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ABSTRACT

Accelerating SPARQL Queries and Analytics on RDF Data
Razen Mohammad Al-Harbi

The complexity of SPARQL queries and RDF applications poses great challenges
on distributed RDF management systems. SPARQL workloads are dynamic and con-
sist of queries with variable complexities. Hence, systems that use static partitioning
suffer from communication overhead for workloads that generate excessive communi-
cation. Concurrently, RDF applications are becoming more sophisticated, mandating
analytical operations that extend beyond SPARQL queries. Being primarily designed
and optimized to execute SPARQL queries, which lack procedural capabilities, exist-
ing systems are not suitable for rich RDF analytics.

This dissertation tackles the problem of accelerating SPARQL queries and RDF
analytics on distributed shared-nothing RDF systems. First, a distributed RDF en-
gine, coined AdPart, is introduced. AdPart uses lightweight hash partitioning for
sharding triples using their subject values; rendering its startup overhead very low.
The locality-aware query optimizer of AdPart takes full advantage of the partition-
ing to (i) support the fully parallel processing of join patterns on subjects and (ii)
minimize data communication for general queries by applying hash distribution of
intermediate results instead of broadcasting, wherever possible. By exploiting hash-
based locality, AdPart achieves better or comparable performance to systems that
employ sophisticated partitioning schemes.

To cope with workloads dynamism, AdPart is extended to dynamically adapt to
workload changes. AdPart monitors the data access patterns and dynamically redis-

tributes and replicates the instances of the most frequent patterns among workers.
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Consequently, the communication cost for future queries is drastically reduced or even
eliminated. Experiments with synthetic and real data verify that AdPart starts faster
than all existing systems and gracefully adapts to the query load.

Finally, to support and accelerate rich RDF analytical tasks, a vertex-centric RDF
analytics framework is proposed. The framework, named SPARTex, bridges the gap
between RDF and graph processing. To do so, SPARTex: (i) implements a generic
SPARQL operator as a vertex-centric program. The operator is coupled with an
optimizer that generates efficient execution plans. (ii) It allows SPARQL to invoke
vertex-centric programs as stored procedures. Finally, (iii) it provides a unified in-
memory data store that allows the persistence of intermediate results. Consequently,
SPARTex can efficiently support RDF analytical tasks consisting of complex pipeline

of operators.
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Chapter 1

Introduction

Strive always to excel in virtue and
truth.

Prophet Mohammad (PBUH)
571 — 633 CE

Resource Description Framework (RDF) [1, 2] is a standard data model and the
core component of the W3C Semantic Web [3, 4]. The Simple Protocol And RDF
Query Language (SPARQL) [5, 6] is the official W3C standard query language for
querying and extracting information from RDF data. RDF was originally designed
to be a meta-data model for describing web pages. However, it is now a standard
model for exchanging data and knowledge among various data sources on the Web.

The decoupling between RDF and its schema allows the schema to freely change
without affecting users. Therefore, Social networks, commercial search engines, online
shopping and scientific databases are adopting RDF for exchanging data or publish-
ing contents. This wide adoption has lead to an ever increasing volume of publicly
available RDF data on the Web. Public knowledge bases and databases, such as Uni-
versal Protein Resource (UniProtKB) [7], PubChemRDF [8], DBpedia [9], Bio2RDF
[10] and Probase [11] have billions of facts in RDF format. These knowledge bases
are usually linked, as in the Linked Open Data (LOD) [12, 13] cloud, and are globally
queried using SPARQL [14, 15, 16].

RDF datasets consist of triples of the form (subject, predicate, object), where
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Figure 1.1: Example RDF graph. An edge and its associated vertices correspond to
an RDF triple; e.g., (Bill, worksFor, CS).

predicate represents a relationship between two entities: a subject and an object.

An RDF dataset can be regarded as a long relational table with three columns.

It can also be viewed as a directed labeled graph, where vertices and edge labels

correspond to entities and predicates, respectively. Figure 1.1 shows an example

RDF graph of students and professors in an academic network. Table 1.1 shows a

tabular representation of some triples from Figure 1.1.

Table 1.1: Example RDF data. Each row constitute a triple.

subject | predicate | object
HPC subOrgOf | MIT
EE subOrgOf | MIT
CS subOrgOf | MIT
James | gradFrom MIT
Lisa | uGradFrom | MIT
HCI subOrgOf | CMU
CHEM | subOrgOf | CMU
Bill gradFrom | CMU

In its simplest form!', a SPARQL query consists of a set of RDF triple patterns;

some of the nodes in a pattern are variables which may appear in multiple patterns.

IThis form is usually referred to as Basic Graph Pattern (BGP).
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SELECT ?prof ?stud WHERE { worksForg | CS
?prof worksFor CS . ?prof
?stud advisor  ?prof . advisor ?stud
}

(a) SPARQL (b) Graph

Figure 1.2: A query that finds CS professors with their advisees.

For example, the query in Figure 1.2(a) returns all professors who work for CS with
their advisees. The query corresponds to the graph pattern in Figure 1.2(b). The
answer is the set of ordered bindings of (?prof, ?stud) that render the query graph iso-
morphic? to subgraphs in the data. Assuming the data is stored in a table D(s, p, 0),
the query can be answered by first decomposing it into two subqueries, each corre-
sponding to a triple pattern: ¢; = Gp—worksForno=cs(D) and g2 = 0p—aavisor (D). The
subqueries can be answered independently by scanning table D; then, their inter-
mediate results are joined on the subject and object attribute: g <y, s=g,.0 2. By
applying the query on the data of Figure 1.3, we get (?prof, ?stud) € {(James,
Lisa), (Bill, John), (Bill, Fred),(Bill, Lisa)}.

As the volume of RDF data continues soaring, managing, indexing and querying
RDF data becomes challenging. Early research efforts on RDF data management
resulted in efficient centralized RDF systems; like chameleon-db [17], RDF-3X [19, 20,
21], HexaStore [22], TripleBit [23], BitMat [24] and gStore [25]. However, centralized
data management does not scale well for complex queries on web-scale RDF data
26, 27]. To cope with the massive data growth, many distributed [26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38] RDF management systems have been introduced. These
systems scale-out to overcome the limitations of single-machine stores. (i) They are
capable of handling large datasets by dividing or partitioning the data among multiple

machines (workers). (ii) They reduce the total running time by distributing data

2When a query has variable predicates, its evaluation becomes a subgraph homomorphism prob-
lem [17, 18]
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processing and querying workload among the workers. Generally, answering queries
involves local execution followed by communication between workers.

Despite the advances in distributed RDF systems, current systems cannot sustain
good performance for different types of SPARQL workload [17, 39] and RDF analytical
tasks. Specifically, there are two problems that contribute to this limitation. First, all
existing systems rely on static partitioning; and assume that one partitioning scheme
fits all workloads. However, SPARQL workloads are very diverse [13, 17, 40, 41] and
dynamic [17, 42]. A single workload can have queries with different complexities [17].
Hence, there will always be queries that are not favored by the partitioning scheme
used by the system. Furthermore, the workload itself is very dynamic [17, 42]; the
part of the data that is being queried now may not be queried in the future. Under
these conditions, current systems cannot provide good performance for the entire
workload. Consequently, the overall system performance will degrade even if a small
percentage of the workload is not processed efficiently.

The second problem lies in the lack of generality in current distributed RDF
systems. Existing systems are primarily designed to model, store and query RDF
data behind a SPARQL end point. Hence, they are not capable of supporting rich
RDF analytical tasks [43, 44, 45, 46], where native graph processing is needed. Merely
utilizing a generic processing framework [47, 48, 49, 50, 51, 52, 53] for SPARQL query
answering [26, 27, 28, 29, 30, 31, 33, 37, 38] or representing RDF data in graph native
format [27] is not sufficient for rich RDF analytical tasks. More importantly, many
emerging RDF applications [43, 44, 45, 46] require both SPARQL querying® and
generic processing. Accordingly, researchers and users resort to utilize multiple and
usually different systems for analyzing and processing RDF data [44]; mandating
expensive data shuffling and formating in a single or among multiple system(s).

The overarching outcome of this thesis is to accelerate and efficiently process

3These applications require inferencing capabilities as well; however, inferencing is outside the
scope of this thesis.



18

< subOrgOf A
CS |g—worksFor [y o) gradFrom o ™y,
A % El p 4
A Fred 2 o% é{\o subOpgOf %
—_ O “ — A\)O Q
Sl e 2T =
7 %/ advisor > Lisa \%{A HPC
2 e
s . CHEM| ™| Grad Wi
(@) BT TYrTs T T
90, SubOrgOf ftype Wa
uGradFrom F
Bil CMU |eSradiromr o,
— W—__gradFrom e

Figure 1.3: The graph in Figure 1.1 is partitioned among two workers: W1 and W2.

SPARQL queries and RDF analytical tasks on distributed shared nothing environ-
ments. This chapter is organized as follows. Section 1.1 details the limitations of
static partitioning schemes. Section 1.2 discuses the problem of lacking generality in
existing distributed RDF data management systems. Section 1.3, describes solutions

to these problems, give an overview of this thesis and a list of its contributions.

1.1 Limitations of Static Partitioning Schemes

Distributed RDF management systems scale-out by partitioning RDF data among
many compute nodes (workers); hence queries can be evaluated in a distributed fash-
ion. A SPARQL query is decomposed into multiple subqueries that are evaluated at
each node independently. Since data is distributed, the nodes may need to exchange
intermediate results during query evaluation. Consequently, queries with large in-
termediate results incur high communication cost, which is detrimental to the query
performance [26, 32].

Distributed RDF systems aim at minimizing the number of decomposed subqueries
by partitioning the data among workers. The goal is that each node has all the data

it needs to evaluate the entire query and there is no need for exchanging intermediate
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Table 1.2: A triple is placed at the worker which stores the subject entity.

W1 W2
subject | predicate | object subject | predicate | object
HPC subOrgOf | MIT CS subOrgOf | MIT
EE subOrgOf | MIT HCI subOrgOf | CMU
CHEM | subOrgOf | CMU Bill worksFor CS
James | worksFor CS Bill gradFrom | CMU
James | uGradFrom | CMU Bill uGradFrom | CMU
James | gradFrom | MIT John type Grad
Lisa | uGradFrom | MIT John | uGradFrom | CMU
Lisa type Grad John advisor Bill
Lisa advisor James
Lisa advisor Bill
Fred advisor Bill

results. In such a parallel query evaluation, each node contributes a partial result of
the query; the final query result is the union of all partial results. To achieve this,
some triples may need to be replicated across multiple partitions.

For example, in Figure 1.3, assume the data graph is divided by the dotted line
into two partitions and assume that triples follow their subject placement (see Table
1.2). To answer the query in Figure 1.2, nodes have to exchange intermediate re-
sults because triples (Lisa, advisor, Bill) and (Fred, advisor, Bill) cross the partition
boundary. Replicating these triples to both partitions allows each node to answer the
query without communication. Still, even sophisticated partitioning and replication
cannot guarantee that arbitrarily complex SPARQL queries can be processed in paral-
lel; thus, expensive distributed query evaluation, with intermediate results exchanged
between nodes, cannot always be avoided.

Existing RDF systems inherently face three limitations due to static partitioning.

(i) Partitioning cost: balanced graph partitioning is an NP-complete problem [54];

thus, existing systems perform heuristic-based partitioning. In systems that use sim-
ple hash partitioning heuristics [27, 28, 29, 30, 55, 33, 38], queries have low chances

to be evaluated in parallel without communication between nodes. Hence, they incur
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excessive communication during query evaluation. On the other hand, systems that
use sophisticated partitioning heuristics [26, 31, 32, 36] suffer from high preprocessing
cost and sometimes high replication. More importantly, they pay the cost of parti-
tioning the entire data regardless of the anticipated workloads. However, as shown
in a recent study [44], only a small fraction of the whole graph is accessed by typical
real query workloads. For example, a real workload consisting of more than 1,600
queries executed on DBpedia (459M triples) touches only 0.003% of the whole data.

(ii) Inefficient distributed execution: All existing systems tend to focus on optimizing

the execution of queries that are favored by their static partitioning schemes. Systems
that rely on simple hash partitioning [27, 28, 29, 30, 55| perform very well for star?
queries. For example, H2RDF+ leverages its sorted indices to efficiently execute star
queries using multi-way merge join. Similarly, systems that employ sophisticated
partitioning that rely on replication [26, 31, 32, 36] perform very well for queries that
can be executed locally within each partition. However, for both schemes, queries
that cannot be solved locally suffer from excessive communication. The effect is very
substantial for systems that rely on MapReduce based distributed joins as shown in
[32] and validated by this thesis.

(iii) Workload awareness and adaptivity: SPARQL query evaluation exhibits poor

data locality, therefore, regardless of the partitioning heuristic used, there will always
be queries that cross partition boundaries and require expensive distributed evalu-
ation. Therefore, WARP [34] and Partout [35] consider the workload during data
partitioning and achieve significant reduction in the replication ratio, while show-
ing better query performance compared to systems that partition the data blindly.
Nonetheless, both these systems assume a representative (i.e., static) query workload
and do not adapt to changes. Alug et al. [17, 39] showed that systems need to con-

tinuously adapt their physical layouts based on workloads in order to consistently

4Star queries consist of multiple triple patterns that share the same join column.
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Figure 1.4: @), retrieves students who take courses taught by their advisors. It also
retrieves professors’ ranks and courses’ centralities. Solid lines are part of the original
graph while dotted lines represent triples that needs to be computed first.
provide good performance. The same concept is also applicable to data partitioning
in distributed RDF' systems.

Thus, this thesis argues that distributed RDF systems should start fast, evaluate

queries efficiently and leverage query workloads to adapt dynamically.

1.2 Problems of Lacking Generality

An emerging new type of RDF analytics; in drug repositioning [45], biological data
analysis [43, 46] and RDF data sampling [44], requires the combination of general
graph processing with SPARQL structural queries. For example, Qu et al. [45] filter
the results of SPARQL queries by a set of graph centrality algorithms to identify
key biological entities within the resulting RDF subgraphs. Also, Rietveld et al.
[44] use a pipeline of complex operations to analyze RDF data. They compute the
degree centrality and PageRank of the corresponding RDF graph using a generic
graph engine. The final computation results are written into RDF format. Finally,
they run SPARQL queries against the mutated RDF graph enriched by centrality
and PageRank information for each node in the graph. Other scenarios may require
a variety of graph algorithms, such as reachability queries, or community detection.

All existing RDF management systems cannot support such applications natively.
To see why, consider query () in Figure 1.4. While it syntactically represents a normal

SPARQL query, it has some special semantics. The query retrieves all students who
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take courses taught by their advisors. However, it also retrieves the ranks of the
matching professors and the centrality of their taught courses for a possible filtering
step, where professors with high PageRank values are considered popular; while core
courses have higher centrality as they are taken by all students.

(s has two types of triple patterns; the first type comes from the structure of the
input graph (solid lines in Figure 1.4) while the other type of triples is derived from
the vertex computed values (dotted lines in Figure 1.4). Therefore, PageRank and
centrality algorithms need to be applied on the input graph prior to query evaluation.
Consequently, to solve queries like (D, systems need to have all the following capabili-
ties: (i) they should be able to efficiently execute general analytical algorithms as well
as SPARQL queries. In other words, the data abstraction and physical layout should
be suitable for both. (ii) They should support the execution of a pipeline of opera-
tors, where the output of one can be used by the others if needed without disturbing
the original physical layout. For example, the PageRank and centrality results in Q)
should not affect the layout of the original RDF graph. Finally and more impor-
tantly, (iii) these pipelines should be triggered declaratively using SPARQL rather
than writing special procedural code for sharing results among operators.

Obviously, all specialized [17, 19, 20, 21, 22, 23, 24, 25] RDF systems i.e. systems
that are built natively to support SPARQL queries only, are not capable of solving
Qs. These systems use physical layouts and indices that are optimized for SPARQL.
Furthermore, to support general analytical algorithms, they need to reinvent the wheel
by implementing the whole graph analysis software stack. Therefore, the only way to
evaluate queries like (), is to express analytical algorithms using SPARQL itself. Yet,
because SPARQL is not a procedural language, expressing graph operations results
in verbose and complex queries [56] that are hard to formulate and expensive to
evaluate. This is evident in some recent works [56, 57, 58, 59] which are limited to a

small set of graph operations like clustering and graph diffusion. Accordingly, data
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movement and formatting in a single or multiple systems cannot be avoided when
evaluating queries like Q).

Many RDF systems embark on generic distributed computation platforms, like
Trinity [48], GraphLab [51], Hadoop [60], Spark-based GraphX [61, 62, 63, 64] and
PigLatin [65] for distributed SPARQL query evaluation; enabling data processing
beyond SPARQL. However, all distributed systems lack at least one (the third) or
all the capabilities mentioned above. Particularly, Hadoop based systems [26, 28,
29, 30, 31, 33, 37, 38] are not suitable for graph processing [49]. The reason is
that MapReduce requires passing the entire graph state from one iteration to the
next. Furthermore, these systems model and index RDF data using traditional RDF
schemes by creating indices on all permutations of subject, predicate and object or
by using vertical partitioning schemes [33, 38, 66].

On the contrary, Trinity. RDF [27], Goodman et. al. [67] and S2X [68] use native
graph representation to model RDF data on top of Trinity, GraphLab and GraphX,
respectively; making them more suitable for RDF analytical tasks. However, aside
from missing the third capability above, their SPARQL operators have other limita-
tions. For example, Trinity. RDF uses graph exploration to minimize communication
for SPARQL query evaluation. This approach requires a final sequential join at the
master when solving queries with cycles. Similarly, S2x matches all triple patterns
of the query in the first iteration. Hence, it generates large and usually unnecessary
intermediate results, which significantly affect the performance [17]. The SPARQL

5

operator in Goodman et. al. [67] does not have a query planner °; a crucial component

for efficient query execution.

5The authors claim that due simplicity of queries, query planning does not have significant impact
on query performance. However, this thesis shows later that subquery ordering makes the difference
between sub-second query evaluation and query timeout.
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1.3 Contributions and Thesis Organization

The remainder of this dissertation is organized as follows: In Chapter 2, the related
work in the area of RDF data partitioning and analytics is surveyed. Subsequently,

the specific contributions of this thesis are introduced:

e Chapter 3 introduces AdPart, a distributed in-memory RDF engine. AdPart
alleviates the limitations of static partitioning employed by existing distributed
RDF systems. It uses lightweight initial partitioning that distributes triples
by hashing on their subjects. This partitioning has low cost and does not
incur any replication. Thus, the preprocessing time is low effectively addressing
the partitioning cost limitation. AdPart exploits hash-based locality awareness
to process in parallel (i.e., without data communication) the join patterns on
subjects included in a query. In addition, intermediate results can potentially be
hash-distributed to single workers instead of being broadcasted everywhere. The
locality-aware query optimizer of AdPart considers these properties to generate

an evaluation plan that minimizes intermediate results shipped between workers.

e In Chapter 4, AdPart is extended with an adaptive incremental redistribution
feature. A hierarchical heat-map of accessed data patterns is maintained by
AdPart to monitor the executed workload. Hot patterns are redistributed and
potentially replicated in the system in a way that future queries that include
them are executed in parallel by all workers without data communication. To
control replication, AdPart operates within a budget and employs an eviction
policy for the redistributed patterns. By using lightweight hash partitioning,
avoiding the upfront cost, and adopting a pay-as-you-go approach, AdPart over-
comes the limitations of static partitioning schemes. Accordingly, AdPart exe-
cutes tens of thousands of queries on large graphs within the time it takes other

systems to conduct their initial partitioning.
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e Chapter 5, addresses the generality problem by introducing SPARTex, a dis-
tributed system for rich RDF data analytics. SPARTex is designed to be im-
plemented on top of a variety of vertex-centric graph processing engines (e.g.,
Pregel-like). It extends and unify the in-memory graph representation of the
underlying vertex-centric system to be used by generic vertex-centric programs
as well as SPARQL. Coupled with a novel optimizer, SPARTex implements an
efficient SPARQL query operator as a vertex-centric program. To facilitate rich
RDF analytics, SPARTex is inspired by the database community, where the
coupling of SQL code with a generic programming language (e.g., Java, C++)
is common. Therefore, it allows users to write queries that combine declarative
SPARQL queries with procedural code (vertex-centric programs) for generic
graph processing. Different operators can be pipelined; and can communicate

by setting vertices properties in the unified in-memory data store.

This dissertation contains published work and work to be submitted. Specifically,
the work described in Chapter 3 and Chapter 4 is published in the Very Large Data
Bases Journal (February 2016, VLDBJ) [69]. The work in Chapter 5 is to be sub-
mitted to the Very Large Data Bases Conference (VLDB 2017). Both AdPart and
SPARTex have been demonstrated at the Very Large Data Bases Conference (VLDB
2015) [70, 71]. Figure 1.5 shows the roadmap.
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SPARQL Queries
And RDF Analytics

SPARQL Queries RDF Analytics
Efficient Distributed Adaptive Partitioning
Execution (Chapter 3) (Chapter 4) v v
Unified Data Store Vertex-centric
(Chapter 5) SPARQL (Chapter 5)

SPARQL Extension
(Chapter 5)

Vertex-centric
Optimizer (Chapter 5)

Figure 1.5: The roadmap of this thesis.
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Chapter 2

Related Work

Learn from yesterday, live for today,
hope for tomorrow. The important
thing is not to stop questioning.

Albert Einstein
1879 — 1955 CE

This chapter sheds the light on recent distributed RDF systems related to the
work of this thesis!. Specifically, this chapter focuses on the following key aspects
of distributed RDF systems: (i) it discusses and classify the partitioning schemes
employed by existing systems and (ii) how distributed query evaluation and opti-
mization is carried under these partitioning settings (Section 2.1). Furthermore, (iii)
this chapter includes a discussion on existing relational approaches related to data
partitioning and query execution (Section 2.1.4). Finally, the chapter is concluded
by a discussion on the generality of existing solutions for supporting rich RDF data

analytics (Section 2.2).

2.1 Data Partitioning

This section reviews partitioning schemes used in recent distributed RDF systems.
Current partitioning schemes can be generally categorized into 3 categories: (i)

Lightweight Data Partitioning: this includes systems that use random, hash or range

More details can be found in published surveys [72, 73, 74, 75].
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Table 2.1: Summary of state-of-the-art distributed RDF systems

System PZ?;;ZZI;g Part(ljt()l;): ne Replication xgﬁz::s Adaptive
TriAD-SG [32] Graph-based (METIS) & Horizontal triple Sharding High Yes No No
H-RDF-3X [26] Graph-based (METIS) High Yes No No
Partout [35] Workload-based horizontal fragmentation High No Yes No
SHAPE [31] Semantic Hash High Yes No No
S2RDF [76] Extended Vertical Partitioning High No No No
Wu et al. [36] End-to-end path partitioning Moderate Yes No No
TriAD [32] Hash-based triple Sharding Low Yes No No
Trinity. RDF [27] Hash Low Yes No No
HadoopRDF [33]  Vertical Partitioning/property Files on HDFS Low No No No
H2RDF+ [30] H-Base partitioner (range) Low No No No
Rya [37] Accumulo partitioner (range) Low No No No
CliqueSquare [38]  Hybrid (Hash + Vertical Partitioning) Low Yes No No
SHARD [28] Hash (one big file) Low No No No
AdPart Hash Low Yes Yes Yes

based partitioning. These systems incur minimal data preprocessing overhead; hence,
referred to as lightweight. (ii) Sophisticated Partitioning: this includes systems
that employ sophisticated heuristics for data preprocessing prior to data partition-
ing. These systems usually incur some replication to minimize communication during
query evaluation. Finally, (iii) Workload-Aware Data Partitioning: workload-aware
systems embark on some prior knowledge about the anticipated workloads which are
used during the data partitioning phase. In the next few sections, systems are clas-
sified based on these categories. Table 2.1, summarizes the main characteristics of

these systems.

2.1.1 Lightweight Data Partitioning

SHARD [28] is a horizontally scalable triple store engine built on top of MapReduce
[47] framework. It stores RDF data into flat files using Hadoop Distributed File Sys-
tem (HDFS) [60]. The whole RDF data is kept into one file where each line represents
all the triples of a certain subject. The file is then split by HDFS into blocks (usu-
ally 64MB in size) which are randomly distributed among machines. Although this
storage model is simple, it leverages a set of benefits introduced by HDFS implemen-
tation. The RDF data is replicated and stored in a simple, easy to read format. The
data is hash partitioned among the workers such that each worker is responsible for

a set of triples.
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subOrgOf advisor worksFor uGradFrom gradFrom
HPC MIT Lisa James Bill Cs Bill CMU Bill CMU
EE MIT Lisa Bill James CS James CMU James  MIT
CsS MIT Fred Bill type_Grad John CMU
CHEM CMU John Bill Lisa Lisa MIT
HCI CMU John HDFS

Figure 2.1: HadoopRDF store the data in Figure 1.3 on HDFS.

SHARD does not keep any form of data indices. As a result, while solving a query,

it has to scan the whole list of triples even if query touches a very small amount of
data. SPARQL queries are solved using a set of MapReduce [47] iterations equals to
the number of joins in the query. Each MapReduce iteration is responsible for solving
a single subquery and the results of each iteration are continuously joined with next
iterations. A final MapReduce iteration is responsible for filtering the bound variables
and remove redundant results.
HadoopRDF' [33] uses HDFS flat files to store the RDF data. Similar to SHARD,
data partitioning in HadoopRDF is left to HDFS; however, it groups triples using
smaller files. Specifically, RDF data is split into multiple smaller files using two steps:
Predicate Split (PS) and Predicate Object Split (POS). In the first step (PS), the data
file is split based on the predicate into multiple smaller files where each file corresponds
to a different predicate. This is similar to vertical partitioning strategy used by SW-
Store [66]. For example, the RDF data in Figure 1.3 is stored by HadoopRDF on
HDEFS as shown in Figure 2.1. The POS step works on the explicit type information in
the rdf:type file. It divides the rdf:type file into as many files as the number of distinct
objects. Then, a set of files are created for each type_object pairs. For example, in
Figure 2.1 only one file named type_Grad is created because there is only one object
(Grad) associated with the type predicate. Other predicates files are also partitioned
based on the object types into multiple files.

Upon receiving a SPARQL query from the user, it is passed to the Input Selec-

tor component which selects the files needed to execute the given query. Depending
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on the complexity of the query, HadoopRDF uses one or multiple Hadoop [60] jobs
to evaluate SPARQL queries. To minimize the overhead incurred by Hadoop jobs,
HadoopRDE’s cost model uses a heuristic to minimize the number of needed MapRe-
duce jobs for solving a query. If the planner finds different query plans with the
same number of jobs, it uses collected summary statistics to select the best join order
that leads to the minimum intermediate results. The planner defines the query plan
which represents an ordered set of MapReduce jobs, each associated with its input
information. The framework then executes these jobs in order, such that the output
file of each job is the input of the next one. The last job output is the answer of the
given query.
CliqueSquare [38] partitioner exploits the fact that HDFS replicates data blocks to
achieve fault-tolerance. Accordingly, it partitions the data by hashing on all three
columns, i.e. it hashes triples based on their subject, predicate and object values.
This enables CliqueSquare to perform all first-level joins in a query plan (subject-
subject, subject-predicate...etc) locally in each compute node. Finally, it applies
property-based grouping similar to the approach followed by HadoopRDF [33].

CliqueSquare presented a novel approach for optimizing BGP queries in a parallel
environment, such as MapReduce. To reduce query response times, it builds flat
plans where the number of joins is minimal. A query is represented as a variable
graph where each node corresponds to a triple patterns and edges between nodes
denote that triple patterns share a join variable. The CliqueSquare algorithm starts
with the initial variable graph and keeps finding possible clique decompositions of the
graph. Then, each decomposition is reduced until it consists of a single node from
which CliqueSquare builds the corresponding logical query plan. CliqueSquare aims
at finding the possible flattest plan to decrease response time. Logical query plans
are translated into physical MapReduce operators which are then transformed into a

MapReduce program. CliqueSquare uses a cost function that estimates the scanning,
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joining, incurred I/O and data transfer costs.
H2RDF+ [30] is a highly scalable distributed RDF engine based on MapReduce [47]
framework and Apache HBase [53]. H2RDF+ [30] materialize all six permutations of
RDF triples using HBase tables which are sorted key-value maps. Data partitioning is
left to HBase which range partitions tables based on keys. Maintaining these indices
offers several benefits: (i) using a single scan on the corresponding index, all SPARQL
triple patterns can be answered efficiently. (ii) Merge join can be employed to exploit
the precomputed ordering in these indices. (iii) Every join between triple patterns
can be done using merge joins.

H2RDF+ has a set of aggregated statistics used to estimate the selectivity of
a triple pattern, join results and join cost. Its online query planner uses a greedy
algorithm that decides at each execution step the join with the smallest cost. Two
different join algorithms can be executed: multi-way merge join algorithm which is
efficient over already sorted data. The other one is sort-merge join which is used to join
unsorted intermediate results. Based on the query complexity, H2RDF+ adaptively
decides whether to execute the query in a centralized or a distributed fashion. Simple
queries are executed efficiently in a centralized fashion; while complex queries with
large intermediate results are evaluated using a set of MapReduce jobs. H2RDF+
utilizes lazy materialization to minimize the size of the intermediate results. Similarly,
Rya [37] uses a key-value store (Accumulo [77]) for RDF data storage which range-
partitions the data based on keys such that the keys in each partition are sorted.
However, when solving a SPARQL query, Rya executes the first subquery using range
scan on the appropriate index; it then utilizes index lookups when joining with the
next subqueries.
Trinity. RDF [27] is a distributed in-memory RDF engine that can handle web scale
RDF data. It represents RDF data in its native graph form (i.e., using adjacency

lists) and uses a key-value store (Trinity [48]) as the back-end store. The RDF graph
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is partitioned using vertex id as hash key. This is equivalent to partitioning the data
twice; first using subjects as hash keys and second using objects. Trinity. RDF uses
graph exploration for SPARQL query evaluation and relies heavily on its underlying
high-end InfiniBand interconnect. In every iteration, a single subquery is explored
starting from valid bindings by all workers. This way, generation of redundant inter-
mediate results is avoided. However, because exploration only involves two vertices
(source and target), Trinity. RDF cannot prune invalid intermediate results without
carrying all their historical bindings. Hence, workers need to ship candidate results
to the master to finalize the results, which is a potential bottleneck of the system.
DREAM [78] follows a very different yet simple approach. DREAM does not partition
the data, rather it builds one database and replicates it on all workers. Instead
of running the query in parallel by all machines, DREAM decomposes the query
into multiple (usually non-overlapping) subqueries. Each subquery is answered by
one worker which has the entire database. Workers then exchange auxiliary meta-
data to finalize the query evaluation. While in principle DREAM does not incur
any partitioning overhead, its preprocessing phase is very expensive because of the
centralized database construction. Furthermore, parallelism in DREAM is limited by
the number of query decompositions (usually very small).

All the above systems use lightweight partitioning schemes, which are computa-
tionally inexpensive; however, queries with long paths and complex structures incur
high communication costs. In addition, systems that evaluate joins using MapReduce
suffer from its high overhead [32, 36]. Although AdPart (introduced in this thesis)
also uses lightweight hash partitioning, it avoids excessive data shuffling by exploit-
ing hash-based data locality. Furthermore, it adapts incrementally to the workload

to further minimize communication.
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Table 2.2: Partitioning the graph in Figure 1.1 using 1-hop undirected guarantee.
Replicated triples are highlighted.

W1 W2
subject | predicate | object subject | predicate | object
HPC subOrgOf | MIT CS subOrgOf | MIT
EE subOrgOf | MIT HCI subOrgOf | CMU
CHEM | subOrgOf | CMU Bill worksFor CS
James | worksFor CS Bill gradFrom | CMU
James | uGradFrom | CMU Bill uGradFrom | CMU
James | gradFrom MIT John type Grad
Lisa | uGradFrom | MIT John | uGradFrom | CMU
Lisa type Grad John advisor Bill
Lisa advisor James CHEM | subOrgOf | CMU
Lisa advisor Bill James | uGradFrom | CMU
Fred advisor Bill Lisa advisor Bill
John type Grad James worksFor CS
CS subOrgOf | MIT Fred advisor Bill

2.1.2 Sophisticated Partitioning Schemes and Replication

Several systems employ general graph partitioning techniques for RDF data, in order
to improve data locality.

H-RDF-3X [26] uses METIS [54] to partition the RDF graph by assigning each vertex
to a single partition. For example, in Figure 1.1, each vertex is assigned to a single
worker. METIS results in a balanced vertex partitioning where each partition has
an equal share of vertices. Then, H-RDF-3X enforces the so-called k-hop guarantee
where for any vertex v assigned to partition p all k-hop away vertices and their edges
are replicated in p. This way any query with radius k or less can be executed without
communication. For example, partitioning the graph in Figure 1.1 among two work-
ers using 1-hop undirected guarantee yields the partitions shown in Table 2.2. Each
partition is stored and managed by a standalone centralized RDF store like RDF-3X.
Under this setting, any query with radius of 1 can be answered without communica-
tion. For example, the query in Figure 1.2 can be answered without communication

among workers. Note that because of the replication, results duplication may occur.
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ugradFrom ugradFrom
gradFrom subOrgOf,type > gradFrom
subOrgOf W2 W1 subOrgOf
worksFor ¢ - type
advisor ugradFrom,subOrgOf,worksFor,advisor advisor

Figure 2.2: The summary graph for the data in Figure 1.1.

For example, the query @ =(7stud, advisor, Bill) will return duplicate (Lisa, advi-
sor, Bill) and (Fred, advisor, Bill); one from each partition. To solve this problem,
H-RDF-3X introduces the notion of ownership triples that are created during the
partitioning phase. For each vertex v assigned to partition p, H-RDF-3X stores a
new triple (v, is_owned, yes) at partition p. Then, when evaluating a query, an extra
join is carried out for filtering duplicate results. In our example, the query becomes
@ =(7stud, advisor, Bill) AND (?stud, is_.owned, yes). Other queries with radius
larger than k are executed using expensive MapReduce joins. Replication increases
exponentially with k; thus, k£ must be small (e.g., k£ < 2 in [26]).

Similarly, EAGRE [79] transforms the RDF graph into a compressed entity graph
that is partitioned using a MinCut algorithm, such as METIS. EAGRE and H-RDF-
3X suffer from the overhead of MapReduce-based joins for queries that cannot be
evaluated locally. For such queries, sub-second query evaluation is not feasible [32].
TriAD [32] employs lightweight hash partitioning based on both subjects and ob-
jects. Since partitioning information is encoded into the triples, TriAD has full lo-
cality awareness of the data and processes large number of concurrent joins without
communication. However, because TriAD shards one (both) relations when evalu-
ating distributed merge (hash) joins, the locality of its intermediate results is not
preserved. Thus, if the sharding column of the previous join is not the current join
column, intermediate results need to be re-sharded. The cost becomes significant for
large intermediate results with multiple attributes.

TriAD-SG [32] uses METIS for data partitioning. Edges that cross partitions are

replicated, resulting in 1—hop guarantee. A summary graph is defined, which includes
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a vertex for each partition. Vertices in this graph are connected by the cross-partition
edges. For example, Figure 2.2 shows the summary graph of the data in Figure 1.1.
A query in TriAD-SG is evaluated against the summary graph first, in order to prune
partitions that do not contribute to query results. Then, the query is evaluated on
the RDF data residing in the partitions retrieved from the summary graph. Multiple
join operators are executed concurrently by all workers, which communicate via an
asynchronous message passing protocol.

Sophisticated partitioning techniques, like MinCut, reduce the communication
cost significantly by minimizing the edge-cut. However, such techniques are pro-
hibitively expensive and do not scale for large graphs, as shown in [31]. Furthermore,
MinCut does not yield good partitioning for dense graphs. Thus, TriAD-SG does
not benefit from the summary graph pruning technique in dense RDF graphs be-
cause of the high edge-cut. To alleviate METIS overhead, an efficient approach for
partitioning large graphs was introduced [80]. However, queries that cross partition
boundaries and hence result in poor performance cannot be eliminated.

SHAPE [31] is based on a semantic hash portioning approach for RDF data. It starts
by simple hash partitioning and employs the same k-hop strategy as H-RDF-3X [26].
It also relies on URI hierarchy, for grouping vertices to increase data locality. Each
resulting partition is manged by a standalone RDF-3X store. Similar to H-RDF-3X,
SHAPE suffers from the high overhead of MapReduce-based joins. It also requires an
extra join for filtering duplicate results. Furthermore, URI-based grouping results in
skewed partitioning if a large percentage of vertices share prefixes. This behavior is
noticed in both real as well as synthetic datasets (See Section 3.3).

Wu et al. [36] recently proposed an end-to-end path partitioning scheme, which con-
siders all possible directed paths in the RDF graph. These paths are merged in a
bottom-up fashion. While this approach works well for star, chain and directed cyclic

queries, other types of queries result in significant communication. For example,



36

queries with object-object joins or queries that do not associate each query vertex
with the type predicate require inter-worker communication. Note that our adaptiv-
ity technique (Chapter 4) is orthogonal to and can be combined with end-to-end path
partitioning as well as other partitioning heuristics to efficiently evaluate queries that
are not favored by the partitioning.

S2RDF [76] is a SPARQL engine built on top of Spark [62]. It proposes a relational
partitioning technique for RDF data called Extended Vertical partitioning (ExtVP).
ExtVP extends the vertical partitioning approach used by HadoopRDF [33] to mini-
mize the size of input data during query evaluation. To do so, ExtVP uses semi-join
reduction [81] to minimize data skewness and eliminate dangling triples that do not
contribute to any join. For every two vertical partitions (see Figure 2.1), ExtVP
computes join reductions for the two vertical partitions. The results are materialized
as tables in HDFS. Specifically, for two partitions P; and P,, S2RDF computes: (i)
subject-subject: P Xs—s Py, Py Xs—s Py, (ii) subject-object: P; Xs—p Py, Py Xy P,
and (iii) object-subject: P} X,—gs P5, Py X,—s P;. The intuition behind this reduction
is that a join between any two tables, say T} and 75, can be computed using the
semi-join reduced tables which are much smaller than the base tables. For example,
Ty Xaep T = (Th Xa=p T2) > (T1 ¥a—p T).

Systems that use sophisticated partitioning heuristics focus on minimizing commu-
nication irrespective of the workload. Hence, they pay the cost for data partitioning
ahead of time even if the workload touches a very small part of the data. Moreover,
these systems optimize their partitioning scheme to honor a specific type of queries.
Other types of queries are neglected and usually introduce excessive communication
that is detrimental to the performance. On the contrary, AdPart incurs a minimal

partitioning overhead and dynamically adapts to the workload.
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2.1.3 Workload-Aware Data Partitioning

Partout [35] is a workload-aware distributed RDF engine. It relies on a given workload
to divide the data between nodes. First, it extracts representative triple patterns from
the query load. Then, it uses these patterns to partition the data into fragments and
collocates data fragments that are accessed together by queries in the same worker.
Similarly, WARP [34] uses a representative query workload to replicate frequently
accessed data. However, these system are static and do not adapt to the workload.
Partout and WARP can adapt only by applying expensive re-partitioning of the entire
data; otherwise, they incur high communication costs for dynamic workloads. On the
contrary, AdPart adapts incrementally by replicating only the data accessed by the
workload which is expected to be small [44].

Sedge [82] solves the problem of dynamic graph partitioning and demonstrates its
partitioning effectiveness using SPARQL queries over RDF. The entire graph is repli-
cated several times and each replica is partitioned differently. Every SPARQL query
is translated manually into a Pregel [49] program and is executed against the replica
that minimizes communication. Still, this approach incurs excessive replication, as
it duplicates the entire data several times. Moreover, its lack of support for ad-hoc
queries makes it counter-productive; a user needs to manually write an optimized

query evaluation program in Pregel.

2.1.4 Related Solutions

This sections discusses solutions used by RDF engines and relational databases to
minimize queries latencies.

Materialized views and Results Caching

Several works attempt to speed up the execution of SPARQL queries by materializing

a set of views [83, 84] or a set of path expressions [85]. The selection of views



38

is based on a representative workload. Recomputing and materializing the views
adaptively is a very expensive process that cannot be achieved in an online fashion
[17]. On the other hand, AdPart does not generate local materialized views. Instead,
it incrementally redistributes the data accessed by hot patterns in a way that preserves
data locality and allows queries to be executed with minimal communication.

Other works embark on final result caching. Martin et al. [86] utilize a rela-
tional database for storing meta information about cached queries. When a cached
query is submitted to the system again, the cached result is returned immediately.
However, the proposed solution is very sensitive to slight changes in the queries [87].
For example, the framework cannot match two exactly similar queries with different
subqueries orderings or different variables names. Papailiou et al. [87] rectifies this
problem by introducing a canonical labeling technique for SPARQL queries. Same
queries with different orderings or variables names will result in the same canonical
label. The canonical label is used as a key for the cached result. Moreover, this frame-
work uses a generic query abstraction to proactively cache extra results that can be
used by queries with the same structure but different constants. While caching is
orthogonal and complementary to the work presented in this thesis, there is a major
difference. Caching is useful for exactly matching queries, queries whose result is
contained within cached results or queries that can be answered by joining the results
of multiple cached queries; other queries would require expensive distributed evalua-
tion. On the contrary, the distributed query evaluation proposed by this thesis aim
at efficiently evaluating all queries posed to the system. Furthermore, the adaptivity
feature allows the efficient execution of exactly matching, isomorphically different or

even structurally different queries.
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Eventual Indexing And Adaptive Physical Layout

Idreos et al. [88] and Alagiannis et al. [89, 90] introduced the concept of reducing
the data-to-query time for relational data. They avoid building indices during data
loading; instead, they reorder tuples incrementally during query processing. In Ad-
Part, the concept of eventual indexing is extended to dynamic and adaptive graph
partitioning. In this thesis, the graph partitioning problem is very expensive; hence,
the potential benefits of minimizing the data-to-query time are substantial.

To address the problem of workload dynamism and diversity, Alug [17] proposed
an approach for adaptively changing the physical layout based on workloads. He intro-
duces a Workload-aware group-by-query (G-by-Q) representation where the content
of each database record and the way it is serialized is dynamically determined based
on the workload. G-by-Q approach aims at scaling-up SPARQL query evaluation by
creating millions of G-by-Q. On the other hand, AdPart tries to minimize replication
(see Chapter 4) by finding shared commonalities among redistributed patterns in the
workload. In an ideal solution, an adaptive physical layout technique can be used on
each compute node. At the same time, a dynamic incremental redistribution tech-
nique similar to the one introduced in this thesis can be used to decide data placement

17].

Relational Model

Relevant systems exist that focus on data models other than RDF. Schism [91] deals
with data placement for distributed OLTP RDBMS. Using a sample workload, Schism
minimizes the number of distributed transactions by populating a graph of co-accessed
tuples. Tuples accessed in the same transaction are put in the same server. Similarly,
SWORD [92, 93] models the workload as a hypergraph, where each hyperedge corre-
sponds to a transaction and uses METIS to partition this hypergraph and guide data

placement decisions. To minimize the overhead of the partitioning phase, SWORD
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uses a hypergraph compression technique. To deal with dynamic workloads, SWORD
uses an incremental approach for dynamic data repartitioning. Similar to Schism,
SWORD aims at minimizing the number of distributed transactions. This is not ap-
propriate for SPARQL because some queries access large parts of the data that would
overload a single machine. Instead, AdPart exploits parallelism by executing such a
query across all machines in parallel without communication. H-Store [94] is an in-
memory distributed RDBMS that uses a data partitioning technique similar to ours.
Nevertheless, H-Store assumes that the schema and the query workload are given in
advance and assumes no ad-hoc queries. Although, these are valid assumptions for
OLTP databases, they are not for RDF data stores.

ElasTras [95, 96] is a distributed system that provides transactional support to
partitioned databases. It statically partitions data at the schema level by co-locating
tuples that are accessed together in the same partition. ElasTras partitions data
based on the primary key of a single root table. Descendant tables, that have the
primary key of the root table as a foreign key, are partitioned using the foreign key
value. The process repeats recursively on subsequent levels; effectively resulting in a
tree schema. Accordingly, data can be organized in row groups where data of each
row group is stored in a single partition. While limiting distributed transactions, this
approach cannot be applied on RDF for many reasons: (i) The schemaless nature
of RDF makes the process of defining root-descendant relationships among Tables?
infeasible in most of the cases. Furthermore, (ii) ElasTras mandates databases to
conform to the tree schema; an assumption that does not apply on graph data like
RDF. More importantly, (iii) partitions in ElasTras are created statically and does
not change if the access pattern changes. G-Store [97], on the other hand, employs
the Key Group abstraction to minimize the overhead of distributed transactions. in

G-Store, no data migration is needed, rather, the ownership of keys in a key group

2 Assuming that each predicate defines a table like in SW-Store [66]
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are co-located in a single partition. This approach is not suitable for RDF because
a single query can touch large amount of data. In this case, managing the data in a

single partition can be overwhelming.

2.2 System Generality

This section analyzes and reviews the generality of existing distributed RDF systems.

2.2.1 SPARQL on Generic Frameworks

Several distributed RDF systems [28, 33, 30, 38] are built on top of MapReduce
[47]. While the underlying framework is capable of performing graph analytics, these
systems are optimized for solving SPARQL only. Specifically, these systems model
the data in a way suitable for join evaluation not for graph analysis. For exam-
ple, H2RDF+ [30] is based on MapReduce and HBase indices. It is optimized for
multi-way merge joins and not for iterative graph computations. The same applies to
S2RDF [76], CliqueSquare [38] and HadoopRDF [33] which rely on vertical partition-
ing to boost join evaluation. PigSPARQL [98] transforms each SPARQL query into
a PigLatin [98] program that is executed using MapReduce which is not suitable for
iterative graph algorithms [49]. MapReduce requires passing the entire graph state

from one iteration to the next.

2.2.2 SPARQL on Graph Frameworks

Many graph management systems have been proposed for efficient graph analytics,
including Pregel [49], PowerGraph [50], GRACE [52], and SociaLite [99]. However,
these systems lack the capability of evaluating ad-hoc SPARQL queries, which means
that a program has to be written for each SPARQL query. Sedge [82] focus on dynamic
RDF partitioning. Goodman et al. [100] proposed a vertex-centric program for solving

SPARQL queries using GraphLab [51] framework. Both approaches [82, 100] do not
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have a query optimizer and therefore users have to select a good query evaluation
plan themselves. Such an approach is tedious, counter-productive and requires prior
knowledge about the data. Notice that an unoptimized query can take significant
time or cause the system to run out of memory or crashes (see Section 5.3.2).

Trinity. RDF [27] is a SPARQL engine built on top of Trinity [48]. However, while
it uses a native graph format, it only focus on SPARQL query evaluation. Trinity. RDF
cannot support rich RDF analytics as it does not pipeline SPARQL and other oper-
ators. To perform analytics users need to use Trinity Specification Language (TSL)
for data modeling. Moreover, without the SPARQL extension proposed in this thesis
(see Chapter 5), Trinity.RDF cannot declaratively execute analytical tasks.

GraphX [63, 64] is a graph processing system built on top of a Spark [61, 62]; a
general purpose distributed data flow framework. GraphX aims at unifying graph-
parallel (e.g. vertex-centric) and data-parallel computations (e.g., map-reduce) in
a single system. The same data can be viewed as both tables and graphs which
allows both types of computations to be applied. As a result of the generality and
unification of GraphX, it is not as fast as specialized graph engines [63, 64]. Yet,
it allows users to stay within a single framework and remove the burden of moving
data between systems and format it accordingly. SPARTex is inspired by the same
motivation which tries to unify both SPARQL structural querying and generic graph

computations.

2.2.3 Rich RDF Analytics

Deweese et al. [58] proposed an implementation of the peer pressure clustering algo-
rithm using SPARQL. Qi et al. [57] introduced distributed remote clustering algo-
rithms that minimize the communication overhead. Both approaches, however, focus
on clustering and cannot support generic graph analytics. Techentin et al. [56] exploit

the update capability of SPARQL 1.1 for implementing iterative algorithms. How-
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ever, this approach results in lengthy and verbose SPARQL queries that are hard to
evaluate and understand. uRiKA [59] allows the invocation of few predefined graph
algorithms that were requested by users. These algorithms are tailored and optimized
for the uRiKA appliance by expert researchers; users cannot add any new algorithm
or modify any existing one. In contrast, SPARTex allows users to implement any
algorithm using simple vertex-centric API’s.

Blazegraph [101] is a commercial, specialized, high-performance graph database
with support for the Blueprints and RDF/SPARQL APIs. Recently, Blazegraph
announced the release of their RDF GAS API which enables rich RDF analytical and
mining tasks. Since it is a specialized product, the entire graph analytics software
stack had to be implemented. SPARTex, on the other hand, takes a different approach
by supporting rich RDF analytics on top of distributed graph system. Blazegraph uses
the Gather Apply Scatter (GAS) [51] model for implementing data mining algorithms
which can be invoked by SPARQL end points as services. However, due to the 1-D
partitioning scheme in their distributed version, the solution is limited to a single

machine and does not scale-out efficiently [102].

2.2.4 Related Solutions

Gao et al. [103] introduce a system for continuous approximate pattern detection
over evolving graphs. Fard et al. [104] propose a vertex-centric approach for graph
simulation on massive graphs. Graph simulation provides a practical alternative to
subgraph isomorphism, which is an NP-Complete problem, by relaxing its stringent
matching conditions. This allows matches to be found in polynomial time. These
solutions are approximate, while SPARQL requires exact subgraph pattern match-
ing. Horton+ [105] solves reachability queries over large attributed multi-graphs.
It introduces a declarative query language with a compiler and its own query opti-

mizer. Horton+ solves reachability queries which consider only paths with closures
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and cannot solve generic SPARQL queries with complex structure or cycles. More-
over, unlike reachability queries, SPARQL allows variable vertices that can match
any node in the data. Motivated by the fact that graph data are usually stored in
relational databases and users tend to apply SQL as well as graph algorithms on their
data, Jindal et al. introduce Vertexica [106] a relational databases system capable
of performing graph analytics. Vertexica does not focus on RDF; hence, SPARQL

queries are not supported.



45

Chapter 3

Exploiting Hash-based Locality

Everything is theoretically
impossible, until it is done.

Robert A. Heinlein
1907 — 1988 CE

AdPart advocates the reliance on workload guided partitioning, where data is in-
crementally and dynamically repartitioned based on the workload. However, at any
moment in time, there might be queries that are not favored by the current distribu-
tion. While AdPart will eventually adapt to them, these queries need to be executed
efficiently; otherwise, the whole system performance will degrade. Therefore, AdPart
introduces an efficient baseline for distributed SPARQL query evaluation. AdPart
exploits the hash-based data locality to execute queries comparable or faster than
state-of-the-art distributed RDF systems. This chapter, discusses the system archi-
tecture of AdPart and its distributed SPARQL query execution approach. Adaptive

redistribution is introduced in the next chapter.

3.1 System Architecture

Overview: AdPart employs the typical master-slave paradigm and is deployed on a
shared-nothing cluster of machines (see Figure 3.1). This architecture is used by other
systems, e.g., Trinity. RDF [27] and TriAD [32]. AdPart uses the standard Message

Passing Interface (MPI) [107] for master-worker communication. In a nutshell, the
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User RDF Data Communication Framework (MPI)
Y A nA 5 A Intermediate‘}:{esults A
> g 3 Y Y
o x 3| |2
o o S 2 | worker1 Worker 2 Worker n
o |& = |3
—~ ~ ~
s |° - ~~<
v< V& _- ~<
Master Worker
| String Dictionary | Local Query Planner|| Query Processor
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Figure 3.1: System architecture of AdPart

master begins by encoding the data and partitioning it among workers. Each worker
loads its triples and collects local statistics. Then, the master aggregates these statis-
tics and becomes ready for answering queries. Each query is submitted to the master,
which decides whether the query can be executed in parallel or distributed mode. In
parallel mode, the query is evaluated concurrently by all workers without commu-

nication. Queries in distributed mode are also evaluated by all workers but require

communication.

3.1.1 Master

String Dictionary. RDF data contain long strings in the form of URIs and literals. To

avoid the storage, processing, and communication overheads, we follow the common
practice [19, 27, 30, 32] and encode RDF strings into numerical IDs and build a

bi-directional dictionary.

Data Partitioner. A recent study [40] showed that 60% of the joins in a real workload

of SPARQL queries are on the subject column. Hence, AdPart uses lightweight node-

based partitioning using subject values. Given W workers, a triple ¢ is assigned to



47

worker w;, where i is the result of a hash function applied on t.subject. * This way
all triples that share the same subject go to the same worker. Consequently, any star
query joining on subjects can be evaluated without communication cost. AdPart does
not hash on objects because they can be literals and common types; this would assign
all triples of the same type to one worker, resulting in load imbalance and limited
parallelism [26].

Statistics Manager. It maintains statistics about the RDF graph, which are used for

global query planning and during adaptivity. Statistics are collected in a distributed
manner during bootstrapping.

Locality-Aware Query Planner. Our planner uses the global statistics from the statis-

tics manager and the pattern index from the redistribution controller to decide if a
query, in whole or partially, can be processed without communication. Queries that
can be fully answered without communication are planned and executed by each
worker independently. On the other hand, for queries that require communication,
the planner exploits the hash-based data locality and the query structure to find a
plan that minimizes communication and the number of distributed joins (Section 3.2).

Failure Recovery. The master does not store any data but can be considered as a

single-point of failure because it maintains the dictionaries, global statistics, and PI.
A standard failure recovery mechanism (log-based recovery [108]) can be employed by
AdPart. Assuming stable storage, the master can recover by loading the dictionaries
and global statistics because they are read-only and do not change in the system.
The PI can be recovered by reading the query log and reconstructing the heat map.
Workers on the other hand store data; hence, in case of a failure, data partitions
need to be recovered. Shen et al. [109] proposes a fast failure recovery solution for
distributed graph processing systems. The solution is a hybrid of checkpoint-based

and log-based recovery schemes. This approach can be used by AdPart to recover

'For simplicity, we use: i = t.subject mod W.
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worker partitions and reconstruct the replica index. Reliability is outside the scope

of this thesis and we leave it for future work.

3.1.2 Worker

Storage Module. Each worker w; stores its local set of triples D; in an in-memory

data structure, which supports the following search operations, where s, p, and o are

subject, predicate, and object, respectively:
1. given p, return set {(s,0) | (s,p,0) € D;}.
2. given s and p, return set {o | (s,p,0) € D;}.
3. given o and p, return set {s | (s,p,0) € D;}.

Since all the above searches require a known predicate, we primarily hash triples in
each worker by predicate. The resulting predicate index (simply P-index) immediately
supports search by predicate (i.e., the first operation). Furthermore, we use two
hash maps to re-partition each bucket of triples having the same predicate, based on
their subjects and objects, respectively. These two hash maps support the second
and third search operation and they are called predicate-subject index (PS-index)
and predicate-object index (PO-index), respectively. Given the number of unique
predicates is typically small, our storage scheme avoids unnecessary repetitions of
predicate values. Note that when answering a query, if the predicate itself is a variable,
then we simply iterate over all predicates. Our indexing scheme is tailored for typical
RDF knowledge bases and their workloads. Being orthogonal to the rest of the
system, alternative schemes, like indexing all SPO combinations [19, 22], could be
used at each worker). Finally, the storage module computes statistics about its local
data and shares them with the master after data loading.

Query Processor. Each worker has a query processor that operates in two modes: (i)

Distributed Mode for queries that require communication. In this case, the locality-
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aware planner of the master devises a global query plan. Each worker gets a copy of
this plan and evaluates the query accordingly. Workers solve the query concurrently
and exchange intermediate results (Section 3.2.1). (ii) Parallel Mode for queries that
can be answered without communication. In this case, the master broadcasts the
query to all workers. Each worker has all the data needed for query evaluation;
therefore it generates a local query plan using its local statistics and executes the
query without communication.

Local Query Planner. Queries executed in parallel mode are planned by workers au-

tonomously. For example, star queries joining on the subject are processed in parallel

due to the initial partitioning.

3.2 Query Evaluation

A basic SPARQL query consists of multiple subquery triple patterns: ¢, qs,. .., qy,.
Each subquery includes variables or constants, some of which are used to bind the
patterns together, forming the entire query graph (e.g., see Figure 1.2(b)). A query
with n subqueries requires the evaluation of n — 1 joins. Since data are memory
resident and hash-indexed, we favor hash joins as they prove to be competitive to
more sophisticated join methods [110]. Our query planner devises an ordering of
these subqueries and generates a left-deep join tree, where the right operand of each
join is a base subquery (not an intermediate result). We do not use bushy tree plans

to avoid building indices for intermediate results.

3.2.1 Distributed Query Evaluation

In AdPart, triples are hash partitioned among many workers based on subject values.
Consequently, subject star queries (i.e., all subqueries join on the subject column) can
be evaluated locally in parallel without communication. However, for other types of

queries, workers may have to communicate intermediate results during join evaluation.
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Table 3.1: Matching result of ¢; on workers w; and ws.

w1 Wo
?prof ‘ ?prof
James | | Bill

Table 3.2: The final query results ¢; > ¢ on both workers.

w1 Wo
?prof | 7stud ?prof | 7stud
James | Lisa Bill | Lisa
Bill | John
Bill | Fred

For example, consider the query in Figure 1.2 and the partitioned data graph in Figure

1.3. The query consists of two subqueries ¢; and ¢o, where:
e ¢;: (?prof, worksFor, CS)
e ¢o: (7stud, advisor, ?prof)

The query is evaluated by a single subject-object join. However, neither of the
workers has all the data needed for evaluating the entire query; thus, workers need
to communicate. For such queries, AdPart employs the Distributed Semi-Join (DSJ)
algorithm. Each worker scans the PO-index to find all triples matching ¢;. The
results on workers w; and wy are shown in Table 3.1. Then, each worker creates a
projection on the join column ?prof and exchanges it with the other worker. Once
the projected column is received, each worker computes the semi-join ¢ X7pr0f G2
using its PO-index. Specifically, w; probes p = advisor,o = Bill while wy probes
p = advisor, o = James to their PO-index. Note that workers also need to evaluate
semi-joins using their local projected column. Then, the semi-join results are shipped
to the sender. In this case, w; sends (Lisa, advisor, Bill) and (Fred, advisor, Bill)
to wsy; no candidate triples are sent from wy because James has no advisees on w,.
Finally, each worker computes the final join ¢; >7p.0r g2. The final query results at

both workers are shown in Table 3.2.
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Table 3.3: The final query results ¢ > ¢; on both workers.
w1 Wo
?prof | 7stud ‘ ?prof | 7stud
James | Lisa ‘ Bill | John
Bill Lisa
Bill Fred

Hash-based data locality

Observation 1. DSJ can benefit from subject hash locality to minimize communica-
tion. If the join column of the right operand is subject, the projected column of the
left operand is hash distributed by all workers, instead of being broadcast to every

worker.

In our example, since the join column of gs is the object column (?prof), each
worker sends the entire join column to the other worker. However, based on Obser-
vation 1, communication can be minimized if the join order is reversed (i.e., gz < q1).
In this case, each worker scans the P-index to find triples matching ¢, and creates a
projection on ?prof. Then, because ?prof is the subject of ¢, both workers exploit
the subject hash-based locality by partitioning the projection column and communi-
cating each partition to the respective worker, as opposed to broadcasting the entire
projection column to all workers. Consequently, w; sends Bill to only ws because
of Bill’s hash value. The final query results are shown in Table 3.3. Notice that the
final results are the same for both query plans; however, the results reported by each

worker are different.

Pinned subject

Observation 2. Under the subject hash partitioning, combining right-deep tree plan-
ning and the DSJ algorithm, causes the intermediate and final results to be local to
the subject of the first executed subquery pattern p;. We refer to this subject as

pinned_subject.
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Partial Result Partial Result

e N

| ?prof | ?stud | 2univ | | ?prof | ?stud | 2univ |

HashJC(?stud)

%4 -------------------------------------------------- > D%f
/ PROBE(PS-index) / PROBE(PS-index)
| ?prof | ?stud | | ?stud | uGradFrom | ?2univ | | ?prof | ?stud | | ?stud | uGradFrom | ?2univ |
DSJoprof 7 - >J DSJaprof
BroadcastJC(?prof)
SCAN(PO-index) PROBE(PO-index) SCAN(PO-index) PROBE(PO-index)
worksFor | CS | | ?stud | advisor | ?prof | worksFor | CS ‘ | ?stud | advisor | ?prof |
Worker 1 Worker 2

Figure 3.2: Executing query @)p.s in the following order: ¢, ¢z, ¢3

In our example, executing ¢, first causes "prof to be the pinned_subject because
it is the subject of ¢;. Hence, the intermediate and final results are local (pinned) to
the bindings of ?prof, James and Bill in w; and ws, respectively. Changing the order
by executing ¢, first made ?stud to be the pinned_subject. Accordingly, the results
are pinned at the bindings of 7stud.

AdPart leverages Observations 1 and 2 to minimize communication and synchro-
nization overhead. To see this, consider Q.,y which extends the query in Figure 1.2
with one more triple pattern, namely g¢s5: (?stud, uGradFrom, ?univ). Assume Qpof
is executed in the following order: ¢, g2, g3. The query execution plan is pictorially
shown in Figure 3.2. The results of the first join (i.e., ¢; &< ¢2) are shown in Table 3.2
(?prof is the pinned_subject). The query continues by joining the results of (g1 > ¢2)
with g3 on 7stud, the subject of ¢q3. Both workers project the intermediate results
on ?stud and hash distribute the bindings of ?stud (Observation 1). Then, all work-
ers evaluate semi-joins with ¢3 and return the candidate triples to the other workers
where the final query results are formulated.

Notice that the execution order ¢qi, g2, ¢3 requires communication for evaluating

both joins. A better ordering is go, q1, g3. The execution plan is shown in Figure 3.3.



53

Partial Result Partial Result
| ?prof | ?stud | 2univ | | ?prof | ?stud | ?univ|
B jLHJ?stud C ﬂLHJ?stud
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Worker 1 Worker 2

Figure 3.3: Executing query @p.s in the following order: g2, ¢1, g3

Table 3.4: Communication cost for different join types

Subject Pinning SS SO/00 oS
Pinned No Communication  Broadcast Direct Communication
Unpinned Direct Communication Broadcast Direct Communication

The first join (i.e., go > ¢1) already proved to incur less communication by avoiding
broadcasting the entire projection column. The result of this join is pinned at 7stud
as shown in Table 3.3. Since the join column of g3 (7stud) is the pinned_subject,
joining (g2 > ¢1) with g3 can be processed by each worker without communication
using Local Hash Join (LHJ). Therefore, the ordering of the subqueries affects the

amount of communication incurred during query execution.

The four cases of a join

Formally, joining two subqueries, say p; (possibly an intermediate pattern) and p;, has
four possible scenarios: the first three assume that p; and p; join on columns ¢; and c;,
respectively. (i) If ¢ = subject AND ¢y = pinned_subject, then the join is processed in
parallel without communication. (ii) If ¢y = subject AND ¢y # pinned_subject, then

the join is evaluated using DSJ, but the projected join column of p; is hash distributed.
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(iii) If co # subject, then the join is executed using DSJ and the projected join column
of p; is sent from all workers to all other workers. Finally, (iv) if p; and p; join on
multiple columns, we opt to join on the subject column of p;, if it is a join attribute.
This allows the join column of p; to be hash distributed as in (7). If the subject
column of p; is not a join attribute, the projection column is broadcast to all workers,
as in (4ii). Verifying on the other columns is carried out during the join finalization.
Table 3.4 summarizes these scenarios.

Based on the above four scenarios, we introduce our Locality-Aware Distributed
Query Execution algorithm (see Algorithm 1). The algorithm receives an ordering
of the subquery patterns. For each join iteration, if the second subquery joins on
the pinned subject, the join is executed without communication (line 7). Otherwise,
the join is evaluated by the DSJ algorithm (lines 8-28). In the first iteration, p; is
a base subquery pattern; however, for the subsequent iterations, p; is a pattern of
intermediate results. If p; is the first subquery to be matched, each worker finds the
local matching of p; (line 10) and projects on the join column ¢; (line 13). If the join
column of g, is subject, then each worker hash distributes the projected column (line
15); or sends it to all other workers otherwise (line 17). To avoid the overhead of
synchronization, communication is carried out using non-blocking MPI routines. All
workers perform semi-join on the received data (line 22) and send the results back to
w (line 23). Finally, each worker finalizes the join (line 27) and formulates the final

result (line 28). Lines 22 and 27 are implemented as local hash-joins using the local
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index in each worker. The result of a DSJ iteration becomes p; in the next iteration.
Input: Query Q with n ordered subqueries {qi1,q2,...qn}

Result: Answer of Q
1 P14 qu;
2 pinned_subject < pi.subject;

3 for i+ 2 tondo

4 P2 < qi;
5 [e1, c2]+ getJoinColumns(p1, p2);
6 if co == pinned_subject AND ca is subject then
7 L p1 < JoinWithoutCommunication (p1, p2, c1, €2);
8 else
9 if p1 NOT intermediate pattern then
10 L RS + answerSubquery(p1);
11 else
12 L RS is the result of the previous join
13 RS1[c1] = me, (RS1); // projection on ¢
14 if c2 is subject then
15 L Hash RS1[c1] among workers;
16 else
17 L Send RS1[c1] to all workers;
18 Let RS> < answerSubquery(ps);
19 foreach worker w, w: 1 — N do
20 // RSiwlc1] is the RS1[c1] received from w
21 // CRSa2,, are candidate triples of RS that join with RS1[c1]
22 CRS2y + RShU[Cl] ><1RSlw[cl].01:R52.02 RSQ;
23 Send C RS2, to worker w;
24 foreach worker w, w: 1 — N do
25 // RS2y is the C RS2y, received from worker w
26 // RESy is the result of joining with worker w
27 RES, < RSy MRS .c1=RSa2y.co RS2w;
28 p1 < RES1URES2U....URESy;

Algorithm 1: Locality-Aware Distributed Execution
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Table 3.5: Triples matching (?s, advisor, 7p) and (?s, uGradFrom, 7u) on two workers.

Worker 1 Worker 2
‘ advisor 7s p ‘ advisor ‘ 7s p
Fred Bill ‘John Bill
Lisa Bill

Lisa | James

\ uGradFrom ?s u ‘ uGradFrom ?s u
Lisa MIT Bill | CMU
James | CMU John | CMU

Algorithm 1 can solve star queries that join on the subject in parallel mode.
Traditionally, the planning is done by the master using global statistics. We argue
that allowing each worker to plan the query execution autonomously would result in
a better performance. For example, using the data graph in Figure 1.3, Table 3.5

shows triples that match the following star query:
e ¢1: (s, advisor, 7p)
e ¢: (7s, uGradFrom, 7u)

Any global plan (i.e., g1 > go or ¢ < ¢;) would require a total of four index
lookups to solve the join. However, w; and wsy can evaluate the join using 2 and 1
index lookup(s), respectively. Therefore, to solve such queries, the master sends the
query to all workers; each worker utilizes its local statistics to formulate the execution
plan, evaluates the query locally without communication, and sends the final result

to the master.

3.2.2 Locality-Aware Query Optimization

Our locality-aware planner leverages the query structure and hash-based data dis-
tribution during query plan generation to minimize communication. Accordingly,
the planner uses a cost-based optimizer, based on Dynamic Programming (DP), for

finding the best subquery ordering. The same approach is used by other systems
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(32, 19, 27]. Each state S in DP is identified by a connected subgraph o of the query
graph. A state can be reached by different orderings on p. Thus, we maintain in each
state the ordering that results in the least estimated communication cost (S.cost).
We also keep estimated cardinalities of the variables in the query. Furthermore, in-
stead of maintaining the cardinality of the state, we keep the cumulative cardinality
of all intermediate results that led to this state. Although the cardinality of the
state will be the same regardless of the ordering, different orderings result in different
cumulative cardinalities.

We initialize a state S for each subquery pattern (subgraph of size 1) p;. S.cost is
initially zero because a query with a single pattern can be answered without commu-
nication. Then, we expand the subgraph by joining with another pattern p;, leading

to a new state S’ such that:

S'.cost = min(S'.cost, S.cost + cost(S, p;))

If we reach a state using different orderings with the same cost, we keep the one
with the least cumulative cardinality. This happens for subqueries that join on the
pinned_subject. To minimize the DP table size, we maintain a global minimum cost
(minC) of all found plans. Because our cost function is monotonically increasing, any
branch that results in a cost > minC' is pruned. Moreover, because of Observation
1, we start the DP process by considering subqueries connected to the subject with
the highest number of outgoing edges; this increases the chances for converging to
the optimal plan faster. The space complexity of the DP table is O(s) where s is the
number of connected subgraphs in the query graph. Since each state can be extended
by multiple edges, the number of updates applied to the DP table (i.e., the time

complexity) is O(sE), where E is the number of edges in the query graph.
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Figure 3.4: Statistics calculation for p=advisor, based on Figure 1.3.

3.2.3 Cost Estimation

We first describe the statistics used for cost calculation. Recall that AdPart col-
lects and aggregates statistics from workers for global query planning and during the
adaptivity process. Keeping statistics about each vertex in the RDF data graph is
too expensive. Therefore, we focus on predicates rather than vertices; this way the
storage complexity of statistics is linear to the number of unique predicates, which
is typically small compared to the data size. For each unique predicate p, we calcu-
late the following: (i) The cardinality of p, denoted as |p|, is the number of triples
in the data graph that have p as predicate. (ii) |p.s| and |p.o| are the numbers of
unique subjects and objects using predicate p, respectively. (iii) The subject score of
p, denoted as Pg, is the average degree of all vertices s, such that (s,p, ?z) € D. (iv)
The object score of p, denoted as pg), is the average degree of all vertices o, such that
(?x,p,0) € D. (v) Predicates Per Subject P,s = |p|/|p.s| is the average number of
triples with predicate p per unique subject. (vi) Predicates Per Object B, = |p|/|p.o|
is the average number of triples with predicate p per unique object.

For example, Figure 3.4 illustrates the computed statistics for predicate advisor
using the data graph of Figure 1.3. Since advisor appears four times with three unique
subjects and two unique objects, |p| = 4, |p.s| = 3 and |p.o| = 2. The subject score pg
is (1+3+4)/3 = 2.67 because advisor appears with four unique subjects: Fred, John

and Lisa, whose degrees (i.e., in-degree plus out-degree) are 1, 3 and 4, respectively.
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Similarly, po = (6 +4)/2 = 5. Finally, the number of predicates per subject P, is
4/3 = 1.3 because Lisa is associated with two instances of the predicate (i.e., two
advisors).

We set the initial communication cost of DP states to zero. Cardinalities of sub-
queries with variable subjects and objects are already captured in the master’s global
statistics. Hence, we set the cumulative cardinalities of the initial states to the cardi-
nalities of the subqueries and set the size of the subject and object bindings to |p.s|
and |p.o|. Furthermore, the master consults the workers to update the cardinalities
of subquery patterns that are attached to constants or have unbounded predicates.
This is done locally at each worker by simple lookups to its PS- and PO- indices to
update the cardinalities of variables bindings accordingly.

We estimate the cost of expanding a state S with a subquery p;, where ¢; and P
are the join column and the predicate of p;, respectively. If the join does not incur
communication, the cost of the new state S’ is zero. Otherwise, the expansion is
carried out through DSJ and we incur two phases of communication: (i) transmitting
the projected join column and (ii) replying with the candidate triples. Estimating
the communication in the first phase depends on the cardinality of the join column
bindings in S, denoted as B(c;). In the second phase, communication depends on
the selectivity of the semi-join and the number of variables v in p; (constants are not
communicated). Moreover, if ¢; is the subject column of p;, we hash distribute the
projected column. Otherwise, the column needs to be sent to all workers. The cost

of expanding S with p; is:
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0,if ¢; is subject & ¢; = pinned_subject

S.B(cj) + (v - S.B(c;) - Pps),

cost(S,pj) = if ¢; is subject & c; # pinned_subject

(S.B(cj) - N) + (v N - S.B(cj) - Ppo),

if ¢; is not subject

Next, we need to re-estimate the cardinalities of all variables v € p;. Let |p.7|
denote |p.s| or |p.o| if T is subject or object, respectively. Similarly, let Py denote
| P,s| if T is subject or |P,,| if ¥ is object. We re-estimate the cardinality of ¥ in the

new state S’ as:

min(S.B(v),|P|), ifv=1
S".B(©) = § min(S.B®), |p.v]), ifo=c; &v>1
min(S.B(v),S.B(V) - Py, [p.v]), f0#c¢; &v>1

We use cumulative cardinality when we reach the same state by two different
orderings. Thus, we also re-estimate the cumulative state cardinality [S[. If P,
denotes |Pps| or |P,| depending on the position of ¢;, [S'| = |S| - (1 + P,,). Note
that we use an upper bound estimation for cardinalities. A special case of the last
equation is when a subquery has a constant; then, we assume that each tuple in
the previous state connects to this constant by setting P,.,=1. Note that a more
accurate cardinality estimation like the one used in Trinity. RDF [27] is orthogonal to

our optimizer.
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Table 3.6: Datasets Statistics in millions (M)

Dataset Triples (M) #S (M) #O (M) #SnO (M) #P  Indegree (Avg/StDev) Outdegree (Avg/StDev)
LUBM-10240 1,366.71 222.21 165.29 51.00 18 16.54,/26000.00 12.30/5.97
WatDiv 109.23 5.21 17.93 4.72 86 22.49/960.44 42.20/89.25
‘WatDiv-1B 1,092.16 52.12 179.09 46.95 86 23.69/2783.40 41.91/89.05
YAGO2 284.30 10.12 52.34 1.77 98 5.43/2962.93 28.09/35.89
Bio2RDF 4,287.59 552.08 1,075.58 491.73 1,714 8.64/21110.00 16.83/195.44

3.3 Experimental Evaluation

In this section, we evaluate the non-adaptive version of AdPart, coined AdPart-NA
against existing systems. The adaptive version of AdPart will be evaluated in the
next chapter. In Section 3.3.1, we provide the details of the data, the hardware
setup, and the competitors to our approach. In Section 3.3.2, we demonstrate the
low startup and initial replication overhead of AdPart-NA compared to all other
systems. Then, in Section 3.3.3, we apply queries with different complexities on
different datasets to show that AdPart-NA leverages the subject-based hash locality
to achieve better or similar performance compared to other systems. The results show
that the baseline query evaluation i.e. for queries that are not favored be the current
distribution, are answered efficiently by AdPart-NA without jeopardizing the overall

system performance.

3.3.1 Setup and Competitors

Datasets: We conducted our experiments using real and synthetic datasets of variable
sizes. Table 3.6 describes these datasets, where #S, #P, and #0O denote respec-
tively the numbers of unique subjects, predicates, and objects. We use the synthetic
LUBM? data generator to create a dataset of 10,240 universities consisting of 1.36
billion triples. LUBM and its template queries are used for testing most distributed
RDF engines [27, 30, 31, 32]. However, LUBM queries are intended for semantic in-

ferencing and their complexities lie in semantics not structure. Therefore, we also use

Zhttp:/ /swat.cse.lehigh.edu/projects/lubm/
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WatDiv? which is a recent benchmark that provides a wide spectrum of queries with
varying structural characteristics and selectivity classes. We used two versions of this
dataset: WatDiv (109 million) and WatDiv-1B (1 billion) triples. As both LUBM and
WatDiv are synthetic, we also use two real datasets. YAGO2? is a real dataset derived
from Wikipedia, WordNet and GeoNames containing 300 million triples. Bio2RDF®
dataset provides linked data for life sciences and contains 4.64 billion triples connect-
ing 24 different biological datasets. The details of all queries and workloads used in
this thesis are available in the Appendix A.1.

Hardware Setup: We implemented AdPart in C++ and used a Message Passing In-

terface library (MPICH2) for synchronization and communication. Unless otherwise
stated, we deploy AdPart and its competitors on a cluster of 12 machines each with
148GB RAM and two 2.1GHz AMD Opteron 6172 CPUs (12 cores each). The ma-
chines run 64-bit 3.2.0-38 Linux Kernel and are connected by a 10Gbps Ethernet
switch.

Competitors: We compare AdPart-NA against TriAD [32], a recent in-memory RDF
system, which is shown to have the fastest query response times to date. We compare
to TriAD and TriAD-SG; the former uses lightweight hash partitioning while the later
uses graph summaries for join-ahead pruning. We also compare against three Hadoop-
based systems which use lightweight partitioning: CliqueSquare[38], SHARD [28] and
H2RDF+ [30]. Furthermore, we compare to two systems that rely on static replication
by prefetching and use RDF-3X as underlying data store: SHAPE [31] and H-RDF-3X
[26]. We configure SHAPE with full level semantic hash partitioning and enable the
type optimization (see [31] for details). For H-RDF-3X, we enable the type and high
degree vertices optimizations (see [26] for details). Finally, we compare to DREAM

[78], a distributed system that does not partition the data, rather it distributes the

3http://db.uwaterloo.ca/watdiv/
4http:/ /yago-knowledge.org/
Shttp://download.bio2rdf.org/release/2/
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Table 3.7: Partitioning Configurations
LUBM-10240 WatDiv Bio2RDF YAGO2

SHAPE 2 forward 3 undirected 2 undirected 2 forward
H-RDF-3X 2 undirected 3 undirected 2 undirected 2 undirected

query execution among fully-fledged unpartitioned data stores. We compare with
distributed systems only, because they outperform state-of-the-art centralized RDF

systems.

3.3.2 Startup Time and Initial Replication

Our first experiment measures the time it takes all systems for preparing the data
prior to answering queries. We exclude the string-to-id mapping time for all systems.
For fair comparison, SHAPE and H-RDF-3X were configured to partition each dataset
such that all its queries are processable without communication. Table 3.7 shows the
details of these partitioning configurations. Using 2-hop forward guarantee for H-
RDF-3X (which minimizes its replication [26]), we cannot guarantee that all queries
can be answered without communication. This is mainly due to the high degree
vertices optimization. For TriAD-SG, we used the same number of partitions reported
in [32] for partitioning LUBM-10240 and WatDiv. Determining a suitable number
of summary graph partitions requires empirical evaluation of some workload on the
data or a representative sample. While generating a representative sample from these
real data might be tricky, empirical evaluation on the original big data is costly
[32]. Therefore, for fair comparison, we do not evaluate TriAD-SG on Bio2RDF and
YAGO2.

As Table 3.8 shows, systems that rely on METIS for partitioning (i.e., H-RDF-3X
and TriAD-SG) have significant startup cost. This is because METIS does not scale
to large RDF graphs. To apply METIS, we had to remove all triples connected to
literals; otherwise, METIS takes several days to partition LUBM-10240 and YAGO2.
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Table 3.8: Preprocessing time (minutes)
LUBM-10240 WatDiv Bio2RDF YAGO2

AdPart 14 1.2 29 4
TriAD 72 4 75 11
SHARD 72 9 143 17
H2RDF+ 152 9 387 22
CliqueSquare 167 10 N/A 19
SHAPE 263 79 >24h 251
DREAM 392 33 >24h 91
TriAD-SG 737 63 N/A N/A
H-RDF-3X 939 285 >24h 199

For LUBM-10240, SHAPE incurs less preprocessing time compared to METIS-based
systems. However, for WatDiv and YAGO2, SHAPE performs worse because of
data imbalance, causing some of the RDF-3X engines to take more time in building
the databases. Partitioning YAGO2 and WatDiv using 2-hop forward and 3-hop
undirected, respectively, placed all the data in a single partition. The reason is that
all these datasets have uniform URI’s, hence SHAPE could not utilize its semantic
hash partitioning. SHAPE and H-RDF-3X did not finish partitioning Bio2RDF and
were terminated after 24 hours.

SHARD and H2RDF+ employ lightweight partitioning, random and range-based,
respectively. CliqueSquare uses a combination of hash and vertical partitioning.
Therefore, they require less time compared to other systems. However, since they
are Hadoop-based, they suffer from the overhead of storing the data first on Hadoop
File System (HDFS) before building their data stores. TriAD and AdPart-NA use
lightweight hash partitioning and avoid the upfront cost of sophisticated partitioning
schemes. As Table 3.8 shows, both systems start 4X up to two orders of magnitude
faster than other systems. TriAD takes more time because it hash partitions the
data twice (on the subject and object columns). Furthermore, TriAD requires extra
time for sorting its indices and computing statistics. Finally, while DREAM does

not partition the data among workers, it incurs a significant overhead building and
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Table 3.9: Initial replication

LUBM-10240 WatDiv YAGO2
SHAPE 42.9% (1 worker) 0% (1 worker) 0%
H-RDF-3X 19.5% 1090% 73.7%

indexing the entire database on a single machine. While not reported in this experi-
ment, there is another significant overhead for copying the database among all nodes
because of the shared nothing environment. This approach works reasonably well for
small datasets, however; it does not scale for large datasets like Bio2RDF, requiring

more than a day for building the database.

Initial replication: We report only the initial replication of SHAPE and H-RDF-3x,

since AdPart-NA, TriAD, SHARD and H2RDF+ do not incur any initial replication
(the replication caused by AdPart’s adaptivity is evaluated in the next chapter). For
LUBM-10240, H-RDF-3X results in the least replication (see Table 3.9) as LUBM is
uniformly structured around universities (high degree vertices). Because of the high
degree optimization, all entities of type university and their edges are removed before
partitioning the graph using METIS. The resulting partitions are fully disconnected
with zero edge cut. The extra replication is mainly because of the ownership triples
used for duplicate elimination (see [26] for details). With full level semantic hash
partitioning and type optimization, SHAPE incurs almost double the replication of
H-RDF-3X. For WatDiv, METIS produces very bad partitioning because of the dense
nature of the data. Consequently, partitioning the whole data blindly using k-hop
guarantee would result in excessive replication because of the high edge-cut. H-RDF-
3X [26] replicated the data almost 11 times, i.e., each partition has almost the whole
original graph. Because of the URI’s uniformity of WatDiv and YAGO2, SHAPE
places the data on a single partition. Therefore, it incurs no replication but performs

as good as a single machine RDF-3X store.
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Table 3.10: Query runtimes for LUBM-10240 (ms)

LUBM-10240 L1 L2 L3 L4 L5 L6 L7 Geo-Mean
AdPart-NA 2,743 120 320 1 1 10 3,203 75
TriAD 6,023 1,519 2,387 6 4 114 17,586 369
TriAD-SG 5,392 1,774 4,636 9 5 10 21,567 333
SHAPE 25,319 4,387 25,360 1,603 1,574 1,567 15,026 5,575
H-RDF-3X 7,004 2,640 7,957 1,635 1,586 1,965 7,175 3,412
H-RDF-3X (in-memory) 6,841 2,597 7,948 1,596 1,594 1,926 7,551 3,397
CliqueSquare 125,020 71,010 80,010 90,010 24,000 37,010 224,040 74,488
H2RDF+ 285,430 71,720 264,780 24,120 4,760 22,910 180,320 59,275
SHARD 413,720 187,310 aborted 358,200 116,620 209,800 469,340 261,362
DREAM 13,031,410 98,263 2,358 18 14 10,755 4,700,381 12,110
DREAM (cached stats) 1,843,376 98,263 <1 18 14 468 83,053 911

3.3.3 Query Performance

In this section, we compare AdPart-NA on individual queries against state-of-the-
art distributed RDF systems. We demonstrate that even with simple partitioning
scheme AdPart-NA is competitive to systems that employ sophisticated partitioning
techniques. This shows that the subject-based hash partitioning and the distributed

evaluation techniques proposed in Section 3.2 are very effective.

LUBM dataset: In the first experiment (Table 3.10), we compare the performance of

all systems using the LUBM-10240 dataset and queries L1-L7 defined in [24]. Queries
L1-L7 can be classified based on their structure and selectivities into simple and
complex. L4 and L5 are simple selective star queries whereas L2 is a simple yet non-
selective star query that generates large final results. L6 is a simple query because it
is highly selective. L1, L3 and L7 are complex queries with large intermediate results
but very few final results.

SHARD CliqueSquare and H2RDF+ suffer from the expensive overhead of MapReduce-
based joins; hence, their performance is significantly worse than all other systems. The
flat plans of CliqueSquare significantly reduce the joins overhead for complex queries.
However, for selective simple queries, H2ZRDF+ avoids the overhead of MapReduce
based joins by solving these queries in a centralized manner. Hence, it achieves an
order of magnitude better performance for these queries. SHAPE and H-RDF-3X

perform better than MapReduce-based systems because they do not require commu-
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nication. H-RDF-3X performs better than SHAPE because it has less replication.

However, as both SHAPE and H-RDF-3X use MapReduce for dispatching queries to
workers, they still suffer from the non-negligible overhead of MapReduce (around 1.5
seconds on our cluster). Without this overhead, both systems would perform well
for simple selective queries. Even for complex queries, these systems still perform
reasonably well because queries run in parallel without any communication overhead.
For example, for query L7 which requires excessive communication, H-RDF-3X and
SHAPE perform better than TriAD and TriAD-SG. Note that this performance comes
at a high preprocessing cost. Obviously, with a low hop guarantee, the preprocess-
ing cost for SHAPE and H-RDF-3X is reduced but the query performance becomes
worse because of the MapReduce-based joins [32]. AdPart-NA outperform SHAPE
and H-RDF-3X for three reasons: (i) managing the original and replicated data in the
same set of indices results in large and duplicate intermediate results, rendering the
cost of join evaluation higher. (ii) To filter out duplicate results, H-RDF-3X requires
and additional join with the ownership triple pattern. (iii) TriAD and AdPart are
designed as in-memory engines while RDF-3X is disk-based. For fairness, we also
stored H-RDF-3X databases in a memory-mounted partition; still, it did not affect
the performance significantly.

DREAM relies on the underlying engine (RDF-3X) for gathering some statistics
that will be used by DREAM’s query planner to decide how a query is decomposed.
Statistics are collected by evaluating the selectivities of many joins in each decom-
posed subgraph. DREAM requires the execution of many permutations of these
joins in order to collect exact statistics. Statistics are cached for future queries on
a query-by-query basis, which explains the huge performance difference between the
two versions of DREAM. In a nutshell, the exact statistics calculation in DREAM
is impractical. A minimal change in the query structure will mandate statistics re-

calculation. Moreover, DREAM suffers from limited parallelism because of the query
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decomposition approach. The number of machines that can be utilized during query
execution is bounded by the number of join vertices. In the case of LUBM queries,
the maximum number of join vertices is 3. On the other hand, all other systems can
utilize all machines during query execution; which explains the performance supe-
riority of systems that execute the query in parallel by all workers like H-RDF-3X
SHAPE, AdPart-NA and TriAD. The overhead of DREAM’s limited parallelism is
significant in complex queries that generate large intermediate results i.e. queries L1
and L7.

In-memory RDF engines, AdPart-NA and TriAD, perform equally for queries L4
and L5 due to their high selectivities and star-shapes. AdPart-NA exploits the initial
hash distribution and solves these queries without communication. Similarly, L2
consists of a single subject-subject join; however, it is highly non-selective. TriAD
solves the query by two distributed index scans (one for each base subquery) followed
by a merge join. The merge join utilizes binary search for finding the beginning of
the sorted runs from the left and right relations. These searches perform well for
selective queries but not for L2. AdPart-NA performs better than TriAD-SG by
avoiding unnecessary scans. In other words, utilizing its hash indexes and the right
deep tree planning, AdPart-NA requires a single scan followed by hash lookups. As
a result, AdPart-NA is faster than TriAD by more than an order of magnitude. The
pruning technique of TriAD-SG eliminates the communication required for solving
L6. Therefore, it outperforms TriAD and AdPart-NA. DREAM execute all these
queries in a centralized manner by directing the queries to a single machine RDF-3X.

Although AdPart-NA and TriAD have a similar partitioning scheme (with the
difference in TriAD’s full locality awareness on both subjects and objects), AdPart-
NA achieves better performance than TriAD and TriAD-SG for all complex queries,
L1, L3 and L7. There are three reasons for this: (i) When executing distributed

merge/hash joins, TriAD needs to shard one/both relations among workers. On
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Table 3.11: Query runtimes for WatDiv (ms)
WatDiv-100 Machines L1-L5 S1-S7 F1-F5 C1-C3

AdPart-NA 5 9 7 160 111
TriAD 5 4 15 45 170
SHAPE 12 1,870 1,824 1,836 2,723
H-RDF-3X 12 1,662 1,693 1,778 1,929
H2RDF+ 12 5,441 8,679 18,457 65,786
CliqueSquare 12 29,216 23,908 40,464 59,835

the contrary, AdPart-NA only exchanges the unique values from the projected join
column. The effect becomes more prominent in TriAD when concurrent joins at
the lower level of the execution plan generate large and unnecessary intermediate
results. These results need to be asynchronously sharded before executing joins at
higher levels. (ii) AdPart-NA exploits the subject-based locality and the locality
of the intermediate results (pinning strategy) during planning to decide which join
operators can run without communication regardless of their location in the execution
tree. On the other hand, in TriAD, once a relation is sharded the locality of the
intermediate results is destroyed which mandates further shardings at higher join
operators. Finally, (iii) as in L2, if the join being executed is not selective, merge join
performs worse than the hash joins used by AdPart-NA. The pruning technique of
TriAD-SG was effective in reducing the overall slaves query execution time. However,
the cost for summary graph processing in L3 and L7 was high; hence, the high query
execution times compared to TriAD.

For L3, AdPart-NA is 7x to 14x faster than Triad and TriAD-SG, respectively.
AdPart-NA evaluates the join that gives an empty intermediate result early, which
avoids subsequent useless joins. However, the first few joins cannot be eliminated
during query planning time. For DREAM, the planner detects that there is a join with
empty result during statistics collection and elects to terminate the query execution.
Once DREAM caches the query statistics, it will decide that the query has empty

results and terminate.
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WatDiv dataset: The WatDiv benchmark defines 20 query templates® classified into

four categories: linear (L), star (S), snowflake (F) and complex queries (C). Simi-
lar to TriAD, we generated 20 queries using the WatDiv query generator for each
query category C, F, L and S. We deployed AdPart-NA on five machines to match
the setting of TriAD in [32]. Table 3.11 shows the performance of AdPart-NA com-
pared to other systems. For each query class, we show the geometric mean of each
system. H2RDF+ and CliqueSquare” perform worse than all other systems due to
the MapReduce overhead. H2RDF+ performs much better than CliqueSquare. The
reason is that, while the flat plans reduce the number of MapReduce-based joins,
H2RDF+ uses a more efficient implementation of the join operator using traditional
RDF indices. Furthermore, unlike CliqueSquare, H2RDF+ encodes the URIs and
literals of RDF data; hence it incurs minimal overhead when shuffling intermediate
results. SHAPE and H-RDF-3X, under 3-hop undirected guarantee, do not perform
better than a single-machine RDF-3X. SHAPE placed all the data in one machine
while H-RDF-3X replicated almost all the data everywhere. AdPart-NA and TriAD,
on the other hand, provide significantly better performance than MapReduce-based
systems. TriAD performs better than AdPart-NA for L and F queries as these queries
require multiple subject-object joins. TriAD can utilize the subject-object locality to
answer these joins without communication whereas AdPart needs to communicate.
Note that utilizing subject-object locality as in TriAD is orthogonal to our work. For
complex queries with large diameters AdPart-NA performs better as a result of its
locality awareness. The overhead for statistics calculation in DREAM was extremely
high because of the high number of triple patterns in WatDiv benchmark queries.
For example, a complex query from the WatDiv templates would take more than 24

hours to execute. Therefore, DREAM results were omitted.

Shttp://db.uwaterloo.ca/watdiv/basic-testing.shtml
"CliqueSquare crashed while executing 5 and 12 queries from the star and snowflake templates,
respectively.


http://db.uwaterloo.ca/watdiv/basic-testing.shtml
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Table 3.12: Query runtimes for YAGO2 (ms)

YAGO2 Y1 Y2 Y3 Y4 Geo-Mean
AdPart-NA 19 46 570 77 79
TriAD 16 1,568 220 18 100
SHAPE 1,824 665,514 1,823 1,871 8,022
H-RDF-3X 1,690 246,081 1,933 1,720 6,098
H2RDF+ 10,962 12,349 43,868 35,517 21,430
CliqueSquare 139,021 73,011 36,006 100,015 77,755
SHARD 238,861 238,861 aborted aborted 238,861

YAGO dataset: YAGO2 does not provide benchmark queries, therefore we created a

set of representative test queries (Y1-Y4). We show in Table 3.12 the performance
of AdPart-NA against all other systems. Similar, to the WatDiv dataset, H2RDF+
outperforms CliqueSquare and SHARD due to the utilization of HBase indices and its
distributed implementation of merge and sort-merge joins. AdPart-NA solves most of
the joins in Y1 and Y2 without communication; three out of four in Y1 and four out
of six in Y2. This explains the comparable to superior performance of AdPart-NA
compared to TriAD for Y1 and Y2, respectively. On the other hand, Y3 requires an
object-object join on which AdPart-NA needs to broadcast the join column. As a

results, TriAD performed better than AdPart-NA.

Bio2RDF dataset: Similar to YAGO2, the Bio2RDF dataset does not have bench-

mark queries; therefore, we defined five queries (B1-B5) with different structures and
complexities. B1 requires an object-object join which contradicts our initial partition-
ing. B2 and B3 are star queries with different number of triple patterns that require
subject-object joins. Therefore, it is expected that TriAD would perform better than
AdPart-NA (see Table 3.13). B4 is a complex query with 2-hop radius. AdPart-NA
incur communication and utilize subject-based locality during sharding. TriAD, on
the other hand, crashed during query evaluation, hence marked as N/A. B5 is a simple
star query with only one triple pattern in which all in-memory systems provide the

same performance. H2RDF+ and SHARD perform worse than other systems due to
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Table 3.13: Query runtimes for Bio2RDF (ms)

Bio2RDF B1 B2 B3 B4 B5 Geo-Mean
AdPart-NA 17 16 32 89 1 15
TriAD 4 4 5 N/A 2 4
DREAM 208 102 742  aborted 82 188
DREAM (cached stats) 16 15 142 aborted 12 25
H2RDF+ 5,580 12,710 322,300 7,960 4,280 15,076
SHARD 239,350 309,440 512,850 787,100 112,280 320,027

the MapReduce overhead. Overall, TriAD outperforms® all systems; however, as we
will show in the next chapter, when AdPart adapts, it performs significantly better

than all other systems.

Impact of Locality Awareness

In this experiment, we show the effect of locality aware planning on the distributed
query evaluation of AdPart-NA (non-adaptive). We define three configurations of
AdPart-NA: (i) We disable the pinned_subject optimization and hash locality aware-
ness. (ii) We disable the pinned_subject optimization while maintaining the hash
locality awareness; in other words, workers can still know the locality of subject ver-
tices but joins on the pinned subjects are synchronized. Finally, (iii) we enable all
optimizations. We run the LUBM (L1-L7) queries on the LUBM-10240 dataset on
all configurations. The query response times and the communication costs are shown
in Figures 3.5(a) and 3.5(b), respectively.

Disabling hash locality resulted in excessive communication which drastically af-
fected the query response times. Enabling the hash locality affected all queries except
L6 because of its high selectivity. The performance gain for other queries ranges from
6X up to 2 orders of magnitude. In the third configuration, the pinned subject op-
timization does not affect the amount of communication because of the hash locality
awareness. In other words, since the joining subject is local, AdPart does not commu-

nicate intermediate results. However, performance is affected by the synchronization

8Failed runs are not included when calculating the geometric mean.
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Figure 3.5: Impact of locality awareness on LUBM-10240.

overhead. The performance gain ranges from 26% in case of L6 to more than 90%
for L3. Queries like L2, 1.4 and L5 are not affected by this optimization because

they are star queries joining on the subject. The same behavior is also noticed in the

WatDiv-1B dataset.
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3.4 Discussion

Our experimental evaluation shows that, by employing simple hash-based partition-
ing, AdPart starts significantly faster than all existing systems. Moreover, by exploit-
ing subject hash-locality, AdPart achieves a competitive performance to state-of-the-
art systems that use sophisticated partitioning. AdPart does not only perform well
for star queries that join on subjects i.e. queries that consist of subject-subject joins
only, it also solve other types of joins very efficiently by minimizing communication
and synchronization overhead.

While the baseline approach of AdPart is competitive, there are other type of joins
for which AdPart incurs some overhead. In particular, object-object joins cannot be
solved without data broadcast. While this type of joins is not common [40], queries
with such joins can be frequent i.e. the same query is repetitive. In the next chapter,
we introduce the adaptivity feature of AdPart that allows it to incrementally adapts

its data partitioning to honor such type of joins.
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Chapter 4

Workload Adaptivity

We cannot solve our problems with
the same thinking we used when we
created them.

Albert Einstein
1879 — 1955 CE

Studies show that even minimal communication results in significant performance
degradation [26, 31, 32]. Thus, data should be redistributed to minimize, if not elim-
inate, communication and synchronization overheads. AdPart redistributes only the
parts of data needed for the current workload and adapts as the workload changes.
AdPart monitors the submitted queries in the form of a heat map to detect hot
patterns. Once such a pattern is detected, AdPart redistributes and potentially repli-
cates the data accessed by the pattern among workers. Consequently, AdPart adapts
to the query load and can answer more queries in parallel mode. The incremental
redistribution model of AdPart is a combination of hash partitioning and k-hop repli-
cation, guided by the query load rather than the data itself. Specifically, given a hot
pattern @ (hot pattern detection is discussed in Section 4.5), AdPart selects a special
vertex in the pattern called the core vertex (Section 4.2). The system groups the data
accessed by the pattern around the bindings of this core vertex. To do so, the system
transforms the pattern into a redistribution tree rooted at the core (Section 4.3).
Then, starting from the core vertex, first hop triples are hash distributed based on

the core bindings. Next, triples that match the second level subqueries are collocated
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Figure 4.1: System architecture of AdPart

and so on (Section 4.4). AdPart utilizes redistributed patterns to answer queries in

parallel without communication.

4.1 Revised System Architecture

To facilitate the adaptivity feature of AdPart, its architecture is slightly modified by

adding the modules highlighted in Figure 4.1.

4.1.1 Master

Redistribution Controller. It monitors the workload in the form of heat maps (Sec-

tion 4.5.1) and triggers the adaptive Incremental ReDistribution (IRD) (Section 4.4)
process for hot patterns. Data accessed by hot patterns are redistributed and poten-
tially replicated among workers. A redistributed hot pattern can be answered by all
workers in parallel without communication. Replicated hot patterns are indexed in a
structure called Pattern Index (PI) (Section 4.6.1). Patterns in the PI can be com-
bined for evaluating future queries without communication. Further, the controller

implements replica replacement policy to keep replication within a threshold.
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4.1.2 Worker

Replica Index. Each worker has an in-memory replica index (Section 4.6.2) that stores

and indexes replicated data as a result of the adaptivity. This index initially contains

no data and is updated dynamically by the incremental redistribution (IRD) process.

4.2 Core Vertex Selection

For a hot pattern, the choice of the core vertex has a significant impact on the amount
of replicated data as well as on query execution performance. For example, consider
query @1 = (?stud, uGradFrom, ?univ). Assume there are two workers, w; and ws,
and refer to the graph of Figure 1.3; MIT and CMU are the bindings of 7univ, whereas
Lisa, John, James and Bill bind to ?stud. Assume that ?univ is the core, then triples
matching ¢); will be hashed on the bindings of ?univ as shown in Figure 4.2(a). Note
that every binding of 7stud appears in one worker only. Now assume that 7stud
is the core and triples are hashed using the bindings of 7stud. This causes binding
Tuniv=CMU to exist on both workers (see Figure 4.2(b)). The problem becomes more
pronounced when the query has more triple patterns. Consider Qs = (7 AND (7prof,
gradFrom, 7univ) and assume that ?stud is chosen as core. Because CMU exists on
both workers, all its graduates (i.e., triples matching (?prof, gradFrom, CMU) will
also be replicated. Replication grows exponentially with the number of triple patterns
26, 31].

Intuitively, if random walks start from two random vertices (e.g., students), the
probability of reaching the same well-connected vertex (e.g., university) within a few
hops is higher compared to other nodes. In order to minimize replication, we must
avoid reaching the same vertex when starting from the core. Hence, it is reasonable
to select a well-connected vertex as the core. Although, well-connected vertices can
be identified by complex data mining algorithms in the literature, for the sake of

minimizing the computational cost, we employ a simple approach. We assume that
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Figure 4.2: Effect of choice of core on replication. In (a) there is no replication. In
(b) CMU is both workers.
connectivity is proportional to degree centrality (i.e., in-degree plus out-degree edges).
Recall from Section 3.2.3 that we maintain statistics pg and pgo for each predicate
p € P, where P is the set of all predicates in the data. Let P, and P, be the set of
all pg and po, respectively. We filter out predicates with extremely high scores and
consider them outliers!.

Outliers are detected using Chauvenet’s criterion [111] on P; then P,. If a predi-
cate p is detected as an outlier, we set: pg = po = —o0; otherwise we use pg and po
as computed in Section 3.2.3. Now, we can compute a score for each vertex in the

query as follows:

Definition 1 (Vertex score). For a query vertex v, let E,,(v) be the set of outgoing
edges and F;,(v) be the set of incoming edges. Also, let A be the set of all pg
for the E,,(v) edges and all pg for Ej,(v) edges. The vertex score U is defined as:

v = max(A).

Figure 4.3 shows an example for vertex score assignment. For vertex 7prof,

'In many RDF datasets, vertex degrees follow a power-law distribution, where few ones have
extremely high degrees. For example, vertices that appear as objects in triples with rdf:type have
very high degree centrality. Treating such vertices as cores results in imbalanced partitions and
prevents the system from taking full advantage of parallelism [26].
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Figure 4.3: Example of vertex score: numbers correspond to pg and po values. As-
signed vertex scores v are shown in bold.
Ei(?prof) = {advisor} and E,,(?prof) = {gradFrom}. Both predicates (i.e., ad-

visor and gradFrom) contribute a score of 5 to ?prof. Therefore, ?prof = 5.

Definition 2 (Core vertex). Given a query graph G = (V, F) such that V and E
are the set of vertices and edges, respectively. Let f(v) be a scoring function that

assigns a score to each v € V. We define the core vertex of () as v’ such that f(v') =

max f(v).

veV

In Figure 4.3, 7univ has the highest score, hence, it is the core vertex for this pattern.

4.3 Generating the Redistribution Tree

Let @ be a hot pattern that AdPart decides to redistribute and let D¢ be the data
accessed by this pattern. Our goal is to redistribute (partition) Dy among all work-
ers such that ) can be evaluated without communication. Unlike previous work that
performs static MinCut-based partitioning [54], we eliminate the edge cuts by repli-
cating edges that cross partitions. Since the balanced partitioning is an NP-complete
problem, we introduce a heuristic for partitioning D¢ with two objectives in mind: (i)
the redistribution of D¢ should benefit ) as well as other patterns. (ii) Because repli-
cation is necessary for eliminating communication, redistributing D¢ should result in
minimal replication.

To address the first objective, we transform the pattern () into a tree T by breaking

cycles and duplicating some vertices in the cycles. The reason is that cycles constrain
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Figure 4.4: The query in Figure 4.3 transformed into a tree using Algorithm 2.
Numbers near vertices define their scores. The shaded vertex is the core.

the data grouped around the core to be also cyclic. For example, the query pattern
in Figure 4.3 retrieves students who share the same alma mater with their advisors.
Grouping the data around universities without removing the cycle is not useful for
retrieving professors and their advisees who do not share the same university. Con-
sequently, the pattern in Figure 4.3 can be transformed into a tree by breaking the
cycle and duplicating the 7stud vertex as shown in Figure 4.4. We refer to the result
of the transformation as redistribution tree.

Our goal is to construct the redistribution tree that minimizes the expected
amount of replication. In Section 4.2, we explained why starting from the vertex
with the highest score has the potential to minimize replication. Intuitively, the same
idea applies recursively to each level of the redistribution i.e., every child node in the
tree has a lower score than its parent. Obviously, this cannot be always achieved;
for example in a path pattern where a lower score vertex comes between two high
score vertices. Therefore, we use a greedy algorithm for transforming a hot pattern
(@ into a redistribution tree T'. Specifically, using the scoring function discussed in
the previous section, we first transform () into a vertex weighted, undirected graph
(G, where each node has a score and the directions of edges in () are disregarded. The
vertex with the highest score is selected as the core vertex. Then, G is transformed
into the redistribution tree using Algorithm 2.

Algorithm 2 is a modified version of the Breadth-First-Search (BFS) algorithm,

which has the following differences: (i) unlike BES trees which span all vertices in
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Input: G = {V, E'}; a vertex-weighted, undirected graph, the core vertex v
Result: The redistribution tree T

1 Let edges be a priority queue of pending edges
2 Let verts be a set of pending vertices

3 Let core_edges be all incident edges to v’

4 visited[v'] = true;

5 T.root=v';

6 foreach e in core_edges do

7 edges.push (v, e.nbr, e.pred);

8 verts.insert(e.nbr);

9 T .add (v, e.pred, e.nbr);
10 while edges notEmpty do
11 (parent,vertex, predicate) < edges.pop();
12 visited[vertex| = true;

13 verts.remove (vertex);

14 foreach e in vertex.edges do

15 if e.nbr NOT visited then

16 if e.nbr ¢ verts then

17 edges .push (vertex, e.nbr, e.pred);
18 verts.insert(e.nbr);

19 T.add (vertex, e.pred, e.nbr);
20 else
21 L T .add (vertex, e.pred, duplicate(e.nbr));

Algorithm 2: Pattern Transformation

the graph, our tree spans all edges in the graph. Each of the edges in the query
graph should appear exactly once in the tree while vertices may be duplicated. (ii)
During traversal, vertices with high scores are identified and explored first (using a
priority queue). Since our traversal needs to span all edges, elements in the priority
queue are stored as edges of the form (parent, vertex, predicate). These elements are
ordered based on the vertex score first then on the edge label (predicate). Since the
exploration does not follow the traditional BFS ordering, we maintain a pointer to
the parent so edges can be inserted properly in the tree. As an example, consider the
query in Figure 4.3. Having the highest score, 7univ is chosen as core, and the query
is transformed into the tree shown in Figure 4.4. Note that the nodes have weights

(scores) and the directions of edges have been moved back.
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Table 4.1: Triples from Figure 1.3 matching patterns in Figure 4.4.
Worker 1 Worker 2

t; (Lisa, uGradFrom, MIT) | t3  (Bill, uGradFrom, CMU)

ty  (James, uGradFrom, CMU)

ts  (John, uGradFrom, CMU)

to (James, gradFrom, MIT) | ¢t  (Bill, gradFrom, CMU)

(

{

{

tz (Lisa, advisor, James) ts  (Fred, advisor, Bill)
to  (John, advisor, Bill)
tip (Lisa, advisor, Bill)

4.4 Incremental Redistribution

Incremental ReDistribution (IRD) aims at redistributing data accessed by hot pat-
terns among all workers in a way that eliminates communication while achieving high
parallelism. Given a redistribution tree, AdPart distributes the data along paths from
the root to leaves using depth first traversal. The algorithm has two phases. First,
it distributes triples containing the core vertex to workers using hash function H(-).
Let ¢ be such a triple and let t.core be its core vertex (the core can be either the
subject or the object of t). Let wy, ..., wy be the workers. ¢ will be hash-distributed
to worker w;, where j = H(t.core) mod N. Note that if t.core is a subject, t will
not be replicated by IRD because of the initial subject-based hash partitioning.

In Figure 4.4, consider the first-hop triple patterns (7prof, uGradFrom, ?univ)
and (?stud, gradFrom, 7univ). The core Tuniv determines the placement of t;-tg (see
Table 4.1). Assuming two workers, ¢; and ty are hash-distributed to w; (because of
MIT), whereas t3-tg are hash-distributed to wy (because of CMU). The objects of

triples ti-tg are called their source columns.

Definition 3 (Source column). The source column of a triple (subject or object)

determines its placement.

The second phase of IRD places triples of the remaining levels of the tree in the

workers that contain their parent triples, through a series of distributed semi-joins.
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The column at the opposite end of the source column of the previous step becomes

the propagating column, i.e., ?prof in our previous example.

Definition 4 (Propagating column). The propagating column of a triple is its object

(resp. subject) if the source column of the triple is its subject (resp. object).

At the second level of the redistribution tree in Figure 4.4, the only subquery
pattern is (?stud, advisor, ?prof). The propagating column ?prof from the previous
level becomes the source column for the current pattern. Triples t7 10 in Table 4.1
match the sub-query and are joined with triples t1._¢. Accordingly, t; is placed in

worker wq, whereas tg, tg and 1y are sent to ws.

Input: P = {E}; a path of consecutive edges, C is the core vertex.
Result: Data replicated along path P
// hash-distributing the first (core-adjacent) edge
if ey is not replicated then
coreData = getTriples0fSubQuery(eg);
foreach t in coreData do
m = B(C) mod N;// N is the number of workers
sendToWorker (t, m);

Gk W N

// then collocate triples from other levels

6 foreach i: 1 — |F| do

7 if e; is not replicated then

8 candidTriples = DSJ (eg, €;);

9 IndexCandidateTriples (candidTriples);
10 ep = €;;

Algorithm 3: Incremental Redistribution

The IRD process is formally described in Algorithm 3. For brevity, we describe
the algorithm on a path input since we follow depth-first traversal. The algorithm
runs in parallel on all workers. Lines 1-5 hash distribute triples that contain the core
vertex C, if necessary.2. Then, triples of the remaining levels are localized (replicated)
in the workers that contain their parent. Replication is avoided for each triple which

is already in the worker. This is carried out through a series of DSJ (lines 6-10).

2Recall if a core vertex is a subject, we do not redistribute.
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We maintain candidate triples at each level rather than final join results. Managing
replicas in raw triple format allows us to utilize the RDF indices when answering

queries using replicated data.

4.5 Queryload Monitoring

To effectively monitor workloads, systems face the following challenges: (i) the same
query pattern may occur with different constants, subquery orderings, and variable
names. Therefore, queries in the workload need to be deterministically transformed
into a representation that unifies similar queries. (ii) This representation needs to
be updated incrementally with minimal overhead. Finally, (iii) monitoring should be
done at the level of patterns not whole queries. This allows the system to identify

common hot patterns among queries.

4.5.1 Heat map

We introduce a hierarchical heat map representation to monitor workloads. The heat
map is maintained by the redistribution controller. Each query @ is first decomposed
into a redistribution tree 7" using Algorithm 2 (see Section 4.3), with the core vertex
as root. To detect overlap among queries, we transform 7T to a tree template 7 in
which all the constants are replaced with variables. To avoid losing information about
constant bindings in the workload, we store the constants and their frequencies as
meta-data in the template vertices. After that, 7 is inserted in the heat map which
is a prefix-tree like structure that includes and combines the tree templates of all
queries. Insertion proceeds by traversing the heat map from the root and matching
edges in 7. If the edge does not exist, we insert a new edge in the heat map and
set the edge count to 1; otherwise, we increment the edge count. Furthermore, we
update the meta-data of vertices in the heat map with the meta-data in 7’s vertices.

For example, consider queries 1, ()2 and ()3 and their decompositions 77, T and
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Figure 4.5: Updating the heat map. Selected areas indicate hot patterns.
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T3, respectively in Figure 4.5(a) and (b). Assume that each of the queries is executed
once. The state of the heat map after executing these queries is shown in Figure
4.5(c). Every inserted edge updates the edge count and the vertex meta-data in the
heat map. For example, edge (?vy, uGradFrom, 7v;) has edge count 3 because it
appears in all 7’s. Furthermore, {MIT, 1} is added to the meta-data of v;.

We now describe the implementation details of the heat map. We use a dual
tree representation for storing the heat map, where a tree node corresponds to an
entire triple pattern. An edge denotes the existence of a common variable between
any combination of subjects and objects in the connected triples. Note that this
representation results in a tree forest. Whenever no confusion arises, we simply refer
to both representations as heat map. The root node of the heat map is a dummy
node that is connected to all core-adjacent edges from all patterns seen before. Figure
4.6 shows the dual representation of the heat map in Figure 4.5(c).

To update the heat map given a query (), the tree template 7 is also transformed
into its dual representation. This typically results in multiple independent trees.
The heat map is updated using the dual of 7T level by level in a depth first manner.
Algorithm 4 shows how the heat map is updated with a new query tree. Initially, a
search process is started from the heat map root for each node in the first level of
the query tree (line 1-2). The algorithm calls a procedure which takes as input both
the heat map node and the query node (lines 3-16). The find function (line 6) is
used to match the query node in the current level of the heat map. Recall that triple
patterns in the heat map and 7 have variable subjects and objects. Therefore, a heat
map node matches the query node if they share the same predicate and direction. If
no match is found, a new node is inserted in the heat map as a child of the current
node (lines 7-9) with frequency 1. Otherwise, the count of the matched heat map
node is incremented (lines 10-11). In both cases, we update the metadata (i.e., the

occurrences of the target vertices and their frequencies) of the heat map node (line



12). Then, the procedure is recursively called for each child of the query node (lines
13-14). The find function is implemented using hash lookup based on the predicate
and direction of the triple pattern. Hence, the complexity of updating the heat map

is O(|E]), where E is the number of edges in the query graph.
Input: HeatMap dual representation 7, query tree dual representation 7,

-

10

11

12

13

14

16
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Result: 7, updated

foreach QueryNode N, — Tj.root.childs do

updateFreq (Tpm,.root, Ny);

Procedure updateFreq(HeatNode Ny, QueryNode Ng)

newParent <— NULL;

newParent < findNode (Npy,.children, Ny);

if newParent is NULL then
newParent < Np,.insert (INy);

newParent.count < 1;

else

newParent.count +-+;

updateMetaData (newParent, Ny);
foreach QueryChild C; — Ng.children do

L updateFreq (newParent,Cy);

return;

Algorithm 4: Update Heat Map

4.5.2 Hot pattern detection

The redistribution controller monitors queries by updating the heat map using Al-
gorithm 4. Currently, we use a hardwired frequency threshold?® for identifying hot
patterns. Recall that while updating the heat map, we also update the frequency

(count) of its nodes. A pattern in the heat map is considered to be hot if the update

3 Auto-tuning the frequency threshold is a subject of our future work.
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Figure 4.6: Dual Tree Representation of the heat map shown in Figure 4.5(c).

process makes its frequency greater than the threshold. As the heat map update
process is carried out in a top-down fashion, we guarantee that a lower node in the
heat map cannot have a frequency greater than its ancestors. Once a hot pattern
is detected, the redistribution controller triggers the IRD process for that pattern.
Recall that patterns in the heat map are templates in which all vertices are variables.
To avoid excessive replication, some variables are replaced by dominating constants
stored in the heat map. For example, assume the selected part of the heat map in Fig-
ure 4.5(c) is identified as hot. We replace vertex ?v3 with the constant Grad because
it is the dominant value. On the other hand, 7v; is not replaced by MIT because
MIT does not dominate other values in query instances that include the hot pattern.
We use the Boyer-Moore majority vote algorithm [112] for deciding the dominating

constant.

4.6 Pattern and Replica Index

4.6.1 Pattern index

The pattern index is created and maintained by the replication controller at the
master. It has the same structure as the heat map, but it only stores redistributed
patterns. For example, Figure 4.7(b)(right) shows the pattern index state after re-

distributing all patterns in the heat map (Figure 4.5(c)). The pattern index is used
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by the query planner to check if a query can be executed without communication.
When a new query (@) is posed, the planner transforms @) into a tree 7T'. If the root of
T is also a root in the pattern index and all of T’s edges exist in the pattern index,
then () can be answered in parallel mode; otherwise, () is answered in distributed
fashion. For example, the query in Figure 4.7(a) can be answered in parallel because
its redistribution tree (Figure 4.7(b)(left)) is contained in the pattern index. Edges

in the pattern index are time-stamped at every access to facilitate our eviction policy.

4.6.2 Replica index

The replica index at each worker is identical to the pattern index at the master
and is also updated by the IRD process. However, each edge in the replica index
is associated with a storage module similar to the one that stores the original data.
Each module stores only the replicated data of the specified triple pattern. In other
words, we do not add the replicated data to the main indices nor keep all replicated
data in a single index. There are four reasons for this segregation. (i) As more
patterns are redistributed, updating a single index becomes a bottleneck. (ii) Because
of replication, using one index mandates filtering duplicate results. (iii) If data is
coupled in a single index, intermediate join results will be larger, which will affect
performance. Finally, (iv) this hierarchical representation allows us to evict any
part of the replicated data quickly without affecting the overall system performance.
Notice that we do not replicate data associated with triple patterns whose subjects
are core vertices. Such data are accessed from the main index directly because of the
initial subject-based hash partitioning. Figure 4.7(c) shows the replica index that has
the same structure as the pattern index in Figure 4.7(b)(right). The storage module
associated with (?v7, member, ?v6) stores replicated triples that match the triple
pattern. Moreover, these triples qualify for the join with the triple pattern of the

parent edge.
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Searching and updating the pattern and replica indices is carried in the same way
as for the heat map (see Algorithm 4). However, the findNode function (line 6) is
changed to account for triple patterns with bounded subject/objects. Such triple
patterns can have at most two matches: (i) an exact match, where all constants are
matched; or (ii) a superset match, where both subject and object in the matching
pattern are variables. If a triple pattern has two matches, the findNode function
proceed with the superset matching branch because it will potentially benefit more
queries in the future. This process is also implemented using hash lookups and hence

has a complexity of O(E), where E is the number of triple patterns in the query.

4.6.3 Conflicting Replication and Eviction

Conflicts may arise when a subquery appears at different levels in the pattern index.
This may cause some triples to be replicated by the hot patterns that include them.
This is not a correctness issue for AdPart as conflicting triples (if any) are stored
separately using different storage modules. This approach avoids the burden of any
housekeeping and existence of duplicates at the cost of memory consumption. There-
fore, AdPart employs an LRU eviction policy that keeps the system within a given
replication budget at each worker.

Recall that, each time an edge in the pattern index is accessed, its timestamp is
updated. The search process in the pattern index is carried out in a top-down fashion.
This means that the leaf nodes of the tree have the oldest timestamps. We store the
leaves in a priority queue organized by timestamp. When eviction is required, the
least recently used leaf and its matching replica index are deleted. Then, the parent

of the evicted leaf is updated accordingly.



92

4.7 Experimental Evaluation

In this section, we evaluate the adaptivity feature of AdPart by comparing it against
AdPart-NA and TriAD because they showed the best performance in the previous
chapter. The hardware setup, datasets and queries are the same as the ones reported
in Section 3.3. In Section 4.7.1, we conduct a detailed study of the effect and cost
of AdPart’s adaptivity feature. Then, in Section 4.7.2, we show the impact of adap-
tivity on the execution times of individual queries when compared to other systems.
Finally, in Section 4.7.3, we study the data and machine scalability of AdPart. The
results show that our system adapts incrementally to workload changes with minimal
overhead without resorting to full data repartitioning. When the system adapts, it

executes queries several orders of magnitude faster than other systems.

4.7.1 Workload Adaptivity by AdPart

In this section, we evaluate AdPart’s adaptivity. For this purpose, we define different
workloads on two billion-scale datasets that have different characteristics, namely,
LUBM-10240 and WatDiv-1B.

WatDiv-1B workload: We used the benchmark query generator to create a 5K-query

workload from each query category (i.e., L, S, F and C), resulting in a total of 20K
queries. Also, we generate a random workload by shuffling the 20K queries.

LUBM-10240 workload: As AdPart and the other systems do not support inferencing,

we used all 14 queries in the LUBM benchmark without reasoning®. From these
queries, we generated 10K unique queries that have different constants and structures.
We shuffled the 10K queries to generate a random workload which we used throughout
this section. This workload covers a wide spectrum of query complexities including

simple selective queries, star queries as well as queries with complex structures and

4Only query patterns are used. Classes and properties are fixed so queries return large interme-
diate results.
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Figure 4.8: Frequency threshold sensitivity analysis.

low selectivities.

Frequency Threshold Sensitivity Analysis

The frequency threshold controls the triggering of the IRD process. Consequently, it
influences the execution time and the amount of communication and replication in
the system. In this experiment, we conduct an empirical sensitivity analysis to select
the frequency threshold value based on the two aforementioned query workloads.
We execute each workload while varying the frequency threshold values from 1 to
30. Note that our frequency monitoring is not on a query-by-query basis as our
heat map monitors the frequency of the subquery pattern in a hierarchical manner
(see Section 4.5). The workload execution times, the communication costs and the

resulting replication ratios are shown in Figures 4.8(a), 4.8(b) and 4.8(c), respectively.
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We observe that LUBM-10240 is very sensitive to slight changes in the frequency
threshold because of the complexity of its queries. As the frequency threshold in-
creases, the redistribution of hot patterns is delayed causing more queries to be ex-
ecuted with communication. Consequently, the amount of communication and syn-
chronization overhead in the system increases, affecting the overall execution time,
while the replication ratio is low because fewer patterns are redistributed.

On the other hand, WatDiv-1B is not as sensitive to this range of frequency thresh-
olds because most of its queries are solved in subseconds using our locality-aware DSJ,
without excessive communication. Nevertheless, as the frequency threshold increases,
the synchronization overhead affects the overall execution time. Furthermore, due to
our fine-grained query monitoring, AdPart captures the commonalities between the
WatDiv-1B query templates for frequency thresholds 5 to 30. Hence, for all these
thresholds the replication ratio remains almost the same. However, the system con-
verges faster for lower threshold values, reducing the overall execution time. In all
subsequent experiments, we use a frequency threshold of 10; this results in a good
balance between time and replication. We plan to study the auto-tuning of this

parameter in the future.

Workload Execution Cost

To simulate a change in the workload, queries of the same WatDiv-1B template are
run consecutively while enforcing a replication threshold of 20%. Figure 4.9(a) shows
the cumulative time as the execution progresses with and without the adaptivity
feature. After every sequence of 5K query executions, the type of queries changes.
Without adaptivity (i.e., AdPart-NA), the cumulative time increases sharply as long
as complex queries are executed (e.g., from query 2K to query 10K). On the other
hand, AdPart adapts to the workload change with little overhead causing the cumula-

tive time to drop significantly by almost 6 times. Figure 4.9(b) shows the cumulative
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Figure 4.10: AdPart adapting to workload (LUBM-10240).

communication costs of both AdPart and AdPart-NA. As we can see, the commu-
nication cost exhibits the same pattern as that of the runtime cost (Figure 4.9(a)),
which proves that communication and synchronization overheads are detrimental to
the total query response time. The overall communication cost of AdPart is more
than 7X lower compared to that of AdPart-NA. Once AdPart starts adapting, most
of future queries are solved with minimum or no communication. The same behavior
is observed for the LUBM-10240 workload (see Figures 4.10(a) and 4.10(b)).

Partitioning based on a representative workload: We tried to use Partout [35] to par-

tition the LUBM-10240 and WatDiv-1B datasets based on a representative workload.

However, it could not finish within reasonable time (<3 days) even for small work-
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loads. Thus, in this experiment, we simulate two scenarios for workload-based data
partitioning using AdPart. First, we assume the availability of a representative work-
load and measure how the training workload size affects performance. Second, we
assume the data is partitioned using a workload that does not fully represent fu-
ture queries. In both scenarios, there are two phases: training and testing. In the
training phase, the adaptivity feature is enabled and the system can perform data
redistribution for detected hot patterns. In the test phase, the adaptivity feature is
disabled.

In the first scenario, we use a random workload of 10K LUBM queries where the
first N% queries are used for training. The remaining queries are used for testing.
Figure 4.11(a) shows how AdPart’s performance changes as the size of the training
window increases from 20% to 80%. With larger window sizes, more hot patterns are
detected and redistributed in the training phase. Consequently, more queries in the
test phase are solved without communication. Notice that, even with 20% queries,
AdPart could detect most of the hot patterns in the workload and adapt accordingly.
As a result, there is no significant difference between the total workload execution
time when using 80% and only 20% training queries. This concludes that when
a representative workload is available, systems that perform static workload-based
partitioning like, Partout and WARP, can perform reasonably well for all workload
queries.

We further investigate another scenario where future queries are not well repre-
sented by the partitioning workload. The test set includes query patterns from the
training query set as well as new queries that were not seen before. To do so, we train
AdPart using different combinations of the workload categories defined by WatDiv-1B
(C, F, S, and L). Each combination is made of two categories (10K queries); effec-
tively producing six combinations, mainly CF, CL, CS, FL, FS, and LS. The test

set includes 20K random queries made up from the four query categories. This way,
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some of the queries in the test workload would run in parallel while others (not in
the representative workload) would require communication.

Figures 4.11(b) and 4.11(c) show the cumulative execution time and communi-
cation, respectively, for the test workloads (i.e., excluding the training time). For
example, we train the system with the adaptivity feature enabled using 10K queries
from two categories, like CF. Then, we test the system using 20K random queries
while adaptivity is disabled. Obviously, the performance of the test workload highly
depends on the complexity of the queries used in the training phase. For example,
the complex (C) and snowflake (F) queries are the most expensive queries in the
benchmark. Therefore, when the system is trained using the CF training workload,
it performs much better than when trained using the LS workload. CF workload
requires less communication because the L and S queries (not in the training work-
load) do not require excessive data exchange. Nonetheless, the CF execution time
keeps increasing due to the existence of communication and synchronization over-
heads. In the same figures, we show the performance of AdPart without training, but
the adaptivity is enabled all the time. Allowing the system to adapt incrementally
and dynamically (without training) resulted in better performance when compared
to all cases. AdPart incurs more communication at the beginning because of the IRD
process; it then converges to almost constant communication.

Next, we test AdPart’s performance using a real scenario workload where a certain
percentage of the queries is repeated while other new queries are taken into account.
We use three workloads, each workload contains 10K LUBM random queries out of
which a certain percentage is repeated. Figure 4.12 shows AdPart’s performance while
varying the amount of repeated queries between 20%, 40% and 80%. As the results
suggest, the more the repeated queries, the less the workload execution time. Since
AdPart monitors the query patterns and not the individual queries, it could capture

most of the patterns in the workload even with only 20% of its queries repeated.
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Redistribution Tree Generation

In this experiment, we evaluate our query transformation heuristic (Section 4.2)
against two alternative approaches. Recall that when transforming a hot query pat-
tern into a redistribution tree, we select the vertex with the highest score to be the tree
root. Then, the query is traversed from high score vertices to lower score ones. We
now compare our heuristic (referred to High-Low hereafter) to two different heuristics:
(i) in Low-High, the vertex with the least vertex score is selected as core; then the
query pattern is traversed by exploring vertices with lower scores first. The (ii) QDe-
gree approach uses a different vertex scoring function where the score of a vertex in
the hot query pattern is its out-degree. The pattern is then traversed from high score
vertices to lower score ones. Note that the latter approach aims at minimizing the
replication in a greedy manner by fully exploiting the initial hash partitioning. Recall
that data that binds to triple patterns whose subject is a core are not replicated.
We evaluated all these heuristics by running the LUBM-10240 workload. In Figure
4.13(a), we show the resulting replication, the communication cost and the amount
of data touched by the IRD process. Low-High and QDegree resulted in slightly less

replication compared to High-Low. The reason is that both heuristics benefit from
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Figure 4.13: Effect of hot pattern transformation.

the initial hash partitioning by selecting cores with larger number of outgoing edges.
However, the amount of data touched by IRD (i.e., data in the main and replica
indices) in Low-High and QDegree is significantly higher. This affects adaptivity’s
performance because IRD is carried out using a series of DSJ iterations. Furthermore,
as the data touched by the process is actually used for evaluating parallel queries, the
performance of parallel queries is eventually affected.

Consequently, the cumulative workload execution time using High-Low is 1.9X

faster than the other heuristics as shown in Figure 4.13(b). Since QDegree and
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Table 4.2: Load Balancing in AdPart

Percentage of triples Replication
Dataset Max  Min  Average StDev (o) Ratio
LUBM-10240 | 1.43% 1.35% 1.39% 0.02 0.73
WatDiv-1B | 1.58% 1.20%  1.33% 0.07 0.36

Low-High touch and communicate almost the same amount of data, their cumulative
execution times are also the same. Besides, note that QDegree does not use any
statistical information from the data and only relies on the structure of the hot query
pattern. Therefore, a redistributed pattern would not benefit other future queries
with a slightly different structure. We repeated the experiment on WatDiv-1B and
all heuristics resulted in almost the same communication cost, wall time, and touched
data. This time, QDegree resulted in the least replication because its exploits best

the initial subject-based hash partitioning.

Replication and Load Balance

In this experiment, we evaluate the load balance of AdPart from two different per-
spectives: (i) data balance, i.e., how balanced is the initial partitioning as well as
the replication that results from the IRD process; (ii) work balance, i.e., how the
evaluation cost is balanced among all workers in the system, during the execution of
the workload. In Table 4.2, we report some statistics that characterize the data load
balance in AdPart. Particularly, we report the average and standard deviation (o)
of the percentage of triples stored at each worker. As shown in the table, AdPart
achieves very good data balance for both workloads because of the initial subject-
based hash partitioning as well as the hashing used during the IRD process. Also, we
report how the average partition size changes during the workload execution. Using
the 10K queries LUBM workload, Figure 4.14 shows how the partition size increases

as more queries are executed. Initially, each partition contains around 19M triples.
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This corresponds to a 0% replication ratio as AdPart loads only the original dataset.

As the system adapts, the size of each partition slightly increases till reaching an

average size of around 33M triples; which counts for a 72% replication ratio after ex-

ecuting the whole 10K workload queries. Work is also well balanced among workers;

i.e., the amount of work contributed by each worker is almost the same as shown in

Figures 4.15(a) and 4.15(b) for the LUBM-10240 and WatDiv-1B, respectively.
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Table 4.3: Query runtimes for LUBM-10240 (ms)

LUBM-10240 L1 L2 L3 L4 L5 L6 L7 Geo-Mean
AdPart 317 120 6 1 1 4 220 15
AdPart-NA 2,743 120 320 1 1 40 3,203 75
TriAD 6,023 1,519 2,387 6 4 114 17,586 369
TriAD-SG 5,392 1,774 4,636 9 5 10 21,567 333

4.7.2 Query Performance

In the previous sections, we showed how adaptivity could reduce the execution time of
the entire workload. In this section, we demonstrate the effectiveness of the adaptivity
in reducing the individual query execution wall time by comparing AdPart against
AdPart-NA and TriAD. Tables 4.3, 4.4, 4.5 and 4.6 show the performance of AdPart
for LUBM-10240, WatDiv, YAGO2 and Bio2RDF datasets, respectively.

Table 4.4: Query runtimes for WatDiv (ms)
WatDiv-100 Machines L1-L5 S1-S7 F1-F5 C1-C3

AdPart 5) 2 2 7 22
AdPart-NA 5 9 7 160 111
TriAD 5 4 15 45 170

Table 4.5: Query runtimes for YAGO2 (ms)

YAGO2 Y1 Y2 Y3 Y4 Geo-Mean
AdPart 3 19 11 2 6
AdPart-NA 19 46 570 77 79
TriAD 16 1,568 220 18 100

For all datasets, once AdPart adapts to the workload, it executes all queries much
faster than all other systems. More importantly, queries that require object-object
joins (Y3 in YAGO2 and B1 in Bio2RDF), which cannot be executed efficiently by
AdPart-NA, are executed faster by AdPart. For star queries that join on subjects (L2,
L4 and L5 in LUBM-10240), both AdPart-NA and AdPart perform equally because
of the initial subject-based hash partitioning. In other words, these queries are solved

in parallel without communication without the need for adaptivity.
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Table 4.6: Query runtimes for Bio2RDF (ms)
Bio2RDF Bl B2 B3 B4 B5 Geo-Mean

AdPart 3 2 2 3 1 2
AdPart-NA 17 16 32 89 1 15
TriAD 4 4 5 90 2 7

For L3 in LUBM-10240, AdPart can detect queries with empty results during
planning. As each worker makes its local parallel query plan, it detects the zero
cardinality of the subquery in the replica index and terminates. This explains the

several orders of magnitude gain in query response time.

4.7.3 Scalability

Data Scalability. We use the LUBM benchmark data generator to generate six datasets:

LUBM-160, LUBM-320, LUBM-640, LUBM-1280, LUBM-2560 and LUBM-5120. We
keep the number of workers fixed to 72 (6 workers per machine). Figures 4.16(a) and
4.16(b) show the data scalability of AdPart and AdPart-NA for simple and complex
queries respectively. L4, L5, L6 are simple queries that are very selective and touch
the same amount of data regardless of the data size. This describes the steady perfor-
mance of both AdPart and AdPart-NA for these queries. Because L2 is not selective
and returns massive final results, it is inevitable for its scalability to degrade as data
size increases. Figure 4.16(b) shows the scalability of AdPart for complex queries.
Queries L1 and L7 generate large number of intermediate results causing high com-
munication cost, which explains their poor scalability of AdPart-NA. Nevertheless,
as AdPart adapts to the workload, many queries are evaluated in parallel mode much

faster.

Strong Scalability. In this experiment, we use the 10K workload of LUBM-10240 to

demonstrate the strong scalability of AdPart. We fix the workload while increasing the

number of workers. Figure 4.16(c) shows the wall time for executing the workload.
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The time is split into the three constituents of AdPart execution, i.e, distributed
execution (semijoin), redistribution (adaptivity) and parallel queries. All components
of AdPart scale very well for up to 32 workers, afterwards the overhead of the semijoin
communication starts dominating. Note that solving complex queries, like L1, L2,
and L7 in parallel mode scale almost optimally. On the other hand, selective queries
that touch very few data or are executed by a single worker do not scale. For future
work, we will investigate the possibility of exploiting subjects and objects locality to

further scale the distributed semijoin to more workers.
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Chapter 5

RDF Analytics Framework

Everything should be made as
simple as possible, but not simpler.

Albert Einstein
1879 — 1955 CE

This chapter introduces SPARTex and RDF analytics framework. Rich RDF
analytics is realized in SPARTex by introducing the following features:

SPARQL Extension. SPARTex defines a Graph Analytics extension of SPARQL (GAS-

parql) that allows generic User-Defined Procedures (UDPs) to be intermixed and ex-
ecuted in a pipeline together with SPARQL queries. A UDP can be any program
implemented in the vertex-centric model (e.g., PageRank, Shortest-Paths, Central-
ity). UDPs communicate with SPARQL at the granularity of a vertex, by setting
vertex properties, which is equivalent to updating the RDF graph. SPARTex also
allows filters that limit the scope of the UDP input, where the filter is nothing but
a separate SPARQL query. In other words, a UDP can operate on a subset of the
input graph that results from evaluating a SPARQL query.

SPARQL Engine. a SPARQL query engine is implemented as a vertex-centric pro-

gram, allowing UDPs and SPARQL queries to run on top of the same vertex-centric
framework. The SPARQL operator leverages the message-passing nature of the

vertex-centric frameworks for join evaluation. Given a SPARQL query @, the op-
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erator has two stages: (i) a cost-based optimizer picks a trail' on @ to minimize the
number of messages generated when the trail is followed on the data graph. (ii) Once
a trail is picked, vertices exchange messages with their neighbors along the picked

trail. This is done usually using multi-rounds of message-passing among vertices.

In-memory Data Store. The underlying vertex-centric frameworks typically store the

data as a generic graph in memory. SPARTex extends this with a per-vertex data
store that is tailored to RDF data. It efficiently filters the neighbors of vertices by
specific predicates. The data store also allows updates on the RDF graph by attaching
properties to vertices without changing the original data layout and indices.

With these features running on a unified framework, SPARTex introduces a new
and rich type of RDF analytics that were not feasible before: (i) Graph algorithms
and SPARQL can be executed efficiently on the same framework. Hence, there is no
need to use different systems or materialize and reformat intermediate results. (ii)
Original RDF data and vertex computed values can be combined as a single subgraph
pattern in SPARQL. Triple patterns in the body of SPARQL queries can be from the
structure of the input data or derived from new values computed per vertex (e.g. see
query Qs in Figure 1.4). (iii) Generic graph algorithms and SPARQL queries can be
pipelined so that the output of one operator is the input to another. For example,
the Single Source Shortest Path algorithm can start from the vertices that match a
specific SPARQL pattern. Different operators can share intermediate results using
the in-memory data store. All the aforementioned analytical tasks can be triggered

declaratively using GASparql.

5.1 System Architecture

SPARTex is designed to be built on top of distributed vertex-centric bulk synchronous

Tt is sufficient to consider a trail to be a walk or a path on the query graph such that each edge
is visited at least once. More rigorous definition is given in Section 5.3
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Figure 5.1: SPARTex Architecture.

graph processing frameworks, such as Pregel [49], Trinity [48] and GraphLab [51],
that can process very large graphs. Briefly, in these vertex-centric systems, users
define a generic compute function that will be executed on each vertex independently.
Vertices interact with each others through message passing. A typical vertex-centric
program consists of a number of iterations. In each iteration, a vertex can perform
computation, change its state, and send messages to its neighbors. Typically, vertex-
centric frameworks are coupled with a distributed file system to persist data such as
the input graph. SPARTex is built on top of GPS [113], an open-source Pregel clone.

An overview of SPARTex is depicted in Figure 5.1. SPARTex follows the master-
slave architecture. Users can write vertex-centric programs for any graph algorithm.
Programs are compiled and added to the classpath. SPARTex treats these programs
as user-defined stored procedures that can be invoked using GASparql (Section 5.2).
The master keeps an entry for each registered UDP which includes the class name and
expected input parameters. In addition, SPARTex provides an efficient vertex-centric
SPARQL operator (Section 5.3). Having both SPARQL and graph algorithms within
the same framework, SPARTex allows both operations to be executed in a pipelined

fashion. In the rest of this section, each component of SPARTex is briefly described.
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5.1.1 Master

The master is not assigned any portion of the input graph; rather it orchestrates
workers activity. Users submit SPARQL queries which may or may not have UDPs to
the master. The master parses the query and generate an execution plan for the whole
pipeline (i.e. for generic algorithms and pattern matching). The master enforces the
plan using a compute function that is executed before starting any iteration. Finally,
SPARTex returns the results back to the user. Next, each of the master components

is defined.

Query Manager. The query manager is responsible for parsing, optimizing and exe-

cuting incoming queries. The Query Parser parses the input query and separates the
procedural constructs from the declarative patterns of SPARQL. The query manager
checks the existence of the called procedures and the consistency of their parameters
by consulting the set of UDPs specifications. Then, the pattern matching part is
optimized using a SPARQL optimizer. It enumerates possible execution plans and
estimate their costs using global statistics maintained in the statistics manager. Fi-
nally, the query manager consolidates the procedural part and the optimized pattern
matching query plan into a global pipelined execution plan. The Pipeline Executer
gets as input a set of required steps for query evaluation. It dictates which vertex-
centric program to run for how many iterations or until the program converges if the
number of iteration cannot be known a priori. When executing multiple vertex-centric
programs, the pipeline executer directs workers to change the UDP to be executed in
the next n iterations. After that, all vertices return to active state and the executer

sends the next UDP to be executed and so on.

Statistics Manager. The master gathers some global statistics during the RDF graph

loading phase which spans the first three compute iterations. In the first iteration,

each worker loads/indexes its assigned vertices and their edges. In the second iter-
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ation, vertices report statistics about their neighbors and predicates. For example,
each vertex counts the number occurrences for each of its attached predicates. It
also counts the number of occurrences of subjects and objects attached with these
predicates. It also capture more advanced statistics about the correlation between
different predicates (more details about the collected statistics are shown in Section
5.3.2) At the end of this iteration, each worker synchronize its collected statistics
with the master. In the third iteration, the master retrieves all the statistics collected
from all workers, integrates them and store it in a global structure that is kept at the

master.

UDPs Specifications. This UDP specification structure contains meta-data about pro-

grams that are available in the framework. When a UDP is registered in SPARTex,

an entry of it is recorded in this structure and kept at the master.

5.1.2 Worker

Vertex-centric frameworks divide the data graph into partitions where each partition
contains a set of data vertices and edges. A vertex v with its outgoing edges are
assigned by default to a machine M based on the result of a simple hashing scheme
M mod k), where k is the number of partitions. The default partitioning scheme is

modified such that each vertex has both its incoming and outgoing edges?.

Unified In-Memory Data Store. Generic graph algorithms and SPARQL access data

differently. While SPARQL needs to access both incoming and outgoing edges using
predicate labels, algorithms like PageRank need to access the outgoing edges only
regardless of their labels. Therefore, rich RDF analytics requires modeling the data
in a uniform way while providing different data access methods. Specifically, the
framework needs to support: (i) label-based neighbor access used for SPARQL query

evaluation. (ii) Label-oblivious neighbor access used for algorithms that access the

2This is equivalent to partitioning on both subject and object vertices.
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RDF data regardless of the edge labels; and (iii) adding, deleting and updating vertex
properties. Since computation is done at the vertex granularity, a set of miniature
data indices per vertex are created. These indices are accessed through a set of API
calls.

Miniature RDF Data Index. it consists of the following two indices: (i) Predicate-

Object (PO) Index: given an edge predicate p, returns a list of all the outgoing
neighbors (objects). (ii) Predicate-Subject (PS) Index: given an edge predicate p,
returns a list of all the incoming neighbors (subjects).

Miniature Properties Store. Each vertex maintains an in-memory key-value store where

different algorithms can delete, add or update a vertex property. This way the re-
sult of one algorithms can be read by others; enabling pipelined execution of graph

algorithms.

UDP implementations. It contains the same meta-data stored at the UDP specifica-

tions structure in the master. However, it also contains the actual implementation
of the registered vertex-centric programs (e.g. PageRank, SSSP). It is used by the
worker to switch between different UDPs at runtime when directed by the master.
The worker receives a message from the master that includes the configuration of the

next UDP and act accordingly.

5.2 Graph Analytics SPARQL Extension

In this section, Graph Analytics SPARQL (GASparql) extension is introduced. GAS-
parql gives users 3 capabilities: (i) users can write their own algorithms in a procedural
language and invoke it from within SPARQL as a user-defined stored procedure. (ii)
Users can materialize the computation results as vertex properties. These properties
can then be used as input to SPARQL or another graph algorithm; and (iii) users

can mutate the original RDF graph by adding/deleting properties as needed.
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5.2.1 GASparql Constructs

In this section, new constructs of GASparql are described and illustrated with exam-

ples for their usage.

Defining/Calling UDPs

The first construct of GASparql allows users to call/define an already implemented

stored procedure. To do so, a user can write the following:

CALL proc(list([params]) AS list[properties]

The above code calls the procedure proc by specifying its full qualified class name.
list[params]| is the set of parameters that the procedure expects while list[properties]
is the set of vertex properties that proc will add to the RDF data.

As an example, recall that @); in Figure 1.4 requires evaluating PageRank algo-

rithm and materializing its results. To do so, a user can write the following:

PREFIX sptx: <http://www.spartexz.com/analytics/>

CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank

The PageRank algorithm expects as input the maximum number of iterations.
The output is a sptx:pRank value per vertex. The new vertex property (sptx:pRank)
is added to the Properties key-value store, where the key is sptx:pRank and the value
is the PageRank of the vertex. Notice that an entry in the properties store is actually
a triple, where the subject is the vertex itself, the predicate is the property name and
the object is the property value. The new added triples can be used later within a
SPARQL query (see Section 5.2.2). Similarly for Qg, the centrality algorithm can be
invoked and its result is materialized per vertex. Notice that storing newly computed

vertex properties does not require any change to the data layout or indices.
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Data Filters

In the previous example, the PageRank algorithm runs on the entire RDF graph.
However, there are cases where an algorithm should run only on a subset of the
graph. Hence, GASparql introduces a filtering constructs based on the vertices and
edges of the RDF graph. Invoked procedures are optionally associated with one or

more filters:

FILTER.VERTEX AS filter_name WHERE { BGP }

FILTER EDGE AS filter_name WHERE { BGP }

All triple patterns of the Basic Graph Pattern (BGP) in the WHERE clause must
have a common vertex. In other words, the BGP is a star query around a specific
vertex®. For FILTER_VERTEX, vertices that do not match the BGP are filtered out.
Similarly, all edges that do not satisfy the BGP pattern of FILTER_EDGE are filtered
out. Filters are passed to the stored procedures through the keyword using. Filtering
constraints are associated with procedure calls and acts as filtering layer on top of
the unified data store. Only data that satisfy the filtering constraints are retrieved.

For example, the objects of triples with rdf:type predicates have lots of incoming
edges; hence, would have extremely high PageRank values. Excluding these triples

when running the PageRank algorithm can be done as follows:

PREFIX rdf: <http://www.w3.o0rg/1999/02/22-rdf-syntaz-ns#>
FILTER.EDGE AS no_type WHERE {

?s ?p 7o .

FILTER(! sameterm(?p, rdf:type))
}

CALL com.sptx.algo.PageRank(max_iter) USING no_type AS sptx:pRank

3More sophisticated filtering can be achieved by combining the FILTER and ADD PROPERTY
(Section 5.2.1) constructs (e.g. see Section 5.2.2)
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Managing Vertex Properties

So far, vertex properties are set or deleted by the stored procedures. However, users
may want to deliberately set or delete some vertex properties. Therefore, GASparql

introduces two constructs for explicit vertex properties addition and deletion.

ADD PROPERTY {list[property patterns]} WHERE {BGP}

DROP PROPERTY {list[property patterns]} WHERE {BGP}

For example, to drop the sptx:pRank property that is less than a specific threshold,

a user can write:

DROP PROPERTY {7x sptx:pRank 7val} WHERE{
?x sptx:pRank 7rank .

FILTER(?rank < threshold)

5.2.2 RDF Analytics Applications

In this section, three RDF analytical applications that make use of the proposed

extension are discussed.

Using Graph Analytics Output in SPARQL

Consider ), in Figure 1.4, it returns the set of students who take courses taught by
their advisors. Assume the query results needs to be restricted to only popular pro-
fessors and core courses, where PageRank and centrality indicate professor popularity

and course importance, respectively. (), can be expressed as:

PREFIX sptx: <http://www.spartez.com/analytics/>

CALL com.sptx.algo.centrality () AS sptx:centrality

CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank

SELECT 7s WHERE {

?p teaches 7c .
?s takes 7c .
?s advisor ?p .
7p sptx:pRank ?rank .

?c sptx:centrality ?cent
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FILTER (?rank > vall && 7cent > val2)

SPARTex starts by executing the centrality and PageRank algorithms. The
sptx:pRank and sptx:centrality properties are set for all vertices. Then, SPARTex
plans and executes the subgraph pattern matching part of the query; only vertices

the satisfy the filter constraints are retrieved.

Using SPARQL Output in Graph Analytics

In some cases, a general graph algorithm is supposed to operate on a specific part
of the data. This can be achieved by using the result of SPARQL as an input to
the subsequent general graph algorithm. For example, consider (), in the previous
example; and suppose that the shortest path between popular professors (i.e. vertices
matching ?p) and every other vertex is to be found. This can be done by executing
the Single Source Shortest Path (SSSP) algorithm starting from these professors as

follows:

PREFIX sptx: <http://www.spartez.com/analytics/>

CALL com.sptx.algo.centrality() AS sptx:centrality

CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank

ADD PROPERTY {?p sptx:popular "T" . } WHERE {
7p teaches 7c .
?s takes 7c .
?s advisor ?p .
7p sptx:pRank ?rank .
7c sptx:centrality 7cent .

FILTER (7rank > vall && 7cent > val2)
}
FILTER.VERTEX AS start WHERE {
?p sptx:popular "T" .
}

CALL algo:SSSP() USING start AS sptx:sssp

Using the add property construct, popular professors are identified by setting their

sptx:popular property as true. Then, a vertex filter is created to exclude all vertices



117
not satisfying this property. Finally, the filter is associated with the SSSP procedure

call so the algorithm only starts from vertices that match the defined filter.

Sampling RDF Graphs

SamplD [44] is a pipeline of graph processing steps for sampling RDF graphs. Given
an input graph, SamplD applies a set of graph operations using Apache PIG [114]
and Giraph [115]. It transforms the RDF graph into a directed unlabeled graph and
analyzes the rewritten graph using degree centrality and PageRank algorithms. Then,
each triple is assigned a score and triples with the highest scores are selected to form
a smaller sample of the input graph.

SamplD pipeline steps require circulating the graph and using multiple program-
ming platforms. The code below shows how SamplD pipeline can be implemented

using SPARTex only and its extension; GASparql.

CALL com.sptx.algo.centrality () AS sptx:centrality

CALL com.sptx.algo.PageRank(max_iter) AS sptx:pRank

CALL com.sptx.algo.SamplDRankTriples ()

SPARTex starts by invoking both the degree centrality and PageRank algorithms
and materializing their results in-memory. Then, it executes a vertex-centric pro-
gram (SamplDRankTriples) that consists of two iterations. In the first iteration,
objects send their PageRank and centrality values to their subjects. Then, in the last
iteration, subjects receive the object values; compare them to their values and output

the triples with their scores.

5.3 SPARQL Query Engine

This section presents the vertex-centric SPARQL operator incorporated in SPARTex.
Consider query @, defined by the solid lines in query Q, (See Figure 1.4). Q, consists

of 3 triple patterns: ¢ : (7p, teaches, 7c), go : (7s, advisor, 7p) and g3 : (7s, takes, 7c).
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In the relational model, Q, is answered* by scanning the data to find the matches
of each triple pattern. Then, the intermediate results are joined to formulate the
final results. However, relational approaches are not suitable for SPARTex due to
its vertex-centric nature. Specifically, data, computation and communication are
all vertex-centric. Employing a relational approach for query evaluation defeats the
purpose of SPARTex. Therefore, SPARTex embarks on a network-based approach

(graph exploration) that uses inter-vertex message passing for query evaluation.

5.3.1 Query Evaluation

Formally, given a query graph (), the cost-based optimizer selects a trail on () that
traverses each edge at least once. A trail consists of a set of ordered exploration edges
{q1, .-, @u}. An exploration edge g; is defined as (v, p, vy, direction), where v, and
v are vertices in the query graph and p is the edge label. The direction is either
outgoing or incoming relative to ¢;.v. in the query graph. v. and v; are referred to
as exploration vertex and termination vertex, respectively. The termination vertex
of ; is the exploration vertex of g;41. For example, a possible trail in @, that starts
from ?p is {q1, G2, @3}={(?p, teaches, ?c, out), (?c, takes, ?s, in), (?s, advisor, 7p,
out)}. Obviously, there are many potential trails that can start from any of the query
vertices. Query planning is discussed in Section 5.3.2.

A query is evaluated using n + 1 iterations, where n is the number exploration
edges in the trail. Each edge is explored in an iteration; the final iteration is needed
for reporting the query results. In every iteration, each vertex executes ExploreEdge
in Algorithm 5. The inputs for the algorithm are the exploration edge ¢;, the messages
received from the previous iteration, and the current iteration number. As a running

example, query @, is evaluated using the previous trail and the data graph in Figure

5.2.

4In this example, a bushy execution plan is assumed.
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Figure 5.3: Computation iterations for solving ().

Iteration 1 (q;). In the first iteration, all vertices are active and each vertex executes

ExploreEdge with ¢, empty message list, and the iteration number as inputs. Each
vertex check if it matches the exploration vertex ¢;.v.. A vertex can be a match to
v, if it has all the subqueries attached to v, in the query graph (lines 4-5). Then,
based on the exploration edge direction, all matching vertices retrieves their neighbors
connected by predicate g;.p (lines 7-10). Each vertex creates a message containing its
id and send it to the retrieved neighbors. Finally, all vertices vote to halt; vertices
become active if and only if they receive a message in the next iteration. In @, the
exploration vertex v, =7p. A matching vertex for ?p needs to be a subject and an
object for the predicates teaches and advisor, respectively. Therefore, using the data
graph of Figure 1.3, Fred and James are matches of ?p while Tim is not a match
as he does not advise any students and will vote to halt. The direction of ¢; is out,

hence vertices use the PO index to get the list of neighbors(objects) connected via
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Input: ExplorationEdge €, MessageList ml, Iteration ¢

1 eVertex + e.expVertex;

2 tVertex < eé.termVertex; eDirection < e.direction;

3 ePredicate + e.predicate;

4 vertexSubQueries < getVertexSubqueries (eVertex);
5 if Matches (vertexSubQueries, eVertex) then

6 neighbors < Empty;

7 if eDirection is Outgoing then

8 L neighbors < POlePredicate];

9 else

10 L neighbors < PS[ePredicatel;

11 if © = 1 then

12 msg < Empty;

13 msgleVertex| < vertexID;

14 sendMessageToAll (msg, neighbors);

15 else

16 if isQueryVertexVisited (€.termVertex) then
17 foreach msg in ml do

18 if msg[tVertex] € neighbors then

19 msgleVertex] + = vertexID;

20 L sendMessage (msg, msg[tVertezx|);
21 else

22 foreach msg in ml do

23 msgleVertex| < = vertexID;

24 L sendMessageToAll (msg, neighbors);

25 voteToHalt ();
Algorithm 5: ExploreEdge

predicate teaches (line 7-8). A message is formulated from each matching vertex of 7p
and is sent to its neighbors connected via the predicate teaches (lines 11-14). Figure
5.3 depicts the steps.

Iteration 2 (ga). Vertices Databases and Algorithms received messages from Fred and

James respectively. Hence, they are the only active vertices. Each of these two ver-
tices checks if it matches the exploration vertex g¢».e, =7c. Therefore, the matches of
?c are Databases and Algorithms. Then, each vertex use its PS indices to retrieve its
neighbors connected via predicate takes. Each vertex appends its id to the received

message and send the updated message to its list of neighbors (lines 21-24). Specif-
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ically, Algorithms sends the message [James, Algorithms] to its neighbors Lee and
Peter, whereas Databases sends [Fred, Databases] to John and Ben.

Iteration 3 (g3). Vertices Lee, Peter, John and Ben check if they match gs.e, =7s.

Matching vertices use their PO indices to get their list of neighbors connected via
predicate advisor. Since the termination vertex ¢s.e, =7p has been visited before,
messages are forwarded if and only if the 7p value in the message is also in the
neighbors list. Notice that the message received by Ben has Fred as the 7p value,
which is not in his neighbors list. Therefore, the message is truncated because it is
not a valid result (lines 16-20).

Iteration 4. All vertices that received messages in this iteration have the final answer
of Q,. This iteration can be omitted because the terminal vertex of the last iteration
has already been visited. Hence, the results can be returned at the end of iteration

3. However, iteration 4 is kept for the sake of clarity.

Discussion. The exploration approach discussed in this work takes several advantages
of the underlying vertex-centric framework for query evaluation. First, implicit join
evaluation is achieved by inter-vertex message passing. This approach is different
from the exploration approach discussed in Trinity. RDF which is more like semi-
join. Trinity.RDF can only reduce the size of the intermediate relations but require
a final centralized join. This is necessary especially for cyclic queries [30]. On the
other hand, in SPARTex messages exchanged between vertices carry the intermediate
results. Hence, no final join is needed as the final results are built and validated
incrementally. Moreover, the bindings can reduce the size of the intermediate results
significantly when queries have cycles. For example, in the third iteration of the
previous example, Ben discards its message because it can validate that Fred (a
visited node) is not in his neighbors list. This optimization is referred to as pre-
join. Although, carrying the historical bindings seems to incur high communication

overhead, the maximum number of query variables is usually small. For example, in
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a real query workload acquired from Bio2RDF[10], the maximum number of variables
per query is ten. The second advantage is the search space pruning that happen
because of vertex activation/halting. In an exploration iteration, only active vertices
apply the compute function; inactive vertices do nothing. Hence, this activation
mechanism prunes the search space by eliminating vertices that would not contribute

to the query results.

5.3.2 Query Planning

Query evaluation performance is highly influenced by the trail followed during execu-
tion. This section describes the cost-based optimizer which for a given query generates
all possible query execution plans, estimates their costs and selects the plan with the

minimum cost.

Query Optimization

The space of possible trails depends on the query graph structure and the fact that
each edge has to be visited once. Specifically, a trail can be defined if and only if
exactly zero or two vertices have odd degree. In the former case, the graph is called
Eulerian graph; while in the latter is called traversable. The difference is that trails in
Eulerian graphs start and end at the same vertex. For example, @, is Eulerian and has
two trails (cycles) that start and end at vertex ?p (?p—7c—7s—7p and 7p—7s—7c—"7p).
The same applies to vertices 7c or 7s. On the other hand, in a traversable graph,
trails have to start from one of the odd degree vertices and end at the other odd
degree vertex.

However, trails cannot be found for arbitrary queries that are neither Eulerian nor
traversable. To solve this problem, the condition of visiting each edge once is relaxed
by allowing the exploration of some edges more than once. This resembles the classical

Chinese Postman Problem (CPP). Given a query graph, CPP finds a minimum length
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closed walk that traverses each edge at least once. For a non-Eulerian graph, CPP
duplicates some edges to make it FEulerian; allowing for a larger space of possible

trails.

Query Coarsening. Obviously, the number of edges that the CPP will duplicate is

highly correlated with the number of odd degree vertices. The higher the number of
odd degree vertices, the higher the number of duplicate edges. This because once a
trail passes through a vertex, it needs to exist from the vertex through another edge’.
So, for each incident edge there has to be another unvisited edge to go through
on the way out; which does not apply for odd vertices. For example, leaves i.e.
vertices that have a single neighbor, are odd vertices because each has a single edge.
Once the trail passes through such a vertex, it has to exit through the same vertex.
Hence, that edge will be duplicated in the trail. Therefore, SPARTex introduces
a query coarsening optimization that minimizes the number of odd degree vertices
before making the graph Eulerian. Recall that, each vertex has direct access to its
properties and incoming/outgoing neighbors. Therefore, all leaf vertices that have
a single neighbor can be safely merged (coarsened) with its neighbor. For example,

query (), is the coarsened version of ().

Proposition 1. A coarsened version of the query graph has at most the same number

of odd degree vertices as the original query graph.

PrOOF: Let @ be a query graph with n vertices, L leaves, and O odd-degree vertices.
Let Q' be the coarsened version of () with n — L vertices and O" odd-degree vertices.
We show that that O < O.

For each leaf [ € L, removing [ has two cases: (i) [ is connected to an odd-
degree internal vertex. Removing [ makes the degree of the internal vertex even.

Then, O’ = O — 2. (ii) [ is connected to an even-degree internal vertex. Removing [

5This is true for all situations unless the vertex is the last vertex in the trail.
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introduces an internal vertex of odd-degree. However, [ itself is an odd degree vertex,

then O' = O. In both cases, O’ < O holds. O]

In this example, vertices that match 7c and 7p will validate if they have the rank
and centrality properties, respectively. Notice that this optimization would coarsen
any star query into a single vertex. Hence, any star query can be solved in a single

iteration without communication.

Input: Query graph @ = (V, E)
Result: Exploration trail with minimum estimated cost

mazLength < 0; minCost < Infinity; best Plan < NULL;
if isEulerian (@)) then
‘ maxLength <+ Q.numFEdges
else
ze[|E|] <~ CPP(Q); // Number of times each edge is duplicated
numDupEdges <+ SUM(x.);
maxLength < Q.numFEdges + numDupFEdges;
cost < 0; listVisitedEdges < Empty;
foreach vertexr v € QQ.vertices do
L FindTrail (v, cost, visitedEdges);

© 0 N & ok W N

=
o

11 return bestPlan;
12 Procedure FindTrail ( Vertex v, cost, visitedFEdges, x.)

14 if cost > minCost then return;

15 ;

16 if |visitedEdges| > maxLength then return;
17 ;

18 if allvisited (Q, visitedEdges) then

19 if cost < minCost then

20 minCost < cost;

21 bestPlan < visitedEdges;

22 return;

23 foreach FEdge e; € v.edges do

24 if z.[e;] < 0 then

25 ‘ return;

26 newCost < cost+ getCost (visitedEdges, €;);

27 newVisitedEdges < visited Edges.add(e;);

28 xele;] « xelei] — 1;

29 FindTrail (e;.trmVrtx, newCost, newVisitedEdges, .);
30 return;

Algorithm 6: Query Optimizer

After coarsening the query, the planner uses Algorithm 6 to enumerates all possible
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trails and selects the trail with the minimum estimated cost. The planner uses the
CPP to get how many times each edge needs to be duplicated to make the graph
Eulerian. CPP [116] will return an array x. of integers; where each entry corresponds
to an edge (line 5). A value of zero means that the edge is not duplicated; and will
only appear once. The total number of duplicate edges is the sum of all entries in
z. (line 6). The max trail length is set to the number of edges in the graph plus the
number of duplicate edges (lines 3 and 7). Then, it starts looking for an exploration
trail from each vertex in the query graph (lines 9-10) using the procedure FindTrail
(lines 12-28). The planner employs a branch and bound strategy to prune the search
space of the possible trails using the plan cost as an upper-bound (plan cost estimation
is discussed in Section 30). Initially, the exploration plan cost is set to infinity. A
branch is pruned in four cases: (i) if a valid exploration plan with a minimum cost
(so far) is found; i.e., all edges are visited, the cost bound and the best found plan are
updated (lines 16-20). (ii) Since the cost is monotonically increasing, if the current
exploration plan cost exceeded the bounded cost, the algorithm terminates (line 14).
(iii) To avoid redundant computations, the algorithm terminates when the length of
the exploration plan exceeds the maximum bounded length (line 15). (iii) Finally, if
an edge is duplicated more than what induced by the CPP algorithm, the branch is

pruned (lines 22-23).

Cost Estimation

The number of exchanged messages during query evaluation depends on the order
of the exploration edges. Therefore, the optimizer tries to minimize the size of the
intermediate results by exploring the most selective edges first. However, with the
absence of a schema, selectivity estimation in SPARQL is a challenging task [20,
117]. Therefore, SPARTex uses a selectivity estimation method that captures the

correlation among pairwise predicates. While loading the data, each vertex collects
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the correlation information between its triples and sends it to the master, which

aggregates the statistics. The master maintains the following statistics:

Predicate Counts PC(p;): for a predicate p;, PC returns a pair (sc,oc), where sc

and oc are the number of unique subjects and objects, respectively, attached to p;
in the data graph. For example, the predicate teaches in Figure 1.4 appeared three
times and it has (sc, oc) = (3,2). Similarly, type has 11 unique subjects and 5 unique

objects.

Predicates Pairwise Degrees PPD(p;,pj,d;,d;): given a pair of predicates (p;, p;)

with their directions (d;,d;), PPD(pi,pj,d;, d;) returns two values: (i) count is the
number of vertices that have both predicates with their respective directions. (ii)
(ad;, ad;) is an estimate of the average number of predicates p; and p; for each vertex
v € U. For example, PPD(advisor, takes, out, out) returns {4, (1, 1)} because there
are 4 vertices that have outgoing edges labeled advisor and takes. On average, each
vertex has one edge labeled advisor and one edge labeled takes. From the exploration
point of view, it means that there 4 vertices that exist when transitioning between
advisor and takes. These vertices would get one message from the previous iteration
and sends one messages out.

Algorithm 7 shows how to calculate the cost of the exploration trail {q, gs,...,
gn} using m computation iterations. The plan cost is initially zero (line 1). For
each exploration edge, Algorithm 7 increments the total plan cost with the expected
number of messages to be transferred during exploration (line 2-5).

The subquery cost can be one of the following: (i) in the first iteration, the num-
ber of messages sent can be estimated from the number of matches of the current
exploration vertex. The number of matches is estimated by considering all pairwise
combinations of the predicates attached to the vertex. For each pair, PPD is used to
get the unique number of nodes with this pair. The estimated number of matches is

the minimum count of vertices in the graph that are attached to the pairwise predi-
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Input: Exploration Trail T {q1, ¢2,..., Gn}
Result: Estimated Trail cost T,

1 Tipst < 0; tterNo + 0;

2 foreach EzxplorationEdge ¢; — T.edges do

3 gi.cost < ExplorationEdgeCost (g;,iterNo);

4 Teost < Teost + Gi-cost;

5 iter No++;

6 Procedure ExplorationEdgeCost (g;, iterNo)

8 iterCost < 0;

9 if iterationNo = 1 then

10 iterCost < estimateMatches (g;.ev) * PC|[q.pred |;
11 coarsenedCost < 1;

12 foreach ¢; — ¢;.ev.coarsenedEdges do

13 L coarsenedCost *= estimateMatches (g;.tv)
14 iterCost < iterCost * coarsenedCost;

15 return iterCost;

16 if explored (g.ev) is True then

17 if explored (q.tv) is True then return §;_i.cost;

18 else return ¢;_j.cost * avgDegree (¢;—1.pred, ¢;.pred) ;

19 else

20 coarsenedCost < 1;

21 foreach ¢; — ¢;.ev.coarsenedEdges do

22 L coarsenedCost *= estimateMatches (€;.tv)

23 if explored (e.tv) is True then

24 L return e;_;.cost * coarsenedCost;

25 | else return ¢; ;.cost * avgDegree (¢;—1.pred, g;.pred) * coarsenedCost ;
27 return;

Algorithm 7: Explration Trail Cost

cates. Each matching vertex sends a number of messages equal to its average degree
on the predicate g;.p (line 10). If ev has a set of coarsened subqueries attached to it,
the number of messages is multiplied by the number of bindings to the coarsened leaf
vertex (lines 11-14). (ii) If both ev and tv are already explored, then the same number
of received messages is is sent in this iteration (line 17). (iii) If ev is already explored
and the termination vertex is not explored yet, then the messages received through
the exploration predicate ¢;.p are simply forwarded. This serves as an upper bound
on the number of messages to be sent in this case (line 18). (iv) When exploration

and termination vertices were not explored before, the number of messages sent is



128
based on messages received, average degree of the exploration predicate and the num-
ber of bindings of the coarsened leaves (line 25). (v) If the termination vertex was
visited before, the messages received are forwarded to the termination vertex after

considering the coarsened leaves (lines 23-24).

5.4 Experimental Evaluation

In this section, SPARTex is evaluated using the same experimental setup, datasets
and queries discussed in Section 3.3. The experiments answer the following questions:
(i) How well does SPARTex perform rich RDF analytics compared to combinations
of existing systems? (ii) How efficient are the execution plans picked by SPARTex’s
optimizer? (iii) Using multiple real and synthetic benchmarks, how does SPARTex’s
SPARQL operator compare to existing specialized RDF systems? (iv) Finally, how
well does SPARTex scale?

Implementation. The current version of SPARTex is implemented on top of GPS

[113]; an open-source Pregel clone. Furthermore, to demonstrate that the proposed
SPARQL operator can be used in native engines, another implementation of the
SPARQL operator; coined Spartex-Native, is introduced. Spartex-Native is a modi-
fied version of AdPart-NA which differs as follows: (i) Spartex-Native partitions the
data on subjects and objects to enable the query coarsening optimization. This means
that Spartex-Native has subject-object hash locality awareness. (ii) Spartex-Native
does not use distributed semi-join as in AdPart; instead it uses distributed hash joins

by following trails.

5.4.1 Rich RDF Analytics

In this section, the three use cases described in Section 5.2.2 are implemented using
SPARTex. Since no other system can fully support these use cases, combinations of

SPARQL engines and graph processing systems are used. Specifically, H2RDF+ [30] is
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Table 5.1: Datasets Statistics in millions (M)

Dataset Triples (M) #S (M) #0O (M) #SnO (M) #P
KEGG 89.18 8.63 35.68 8.50 140
LinkedGeoData 274.67 51.92 121.10 41.47 18272

used as SPARQL engine with two different analytics systems. The first combination
is H2RDF+ with PEGASUS [118], a graph mining library on top of MapReduce.
The second combination uses H2RDF+ with GPS [113], an open source Pregel clone.
Figure 5.4 shows the wall time of the first two use cases using LUBM-4000 dataset.
In the first use case, the graph analytics are executed prior to query evaluation.
GPS and PEGASUS are used to evaluate PageRank and degree centrality algorithms
and the output is stored in HDFS. Notice that PEGASUS performed worse than
GPS confirming that MapReduce approaches do not perform well for graph analytics.
Then, the computation results are formatted as RDF triples and given to H2RDF+
along with the original RDF graph. H2RDF+ partition the input data and build its
RDF indices. Finally, H2RDF+ is used to evaluate the SPARQL query and prints
the results. Notice that both combinations required the data to be moved between
multiple systems and formatted accordingly. SPARTex performs better than both
combinations because it maintains the computation results of the analytics part in its
in-memory store. These results are then utilized by the SPARQL operator. Therefore,
no data formatting or indexing is required. The cost of data formatting and indexing
is very substantial accounting for more than 80% of the processing time. Finally, when
evaluating SPARQL queries, SPARTex performs significantly better than H2ZRDF+.
The same applies on the second use case; however, since the SSSP algorithm is not
available in PEGASUS, SPARTex is compared to H2RDF+GPS only.

Figure 5.5 shows the time of each phase of SamplD pipeline (see Section 5.2.2)
for two real datasets; KEGG and LinkedGeoData (See table 5.1). KEGG® is a real

dataset that integrates biological, chemical and gnomic information while Linked Geo-

Shttp://www.genome.jp/kegg/
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Figure 5.4: Rich RDF Analytics: Combining SPARQL with graph algorithms

Data’ is a spatial knowledge base derived from the OpenStreetMap data. Both the
rewriting (RDF to unlabeled graph) and the round trip (unlabeled graph to RDF)
phases are consuming most of the time. SPARTex on the other hand, does not incur
any rewriting phase for RDF as the data can be accessed with or without edge labels.
This allows SPARTex to save almost 70% of the time spent by the SamplD scripts.
Furthermore, SPARTex loads the RDF data once and keep it in memory. So there is
no need for intermediate data reading/writing from/to the disk. As a result, SPAR-
Tex provides a single system for the whole SamplD pipeline with almost one order of

magnitude better performance.

5.4.2 Query Optimizations

In this experiment, the query optimizer and its cost model are evaluated. The ex-
periment shows that the plan selected is an efficient one. It also demonstrates the
accuracy of the estimated cost (number of messages) compared to the actual cost.
Using LUBM benchmark, only the complex queries; L1, L3, L7, P and D are consid-

ered®. These queries are solved in several iterations and generate large intermediate

"http://linkedgeodata.org/
8P and D are two additional complex query patterns that are defined to test the systems rigor-
ously.
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Figure 5.5: SamplD Analytics Pipeline.

and/or final results. The rest of the queries are very selective (L6) or solved within a
single iteration (L2, L4 and L5) and do not require communication.

In this experiment, all possible plans for each LUBM query are executed. Queries
L1, L3 and L7 have the same structure; therefore, the number of possible trails is
the same for all of them (6 trails). Queries P and D have 36 and 176 possible plans,
respectively. Using LUBM-4000, Figure 5.6(a) shows the fastest and slowest execution
times for each query. It also shows the execution time for the plan selected by the
optimizer. For all complex queries the optimizer selects a plan that is either optimal in
the search space or has performance very close to the fastest execution plan. Note that
for P there were 19 plans that never finish because of the huge number of generated
messages during query execution, which cause network contention.

Figure 5.6(b) shows the estimated vs. the actual number of messages transferred
between vertices during the execution of the selected plan for each LUBM query. As
shown, the optimizer estimates the total number of messages for almost all queries
with a very high accuracy. Query L7 generates a huge number of intermediate results
at the first few iterations; however, many intermediate results are dropped at the final
iteration because of the cycle. The cost function is monotonically increasing, hence,

it can not capture this sudden drop of intermediate results. Nonetheless, the number
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Table 5.2: Query runtime for LUBM-10240 (seconds)

LUBM-10240 L1 L2 L3 L4 L5 L6 L7 P D Geo-Mean
SPARTex 4.48 6.78 5.45 3.40 3.24 2.38 7.02 7.89 6.21 4.85
CliqueSquare 125.02 71.01 80.01 90.01 24.00 37.01  224.04 161.02 160.02 88.35
H2RDF+ 285.43 71.72  264.78 24.12 4.76 22.91 180.32 1142.10 568.58 105.860
SHARD 413.72  187.31 N/A 358.20 116.62 209.80 469.34 596.08 544.94 317.606
Spartex-Native 2.881 0.406 2.953 0.001 0.001 0.010 2.386 3.408 4.768 0.222
AdPart-NA 2.743 0.120 0.320 0.001 0.001 0.040 3.203 5.724 4.793 0.193
TriAD 6.023 1.519 2.387 0.006 0.004 0.114  17.586 19.839 65.628 1.035
TriAD-SG (100K) 5.392 1.774 4.636 0.009 0.005 0.010 21.567 44.135  144.256 1.119
SHAPE 25.319 4.387  25.360 1.603 1.574 1.567  15.026 N/A N/A 5.575

of messages for the last iteration is the same for all plans because of the pre-join

condition; therefore, the optimizer succeeds in selecting the most efficient plan.

5.4.3 Query Performance

LUBM Dataset. Recall that the LUBM queries defined in [24] can be classified into

two types, simple and complex. Simple queries are very selective, touch small number
of triples, and generate small intermediate and final results. Complex queries consist
of non-selective joins and result in large intermediate results. L1, L2, L3, L7, P and
D are complex and the rest of the queries are simple.

Table 5.2 shows the performance of SPARTex against state-of-the-art distributed
RDF stores. If a system fails to solve a query within a reasonable time (1 hour) or
crashes, it is marked as N/A. RDF engines are categorized into two groups based on
their underlying framework: (i) systems built on top of generic frameworks: SPARTex,
CliqueSquare, SHARD and H2RDF+; and (ii) Native RDF systems: AdPart-NA,
SHAPE, TriAD and Spartex-Native. SHAPE, which uses RDF-3X for storage, is
considered native because data is partitioned such that each RDF-3X engine returns
a partial final result without the need for any communication.

SPARTex utilizes the efficient inter-vertex communication of vertex-centric frame-
works. In other words, the framework is actually contributing to the join by delivering
messages directly to the vertices. Vertices that do not receive messages are automat-

ically pruned. For L1, L3 and L7, SPARTex performs multiple joins concurrently
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because of the coarsening strategy. Then, only two distributed joins (2 iterations)
are required for evaluating the final query results. This is possible because of the
pre-join optimization. On the other hand, for SHARD and H2RDF+, multiple dis-
tributed joins are necessary for query evaluation. As a result, the geometric mean of
SPARTex is one and two orders of magnitude better than CliqueSquare, H2RDF+
and SHARD, respectively.

Similarly and without any data preprocessing, Spartex-Native is significantly
faster than SHAPE, TriAD and TriAD-SG for complex queries. SHAPE performs
worse because of replication and the way replication is managed. All triples (includ-
ing replicas) are stored together resulting in a large search space during join evalua-
tion. As simple queries touch small amount of data, Spartex-Native, AdPart-NA and
TriAD achieve comparable performance for queries L4 and L5. L2 is a non-selective
star query on which the hash-join technique, employed by SPARTex and AdPart-NA,
has a better performance than the merge-join employed by TriAD and TriAD-SG.
Query L3 returns empty results on which AdPart-NA evaluated the join that pro-
duce the 