE and a commercial 

keyboard. The scale bars are 3 cm.112 

 

A photograph of an as-fabricated KFE is shown in Figures 4.5c and d, plainly 

demonstrating its flexibility, transparency and one-piece structure without mechanical 

punching. Figure 4.5e is a photograph of an IKB after assembling the KFE with a 

commercial keyboard.  

The basic working principle of the IKB is based on the coupling between contact 

electrification and electrostatic induction rather than the traditional mechanical switching. 

An electricity generation process from a key unit is depicted in Figure 4.6. Here, both two-
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dimensional schematic illustrations of charge distribution (up) and three-dimensional 

potential distribution by COMSOL (down) were used for illustration.  

 

Figure 4.6 Schematics of operating principle of the intelligent keyboard. Both two- 

dimensional schematic illustrations of charge distribution (up) and three-dimensional 

potential distribution by COMSOL (down) were employed to elucidate the working 

principle of IKB. (a) Initial state in which the FEP is negatively charged after contact with 

human finger. (b) When a keystroke is initiated, the approach of positively charged human 

finger results in free electrons flowing from bottom ITO electron to top electrode. (c) The 

current in the external circuit lasts until the human finger fully contacts with FEP. (d) When 

the finger is up and a separation occurs, it produces another current in the external circuit 

flowing from the bottom electrode to top electrode.112 

 

When a human finger is brought into contact with FEP, charge transfer at the 

contact interface occurs. According to the triboelectric series,113 electrons are injected from 

human skin into FEP, since FEP is much more triboelectrically negative than human skin, 

generating positive triboelectric charges on the human skin and negative ones on the FEP.  

Subsequently, if the human finger moves away, the negative charges on the FEP side will 

induce positive charges on the top ITO electrode and thus equal amount of negative charges 

on the bottom electrode (Figure 4.6a). Once a keystroke is initiated, the positively charged 

human finger approaches the keyboard, the induced positive charges on the top electrode 

are expelled, resulting in a flow of free electrons from the bottom electrode to top electrode 
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(Figure 4.6b) until the finger and the key are in contact (Figure 4.6c).  When the finger 

separates, free electrons flow backward from the top electrode to the bottom electrode 

(Figure 4.6d). This is a full cycle of the electricity-generating process. It is worth noting 

that the triboelectric charges don’t dissipate but remain on the FEP surface for an extended 

period of time. Consequently, consecutive keystrokes result in a periodical-changing 

electric field that drives reciprocating flows of electrons between electrodes.  

Intelligent keyboard was firstly demonstrated as a self-securing wireless warning 

system by integrating with a signal-processing circuit. The circuit diagram of the complete 

IKB based self-securing system is shown in Figure 4.7. This customized circuit for the IKB 

holds two unique advantages. First, a designed trigger voltage threshold of 5 V enables the 

IKB to work stably even in a high electrical noise environment. Second, the alarm time is 

controllable and tunable by the signal processing circuit.  

 

Figure 4.7 Circuit diagram of the complete self-securing system.  It consists of an IKB and 

a signal processing circuit.112 
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Once a finger gently strokes a key, the generated voltage signal triggers an IC timer 

that controls a wireless transmitter and remotely switches a siren between a panic state and 

a silence state.  

 

Figure 4.8 Keys classification in the intelligent keyboard. The keys in the keyboards are 

classified into seven kinds according to their dimensions.112 

 

The keys in the keyboards are categorized into seven regions (Figure 4.8) according 

to their dimensions to compare their output voltages. The obtained results are shown in 

Figure 4.9a. An increasing function between key dimensions and the output voltage is 

observed. The reason is that contact electrification is a surface charging effect, a larger 

amount of triboelectric charges will contribute to a higher voltage output.114 Figure 4.9b is 

an enlarged view of the output voltage when the smallest key is gently touched. Even this 

lowest voltage was capable of triggering the siren that produced a sharp alarm with flashing 

light (Figure 4.9c). Furthermore, a customized multi-channel data acquisition system was 

designed for the IKB to individually address the electric signal from each key (Figure 4.9d).  

Consequently, the real-time tracing and recording during typing can be realized. Every 

channel was electrically but independently connected to a key in the keyboard as a 

functional unit, and each unit was connected to the ground through a 1 Mresistor. 
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Figure 4.9 Intelligent keyboard as a self-securing system. (a) Measured output voltage is 

an increasing function of the key dimensions when a gentle keystroke was applied. (b) An 

enlarged view of obtained output voltage when the smallest key is gently touched. (c) 

Triggering a wireless alarm system by gentle finger tapping on the IKB. The scale bar is 5 

cm. (d) Schematic diagram of keyboard based multi-channel data acquisition system for 

keystroke tracing and real-time recording. (e) The system acquired output voltage signals 

when the key “T” was stroked. (f) A photograph demonstrated the IKB for the real-time 

keystroke tracing and recording. A continuously typing string “TOUCH SENSING” was 

recorded in real time without uncomfortable delay. The scale bar is 5 cm. Inset: an enlarged 

view of the key “G” was stroked. The scale bar is 2 cm.112 

 

When a keystroke was initiated on a particular key, “T” for example, a peak output 

voltage up to 10 V was acquired from the corresponding channel, while signals from other 

keys were less than 2.5 V (Figure 4.9e). Theoretically, the signals from untouched keys 

should be 0.  However, a certain voltage signals were observed experimentally, which is 

mainly due to the coupling among all of the channels in the data acquisition system.115, 116 

For recognition purpose, the maximum peak value of the output voltage from channel i, 

𝑉pi, was extracted. Then the threshold voltage 𝑉th can be analytically expressed by the 

following equation using Pauta Criterion Method.  
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𝑉th =  
1

𝑛
∑ 𝑉pi

𝑛
i=1 +

3

√𝑛
√∑ 𝑉pi(𝑉pi − 1)𝑛

i=1                                                                      (4.6)                          

where n is the total number of channels, and i is integral from 1 to n. Once the extracted 

𝑉pi is higher than 𝑉th, the key corresponding to this particular channel is considered to be 

stroked. Figure 4.9f demonstrates the real-time keystroke tracing and recording. When a 

phrase “TOUCH SENSING” was continuously typed, it was simultaneously recorded and 

displayed without noticeable delay.  

Typing patterns based on dimensional keystroke timing vector, lacking of 

uniqueness and permanence, largely hinder the practicality and acceptability of behavioral 

biometric of keystroke dynamics as effective identifier to current authentication system. 

The IKB in this work provides a superior route in creating accurate, unique, and permanent 

typing patterns for verification and identification purposes. As demonstrated in Figure 4.10, 

three sets of original typing patterns (in red curves) were respectively obtained for three 

typists Tom, Mike, and Alex, who independently typed the word “touch” for more than 

four times on the IKB in each accustomed manner. Each set of typing pattern corresponds 

to two subsets of characteristic signals (voltage and current), which are time-series data. 

These electric signals correlate to a variety of information, including the manner and 

rhythm of the keystroke, typing habit, finger size, individual bioelectricity, and applied 

typing force. Thus, they can not only characterize the keystroke timing, but also 

quantitatively record the concrete dynamic changes in the course of typing. The as-

collected electric signals look apparently different from each other. For quantitative 

differentiation, Discreet Fourier Transformation (DFT) was performed to obtain frequency 

features of the electric signals. Wavelet transformation was carried out to simultaneously 

obtain both time domain and frequency domain features of the typing patterns. 
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Figure 4.10 Personality identified keystroke dynamics using intelligent keyboard. Typing 

patterns obtained when (a) Tom, (b) Mike, (c) Alex, were continuously typing the word 

“touch” more than four times into the computer via the IKB. S4 and D4 are the 

corresponding wavelet components after DB4 transformation.112 

 

Based on DB4, the typing patterns in the form of electric signals can be expressed 

by the following formula via multiresolution analysis 

𝑓(t) =  𝑆4(𝑡) + 𝐷4(𝑡) + 𝐷3(𝑡) + 𝐷2(𝑡) + 𝐷1(𝑡)                                                           (4.7) 

and  𝑆4 = ∑ 𝑠4,kk 𝜑4,k(𝑡)                                                             (4.8) 

                                                 𝐷𝑗 = ∑ 𝑑j,kk 𝜓j,k(𝑡)                                                          (4.9) 
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where 𝑠4,𝑘 and 𝑑j,k are the wavelet coefficients, j =1, 2, 3, 4. k is the number of translations 

of the wavelet for any given scale. 𝜑4,𝑘(𝑡) and 𝜓j,k(𝑡) are respectively the father wavelets 

and mother wavelets. f (t) is either voltage or current signal of the typing patterns. 𝑆4 is 

smooth. Wavelet details 𝐷4, 𝐷3, 𝐷2and 𝐷1 represent a set of voltage or current components 

that provide representations of the original signals at different resolution levels.  

The 𝑆4 and  𝐷4 of the original typing patterns after DB4 are presented in Figure 

2.37, respectively for different individuals. On the basis of DB4 results, the corresponding 

higher resolution wavelet components of three individuals are significantly different from 

each other. Still, Pearson correlation coefficient was utilized to quantitatively measure the 

correlation between the wavelet components by the following equation:117 

 γ =  
∑ (𝑡i−𝑡̅)𝑛

i=1 (𝑥i−𝑥̅)

√∑ (𝑡i−𝑡̅)2𝑛
i=1 √∑ (𝑥i−𝑥̅)2𝑛

i=1

                                                                                         (4.10) 

where n is the length of compared date sequence, and x is either the voltage or the current 

sequences after DB4. The obtained Pearson correlation coefficient of D4 and S4 

components are respectively tabulated in Table 4.1.  

TABLE 4.1. Pearson Correlation Coefficients between the Wavelet Components.  

Voltage 
Tom Mike Alex 

 Current 
   Tom Mike Alex 

S4 D4 S4 D4 S4 D4 S4 D4 S4 D4 S4 D4 

Tom 0.91 0.92 0.43 0.45 0.45 0.43      Tom 0.92 0.89 0.44 0.41 0.42 0.39 

Mike 0.43 0.45 0.86 0.87 0.42 0.34      Mike 0.42 0.41 0.85 0.85 0.36 0.35 

Alex 0.45 0.43 0.42 0.34 0.88 0.89      Alex 0.42 0.39 0.36 0.35 0.88 0.89 

 

All of the Pearson correlation coefficients of the voltage or current components 

from each individual are larger than 0.85, suggesting superior permanence of the typing 

patterns, while other Pearson correlation coefficients are less than 0.45 that is indicative of 
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excellent uniqueness among individuals. Therefore, the Pearson correlation coefficient can 

be harnessed to express the uniqueness and permanence among individual typing patterns. 

In the meanwhile, the correlation coefficient can also act as a threshold to separate the 

genuine typing patterns from the impostor typing patterns, if a verification system is 

established using  behavioral biometric of keystroke dynamics. 

To evaluate the performance of the triboelectrification enabled behavioral 

biometric of keystroke dynamics as an effective identifier, 104 participants were invited to 

independently type the word “touch” for more than four times on the IKB in each 

accustomed manner. All the participants are the randomly and diversely selected with an 

age span from 14 to 69 years old, male and female people from different countries. 

Subsequently, a collection of 104 individual typing patterns were divided into 52 

client patterns and 52 impostor patterns. In the whole testing set of 104 typing patterns, 

user template is composed of the 52 client patterns. And the performance of the 

authentication biometrics is characterized through two error rates: False Rejection Rate 

(FRR) and False Acceptance Rate (FAR).  

The FRR and FAR are variables depending on the classification threshold. By 

tuning the threshold, the FRR and FAR can typically be traded off against each other to 

achieve the preferable classification result. In this regard, the Pearson correlation 

coefficient was selected as the classification threshold to evaluate the behavioral biometric 

authentication system using triboelectrification enabled keystroke dynamics. The variation 

of FAR and FRR in relation to the threshold is shown in Figure 4.11. The FRR is increasing 

with the elevated threshold, while FAR follows a reverse trend. However, the FRR and 

FAR intersect at a certain threshold value, which indicates the EER point. 
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Figure 4.11 Evaluation of the performance of the biometric authentication system using 

triboelectrification enabled keystroke dynamics. (a) The variation of FAR and FRR is in 

relation to the threshold. Inset is an enlarged view of the EER point, which indicates a 

remarkably low EER value of 1.34% at the threshold of 0.37. (b) Receiver operating 

characteristic (ROC) curve of the biometric authentication system using triboelectrification 

enabled keystroke dynamics. The false rejection curve is plotted as a function of the false 

acceptance curve.112 

 

The inset of Figure 4.11 is an enlarged view of the EER point of the presented 

behavioral biometric authentication system. Compared with the state of the art biometric 

techniques, the presented biometric authentication system achieves a remarkably lower 

EER value of 1.34% at the threshold of 0.37. In the meanwhile, the Receiver Operating 

Characteristic (ROC) curve is demonstrated in the Figure 4.11b.  In addition, to prove the 

capability of the IKB as an additional layer of stronger security to current authentication 

systems, a practical application was demonstrated. When four different individuals typing 

the password “touch” into the computer through IKB, only the genuine owner with 

matched typing pattern can access into the computer. Given its exceptional authentication 

ability, the IKB is able to identify the personal character of typing individuals, making it 

practical for developing a highly secured authentication system based on behavioral 

biometrics. 
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In addition, the intelligent keyboard can be applied to capturing wasted energy. To 

systematically investigate the performance of the IKB in harvesting typing energy, two 

typing modes, intermittent and continuous typing, were both evaluated. For the intermittent 

model, a key in zone “II” was repeatedly tested because keys in this zone are the mostly 

used. The open-circuit voltage and the short-circuit current are exhibited in Figure 4.12a 

and 4.12b, respectively, with a peak value of 26.8 V and 23.5 A.  

 
Figure 4.12 Intelligent keyboard as a self-powered system. (a) Measured open-circuit 

voltage and (b) short-circuit current of the IKB under the intermittent typing model. (c) 

Dependence of the voltage and current output on the external load resistance. The points 

represent the peak values of electrical signals while the lines are the fitted results. (d) 

Dependence of the peak power output on the external load resistance, indicating maximum 

power output when R = 9M. (e) Accumulative induced charges generated by the IKB. 

Each step represents an output current resulting from a keystroke. (f) The IKB can 

effectively capture the wasted typing energy for charging portable electronics in a wide 

range of typing speed. And a directly proportional relationship was found between the 

typing speed and the charging rate.112 

 

As shown in Figure 4.12b, the output current is asymmetric. It was found that the 

larger positive peaks correspond to the process when the key was being pressed, while the 

smaller ones are produced when the key was being released. Given the same amount of 
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total transported charges, the faster pressing process is expected to generate larger current 

peaks than the slower releasing process. Resistors were utilized as external loads to further 

investigate the output power of the IKB. As displayed in Figure 4.12c, the current 

amplitude drops with increasing load resistance, while the voltage follows a reverse trend. 

As a result, as demonstrated in Figure 4.12d, the instantaneous peak power is maximized 

at a load resistance of 9 Mwhich corresponds to a peak power density of 69.6 Wcm-2 

and a peak specific power of 2.05mwg-1. This output performance leads previous reports 

by at least 141 times enhancement.  

With a diode bridge, the total accumulative induced charges can also be measured, 

as show in Figure 4.12e. Each step represents an output current resulting from a keystroke, 

producing 37 nC of induced charges on average. Correspondingly, the area density of 

triboelectric charges is calculated to be 134 C/m2. Such solid achievements are mainly 

attributed to the following two reasons. First, human skin and FEP have a large difference 

in triboelectric polarity, which assures large amount of triboelectric charges generated in 

keystroke. Second, the vertically standing FEP nanowires enables tremendous 

enhancement of effective contact area as well as triboelectric charges, and thus superior 

output performance. A detailed interpretation and description of the mechanism behind the 

nanowires improved contact area was rendered in the following Contact Area Improvement 

section. 

Meanwhile, the energy harvesting capability of IKB was also evaluated under the 

continuously typing working mode, which is the mostly used mode for computer users. As 

demonstrated in Figure 4.12f, the IKB can effectively capture the wasted typing energy for 

charging portable electronics in a wide range of typing speeds, which almost covers all 
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kinds of users in daily life.  And a directly proportional relationship was found between the 

typing speed and the charging rate. This is because a faster typing means more keystrokes 

are launched in a unit period of time, thus faster of triboelectric charges generation, and 

higher charging rate is expected. Under a moderate typing speed of 350 CPM, a charging 

rate of 0.019 Vs-1 was achieved for a commercial capacitor. 

Aimed at optimizing the output performance when a keystroke is initiated, FEP 

nanowires arrays were purposely created to enhance the effective contact area between the 

human finger and FEP surface. Without FEP nanowires, the contact between the human 

skin and FEP is possibly confined at certain points due to the surface asperities. With an 

average clustering diameter of 104  ± 21 nm and a length of 0.8 ±  0.2 m, the FEP 

nanowires are likely to be readily bent and become adaptive to the morphology of the 

human finger due to a dimensional matching. Such a conformable structural interaction can 

result in an improvement of the real contact area.  

A further step was taken to investigate the relationship between electric output and 

the applied contacting force. A dual-range force sensor was employed to quantitatively 

control the applied typing force. As demonstrated in the Figure 4.13a, for both IKBs, with 

or without FEP nanowires as surface modification, the current output is clearly increasing 

with elevated contact forces. However, different increasing trends were found.  Firstly, at 

a fixed applied force, the output of IKB with FEP nanowires is always larger than that of 

the IKB without FEP nanowires. Secondly, the output has different force sensitivities. 

Thirdly, a faster saturation was observed for the IKB without FEP nanowires. These 

observations are mainly attributed to the increased contact area at larger forces. The surface 

of human finger skin and FEP are neither absolutely flat nor smooth. At small contacting 
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force, the surface roughness leads to some areas untouched between the FEP and human 

skin, while a larger pressure could bring the two surfaces a fully intimate contact. The 

reliance of output on the applied contact force further validates that the enhanced effective 

contact area is attributed to the structural coupling of FEP nanowires and human skin 

hierarchical roughness. 

 
Figure 4.13 Force depended output performance of IKB and its reliability test. (a) 

Investigate the relationship between electric output and the applied contacting force for 

IKBs with or without FEP nanowires. (b)The applied typing force to the IKB by an index 

finger for the mechanical durability test. (c) Mechanical durability test of the IKB. The 

output voltage only shows a minor fluctuation of less than 0.8% after 25000 cycles of 

repetitive keystroke. (d) Accumulative induced charges generated by the intelligent 

keyboard with wearing a pair of Latex gloves.112 

 

The reliability of the IKB is primarily represented by its mechanical durability and 

output stability. Firstly, mechanical durability against the applied pressure during the 

iterative keystrokes has been investigated. The applied typing force by an index finger was 
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fixed at a value of 2.3 ± 0.2 N, as shown in Figure 4.13b. As shown in Figure 4.13c, the 

output voltage only shows a minor fluctuation of less than 0.8% after 25000 cycles of 

repetitive keystrokes. This mechanical robustness along with the output stability is mainly 

attributed to its robust structure that is consisted of durable thin film materials. 

Additionally, it is worth noting that contact electrification is a universal effect that 

exists for almost all of the materials. The IKB can effectively respond to either insulating 

or conductive materials of any kinds, even a glove-wearing intrusion or imposture could 

be effectively detected. Figure 4.13d shows the accumulative induced charges generated 

by the intelligent keyboard with hands wearing a pair of Latex gloves. Each step represents 

an output current resulting from a keystroke, generating 39 nC of induced charges on 

average, which is comparable, and even better than the results obtained by bare hands 

directly typing. 

Enabled by the contact electrification and electrostatic induction between human 

fingers and the keys, an intelligent self-powered keyboard was innovatively reported in this 

work. Given its exceptional properties of self-securing, self-powering and self-cleaning, as 

well as cost-effectiveness and unique applicability resulting from distinctive mechanism 

and one-piece non-mechanical punching structure, the IKB is a practical approach in 

converting typing motions for either sensing or energy harvesting purposes. Moreover, it 

is worth noting that, as the most comment input tool nowadays, keyboard widely exists in 

our daily life, from cash register to ATM, from music instrument to even game machines. 

The justified concepts and demonstrations in this work can be immediately and extensively 

adopted in a variety of applications, and come into effect of improving the way of our 

living.  
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4.3 Eardrum inspired bionic membrane sensor 

By capturing human physiological or behavioral characteristics, wearable 

electronic sensors in biomonitoring and biometric systems carry significant importance in 

daily life such as in personalized health monitoring and assessment, disease diagnosis, 

entrance and mobile control, secured financial transactions and others.118-122 A lightweight 

and self-powered technology is highly desired for simultaneously acquiring 

multifunctional characteristics. Here, we report the first self-powered bionic membrane 

sensor (BMS), which is wearable, lightweight, cost-effective, easy to fabricate and capable 

of working in a multi-modal manner for either health-monitoring or authentication 

purposes.123 Innovatively coupling the contact electrification effect with a structure 

inspiration by a human eardrum, the as-fabricated BMS holds a superior sensitivity of 51 

mVPa-1 with a fast response time less than 6 ms as well as a pressure detection limit down 

to 2.5 Pa. 

A BMS has a multilayered structure with a thin layer of polyethylene terephthalate 

(PET) in an oval shape as the bottom supporting substrate, as schematically shown in 

Figure 4.14a. The oval shape was inspired from the human tympanic membrane, enabling 

the BMS to monitor the external dynamic pressure with wide frequency range. A layer of 

ITO coated Nylon thin film was laminated onto the PET substrate with the ITO acting as 

the back electrode and the Nylon functioning as one electrification layer. Mimicked a 

human eardrum, a layer of polytetrafluoroethylene (PTFE) tympanic membrane is tented 

outwards at the level of the tip of an umbo, which was centered at a Nylon layer with a size 

of Φ 0.6 mm × 0.4 mm.  
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Figure 4.14 Structural design of the bionic membrane sensor. (a)Schematic illustrations of 

the bionic membrane sensor. (b) Photograph of an as-fabricated flexible and transparent 

bionic membrane sensor. The scale bar is 1.0 cm. (c) A SEM image of surface-etched PTFE 

nanowires. The scale bar is 1 μm.123 

 

The polyester (PET) was chosen as the material of the umbo, whose two ends were 

tightly attached with the PTFE membrane and the Nylon layer, respectively. The height of 

umbo will determine the pressure detection limit as well as detection range of the as-

fabricated BMS. By peripherally being anchored, the tensed oval PTFE tympanic 

membrane, acting as another electrification layer, is extremely sensitive to external 

dynamic pressure over a wideband frequency range like human eardrum. The formed 

slightly conical cavity between the PTFE and Nylon serves as an air spacer for the charge 

generation and transfer. And two circular acoustic holes with diameters of 0.5 mm are 

punched through the PET, ITO and Nylon three layers, acting as communicating vessels to 

integrate the conical cavity with the ambient air. A photograph of an as-fabricated flexible 
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and transparent BMS is shown in Figure 4.14b. In order to enhance the triboelectrification, 

vertically aligned polymer nanowires were created onto the PTFE surface for an intimate 

contact with Nylon. A scanning electron microscopy (SEM) image of PTFE nanowires is 

displayed in Figure 4.14c, which indicates that the average clustering diameter of 

nanowires is 110 nm with an average length of 0.8 μm. In general, the surfaces of a Nylon 

and a PTFE film consist of milli/micro/nano hierarchical structure. Without PTFE 

nanowires, the contact between the Nylon and PTFE is not compact at certain points due 

to the surface morphology and structures. While with PTFE nanowires, the nanowires are 

likely to be readily bent and become adaptive to the surface morphology of the Nylon for 

an intimate contact. Such a conformable interaction can result in an improvement of the 

effective contact area, thus improving the output performance.  

Designed to mimic a human eardrum, the working principle of the BMS can be 

elucidated in two aspects, namely, membrane mechanical vibration and vibration induced 

electricity generation. On one hand, the mechanical vibration patterns of the PTFE 

tympanic membrane in response to external pressure at various frequencies spanning from 

100 Hz to 5 kHz were simulated by a Finite Element Analysis, as demonstrated in Figure 

4.15a. The simulation is carried out based on an assumption that the applied pressure is 

uniformly distributed and holds at a constant of 0.6 kPa. Meanwhile, the Young's modulus 

and Poisson’s ratio of the PTFE tympanic membrane are assumed to be 480 MPa and 0.46, 

respectively. As it can be observed from the simulation results, the deformation regions 

and magnitudes of PTFE tympanic membrane are highly related to the external excitation 

frequencies. And it shows that an extremely wide working bandwidth of 3200 Hz was 
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achieved, which affirms the validity of the BMS structural design mimicking from human 

eardrum.      

 

Figure 4.15 Demonstration of the working principle of the bionic membrane sensor. (a)The 

ANSYS software was employed to characterize the PTFE membrane vibrations under 

various applied pressures at frequencies of 100 Hz, 500 Hz, 1000 Hz and 5000 Hz, 

respectively. A PTFE membrane vibration induced electricity generation process was 

simulated via COMSOL. (b) Contact state in which the PTFE is negatively charged while 

the Nylon is positively charged. (c) When the elastic PTFE membrane is released, an 

emerged potential difference drives free electrons to flow from the ground to ITO electrode 

through the external circuit.123 

 

On the other hand, the vibration induced electricity generation is attributed to a 

coupling between contact electrification and electrostatic induction. A cycle of electricity 

generation process under external pressure is schematically depicted in Figure 4.15b-c, 

which is a two-dimensional charge potential distribution by COMSOL. To begin with, 

when the external pressure brings the PTFE to in contact with Nylon, since these two 

materials have a different affinity for electrons, with the PTFE eager to grab electrons and 
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the Nylon able to give them up, positive triboelectric charges on the Nylon side and 

negative ones on the PTFE side will be produced. In the current contact state, the generated 

charges are balanced by their opposite counterparts due to electrostatic induction. 

Consequently, there is neither potential difference across the two layers nor between the 

ITO electrode and ground (Figure 4.15b). Once the pressure is released, the PTFE tympanic 

membrane will immediately rebound back away from the Nylon due to its elasticity. A gap 

will emerge between the two layers, which results in a potential drop across them due to 

triboelectric charges, so does between the ITO electrode and ground. This is the separation 

state (Figure 4.15c). The emerged potential difference drives free electrons to flow from 

the ground to ITO electrode through the external circuit until it is fully offset.  

To characterize the sensing performances of a BMS, a computer-controlled linear 

motor and a force gauge were employed to provide a well-defined load. At one side of the 

BMS, a small glass plate with same dimension was placed between the PET substrate and 

tip of the force gauge. Meanwhile, at another side of the BMS, a polydimethylsiloxane 

(PDMS) pad was anchored to a linear motor tip to apply the pressures uniformly onto the 

PTFE tympanic membrane. To begin with, we measured the electrical outputs of a BMS 

as a function of applied dynamic pressure with a constant frequency of 0.3 Hz. In a cycle 

of the dynamic pressure, increasing and decreasing pressure were realized through a linear 

motor. The forward and backward voltage-pressure curves of BMS are demonstrated in 

Figure 4.16a. It is worth noting that both pressure response curves exhibit two distinct 

regions with different slopes. In the low pressure region (< 1.2 kPa), well behaved liner 

variation in the output voltage with pressure gives a superior pressure sensitivity of 51 

mVPa-1 and a detection limit of 2.5 Pa. While in the high pressure region (> 1.2 kPa), a 
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lower pressure sensitivity was experimentally observed. The different sensitivities are 

attributed to a difference of contact area change upon pressure in two distinct regions, that 

is, in lower pressure region, an equal amount of pressure change results in a larger contact 

area change, which leads to a higher output voltage increase. Most importantly, relying on 

an innovative working principle and an unique bio-inspired structure, the BMS 

distinguishes itself in term of the sensitivity together with the observed broad dynamic 

range (51 mVPa-1, in a range of 2.5-1200 Pa), compared with that of other sensors based 

on capacitive (0.55 kPa-1 in unites of relative capacitance, in a range of 0.5-2 kPa)124 and 

piezoelectric (0.79 mVPa-1, in a range of 0.1-12 Pa).125  Furthermore, for all applied 

pressures, forward and backward pressure sweep, the forward and backward curves do not 

show significant hysteresis. 

To present a direct view, a 3 mg-human-hair was employed to test the 

ultrasensitiveness of the BMS, as demonstrated in Figure 4.16b. The as-fabricated BMS 

can reliably detect the placement or removal of the human hair on or from the covered 

sensor area of 3.2 mm2, corresponding to 13 Pa in contact pressure. Furthermore, a further 

step was taken to examine the response time of BMS to external forces. In Figure 4.16c, a 

real-time profile of the applied pressure with its corresponding voltage output was 

demonstrated. Inset are the enlarged views of the loading and unloading process in one 

cycle, which are respectively elucidated in (up) and (down), rendering a response time of 

less than 6 ms. This achievement demonstrates a prompt response of the BMS, and is 

superior to other approaches of its kind in the literature.120, 124, 126-128 A high sensitivity with 

a fast response time justifies the practicability of BMS for detecting minuscular dynamic 
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pressure, which is of paramount importance for various further applications, such as 

electronic skin and soft robotics. 

 
Figure 4.16 Electrical and mechanical characterization of the bionic membrane sensor. (a) 

The electrical characterization of the bionic membrane sensor in response to applied 

pressure. Inset: enlarged view in small-pressure region from 2.5 Pa to 55 Pa. (b) The bionic 

membrane sensor is able to sense the application of tiny pressures. Shown is the output 

voltage change on placing and removing a human hair (3 mg). (c) Time-resolved sensor 

response. Periodic pressure changes are utilized to determine the response time taken for 

the sensor. The enlarged views of the loading and unloading process in one cycle are 

respectively elucidated in (up) and (down), which renders a response time of less than 6 

ms. (d) The mechanical durability characterization of the bionic membrane sensor. Under 

a pressure of 0.8 kPa at a frequency of 2 Hz for 40,000 cycles, no degradation of the output 

voltage is experimentally observed.123 

 

In addition, to further investigate the stability of the BMS, a pressure of 0.8 kPa 

with a frequency of 2 Hz was applied. The voltage was recorded after each 10,000 loading/ 

unloading cycles and 400 cycles of data were presented in each recording, as shown in 
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Figure 4.16d. The voltage amplitudes exhibit negligible changes after a total 40,000 cycles, 

revealing a high repeatability, stability, and durability of the BMS.  

 

4.3.1 Self-powered noninvasive arterial pulse measurement 

The worldwide leading causes of death are from cardiovascular diseases. Intensive 

research is focused on early detection and prevention of such diseases, with a special 

emphasis on arterial compliance capability. Arterial pulse wave propagation in the arterial 

tree can provide essential information about the arterial physical situation. The BMS in this 

work provides a superior route in acquiring the human arterial pulse wave in a self-powered 

and noninvasive manner. For a real-time monitoring of the arterial pulse, the BMS was 

attached onto the carotid, wrist and chest, just over the artery as it is usually done in arterial 

tonometry. The arterial pulse wave corresponds to the dynamic pressure change on the skin 

surface, which can be characterized by the electrical output of the attached BMS.  

Figure 4.17a-b respectively show the recorded real-time voltages over several pulse 

periods when a BMS was placed over the carotid arteries of a 30-year-old man and a 70-

year-old man. Insets are the enlarged views of one cycle for a detailed information delivery. 

A typical characteristic pulse wave shape was obtained with three clearly distinguishable 

determinants for both the 30-year-old and 70-year-old men: Systolic peak (PS), Point of 

inflection (Pi) and Dicrotic wave (PD), which are known to be respectively resulted from 

the blood ejected from the left ventricle, the reflected pulse wave and the ejected blood 

back to the left ventricle. A comparison of the pressure pulse waves of a young man with 

that of an old man indicates apparent differences between the two, especially that Pi occurs 

after the PS for the younger one, while the Pi appears before the PS for the older one.  
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Figure 4.17 Bionic membrane sensor measured the arterial pulse wave for noninvasive 

self-powered human health monitoring. (a) and (b) The real-time voltage outputs when the 

sensors are placed over the carotid arteries of a 30-year-old man and a 70-year-old man, 

respectively. The inset is an enlarged view of one cycle, which is a graphic representation 

of the augmentation index (AIx), defined as AIx(%)=±(PS-Pi)/PP. PP is the absolute pulse 

amplitude. ΔT is the time delay between the systolic PS and diastolic peak PD. And thus 

the reflection index (RI) of carotid artery can be obtained from subject height divided by 

the time delay. (c) Quantitative comparison of the AIx and RI between the 30-year-old man 

and the 70-year-old one. (d) and (e) The corresponding real-time current outputs of the 30-

year-old man and the 70-year-old man, respectively. The inset is an enlarged view of one 

cycle of the current signal, whose waveform comprises of five main parts, labeled as A-

wave to E-wave: initial positive (A-wave), early negative (B-wave), re-increasing (C-

wave), late re-decreasing (D-wave) and diastolic positive (E-wave). (f) Relationship 

between the C/A ratio and AIx in the carotid arteries of 25 subjects age from 26 to 70 years’ 

old. The C/A ratio decreased with age, while AIx followed a reverse trend. (g) The pulse 

waves acquired from three different sites of a participant: carotid artery, left wrist and the 

chest. (h) An enlarged view of a cycle of output signals corresponding to three positions. 

And the dots indicate their start points of each cycle. (i) A photograph showing the bionic 

membrane sensors were directly attached to simultaneously monitor the pulse waves of the 

participant from his carotid artery, chest and wrist.123  
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The differences are significantly related to the physiological condition of human 

cardiovascular system, which can be quantified by two of the most commonly used 

parameters: the augmentation index   PP(%)AIx is PP  , and the reflection index 

th RI , where h is the subject height, Δt is the time delay between PS and PD, while PP 

is the absolute pulse wave magnitude.129, 130 In order to accurately evaluate the 

physiological conditions of the two peoples’ cardiovascular systems, a time period of ten 

minutes was taken to continuously record their arterial pulse waves. Based on the acquired 

waveforms, a statistical result of the AIx and RI was respectively obtained for the young 

and old, as shown in Figure 4.17c. For the younger one, average values of -30 % and 6.8 

m/s were respectively obtained for the parameters AIx and RI, while for the older one, 

values of 24.8 % and 13.3 m/s were respectively obtained. A distinct difference of AIx and 

RI between the two subjects is mainly attributed to that, for the young man with better 

arterial compliance capability, the pulse wave is spread through the arteries at a lower 

velocity and also the reflected wave arrives back to the aorta after the late systole, resulting 

in a negative AIx and a smaller RI. In contrast, for the old man with stiffer arteries, the 

blood pulse velocity is higher and the reflected wave arrives back to the aorta in the early 

systole, leading to a positive AIx and a larger RI. 

Figure 4.17d-e respectively show the corresponding real-time current outputs of the 

30-year-old man and the 70-year-old man. The inset is an enlarged view of one cycle of 

the current signal, whose waveform comprises of five main parts, labeled as a-wave to e-

wave: initially positive (A-wave), early negative (B-wave), re-increasing (C-wave), late re-

decreasing (D-wave) and diastolic positive (E-wave). The height of each wave was 

measured from the baseline, with the values above the baseline being positive and those 
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under it negative. A comparison of the current signal waveform of the young man with that 

of the old man indicates obvious differences between the two, especially that a positive C-

wave is observed for the young man, while a negative C-wave for the old one. In order to 

quantify the difference, a parameter (C/A) was employed, which was defined by the ratio 

of the height of the C-wave to that of the A-wave. The C/A and AIx values were measured 

from 25 people with ages spanning from 26 to 70 years’ old, as shown in Figure 4.17f. It 

is interesting to find that the C/A index decreases with age, while AIx follows a reverse 

trend. These two parameters are reported to independently but complementarily indicate 

the vascular stiffness, that is, the AIx increases with the increasing of arterial stiffness, 

while the C/A index decreases. These statistical results highlight that the measured output 

voltage and current by BMS can reflect the condition of the cardiovascular system as well 

as the risk of cardiovascular disease. Thus, it can be utilized for non-invasive medical 

diagnosis. The acquired voltage and current signals independently but complementarily 

give a comprehensive picture of the arterial physical situation. 

Meanwhile, in order to obtain more information for cardiovascular risk estimation, 

a further step was made to measure the pulse wave velocity (PWV) by using multiple BMSs 

to monitor human pulse waves over different artery sites. The PWV is highly related to the 

vascular compliance and can be determined by measuring the pulse propagation time from 

the pressure waveforms at different sites along a vascular segment. A stiffer vessel will 

conduct the pulse wave faster than a more compliant one. Figure 4.17g presents the 

simultaneously acquired voltage signals when three BMSs were respectively attached to 

the carotid artery, left wrist and the chest. Figure 4.17h is enlarged views of a cycle of 

output signals, and the characteristic dots indicate their cycle start points. It is worth noting 
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that the start point of the signal acquired from chest comes first, which is 53 and 163 ms 

earlier than the start points of the signals from the carotid artery and left wrist, respectively. 

Here, the PWV is derived by dividing the pulse wave propagation distance between the 

two testing sites by the time delay over that distance. For the test subject, PWV1 = 5.66 

m/s (along chest to carotid artery) and PWV2 = 5.9 m/s (along chest to left wrist) were 

experimentally obtained, which are characteristic values expected for a healthy adult. 

To prove the capability of the BMS for self-powered noninvasive arterial pulse 

measurement, a set of practical applications was demonstrated, as shown in Figure 4.17i. 

Three BMSs were directly attached to simultaneously monitor the pulse waves of the 

participant from his carotid artery, chest and wrist, and all of the essential information 

about the arterial physical situation, including pulse rate, PWV, AIx, and RI, were 

systematically obtained for a further medical diagnosis.  

 

4.3.2 Self-powered throat microphone 

Throat microphone is becoming more and more popular since it can effectively pick 

up speech even in extremely noisy or windy environments, such as for a parachute jumper 

from sky, on a motorcycle or in a pandemoniac street, while it is beyond the capability of 

other types of microphones due to high levels of background noise and the limitation of 

current technology. Here, the reported BMS is also capable of acting as superior throat 

microphone, which is lightweight, small volume, portable, extremely low cost, easy to 

fabricate, more importantly, it can work without external power. When the BMS was worn 

against the neck without speaking, a series of pulse waves with low frequency of 1.1 Hz 

were observed, corresponding to the silent state in Figure 4.18a.  
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Figure 4.18 Bionic membrane sensor as a superior anti-interference, self-powered and 

throat-attached microphone. (a) The real-time voltage output in response to the throat 

vibration during speaking when the sensor is worn against the neck. (b) Short-Time Fourier 

Transform of the acquired output voltage, which indicates a majority of the frequency 

components spanning from 45 to 1500 Hz. The low frequency components (c) and high 

frequency components (d) of the voltage signal, which are obtained respectively via a 10 

Hz-cutoff-frequency low pass filter and a ban-pass filter with pass-band from 45 to 1500 

Hz. The partial enlarged view of the low frequency component (e) and high frequency 

component (f) elaborately illustrates the rich output signals responding to the concrete 

dynamic change in the speaking, which assures the superior performance of the bionic 

membrane sensor as a throat microphone. (g) A photograph showing the BMS was worn 

against the participant’s neck acting as a self-powered throat microphone.123 

 

While plentiful high frequency components were emerged and superimposed when 

the participant spoke the sentence “This is a self-powered throat microphone”, which were 

reflected by the acquired voltage signals in the speaking state in Figure 4.18a. From the 
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Short-Time Fourier spectrum of the recorded data, the acquired voltage signal was 

analyzed, obviously indicating a majority of the frequency components spanning from 45 

to 1500 Hz when peaking, as shown in Figure 4.18b. Then, according to the frequency 

distribution, a 10 Hz cutoff-frequency low-pass finite impulse response digital filter was 

further used to get the low frequency components from the acquired voltage signal (Figure 

4.18c). While a ban-pass finite impulse response digital filter with a pass-band from 45 to 

1500 Hz was applied to resolve the throat sound from the acquired voltage signal (Figure 

4.18d). The partial enlarged view of the low frequency component (Figure 4.18e) and high 

frequency component (Figure 4.18f) elaborately illustrate the rich output signals 

responding to the concrete dynamic change in the speaking, which exhibits plenty high 

frequency detailed information and thus can be harnessed to rebuild/recover the speaking 

content. 

To prove the capability of the BMS as a superior self-powered throat microphone, 

a practical application was demonstrated, as shown in Figure 4.18g. When the tester worn 

the BMS against her neck and spoke in a noisy environment, the speaking content can be 

successfully recovered. This is the first invention that a single self-powered sensor can 

exhibit a multi-functionality of simultaneously acting as a throat microphone and a non-

invasive arterial pulse wave monitor, which will attract extensive attentions, especially for 

astronaut, soldier, motorcycle rider, and those who has to keep quiet while communicating 

with others at a distance, such as during covert military operations. 

 

4.3.3 Single-sensor multi-modal biometric authentication 
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Biometric recognition, an automatic identification and verification of a person 

based on the physiological or behavioral characteristics, is getting increasing research 

attention for that the current authentication system cannot be easily separated from the 

genuine owner. A biometric system that relies only on a single physiological or behavioral 

characteristic in making a personal identification is often not able to meet the desired 

performance requirements. Identification based on multiple biometrics represents an 

emerging trend. Here, relying on the superior sensing performance of BMS, a multimodal 

biometric authentication system was established using a single BMS, which, for the first 

time, integrates the pulse wave recognition and voice recognition in making a personal 

identification. 

To demonstrate the capability of BMS for multi-modal biometric authentication, a 

first step was taken here to show its functionality for voice recognition, since the capability 

of BMS for pulse wave recognition was justified in the previous section. Figure 4.19a-b 

show the originally recorded voltage signals when two participants were continuously 

saying “one world” more than three times in each accustomed manner. Figure 4.19c-d are 

their corresponding high frequency components of the recorded voltage signals via a 45-

to-1500-Hz band-pass filter, which correspond to the throat sound signals according to the 

frequency distribution. Enlarged views of one cycle of the voice signal for saying “one 

world” of two participants are respectively shown in Figure 4.19e-f. It is clearly noted that 

these throat sound waves look apparently different from each other, which is mainly 

attributed to the differences of anatomy (e.g., size and shape of the throat) and behavioral 

patterns (e.g., voice pitch, speaking style).  
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Figure 4.19 Bionic membrane sensor measured throat sound for biometric recognition.  (a) 

and (b) The recorded voltage signals when Alex and Tom were continuously saying “one 

world” more than three times, respectively. (c) and (d) The high frequency components of 

the recorded voltage signals from Alex and Tom via a ban-pass filter, respectively. (e) and 

(f) The enlarged views of a cycle of the high frequency components from Alex and Tom, 

respectively.123 

 

Pearson correlation coefficient was utilized to quantitatively measure the difference 

between two throat sounds signals. Let X=[x1, x2,…,xN] and Y=[y1, y2,…,yN] denote two 

throat sound signals from two different individuals, the Pearson correlation coefficient 

between signals X and Y can be defined as: 
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To evaluate the performance of the BMS for voice recognition, 120 participants 

were invited to independently say the phrase “one world” for more than four times in each 

accustomed manner with the BMS wearing against the necks. A calculation of the Pearson 

correlation coefficient between any two of the throat sound signals of 120 participants was 
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performed, and the results were demonstrated in Figure 4.20a. It is worth noting that most 

of the Pearson correlation coefficients from individual self-comparing are larger than 0.7, 

while the Pearson correlation coefficients from comparison among individuals are less than 

0.7, which is indicative of that Pearson correlation coefficient can be harnessed to act as a 

threshold to separate the genuine voice from the impostor voice, if a verification system is 

thus established.  

 
Figure 4.20 Bionic membrane sensor simultaneously recorded the arterial pulse and throat 

sound for single-sensor multi-modal biometric authentication. (a) Calculated correlation 

coefficients of the throat sounds among different individuals as well as the same individual. 

(b) Performance evaluation of the measured throat sound profiles for biometric 

authentication, which indicates a low EER value of 2.7% at the threshold of 0.55. (c) 

Performance evaluation of the presented multi-modal biometric authentication system. The 

variation of FAR and FRR in relation to the threshold, which indicates a remarkably low 

EER value of 1.6% at the threshold of 1.5. (d) A photograph showing the bionic membrane 

sensor was worn against the participant’s neck to simultaneously record the arterial pulse 

and throat sound for a single-sensor multi-modal biometric authentication.123 
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The variation of FAR and FRR in relation to the threshold is shown in Figure 4.20b. 

The presented BMS based voice authentication system achieves an EER value of 2.7% at 

the threshold of 0.55. For an enhanced authentication performance, identification based on 

the integration of the pulse wave and voice recognition was evaluated as a multi-modal 

biometric. The new feature representation for the multi-modal biometric authentication 

system is a combination of EM of the FDPWs (dXY) from the pulse wave recognition and 

Pearson correlation coefficient (r) from the voice recognition. And the new feature 

representation is mathematically expressed by a feature vector T=[dXYi, ri], where i = 1, 2, 

3, ..., u, denoting the index of the user (u is total number of users in the system database). 

A new threshold relying on the feature vector can be defined as: 

TSMi= w1×0.0018 /dXYi + w2ri                                                                                                                               (4.12) 

The weight coefficients w1 and w2 are proportional to the authentication 

performance of the two uni-modal systems with a constraint of w1+ w2=1. A larger value 

of TSMi indicates a larger similarity between the user templates and client templates. As 

demonstrated in Figure 4.20c, a remarkably low EER value of 1.6% was achieved for the 

presented multi-modal biometric authentication system at a threshold value of 1.5. As 

demonstrated in Figure 4.20d, the BMS was utilized for a multi-modal biometric 

authentication, by simultaneously recording the arterial pulse and throat sound, and only 

the genuine owner with matched both arterial pulse wave and throat sound can access into 

the computer.  

Given its authentication ability, a BMS is capable of simultaneously identifying 

personal characters physiologically as well as behaviorally. The results demonstrate that 

the identity established by such an integrated system is much more reliable than the identity 
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established by a single biometrics, making it unique and practical for developing a highly 

secured biometrics authentication system.  

 

4.4 Tribosensor for self-powered phenol treatment 

Phenol is corrosive to human eyes, skins, and the respiratory tract due to its high 

toxicity. Repeated or prolonged human contact with phenol may cause harmful effects on 

the liver, kidneys, heart and central nervous system, resulting in dysrhythmia, seizures and 

coma.1 1 In almost all cases, phenol is damaging not only to individual species and 

populations, but also to the natural biological communities. Disturbingly, with plenty of 

discharging sources, such as chemical plants, pharmaceutical plants and petroleum 

refineries, phenol is one of the most serious and persistent organic pollutants widely existed 

in ambient environment, especially in the surface water.1 2 Considerable efforts have been 

committed to develop various techniques for phenol detection and degradation, including 

chromatographic,1   spectrophotometric,1 4 photocatalytic,1 5 adsorptive,1 6 and 

electrochemical analyses.1 7 However, widely adoption of these techniques may be 

shadowed by the limitations such as sophisticated and expensive instruments, complex and 

time-consuming procedures, high energy consumption as well as high operating cost. 1 8 

Here, for the first time, we report a unique route that uses the energy harvested via 

the -cyclodextrin (-CD) enhanced triboelectricfication for a self-powered phenol 

treatment, which consisted of two steps, detection and degradation.1 9 

 

 

http://en.wikipedia.org/wiki/Cardiac_dysrhythmia
http://en.wikipedia.org/wiki/Seizure
http://en.wikipedia.org/wiki/Coma
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4.4.1 Self-powered phenol detection 

Regarding phenol detection, the as-fabricated nanosensor holds a multilayered 

structure with acrylic as supporting substrates, as schematically shown in Figure 4.21a. On 

the upper substrate, a layer of polytetrafluoroethylene (PTFE) film was adhered acting as 

one contact surface with coated copper as the back electrode. On the lower substrate, a 

layer of Ti foil with surface grown TiO2 nanowires is laminated as another contact surface. 

TiO2 nanowires on the Ti foil were prepared via a coupling of hydrothermal route in alkali 

solution with ion-exchange process.140, 141 A scanning electron microscopy (SEM) image 

of grown TiO2 nanowires on the Titanium foil is presented in Figure 4.21bwith measured 

average nanowire diameter and length of 7 .4 nm and 1.92 μm, respectively. And the 

corresponding X-ray diffraction (XRD) pattern of TiO2 nanowires is shown in Figure 4.21c. 

-CD molecules were then assembled onto the TiO2 nanowires as a surface chemical 

modification. Figure 4.21d illustrates the charges transfer from the hydroxyl groups of -

CD to TiO2 nanowires. Here, -CD plays dual roles of a phenol recognition element and 

an electrical performance enhancer. A detailed description of the function of -CD is 

presented in the following working principle section. A photograph of the as-fabricated 

phenol nanosensor is shown in Figure 4.21e and the device has a dimension of 4cm×4cm. 

Designed to use -CD as the phenol recognition element as well as the electrical 

performance enhancer, the working principle of the devices based on -CD enhanced 

triboelectrification can be elucidated in two aspects, namely, -CD as surface chemical 

modification, and triboelectrification for phenol detection and degradation. On one hand, 

-CD is cyclic oligosaccharides of seven α-D-glucose units connected through glycosidic 

α-1, 4 bonds, which are composed of hydrophobic internal cavity and hydrophilic external 
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surface. This special molecular structure allows it to form host/guest inclusion complex via 

various guest molecules with suitable polarity and dimension. The cavity diameter of -

CD has been found to be the most appropriate size for selective adsorption of phenol, which 

explains the -CD as surface chemical modification for phenol recognition.142, 14  

 

Figure 4.21 (a) A sketch of the triboelectrification with -CD surface modification for 

phenol detection. (b) A SEM image of the TiO2 nanowires. The scale bar is 5μm. (c) The 

XRD spectra of the grown TiO2 nanowires. (d) Schematic diagram for illustrating the 

charges transfer from the hydroxyl groups of -CD to TiO2 nanowire. (e) A photograph of 

the as-fabricated -CD enhanced triboelectrification for phenol detection. The scale bar is 

2 cm.1 9  

 

On the other hand, the triboelectrification for phenol detection is a two-way 

coupling of triboelectric effect and electrostatic induction. The periodic contact and 

separation of the oppositely charged plates can create a dipole layer and a potential drop, 

which drives the flow of electrons between electrodes in responding to the mechanical 
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vibration. Given a consistent and cyclical operation of the two plates of the as-fabricated 

nanosensor at a fixed surface concentration of -CD, the acquired output electrical signals 

in the external circuit is determined by the phenol concentration absorbed by the -CD on 

the surface of TiO2 nanowires, which is the cornerstone of the -CD enhanced 

triboelectrification for phenol detection. Furthermore, the electrical signals generated by 

the -CD enhanced triboelectrification can also act as a direct power source to 

electrochemically degrade the phenol in the wastewater. Since the electricity is converted 

from the motion of wastewater wave, which renders a self-powered manner for phenol 

degradation.     

 

Figure 4.22 (a) Dependence of the current output on the -CD concentrations. (b) 

Dependence of the voltage output on the -CD concentrations.1 9 

 

In order to investigate reasoning behind the -CD functioning as an electrical 

performance enhancer, a series of electrical outputs was experimentally measured under 

various -CD concentrations, as demonstrated in Figures 4.22a and b. And both the current 

and voltage signals are increasingly in proportional to the surface concentrations of -CD 



158 

 

till a saturation point was reached, which was 80 M by experimental observation. An 

output plateau emerges with further increasing the concentrations beyond 80 M. The 

binding of β-CD to TiO2 nanowire surface is ascribed to the adhesion of the hydroxyl 

groups, which derives from physical adsorption or H-bonding interactions. Besides, 

charge-transfer complex between the β-CD hydroxyl groups and surface Ti atoms of TiO2 

nanowire was also formed owning to coordination effect between ligand and metal under 

visible light irradiation.144-147 Charges will transfer from the hydroxyl groups of β-CD to 

TiO2 nanowires upon the triboelectrification between the PTFE and TiO2. Consequently, 

-CD is capable of acting as an effective chemical surface modification, which can enhance 

the triboelectrification, and thus the device output performance.  

After looking into the impact of -CD concentrations on the electrical output, a 

further step was taken to evaluate the performance of -CD enhanced triboelectrification 

for self-powered phenol detection. Under a fixed -CD concentration of 80 M, phenol 

solutions with various concentrations but constant volumes (20 μL) were dropped onto the 

-CD modified TiO2 nanowires surface. Prior to the further electrical measurement, the 

phenol treated nanosensors were dried at ambient temperature. The dependence of current 

and voltage outputs on the phenol concentrations are presented in Figures 4.2 a and 4.2 b, 

respectively. In a certain phenol concentration region of 10 – 100 μM, both the current and 

voltage outputs are a monotonically decreasing function of phenol concentrations 

throughout the experimental time windows. The decrease is mainly attributed to a modified 

surface triboelectric behavior due to the adsorbed phenol molecules. The phenol will 

replace the position of TiO2 to contact with PTFE. In comparison to TiO2, the phenol 

molecules have lower tendency to transfer the electrons to PTFE, resulting in a phenol 



159 

 

concentrations depended electrical output.  

 

Figure 4.23 Under a fixed 80 μM β-cyclodextrin surface modification, dependence of the 

current (a) and voltage (b) output on the phenol concentrations. Inset is an illustration of 

the reaction mechanism between β-cyclodextrin and phenol molecule. (c) The sensitivity 

and detection range of the as-developed β-CD enhanced triboelectrification for phenol 

detection in term of both current and voltage output. (d) A sensitivity of 0.01/μM was 

simultaneously achieved from both current and voltage signals with a detection range of 

10 – 100 μM. (e) Selectivity of the as-developed β-CD enhanced triboelectrification for 

phenol detection. Inset is an illustration of the reaction mechanism between β-cyclodextrin 

and different kinds of organic species. (f) A comparison of the XRD pattern of the TiO2 

nanowires: (i) as-grown (ii) refurbished with 20 mL ethyl alcohol after phenol detection.1 9 
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In order to render a direct view of the sensing performance of the -CD enhanced 

triboelectrification for phenol detection, both the current ratio ((I0-I)/I0) and voltage ratio 

((V0-V)/V0) were plotted versus the phenol concentrations, as shown in Figures 4.2 c and 

4.2 d. These results reveal the designed nanosensor is sensitive to the phenol molecules 

with a sensitivity of 0.01/μM in the sensing range of 10 – 100μM.  

Furthermore, control experiments were carried out to test the selectivity of the as-

developed -CD enhanced triboelectrification toward phenol detection as compared to 

other organic species. With a constant concentration of 50 μM for all the testing organic 

species, the obtained current ratio from the phenol absorbed nanosensor was far larger than 

other organic species (Figure 4.2 e), which indicated that the -CD enhanced 

triboelectrification is an effective means for phenol detection with excellent selectivity. 

Additionally, the -CD enhanced triboelectrification based nanosensor is reusable and can 

be refurbished by ethyl alcohol rinsing after phenol detection. Both the XRD pattern 

(Figure 4.2 f) and SEM image shows no chemical composition or surface morphology 

change after refurbishment, which proves a good reusability of the device for phenol 

detection.  

 

4.4.2 Self-powered phenol electrochemical degradation 

For a systematical treatment of ambient phenol, a further action was taken to 

degrade the phenol after it was detected. Here, a β-CD enhanced triboelectrification based 

energy harvester was developed as a power source to electrochemically degrade the phenol 

in the wastewater by using the kinetic impact energy from water waves.  
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Figure 4.24 (a) Structural design of the β-CD enhanced triboelectrification for self-

powered phenol degradation by using kinetic impact energy from water waves. (b) An 

illustration of the core part the β-CD enhanced triboelectrification for phenol degradation. 

(c) Demonstration of an integrated self-powered phenol degradation system by harnessing 

water waves. The scale bar is 15 cm. The dependence of the current (d) and voltage (e) 

output of the β-CD enhanced triboelectrification on the wave velocities.1 9 

 

A schematic illustration of the water wave energy harvester is shown in Figure 

4.24a, which has a multilayered structure with acrylic as supporting substrates. An annular 

ring shaped elastic rubber was employed to bridge the top plate of the “core” with the 

central-holed acrylic substrate, and thus it is capable of converting the water wave impact 

into the contact-separation of the two contact surfaces, PTFE and β-CD modified TiO2 

surface, thus convert the wave energy into electricity as a sustainable power source for 

phenol degradation. Figure 4.24b is a close view of the “core” of the as-developed wave 

energy harvester. An integrated self-powered phenol degradation system by harnessing 

wastewater wave energy is demonstrated in Figure 4.24c. An as-fabricated wave energy 
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harvester equipped with a Ti/PbO2 anode and a Ti cathode was vertically fixed in a 

wastewater container.  

With surface concentration of 80 μM β-CD on the TiO2 nanowires, a quantitative 

characterization of the output performance responding to various water wave velocities 

were systematically investigated. In order to quantitatively control the water waves, a linear 

motor was used to introduce a periodical impact onto the water. The water waves were 

propagating at different velocities by controlling the frequency and impulse length of the 

linear motor. And a directly proportional relationship was experimentally observed 

between the two, as shown in Figure 4.24d and e.  At a water wave velocity of 1.4m/s, the 

generated current density and voltage are as high as 20 μA/cm2 and 70 V, respectively. The 

performance of the phenol degradation based on β-CD enhanced triboelectrification was 

evaluated at a fixed wave velocity of 1.4 m/s.  

And the UV-Visible absorption spectra of the phenol in the wasted water, measured 

under fixed time intervals, were shown in Figure 4.25a. With the increasing of 

electrochemical degradation time, the characteristic absorption peak intensity of phenol in 

the wastewater decreases evidently, indicating the effectiveness of the route for self-

powered phenol degradation. Inset of Figure 4.25a is the calibration curve of phenol 

concentration at the wavelength of 269 nm, which is the wavelength corresponding to the 

characteristic absorption peaks. In order to further validate the decrease of phenol 

absorption peak intensity is attributed to the electrochemical degradation, a control 

experiment was conducted without triboelectrification or external power sources. Since 

electricity is a must for the electrochemical degradation of phenol. Without electricity, the 

phenol cannot be degraded itself over time. 
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Figure 4.25 Performance evaluation of the β-CD enhanced triboelectrification for phenol 

degradation. (a) UV-Visible absorption spectra of the phenol in the wasted water with 

increasing of the electrochemical degradation time by the β-CD enhanced 

triboelectrification. Inset is the calibration curve of the phenol concentration from 

absorption spectra at a wavelength of 269 nm. (b) Comparison of the phenol degradation 

time versus the water waves velocity when the degradation percentage reaches 90%, 

without and with an 80 μM β-cyclodextrin surface modification. (c) Comparison of the 

phenol degradation percentage versus the degradation time under different propagating 

speeds of water waves. (d) Comparison of the initial phenol concentration versus the 

degradation time under fixed water waves velocity of 1.4 m/s. (e) The proposed reaction 

mechanisms of the phenol electrochemical degradation.1 9 

 

Factors, especially the β-CD surface modification, wave velocity and the phenol 

initial concentration, can largely influence the effectiveness of the proposed routes for 
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phenol electrochemical degradation. A systematical investigation upon the three factors 

was made to comprehensively evaluate the performance of the β-CD enhanced 

triboelectrification based self-powered phenol degradation. First, the influence of β-CD 

surface modification on the degradation performance was studied via a comparison of the 

time needed for reaching a phenol degradation percentage of 90% under various wave 

velocities at a fixed initial phenol concentration of 80 mg/L. Technically, in an 

electrochemical degradation processing, the degradation efficiency is proportional to the 

applied power. As shown in Figure 4.25b, without β-CD surface modification, the phenol 

still degrades over time, but the degradation efficiency is very low due to a relatively 

smaller electrical output of the devices. However, after surface modification with β-CD, 

the β-CD enhanced triboelectrification, which contributes to a larger electrical output of 

the devices, largely boosts the speed of phenol electrochemical degradation and shortens 

the time required for completely mineralizing the phenol in the wastewater.  

Secondly, as an important factor to the electrical output, the influence of water wave 

velocity on the degradation performance was also studied at a fixed initial phenol 

concentration of 80 mg/L. As demonstrated in Figure 4.25c, to reach the same phenol 

degradation percentage, a shorter time is needed with a larger wave velocity. Likewise, 

given a fixed degradation time interval, a larger wave velocity will contribute to a larger 

phenol degradation percentage in the wastewater. Specifically, given a wave velocity of 

1.4 m/s, the degradation percentage of phenol in the wastewater is up to 90% in 320 min. 

Furthermore, in the beginning the phenol concentration in wastewater is high. The amount 

of phenol that can be degraded per unit time is more, which corresponds to a higher 

degradation rate. As the degradation reaction proceeded, the phenol concentration in 
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wastewater continues to decrease. And this will inevitably lead to a low degradation 

efficiency. That’s why the degradation rate increases at first place (before 320 min), then 

keeps constant over time. 

Additionally, initial phenol concentration in the wastewater is also another factor 

that needs to be explored for a systematical evaluation of the degradation performance. It 

is observed in Figure 4.25d that, under a fixed wave velocity of 1.4 m/s, more time is 

required for the electrochemical degradation starting with higher initial phenol 

concentration. And, what is more, though the initial phenol concentration varies, the 

residual content of phenol remains almost the same after a continuous degradation for 360 

min. And it is encouraging to find out that the electrochemical degradation process is more 

effective at higher initial phenol concentrations, which renders the proposed route very 

practical and promising for the industrial wastewater treatment. 

Experimentally, the phenol electrochemical degradation initiated at the Ti/PbO2 

anode electrode, where the color of the solution changed from initial colorless to yellow 

(40-260min), and lastly to colorless (300min). The proposed reaction mechanisms of the 

phenol electrochemical degradation were illustrated in Figure 4.25e. In electrochemical 

oxidation process, the phenol pollutants can not only be mineralized by the hydroxyl 

radicals produced on the anode surface, but also can be directly oxidized and degraded on 

the surface of anodes. Phenol was first transformed into phenoxy radical, and then the 

hydroxyl radicals produced on the anode surface attack benzene rings to produce 

hydroquinone and catechol. The hydroquinone and catechol were further degraded to 

benzoquinone, which turns the solution from colorless to yellow.137, 138, 148 Subsequently, 

the ring was broken and the benzoquinone was degraded into various carboxylic acids such 
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as maleic acid, oxalic acid and formic acid. Finally, these organic acid intermediates were 

mineralized into CO2 and H2O, and thus the solution became colorless again. 

In summary, we demonstrate a unique route that creatively harnessed the β-

cyclodextrin (β-CD) enhanced triboelectricfication for both self-powered phenol detection 

and electrochemical degradation. Relying on the β-CD as the recognition element, the as-

fabricated nanosensors can selectively capture and detect the phenol molecules in ambient 

environment. A detection sensitivity of 0.01/μM was experimentally read from calibrating 

both the current and voltage signals in a sensing range of 10 – 100 μM. The presented 

nanosenors are proved reusable after being refurbished with ethyl alcohol. Additionally, 

the β-cyclodextrin enhanced triboelectricfication was designed to harvest kinetic impact 

energy from water waves to electrochemically degrade the phenol in a self-powered 

manner without supplying an external power. At a fixed wave velocity of 1.4 m/s and initial 

phenol concentration of 80 mg/L, the generated power is capable of cleaning up to 90% of 

the phenol in the wastewater in 320 min. The justified concept of self-powered phenol 

treatment by using triboelectricfication is a green and alternative to traditional methods, 

which could arouse a broad range of audience, especially from the fields of wastewater 

treatment, ecological sanitation, environmental degradation, monitoring, assessment and 

sustainability. And it can not only be applied to the ambient phenol detection and 

degradation, but also can be extended to other common organic pollutants in the 

wastewater, such as methylbenzene, benzaldehyde, chlorobenzene, aniline, benzoic acid 

and so on, which is promising and could possible change the way of current wastewater 

treatment. 
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CHAPTER 5 

CONCLUSIONS 

  

 Mechanical motion is of great abundance and ubiquitousness in ambient 

environment with a wide-range of scales and a variety of forms. It is also obtainable from 

human body. Harvesting mechanical energy is an important route in obtaining cost-

effective, clean and sustainable electric energy. In the past decades, increasing research 

efforts have been committed to develop renewable energy technologies to convert the 

ambient motions into electricity. The triboelectric effect is known for many centuries and 

it is the cause of many charging phenomena. However, it has not been utilized for energy 

harvesting until very recently. Triboelectric nanogenerator (TENG), a creative invention 

based on triboelectric effect has been launched as a new and renewable energy technology 

in 2012.  In the past four year’s PhD study in Georgia Tech and as presented in this 

dissertation, I devoted myself to developing the TENG from fundamentals, devices, to 

applications. The concept and design presented in this dissertation research can greatly 

promote the development of TENG as both sustainable power sources and self-powered 

active sensors. In this chapter, my research achievements and technological innovations 

are summarized, and several suggestions for advancing this research filed are posed. 

 

5.1 TENG as a new energy technology 

To promote the development of TENG as a new energy technology, my efforts were 

committed from the following five aspects in my four years’ PhD study at the Georgia 

Institute of Technology.  
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Fundamental Model Study: I and my co-workers invented a fundamentally new 

principle of TENG based on in-plane sliding electrification. It can be applied to TENGs of 

different configurations that accommodate the needs of harvesting energy and/or sensing 

from diverse mechanical motions, such as contacted sliding, lateral translation and 

rotation/rolling. It presented a versatile solution to harvest energy from diverse forms of 

mechanical motions, including rolling wheels, wind flow and water flow. 

Vibration Energy Harvesting: I and my co-workers for the first time introduced 

a fundamentally new working principle into the field of vibration energy harvesting by 

fabricating a harmonic-resonator-based TENG. And we systematically built up the new 

field via a series of continuous projects. Featured as cost-effectiveness, scalable device 

sizes, abundant choices of low density triboelectric materials such as polymers, varieties 

of working modes, wide adaptability on structural design for various applications, the 

TENG based vibration energy harvesting overcome the challenges of the traditional 

approaches and will greatly benefit the whole scientific research community. 

Rotary Energy Harvesting: I and my co-workers firstly reported a two-

dimensional planar-structured TENG for producing energy from rotary surfaces with 

unprecedented performance. With an average output power of 1.5 W, corresponding to an 

area power density of 19 mWcm-2, the radial-arrayed rotary TENG represented a gigantic 

leap in terms of output power by orders of magnitude compared to previous reports. In the 

meanwhile, the robustness of TENG for rotary energy harvesting remains a great challenge 

owning to the requirement of surface friction for a decent output. In this regards, I and my 

coworkers also developed techniques that achieves a high output performance without 

compromising the device robustness through either rolling friction based charge 
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replenishment or an automatic transition between a contact working state and a non-contact 

working state. 

Acoustic Energy Harvesting: I and my co-workers introduced a new working 

principle into the field of acoustic energy harvesting by firstly fabricating an organic thin-

film based TENG with an energy conversion efficiency up to 60%. And then, we 

innovatively employed a multi-hole structure on the paper electrode to developed an 

ultrathin, rollable paper based TENG, which can effectively get rid of the traditional 

resonator for acoustic energy harvesting. These two works present an adaptable, cost-

effective and fundamentally new approach for ambient acoustic energy harvesting, which 

can be further applied in a variety of circumstances for either energy-harvesting or sensing 

purposes, e.g. aeroacoustic sensing, jet engine noise reduction, military surveillance and 

reconnaissance as well as wireless technology applications.   

Large-Scale Blue Energy Harvesting: I and my coworkers, paved a new way in 

the field of blue energy exploitation by presenting a TENG network (TENG-NW) design. 

This approach distinguishes itself from several aspects.  Firstly, TENG-NW is suitable to 

harvest wave energy in a wide range of wave motions, from subtle to strong, transverse 

wave to lateral wave. Furthermore, not like the electromagnetic effect based wave energy 

harvesting, which mainly relies on the undercurrents, the TENG-NW is capable of 

harvesting energy from both the undercurrent and the surface waves. Besides, most of the 

wave motions are multidirectional, the TENG-NW, with a rationally designed structure, 

renders an innovative and effective approach to fully utilize the wave motion from all-

directions. And it can not only be applied in the epicontinental sea, but also can easily be 

implemented in almost all of the water area.  
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In addition, relying on the surface charging effect, only small amount of materials 

are needed. The TENG-NW is thus cost-effective as well as light-weight, which makes it 

possible high anticorrosion to the marine environment and floating on the water surface, 

which will greatly eliminate the needs of building poles or towers for holding traditions 

electromagnetic generators for wave energy harvesting.  

Based on these research, it is safe to conclude that TENG is a fundamentally new 

energy technology, featured as being simple, reliable, cost-effective as well as high 

efficiency. And it is a green and alternative to traditional methods for ambient mechanical 

energy harvesting and also potentially for large-scale blue energy harvesting. 

 

5.2 TENG as self-powered active sensors 

As a sustainable power source, TENG can convert the mechanical input into 

electrical output signals, reversely, TENG can also be a high sensitive self-powered sensors 

for detecting mechanical triggering, stimulation and movement. The electric current and 

voltage signals generated by TENG represent the dynamic and static information, 

respectively, regarding a mechanical action. Part of my dissertation research was also 

involved in developing TENG into self-powered active sensing systems for human health 

monitoring, ambient phenol / heavy metal ions / alcohol detection, as well as the self-

powered human-machine interfacing.  

Self-powered Acoustic Sensing: A triboelectrification based thin-film 

nanogenerator was first developed as an acoustic sensor which can not only act as self-

powered microphone, but also can act an acoustic source localization sensor within an 

average error circle of 7 cm in diameter. Subsequently, an ultrathin, rollable, paper-based 
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microphone was also developed. The rolled device is directional independence, which can 

be used for self-powered all-sounding recording without an angular dependence. The 

proposed acoustic sensors have extensive applications in the fields such as military 

surveillance and reconnaissance, intruder detection, sniper localization, underwater 

acoustics, and auto talker detection in a web conferencing. 

Self-powered Human-Machine Interfacing: Computer keyboard is one of the 

most common, reliable, accessible and effective approaches used for human-machine 

interfacing and information exchange. I and my coworkers reported a self-powered, non-

mechanical-punching keyboard enabled by contact electrification between human fingers 

and keys, which converts mechanical stimuli applied onto the keyboard into local 

electronic signals without applying an external power. The intelligent keyboard (IKB) can  

not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but 

also be capable of tracing and recording typing contents by detecting both the dynamic 

time intervals between and during inputting letters and the force used for each typing action. 

Such features promise its use as a smart security system that can realize detection. The IKB 

can be potentially applied not only to self-powered electronics but also to artificial 

intelligence, cyber security, and computer or network access control. 

Self-powered Biomedical Monitoring: Measurements of human physiological or 

behavioral characteristics are the main designing functions of wearable and interactive 

electronics. And I and my co-workers reported the first bionic membrane sensor (BMS) 

based on triboelectrification for self-powered physiological and behavioral measurements 

such as local internal body pressures. Enabled by the unique sensing mechanism and an 

eardrum-inspired structure, the self-powered bionic membrane sensor holds a collection of 
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superior performances, including fast response time (< 6 ms), low pressure detection limit 

down to 2.5 Pa, high sensitivity (>51 mVPa-1), high stability (>40,000 loading and 

unloading cycles), as well as an exceptional wide working bandwidth. The BMS can be 

utilized to measure rapidly-changing pressure over an exceptional wide frequency ranges 

from 0.1 Hz to  .2 kHz, which enables it to not only continuously monitor the human low-

frequency arterial pulse wave, but also to acquire and recover the high-frequency throat 

sound using a single device. As a demonstration, by measuring the distinguishable dynamic 

pressure patterns of human cardiovascular system, the BMS is capable of acting as a 

wearable, mobile, user-friendly and self-powered arterial pulse wave monitor for 

continuous and noninvasive human health assessment and monitoring. 

Self-powered Chemical Sensing: Chemical pollutants, such as phenol, heavy 

metal ions, widely existed in ambient environment, especially in the waste waters. The 

treatment of them is of special concern due to their recalcitrance and persistence in the 

environment, which also places a permanent damage to the underground water system once 

invaded. In this regard, I and my coworkers, for the first time introduced the triboelectric 

effect into the field of wastewater treatment. And the chemicals pollutants, such as phenol, 

heavy metal ions, was demonstrated to be detected and removed. With a collection of 

compelling features, such as high detection sensitivity and degradation efficiency, 

extremely low cost, simplicity and reusability, the presented works not only provide a new 

and efficient pathway for environmental chemical treatment, but also a solid “green” 

advancement in the fields of industrial waste management, ecological sanitation, 

environmental degradation, monitoring, assessment and sustainability. 
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5.3 Future works 

The discovery of the triboelectric nanogenerator is a major milestone in the field of 

converting mechanical motions into electricity for building self-powered systems. TENGs 

have experienced a very rapid development both in fundamental understanding and 

technological improvements in the last four years. As toward the future applications, some 

problems still remain to be solved to make this technology applicable as commercial 

products, as listed in the following. 

First and foremost, the fundamental mechanism of contact electrification still needs 

clarification. Although triboelectrification is a widely existed phenomenon around us in 

daily life, the underlying physics is still unexplored.16, 17, 108-111 Why do electrons transfer 

at the interfaces when two materials are brought into contact with each other? As the 

cornerstone of TENG, a clarification of the contact electrification processing will be great 

beneficial to optimize the TENG output performance. 

Besides, a general challenge of TENG is its relatively low current output. How to 

effectively and efficiently manage the output power of TENG that can be used for practical 

applications is of great importance. This is a critical step towards TENG based self-

powered systems. 

Moreover, device durability and output reliability is also a disturbing concern that 

needed to be addressed. A requirement of the surface friction between two contact 

materials for a decent output renders the TENGs a common challenge that the material 

abrasion and the concomitantly generated heat will make the device nondurable under 

long-term continuous working and reduce the energy conversion efficiency. As a 

consequence, durable fabrication materials and rational device structural design are 
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necessary for achieving a high output performance without compromising the device 

robustness. 

Furthermore, since the TENG output performance is highly subjected to 

environmental factors, such as temperature, humidity, pressure, particle contaminations 

and so on.149-153 Packaging is highly desirable for long-term device operation, especially in 

some harsh environment. 

Last but not least, based on a surface charging effect, the TENG based sensing 

application is challenged when the device dimension is miniaturized, which greatly hinders 

its further development into the micro-electro-mechanical systems. More advanced device 

design and fabrication techniques are highly desired to accomplish a higher spatial 

resolution of the TENG based active sensors.  
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