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ABSTRACT

Accelerating SPARQL Queries and Analytics on RDF Data

Razen Mohammad Al-Harbi

The complexity of SPARQL queries and RDF applications poses great challenges

on distributed RDF management systems. SPARQL workloads are dynamic and con-

sist of queries with variable complexities. Hence, systems that use static partitioning

su↵er from communication overhead for workloads that generate excessive communi-

cation. Concurrently, RDF applications are becoming more sophisticated, mandating

analytical operations that extend beyond SPARQL queries. Being primarily designed

and optimized to execute SPARQL queries, which lack procedural capabilities, exist-

ing systems are not suitable for rich RDF analytics.

This dissertation tackles the problem of accelerating SPARQL queries and RDF

analytics on distributed shared-nothing RDF systems. First, a distributed RDF en-

gine, coined AdPart, is introduced. AdPart uses lightweight hash partitioning for

sharding triples using their subject values; rendering its startup overhead very low.

The locality-aware query optimizer of AdPart takes full advantage of the partition-

ing to (i) support the fully parallel processing of join patterns on subjects and (ii)

minimize data communication for general queries by applying hash distribution of

intermediate results instead of broadcasting, wherever possible. By exploiting hash-

based locality, AdPart achieves better or comparable performance to systems that

employ sophisticated partitioning schemes.

To cope with workloads dynamism, AdPart is extended to dynamically adapt to

workload changes. AdPart monitors the data access patterns and dynamically redis-

tributes and replicates the instances of the most frequent patterns among workers.
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Consequently, the communication cost for future queries is drastically reduced or even

eliminated. Experiments with synthetic and real data verify that AdPart starts faster

than all existing systems and gracefully adapts to the query load.

Finally, to support and accelerate rich RDF analytical tasks, a vertex-centric RDF

analytics framework is proposed. The framework, named SPARTex, bridges the gap

between RDF and graph processing. To do so, SPARTex: (i) implements a generic

SPARQL operator as a vertex-centric program. The operator is coupled with an

optimizer that generates e�cient execution plans. (ii) It allows SPARQL to invoke

vertex-centric programs as stored procedures. Finally, (iii) it provides a unified in-

memory data store that allows the persistence of intermediate results. Consequently,

SPARTex can e�ciently support RDF analytical tasks consisting of complex pipeline

of operators.
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Chapter 1

Introduction

Strive always to excel in virtue and
truth.

Prophet Mohammad (PBUH)
571 — 633 CE

Resource Description Framework (RDF) [1, 2] is a standard data model and the

core component of the W3C Semantic Web [3, 4]. The Simple Protocol And RDF

Query Language (SPARQL) [5, 6] is the o�cial W3C standard query language for

querying and extracting information from RDF data. RDF was originally designed

to be a meta-data model for describing web pages. However, it is now a standard

model for exchanging data and knowledge among various data sources on the Web.

The decoupling between RDF and its schema allows the schema to freely change

without a↵ecting users. Therefore, Social networks, commercial search engines, online

shopping and scientific databases are adopting RDF for exchanging data or publish-

ing contents. This wide adoption has lead to an ever increasing volume of publicly

available RDF data on the Web. Public knowledge bases and databases, such as Uni-

versal Protein Resource (UniProtKB) [7], PubChemRDF [8], DBpedia [9], Bio2RDF

[10] and Probase [11] have billions of facts in RDF format. These knowledge bases

are usually linked, as in the Linked Open Data (LOD) [12, 13] cloud, and are globally

queried using SPARQL [14, 15, 16].

RDF datasets consist of triples of the form hsubject, predicate, objecti, where
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Figure 1.1: Example RDF graph. An edge and its associated vertices correspond to
an RDF triple; e.g., hBill, worksFor, CSi.

predicate represents a relationship between two entities: a subject and an object.

An RDF dataset can be regarded as a long relational table with three columns.

It can also be viewed as a directed labeled graph, where vertices and edge labels

correspond to entities and predicates, respectively. Figure 1.1 shows an example

RDF graph of students and professors in an academic network. Table 1.1 shows a

tabular representation of some triples from Figure 1.1.

Table 1.1: Example RDF data. Each row constitute a triple.
subject predicate object
HPC subOrgOf MIT
EE subOrgOf MIT
CS subOrgOf MIT

James gradFrom MIT
Lisa uGradFrom MIT
HCI subOrgOf CMU

CHEM subOrgOf CMU
Bill gradFrom CMU

In its simplest form1, a SPARQL query consists of a set of RDF triple patterns;

some of the nodes in a pattern are variables which may appear in multiple patterns.

1This form is usually referred to as Basic Graph Pattern (BGP).
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Figure 1.2: A query that finds CS professors with their advisees.

For example, the query in Figure 1.2(a) returns all professors who work for CS with

their advisees. The query corresponds to the graph pattern in Figure 1.2(b). The

answer is the set of ordered bindings of (?prof, ?stud) that render the query graph iso-

morphic2 to subgraphs in the data. Assuming the data is stored in a table D(s, p, o),

the query can be answered by first decomposing it into two subqueries, each corre-

sponding to a triple pattern: q1 ⌘ �p=worksFor^o=CS(D) and q2 ⌘ �p=advisor(D). The

subqueries can be answered independently by scanning table D; then, their inter-

mediate results are joined on the subject and object attribute: q1 ./q1.s=q2.o q2. By

applying the query on the data of Figure 1.3, we get (?prof, ?stud) 2 {(James,
Lisa),(Bill, John), (Bill, Fred),(Bill, Lisa)}.

As the volume of RDF data continues soaring, managing, indexing and querying

RDF data becomes challenging. Early research e↵orts on RDF data management

resulted in e�cient centralized RDF systems; like chameleon-db [17], RDF-3X [19, 20,

21], HexaStore [22], TripleBit [23], BitMat [24] and gStore [25]. However, centralized

data management does not scale well for complex queries on web-scale RDF data

[26, 27]. To cope with the massive data growth, many distributed [26, 27, 28, 29, 30,

31, 32, 33, 34, 35, 36, 37, 38] RDF management systems have been introduced. These

systems scale-out to overcome the limitations of single-machine stores. (i) They are

capable of handling large datasets by dividing or partitioning the data among multiple

machines (workers). (ii) They reduce the total running time by distributing data

2When a query has variable predicates, its evaluation becomes a subgraph homomorphism prob-
lem [17, 18]
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processing and querying workload among the workers. Generally, answering queries

involves local execution followed by communication between workers.

Despite the advances in distributed RDF systems, current systems cannot sustain

good performance for di↵erent types of SPARQL workload [17, 39] and RDF analytical

tasks. Specifically, there are two problems that contribute to this limitation. First, all

existing systems rely on static partitioning; and assume that one partitioning scheme

fits all workloads. However, SPARQL workloads are very diverse [13, 17, 40, 41] and

dynamic [17, 42]. A single workload can have queries with di↵erent complexities [17].

Hence, there will always be queries that are not favored by the partitioning scheme

used by the system. Furthermore, the workload itself is very dynamic [17, 42]; the

part of the data that is being queried now may not be queried in the future. Under

these conditions, current systems cannot provide good performance for the entire

workload. Consequently, the overall system performance will degrade even if a small

percentage of the workload is not processed e�ciently.

The second problem lies in the lack of generality in current distributed RDF

systems. Existing systems are primarily designed to model, store and query RDF

data behind a SPARQL end point. Hence, they are not capable of supporting rich

RDF analytical tasks [43, 44, 45, 46], where native graph processing is needed. Merely

utilizing a generic processing framework [47, 48, 49, 50, 51, 52, 53] for SPARQL query

answering [26, 27, 28, 29, 30, 31, 33, 37, 38] or representing RDF data in graph native

format [27] is not su�cient for rich RDF analytical tasks. More importantly, many

emerging RDF applications [43, 44, 45, 46] require both SPARQL querying3 and

generic processing. Accordingly, researchers and users resort to utilize multiple and

usually di↵erent systems for analyzing and processing RDF data [44]; mandating

expensive data shu✏ing and formating in a single or among multiple system(s).

The overarching outcome of this thesis is to accelerate and e�ciently process

3These applications require inferencing capabilities as well; however, inferencing is outside the
scope of this thesis.
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Figure 1.3: The graph in Figure 1.1 is partitioned among two workers: W1 and W2.

SPARQL queries and RDF analytical tasks on distributed shared nothing environ-

ments. This chapter is organized as follows. Section 1.1 details the limitations of

static partitioning schemes. Section 1.2 discuses the problem of lacking generality in

existing distributed RDF data management systems. Section 1.3, describes solutions

to these problems, give an overview of this thesis and a list of its contributions.

1.1 Limitations of Static Partitioning Schemes

Distributed RDF management systems scale-out by partitioning RDF data among

many compute nodes (workers); hence queries can be evaluated in a distributed fash-

ion. A SPARQL query is decomposed into multiple subqueries that are evaluated at

each node independently. Since data is distributed, the nodes may need to exchange

intermediate results during query evaluation. Consequently, queries with large in-

termediate results incur high communication cost, which is detrimental to the query

performance [26, 32].

Distributed RDF systems aim at minimizing the number of decomposed subqueries

by partitioning the data among workers. The goal is that each node has all the data

it needs to evaluate the entire query and there is no need for exchanging intermediate
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Table 1.2: A triple is placed at the worker which stores the subject entity.
W1 W2

subject predicate object subject predicate object
HPC subOrgOf MIT CS subOrgOf MIT
EE subOrgOf MIT HCI subOrgOf CMU

CHEM subOrgOf CMU Bill worksFor CS
James worksFor CS Bill gradFrom CMU
James uGradFrom CMU Bill uGradFrom CMU
James gradFrom MIT John type Grad
Lisa uGradFrom MIT John uGradFrom CMU
Lisa type Grad John advisor Bill
Lisa advisor James
Lisa advisor Bill
Fred advisor Bill

results. In such a parallel query evaluation, each node contributes a partial result of

the query; the final query result is the union of all partial results. To achieve this,

some triples may need to be replicated across multiple partitions.

For example, in Figure 1.3, assume the data graph is divided by the dotted line

into two partitions and assume that triples follow their subject placement (see Table

1.2). To answer the query in Figure 1.2, nodes have to exchange intermediate re-

sults because triples hLisa, advisor, Billi and hFred, advisor, Billi cross the partition

boundary. Replicating these triples to both partitions allows each node to answer the

query without communication. Still, even sophisticated partitioning and replication

cannot guarantee that arbitrarily complex SPARQL queries can be processed in paral-

lel; thus, expensive distributed query evaluation, with intermediate results exchanged

between nodes, cannot always be avoided.

Existing RDF systems inherently face three limitations due to static partitioning.

(i) Partitioning cost: balanced graph partitioning is an NP-complete problem [54];

thus, existing systems perform heuristic-based partitioning. In systems that use sim-

ple hash partitioning heuristics [27, 28, 29, 30, 55, 33, 38], queries have low chances

to be evaluated in parallel without communication between nodes. Hence, they incur



20

excessive communication during query evaluation. On the other hand, systems that

use sophisticated partitioning heuristics [26, 31, 32, 36] su↵er from high preprocessing

cost and sometimes high replication. More importantly, they pay the cost of parti-

tioning the entire data regardless of the anticipated workloads. However, as shown

in a recent study [44], only a small fraction of the whole graph is accessed by typical

real query workloads. For example, a real workload consisting of more than 1,600

queries executed on DBpedia (459M triples) touches only 0.003% of the whole data.

(ii) Ine�cient distributed execution: All existing systems tend to focus on optimizing

the execution of queries that are favored by their static partitioning schemes. Systems

that rely on simple hash partitioning [27, 28, 29, 30, 55] perform very well for star4

queries. For example, H2RDF+ leverages its sorted indices to e�ciently execute star

queries using multi-way merge join. Similarly, systems that employ sophisticated

partitioning that rely on replication [26, 31, 32, 36] perform very well for queries that

can be executed locally within each partition. However, for both schemes, queries

that cannot be solved locally su↵er from excessive communication. The e↵ect is very

substantial for systems that rely on MapReduce based distributed joins as shown in

[32] and validated by this thesis.

(iii) Workload awareness and adaptivity: SPARQL query evaluation exhibits poor

data locality, therefore, regardless of the partitioning heuristic used, there will always

be queries that cross partition boundaries and require expensive distributed evalu-

ation. Therefore, WARP [34] and Partout [35] consider the workload during data

partitioning and achieve significant reduction in the replication ratio, while show-

ing better query performance compared to systems that partition the data blindly.

Nonetheless, both these systems assume a representative (i.e., static) query workload

and do not adapt to changes. Aluç et al. [17, 39] showed that systems need to con-

tinuously adapt their physical layouts based on workloads in order to consistently

4Star queries consist of multiple triple patterns that share the same join column.
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Figure 1.4: Qs retrieves students who take courses taught by their advisors. It also
retrieves professors’ ranks and courses’ centralities. Solid lines are part of the original
graph while dotted lines represent triples that needs to be computed first.

provide good performance. The same concept is also applicable to data partitioning

in distributed RDF systems.

Thus, this thesis argues that distributed RDF systems should start fast, evaluate

queries e�ciently and leverage query workloads to adapt dynamically.

1.2 Problems of Lacking Generality

An emerging new type of RDF analytics; in drug repositioning [45], biological data

analysis [43, 46] and RDF data sampling [44], requires the combination of general

graph processing with SPARQL structural queries. For example, Qu et al. [45] filter

the results of SPARQL queries by a set of graph centrality algorithms to identify

key biological entities within the resulting RDF subgraphs. Also, Rietveld et al.

[44] use a pipeline of complex operations to analyze RDF data. They compute the

degree centrality and PageRank of the corresponding RDF graph using a generic

graph engine. The final computation results are written into RDF format. Finally,

they run SPARQL queries against the mutated RDF graph enriched by centrality

and PageRank information for each node in the graph. Other scenarios may require

a variety of graph algorithms, such as reachability queries, or community detection.

All existing RDF management systems cannot support such applications natively.

To see why, consider queryQs in Figure 1.4. While it syntactically represents a normal

SPARQL query, it has some special semantics. The query retrieves all students who
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take courses taught by their advisors. However, it also retrieves the ranks of the

matching professors and the centrality of their taught courses for a possible filtering

step, where professors with high PageRank values are considered popular; while core

courses have higher centrality as they are taken by all students.

Qs has two types of triple patterns; the first type comes from the structure of the

input graph (solid lines in Figure 1.4) while the other type of triples is derived from

the vertex computed values (dotted lines in Figure 1.4). Therefore, PageRank and

centrality algorithms need to be applied on the input graph prior to query evaluation.

Consequently, to solve queries like Qs, systems need to have all the following capabili-

ties: (i) they should be able to e�ciently execute general analytical algorithms as well

as SPARQL queries. In other words, the data abstraction and physical layout should

be suitable for both. (ii) They should support the execution of a pipeline of opera-

tors, where the output of one can be used by the others if needed without disturbing

the original physical layout. For example, the PageRank and centrality results in Qs

should not a↵ect the layout of the original RDF graph. Finally and more impor-

tantly, (iii) these pipelines should be triggered declaratively using SPARQL rather

than writing special procedural code for sharing results among operators.

Obviously, all specialized [17, 19, 20, 21, 22, 23, 24, 25] RDF systems i.e. systems

that are built natively to support SPARQL queries only, are not capable of solving

Qs. These systems use physical layouts and indices that are optimized for SPARQL.

Furthermore, to support general analytical algorithms, they need to reinvent the wheel

by implementing the whole graph analysis software stack. Therefore, the only way to

evaluate queries like Qs is to express analytical algorithms using SPARQL itself. Yet,

because SPARQL is not a procedural language, expressing graph operations results

in verbose and complex queries [56] that are hard to formulate and expensive to

evaluate. This is evident in some recent works [56, 57, 58, 59] which are limited to a

small set of graph operations like clustering and graph di↵usion. Accordingly, data
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movement and formatting in a single or multiple systems cannot be avoided when

evaluating queries like Qs.

Many RDF systems embark on generic distributed computation platforms, like

Trinity [48], GraphLab [51], Hadoop [60], Spark-based GraphX [61, 62, 63, 64] and

PigLatin [65] for distributed SPARQL query evaluation; enabling data processing

beyond SPARQL. However, all distributed systems lack at least one (the third) or

all the capabilities mentioned above. Particularly, Hadoop based systems [26, 28,

29, 30, 31, 33, 37, 38] are not suitable for graph processing [49]. The reason is

that MapReduce requires passing the entire graph state from one iteration to the

next. Furthermore, these systems model and index RDF data using traditional RDF

schemes by creating indices on all permutations of subject, predicate and object or

by using vertical partitioning schemes [33, 38, 66].

On the contrary, Trinity.RDF [27], Goodman et. al. [67] and S2X [68] use native

graph representation to model RDF data on top of Trinity, GraphLab and GraphX,

respectively; making them more suitable for RDF analytical tasks. However, aside

from missing the third capability above, their SPARQL operators have other limita-

tions. For example, Trinity.RDF uses graph exploration to minimize communication

for SPARQL query evaluation. This approach requires a final sequential join at the

master when solving queries with cycles. Similarly, S2x matches all triple patterns

of the query in the first iteration. Hence, it generates large and usually unnecessary

intermediate results, which significantly a↵ect the performance [17]. The SPARQL

operator in Goodman et. al. [67] does not have a query planner 5, a crucial component

for e�cient query execution.

5The authors claim that due simplicity of queries, query planning does not have significant impact
on query performance. However, this thesis shows later that subquery ordering makes the di↵erence
between sub-second query evaluation and query timeout.
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1.3 Contributions and Thesis Organization

The remainder of this dissertation is organized as follows: In Chapter 2, the related

work in the area of RDF data partitioning and analytics is surveyed. Subsequently,

the specific contributions of this thesis are introduced:

• Chapter 3 introduces AdPart, a distributed in-memory RDF engine. AdPart

alleviates the limitations of static partitioning employed by existing distributed

RDF systems. It uses lightweight initial partitioning that distributes triples

by hashing on their subjects. This partitioning has low cost and does not

incur any replication. Thus, the preprocessing time is low e↵ectively addressing

the partitioning cost limitation. AdPart exploits hash-based locality awareness

to process in parallel (i.e., without data communication) the join patterns on

subjects included in a query. In addition, intermediate results can potentially be

hash-distributed to single workers instead of being broadcasted everywhere. The

locality-aware query optimizer of AdPart considers these properties to generate

an evaluation plan that minimizes intermediate results shipped between workers.

• In Chapter 4, AdPart is extended with an adaptive incremental redistribution

feature. A hierarchical heat-map of accessed data patterns is maintained by

AdPart to monitor the executed workload. Hot patterns are redistributed and

potentially replicated in the system in a way that future queries that include

them are executed in parallel by all workers without data communication. To

control replication, AdPart operates within a budget and employs an eviction

policy for the redistributed patterns. By using lightweight hash partitioning,

avoiding the upfront cost, and adopting a pay-as-you-go approach, AdPart over-

comes the limitations of static partitioning schemes. Accordingly, AdPart exe-

cutes tens of thousands of queries on large graphs within the time it takes other

systems to conduct their initial partitioning.
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• Chapter 5, addresses the generality problem by introducing SPARTex, a dis-

tributed system for rich RDF data analytics. SPARTex is designed to be im-

plemented on top of a variety of vertex-centric graph processing engines (e.g.,

Pregel-like). It extends and unify the in-memory graph representation of the

underlying vertex-centric system to be used by generic vertex-centric programs

as well as SPARQL. Coupled with a novel optimizer, SPARTex implements an

e�cient SPARQL query operator as a vertex-centric program. To facilitate rich

RDF analytics, SPARTex is inspired by the database community, where the

coupling of SQL code with a generic programming language (e.g., Java, C++)

is common. Therefore, it allows users to write queries that combine declarative

SPARQL queries with procedural code (vertex-centric programs) for generic

graph processing. Di↵erent operators can be pipelined; and can communicate

by setting vertices properties in the unified in-memory data store.

This dissertation contains published work and work to be submitted. Specifically,

the work described in Chapter 3 and Chapter 4 is published in the Very Large Data

Bases Journal (February 2016, VLDBJ) [69]. The work in Chapter 5 is to be sub-

mitted to the Very Large Data Bases Conference (VLDB 2017). Both AdPart and

SPARTex have been demonstrated at the Very Large Data Bases Conference (VLDB

2015) [70, 71]. Figure 1.5 shows the roadmap.
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Figure 1.5: The roadmap of this thesis.
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Chapter 2

Related Work

Learn from yesterday, live for today,
hope for tomorrow. The important
thing is not to stop questioning.

Albert Einstein
1879 — 1955 CE

This chapter sheds the light on recent distributed RDF systems related to the

work of this thesis1. Specifically, this chapter focuses on the following key aspects

of distributed RDF systems: (i) it discusses and classify the partitioning schemes

employed by existing systems and (ii) how distributed query evaluation and opti-

mization is carried under these partitioning settings (Section 2.1). Furthermore, (iii)

this chapter includes a discussion on existing relational approaches related to data

partitioning and query execution (Section 2.1.4). Finally, the chapter is concluded

by a discussion on the generality of existing solutions for supporting rich RDF data

analytics (Section 2.2).

2.1 Data Partitioning

This section reviews partitioning schemes used in recent distributed RDF systems.

Current partitioning schemes can be generally categorized into 3 categories: (i)

Lightweight Data Partitioning: this includes systems that use random, hash or range

1More details can be found in published surveys [72, 73, 74, 75].
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Table 2.1: Summary of state-of-the-art distributed RDF systems
System

Partitioning
Strategy

Partitioning
Cost

Replication
Workload
Awareness

Adaptive

TriAD-SG [32] Graph-based (METIS) & Horizontal triple Sharding High Yes No No
H-RDF-3X [26] Graph-based (METIS) High Yes No No
Partout [35] Workload-based horizontal fragmentation High No Yes No
SHAPE [31] Semantic Hash High Yes No No
S2RDF [76] Extended Vertical Partitioning High No No No
Wu et al. [36] End-to-end path partitioning Moderate Yes No No
TriAD [32] Hash-based triple Sharding Low Yes No No
Trinity.RDF [27] Hash Low Yes No No
HadoopRDF [33] Vertical Partitioning/property Files on HDFS Low No No No
H2RDF+ [30] H-Base partitioner (range) Low No No No
Rya [37] Accumulo partitioner (range) Low No No No
CliqueSquare [38] Hybrid (Hash + Vertical Partitioning) Low Yes No No
SHARD [28] Hash (one big file) Low No No No
AdPart Hash Low Yes Yes Yes

based partitioning. These systems incur minimal data preprocessing overhead; hence,

referred to as lightweight. (ii) Sophisticated Partitioning: this includes systems

that employ sophisticated heuristics for data preprocessing prior to data partition-

ing. These systems usually incur some replication to minimize communication during

query evaluation. Finally, (iii) Workload-Aware Data Partitioning: workload-aware

systems embark on some prior knowledge about the anticipated workloads which are

used during the data partitioning phase. In the next few sections, systems are clas-

sified based on these categories. Table 2.1, summarizes the main characteristics of

these systems.

2.1.1 Lightweight Data Partitioning

SHARD [28] is a horizontally scalable triple store engine built on top of MapReduce

[47] framework. It stores RDF data into flat files using Hadoop Distributed File Sys-

tem (HDFS) [60]. The whole RDF data is kept into one file where each line represents

all the triples of a certain subject. The file is then split by HDFS into blocks (usu-

ally 64MB in size) which are randomly distributed among machines. Although this

storage model is simple, it leverages a set of benefits introduced by HDFS implemen-

tation. The RDF data is replicated and stored in a simple, easy to read format. The

data is hash partitioned among the workers such that each worker is responsible for

a set of triples.
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Figure 2.1: HadoopRDF store the data in Figure 1.3 on HDFS.

SHARD does not keep any form of data indices. As a result, while solving a query,

it has to scan the whole list of triples even if query touches a very small amount of

data. SPARQL queries are solved using a set of MapReduce [47] iterations equals to

the number of joins in the query. Each MapReduce iteration is responsible for solving

a single subquery and the results of each iteration are continuously joined with next

iterations. A final MapReduce iteration is responsible for filtering the bound variables

and remove redundant results.

HadoopRDF [33] uses HDFS flat files to store the RDF data. Similar to SHARD,

data partitioning in HadoopRDF is left to HDFS; however, it groups triples using

smaller files. Specifically, RDF data is split into multiple smaller files using two steps:

Predicate Split (PS) and Predicate Object Split (POS). In the first step (PS), the data

file is split based on the predicate into multiple smaller files where each file corresponds

to a di↵erent predicate. This is similar to vertical partitioning strategy used by SW-

Store [66]. For example, the RDF data in Figure 1.3 is stored by HadoopRDF on

HDFS as shown in Figure 2.1. The POS step works on the explicit type information in

the rdf:type file. It divides the rdf:type file into as many files as the number of distinct

objects. Then, a set of files are created for each type object pairs. For example, in

Figure 2.1 only one file named type Grad is created because there is only one object

(Grad) associated with the type predicate. Other predicates files are also partitioned

based on the object types into multiple files.

Upon receiving a SPARQL query from the user, it is passed to the Input Selec-

tor component which selects the files needed to execute the given query. Depending
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on the complexity of the query, HadoopRDF uses one or multiple Hadoop [60] jobs

to evaluate SPARQL queries. To minimize the overhead incurred by Hadoop jobs,

HadoopRDF’s cost model uses a heuristic to minimize the number of needed MapRe-

duce jobs for solving a query. If the planner finds di↵erent query plans with the

same number of jobs, it uses collected summary statistics to select the best join order

that leads to the minimum intermediate results. The planner defines the query plan

which represents an ordered set of MapReduce jobs, each associated with its input

information. The framework then executes these jobs in order, such that the output

file of each job is the input of the next one. The last job output is the answer of the

given query.

CliqueSquare [38] partitioner exploits the fact that HDFS replicates data blocks to

achieve fault-tolerance. Accordingly, it partitions the data by hashing on all three

columns, i.e. it hashes triples based on their subject, predicate and object values.

This enables CliqueSquare to perform all first-level joins in a query plan (subject-

subject, subject-predicate...etc) locally in each compute node. Finally, it applies

property-based grouping similar to the approach followed by HadoopRDF [33].

CliqueSquare presented a novel approach for optimizing BGP queries in a parallel

environment, such as MapReduce. To reduce query response times, it builds flat

plans where the number of joins is minimal. A query is represented as a variable

graph where each node corresponds to a triple patterns and edges between nodes

denote that triple patterns share a join variable. The CliqueSquare algorithm starts

with the initial variable graph and keeps finding possible clique decompositions of the

graph. Then, each decomposition is reduced until it consists of a single node from

which CliqueSquare builds the corresponding logical query plan. CliqueSquare aims

at finding the possible flattest plan to decrease response time. Logical query plans

are translated into physical MapReduce operators which are then transformed into a

MapReduce program. CliqueSquare uses a cost function that estimates the scanning,
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joining, incurred I/O and data transfer costs.

H2RDF+ [30] is a highly scalable distributed RDF engine based on MapReduce [47]

framework and Apache HBase [53]. H2RDF+ [30] materialize all six permutations of

RDF triples using HBase tables which are sorted key-value maps. Data partitioning is

left to HBase which range partitions tables based on keys. Maintaining these indices

o↵ers several benefits: (i) using a single scan on the corresponding index, all SPARQL

triple patterns can be answered e�ciently. (ii) Merge join can be employed to exploit

the precomputed ordering in these indices. (iii) Every join between triple patterns

can be done using merge joins.

H2RDF+ has a set of aggregated statistics used to estimate the selectivity of

a triple pattern, join results and join cost. Its online query planner uses a greedy

algorithm that decides at each execution step the join with the smallest cost. Two

di↵erent join algorithms can be executed: multi-way merge join algorithm which is

e�cient over already sorted data. The other one is sort-merge join which is used to join

unsorted intermediate results. Based on the query complexity, H2RDF+ adaptively

decides whether to execute the query in a centralized or a distributed fashion. Simple

queries are executed e�ciently in a centralized fashion; while complex queries with

large intermediate results are evaluated using a set of MapReduce jobs. H2RDF+

utilizes lazy materialization to minimize the size of the intermediate results. Similarly,

Rya [37] uses a key-value store (Accumulo [77]) for RDF data storage which range-

partitions the data based on keys such that the keys in each partition are sorted.

However, when solving a SPARQL query, Rya executes the first subquery using range

scan on the appropriate index; it then utilizes index lookups when joining with the

next subqueries.

Trinity.RDF [27] is a distributed in-memory RDF engine that can handle web scale

RDF data. It represents RDF data in its native graph form (i.e., using adjacency

lists) and uses a key-value store (Trinity [48]) as the back-end store. The RDF graph
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is partitioned using vertex id as hash key. This is equivalent to partitioning the data

twice; first using subjects as hash keys and second using objects. Trinity.RDF uses

graph exploration for SPARQL query evaluation and relies heavily on its underlying

high-end InfiniBand interconnect. In every iteration, a single subquery is explored

starting from valid bindings by all workers. This way, generation of redundant inter-

mediate results is avoided. However, because exploration only involves two vertices

(source and target), Trinity.RDF cannot prune invalid intermediate results without

carrying all their historical bindings. Hence, workers need to ship candidate results

to the master to finalize the results, which is a potential bottleneck of the system.

DREAM [78] follows a very di↵erent yet simple approach. DREAM does not partition

the data, rather it builds one database and replicates it on all workers. Instead

of running the query in parallel by all machines, DREAM decomposes the query

into multiple (usually non-overlapping) subqueries. Each subquery is answered by

one worker which has the entire database. Workers then exchange auxiliary meta-

data to finalize the query evaluation. While in principle DREAM does not incur

any partitioning overhead, its preprocessing phase is very expensive because of the

centralized database construction. Furthermore, parallelism in DREAM is limited by

the number of query decompositions (usually very small).

All the above systems use lightweight partitioning schemes, which are computa-

tionally inexpensive; however, queries with long paths and complex structures incur

high communication costs. In addition, systems that evaluate joins using MapReduce

su↵er from its high overhead [32, 36]. Although AdPart (introduced in this thesis)

also uses lightweight hash partitioning, it avoids excessive data shu✏ing by exploit-

ing hash-based data locality. Furthermore, it adapts incrementally to the workload

to further minimize communication.
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Table 2.2: Partitioning the graph in Figure 1.1 using 1-hop undirected guarantee.
Replicated triples are highlighted.

W1 W2
subject predicate object subject predicate object
HPC subOrgOf MIT CS subOrgOf MIT
EE subOrgOf MIT HCI subOrgOf CMU

CHEM subOrgOf CMU Bill worksFor CS
James worksFor CS Bill gradFrom CMU
James uGradFrom CMU Bill uGradFrom CMU
James gradFrom MIT John type Grad
Lisa uGradFrom MIT John uGradFrom CMU
Lisa type Grad John advisor Bill
Lisa advisor James CHEM subOrgOf CMU
Lisa advisor Bill James uGradFrom CMU
Fred advisor Bill Lisa advisor Bill
John type Grad James worksFor CS
CS subOrgOf MIT Fred advisor Bill

2.1.2 Sophisticated Partitioning Schemes and Replication

Several systems employ general graph partitioning techniques for RDF data, in order

to improve data locality.

H-RDF-3X [26] uses METIS [54] to partition the RDF graph by assigning each vertex

to a single partition. For example, in Figure 1.1, each vertex is assigned to a single

worker. METIS results in a balanced vertex partitioning where each partition has

an equal share of vertices. Then, H-RDF-3X enforces the so-called k-hop guarantee

where for any vertex v assigned to partition p all k-hop away vertices and their edges

are replicated in p. This way any query with radius k or less can be executed without

communication. For example, partitioning the graph in Figure 1.1 among two work-

ers using 1-hop undirected guarantee yields the partitions shown in Table 2.2. Each

partition is stored and managed by a standalone centralized RDF store like RDF-3X.

Under this setting, any query with radius of 1 can be answered without communica-

tion. For example, the query in Figure 1.2 can be answered without communication

among workers. Note that because of the replication, results duplication may occur.
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Figure 2.2: The summary graph for the data in Figure 1.1.

For example, the query Q =h?stud, advisor, Billi will return duplicate hLisa, advi-
sor, Billi and hFred, advisor, Billi; one from each partition. To solve this problem,

H-RDF-3X introduces the notion of ownership triples that are created during the

partitioning phase. For each vertex v assigned to partition p, H-RDF-3X stores a

new triple hv, is owned, yesi at partition p. Then, when evaluating a query, an extra

join is carried out for filtering duplicate results. In our example, the query becomes

Q =h?stud, advisor, Billi AND h?stud, is owned, yesi. Other queries with radius

larger than k are executed using expensive MapReduce joins. Replication increases

exponentially with k; thus, k must be small (e.g., k  2 in [26]).

Similarly, EAGRE [79] transforms the RDF graph into a compressed entity graph

that is partitioned using a MinCut algorithm, such as METIS. EAGRE and H-RDF-

3X su↵er from the overhead of MapReduce-based joins for queries that cannot be

evaluated locally. For such queries, sub-second query evaluation is not feasible [32].

TriAD [32] employs lightweight hash partitioning based on both subjects and ob-

jects. Since partitioning information is encoded into the triples, TriAD has full lo-

cality awareness of the data and processes large number of concurrent joins without

communication. However, because TriAD shards one (both) relations when evalu-

ating distributed merge (hash) joins, the locality of its intermediate results is not

preserved. Thus, if the sharding column of the previous join is not the current join

column, intermediate results need to be re-sharded. The cost becomes significant for

large intermediate results with multiple attributes.

TriAD-SG [32] uses METIS for data partitioning. Edges that cross partitions are

replicated, resulting in 1�hop guarantee. A summary graph is defined, which includes
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a vertex for each partition. Vertices in this graph are connected by the cross-partition

edges. For example, Figure 2.2 shows the summary graph of the data in Figure 1.1.

A query in TriAD-SG is evaluated against the summary graph first, in order to prune

partitions that do not contribute to query results. Then, the query is evaluated on

the RDF data residing in the partitions retrieved from the summary graph. Multiple

join operators are executed concurrently by all workers, which communicate via an

asynchronous message passing protocol.

Sophisticated partitioning techniques, like MinCut, reduce the communication

cost significantly by minimizing the edge-cut. However, such techniques are pro-

hibitively expensive and do not scale for large graphs, as shown in [31]. Furthermore,

MinCut does not yield good partitioning for dense graphs. Thus, TriAD-SG does

not benefit from the summary graph pruning technique in dense RDF graphs be-

cause of the high edge-cut. To alleviate METIS overhead, an e�cient approach for

partitioning large graphs was introduced [80]. However, queries that cross partition

boundaries and hence result in poor performance cannot be eliminated.

SHAPE [31] is based on a semantic hash portioning approach for RDF data. It starts

by simple hash partitioning and employs the same k-hop strategy as H-RDF-3X [26].

It also relies on URI hierarchy, for grouping vertices to increase data locality. Each

resulting partition is manged by a standalone RDF-3X store. Similar to H-RDF-3X,

SHAPE su↵ers from the high overhead of MapReduce-based joins. It also requires an

extra join for filtering duplicate results. Furthermore, URI-based grouping results in

skewed partitioning if a large percentage of vertices share prefixes. This behavior is

noticed in both real as well as synthetic datasets (See Section 3.3).

Wu et al. [36] recently proposed an end-to-end path partitioning scheme, which con-

siders all possible directed paths in the RDF graph. These paths are merged in a

bottom-up fashion. While this approach works well for star, chain and directed cyclic

queries, other types of queries result in significant communication. For example,
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queries with object-object joins or queries that do not associate each query vertex

with the type predicate require inter-worker communication. Note that our adaptiv-

ity technique (Chapter 4) is orthogonal to and can be combined with end-to-end path

partitioning as well as other partitioning heuristics to e�ciently evaluate queries that

are not favored by the partitioning.

S2RDF [76] is a SPARQL engine built on top of Spark [62]. It proposes a relational

partitioning technique for RDF data called Extended Vertical partitioning (ExtVP).

ExtVP extends the vertical partitioning approach used by HadoopRDF [33] to mini-

mize the size of input data during query evaluation. To do so, ExtVP uses semi-join

reduction [81] to minimize data skewness and eliminate dangling triples that do not

contribute to any join. For every two vertical partitions (see Figure 2.1), ExtVP

computes join reductions for the two vertical partitions. The results are materialized

as tables in HDFS. Specifically, for two partitions P1 and P2, S2RDF computes: (i)

subject-subject: P1 ns=s P2, P2 ns=s P1, (ii) subject-object: P1 ns=o P2, P2 ns=o P1,

and (iii) object-subject: P1 no=s P2, P2 no=s P1. The intuition behind this reduction

is that a join between any two tables, say T1 and T2, can be computed using the

semi-join reduced tables which are much smaller than the base tables. For example,

T1 ./A=B T2 = (T1 nA=B T2) ./ (T1 oA=B T2).

Systems that use sophisticated partitioning heuristics focus on minimizing commu-

nication irrespective of the workload. Hence, they pay the cost for data partitioning

ahead of time even if the workload touches a very small part of the data. Moreover,

these systems optimize their partitioning scheme to honor a specific type of queries.

Other types of queries are neglected and usually introduce excessive communication

that is detrimental to the performance. On the contrary, AdPart incurs a minimal

partitioning overhead and dynamically adapts to the workload.
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2.1.3 Workload-Aware Data Partitioning

Partout [35] is a workload-aware distributed RDF engine. It relies on a given workload

to divide the data between nodes. First, it extracts representative triple patterns from

the query load. Then, it uses these patterns to partition the data into fragments and

collocates data fragments that are accessed together by queries in the same worker.

Similarly, WARP [34] uses a representative query workload to replicate frequently

accessed data. However, these system are static and do not adapt to the workload.

Partout and WARP can adapt only by applying expensive re-partitioning of the entire

data; otherwise, they incur high communication costs for dynamic workloads. On the

contrary, AdPart adapts incrementally by replicating only the data accessed by the

workload which is expected to be small [44].

Sedge [82] solves the problem of dynamic graph partitioning and demonstrates its

partitioning e↵ectiveness using SPARQL queries over RDF. The entire graph is repli-

cated several times and each replica is partitioned di↵erently. Every SPARQL query

is translated manually into a Pregel [49] program and is executed against the replica

that minimizes communication. Still, this approach incurs excessive replication, as

it duplicates the entire data several times. Moreover, its lack of support for ad-hoc

queries makes it counter-productive; a user needs to manually write an optimized

query evaluation program in Pregel.

2.1.4 Related Solutions

This sections discusses solutions used by RDF engines and relational databases to

minimize queries latencies.

Materialized views and Results Caching

Several works attempt to speed up the execution of SPARQL queries by materializing

a set of views [83, 84] or a set of path expressions [85]. The selection of views
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is based on a representative workload. Recomputing and materializing the views

adaptively is a very expensive process that cannot be achieved in an online fashion

[17]. On the other hand, AdPart does not generate local materialized views. Instead,

it incrementally redistributes the data accessed by hot patterns in a way that preserves

data locality and allows queries to be executed with minimal communication.

Other works embark on final result caching. Martin et al. [86] utilize a rela-

tional database for storing meta information about cached queries. When a cached

query is submitted to the system again, the cached result is returned immediately.

However, the proposed solution is very sensitive to slight changes in the queries [87].

For example, the framework cannot match two exactly similar queries with di↵erent

subqueries orderings or di↵erent variables names. Papailiou et al. [87] rectifies this

problem by introducing a canonical labeling technique for SPARQL queries. Same

queries with di↵erent orderings or variables names will result in the same canonical

label. The canonical label is used as a key for the cached result. Moreover, this frame-

work uses a generic query abstraction to proactively cache extra results that can be

used by queries with the same structure but di↵erent constants. While caching is

orthogonal and complementary to the work presented in this thesis, there is a major

di↵erence. Caching is useful for exactly matching queries, queries whose result is

contained within cached results or queries that can be answered by joining the results

of multiple cached queries; other queries would require expensive distributed evalua-

tion. On the contrary, the distributed query evaluation proposed by this thesis aim

at e�ciently evaluating all queries posed to the system. Furthermore, the adaptivity

feature allows the e�cient execution of exactly matching, isomorphically di↵erent or

even structurally di↵erent queries.
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Eventual Indexing And Adaptive Physical Layout

Idreos et al. [88] and Alagiannis et al. [89, 90] introduced the concept of reducing

the data-to-query time for relational data. They avoid building indices during data

loading; instead, they reorder tuples incrementally during query processing. In Ad-

Part, the concept of eventual indexing is extended to dynamic and adaptive graph

partitioning. In this thesis, the graph partitioning problem is very expensive; hence,

the potential benefits of minimizing the data-to-query time are substantial.

To address the problem of workload dynamism and diversity, Aluç [17] proposed

an approach for adaptively changing the physical layout based on workloads. He intro-

duces a Workload-aware group-by-query (G-by-Q) representation where the content

of each database record and the way it is serialized is dynamically determined based

on the workload. G-by-Q approach aims at scaling-up SPARQL query evaluation by

creating millions of G-by-Q. On the other hand, AdPart tries to minimize replication

(see Chapter 4) by finding shared commonalities among redistributed patterns in the

workload. In an ideal solution, an adaptive physical layout technique can be used on

each compute node. At the same time, a dynamic incremental redistribution tech-

nique similar to the one introduced in this thesis can be used to decide data placement

[17].

Relational Model

Relevant systems exist that focus on data models other than RDF. Schism [91] deals

with data placement for distributed OLTP RDBMS. Using a sample workload, Schism

minimizes the number of distributed transactions by populating a graph of co-accessed

tuples. Tuples accessed in the same transaction are put in the same server. Similarly,

SWORD [92, 93] models the workload as a hypergraph, where each hyperedge corre-

sponds to a transaction and uses METIS to partition this hypergraph and guide data

placement decisions. To minimize the overhead of the partitioning phase, SWORD
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uses a hypergraph compression technique. To deal with dynamic workloads, SWORD

uses an incremental approach for dynamic data repartitioning. Similar to Schism,

SWORD aims at minimizing the number of distributed transactions. This is not ap-

propriate for SPARQL because some queries access large parts of the data that would

overload a single machine. Instead, AdPart exploits parallelism by executing such a

query across all machines in parallel without communication. H-Store [94] is an in-

memory distributed RDBMS that uses a data partitioning technique similar to ours.

Nevertheless, H-Store assumes that the schema and the query workload are given in

advance and assumes no ad-hoc queries. Although, these are valid assumptions for

OLTP databases, they are not for RDF data stores.

ElasTras [95, 96] is a distributed system that provides transactional support to

partitioned databases. It statically partitions data at the schema level by co-locating

tuples that are accessed together in the same partition. ElasTras partitions data

based on the primary key of a single root table. Descendant tables, that have the

primary key of the root table as a foreign key, are partitioned using the foreign key

value. The process repeats recursively on subsequent levels; e↵ectively resulting in a

tree schema. Accordingly, data can be organized in row groups where data of each

row group is stored in a single partition. While limiting distributed transactions, this

approach cannot be applied on RDF for many reasons: (i) The schemaless nature

of RDF makes the process of defining root-descendant relationships among Tables2

infeasible in most of the cases. Furthermore, (ii) ElasTras mandates databases to

conform to the tree schema; an assumption that does not apply on graph data like

RDF. More importantly, (iii) partitions in ElasTras are created statically and does

not change if the access pattern changes. G-Store [97], on the other hand, employs

the Key Group abstraction to minimize the overhead of distributed transactions. in

G-Store, no data migration is needed, rather, the ownership of keys in a key group

2Assuming that each predicate defines a table like in SW-Store [66]



41

are co-located in a single partition. This approach is not suitable for RDF because

a single query can touch large amount of data. In this case, managing the data in a

single partition can be overwhelming.

2.2 System Generality

This section analyzes and reviews the generality of existing distributed RDF systems.

2.2.1 SPARQL on Generic Frameworks

Several distributed RDF systems [28, 33, 30, 38] are built on top of MapReduce

[47]. While the underlying framework is capable of performing graph analytics, these

systems are optimized for solving SPARQL only. Specifically, these systems model

the data in a way suitable for join evaluation not for graph analysis. For exam-

ple, H2RDF+ [30] is based on MapReduce and HBase indices. It is optimized for

multi-way merge joins and not for iterative graph computations. The same applies to

S2RDF [76], CliqueSquare [38] and HadoopRDF [33] which rely on vertical partition-

ing to boost join evaluation. PigSPARQL [98] transforms each SPARQL query into

a PigLatin [98] program that is executed using MapReduce which is not suitable for

iterative graph algorithms [49]. MapReduce requires passing the entire graph state

from one iteration to the next.

2.2.2 SPARQL on Graph Frameworks

Many graph management systems have been proposed for e�cient graph analytics,

including Pregel [49], PowerGraph [50], GRACE [52], and SociaLite [99]. However,

these systems lack the capability of evaluating ad-hoc SPARQL queries, which means

that a program has to be written for each SPARQL query. Sedge [82] focus on dynamic

RDF partitioning. Goodman et al. [100] proposed a vertex-centric program for solving

SPARQL queries using GraphLab [51] framework. Both approaches [82, 100] do not
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have a query optimizer and therefore users have to select a good query evaluation

plan themselves. Such an approach is tedious, counter-productive and requires prior

knowledge about the data. Notice that an unoptimized query can take significant

time or cause the system to run out of memory or crashes (see Section 5.3.2).

Trinity.RDF [27] is a SPARQL engine built on top of Trinity [48]. However, while

it uses a native graph format, it only focus on SPARQL query evaluation. Trinity.RDF

cannot support rich RDF analytics as it does not pipeline SPARQL and other oper-

ators. To perform analytics users need to use Trinity Specification Language (TSL)

for data modeling. Moreover, without the SPARQL extension proposed in this thesis

(see Chapter 5), Trinity.RDF cannot declaratively execute analytical tasks.

GraphX [63, 64] is a graph processing system built on top of a Spark [61, 62]; a

general purpose distributed data flow framework. GraphX aims at unifying graph-

parallel (e.g. vertex-centric) and data-parallel computations (e.g., map-reduce) in

a single system. The same data can be viewed as both tables and graphs which

allows both types of computations to be applied. As a result of the generality and

unification of GraphX, it is not as fast as specialized graph engines [63, 64]. Yet,

it allows users to stay within a single framework and remove the burden of moving

data between systems and format it accordingly. SPARTex is inspired by the same

motivation which tries to unify both SPARQL structural querying and generic graph

computations.

2.2.3 Rich RDF Analytics

Deweese et al. [58] proposed an implementation of the peer pressure clustering algo-

rithm using SPARQL. Qi et al. [57] introduced distributed remote clustering algo-

rithms that minimize the communication overhead. Both approaches, however, focus

on clustering and cannot support generic graph analytics. Techentin et al. [56] exploit

the update capability of SPARQL 1.1 for implementing iterative algorithms. How-
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ever, this approach results in lengthy and verbose SPARQL queries that are hard to

evaluate and understand. uRiKA [59] allows the invocation of few predefined graph

algorithms that were requested by users. These algorithms are tailored and optimized

for the uRiKA appliance by expert researchers; users cannot add any new algorithm

or modify any existing one. In contrast, SPARTex allows users to implement any

algorithm using simple vertex-centric API’s.

Blazegraph [101] is a commercial, specialized, high-performance graph database

with support for the Blueprints and RDF/SPARQL APIs. Recently, Blazegraph

announced the release of their RDF GAS API which enables rich RDF analytical and

mining tasks. Since it is a specialized product, the entire graph analytics software

stack had to be implemented. SPARTex, on the other hand, takes a di↵erent approach

by supporting rich RDF analytics on top of distributed graph system. Blazegraph uses

the Gather Apply Scatter (GAS) [51] model for implementing data mining algorithms

which can be invoked by SPARQL end points as services. However, due to the 1-D

partitioning scheme in their distributed version, the solution is limited to a single

machine and does not scale-out e�ciently [102].

2.2.4 Related Solutions

Gao et al. [103] introduce a system for continuous approximate pattern detection

over evolving graphs. Fard et al. [104] propose a vertex-centric approach for graph

simulation on massive graphs. Graph simulation provides a practical alternative to

subgraph isomorphism, which is an NP-Complete problem, by relaxing its stringent

matching conditions. This allows matches to be found in polynomial time. These

solutions are approximate, while SPARQL requires exact subgraph pattern match-

ing. Horton+ [105] solves reachability queries over large attributed multi-graphs.

It introduces a declarative query language with a compiler and its own query opti-

mizer. Horton+ solves reachability queries which consider only paths with closures
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and cannot solve generic SPARQL queries with complex structure or cycles. More-

over, unlike reachability queries, SPARQL allows variable vertices that can match

any node in the data. Motivated by the fact that graph data are usually stored in

relational databases and users tend to apply SQL as well as graph algorithms on their

data, Jindal et al. introduce Vertexica [106] a relational databases system capable

of performing graph analytics. Vertexica does not focus on RDF; hence, SPARQL

queries are not supported.
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Chapter 3

Exploiting Hash-based Locality

Everything is theoretically
impossible, until it is done.

Robert A. Heinlein
1907 — 1988 CE

AdPart advocates the reliance on workload guided partitioning, where data is in-

crementally and dynamically repartitioned based on the workload. However, at any

moment in time, there might be queries that are not favored by the current distribu-

tion. While AdPart will eventually adapt to them, these queries need to be executed

e�ciently; otherwise, the whole system performance will degrade. Therefore, AdPart

introduces an e�cient baseline for distributed SPARQL query evaluation. AdPart

exploits the hash-based data locality to execute queries comparable or faster than

state-of-the-art distributed RDF systems. This chapter, discusses the system archi-

tecture of AdPart and its distributed SPARQL query execution approach. Adaptive

redistribution is introduced in the next chapter.

3.1 System Architecture

Overview: AdPart employs the typical master-slave paradigm and is deployed on a

shared-nothing cluster of machines (see Figure 3.1). This architecture is used by other

systems, e.g., Trinity.RDF [27] and TriAD [32]. AdPart uses the standard Message

Passing Interface (MPI) [107] for master-worker communication. In a nutshell, the
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Figure 3.1: System architecture of AdPart

master begins by encoding the data and partitioning it among workers. Each worker

loads its triples and collects local statistics. Then, the master aggregates these statis-

tics and becomes ready for answering queries. Each query is submitted to the master,

which decides whether the query can be executed in parallel or distributed mode. In

parallel mode, the query is evaluated concurrently by all workers without commu-

nication. Queries in distributed mode are also evaluated by all workers but require

communication.

3.1.1 Master

String Dictionary. RDF data contain long strings in the form of URIs and literals. To

avoid the storage, processing, and communication overheads, we follow the common

practice [19, 27, 30, 32] and encode RDF strings into numerical IDs and build a

bi-directional dictionary.

Data Partitioner. A recent study [40] showed that 60% of the joins in a real workload

of SPARQL queries are on the subject column. Hence, AdPart uses lightweight node-

based partitioning using subject values. Given W workers, a triple t is assigned to
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worker wi, where i is the result of a hash function applied on t.subject. 1 This way

all triples that share the same subject go to the same worker. Consequently, any star

query joining on subjects can be evaluated without communication cost. AdPart does

not hash on objects because they can be literals and common types; this would assign

all triples of the same type to one worker, resulting in load imbalance and limited

parallelism [26].

Statistics Manager. It maintains statistics about the RDF graph, which are used for

global query planning and during adaptivity. Statistics are collected in a distributed

manner during bootstrapping.

Locality-Aware Query Planner. Our planner uses the global statistics from the statis-

tics manager and the pattern index from the redistribution controller to decide if a

query, in whole or partially, can be processed without communication. Queries that

can be fully answered without communication are planned and executed by each

worker independently. On the other hand, for queries that require communication,

the planner exploits the hash-based data locality and the query structure to find a

plan that minimizes communication and the number of distributed joins (Section 3.2).

Failure Recovery. The master does not store any data but can be considered as a

single-point of failure because it maintains the dictionaries, global statistics, and PI.

A standard failure recovery mechanism (log-based recovery [108]) can be employed by

AdPart. Assuming stable storage, the master can recover by loading the dictionaries

and global statistics because they are read-only and do not change in the system.

The PI can be recovered by reading the query log and reconstructing the heat map.

Workers on the other hand store data; hence, in case of a failure, data partitions

need to be recovered. Shen et al. [109] proposes a fast failure recovery solution for

distributed graph processing systems. The solution is a hybrid of checkpoint-based

and log-based recovery schemes. This approach can be used by AdPart to recover

1For simplicity, we use: i = t.subject mod W .
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worker partitions and reconstruct the replica index. Reliability is outside the scope

of this thesis and we leave it for future work.

3.1.2 Worker

Storage Module. Each worker wi stores its local set of triples Di in an in-memory

data structure, which supports the following search operations, where s, p, and o are

subject, predicate, and object, respectively:

1. given p, return set {(s, o) | hs, p, oi 2 Di}.

2. given s and p, return set {o | hs, p, oi 2 Di}.

3. given o and p, return set {s | hs, p, oi 2 Di}.

Since all the above searches require a known predicate, we primarily hash triples in

each worker by predicate. The resulting predicate index (simply P-index) immediately

supports search by predicate (i.e., the first operation). Furthermore, we use two

hash maps to re-partition each bucket of triples having the same predicate, based on

their subjects and objects, respectively. These two hash maps support the second

and third search operation and they are called predicate-subject index (PS-index)

and predicate-object index (PO-index), respectively. Given the number of unique

predicates is typically small, our storage scheme avoids unnecessary repetitions of

predicate values. Note that when answering a query, if the predicate itself is a variable,

then we simply iterate over all predicates. Our indexing scheme is tailored for typical

RDF knowledge bases and their workloads. Being orthogonal to the rest of the

system, alternative schemes, like indexing all SPO combinations [19, 22], could be

used at each worker). Finally, the storage module computes statistics about its local

data and shares them with the master after data loading.

Query Processor. Each worker has a query processor that operates in two modes: (i)

Distributed Mode for queries that require communication. In this case, the locality-
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aware planner of the master devises a global query plan. Each worker gets a copy of

this plan and evaluates the query accordingly. Workers solve the query concurrently

and exchange intermediate results (Section 3.2.1). (ii) Parallel Mode for queries that

can be answered without communication. In this case, the master broadcasts the

query to all workers. Each worker has all the data needed for query evaluation;

therefore it generates a local query plan using its local statistics and executes the

query without communication.

Local Query Planner. Queries executed in parallel mode are planned by workers au-

tonomously. For example, star queries joining on the subject are processed in parallel

due to the initial partitioning.

3.2 Query Evaluation

A basic SPARQL query consists of multiple subquery triple patterns: q1, q2, . . . , qn.

Each subquery includes variables or constants, some of which are used to bind the

patterns together, forming the entire query graph (e.g., see Figure 1.2(b)). A query

with n subqueries requires the evaluation of n � 1 joins. Since data are memory

resident and hash-indexed, we favor hash joins as they prove to be competitive to

more sophisticated join methods [110]. Our query planner devises an ordering of

these subqueries and generates a left-deep join tree, where the right operand of each

join is a base subquery (not an intermediate result). We do not use bushy tree plans

to avoid building indices for intermediate results.

3.2.1 Distributed Query Evaluation

In AdPart, triples are hash partitioned among many workers based on subject values.

Consequently, subject star queries (i.e., all subqueries join on the subject column) can

be evaluated locally in parallel without communication. However, for other types of

queries, workers may have to communicate intermediate results during join evaluation.
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Table 3.1: Matching result of q1 on workers w1 and w2.
w1 w2

?prof ?prof
James Bill

Table 3.2: The final query results q1 ./ q2 on both workers.
w1 w2

?prof ?stud ?prof ?stud
James Lisa Bill Lisa

Bill John
Bill Fred

For example, consider the query in Figure 1.2 and the partitioned data graph in Figure

1.3. The query consists of two subqueries q1 and q2, where:

• q1: h?prof, worksFor, CSi

• q2: h?stud, advisor, ?profi

The query is evaluated by a single subject-object join. However, neither of the

workers has all the data needed for evaluating the entire query; thus, workers need

to communicate. For such queries, AdPart employs the Distributed Semi-Join (DSJ)

algorithm. Each worker scans the PO-index to find all triples matching q1. The

results on workers w1 and w2 are shown in Table 3.1. Then, each worker creates a

projection on the join column ?prof and exchanges it with the other worker. Once

the projected column is received, each worker computes the semi-join q1 o?prof q2

using its PO-index. Specifically, w1 probes p = advisor, o = Bill while w2 probes

p = advisor, o = James to their PO-index. Note that workers also need to evaluate

semi-joins using their local projected column. Then, the semi-join results are shipped

to the sender. In this case, w1 sends hLisa, advisor, Billi and hFred, advisor, Billi
to w2; no candidate triples are sent from w2 because James has no advisees on w2.

Finally, each worker computes the final join q1 ./?prof q2. The final query results at

both workers are shown in Table 3.2.
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Table 3.3: The final query results q2 ./ q1 on both workers.
w1 w2

?prof ?stud ?prof ?stud
James Lisa Bill John
Bill Lisa
Bill Fred

Hash-based data locality

Observation 1. DSJ can benefit from subject hash locality to minimize communica-

tion. If the join column of the right operand is subject, the projected column of the

left operand is hash distributed by all workers, instead of being broadcast to every

worker.

In our example, since the join column of q2 is the object column (?prof), each

worker sends the entire join column to the other worker. However, based on Obser-

vation 1, communication can be minimized if the join order is reversed (i.e., q2 ./ q1).

In this case, each worker scans the P-index to find triples matching q2 and creates a

projection on ?prof . Then, because ?prof is the subject of q1, both workers exploit

the subject hash-based locality by partitioning the projection column and communi-

cating each partition to the respective worker, as opposed to broadcasting the entire

projection column to all workers. Consequently, w1 sends Bill to only w2 because

of Bill’s hash value. The final query results are shown in Table 3.3. Notice that the

final results are the same for both query plans; however, the results reported by each

worker are di↵erent.

Pinned subject

Observation 2. Under the subject hash partitioning, combining right-deep tree plan-

ning and the DSJ algorithm, causes the intermediate and final results to be local to

the subject of the first executed subquery pattern p1. We refer to this subject as

pinned subject.
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Figure 3.2: Executing query Qprof in the following order: q1, q2, q3

In our example, executing q1 first causes ?prof to be the pinned subject because

it is the subject of q1. Hence, the intermediate and final results are local (pinned) to

the bindings of ?prof , James and Bill in w1 and w2, respectively. Changing the order

by executing q2 first made ?stud to be the pinned subject. Accordingly, the results

are pinned at the bindings of ?stud.

AdPart leverages Observations 1 and 2 to minimize communication and synchro-

nization overhead. To see this, consider Qprof which extends the query in Figure 1.2

with one more triple pattern, namely q3: h?stud, uGradFrom, ?univi. Assume Qprof

is executed in the following order: q1, q2, q3. The query execution plan is pictorially

shown in Figure 3.2. The results of the first join (i.e., q1 ./ q2) are shown in Table 3.2

(?prof is the pinned subject). The query continues by joining the results of (q1 ./ q2)

with q3 on ?stud, the subject of q3. Both workers project the intermediate results

on ?stud and hash distribute the bindings of ?stud (Observation 1). Then, all work-

ers evaluate semi-joins with q3 and return the candidate triples to the other workers

where the final query results are formulated.

Notice that the execution order q1, q2, q3 requires communication for evaluating

both joins. A better ordering is q2, q1, q3. The execution plan is shown in Figure 3.3.
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Figure 3.3: Executing query Qprof in the following order: q2, q1, q3

Table 3.4: Communication cost for di↵erent join types
Subject Pinning SS SO/OO OS
Pinned No Communication Broadcast Direct Communication
Unpinned Direct Communication Broadcast Direct Communication

The first join (i.e., q2 ./ q1) already proved to incur less communication by avoiding

broadcasting the entire projection column. The result of this join is pinned at ?stud

as shown in Table 3.3. Since the join column of q3 (?stud) is the pinned subject,

joining (q2 ./ q1) with q3 can be processed by each worker without communication

using Local Hash Join (LHJ). Therefore, the ordering of the subqueries a↵ects the

amount of communication incurred during query execution.

The four cases of a join

Formally, joining two subqueries, say pi (possibly an intermediate pattern) and pj, has

four possible scenarios: the first three assume that pi and pj join on columns c1 and c2,

respectively. (i) If c2 = subject AND c2 = pinned subject, then the join is processed in

parallel without communication. (ii) If c2 = subject AND c2 6= pinned subject, then

the join is evaluated using DSJ, but the projected join column of pi is hash distributed.
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(iii) If c2 6= subject, then the join is executed using DSJ and the projected join column

of pi is sent from all workers to all other workers. Finally, (iv) if pi and pj join on

multiple columns, we opt to join on the subject column of pj, if it is a join attribute.

This allows the join column of pi to be hash distributed as in (ii). If the subject

column of pj is not a join attribute, the projection column is broadcast to all workers,

as in (iii). Verifying on the other columns is carried out during the join finalization.

Table 3.4 summarizes these scenarios.

Based on the above four scenarios, we introduce our Locality-Aware Distributed

Query Execution algorithm (see Algorithm 1). The algorithm receives an ordering

of the subquery patterns. For each join iteration, if the second subquery joins on

the pinned subject, the join is executed without communication (line 7). Otherwise,

the join is evaluated by the DSJ algorithm (lines 8-28). In the first iteration, p1 is

a base subquery pattern; however, for the subsequent iterations, p1 is a pattern of

intermediate results. If p1 is the first subquery to be matched, each worker finds the

local matching of p1 (line 10) and projects on the join column c1 (line 13). If the join

column of q2 is subject, then each worker hash distributes the projected column (line

15); or sends it to all other workers otherwise (line 17). To avoid the overhead of

synchronization, communication is carried out using non-blocking MPI routines. All

workers perform semi-join on the received data (line 22) and send the results back to

w (line 23). Finally, each worker finalizes the join (line 27) and formulates the final

result (line 28). Lines 22 and 27 are implemented as local hash-joins using the local
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index in each worker. The result of a DSJ iteration becomes p1 in the next iteration.
Input: Query Q with n ordered subqueries {q1, q2, . . . qn}

Result: Answer of Q

1 p1  q1;

2 pinned subject p1.subject;

3 for i 2 to n do

4 p2  qi;

5 [c1, c2] getJoinColumns(p1, p2);

6 if c2 == pinned subject AND c2 is subject then

7 p1  JoinWithoutCommunication (p1, p2, c1, c2);

8 else

9 if p1 NOT intermediate pattern then

10 RS1  answerSubquery(p1);

11 else

12 RS1 is the result of the previous join

13 RS1[c1] ⇡c1 (RS1); // projection on c1

14 if c2 is subject then

15 Hash RS1[c1] among workers;

16 else

17 Send RS1[c1] to all workers;

18 Let RS2  answerSubquery(p2);

19 foreach worker w, w : 1! N do

20 // RS1w[c1] is the RS1[c1] received from w

21 // CRS2w are candidate triples of RS2 that join with RS1w[c1]

22 CRS2w  RS1w[c1] oRS1w [c1].c1=RS2.c2 RS2;

23 Send CRS2w to worker w;

24 foreach worker w, w : 1! N do

25 // RS2w is the CRS2w received from worker w

26 // RESw is the result of joining with worker w

27 RESw  RS1 ./RS1.c1=RS2w.c2 RS2w;

28 p1  RES1 [RES2 [ .... [RESN ;

Algorithm 1: Locality-Aware Distributed Execution
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Table 3.5: Triples matching h?s, advisor, ?pi and h?s, uGradFrom, ?ui on two workers.
Worker 1 Worker 2

advisor ?s ?p advisor ?s ?p
Fred Bill John Bill
Lisa Bill
Lisa James

uGradFrom ?s ?u uGradFrom ?s ?u
Lisa MIT Bill CMU
James CMU John CMU

Algorithm 1 can solve star queries that join on the subject in parallel mode.

Traditionally, the planning is done by the master using global statistics. We argue

that allowing each worker to plan the query execution autonomously would result in

a better performance. For example, using the data graph in Figure 1.3, Table 3.5

shows triples that match the following star query:

• q1: h?s, advisor, ?pi

• q2: h?s, uGradFrom, ?ui

Any global plan (i.e., q1 ./ q2 or q2 ./ q1) would require a total of four index

lookups to solve the join. However, w1 and w2 can evaluate the join using 2 and 1

index lookup(s), respectively. Therefore, to solve such queries, the master sends the

query to all workers; each worker utilizes its local statistics to formulate the execution

plan, evaluates the query locally without communication, and sends the final result

to the master.

3.2.2 Locality-Aware Query Optimization

Our locality-aware planner leverages the query structure and hash-based data dis-

tribution during query plan generation to minimize communication. Accordingly,

the planner uses a cost-based optimizer, based on Dynamic Programming (DP), for

finding the best subquery ordering. The same approach is used by other systems
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[32, 19, 27]. Each state S in DP is identified by a connected subgraph % of the query

graph. A state can be reached by di↵erent orderings on %. Thus, we maintain in each

state the ordering that results in the least estimated communication cost (S.cost).

We also keep estimated cardinalities of the variables in the query. Furthermore, in-

stead of maintaining the cardinality of the state, we keep the cumulative cardinality

of all intermediate results that led to this state. Although the cardinality of the

state will be the same regardless of the ordering, di↵erent orderings result in di↵erent

cumulative cardinalities.

We initialize a state S for each subquery pattern (subgraph of size 1) pi. S.cost is

initially zero because a query with a single pattern can be answered without commu-

nication. Then, we expand the subgraph by joining with another pattern pj, leading

to a new state S 0 such that:

S 0.cost = min(S 0.cost, S.cost+ cost(S, pj))

If we reach a state using di↵erent orderings with the same cost, we keep the one

with the least cumulative cardinality. This happens for subqueries that join on the

pinned subject. To minimize the DP table size, we maintain a global minimum cost

(minC) of all found plans. Because our cost function is monotonically increasing, any

branch that results in a cost > minC is pruned. Moreover, because of Observation

1, we start the DP process by considering subqueries connected to the subject with

the highest number of outgoing edges; this increases the chances for converging to

the optimal plan faster. The space complexity of the DP table is O(s) where s is the

number of connected subgraphs in the query graph. Since each state can be extended

by multiple edges, the number of updates applied to the DP table (i.e., the time

complexity) is O(sE), where E is the number of edges in the query graph.
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Figure 3.4: Statistics calculation for p=advisor, based on Figure 1.3.

3.2.3 Cost Estimation

We first describe the statistics used for cost calculation. Recall that AdPart col-

lects and aggregates statistics from workers for global query planning and during the

adaptivity process. Keeping statistics about each vertex in the RDF data graph is

too expensive. Therefore, we focus on predicates rather than vertices; this way the

storage complexity of statistics is linear to the number of unique predicates, which

is typically small compared to the data size. For each unique predicate p, we calcu-

late the following: (i) The cardinality of p, denoted as |p|, is the number of triples

in the data graph that have p as predicate. (ii) |p.s| and |p.o| are the numbers of

unique subjects and objects using predicate p, respectively. (iii) The subject score of

p, denoted as pS, is the average degree of all vertices s, such that hs, p, ?xi 2 D. (iv)

The object score of p, denoted as pO, is the average degree of all vertices o, such that

h?x, p, oi 2 D. (v) Predicates Per Subject Pps = |p|/|p.s| is the average number of

triples with predicate p per unique subject. (vi) Predicates Per Object Ppo = |p|/|p.o|
is the average number of triples with predicate p per unique object.

For example, Figure 3.4 illustrates the computed statistics for predicate advisor

using the data graph of Figure 1.3. Since advisor appears four times with three unique

subjects and two unique objects, |p| = 4, |p.s| = 3 and |p.o| = 2. The subject score pS

is (1+3+4)/3 = 2.67 because advisor appears with four unique subjects: Fred, John

and Lisa, whose degrees (i.e., in-degree plus out-degree) are 1, 3 and 4, respectively.
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Similarly, pO = (6 + 4)/2 = 5. Finally, the number of predicates per subject Pps is

4/3 = 1.3 because Lisa is associated with two instances of the predicate (i.e., two

advisors).

We set the initial communication cost of DP states to zero. Cardinalities of sub-

queries with variable subjects and objects are already captured in the master’s global

statistics. Hence, we set the cumulative cardinalities of the initial states to the cardi-

nalities of the subqueries and set the size of the subject and object bindings to |p.s|
and |p.o|. Furthermore, the master consults the workers to update the cardinalities

of subquery patterns that are attached to constants or have unbounded predicates.

This is done locally at each worker by simple lookups to its PS- and PO- indices to

update the cardinalities of variables bindings accordingly.

We estimate the cost of expanding a state S with a subquery pj, where cj and P

are the join column and the predicate of pj, respectively. If the join does not incur

communication, the cost of the new state S 0 is zero. Otherwise, the expansion is

carried out through DSJ and we incur two phases of communication: (i) transmitting

the projected join column and (ii) replying with the candidate triples. Estimating

the communication in the first phase depends on the cardinality of the join column

bindings in S, denoted as B(cj). In the second phase, communication depends on

the selectivity of the semi-join and the number of variables ⌫ in pj (constants are not

communicated). Moreover, if cj is the subject column of pj, we hash distribute the

projected column. Otherwise, the column needs to be sent to all workers. The cost

of expanding S with pj is:
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cost(S, pj) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

0, if cj is subject & cj = pinned subject

S.B(cj) + (⌫ · S.B(cj) · Pps),

if cj is subject & cj 6= pinned subject

(S.B(cj) ·N) + (⌫ ·N · S.B(cj) · Ppo),

if cj is not subject

Next, we need to re-estimate the cardinalities of all variables v 2 pj. Let |p.v|
denote |p.s| or |p.o| if v is subject or object, respectively. Similarly, let Ppv denote

|Pps| if v is subject or |Ppo| if v is object. We re-estimate the cardinality of v in the

new state S 0 as:

S

0
.B(v) =

8
>>>><

>>>>:

min(S.B(v), |P |), if ⌫ = 1

min(S.B(v), |p.v|), if v = cj & ⌫ > 1

min(S.B(v), S.B(v) · Ppv, |p.v|), if v 6= cj & ⌫ > 1

We use cumulative cardinality when we reach the same state by two di↵erent

orderings. Thus, we also re-estimate the cumulative state cardinality |S 0|. If Ppcj

denotes |Pps| or |Ppo| depending on the position of cj, |S 0| = |S| · (1 + Ppcj). Note

that we use an upper bound estimation for cardinalities. A special case of the last

equation is when a subquery has a constant; then, we assume that each tuple in

the previous state connects to this constant by setting Ppcj=1. Note that a more

accurate cardinality estimation like the one used in Trinity.RDF [27] is orthogonal to

our optimizer.
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Table 3.6: Datasets Statistics in millions (M)
Dataset Triples (M) #S (M) #O (M) #S\O (M) #P Indegree (Avg/StDev) Outdegree (Avg/StDev)
LUBM-10240 1,366.71 222.21 165.29 51.00 18 16.54/26000.00 12.30/5.97
WatDiv 109.23 5.21 17.93 4.72 86 22.49/960.44 42.20/89.25
WatDiv-1B 1,092.16 52.12 179.09 46.95 86 23.69/2783.40 41.91/89.05
YAGO2 284.30 10.12 52.34 1.77 98 5.43/2962.93 28.09/35.89
Bio2RDF 4,287.59 552.08 1,075.58 491.73 1,714 8.64/21110.00 16.83/195.44

3.3 Experimental Evaluation

In this section, we evaluate the non-adaptive version of AdPart, coined AdPart-NA

against existing systems. The adaptive version of AdPart will be evaluated in the

next chapter. In Section 3.3.1, we provide the details of the data, the hardware

setup, and the competitors to our approach. In Section 3.3.2, we demonstrate the

low startup and initial replication overhead of AdPart-NA compared to all other

systems. Then, in Section 3.3.3, we apply queries with di↵erent complexities on

di↵erent datasets to show that AdPart-NA leverages the subject-based hash locality

to achieve better or similar performance compared to other systems. The results show

that the baseline query evaluation i.e. for queries that are not favored be the current

distribution, are answered e�ciently by AdPart-NA without jeopardizing the overall

system performance.

3.3.1 Setup and Competitors

Datasets: We conducted our experiments using real and synthetic datasets of variable

sizes. Table 3.6 describes these datasets, where #S, #P, and #O denote respec-

tively the numbers of unique subjects, predicates, and objects. We use the synthetic

LUBM2 data generator to create a dataset of 10,240 universities consisting of 1.36

billion triples. LUBM and its template queries are used for testing most distributed

RDF engines [27, 30, 31, 32]. However, LUBM queries are intended for semantic in-

ferencing and their complexities lie in semantics not structure. Therefore, we also use

2http://swat.cse.lehigh.edu/projects/lubm/
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WatDiv3 which is a recent benchmark that provides a wide spectrum of queries with

varying structural characteristics and selectivity classes. We used two versions of this

dataset: WatDiv (109 million) and WatDiv-1B (1 billion) triples. As both LUBM and

WatDiv are synthetic, we also use two real datasets. YAGO24 is a real dataset derived

from Wikipedia, WordNet and GeoNames containing 300 million triples. Bio2RDF5

dataset provides linked data for life sciences and contains 4.64 billion triples connect-

ing 24 di↵erent biological datasets. The details of all queries and workloads used in

this thesis are available in the Appendix A.1.

Hardware Setup: We implemented AdPart in C++ and used a Message Passing In-

terface library (MPICH2) for synchronization and communication. Unless otherwise

stated, we deploy AdPart and its competitors on a cluster of 12 machines each with

148GB RAM and two 2.1GHz AMD Opteron 6172 CPUs (12 cores each). The ma-

chines run 64-bit 3.2.0-38 Linux Kernel and are connected by a 10Gbps Ethernet

switch.

Competitors: We compare AdPart-NA against TriAD [32], a recent in-memory RDF

system, which is shown to have the fastest query response times to date. We compare

to TriAD and TriAD-SG; the former uses lightweight hash partitioning while the later

uses graph summaries for join-ahead pruning. We also compare against three Hadoop-

based systems which use lightweight partitioning: CliqueSquare[38], SHARD [28] and

H2RDF+ [30]. Furthermore, we compare to two systems that rely on static replication

by prefetching and use RDF-3X as underlying data store: SHAPE [31] and H-RDF-3X

[26]. We configure SHAPE with full level semantic hash partitioning and enable the

type optimization (see [31] for details). For H-RDF-3X, we enable the type and high

degree vertices optimizations (see [26] for details). Finally, we compare to DREAM

[78], a distributed system that does not partition the data, rather it distributes the

3http://db.uwaterloo.ca/watdiv/
4http://yago-knowledge.org/
5http://download.bio2rdf.org/release/2/
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Table 3.7: Partitioning Configurations
LUBM-10240 WatDiv Bio2RDF YAGO2

SHAPE 2 forward 3 undirected 2 undirected 2 forward
H-RDF-3X 2 undirected 3 undirected 2 undirected 2 undirected

query execution among fully-fledged unpartitioned data stores. We compare with

distributed systems only, because they outperform state-of-the-art centralized RDF

systems.

3.3.2 Startup Time and Initial Replication

Our first experiment measures the time it takes all systems for preparing the data

prior to answering queries. We exclude the string-to-id mapping time for all systems.

For fair comparison, SHAPE and H-RDF-3X were configured to partition each dataset

such that all its queries are processable without communication. Table 3.7 shows the

details of these partitioning configurations. Using 2-hop forward guarantee for H-

RDF-3X (which minimizes its replication [26]), we cannot guarantee that all queries

can be answered without communication. This is mainly due to the high degree

vertices optimization. For TriAD-SG, we used the same number of partitions reported

in [32] for partitioning LUBM-10240 and WatDiv. Determining a suitable number

of summary graph partitions requires empirical evaluation of some workload on the

data or a representative sample. While generating a representative sample from these

real data might be tricky, empirical evaluation on the original big data is costly

[32]. Therefore, for fair comparison, we do not evaluate TriAD-SG on Bio2RDF and

YAGO2.

As Table 3.8 shows, systems that rely on METIS for partitioning (i.e., H-RDF-3X

and TriAD-SG) have significant startup cost. This is because METIS does not scale

to large RDF graphs. To apply METIS, we had to remove all triples connected to

literals; otherwise, METIS takes several days to partition LUBM-10240 and YAGO2.
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Table 3.8: Preprocessing time (minutes)
LUBM-10240 WatDiv Bio2RDF YAGO2

AdPart 14 1.2 29 4
TriAD 72 4 75 11
SHARD 72 9 143 17
H2RDF+ 152 9 387 22
CliqueSquare 167 10 N/A 19
SHAPE 263 79 >24h 251
DREAM 392 33 >24h 91
TriAD-SG 737 63 N/A N/A
H-RDF-3X 939 285 >24h 199

For LUBM-10240, SHAPE incurs less preprocessing time compared to METIS-based

systems. However, for WatDiv and YAGO2, SHAPE performs worse because of

data imbalance, causing some of the RDF-3X engines to take more time in building

the databases. Partitioning YAGO2 and WatDiv using 2-hop forward and 3-hop

undirected, respectively, placed all the data in a single partition. The reason is that

all these datasets have uniform URI’s, hence SHAPE could not utilize its semantic

hash partitioning. SHAPE and H-RDF-3X did not finish partitioning Bio2RDF and

were terminated after 24 hours.

SHARD and H2RDF+ employ lightweight partitioning, random and range-based,

respectively. CliqueSquare uses a combination of hash and vertical partitioning.

Therefore, they require less time compared to other systems. However, since they

are Hadoop-based, they su↵er from the overhead of storing the data first on Hadoop

File System (HDFS) before building their data stores. TriAD and AdPart-NA use

lightweight hash partitioning and avoid the upfront cost of sophisticated partitioning

schemes. As Table 3.8 shows, both systems start 4X up to two orders of magnitude

faster than other systems. TriAD takes more time because it hash partitions the

data twice (on the subject and object columns). Furthermore, TriAD requires extra

time for sorting its indices and computing statistics. Finally, while DREAM does

not partition the data among workers, it incurs a significant overhead building and
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Table 3.9: Initial replication
LUBM-10240 WatDiv YAGO2

SHAPE 42.9% (1 worker) 0% (1 worker) 0%
H-RDF-3X 19.5% 1090% 73.7%

indexing the entire database on a single machine. While not reported in this experi-

ment, there is another significant overhead for copying the database among all nodes

because of the shared nothing environment. This approach works reasonably well for

small datasets, however; it does not scale for large datasets like Bio2RDF, requiring

more than a day for building the database.

Initial replication: We report only the initial replication of SHAPE and H-RDF-3x,

since AdPart-NA, TriAD, SHARD and H2RDF+ do not incur any initial replication

(the replication caused by AdPart’s adaptivity is evaluated in the next chapter). For

LUBM-10240, H-RDF-3X results in the least replication (see Table 3.9) as LUBM is

uniformly structured around universities (high degree vertices). Because of the high

degree optimization, all entities of type university and their edges are removed before

partitioning the graph using METIS. The resulting partitions are fully disconnected

with zero edge cut. The extra replication is mainly because of the ownership triples

used for duplicate elimination (see [26] for details). With full level semantic hash

partitioning and type optimization, SHAPE incurs almost double the replication of

H-RDF-3X. For WatDiv, METIS produces very bad partitioning because of the dense

nature of the data. Consequently, partitioning the whole data blindly using k-hop

guarantee would result in excessive replication because of the high edge-cut. H-RDF-

3X [26] replicated the data almost 11 times, i.e., each partition has almost the whole

original graph. Because of the URI’s uniformity of WatDiv and YAGO2, SHAPE

places the data on a single partition. Therefore, it incurs no replication but performs

as good as a single machine RDF-3X store.
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Table 3.10: Query runtimes for LUBM-10240 (ms)
LUBM-10240 L1 L2 L3 L4 L5 L6 L7 Geo-Mean
AdPart-NA 2,743 120 320 1 1 40 3,203 75
TriAD 6,023 1,519 2,387 6 4 114 17,586 369
TriAD-SG 5,392 1,774 4,636 9 5 10 21,567 333
SHAPE 25,319 4,387 25,360 1,603 1,574 1,567 15,026 5,575
H-RDF-3X 7,004 2,640 7,957 1,635 1,586 1,965 7,175 3,412
H-RDF-3X (in-memory) 6,841 2,597 7,948 1,596 1,594 1,926 7,551 3,397
CliqueSquare 125,020 71,010 80,010 90,010 24,000 37,010 224,040 74,488
H2RDF+ 285,430 71,720 264,780 24,120 4,760 22,910 180,320 59,275
SHARD 413,720 187,310 aborted 358,200 116,620 209,800 469,340 261,362
DREAM 13,031,410 98,263 2,358 18 14 10,755 4,700,381 12,110
DREAM (cached stats) 1,843,376 98,263 <1 18 14 468 83,053 911

3.3.3 Query Performance

In this section, we compare AdPart-NA on individual queries against state-of-the-

art distributed RDF systems. We demonstrate that even with simple partitioning

scheme AdPart-NA is competitive to systems that employ sophisticated partitioning

techniques. This shows that the subject-based hash partitioning and the distributed

evaluation techniques proposed in Section 3.2 are very e↵ective.

LUBM dataset: In the first experiment (Table 3.10), we compare the performance of

all systems using the LUBM-10240 dataset and queries L1-L7 defined in [24]. Queries

L1-L7 can be classified based on their structure and selectivities into simple and

complex. L4 and L5 are simple selective star queries whereas L2 is a simple yet non-

selective star query that generates large final results. L6 is a simple query because it

is highly selective. L1, L3 and L7 are complex queries with large intermediate results

but very few final results.

SHARD CliqueSquare and H2RDF+ su↵er from the expensive overhead of MapReduce-

based joins; hence, their performance is significantly worse than all other systems. The

flat plans of CliqueSquare significantly reduce the joins overhead for complex queries.

However, for selective simple queries, H2RDF+ avoids the overhead of MapReduce

based joins by solving these queries in a centralized manner. Hence, it achieves an

order of magnitude better performance for these queries. SHAPE and H-RDF-3X

perform better than MapReduce-based systems because they do not require commu-
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nication. H-RDF-3X performs better than SHAPE because it has less replication.

However, as both SHAPE and H-RDF-3X use MapReduce for dispatching queries to

workers, they still su↵er from the non-negligible overhead of MapReduce (around 1.5

seconds on our cluster). Without this overhead, both systems would perform well

for simple selective queries. Even for complex queries, these systems still perform

reasonably well because queries run in parallel without any communication overhead.

For example, for query L7 which requires excessive communication, H-RDF-3X and

SHAPE perform better than TriAD and TriAD-SG. Note that this performance comes

at a high preprocessing cost. Obviously, with a low hop guarantee, the preprocess-

ing cost for SHAPE and H-RDF-3X is reduced but the query performance becomes

worse because of the MapReduce-based joins [32]. AdPart-NA outperform SHAPE

and H-RDF-3X for three reasons: (i) managing the original and replicated data in the

same set of indices results in large and duplicate intermediate results, rendering the

cost of join evaluation higher. (ii) To filter out duplicate results, H-RDF-3X requires

and additional join with the ownership triple pattern. (iii) TriAD and AdPart are

designed as in-memory engines while RDF-3X is disk-based. For fairness, we also

stored H-RDF-3X databases in a memory-mounted partition; still, it did not a↵ect

the performance significantly.

DREAM relies on the underlying engine (RDF-3X) for gathering some statistics

that will be used by DREAM’s query planner to decide how a query is decomposed.

Statistics are collected by evaluating the selectivities of many joins in each decom-

posed subgraph. DREAM requires the execution of many permutations of these

joins in order to collect exact statistics. Statistics are cached for future queries on

a query-by-query basis, which explains the huge performance di↵erence between the

two versions of DREAM. In a nutshell, the exact statistics calculation in DREAM

is impractical. A minimal change in the query structure will mandate statistics re-

calculation. Moreover, DREAM su↵ers from limited parallelism because of the query
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decomposition approach. The number of machines that can be utilized during query

execution is bounded by the number of join vertices. In the case of LUBM queries,

the maximum number of join vertices is 3. On the other hand, all other systems can

utilize all machines during query execution; which explains the performance supe-

riority of systems that execute the query in parallel by all workers like H-RDF-3X

SHAPE, AdPart-NA and TriAD. The overhead of DREAM’s limited parallelism is

significant in complex queries that generate large intermediate results i.e. queries L1

and L7.

In-memory RDF engines, AdPart-NA and TriAD, perform equally for queries L4

and L5 due to their high selectivities and star-shapes. AdPart-NA exploits the initial

hash distribution and solves these queries without communication. Similarly, L2

consists of a single subject-subject join; however, it is highly non-selective. TriAD

solves the query by two distributed index scans (one for each base subquery) followed

by a merge join. The merge join utilizes binary search for finding the beginning of

the sorted runs from the left and right relations. These searches perform well for

selective queries but not for L2. AdPart-NA performs better than TriAD-SG by

avoiding unnecessary scans. In other words, utilizing its hash indexes and the right

deep tree planning, AdPart-NA requires a single scan followed by hash lookups. As

a result, AdPart-NA is faster than TriAD by more than an order of magnitude. The

pruning technique of TriAD-SG eliminates the communication required for solving

L6. Therefore, it outperforms TriAD and AdPart-NA. DREAM execute all these

queries in a centralized manner by directing the queries to a single machine RDF-3X.

Although AdPart-NA and TriAD have a similar partitioning scheme (with the

di↵erence in TriAD’s full locality awareness on both subjects and objects), AdPart-

NA achieves better performance than TriAD and TriAD-SG for all complex queries,

L1, L3 and L7. There are three reasons for this: (i) When executing distributed

merge/hash joins, TriAD needs to shard one/both relations among workers. On
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Table 3.11: Query runtimes for WatDiv (ms)
WatDiv-100 Machines L1-L5 S1-S7 F1-F5 C1-C3
AdPart-NA 5 9 7 160 111
TriAD 5 4 15 45 170
SHAPE 12 1,870 1,824 1,836 2,723
H-RDF-3X 12 1,662 1,693 1,778 1,929
H2RDF+ 12 5,441 8,679 18,457 65,786
CliqueSquare 12 29,216 23,908 40,464 55,835

the contrary, AdPart-NA only exchanges the unique values from the projected join

column. The e↵ect becomes more prominent in TriAD when concurrent joins at

the lower level of the execution plan generate large and unnecessary intermediate

results. These results need to be asynchronously sharded before executing joins at

higher levels. (ii) AdPart-NA exploits the subject-based locality and the locality

of the intermediate results (pinning strategy) during planning to decide which join

operators can run without communication regardless of their location in the execution

tree. On the other hand, in TriAD, once a relation is sharded the locality of the

intermediate results is destroyed which mandates further shardings at higher join

operators. Finally, (iii) as in L2, if the join being executed is not selective, merge join

performs worse than the hash joins used by AdPart-NA. The pruning technique of

TriAD-SG was e↵ective in reducing the overall slaves query execution time. However,

the cost for summary graph processing in L3 and L7 was high; hence, the high query

execution times compared to TriAD.

For L3, AdPart-NA is 7x to 14x faster than Triad and TriAD-SG, respectively.

AdPart-NA evaluates the join that gives an empty intermediate result early, which

avoids subsequent useless joins. However, the first few joins cannot be eliminated

during query planning time. For DREAM, the planner detects that there is a join with

empty result during statistics collection and elects to terminate the query execution.

Once DREAM caches the query statistics, it will decide that the query has empty

results and terminate.
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WatDiv dataset: The WatDiv benchmark defines 20 query templates6 classified into

four categories: linear (L), star (S), snowflake (F) and complex queries (C). Simi-

lar to TriAD, we generated 20 queries using the WatDiv query generator for each

query category C, F, L and S. We deployed AdPart-NA on five machines to match

the setting of TriAD in [32]. Table 3.11 shows the performance of AdPart-NA com-

pared to other systems. For each query class, we show the geometric mean of each

system. H2RDF+ and CliqueSquare7 perform worse than all other systems due to

the MapReduce overhead. H2RDF+ performs much better than CliqueSquare. The

reason is that, while the flat plans reduce the number of MapReduce-based joins,

H2RDF+ uses a more e�cient implementation of the join operator using traditional

RDF indices. Furthermore, unlike CliqueSquare, H2RDF+ encodes the URIs and

literals of RDF data; hence it incurs minimal overhead when shu✏ing intermediate

results. SHAPE and H-RDF-3X, under 3-hop undirected guarantee, do not perform

better than a single-machine RDF-3X. SHAPE placed all the data in one machine

while H-RDF-3X replicated almost all the data everywhere. AdPart-NA and TriAD,

on the other hand, provide significantly better performance than MapReduce-based

systems. TriAD performs better than AdPart-NA for L and F queries as these queries

require multiple subject-object joins. TriAD can utilize the subject-object locality to

answer these joins without communication whereas AdPart needs to communicate.

Note that utilizing subject-object locality as in TriAD is orthogonal to our work. For

complex queries with large diameters AdPart-NA performs better as a result of its

locality awareness. The overhead for statistics calculation in DREAM was extremely

high because of the high number of triple patterns in WatDiv benchmark queries.

For example, a complex query from the WatDiv templates would take more than 24

hours to execute. Therefore, DREAM results were omitted.

6http://db.uwaterloo.ca/watdiv/basic-testing.shtml
7CliqueSquare crashed while executing 5 and 12 queries from the star and snowflake templates,

respectively.

http://db.uwaterloo.ca/watdiv/basic-testing.shtml
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Table 3.12: Query runtimes for YAGO2 (ms)
YAGO2 Y1 Y2 Y3 Y4 Geo-Mean
AdPart-NA 19 46 570 77 79
TriAD 16 1,568 220 18 100
SHAPE 1,824 665,514 1,823 1,871 8,022
H-RDF-3X 1,690 246,081 1,933 1,720 6,098
H2RDF+ 10,962 12,349 43,868 35,517 21,430
CliqueSquare 139,021 73,011 36,006 100,015 77,755
SHARD 238,861 238,861 aborted aborted 238,861

YAGO dataset: YAGO2 does not provide benchmark queries, therefore we created a

set of representative test queries (Y1-Y4). We show in Table 3.12 the performance

of AdPart-NA against all other systems. Similar, to the WatDiv dataset, H2RDF+

outperforms CliqueSquare and SHARD due to the utilization of HBase indices and its

distributed implementation of merge and sort-merge joins. AdPart-NA solves most of

the joins in Y1 and Y2 without communication; three out of four in Y1 and four out

of six in Y2. This explains the comparable to superior performance of AdPart-NA

compared to TriAD for Y1 and Y2, respectively. On the other hand, Y3 requires an

object-object join on which AdPart-NA needs to broadcast the join column. As a

results, TriAD performed better than AdPart-NA.

Bio2RDF dataset: Similar to YAGO2, the Bio2RDF dataset does not have bench-

mark queries; therefore, we defined five queries (B1-B5) with di↵erent structures and

complexities. B1 requires an object-object join which contradicts our initial partition-

ing. B2 and B3 are star queries with di↵erent number of triple patterns that require

subject-object joins. Therefore, it is expected that TriAD would perform better than

AdPart-NA (see Table 3.13). B4 is a complex query with 2-hop radius. AdPart-NA

incur communication and utilize subject-based locality during sharding. TriAD, on

the other hand, crashed during query evaluation, hence marked as N/A. B5 is a simple

star query with only one triple pattern in which all in-memory systems provide the

same performance. H2RDF+ and SHARD perform worse than other systems due to
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Table 3.13: Query runtimes for Bio2RDF (ms)
Bio2RDF B1 B2 B3 B4 B5 Geo-Mean
AdPart-NA 17 16 32 89 1 15
TriAD 4 4 5 N/A 2 4
DREAM 208 102 742 aborted 82 188
DREAM (cached stats) 16 15 142 aborted 12 25
H2RDF+ 5,580 12,710 322,300 7,960 4,280 15,076
SHARD 239,350 309,440 512,850 787,100 112,280 320,027

the MapReduce overhead. Overall, TriAD outperforms8 all systems; however, as we

will show in the next chapter, when AdPart adapts, it performs significantly better

than all other systems.

Impact of Locality Awareness

In this experiment, we show the e↵ect of locality aware planning on the distributed

query evaluation of AdPart-NA (non-adaptive). We define three configurations of

AdPart-NA: (i) We disable the pinned subject optimization and hash locality aware-

ness. (ii) We disable the pinned subject optimization while maintaining the hash

locality awareness; in other words, workers can still know the locality of subject ver-

tices but joins on the pinned subjects are synchronized. Finally, (iii) we enable all

optimizations. We run the LUBM (L1-L7) queries on the LUBM-10240 dataset on

all configurations. The query response times and the communication costs are shown

in Figures 3.5(a) and 3.5(b), respectively.

Disabling hash locality resulted in excessive communication which drastically af-

fected the query response times. Enabling the hash locality a↵ected all queries except

L6 because of its high selectivity. The performance gain for other queries ranges from

6X up to 2 orders of magnitude. In the third configuration, the pinned subject op-

timization does not a↵ect the amount of communication because of the hash locality

awareness. In other words, since the joining subject is local, AdPart does not commu-

nicate intermediate results. However, performance is a↵ected by the synchronization

8Failed runs are not included when calculating the geometric mean.
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Figure 3.5: Impact of locality awareness on LUBM-10240.

overhead. The performance gain ranges from 26% in case of L6 to more than 90%

for L3. Queries like L2, L4 and L5 are not a↵ected by this optimization because

they are star queries joining on the subject. The same behavior is also noticed in the

WatDiv-1B dataset.
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3.4 Discussion

Our experimental evaluation shows that, by employing simple hash-based partition-

ing, AdPart starts significantly faster than all existing systems. Moreover, by exploit-

ing subject hash-locality, AdPart achieves a competitive performance to state-of-the-

art systems that use sophisticated partitioning. AdPart does not only perform well

for star queries that join on subjects i.e. queries that consist of subject-subject joins

only, it also solve other types of joins very e�ciently by minimizing communication

and synchronization overhead.

While the baseline approach of AdPart is competitive, there are other type of joins

for which AdPart incurs some overhead. In particular, object-object joins cannot be

solved without data broadcast. While this type of joins is not common [40], queries

with such joins can be frequent i.e. the same query is repetitive. In the next chapter,

we introduce the adaptivity feature of AdPart that allows it to incrementally adapts

its data partitioning to honor such type of joins.
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Chapter 4

Workload Adaptivity

We cannot solve our problems with
the same thinking we used when we
created them.

Albert Einstein
1879 — 1955 CE

Studies show that even minimal communication results in significant performance

degradation [26, 31, 32]. Thus, data should be redistributed to minimize, if not elim-

inate, communication and synchronization overheads. AdPart redistributes only the

parts of data needed for the current workload and adapts as the workload changes.

AdPart monitors the submitted queries in the form of a heat map to detect hot

patterns. Once such a pattern is detected, AdPart redistributes and potentially repli-

cates the data accessed by the pattern among workers. Consequently, AdPart adapts

to the query load and can answer more queries in parallel mode. The incremental

redistribution model of AdPart is a combination of hash partitioning and k-hop repli-

cation, guided by the query load rather than the data itself. Specifically, given a hot

pattern Q (hot pattern detection is discussed in Section 4.5), AdPart selects a special

vertex in the pattern called the core vertex (Section 4.2). The system groups the data

accessed by the pattern around the bindings of this core vertex. To do so, the system

transforms the pattern into a redistribution tree rooted at the core (Section 4.3).

Then, starting from the core vertex, first hop triples are hash distributed based on

the core bindings. Next, triples that match the second level subqueries are collocated
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Figure 4.1: System architecture of AdPart

and so on (Section 4.4). AdPart utilizes redistributed patterns to answer queries in

parallel without communication.

4.1 Revised System Architecture

To facilitate the adaptivity feature of AdPart, its architecture is slightly modified by

adding the modules highlighted in Figure 4.1.

4.1.1 Master

Redistribution Controller. It monitors the workload in the form of heat maps (Sec-

tion 4.5.1) and triggers the adaptive Incremental ReDistribution (IRD) (Section 4.4)

process for hot patterns. Data accessed by hot patterns are redistributed and poten-

tially replicated among workers. A redistributed hot pattern can be answered by all

workers in parallel without communication. Replicated hot patterns are indexed in a

structure called Pattern Index (PI) (Section 4.6.1). Patterns in the PI can be com-

bined for evaluating future queries without communication. Further, the controller

implements replica replacement policy to keep replication within a threshold.
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4.1.2 Worker

Replica Index. Each worker has an in-memory replica index (Section 4.6.2) that stores

and indexes replicated data as a result of the adaptivity. This index initially contains

no data and is updated dynamically by the incremental redistribution (IRD) process.

4.2 Core Vertex Selection

For a hot pattern, the choice of the core vertex has a significant impact on the amount

of replicated data as well as on query execution performance. For example, consider

query Q1 = h?stud, uGradFrom, ?univi. Assume there are two workers, w1 and w2,

and refer to the graph of Figure 1.3; MIT and CMU are the bindings of ?univ, whereas

Lisa, John, James and Bill bind to ?stud. Assume that ?univ is the core, then triples

matching Q1 will be hashed on the bindings of ?univ as shown in Figure 4.2(a). Note

that every binding of ?stud appears in one worker only. Now assume that ?stud

is the core and triples are hashed using the bindings of ?stud. This causes binding

?univ=CMU to exist on both workers (see Figure 4.2(b)). The problem becomes more

pronounced when the query has more triple patterns. Consider Q2 = Q1 AND h?prof,
gradFrom, ?univi and assume that ?stud is chosen as core. Because CMU exists on

both workers, all its graduates (i.e., triples matching h?prof, gradFrom, CMUi will
also be replicated. Replication grows exponentially with the number of triple patterns

[26, 31].

Intuitively, if random walks start from two random vertices (e.g., students), the

probability of reaching the same well-connected vertex (e.g., university) within a few

hops is higher compared to other nodes. In order to minimize replication, we must

avoid reaching the same vertex when starting from the core. Hence, it is reasonable

to select a well-connected vertex as the core. Although, well-connected vertices can

be identified by complex data mining algorithms in the literature, for the sake of

minimizing the computational cost, we employ a simple approach. We assume that
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(a) Core is ?univ (b) Core is ?stud

Figure 4.2: E↵ect of choice of core on replication. In (a) there is no replication. In
(b) CMU is both workers.

connectivity is proportional to degree centrality (i.e., in-degree plus out-degree edges).

Recall from Section 3.2.3 that we maintain statistics pS and pO for each predicate

p 2 P , where P is the set of all predicates in the data. Let Ps and Po be the set of

all pS and pO, respectively. We filter out predicates with extremely high scores and

consider them outliers1.

Outliers are detected using Chauvenet’s criterion [111] on Ps then Po. If a predi-

cate p is detected as an outlier, we set: pS = pO = �1; otherwise we use pS and pO

as computed in Section 3.2.3. Now, we can compute a score for each vertex in the

query as follows:

Definition 1 (Vertex score). For a query vertex v, let Eout(v) be the set of outgoing

edges and Ein(v) be the set of incoming edges. Also, let A be the set of all pS

for the Eout(v) edges and all pO for Ein(v) edges. The vertex score v is defined as:

v = max(A).

Figure 4.3 shows an example for vertex score assignment. For vertex ?prof ,

1In many RDF datasets, vertex degrees follow a power-law distribution, where few ones have
extremely high degrees. For example, vertices that appear as objects in triples with rdf:type have
very high degree centrality. Treating such vertices as cores results in imbalanced partitions and
prevents the system from taking full advantage of parallelism [26].
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Figure 4.3: Example of vertex score: numbers correspond to pS and pO values. As-
signed vertex scores v are shown in bold.

Ein(?prof) = {advisor} and Eout(?prof) = {gradFrom}. Both predicates (i.e., ad-

visor and gradFrom) contribute a score of 5 to ?prof . Therefore, ?prof = 5.

Definition 2 (Core vertex). Given a query graph G = (V,E) such that V and E

are the set of vertices and edges, respectively. Let f(v) be a scoring function that

assigns a score to each v 2 V . We define the core vertex of Q as v0 such that f(v0) =

max
v2V

f(v).

In Figure 4.3, ?univ has the highest score, hence, it is the core vertex for this pattern.

4.3 Generating the Redistribution Tree

Let Q be a hot pattern that AdPart decides to redistribute and let DQ be the data

accessed by this pattern. Our goal is to redistribute (partition) DQ among all work-

ers such that Q can be evaluated without communication. Unlike previous work that

performs static MinCut-based partitioning [54], we eliminate the edge cuts by repli-

cating edges that cross partitions. Since the balanced partitioning is an NP-complete

problem, we introduce a heuristic for partitioning DQ with two objectives in mind: (i)

the redistribution of DQ should benefit Q as well as other patterns. (ii) Because repli-

cation is necessary for eliminating communication, redistributing DQ should result in

minimal replication.

To address the first objective, we transform the patternQ into a tree T by breaking

cycles and duplicating some vertices in the cycles. The reason is that cycles constrain
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Figure 4.4: The query in Figure 4.3 transformed into a tree using Algorithm 2.
Numbers near vertices define their scores. The shaded vertex is the core.

the data grouped around the core to be also cyclic. For example, the query pattern

in Figure 4.3 retrieves students who share the same alma mater with their advisors.

Grouping the data around universities without removing the cycle is not useful for

retrieving professors and their advisees who do not share the same university. Con-

sequently, the pattern in Figure 4.3 can be transformed into a tree by breaking the

cycle and duplicating the ?stud vertex as shown in Figure 4.4. We refer to the result

of the transformation as redistribution tree.

Our goal is to construct the redistribution tree that minimizes the expected

amount of replication. In Section 4.2, we explained why starting from the vertex

with the highest score has the potential to minimize replication. Intuitively, the same

idea applies recursively to each level of the redistribution i.e., every child node in the

tree has a lower score than its parent. Obviously, this cannot be always achieved;

for example in a path pattern where a lower score vertex comes between two high

score vertices. Therefore, we use a greedy algorithm for transforming a hot pattern

Q into a redistribution tree T . Specifically, using the scoring function discussed in

the previous section, we first transform Q into a vertex weighted, undirected graph

G, where each node has a score and the directions of edges in Q are disregarded. The

vertex with the highest score is selected as the core vertex. Then, G is transformed

into the redistribution tree using Algorithm 2.

Algorithm 2 is a modified version of the Breadth-First-Search (BFS) algorithm,

which has the following di↵erences: (i) unlike BFS trees which span all vertices in
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Input: G = {V,E}; a vertex-weighted, undirected graph, the core vertex v

0

Result: The redistribution tree T

1 Let edges be a priority queue of pending edges
2 Let verts be a set of pending vertices
3 Let core edges be all incident edges to v

0

4 visited[v0] = true;
5 T.root=v

0;
6 foreach e in core edges do

7 edges.push(v0, e.nbr, e.pred);
8 verts.insert(e.nbr);
9 T.add(v0, e.pred, e.nbr);

10 while edges notEmpty do

11 (parent, vertex, predicate) edges.pop();
12 visited[vertex] = true;
13 verts.remove(vertex);
14 foreach e in vertex.edges do

15 if e.nbr NOT visited then

16 if e.nbr /2 verts then

17 edges.push(vertex, e.nbr, e.pred);
18 verts.insert(e.nbr);
19 T.add(vertex, e.pred, e.nbr);

20 else

21 T.add(vertex, e.pred, duplicate(e.nbr));

Algorithm 2: Pattern Transformation

the graph, our tree spans all edges in the graph. Each of the edges in the query

graph should appear exactly once in the tree while vertices may be duplicated. (ii)

During traversal, vertices with high scores are identified and explored first (using a

priority queue). Since our traversal needs to span all edges, elements in the priority

queue are stored as edges of the form (parent, vertex, predicate). These elements are

ordered based on the vertex score first then on the edge label (predicate). Since the

exploration does not follow the traditional BFS ordering, we maintain a pointer to

the parent so edges can be inserted properly in the tree. As an example, consider the

query in Figure 4.3. Having the highest score, ?univ is chosen as core, and the query

is transformed into the tree shown in Figure 4.4. Note that the nodes have weights

(scores) and the directions of edges have been moved back.



82

Table 4.1: Triples from Figure 1.3 matching patterns in Figure 4.4.
Worker 1 Worker 2

t1 hLisa, uGradFrom, MITi t3 hBill, uGradFrom, CMUi
t4 hJames, uGradFrom, CMUi
t5 hJohn, uGradFrom, CMUi

t2 hJames, gradFrom, MITi t6 hBill, gradFrom, CMUi
t7 hLisa, advisor, Jamesi t8 hFred, advisor, Billi

t9 hJohn, advisor, Billi
t10 hLisa, advisor, Billi

4.4 Incremental Redistribution

Incremental ReDistribution (IRD) aims at redistributing data accessed by hot pat-

terns among all workers in a way that eliminates communication while achieving high

parallelism. Given a redistribution tree, AdPart distributes the data along paths from

the root to leaves using depth first traversal. The algorithm has two phases. First,

it distributes triples containing the core vertex to workers using hash function H(·).
Let t be such a triple and let t.core be its core vertex (the core can be either the

subject or the object of t). Let w1, . . . , wN be the workers. t will be hash-distributed

to worker wj, where j = H(t.core) mod N . Note that if t.core is a subject, t will

not be replicated by IRD because of the initial subject-based hash partitioning.

In Figure 4.4, consider the first-hop triple patterns h?prof, uGradFrom, ?univi
and h?stud, gradFrom, ?univi. The core ?univ determines the placement of t1-t6 (see

Table 4.1). Assuming two workers, t1 and t2 are hash-distributed to w1 (because of

MIT), whereas t3-t6 are hash-distributed to w2 (because of CMU). The objects of

triples t1-t6 are called their source columns.

Definition 3 (Source column). The source column of a triple (subject or object)

determines its placement.

The second phase of IRD places triples of the remaining levels of the tree in the

workers that contain their parent triples, through a series of distributed semi-joins.
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The column at the opposite end of the source column of the previous step becomes

the propagating column, i.e., ?prof in our previous example.

Definition 4 (Propagating column). The propagating column of a triple is its object

(resp. subject) if the source column of the triple is its subject (resp. object).

At the second level of the redistribution tree in Figure 4.4, the only subquery

pattern is h?stud, advisor, ?profi. The propagating column ?prof from the previous

level becomes the source column for the current pattern. Triples t7...10 in Table 4.1

match the sub-query and are joined with triples t1...6. Accordingly, t7 is placed in

worker w1, whereas t8, t9 and t10 are sent to w2.

Input: P = {E}; a path of consecutive edges, C is the core vertex.
Result: Data replicated along path P

// hash-distributing the first (core-adjacent) edge

1 if e0 is not replicated then

2 coreData = getTriplesOfSubQuery(e0);
3 foreach t in coreData do

4 m = B(C) mod N ; // N is the number of workers

5 sendToWorker(t, m);

// then collocate triples from other levels

6 foreach i : 1! |E| do
7 if ei is not replicated then

8 candidTriples = DSJ(e0, ei);
9 IndexCandidateTriples(candidTriples);

10 e0 = ei;

Algorithm 3: Incremental Redistribution

The IRD process is formally described in Algorithm 3. For brevity, we describe

the algorithm on a path input since we follow depth-first traversal. The algorithm

runs in parallel on all workers. Lines 1-5 hash distribute triples that contain the core

vertex C, if necessary.2. Then, triples of the remaining levels are localized (replicated)

in the workers that contain their parent. Replication is avoided for each triple which

is already in the worker. This is carried out through a series of DSJ (lines 6-10).

2Recall if a core vertex is a subject, we do not redistribute.
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We maintain candidate triples at each level rather than final join results. Managing

replicas in raw triple format allows us to utilize the RDF indices when answering

queries using replicated data.

4.5 Queryload Monitoring

To e↵ectively monitor workloads, systems face the following challenges: (i) the same

query pattern may occur with di↵erent constants, subquery orderings, and variable

names. Therefore, queries in the workload need to be deterministically transformed

into a representation that unifies similar queries. (ii) This representation needs to

be updated incrementally with minimal overhead. Finally, (iii) monitoring should be

done at the level of patterns not whole queries. This allows the system to identify

common hot patterns among queries.

4.5.1 Heat map

We introduce a hierarchical heat map representation to monitor workloads. The heat

map is maintained by the redistribution controller. Each query Q is first decomposed

into a redistribution tree T using Algorithm 2 (see Section 4.3), with the core vertex

as root. To detect overlap among queries, we transform T to a tree template T in

which all the constants are replaced with variables. To avoid losing information about

constant bindings in the workload, we store the constants and their frequencies as

meta-data in the template vertices. After that, T is inserted in the heat map which

is a prefix-tree like structure that includes and combines the tree templates of all

queries. Insertion proceeds by traversing the heat map from the root and matching

edges in T . If the edge does not exist, we insert a new edge in the heat map and

set the edge count to 1; otherwise, we increment the edge count. Furthermore, we

update the meta-data of vertices in the heat map with the meta-data in T ’s vertices.

For example, consider queries Q1, Q2 and Q3 and their decompositions T1, T2 and
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(a) The queries to be answered.

(b) Queries decomposition

(c) Heat map after update

Figure 4.5: Updating the heat map. Selected areas indicate hot patterns.
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T3, respectively in Figure 4.5(a) and (b). Assume that each of the queries is executed

once. The state of the heat map after executing these queries is shown in Figure

4.5(c). Every inserted edge updates the edge count and the vertex meta-data in the

heat map. For example, edge h?v2, uGradFrom, ?v1i has edge count 3 because it

appears in all T ’s. Furthermore, {MIT, 1} is added to the meta-data of v1.

We now describe the implementation details of the heat map. We use a dual

tree representation for storing the heat map, where a tree node corresponds to an

entire triple pattern. An edge denotes the existence of a common variable between

any combination of subjects and objects in the connected triples. Note that this

representation results in a tree forest. Whenever no confusion arises, we simply refer

to both representations as heat map. The root node of the heat map is a dummy

node that is connected to all core-adjacent edges from all patterns seen before. Figure

4.6 shows the dual representation of the heat map in Figure 4.5(c).

To update the heat map given a query Q, the tree template T is also transformed

into its dual representation. This typically results in multiple independent trees.

The heat map is updated using the dual of T level by level in a depth first manner.

Algorithm 4 shows how the heat map is updated with a new query tree. Initially, a

search process is started from the heat map root for each node in the first level of

the query tree (line 1-2). The algorithm calls a procedure which takes as input both

the heat map node and the query node (lines 3-16). The find function (line 6) is

used to match the query node in the current level of the heat map. Recall that triple

patterns in the heat map and T have variable subjects and objects. Therefore, a heat

map node matches the query node if they share the same predicate and direction. If

no match is found, a new node is inserted in the heat map as a child of the current

node (lines 7-9) with frequency 1. Otherwise, the count of the matched heat map

node is incremented (lines 10-11). In both cases, we update the metadata (i.e., the

occurrences of the target vertices and their frequencies) of the heat map node (line
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12). Then, the procedure is recursively called for each child of the query node (lines

13-14). The find function is implemented using hash lookup based on the predicate

and direction of the triple pattern. Hence, the complexity of updating the heat map

is O(|E|), where E is the number of edges in the query graph.
Input: HeatMap dual representation Thm, query tree dual representation Tq
Result: Thm updated

1 foreach QueryNode Nq ! Tq.root.childs do

2 updateFreq (Thm.root, Nq);

3 Procedure updateFreq(HeatNode Nhm, QueryNode Nq)

55 newParent NULL;

6 newParent findNode (Nhm.children, Nq);

7 if newParent is NULL then

8 newParent Nhm.insert (Nq);

9 newParent.count  1;

10 else

11 newParent.count ++;

12 updateMetaData (newParent, Nq);

13 foreach QueryChild Cq ! Nq.children do

14 updateFreq (newParent,Cq);

1616 return;

Algorithm 4: Update Heat Map

4.5.2 Hot pattern detection

The redistribution controller monitors queries by updating the heat map using Al-

gorithm 4. Currently, we use a hardwired frequency threshold3 for identifying hot

patterns. Recall that while updating the heat map, we also update the frequency

(count) of its nodes. A pattern in the heat map is considered to be hot if the update

3Auto-tuning the frequency threshold is a subject of our future work.
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Figure 4.6: Dual Tree Representation of the heat map shown in Figure 4.5(c).

process makes its frequency greater than the threshold. As the heat map update

process is carried out in a top-down fashion, we guarantee that a lower node in the

heat map cannot have a frequency greater than its ancestors. Once a hot pattern

is detected, the redistribution controller triggers the IRD process for that pattern.

Recall that patterns in the heat map are templates in which all vertices are variables.

To avoid excessive replication, some variables are replaced by dominating constants

stored in the heat map. For example, assume the selected part of the heat map in Fig-

ure 4.5(c) is identified as hot. We replace vertex ?v3 with the constant Grad because

it is the dominant value. On the other hand, ?v1 is not replaced by MIT because

MIT does not dominate other values in query instances that include the hot pattern.

We use the Boyer-Moore majority vote algorithm [112] for deciding the dominating

constant.

4.6 Pattern and Replica Index

4.6.1 Pattern index

The pattern index is created and maintained by the replication controller at the

master. It has the same structure as the heat map, but it only stores redistributed

patterns. For example, Figure 4.7(b)(right) shows the pattern index state after re-

distributing all patterns in the heat map (Figure 4.5(c)). The pattern index is used



89

(a) Query.

(b) Redistribution Tree (left) and Pattern Index (right)

(c) Replica Index

Figure 4.7: A query and the pattern index that allows execution without communi-
cation.
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by the query planner to check if a query can be executed without communication.

When a new query Q is posed, the planner transforms Q into a tree T . If the root of

T is also a root in the pattern index and all of T ’s edges exist in the pattern index,

then Q can be answered in parallel mode; otherwise, Q is answered in distributed

fashion. For example, the query in Figure 4.7(a) can be answered in parallel because

its redistribution tree (Figure 4.7(b)(left)) is contained in the pattern index. Edges

in the pattern index are time-stamped at every access to facilitate our eviction policy.

4.6.2 Replica index

The replica index at each worker is identical to the pattern index at the master

and is also updated by the IRD process. However, each edge in the replica index

is associated with a storage module similar to the one that stores the original data.

Each module stores only the replicated data of the specified triple pattern. In other

words, we do not add the replicated data to the main indices nor keep all replicated

data in a single index. There are four reasons for this segregation. (i) As more

patterns are redistributed, updating a single index becomes a bottleneck. (ii) Because

of replication, using one index mandates filtering duplicate results. (iii) If data is

coupled in a single index, intermediate join results will be larger, which will a↵ect

performance. Finally, (iv) this hierarchical representation allows us to evict any

part of the replicated data quickly without a↵ecting the overall system performance.

Notice that we do not replicate data associated with triple patterns whose subjects

are core vertices. Such data are accessed from the main index directly because of the

initial subject-based hash partitioning. Figure 4.7(c) shows the replica index that has

the same structure as the pattern index in Figure 4.7(b)(right). The storage module

associated with h?v7, member, ?v6i stores replicated triples that match the triple

pattern. Moreover, these triples qualify for the join with the triple pattern of the

parent edge.
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Searching and updating the pattern and replica indices is carried in the same way

as for the heat map (see Algorithm 4). However, the findNode function (line 6) is

changed to account for triple patterns with bounded subject/objects. Such triple

patterns can have at most two matches: (i) an exact match, where all constants are

matched; or (ii) a superset match, where both subject and object in the matching

pattern are variables. If a triple pattern has two matches, the findNode function

proceed with the superset matching branch because it will potentially benefit more

queries in the future. This process is also implemented using hash lookups and hence

has a complexity of O(E), where E is the number of triple patterns in the query.

4.6.3 Conflicting Replication and Eviction

Conflicts may arise when a subquery appears at di↵erent levels in the pattern index.

This may cause some triples to be replicated by the hot patterns that include them.

This is not a correctness issue for AdPart as conflicting triples (if any) are stored

separately using di↵erent storage modules. This approach avoids the burden of any

housekeeping and existence of duplicates at the cost of memory consumption. There-

fore, AdPart employs an LRU eviction policy that keeps the system within a given

replication budget at each worker.

Recall that, each time an edge in the pattern index is accessed, its timestamp is

updated. The search process in the pattern index is carried out in a top-down fashion.

This means that the leaf nodes of the tree have the oldest timestamps. We store the

leaves in a priority queue organized by timestamp. When eviction is required, the

least recently used leaf and its matching replica index are deleted. Then, the parent

of the evicted leaf is updated accordingly.
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4.7 Experimental Evaluation

In this section, we evaluate the adaptivity feature of AdPart by comparing it against

AdPart-NA and TriAD because they showed the best performance in the previous

chapter. The hardware setup, datasets and queries are the same as the ones reported

in Section 3.3. In Section 4.7.1, we conduct a detailed study of the e↵ect and cost

of AdPart’s adaptivity feature. Then, in Section 4.7.2, we show the impact of adap-

tivity on the execution times of individual queries when compared to other systems.

Finally, in Section 4.7.3, we study the data and machine scalability of AdPart. The

results show that our system adapts incrementally to workload changes with minimal

overhead without resorting to full data repartitioning. When the system adapts, it

executes queries several orders of magnitude faster than other systems.

4.7.1 Workload Adaptivity by AdPart

In this section, we evaluate AdPart’s adaptivity. For this purpose, we define di↵erent

workloads on two billion-scale datasets that have di↵erent characteristics, namely,

LUBM-10240 and WatDiv-1B.

WatDiv-1B workload: We used the benchmark query generator to create a 5K-query

workload from each query category (i.e., L, S, F and C), resulting in a total of 20K

queries. Also, we generate a random workload by shu✏ing the 20K queries.

LUBM-10240 workload: As AdPart and the other systems do not support inferencing,

we used all 14 queries in the LUBM benchmark without reasoning4. From these

queries, we generated 10K unique queries that have di↵erent constants and structures.

We shu✏ed the 10K queries to generate a random workload which we used throughout

this section. This workload covers a wide spectrum of query complexities including

simple selective queries, star queries as well as queries with complex structures and

4Only query patterns are used. Classes and properties are fixed so queries return large interme-
diate results.
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Figure 4.8: Frequency threshold sensitivity analysis.

low selectivities.

Frequency Threshold Sensitivity Analysis

The frequency threshold controls the triggering of the IRD process. Consequently, it

influences the execution time and the amount of communication and replication in

the system. In this experiment, we conduct an empirical sensitivity analysis to select

the frequency threshold value based on the two aforementioned query workloads.

We execute each workload while varying the frequency threshold values from 1 to

30. Note that our frequency monitoring is not on a query-by-query basis as our

heat map monitors the frequency of the subquery pattern in a hierarchical manner

(see Section 4.5). The workload execution times, the communication costs and the

resulting replication ratios are shown in Figures 4.8(a), 4.8(b) and 4.8(c), respectively.
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We observe that LUBM-10240 is very sensitive to slight changes in the frequency

threshold because of the complexity of its queries. As the frequency threshold in-

creases, the redistribution of hot patterns is delayed causing more queries to be ex-

ecuted with communication. Consequently, the amount of communication and syn-

chronization overhead in the system increases, a↵ecting the overall execution time,

while the replication ratio is low because fewer patterns are redistributed.

On the other hand, WatDiv-1B is not as sensitive to this range of frequency thresh-

olds because most of its queries are solved in subseconds using our locality-aware DSJ,

without excessive communication. Nevertheless, as the frequency threshold increases,

the synchronization overhead a↵ects the overall execution time. Furthermore, due to

our fine-grained query monitoring, AdPart captures the commonalities between the

WatDiv-1B query templates for frequency thresholds 5 to 30. Hence, for all these

thresholds the replication ratio remains almost the same. However, the system con-

verges faster for lower threshold values, reducing the overall execution time. In all

subsequent experiments, we use a frequency threshold of 10; this results in a good

balance between time and replication. We plan to study the auto-tuning of this

parameter in the future.

Workload Execution Cost

To simulate a change in the workload, queries of the same WatDiv-1B template are

run consecutively while enforcing a replication threshold of 20%. Figure 4.9(a) shows

the cumulative time as the execution progresses with and without the adaptivity

feature. After every sequence of 5K query executions, the type of queries changes.

Without adaptivity (i.e., AdPart-NA), the cumulative time increases sharply as long

as complex queries are executed (e.g., from query 2K to query 10K). On the other

hand, AdPart adapts to the workload change with little overhead causing the cumula-

tive time to drop significantly by almost 6 times. Figure 4.9(b) shows the cumulative
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Figure 4.9: AdPart adapting to workload (WatDiv-1B).
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Figure 4.10: AdPart adapting to workload (LUBM-10240).

communication costs of both AdPart and AdPart-NA. As we can see, the commu-

nication cost exhibits the same pattern as that of the runtime cost (Figure 4.9(a)),

which proves that communication and synchronization overheads are detrimental to

the total query response time. The overall communication cost of AdPart is more

than 7X lower compared to that of AdPart-NA. Once AdPart starts adapting, most

of future queries are solved with minimum or no communication. The same behavior

is observed for the LUBM-10240 workload (see Figures 4.10(a) and 4.10(b)).

Partitioning based on a representative workload: We tried to use Partout [35] to par-

tition the LUBM-10240 and WatDiv-1B datasets based on a representative workload.

However, it could not finish within reasonable time (<3 days) even for small work-
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loads. Thus, in this experiment, we simulate two scenarios for workload-based data

partitioning using AdPart. First, we assume the availability of a representative work-

load and measure how the training workload size a↵ects performance. Second, we

assume the data is partitioned using a workload that does not fully represent fu-

ture queries. In both scenarios, there are two phases: training and testing. In the

training phase, the adaptivity feature is enabled and the system can perform data

redistribution for detected hot patterns. In the test phase, the adaptivity feature is

disabled.

In the first scenario, we use a random workload of 10K LUBM queries where the

first N% queries are used for training. The remaining queries are used for testing.

Figure 4.11(a) shows how AdPart’s performance changes as the size of the training

window increases from 20% to 80%. With larger window sizes, more hot patterns are

detected and redistributed in the training phase. Consequently, more queries in the

test phase are solved without communication. Notice that, even with 20% queries,

AdPart could detect most of the hot patterns in the workload and adapt accordingly.

As a result, there is no significant di↵erence between the total workload execution

time when using 80% and only 20% training queries. This concludes that when

a representative workload is available, systems that perform static workload-based

partitioning like, Partout and WARP, can perform reasonably well for all workload

queries.

We further investigate another scenario where future queries are not well repre-

sented by the partitioning workload. The test set includes query patterns from the

training query set as well as new queries that were not seen before. To do so, we train

AdPart using di↵erent combinations of the workload categories defined by WatDiv-1B

(C, F, S, and L). Each combination is made of two categories (10K queries); e↵ec-

tively producing six combinations, mainly CF, CL, CS, FL, FS, and LS. The test

set includes 20K random queries made up from the four query categories. This way,
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Figure 4.11: Comparison with workload-based partitioning.
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some of the queries in the test workload would run in parallel while others (not in

the representative workload) would require communication.

Figures 4.11(b) and 4.11(c) show the cumulative execution time and communi-

cation, respectively, for the test workloads (i.e., excluding the training time). For

example, we train the system with the adaptivity feature enabled using 10K queries

from two categories, like CF. Then, we test the system using 20K random queries

while adaptivity is disabled. Obviously, the performance of the test workload highly

depends on the complexity of the queries used in the training phase. For example,

the complex (C) and snowflake (F) queries are the most expensive queries in the

benchmark. Therefore, when the system is trained using the CF training workload,

it performs much better than when trained using the LS workload. CF workload

requires less communication because the L and S queries (not in the training work-

load) do not require excessive data exchange. Nonetheless, the CF execution time

keeps increasing due to the existence of communication and synchronization over-

heads. In the same figures, we show the performance of AdPart without training, but

the adaptivity is enabled all the time. Allowing the system to adapt incrementally

and dynamically (without training) resulted in better performance when compared

to all cases. AdPart incurs more communication at the beginning because of the IRD

process; it then converges to almost constant communication.

Next, we test AdPart’s performance using a real scenario workload where a certain

percentage of the queries is repeated while other new queries are taken into account.

We use three workloads, each workload contains 10K LUBM random queries out of

which a certain percentage is repeated. Figure 4.12 shows AdPart’s performance while

varying the amount of repeated queries between 20%, 40% and 80%. As the results

suggest, the more the repeated queries, the less the workload execution time. Since

AdPart monitors the query patterns and not the individual queries, it could capture

most of the patterns in the workload even with only 20% of its queries repeated.
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Redistribution Tree Generation

In this experiment, we evaluate our query transformation heuristic (Section 4.2)

against two alternative approaches. Recall that when transforming a hot query pat-

tern into a redistribution tree, we select the vertex with the highest score to be the tree

root. Then, the query is traversed from high score vertices to lower score ones. We

now compare our heuristic (referred to High-Low hereafter) to two di↵erent heuristics:

(i) in Low-High, the vertex with the least vertex score is selected as core; then the

query pattern is traversed by exploring vertices with lower scores first. The (ii) QDe-

gree approach uses a di↵erent vertex scoring function where the score of a vertex in

the hot query pattern is its out-degree. The pattern is then traversed from high score

vertices to lower score ones. Note that the latter approach aims at minimizing the

replication in a greedy manner by fully exploiting the initial hash partitioning. Recall

that data that binds to triple patterns whose subject is a core are not replicated.

We evaluated all these heuristics by running the LUBM-10240 workload. In Figure

4.13(a), we show the resulting replication, the communication cost and the amount

of data touched by the IRD process. Low-High and QDegree resulted in slightly less

replication compared to High-Low. The reason is that both heuristics benefit from
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Figure 4.13: E↵ect of hot pattern transformation.

the initial hash partitioning by selecting cores with larger number of outgoing edges.

However, the amount of data touched by IRD (i.e., data in the main and replica

indices) in Low-High and QDegree is significantly higher. This a↵ects adaptivity’s

performance because IRD is carried out using a series of DSJ iterations. Furthermore,

as the data touched by the process is actually used for evaluating parallel queries, the

performance of parallel queries is eventually a↵ected.

Consequently, the cumulative workload execution time using High-Low is 1.9X

faster than the other heuristics as shown in Figure 4.13(b). Since QDegree and
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Table 4.2: Load Balancing in AdPart

Dataset
Percentage of triples Replication

RatioMax Min Average StDev (�)
LUBM-10240 1.43% 1.35% 1.39% 0.02 0.73
WatDiv-1B 1.58% 1.20% 1.33% 0.07 0.36

Low-High touch and communicate almost the same amount of data, their cumulative

execution times are also the same. Besides, note that QDegree does not use any

statistical information from the data and only relies on the structure of the hot query

pattern. Therefore, a redistributed pattern would not benefit other future queries

with a slightly di↵erent structure. We repeated the experiment on WatDiv-1B and

all heuristics resulted in almost the same communication cost, wall time, and touched

data. This time, QDegree resulted in the least replication because its exploits best

the initial subject-based hash partitioning.

Replication and Load Balance

In this experiment, we evaluate the load balance of AdPart from two di↵erent per-

spectives: (i) data balance, i.e., how balanced is the initial partitioning as well as

the replication that results from the IRD process; (ii) work balance, i.e., how the

evaluation cost is balanced among all workers in the system, during the execution of

the workload. In Table 4.2, we report some statistics that characterize the data load

balance in AdPart. Particularly, we report the average and standard deviation (�)

of the percentage of triples stored at each worker. As shown in the table, AdPart

achieves very good data balance for both workloads because of the initial subject-

based hash partitioning as well as the hashing used during the IRD process. Also, we

report how the average partition size changes during the workload execution. Using

the 10K queries LUBM workload, Figure 4.14 shows how the partition size increases

as more queries are executed. Initially, each partition contains around 19M triples.
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Figure 4.15: Workload balance.

This corresponds to a 0% replication ratio as AdPart loads only the original dataset.

As the system adapts, the size of each partition slightly increases till reaching an

average size of around 33M triples; which counts for a 72% replication ratio after ex-

ecuting the whole 10K workload queries. Work is also well balanced among workers;

i.e., the amount of work contributed by each worker is almost the same as shown in

Figures 4.15(a) and 4.15(b) for the LUBM-10240 and WatDiv-1B, respectively.
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Table 4.3: Query runtimes for LUBM-10240 (ms)
LUBM-10240 L1 L2 L3 L4 L5 L6 L7 Geo-Mean
AdPart 317 120 6 1 1 4 220 15
AdPart-NA 2,743 120 320 1 1 40 3,203 75
TriAD 6,023 1,519 2,387 6 4 114 17,586 369
TriAD-SG 5,392 1,774 4,636 9 5 10 21,567 333

4.7.2 Query Performance

In the previous sections, we showed how adaptivity could reduce the execution time of

the entire workload. In this section, we demonstrate the e↵ectiveness of the adaptivity

in reducing the individual query execution wall time by comparing AdPart against

AdPart-NA and TriAD. Tables 4.3, 4.4, 4.5 and 4.6 show the performance of AdPart

for LUBM-10240, WatDiv, YAGO2 and Bio2RDF datasets, respectively.

Table 4.4: Query runtimes for WatDiv (ms)
WatDiv-100 Machines L1-L5 S1-S7 F1-F5 C1-C3
AdPart 5 2 2 7 22
AdPart-NA 5 9 7 160 111
TriAD 5 4 15 45 170

Table 4.5: Query runtimes for YAGO2 (ms)
YAGO2 Y1 Y2 Y3 Y4 Geo-Mean
AdPart 3 19 11 2 6
AdPart-NA 19 46 570 77 79
TriAD 16 1,568 220 18 100

For all datasets, once AdPart adapts to the workload, it executes all queries much

faster than all other systems. More importantly, queries that require object-object

joins (Y3 in YAGO2 and B1 in Bio2RDF), which cannot be executed e�ciently by

AdPart-NA, are executed faster by AdPart. For star queries that join on subjects (L2,

L4 and L5 in LUBM-10240), both AdPart-NA and AdPart perform equally because

of the initial subject-based hash partitioning. In other words, these queries are solved

in parallel without communication without the need for adaptivity.
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Table 4.6: Query runtimes for Bio2RDF (ms)
Bio2RDF B1 B2 B3 B4 B5 Geo-Mean
AdPart 3 2 2 3 1 2
AdPart-NA 17 16 32 89 1 15
TriAD 4 4 5 90 2 7

For L3 in LUBM-10240, AdPart can detect queries with empty results during

planning. As each worker makes its local parallel query plan, it detects the zero

cardinality of the subquery in the replica index and terminates. This explains the

several orders of magnitude gain in query response time.

4.7.3 Scalability

Data Scalability. We use the LUBM benchmark data generator to generate six datasets:

LUBM-160, LUBM-320, LUBM-640, LUBM-1280, LUBM-2560 and LUBM-5120. We

keep the number of workers fixed to 72 (6 workers per machine). Figures 4.16(a) and

4.16(b) show the data scalability of AdPart and AdPart-NA for simple and complex

queries respectively. L4, L5, L6 are simple queries that are very selective and touch

the same amount of data regardless of the data size. This describes the steady perfor-

mance of both AdPart and AdPart-NA for these queries. Because L2 is not selective

and returns massive final results, it is inevitable for its scalability to degrade as data

size increases. Figure 4.16(b) shows the scalability of AdPart for complex queries.

Queries L1 and L7 generate large number of intermediate results causing high com-

munication cost, which explains their poor scalability of AdPart-NA. Nevertheless,

as AdPart adapts to the workload, many queries are evaluated in parallel mode much

faster.

Strong Scalability. In this experiment, we use the 10K workload of LUBM-10240 to

demonstrate the strong scalability of AdPart. We fix the workload while increasing the

number of workers. Figure 4.16(c) shows the wall time for executing the workload.
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Figure 4.16: AdPart scalability using LUBM dataset.
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The time is split into the three constituents of AdPart execution, i.e, distributed

execution (semijoin), redistribution (adaptivity) and parallel queries. All components

of AdPart scale very well for up to 32 workers, afterwards the overhead of the semijoin

communication starts dominating. Note that solving complex queries, like L1, L2,

and L7 in parallel mode scale almost optimally. On the other hand, selective queries

that touch very few data or are executed by a single worker do not scale. For future

work, we will investigate the possibility of exploiting subjects and objects locality to

further scale the distributed semijoin to more workers.
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Chapter 5

RDF Analytics Framework

Everything should be made as
simple as possible, but not simpler.

Albert Einstein
1879 — 1955 CE

This chapter introduces SPARTex and RDF analytics framework. Rich RDF

analytics is realized in SPARTex by introducing the following features:

SPARQL Extension. SPARTex defines a Graph Analytics extension of SPARQL (GAS-

parql) that allows generic User-Defined Procedures (UDPs) to be intermixed and ex-

ecuted in a pipeline together with SPARQL queries. A UDP can be any program

implemented in the vertex-centric model (e.g., PageRank, Shortest-Paths, Central-

ity). UDPs communicate with SPARQL at the granularity of a vertex, by setting

vertex properties, which is equivalent to updating the RDF graph. SPARTex also

allows filters that limit the scope of the UDP input, where the filter is nothing but

a separate SPARQL query. In other words, a UDP can operate on a subset of the

input graph that results from evaluating a SPARQL query.

SPARQL Engine. a SPARQL query engine is implemented as a vertex-centric pro-

gram, allowing UDPs and SPARQL queries to run on top of the same vertex-centric

framework. The SPARQL operator leverages the message-passing nature of the

vertex-centric frameworks for join evaluation. Given a SPARQL query Q, the op-
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erator has two stages: (i) a cost-based optimizer picks a trail1 on Q to minimize the

number of messages generated when the trail is followed on the data graph. (ii) Once

a trail is picked, vertices exchange messages with their neighbors along the picked

trail. This is done usually using multi-rounds of message-passing among vertices.

In-memory Data Store. The underlying vertex-centric frameworks typically store the

data as a generic graph in memory. SPARTex extends this with a per-vertex data

store that is tailored to RDF data. It e�ciently filters the neighbors of vertices by

specific predicates. The data store also allows updates on the RDF graph by attaching

properties to vertices without changing the original data layout and indices.

With these features running on a unified framework, SPARTex introduces a new

and rich type of RDF analytics that were not feasible before: (i) Graph algorithms

and SPARQL can be executed e�ciently on the same framework. Hence, there is no

need to use di↵erent systems or materialize and reformat intermediate results. (ii)

Original RDF data and vertex computed values can be combined as a single subgraph

pattern in SPARQL. Triple patterns in the body of SPARQL queries can be from the

structure of the input data or derived from new values computed per vertex (e.g. see

query Qs in Figure 1.4). (iii) Generic graph algorithms and SPARQL queries can be

pipelined so that the output of one operator is the input to another. For example,

the Single Source Shortest Path algorithm can start from the vertices that match a

specific SPARQL pattern. Di↵erent operators can share intermediate results using

the in-memory data store. All the aforementioned analytical tasks can be triggered

declaratively using GASparql.

5.1 System Architecture

SPARTex is designed to be built on top of distributed vertex-centric bulk synchronous

1It is su�cient to consider a trail to be a walk or a path on the query graph such that each edge
is visited at least once. More rigorous definition is given in Section 5.3
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Figure 5.1: SPARTex Architecture.

graph processing frameworks, such as Pregel [49], Trinity [48] and GraphLab [51],

that can process very large graphs. Briefly, in these vertex-centric systems, users

define a generic compute function that will be executed on each vertex independently.

Vertices interact with each others through message passing. A typical vertex-centric

program consists of a number of iterations. In each iteration, a vertex can perform

computation, change its state, and send messages to its neighbors. Typically, vertex-

centric frameworks are coupled with a distributed file system to persist data such as

the input graph. SPARTex is built on top of GPS [113], an open-source Pregel clone.

An overview of SPARTex is depicted in Figure 5.1. SPARTex follows the master-

slave architecture. Users can write vertex-centric programs for any graph algorithm.

Programs are compiled and added to the classpath. SPARTex treats these programs

as user-defined stored procedures that can be invoked using GASparql (Section 5.2).

The master keeps an entry for each registered UDP which includes the class name and

expected input parameters. In addition, SPARTex provides an e�cient vertex-centric

SPARQL operator (Section 5.3). Having both SPARQL and graph algorithms within

the same framework, SPARTex allows both operations to be executed in a pipelined

fashion. In the rest of this section, each component of SPARTex is briefly described.
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5.1.1 Master

The master is not assigned any portion of the input graph; rather it orchestrates

workers activity. Users submit SPARQL queries which may or may not have UDPs to

the master. The master parses the query and generate an execution plan for the whole

pipeline (i.e. for generic algorithms and pattern matching). The master enforces the

plan using a compute function that is executed before starting any iteration. Finally,

SPARTex returns the results back to the user. Next, each of the master components

is defined.

Query Manager. The query manager is responsible for parsing, optimizing and exe-

cuting incoming queries. The Query Parser parses the input query and separates the

procedural constructs from the declarative patterns of SPARQL. The query manager

checks the existence of the called procedures and the consistency of their parameters

by consulting the set of UDPs specifications. Then, the pattern matching part is

optimized using a SPARQL optimizer. It enumerates possible execution plans and

estimate their costs using global statistics maintained in the statistics manager. Fi-

nally, the query manager consolidates the procedural part and the optimized pattern

matching query plan into a global pipelined execution plan. The Pipeline Executer

gets as input a set of required steps for query evaluation. It dictates which vertex-

centric program to run for how many iterations or until the program converges if the

number of iteration cannot be known a priori. When executing multiple vertex-centric

programs, the pipeline executer directs workers to change the UDP to be executed in

the next n iterations. After that, all vertices return to active state and the executer

sends the next UDP to be executed and so on.

Statistics Manager. The master gathers some global statistics during the RDF graph

loading phase which spans the first three compute iterations. In the first iteration,

each worker loads/indexes its assigned vertices and their edges. In the second iter-
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ation, vertices report statistics about their neighbors and predicates. For example,

each vertex counts the number occurrences for each of its attached predicates. It

also counts the number of occurrences of subjects and objects attached with these

predicates. It also capture more advanced statistics about the correlation between

di↵erent predicates (more details about the collected statistics are shown in Section

5.3.2) At the end of this iteration, each worker synchronize its collected statistics

with the master. In the third iteration, the master retrieves all the statistics collected

from all workers, integrates them and store it in a global structure that is kept at the

master.

UDPs Specifications. This UDP specification structure contains meta-data about pro-

grams that are available in the framework. When a UDP is registered in SPARTex,

an entry of it is recorded in this structure and kept at the master.

5.1.2 Worker

Vertex-centric frameworks divide the data graph into partitions where each partition

contains a set of data vertices and edges. A vertex v with its outgoing edges are

assigned by default to a machine M based on the result of a simple hashing scheme

M(v mod k), where k is the number of partitions. The default partitioning scheme is

modified such that each vertex has both its incoming and outgoing edges2.

Unified In-Memory Data Store. Generic graph algorithms and SPARQL access data

di↵erently. While SPARQL needs to access both incoming and outgoing edges using

predicate labels, algorithms like PageRank need to access the outgoing edges only

regardless of their labels. Therefore, rich RDF analytics requires modeling the data

in a uniform way while providing di↵erent data access methods. Specifically, the

framework needs to support: (i) label-based neighbor access used for SPARQL query

evaluation. (ii) Label-oblivious neighbor access used for algorithms that access the

2This is equivalent to partitioning on both subject and object vertices.
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RDF data regardless of the edge labels; and (iii) adding, deleting and updating vertex

properties. Since computation is done at the vertex granularity, a set of miniature

data indices per vertex are created. These indices are accessed through a set of API

calls.

Miniature RDF Data Index. it consists of the following two indices: (i) Predicate-

Object (PO) Index: given an edge predicate p, returns a list of all the outgoing

neighbors (objects). (ii) Predicate-Subject (PS) Index: given an edge predicate p,

returns a list of all the incoming neighbors (subjects).

Miniature Properties Store. Each vertex maintains an in-memory key-value store where

di↵erent algorithms can delete, add or update a vertex property. This way the re-

sult of one algorithms can be read by others; enabling pipelined execution of graph

algorithms.

UDP implementations. It contains the same meta-data stored at the UDP specifica-

tions structure in the master. However, it also contains the actual implementation

of the registered vertex-centric programs (e.g. PageRank, SSSP). It is used by the

worker to switch between di↵erent UDPs at runtime when directed by the master.

The worker receives a message from the master that includes the configuration of the

next UDP and act accordingly.

5.2 Graph Analytics SPARQL Extension

In this section, Graph Analytics SPARQL (GASparql) extension is introduced. GAS-

parql gives users 3 capabilities: (i) users can write their own algorithms in a procedural

language and invoke it from within SPARQL as a user-defined stored procedure. (ii)

Users can materialize the computation results as vertex properties. These properties

can then be used as input to SPARQL or another graph algorithm; and (iii) users

can mutate the original RDF graph by adding/deleting properties as needed.
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5.2.1 GASparql Constructs

In this section, new constructs of GASparql are described and illustrated with exam-

ples for their usage.

Defining/Calling UDPs

The first construct of GASparql allows users to call/define an already implemented

stored procedure. To do so, a user can write the following:

CALL proc(list[params ]) AS list[properties]

The above code calls the procedure proc by specifying its full qualified class name.

list[params] is the set of parameters that the procedure expects while list[properties]

is the set of vertex properties that proc will add to the RDF data.

As an example, recall that Qs in Figure 1.4 requires evaluating PageRank algo-

rithm and materializing its results. To do so, a user can write the following:

PREFIX sptx: <http:// www.spartex.com/ analytics/>

CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank

The PageRank algorithm expects as input the maximum number of iterations.

The output is a sptx:pRank value per vertex. The new vertex property (sptx:pRank)

is added to the Properties key-value store, where the key is sptx:pRank and the value

is the PageRank of the vertex. Notice that an entry in the properties store is actually

a triple, where the subject is the vertex itself, the predicate is the property name and

the object is the property value. The new added triples can be used later within a

SPARQL query (see Section 5.2.2). Similarly for Qs, the centrality algorithm can be

invoked and its result is materialized per vertex. Notice that storing newly computed

vertex properties does not require any change to the data layout or indices.
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Data Filters

In the previous example, the PageRank algorithm runs on the entire RDF graph.

However, there are cases where an algorithm should run only on a subset of the

graph. Hence, GASparql introduces a filtering constructs based on the vertices and

edges of the RDF graph. Invoked procedures are optionally associated with one or

more filters:

FILTER VERTEX AS filter_name WHERE { BGP }

FILTER EDGE AS filter_name WHERE { BGP }

All triple patterns of the Basic Graph Pattern (BGP) in the WHERE clause must

have a common vertex. In other words, the BGP is a star query around a specific

vertex3. For FILTER VERTEX, vertices that do not match the BGP are filtered out.

Similarly, all edges that do not satisfy the BGP pattern of FILTER EDGE are filtered

out. Filters are passed to the stored procedures through the keyword using. Filtering

constraints are associated with procedure calls and acts as filtering layer on top of

the unified data store. Only data that satisfy the filtering constraints are retrieved.

For example, the objects of triples with rdf:type predicates have lots of incoming

edges; hence, would have extremely high PageRank values. Excluding these triples

when running the PageRank algorithm can be done as follows:

PREFIX rdf: <http:// www.w3.org /1999/02/22 - rdf -syntax -ns#>

FILTER EDGE AS no_type WHERE {

?s ?p ?o .

FILTER (! sameterm (?p, rdf:type))

}

CALL com.sptx.algo.PageRank(max_iter) USING no_type AS sptx:pRank

3More sophisticated filtering can be achieved by combining the FILTER and ADD PROPERTY
(Section 5.2.1) constructs (e.g. see Section 5.2.2)
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Managing Vertex Properties

So far, vertex properties are set or deleted by the stored procedures. However, users

may want to deliberately set or delete some vertex properties. Therefore, GASparql

introduces two constructs for explicit vertex properties addition and deletion.

ADD PROPERTY {list[property patterns ]} WHERE {BGP}

DROP PROPERTY {list[property patterns ]} WHERE {BGP}

For example, to drop the sptx:pRank property that is less than a specific threshold,

a user can write:

DROP PROPERTY {?x sptx:pRank ?val} WHERE{

?x sptx:pRank ?rank .

FILTER (?rank < threshold)

}

5.2.2 RDF Analytics Applications

In this section, three RDF analytical applications that make use of the proposed

extension are discussed.

Using Graph Analytics Output in SPARQL

Consider Qs in Figure 1.4, it returns the set of students who take courses taught by

their advisors. Assume the query results needs to be restricted to only popular pro-

fessors and core courses, where PageRank and centrality indicate professor popularity

and course importance, respectively. Qs can be expressed as:

PREFIX sptx: <http:// www.spartex.com/ analytics/>

CALL com.sptx.algo.centrality () AS sptx:centrality

CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank

SELECT ?s WHERE {

?p teaches ?c .

?s takes ?c .

?s advisor ?p .

?p sptx:pRank ?rank .

?c sptx:centrality ?cent .
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FILTER (?rank > val1 && ?cent > val2)

}

SPARTex starts by executing the centrality and PageRank algorithms. The

sptx:pRank and sptx:centrality properties are set for all vertices. Then, SPARTex

plans and executes the subgraph pattern matching part of the query; only vertices

the satisfy the filter constraints are retrieved.

Using SPARQL Output in Graph Analytics

In some cases, a general graph algorithm is supposed to operate on a specific part

of the data. This can be achieved by using the result of SPARQL as an input to

the subsequent general graph algorithm. For example, consider Qs in the previous

example; and suppose that the shortest path between popular professors (i.e. vertices

matching ?p) and every other vertex is to be found. This can be done by executing

the Single Source Shortest Path (SSSP) algorithm starting from these professors as

follows:

PREFIX sptx: <http:// www.spartex.com/ analytics/>

CALL com.sptx.algo.centrality () AS sptx:centrality

CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank

ADD PROPERTY {?p sptx:popular "T" . } WHERE {

?p teaches ?c .

?s takes ?c .

?s advisor ?p .

?p sptx:pRank ?rank .

?c sptx:centrality ?cent .

FILTER (?rank > val1 && ?cent > val2)

}

FILTER VERTEX AS start WHERE {

?p sptx:popular "T" .

}

CALL algo:SSSP() USING start AS sptx:sssp

Using the add property construct, popular professors are identified by setting their

sptx:popular property as true. Then, a vertex filter is created to exclude all vertices
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not satisfying this property. Finally, the filter is associated with the SSSP procedure

call so the algorithm only starts from vertices that match the defined filter.

Sampling RDF Graphs

SamplD [44] is a pipeline of graph processing steps for sampling RDF graphs. Given

an input graph, SamplD applies a set of graph operations using Apache PIG [114]

and Giraph [115]. It transforms the RDF graph into a directed unlabeled graph and

analyzes the rewritten graph using degree centrality and PageRank algorithms. Then,

each triple is assigned a score and triples with the highest scores are selected to form

a smaller sample of the input graph.

SamplD pipeline steps require circulating the graph and using multiple program-

ming platforms. The code below shows how SamplD pipeline can be implemented

using SPARTex only and its extension; GASparql.

CALL com.sptx.algo.centrality () AS sptx:centrality

CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank

CALL com.sptx.algo.SamplDRankTriples ()

SPARTex starts by invoking both the degree centrality and PageRank algorithms

and materializing their results in-memory. Then, it executes a vertex-centric pro-

gram (SamplDRankTriples) that consists of two iterations. In the first iteration,

objects send their PageRank and centrality values to their subjects. Then, in the last

iteration, subjects receive the object values; compare them to their values and output

the triples with their scores.

5.3 SPARQL Query Engine

This section presents the vertex-centric SPARQL operator incorporated in SPARTex.

Consider query Qs defined by the solid lines in query Qs (See Figure 1.4). Qs consists

of 3 triple patterns: q1 : h?p, teaches, ?ci, q2 : h?s, advisor, ?pi and q3 : h?s, takes, ?ci.
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In the relational model, Qs is answered4 by scanning the data to find the matches

of each triple pattern. Then, the intermediate results are joined to formulate the

final results. However, relational approaches are not suitable for SPARTex due to

its vertex-centric nature. Specifically, data, computation and communication are

all vertex-centric. Employing a relational approach for query evaluation defeats the

purpose of SPARTex. Therefore, SPARTex embarks on a network-based approach

(graph exploration) that uses inter-vertex message passing for query evaluation.

5.3.1 Query Evaluation

Formally, given a query graph Q, the cost-based optimizer selects a trail on Q that

traverses each edge at least once. A trail consists of a set of ordered exploration edges

{q̄1, . . . , q̄n}. An exploration edge q̄i is defined as (ve, p, vt, direction), where ve and

vt are vertices in the query graph and p is the edge label. The direction is either

outgoing or incoming relative to q̄i.ve in the query graph. ve and vt are referred to

as exploration vertex and termination vertex, respectively. The termination vertex

of q̄i is the exploration vertex of q̄i+1. For example, a possible trail in Qs that starts

from ?p is {q̄1, q̄2, q̄3}={(?p, teaches, ?c, out), (?c, takes, ?s, in), (?s, advisor, ?p,
out)}. Obviously, there are many potential trails that can start from any of the query

vertices. Query planning is discussed in Section 5.3.2.

A query is evaluated using n + 1 iterations, where n is the number exploration

edges in the trail. Each edge is explored in an iteration; the final iteration is needed

for reporting the query results. In every iteration, each vertex executes ExploreEdge

in Algorithm 5. The inputs for the algorithm are the exploration edge q̄i, the messages

received from the previous iteration, and the current iteration number. As a running

example, query Qs is evaluated using the previous trail and the data graph in Figure

5.2.
4In this example, a bushy execution plan is assumed.
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Figure 5.2: An example RDF graph in an academic domain.

Figure 5.3: Computation iterations for solving Qs.

Iteration 1 (q̄1). In the first iteration, all vertices are active and each vertex executes

ExploreEdge with q̄1, empty message list, and the iteration number as inputs. Each

vertex check if it matches the exploration vertex q̄1.ve. A vertex can be a match to

ve if it has all the subqueries attached to ve in the query graph (lines 4-5). Then,

based on the exploration edge direction, all matching vertices retrieves their neighbors

connected by predicate q̄1.p (lines 7-10). Each vertex creates a message containing its

id and send it to the retrieved neighbors. Finally, all vertices vote to halt; vertices

become active if and only if they receive a message in the next iteration. In Qs, the

exploration vertex ve =?p. A matching vertex for ?p needs to be a subject and an

object for the predicates teaches and advisor, respectively. Therefore, using the data

graph of Figure 1.3, Fred and James are matches of ?p while Tim is not a match

as he does not advise any students and will vote to halt. The direction of q̄1 is out,

hence vertices use the PO index to get the list of neighbors(objects) connected via
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Input: ExplorationEdge ē, MessageList ml, Iteration i

1 eV ertex ē.expVertex;
2 tV ertex ē.termVertex; eDirection ē.direction;
3 ePredicate ē.predicate;
4 vertexSubQueries getVertexSubqueries (eV ertex);
5 if Matches (vertexSubQueries, eV ertex) then

6 neighbors Empty;
7 if eDirection is Outgoing then

8 neighbors PO[ePredicate];

9 else

10 neighbors PS[ePredicate];

11 if i = 1 then

12 msg  Empty;
13 msg[eV ertex] vertexID;
14 sendMessageToAll(msg, neighbors);

15 else

16 if isQueryVertexVisited (ē.termVertex) then

17 foreach msg in ml do

18 if msg[tV ertex] 2 neighbors then

19 msg[eV ertex] = vertexID;
20 sendMessage(msg, msg[tV ertex]);

21 else

22 foreach msg in ml do

23 msg[eV ertex] = vertexID;
24 sendMessageToAll(msg, neighbors);

25 voteToHalt ();
Algorithm 5: ExploreEdge

predicate teaches (line 7-8). A message is formulated from each matching vertex of ?p

and is sent to its neighbors connected via the predicate teaches (lines 11-14). Figure

5.3 depicts the steps.

Iteration 2 (q̄2). Vertices Databases and Algorithms received messages from Fred and

James respectively. Hence, they are the only active vertices. Each of these two ver-

tices checks if it matches the exploration vertex q̄2.ev =?c. Therefore, the matches of

?c are Databases and Algorithms. Then, each vertex use its PS indices to retrieve its

neighbors connected via predicate takes. Each vertex appends its id to the received

message and send the updated message to its list of neighbors (lines 21-24). Specif-
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ically, Algorithms sends the message [James, Algorithms] to its neighbors Lee and

Peter, whereas Databases sends [Fred, Databases] to John and Ben.

Iteration 3 (q̄3). Vertices Lee, Peter, John and Ben check if they match q̄3.ev =?s.

Matching vertices use their PO indices to get their list of neighbors connected via

predicate advisor. Since the termination vertex q̄3.ev =?p has been visited before,

messages are forwarded if and only if the ?p value in the message is also in the

neighbors list. Notice that the message received by Ben has Fred as the ?p value,

which is not in his neighbors list. Therefore, the message is truncated because it is

not a valid result (lines 16-20).

Iteration 4. All vertices that received messages in this iteration have the final answer

of Qs. This iteration can be omitted because the terminal vertex of the last iteration

has already been visited. Hence, the results can be returned at the end of iteration

3. However, iteration 4 is kept for the sake of clarity.

Discussion. The exploration approach discussed in this work takes several advantages

of the underlying vertex-centric framework for query evaluation. First, implicit join

evaluation is achieved by inter-vertex message passing. This approach is di↵erent

from the exploration approach discussed in Trinity.RDF which is more like semi-

join. Trinity.RDF can only reduce the size of the intermediate relations but require

a final centralized join. This is necessary especially for cyclic queries [30]. On the

other hand, in SPARTex messages exchanged between vertices carry the intermediate

results. Hence, no final join is needed as the final results are built and validated

incrementally. Moreover, the bindings can reduce the size of the intermediate results

significantly when queries have cycles. For example, in the third iteration of the

previous example, Ben discards its message because it can validate that Fred (a

visited node) is not in his neighbors list. This optimization is referred to as pre-

join. Although, carrying the historical bindings seems to incur high communication

overhead, the maximum number of query variables is usually small. For example, in
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a real query workload acquired from Bio2RDF[10], the maximum number of variables

per query is ten. The second advantage is the search space pruning that happen

because of vertex activation/halting. In an exploration iteration, only active vertices

apply the compute function; inactive vertices do nothing. Hence, this activation

mechanism prunes the search space by eliminating vertices that would not contribute

to the query results.

5.3.2 Query Planning

Query evaluation performance is highly influenced by the trail followed during execu-

tion. This section describes the cost-based optimizer which for a given query generates

all possible query execution plans, estimates their costs and selects the plan with the

minimum cost.

Query Optimization

The space of possible trails depends on the query graph structure and the fact that

each edge has to be visited once. Specifically, a trail can be defined if and only if

exactly zero or two vertices have odd degree. In the former case, the graph is called

Eulerian graph; while in the latter is called traversable. The di↵erence is that trails in

Eulerian graphs start and end at the same vertex. For example, Qs is Eulerian and has

two trails (cycles) that start and end at vertex ?p (?p�?c�?s�?p and ?p�?s�?c�?p).
The same applies to vertices ?c or ?s. On the other hand, in a traversable graph,

trails have to start from one of the odd degree vertices and end at the other odd

degree vertex.

However, trails cannot be found for arbitrary queries that are neither Eulerian nor

traversable. To solve this problem, the condition of visiting each edge once is relaxed

by allowing the exploration of some edges more than once. This resembles the classical

Chinese Postman Problem (CPP). Given a query graph, CPP finds a minimum length
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closed walk that traverses each edge at least once. For a non-Eulerian graph, CPP

duplicates some edges to make it Eulerian; allowing for a larger space of possible

trails.

Query Coarsening. Obviously, the number of edges that the CPP will duplicate is

highly correlated with the number of odd degree vertices. The higher the number of

odd degree vertices, the higher the number of duplicate edges. This because once a

trail passes through a vertex, it needs to exist from the vertex through another edge5.

So, for each incident edge there has to be another unvisited edge to go through

on the way out; which does not apply for odd vertices. For example, leaves i.e.

vertices that have a single neighbor, are odd vertices because each has a single edge.

Once the trail passes through such a vertex, it has to exit through the same vertex.

Hence, that edge will be duplicated in the trail. Therefore, SPARTex introduces

a query coarsening optimization that minimizes the number of odd degree vertices

before making the graph Eulerian. Recall that, each vertex has direct access to its

properties and incoming/outgoing neighbors. Therefore, all leaf vertices that have

a single neighbor can be safely merged (coarsened) with its neighbor. For example,

query Qs is the coarsened version of Qs.

Proposition 1. A coarsened version of the query graph has at most the same number

of odd degree vertices as the original query graph.

Proof: Let Q be a query graph with n vertices, L leaves, and O odd-degree vertices.

Let Q0 be the coarsened version of Q with n�L vertices and O0 odd-degree vertices.

We show that that O0  O.

For each leaf l 2 L, removing l has two cases: (i) l is connected to an odd-

degree internal vertex. Removing l makes the degree of the internal vertex even.

Then, O0 = O � 2. (ii) l is connected to an even-degree internal vertex. Removing l

5This is true for all situations unless the vertex is the last vertex in the trail.
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introduces an internal vertex of odd-degree. However, l itself is an odd degree vertex,

then O0 = O. In both cases, O0  O holds. ⇤

In this example, vertices that match ?c and ?p will validate if they have the rank

and centrality properties, respectively. Notice that this optimization would coarsen

any star query into a single vertex. Hence, any star query can be solved in a single

iteration without communication.

Input: Query graph Q = (V , E)
Result: Exploration trail with minimum estimated cost

1 maxLength 0; minCost Infinity; bestP lan NULL;
2 if isEulerian (Q) then

3 maxLength Q.numEdges

4 else

5 xe[|E|] CPP(Q); // Number of times each edge is duplicated

6 numDupEdges SUM(xe);
7 maxLength Q.numEdges+ numDupEdges;

8 cost 0; listV isitedEdges Empty;
9 foreach vertex v 2 Q.vertices do

10 FindTrail(v, cost, visitedEdges);

11 return bestP lan;
12 Procedure FindTrail(Vertex v, cost, visitedEdges, xe)
1414 if cost > minCost then return;
15 ;
16 if |visitedEdges| > maxLength then return;
17 ;
18 if allVisited (Q, visitedEdges) then

19 if cost < minCost then

20 minCost cost;
21 bestP lan visitedEdges;
22 return;

23 foreach Edge ei 2 v.edges do

24 if xe[ei] < 0 then

25 return;
26 newCost cost+ getCost (visitedEdges, ei);
27 newV isitedEdges visitedEdges.add(ei);
28 xe[ei] xe[ei]� 1;
29 FindTrail (ei.trmV rtx, newCost, newV isitedEdges, xe);

30 return;

Algorithm 6: Query Optimizer

After coarsening the query, the planner uses Algorithm 6 to enumerates all possible
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trails and selects the trail with the minimum estimated cost. The planner uses the

CPP to get how many times each edge needs to be duplicated to make the graph

Eulerian. CPP [116] will return an array xe of integers; where each entry corresponds

to an edge (line 5). A value of zero means that the edge is not duplicated; and will

only appear once. The total number of duplicate edges is the sum of all entries in

xe (line 6). The max trail length is set to the number of edges in the graph plus the

number of duplicate edges (lines 3 and 7). Then, it starts looking for an exploration

trail from each vertex in the query graph (lines 9-10) using the procedure FindTrail

(lines 12-28). The planner employs a branch and bound strategy to prune the search

space of the possible trails using the plan cost as an upper-bound (plan cost estimation

is discussed in Section 30). Initially, the exploration plan cost is set to infinity. A

branch is pruned in four cases: (i) if a valid exploration plan with a minimum cost

(so far) is found; i.e., all edges are visited, the cost bound and the best found plan are

updated (lines 16-20). (ii) Since the cost is monotonically increasing, if the current

exploration plan cost exceeded the bounded cost, the algorithm terminates (line 14).

(iii) To avoid redundant computations, the algorithm terminates when the length of

the exploration plan exceeds the maximum bounded length (line 15). (iii) Finally, if

an edge is duplicated more than what induced by the CPP algorithm, the branch is

pruned (lines 22-23).

Cost Estimation

The number of exchanged messages during query evaluation depends on the order

of the exploration edges. Therefore, the optimizer tries to minimize the size of the

intermediate results by exploring the most selective edges first. However, with the

absence of a schema, selectivity estimation in SPARQL is a challenging task [20,

117]. Therefore, SPARTex uses a selectivity estimation method that captures the

correlation among pairwise predicates. While loading the data, each vertex collects
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the correlation information between its triples and sends it to the master, which

aggregates the statistics. The master maintains the following statistics:

Predicate Counts PC(pi): for a predicate pi, PC returns a pair (sc, oc), where sc

and oc are the number of unique subjects and objects, respectively, attached to pi

in the data graph. For example, the predicate teaches in Figure 1.4 appeared three

times and it has (sc, oc) = (3, 2). Similarly, type has 11 unique subjects and 5 unique

objects.

Predicates Pairwise Degrees PPD(pi, pj, di, dj): given a pair of predicates (pi, pj)

with their directions (di, dj), PPD(pi, pj, di, dj) returns two values: (i) count is the

number of vertices that have both predicates with their respective directions. (ii)

(adi, adj) is an estimate of the average number of predicates pi and pj for each vertex

v 2 U . For example, PPD(advisor, takes, out, out) returns {4, (1, 1)} because there

are 4 vertices that have outgoing edges labeled advisor and takes. On average, each

vertex has one edge labeled advisor and one edge labeled takes. From the exploration

point of view, it means that there 4 vertices that exist when transitioning between

advisor and takes. These vertices would get one message from the previous iteration

and sends one messages out.

Algorithm 7 shows how to calculate the cost of the exploration trail {q̄1, q̄2,...,
q̄n} using n computation iterations. The plan cost is initially zero (line 1). For

each exploration edge, Algorithm 7 increments the total plan cost with the expected

number of messages to be transferred during exploration (line 2-5).

The subquery cost can be one of the following: (i) in the first iteration, the num-

ber of messages sent can be estimated from the number of matches of the current

exploration vertex. The number of matches is estimated by considering all pairwise

combinations of the predicates attached to the vertex. For each pair, PPD is used to

get the unique number of nodes with this pair. The estimated number of matches is

the minimum count of vertices in the graph that are attached to the pairwise predi-
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Input: Exploration Trail T {q̄1, q̄2,..., q̄n}
Result: Estimated Trail cost Tcost

1 Tcost  0; iterNo 0;
2 foreach ExplorationEdge q̄i ! T.edges do

3 q̄i.cost  ExplorationEdgeCost (q̄i,iterNo);
4 Tcost  Tcost + q̄i.cost;
5 iterNo++;

6 Procedure ExplorationEdgeCost(q̄i, iterNo)

88 iterCost 0;
9 if iterationNo = 1 then

10 iterCost estimateMatches (q̄i.ev) * PC[q̄.pred ];
11 coarsenedCost 1;
12 foreach q̄j ! q̄i.ev.coarsenedEdges do

13 coarsenedCost *= estimateMatches (q̄j .tv)

14 iterCost iterCost * coarsenedCost;
15 return iterCost;

16 if explored (q̄.ev) is True then

17 if explored (q̄.tv) is True then return q̄i�1.cost;
18 else return q̄i�1.cost * avgDegree (qi�1.pred, qi.pred) ;

19 else

20 coarsenedCost 1;
21 foreach ēj ! ēi.ev.coarsenedEdges do

22 coarsenedCost *= estimateMatches (ēj .tv)

23 if explored (ē.tv) is True then

24 return ēi�1.cost * coarsenedCost;

25 else return ēi�1.cost * avgDegree (qi�1.pred, qi.pred) * coarsenedCost ;

2727 return;

Algorithm 7: Explration Trail Cost

cates. Each matching vertex sends a number of messages equal to its average degree

on the predicate q̄i.p (line 10). If ev has a set of coarsened subqueries attached to it,

the number of messages is multiplied by the number of bindings to the coarsened leaf

vertex (lines 11-14). (ii) If both ev and tv are already explored, then the same number

of received messages is is sent in this iteration (line 17). (iii) If ev is already explored

and the termination vertex is not explored yet, then the messages received through

the exploration predicate q̄i.p are simply forwarded. This serves as an upper bound

on the number of messages to be sent in this case (line 18). (iv) When exploration

and termination vertices were not explored before, the number of messages sent is
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based on messages received, average degree of the exploration predicate and the num-

ber of bindings of the coarsened leaves (line 25). (v) If the termination vertex was

visited before, the messages received are forwarded to the termination vertex after

considering the coarsened leaves (lines 23-24).

5.4 Experimental Evaluation

In this section, SPARTex is evaluated using the same experimental setup, datasets

and queries discussed in Section 3.3. The experiments answer the following questions:

(i) How well does SPARTex perform rich RDF analytics compared to combinations

of existing systems? (ii) How e�cient are the execution plans picked by SPARTex’s

optimizer? (iii) Using multiple real and synthetic benchmarks, how does SPARTex’s

SPARQL operator compare to existing specialized RDF systems? (iv) Finally, how

well does SPARTex scale?

Implementation. The current version of SPARTex is implemented on top of GPS

[113]; an open-source Pregel clone. Furthermore, to demonstrate that the proposed

SPARQL operator can be used in native engines, another implementation of the

SPARQL operator; coined Spartex-Native, is introduced. Spartex-Native is a modi-

fied version of AdPart-NA which di↵ers as follows: (i) Spartex-Native partitions the

data on subjects and objects to enable the query coarsening optimization. This means

that Spartex-Native has subject-object hash locality awareness. (ii) Spartex-Native

does not use distributed semi-join as in AdPart; instead it uses distributed hash joins

by following trails.

5.4.1 Rich RDF Analytics

In this section, the three use cases described in Section 5.2.2 are implemented using

SPARTex. Since no other system can fully support these use cases, combinations of

SPARQL engines and graph processing systems are used. Specifically, H2RDF+ [30] is
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Table 5.1: Datasets Statistics in millions (M)
Dataset Triples (M) #S (M) #O (M) #S\O (M) #P
KEGG 89.18 8.63 35.68 8.50 140
LinkedGeoData 274.67 51.92 121.10 41.47 18272

used as SPARQL engine with two di↵erent analytics systems. The first combination

is H2RDF+ with PEGASUS [118], a graph mining library on top of MapReduce.

The second combination uses H2RDF+ with GPS [113], an open source Pregel clone.

Figure 5.4 shows the wall time of the first two use cases using LUBM-4000 dataset.

In the first use case, the graph analytics are executed prior to query evaluation.

GPS and PEGASUS are used to evaluate PageRank and degree centrality algorithms

and the output is stored in HDFS. Notice that PEGASUS performed worse than

GPS confirming that MapReduce approaches do not perform well for graph analytics.

Then, the computation results are formatted as RDF triples and given to H2RDF+

along with the original RDF graph. H2RDF+ partition the input data and build its

RDF indices. Finally, H2RDF+ is used to evaluate the SPARQL query and prints

the results. Notice that both combinations required the data to be moved between

multiple systems and formatted accordingly. SPARTex performs better than both

combinations because it maintains the computation results of the analytics part in its

in-memory store. These results are then utilized by the SPARQL operator. Therefore,

no data formatting or indexing is required. The cost of data formatting and indexing

is very substantial accounting for more than 80% of the processing time. Finally, when

evaluating SPARQL queries, SPARTex performs significantly better than H2RDF+.

The same applies on the second use case; however, since the SSSP algorithm is not

available in PEGASUS, SPARTex is compared to H2RDF+GPS only.

Figure 5.5 shows the time of each phase of SamplD pipeline (see Section 5.2.2)

for two real datasets; KEGG and LinkedGeoData (See table 5.1). KEGG6 is a real

dataset that integrates biological, chemical and gnomic information while LinkedGeo-

6http://www.genome.jp/kegg/
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Figure 5.4: Rich RDF Analytics: Combining SPARQL with graph algorithms

Data7 is a spatial knowledge base derived from the OpenStreetMap data. Both the

rewriting (RDF to unlabeled graph) and the round trip (unlabeled graph to RDF)

phases are consuming most of the time. SPARTex on the other hand, does not incur

any rewriting phase for RDF as the data can be accessed with or without edge labels.

This allows SPARTex to save almost 70% of the time spent by the SamplD scripts.

Furthermore, SPARTex loads the RDF data once and keep it in memory. So there is

no need for intermediate data reading/writing from/to the disk. As a result, SPAR-

Tex provides a single system for the whole SamplD pipeline with almost one order of

magnitude better performance.

5.4.2 Query Optimizations

In this experiment, the query optimizer and its cost model are evaluated. The ex-

periment shows that the plan selected is an e�cient one. It also demonstrates the

accuracy of the estimated cost (number of messages) compared to the actual cost.

Using LUBM benchmark, only the complex queries; L1, L3, L7, P and D are consid-

ered8. These queries are solved in several iterations and generate large intermediate

7http://linkedgeodata.org/
8P and D are two additional complex query patterns that are defined to test the systems rigor-

ously.
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and/or final results. The rest of the queries are very selective (L6) or solved within a

single iteration (L2, L4 and L5) and do not require communication.

In this experiment, all possible plans for each LUBM query are executed. Queries

L1, L3 and L7 have the same structure; therefore, the number of possible trails is

the same for all of them (6 trails). Queries P and D have 36 and 176 possible plans,

respectively. Using LUBM-4000, Figure 5.6(a) shows the fastest and slowest execution

times for each query. It also shows the execution time for the plan selected by the

optimizer. For all complex queries the optimizer selects a plan that is either optimal in

the search space or has performance very close to the fastest execution plan. Note that

for P there were 19 plans that never finish because of the huge number of generated

messages during query execution, which cause network contention.

Figure 5.6(b) shows the estimated vs. the actual number of messages transferred

between vertices during the execution of the selected plan for each LUBM query. As

shown, the optimizer estimates the total number of messages for almost all queries

with a very high accuracy. Query L7 generates a huge number of intermediate results

at the first few iterations; however, many intermediate results are dropped at the final

iteration because of the cycle. The cost function is monotonically increasing, hence,

it can not capture this sudden drop of intermediate results. Nonetheless, the number
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Table 5.2: Query runtime for LUBM-10240 (seconds)
LUBM-10240 L1 L2 L3 L4 L5 L6 L7 P D Geo-Mean
SPARTex 4.48 6.78 5.45 3.40 3.24 2.38 7.02 7.89 6.21 4.85
CliqueSquare 125.02 71.01 80.01 90.01 24.00 37.01 224.04 161.02 160.02 88.35
H2RDF+ 285.43 71.72 264.78 24.12 4.76 22.91 180.32 1142.10 568.58 105.860
SHARD 413.72 187.31 N/A 358.20 116.62 209.80 469.34 596.08 544.94 317.606
Spartex-Native 2.881 0.406 2.953 0.001 0.001 0.010 2.386 3.408 4.768 0.222
AdPart-NA 2.743 0.120 0.320 0.001 0.001 0.040 3.203 5.724 4.793 0.193
TriAD 6.023 1.519 2.387 0.006 0.004 0.114 17.586 19.839 65.628 1.035
TriAD-SG (100K) 5.392 1.774 4.636 0.009 0.005 0.010 21.567 44.135 144.256 1.119
SHAPE 25.319 4.387 25.360 1.603 1.574 1.567 15.026 N/A N/A 5.575

of messages for the last iteration is the same for all plans because of the pre-join

condition; therefore, the optimizer succeeds in selecting the most e�cient plan.

5.4.3 Query Performance

LUBM Dataset. Recall that the LUBM queries defined in [24] can be classified into

two types, simple and complex. Simple queries are very selective, touch small number

of triples, and generate small intermediate and final results. Complex queries consist

of non-selective joins and result in large intermediate results. L1, L2, L3, L7, P and

D are complex and the rest of the queries are simple.

Table 5.2 shows the performance of SPARTex against state-of-the-art distributed

RDF stores. If a system fails to solve a query within a reasonable time (1 hour) or

crashes, it is marked as N/A. RDF engines are categorized into two groups based on

their underlying framework: (i) systems built on top of generic frameworks: SPARTex,

CliqueSquare, SHARD and H2RDF+; and (ii) Native RDF systems: AdPart-NA,

SHAPE, TriAD and Spartex-Native. SHAPE, which uses RDF-3X for storage, is

considered native because data is partitioned such that each RDF-3X engine returns

a partial final result without the need for any communication.

SPARTex utilizes the e�cient inter-vertex communication of vertex-centric frame-

works. In other words, the framework is actually contributing to the join by delivering

messages directly to the vertices. Vertices that do not receive messages are automat-

ically pruned. For L1, L3 and L7, SPARTex performs multiple joins concurrently
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because of the coarsening strategy. Then, only two distributed joins (2 iterations)

are required for evaluating the final query results. This is possible because of the

pre-join optimization. On the other hand, for SHARD and H2RDF+, multiple dis-

tributed joins are necessary for query evaluation. As a result, the geometric mean of

SPARTex is one and two orders of magnitude better than CliqueSquare, H2RDF+

and SHARD, respectively.

Similarly and without any data preprocessing, Spartex-Native is significantly

faster than SHAPE, TriAD and TriAD-SG for complex queries. SHAPE performs

worse because of replication and the way replication is managed. All triples (includ-

ing replicas) are stored together resulting in a large search space during join evalua-

tion. As simple queries touch small amount of data, Spartex-Native, AdPart-NA and

TriAD achieve comparable performance for queries L4 and L5. L2 is a non-selective

star query on which the hash-join technique, employed by SPARTex and AdPart-NA,

has a better performance than the merge-join employed by TriAD and TriAD-SG.

Query L3 returns empty results on which AdPart-NA evaluated the join that pro-

duce the empty results earlier than SPARTex and TriAD. Queries L1 and L7 are

cyclic queries. Hence, Spartex-Native minimizes the amount of communicated data

using the pre-join technique.

Queries P and D consist of 9 and 8 triple patterns which require 8 and 7 joins,

respectively. For both queries, AdPart-NA executes 3 joins without communication

and synchronization overheads because of the subject pinning technique. The right

operand of the remaining joins has subject as the join attribute; hence, AdPart-NA

shards the intermediate results among workers. TriAD, on the other hand, needs

to shard both relations in order to perform hash/merge joins. The query coarsen-

ing technique of Spartex-Native results in eliminating three joins. Moreover, since

both queries have multiple cycles, the pre-join is applied multiple times reducing the

amount of messages significantly. Accordingly, Spartex-Native achieves the best per-
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Table 5.3: Query runtimes for YAGO2 (ms)
YAGO2 Y1 Y2 Y3 Y4 Geo-Mean
SPARTex 2,803 3,544 2,002 2,719 2,712
CliqueSquare 139,021 73,011 36,006 100,015 77,755
H2RDF+ 10,962 12,349 43,868 35,517 21,430
SHARD 238,861 238,861 aborted aborted 238,861
Spartex-Native 38 126 35 33 49
AdPart-NA 19 46 570 77 79
TriAD 16 1,568 220 18 100
SHAPE 1,824 665,514 1,823 1,871 8,022

formance in these two complex queries compared to other specialized RDF engines.

YAGO2 Dataset. Table 5.3 shows the performance of SPARTex using YAGO2 dataset.

TriAD-SG is not listed because the optimal number of summary graph partitions is

not known, a process that requires empirical evaluation [32]. Recall that Y1 and Y2

are simple queries while Y3 and Y4 are complex. H2RDF+ outperforms CliqueSquare

and SHARD due to the utilization of HBase indexes and its distributed implementa-

tion of merge and sort-merge joins. The flat plans did not improve the performance

CliqueSquare compared to H2RDF+. The reason is that, while the flat plans reduce

the number of MapReduce-based joins, H2RDF+ uses a more e�cient implemen-

tation of the join operator using the traditional RDF indices. Furthermore, unlike

CliqueSquare, H2RDF+ encodes the URIs and literals of RDF data; hence it in-

curs minimal overhead when shu✏ing intermediate results. SPARTex outperforms

SHARD, H2RDF+ and CliqueSquare with up to two orders of magnitude better per-

formance. The utilization of the direct inter-vertex communication for join evaluation

helps SPARTex to evaluate queries in a more e�cient way. Furthermore, the coars-

ening strategy helps in solving the queries in less number of iterations by evaluating

multiple joins concurrently.

Spartex-Native continues to provide good performance compared to other special-

ized RDF engines. For SHAPE, 2-hop forward partitioning placed all the data in a

single partition which makes it perform as good as a single machine RDF-3X engine.
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Table 5.4: Query runtimes for Bio2RDF (ms)
Bio2RDF B1 B2 B3 B4 B5 Geo-Mean
SPARTex 2,063 3,229 3,356 7,950 2,281 3,323
H2RDF+ 5,580 12,710 322,300 7,960 4,280 15,076
SHARD 239,350 309,440 512,850 787,100 112,280 320,027
Spartex-Native 1 1 8 26 2 3
AdPart-NA 17 16 32 89 1 15
TriAD 4 4 5 N/A 2 4

AdPart-NA solves most of the joins in Y1 and Y2 without communication which

explains its superior performance compared to Spartex-Native and TriAD. Spartex-

Native utilizes the pre-join and coarsening techniques to reduce the number of iter-

ations and communicate less data. Accordingly, Spartex-Native requires three and

five iterations to solve Y1 and Y2 respectively. This makes Spartex-Native achieves

almost comparable performance to TriAD in Y1 and significantly better in Y2. On

the other hand, Y3 require object-object joins which contradicts the subject-based

hash partitioning of AdPart-NA causing it to perform worse than Spartex-Native and

TriAD which have subject-object locality awareness. In Y3, the coarsening technique

of Spartex-Native caused two join operations to be performed without communication

which results in an order of magnitude better performance compared to TriAD and

AdPart-NA. Y4 produces small number of results compared to Y3 on which TriAD

performs better than Spartex-Native. Notice that the geometric mean of Spartex-

Native is still better than that of both TriAD and AdPart-NA.

Bio2RDF dataset. Similar to YAGO dataset, TriAD-SG is not listed here as the

number of partitions to use for creating the summary graph is not known which

requires empirical evaluation of some workload on the data or a representative sample.

Also, SHAPE and CliqueSquare failed to process this dataset using 2-hop forward

partitioning within a reasonable time.

Similar to its behavior in the other datasets, SHARD still performs worse than

all other systems due to the MapReduce overhead and lack of using e�cient indices.
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Figure 5.7: Data Scalability using LUBM dataset.

H2RDF+ performs better than SHARD due to the utilization of its HBase indices and

the e�cient join implementations. SPARTex continues to outperform both H2RDF+

and SHARD in all queries; some times by orders of magnitude speedup. Our native

implementation; Spartex-Native, still provides comparable or better performance than

TriAD and AdPart-NA with a better geometric mean value.

5.4.4 Scalability

Vertex-centric frameworks scale very well for many graph algorithms [119]. To eval-

uate the scalability of SPARTex, two experiments are conducted: (i) varying the size

of the data while fixing the number of workers (cores) and (ii) varying the number of

workers while the data size is fixed. In this experiment, the GPS-based implementa-

tion is used.

Data Scalability. Five LUBM datasets were generated using the LUBM benchmark

data generator: LUBM-500, LUBM-1000, LUBM-2000, LUBM-4000 and LUBM-

8000. The SPARQL operator in SPARTex reduces the size of the intermediate results

significantly by exploring subqueries from the results of previous subqueries. Carry-

ing the historical bindings allows it to reduce the number of messages significantly for
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Figure 5.8: Strong Scalability (LUBM-10240).

cyclic queries. Moreover, no final join is needed as the results are built and validated

incrementally. The SPARQL operator also reduces the number of computation itera-

tions by query coarsening. All these factors explain the good scalability of SPARTex

as the data size grows for complex LUBM queries (see Figure 5.7). Notice that L2

is a reporting query that generates a proportional amount of results to the data size.

Therefore, the response time of this query increases as the data grows. Since simple

queries touch almost the same amount of data regardless of the data size, SPARTex

provides almost steady performance for these queries.

Strong Scalability. In this experiment, the number of workers is varied while the

dataset is fixed to LUBM-10240. Figure 5.8 shows the scalability test results for both

simple and complex queries. The response times of both simple and complex queries

decrease as the number of workers increases. This means that SPARTex can benefit

from the parallelism of distributed environments. However, after certain number

of workers, query response times are dominated by the communication cost, which

increases as the number of workers increases. In all queries, the query response times

decrease drastically when the number of workers is increased from 36 to 72. The

response times still decrease after that point; but not with the same rate.
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Chapter 6

Concluding Remarks

There is a point in every contest
when sitting on the sidelines is not
an option

Dean Smith
1931 — 2015 CE

This chapter concludes this dissertation with a summary of our contributions and

an outlook on possible future research directions.

6.1 Summary of Contributions

The wide adoption of the RDF data format has lead to an ever increasing volume of

publicly available RDF data on the Web. Concurrently, the diversity, complexity and

dynamism of RDF queries and applications have increased significantly. This disser-

tation introduces techniques for accelerating SPARQL queries and RDF analytics on

distributed shared-nothing RDF systems.

First, AdPart, an adaptive distributed RDF engine, is introduced. AdPart starts

significantly fast by employing lightweight partitioning that hashes triples on the sub-

jects. AdPart exploits query structures and the hash-based data locality in order to

minimize the communication cost during query evaluation. Specifically, star queries

joining on subjects are processed in parallel by all workers. Furthermore, whenever

possible, intermediate results are hash-distributed among workers instead of broad-
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casting to all workers. By exploiting hash-based locality, AdPart achieves better or

comparable performance to systems that employ sophisticated partitioning schemes.

To cope with the dynamism of RDF workloads, AdPart is extended with the adap-

tive workload-awareness feature. AdPart monitors the query workload and incremen-

tally redistributes parts of the data that are frequently accessed by hot patterns. By

maintaining and indexing these patterns, many future queries are evaluated without

communication. The adaptivity feature of AdPart complements its excellent perfor-

mance on queries that can benefit from its hash-based data locality. Frequent query

patterns that are not favored by the initial partitioning (e.g., star joins on an object)

can be processed in parallel due to adaptivity. The experimental results verify that

AdPart achieves better partitioning and replicates less data than its competitors.

More importantly, AdPart scales to very large RDF graphs and consistently provides

superior performance by adapting to dynamically changing workloads.

Finally, to support and accelerate rich RDF analytical tasks, SPARTex is pro-

posed. SPARTex is a vertex-centric RDF analytics framework that can be imple-

mented on top of any generic vertex-centric graph processing framework (e.g., Pregel).

Any graph algorithm implemented in the vertex-centric framework (e.g., PageRank,

Shortest-Paths, etc.), can be used in SPARTex. Additionally, SPARTex implements a

generic SPARQL operator as a vertex-centric program. The operator interprets gen-

eral SPARQL queries and includes a query optimizer to generate e�cient execution

plans. Users can write programs that combine generic graph processing algorithms

with SPARQL queries in a pipelined fashion, and can share variables at the gran-

ularity of a vertex. Various scenarios, where SPARTex simplifies significantly the

implementation of rich RDF data analytics programs, were presented. As a SPARQL

engine, SPARTex is at least as fast as the state-of-the-art specialized distributed RDF

engines. Moreover, analytical tasks in SPARTex is at least one order of magnitude

faster than existing alternatives.
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6.2 Future Research Directions

This thesis advances the state-of-the-art techniques for handling dynamic, complex

and diverse RDF queries and analytics. However, there are few research directions

that can be investigated in the future:

6.2.1 Exploiting Current Hardware Architecture

Nowadays with the advent of multi-core processors and co-processors, single-machines

can be thought of as distributed infrastructures. A single machine consists of multiple

sockets; each with its own chip and memory controller. As the clock rate of new

processors cannot practically keep up with Moore’s Law, manufacturers are moving

towards increasing the number of processing cores per chip. Furthermore, because

memory controllers are distributed, applications are susceptible to the Non-Uniform

Memory Access (NUMA) e↵ect. Current RDF data management systems fail at

harnessing the full power of this emerging architecture.

Specifically, all single-machine and distributed RDF stores do not fully utilize

all the cores available per worker. RDF-3X [19] uses multi-threading for concurrent

data scans and for pipelined execution plans using Sideways Information Passing

(SIP). Similarly, TriAD [32] uses multi-threading to asynchronously execute multiple

branches of the bushy execution plan. However, this type of parallelism is bounded

by the number of base subqueries that need to be scanned and the shape of the

execution tree. AdPart solves this problem by running a single thread per core;

each core is responsible for a data partition. The down side of this approach is that

although cores on the same node share the same memory space, workers running on

them communicate using MPI. Although MPI is smart and uses memory copy, the

overhead is still significant compared to direct memory access. Recently, TurboHOM++

[18] proposed a NUMA aware solution for SPARQL query evaluation. However, their

approach is not generic and cannot be applied on systems that use relational joins.



142

Consequently, a very interesting research problem is to adapt a scale-out in-

memory system like AdPart or TriAD to work as a scale-up shared memory solution.

The new system needs to be NUMA-aware and capable of evaluating a single SPARQL

query using all available cores. To achieve this goal, few design decision needs to be

made. First, how would the data be partitioned among the NUMA nodes? Second,

what would be the indexing and execution strategies? Regarding data partitioning,

the system needs to employ a light-weight partitioning strategy. However, it cannot

be by simple hashing. The reason is that, although hashing guarantees vertex locality

i.e. a vertex with all its edges are stored on the same partition, it destroys global

locality. In other words, two neighboring vertices will hash to two di↵erent partitions

because of their di↵erent hash values. Almost all existing systems that use hash parti-

tioning rely on hashing for string-to-id data encoding. Vertices are stored at partition

p = v.id % num partitions. Obviously, smart data encoding would result in better

data locality. A recent e↵ort [120] has introduced a locality-based encoding that can

be used for global data locality. Then, data is partitioned among all cores. However,

partition to NUMA node assignment needs to be done carefully. The reason is that

NUMA e↵ect happens when accessing data across NUMA nodes. At the same time,

the edge-cut between multiple partitions is not the same. Therefore, the system can

create a summary graph of the partitions where each node is a partition and each edge

is a cross partition edge. The summary graph can be partitioned among the NUMA

nodes. This would place highly correlated partitions on the same NUMA node. As a

start, the system can utilize the Morsel Driven approach [121] for data indexing and

query evaluation. Query evaluation is carried out concurrently by all cores.

6.2.2 Extending SPARQL Beyond BGP

Currently, AdPart and SPARTex support and are optimized for BGP SPARQL queries.

However, there are many other new features that are emerging in SPARQL standard.
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Particularly, property paths [122] are of very high importance and challenge [123].

Trail execution plans in SPARTex can be extended to evaluate property path queries

based on the existence semantics [123]. In other words, SPARTex can check the ex-

istence of property paths without counting them. The execution trail will have some

known routes that are based on explicit predicates; while other parts of the trail con-

tain regular expressions allowing many matches. Therefore, generating an e�cient

plan that generates minimal communication would be very challenging.

6.2.3 Supporting Multi-query Optimization

Multi-query optimization is a classical problem which has been extensively studied

in the relational model. However, few e↵orts [124] have focused on multi SPARQL

query evaluation. Since SPARQL multi-query optimization is a NP-Hard problem

[124], AdPart and SPARTex can employ heuristics based solution. However, the ob-

jective for this optimization is di↵erent between the systems. In AdPart, distributed

execution incurs communication which needs to be amortized among multiple con-

current queries. Therefore, instead of relying on finding Maximal Common Edge

Subgraphs (NP-Hard) [124], AdPart can utilize its query transformation approach

and the query index search function to find the common structure among queries.

These structures are evaluated once and shared among queries. On the other hand,

in SPARTex most of the execution time is spent on analytical algorithms. There-

fore, the gain from sharing the execution of generic graph algorithms is higher than

sharing the execution of common parts in SPARQL. Consequently, SPARTex can be

extended to support multi-query optimization for analytical queries. Notice that an-

alytical queries may consists of a pipeline of operators. Hence, pipelines of multiple

queries need to be aligned in a way that minimizes the over all execution time.
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APPENDICES

A.1 LUBM Benchmark Queries

PREFIX rdf: <http:// www.w3.org /1999/02/22 - rdf -syntax -ns#}>

PREFIX ub: <http:// www.lehigh.edu /~ zhp2 /2004/0401/ univ -bench.owl#>

PREFIX rdfs: <http:// www.w3.org /2000/01/ rdf -schema#>

Q1: SELECT ?X WHERE {

?X rdf:type ub:GraduateStudent .

?X ub:takesCourse <http:// www. Department0 . University0 .edu/GraduateCourse0 > .

}

Q2: SELECT ?X ?Y ?Z WHERE {

?X rdf:type ub:GraduateStudent .

?Y rdf:type ub:University .

?Z rdf:type ub:Department .

?X ub:memberOf ?Z .

?Z ub:subOrganizationOf ?Y .

?X ub:undergraduateDegreeFrom ?Y .

}

Q3: SELECT ?X WHERE {

?X rdf:type ub:Publication .

?X ub:publicationAuthor <http:// www. Department0 . University0 .edu/ AssistantProfessor0 > .

}

Q4: SELECT ?X, ?Y1, ?Y2, ?Y3 WHERE {

?X rdf:type ub:AssociateProfessor .

?X ub:worksFor <http:// www. Department0 . University0 .edu}> .

?X ub:name ?Y1 .

?X ub:emailAddress ?Y2 .

?X ub:telephone ?Y3 .

}

Q5: SELECT ?X WHERE {
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?X rdf:type ub:UndergraduateStudent .

?X ub:memberOf <http:// www. Department0 . University0 .edu}> .

}

Q6: SELECT ?X WHERE {

?X rdf:type ub:UndergraduateStudent .

}

Q7: SELECT ?X, ?Y WHERE {

?X rdf:type ub:UndergraduateStudent .

?Y rdf:type ub:Course .

?X ub:takesCourse ?Y .

<http:// www. Department0 . University0 .edu/ AssociateProfessor0 > ub:teacherOf ?Y .

}

Q8: SELECT ?X, ?Y, ?Z WHERE {

?X rdf:type ub:UndergraduateStudent .

?Y rdf:type ub:Department .

?X ub:memberOf ?Y .

?Y ub:subOrganizationOf <http:// www. University0 .edu}> .

?X ub:emailAddress ?Z .

}

Q9: SELECT ?X, ?Y, ?Z WHERE {

?X rdf:type ub:GraduateStudent} .

?Y rdf:type ub:AssociateProfessor .

?Z rdf:type ub:GraduateCourse .

?X ub:advisor ?Y .

?Y ub:teacherOf ?Z .

?X ub:takesCourse ?Z .

}

Q10: SELECT ?X WHERE {

?X rdf:type ub:TeachingAssistant} .

?X ub:takesCourse <http:// www. Department0 . University0 .edu/GraduateCourse0 > .

}

Q11: SELECT ?X WHERE {

?X rdf:type ub:ResearchGroup .

?X ub:subOrganizationOf ?Z .

?Z ub:subOrganizationOf <http:// www. University0 .edu > .

}
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Q12: SELECT ?X, ?Y WHERE {

?Y rdf:type ub:Department .

?X ub:headOf ?Y.

?Y ub:subOrganizationOf <http:// www. University0 .edu > .

}

Q13: SELECT ?X WHERE {

?X rdf:type ub:GraduateStudent .

?X ub:undergraduateDegreeFrom <http:// www. University0 .edu > .

}

Q14: SELECT ?X WHERE {

?X rdf:type ub:GraduateStudent .

}

P: SELECT ?y ?z WHERE {

?z ub:subOrganizationOf ?y .

?x ub:advisor ?t .

?z rdf:type ub:Department .

?x ub:memberOf ?z .

?x rdf:type ub:GraduateStudent .

?t ub:worksFor ?z .

?y rdf:type ub:University .

?x ub:undergraduateDegreeFrom ?y .

?t ub:mastersDegreeFrom ?y .

}

D: SELECT ?y ?z WHERE {

?z ub:subOrganizationOf ?y .

?z rdf:type ub:Department .

?x ub:memberOf ?z .

?x rdf:type ub:GraduateStudent .

?x ub:undergraduateDegreeFrom ?y .

?y rdf:type ub:University .

?x ub:advisor ?t .

?t ub:worksFor ?z .

}
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A.2 LUBM Workload

A workload of 20,000 queries is generated from LUBM benchmark queries shown in

A.1. For queries that do not have constants (Q2 and Q9), di↵erent query patterns are

generated by removing some triples and mutating the node types. For example, in Q2,

18 di↵erent patterns are generated by alternating student type between Undergradu-

ateStudent and GraduateStudent (see Table A.1). Similarly, other query patterns are

generated by removing di↵erent combinations of the query triple patterns. No varia-

tions are generated from Q6 and Q14 as they have only one triple pattern (rdf:type)

with a single constant. For the rest of the queries, 1000 di↵erent patterns are gener-

ated from each query by varying the values of the query constants. For example, in

Q1, di↵erent query patterns are generated by varying the values of both student type

(UndergraduateStudent or GraduateStudent) and graduate courses.

Table A.1: LUBM Workload
Patterns Changes

Q1 1000 Constants
Q2 18 Structure/Constants
Q3 1000 Constants
Q4 1000 Constants
Q5 1000 Constants
Q6 1 No Changes
Q7 1000 Constants
Q8 1000 Constants
Q9 30 Structure/Constants
Q10 1000 Constants
Q11 1000 Constants
Q12 1000 Constants
Q13 1000 Constants
Q14 1 No Changes

A.3 YAGO2 Queries

PREFIX y: <http://yago - knowledge.org/resource/>
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Y1: SELECT ?GivenName ?FamilyName WHERE {

?p y:hasGivenName ?GivenName .

?p y:hasFamilyName ?FamilyName .

?p y:wasBornIn ?city .

?p y:hasAcademicAdvisor ?a .

?a y:wasBornIn ?city .

}

Y2: SELECT ?GivenName ?FamilyName WHERE {

?p y:hasGivenName ?GivenName .

?p y:hasFamilyName ?FamilyName .

?p y:wasBornIn ?city .

?p y:hasAcademicAdvisor ?a .

?a y:wasBornIn ?city .

?p y:isMarriedTo ?p2 .

?p2 y:wasBornIn ?city .

}

Y3: SELECT ?name1 ?name2 WHERE {

?a1 y:hasPreferredName ?name1 .

?a2 y:hasPreferredName ?name2 .

?a1 y:actedIn ?movie .

?a2 y:actedIn ?movie .

}

Y4: SELECT ?name1 ?name2 WHERE {

?p1 y:hasPreferredName ?name1 .

?p2 y:hasPreferredName ?name2 .

?p1 y:isMarriedTo ?p2 .

?p1 y:wasBornIn ?city .

?p2 y:wasBornIn ?city .

}

A.4 Bio2RDF

PREFIX pharmkb: <http:// bio2rdf.org/ pharmgkb_vocabulary >

PREFIX irefindex: <http:// bio2rdf.org/ irefindex_vocabulary >

PREFIX pubmd: <http:// bio2rdf.org/pubmed_vocabulary >

PREFIX pubmdrc: <http:// bio2rdf.org/pubmed_resource >

PREFIX omim:<http:// bio2rdf.org/omim_vocabulary >

PREFIX drug:<http:// bio2rdf.org/drugbank >
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PREFIX uniprot:<http:// bio2rdf.org/uniprot >

B1: SELECT ?o WHERE {

pubmdrc :1374967 _INVESTIGATOR_1 pubmd:last_name ?o .

pubmdrc :1374967 _AUTHOR_1 pubmd:last_name ?o .

}

B2: SELECT ?articleToMesh WHERE {

<http:// bio2rdf.org/pubmed :126183 > pubmd: mesh_heading ? articleToMesh .

?articleToMesh pubmd:mesh_descriptor_name ?mesh .

}

B3: SELECT ?phenotype WHERE {

?phenotype rdf:type omim:Phenotype .

?phenotype rdfs:label ?label .

?gene omim:phenotype ?phenotype .

}

B4: SELECT ?pharmgkbid WHERE {

?pharmgkbid pharmkb:xref drug:DB00126 .

?pharmgkbid pharmkb:xref ?pccid .

?DDIassociation pharmkb:chemical ?pccid .

?DDIassociation pharmkb:event ?DDIevent .

?DDIassociation pharmkb:chemical ?drug2 .

?DDIassociation pharmkb:p-value ?pvalue .

}

B5: SELECT ?interaction WHERE {

?interaction irefindex:interactor_a uniprot:O17680 .

}

A.5 Software

Table A.2 shows references to the systems discussed in this dissertation. Particularly,

the table shows the web page URL for each project as well as an approximate number

of lines of codes (LOC) written for each system. For AdPart, utility code for RDF

data and SPARQL parsing was excluded. Similarly, for SPARTex, the LOC does

not include GPS code. However, for completeness, the LOC for the three use case
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Table A.2: Software Details
URL LOC

AdPart https://cloud.kaust.edu.sa/Pages/adpart.aspx ⇡ 8K
SPARTex https://cloud.kaust.edu.sa/Pages/spartex.aspx ⇡ 9K

discussed in Chapter 5 is included.

https://cloud.kaust.edu.sa/Pages/adpart.aspx
https://cloud.kaust.edu.sa/Pages/spartex.aspx
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