
Flood and Traffic Wireless Monitoring System for Smart

Cities

Thesis by

Moustafa Osama Ahmed Moussa

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

King Abdullah University of Science and Technology

Thuwal, Kingdom of Saudi Arabia

October, 2016

2

EXAMINATION COMMITTEE PAGE

The thesis of Moustafa Moussa is approved after the review of the examination com-

mittee.

Committee Chairperson: Christian Claudel

Committee Members: Mohamed-Slim Alouini, Xiangliang Zhang, Jeff Shamma, Mo-

hammed Younes, Ranga Venkatsha Prasad

3

©October, 2016

Moustafa Osama Ahmed Moussa

All Rights Reserved

4

ABSTRACT

Flood and Traffic Wireless Monitoring System for Smart Cities

Moustafa Osama Ahmed Moussa

The convergence of computation, communication and sensing has led to the emer-

gence of Wireless Sensor Networks (WSNs), which allow distributed monitoring of

physical phenomena over extended areas. In this thesis, we focus on a dual flood

and traffic flow WSN applicable to urban environments. This fixed sensing system is

based on the combination of ultrasonic range-finding with remote temperature sens-

ing, and can sense both phenomena with a high degree of accuracy. This enables

the monitoring of urban areas to lessen the impact of catastrophic flood events, by

monitoring flood parameters and traffic flow to enable public evacuation and early

warning, allocate the resources efficiently or control the traffic to make cities more

productive and smarter. We present an implementation of the device, and illustrate

its performance in water level estimation and rain detection using a novel combina-

tion of L1 regularized reconstruction and machine learning algorithms on a 6-month

dataset involving four different sensors. Our results show that water level can be

estimated with an uncertainty of 1 cm using a combination of thermal sensing and

ultrasonic distance measurements. The demonstration of the performance included

the detection of an actual flash flood event using two sensors located in Umm Al Qura

University (Mecca). Finally, we show that Lagrangian (mobile) sensors can be used to

inexpensively increase the performance of the system with respect to traffic sensing.

These sensors are based on Inertial Measurement Units (IMUs), which have never

5

been investigated in the context of traffic flow monitoring before. We investigate the

divergence of the speed estimation process, the lack of the calibration parameters

of the system, and the problem of reconstructing vehicle trajectories evolving in a

given transportation network. To address these problems, we propose an automatic

calibration algorithm applicable to IMU-equipped ground vehicles, and an L1 regu-

larized least squares formulation for vehicle speed estimation. Results show that this

system can be used to generate accurate traffic monitoring data, and significantly

outperforms GPS sensors (traditionally used as traffic flow sensors) in terms of cost,

accuracy and reliability.

6

ACKNOWLEDGEMENTS

I would like to deliver my absolute gratitude to the people who helped make this the-

sis a reality after the blessings of Allah. Starting from my parents and my brothers

(Osama Moussa, my father, Mouna Alrashidy, my mother, and my brothers Ahmed,

Mohammed, and Yousef Moussa) for their support during my life in general and aca-

demic years specifically and I will be forever in their debts. My professor, Dr.Christian

Claudel who paved the way for my learning process and made my journey not only

enriching but exponentially fruitful and rewarding, along with Professor Mohammed

Slim Alouini, who I owe so much, even before I joined KAUST. To my friends who

without their support I would not have had the power nor strength to keep pushing

forward in the hardest of days, Mohammed Shaqura, Ahmad Dehwah, Manal Andi-

jani, Rayan Naser, Chahrazed Elmetnani, Mohammed Alfarhan, Mohammed Alsharif,

Fadl Abdullatif, Ahmad Bahgat, Idris Ajia, Basma Othman, Walaa Fatheldine, Mo-

hammad Zahana, Sally Ahmed, Amber Siddiqi, Rishabh Dutta, Huda Ibeid, Ikram

Bukhdemi, Rasha Abdulhalim, Rana Alrabeh, Konpal Ali, Stephanie Saade, Ghaida

Hadiydi, Mehdi Derishe, Ahmed Bahgat, Amir Zaher, Amir Nabil, Thamer Nouh,

Ali Agha, Engy Khames, Ahmad Mabrouk, Mohammed Ghoniem, Asmaa Hasheesh,

Abdullah Dehwa, Omar Dehwah, Abdulrahman Eljedaani, Mayada Alhashim, Hanin

Alzubaidy, Ahmad Badri, Rewaa Jallal, and to everyone I have ever known during

my spectacular journey, I will surely never forget you.

7

TABLE OF CONTENTS

Examination Committee Page 2

Copyright 3

Abstract 4

Acknowledgements 6

List of Figures 11

List of Tables 16

1 Introduction 17

1.1 Background and motivation . 17

1.2 Related work . 21

1.3 Research Objectives . 24

1.4 Main contributions . 24

2 Solar-powered WSNs Architecture for traffic and flood sensing ap-

plications 26

2.1 System design . 26

2.1.1 Proposed urban flash flood and traffic sensing system architecture 26

2.1.2 Technological choices . 28

2.2 Experimental experience . 29

2.2.1 System . 30

2.2.2 Objectives of the WSN deployments 30

2.2.3 Major Deployments (KAUST Campus) 31

2.3 Lessons learned from the WSN deployments 33

2.3.1 Design challenges . 36

2.3.2 Hardware limitations and their impact on experiments 41

2.3.3 Analoge to Digital Converters (ADC) faults 47

2.3.4 Experiment planning and testing issues 49

8

2.3.5 Accessibility issues . 53

2.3.6 Deployment challenges . 54

2.3.7 Data analysis issues . 56

2.4 Experimental investigation of environmental perturbations on the WSN

operation . 57

2.4.1 Experimental setup . 57

2.4.2 Link performance analysis . 58

2.4.3 Power analysis . 61

3 Energy Estimation for solar-powered WSN in desert environments 63

3.1 Energy management state of the art 64

3.2 Experimental Setup . 65

3.2.1 System . 65

3.2.2 Energy estimation deployment 66

3.2.3 Experiments results . 66

3.3 Energy Model . 67

3.3.1 Energy Generation and Storage 67

3.3.2 Energy Conservation Equation 68

3.3.3 The Need for Energy Estimation and Forecast 69

3.4 Estimation of Battery Condition and Capacity 70

3.4.1 Background . 70

3.4.2 Estimation of Battery Discharge Patterns 72

3.4.3 Estimation of Battery Capacity 73

3.5 Estimation of Solar Power Supply . 74

3.6 Chapter Remarks . 77

4 Flash Flood and Rain Monitoring and Detection Using Ultrasonic

and Infrared Sensors (Estimations and Algorithms) 79

4.1 Sensing principle . 82

4.1.1 Sensor design considerations 82

4.1.2 Sensor description . 83

4.2 Problem definition . 84

4.2.1 Naive temperature correction 86

4.2.2 Auto-regressive moving average exogenous (ARMAX) fitting . 88

4.2.3 Supervised learning . 89

4.3 Proposed Solution and System performance 93

4.3.1 Preprocessing of measurement data 93

9

4.3.2 Artificial neural networks performance 97

4.3.3 Comparison of prediction models 98

4.3.4 Minimization of errors in the L∞ sense 100

4.3.5 Temporal robustness of ANN model parameters 102

4.3.6 Spatial robustness analysis of ANN model 102

4.3.7 Validation on an actual flooding incident 104

4.4 Implementation of ANN algorithms on microcontrollers 104

4.4.1 Dedicated sensing platform for flash flood monitoring applications105

4.4.2 On-Board Neural Network Algorithm 105

4.5 Discussion . 109

4.6 Rain detection . 111

4.6.1 A Neural network classifier . 111

4.6.2 Rain detection results . 112

4.7 Chapter Remarks . 114

5 Inertial Measurement Units-Based Probe Vehicles: Trajectory and

Traffic Conditions Estimation 116

5.1 System Components . 120

5.1.1 Traffic sensing principle . 120

5.1.2 Vehicular system . 120

5.1.3 Fixed wireless sensor network system 121

5.1.4 Data processing . 121

5.2 Automatic Calibration for attitude angles 122

5.2.1 Solution method . 123

5.2.2 Implementation . 125

5.3 Trajectory reconstruction . 127

5.3.1 Attitude estimation algorithms 127

5.3.2 Dead Reckoning . 129

5.3.3 Validation . 133

5.3.4 Yaw angle (heading) estimation 134

5.3.5 Trajectory estimation and validation 135

5.3.6 Piecewise linear trajectory approximation 136

5.4 Path reconstruction . 138

5.4.1 Case Study . 138

5.4.2 Map matching based on a Bayesian formulation 140

10

6 Concluding Remarks 149

6.1 Summary . 149

6.2 Future Research Work . 151

References 153

11

LIST OF FIGURES

2.1 One assembled and deployed sensor node as part of the early experi-

mental deplyoments. 31

2.2 Our 2nd major deployment of 80 motes in May-June 2012, on the

campus of KAUST (max latency: 1 hour/12 cycles) 34

2.3 Irregular dust and debris accumulation on solar panels after a two

month experiment. Left: solar panel before deployment. Center left:

low dust accumulation. Center right: high dust accumulation (finger-

prints visible on the right are caused by node handling after removal).

Right: solar panel littered with debris from trees and birds. 37

2.4 Battery energy evolution during 14 days for four different motes . . . 38

2.5 Top: node packaging for the first generation deployments explained in

this chapter. Bottom: updated packaging (CAD design) explained in

Chapter 4. 40

2.6 Left: effects of high outdoor temperature and high charge on a Li-ion

battery. Right: A new Li-ion battery 45

2.7 Representation of pre-packets sent by the microcontroller (gray) before

the packet ”#0-086A*” is eventually sent successfully. This happens

when the microcontroller mote is unable to successfully send a packet

to the transceiver. 47

2.8 Top: links and corresponding RSSIs measured by all nodes connected

to node 085A. Botttom: links and corresponding RSSIs emitted by

node 085A. 48

2.9 ADC failure effect on node ”07DF” during a day of experiment, com-

pared to a working node ”3A20” with no ADC fault. 49

2.10 Packet structure of the Sink to initialize the network operations. . . . 52

2.11 Two nodes placed incorrectly, i.e. 0864 and 083E (in light blue) . . . 55

2.12 One unit node (left) used in this analysis and sensor network visual-

ization (right) for the 34 nodes . 58

12

2.13 Temperature (top left), irradiance (top right) and relative humidity

(bottom left) measured by the weather station. RSSI average time-

series for a representative link (bottom right) 59

2.14 Environmental effects on link quality. Top left: RSSI versus panel

temperature and irradiance. Top right: packet delivery ratio versus

panel temperature and irradiance. Bottom left: RSSI versus panel

temperature and humidity. Bottom right: packet delivery ratio versus

panel temperature and humidity. 60

2.15 Impact of environmental effects on estimated night power consumption.

Power drawn from the battery versus air temperature and humidity. . 61

3.1 Left: WSN nodes used in this study. Right: Web-based visualizer

dedicated for this energy estimation WSN deployment. 66

3.2 Energy timeseries from 34 nodes between March 21st and April 4th,

2013. The daily energy charge-discharge cycles are clearly visible. . . 67

3.3 Energy management system circuitry in a solar-powered node. 67

3.4 Discharge curves of batteries AAAF evaluated on a 10 days period

at the beginning of the experiment (Left), and on a 10 days period

20 days later (Right). The right subfigure shows a slight degradation

in battery capacity, as well as a less reproducible (higher standard

deviation) discharge pattern. 73

3.5 Solar power estimates. Top: Actual power input inferred from Algo-

rithm 2 on node AA95, and Gaussian fit of the estimated solar power

available. Bottom: Gaussian fits of the estimated available solar power

on a subset of 9 nodes, during a typical day (March 1, 2013). 75

4.1 System representation. The sensor described in this work corresponds

to the leftmost part of this diagram. 84

4.2 Flood sensor node installed on a public street light in KAUST univer-

sity campus . 84

4.3 Left: Raw distance measurements from ultrasound sensor. Right: am-

bient and ground temperature measurements 85

4.4 Left: Predicted distance measurement computed using ambient tem-

perature sensor measurements, and Right: weather station air temper-

ature measurements. 87

4.5 The preprocessing of the measured data from the sensor node. The

processed data are served to the estimation models. 93

13

4.6 Comparison between raw PIR sensor data (blue) and reconstructed

PIR data (green) at the end of the preprocessing stage for a sample of

the data in December (without normalization). 96

4.7 Top: Normalized and filtered raw distance measurements (for the pre-

processed training dataset). Bottom: Normalized and filtered ambient

and ground temperature measurements (for the preprocessed training

dataset). 96

4.8 Relation between the number of neurons in the hidden layer of an

ANN and the root mean square value (RMSE). As can be seen from

this Figure, the RMSE only improves marginally as we increase the

number of neurons past 5 neurons. 97

4.9 Left: Water level prediction during a week of December 2013 for the

sensor node ”A77D”. Since no flood occurred during this period, the

actual water level was always 0 cm. The deviation of predicted value

from 0 can be considered as prediction error, which is less than 1.85

cm. Right: error distribution over the training, testing and validation

datasets. 99

4.10 Estimated water level at the sensor node ”8F90” from January 28 to

February 7, 2014. In this test, the artificial neural network is trained

onboard by the sensor node itself. 103

4.11 Water level estimation between May 6 and May 9, 2014, for sensor

nodes ”DC3B” and ”8F48” deployed in Umm Al Qura University campus.105

4.12 Raw ultrasonic measurements between May 6 and May 9, 2014, for sen-

sor nodes ”DC3B” and ”8F48” deployed in Umm Al Qura University

campus. 106

4.13 Custom-developed 32-bit microcontroller platform (9cm x 6.5cm) con-

nected to an XBee module and to PIR and ultrasonic sensors. 107

4.14 Prediction accuracy during different months on the sensor node ”A77D”

installed on our campus in November 2013, using training data from

December 2013 only. As can be seen from this Figure, the prediction

performance slightly degrades in February, though its performance is

still acceptable for flash flood monitoring applications. 108

14

4.15 Prediction accuracy during different months on the sensor node ”A77D”

installed on our campus in November 2013, using training data from

December 2013, with online on-board retraining of the parameters early

February 2014. As can be seen from this Figure, the prediction per-

formance has improved in February, compared to the results shown in

Figure 4.14. 110

4.16 Ground and ambient temperature during May 7 to 11, 2014 in KAUST

campus. The rain event on May 8th causes a strong drop in the mea-

sured ambient and ground temperatures. 111

4.17 Left: Testing confusion matrix resulted from evaluation 1 when the

dataset samples are randomly divided into training, validation and

testing datasets. The classification is almost perfect with accuracy

close to 100%. Right: Testing confusion matrix resulted from evalu-

ation 2 for the time dependency analysis. The average accuracy of 5

runs is as high as 90.2%. 114

5.1 Left: custom-developed IMU board with bluetooth module. Right:

real-time IMU data streaming from the IMU device to a Bluetooth

enabled smartphone. 121

5.2 In the proposed system, traffic data from IMU is integrated to the

fixed wireless sensor network, which computes the traffic maps using

distributed computing. The resulting traffic maps are then forwarded

to an output database . 122

5.3 The auto-calibration process. 126

5.4 Testing for four different orientations using a custom designed IMU

device plugged to USB port in a car. 126

5.5 Projections of the accelerations measurements on the plane perpendic-

ular to the gravity vector . 127

5.9 Accelerations in the frame of the vehicle, using classical kinematics. In

this Figure, r represents the radius of the curvature of the trajectory. 130

5.12 Blue: speed obtained by direct integration of the longitudinal acceler-

ation. Red: estimated speed using the optimization framework 134

5.15 In red, the result of the piecewise linearization of the complete trajec-

tory estimated by the dead reckoning algorithm.The blue curve shows

the estimation of our dead reckoning algorithms and the green lines

show the optimized segments using the piecewise linear optimizer. . . 138

15

5.6 Accelerations with respect to the sensor frame (Left figures) in an orien-

tation Oi and their corresponding rotated acceleration (Right figures)

after the auto-calibration process for four different random orientation. 143

5.7 The attitude angles (roll (φ), pitch (θ) and yaw (ψ) and their corre-

sponding axes . 144

5.8 Dead-reckoning principle. The input data from the IMU system in

represented in the leftmost boxes. 144

5.10 Stop detection measurement metrics represented in terms of standard

deviation of acceleration and gyrometer data over a time window of 1s.

The output of the thresholding filter is shown as a purple curve, and

matches the actual vehicle stops. 145

5.11 Estimated speeds at stops and turns, using the algorithms outlined

above. It should be noted that the estimated speed during turns can

be noisy, due to the increased vibrations of the vehicle during typical

turns. 146

5.13 The process of filtering the rotation rate measurement for a certain

experiment conducted in our university’s campus. (Bottom) the yaw

angle integral at initial point 0 degrees. 147

5.14 Trajectory estimation (dead reckoning) for some experiments/trips con-

ducted with our custom based IMU device and trajectory estimation

algorithms. 148

16

LIST OF TABLES

3.1 A systematic analysis over 9 nodes yields the following estimated ca-

pacities. 74

4.1 Comparison of the performance of 6 models 100

4.2 Comparison between ARMAX and NL regression when minimizing er-

ror in L∞ . 102

4.3 Evaluation of temporal robustness: comparing prediction accuracy in

different months when using NN trained by data in early December,

2013. 102

5.1 Sample of possible paths piecewise-linearized. The link parameters are

their length (in meters) and their heading change (in degrees), where a

positive heading change indicates a right turn and a negative heading

change indicates a left turn. 140

17

Chapter 1

Introduction

1.1 Background and motivation

The development of communication, computation and sensing has led to the emer-

gence of wireless sensor networks (WSNs), that allow distributed computation and

monitoring over large areas. WSNs have the potential to be very effective tools to

address and enhance a number of operational issues, including emergency response

during catastrophic events [1], pollution monitoring [2, 3], or environmental monitor-

ing [4]. Moreover, WSNs have the potential to offer economically appealing solutions

to these problems (both in terms of hardware, software and deployment costs). WSNs

have witnessed limited use in urban sensing applications to date, despite their signif-

icant benefits over traditional wired sensor network architectures such as [5]. While

sensor networks were expected to have an explosive expansion in the 2000s, the actual

number of deployed systems is substantially below the most pessimistic forecasts, as

illustrated for instance by the ON World, In-Stat, WTRS, Harbor Research 2006

forecast which predicted that between 80 million to 150 million units would be shipped

in 2010, while only 45 million units were shipped one year later in 2011. One of the

biggest challenges emerging with WSNs is their relative lack of performance and

reliability, which prevents the use of highly sophisticated processing software that

would be required for many applications. In particular, small scale deployments in

a controlled setting can be misleadingly simple, and do not show the real difficulties

associated with extensive and long wireless sensor network deployments [6, 7, 8].

18

In urban environments, sensing systems [2, 9] include traffic flow sensing [10],

smart parking [11], pollution sensing, or smart infrastructure applications, such as

in [12, 13]. In this thesis, the sensor component of a prototype urban flood and traffic

wireless monitoring system using Lagrangian and Eulerian sensing is investigated.

We selected a solar powered, wireless sensing system to allow fast and economically

efficient deployments, lowering the global cost of the installed system, because a large

part of the overall cost of an urban wireless sensor network is due to installation. How-

ever, full wireless sensor networks present unique advantages over wired, externally

powered (using the power grid for instance) sensor networks typically used for traffic

sensing, such as the PeMS system [5], or the Sensys system [10], which has a hybrid

architecture: it consists in a set wireless nodes connected to a base station, which is

itself connected to internet through wires. While WSNs have been extensively used

in the past, relatively few applications are related to urban sensing. In particular,

WSN solutions in urban environments are rarely fully wireless, and usually consist

in mixed architectures with a wired network of gateways and relatively small wire-

less networks around them. Climatic conditions can make successful sensor network

deployments extremely difficult to achieve in the long term which arise in a large

number of urban areas that are located in desert or arid environments, for example,

in North America, central Asia or north Africa. In addition, in areas that are prone

to rainfall or natural disasters, more challenges make the deployments and the value

of accurate and reliable information increase significantly which is the essence of the

development of WSNs.

Two thirds of the world’s population live in cities, where 75% of these cities are

actually costal. With the population expansions, energy requirements and climate

change that results on many natural disasters, cities nowadays need to be offer safe

and secure environments for its residents under any circumstances. Among these

natural disasters, floods are the most commonly occurring [14], accounting for more

19

than half of natural disasters worldwide. Floods caused more than 120,000 fatalities in

the world between 1991 and 2005 [15], (resulting in over 6000 causalities annually) and

are a major problem in many areas of the world. Recent examples of catastrophic flood

events include the 2014 floods in Kashmir, India (between 300 and 400 casualties),

the 2013 flash floods in Argentina (more than 75 casualties) or the 2014 floods in

the regions of Mecca and Jeddah (Saudi Arabia) that resulted in more than 135

million USD of losses. Among floods, flash floods are short triggered events that

usually peak in a couple of hours. Most flood fatalities are caused by flash floods,

and most flash flood victims die due to drowning [16, 17], which could be avoided by

providing realtime, accurate and efficient flash flood maps to the population (through

standard information channels). Unfortunately, at the present time little warning

exists beyond weather imaging and forecasts, which are nonspecific and unreliable, i.e.

these warnings are associated with a very high false alarm rate. Monitoring floods in

real time somehow requires sensing the flooding conditions [18], which includes water

presence, water levels, water velocity and rain rate. Current available static water

level sensors are only adjusted to river monitoring but not to situations in which the

runoff does not correspond to permanent rivers. Instrumenting entire hydrological

basins, which can cover hundreds of square miles, is economically infeasible, since the

lifetime of a sensor network is usually less than the mean time between catastrophic

flood events. Satellites are also unable to accurately monitor water levels and water

flows remotely: optical measurements are impossible during floods due to the severe

rains associated with floods, and the vertical resolution of currently available synthetic

aperture radars is insufficient.

For all these reasons, a wireless sensor network would be the best approach to

flash flood monitoring in cities. We discuss this in Chapter 4. To be economically

viable, this flash flood sensor network must have a secondary sensing capability that

justifies the cost of its purchase and deployment. Other critical issues in cities include

20

for instance air pollution or traffic congestion monitoring. Intelligent Transportation

Systems (ITS) are critical in reducing traffic congestion, increasing safety and pro-

ductivity. Since traffic congestion is a worsening issue in most countries, monitoring

congestion levels in real time is of critical importance: it not only enables better

information to be relayed to users, but also paves the way to efficient traffic control

system [19]. Traffic monitoring includes the measurement of vehicle speeds, flows,

density and the classification of vehicles in different categories (for instance buses,

trucks or light vehicles). Current ITS systems typically rely on wired sensor net-

works, for instance the PeMS system in California [20], which do not have specific

power requirement constraints. Alternate systems do exist, such as wireless sensor

networks [21], which are much easier and cheaper to install and operate.

Unlike existing traffic sensing infrastructures, the proposed traffic sensor network

is to use both mobile (Lagrangian) traffic data (which is the objective of this thesis

in this particular context) and fixed (Eulerian) , and to process the data at the node

level (using a macroscopic traffic flow model) to generate traffic estimates. Static

(Eulerian) traffic data is generated by fixed traffic flow sensors, while Lagrangian

data is collected from vehicles equipped with a positioning device and a short-range

transceiver described in Chapter 5. Given that this sensor network is to be deployed in

an urban desert environment, we initially focused on all the operational constraints

associated with the operation of a wireless sensor network in urban cities, includ-

ing packaging, deployment limitations, data accuracy, energy management and long

term reliability. The current state of the art in traffic flow estimation is provided

using satellite systems that are rather unavailable in some urban areas because of the

canyon effect, and even when GPS is available, it is often less accurate because of the

multi-path effects. Therefore, we have investigated a satellite free solution based on

inexpensive IMU devices that offers more benefits, particularly because of the context

of detection that the GPS systems unable to achieve.

21

The first implementation of this system was done using Libelium Waspmote®, a

commercial hardware platform based on Arduino platforms, which we believe is typ-

ical of the WSN products available on the market. Over a period of three years, we

conducted several tests and deployments to evaluate the performance of the system,

as well as its reliability (presented in Chapter 2). The experience obtained from these

experiments has shaped the research activities of the thesis, which lie in hardware

development, energy estimation, water level estimation, and traffic flow monitoring

algorithms. These initial assessments and investigations of the systems led to the

understanding of the lack of more capable microcontrollers that would offer better

processing powers that would reduce the overall system cost and energy usage specif-

ically dedicated to the applications of concern.

1.2 Related work

We currently focus on sensors that can monitor simultaneously flash floods and traf-

fic congestion in urban environments. Multiple sensing principles can be thought of

in the context of traffic monitoring, including magnetometers [22], RADAR (Radio

Detection And Ranging), traffic cameras [23], acoustic sensors [24], [25], or LIDAR

(Laser Infrared Detection And Ranging) [26]. These sensing methods are typically

expensive, since they require advanced processing circuitry, specially in the case of

cameras, RADARs and LIDARs. In contrast, passive infrared sensors (PIRs), [27],

[28] and ultrasonic rangefinders [29] are low cost, reliable and small, and can be readily

used for both sensing applications. They are particularly suitable for traffic monitor-

ing systems as they can be easily deployed on the road sides or on traffic lights, and

can measure without contacting the target. They can also monitor distances, which

make them particularly suitable for the present flash flood monitoring application.

In this thesis, we propose a new type of traffic and flash flood sensors based on the

combination of ultrasonic rangefinders with one or multiple passive infrared temper-

22

ature sensors. This sensor combination can be used as a backbone for a dual urban

traffic/flash flood WSN, since it can monitor vehicle speeds, counts, density and ve-

hicle types as well as pluviometry, water presence and water level with a relatively

high degree of accuracy.

Current flash flood estimation algorithms rely on forward simulations of the as-

sociated hydrological basin using hydrological models, which are combined with real-

time measurements (or prior information) using for example Extended Kalman Fil-

tering [30] or Particle Filtering. The underlying models are typically the Shallow

Water Equations (SWE), which are an approximation of the Navier Stokes equations

for problems involving shallow water levels (which typically occur in floods). The

shallow water equations are a partial differential equation (PDE) that describe the

evolution of a body of water under the influence of gravity, ground friction, and rains.

The state of the body of water is encoded by two functions, the velocity function and

the water level function. In almost all instances of flash floods, the diffusive wave

approximation to the shallow water equations (DSW, [31]) can be used. The DSW

equations are a simplification of the shallow water equations, used to model flows

where the vertical momentum is small relative to the horizontal. With this approxi-

mation a single function (for instance the level of water) is sufficient to describe the

state of the system.

The main issue arising when dealing with hydrological models is their inaccuracy,

particularly because of large uncertainties on the runoff coefficients or the terrain

altitudes. As an example, parameters of the inundation models such as the Manning

coefficient are highly uncertain, even with high resolution satellite maps or LIDAR

surveys [32]. For instance, the Manning coefficient associated with boulder terrain

can vary from 0.04 to 0.07, a 70 % relative uncertainty [33]. An example of river

level estimation using the combination of hydrological models with rain rate data is

illustrated in article [34] by Li et al, for monitoring and predicting floods in Africa. In

23

this study [34], discharge rates of rivers are estimated using satellite precipitation data

as well as ground precipitation data from a network of weather stations. Despite the

very high accuracy of satellite precipitation data (with a spatial resolution on the order

of a few hundred meters), the actual discharge rates in the rivers vary significantly

from the results of the simulations. Furthermore, a relatively high proportion of

floods occur in desert areas (for instance the 2014 Indian/Pakistan flash floods), and

are not associated with rivers that exist for long periods of time, and for which

no extensive satellite data allows the calibration of the model. Recent efforts have

shifted towards adding real time flooding data (for instance in the form of water level

or water velocity measurements) to the estimation process, to improve the quality of

flood estimates over pure simulation. One such flood WSN is described in Basha et

al [1], for monitoring and predicting water levels in an hydrological basin located in

Nicaragua, using direct water-level measurements as well as precipitation data.

Other flood monitoring systems exist, in particular satellite-based or UAV-based

(unmanned-air-vehicle) optical systems. For instance, an UAV-based system has been

developed by [35]. More recently, in 2011, a Predator B drone from the US Customs

and Border Protection office was used for flood mapping in Minnesota and North

Dakota. However, in all of these operations, the focus of the operations was flood

damage assessment, not real-time flood monitoring. All UAVs used in this context

mapped the area using cameras, which cannot be applied to most flash flood sensing

applications in which visibility is typically very low (high rains, mist, sand).

The use of synthetic aperture radars (SARs) in lieu of cameras is also discussed

in [35]. While SARs are impervious to visibility problems, and can map extensive

areas even during floods, their resolution is far too low for real-time monitoring [35],

and are thus only used for post damage assessment. Typical SARs resolution is

between 1 to 20m, though only 6 inches of fast moving water can knock an adult

over [36]. An additional issue with SARs is their sensitivity to turbulence [37], which

24

makes them impractical for flash floods, which are usually caused by thunderstorm

cells.

1.3 Research Objectives

The main objectives of this thesis come here:

• To improve the energy optimization for the solar powered WSNs. A global

optimization will be considered where the aim is to prolong the life time of the whole

network and fairly utilize the resources. New algorithms will be applied as well as

utilizing the available PDE models by tailoring that and investigating the possibility

of introducing these models to WSNs in order to better optimize the energy.

• To accurately identify and forecast flash flood incidents through the estima-

tion of water level and rain presence to provide the population early warnings and

information on the impending flood (type, location, severity).

• To design a new system for probe sensing that offers several advantages over cur-

rent, satellite-based systems. The system should be immune to multi-path effects and

more economical than GPS-based systems and be able to be operational in very dense

urban environments (with tunnels, underpasses and overpasses), and do not provide

absolute location information, which greatly reduces the risk of privacy intrusion.

1.4 Main contributions

The main contributions of this thesis are as follows:

• Novel, dual use (traffic and flash flood) sensor system that addresses a key

economic requirement in flash flood sensor networks (since flash floods happen very

infrequently), providing high accuracy water level estimation (less than 1 cm) which

enables flood detection and early warnings for cities to be more resilient and efficient.

• Providing a proven efficient and real time algorithms for traffic and flash flood

monitoring application for better resource allocations and better decision making.

25

• Design of algorithms for generating traffic flow measurements from inertial data

generated by probe traffic vehicles that provides better accuracy, and more economi-

cally efficient benefits.

26

Chapter 2

Solar-powered WSNs Architecture for traffic and flood

sensing applications

In this chapter, the experimental and technical experience gained during the early

years of the PhD research and tasks is discussed, that included the selection of the

sensor network nodes, implementing wireless routing protocols, and development and

deployment of several WSNs on the campus of KAUST. In order to study the feasibil-

ity of computation, communication and sensing capabilities of sensor network nodes,

one need to consider many constraints related to planning, testing and environmen-

tal conditions that would make a successful long term deployments of WSNs, a real

challenge for nowadays applications specifically, i.e. flood and traffic monitoring.

We had to survey the available wireless sensor networks architectures, and in-

vestigate, the design, previous deployments, energy management, the environmental

perturbation, and visualization in order to comprehensively understand the hardware

and software needs of such network scheme. All of this experience and investigations

are in the following sections.

2.1 System design

2.1.1 Proposed urban flash flood and traffic sensing system

architecture

We proposed a system network that consists in a different wireless sensors, connected

to a database in a centralized manner. The vision was towards having a client queried

27

database or feed others based on-demand location services, e.g. monitoring applica-

tion that could extend beyond traffic or flash flood.

Sensor nodes (types, and roles):

The sensor nodes can be classified into three major roles: communication (between the

WSN nodes), computation (distributed traffic inference, vehicle tracking, water level

estimation, flood forecasting, fixed sensor data processing) and sensing (the actual

sensing mechanism). Two types of sensing methods are available and considered

in our study: Lagrangian (mobile) or Eulerian (fixed) sensing, resulting in Eulerian

sensing nodes and Lagrangian sensing nodes. Eulerian sensing nodes consist in fixed

traffic flow sensors, for instance inductive loop detectors [5], magnetometers or traffic

cameras. The remaining nodes are called Lagrangian sensing nodes, and collect traffic

data broadcasted by short range transponders onboard vehicles. All nodes are fixed

in the urban environment to monitor, and are forming a wireless mesh network. The

sink node (a node where all data are gathered and logs in the data to database) is

placed in the range of the rest of the network. Also we are considering the presence

of multiple databases/gateways which can reduce network load.

Principle of operation:

The operation of our system runs on the following principle. All the nodes (fixed

and mobile) are contributing to form a wireless mesh network, which can be clus-

tered potentially. Each set of nodes in a close proximity can form a subnetwork

(cluster) for distributed computing purposes, that computes local sensing conditions

independently from other clusters. In each subnetwork a local coordinator is chosen

to supervise computations from the rest of the nodes in a certain subnetwork. This

local coordinator node can be the node with the highest current CPU and/or energy

level (depending on the limitation specified in the system)

Probe vehicles sensors (Lagrangian) broadcast their location and/or speed infor-

28

mation to surrounding sensing nodes, which temporarily store this data as well as

network connectivity data (RSSI, CRC). All location (if any), speed and connectiv-

ity data is forwarded to the local coordinator node. If no positional information is

available to probe vehicles, the coordinator node estimates the corresponding vehicle

positions in the road network using inputs from surrounding nodes. Vehicle mapping

can be done through a variety of methods, for example using RSSI data, or map

matching . The sensing nodes can also send some control parameters to the probe ve-

hicle transceivers to adjust their transmission rate, to minimize packet collisions when

a large number of users is present, or increase accuracy in the converse situation.

Also, along with the traffic data transmitted from the Lagrangian nodes, the

coordinator receives data generated by the fixed sensor nodes in the subnetwork for

the applications of concern, and this data can be categorized in two types:

1. Raw data measurements, e.g. point data of sensors, point velocity, flow or

density data, generated in different areas of the road network and at different

times.

2. Integrated (processed) values, such as the vehicle travel time between two given

points, or corrected water level.

2.1.2 Technological choices

At the start of the assigned PhD work, we investigated and decided to select solar

powered multi-hop wireless sensor networks over other possible technologies (for in-

stance a network of 3G platforms connected to the cellular network, and powered by

the grid) for multiple reasons:

• Reliability: the considered design is aiming at working 24/7 around the clock

in order to provide cities with the correct and most accurate information. This

is achieved through the independency of power grid or cellular networks, hence

29

these two could be affected by the monitoring of a phenomena, such as the

flood.

• Cost: the cost of each sensor node is currently of the same order of magni-

tude of the cost of deploying these nodes, even though no complex installation

(connection to the grid, connection of data cables) is required. Connecting the

system to the grid or using the 3G cellular network could solve a large number

of problems, though these options make the system much more costly overall,

which reflects a lot on the scalability of our sensor nodes.

• Privacy: the objective of our proposed system is to use distributed computing

to estimate the state of traffic, for example, from anonymous short range user

velocity data. To preserve privacy (even anonymous location tracks can be

attacked in some circumstances, see for instance [38]), it is imperative to use

local estimation and communication, which mandates the use of a multi-hop

wireless sensor network.

• Redundancy: using the cellular network would prevent the system to operate

when this network is saturated, which can happen during critical event (earth-

quakes, natural disasters...) during which traffic information is very useful to

organize the evacuation of a city, resource allocation and the relief work.

2.2 Experimental experience

In this section, the experimental experience and setup used for the early PhD work

is presented, including the hardware and the objectives of the deployments we had.

These experience has led to many significant insights shaped the way for the rest of

the dissertation work explained in the coming chapters.

30

2.2.1 System

For the first generation, we used Libelium Waspmotes®, a commercial platform

based on the Arduino platforms, whose specifications are given in the following table.

Component specifications

CPU ATmega1281

Clock frequency 8 MHz

EEPROM 4 KB

RAM 8 KB

Flash 128 KB

SD up to 2 GB

Radio XBee-802.15.4-Pro

Frequency 2.4 GHz

TxPower 100 mW EIRP

Range Up to 7000 m

Following the first experiments with this platform in 2011, some minor hardware

and software modifications have been added. The platform used in this work only

implements software reset, which does not clear the memory, and merely points the

execution to the beginning of the program. Since memory leaks or memory corruption

are a real possibility (as evidenced in earlier trials), we added some basic hardware

reset circuitry (see section 2.3.1), and modified the API accordingly.

We also commented out large number of unused functions from the API to increase

available memory.

2.2.2 Objectives of the WSN deployments

The general objective of the sensor network deployments was threefold.

• First and foremost, assessing the overall reliability of the platform, and the long

31

Figure 2.1: One assembled and deployed sensor node as part of the early experimental
deplyoments.

term performance of the code.

• Second, to test the environmental impact of hot and desert conditions on the

remainder of the hardware, including solar panels, batteries, enclosures and

mounting frames. (more focus on this purpose is explained in section 2.4)

• Finally, the data generated by the sensor network (in particular the energy data)

is invaluable to determine what the proper cost to energy dependence should

be. We are using this data on sensor network simulators to optimize the cost

function parameters.

2.2.3 Major Deployments (KAUST Campus)

There have been many experiments that were conducted to evaluate and test the

network over the period of two years (2011- 2013):

• The first deployment was carried out between November 2011 to March 2012,

and consisted in 12 motes plus a sink. The motes were running a simple pro-

tocol in which the routing tables were fixed, and the radius of the network

32

was only two hops. The nodes generated energy and RSSI data for all in-

coming links. We used two different transmitter modules: XBee-802.15.4 and

XBee-802.15.4-Pro (with higher power) to confirm that they did not differ sig-

nificantly (beyond their radiated power levels). The routing protocol was based

on unicasting energy and RSSI messages to fixed successors and by broadcasting

test messages to allow RSSI updates. The deployment worked well because of

the relative simplicity of the code, the simplicity of the topology and the lack

of reliance on SD cards for storing network route. However such a networking

scheme is very limited: it only allows fixed topologies, and requires each node

to operate a code with different parameters (fixed successors).

• The second deployment was carried out in May 2012, and consisted in a total

of 80 nodes deployed (though no more than 52 were operational at any given

time). The maximal radius of the network was 7 hops. The network was

tested from 18th of May to 9th of June 2012 to assess the protocol functionality

besides testing the energy, RSSI and connectivity of the motes and their links

. All transceivers used in this deployment were XBee Pro. Node cost, node

energy and link RSSI (with the associated number of packets received during

a time cycle) were sent to the sink every cycle (total cycle duration was 5

minutes, though it is set by the sink during the discovery phase and can be

modified). Link failure detection and propagation was implemented, and has

been confirmed to work on at least two instances (see Figure 2.2 for one of such

instances).

It should be noted that two weeks were required for the deployment of this

large sensor network to be completed, including the maintenance of some of

these nodes. Figure 2.2 shows our web visualizer during a time at which the

sensor network was near its performance peak. The number of responding

nodes sharply dropped thereafter, particularly after a network discovery during

33

which the operating parameters significantly deviated from the tested values.

The sensor network became largely unresponsive by July 2012. Overall, the

experiment had mixed outcomes: success on the short term, failure on the long

term, because of the lack of robustness in the code and of our overly optimistic

assumptions.

• Based on additional unit tests following the previous experiment, we discovered

that the SD cards were causing irremediable problems. We thus developed a

newer, more robust (albeit less energy efficient) version of the (code)/node soft-

ware in which no SD card is used, and in which node cost is updated periodically

by nodes based on messages from adjacent nodes. Because of the difficulty and

cost of deployment, we chose this time to place 40 nodes on low-level obstacles,

near the campus area. Operations started in December 2012, and are still on-

going as of April 2013. In this deployment, range has been severely reduced

because of Fresnel zone obstruction by the obstacles and by the ground.

2.3 Lessons learned from the WSN deployments

We have gathered significant field experience following the multiple deployments car-

ried out during the first three years of my PhD work along with lab team at KAUST.

These lessons learned helped determine the research priorities of the group and my

own thesis work, by underlining the most critical issues of the current sensing plat-

form (which we believe is typical of commercially available systems). Some of the

issues we found have implications for all testing environments, while some are specific

to the urban and desert nature of the test location. The city in which the tests were

carried out has a typical temperature ranging between 25 C (low) to 45 C (high)

during the tested time frames, and is tens of square kilometers wide.

The main lessons learned are summarized in the list below:

34

Figure 2.2: Our 2nd major deployment of 80 motes in May-June 2012, on the campus
of KAUST (max latency: 1 hour/12 cycles)

35

1. Software and hardware faults are the regular issue to expect, in particular for

mid term and long term deployments (many days or months). Debugging is

always a complex operation, and a large number of bugs come from the API

(the software libraries of the wireless motes/nodes).

2. A successful WSN deployment cannot be called so until it operates on the

required period of time. As an example, our second experiment (80 nodes

deployed among which 52 were functional) was successful during a few days,

before failing catastrophically over the next few weeks.

3. Hardware specifications and data sheets are overly hopeful. Advertised ranges

or data rates are very far from what can be achieved. For example, the data

rate of an XBee transceiver is 256 kbps in reception, while in practice only about

3-4 packets per second (3.2 kbps) can be achieved due to API limitations.

4. Current commercially available systems have good performance when operating

at extremely low duty cycles (for instance parking, or smart building applica-

tions). However, they are unsuitable (in the long term) to applications for which

the duty cycle of sensing/computations is high, and to applications for which

multiple sensing/computing applications exist.

5. Issues that might seem minor, such as, code structure, packaging, visualization

and database take a substantially high amount of time

6. Results of previous deployment experiences (in the literature) in vastly different

environmental conditions are not transposable to our experiment given all the

unique conditions. While a number of system issues have been experienced

by numerous groups, specific issues caused by the climate, the environmental

conditions associated with the operation of solar panels and by the high-power

high-range (smart-city) nature of the deployment.

36

We now describe the challenges we faced, emphasizing on hardware performance,

API limitations, and limitations caused by the platform design. All these consider-

ations were integrated by our team to design a more advanced platform, similar in

philosophy to the IMote2 [39] and based on a ARM Cortex M4 processor, which is

used in the following chapter and explained in greater details which I helped develop.

2.3.1 Design challenges

Solar panels performance:

One might presume that the availability of sunlight in a desert environment such

as ours with a large solar panel that can leverage this enormous energy would be

enough to operate a WSN. Indeed, by that time our nodes were powered by a 3 W

solar panels, which is considerably higher than the average power draw (90 mW for a

40% duty cycle). Actually, only one hour of direct solar panel exposure is enough to

power our motes for an entire day, theoretically. However, in practice, a high number

of nodes ends up being out of energy, due to two main factors, i.e. environmental

conditions and shadow patterns.

The first factor is environmental conditions such as dust and humidity: humidity

is high whenever the desert urban area is located near a water body. Dust storms

deposit a layer of dust, which can cause more than 90 % loss in solar panel output.

Humidity can turn the layer of dust into a mud, preventing it from being blown away

by high winds. To complicate matters, dust deposition on nodes is far from being

uniform, and is not only a function of solar panel orientation, but also depends upon

its position in the city as well (since winds vary significantly in a city), as evidenced

by Figure 2.3. While solar panels were all distributed within a 1 sqaure km area,

dust accumulation on the solar panels varies a lot, which makes it hard to infer solar

energy availability and mandates energy-aware protocols.

The second factor is the unpredictable shadow patterns caused by surrounding

37

Figure 2.3: Irregular dust and debris accumulation on solar panels after a two month
experiment. Left: solar panel before deployment. Center left: low dust accumulation.
Center right: high dust accumulation (fingerprints visible on the right are caused by
node handling after removal). Right: solar panel littered with debris from trees and
birds.

buildings (including the street light itself) in cities. While we always deploy nodes

by orienting them towards the sun, shadows vary significantly during the year. In

particular, a successful deployment in summer might very well fail during winter time

as cast shadows are much more prominent. Cast shadows can also reduce solar panel

output by 90 %: we measured 20 mA at 12 V for a 3 W peak solar panel in a shadow.

Consequently, this will have a direct effect on the energy levels of the network

motes, as illustrated in Figure 2.4. The energy patterns of the motes can differ in a

significant way, even for similar node orientations. The main causes of node energy

variability are:

• Motes positions on the maps are different, which means very different shadow

patterns.

• The orientation of the steel frame (which is sometimes dictated by connectivity

constraints and not energy constraints) can dramatically affect energy level of

motes (the power output).

• Debris and dust, which accumulate at different rates.

• Battery capacities are a function of the condition of the battery, which de-

pends upon its temperature and charge characteristics [40] (also explained in

38

Figure 2.4: Battery energy evolution during 14 days for four different motes

Chapter 3). Figure 2.4 illustrates some dramatic variations of battery capacity:

while all batteries are charged up to a similar maximal value, node AA95 has

a fairly fast discharge rate during nights, though its energy consumption does

not significantly differ from other nodes.

Packaging:

Packaging and enclosures are essential requirement for outdoors operation. Its design

is a function of a number of factors, including material cost, weight, RF transparency

and robustness. Since nodes were deployed high on street lights to enhance connec-

tivity (see Figure 2.1), the location of the antenna (transceiver) relative to the street

light column is important. From a structural engineering prospective, it is easier to

place the mote, battery and enclosure (which concentrates most of the weight) near

the street column, to reduce both weight and torque caused by wind drag. However,

from a communication standpoint, this causes a significant loss of range due to the

39

Fresnel zone obstruction by the metallic street light column. The first deployment in

November 2011 showed indeed that the RF signal attenuation by the street light in

this configuration was unacceptably high, and the design was thereby updated (Fig-

ure 2.1). The enclosure is made of plastic (with some silicone sealant) and does not

significantly attenuate the signal. To mount the solar panel and the enclosure, we

used a steel frame, which was easy to prototype, albeit heavy and corrosion prone (de-

spite being painted with a heat treated paint). For the next generations, we designed

a new frame in Aluminum, with better weight and corrosion resistance characteris-

tics. In addition, as initially designed, opening an enclosure required removing the

silicone sealant and unscrewing the cover. The following design contains an external

switch, an external USB socket as well as six external programmable LEDs. LEDs

are very important to quickly check in the field that nodes are powered on and that

solar panels are connected to the circuit board. This newer proposed design, illus-

trated in Figure 2.5, also allows the tilting of the solar panel while maintaining a

vertical orientation for the node antenna and is considered in later chapters in this

thesis. This was not the case with the previous system (explained in this chapter),

negatively impacting its performance.

Hardware interface and bus sharing:

Bus sharing could be an efficient way of utilizing and optimizing the size of hardware

device, from a hardware designer prospective. When planning for that, it is important

to classify the tasks or chips connected to satisfy the user convenient as well as

extending the life time of the device. In the commercial system used for at that

time, UARTs (Universal Asynchronous Receiver/Transmitter) have been shared with

many integrated circuits (ICs). Out of several ICs, the XBee module and the mini

USB connector are using the same UART, which requires the user to unplug the XBee

when uploading the code through the USB connector. However, this decision to share

the same UART brings much more than a small inconvenience in practice. It gives a

40

Figure 2.5: Top: node packaging for the first generation deployments explained in
this chapter. Bottom: updated packaging (CAD design) explained in Chapter 4.

higher chance for dust or humidity to enter the sockets when code uploading is done in

the field. It also prevents the use of an external USB socket on the enclosure, thereby

forcing the opening of the system each time a code upgrade is necessary, dramatically

affecting the overall reliability. The new platform considered in the following chapters

solves this issue.

Reset circuitry:

Out-of-date software degrades the performance of the WSN due to corrupted data,

unbounded resource consumption and the accumulation of numerical errors [41]. No

matter how thoroughly the code is tested, it is always possible to have a memory

leak caused by some part of software. We found that resetting the mote periodically

is a solution to this problem. It can be done either virtually (based on software), or

physically (hard reset). In the platform used at that moment, the node reset function

merely points the execution to the beginning of the code (software reset), and does

not clear the memory. Thus, this function is not very practical: a node that is hanging

will not self-recover. Node crashes happen very often in practice due to various API

41

bugs or hardware limitations. To allow hardware reset, a simple physical reset circuit

(a resistor connected to a GPIO and soldered to the reset pin of the microcontroller)

was implemented. Consequently, the protocol was designed to support new motes

rejoining the network and synchronizing with surrounding nodes at any time.

The new platform that I helped develop with the rest of the research group con-

tains a self-reset circuitry connected to an independent RTC, which will reset the

mote even if the microcontroller or transceiver are unresponsive.

2.3.2 Hardware limitations and their impact on experiments

Memory

To build an advanced sensing system that can perform complex algorithms (such

as machine learning, and smart preprocessing), memory availability is an important

requirement to consider. Thus, a limitation on the memory brings severe restrictions

on what can be implemented in practice. The memory specifications used in the early

deployment platforms are as follows:

• Static random-access memory (SRAM): the hardware platform used initially

has 8 kB as SRAM, with only 2 kB free. Handling an incoming packet requires

0.7 kB. Commenting some unused libraries brought back an additional 2 kB,

though free memory is still insufficient to implement anything but the simplest

algorithms or functions. To complicate matters, the memory management does

not handle memory fragmentation well. In particular, the Freememory function

that is used to check free SRAM in the API is not handling pointers correctly

whenever memory is fragmented, and returns a lower value than the true avail-

able SRAM. We validated this by allocating and freeing some memory, with

seemingly permanent memory loss. Though the microcontroller senses the true

available memory at all times and can allocate it, not being able to track mem-

ory usage is very problematic in practice, in particular since free SRAM is very

42

low.

• Secure Digital (SD) card: the Waspmote supports up to 2 GB (FAT 16) SD

cards. While this provides extensive storage, it has its own drawbacks. One of

the main issues with the SD card lies in its slow writing and access times. Lab

tests showed that writing one byte to the SD card takes 23 ms, while reading

takes 12 ms. In addition to the hardware speed, the SD card library caused

random mote resets when accessing the SD card. These bugs, which caused the

progressive failure of the sensor network deployed in May 2012, were largely

solved in the latest API version released by Libelium early 2013.

• Flash ROM : this platform has a programmable flash memory of 128 kB. Even

though this number seems respectable, we were close to reaching its limits with

the routing protocol alone. Indeed, our routing protocol was occupying more

than 102 kB (for a total length of more than 6000 lines).

All the above mentioned constrained have an influence on what can or cannot be

done in practice. For example, to determine the route costs, one need to access the

SD card for routes, for RSSI values and for energy statuses data. This is because the

SRAM has a limited space and loading all of these values is impossible. Therefore, we

have to calculate the cost of each route, individually. Each cost computation requires

the loading of a route, its associated RSSIs values, and the associated node energy

statuses. As mentioned earlier, reading the SD card takes approximately 12 ms. For a

sensor network of 80 nodes, a few hundred links, computing one cost would take on the

order of a second. This would have to be multiplied by the number of routes, which

is typically large, in particular for nodes at higher levels where it reached hundreds.

This is the reason for which we stored the link RSSI data with the routes during

the discovery phase, allowing all data to be loaded together. However the downside

of this is that link RSSIs values cannot be updated, as this would require reading

43

and overwriting the RSSI values in a large number of places in the SD card, which is

again too slow to be implemented. This shows how some seemingly inconsequential

hardware limitations severely impact the overall system capabilities.

We avoided the use of an SD card altogether in our third deployment. This made

the system much more robust with more than 30 days of successful deployment and

allowed some extra free SRAM to be available (since SD libraries were not called

nor required). We were not able construct advanced routing, scheduling or sensing

algorithms, because of the extremely low available memory (both ROM and SRAM).

Though some work could have been done at the API level to improve both access and

writing times, as well as reliability, the SD card is not, with no doubt, a valid solution

to the lack of memory at that point. These considerations together with the project

requirements motivated the design and development of a sensing platform explained

in Chapter 4. It contains 192 kB of SRAM (128 kB in practice) and 1 MB of ROM

(768 kB in practice), an external flash memory (32 MB) as well as an SD card slot.

This should allow more advanced computations to take place, though memory is still

highly constrained compared to an embedded computer.

Connectors, switches and battery faults:

Short and long term deployment reliability is affected significantly by the connectors,

switches and batteries used during these deployments. Switch faults can both cause

a mote to fail to switch on as commanded, or to operate even with the switch placed

in off mode (which occurred in one of our tests). In addition to switches, connectors

are notoriously unreliable, even if when they are professionally soldered. Vibrations

occurring during transport on flatbed trucks, or during deployment can break the

relatively fragile leads used to connect the board to the solar panel. One of the

most common problems that we faced is faulty solar panel connectors, and faulty

jumpers on hardware platforms (though the company Libelium provided us jumper-

free Waspmotes following our requirement. The newest Waspmotes versions are also

44

jumper-free). During our largest outdoors deployment, we collected all nodes at a

given location for post deployment analysis, which showed the following problems:

• 26% of the motes were completely out of battery due to unreliable solar panel

connection (bad contact).

• 24% of the motes have unreliable switches.

• 50% of the motes only had an “on” LED functioning properly (i.e. on when the

mote is powered on).

These above numbers and facts are high, and are probably related to the numerous

pre tests conducted with open enclosures (to facilitate code upload without always

having to screw and seal the upper cover).

The Waspmotes are supplied by default with a 2.3 A.h Li-ion battery. While the

capacity of this battery theoretically allows more than two days in listening mode,

battery capacity considerably degraded in the hotter conditions associated with the

urban, desert environment (discussed in more details in Chapter 3). While Li-ion

batteries have a very good energy density, and a sufficient power density, their per-

formance degrades significantly with temperature. We have estimated their maximal

operating temperature to 45-50 ◦C, which is a common figure for Li-ion batteries [42].

The ambient temperature at the deployment site was always below 45 ◦C, though the

box temperature occasionally reached 50 ◦C in the sun (measured with a remote IR

temperature sensor). In these conditions, the degradation in battery performance

was very fast, particularly for batteries that had a high charge. Figure 2.6 shows

one of the batteries that was recovered following the deployment of May-June 2012.

This battery was dramatically affected by the outdoor temperature compared to a

normal battery, and suffered from “battery bloat”, in which the outer shell ruptured,

causing a dramatic loss in capacity. While the battery shown in Figure 2.6 represents

an extreme case, most batteries were affected at various degrees by this phenomenon.

45

Figure 2.6: Left: effects of high outdoor temperature and high charge on a Li-ion
battery. Right: A new Li-ion battery

For the coming explained next generation of sensor nodes, Lithium iron phosphate

(LiFePO4) batteries will be used as a primary rechargeable battery. Though their

energy density is slightly lower, their maximal operating temperature is much higher

than Li-ion batteries, and have a much higher maximal number of charge/discharge

cycles. The battery capacity was extended to 8 Ah, though it will probably be

extended further to guarantee high enough reliability during actual operations.

Transceivers and their limitations (the wireless modules):

The wireless modules used in all platforms for the second and third deployments

in the early work were XBee-Pro modules implementing the IEEE 802.15.4 standard

at 2.4 GHz. We set the modules to their maximum power (i.e. 63 mW), which results

on 100 mW EIRP, that is legal in most countries. Power consumption is relatively

high with a transmission current of 180 mA at this emission level. While reception

requires 50 mA, making the wireless transceivers the main energy consumption entity

in this hardware platform (which is in most of the WSN deployment cases)

Since the firmware of the XBee is a closed source, we cannot program its protocol

which is perhaps the best approach. Therefore, our protocol have to be implemented

at the micrcontroller level. The Waspmote API has some useful functions to set up

a wireless network, which allows programming at a higher level. We can also send

commands directly to the XBee transceiver by setting it to a transparent mode. Also,

46

the textttWaspmote API does not support selective mechanism for clearing packets,

instead it clears the whole buffer (including the non-corrupted messages) which is

also considered as major limitation using these kind of transceivers.

In fact, the most serious issues occur on transmission and reception rates, as

well as link dissymmetry issues. The XBee transceiver specifications tell that it is

capable of 256 kbps transmission rate. However, we found that the actual maximal

transmission rate is much lower. First, the API only supports serial data rates up to

38400 bauds. Higher rates are possible, though they lead to a much higher number of

transmission errors. This gives a theoretical maximum of 4800 bytes per second, or

41 packets of 115 bytes per second. However, unicasting or broadcasting a 115 byte

(including overhead) packet with the Waspmote API takes about 190 ms, which limits

the transmission rate to less than 500 bytes per second (excluding packet overhead).

Of course, setting the XBee in transparent mode leads to higher value, but remove

support for important features such as encryption.

Though the actual transmission rate that we found is quite low, it does not cause

much problems besides a smaller bandwidth. A greater anxiety arises when trying to

send data through the XBee while the latter is handling received data. In this case,

the mote can crash temporarily (for durations up to 30 s) while printing a packet

header before recovering and eventually transmitting the packet, as illustrated in

Figure 2.7. During this time, the microcontroller tries to communicate with the XBee,

but fails. This error message can easily be reproduced by unplugging the transceiver

from the mote while in operation. These problems are probably caused by the lack

of optimization of the API used to operate the XBee module. This significantly limit

the maximum data rate at which the nodes can operate, and can lead to a random

data loss.

We found out during our debugging of the deployment in May-June 2012 that

the microcontroller can crash while reading data from the transceiver, waiting for

47

Figure 2.7: Representation of pre-packets sent by the microcontroller (gray) be-
fore the packet ”#0-086A*” is eventually sent successfully. This happens when the
microcontroller mote is unable to successfully send a packet to the transceiver.

a termination byte that never appears (the reading function implemented in the

API did not have an execution timeout). After more than one year of operation,

we discovered that the XBee transceivers can have much shorter range than expected,

leading to considerably inconsistent links properties with surrounding nodes. Though

dissymmetrical links sometimes happen, with up to 10% packet loss dissymmetry

reported in [43], Figure 2.8 illustrates an extreme example, in which a mote ”085A”

has five incoming links but only one outgoing link. This example obtained from data

generated in March 2013, during the third deployment (initiated in December 2012).

Explaining these results is complex: the cause of this dissymmetry is not solely related

to outgoing signal strength, since the links 085A → 0865 and 0865 → 085A have a

nearly identical RSSI. One possible explanation could be a fault in the transmitter of

085A that affect the emitted signal.

2.3.3 Analoge to Digital Converters (ADC) faults

ADCs usage is essential in all analog sensing operations and as any other component,

they can fail and it could lead to important consequences. In Figure 2.9 the failure of

an ADC used to measure battery voltage is illustrated. Not only incorrect readings

is resulted this way, but also pushes the mote to enter a sleep mode, which can be

seen from this figure the sparsity in the readings. It also affects the cost function

48

Figure 2.8: Top: links and corresponding RSSIs measured by all nodes connected to
node 085A. Botttom: links and corresponding RSSIs emitted by node 085A.

49

Figure 2.9: ADC failure effect on node ”07DF” during a day of experiment, compared
to a working node ”3A20” with no ADC fault.

associated with all paths going through this mote.

2.3.4 Experiment planning and testing issues

Planning issues

importance of planning: Previous wireless sensor deployments experience confirm

that planning is one of the most important steps [44]. Careful planning is required

to determine how many nodes should be placed in a given area, and how they should

be placed. Node placement is difficult, since fixed network topologies are usually

limited to certain shapes such as a rectangular grid [45], [46], and cannot easily be

transposed in urban environments for which relatively few mounting spots that are

clear of obstacles are available.

While sink placement is usually a concern for overall network efficiency, classical

optimal placement approaches such as [45], [46], or [47] need to be revised since only

a few locations in cities are convenient for sink deployment.

A sink should be installed in a public place for easier accessibility and requires

power and internet access. Also, our solar powered WSN deployment requires one to

50

find spots for which both energy availability and connectivity be maximized, which

makes planning more difficult particularly in the context of solar powered nodes,

though these requirements are sometimes conflicting. Finally, one should avoid wire-

less routers as much as possible, or select operating frequencies that do not interfere

with the WiFi spectrum (for instance channel F on XBee). Before each of our deploy-

ments, we identified all possible deployment spots, and planned a tentative deploy-

ment map. The actual deployment sites were set during the day of deployment in

function of different factors, such as actual solar energy availability or unseen obsta-

cles affecting connectivity or power availability. Scheduling deployments: Generally,

the time for a node deployment tends to be initially underestimated. We assumed

that we will be able to deploy 10 nodes per hour, using a flatbed truck equipped

with an aerial lift. However, we only been able to reach about four nodes deployed

per hour in the best possible conditions (low traffic, highly trained workers), and on

average, only one mote per hour over the complete deployment, including accessing

some motes twice to enhance connectivity or change solar panel orientation. Instal-

lation involved using worm gear steel clamps to fit the mote frame to the street light,

using electric screwdrivers. Falling hazard was addressed through the use of multiple

clamps for attachment, and by the fact that the street lights have a lower diameter

at higher height.

Testing issues:

Protocols take a long time to implement and test, particularly when they depend

upon a large number of parameters sent by the sink [4]. The difficulty of testing

comes from many factors. First, the need to simulate an outdoor environment in

the lab. Previously when we started our testing in 2011, creating sufficient light

to efficiently power solar panels is impossible in the lab, since the sun sends about

1 kW per square meter, while a typical fluorescent lamp radiates 30 W over a few

square meters. An additional difficulty is the simulation of multi-hops in the lab. We

51

could not create more than two hops between all nodes and the sink even by setting

the XBee transceivers to the lowest power setting (1 mW), and using the complete

building space. Thus, we had to rely on the outdoors experiments we been able to

conduct by that time. Since solar energy could not be simulated, we powered all

nodes with a set of USB hubs, though this could lead to node resets whenever the

USB connection is faulty.

System reliability: A very high system reliability is required in order to obtain

valuable results. In the deployment of May-June 2012, for example, the network

was reaching 80 operational nodes, then started to fail in an order of days before

we could generate sufficient data to test the algorithm on WSN simulators (indeed,

the algorithm as implemented would need a few days of data to converge). But the

most important lesson of these deployments in terms of reliability is that the notion

of successful deployment is a function of the duration of this deployment, and that

problems that cause the network to fail can appear after days, weeks, or months.

Thus a deployment cannot be called a success after few hours or days.

Parameters testing: Multiple parameter changes maybe required during testing

over the period of the deployment and for a complex code such as the routing code

developed by our group chances for crashes are high for the many parameter changes.

The sink discovery message represented in Figure 2.10, contains some parameters,

which cannot all be tested in the lab, at least not for extensive periods of time.

In our case, because of parameters change overflows, we have faced crashes during

outdoors tests. Therefore, it is very important to extensively test each parameter to

be used for the experiment, as crashes can also be coded by undocumented limitations

in the API. However, there is a tradeoff, as an error sometimes happen after a long

time, while time limitation in a research setting do not allow long term tests for all

parameters.

Code debugging and hardware faults: A re-occurring problem of WSNs deploy-

52

Figure 2.10: Packet structure of the Sink to initialize the network operations.

ments is the debugging and troubleshooting of the code, due to the very restricted

memory and computational constraints. Dedicated debuggers might be convenient

to analyze and check the execution of a code, but they will not be practical when

considering large, solar powered WSN, hence we will be needing to attach a self pow-

ered debugger to all nodes. Moreover, the (Libelium Waspmote) platform does not

contain an ISP interface, and thus extensive modifications of the boards would be

required to attach a debugger, and the IDE supplied with the devices does not sup-

port code debugging such as accessing registers, or setting break points. Although

debugging is always possible, it requires a large team and a very large time budget to

solve all the issues, including the API bugs, particularly since some bugs are some-

times very hard to reproduce. In our case, we struggled for a few months before we

understood the root cause of the hardware failures (bugs associated with the SD card

libraries), since the bugs appeared rarely and randomly, over a very large network

of tens of nodes that cannot be monitored completely. Also, the unavailability of

database or visualization tools made the debugging problem even more cumbersome.

First, we tried to log all node activities in a file, in the SD card, but it caused

random resets, due to the SD card overall unreliability. It also decreased the hardware

performance in a significant way because of the high number of parameters to log.

We thus relied on the serial (USB) monitor, printing all activities. However, this

significantly lowers free memory, and sometimes causes more problems than it solves.

Another issue is the detection of hardware failures, which is complicated by the

53

fact that failures usually have multiple causes, and may not fall into the mental

representation of what could fail. We were for instance very surprised by the number

of loose connectors detected after the May-June 2012 deployment, given that all

nodes had be subjected to similar pre-deployment inspections before being loaded in

the flatbed truck. The vibrations caused by the transport of nodes to the deployment

sites probably caused all these connector issues, though such issues are not obvious

to an electrical engineer. The failure of some XBee transceivers, as described in

section 2.3.2, is another example of hardware fault that does not fall into the mental

representation of how components can fail. We would have imagined that either

the transceivers would work perfectly, or they would fail to transmit/receive data

altogether. But the type of failure described in section 2.3.2 was completely outside

of this mental representation: the transceivers work, but work badly and only receive

a small number of messages even though the RSSI is very strong. A research group

does not usually have the time to do unit tests on all components to check what

can fail, and how it will fail. These issues have a considerable impact in practice,

dramatically slowing down applied research and implementation.

2.3.5 Accessibility issues

The importance of nodes accessibility:

To maintain a WSN, the ability to access nodes is very important. Nodes locations

may need minor adjustment for better connectivity or higher solar energy availability,

even in the absence of bugs. However, these accessibility constraints are incompatible

with urban deployments because, we want to maximize node wireless connectivity

ranges to maximize the network coverage, and we thus need to mount the nodes high

above the ground, at an elevation of more than five meters. Furthermore, local police

and urban services do not want to install anything that can be easily tampered with

by people for liability and safety reasons, which prevents easy node access. Unlike

54

deployments in unpopulated areas [43], the monetary cost of accessing a node in an

urban environment is very high, and faults are expensive to fix.

Over the air programming:

Over the air programming (OTA) allows the firmware to be remotely upgraded in

a node. This feature is absolutely mandatory for long term deployments in urban

environments, in which nodes can be hard to access. While the platform used for

this study (Libelium Waspmote) supports OTA, the version implemented in 2012

was highly unreliable, and caused numerous crashes in lab experiments (this was

probably caused by the lack of reliability of the SD card, since OTA uses the SD card

to store the firmware during code update). The lack of an OTA means that the code

must be absolutely perfect and thoroughly tested, which conflicts with a research

agenda.

Changeable network parameters:

We had to leverage the changeability of our packet structure of the discovery message

sent by the sink (see Figure 2.10) to modify the network parameters since we could

not rely on OTA to update the code. However with this method we cannot yet

test a completely different code and the parameters used for the network should be

extensively tested in the lab as overflows can happen and cause irrecoverable crashes.

2.3.6 Deployment challenges

Routing protocol startup:

The complete discovery procedure with route propagation, energy propagation and

RSSI propagation taking slightly less than one hour which required all nodes to be

installed before they could be discovered by a signal from the sink. The nodes would

reset every 24 hours, waiting for a new discovery signal from the sink. However,

this caused problems, as the energy consumption of a node while listening is very

important, with less than two days of theoretical endurance in this mode. This

55

Figure 2.11: Two nodes placed incorrectly, i.e. 0864 and 083E (in light blue)

approach also prevented us from immediately validating if the node was actually

turned on, and in range of the rest of the network, leading to a relatively large number

of nodes failing to join the network (only 52/80 were part of the network). Subsequent

tests rely on the SD card-free version of the algorithm, which does not require a long

discovery and allows nodes to join the network very quickly, enabling an immediate

confirmation that the mote is indeed working, greatly facilitating deployments.

Node mis-labeling:

Labeling nodes becomes a very essential step to properly establish the structure of the

map of the network. In the early PhD implementations, we used integer numbers as

labels, but this required us to build a one to one map between nodes and transceiver

MAC addresses. We thus decided to label nodes using the four last characters of their

MAC addresses, which are unique in the present case. Though this helps avoiding

mislabeling or node misplacement, node misplacement on the map sometimes occurs,

as illustrated in Figure 2.11, which shows two nodes ”0864” and ”083E” that we

immediately suspected to be misplaced (based on their very strong, long radio links).

This misplacement was later confirmed after node removal. Again, node inaccessibility

prevents one from easily confirming this problem without relying on an expensive

aerial lift.

During the early tests, it was common to just place the nodes around campus at

56

a low level, to test the multi-hop routing protocol. Since the tests sometimes lasted

a few hours, we printed warning labels on them (see Figure 2.1) to avoid people

tampering with the devices. This did not completely prevent curious people from

accessing the devices, as in one instance a XBee transceiver was found unplugged near

a node. Installing motes in inaccessible locations to public is highly recommended.

2.3.7 Data analysis issues

Database setup issues:

Databases are easy requirement to set up in WSN applications, and both the quantity

of data and the data rate are not causing any source of issues. However, maintenance

is an issue when multiple deployments are considered, since not all nodes are used

for all deployments, in variable positions. We used a properties table for the nodes in

addition to tables containing data. We previously had RSSI, energy and link traffic as

main parameters. Each experiment required the definition of new data tables, though

the properties table might not change if nodes positions are similar. While efficient in

terms of storage, this approach requires us to keep track of which table is associated

with which properties table. To solve this, we now have single data tables that contain

geospatial information, i.e. each data point generated by one node is associated with

its lat. and long. coordinates for example. While this is relatively inefficient, it is

not too much of a practical problem since the database is absolutely not constrained

in terms of storage. It is also much easier to playback previous experimental results

for comparison.

Database interfacing issues:

MATLAB was used to handle the packets received by the sink and fill the respective

tables. Besides the classical internet outages, the biggest issues were data handling.

The first issue is the possibility for an XBee to receive corrupted data (mostly serial

read issues), which leads to problems when parsing the data. Try/catches have to be

57

used everywhere in the code. The second issue is the relatively high data rate at the

sink level, which often causes the XBee to be temporarily unable to respond before

recovering (during this time, all incoming data is lost). We address these issues by

periodically resetting the transceiver.

Visualization:

To visualize data, a visualizer was built using the Pyramid - a python web framework

on the server side and d3.js on the client side. Data is read from the database

and processed on the server side prior to being delivered to the clients as a JSON

document.

The easiest way, however, to visualize data nowadays is to leverage map generator

websites such as cartoDB, or ArcGIS on which we are currently porting our visualizer.

2.4 Experimental investigation of environmental perturba-

tions on the WSN operation

Sensing large scale environments can be achieved through wireless sensor networks

(WSNs), which consist in a wireless mesh of sensing nodes. A large number of appli-

cations of WSNs are in outdoor environments, in which the environmental parameters

have considerable variability, unlike indoor environments that are designed for human

habitation. Being physical systems, wireless sensor networks are impacted by these

environmental parameters, which can negatively affect their performance. Quantify-

ing this performance degradation is very important in practice, as network control

schemes and energy management schemes have to take these effects into account.

2.4.1 Experimental setup

The experiment involved 34 nodes and started by late February 2013, lasting for two

months. To study the relation of the temperature and irradiance effect on Received

Signal Strength indicator RSSI and Packet Delivery Ratio PDR we decided to do

58

Figure 2.12: One unit node (left) used in this analysis and sensor network visualization
(right) for the 34 nodes

this study over eight consecutive days (between two gateway failures) starting March

1st 2013. In this dataset temperature and humidity both have short term periodic

(daily) and long-term (weekly) variations. We use as the ground truth data the

data generated by the local solar power testing station, which generates solar panel

temperature, irradiance and humidity measurements every 900s. The ground truth

meteorological data is illustrated in Figure 2.13.

2.4.2 Link performance analysis

Impact of humidity:

There is significant debate in the literature on the actual effects of humidity and

temperature on link quality in sensor networks. Thelen et al. [48] claims that a

higher relative humidity improves the received signal stength, while Anastasi et al. [49]

conclude that fog and rain cause a decrease in packet reception ratios. Interestingly,

these findings contradict the fact that radio signals on frequencies below 11 GHz

should be unaffected by fog and rain, as they are transparent to water.

To distinguish the individual effects of the environmental parameters on link qual-

ity, we did two multivariate regressions on both link RSSIs and packet reception ratios

between nodes, and show the results in Figure 2.14

59

1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3
15

20

25

30

35

40

45

50

Time (Days)

T
e
m

p
e
ra

tu
e
 (

°C
)

1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3
0

200

400

600

800

1000

Time (Days)

Ir
ra

d
ia

c
n

e
 (

W
/m

²)

1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3
40

50

60

70

80

90

100

Time (Days)

R
e

la
ti

v
e

 H
u

m
id

it
y

 (
%

)

1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3
50

55

60

65

70

75

Time (Days)

R
S

S
I

(−
d

B
m

)

Figure 2.13: Temperature (top left), irradiance (top right) and relative humidity
(bottom left) measured by the weather station. RSSI average timeseries for a repre-
sentative link (bottom right)

Impact of temperature:

While we can measure the solar panel temperature accurately, the mote temperature

can significantly differ from the solar temperature due to air cooling and to internal

energy dissipation. In first approximation (neglecting blackbody radiation), the tem-

perature increase of the enclosure of area S, thickness d and thermal conductivity κ

subjected to a power forcing P is δT = P ·d
κ·S . In the present case, the motes (which

dissipate 0.2W) are 0.1C hotter than the panel temperature (which is equal to the

air temperature) during the night, and can be up to 7 degrees cooler than the panel

temperature with an (irradiance) of 800W/m2 (when they are in shadowed areas).

The effect of the temperature on link quality is shown in Figure 2.14 below.

60

Figure 2.14: Environmental effects on link quality. Top left: RSSI versus panel
temperature and irradiance. Top right: packet delivery ratio versus panel temperature
and irradiance. Bottom left: RSSI versus panel temperature and humidity. Bottom
right: packet delivery ratio versus panel temperature and humidity.

As can be seen from the above Figure, temperature has the largest impact on link

quality. In fact, a multivariate regression on temperature, irradiance and humidity

gives the following results:

RSSI = α ·T +β ·I+γ ·H, where α = 95, β = −35 and γ = 11. The uncertainties

(from the covariance matrix) are ∆α = 9, ∆β = 4 and ∆γ = 5. Thus the RSSI is

very strongly correlated with panel temperature, negatively correlated with irradiance

and statistically uncorrelated with humidity. The negative correlation with irradiance

is expected as air temperature is positively correlated with panel temperature and

61

negatively correlated with irradiance.

Temperature affects link quality since it increases the level of thermal noise (which

in turn reduces the probability of successful decoding).

2.4.3 Power analysis

Power consumption:

Since our motes are not currently equipped with battery charging current sensors, we

have to estimate their consumption by analyzing the battery voltage drop over time

during the night (when no solar power forcing is present). Since the voltage-charge

relationship in a battery is dependent on the battery condition and discharge rate,

we estimate the battery condition using the procedure outlined in [50]. Results are

shown in Figure 2.15 below.

Figure 2.15: Impact of environmental effects on estimated night power consumption.
Power drawn from the battery versus air temperature and humidity.

A similar multivariate regression gives the following results:

Power = α · T + β · H, where α = 0.5 and β = 3. This shows the limits of

multivariate linear regression, as our data is far from being normally distributed in

the present case. Thus the dependency with the humidity is mainly driven by a few

outliers for extreme humidity values. Power dissipation is approximately constant

62

over the 40− 90% humidity range.

Power dissipation increases with temperature since the resistivity of semiconduc-

tors decrease with temperature, causing higher current drain (at the same voltage).

The outliers appearing in extreme humidity conditions could be caused by condensa-

tion of water on the electronics in some motes due to enclosure damage.

63

Chapter 3

Energy Estimation for solar-powered WSN in desert

environments

A large part of the cost of WSN is the deployment installation, specifically if it

requires to be connected to a certain power grid. Hence, the aim of our research to

provide a cost efficient WSN, we wanted to investigate self powering options. For

application, such as smart parking or traffic flow monitoring where low power is

required, batteries can be used, but the wireless range would become substantially

reduced, which in turn will require more nodes to be installed as relays, increasing

the cost. Therefore, harvesting energy from the environment becomes a very vital

asset, and enables extended communication, sensing and computational capabilities.

In urban environments (which is our area of concern), where sensors would be placed

in lower attitudes, solar power appears to be the most reliable and efficient source

of energy for our applications compared to other possible energy sources. However,

using solar power to operate WSNs comes with great challenges especially when the

energy generated by the solar power is not significantly greater than the current draw,

which is the case for high power monitoring applications.

In this chapter, I carried on the post deployment analysis done in Chapter 2, for

one of the deployments starting November 2012 (particularly deployment 3, in section

3.2.2), presenting a medium-scale experiment with 34 nodes. Our nodes are powered

both by a solar panel in-conjunction with a rechargeable Lithium ion battery. This set

of experiments showed the importance of investigating the energy storage and power

availability parameters that are significantly varying. We realized two key areas of

64

concern to solve the energy estimation and prediction problems:

• Battery capacity and condition estimation. We concluded after our experi-

ments that the conditions associated with the batteries is highly correlated on

discharging behaviors and environmental effects.

• Power availability estimation. We concluded from our experiments that the

power availability in our WSN nodes vary in a great way, despite that the

deployment was carried out in the same geographical area. For sensing applica-

tion, this fact becomes of great importance hence sensing duty cycle of sensing

can be adjusted based on the available and predicted energy.

For energy-aware WSNs, these identified energy parameters shall serve as inputs

[51, 52, 53, 54]. Thus, we investigate the estimation of these parameters for efficient

operations. The focus of this part of the thesis is to design a suite of energy estimation

that can all be implemented in typical WSN microcontrollers.

3.1 Energy management state of the art

power management is an active research field in WSNs, as in energy monitoring in

[55].The deficiency of dedicated monitoring systems in existing platforms is one of

the main challenges appearing with energy estimation, which may require the devel-

opment of dedicated hardware and software [56, 57]. In [58], the Lithium Ion ca-

pacity depletion and charging is modeled to forecast power availability, though some

important parameters, typically battery capacity are not actively estimated. Many

researchers [59] consider some electrochemical phenomena, such as capacity rate char-

acteristics, charge recovery and thermal effects, which can play a role in governing the

selection of sensing parameters. In this work, our objective is to analyze the energy

patterns in nodes subjected to a external source, in a harsh environment (humidity,

dust, temperature), and to propose computationally efficient methods for estimat-

ing energy and power parameters dynamically. The resulting algorithms are to be

65

implemented in the nodes themselves, which have limited computational capabilities.

3.2 Experimental Setup

3.2.1 System

Our proposed system consists of an heterogeneous wireless sensor network for moni-

toring traffic flow in cities using both fixed and mobile sensor data. The speciality of

this sensor network lies in its monitoring operation: the flood and traffic state esti-

mates are directly computed by the wireless sensor network, and are forwarded to an

centralized database. This distributed computing based operation allows the system

to be cost efficient and easier to deploy, since no costly redundant estimation servers

and input databases would be required. It would also enhance user privacy, since

user data would remain local (only traffic monitoring parameters and flood forecasts

would be global).

The platform chosen for this analysis is described previously in Chapter 2, in

section 2.2.1.

The Waspmote can be interfaced with two types of transceivers from XBee: one

transceiver implements the Zigbee protocol, while the other implements IEEE 802.15.4

standard. While ZigBee handles node synchronization and is relatively energy effi-

cient, it cannot be used in the present application, as it would require coordinators

that have to be always on (this cannot be guaranteed in practice for a solar powered

wireless sensor network). In addition, a coordinator is a single point of failure, and

could potentially render a large portion of the network inoperative. We thus chose

IEEE 802.15.4 XBee transceivers, which require the development of a routing protocol

supporting multi-hop communication.

For this part of our work, we used the standard libraries provided by Libelium,

66

though we commented all unused functions from the API to increase the available

memory. We also added a hardware reset circuit to enable regular node reset (ex-

plained in section 2.3.1), improving overall reliability.

3.2.2 Energy estimation deployment

We installed 34 nodes on both sides of a street, in an urban environment in the

campus of King Abdullah University, in area of Thuwal starting November 2012.

The maximal distance between any two nodes in the network is approximately 400

meters, as illustrated in Figure 3.1 for this particular deployment. The network has a

radius of 5 to 6 hops, depending on the presence of parked vehicles around the main

road, as well as other environmental conditions. Each node transmits its energy and

local connectivity map every 300s (cycle time). The resulting data can be displayed

on a web-based visualization designed using The Pyramid (a Python web framework),

and is also stored in a database (PgAdmin).

Figure 3.1: Left: WSN nodes used in this study. Right: Web-based visualizer dedi-
cated for this energy estimation WSN deployment.

3.2.3 Experiments results

A subset of the battery voltage timeseries is illustrated in Figure 3.2 below. The data

collected at the sink were in voltage values between 2.7V and 4.2V, scaled 0-100% in

the figure, each mote being represented by a different color. ADC failures (addressed

in section 2.3.3) can also be inferred from this figure. One month of experimental

data has been used in our analysis.

67

Figure 3.2: Energy timeseries from 34 nodes between March 21st and April 4th, 2013.
The daily energy charge-discharge cycles are clearly visible.

3.3 Energy Model

3.3.1 Energy Generation and Storage

Each node is equipped with a rechargeable battery, connected to a solar panel through

a charging chip. The complete energy management system is shown in Figure 3.3

below.

Figure 3.3: Energy management system circuitry in a solar-powered node.

The solar panel used for this study has a 3W peak rating, which implies that it

can generate at most 3W of electrical power.

The charging chip efficiency ζ is the ratio of its output to input electrical power,

68

and is around 90% in the present case. The battery used for this study is a 2300 mAh

1-cell Lithium Ion battery.

3.3.2 Energy Conservation Equation

Each node in the WSN broadcasts one update containing its energy, RSSI and link

statistics with other nodes every 300 seconds (5 minutes).

All nodes are programmed with an identical software, and form a multi-hop mesh

network. The average power consumption of the XBee transceivers in listening mode

is 165 mW, while their power consumption in sending mode is 660 mW. These figures

are a function of the ambient temperature, a higher temperature being associated

with a higher power consumption (see also section 2.4.3).

Since our objective is to study the energy evolution in a wireless sensor network,

we configured the sensor network in such a way that the power consumption is ap-

proximately the same for all nodes. The 300s cycles consist in a listening phase of

150 seconds, during which each node sends between 1 and 34 (worst case number of

messages to relay through multi-hop) messages. Thus, the total energy consumed by

a node during a cycle is between 24.8 J and 25.4 J (we assume that the data rate

is 32 kB/s, and that each packet is 100 bytes including overhead). Since power con-

sumptions differ by 2.5% at most, we can assume that the overall power consumption

is independent from the node, particularly since the temperature differences between

nodes (caused by cast shadows) cause changes in the power consumption that are

higher in magnitude. The average power draw of the transceiver is thus 85 mW,

which, together with a power draw of 30 mW from the microcontroller yields a total

average power consumption of 115 mW.

Let E(k) be the energy stored in the node battery at (discrete) time kT . The

conservation of energy [60] can be written as:

69

E(k + 1) = E(k)− PdrawT + PsolarT (3.1)

Where Pdraw and Psolar represent the average power draw and power generated

by the solar panel respectively. One of the constraints of this system is the fact that

the power generated by the solar panel is not directly related to the power density

of the sunlight (irradiance) received by the solar panel, because of factors related to

the chain of energy conversion itself (Figure 3.3). First, the solar panel and charging

chip efficiencies are a function of their operating voltage, which cannot be adjusted (in

particular the solar panel is not necessarily operating at its voltage of peak efficiency).

Second, the power that can be actually transferred to the battery is a function of the

battery condition (capacity, internal resistance) as well as its current charge (see

Figure 3.2 and Figure 3.5). In our solar power estimation problem (see Figure 3.5),

our objective is to estimate the maximal available solar power, assuming that this

power could be transferred to the battery.

3.3.3 The Need for Energy Estimation and Forecast

Despite the cyclic nature of the sun irradiance, the energy availability in a solar-

powered wireless sensor network will significantly vary between nodes, for a variety

of reasons:

• Large scale weather effects (uneven distribution of solar energy).

• Short scale urban shadow effects (cast shadows), these effects can appear dur-

ing specific seasons (winter) depending on the latitude and the sensor network

deployment locations.

• Debris, dust, humidity and salt accumulation (which are a function of the solar

panel orientation).

70

• Battery condition and remaining capacity (which is a function of the battery

history, in particular the number and the severity of deep discharges). Since a

battery that has a lower capacity is more likely to be discharged deeply during

its future operation, the differences between batteries tend to get worse over

time.

To enable energy aware sensing, computing and communication schemes [61], it is

critical to be able to accurately forecast future (medium-term) power availability, and

to estimate the current battery condition. With such parameters, the operation of the

system can be scheduled in real time as a function of expected energy availability and

current energy storage performance. Because of the short term (daily), medium term

(seasonal) and long term (rain, dust, debris, battery and solar panel degradation)

variations in energy supply, this estimation and forecast process has to be conducted

relatively frequently.

Estimating the power availability in real time has additional benefits, for instance

to detect faults in the battery, solar panel or charging chip. This early detection

allows the optimization of the remaining energy of the node to allow enough time for

its repair.

3.4 Estimation of Battery Condition and Capacity

3.4.1 Background

As all batteries, the Lithium-Ion batteries used as an energy buffer in all nodes tend to

age during their operation, which translates into a loss of capacity (or as an inability

to fully charge the battery) and an increase in internal resistance.

Single-cell Lithium-Ion batteries (such as the battery used in this part of the work)

have a maximal voltage of 4.2 V, and a minimal voltage of 2.7 V, below which a battery

protection circuit prevents further discharge. In general, the loss of performance of a

71

battery [62] depends on the following factors:

• Environmental conditions (in particular the temperature)

• Extended operations at full charge

• Depth, duration and number of discharge/charge cycles

Though no battery datasheet was available to us, we used standard industry fig-

ures to evaluate the battery performance. At the beginning of this test, all batteries

had been used for less than 100 charge/discharge cycles. Industry figures indicate

that batteries can handle between 400-1200 cycles before losing 30% of their origi-

nal capacity, though these values are highly dependent on environmental conditions.

Therefore, our batteries can be considered as relatively new. The total duration of

the experiment (3 months) added less than 100 cycles to these batteries history. The

ambient temperatures measured during the experiment were comprised between 15 ◦C

and 35 ◦C, which fall within the recommended operating temperature range for these

batteries.

As stated in Section 3.3, the discharge rate during listening operations is on the

order of 200 mW, while the maximal current that can be delivered by the charging

chip is 280 mA, which is well within the recommended values of 1C (2300mA) for

charge and 2C (4600 mA) for discharge of standard Lithium-Ion batteries.

In this work, we excluded motes for which the voltage timeseries were inconsistent

with the physics of the system (which denotes an ADC fault), for example when the

voltage variations between two consecutive points exceed the maximal power that can

be delivered by the charging chip or the maximal power that can be dissipated by the

battery. ADC failures can be directly inferred from Figure 3.2.

72

3.4.2 Estimation of Battery Discharge Patterns

We focused our investigation on only the data generated during the night (i.e. after

the sunset and before the sunrise), in which the solar panel generates negligible power

(the illuminance caused by urban street lights is orders of magnitude much smaller

than the full daylight illuminance).

The battery charge decreases linearly during the night since the current drawn

by the microcontroller and the peripherals is constant (approximately 35 mA). The

voltage data collected during the night thus provides us information on the relation-

ship between battery charge Q and battery voltage V. Since the loss of energy during

one night does not span the complete operational range of the battery voltage, we

integrate the data of multiple days to estimate the discharge curves Q(V), where Q

is determined up to a constant (this does not impact our analysis however, as we are

interested in the derivative of Q and not in Q itself).

We first define ti(V) as the inverse of the nighttime battery discharge timeseries

Vi(t) associated with nodes i ∈ [1, n]. Since the current drawn from the battery is

constant1, we have that Qj(t) = Q0,j− i0 · t, or equivalently t =
Q0,j−Qj(t)

i0
. Given that

the Q0,j (initial charge) are unknown for all j, we fit these functions by solving the

following least squares problem:

min
Q0,1,...,Q0,n

∑
i,j,i6=j

∫ Vmax

0

(ti(V)− tj(V))2 dV (3.2)

Problem (3.2) is an unconstrained quadratic programming(QP) which can be

solved using standard linear algebra. We show the results of the above discharge

curve fitting scheme for one node over two different time windows of 10 nights in Fig-

ure 3.4. For these graphs, we assumed that 2.7V (which is never attained in practice)

corresponded to a zero charge. Note that most circuits will not discharge a lithium

1This hypothesis assumes that the current drawn by the microcontroller and its peripherals is
independent of their temperature.

73

ion with a voltage less than 2.7V to avoid irremediably damaging the battery.

Figure 3.4: Discharge curves of batteries AAAF evaluated on a 10 days period at the
beginning of the experiment (Left), and on a 10 days period 20 days later (Right).
The right subfigure shows a slight degradation in battery capacity, as well as a less
reproducible (higher standard deviation) discharge pattern.

3.4.3 Estimation of Battery Capacity

The battery capacity is estimated from the charge of the battery when its maximal

voltage is reached (which is a function of the battery, see Figure 3.2). The pseudo-

code used for the above battery capacity estimation is presented in Algorithm 1 below.

This codes relies on a polynomial fit (we used a polynomial of order 3 in practice) to

estimate the charge at 2.7V.

74

Algorithm 1 Pseudo-code implementation of the battery discharge curves and bat-
tery capacity estimation Algorithm.

Require: Vi(t), t ∈ [tsunset,i, tsunrise,i], i ∈ [1, n] {Voltage timeseries for ith night,
i ∈ [1, n]}
for i = 0 to i = n do

Low pass filter(Vi)→ Vi
ti(·) := V −1

i

end for

min
Q0,1,...,Q0,n

∑
i,j,i6=j

∫ Vmax

0

(ti(V)− tj(V))2 dV → Q0,1, ..., Q0,n

return (Q0,1, ..., Q0,n) {Fitting parameters for discharge curves}
Polynomial fit(∪i∈[1,n]Graph(Q0,i + i0 · ti(·)))→ P (·) {Polynomial fit of the recon-
ciliated discharge curves}
return Capacity C = P−1(max

t,i
Vi(t)) − P−1(Vmin,battery) {Estimated battery ca-

pacity, Vmin,battery = 2.7V for Li-ion batteries}

Table 3.1: A systematic analysis over 9 nodes yields the following estimated capacities.
Mote ID AAA8 AAAF 9CE6 AA95 0865 07EB 085A 3A02 0897
Capacity (March 1-10) 525 575 700 665 740 595 548 397 784
Capacity (March 11-20) 530 566 712 630 712 562 520 377 780
Capacity (March 21-30) 528 545 620 603 686 553 490 345 710

As one can see from the above Table 3.1, the variations in capacity are significant

with capacities ranging from 350 mAh to 800 mAh. Note also that the estimation

is fairly robust, with only minor discrepancies between battery capacity estimates.

All estimated capacities are less than one third the original battery capacity, which

show that Li-Ion batteries degrade quickly in outdoor environments. For the coming

explained research in this Thesis, we used Lithium Iron Phosphate batteries, which

have a slightly lower energy density, but a much greater tolerance to temperature

fluctuations and deep discharges.

3.5 Estimation of Solar Power Supply

While the battery condition and remaining capacity are a very important factor for

energy management of WSNs, the solar power availability is an equally important

75

parameter. The remaining capacity is a measure of the potential energy that can

be stored in the battery, while the solar power availability can be thought of as a

measure of the actual power input.

To estimate the availability of solar power, we first estimate the current generated

by the solar panel during the day (similarly as in section 3.4) from the battery voltage

time series obtained during the day. The actual power input is then inferred from

the product of current and battery voltage. Two examples of solar power input are

shown in Figure 3.5 below.

Figure 3.5: Solar power estimates. Top: Actual power input inferred from Algorithm 2
on node AA95, and Gaussian fit of the estimated solar power available. Bottom:
Gaussian fits of the estimated available solar power on a subset of 9 nodes, during a
typical day (March 1, 2013).

Figure 3.5 shows three main regimes of operation of a node:

76

• During the night, no solar power is generated (though the estimated generated

power exhibits some noise). This corresponds to the times 0-6 and 17-24 in

Figure 3.5, up.

• After sunrise, some solar power begins to be generated. The solar power peaks

and then reduces when the battery is close to being charged (times 6-11 in Fig-

ure 3.5, up). At the beginning of this charging phase the solar power generated

by the panel is close to the maximum that a solar panel can generate, provided

that the battery charge is much lower than capacity, and that the generated

power is not limited by the charging chip specifications.

• The power generated is then constant, equal to the power consumption of the

mote when the battery is close to being charged (Figure 3.5 from 11-17). During

this phase the power that could be generated by the solar panel is greater or

equal to the power consumed by the node (with equality arising around 17:00

in Figure 3.5, up).

Following [63], we use a Gaussian irradiance model, which has only three param-

eters, and can be easily fitted by the mote (this results in a three dimensional least

squares problem, though simpler methods can also be used). Gaussian fit is quite

accurate for our study with low complexity which require less computation at the

node level. The pseudo-code used for the fitting is shown in Algorithm 2 below.

Algorithm 2 Pseudo-code implementation of the solar power estimation Algorithm.

Require: P (·), Vi(·) {Polynomial fit of the Q(V) function, Voltage timeseries for ith

day}
Low pass filter(Vi)→ Vi
Define Qi(·) = P (Vi(·))
Beginning and end of charge cycle detection (thresholding on Q′i) → (tb,i, te,i)
Charge current saturation detection (zero of Q′i) → ts,i
Define Pwi(·) = Qi(·)·Vi(·)+Pw0

ζcharging chip
{Solar panel input power}

Gaussian fit(Graph((Pwi|[tmin,i,ts,i] cup[te,i,tmax,i]))→ R(·) {Gaussian fit of the restric-
tion of Pwi to the non-saturation domain}
return R(·) {Fitting parameters for the solar power curve}

77

Figure 3.5 bottom shows Gaussian fits of the maximal solar power available to

9 different nodes during March 1, 2013. As one can see from this figure, there are

significant differences in solar power availability between nodes. These differences are

caused by a set of factors including orientation, dust/humidity accumulation or the

presence of clouds or shadows. Note that the latter factors cannot be captured by

the Gaussian fit (which assumes a direct view to the sun), and would require more

sophisticated models to be used.

An important assessment of the validity of the method comes from the fact that

the estimated maximal power generated by the solar panel is always below its 3W

rating. Again, because of the charging chip input current limitation, not all this

estimated power may be useable in practice.

3.6 Chapter Remarks

This energy estimation work presents a set of tools for estimating the energy perfor-

mance of solar-powered WSN deployed in urban environment operating in desert-like

conditions . Given the variability of solar energy availability and of the available bat-

tery capacity in a typical sensor network, we stress that such tools will be very useful

to optimize sensing and network operations and to minimize the number of nodes that

run out of energy. While low power wireless sensor network do not necessarily need

such an optimization (provided that their solar panels and batteries are oversized) to

run, though this suite of tools is very important for fault detection and isolation, by

comparing energy and power availability with adjacent nodes.

Future work in this part of the thesis will deal with the implementation of the

above methods in the nodes. All methods introduced in this work can run on typical

8 bit microcontrollers, since they mainly rely on basic thresholding and least squares

fitting, which can be done efficiently with matrix operations. The required memory

is on the order of hundreds of bytes, and the execution time is not expected to be an

78

issue as computations are to be performed once daily. Also, Our analysis could be

extended with regard to solar power supply for the whole data for different days to

conclude with similar patterns.

Now that the energy estimation problem is addressed, the research objectives

can be dedicated towards the applications and their estimation algorithms in a more

efficient and clear way

79

Chapter 4

Flash Flood and Rain Monitoring and Detection Using

Ultrasonic and Infrared Sensors (Estimations and

Algorithms)

Wireless sensor networks (WSNs) are widely used for monitoring and control applica-

tions [64], [65, 66], [67, 68, 69] such as environmental surveillance [70, 71] or industrial

sensing [72], or in the present case flash flood detection. Floods are one of the most

commonly occurring natural disasters [14], accounting for more than half of natural

disasters worldwide. They have caused more than 120,000 fatalities in the world be-

tween 1991 and 2005 [15], and are a major problem in many areas of the world. While

most floods occur outside of urban areas, the recent trend towards urbanization will

likely make urban floods more catastrophic due to the concentration of population

into relatively small urban areas.

Among floods, flash floods are short fuse weather events, that last less than six

hours. Most flood fatalities are in fact caused by flash floods, and most flood victims

die because of drowning [16]. This could be avoided by providing accurate flash flood

maps to the population in real time. Unfortunately, at the present time little warning

exists beyond weather forecasts, which are nonspecific (lack of exact location of the

flood, severity of the flood, temporal evolution) and not reliable (i.e. these warnings

are associated with a relatively high false alarm rate).

Monitoring floods in real time somehow requires sensing the flooding conditions

[18]. Fixed water level sensors are only adapted to river monitoring, and instru-

menting entire hydrological basins, which can cover hundreds of square kilometers,

80

is economically infeasible. Satellites are similarly unable to monitor water levels and

flows remotely: optical measurements are impossible during floods, and the vertical

resolution of current synthetic aperture radars (tens of centimeters) is insufficient for

the task.

Existing work ([73, 74, 75, 76]) relies on either contact-based sensors, or non-

contact camera-based sensors which are unable to provide a direct water level mea-

surements (such sensors can only provide a binary information: presence of water or

not). In [77], the authors use ultrasonic rangefinders to monitor floods, but do not

consider the environmental perturbations to the measurement, which is the focus of

the present work. Such perturbations severely affect the accuracy of the sensor, and

can lead to false or missed detections.

In this Thesis work, we propose a new type of flash flood sensor combining ultra-

sonic rangefinders with passive infrared temperature sensors. This sensor can be used

as a backbone for an urban flash flood wireless sensor network architecture, since it

can monitor pluviometry, water presence and water level with a relatively high accu-

racy. While the measurement of distances using a calibrated ultrasonic rangefinder is

easy, when environmental conditions are well known, the present problem involves the

estimation of a distance from time-of-flight measurements and from a model of the

atmospheric layer between the sensor and the ground. Since this model is encoded by

a Partial Differential Equation (PDE) which has numerous uncertain parameters, we

choose a non-model based approach to compute the water levels directly, from raw

temperature and distance measurements.

The emphasis of the present work is on water level detection (using the proposed

sensor [78]), though this sensor can also be simultaneously used for traffic flow moni-

toring (by monitoring the temperature and distance disturbances created by vehicles

passing by the sensor), or rain rate detection, making it a cost-effective solution. We

show that simple temperature correction methods fail to provide a sufficiently accu-

81

rate measurement, and that machine learning or nonlinear dynamical model-based

regression methods can provide a solution to the sensing problem.

In particular, Artificial Neural Networks (ANN) have an excellent accuracy, and

have a low computational complexity (for the chosen number of neurons and layers)

which makes it suitable to low-power embedded platforms.

The following list summarizes the contributions of the present work for the flood

monitoring part of the thesis over existing literature:

• Novel, dual use (traffic and flash flood) sensor system that addresses a key

economic requirement in flash flood sensor networks (since flash floods happen

very infrequently).

• New preprocessing scheme based on L1 regularization for real-time sensor fault

detection and corresponding missing data inference.

• Use of multiple machine learning techniques, ranging from artificial neural net-

works and fuzzy logic to nonlinear regression on preprocessed sensor measure-

ment data to estimate water levels and learn the proper compensation to apply

over all environmental conditions.

• Implementation of the corresponding algorithms on a low-power experimental

hardware platform.

• Extensive validation over a period of one year, including the successful detec-

tion of the only flash flood event occurring over the period, without any false

detection.

The rest of this chapter is organized as follows. Section 4.1 describes the dual

ultrasonic/passive infrared sensor network used in this study. Section 4.2 describes

the nature of the urban flood detection problem and the research questions addressed

in this paper, going through the possible models that can be used to estimate water

82

levels using raw measurement data, (include linear models (ARMAX)) and how these

models can not help in this situation and then in the same section, we emphasize on

the need of a dedicated preprocessing stage. We then show in section 4.3 our pro-

posed solution (using our sensor nodes described in section 4.1) and its performance

comparing it to the existing models using norm two (L2) and norm infinity (L∞)

approaches, as well as, investigating the spatio-tempral robustness of the proposed

solution model parameters. Section 4.3.7 investigates the detection of an actual minor

flooding incident using the proposed approach.

We then describe a computational platform that can solve the proposed neural

network training and prediction problems in real time in section 4.4.

4.1 Sensing principle

4.1.1 Sensor design considerations

Sensing flash floods in cities is challenging, since the sensors must have an extended

lifetime, measure the water levels in all flow conditions, and be capable of self-

monitoring (to make sure they are always functional).

Sensors have been investigated in the past for flood monitoring applications [79],

in particular ultrasonic water level measurements on bridges [80], [81] or pressure

sensors for water level measurements of rivers [1]. In the present case, the constraints

detailed above prevent contact sensors such as pressure transducers [82] from being

used. Indeed, these sensors would be unable to measure static and dynamic pressures

independently, and their measurements would be affected by their orientation with

respect to the water flow. They could also be affected by debris or rocks carried by

flash floods, and would need to be periodically tested in water.

Among non-contact sensing technologies, three main technologies could be thought

of: ultrasonic rangefinders and Ultra Wide Band (UWB) radars and LIDARs. Ultra-

sonic rangefinder are much cheaper and more accurate than both UWB and currently

83

available LIDARs, though they can be affected by environmental parameters, such

as temperature or humidity. In this work, we choose ultrasonic rangefinders for their

very low cost.

4.1.2 Sensor description

The flood sensor node that we investigate in the research work [83] contains six

passive infrared (PIR) sensors and one ultrasonic (US) rangefinder connected to a

microcontroller platform that we have developed for this specific purpose. The six PIR

sensors (which are also used for traffic monitoring) are Melexis MLX90614 connected

to the platform via SMBus. These sensors measure both the ground temperature

in their field of view and their actual temperature. The ultrasonic rangefinder is

a MaxBotix MB7066 measuring its distance to objects below it and sending these

measurements to a microcontroller via a serial port. The microcontroller platform is

developed by our group [84], and is based on an ARM Cortex M4 processor operating

at 32 MHz.

At this stage, the microcontroller platform applies a median filter to the raw

distance and temperature measurements provided by all sensors. The time window of

this median filter is currently 30s, and gives a reliable estimate of the actual ground

and sensor temperatures, as well as raw ground distance. Median filtering was chosen

over moving average filtering because of the presence of vehicular traffic, which creates

perturbations in temperature and distance measurements. When traffic is relatively

light (which is always the case on the deployment sites), these perturbations are

completely cancelled by the median filter. The measurements are sent wirelessly to

a sink node, and are then pushed to an input database. The complete system is

represented in Figure 4.1.

The complete sensor structure is made of a lightweight aluminum alloy and weights

less than 6 kg. The structure has been designed by our group using CAD tools, and

84

Figure 4.1: System representation. The sensor described in this work corresponds to
the leftmost part of this diagram.

Figure 4.2: Flood sensor node installed on a public street light in KAUST university
campus

manufactured by a subcontractor. Four of these sensors have been deployed on street

lights within two residential areas located 120km apart for the dual use of traffic and

flash flood monitoring. These sensors are operational since November 29, 2013, and

are illustrated in Figure 4.2.

4.2 Problem definition

The temperature and distance to the ground measurements generated by the sensor

over 6 days (under normal conditions, so that fluctuations are only due to temperature

change) are shown in Figure 4.3. As can be seen from this figure, the raw distance

measurements vary significantly over the period (about 12 cm) despite the fact that no

85

flooding occurred over this period. These variations in observed distance are caused

by the dependency of the speed of sound on air temperature. For most distance

measurement applications, the air temperature effects cause an error that is usually

negligible, specially when the temperature of the air is uniform in space. For our

sensor, installed at a height of 5 meters (to clear the below traffic) and at usual

temperatures, a 1◦C increase in temperature causes a 1 cm increase in the measured

distance. In addition, the temperature of the air is far from being uniform, with

ground temperatures up to 20◦C higher than air temperatures. Since the distance

measurement errors caused by temperature variations are larger than the expected

precision of the sensor, we need to somehow estimate the true distance to the ground

using the raw distance and temperature measurement data.

21/12 22/12 23/12 24/12 25/12 26/12 27/12
5.25

5.3

5.35

5.4

5.45

5.5

D
is

ta
n

c
e
 (

m
)

Time(Days)
21/12 22/12 23/12 24/12 25/12 26/12 27/12

0

10

20

30

40

50

60

Time(Days)

 Ambient Temperature(°C)

 Ground Temperature(°C)

Figure 4.3: Left: Raw distance measurements from ultrasound sensor. Right: ambient
and ground temperature measurements

This problem can be formulated as follows. The ultrasonic rangefinder measures

a time-of-flight (which is converted into an estimated distance by assuming a fixed

speed of sound). The time of flight F (t) of the ultrasonic wave (measured at a given

time t) can be computed as follows [85]:

F (t) = 2

∫ z0

0

dz

c(θ(z, t))
(4.1)

86

where θ(z) is the air temperature at altitude z. One of the main difficulties arising

in this problem is the estimation of the function θ(z, t). This function depends on

multiple factors that are not directly measured by the sensor, including for example

cloud coverage, presence of shadow from buildings, heat island effects and ground

albedo. To increase the accuracy of the sensor, we need to estimate the correction

to apply to the raw distance measurements of the ultrasonic sensor. The correction

factor represents all the perturbations caused by the uneven temperature profile in

the air layer below it. For the reasons mentioned above, it is infeasible in practice to

model the air layer temperature using a PDE, since the boundary conditions and the

model parameters of the problem are unknown. We thus investigate several model

and non-model based approaches to correct the measurements, ranging from linear

ARMAX models to ANNs.

In this context, our problem is formalized as follows. Let us denote, by e(t), the

difference between the measured (i.e. the raw output of the ultrasonic rangefinder)

and the actual ground distance, which is known when no flash flood occurs. Our

objective is to estimate e(t) given Ta(·) and Tg(·), where Ta(·) and Tg(·) are the

sensor measurements of the ambient and ground temperatures respectively.

4.2.1 Naive temperature correction

We first investigate the need for a complex temperature compensation model [86] by

checking if simpler naive correction methods can apply. We know that the measured

time of flight is given by equation 4.1, in which θ(z, t) is unknown. Let us first assume

that θ(·, t) is constant, that is, the temperature in the air column is uniform. With

this assumption, equation 4.1, becomes:

F (t) = 2
L

c(θ(t))
(4.2)

87

where θ(t) is the uniform temperature in the air column. For the two applications

below, we used c(θ(t)) = 331.3 + 0.6 · θ(t) in m/s, which represents the approximate

speed of sound in function of the air temperature θ(t) in ◦C, on a narrow temperature

range around 20◦C.

In Figure 4.4, we assume that θ(t) = Ta(t), i.e., the air temperature in the column

is identical to the ambient temperature measured by the infrared sensor. This assumes

that the heating effects of the sun on the sensors are negligible (that is, the sensor is

in thermal equilibrium with the ambient air). This occurs in practice when the wind

is very high (which increases the heat transfer between the sensor and the air), or

when the solar forcing is negligible (for instance during the night, or during overcast

conditions).

21/12 22/12 23/12 24/12 25/12 26/12 27/12
5.25

5.3

5.35

5.4

5.45

5.5

Time(Days)

D
is

ta
n

c
e
 (

m
)

Raw data from ultrasound

Compensated distance

15/1 16/1 17/1 18/1 19/1 20/1
5.25

5.3

5.35

5.4

5.45

5.5

Time(Days)

D
is

ta
n

c
e

 (
m

)

Raw data from ultrasound

Compensated distance

Figure 4.4: Left: Predicted distance measurement computed using ambient tempera-
ture sensor measurements, and Right: weather station air temperature measurements.

As can be seen from Figure 4.4, the estimation during the night is very good,

though the compensation fails during the day. This is caused both by the assumption

that the air temperature is uniform (which is wrong during the day), and by the fact

that the ambient temperature measured by the sensor can be higher than the air

temperature due to solar forcing. To remove the solar forcing effect on the ambient

temperature measurement of the PIR sensor, we used calibrated air temperature

88

measurements from the closest weather station. The corresponding predicted distance

measurements are illustrated in Figure 4.4, and similarly show large variations with

time, whereas the actual distance between the sensor and the ground is constant.

This shows that the air temperature cannot be assumed to be uniform.

Another simple correction method could be to use the average speed of sound in

the air layer, assuming that the air temperature profile θ(z, t) varies linearly between

the ground and the sensor, that is:

θ(z, t) = Tg(t) +
Ta(t)− Tg(t)

L
z

where L is the distance between the sensor and the ground, and z is the altitude

above the ground level. This method does not improve the accuracy of water level

estimate beyond the naive correction methods introduced earlier. This analysis shows

that more advanced methods are needed to estimate the distance between the sensor

and the ground accurately.

These methods have to rely not only on current temperature measurements, but

also on the history of measurements, resulting in a dynamical system. In this part

of the thesis, we investigate various models to compensate the thermal effects and

correct distance measurements generated by the sensor. One of the simplest of such

models involves a linear dynamical system with inputs, otherwise known as ARMAX

(Auto Regressive Moving Average with Exogenous inputs) models, which we now

investigate.

4.2.2 Auto-regressive moving average exogenous (ARMAX)

fitting

ARMAX can be used for modeling time series and predicting future observations

by combining a number of previous observations (Autoregressive), a number of noise

89

terms (moving-average), and a number of external (exogenous) inputs, which are Ta(·)

and Tg(·) in the present case. Formally, the error e(t) between the measured distance

and the actual distance is given by:

e(t) =

q∑
i=1

ϕie(t− i) +

q∑
i=1

θiε(t− i)+

q∑
i=1

ηiTa(t− i) +

q∑
i=1

ξiTg(t− i) + ε(t)

(4.3)

where ε(t) is the white noise, ϕi, θi, ηi and ξi are the model parameters. q is the num-

ber of terms considered in autoregressive, in moving-average and in exogenous inputs,

or the order of ARMAX model. In our study, we set the order to a limited number

of coefficients (20) in order to avoid over-fitting, and to allow better comparison with

other methods.

4.2.3 Supervised learning

Supervised learning has been extensively studied in machine learning and has been

successfully applied to a wide range of applications. Given the inputs and outputs of

a system, supervised learning algorithms model the functional relationship between

inputs and outputs, with no need of knowing the system working principles. In other

words, it can predict how the system reacts on the given inputs without knowing

how a system works. In our study, the effects of the two temperature measurements

provided by the sensors on the measured distance are too difficult to model accurately.

Nevertheless, this complex relationship can be modeled through supervised learning,

with inputs of the ambient and ground temperatures and outputs of the observed

raw distance measurements from ultrasound sensors and the actual distance. Note

that when floods do not occur (i.e. most of the time), the actual distance is perfectly

known, and the output of the system is the raw distance measurement generated

by the ultrasonic rangefinder. Once the relationship is learned, the actual distance

90

between the sensor and the ground can always be estimated given the ambient and

ground temperature measurements. Therefore, supervised learning can be viewed as

a natural solution to our water level prediction problem.

Non-Linear regression:

The first supervised learning method we used is non-linear regression, which models

the target signal by a non-linear function. In this paper, the following quadratic

function is utilized:

e(t) =
∑
i

(b3i+1Ta(t− k · i)− b3i+2Tg(t− k · i) + b3i+3)2

where e(t) represents, as before, the difference between measured distance and actual

distance at time t. Ta(·) and Tg(·) represent the ambient (sensor) and ground temper-

atures respectively, and b· are the parameters of the non-linear regression function.

The combination (k · i) represents the discrete time horizon used for the prediction.

To avoid over-fitting, we chose k = 5, which results in a 15-parameter model taking

into account the five most recent pieces of data. This number of parameters used

in this model (15) is comparable to the 20 parameters used in the ARMAX analysis

detailed above.

This quadratic regression function is selected after empirical comparison of models

with different parameters. It is the best performing model that less suffers the over-

fitting problem and is more accurate on prediction. Also, the proposed model allows

us to capture the influence of the two measured temperatures (ambient and ground

temperatures) as well as the coupling (caused by the effects of solar irradiance, the

heat island effect and the presence of shadows on the ground) between them. The

fitting is done through successive approximations, for which we limit the number of

iterations to 100 and the tolerance to 10−8. Robust fitting options can be added to

improve the root mean square error performance of the predicted values.

91

Neural networks:

Artificial Neural Networks (ANN) are a computational model inspired by the central

nervous systems of animals [87]. This concept and a few possible applications in

industrial electronics are summarized in [88], [89]. In this specific field, there already

exist a large number of applications of neural networks, some of which include motor

drives [90] or power distribution problems dealing with harmonic distortion. Due to

their nonlinear nature, they have also become an integral part of the field of control

systems engineering [91], [92].

Neural network architecture: Neural networks can be considered as a combina-

tion of a set of nonlinear functions that are organized structurally layer by layer.

They are thus also called MLPs (Multilayer perceptron). They are well suited to

various application problems due to their “universal approximation” property: any

continuous function can be uniformly approximated to an arbitrary accuracy by neu-

ral networks, given enough hidden units with any of a wide variety of continuous

nonlinear hidden-layer activation functions, see for instance [93], [94], and [95].

In our problem setting, there are two inputs (ambient and ground temperatures),

and one output (the raw distance measurement from the ultrasound). Each neuron

in the hidden layer connecting to the inputs is fed with the input variables x1, ..., xD.

The complete network function is obtained by:

yk(x,w) = α(
M∑
j=1

w
(2)
kj h(

D∑
i=1

w
(1)
ji xi + b

(1)
j0) + b

(2)
k0) (4.4)

where j = 1, ...,M (M is the total number of hidden neurons in the this layer). The

parameters w
(1)
ji and b

(1)
j0 (w

(2)
kj and b

(2)
k0) are the weights and the biases for the inputs

to the first (second) hidden layer. h(.) is an activation function (in the present case

the activation functions are sigmoid functions). The output is a function α(.) (which

will be discussed in the following section) of the second layer variables. Thus the

92

neural network model can be considered as a nonlinear function mapping a set of

input variables {xi} to a set of output variables {yk} controlled by a vector w of

adjustable parameters.

Levenberg-Marquartdt back-propagation training function: Training a neural net-

work involves the tuning of the weights and biases of the network. The objective is

to maximize the network prediction performance, which corresponds to minimizing

the difference between all network outputs yk and desired outputs or targets tk on

validation data. The computational time required for the training algorithm depends

on many factors, including the complexity and objective function of the problem,

the size of training data, the number of parameters in the network, and whether the

network is being used for pattern recognition (discriminant analysis) or function ap-

proximation (regression [94]). For our particular problem, we are interested in the

function approximation problem with a few hundred weights in a moderate size net-

work. In this specific case, the Levenberg-Marquardt algorithm has been proven to

have the fastest convergence [96]. It updates the network weights and biases in the

direction in which the performance function decreases most rapidly. This advantage

is more noticeable when implementing NN on the proposed platform of this work,

since sensors have a limited bandwidth, and that transmitting all the data would

be of a huge energy consumption, thus it is very critical to consider efficient online

training.

Having stated all of this and trying different modules we realized that we need

an efficient preprocessing tool in addition to the online training. Indeed, the raw

data generated by the infrared temperature sensors and the ultrasound rangefinder

have different scales, and are sometimes exhibiting inconsistencies, as can be seen

from Figure 4.3 which is a major game changer in our application. Therefore, an

effective preprocessing procedure is essential in accurately sensing floods based on

measurement data produced from sensor nodes.

93

Sensor node measurements
(Input) No

Yes

moving median filter

To water level estimation
models (output)

moving median filter

moving median filter

moving median filter

moving median filter

moving median filter

moving median filter

moving median filter

Comm. fault detection
(absence of samples
within a time period)

Sensor fault detection
(local time consensus

thresholding)

Sensor fault detection
(local time thresholding)

Tground1

Tground2

Tground6

Tground3

Tground4

Tground5

Tair

distance

Delete
corresponding

data

Faulty data
Faulty data

Non faulty data (Tground5)

Non faulty data

Data repositoryLASSO-based
formulation

LASSO parameters
estimation

Normalization
Cleaned dataL1 regularized

reconstruction

LASSO
parameters

Figure 4.5: The preprocessing of the measured data from the sensor node. The
processed data are served to the estimation models.

4.3 Proposed Solution and System performance

4.3.1 Preprocessing of measurement data

As stated previously in section 4.2, the raw data generated by the infrared tempera-

ture sensors and the ultrasound rangefinder have different scales, and are sometimes

exhibiting inconsistencies, as can be seen from Figure 4.3. Therefore, an effective

preprocessing procedure is essential in accurately sensing floods based on measure-

ment data produced from sensor nodes. Our proposed preprocessing procedure is

illustrated in Figure 4.5. It mainly involves two main processes: fault detection and

missing data reconstruction.

Sensor fault detection:

Sensor faults can be caused by multiple factors. In the present case, these faults

were mainly due to gateway failures (due to a loss of the internet connection), and

brownouts of the sensor caused by faulty charging circuits in a narrow solar power

input range when collecting the measurement data.

We first check the network faults (communication faults), which are identified by

94

detecting time periods that have more than 15 minutes (i.e. 90 samples at the 0.1Hz

message update rate) without reception of data from sensors. When such faults are

detected, the missing data in the blank periods are reconstructed directly by the

LASSO-based formulation which will be explain in the following section. To remove

outliers (caused by vehicles passing below the sensor), we apply a moving median filter

to the temperature and distance data. Finally, we detect sensor fault by analyzing the

consensus among all six infrared temperature sensors in the node. Whereas for the

ambient temperature and the distance measurements the consensus is not applicable

since we have one of each in a sensor node. We then use a sliding window, in which

we calculate the mean µ and the standard deviation σ of the measurement data of all

the sensors . The records that deviate more than 3σ from the mean are considered

anomalies, and excluded from the dataset. Since the main cause of sensor noise is

thermal noise [97], the sensor measurements follow a normal distribution, given that

the thermal anomalies caused by the vehicles are suppressed by the median filter.

Hence, 99.7% of the values fall within the [µ− 3σ, µ+ 3σ] window. Most of the data

excluded using this approach is indeed faulty data. All data gone through the fault

detection process are stored and served to the next step, approximating the missing

data to complete the measurements.

L1 regularized reconstruction:

In order to reconstruct the missing data in real-time, we leverage the data generated

during the previous days as follows. Let us consider the time series si(·), obtained

during the previous i ∈ {0, ..., imax} days, and let j ∈ {0, ..., jmax} represent a time

index in a day (in practice, j ranges from 0 to 8640 since we have a sampling rate of

0.1Hz). We assume that the current measurements s(j) can be written as a linear

combination of the past measurments, as follows:

sestimate(j) =
imax∑
i=0

αisi(j) (4.5)

95

where α1, · · · , αimax are model parameters. Finding these parameters can be done by

minimizing the estimation error, for example in the least squares sense:

min
α

∑
j∈J

(
imax∑
i=1

αisi(j)− s0(j)

)2

(4.6)

where J ⊂ {0, ..., jmax} is the set of times (for the current day) associated with non-

faulty measurements. s0 is the current day measurements.

In general, |J | is considerably larger than imax, and the problem is overdetermined.

The main issue with this formulation is the fact that any given day should only have

a few identifiable features from the previous days patterns, and thus, α should be

sparse. To enforce this sparsity constraints, we add a L1 norm regularization term

to the above formulation, leading to the formulation of our estimation problem as a

LASSO (least absolute shrinkage and selection operator) [98]:

min
α

∑
j∈J

(
imax∑
i=1

αisi(j)− s0(j)

)2

+ λ||α||1 (4.7)

where λ is the regularization parameter that trades off fitting quality and sparsity.

Sparsity also improves the robustness of the regression to noise.

Problem (4.7) is a quadratic program (QP) which can be solved using standard

convex optimization methods. The results of the preprocessing scheme is illustrated in

Figure 4.6. In this Figure, we show the raw measurement data, along with the output

of the fault detection stage, and the output of the LASSO-based data reconstruction

stage. We applied the above algorithms to filter measurement data over extended

periods of time. Figure 4.7 illustrates the reconstructed measurement data between

December 4th 2013 and December 21st 2013, which is used as training data for

the artificial neural network-based water level estimation scheme, introduced in the

subsequent sections.

96

Time(Days)

7/12 8/12 9/12 10/12 11/12 12/12 13/12 14/12 15/12

T
e

m
p

e
ra

tu
re

(°
C

)

0

10

20

30

40

50

60
Raw data from PIR sensors
Output of fault detection method
Predicted data (LASSO)

Figure 4.6: Comparison between raw PIR sensor data (blue) and reconstructed PIR
data (green) at the end of the preprocessing stage for a sample of the data in December
(without normalization).

4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12 13/12 14/12 15/12 16/12 17/12 18/12 19/12 20/12 21/12

−2

−1

0

1

2

3
Normalized Targets

Time(Days)

4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12 13/12 14/12 15/12 16/12 17/12 18/12 19/12 20/12 21/12
−2

0

2

4
Normalized Inputs

Time(Days)

Ground Temperature

Ambient Temperature

Raw Data from ultrasound

Figure 4.7: Top: Normalized and filtered raw distance measurements (for the pre-
processed training dataset). Bottom: Normalized and filtered ambient and ground
temperature measurements (for the preprocessed training dataset).

97

1 5 10 15 20 25 30
0.005

0.01

0.015

0.02

Number of Neurons

R
M

S
E

Figure 4.8: Relation between the number of neurons in the hidden layer of an ANN
and the root mean square value (RMSE). As can be seen from this Figure, the RMSE
only improves marginally as we increase the number of neurons past 5 neurons.

This section reports the performance of different models we studied in the previous

section. The data set used in this validation has been generated from the sensors

deployed on our university’s campus.

4.3.2 Artificial neural networks performance

The number of neurons has been set to achieve good performance on the validation

dataset, considering the trade off between the computational time required to train the

network and the performance of root mean square error (RMSE) that can be reached.

Furthermore, we had to fix the number of neurons to be comparable with the other

methods we used to estimate the water level (since the number of neurons determines

the number of coefficients to be optimized). RMSE only improves marginally as we

increase the number of neurons past 5 neurons, as can be seen from Figure 4.8.

We implemented the neural network model using the neural network toolbox of

98

Matlab, running on a Mackbook i7. We were able to evaluate and train the neu-

ral network using the Levenberg-Marquardt algorithm with one hidden layer of 10

neurons in a two inputs and one output setting.

The dataset consists of 205000 data points, as illustrated in Figure 4.7. We arbi-

trarily divided it into a training dataset, a validation dataset and a testing dataset.

The training dataset corresponds to 70% of the overall data, while the validation and

testing datasets correspond to 15% of the data each. The validation dataset is used

during the training process, to halt training when the performance of the estimation

on the validation dataset stops improving.

Figure 4.9 shows the histogram of the error between output and targets for the

training, validation and testing samples. It can be seen in the figure that the his-

togram fits a normal distribution with a maximum detected error on validation and

on testing samples of less than 2 cm.

The absolute difference (or called Mean Absolute Error, MAE) between predicted

and actual distance measurements is shown in Figure 4.9. This difference is also

considered as the prediction of water level. Since during this period (December 21st

to 27th) no flood occurred, the actual water level was always 0 cm. As can be

seen from the figure, the deviation of prediction from 0 is less than 1.85 cm. This

low prediction error shows the good performance of a neural network on water level

prediction.

4.3.3 Comparison of prediction models

Table 4.1 shows the comparison between all the approaches investigated in this work

for water level estimation, on an identical dataset (i.e., similar range of validation

dataset from December 21st to 27th, 2013, and when training is required we used

similar inputs, preprocessed data, shown in Figure 4.7). Their performance is com-

pared in terms of prediction accuracy (measured by the maximum absolute error

99

Time(Days)
21/12 22/12 23/12 24/12 25/12 26/12 27/12

W
a

te
r

L
e

v
e

l
(c

m
)

-2

0

2

4

6

8

10
Error = Target - Output

0

2

4

6

8

x 10
4 Error Histogram with 20 Bins

In
s

ta
n

c
e

s

Errors (m) = Targets − Outputs

−
0

.0
3

1
2

1

−
0

.0
2

6
1

1

−
0

.0
2

1
0

2

−
0

.0
1

5
9

2

−
0

.0
1

0
8

2

−
0

.0
0

5
7

3

−
0

.0
0

0
6

3

0
.0

0
4

4
6

2

0
.0

0
9

5
5

7

0
.0

1
4

6
5

0
.0

1
9

7
5

0
.0

2
4

8
4

0
.0

2
9

9
4

Training

Validation

Test

Zero Error

Figure 4.9: Left: Water level prediction during a week of December 2013 for the
sensor node ”A77D”. Since no flood occurred during this period, the actual water
level was always 0 cm. The deviation of predicted value from 0 can be considered
as prediction error, which is less than 1.85 cm. Right: error distribution over the
training, testing and validation datasets.

(L∞) and RMSE), efficiency (computational time in both training and prediction)

and prediction stability (standard deviation of errors in 5 independent runnings of

the same testing dataset).

Besides naive compensation and ARMAX, our proposed neural network approach

is compared to three other machine learning techniques, non-linear regression, decision

tree and fuzzy logic, which are widely used supervised learning methods for making

predictions [99]. The neural network and non-linear regression are introduced in

section 4.2.3. We designed a fuzzy logic predictor using two membership functions on

our two inputs, and thus resulting in four fuzzy rules. Then we use a hybrid learning

algorithm to tune the parameters of a Sugeno-type fuzzy interference system [100]

which is a combination of the least-squares and back-propagation gradient descent

methods to model a training data set. For comparison purposes, we ensured that the

number of parameters to optimize is similar to the other models and the same training

and testing data are used for evaluation. Decision tree for regression is employed for

estimating water level at leaf nodes, while each branching node splits values of one

100

input variable. The tree is trained by the ”Regression Tree” functions provided in

Matlab, with the same training data we used for the other models.

On accuracy, the four machine learning (ML) methods presented in this work are

performing better than the naive compensation and ARMAX, in which the neural

network (NN) approach performs the best. With regard to computational time,

the naive compensation is associated with a zero training time, while the training

time for the ARMAX estimation method is negligible (since the model is linear).

Each of the ML methods involves a training process, and thus demands some time

for learning. However, it is more important to compare the computational time in

prediction, because ML training can always be conducted offline. Except for ARMAX,

the five approaches need around 5−6 seconds to make the prediction for the complete

testing dataset (i.e. 30% of the complete dataset of 205000 data points), that is,

8.76 × 10−5 seconds to make one prediction, which is fast enough to satisfy the real

time requirements.

The ML methods are also more stable than others, and thus can guarantee that

the prediction is reliable.

Table 4.1: Comparison of the performance of 6 models
Model L∞(cm) RMSE Computing time (sec.) Error Std.

Training Prediction

Naive Compensation 15.3 0.0547 0 5.3 0.0504

ARMAX 4.9 0.0164 0 272.3 0.0152

Fuzzy Logic (ML) 2.59 0.0413 168.6 5.5 0.0377

NL Regression (ML) 2.57 0.0082 28 5.7 0.0083

Decision Trees (ML) 2.15 0.0158 26.6 5.9 0.0158

NN (ML) 0.6 0.0058 975 5.2 0.006

4.3.4 Minimization of errors in the L∞ sense

Most ML techniques involve the minimization of the prediction error in the L2 norm

sense, as we investigated above. Since flash floods are extremely rare events, we are

also interested in making prediction with minimized error in the L∞ sense, to avoid

false alarms in the flood monitoring system. The infinity norm is better than norm

101

2 for the task, since we want to detect events based on thresholding, and a very low

norm 2 (but high norm infinity) in the training (non flood) data is unacceptable, since

it would lead to false detections.

Our objective in this subsection is thus technically to minimize the prediction

error in the L∞ sense instead of the L2 norm sense, though the L∞ error usually

improves when the L2 error is reduced.

Minimizing the prediction error in the L∞ sense is straightforward in the case of

a linear model: it can be formally written as:

min
W
‖XW − Y ‖∞

where X is the input, W is the model coefficient to be optimized, and Y is the output.

This resulted Linear Program (LP) problem is solved by the SDPT3 package working

under Matlab in this paper.

We investigate both the linear model (ARMAX) and the nonlinear model (non-

linear regression) for minimizing error in L∞. Table 4.2 shows the performance of

ARMAX and non-linear regression, measured in maximum absolute difference (L∞),

RMSE and standard deviation of errors (in 5 independent runnings of the same testing

dataset). Comparing the L∞ values of these two methods in Table 4.2 and Table

4.1, we can see that they have smaller L∞ when minimizing L∞ error than when

minimizing L2 error. The non-linear regression model with minimized L∞ error is

comparable to the ANN model with minimized L2 error, which is the best as observed

in Table 4.1.

With regard to the RMSE, both ARMAX and non-linear regression have high

error value when minimizing error in L∞. This is understandable, as they by nature

lead to small RMSE (a performance metric defined in L2) when minimizing error in

L2.

102

Table 4.2: Comparison between ARMAX and NL regression when minimizing error
in L∞

Model L∞(cm) RMSE Error Std.

ARMAX 2.28 1.2593 1.0128

NL Regression (ML) 0.55 0.3218 0.2572

4.3.5 Temporal robustness of ANN model parameters

In this section, we evaluate the time dependence of the training parameters. For

this, we train the artificial neural network model using data from the early December

(December 4th to 21st), and validate the performance on three different sets of data

(timely separated), namely late December (December 21st to 27th), January and

February.

Table 4.3 shows the performance of the estimation models of the neural networks

on the sensor node ”A77D” using training data from early December 2013 only. As

can be noted, the prediction performance slightly degrades in February. However,

the estimation error is acceptable (within about 2 cm) for flash flood monitoring

applications. This suggests that the coefficient can be used for large durations (e.g.,

tens of days) before degrading (hence it needs to be tuned), which enables large

datasets to be integrated in the training process.

Table 4.3: Evaluation of temporal robustness: comparing prediction accuracy in dif-
ferent months when using NN trained by data in early December, 2013.

Month L∞(cm) RMSE Error Std.

Late December 1.63 0.0215 0.0213

January 2.08 0.0267 0.0267

February 2.15 0.0272 0.0272

4.3.6 Spatial robustness analysis of ANN model

To evaluate the robustness of the model parameters with respect to spatial changes,

we installed two sensor nodes in a close proximity (during January 2014): sensors

”A77D” and ”8F90”. Node ”8F90” is placed in an area that can be shadowed by a

103

28/1 7/2
−2

0
1
2

4

6

8

10

11 Days (from Januray 28th till February the 7th)

W
a
te

r
L

e
v
e
l
(c

m
)

Sensor Node "8F90"

Figure 4.10: Estimated water level at the sensor node ”8F90” from January 28 to
February 7, 2014. In this test, the artificial neural network is trained onboard by the
sensor node itself.

building at some times of the day, unlike node ”A77D”.

In a similar manner to the analysis done to ”A77D”, we estimated the water level

and the norm infinity error of estimation during a period of 11 days is shown in Figure

4.10 (picked right after we installed the node early in January 2014). It can be seen

from Figure 4.10 that the error is less than 0.6 cm.

Then, in order to evaluate the spatial robustness, the neural network is trained by

data from sensor ”A77D” during December 4th and 21st, 2013, to predict the data

for the sensor node ”8F90” over the same testing period of the 11 days.

As expected, the performance of the prediction of ”8F90” slightly degrades in this

case: RMS error of 0.275 vs. 0.0058 and norm infinity error of 1.735 cm vs. 0.6 cm

for the training with the data of ”8F90”, compared to the training with the data

of ”A77D”. This acceptable error (i.e. less than 2 cm) allows us in practice to use

training data from the nearest sensors to immediately generate distance measurement

data from a newly installed sensor, without having to wait for a training period.

104

4.3.7 Validation on an actual flooding incident

Flood incidents are usually rare, but one such incidents occurred in the test period,

the only incident which has occurred to date. This incident has been detected by two

sensors installed in Umm Al Qura University in Mecca, Saudi Arabia, where climate

conditions differ and floods are more frequent. The flash flood occurred on the 8th of

May 2014, and fortunately did not lead to extreme damage and caused only a single

casualty [101]. Students at the university reported that the street water level was

locally around 10cm, and the incident started at around 11PM local time.

This incident has been captured by the two sensors ”8F48” and ”D3CB”. The

water level estimates (using the days before May 6th as training data for both sensors)

are illustrated in Figure 4.11 for both sensors. As can be seen from this Figure,

the flood is clearly detected, and corresponds to a significant rise in the water level

estimate. We can also see the onset of the flood is identical for both sensors, and that

the estimated water levels are of the same order of magnitude (7 to 9 cm).

Unfortunately, the sink node has failed shortly after the flood occurred, around

11:30 PM. The failure of the sink node was probably caused by an electrical failure

related to the flooding event. Nevertheless, the available data clearly shows the

detection of a minor event shortly before midnight, 9th of May 2014, on both sensors.

There was no way to detect the flood incident from the raw data of the ultrasonic,

as illustrated in Figure 4.12 for one of the sensor nodes that encountered the flood

(i.e. ”8F48”). As shown by this Figure, naive thresholding on the raw water level

measurement data would not allow one to detect the flood.

4.4 Implementation of ANN algorithms on microcontrollers

In order to validate our design and be able in practice to use our solution, we imple-

ment our algorithms on the dedicated microcontroller board and validate the perfor-

mance as explained in the following sections.

105

6/5 7/5 8/5 9/5

−2

0

2

4

6

8

10

Time (Days)

W
a

te
r

L
e

v
e

l
(c

m
)

Sensor Node "DC3B"

Flood detection

6/5 7/5 8/5 9/5

−2

0

2

4

6

8

10

Time (Days)

W
a
te

r
L

e
v
e
l

(c
m

)

Sensor Node "8F48"

Flood detection

Figure 4.11: Water level estimation between May 6 and May 9, 2014, for sensor
nodes ”DC3B” and ”8F48” deployed in Umm Al Qura University campus.

4.4.1 Dedicated sensing platform for flash flood monitoring

applications

In the present case, we have built a customized hardware platform, described in the

companion work [84]. This platform is built around a 32-bit microcontroller and il-

lustrated in Figure 4.13. We selected for this application the STM32F407, a 32-bit

ARM Cortex-M4 based microcontroller from ST Microelectronics since it satisfies

the requirements of our estimation problem and best trades off RAM, power con-

sumption, cost and most importantly for this study, computation (since this sensor

is sensing traffic flow, relaying and forwarding other messages in the sensor network,

and estimating traffic flow conditions [83]).

4.4.2 On-Board Neural Network Algorithm

In order to build a neural network on the custom-based microcontrollers, we need

to build not only the architecture but also the data storage system, for performing

both training and prediction. The key values to be stored are weights associated with

neurons, the weight updates and error gradients during the training phase.

106

6/5 7/5 8/5 9/5
Time(Days)

510

515

520

525

530

535

M
e
a
s
u

re
d

 d
is

ta
n

c
e
 (

c
m

)

Sensor Node "DC3B"

6/5 7/5 8/5 9/5
Time(Days)

510

515

520

525

530

535

M
e
a
s
u

re
d

 d
is

ta
n

c
e
 (

c
m

)

Sensor Node "8F48"

Figure 4.12: Raw ultrasonic measurements between May 6 and May 9, 2014, for
sensor nodes ”DC3B” and ”8F48” deployed in Umm Al Qura University campus.

Initialization of the Neural Network:

To minimize the number of iterations in neural network training before convergence,

the weights associated with neurons should be carefully initialized. Since our simu-

lation results from training data set already show good estimation performance, and

good spatio-temporal robustness, as shown in sections 4.3.5 and 4.3.6, the weights of

the trained neural network of any given sensor is a good initial guess. Therefore, we

initialize the neural network on board by the weights of the neural network trained

in the simulation from training data between December 4th till December 21st.

Neural Network Training:

As we have illustrated previously in section 4.3.5, and in Figure 4.14, the trained NN

model is robust when it is applied to long term prediction over two months until the

error propagates due to the weather change. In order to continuously make accurate

prediction, the NN model should be updated with the recently received data, which

are saved in a 2GB micro SD card. The card has the capacity to host at most 12

months of data, which are sufficient for NN updating. Due to the limited computing

power on board, updating the NN cannot be implemented in the batch mode intro-

duced in section 4.2.3. The main reason is the repeatedly heavy computation of yk

in Equation 4.4 for all x in training data during the error propagation process. Thus

107

Figure 4.13: Custom-developed 32-bit microcontroller platform (9cm x 6.5cm) con-
nected to an XBee module and to PIR and ultrasonic sensors.

we adopt the online training mode for updating the weights in NN model, due to its

comparable performance to the batch mode but better efficiency. Instead of taking

all x in training data for a single update of weights in NN, the online mode updates

the weights by using x one by one. That is to say, the data saved in SD card flow into

the NN individually and update it until the prediction error is reduced down below

an acceptable threshold (e.g., 2 cm in the L∞ case).

Implementation:

The implementation of code is done using Keil v4.7 [102] which is a software pro-

vided by the ARM group, and optimized for C/C++ language. We have implemented

our algorithms on the wireless sensor nodes using a conventional back-propagation

neural network class in C language that makes use of gradient descent, with param-

eters defined as: 0.001 learning late, 1500 of maximum epochs during training, and

108

1 week (late December) 1 week (January) 1 week (February)

-2

0

2

4

6

8

10

W
a

te
r

L
e

v
e

l
(c

m
)

Figure 4.14: Prediction accuracy during different months on the sensor node ”A77D”
installed on our campus in November 2013, using training data from December 2013
only. As can be seen from this Figure, the prediction performance slightly degrades
in February, though its performance is still acceptable for flash flood monitoring
applications.

maximum accuracy. The demonstration code is a 996 lines written in C++ language

and is built on top of <math.h>, <algorithm>, <fstream>, <string>, <vector>,

<stdio.h> libraries, as well as the designed neural network class "neuralnetwork.h".

The code can toggle between batch and online training mode, and gets the training

stopping criteria from the user. Its total memory size (when compiled) is 101 kB

(our microcontroller ROM size is 1 MB), while its peak memory usage is 58 kB (our

microcontroller total RAM size is 192 kB), well below the limits of the Cortex M4

microcontroller.

Neural Network performance:

We coded the neural network algorithm on the custom-based microcontroller plat-

form described earlier, and tested them for real time performance. The prediction

performance of the NN running on the computational platforms has similar results

to the ones obtained on Matlab. However, since the platform has less computational

109

capabilities than a computer, its computational time was expected to be much greater

when we consider the training in addition to the prediction of the data in order to

converge to the solution. We show the performance on the prediction of water level

with retraining when the threshold is exceeded at the beginning of February 2014

in Figure 4.15. We used one week of data following the online training approach to

retrain the NN parameters and as we can see this helped bringing the error to within

2 cm. The computational time measured for the process of training and predict-

ing a week of data onboard with the online training approach took approximately,

118 minutes (11.2 minutes for prediction). We implement the on-board NN on the

custom-based microcontroller platform, and evaluate its performance to see whether

prediction error can be reduced after online updating. In Figure 4.14, we show the

performance on the prediction of water level with training data from December 2013

only. It can be seen that the prediction performance slightly degrades in February

2014 (sometimes with errors greater than 2 cm). In Figure 4.15, we show the predic-

tion with online training when the error exceeded 2 cm at the beginning of February

2014. We used one week of data following the online training mode to update the NN

parameters. We can see that the error is reduced to be less than 2 cm.

Due to the limited computational capability of the low-power platform, the on-

line training mode took about 2 hours for absorbing the one week data, while the

prediction is quite fast 0.03 seconds per data sample. Therefore, the online train-

ing employed only one week data and stopped to proceed with more data to further

reduce the error that is already less than 2 cm.

4.5 Discussion

The recent vast research activities in neural classification have established that neural

networks are a promising alternative to various conventional classification methods.

The advantage of neural networks lies in the following theoretical aspects. First,

110

1 week (late December) 1 week (January) Retrain 1 week (February)

-2

0

2

4

6

8

10

W
a

te
r

L
e

v
e

l
(c

m
)

Figure 4.15: Prediction accuracy during different months on the sensor node ”A77D”
installed on our campus in November 2013, using training data from December 2013,
with online on-board retraining of the parameters early February 2014. As can be seen
from this Figure, the prediction performance has improved in February, compared to
the results shown in Figure 4.14.

neural networks are data driven self-adaptive methods in that they can adjust them-

selves to the data without any explicit specification of functional or distributional

form for the underlying model. Second, they are universal functional approxima-

tors in that neural networks can approximate any function with arbitrary accuracy.

Third, neural networks are nonlinear models, which makes them flexible in modeling

real world complex relationships. Finally, neural networks are able to estimate the

posterior probabilities, which provides the basis for establishing classification rule and

performing statistical analysis.

In the present case, ANNs exhibit good convergence properties, which enables

us to use a low number of neurons and layers, making it suitable to a low power

embedded systems application. In future work, we will investigate the possibility

of using ANNs for detecting other information related to flooding, for example the

presence of water on the ground, or the presence of rain, which may be inferred from

111

air and ground temperature measurement patterns. Preliminary analysis on the flood

data that we collected shows the possibility of using ANNs in this context, though

more validation is needed.

4.6 Rain detection

In addition to monitoring water levels in streets, the proposed sensor could also detect

rain events using temperature measurements. This information would be critical for

estimating the propagation of floods in real time using hydrological models.

4.6.1 A Neural network classifier

We similarly use NNs to train a model for our classification problem (identifying

whether rain events happen or not). The six-day data of ground and ambient tem-

perature illustrated in Figure 4.16 include a rain event that happened on KAUST

campus. Our target is to predict if it is raining or not at time t based on the ground

and ambient temperatures at this time instant.

8/5 9/5 10/5 11/5
20

30

40

50

60

Time (Days)

Ground Temperature (°C)

Ambient Temperature (°C)

Figure 4.16: Ground and ambient temperature during May 7 to 11, 2014 in KAUST
campus. The rain event on May 8th causes a strong drop in the measured ambient
and ground temperatures.

112

As can be seen from Figure 4.16, a rain event can cause a strong drop in the

ambient and ground temperatures. However, it is not feasible to directly report

raining by monitoring the low values in temperatures, as temperatures follow a daily

cycle. A NN with three inputs and ten neurons in one hidden layer is trained for

a binary classification problem. The three inputs take the three features: ambient

temperature, ground temperature and time. Binary class label indicates not raining

(Class 1) and raining (Class 2).

We conducted the NN classification model on two different evaluations of the

model to assess its robustness. The ground truth rain status is obtained from the

local weather station in the area of Thuwal. We first divided the dataset randomly

to training, validation and testing (70%, 15% and 15% respectively). For the second

evaluation, we divided the dataset as follows: a training dataset containing 70% of

rain events in a continuous period and 70% of no rain events in other continuous

periods, as well as validation and testing datasets containing 15% of both rain and no

rain events in different continuous periods. That is to say, the time span of training,

validation and testing do not overlap. The purpose of the second evaluation is to

check the time dependency of our model in identifying rain events since we have

the time stamp for every sample as an input to our model (which affects the model

creation since the recorded rain event happened at a particular time of the day).

4.6.2 Rain detection results

The performance of a NN classifier can be summarized in the confusion matrix con-

cept. For the first evaluation (i.e., with randomly divided training, validation and

testing sets), the confusion matrix (shown in Figure 4.17 Left) indicates a high ac-

curacy classification (very close to 100%) (accuracy in this case reflects how much

”rain” and ”non-rain” are correctly predicted). Only one rain sample is misclassified

as ”non-rain” leading to a recall (R) or true Class 2 (rain) rate (a.k.a. True Positive

113

Rate) of 99.9%. The precision (P), measuring how much predicted rain samples are

truly rain samples, in this case is 1, since the 1384 samples predicted as Class 2 truly

belong to Class 2 (no ”non-rain” samples were classified as ”rain” samples). We also

evaluate our model by Fmeasure, which is a widely used metric for binary classification

model. It considers both the precision and recall by taking a weighted average of

them:

Fmeasure =
(β2 + 1) · P ·R
β2 · P +R

(4.8)

where β ≥ 0 is used to control the weight assigned to precision and recall. Usually, β is

set to be 1 so that Fmeasure is the harmonic mean of precision and recall. Fmeasure close

to 1 indicates the perfect predictive power of a classification model. We re-run the

evaluation by different training, validation and testing sets randomly sampled from

the whole data set, and achieve the similar confusion matrix, showing the stability of

our model. Averaging on five independent runs, the Fmeasure (or F1 − Score for β =

1) we got is 0.999.

For the second evaluation (i.e., training, validation and testing subsets are cut

from different time intervals), the classification performance remains good (illustrated

in Figure 4.17 Right), though it slightly degrades to 90.2% of accuracy (on average

on 5 runs). While the precision (P) is still 1, the recall (R) or the true Class 2

rate is degraded to 73.4% (on average on 5 runs). This means that we can trust the

classification judgements made by our model, as all predicted rain events are truly

belonging to the class of rain (P = 1). However, there are 26.6% rain events that

remains unidentified. Given the single short raining period (8 hours) in our datasets,

the current performance of rain detection is more than acceptable (with F1−Score =

0.85). The predictive power of the classification model would be improved when more

rain samples under different conditions of temperature and time are available.

114

Class 1 Class 2

Class 1

Class 2

2362

0

100%
True Class 1

Rate

1

1384

99.9%
True Class 2

Rate

0.1%
False Class 1

Rate

0%
False Class 2

Rate

100.0%
Accuracy

Actual

P
r
e

d
ic

te
d

Test Confusion Matrix

Class 1 Class 2

Class 1

Class 2

2362

0

100%
True Class 1

Rate

368

1016

73.4%
True Class 2

Rate

90.2%

Actual

P
r
e

d
ic

te
d

26.6%

Accuracy

False Class 2
Rate

0%

False Class 1
Rate

Figure 4.17: Left: Testing confusion matrix resulted from evaluation 1 when the
dataset samples are randomly divided into training, validation and testing datasets.
The classification is almost perfect with accuracy close to 100%. Right: Testing
confusion matrix resulted from evaluation 2 for the time dependency analysis. The
average accuracy of 5 runs is as high as 90.2%.

4.7 Chapter Remarks

In this part of the thesis work, an ANN approach is presented to contribute to the

literature of flash flood sensing using a custom-designed sensor comprising an ultra-

sonic rangefinder and multiple passive infrared temperature sensors. Because of the

extremely low absolute distance measurement error required by the system (on the

order of 0.2%), one needs to estimate the temperature profile of the air layer between

the sensor and the ground, as this temperature affects the speed of sound. Since this

profile is impossible to model accurately (because of unknown model parameters and

unknown boundary conditions), a non model-based approach is chosen for estimat-

ing the correction due to deviations in temperature showing that ANNs capture the

effects of the underlying model very accurately, and can be used to monitor water

level in streets in real time, given the important preprocessing step that contributes

substantially to the accuracy of the estimations, this approach has been validated for

a long testing period and the robustness analysis shows its stability over time and

space. We also demonstrate that such algorithms can run in real time on low-power

115

microcontroller platforms, greatly reducing power usage and bandwidth requirements

in a wireless sensor network context.

Future work beyond the thesis work will be focused on the detection of rain using

the reflections of the secondary lobes of the ultrasonic rangefinder. I will also inves-

tigate the detection of water presence (not thickness) on the ground using air and

ground temperature measurements. This water presence information can be used for

fault detection purposes, to make sure that the change in ground distance is actually

caused by water.

116

Chapter 5

Inertial Measurement Units-Based Probe Vehicles:

Trajectory and Traffic Conditions Estimation

Traffic sensing is a critical component of traffic estimation systems that generate traffic

maps, travel time estimates, optimal routes for vehicles, or optimal control policies

for traffic control systems. Traffic sensors can be broadly categorized in two types

(as mentioned earlier in this thesis): Eulerian (fixed) sensors, which measure traffic

conditions at a fixed point in space, and Lagrangian (mobile) sensors, which measure

traffic conditions along the path of a vehicle. The former include a wide variety of

sensors, including radars [26], inductive loop detectors [103], traffic cameras (including

infrared cameras) [104] or magnetometers [21]. In contrast, Lagrangian sensors consist

in positioning systems, most often the Global Positioning System (GPS), though

other satellite-based systems could also be used. Other positioning systems have

been used in the past, including for instance cellphone towers [105] for triangulation

or trilateration of vehicles, though satellite based positioning systems are considerably

more accurate than cellphone tower-based positioning. The GPS system can provide

location information with a high precision, on the order of meters, depending on the

configuration of the environment and on the type of GPS receiver.

Companies such as INRIX [106] leverage this new type of sensing, which can take

the form of GPS-equipped participatory vehicles (such as the Mobile Millennium

system, see [107]), GPS-equipped fleet vehicles [106] or the location tracks of cellphone

users, obtained using trilateration [108]. Among all user location methods, GPSs

or other satellite-based positioning systems are the most accurate. However, these

117

sensing methods are not without drawbacks. In particular, the cost and the power

consumption of GPSs is relatively high. In addition, the accuracy of GPS in urban

areas can be severely degraded because of the urban canyon effect, which may reduce

the number of visible satellites [109] [110] [111] and cause multi-path effects causing

a loss of positioning accuracy [112]. This in turn makes it very difficult to precisely

reconstruct the trajectory of a vehicle in a city. For example, a vehicle stopped after

an intersection may appear to stop before the intersection, or a vehicle stopped in

traffic is indistinguishable from a vehicle stopped at a curb (which happens frequently

in a city), which complicates the processing of the data. For this reason, a very high

number of probe vehicles is required to reliably estimate traffic conditions in cities.

An entirely different approach is the use different type of positioning systems that

are immune to these positioning effects, such as Inertial Measurement Units (IMUs).

IMUs are based on a combination of accelerometers and gyrometers, and can be used

to determine the accelerations and rotation rates of a vehicle. IMUs do not require any

external infrastructure and do not actively radiate. They also require an extremely

low power to operate, considerably less than GPS or cellphone-based systems. Owing

to their much lower complexity than GPS systems, IMUs are less expensive than

them [113]. They do not require an antenna for receiving GPS signals, and are not at

risk of losing connectivity with positioning satellites, which frequently happens with

GPS systems. They are also immune to environmental noise effects, in particular

to the multi-path effect encountered in cities. Because of their very high accuracy

(over short time windows), IMUs are extremely good at detecting and classifying the

type of congestion encountered (traffic light, stop and go waves, slow and continuous

traffic) [114]. The resulting system is significantly less expensive than an all-GPS

solution (because of the lower cost of IMU chips over GPS chips) and immune to

noise or to GPS spoofing, thereby making it more reliable [115]. In addition, such a

system offers strong guarantees for the privacy of the participating users [83] when

118

used in conjunction with a short-range wireless sensor network.

Unfortunately, IMUs do not generate absolute position measurement data, and

are only capable of estimating a trajectory in conjunction with the knowledge of one

of the positions along the path. They are also prone to accumulating integration

errors, and unless an absolute positioning system is used in conjunction with them,

their trajectory estimate is bound to diverge.

The process of estimating the position of a vehicle using an Inertial Measurement

Unit (IMU) is called dead reckoning. It somehow requires the determination of the

attitude (orientation) of the device with respect to the Earth, and the integration

of the acceleration and rotation rate measurements over time. This integration al-

lows the estimation of the trajectory of an object equipped with an IMU, provided

that the initial or final locations, velocities and orientations are known. Such a sys-

tem is commonly used in aviation, in particular in navigation systems of commercial

airplanes, which use high accuracy inertial measurements in conjunction with fixed

ground beacons to estimate the location of the airplane in real time, even in the

absence of GPS signals [116]. However, aviation-grade IMUs are considerably more

accurate and more expensive than commercial MEMs IMUs used for this project,

which requires new strategies to estimate the trajectories in the present situation.

While ground vehicles are constrained to evolve in the transportation network (which

helps in estimating their trajectories), the integration errors are too large to meaning-

fully estimate the velocity and position of a vehicle after a few seconds have elapsed.

In addition, while aviation-grade IMUs are precisely aligned with the axes of the air-

plane during manufacturing, the installation of a low-cost IMU device inside a car

cannot be done with the same standards. Therefore, the orientation of the device

inside the vehicle is in general unknown, which greatly increases the complexity of

the problem.

For all these reasons, the objective of the present part of the thesis is to address

119

the following challenges:

• Self-calibration of the IMU, through the development of an auto-calibration

algorithm applicable to ground vehicles

• Estimation of vehicle orientation, to compute the coordinate acceleration in the

Earth frame

• Estimation of vehicle trajectory, using the kinematics of ground vehicles, and the

fact that vehicles often stop (intersections, traffic lights) in urban environments.

• Path reconstruction using the road network.

The rest of this work is organized as follows. Section 5.1 describes the system

used in this Chapter, and presents an actual hardware implementation of this system.

Section 5.2 focuses on the problem of auto-calibration, and shows that the orientation

of the sensing device can be reliably learned by the system after a few minutes of

driving, allowing a very easy installation (the device only needs to be rigidly attached

to the vehicle). Section 5.3.1 deals with the problem of estimating the attitude of the

vehicle, a required step to compute the actual acceleration of the vehicle from the

IMU measurements. Section 5.3.2 focuses on the problem of trajectory estimation

in a city. In this section, we do not assume that the topology of the transportation

network is known (this information can used by the device receiving the IMU data to

match the position of the vehicle on a map), and specifically focuses on the problem

of divergence in velocity estimation. We show that the velocity of the vehicle can

be accurately estimated through a constrained quadratic program, corresponding to

a L1 regularized least squares problem. All numerical algorithms are validated with

experimental data obtained from an IMU-equipped vehicle. Finally, in section 5.4,

we conclude this work with the implementation of the path reconstruction using the

road network to be able to infer the actual path where we propose a map matching

approach based on a Bayesian formulation.

120

5.1 System Components

5.1.1 Traffic sensing principle

In this Chapter, we assume that the IMU devices onboard vehicles communicate with

a fixed sensor network infrastructure, and exchange information with it locally. This

local information exchange is requires to estimate the final position of the vehicle,

before this data is exchanged, since no other absolute positioning information is avail-

able. Ideally, the range of the wireless system used in conjunction with IMU-based

probe vehicles should be in the order of tens of meters. This data can for example be

exchanged over Bluetooth or WiFi, and the endpoint can be a Bluetooth or WiFi

reader.

Similar to the approach described in [83], this wireless sensor network approach

offer strong theoretical privacy guarantees for the probe users, unlike current probe-

based systems that send data to a centralized database.

In the proposed system, traffic conditions are inferred locally using the nodes of

the fixed wireless sensor network. In addition to solving the user privacy problem,

this wireless sensor network approach increases the reliability of the system (over

server-based approaches), and reduces the total cost of the system (since the cost of

IMU chips and short range ad-hoc transceivers is much lower than the cost of GPS

chips and cellphone data transceivers).

5.1.2 Vehicular system

We use a custom-developed GPS/IMU system (Figure 5.1) based on a Arm Cortex M4

processor operating at 168 MHz. It contains a 9-DOF IMU (accelerometer, gyrometer

and magnetometer) and a GPS, and is powered through a USB port that is rigidly

attached to the vehicle (through a car charger or a vehicle USB port), albeit at a

random orientation with respect to the coordinates of the vehicle. The device can

121

Figure 5.1: Left: custom-developed IMU board with bluetooth module. Right: real-
time IMU data streaming from the IMU device to a Bluetooth enabled smartphone.

send data over a IEEE 802.15.4 XBee module transceiver or a Bluetooth transceiver

(which is used in this study), at a 10Hz rate.

5.1.3 Fixed wireless sensor network system

The data generated by the IMU devices is sent to a wireless sensor network for

processing. To minimize the latency of communications, the trajectory data generated

by the IMUs is compressed before being sent to the wireless sensor network. The

sensor network matches the estimated IMU trajectory to the actual road network,

and sends the corresponding data to a traffic state estimation server. The complete

system diagram [83] is illustrated in Figure 5.2.

5.1.4 Data processing

The proposed system is based in IMUs equipped vehicles (with GPS data used only

for validation). Generating traffic measurement data from IMUs is nontrivial, and

requires several processing steps at the vehicular sensor level and in the wireless sensor

122

Gyrometer

Accelerometer

Microcontroller

unit

Bluetooth

transceiver
Compressed trajectory

+ context (encoded as

device name)

Bluetooth reader
Bluetooth

serial

Vehicle sensor system

Attitude angles
estimation (θ, φ, ψ)

Trajectory

integration
Context detection

Speed estimation

(on links)

Trajectory estimation

(map matching)

 Serial

Traffic estimation

server

Road network

database

Wireless sensor system

Internet

Other data feeds

Figure 5.2: In the proposed system, traffic data from IMU is integrated to the fixed
wireless sensor network, which computes the traffic maps using distributed computing.
The resulting traffic maps are then forwarded to an output database

network. These processes are highlighted in Figure 5.2. The first step is to map the

coordinates of the sensor to the coordinates of the vehicle, which will be referred to

as automatic calibration in the remainder of the work. The resulting acceleration

and rotation rate measurements from the sensor are mapped into the coordinates of

the vehicle, and are used to determine the orientation of the vehicle with respect

to the Earth. This allows us to compute the coordinate acceleration (in the Earth

frame) by canceling the gravitational component of the acceleration. We then use the

acceleration and rotation rate measurements to both estimate the yaw angle and the

actual vehicle velocity. This combination allows us to generate vehicle trajectories,

which are then compressed and sent to the wireless sensor network.

5.2 Automatic Calibration for attitude angles

Unlike GPSs, the orientation of an IMU sensor has an importance. To determine

the trajectory of the vehicle, it is critical to determine the orientation of the IMU

to measure the acceleration along the longitudinal, lateral and vertical axes of the

vehicle. This could be achieved by carefully determining the orientation of the device

in the vehicle (assumed to be constant, since the device is rigidly connected to an

123

USB port), and compute a corresponding rotation matrix mapping the coordinates of

the device to the coordinates of the vehicle. However, this procedure is cumbersome,

and prone to errors if the user removes and reinstall the sensor. To enable large scale

deployments (with 200 IMU devices currently being manufactured for a pilot test in

Texas), we have to determine the orientation of the device with respect to the vehicle

automatically. Fortunately, the dynamics of ground vehicles is constrained, which

allows us to develop an algorithm that automatically computes the rotation matrix

transforming the vehicle coordinates into the vehicle coordinates.

5.2.1 Solution method

Since a rotation matrix is unitary, it is enough for us to determine how two axes are

mapped through the rotation. Let ic, jc and kc be the unit vectors associated with

the longitudinal, lateral and vertical axes of the vehicle, as illustrated in Figure 5.7.

Let us similarly define id, jd and kd as unit vectors associated with the longitudinal,

lateral and vertical axes of the vehicle. Let Rd/c be the rotation matrix mapping the

coordinates of the vehicle into the coordinates of the device.

We assume that in average, the attitude of the vehicle on Earth is flat, that is

the vehicle has on average a zero pitch and roll angle. This assumption is a standard

assumption in aerospace, used to correct the long-term offsets of attitude indicators

in airplanes, helicopters or drones, which are also assumed to fly in average with a

zero pitch and roll attitude. Therefore, we have that

1

T

∫ T

0

ax(t)

ay(t)

az(t)

 dt ≈

0

0

g

 (5.1)

where ax(t), ay(t) and az(t) are the accelerations expressed in the vehicle coordi-

nates, and g is the acceleration of gravity at the surface of the Earth.

124

Hence, if āx(t), āy(t) and āz(t) represent the accelerations measured by the device,

we have that

1

gT

∫ T

0

āx(t)

āy(t)

āz(t)

 dt ≈ Rd/c

0

0

1

 (5.2)

In other words, the third column of Rd/c is equal to v3 = 1
gT

∫ T
0

āx(t)

āy(t)

āz(t)

 dt. The

latter can be obtained by averaging the acceleration measurements of the IMU. In

practice, the norm of v3 may not be exactly equal to 1 (due to systematic errors of

the accelerometer), and v3 is renormalized to 1 as an extra step.

A single vector is not enough to determine the rotation matrix uniquely. Therefore,

we need to determine the image of a second vector by Rc/d. This is achieved by

determining the orientation of ic in the sensor coordinates, as follows.

Let us first consider the projection of the acceleration vector on a plane perpendic-

ular to v3, that is, āp(t) = ā(t)− < ā(t), v3 > v3. The evolution of āp(t) is illustrated

in Figure 5.5.

As can be seen from this Figure, the residual acceleration is quite variable. Follow-

ing classical kinematics, R−1
d/cāp(t) (corresponding to the coordinates of the projection

of the acceleration in a plane perpendicular to the gravity vector) can be expressed

as

 dv(t)
dt

v(t)gz(t)

, where v(t) is the velocity of the vehicle, and gz(t) corresponds to

the rate of rotation of the vehicle around its vertical axis. This relationship as-

sumes that the curvature radius of the trajectory r(t) is related to v(t) and gz(t) as

v(t) = r(t)gz(t), which is only valid if the vehicle is not skidding, that is, if its velocity

vector is constantly aligned with its longitudinal axis. Skidding is extremely rare in

normal driving, and this assumption is not expected to be restrictive in practice.

125

While we do not have access to gz (since we do not know the orientation of the

device at this point), we can infer that gz is almost equal to zero when the norm of

the rotation rate vector (measured in the coordinates of the sensor) is very low. If we

select the times for which ||g(t)||2 is under some threshold, the vector āp(t) is almost

equal to

 dv(t)
dt

0

, and thus, is aligned with the longitudinal axis of the vehicle. This

is illustrated experimentally in Figure 5.5.

We thus have that Rd/c

1

0

0

 and āp(t) are collinear. The only ambiguity left is

the determination of the direction of the front of the vehicle. To achieve this, we use

the integrated speed estimate, noting that the speed of a vehicle in forward mode is

much higher than its speed in reverse. Hence, this allows us to determine the first

column v1 of Rd/c, by performing a linear fit on the values of āp(t) such that ||g||2 can

be neglected, and normalizing the corresponding vector (after identifying its direction

using the speed integral criterion).

Having the first and the third column of the rotation matrix, the second column is

obtained by cross product: v2 = v3×v1, allowing us to determine the rotation matrix

univocally. The complete process is outlined in Figure 5.3.

5.2.2 Implementation

We implemented the algorithm outlined above on the IMU boards described in section

5.1.2.

The setup is illustrated in Figure 5.4 for four different orientations.

Figure 5.6 illustrates the convergence of the acceleration with respect to the frame

of the earth, computed after the optimization of the roll, pitch and yaw angles de-

scribing the matrix Rs/c over time using a least square problem definition.

126

Raw acceleration

measurements (m/s2
)

Calculating the gravity

by averaging the ()1v(vector

acceleration components)

Projecting the acceleration

measurements on the

plane perpendicular to (v1)

Line fitting of the

projections in a 3D plane
 (direction of the longitudinal

axis of the vehicle, i.e. (v3)

Determining the

orientation of the

longitudinal axis, i.e. (v3)

Normalizing v1 and v3 and

cross multiplying (-v1,v3) to

find v2

Accelerations in the

vehicles frame

Rotation matrix Rc/s of rows

[v1v2v3]

v1

Raw gyrometer

measurements (deg/s)

Figure 5.3: The auto-calibration process.

Figure 5.4: Testing for four different orientations using a custom designed IMU device
plugged to USB port in a car.

127

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

Projections with turns

-2 -1.5 -1 -0.5 0 0.5 1 1.5

x

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y

Projections without turns

Figure 5.5: Projections of the accelerations measurements on the plane perpendicular
to the gravity vector

5.3 Trajectory reconstruction

In this section, we focus on the problem of reconstructing the trajectory from inertial

measurements only. We first focus on the computation of the acceleration of the

vehicle in the earth frame, which somehow requires the computation of the attitude

of the vehicle. The reason we need the attitude angles is that we need the coordinate

acceleration, and not the proper acceleration (measured by the accelerometer), which

corresponds to the acceleration measured with respect to a frame in free fall. The

coordinate acceleration can be computed from the proper acceleration of the vehicle.

We have that ac=ap-g, where g is the vector of acceleration due to gravity.

5.3.1 Attitude estimation algorithms

The direction cosine matrix (DCM) is generally used in attitude estimation and con-

trol of ground or air vehicles [117]. This filter is based on the following assumptions:

• The gyroscopes are used as the primary source of orientation information. The

nonlinear differential kinematic equation that relates the time rate of change in

the orientation of the vehicle to its rotation rate, and its present orientation, is

integrated over time.

• The DCM filter uses reference vectors to detect the errors, and a propor-

128

tional negative feedback controller between the sensed reference vectors (ob-

tained from the accelerometer and the magnetometer) and the current esti-

mate of the attitude. Precisely, the estimated rotation matrix R determining

the attitude of the vehicle with respect to the Earth is computed as follows:

R(t+ ∆t) = λRg,t,t+∆t×R(t) + (1−λ)Rref(t), where Rg,t,t+∆t is the elementary

rotation associated with the cumulated angular motion between t and t + ∆t

and Rref(t) is the rotation matrix obtained from the reference vectors. The coef-

ficient λ trades off the current value of R(t) with the current estimated reference

rotation matrix Rref(t), and is very close to 1 in practice.

• Based on the equation defined above, the matrix R(t+ ∆t) will not be unitary

(it is the linear combination of unitary matrices, which is itself not necessarily

unitary). Therefore, small adjustments to the elements of the matrix R(t+ ∆t)

are required to preserve the unitarity of the matrix.

The matrix Rref(t) can for instance be determined using the normalized accel-

eration vector a
||a||2 as a first reference vector, and the normalized projection of the

magnetic field vector b on a plane perpendicular to a as a second reference vector.

The elementary rotation matrix Rg,t,t+∆t is equal to (assuming that the rotation is

uniform between t and t+ ∆t:

Rg,t,t+∆t =

1 −gz∆t gy∆t

gz∆t 1 −gx∆t

−gy∆t gx∆t 1

 (5.3)

Instead of expressing the attitude of the vehicle in terms of the rotation matrix

R(t), we can equivalently express it in terms of Euler angles: roll (φ), pitch (θ) and

yaw (ψ). These angles are illustrated in Figure 5.7.

129

In the present situation, we run a DCM filter onboard the IMU device to de-

termine the rotation matrix Rs/g(t) transforming the ground coordinates into the

sensor coordinates. Hence, we have that the gravity vector can be expressed in the

sensor coordinates as g(t) = Rs/g(t)

0

0

g

. Therefore, the coordinate acceleration

in the device frame becomes ap(t) − Rs/g(t)

0

0

g

, and the coordinate acceleration

in the vehicle frame (which is required for the dead reckoning step becomes Rs/c×ap(t)−Rs/g(t)

0

0

g

, with Rs/c the rotation matrix mapping the sensor coordi-

nate to the vehicle coordinates determined by the automatic calibration step.

5.3.2 Dead Reckoning

Dead reckoning is defined as the process of determining the position of an object by

projecting course and speed from a known past position and velocity [118]. In the

present case, we are interested in estimating the trajectory of a vehicle using its final

position, through measurements of accelerations and rotation rates on its path. The

overall process used for dead reckoning (trajectory estimation) in the present case is

illustrated in Figure 5.8.

Classically (for example in aerospace or in ship navigation), dead reckoning is

performed by integration of the acceleration and rotation rate measurements, without

any correction factor. This requires the operator to periodically perform position fixes

(for example by using a ground-based beacon in aeronautics, or by measuring the

attitude of a spacecraft using stars in astronautics). In the present situation, these

position fixes are assumed to be unavailable. Therefore, we need to compensate the

130

numerical errors induced by double integration using other methods.

Using classical kinematics results, the acceleration in a body frame moving hori-

zontally has two components:

a = (dv
dt
, v

2

r
) where dv

dt
is the rate of variation of its velocity (the speed of the

vehicle in the present case), and v2

r
corresponds to a lateral acceleration component

that depends on the radius of curvature r of its trajectory. In the present case, we

are interested in mapping the trajectory of the vehicle in a 2D plane of axes X, Y .

Figure 5.9: Accelerations in the frame of the vehicle, using classical kinematics. In
this Figure, r represents the radius of the curvature of the trajectory.

Based on the above equation, the trajectory could theoretically be inferred directly

from the longitudinal and lateral acceleration measurements. In practice, vehicles are

turning at relatively low speeds, and the lateral acceleration measurement is not

accurate enough to estimate the rotation rate ωψ = v
r
. We thus use the z-component

of rotation rate vector (obtained from the gyroscope measurements), which is the

derivative of the heading of the vehicle, and which corresponds to the rotation rate

ωψ = v
r

modulo some noise. The rotation rate is a much more reliable indicator of a

vehicle turn.

Speed estimation:

The magnitude of the vehicle speed ν(t) is the integral of dv(t)
dt

, that is, of the longi-

tudinal component ax(t) of the acceleration. Therefore, we have ν(t) =
∫ t

0
ax(τ)dτ ,

which can be approximated in the present case as the Riemann sum

ν(p ·∆t) =

p∑
k=0

ax(k∆t)∆t (5.4)

131

, assuming a zero velocity at the beginning of the experiment (stopped vehicle).

Without periodic velocity or position measurements, this numerical integration

process will diverge due to sensor noise and integration errors. To address this, we

need to somehow estimate the velocity or position of the vehicle at specific times, along

its path. Since the vehicle is assumed to operate in a city, we can leverage the fact

that most vehicles in cities stop at regular time intervals (for example at intersections,

or traffic signals). In addition, the speed v(t) during a turn can be estimated using the

kinematic relation ay(t) = v(t)gz(t), provided that the magnitude of gz(t) is sufficient.

Therefore, unless the vehicle drives in a straight road and never stops at any point in

time, we can periodically recalibrate the speed estimate over time.

To achieve this, we developed an optimization framework based on L1 regular-

ized least squares. Since the main contribution of the error of the accelerometer is

accelerometer bias (which corresponds to a slowly time-varying signal), we define the

decision variable as d, which corresponds to a set of coefficients d1, . . . , dn correspond-

ing to piecewise constant approximations of the accelerometer bias. To simplify the

problem, we assume that the time intervals used to define the piecewise constant

drift are a multiple m of our integration step ∆t. Therefore, at any time k∆t, the

acceleration is given by ax(k∆t)−db k
m
c With this assumption, equation (5.4) becomes:

v(p∆t) =

p∑
k=0

[
ax(k∆t)− db k

m
c

]
∆t (5.5)

which is linear in the decision variable d. The longitudinal acceleration measure-

ments in the vehicle frame ax(·) are not part of the optimization variable.

Once the speeds are expressed as linear function of the decision variable, we need

to formulate the problem as a minimization of the discrepancy between observed

speeds (when measurements are possible, that is, either during turns or during stops)

and the speed obtained by integration. Let M correspond to the set of integer time

instants for which velocity measurements are available. Minimizing the difference

132

between estimated and measured velocities (when available) in the least squares sense

amounts to solving the following unconstrained optimization problem:

min
d1,...,dp

∑
i∈M

(v(i∆t)− vmeasured(i∆t))2 + λ

p∑
j=1

|dj − dj−1| (5.6)

The L1 regularization term λ
∑p

j=2 |dj − dj−1| is picked to enforce sparsity in

the time variations of the drift vector. Indeed, for the MEMS accelerometers used

in this study, drift is mainly caused by changes in temperatures, which would not

happen very frequently. This leads us to an unconstrained L1 regularized least squares

problem that we can be solved efficiently through quadratic programming.

Let us now describe the obtention of velocity measurements along the path, at

different time steps i ∈M.

Stop detection:

During stops, the rotation rates are almost zero (modulo the bias of the gyrometer)

and the acceleration is almost constant on all axes. In addition, the longitudinal

acceleration measured before a stop is negative (the car is decelerating). This allows

us to distinguish the stop points from the constant speeds experienced along flat

highways, for example. Based on these observations, we designed a simple algorithm

to detect vehicle stops. The algorithm relies on the standard deviations of the last

p acceleration components ax, ay and az. If the average of the standard deviations

is less than some threshold, a vehicle stop is detected. This simple algorithm has

been tested extensively on tens of minutes of data, and was able to detect each of

the stops of the vehicle, without false stop detection. A subset of the corresponding

test is shown in Figure 5.10, which illustrates that the rotation rate measurements

generated by the gyro can similarly be used to detect vehicle stops.

Estimation of vehicle speed during turns:

The lateral acceleration measured during turns is related to the velocity of the vehicle

during the turn, which allows us to obtain additional velocity measurements following

133

the equation:

vmeasured(t) =
ay(t)

gz(t)
(5.7)

Since the term gz(t) (corresponding to the rotation rate around the vertical axis)

appears in the denominator, the precision of the velocity estimate v(t) depends on

the magnitude of gz(t). If gz(t) is small (comparable to either the sensor quantization

step or to the typical gyrometer bias), then the velocity estimate becomes inaccurate.

Therefore, we only consider velocity measurements associated with large enough gz

in the above optimization problem. An example of speed estimate during turns can

be seen in Figure 5.11. While the speed estimate during turns appears slightly noisy,

it represents in average the correct vehicle velocity, as validated using the vehicle

speedometer.

5.3.3 Validation

We conducted a series of tests to validate the L1 regularized least squares optimization

framework for velocity estimation. The results are illustrated in Figure 5.12 below.

134

0 100 200 300 400 500 600 700 800 900 1000

Timestamp

-25

-20

-15

-10

-5

0

5

10

15
Speed obtained by direct integration (m/s)
Estimated Speed m/s

Figure 5.12: Blue: speed obtained by direct integration of the longitudinal accelera-
tion. Red: estimated speed using the optimization framework

5.3.4 Yaw angle (heading) estimation

The estimation of the yaw angle ψ(t) of the vehicle is much more straightforward than

the estimation of the speed. Assuming that the pitch and roll angles of the vehicle

remain relatively low, the yaw angle is calculated by integrating with respect to time

the angular velocity measurements of the gyrometer with respect to the vertical axis

of the vehicle:

ψ(t) =

∫ t

0

gz(τ)dτ (5.8)

The above equation can equivalently be rewritten as the Riemann sum ψ(t) =∑p
k=1 gz(k∆t)∆t.

Similarly to the velocity case, the yaw obtained by direct integration of the rota-

tion rate measurement will diverge if not corrected with actual yaw measurements.

135

Unfortunately, the yaw cannot be estimated with the available sensors (accelerom-

eter and gyrometer). While the actual yaw of the vehicle could be estimated with

the magnetometer (detecting the magnetic North), the presence of metal in vehicles

greatly affects the magnetometer readings, and obtaining an estimate do the heading

is challenging, unless the magnetometer is calibrated for each vehicle (which is too

cumbersome in practice).

However, the rotation rate can be filtered and sensor noise can be removed. Thus

we had to investigate the signal we receive in order to best approximate the angles

of turns. The rotation rate measurements are processed through different stages to

filter the low and high noise sensor measurements. We first used a high-pass filter

with a time constant of 30 seconds, then we apply a median filter to remove the noise.

The results of processing the rotation rate signal are shown in Figure 5.13 where we

represent the data of a trajectory of over 1200 samples. At the bottom of Figure 5.13,

we show the result of our rotation rate integral to approximate our turning angle, i.e.

the Yaw angle ψfiltered, via the integral presented in equation 5.8.

5.3.5 Trajectory estimation and validation

The next step is to obtain the estimated path from the velocity and heading estimates.

Since the vehicle is moving on a two dimensional plane (x,y), its position is given by:

x(t) = ν(t)optimized · cos(ψ(t)filtered) ·∆t+ x(t− 1) (5.9)

y(t) = ν(t)optimized · sin(ψ(t)filtered ·∆t+ y(t− 1) (5.10)

We have validated our trajectory estimation with several experiments in our uni-

versity campus, as illustrated in Figure 5.14, we present some of them that included

several turns, stops, uphills and downhills.

136

5.3.6 Piecewise linear trajectory approximation

Since the system is expected to operate in a dense urban environment, including a

large number of probe vehicles, we want to compress the estimated vehicle trajectory

before sending it to the fixed wireless network.

In order to keep the main features of the trajectory while minimizing the amount

of data transmitted to the fixed sensor nodes, we use a piecewise linear approxima-

tion of the trajectory. The piecewise linear approximation aims to reconstruct the

trajectory in the best possible way using only a limited number of linear components.

It essentially amounts to a nonlinear constrained optimization problem, which can

be stated as follows. Our objective is to find the values of the break points for n

data points of (x,y) measurements (along the x and y axes) in which we get the new

segments fj,ifitted(x, y) (where j is from 1 to m − 1; m is the number of end points

of the segments and i is from 1 to nj; nj is the number of data points in the jth

segment):

k1 ≤ fj,ifitted(x, y) < km

where k1 and km are the beginning and the end points of the position vector on the

x-axis(x) in which kj represents the jth interior knot with coordinates (xj, yj). The

objective function to be minimized is:

min
x1,y1,...,xm−1,ym−1

m−1∑
j=1

nj∑
i=1

|fj,iactual(x, y)− fj,ifitted(x, y)| (5.11)

where fj,ifitted(x, y) is the fitted piecewise linear function (segmentation) of fj,iactual(x, y)

(represents the actual position of the trajectory along the x and y-axes) given certain

number of end points(m).

We choose a linear interpolation approach [119] between two break points, given as

follows:

fjfitted(x, y) = (x, yj +
yj+1 − yj
xj+1 − xj

(x− xj)) (5.12)

137

where j = 1, . . . ,m − 1 is the segment index of m − 1 segments required to fit the

given trajectory(xi, yi). (xj, yj) are the x, y coordinates of the first break point (left

end) of the j-th segment (i.e. kj) and (xj+1, yj+1) are the x, y coordinates of the

second break point (right end) of the j-th segment (i.e. kj+1). Given the boundary

conditions and the constraints of no pair of knots may lie too close to each other as

well as the need to have the knots in increasing order, but still lie inside the first and

final knot. This optimization problem can be solved for instance using the fmincon

function of Matlab (which is part of the optimization toolbox).

This function finds the optimized interior knots by means of finding minimum of

constrained nonlinear multivariable function (i.e. x and y position variables) starting

at an initial estimate of having all the knots equally spaced. Figure 5.15 shows

the result of the piecewise linearization of a path estimated by the dead reckoning

algorithm. For this particular trajectory, we used 10 break points (in which we

have 8 interior knots) to have 9 segments to optimize the distances between (x,y)

measurements to (x,y) used in the fitting (i.e. m = 10 and k2, . . . , k9).

138

0 200 400 600
−1000

−800

−600

−400

−200

0

X−Position(m)

Y
−

P
o

s
it

io
n

(m
)

Figure 5.15: In red, the result of the piecewise linearization of the complete trajectory
estimated by the dead reckoning algorithm.The blue curve shows the estimation of
our dead reckoning algorithms and the green lines show the optimized segments using
the piecewise linear optimizer.

5.4 Path reconstruction

5.4.1 Case Study

As can be seen from Figure 5.14, the estimated trajectory using the IMU data only is

not compatible with the urban road network. While the estimated trajectory captures

the main features of the actual trajectory, it exhibits increasing positioning error due

to measurement uncertainty. In this section, we show that the knowledge of the road

network structure can be used to reconstruct the actual vehicle path from the noisy

trajectory data. As mentioned earlier, we consider a piecewise linear approximation

of the trajectory, which consists of linear segments of given lengths. The lengths and

heading changes between segments associated with the actual (linearized) trajectory

is illustrated in Table 5.1. To reconstruct the actual trajectory, we consider the only

data available to the fixed sensor beacon, i.e. the final location of the vehicle and

the piecewise linear approximation of the trajectory (we consider only the last five

139

segments for simplicity). We compare the last four segments of the piecewise linear

trajectory approximation to all other possible paths that would lead to the measured

final position for a certain trajectory. One possible way to do this is to construct

a directed graph from local map data and compute all possible paths and routes to

lead to this point from any point within a defined radius or area. We constructed

this directed graph using the road network topology extracted from Google Maps.

Based on this data, we found that 17 paths could lead to the destination point, and

summarized the properties of these paths in Table 1. Since no absolute heading mea-

surement data is available from our system, the link parameters are their length, and

the heading change with respect to the previous link. We computed the correspond-

ing parameters for the links corresponding to the piecewise linear approximation of

the trajectory of the vehicle, and used these parameters to find the most likely path

taken by the car. For this, we used a quadratic cost function defined by:

Cost =
4∑
i=1

(Li − LDRi
)2 +

4∑
i=1

(Hi −HDRi
)2

where Li corresponds to the length of the ith segment and Hi corresponds to the

heading change of the segment i with respect to the segment i−1. LDRi
and HDRi

are

the length and heading change parameters extracted from the trajectory reconstructed

by the dead reckoning algorithm detailed above. As can be seen from Table 5.1, the

path with the least cost is path 14, which corresponds to the actual path taken by the

vehicle. , the concept may function by placing sensors at each area to receive those

IMU data and construct the trajectory to identify previous routes taken to arrive to

this point.

140

Path No. Leg1 Leg2 Leg3 Leg4 Leg5 Cost
Length Heading Length Heading Length Heading Length Heading Length Heading x(105)

1 98 N/A 110 -90 200 90 ¿150 -15 - - 1.93

2 300 N/A 10 -90 ¿150 90 - - - - 2.86

3 260 N/A 140 90 60 -90 10 -90 - - 2.68

4 180 N/A 60 90 50 30 190 -30 150 -90 1.37

5 180 N/A 80 80 70 30 250 -30 65 -90 1.81

6 98 N/A 70 110 60 -30 70 20 45 -100 2.15

7 110 N/A 350 -110 130 -90 68 90 - - 2.42

8 110 N/A 450 -110 94 90 48 -90 - - 3.01

9 110 N/A 150 -110 98 90 150 -90 - - 1.85

10 110 N/A 150 -110 200 90 130 -90 - - 1.97

11 110 N/A 150 -110 300 90 89 -90 - - 2.34

12 110 N/A 210 -20 39 -90 150 90 - - 1.97

13 110 N/A 110 80 90 -20 190 -90 43 90 1.66

14 96 N/A 110 -90 100 -45 150 -30 100 30 0.93*

15 96 N/A 200 -90 250 -45 - - - - 2.28

16 96 N/A 200 -90 100 -45 270 90 - - 1.86

17 96 N/A 200 -90 100 -45 110 90 130 -90 1.17

DR 87 N/A 142 -96 102 -45 200 -38 400 40 -

Table 5.1: Sample of possible paths piecewise-linearized. The link parameters are
their length (in meters) and their heading change (in degrees), where a positive head-
ing change indicates a right turn and a negative heading change indicates a left turn.

5.4.2 Map matching based on a Bayesian formulation

Map matching algorithms identify the correct path on which a vehicle is traveling by

integrating positioning data with the road network data. A map-matching algorithm

could be used as an essential component to improve the performance of that support

the navigation function of intelligent transport systems (ITS).

Many map matching algorithms have been developed by researchers [120] using

different approaches such topological analysis of spatial road network data, proba-

bilistic theory, Kalman filter, fuzzy logic, and belief theory.

However, this vast existing literature use the GPS data (with the characteristics:

GPS localization accuracy and the sampling strategy), which give no advantage to

infer the correct driving conditions, as well as the road conditions of the network map.

Moreover, in our case, having the WSN parameters (i.e. received signal strength

indicator (RSSI) and the node positions) add a lot of reliability to the overall system

to work as a feedback system component of the ITS. Thus, we suggest the following

novel map matching algorithm in order to find the most likely trajectory.

141

Every node should have the last three segments of every possible path to its

location and since RSSI between the vehicle is considered between the vehicle and

the node it makes it a useful parameter to consider in the following proposed Bayesian

formulation [121] equation:

φ(τj/DR,RSSI) ∝ φ(τj/RSSI)× φ(DR/τj) (5.13)

where DR is our dead reckoning estimation we explained in section 5.3.2, RSSI is

the received signal strength to a certain node (we consider the two closest nodes)

from a vehicle and τj is a possible path a vehicle could take to a certain node in the

network. So φ(τj/DR,RSSI) is the probability distribution to maximize in order to

find the best path and it is defined up to a scaling factor in order to integrate to 1.

φ(DR/τj) ∝ φ(τj/DR) × φ(DR) is a probability distribution function that aims

to score every possible τ by comparing it to the dead reckoning estimation in an

exhaustive search manner (this method is well know and could be made more efficient

if we parametrize the paths) , and this is independent of RSSI, that is why one could

cross the RSSI out of this term. The formula of the cost function that the probability

distribution function is based on for a certain path:

Costτj =
3∑
i=1

(Lji − LDRi
)2 +

3∑
i=1

(Hji −HDRi
)2

Thus, φ(DR/τj) = 1− Cost∑N
j=1 Costj

; N is the total number possible paths.

For φ(τj/RSSI) we can use a machine learning approach that can give probabili-

ties to the possible paths, learned from many trips (DRs) and takes into account the

following parameters as features (inputs):

• The length of the path

• The speed limit of the path

142

• The number of stop signs along the path

• The number of lanes (in our case study two ways of a one path street)

After scoring all the possible routes, the most likely route shall give the maximum

probability function i.e. τ ∗.

143

0 10 20 30 40 50 60 70 80 90 100

Timestamp

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
Raw accelerations (m/s

2
) (O1)

a
x

a
y

a
z

0 10 20 30 40 50 60 70 80 90 100

Timestamp

-4

-2

0

2

4

6

8

10

12
Rotated accelerations (m/s

2
) (O1)

a
x

a
y

a
z

0 20 40 60 80 100 120

Timestamp

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1
Raw accelerations (m/s

2
) (O2)

a
x

a
y

a
z

0 20 40 60 80 100 120

Timestamp

-2

0

2

4

6

8

10

12
Rotated accelerations (m/s

2
) (O2)

a
x

a
y

a
z

0 10 20 30 40 50 60 70 80 90 100

Timestamp

-10

-8

-6

-4

-2

0

2

4

6

8

10
Raw accelerations (m/s

2
) (O3)

a
x

a
y

a
z

0 10 20 30 40 50 60 70 80 90 100

Timestamp

-8

-6

-4

-2

0

2

4

6

8

10

12
Rotated accelerations (m/s

2
) (O3)

a
x

a
y

a
z

0 10 20 30 40 50 60 70 80 90 100

Timestamp

-8

-6

-4

-2

0

2

4

6

8

10
Raw accelerations (m/s

2
) (O4)

a
x

a
y

a
z

0 10 20 30 40 50 60 70 80 90 100

Timestamp

-2

0

2

4

6

8

10

12
Rotated accelerations (m/s

2
) (O4)

a
x

a
y

a
z

Figure 5.6: Accelerations with respect to the sensor frame (Left figures) in an ori-
entation Oi and their corresponding rotated acceleration (Right figures) after the
auto-calibration process for four different random orientation.

144

Yaw$

Ver(cal$axis$

Roll$

Longitudinal$axis$

Pitch$

Lateral$axis$

Figure 5.7: The attitude angles (roll (φ), pitch (θ) and yaw (ψ) and their correspond-
ing axes

Raw acceleration

measurements

Rotation matrix
estimation (self-

calibration)

Acceleration &

gyrometer

measurements in

vehicle coordinate

Speed estimation

at turns

Stop detection
Nonlinear thresholding

(Yaw angle integration)

gz

ay, gz

vmeasured,ax

ax,ay,az , gx, gy, gz

Raw gyrometer

measurements

Trajectory estimation

LP formulation for
velocity estimation

Figure 5.8: Dead-reckoning principle. The input data from the IMU system in repre-
sented in the leftmost boxes.

145

0 200 400 600 800 1000 1200

Timestamp

0

0.5

1

1.5

2
Standard deviation of acceleration data over t -1 second

std(a
x
)

std(a
y
)

std(a
z
)

Moving 1, Stop 0

0 200 400 600 800 1000 1200

Timestamp

0

5

10

15
Standard deviation of Gyro data over t -1 second

std(g
x
)

std(g
y
)

std(g
z
)

Moving 1, Stop 0

Figure 5.10: Stop detection measurement metrics represented in terms of standard
deviation of acceleration and gyrometer data over a time window of 1s. The output
of the thresholding filter is shown as a purple curve, and matches the actual vehicle
stops.

146

0 100 200 300 400 500 600 700 800 900 1000

Timestamp

-1

0

1

2

3

4

5

6
Estimated Speed m/s

Speed at turns
Speed at stops

Figure 5.11: Estimated speeds at stops and turns, using the algorithms outlined
above. It should be noted that the estimated speed during turns can be noisy, due to
the increased vibrations of the vehicle during typical turns.

147

0 500 1000 1500

Timestamp

-40

-20

0

20

40
Raw Gyro measurments (deg/s)

g
x

g
y

g
z

0 500 1000 1500

Timestamp

-40

-20

0

20

40
High-pass filtered Gyro measurments (deg/s)

g
x

g
y

g
z

0 500 1000 1500

Timestamp

-30

-20

-10

0

10

20
Gyro measurments (with Median filter) (deg/s)

g
x

g
y

g
z

0 500 1000 1500

Timestamp

-40

-20

0

20

40
Rotated Gyro measurments (deg/s)

g
x

g
y

g
z

0 100 200 300 400 500 600 700 800 900 1000

Timestamp

-50

0

50

100

150
Yaw angle (degrees)-initial value 0

Figure 5.13: The process of filtering the rotation rate measurement for a certain
experiment conducted in our university’s campus. (Bottom) the yaw angle integral
at initial point 0 degrees.

148

Figure 5.14: Trajectory estimation (dead reckoning) for some experiments/trips con-
ducted with our custom based IMU device and trajectory estimation algorithms.

149

Chapter 6

Concluding Remarks

6.1 Summary

This thesis sums up the lessons learned from four years of WSN experiments and

experience for smart city applications focusing on flash flood monitoring and traffic

flow monitoring. In early experiments, the difficulties associated with operating a

solar-powered WSN became evident, with hardware and software reliability issues

and problems with the management of battery energy and solar power.

To address these early issues, we combined the lessons learned during our experi-

ments to design a new hardware platform with greater computational and monitoring

capabilities, which was subsequently used for the remainder of the thesis.

In Chapter 3, I described a set of tools for estimating the energy status of solar-

powered wireless sensor networks nodes. Given the variability of solar energy avail-

ability and of the available battery capacity in a typical sensor network, we anticipate

that such tools will be very useful to optimize sensing and network operations and

to minimize the number of nodes that run out of energy. Even if ultra-low power

wireless sensor networks do not necessarily need such an optimization (provided that

their solar panels and batteries are oversized) to run, this suite of tools is very im-

portant for fault detection, isolation and most importantly to achieve energy-aware

sensing computation and communication.

The high performance capabilities of the newly developed mote allow sophisticated

estimation schemes to be implemented onboard for various sensing applications. We

150

presented an ANN approach to flash flood sensing using a custom-designed flash flood

sensor comprising an ultrasonic rangefinder and multiple passive infrared temperature

sensors. Because of the extremely low absolute distance measurement error required

by the system (on the order of 0.2%), one needs to estimate the temperature profile

of the air layer between the sensor and the ground. Given the limited computational

capabilities of the hardware platform, this profile cannot be modeled as a PDE.

Therefore, we choose a non model-based approach for estimating the correction due

to deviations in temperature. Our work shows that ANNs capture the effects of the

underlying model very accurately, and can be used to monitor water levels in real

time. We also showed that the same approach could be used to detect rain events.

Since a standalone flash flood sensor network is difficult to market, we chose to

develop a dual flash flood/traffic sensing system, which can leverage the high perfor-

mance of the newly developed platform. The dual ultrasonic-passive infrared sensor

can also monitor traffic flow, though the density of sensors required to accurately

sense traffic is much higher than the density of sensors required to accurately sense

floods. Therefore, additional traffic sensing is needed, and since the fixed WSN ar-

chitecture is already present (through the flash flood WSN), we chose to develop a

system monitoring vehicles themselves (probe vehicles), and interacting with the fixed

WSN.

Therefore I have developed a new system for probe sensing in urban environments

that offers several advantages over current, satellite-based systems. Since it does not

rely on satellite positioning data, it is immune to multi-path effects, which severely

reduce the accuracy of positioning in cities. It is also less expensive (even when

the cost of the fixed sensor nodes is factored in) than GPS-based systems, since

IMUs are much more economical than GPS chips ($3/unit for IMUs vs. $25/unit

for GPSs as of 2016). We also show that the accuracy of IMUs in conjunction with

fixed wireless sensor systems used for periodic position updates is sufficient to perform

151

traffic sensing operations. Another benefit of using IMUs instead of GPSs is that they

work in very dense urban environments (with tunnels, underpasses and overpasses),

and do not provide absolute location information, which greatly reduces the risk of

privacy intrusion.

My Ph.D. work was focused on estimation of large-scale infrastructure system,

which can leverage all forms of sensing, communication and computation including

mobile sensing. This work can enable a suite of location-based services depending on

flash flood and traffic flow measurement data. For example, whenever a flash flood

occurs, routing emergency services, protecting the population or optimally responding

to the flooding event require real-time flood and traffic data. This data can be further

processed by servers to generate actual traffic flow and flash flood maps, by fusing the

measurements to flood propagation or traffic propagation models. This thesis thus

focuses on the sensing component of a dual traffic/flash flood information system.

6.2 Future Research Work

Future research work will focus on the development of such new scalable sensing

systems, and develop sensor networks for congested urban areas to demonstrate their

potential and cost effectiveness. There are a number of challenges to be addressed

before sensing applications can be deployed at a large scale without causing any

burden to the user and to the network.

One potential direction would be the development of a fully privacy preserving

traffic sensor network, in which data is processed onboard nodes, as developed in

the article [83]. Processing this data onboard computational nodes in a distributed

fashion has never been done in the context of traffic sensing before, though recent

advances in computational performance should allow this. The research I intend to

carry is interdisciplinary by nature, and will involve embedded systems design applied

to transportation and instrumentation systems as well as the development of novel

152

computational methods for processing their measurement data.

Therefore, this research will be at the interface of computer sciences, electrical

engineering and civil engineering. It will participate to the ongoing worldwide effort

of developing smarter, more reliable and more resilient urban environment, known as

Smart Cities.

153

REFERENCES

[1] E. A. Basha, S. Ravela, and D. Rus, “Model-based monitoring for early warn-

ing flood detection,” in Proceedings of the 6th ACM conference on Embedded

network sensor systems. ACM, 2008, pp. 295–308.

[2] R. Murty, G. Mainland, I. Rose, A. Chowdhury, A. Gosain, J. Bers, and

M. Welsh, “Citysense: An urban-scale wireless sensor network and testbed,”

in Technologies for Homeland Security, 2008 IEEE Conference on, May, pp.

583–588.

[3] K. K. Khedo, R. Perseedoss, A. Mungur et al., “A wireless sensor network air

pollution monitoring system,” arXiv preprint arXiv:1005.1737, 2010.

[4] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “The hitchhiker’s

guide to successful wireless sensor network deployments,” in Proceedings of the

6th ACM conference on Embedded network sensor systems. ACM, 2008, pp.

43–56.

[5] http://pems.eecs.berkeley.edu.

[6] T. W. Hnat, V. Srinivasan, J. Lu, T. I. Sookoor, R. Dawson, J. Stankovic,

and K. Whitehouse, “The hitchhiker’s guide to successful residential sensing

deployments,” in Proceedings of the 9th ACM Conference on Embedded Net-

worked Sensor Systems. ACM, 2011, pp. 232–245.

[7] P. Corke, T. Wark, R. Jurdak, W. Hu, P. Valencia, and D. Moore, “Environ-

mental wireless sensor networks,” Proceedings of the IEEE, vol. 98, no. 11, pp.

1903–1917, 2010.

[8] V. Dyo, S. A. Ellwood, D. W. Macdonald, A. Markham, C. Mascolo,

B. Pásztor, S. Scellato, N. Trigoni, R. Wohlers, and K. Yousef, “Evolution

and sustainability of a wildlife monitoring sensor network,” in Proceedings of

the 8th ACM Conference on Embedded Networked Sensor Systems, ser. SenSys

’10. New York, NY, USA: ACM, 2010, pp. 127–140. [Online]. Available:

http://doi.acm.org/10.1145/1869983.1869997

[9] F. Juraschek, A. Zubow, O. Hahm, M. Scheidgen, B. Blywis, R. Sombrutzki,

M. Gunes, and J. Fischer, “Towards smart berlin-an experimental facility for

http://doi.acm.org/10.1145/1869983.1869997

154

heterogeneous smart city infrastructures,” in Local Computer Networks Work-

shops (LCN Workshops), IEEE 37th Conference on. IEEE, 2012, pp. 886–892.

[10] S. Coleri, S. Y. Cheung, and P. Varaiya, “Sensor networks for monitoring traf-

fic,” in Allerton conference on communication, control and computing, 2004,

pp. 32–40.

[11] R. Lu, X. Lin, H. Zhu, and X. Shen, “Spark: a new vanet-based smart parking

scheme for large parking lots,” in INFOCOM 2009, IEEE. IEEE, 2009, pp.

1413–1421.

[12] R. Pantoni, C. Fonseca, and D. Brandão, “Street lighting system based on

wireless sensor networks,” 2012.

[13] A. Rowe, M. Berges, G. Bhatia, E. Goldman, R. Rajkumar, J. Garrett, J. M. F.

Moura, and L. Soibelman, “Sensor andrew: Large-scale campus-wide sensing

and actuation,” IBM Journal of Research and Development, vol. 55, no. 1.2,

pp. 6:1–6:14, 2011.

[14] M. K. Lindell and C. S. Prater, “Assessing community impacts of natural dis-

asters,” Natural Hazards Review, vol. 4, no. 4, pp. 176–185, 2003.

[15] ISDR disaster statistics, http://www.unisdr.org/.

[16] S. N. Jonkman and I. Kelman, “An analysis of the causes and circumstances of

flood disaster deaths,” Disasters, vol. 29, no. 1, pp. 75–97, 2005.

[17] M. Borga, E. Anagnostou, G. Blöschl, and J.-D. Creutin, “Flash flood fore-

casting, warning and risk management: the hydrate project,” Environmental

Science & Policy, vol. 14, no. 7, pp. 834–844, 2011.

[18] P. Milly, R. Wetherald, K. Dunne, and T. Delworth, “Increasing risk of great

floods in a changing climate,” Nature, vol. 415, no. 6871, pp. 514–517, 2002.

[19] M. Papageorgiou, “Applications of automatic control concepts to traffic flow

modeling and control,” 1983.

[20] Z. Jia, C. Chen, B. Coifman, and P. Varaiya, “The PEMS algorithms for ac-

curate, real-time estimates of g-factors and speeds from single-loop detectors,”

in Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE. IEEE,

2001, pp. 536–541.

[21] S.-Y. Cheung and P. P. Varaiya, Traffic surveillance by wireless sensor networks:

Final report, 2007.

155

[22] C. M. Day, H. Premachandra, T. M. Brennan, J. R. Sturdevant, and D. M.

Bullock, “Operational evaluation of wireless magnetometer vehicle detectors at

signalized intersection,” Transportation Research Record: Journal of the Trans-

portation Research Board, vol. 2192, no. 1, pp. 11–23, 2010.

[23] T. N. Schoepflin and D. J. Dailey, “Algorithms for calibrating roadside traf-

fic cameras and estimating mean vehicle speed,” in Intelligent Transportation

Systems Conference, 2007. ITSC 2007. IEEE. IEEE, 2007, pp. 277–283.

[24] S. Erb, Classification of vehicles based on acoustic features. na, 2007.

[25] K. B. Eom, “Analysis of acoustic signatures from moving vehicles using time-

varying autoregressive models,” Multidimensional Systems and Signal Process-

ing, vol. 10, no. 4, pp. 357–378, 1999.

[26] G. Alessandretti, A. Broggi, and P. Cerri, “Vehicle and guard rail detection

using radar and vision data fusion,” Intelligent Transportation Systems, IEEE

Transactions on, vol. 8, no. 1, pp. 95–105, 2007.

[27] S. A. Ahmed, T. Hussain, and T. N. Saadawi, “Active and passive infrared

sensors for vehicular traffic control,” in Vehicular Technology Conference, 1994

IEEE 44th. IEEE, 1994, pp. 1393–1397.

[28] P. Zappi, E. Farella, and L. Benini, “Tracking motion direction and distance

with pyroelectric IR sensors,” Sensors Journal, IEEE, vol. 10, no. 9, pp. 1486–

1494, 2010.

[29] Y. Jo and I. Jung, “Analysis of vehicle detection with WSN-based ultrasonic

sensors,” Sensors, vol. 14, no. 8, pp. 14 050–14 069, 2014.

[30] O. P. Tossavainen, J. Percelay, A. Tinka, Q. Wu, and A. Bayen, “En-

semble Kalman Filter based state estimation in 2d shallow water equations

using Lagrangian sensing and state augmentation,” in 47th IEEE Conference

on Decision and Control, 2008. IEEE, 2008, pp. 1783–1790.

[31] R. Alonso, M. Santillana, and C. Dawson, “On the diffusive wave approximation

of the shallow water equations,” European Journal of Applied Mathematics,

vol. 19, no. 05, pp. 575–606, 2008.

[32] I. Sraj, K. T. Mandli, O. M. Knio, C. N. Dawson, and I. Hoteit, “Uncertainty

quantification and inference of manning’s friction coefficients using DART buoy

data during the tōhoku tsunami,” Ocean Modelling, vol. 83, pp. 82–97, 2014.

[33] J. V. Phillips and S. Tadayon, Selection of Manning’s roughness coefficient for

natural and constructed vegetated and non-vegetated channels, and vegetation

156

maintenance plan guidelines for vegetated channels in Central Arizona. Cite-

seer, 2006.

[34] L. Li, Y. Hong, J. Wang, R. Adler, F. Policelli, S. Habib, D. Irwin, T. Ko-

rme, and L. Okello, “Evaluation of the real-time TRMM-based multi-satellite

precipitation analysis for an operational flood prediction system in Nzoia Basin,

Lake Victoria, Africa,” Natural hazards, vol. 50, no. 1, pp. 109–123, 2009.

[35] H. G. Sohn, J. Heo, H. Yoo, S. Kim, and H. Cho, “Hierarchical multi sensor

approach for the assessment of flood related damages,” Proceedings of the 27th

ISPRS congress, 2008.

[36] Turn around, don’t drown (US National Weather Service),

http://www.nws.noaa.gov /os/water/tadd/tadd-intro.shtml.

[37] R. Fante, “Turbulence-induced distortion of synthetic aperture radar images,”

Geoscience and Remote Sensing, IEEE Transactions on, vol. 32, no. 4, pp. 958

–961, jul 1994.

[38] J. Krumm, “Inference attacks on location tracks,” Pervasive Computing, pp.

127–143, 2007.

[39] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel, “The

intel mote platform: A bluetooth*-based sensor network for industrial

monitoring,” vol. 2005, 2005, pp. 437–442, cited By (since 1996)

19. [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.

0-33645990555&partnerID=40&md5=2de14e5809595b88ffb7d322e90bbd49

[40] E. M. Shakshuki, H. Malik, and T. R. Sheltami, “Lessons learned: Simulation

vs wsn deployment,” in Advanced Information Networking and Applications.

AINA’09. International Conference on. IEEE, 2009, pp. 580–587.

[41] V. Castelli, R. Harper, P. Heidelberger, S. Hunter, K. Trivedi, K. Vaidyanathan,

and W. P. Zeggert, “Proactive management of software aging,” IBM Journal

of Research and Development, vol. 45, no. 2, pp. 311–332, March.

[42] L. I. R. Batteries, “Technical handbook.”

[43] M. Ceriotti, M. Chini, A. Murphy, G. Picco, F. Cagnacci, and B. Tolhurst,

“Motes in the jungle: lessons learned from a short-term WSN deployment in

the Ecuador cloud forest,” Real-World Wireless Sensor Networks, pp. 25–36,

2010.

http://www.scopus.com/inward/record.url?eid=2-s2.0-33645990555&partnerID=40&md5=2de14e5809595b88ffb7d322e90bbd49
http://www.scopus.com/inward/record.url?eid=2-s2.0-33645990555&partnerID=40&md5=2de14e5809595b88ffb7d322e90bbd49

157

[44] A. Ray, “Planning and analysis tool for large scale deployment of wireless sensor

network,” International Journal of Next-Generation Networks (IJNGN), vol. 1,

no. 1, pp. 29–36, 2009.

[45] J. Luo and J.-P. Hubaux, “Joint mobility and routing for lifetime elongation in

wireless sensor networks,” in INFOCOM 2005. 24th Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 3.

IEEE, 2005, pp. 1735–1746.

[46] A. Efrat, S. Har-Peled, and J. S. Mitchell, “Approximation algorithms for two

optimal location problems in sensor networks,” in Broadband Networks. Broad-

Nets. 2nd International Conference on. IEEE, 2005, pp. 714–723.

[47] F. Chen and R. Li, “Single sink node placement strategy in wireless sensor

networks,” in Electric Information and Control Engineering (ICEICE), 2011

International Conference on. IEEE, 2011, pp. 1700–1703.

[48] J. Thelen, D. Goense, and K. Langendoen, “Radio wave propagation in potato

fields,” in 1st Workshop on Wireless Network Measurements, vol. 2. Citeseer,

2005, pp. 331–338.

[49] G. Anastasi, M. Conti, M. Di Francesco, and V. Neri, “Reliability and en-

ergy efficiency in multi-hop IEEE 802.15.4/ZigBee wireless sensor networks,”

in Computers and Communications (ISCC), IEEE Symposium on, 2010, pp.

336–341.

[50] M. Mousa and C. Claudel, “Energy parameter estimation in solar powered

wireless sensor networks,” in Proceedings of the 2013 REALWSN conference.

[51] T. Van Dam and K. Langendoen, “An adaptive energy-efficient mac protocol

for wireless sensor networks,” in Proceedings of the 1st international conference

on Embedded networked sensor systems. ACM, 2003, pp. 171–180.

[52] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari, “Energy-efficient for-

warding strategies for geographic routing in lossy wireless sensor networks,” in

Proceedings of the 2nd international conference on Embedded networked sensor

systems. ACM, 2004, pp. 108–121.

[53] H. Huang, G. Hu, and F. Yu, “Energy-aware geographic routing in wireless

sensor networks with anchor nodes,” International Journal of Communication

Systems, vol. 26, no. 1, pp. 100–113, 2013.

158

[54] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “Energy management

in wireless sensor networks with energy-hungry sensors,” Instrumentation &

Measurement Magazine, IEEE, vol. 12, no. 2, pp. 16–23, 2009.

[55] L. M. Feeney, L. Andersson, A. Lindgren, S. Starborg, and A. Ahlberg Tidblad,

“A testbed for measuring battery discharge behavior,” in Proceedings of the sev-

enth ACM international workshop on Wireless network testbeds, experimental

evaluation and characterization. ACM, 2012, pp. 91–92.

[56] R. Fonseca, P. Dutta, P. Levis, and I. Stoica, “Quanto: Tracking energy in

networked embedded systems.” in OSDI, vol. 8, 2008, pp. 323–338.

[57] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line energy

estimation for sensor nodes,” in Proceedings of the 4th workshop on Embedded

networked sensors. ACM, 2007, pp. 28–32.

[58] B. Saha and K. Goebel, “Modeling li-ion battery capacity depletion in a particle

filtering framework,” in Proceedings of the annual conference of the prognostics

and health management society, 2009.

[59] C. Park, K. Lahiri, and A. Raghunathan, “Battery discharge characteristics of

wireless sensor nodes: An experimental analysis,” power, vol. 20, p. 21, 2005.

[60] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava, “Design

considerations for solar energy harvesting wireless embedded systems,” in Pro-

ceedings of the 4th international symposium on Information processing in sensor

networks. IEEE Press, 2005, p. 64.

[61] F. Bouabdallah, N. Bouabdallah, and R. Boutaba, “On balancing energy con-

sumption in wireless sensor networks,” Vehicular Technology, IEEE Transac-

tions on, vol. 58, no. 6, pp. 2909–2924, 2009.

[62] G. Sikha, R. E. White, and B. N. Popov, “A mathematical model for a lithium-

ion battery/electrochemical capacitor hybrid system,” Journal of The Electro-

chemical Society, vol. 152, no. 8, pp. A1682–A1693, 2005.

[63] H.-L. Tsai, “Insolation-oriented model of photovoltaic module using

matlab/simulink,” Solar Energy, vol. 84, no. 7, pp. 1318 – 1326,

2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0038092X1000160X

[64] M. Mousa and C. Claudel, “Energy parameter estimation in solar powered

wireless sensor networks,” in Real-World Wireless Sensor Networks. Springer,

2013, pp. 217–229.

http://www.sciencedirect.com/science/article/pii/S0038092X1000160X
http://www.sciencedirect.com/science/article/pii/S0038092X1000160X

159

[65] N. K. Suryadevara and S. C. Mukhopadhyay, “Wireless sensor network based

home monitoring system for wellness determination of elderly,” Sensors Journal,

IEEE, vol. 12, no. 6, pp. 1965–1972, 2012.

[66] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra,

M. Pozzi, D. Zonta, and P. Zanon, “Monitoring heritage buildings with wireless

sensor networks: The torre aquila deployment,” in Proceedings of the 2009 In-

ternational Conference on Information Processing in Sensor Networks. IEEE

Computer Society, 2009, pp. 277–288.

[67] A. Burns, B. R. Greene, M. J. McGrath, T. J. O’Shea, B. Kuris, S. M. Ayer,

F. Stroiescu, and V. Cionca, “Shimmer–a wireless sensor platform for noninva-

sive biomedical research,” Sensors Journal, IEEE, vol. 10, no. 9, pp. 1527–1534,

2010.

[68] A. H. Dehwah, M. Mousa, and C. G. Claudel, “Lessons learned on solar powered

wireless sensor network deployments in urban, desert environments,” Ad Hoc

Networks, vol. 28, pp. 52–67, 2015.

[69] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes: Experiences

from a pilot sensor network deployment in precision agriculture,” in Parallel and

Distributed Processing Symposium. IPDPS, 20th International. IEEE, 2006,

pp. 8–pp.

[70] C. Alippi, R. Camplani, C. Galperti, and M. Roveri, “A robust, adaptive, solar-

powered wsn framework for aquatic environmental monitoring,” Sensors Jour-

nal, IEEE, vol. 11, no. 1, pp. 45–55, 2011.

[71] H.-C. Lin, Y.-C. Kan, and Y.-M. Hong, “The comprehensive gateway model

for diverse environmental monitoring upon wireless sensor network,” Sensors

Journal, IEEE, vol. 11, no. 5, pp. 1293–1303, 2011.

[72] L. Hou and N. W. Bergmann, “Novel industrial wireless sensor networks for

machine condition monitoring and fault diagnosis,” Instrumentation and Mea-

surement, IEEE Transactions on, vol. 61, no. 10, pp. 2787–2798, 2012.

[73] M. Castillo-Effer, D. H. Quintela, W. Moreno, R. Jordan, and W. Westhoff,

“Wireless sensor networks for flash-flood alerting,” in Devices, Circuits and

Systems, 2004. Proceedings of the Fifth IEEE International Caracas Conference

on, vol. 1. IEEE, 2004, pp. 142–146.

160

[74] E. Kuantama, L. Setyawan, and J. Darma, “Early flood alerts using short mes-

sage service (sms),” in System Engineering and Technology (ICSET), 2012 In-

ternational Conference on. IEEE, 2012, pp. 1–5.

[75] C. Lai, J. Yang, and Y. Chen, “A real time video processing based surveillance

system for early fire and flood detection,” in Instrumentation and Measurement

Technology Conference Proceedings, 2007. IMTC 2007. IEEE. IEEE, 2007,

pp. 1–6.

[76] H. Fu, X. Shu, A. Zhang, W. Liu, L. Zhang, S. He, and I. Bennion, “Implemen-

tation and characterization of liquid-level sensor based on a long-period fiber

grating mach–zehnder interferometer,” Sensors Journal, IEEE, vol. 11, no. 11,

pp. 2878–2882, 2011.

[77] N.-B. Chang and D.-H. Guo, “Urban flash flood monitoring, mapping and fore-

casting via a tailored sensor network system,” in Networking, Sensing and Con-

trol, 2006. ICNSC’06. Proceedings of the 2006 IEEE International Conference

on. IEEE, 2006, pp. 757–761.

[78] M. Mousa, E. Oudat, and C. Claudel, “A novel dual traffic/flash flood moni-

toring system using passive infrared/ultrasonic sensors,” in Mobile Ad Hoc and

Sensor Systems (MASS), 2015 IEEE 12th International Conference on. IEEE,

2015, pp. 388–397.

[79] M. Mousa and C. Claudel, “water level estimation in urban ultrasonic/passive

infrared flash flood sensor networks using supervised learning,” in Proceedings of

the 13th international symposium on Information processing in sensor networks.

IEEE Press, 2014, pp. 277–278.

[80] V. Sakharov, S. Kuznetsov, B. Zaitsev, I. Kuznetsova, and S. Joshi, “Liquid

Level Sensor Using Ultrasonic Lamb Waves,” Ultrasonics, vol. 41, no. 4, pp.

319–322, 2003.

[81] R. H. Brown, “Liquid Level Sensor,” Dec. 16 1997, uS Patent 5,697,248.

[82] C.-W. Lai, Y.-L. Lo, J.-P. Yur, and C.-H. Chuang, “Application of fiber bragg

grating level sensor and fabry-perot pressure sensor to simultaneous measure-

ment of liquid level and specific gravity,” Sensors Journal, IEEE, vol. 12, no. 4,

pp. 827–831, 2012.

[83] E. Canepa, E. Odat, A. Dehwah, M. Mousa, J. Jiang, and C. Claudel, “A

sensor network architecture for urban traffic state estimation with mixed eu-

161

lerian/lagrangian sensing based on distributed computing,” in Architecture of

Computing Systems–ARCS 2014. Springer, 2014, pp. 147–158.

[84] J. Jiang and C. Claudel, “A wireless computational platform for distributed

computing based traffic monitoring involving mixed eulerian-lagrangian sens-

ing,” in Industrial Embedded Systems (SIES), 2013-8th IEEE International

Symposium on. IEEE, 2013, pp. 232–239.

[85] D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, and A. Taroni, “Dig-

ital time-of-flight measurement for ultrasonic sensors,” IEEE Transactions on

Instrumentation and Measurement, vol. 41, no. 1, pp. 93–97, 1992.

[86] J. C. Patra, P. K. Meher, and G. Chakraborty, “Development of laguerre neural-

network-based intelligent sensors for wireless sensor networks,” Instrumentation

and Measurement, IEEE Transactions on, vol. 60, no. 3, pp. 725–734, 2011.

[87] J. C. Patra, A. C. Kot, and G. Panda, “An intelligent pressure sensor using

neural networks,” Instrumentation and Measurement, IEEE Transactions on,

vol. 49, no. 4, pp. 829–834, 2000.

[88] B. K. Bose, “Neural network applications in power electronics and motor

drives an introduction and perspective,” Industrial Electronics, IEEE Trans-

actions on, vol. 54, no. 1, pp. 14–33, 2007.

[89] M. R. Meireles, P. E. Almeida, and M. G. Simões, “A comprehensive review

for industrial applicability of artificial neural networks,” Industrial Electronics,

IEEE Transactions on, vol. 50, no. 3, pp. 585–601, 2003.

[90] F. Betin, A. Sivert, A. Yazidi, and G.-A. Capolino, “Determination of scaling

factors for fuzzy logic control using the sliding-mode approach: Application to

control of a dc machine drive,” Industrial Electronics, IEEE Transactions on,

vol. 54, no. 1, pp. 296–309, 2007.

[91] S. S. Ge and C. Wang, “Adaptive neural control of uncertain mimo nonlinear

systems,” Neural Networks, IEEE Transactions on, vol. 15, no. 3, pp. 674–692,

2004.

[92] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller

with guaranteed tracking performance,” Neural Networks, IEEE Transactions

on, vol. 7, no. 2, pp. 388–399, 1996.

[93] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

162

[94] C. M. Bishop et al., Pattern recognition and machine learning. springer New

York, 2006, vol. 1.

[95] B. D. Ripley and R. M. Ripley, “Neural networks as statistical methods in

survival analysis,” Clinical applications of artificial neural networks, pp. 237–

255, 2001.

[96] J. J. Moré, “The levenberg-marquardt algorithm: implementation and theory,”

in Numerical analysis. Springer, 1978, pp. 105–116.

[97] S. T. Chung, S. J. Kim, J. Lee, and J. M. Cioffi, “A game-theoretic approach

to power allocation in frequency-selective gaussian interference channels,” in in

Proc. IEEE International Symposium on Inform. Theory, Pacifico. Citeseer,

2003.

[98] M. Schmidt, “Least squares optimization with l1-norm regularization,” CS542B

Project Report, 2005.

[99] B. Bhattacharya and D. P. Solomatine, “Neural networks and m5 model trees

in modelling water level–discharge relationship,” Neurocomputing, vol. 63, pp.

381–396, 2005.

[100] V. B. Veiga, Q. K. Hassan, and J. He, “Development of flow forecasting models

in the bow river at calgary, alberta, canada,” Water, vol. 7, no. 1, pp. 99–115,

2014.

[101] Saudi flash floods, http://www.emirates247.com/news/region

/saudi-flash-floods-one-killed-in-makkah-2014-05-10-1.548596.

[102] ARM uvision Keil software, http://www2.keil.com/mdk5/uvision//.

[103] Y.-K. Ki and D.-K. Baik, “Vehicle-classification algorithm for single-loop de-

tectors using neural networks,” Vehicular Technology, IEEE Transactions on,

vol. 55, no. 6, pp. 1704–1711, 2006.

[104] M. Bramberger, J. Brunner, B. Rinner, and H. Schwabach, “Real-time video

analysis on an embedded smart camera for traffic surveillance,” in Real-Time

and Embedded Technology and Applications Symposium, 2004. Proceedings.

RTAS 2004. 10th IEEE. IEEE, 2004, pp. 174–181.

[105] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,

T. Sohn, J. Howard, J. Hughes, F. Potter et al., “Place lab: Device position-

ing using radio beacons in the wild,” in International Conference on Pervasive

Computing. Springer, 2005, pp. 116–133.

163

[106] D. Schrank, T. Lomax, and S. Turner, “Tti’s 2010 urban mobility report pow-

ered by inrix traffic data,” Texas Transportation Institute, The Texas A&M

University System, vol. 17, 2010.

[107] D. Work and A. Bayen, “Impacts of the mobile internet on transportation cy-

berphysical systems: traffic monitoring using smartphones,” in National Work-

shop for Research on High-Confidence Transportation Cyber-Physical Systems:

Automotive, Aviation, & Rail, 2008, pp. 18–20.

[108] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell: rich monitoring of

road and traffic conditions using mobile smartphones,” in Proceedings of the

6th ACM conference on Embedded network sensor systems. ACM, 2008, pp.

323–336.

[109] L. Ojeda and J. Borenstein, “Personal dead-reckoning system for gps-denied

environments,” in Safety, Security and Rescue Robotics, 2007. SSRR 2007.

IEEE International Workshop on, Sept 2007, pp. 1–6.

[110] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-slam–based navigation

for autonomous micro helicopters in gps-denied environments,” Journal of Field

Robotics, vol. 28, no. 6, pp. 854–874, 2011.

[111] A. Bachrach, S. Prentice, R. He, and N. Roy, “Range–robust autonomous nav-

igation in gps-denied environments,” Journal of Field Robotics, vol. 28, no. 5,

pp. 644–666, 2011.

[112] W. Chen, Z. Li, M. Yu, and Y. Chen, “Effects of sensor errors on the perfor-

mance of map matching,” Journal of Navigation, vol. 58, no. 02, pp. 273–282,

2005.

[113] A. Jimenez, F. Seco, C. Prieto, and J. Guevara, “A comparison of pedestrian

dead-reckoning algorithms using a low-cost mems imu,” in Intelligent Signal

Processing, 2009. WISP 2009. IEEE International Symposium on, Aug 2009,

pp. 37–42.

[114] S. Wan and E. Foxlin, “Improved pedestrian navigation based on drift-reduced

mems imu chip,” in Proceedings of the 2010 International Technical Meeting of

The Institute of Navigation, 2001, pp. 220–229.

[115] Y. Fuke and E. Krotkov, “Dead reckoning for a lunar rover on uneven terrain,”

in Robotics and Automation, 1996. Proceedings., 1996 IEEE International Con-

ference on, vol. 1. IEEE, 1996, pp. 411–416.

164

[116] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson,

and P.-J. Nordlund, “Particle filters for positioning, navigation, and tracking,”

Signal Processing, IEEE Transactions on, vol. 50, no. 2, pp. 425–437, 2002.

[117] W. Premerlani and P. Bizard, “Direction cosine matrix imu: The-

ory,” DIY Drones.[Online][Cited: 1 7 2012.] http://diydrones. ning.

com/profiles/blogs/dcm-imu-theory-first-draft, 2009.

[118] A. Jimenez, F. Seco, C. Prieto, and J. Guevara, “A comparison of pedestrian

dead-reckoning algorithms using a low-cost mems imu,” in Intelligent Signal

Processing, 2009. WISP 2009. IEEE International Symposium on. IEEE, 2009,

pp. 37–42.

[119] G. Barequet and M. Sharir, “Piecewise-linear interpolation between polygonal

slices,” Computer vision and image understanding, vol. 63, no. 2, pp. 251–272,

1996.

[120] M. A. Quddus, W. Y. Ochieng, and R. B. Noland, “Current map-matching al-

gorithms for transport applications: State-of-the art and future research direc-

tions,” Transportation Research Part C: Emerging Technologies, vol. 15, no. 5,

pp. 312–328, 2007.

[121] A. Gelman, “A bayesian formulation of exploratory data analysis and goodness-

of-fit testing*,” International Statistical Review, vol. 71, no. 2, pp. 369–382,

2003.

165

7 Accepted Papers

• Mustafa Mousa, Christian Claudel, “Energy parameter estimation in solar powered

wireless sensor networks”, Published in ACM RealWSN conference (Lectures Notes

in Electrical Engineering),Springer, September 2013.

• Ahmad Dehwah, Mustafa Mousa, Edward Canepa, Enas Odat, Jiming Jiang and

Christian Claudel, “Poster Abstract: Enhancing user privacy in probe-based traffic

monitoring systems using distributed computing”, Presented in European Wireless

Sensor Networks (EWSN) conference, February, 2013.

• Ahmad Dehwah, Mustafa Mousa, Christopher Knox, Christian Claudel, “Poster

Abstract: Sadeem: a solar-powered wireless sensor network testbed for energy mod-

eling in urban, desert environments”, Presented in RTSS conference, December, 2012.

• Mustafa Mousa, Ahmad Dehwah, Christian Claudel, , “Poster Abstract: Experi-

mental analysis of environmental perturbations on wireless sensor network opera-

tion”, Presented in European Wireless Sensor Networks (EWSN) conference, Febru-

ary, 2014.

• Edward Canepa, Enas Odat, Ahmad Dehwah, Mustafa Mousa, Jiming Jiang and

Christian Claudel “A sensor network architecture for urban traffic state estimation

with mixed Eulerian/Lagrangian sensing based on distributed computing”, Submitted

to ARCS conference,Springer, April, 2014.

• Mustafa Mousa, Christian Claudel, “Poster Abstract: Water Level Estimation in

Urban Ultrasonic/Passive Infrared Flash Flood Sensor Networks Using Supervised

Learning”, Published in Information processing for sensor networks (IPSN) confer-

ence, IEEE, April, 2014.

• Ahmad Dehwah, Mustafa Mousa and Christian G. Claudel, “Lessons Learned on So-

166

lar Powered Wireless Sensor Network Deployments in Urban, Desert Environments”,

Published in AD HOC Network Journal (Elsevier), April, 2014.

• Mustafa Mousa, Mohammed Abdulaal, Stephen Boyles, Christian Claudel, “Iner-

tial Measurement Unit-based Traffic Monitoring Using Short Range Wireless Sensor

Networks”, Accepted and presented in Transportation Research Board (TRB) confer-

ence, Janurary, 2015.

• Mustafa Mousa, Mohammed Abdulaal, Stephen Boyles, Christian Claudel, “Wire-

less sensor network-based urban traffic monitoring using inertial reference data”, Ac-

cepted and presented in the Distributed Computing in Sensor Systems (DCOSS), 2015

International Conference on. IEEE, June, 2015.

•Mustafa Mousa, Enas Oudat, Christian Claudel, “A Novel Dual Traffic/Flash Flood

Monitoring System Using Passive Infrared/Ultrasonic Sensors”, Accepted and pre-

sented in the Mobile Ad Hoc and Sensor Systems (MASS), 2015 IEEE 12th Interna-

tional Conference on. IEEE, October, 2015.

• Enas Oudat, Mustafa Mousa, Christian Claudel, “Vehicle Detection and Classifica-

tion Using Passive Infrared Sensing”, Accepted and presented in the Mobile Ad Hoc

and Sensor Systems (MASS), 2015 IEEE 12th International Conference on. IEEE,

October, 2015.

• Mustafa Mousa, Kapil Sharma, Christian Claudel, “Poster Abstract: Automatic

Calibration of Device Attitude in Inertial Measurement Unit Based Traffic Probe

Vehicles”, Accepted and presented in the Information processing for sensor networks

(IPSN) conference, IEEE, April, 2016.

• Mustafa Mousa, Xiangliang Zhang, Christian Claudel, “Flash Flood Detection in

Urban Cities Using Ultrasonic and Infrared Sensors”, Accepted to IEEE sensors Jour-

nal, June 2016.

167

7 Submitted/In submission Papers

• Mustafa Mousa, Kapil Sharma, Mohammed Abdulaal, Christian Claudel, “Inertial

Measurement Units Based Probe Vehicles: Trajectory and Traffic Conditions Esti-

mation”, Submitted to Elsevier, Transportation Research Part C, 2016.

• Mustafa Mousa, Kapil Sharma, Mohammed Abdulaal, Steve Boyles, Christian

Claudel, “Inertial Measurement Units Based Probe Vehicles: Map Matching Ap-

proach for Path Reconstruction”, In preparation to IEEE transaction on Intelligent

Transportation Systems, 2016.

168

7 Patents

• Mustafa Mousa, Mohammed Abdulaal, Christian Claudel, “Inertial measurement

unit-based traffic flow monitoring”, Pending, 2015.

• Edward Canepa, Christian G Claudel, Atif Shamim, Ahmad H Dehwah, Mustafa

Mousa, Jiming Jiang, “System and method for monitoring traffic while preserving

personal privacy (CA 2881198 A1) ”, Granted, 2015.

	Examination Committee Page
	Copyright
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Related work
	Research Objectives
	Main contributions

	Solar-powered WSNs Architecture for traffic and flood sensing applications
	System design
	Proposed urban flash flood and traffic sensing system architecture
	Technological choices

	Experimental experience
	System
	Objectives of the WSN deployments
	Major Deployments (KAUST Campus)

	Lessons learned from the WSN deployments
	Design challenges
	Hardware limitations and their impact on experiments
	Analoge to Digital Converters (ADC) faults
	Experiment planning and testing issues
	Accessibility issues
	Deployment challenges
	Data analysis issues

	Experimental investigation of environmental perturbations on the WSN operation
	Experimental setup
	Link performance analysis
	Power analysis

	Energy Estimation for solar-powered WSN in desert environments
	Energy management state of the art
	Experimental Setup
	System
	Energy estimation deployment
	Experiments results

	Energy Model
	Energy Generation and Storage
	Energy Conservation Equation
	The Need for Energy Estimation and Forecast

	Estimation of Battery Condition and Capacity
	Background
	Estimation of Battery Discharge Patterns
	Estimation of Battery Capacity

	Estimation of Solar Power Supply
	Chapter Remarks

	Flash Flood and Rain Monitoring and Detection Using Ultrasonic and Infrared Sensors (Estimations and Algorithms)
	Sensing principle
	Sensor design considerations
	Sensor description

	Problem definition
	Naive temperature correction
	Auto-regressive moving average exogenous (ARMAX) fitting
	Supervised learning

	Proposed Solution and System performance
	Preprocessing of measurement data
	Artificial neural networks performance
	Comparison of prediction models
	Minimization of errors in the L sense
	Temporal robustness of ANN model parameters
	Spatial robustness analysis of ANN model
	Validation on an actual flooding incident

	Implementation of ANN algorithms on microcontrollers
	Dedicated sensing platform for flash flood monitoring applications
	On-Board Neural Network Algorithm

	Discussion
	Rain detection
	A Neural network classifier
	Rain detection results

	Chapter Remarks

	Inertial Measurement Units-Based Probe Vehicles: Trajectory and Traffic Conditions Estimation
	System Components
	Traffic sensing principle
	Vehicular system
	Fixed wireless sensor network system
	Data processing

	Automatic Calibration for attitude angles
	Solution method
	Implementation

	Trajectory reconstruction
	Attitude estimation algorithms
	Dead Reckoning
	Validation
	Yaw angle (heading) estimation
	Trajectory estimation and validation
	Piecewise linear trajectory approximation

	Path reconstruction
	Case Study
	Map matching based on a Bayesian formulation

	Concluding Remarks
	Summary
	Future Research Work

	References

