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SUMMARY

The objective of the proposed research is to develop an intelligent load modeling,
identification, and prediction technology to provide granular load energy consumption and
performance details and drive building energy reduction, demand reduction, and proactive
equipment maintenance.

Electricity consumption in commercial and residential sectors accounts for about 70% of
the total electricity generation in United States. Buildings are the most important consumers,
and contribute to over 80% of the consumptions in these two sectors. To reduce electrical
energy spending and carbon emission, several studies from Pacific Northwest National Lab
(PNNL) and National Renewable Energy Lab (NREL) prove that if equipped with the
proper technologies, a commercial or a residential building can potentially improve energy
savings of buildings by up to about 10% to 30% of their usage. However, the market
acceptance of these new technologies today is still not sufficient, and the reason is generally
acknowledged to be the lack of solution to quantify the contributions of these new
technologies to the energy savings, and the invisibility of the loads in buildings.

A non-intrusive load monitoring (NILM) system is proposed in this dissertation, which
can identify every individual load in buildings and record the energy consumption, time-of-
day variations and other relevant statistics of the identified load, with no access to the
individual component.

The challenge of such a non-intrusive load monitoring is to find features that are unique
for a particular load and then to match a measured feature of an unknown load against a
database or library of known. Many problems exist in this procedure and the proposed

research is going to focus on three directions to overcome the bottlenecks. They are
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respectively fundamental load studies for a model-driven feature extraction, adaptive
identification algorithms for load space extendibility, and the practical simplifications for
the real industrial applications. The simulation results show the great potentials of this new

technology in building energy monitoring and management.
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CHAPTER1 INTRODUCTION AND OBJECTIVES OF
RESEARCH

1.1 Background of Building Energy Management and Research Motivation

The annual energy review prepared by the Energy Information Administration showed
that the total electricity generation of the United States has grown up to 4.5 trillion kilowatt
hours by 2011 [1], shown in Figure 1.1. The commercial sector and the residential sector
consume 34.94% and 35.63%, respectively, of the total generation. Buildings are the most
important consumers and contribute over 80% of consumptions of these two sectors.
Recently, several studies from PNNL and NREL [2, 3] proved that if equipped with the
proper technologies, a commercial or a residential building can potentially improve the
energy savings by up to 10% to 30% of the usage. Therefore, there is still enough impetus

from both the government and the customers to improve the building energy efficiency.
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Figure 1.1 ~ USA electricity retail sale by sectors from 1949 to 2011 [1].



The building-energy-management industry has already attracted millions of investments
during the past decade, and some emerging technologies like daylight harvesting systems [4]
and window shade systems [5] have already been commercialized. However, the market
acceptance of these technologies is still at a relative low level, and some new players like
Google and Microsoft have decided to exit the game after several years’ test. A generally
acknowledged reason of such a situation is the limited visibility of the contributions of these
new products. A clear example is the programmable thermostats, which are used by less
than 50% of home owners as a result of the lack of a clear analysis of the energy savings [6].
The majority of loads connected to a building today remain unidentified.

On the other hand, referring to the survey released by the Department of Energy (DOE)
[7], 71% of customers reported changing their energy consumption as a result of accessing
their energy usage information. Actually, in addition to benefiting those customers, a
thorough understanding of the energy usage in a building benefits the infrastructure manager
and the local utilities in many ways at the same time [8-10]. Therefore, it is necessary to
develop such a monitoring technique to understand the energy consumption and wellness
status of a building in an automatic and low-cost manner.

The traditional solution for building energy monitoring is usually based on the
installation of large numbers of sensors [11-14]. The outlets or strips proposed by Intel [15],
Belkin [16], and Google [7] are all able to provide the power-consumption information of
every individual load after they are labeled as one type of load manually. This method is
generally called infrusive monitoring [17]. This product needs pre-installation and pre-
education before it can work properly. In this work, an attractive alternative called non-
intrusive load monitoring, which equips the traditional monitoring system with intelligence

to identify the loads, is presented [18]. To sum up, a non-intrusive load monitoring (NILM)



system can identify every individual load in buildings and record the energy consumption,
time-of-day variations and other relevant statistics of the identified load, with no access to

the individual component.

1.2 Introduction of Non-intrusive Load Monitoring (NILM)
The concept of NILM was first proposed in the 1980s [19, 20]. A conceptual framework
of NILM system is shown in Figure 1.1. Generally, a NILM system is composed of five
components, i.e., a data-acquisition module, a data preprocessor, a feature-extraction module,

an identification or disaggregation module, and a load-management module.

Figure 1.2  System structure for the non-intrusive load monitoring technology.

In a NILM system, the data-acquisition module and the data-preprocessing module are
implemented based on the fundamental theory of digital signal processing. Two common
ways to realize data measurement are (1) To insert an intermediate monitoring device

between the socket and the appliance and then record its operation in a high sampling



frequency (over 1 kHz) and (2) To install the sensors at the main service entrance metering
point in a low sampling frequency (below 1Hz).

The feature-extraction module and the identification or disaggregation module are
usually regarded as the two more important parts of NILM, and these two modules require
the knowledge of computational intelligence and machine learning. Over 90% of the works
in NILM focus on these two modules [6, 21].

Using the information generated from the identification or disaggregation module, the
load-management module provides granular load-energy consumption and performance
details to drive building energy intensity reduction, demand reduction, energy optimization,

and proactive equipment maintenance.

1.3 The Electrical Loads in the Residential and Commercial Sectors
Loads in commercial and residential buildings are commonly classified into space
conditioning loads, water heating loads, ventilation loads, major appliances, lighting loads

and miscellaneous electric loads, as shown in Figure 1.3 [22].

Loads in Buildings |

Space Conditioning | | Water Heating Eﬂli:‘gter::?tzgs: Ventilation Apg:iagﬁ(r:es Lighting
Computers Refrigerators
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Figure 1.3  Classification of loads in commercial and residential buildings [22].



From the Annual Energy Outlook 2010 by the Energy Information Administration, the
electrical energy consumption splits for commercial buildings and residential buildings are
listed in Table 1.1 and Table 1.2 [22]. From the tables, lighting, space heating and cooling,
water heating, and ventilation account for 70% of total electric energy consumption. Many
industrial players have invested large amount of money on the energy savings of these high
power electric loads [23-27]. This work will stand on these works and focus on the demand
response or efficiency for the sake of utilities. Besides, the energy consumption of the
miscellaneous electrical loads (MELs) can also constitute 30%-40% of the remaining energy
use, which should not be overlooked. MELs, which can be also called plug-in electrical
loads (PELs), are the small and diverse collection of energy-consuming devices, including

what are commonly known as plug loads [28].

Table 1.1 Electric energy consumption for commercial buildings [22].

Loads in Commercial Buildings Electric Energy Usage
Lighting 31.53%
Space Heating 4.73%
Space Cooling 15.99%
Water Heating 3.60%
Ventilation 8.56%
Electronics 9.46%
Cooking 0.90%
Refrigeration 5.18%
Computers 4.73%
Others 12.84%
Adjustment 2.48%

The energy potential of MELs can achieve 60-70% whole-house energy savings, and
this percentage is likely to increase in the future as home electronics become even more

sophisticated and their use becomes more widespread [29, 30]. Both these two groups of



loads will be studied while with different research targets in this dissertation.

Table 1.2  Electric energy consumption for residential buildings [22].

Loads in Commercial Buildings Electric Energy Usage
Clothes Dryers 3.95%
Clothes Washers 0.34%
Color Television 4.48%
Cooking 2.90%
Dishwashers 1.30%
FA Furnace Fans 0.98%
Freezers 1.31%
Lighting 6.07%
Computer Monitors 0.39%
Desktop PCs / Laptops 1.40%
Refrigeration 4.84%
Space Heating 25.67%
Space Cooling 12.59%
Water Heating 10.67%
Home Audio Eq. 0.53%
Microwave Ovens 0.70%
Set-top Box 1.69%
All Other End Uses 19.56%

1.4 Opportunities for Non-intrusive Load Monitoring

The large portion of the total electricity consumption of buildings offers great
opportunities for NILM to manage energy usage and consumption, reduce energy wasted by
the vampire loads, and regulate the major high power electric loads for a demand response
or energy efficiency program. There are a large number of ongoing NILM works for many
purposes including energy saving, building fault detection, and demand response.
1.4.1 Energy Savings by PELs Identification

Energy auditing is one of the original targets for NILM. Recently, instead of the major
high power loads, defined in Chapter 1.3, those vampire loads attracts more attentions

because of their increasing amount of energy consumptions [31-33]. Several alliances and



standards on PELs management have been established.

Energy Star [34], as one of the alliances, indicates that standby PELs consumes more
than 100 billion kilowatt hours annually and contributes to more than $10 billion in annual
energy costs in United States. Proper PELs consumption management can result in as much
as 75% standby power savings [35, 36] and 40 million tons of carbon emission reduction
expected per year in United States [37].

Building America, a recent effort by DOE, has started to identify and reduce PELs
consumption [38] and aims at 50% energy savings in new homes by 2015.

Comparing to the other major high power loads such as water heating and space
conditioning appliances, PELs possess great and unique potentials to be efficiently managed
in buildings since they can be directly controlled (e.g., turned ON/OFF) by the switches in
power strips, main sockets, and power outlets in which PELs are plugged into [39].

To achieve the energy saving target, the energy auditing of these PELs becomes very
important. Establishing a two-way communication between each household appliance and
the customer-end (PC, Tablet, or Cellphone) is one way to realize this objective [40, 41].
However it might not be feasible in the real applications because most existing appliances
don’t have communication capability [42]. As an alternative, some smart outlets equipped
with communication capability are introduced by many industry members and have been
accepted by the customers, such as Belkin WeMo [16]. However, these smart outlets are still
lack of the capability to identify the plugged load automatically. A manually labeling is
required for all the existing products as for now. According to the survey from [43], over 80%
of the customers will not change the label, even though some new loads are plugged in. This
greatly increases the error rate of the energy auditing service. Therefore some automatic

load identification solutions are highly expected.



1.4.2 Demand Response by Smart Meter Data Disaggregation

Different from the PELs management, many industrial providers like Siemens, Eaton,
Schneider, etc. [23-27] have commercialized many energy auditing products for the major
high power loads in commercial buildings. Their products actually have the capability to
monitor these loads 7 days, 24 hours with a panoramic view. Therefore, the opportunities
here are not in energy auditing but in collaboration with utilities on their demand response
(DR) and energy efficiency (EE) program. Recently, many utilities in U.S. released the
energy efficiency and demand response program for the residential customers [44-47]. Many
efforts have been devoted to the demand-side management (DSM) of electric loads in
residential and commercial buildings [48-56]. DSM of electric loads typically aims at
improving system reliability, dynamic pricing [57], reducing energy consumption [58, 59],
and introducing advanced real-time control [60-62], and load balancing [63, 64].

Typical demand response in buildings to reduce energy consumption during peak
energy-consumption hours is achieved by a centralized building automation system with
time scheduling. A number of such building automation systems have been designed and are
available, such as “Lawrence Berkeley National Laboratory’s automated demand response
system [65], and Pacific Northwest National Laboratory’s facility energy decision system
(FEDS) [66].

However, from the perspective of the utilities, the baseline load modeling and auditing
are the pre-requisite and should be conducted first by utilities to achieve their DR and EE
programs [67]. Same as PELs monitoring, a direct idea is to establish a two-way
communication between the loads and the well-developed central system to collect the usage
and identity information. Many IOT eco-system providers like Apple [40], Google [68], and

IBM [69] are targeting this market rapidly. However it is still too expensive and unrealistic



to embed communication accessories into the existing major high power loads in a short
term and most loads today do not have communication capabilities [10]. Besides, from the
perspective of utilities, only large and regularly repeatable using loads can be used as DR or
EE [70], and meanwhile the utilities have large amount of smart meter data [71]. Naturally,
NILM attracts their attentions again because NILM only utilizes the power signal at the
main breaker level to estimate the states and power consumptions of the individual loads.
1.4.3 Fault Detection of Large Loads such as HVAC System

Nowadays, the heating, ventilating and air conditioning (HVAC) system accounts for
over 45% of the energy consumption in buildings, and takes billions of kilowatt-hours every
year [22]. It has been reported that 14% of the U.S. primary energy is consumed by the
HVAC for commercial and industrial buildings and 32% of the electricity generated is
consumed by the HVAC in commercial buildings [72]. Two biggest concerns of HVAC
system are comfort and cost-efficiency [73]. The comfort is first considered by consumers,
especially in specific locations such as the hospital and food storage room. As to the
application in the general commercial and industrial buildings, the cost of the HVAC system
can be another important factor, and most consumers are likely to choose the cost-effective
ones. Most consumers are concentrating on the price of buying and installing an HVAC and
air-conditioning system, while they often neglect that the cost in the future [74]. Actually, it
may cost more due to the cost of energy consumption and high frequency requirements for
maintenance, especially for some special applications like data center. The cost of
maintenance is the major contributors for data center operation. In this way, a smart fault
detection technology for the HVAC systems has been expected for many years. With a
proper fault detection system, the imperfect operation can be figured out and the cost can be

greatly saved by adjusting the HVAC to the perfect state [75-80].
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1.5 Challenges of PELs Identification

In the aspect of PELs management, the measuring device is usually capable to reach
each individual load and record every detailed change of the current and voltage of the load.
The sampling frequency is usually higher than 1.92 kHz. The core idea of PELs
management is to apply advanced digital signal processing technology on the raw data,
generating a group of frequency domain and time domain features, to train the identifier
based on the different pattern recognition algorithms. Theoretically, it should provide more
information and therefore guarantee a better identification results than low sampling rate
solution. However, several challenges exit and the study of high sampling based solution has
been seen no progress for a long time.

In detail, despite the large set of features, there is still no a complete set of robust,
widely accepted load features such that the variability of these features within classes is
small whereas the interclass difference is large. It is not even known whether the existing
features are really useful and efficient. As a result, when the input sample is a load whose
model or operating status is not covered in the training set, the incorrect identification
frequently occurs.

Besides, the load space is too large which results in the difficulty to define a universal
load space of interest. What is worse, with the development of consumer electronics industry,
new types, brands and models of appliances are emerging at a fast speed. This further
increases the difficulty for load identification. Taking the TV as an example, the technique
of the TV from ten years’ ago is totally different from what is used for today, as shown in
Figure 1.4.

Finally, the amount of data available for training is limited. No one can measure all the

types of loads all around world to set-up a complete training dataset. This also impedes the
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identifier to do a feasible learning.
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Figure 1.4 The technology trend of TV industry.

1.6 Challenges of the Major High Power Load Monitoring
In the aspect of the major high power loads monitoring, the measuring device is usually
the smart meter, which records the real/reactive power of the entire home every five or
fifteen minutes. Therefore it is a low sampling frequency solution. The smart meter is

installed in the main service entrance of each residential home or building. The core idea is

11



to detect the power-change events and utilizes the change of real and reactive power to
disaggregate the load underlying an event. However, the exiting solutions meet difficulties
in distinguishing between loads with similar power consumption. In addition, it is still a
challenge for most of studies to deal with the situation where two appliances change their
states simultaneously, which is very likely to happen. These two theoretical challenges come
from the nature characteristics of the low sampling data, which lose a large amount of useful

information, as shown in Figure 1.5.
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Figure 1.5 The difference between 1Hz and 15 minutes resolution data.

Moreover, from the perspective of the practical application, most existing solutions
need supervised learning, i.e., individual load waveforms are required to estimate the

parameters in the algorithm [81]. The user is also required to record the usage information
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manually for a period of time at the beginning of the installation. The usage information is
used to train the disaggregation module, which is typically not available for the real
application. Although some existing works have proposed learning algorithms that do not
need individual load waveforms, these algorithms still need generic load models (i.e., a
priori load knowledge) or manual waveform selection [82, 83]. This challenge also makes
the ground test for existing solutions very difficult.

Finally, the computation effort of the solution is too high for most of the algorithm.
Since most of the measuring devices are only equipped with the basic multi-computing unit
(MCU) and communication module [6]. It is impossible for the installed device to
implement such an over complex algorithm. This also prevents the development of low-

sampling frequency based solution.

1.7 Challenges of the Fault Detection of the HVAC System

There are a good number of papers and books concerning on the fault detection of
HVAC with various approaches [84, 85]. One noticeable characteristic of these conventional
conditioning monitoring methods is that they rely on a relatively extensive network of
sensors [86-88]. Many of the methods have five or more temperature sensors, as well as
pressure sensors [89], mass-flow sensors [90], and relative humidity sensors [91]. Even
though these mechanical sensors can provide valuable information about the state of an air-
conditioning system, their use in a conditioning monitoring method must be considered in
the context of their cost and rate of failure.

The idea of NILM based fault detection of the HVAC system is to measure the currents
and the voltages at the terminals of the electromechanical device, and then identify faulty
mechanical behavior on the basis of these observations [92]. This represents an interesting

and potentially viable alternative comparing to the traditional solutions. In effect, these
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methods either use a signal-based approach, in which a priori knowledge is used to relate
mechanical faults to particular features observed in the electrical sensor output, or a model-
based approach, in which the observed inputs and outputs of the system are used to
characterize the behavior of the system and determine the existence of any faults.

However, the existing NILM based fault detection solutions suffer from the following
challenges which impede their applications in the real industry [92]. Firstly, the motors used
in HVAC system are typically designed to be good energy conversion systems. They are not
usually intended to be used as transducers, which makes it much harder to develop reliable
conditioning monitoring methods. Moreover, there are mechanical faults which have no
observable effect on the electrical variables because of effects like noise or scaling problems,
such as arise for loads coupled through gearboxes. Finally, wide variety of mechanical
changes is being mapped into a relatively small number of electrical variables, i.e. currents
and voltages. This mapping can make fault isolation more difficult, since different types of
mechanical faults sometimes have identical effects on the electrical variables. To deal with
these problems, a comprehensive study on the physical model of the HVAC system is

required.

1.8 Objectives of Research
Different applications of non-intrusive load monitoring can benefit different
stakeholders. The objectives this research is trying to provide a complete non-intrusive load
monitoring solution vertically for various customers, as shown in Figure 1.6.
In the aspect of residential customer, many studies have investigated the effects of
providing consumers with feedback on their electricity consumption [93]. They suggest that
the greatest savings result from appliance-specific feedback. Based on the survey [94-96],

the most important reason why appliance information facilitates greater energy reductions is
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that the technology enables automated personalized recommendations. Therefore this work
targets a high-frequency load identification solution able to detect as much as loads by
introducing an adaptive online learning mechanism. This new technology will automatically

study the new loads by itself without the help from the customers.
Condition Monitoring and Fault Detection

b

House Building  Skyscraper

fak

Facility Manager

Demand Response Loads Monitoring
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PELSs Monitoring
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Figure 1.6 The research directions of NILM in this dissertation.

In the respect of utilities, the smart meter data disaggregation has the potential to
improve the DR and EE marketing — by improving market segmentation, diversifying
programs, and transforming program development and evaluation. Strategic use of historical
energy consumption patterns would allow program designers to target individual consumers

as well as whole communities with more specific recommendations and offers. For example,
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knowing which consumers or consumer groups (residents, residential communities,
businesses, or business sectors) are using energy through air conditioning, pool pumps, or
old refrigerators, would allow program designers to target the most appropriate audiences
with specific rebates and usage tips. The objective of this work is to using the smart meter
data to disaggregate those demand responsive loads (air-conditioner, stove, washer/dryer,
etc.) to improve the ability to predict energy demand annually and seasonally for utilities.
Moreover, by conducting a statistical analysis on the disaggregated data, it also improves
our understanding of energy consumption patterns, and this can be used to improve the
representation of human behaviors in energy models. This may help policy makers better
evaluate utility energy efficiency programs, and allow for better allocation of funds.

In the aspect of the facility manager, the fault detection technology is highly expected to
improve the comfort level, energy savings as well as the system reliability of the buildings.
HVAC system as most important the appliances, its maintenance and diagnosis will be
studied in this work. The target of the research is to provide several diagnostic techniques
based upon the output of electrical sensors installed in the HVAC systems. Such methods
measure the currents and the voltages of the HVAC systems, and then identify the faulty
mechanical behavior on the basis of these observations.

In detail, the proposed research is going to focus on four major works.

1. Model-driven Feature Extraction: A fundamental study on front-end electronic
circuit topology and electrical operation principles of the majority of loads are
presented. This study looks at the available features from the model-drive
perspective and therefore brings a more robust and efficient feature space. Some new

features are also introduced.
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2. Adaptive-learning Identification Algorithm: A random forest based algorithm is
introduced here to cope with the online requirements. This new algorithms promise
the future application of NILM in building energy industry.

3. Human-Behavior based Load Disaggregation Algorithm: A Hidden Markov
Model (HMM) algorithm is introduced to deal with load disaggregation for smart
meter data. To cope with the challenges of disaggregation, some human behavior
based features are incorporated into the algorithm to promise the performance of the
solution.

4. Electrical Measurement Based HVAC Fault Detection: The physical model of the
HVAC system is well studied to form the basis of the work. The frequency domain
features are applied to act at the index for different condition for HVAC system. The
traditional non-intrusive fault detection works for electric motors are seamlessly

integrated in the proposed work.

1.9 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 provides a comprehensive literature review on the existing methods and
techniques pertinent to the proposed research.

Chapter 3 proposes a load space and feature study based on the survey of front-end
electronic circuit and electrical operation principles for different loads. This study firstly
provides a new taxonomy for current load space and then extracts a high-efficient feature set
for the following study.

Chapter 4 introduces a high-sampling frequency based load identification solution. The
random forest algorithm is applied to realize an adaptive online learning mechanism. This

new mechanism allows the identifier to study the loads automatically as the usage of the
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customer. It is a more practical application for future energy auditing service.

Chapter 5 applies the Factorial Hidden Markov Model (FHMM) to the 15-minute
resolution smart meter data. The human-behavior features and an unsupervised learning
module are presented as well for the load disaggregation work. This work successfully
disaggregates the large loads used in the residential home.

Chapter 6 proposes an electrical measurement based fault detection technique for
HVAC. The air-flow blockage fault and refrigerant leakage fault are studied. A front-end
high sampling frequency measurement is implemented. The speed/torque estimation
algorithm from traditional motor parameter estimation is applied. The physical model of the
air-conditioner is studied. Finally, a statistical analysis is provided to establish the
relationship between the observed condition index and the two studied faults.

Chapter 7 provides the conclusions and contributions of this dissertation work and

recommendations for future investigations.
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CHAPTER 2 REVIEW OF LITERATURE

2.1 Chapter Overview
The current research topics in NILM are shown in Figure 2.1. This chapter provides a
literature review on topics pertinent to this dissertation work, including: (1) the existing
solution for high sampling frequency load identification, (2) the existing solution for low
sampling frequency load disaggregation, (3) the existing solution for air-conditioner air-flow

detection and refrigerant leakage/undercharge detection.

=
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Features Features

Figure 2.1 Research topic summary of the study on non-intrusive load monitoring.

2.2 High Sampling Frequency Based Load Identification
Even though the study of the load identification based on the high sampling rate has

been dropped by many manufactures in NILM industry, the contributions of these previous
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studies are still of great importance for the new applications and solutions.

S. Leeb, the group leader of MIT after Dr. Hart changed their focus by introducing
high-frequency harmonics as the major features in [97-99], shown in Figure 2.2. The
concept of a spectral envelope is introduced as well [100]. This method successfully solves
the problems mentioned in [101], and is able to detect numerous appliances including the
variable loads. However, as a tradeoff, an excessive training is required. Moreover, it is still
not known why these high-frequency harmonic features are distinct and whether these
differences only exist in the sampled load sets. Therefore it is difficult to prove that the

method is widely feasible.
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Figure 2.2 Harmonic signatures of monitor (upper) and CPU (lower). The
fluctuations are shown by black bars [97].

Apart from traditional FFT analysis, S. Patel takes the FFT noise as a feature [102, 103]
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which is a completely new solution to NILM, shown in Figure 2.3. By monitoring the
electric noise in a socket for transient signals, it is reported to be able to detect most
appliances connected to the sockets of the household. The results in terms of detection
accuracy were comparable to those of other groups. Even though the new noise-based
technology appears to be more reliable than the previous technology, several open questions
remain. First, the appliance signature may depend on the household electrical wiring.
Second, it is not clear how the EMI from neighboring environment will influence the
detection process. Third, overlaps between the EMI signatures are inevitable. Fourth, mere
detection of appliances is not sufficient for the load monitoring purposes.

Chan [104] have proposed to use a wavelet transform instead of the FFT to extract
features, shown in Figure 2.4. The motivation is that the wavelets allow simultaneous time
and frequency information localization, whereas the time localization with the conventional
FFT is not possible. It is demonstrated that the wavelet features of several consumer
electronics are quite distinct. However, there are still no attempts to use these features in a
real NILM algorithm so far.

The geometrical features of waveforms from different appliances have been explored in
[105, 106], shown in Figure 2.5. The main novelty is to use an I-V trajectory curve. Even
though the use of I-V curves looks like a promising direction, the authors have never offered
a working algorithm for NILM based on these features. A recent work from the same group
proposed to use several different features simultaneously to increase the algorithm accuracy,
in which the geometrical feature exploration was applied [107]. In [107], a committee

decision procedure is proposed.
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Figure 2.3 Background noise observed in a socket (upper panel). A new SMPS device is

turned on, producing additive EMI (middle panel). After background subtraction the new

signal features are extracted. The features are amplitude (A), mean (p) and variance (o) of
the Gaussian fit [103].
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Figure 2.4 Wavelet decomposition of PC current waveform [104].
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Figure 2.5 (a) The trajectories of a laptop, (b) a desktop PC operating in standby mode
[105].
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2.3 Low Sampling Frequency based Load Disaggregation
The ultimate objective of NILM described by MIT in 1980s [20] is simply to install one
smart sensor in the metering point recording the real power at a as low as possible

frequency, shown in Figure 2.6.

Power 3 :
(KwW) Oven element

Time (Min).

Figure 2.6 Power vs. time plot shows step changes due to individual appliance events [20].

In this work, four categories of appliances were defined by the authors, i.e., permanent
consumer devices, on-off appliances, finite state machines (FSM) and continuously variable
consumer devices. This study formed the basis of their following 20 years of study.
Permanent consumer devices and on-off appliances were considered in detail in [20], by
using the changes of real power and reactive power as the main features, shown in Figure
2.7. Later, a time-order FSM method is proposed in [108] and [109] to tackle with the FSM
load identification, shown in Figure 2.8. In [110], the shapes of the transient events were
introduced to find the solution to continuously variable consumer devices, as shown in

Figure 2.9. Even though these studies comprehensively contributed to the NILM study, the
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authors themselves summarized the problems and limitations of their methods in their recent

studies [111], i.e., the appliances consuming similar power may not be separated, and the

poor repeatability of transient events.
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Figure 2.7 Complex power space and appliance clusters [20].

Similarly to the work did in MIT, Sultanem did an independent research at the same

time. In his work, he proposed to use normalized real and reactive changes in power draw as

the two major features. This algorithm successfully overcame the mismatch problem in

MIT’s study [112].

Cole and Albicki from University of Rochester proposed in [113] and [114] to use the

significant spikes in power draw as the new features as shown in Figure 2.10. However, it

bears the same drawbacks of the poor repeatability of transient events as stated in [111].

After this work, the research on MIT’s original proposal seems stopped even though there is

still no answer to these problems.
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Figure 2.8 Finite-state appliance models: (a) generic 1200 W two-state appliance, e.g.,
toaster; (b) refrigerator with defrost state; (c) “three-way” lamp; (d) clothes dryer [109].

Until recently, another group from computer science area started this study again and
came back to the origin point of this study, only taking the changes of real power into
consideration. However, some modern machine learning and statistics methods were
introduced this time [115].

The approach developed by Concordia University in [116] relied on the changes in real
power and some appliance-specific decision rules to detect those large appliances such as
water heaters. Although the method achieved an estimated accuracy of 80%, it only can be
used to reliably detect just two appliances. In [117], the authors improved their work by

using changes in real power and signal smoothing technology to detect on-off events.

26



Reportedly, this method was able to detect the water heater, the refrigerator, the clothes
washer, the stove, the clothes dryer, the dishwasher, and the baseboard heater with an
accuracy of up to 90%. However, the necessity to develop appliance-specific decision rules,

required by the method, makes it hardly applicable for consumer electronics.
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Figure 2.9 Measure induction motor real power transient [ 100].

Unlike most of the other methods, the NILM method proposed by Baranski and Voss
[118-120] created a frequency analysis based on the historical data, and only those frequent
power changes were considered further as the feature. However, the proposed genetic
algorithm was a simulation method that may or may not provide the optimal solution.

In [83], Kolter firstly applied the factorial Hidden Markov Model (FHMM), which was
comprehensively applied in DNA decoding and image identification, into NILM problem, as
shown in Figure 2.10. Since then, HMM has become the state-of-the-art model for load

disaggregation and much work has been done to develop HMM based NILM systems:
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Figure 2.10 Instant start lamp power [100].

In 2011, H. Kim considered the on-duration time of the appliances, and proposed the
conditional factorial hidden semi-Markov model (CFHSMM). The reported accuracy is 83%.
However, the simulated annealing algorithm used in this paper suffers from the low
efficiency problem [121]. In the same year, Sundeep Pattern contributed to the FHMM study
by improving the data preprocessing techniques of FHMM [122]. The residual data were
also preserved and analyzed. Oliver Parson changed FHMM to a supervised training by
using certain prior knowledge to improve the training efficiency in 2012 [123, 124].
However, the FHMM method is still a novel method for NILM problems, and it bears lots of

problems at the moment.
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Figure 2.11 HMM model of the kitchen outlets [83].

2.4 Non-intrusive Fault Detection of the HVAC System

It is acknowledged by most of the researchers in this area that traditional application of
NILM in energy auditing has seen no great progress in recent years. Most of researchers are
trying to find a more specific application with a more reasonable load set. The fault
detection application used in construction area is proposed by several studies as the
preliminary attempts to jump out of the deadlock of current NILM study.

A group of CMU researchers from civil engineering has recently pursued NILM to
benefit construction commissioning. Based on their released paper, they believe this will be
a synergetic relationship between NILM and the building commissioning process. They
started their work from the data acquisition [125] to the feature extraction and then the
algorithm development [126]. However, no recent progress has been released after that.

At the same time, some civil engineering researchers from MIT also started to use
NILM technology to help verify the working status of the building loads, like water pump,

HVAC system and elevator systems [127, 128]. Their works mainly focus on using the
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change of working power and the stator current of the motors to verify the conditions of
these loads as shown in Figure 2.12. The idea is really attractive, nevertheless most of their
works actually are not in a ‘non-intrusive’ environment. This work will focus on the
conditioning monitoring of air conditioner, therefore the review of existing work on two

typical faults in air-conditioning system is provided below.
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Figure 2.12 Flowchat of the air-flow estimation method [128].

2.4.1 Conventional Solutions for Air-flow Leakage Detection

To detect the air-flow faults, numerous methods based on mechanical sensor
measurements have been proposed in the literature. Anemometers are commonly employed
to estimate airflow in ducts, with propellers measuring the rotational speed of their blades,
or with hot-wire types, and both methods measure the air speed directly [129]. However, the
sensitivity and single-point measurement are the main weaknesses of these methods. An

indirect approach measures the dynamic air pressure p,, instead of the air speed. It exploits
the relationship of V = 2’% (where p is the air density) which, however, is similarly

limited by the single-point measurement problem [130]. A flow plate or true-flow grid [131]

is used to compensate the above drawbacks, through measuring the average air pressure by
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inserting a series of tubes into the duct. Pressure measurements of relatively high accuracy
can be used [131]. However, due to the high cost, difficulty to install and sensitivity to bias,
these methods have not seen widespread utilization so far. Other less common approaches
are demonstrated in [132], where CO, or ozone is injected at one point in a duct and the
concentration is measured on the other side of pipe line to determine the flow of air. In [133],
the acoustic spectrum and transfer function of duct are measured by sensors and exploited
for pinpointing any blockage.

Most of these conventional methods above are either not reliable enough or expensive.
Recently, a new idea has been proposed [127, 134] that is based on the measurements of the
currents and the voltages of the HVAC systems, and then identify faulty mechanical
behavior on the basis of these observations. The principal benefit associated with the use of
these electrically-based fault detection techniques is that electrical instrumentation is often
easier to install, more reliable, and less expensive than comparable mechanical
instrumentation, and at the same time smart sensors have been widely utilized in today’s
energy management system. However the work in [127] as a preliminary attempt still bears
the drawbacks and thus is difficult to be utilized in the practical application.

2.4.2 Conventional Solutions for Refrigerant Leakage Detection

Refrigerant undercharge or overcharge may cause severe effect on compressor lifetime,
latent heat capacity or even environment.

The mass of refrigerant is specified for the expected cooling capacity. Too little
refrigerant will cause the superheat in the evaporator, thus reduce the heat absorption
capacity, while too much refrigerant will result in higher pressure than rated, which will
cause other undesirable effect on the components. The possible causes for undercharge fault

are leakage and mal-installation. Release of chlorofluorocarbons is well-known for its
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destructive power to ozone layer, and the reduced cooling capacity will increase the power
loss and thus lower the energy consumption efficiency.

A large amount of literatures have focused on the effect of refrigerant undercharge fault
detection, in [135], a 3-ton system with undercharge fault is studied. The author revealed
that the performance deteriorate quickly when the refrigerant charge falls below 10% of its
rated level. Paper [136] provided a persuasive conclusion for the undercharge detection that
the sensitive parameters to the charge level are the degree of superheat at the evaporator
outlet, the degree of sub-cooling at the condenser outlet and the discharge pressure.
Refrigerant undercharge FDD method is used in [137], where the leaks in supermarket
refrigeration system were analyzed. However, most of these methods related to faults
detection need a great number of sensors for temperature or pressure measurement, which

largely reduced the convenience and accuracy.

2.5 Chapter Summary

This chapter provides a comprehensive literature review on topics pertinent to this
dissertation. First, the existing solutions for high sampling frequency load identification are
introduced. An adaptive self-learning technique has been suggested by several researchers as
a promising technique to realize the energy auditing goal. Next, the existing solutions for
low sampling frequency load disaggregation are reviewed. The human-behavior features are
suggested in the training procedure. An unsupervised solution is also mandated for a real
application. Finally, the existing conditioning monitoring solutions for HVAC based on
mechanical sensor measurement is introduced. Based on this literature review, the rest of
this dissertation proposes a complete non-intrusive load monitoring solution vertically for

different level applications.
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CHAPTER3 FUNDAMENTAL STUDY OF ELECTRIC
LOAD AND FEATURE EXTRACTION

3.1 Chapter Overview

The huge load space comparing with the limited measurement capability and the lack of
knowledge on the existing feature sets act as the two dominant challenges for high sampling
frequency load identification today. This chapter starts from a survey on the market and the
standards of the PELs loads to generate a load space with a hierarchical taxonomy that can
represent the majority of loads in the real world. The data collection metrics and data
management tool are introduced. Furthermore, with the collected data, a comprehensive
study on front-end power supply circuit topologies and electrical operation principles of the
collected loads is presented. This forms the basis of the proposed taxonomy from the power
electronics' point of view. Under the proposed taxonomy, a complete model-driven
hierarchical feature extraction method is presented, and the features extracted from this
method prove much simpler and more feasible in differentiating the subtle differences

between similar loads.

3.2 Data Collection and Preprocessing
3.2.1 Load Space Definition
The first step to building an NILM system is to construct a database with a pre-defined
load space. Usually, the selection of the loads to be identified is based on their usage
frequency, total contributions to building energy consumption and energy saving potentials.
To obtain a more generalized load space, this work also takes several standards including 80

PLUS [138], Energy Star [34], and IEC 61000-3-2 [139] into consideration in the selection
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process. To date, this work has included a total of 42 load types, and 5 to 7 brands per type,
as the set to be studied. The constructed database covers over 90% of appliances used in the
commercial and residential buildings. The detailed load list is shown in Table 3.1. In
addition, the database describes every load type in five categories, (1) Load type, (2) Brand
(with top five market share), (3) Operating characteristics, (4) Front-end circuit topologies,

and (5) Operating states. The database structure for a space heater is shown in Table 3.2.

Table 3.1 A list of the loads to be studied.

Load Category Loads Name
Large Loads HVAC, space heater, water heat, coffee maker, furnace, oven,
(>1kw) dishwasher, microwave, washer and dryer, pump, and refrigerator.
Regular Loads Task light, fan, TV, home theater, printing device, desktop, and
(>45W) projector, etc.
Small Loads DVD player, Set top box, laptop, monitor, shredder, cellphone
charger, etc.
Table 3.2 A snapshot of database structure.
Load Brands Work Types Power Supply Topology  State Working
Holmes Ceramic 1.Pure Resistive t.s Startup
S DeLonghi Quartz 2.Inductive adjunction Low Taps
hg:;i Honeywell Oil filled 3.SCR controllable s.s High Taps
Lasko Heater fan Fan
Pelonis Standby

Note: t.s means transient state, and s.s means steady state.

The raw voltage and current (V/I) waveforms of all the individual loads have been
collected during many different operating conditions. This includes startup, steady, standby
(or other low power states), and particular operating states for some loads (e.g., printing
states for printers). Each set of V/I waveforms has been sampled at 3.84 kHz for one minute.

A total of 627 sets of data have been recorded.
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A data preprocessing engine has been developed in MATLAB to process and analyze
all the collected data, including the V/I waveform plot, V-I trajectory, Fast Fourier
Transform (FFT), power factor, real power, reactive power, and apparent power. This engine
provides a user-friendly interface to access the database, as well as to display the signal

analysis results, as shown in Figure 3.1.

05F
ok
05}
K L L 1 1 1 1
0 10 20 30 40 50 60
time (second)
— Mode—— - — — Horizon — Vertical—— — Trigger

@ Normal m 5 1 |tel 1 El it Trigger Status
! | Single Cycle l— I e ) run
1 y-R =
| 1-second | | =zt num—cycle.s‘ |5& Nzendg @ stop
— V-l Trajectory = 3 :
: G u IT] 1 fine Mo Channeli.. = Screening Speed
¥ |No Channeli.. - == = _‘]:DJ
left| | right| [7] fine ¢ |[[] awto | Offset || |—
| |Mo Channeli.. = l:] g o = — Channel
E| 0 |to| 60 |s | sett-Range 1 ||| norm Channel...

Figure 3.1 Database user interface.

3.2.2 Multi-Level Structured Taxonomy of Load Space

The number of types and models of loads in market, residential buildings, and
commercial buildings is enormous. It is more practical and robust to first divide all the loads
into several categories based on some prior-knowledge. Considering the fact that voltage
and current waveforms are the only source of information available for signature extraction

and load identification, the front-end circuit topology of the load and the electrical operation
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principles play a key role as it directly determines the characteristics and shape of the
current waveform. With a thorough understanding of the state-of-the-art of almost all the
front-end power supply topologies and electrical operation principles, a bi-level taxonomy
of current load space is proposed. The resulting bi-level structure is presented in Table 3.3.

In details, the first level, i.e. Level-I in Table 3.3 consists of 7 load categories: resistive
loads (R); reactive predominant loads (X); electronic loads with a power factor correction
circuit (P); electronic loads without a power factor correction circuit (NP); linear power
supply using transformer to boost voltage (T); phase angle controllable loads (PAC); and
complex structures (M).

The majority of resistive loads (R) are used for heating, cooking, and lighting. The
representative loads include space heaters, coffeemakers, and incandescent lamps. For
reactive loads, the appliances often consist of compressors, motors, or chillers. The motors
commonly used for appliances are often small DC motors. The typical loads in this sub-
category are fans, washers, refrigerators and shredders, etc. The next two large groups of
appliances are all electronic loads, denoted as categories P and NP in Table 3.3. Since the
IEC Standard 61000-3-2 limits the harmonic current level for all the loads with power above
75 Watts, it can be assumed that a power factor correction (PFC) module is needed to meet
this requirement. Therefore, category P refers to electronic loads with PFC. Personal
computers over 75W, projectors, LCD TVs, LED TVs (working in the “high quality mode™),
Plasma TVs, home theaters and game consoles, also all belong to Category P. In contrast,
Category NP refers to electronic loads that do not utilize power factor correction techniques.
Small devices, such as cellphone chargers, portable DVD players, adaptors of the portable
printers, scanners, fax machines and multiple function devices (MFD) using ink-jet, PC

monitors, LED TVs (operating in the energy saving mode) and PCs (operating in a low
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power mode) are major loads in this sub-category. Loads in Category T refer to those low
power appliances that use linear DC power supplies with a small transformer at the front-
end. Battery chargers, paper punchers and staplers are representative loads in this category.
Devices such as light dimmers that use Thyristor phase angle voltage control are listed in the
PAC category. Category M consists of appliances that often have high power consumptions,
and multiple electrical systems, such as microwave ovens and laser printers.

3.2.3 Section Summary

The new taxonomy shown in Table 3.3 provides a guideline to load modeling, feature
extraction, and load identification. The concept of a hierarchical load classification and
identification system is illustrated in Figure 3.2.

In general, it consists of two parts. The first part is to recognize the target load as one of
the seven categories based on some simpler steady state features from front-end electric
circuit study comparing to the existing work. The second part is to further identify the target
load as a specific load based on a combined set of transient state and finite state patterns
from the study of electrical operation principle study. This hierarchical structure ensures an
efficient feature selection of a smaller load set as in every level and sub-level shown in
Figure 3.2.

Actually, the front-end electronic circuits of these seven categories are totally different,
so as the electrical operation principles of the loads within one certain category. A summary

of these topologies will be discussed in the following sessions.

37



Table 3.3 A list of appliance loads in two-level structure.

Load Category - Level 1

Load Category - Level 2

R: Resistive Loads

X: Reactive Predominant Loads

P: E-load w/ PFC

NP: E-load w/o PFC

T: Linear Loads

PAC: Phase Angle Controlled
Loads

M: Complex Structure

R1: Incandescent lamps (<100W)
R2: Space heater
R3: Bread toaster
R4: Coffee machines - Other kitchen appliances
X1: Fans
X2: Refrigerator (any with chiller)
X3: Vending machine
X4: Shredder
P1: PC (Desktop/Laptop) (>75W)
P2: Projectors
P3: Large TVs (LCD/LED) (>75 W)
P4: Home theater/Game Consoles (70-80W)
nP1: PC (Laptop) (<75 W)
nP2: Charger (any with battery)
nP3: Other small electronic devices
nP4: FL/CFL
nP5: Portable MFD/Printer/Scanner
nP6: PC Monitors
T1: Small electronics (e.g. stapler)
T2: AA battery charger
PACI: Dimmer
PAC2: Others with Thyristor Controlled Rectifier
MI1: Microwave oven

M2: Printer/Copier/Fax Machine/MFD
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Figure 3.2 A hierarchical structure of NILM system.

3.3 Front-End Circuit Differentiation

The front-end electronic circuit of an appliance is composed of one or several of the
following modules, including a front-end filter, a rectifier, a transformer, an isolated dc-dc
converter, a phase angle controller (PAC), a current\voltage regulator, and/or a power factor
correction module.
3.3.1 Resistive Load Category

A resistive load, as the name suggests, contains a resistance directly connected to the
terminals. Therefore, there is no phase angle displacement between current and voltage
waveform, and the power factor is close to unity. Figure 3.3 (a) shows a typical circuit of a

heater. The normalized current and voltage waveforms are shown in Figure 3.3 (b).
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Figure 3.3 (a) The conceptual front-end circuit of pure resistive loads; (b) Normalized steady
state voltage and current waveform of pure resistive loads.
3.3.2 Reactive Predominant Load Category
In this category, an inductance is connected to supply through a rectifier. Figure 3.4 (a)
shows the electronic circuit for a fan driven by a DC motor. A large phase angle
displacement between supply current and voltage is one of the dominant characteristics of

this type of loads as shown in Figure 3.4 (b).
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Figure 3.4 (a) The conceptual front-end circuit of inductive loads; (b) Normalized steady
state voltage and current waveform of inductive loads.
3.3.3 Electronic Load without Power Factor Correction Category

An appliance in this NP-category often needs a DC power supply to power the
downstream electronics. The front-end power electronic circuit typically consists of a front-
end electromagnetic interference (EMI) filter, a rectifier, a voltage or current filter and a
DC-DC converter, shown in Figure 3.5.

As shown in Figure 3.5 (a), a filter capacitor is utilized to supply constant DC voltage to
the DC/DC converter. Because of this capacitor, the rectifier bridge conducts only when the
magnitude of input voltage is greater than the magnitude of the voltage across the capacitor.
Consequently, the typical utility supply current waveform to this load type appears as a

periodic pulse waveform at the power frequency (i.e., 60 Hz in U.S.), as shown in Figure 3.5
(b).
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Figure 3.5 (a) The conceptual front-end circuit of ELw/oP; (b) Normalized steady state
voltage and current waveform of ELw/oP.

The width of each pulse is affected by the capacitor voltage as well as the load power.
The charging duration varies directly with the load power. Furthermore, the front-end EMI
filter also affects the shape of the pulse. It is important to note that, the load input current
(i.e., the current measured at the point of the front-end plug) is not related to the DC/DC
converter, mainly because of the signal isolation caused by the capacitor filter. When a DC
power supply is designed for an appliance with the power level below 75 Watts, the
manufacturers often chooses a topology among three types of filter configurations and four

types of DC-DC converters, as summarized in Figure 3.6.
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With reference to Figure 3.6, a C-L filter is usually used for portable loads such as
cellphone chargers. An L-C filter is commonly selected for loads with power below about 45
W, and an L-C-L filter is used in loads with power over 45 W with a wider pulse. The
representative load types that use the three types of filters are illustrated in Figure 3.7. In
fact, these three types of loads have most of their characteristics in common and they have
therefore been roughly recognized as one kind of load in most of the previous publications.

For loads in Category NP, there is no phase angle displacement between the power
supply current and voltage waveforms; however, the current waveform contains abundant

harmonics.
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Figure 3.7 Three kinds of filters in power supply and their representative load types e.g. a
cellphone charger, a set top box, and a laptop.
3.3.4 Electronics Load with Power Factor Correction Category

A DC power supply is also used in the appliances in Category P. In these cases a typical
front-end electronic circuit consists of a front-end EMI filter, a rectifier, a voltage regulator,
a power factor correction circuit and a DC-DC converter, shown in Figure 3.8 (a).

In this category, an L-C-L filter is typically used. As required by the IEC 61000-3-2, a
front-end EMI module is always adopted, since loads that fall into this category consume
more than 75 W. Unlike loads in Category NP, the input current in Category P loads appears
to be sinusoidal, similar to the resistive loads. The PFC causes the rectifier to conduct for a
complete cycle as shown in Figure 3.8 (b). These PFCs can further be categorized into active
PFCs and passive PFCs as shown in Figure 3.9. Active PFC modules can be further
classified into three structures, i.e. boost converter structures, full bridge structures and
interleaved structures. For the boost type, there are three distinct control strategies which

affect the signatures. These are continuous conduction mode (CCM), discontinuous
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conduction mode (DCM), and critical conduction mode (CrM).
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Figure 3.8 (a) The conceptual front-end circuit of P-Category; (b) Normalized steady state
voltage and current waveform of ELWP.
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Figure 3.9 A classification of PFCs with different structures and different control strategies.

It is important to note that, for loads in Category P, there is always a short time period

of discontinuous current when the voltage crosses zero. This current characteristic forms a
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typical feature for the P loads, and is useful to distinguish them from a purely resistive load.
For interleaved PFC structures, the PFC driver needs to verify the voltage polarity and the
dead-zone at the voltage zero-cross point results in the current discontinuity. For the critical
conduction mode or the discontinuous conduction mode PFC, the switching frequency is
very low when current is close to zero, which causes the discontinuity.

The detailed principles of PFC converters can be found in [140]. Figure 3.10
summarizes the waveforms for different PFC topologies. Continuous Current Mode control
is a current tracking strategy, thus the current waveform follows a sinusoidal reference as
shown in Figure 3.10(a). DCM is a pulse width modulation (PWM) control strategy, thus a
front-end high frequency filter is obligatory. The waveform after the filter is smooth as
shown in Figure 3.10 (b). Passive PFCs are simply an inductor which can only increase the
conduction period shown in Figure 3.10 (c). An interleaved PFC is a full bridge structure
with two boost converters. Its control strategy is like the CCM control strategy, but uses a
combination of two DCM PWM controls. All the information above is useful to identify
those loads with the most similarity.

Appliances in the Category P often appear to be very similar to resistive loads in terms
of their current waveforms. However, the existence of the current discontinuity and higher

order current switching noise are the recognizable signatures for loads of this type.
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Figure 3.10 Different waveforms in terms of different PFC modules.

3.3.5 Transformer-Rectifier Power Supply Category

The transformer-rectifier DC power supply is the most traditional power supply which
is still commonly used in low power devices. Figure 3.11 (a) presents a typical circuit of a
transformer-rectifier DC power supply. It consists of a transformer, a rectifier, and a linear
regulator. The current of this load type is highly distorted because of the transformer
saturation. Figure 3.11 (b) shows a typical current waveform of a transformer-rectifier
power supply. The current pulses observed at peak voltage are caused by the downstream
bridge rectifier, which is similar to the electronic loads without PFC connected to the
rectifier (similar to the analysis for loads of Category NP). To summarize, a large phase

angle displacement exists in this category and so do the high order current harmonics.
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Figure 3.11 (a) The conceptual front-end circuit of linear power supply; (b) Normalized
steady state voltage and current waveform of linear power supply.
3.3.6 Phase Angle Controllable Circuit Category
PAC controller is widely used for LED lightings, heaters, fans, and other appliances that
require continuous voltage adjustment. Figure 3.12 (a) illustrates a typical PAC circuit. The
load current can be adjusted continuously by controlling the firing angle of the thyristor.

Figure 3.12 (b) shows a typical normalized current waveform of a PAC circuit.
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Figure 3.12 (a) The conceptual front-end circuit of PAC controllable load; (b) Normalized
steady state voltage and current waveform of PAC controllable load.

3.3.7 Complex Structure Category

The appliances in Category M refer to those loads with multiple circuits supplied by
independent front-end power supplies. Figure 3.13 (a) gives an example of a complex
structure load, in this case a microwave oven. It is a combination of Category X and
Category NP. Usually, there are two or more parallel power supplies at the load front-end.
As a result, the load current appears to be composed currents from one or more of the above

six categories. Figure 3.13 (b) shows a typical waveform of a microwave oven.
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Figure 3.13 (a) The conceptual front-end circuit of complex structure load; (b) Normalized
steady state voltage and current waveform of complex structure load.

Different loads in Category M will have different waveforms since they are composed
of different category structure. This diversity can be beneficial for the second level
classification. At the same time, it increases the difficulty in extracting some common
features in the first level classification. Besides, it is possible that the current waveform of
loads in Category M is similar to the other six categories since some category’s circuit
structure may dominate the front-end topology. Some more sophisticated steady feature

extraction methods are needed.
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3.3.8 Session Summary

The steady-state features that are commonly used for NILM can be classified into three
groups, i.e., time-domain features, frequency-domain features, and V-I trajectory graphical
features. Typically, the dimension of these three feature spaces in literatures is on a scale of
10 to 15 to ensure a satisfied result [98, 106, and 141]. There is no guideline to drive an
optimized feature selection. For example, the most commonly used frequency-domain
features include the first 10 to 15 harmonics and the phase angle displacements between
voltage and the 3rd and 5th order current harmonics. Even though all the above features are
utilized, it is still difficult to distinguish and identify loads with the granularity as defined in
Level II (depicted in Table 3.3). Therefore, a multilevel classification structure is used to
drive the feature set selection. The proposed structure divides a complex problem into
several simple problems. Moreover, it drives a more generalized solution, and is easy to be
extended because the development of the structure is supported by a complete power supply
market study.

When the NILM problem is divided into a multilevel classification problem, the feature
space can be analyzed in two steps as given in Session 3.2.3. If only the Level-I categories
are considered in the first step, all the loads present very distinct characteristics from one
category to another. A set of three features in frequency domain, i.e., normalized 5th order
current harmonic component, fundamental phase angle displacement and the total RMS high
frequency content, has proved, as shown in Table 3.4. It is much simpler than the original

feature space without sacrificing identification performance in this level.
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Table 3.4 Features from frequency analysis.

Category 5%/1 High Frequency Phase Angle

[n] [l [0/1] [°]

1 0 0 0

2 0 0 [45,90]

3 [60,100] 1 [0,10]

4 [0,10] 0 [0,10]

5 [10,60] 0 [45,90]

6 [10,60] 1 [10,35]

7 [10,60] 1 X

A self-organizing map (SOM) based solution has been proposed to use the extracted
feature in the author’s collaborated work [142, 143]. The reported classification results are
able to reach a 95% successful rate.

For the second level of classification, the problem becomes more complicated for the
following reason. First of all, using steady state features alone cannot completely distinguish
the loads in Level II. Secondly, every Level II category needs to have its own individual set
of features. Therefore, the feature selection for each category has its own focus due to the
physical characteristics of the devices within that category. This process can result in an
optimized and simple feature selection for the entire load space. The following paragraph
considers the NP category (DC converter without PFC) as an example to prove the point.

In previous research, the corresponding identification performance and effectiveness for
loads with similar electronic front-ends (i.e., the Level-II sub-categories/loads in the same
Level-I category in Table 3.3, e.g., NP-category loads) have often been overlooked. It has
been recognized that most of the steady state features currently used cannot further drive a
meaningful load identification solution with Level-II granularity no matter how
sophisticated the algorithms are. Considering the NP-category, the main circuit structure of

all the NP loads are almost the same with only limited differences caused by the component
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selection when the DC/DC converters and voltage/current regulators are designed. Even
though the topologies of voltage or current regulators are different from one load to another,
relatively small changes have been observed in those features that are commonly adopted in
the literature. This is because the features were not selected to address the important subtle
differences.

Taking the three types of filter topologies utilized in NP-category loads as an example,
there are small but explicit differences between the three current waveforms as a result of a
circuit discrepancy, as shown in Figure 3.7. These small differences are difficult to
distinguish using FFT analysis or V-I features. However, several additional time-domain
features, e.g., the slope rate of a current waveform and the monotonicity of a half-cycle
current waveform are useful to distinguish between the above variations. Combining these
two new features with the first three frequency-domain ones, results in a feature vector
based on a multilevel structure that is simpler and more efficient.

While only the NP-category was used as an example, the transient information, such as
startup or special working states, are the major potential features which can be utilized in all

of Level IL.

3.4 Electrical Operation Study for In-category Classification
3.4.1 Remaining Problems for In-category Classification
Most of the steady state features extracted from the electric-circuit study cannot further
drive a meaningful load identification solution with Level-II granularity no matter how
sophisticated the algorithms are. The transient waveform studies based on the electrical
operation principles are expected.
Table 3.5 defines parts of the remaining load identification challenges after Level-I

identification. It is worth mentioning that there are still some other loads to be studied.
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Table 3.5 Remaining in-category load identification problem.

Level 1 Level 2 Challenges
Coffee Mak
Resistive Loads offee Maker Same steady state waveform and power
Toaster level.
Monitor Same kinds of front-end topology and
Laptop power level.
Set-top B
E-load w/o PFC c0p Pox Same steady state waveforms.
Scanner
. Different printers have different steady
Printer
state waveforms.
E-load w/ PEC LCD/LED TV Different TVs have different steady

state waveforms.

Based on Table 3.5, three kinds of electric loads are discussed in this section, i.e.
resistive loads, loads without PFC front-end module and loads with PFC front-end module.
3.4.2 Coffeemaker

For a traditional coffee maker, its basic structure includes a heater, water tubes, a water
reservoir, a shower head, a switch and some temperature sensors with fuses. When the
switch is turned on, the resistive heating element starts heating the aluminum tube, and
eventually the water around the tube boils. The power consumption of a coffee maker
mainly comes from the heating element which actually is a coiled wire, and the control
strategy is rather simple, a bang-bang control. A temperature sensor is pre-set slightly higher
than the boiling point in the coffee maker. It will detect and cut off the current when the coil
is getting too hot, and turn it back on when the temperature of the coil is low enough,
illustrated by the red part illustrated in Figure 3.14. However, when the coffee maker is in
‘keep warm’ mode, a lower pre-set temperature is applied. In this case the current waveform

is shown like the blue part toward the end in Figure 3.14.
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Figure 3.14 The working current of a typical coffee maker.

3.4.3 Laptop

The structure of a laptop mainboard is composed of two parts, South Bridge and North
Bridge, as shown in Figure 3.15. When the laptop is plugged into a power outlet, the
mainboard is reset and some parts connected to the South Bridge in the mainboard are
initialized, waiting for a start-up signal. When the laptop is turned on, the North Bridge as
well as the CPU will be reset with the screen lighting up. Because the power consumption of
a laptop is mainly drawn by these components, there is a spike in the current waveform at
the startup moment. The first 20s to 40s after the laptop is turned on, is the time for a BIOS
automatic system check and loading the operating system. Because of the activation of
computer components such as hard disc, audio card and network card, the amplitude of the
current has a rising trend. When the operating system starting procedure is completed, the
laptop displays the system desktop and remains on no-load status. For energy conservation,
the frequency of the CPU will decrease automatically and bring a drop of current value. The
rise and drop procedure can be observed in Figure 3.16. Because most of the devices
connected to the laptop are capacitor-like components, the current waveform will show
spikes whenever these devices are triggered on, like the audio card or the keyboard. The red

part in Figure 3.16 shows these unstable features.
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Figure 3.15 The structure of a typical laptop.
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Figure 3.16 The start-up current of a typical laptop.

3.4.4 Monitor

There are two kinds of monitors on the market, i.e. LCD monitors and LED monitors.

However they have similar start-up characteristics. Therefore, only LED monitors are
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discussed here. An LED monitor consists of a control board, a matrix display driver, LED
arrays and a power supply module.

The start-up current of monitor is shown in Figure 3.17. Firstly, there is a small jump-up
in the current for the initialization of the power supplier and the control board. Then the
current magnitude reaches a higher level by two or three step-ups instantly as the cold
cathode fluorescent lamp (CCFL) light source or the LED array is powered on. It is decided
by the power supply structure and it is shown as the green part in Figure 3.17. At this time,
the electrode in LCD monitor or the lens in LED monitor would consume power to control

the light and display certain image.
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Figure 3.17 The start-up current of a typical monitor.

3.4.5 Scanner
A typical scanner consists of an original manuscript platform, an optical imaging unit, a
photoelectric conversion unit and a mechanical transmission unit. The current of a scanner is

mainly from the optical imaging unit, the control circuit in the photoelectric conversion unit

and the stepper motor for the scan head.

Originally, only the control circuit and some steady power-consuming parts are turned
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on. As a result, current magnitude is very small. Later on, the mainboard and connection
circuit of the scanner begin to work, and the light is on to lighten the original file. At the
same time, the current magnitude reaches a high value. Next the reflected light is received
by the CCD array. A stepping motor drives the light tube and the light scans the file until the
scanning is completed. During this session, Part B in Figure 3.18, the stepping motor has a
reverse stage to send the light tube back to its original position so that the current has a fall
and a rise continuously.

The scanner keeps processing the signal and connecting to other devices such as a PC

after the motor is turned off. The current magnitude decreases to a relatively lower and

steady level.
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Figure 3.18 The start-up current of a typical scanner.

3.4.6 Set-top Box

The typical structure of a STB consists of a CPU, a mainboard, a modem, a power
supply and many I/O ports. Because a STB does not have a stand-by mode, its power
consumption is independent of the TV working status. Once plugged-in, the STB begins to

work and maintains a stable current magnitude as in Figure 3.19.
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Figure 3.19 The start-up current of a typical set-top Box.

3.4.7 Printer

There are two kinds of printers on the market, i.e. inkjet printers and laser printers. Only
a laser printer is considered here because it is more widely used. The current waveform of a
laser printer is mainly from the rollers, the control board, the drum, the laser assembly and
the fuser. The fuser, which is made of a pair of rollers, is heated to a high temperature when
it is working. The largest power consumption part of the printer comes from the heating
components.

Some laser printers start preheating at the beginning and maintain a high temperature
waiting for the printing work, thus it presents a mid-level magnitude of current as the blue
part in Figure 3.20. When printing, the power of the heating components reaches the highest
level and the print assembly as well as the roller begins to work. The current shows strong
periodicity because the movement of the laser assembly is periodic. The power during the
interval between each cycle is mainly for the fuser heating. The cycle is related to the
printing and paper passing speed, ranging from five seconds to ten seconds for an office or

personal printer.
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Figure 3.20 The working current of a typical printer.

34.8 LCD/LED TV

The power consumption of a television comes from two major parts. One is the control
circuit, including the main board and supplier, and the other one is the backlight source,
which is the dominating consumer of the energy.

Originally, the current has a small value, which means the power supplier is working
and the machine is at standby mode. When a turn-on signal is acquired, the mainboard
begins to work and the whole system starts warming-up. Similar to a monitor, a step-like
rising edge occurs first in the current waveforms as shown in Figure 3.21. The step is caused
by LED matrices. What is different from the monitor lies in the drop-down-period of the
current after the TV reaches the steady state. Usually the current will return to steady state
soon. Actually, this is because of the brand show-time on the screen. During this time the
control system will accomplish video and audio settings as well as the signal processing.
The startup time and duration of this interval is different from one brand and model to
another. Furthermore, when the backlight source in self-regulation mode is applied, the
LCD/LED luminance is adjusted to match the environment. Thus the power consumption for

some advanced TVs may increase in dark surrounding conditions and decrease in bright
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conditions.
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Figure 3.21 The start-up current of LCD/LED TV.

3.5 Finite State Machine Model based on Electrical Operation Study

The transient or long-term feature analysis is commonly used for modeling wavelet and
finite state machines in NILM [104, 109]. Similar to the steady state feature space, there is
no guideline either to drive an optimized and reliable transient feature selection. Therefore
the problem of the poor repeatability of transient events always happens to the existing
algorithms, which results in the lack of robustness and reliability. The electrical operation
study in this work provides a solid support to the finite state machine algorithms proposed in
the authors’ collaborated work [144]. A FSM modeling containing four elements is
presented, i.e. steady state, semi-steady state, spikes, and oscillation. Several example
candidate features are listed here, like time duration of each pattern, a history vector (the
power level at each state, the number of self-loops), the number of states for a certain length
of observations, the percentage of time (similar to duty cycles) of the FSM staying at semi-

steady states and steady states for a certain length of observations. A detailed introduction of
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the algorithms can be also found at [144].

The FSM model of the loads studied in this paper is provided in Figure 3.22, Figure
3.23, Figure 3.24, Figure 3.25, and Figure 3.26. The challenges listed in Table 3.5 are solved
by the FSM mode as discussed in [144]. Moreover the new FSM model is more reliable

because of the good repeatability.

Power—

Figure 3.22 The finite state machine model of a coffee maker.
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Figure 3.23 The finite state machine model of a laptop.
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Figure 3.24 The finite state machine model of a monitor.
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Figure 3.25 The finite state machine model of a scanner.
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Figure 3.26 The finite state machine model of a scanner.

Through the in-depth study of the electrical operating principles, a more generalized and

efficient finite state machine algorithm can be realized. The FSM modeling procedure is
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driven by an understanding of the relationship between different transient state current
waveforms and their corresponding electrical operations. Ref. [144] has proved that this
established relation is very helpful to optimize the feature space and to define a reliable FSM.
The next stage of the NILM study will consider a self-adaptive and self-debugging

mechanism.

3.6 Chapter Summary

A comprehensive study on the electric schemes and operation principles of the major
loads in the market is proposed in this chapter. This fundamental study is able to enhance the
efficiency and quality of the features, therefore greatly contributes to the algorithm
development. The features proposed in this chapter have been applied in the author’s other
work collaborated with the other Ph.D. They are proved valid and useful for NILM
identification. However, as mentioned before, since the load space and consumer electronics
technology updates very quickly, the knowledge database has to be updated time by time.
Actually, a self-adaptive and self-debugging algorithm is expected. And the next chapter

will discusses an online learning algorithm based on the feature study did in this chapter.
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CHAPTER 4 ONLINE LOAD IDENTIFICATION FOR
RESIDENTIAL ENERGY AUDITING

4.1 Chapter Overview

Even though many new model-driven features have been extracted above, there is still
no promise that such a feature set can be valid to identify all the loads in the market. As a
result, when the input sample is a load of a model that is not covered in the training set,
incorrect identification frequently occurs. Besides, with the development of consumer
electronic industry, new types, brands and models of appliances are emerging at a fast speed,
which further aggravates the problem. This chapter proposes an adaptive nonintrusive load
identification model to address this problem. The proposed model is not dedicated to
identify all the loads in one time, but it will grasp knowledge from samples that are not
identified in the real application, and gradually form a new learning procedure so as to
identify more and more new samples correctly. The random forest algorithm is introduced
here to realize the objective and a case study is carried out to verify the effectiveness of the
model.

In detail, when an input sample doesn’t match any existing loads in the database, it will
be assigned an ‘unknown’ label. To gain the knowledge from the unknown samples, online
clustering algorithm will be applied first to find new load classes or new load variants. If a
new class or new variant is generated, it will be manually assigned a class label, which can
either be one of the existing class labels if it’s a variant of a known load class, or a new class
label if it’s a completely new load class. After acquiring the new knowledge, the

classification model will be updated as well.
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4.2 Data Preparation

The load space used in this chapter is established based on the load study in Chapter 3,
which almost covers all the appliances with high difficulty to be classified as mentioned in
the author’s collaborated work [145]. Actually, the load space is very complex. On one hand,
given the same type of load, they may not have same patterns because of the different
operating principles, such as the laser printer and the inkjet printer under the printer family.
On the other hand, even for one load, it may have various patterns because of the different
modes, such as the heating and the defrosting mode of a microwave. However, there is no
need for an online learning algorithm to know the entire load space at first due to its
adaptive nature. Therefore the load space used for an online learning algorithm should be
carefully defined.

From the perspective of an online learning algorithm, there are three optional states for
each load.

State I: The loads that have been studied and whose operation principles and power
supply structures are relative stable and will not change frequently. The representative load

is like the monitors, shown in Figure 4.1.

A Typical Monitor current waveform
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Figure 4.1 A typical monitor current waveform.
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State II: The loads that usually have various operation principles or power supply
structures such as LED TVs vs. LCD TVs, or power factor correction equipped PCs vs.
normal PCs, shown in Figure 4.2. Therefore, only one or several of these variants have been
studied.

State III: The loads are totally new, therefore their structure and operation requirements
have not been defined by industry standards yet. These loads usually cannot be studied at the

initial stage. The examples are new LED bulbs or Xbox Player, shown in Figure 4.3.
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Figure 4.2 Two typical PC current waveforms.

The two major targets of an online learning algorithm can be summarized as follow.
The algorithm should be capable to detect the load if it is a variant of an existing load or a
new load (State II or State III), and then convert it to State I. Moreover, the algorithm should

be able to successfully identified the State I load. Given such a structure, to know the state
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of each type of load at the initial stage turns out not to be very important any more. Actually,
the loads can be located in any state at first. However, given the research purpose, a load
space to be studied should be able to clearly represent the challenges of the two targets. An
empirical load space is generated in this paper, shown in Table 4.1. This load space

represents the characteristics of the loads very well by considering both the similarity and

the variety of each load at the same time.
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Figure 4.3 The current waveforms of a LED bulb and a game console.

In detail, the voltage and current are measured at 3.84 kHz. According to the study of
[70], most plug-in household appliances can achieve steady state within one minute.
Therefore a total of two minutes of V/I data will be collected for each sample in this work,

during the first minute, transient features will be collected and steady features will be
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collected in the second minute. To manage such a large amount of data, several new units,

cycles, clips, vectors, observations and samples, are introduced to present the data, shown in

Table 4.2.
Table 4.1 Load space definition.
S.T. Load
DVD, STB, Fan, Heater, Florescent Light, Monitor, Projector,
! Microwave, Scanner.
II TV, Desktop, Laptop, Printer.
I LED Light, Xbox.

Table 4.2 The definition of unit.

Unit Definition
Cycle One single sinusoidal waveform, there are 60 cycles per second in U.S.
Clip Ten cycles of waveform.

. The feature vector to be put into the algorithms, generated by one clip
ector
and one transient waveform

Observation | Composing of 10 vectors, used for unknown detection test.

Sample One two-minute’s measurement for a single load

Given the definition above, the term Unknown is defined as follow. Once a new load is
plugged in the smart outlet, a sample will be generated. The transient features are extracted
from the first minute waveform and the steady features are extracted from the second minute.
Usually the entire first minute waveform is needed to determine the transient features while
only one clip of steady state waveform is enough to determine the steady features. Therefore,
randomly picking 10 clips in steady state waveform and combining them with the transient
features collected in the first minute will generate an observation. This observation will be

tested into the detectors. If over 80% of those vectors in one oberservation are not
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recognized by the well-trained unknown detector, then the appliance being tested will be

considered as Unknown.

4.3 Introduction of the Algorithm and Theory
The overall structure of the system is shown in Figure 4.4. Once a load is plugged into
the outlets and turned on, a two-minute measurement will be triggered on. The data
generation module will automatically generate the validation test samples as mentioned

above for the unknown detection and the load identification.
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Figure 4.4 The flowchart of the proposed self-learning NILM system.
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Moreover, the feature extraction module will generate the corresponding feature sets for
the detection and the identification. Next, these feature sets for each test samples will be put
into the unknown detector. If it is recognized as a new load, the results will be first sent to
the customer. Once it is confirmed as an unknown load by the customer, it will be
automatically skip the detection and identification module. The final results will be provided
by the customer directly. An update signal will also be sent to the detection and the
identification module. However if it is confirmed as a wrong detection, the data will be used
to re-train the unknown load detection module again. If the load is recognized as an existing
load, it will be sent to the load identifier, and the identified results will be delivered to the
customer again. Usually, if it is right, no action is required and the final results will be
presented. However, if it is wrong, an update signal will be sent to the detection and the
identification module, a self-learning process is triggered again.

In such a system, the detector and identifier have to be good at online learning and
easily updating. The random forest algorithm proposed in [146] shows great characteristics
on the online learning procedure and therefore is a good candidate for the identifier. Besides,
the general linear regression (GLR) algorithm is introduced as the unknown detector
because of its good characteristics on online updating. The idea is to model each type of load
in the load space as a binary classifier. Empirically, the extracted features will exert great
influences on the GLR performance, since a good feature set will greatly reduce the
detection efforts and guarantee the good results. Besides, GLR is a binary classifier and will
have to balance the trade-off between the recall and the precision [147]. It is also highly
dependent on feature set selected for each single GLR detector. Therefore, a feature
selection is required for the proposed algorithm. In detail, the feature selection module has

to process the capability not only to study the relationship between the features within the
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feature set, but also to model the relationship between the input features and the output
variables. It is very hard for those conventional feature selection solutions like principle
component analysis (PCA) and independent component analysis (ICA) because they usually
use a simplification of dependence like the covariance to study the relation of two random
variables, which is not suitable for the complex relationship between the input and output
variables. Consequently, none of them can select a compact and informative subset, which is
the most important goal in this paper for the feature selection. A new feature selection
method based on the Copula theory is introduced in this chapter [148].
4.3.1 Feature Selection

Many features have been studied during the past ten years. This chapter will put all
these features in the candidate pool during the feature selection stage, as shown in Table 4.3.

Table 4.3 Summary of the input features.

State Symbol Description

P&Q  Active and reactive power [20]
PC Peak current [101]
AC Average current [110]
CF Crest factor [143]

Steady . 0 .
1™ to 15" order harmonic components of current waveform
State F
[143]
Vi voltage-current (V-I) trajectory [106]
0 Phase angle differences of V-1[143]
Other features like slope, ramp rate, area, etc. [143]
w Wavelets of current waveforms [104]
14 Instantaneous admittance [149]
Transient P Instantaneous power [107, 150]
State EI Eigenvalues of current waveforms [141]

EN Envelope of the current waveforms| 144]

FSM  Finite state machine of current waveforms [109]
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If assuming the waveforms are denoted by

The mathematical expressions of these features are listed below.

)

2)

3)

4)

5)

6)

Vi)=Y TV si t+8
() Zp 1psln(P600+ p)

— 0 :
1(¢) —Zp =11p s1n(pa)0t+«9p)

Real power P and reactive power Q.

Displacement power factor

dpf = cos(5,~6)

The total harmonic distortion (THD) in the current

21

THD = 122

1

Power factor

_cos(6,=0)

\1+THD?

Crest factor or peak-to-average ratio (PAR):

| Ipeak |
I

RMS

cf =

Eigenvalues: for dynamic loads, their waveforms could vary from cycle to cycle.
Eigenvalues are introduced to capture the dynamics. In brief, firstly rearrange
the waveform series into a matrix with each row representing one cycle, and
then apply singular value decomposition (SVD) to this matrix, which will

decompose the matrix to the product of 2 unitary matrixes and a diagonal matrix.
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The eigenvalues would be the values in the diagonal matrix.
7) Upto 25™ harmonics (amplitude and phase) of the current.

Copula theory is a powerful tool to describe the dependence between random variables
[151, 152]. Two main advantages of the Copula are summarized as follows. One is the
possibility to build a variety of dependence structures based on the existing parametric or
non-parametric models of the marginal distributions. Therefore, it can provide a more
accurate mathematical expression of the relationship between the input features and the
output variables. Another advantage is the relative mathematical simplicity of copula theory
in describing the features without calculating the joint-CDF like these conventional methods.

In detail, assuming the marginal cumulative distribution functions of a random
vector (X4, X5, ..., X4), are continuous functions, according to Sklar’s Theorem [148], the
joint CDF of this vector can be written as,

H(xq, .., xq) = C(Uq, .., Ug). 4.7)
where function C is defined as the copula of (X3, X, ..., X;). The theorem also states
that, given H, the copula C is unique.

The flowchart of the proposed feature selection algorithm is shown in Figure 4.5. In

detail, there are five major steps in the algorithm. The algorithm estimates two copulas, C;,
the copula of X;,; with the features (X;, X,,..., X4) and C, , the copula of

(Xll Xz, ey XdIXd+1) with Y.
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Figure 4.5 The flowchart of the proposed feature selection algorithm.

Firstly, each feature in the original feature set will be first sent to a temporary set F;.

Then, the estimations of copula C; and copula C, are calculated. In this paper, since no any

prior-knowledge is provided from the data set, a non-parametric estimation based on the
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empirical copula is applied. [148]

After the estimation of the copula, the next step is to measure the dependence degree.
The similarity function between the new input X;, 1 and each X; in F; is calculated, so as the
function between (X4, ..., X441) and Y. In the first loop, if the new added feature has a high
dependence rate with the other exiting features, this feature will be firstly removed from the
feature sets. After the searching procedure, a group of C, is generated, the highest
dependence degree of the calculated C, will be selected, with the X;,, added in the feature
set.

Finally, the size of F; keeps increasing, and for each increase, it will have a new C,. The
algorithm will select the highest C,. The feature sets that have low dependence degree will
be discarded. The input order will affect the results. A searching algorithm can be added to
solve this problem.

4.3.2 Unknown Pattern Recognition

The unknown detection model is based on the Generalized Linear Regression (GLR)
model [153]. A generalized linear regression model G; is constructed for each type of known
load i, fori € L ={1,...,N}. We denote the collection of the GLRs by G. For an input
sample x = (xq, ..., x;) € Q, where Q is the k-dimensional sample space, the model G;

outputs a value y; based on the following equation,

k
vi=fQ Bix) @47)
=1

where f is the logistic function mapping R to inverval [0,1] defined by
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1+ et

f(t) = (4.8)

In the above equations, {,B}: 1 <j <k} is the parameter for model G;. The output of

each model y; lies between 0 and 1 and represents the probability of the input x being
generated from load i. Thus, the closer to 1 y; is, the more likely the input is generated from
load i. After the outputs {y;,i =1, ..., N} of all GLR models are collected, an unknown
index, U(x) = maXx,<;<y V; is calculated based on the maximum value of the y;, and it
means the probability of the input x being generated by the most probable load. If U(x) is
less than a pre-specified threshold S, i.e. U(x) < S, it means that x is not likely generated by
all the known loads i € £, and the detector declares ‘positive’, which means x is declared as
an unknown sample; on the other hand, if U(x) > S, the detector declares ‘negative’, which
means x is declared as known.

There is a classical tradeoff between this type of binary classifications, the trade-off
between false-negative and false-positive. Under our setting, false-negative means that an
unknown input is declared as a known load and false-positive means that a known input is
declared as an unknown load. Generally it is hard to reduce the probability of both false-
negative and false-positive, because if the probability of false-negative goes down, the
probability of false-positive will generally go up, and the same is true for the other way
around. The key in balancing this tradeoff is to match the probability of false-negative and
false-positive with the practical needs. This means, if in practice false-negative is more
tolerable than false-positive, then the detector should be tuned to reduce the probability of
false-positive, even though this will increase the probability of false-negative. In reality, it is
hard to define the practical needs, and the practical needs can be constantly changing. This

poses the need of an adaptive unknown detector, an unknown detector that can tune itself so
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that the tradeoff can adapt to the changing practical needs.

Before formally introducing the self-adaptive rules of the model, it is good to discuss a
few observations motivating the adaptive model. There are several factors affecting the
false-positive false-negative tradeoff. The first is the threshold S. The larger S is, the
detector is more inclined to declare positive, and thus it is more likely to result in false-
positive and less likely to result in false-negative. The second factor is the sample space of
the GLR models G. If a sample of a known load i comes to the GLR model G;, but the
sample lies in an area of the sample space that is not captured by G;, the GLR model G; will
possibly give a low output (G; does not know load i can generate samples lying in this area)
and the detector result is likely to be false-positive.

In light of the above two factors, the update rules of the unknown detection model are
designed as follows. There are three types of updates. The first type corresponds to the first
factor described above. It works by tuning the model’s threshold parameter S based on the

feedback from the customer decision.

S=§SxAS (4.9)

where AS is the step size, and + depends on the customer’s preference between false-
negative and false-positive.

The second type of update corresponds to the second factor. It updates a GLR model for
a known load, say G;, in such a way that, a subset of the sample space that is previously not
captured by G; is now incorporated into G;. This is can be done by the following online
update rule of GLR models. Suppose a X is a new sample generated by load i, then the
parameter ¢ is shifted along the negative gradient direction of the log likelihood function

generated by the new data X.
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Bt = B' — AVgl(BL, %) (4.10)

Where
k
1(B4,%) = In f(z Bi%) @.11)
=1

and therefore

LB

VellBE) = T )

(4.12)

In the above equations, A is a step size parameter. The larger A is, the update rule is
more inclined to use the information from the new sample ¥ compared to the old samples.

The third type of update is to construct a new GLR model from a collection of unknown
samples that have been verified to belong to a new class of load. This can be done by the
GLR training algorithm, e.g. reweighted least square algorithm. Once this is done, new
samples from this new class of load will no longer be classified as unknown because the
new load information has been captured by the detector.

Figure 4.6 summarizes all the components of the unknown detector model.

To validate the model, a straightforward way is to compute the accurate rate. Given a

m_ where y' =1

collection of input samples x! ... x™ and there associate outputs, y! ..y
means x’ is generated by a known load i € £ and y' = 0 means x! is generated by an

unknown load i € £. Let $* be the detector output for x*. Then the accuracy is defined as

— :le{yl :y\i} (413)
m

Acc

where 1{ } is the indicator function. And due to the adaptive nature of this model, we
can also calculate the accuracy over time, to validate whether the update mechanisms are

effective in improving the detector accuracy.
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Figure 4.6 The flowchart of the proposed unknown model detection algorithm.

4.3.3 Random Forest Algorithms

The predecessor of random forest (RF) as well as classification and regression tree
(CART), was invented in 1984 by L. Breiman [154]. Breiman later introduced another
essential technique for RF called “bagging” in 1996 [155]. The emergence of RF was also
influenced by the work of Y. Amit [156], and T. K. Ho [157] who introduced some ideas

relating to RF such as the decision randomization and the random subspace selection. The
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formal introduction of RF was made by L. Breiman in 2001 [158], which formed the basis
of the modern practice of RF.

RF is an ensemble learning method for classification (and regression). It is based on two
techniques, the classification and regression tree algorithm as well as the bagging
mechanism. The classification and regression tree algorithm is a tree-structured model that
maps the observations about an item to the conclusions on the item's class. A simple
illustration of the classification and regression tree can be found in Figure 4.7. In Figure 4.7,
the classification and regression tree growing procedure can be described as iteratively
splitting each node into two sub-nodes by finding a best split variable along with a best split
value till reaching minimum node size. The advantage of the classification and regression
tree algorithm is that it can be fitted to the data well, however the accuracy of classification
and regression tree method is low. In other words, this method has a low bias but suffers
from a high variance.

To solve this problem, the classification and regression tree method is extended by
introducing a bagging mechanism, which is called random forest. The introduction of the
bagging mechanism will reduce the variance of the classification and regression tree method
while keeping the bias low. What’s more, random forest adopts a trick called randomized
node optimization to further reduce the variance of the classification and regression trees.
All above modifications avoids the disadvantages of the classification and regression tree
and proves to achieve a good performance.

The Breiman’s Algorithm of random forest is presented below. In brief, the procedure is
to construct a set of classification and regression trees fitted to the bootstrap sampled
datasets. Note in step 1-b-i and 1-b-ii, instead of searching for the best split variable among

all p variables, random forest limits the candidate best split variables to m randomly chosen
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variables. This is the randomized node optimization mentioned above as a trick to reduce the

variance of the classification and regression trees.

Tree t=1

Figure 4.7 A simple illustration of CART.

In addition to the low bias and the low variance, random forest has several other
desirable features. Firstly, RF can generate an out-of-bag error in its growing procedure,
while other models generally require multiple training procedures like cross validation.
Secondly, RF is robust against irrelevant features and outliers in the training data and finally,
RF is structured as a tree, which makes it easy to be expanded to fit more data by growing
more ‘branches’.

All these features enable random forest to be a good online learning algorithm and a
nice adaptive machine learning model [159].

Next, the online update procedure will be fully discussed in details. The algorithm
combines the ideas of the online bagging and the extremely randomized forests, and further

proposes an on-line decision tree growing procedure.
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Growing Stage:
Input: Training Data: N p-dimension samples along with their class labels.
Require Parameter B: Number of trees.
Require Parameter m: Number of candidate split variables at each split;
Require Parameter n,,;,: Minimum node size.
For b=1to B:
(a) Draw a bootstrap sample Z* of size N from the training data.
(b) Grow a random-forest tree Tj to the bootstrapped data, by recursively
repeating the following steps for each terminal node of the tree, until the
minimum node size n,,;, is reached
1. Select m variables at random from the p variables
ii. Pick the best variable/split-point among the m
iii. Split the node into two daughter nodes
Output the ensemble of trees {T},}2
To make a prediction at a new point x:
Let C, (x) be the class prediction of the by random-forest tree. Then C5(x) =

majority vote{C,(x)}?

For the bagging part, the sequential arrival of the data is modeled by a Poisson
distribution, in which each tree is updated on each sample k times, where k is a random
number generated by Poisson (A). During the growing of a randomized tree, each decision

node randomly creates N random tests S and picks the best according to Gini index. The

Gini index is defined in (4.14)

where R denotes the point set and K denotes the number of classes and P; denotes the
label density of class 7 in the points set. The reason of using Gini index is because it can

measure the homogeneity of a dataset, and the smaller it is, the more homogeneous the point

L(R)= Zpi d-p,) (4.14)
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set 1s.

Meanwhile, corresponding statistics of the split made with each test in S are collected:
for a random test in S, Pj; and Pj., corresponding to the statistics of samples falling into left
and right partitions are collected. The test with the highest gain is chosen as the main
decision test of that node. Unlike off-line, the statistics are gathered over time, therefore, the
decision on when to split depends on if there have been enough samples in a node to have
robust statistics and if the splits are good enough for the classification purpose.

Two hyper-parameters are introduced in [159], i.e. the minimum number of samples a
node has to see before the splitting o, and the minimum gain a split has to achieve £. After a
split occurs, the Pj; and P, are propagated to the subsequent newly generated left and right
leaf nodes, respectively. The entire on-line random forest can be seen in the pseudo-code
below.

An illustration of the update of a tree based on the pseudo-code is shown in Figure 4.8.

Old Tree New Tree
Root Root
x<0, Output A x>0, Output B x<0 x>0, Output B
New
Branche
Old Samples ; o ) -
: D X<- X>-
E:é, ig Search Optimal Split Point Output B uipu A
(-10, B)
New Sample Samples Samples
(-11, B) (-10,B) (-1,A)
(-11,B) (-2,A)

Figure 4.8 An illustration of the update of a tree.
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I Require: Sequential training example < x,y >

2 Require: The size of the forest: T

3 Require: The minimum number of samples: a

4 Require: The minimum gain: 8

5 // For all trees

6 fortfrom 1 to 7'do

7 k < Poisson(1)

8 // ' Update k times

9 for u from 1 to k£ do

10 j = findLeaf(x).

11 UpdateNode(j; < x,y >).

12 if |R;| > a and 3s € $: AL(R;,s) > f then
13 Find the best test: s; = argmaxses AL(R;, s)
14 CreateLeftChild(p ;)

15 CreateRightChild(p )

16 UpdateGinilndex.

17 end if

18 end for

19 end for

20 Output the forest F.

4.4 Case Study and Simulation Results
4.4.1 Case List
The case studies are designed for unknown load detection and online learning
respectively. A case study on GLR and Gaussian Mixture Model [146] and a case study on
the random forest and the SOM [143] are prepared respectively.
4.4.2 Unknown Load Detection

The training sets are generated as the following rules, a total of five samples are used
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for each type of load, for each samples, 500 clips are selected randomly combining with the
transient features to act as the input vectors. Therefore, a total of 2500 input vectors are
generated for each type of load in the training stage. However, the samples in State II will
only represent one type of variant, such as only LCD TV will be used for TV training. No
samples will be generated for loads in State III in the training stage.

As for the test sets, two samples are used for each type of load, and 500 vectors are
generated per sample in the same way as the training set. However, every 10 vectors yield
one observation for the test procedure. Therefore, a total of 100 observations for each type
of load are generated in the testing stage. Actually such a modification is a way to reduce the
influences of the “recall” of the detection method [147]. Moreover, two samples in State 11
will be a variant corresponding to load type selected in the training stage, such as LED TV
for TV. The samples in State III will only consider one variant first, such as one single type
of LED bulb.

In addition, the unbalance of the training set also needs to be considered when preparing
for the GLR. The unknown detection model is a combination of many GLR models,
therefore for each GLR, if no modification is implemented, the number of true case vectors
will be 2500 while the number of false cases will be N times 2500, where N 1is the total
number of load types. This will result in a useless of the detection model when N is too large.
In this paper, the false vectors used for training is also randomly selected from the training
sets of the rest of N-1 load types. The size will be 10000, four times of the size of true case
vectors.

The global classification rate is used for the evaluation because the misclassification
cost is different. The recall rate of the unknown detection cannot be too high, because it will

result in a great inconvenience for the customers. The evaluation equation is shown in (4.15).
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(TruePositive + TrueNegative)
GCR = X 100%
Total Number

TruePositive

= 9 4.1
Total Positive x 100% (4.15)

TrueNegative

= %X 1009
Total Negative %

In (4.15), the TotalNumber denotes the total number of tests put in the test stage. The
feature selection results and the global classification rate (GCR) for each well-trained initial
GLR is shown in Table 4.4.

To sum up, the loads such as STB and DVD player have very similar characteristics
therefore very easy to be misclassified for each single GLR, however can be both detected
as an known load.

The comparison results between GLR and Gaussian Mixture Model (GMM) [160] are
shown in Table 4.5. The input samples of GMM are same as GLR, however, the input
vectors for each sample composes of the entire feature set instead of a selected one.

The true positive (TP) is used to compare the results, since all the unknown loads will
be added to the database and converted to the known loads after the first test. No new loads
will exist in the coming test. However, the training sample for the new added loads are
limited at first, it can also be seen from the TP3 of Table 4.5, which is lower than TP1. As
the test sets are run times by times. The results of GLR are getting better and better. GMM is
getting better first and then stops improving anymore because the GMM can only update the
threshold and easily vibrates at a certain area. Besides, the global classification rate of GMM
is also lower than the one of GLR. It is because the features used for GMM exert great
influences on the final results. An obvious example feature is the power of loads, which is

not a great feature for TVs and LED bulbs because there are many different power levels for
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such loads.

Table 4.4 Summary of the selected input features.

State | Load Feature Selected GCR
DVD P, CF, F3, F5 F7, Fll 76%
STB P, CF, F3, F5 F7, Fl1 84%
Fan CF, PC, VI, 6, O 88%
Heater CF, PC, VI, 6, O 94%
! Florescent PQ, CF, F3, F5, F7, 0, VI EI 92%
Monitor P, CF, F3, F5, F7,Fl1, O, FSM, EI 82%
Projector P, CF, EN, EI, FSM 80%
Microwave 14, IP, EI, W2, W4 90%
Scanner PQ, PC, AC, CF, EN, FSM 78%
TV CF, EN, 0, F3, O, FSM, EI 88%
Desktop CF, EN, VI, 6, F3, F15, W2, W4, O, FSM 74%
i Laptop CF, EN, VI, 6, F3, F15, W4, O, FSM 72%
Printer PQ, CF, EN, EI 6, O, FSM 78%
LED P, CF, F3, F7, VL 8,0 N/A
m Xbox CF, EN, 6, F3, O, FSM, EI N/A
Table 4.5 Results of the unknown detection model.
ALG/% GCR TN1 TP1 TP3 TP5 TP10 TP20
GMM 80.9 81.1 80.8 78.5 82.7 84.5 83.3
GLR 86.8 89.3 85.9 82.4 84.6 86.1 90.9

4.4.3 Load Identification

The training samples used for SOM is the entire load sets in Table 4.4, including the
new added State II and State III loads. The training samples for random forest will be the
same as the one used in the Case I, nevertheless all the features in Table 4.3 will be

employed instead of the selected ones in Table 4.4. The test samples are also same as Case |
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and will be run several times randomly. Because there is no need to bundle ten vectors as
one test, therefore a total of 200 vectors for each type of load are selected. The performance
evaluation method used here is based on (4.16). The comparison results are shown in Table
4.6.

Numberofldentified
= 4.16
SuccessRate O T ———" (4.16)

Based on the results, the performance of the random forest based method increases with
the online training. The identification performance of RF on most of existing load is better
than the one of SOM, and so as to the new added load after 5 times’ online training. It is
because RF randomly selects several of features for each tree instead of taking all the
features at one time, while will run many times. This will weaken the influences of the
unrelated features to some extent. However, RF still fails to provide a solid solution for the
very similar loads like DVD and STB with the existing feature pools. Based on the study of
[161], it will need more external information based on the behavior to solve such problems.
It will happen to the heater if the coffee maker is added in the training set, since they are
both pure resistive loads, and therefore it is impossible to identify them if no other usage
information like “working duration” is added.

Almost all the existing method uses the absolute successful identification rate of each
load as the major metric to evaluate the algorithm. However, it is highly dependent on the
load space used, like mentioned above, if a coffee maker is added, the successful rate of
heater will change. The most valuable information from Table 4.6 is the trend of successful
rate as the online learning continues. This proves the validity of the online learning

algorithm.
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Table 4.6 Summary of the results.

State Load R1 R2 RS R10 R20 SOM
DVD 72% 74% 80% 82% 80% 76%
STB 84% 86% 82% 82% 86% 72%
Fan 88% 90% 92% 92% 96% 90%
Heater 94% 94% 98% 98% 98% 88%
! Florescent 92% 88% 94% 96% 96% 90%
Monitor 82% 80% 88% 90% 94% 92%
Projector 80% 82% 86% 90% 92% 94%
Microwave 90% 90% 92% 92% 96% 94%
Scanner 78% 80% 88% 88% 90% 86%
TV 88% 90% 94% 94% 98% 28%
TV-LED N/A 82% 88% 94% 96%
Desktop 82% 82% 86% 88% 94% 6%
II D-Slim N/A 88% 88% 90% 92%
Laptop 72% 72% 76% 80% 84% 84%%
L-Game N/A 70% 76% 84% 88%
Printer 78% 70% 78% 82% 88% 80%
P-Laser N/A 92% 92% 94% 94%
LED N/A 76% 78% 80% 84% 62%
m Xbox N/A 80% 84% 88% 88% 74%

4.5 Chapter Summary
This chapter proposes a new perspective for the nonintrusive load identification
problem. Instead of introducing more features, the report presents an adaptive solution
consisting of an unknown recognition module and an online identification module. The
adaptive solution proves to be able to recognize those easily misclassified loads as unknown
loads and correctly identify these loads after gaining the knowledge from them.

Given the fact that the variety of home appliances is growing at a very fast speed, and
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no robust feature sets have been extracted to correctly classify all varieties of loads, this

adaptive model might present a practical and effective solution.
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CHAPTERS SMART METER DATA ANALYSIS BASED
ON LOAD DISAGGREGATION

5.1 Chapter Overview

Apart from incorporating the current NILM algorithm with an adaptive learning to
handle with the unlimitedly large load sets in the market, most of the researchers today
begin to come up with some more specific applications of NILM with an acceptable load
space and the practical computation effort. Load disaggregation based on the data measured
in the main service entrance metering point for the demand response service is one of the
options.

As discussed in Chapter 2, HMM is one of current popular solution for load
disaggregation work, which outperforms most other existing solutions. However, when
applying HMM into smart meter data analysis, three critical issues in HMM-based NILM
systems remain unsolved. In short, firstly, almost all existing NILM systems are designed
only for signal sampled at 1Hz or higher frequencies except several preliminary studies on a
15-minute resolution data while with an average 50% accuracy such as [81, 162, 163].
However, most residential buildings’ smart meters can only measure power at the frequency
of 1 per 15 minutes. Secondly, most HMMs need supervised learning which makes the
ground test for existing solutions very difficult. Finally, the number of simultaneous events
also increase greatly because of a 15-minute duration is adopted comparing with the 1-
second duration.

This chapter presents a solution to the above three problems. Firstly, an unsupervised
learning algorithm that can learn automatically without individual load waveforms or any

other priori knowledge is proposed. The proposed algorithm estimates the number of loads
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and their parameters from the aggregated signal. Admittedly, it is impossible to identify each
disaggregated load with zero input on individual load information. Therefore the name of
each disaggregated load in the final results will be presented as a symbol of APP,.

Furthermore, to overcome the challenge of low sampling frequency, the HMM model is
modified by introducing the usage behavior features like usage duration and time stamp.
Moreover, the working power of each appliance is modeled by normal distribution, which
will be used to modify the emission matrix of HMM model.

Finally, to overcome the overlap problem, inspired by [83, 123], an iterative learning
framework is established. We don’t expect our algorithm to successfully disaggregate all the
loads at one time. But if we can identify several of them, we will remove these loads from
the raw curve and then continue to learn new patterns.

In addition, this paper does not expect to provide a solution that can disaggregate all the

loads at home, which is almost impossible for the 15-minute resolution smart meter data.

5.2 Hidden Markov Model

The Hidden Markov Model (HMM) is to study a sequence of unobservable states
following the Markov process. Therefore, the distribution of " state S(1) given the (t-1)"
state S(z-1) is independent of previous states. The dependency of S(f) on S(¢-1) is
characterized by a state transition matrix 4, Different from the standard Markov process,
there is another observable output sequence which are decided by the distribution of
unobservable states. The HMM assumes that the current output only depends on the current
state, which is associated with an emission function B. To find the most possible sequence
order of the unobservable states, two important procedures, decoding and learning, are

implemented in the HMM. The detailed algorithm can be found in [83]. This paper only

presents the equations that will be revised for the purpose of NILM.
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5.2.1 Decoding

Decoding is one of the most important problems associated with HMM. It aims to
determine the most likely underlying hidden state sequence given a series of outputs. It is a
maximum-likelihood problem which is usually realized by Viterbi algorithm. In order to
produce meaningful decoding results, Viterbi Algorithm requires all underlying loads being
modeled by the HMMs. The Viterbi algorithm consists of a forward procedure and a
backward procedure.

In the forward procedure, the forward probabilities V4 can be calculated by,

Ve =pX IS =Kz, (5.1)
Vi =P |S(0) =k)ymax(a, V., ,) (5.2)

where 7, denotes the initial probability of state k, S denotes the set of all states, a,
denotes the transition probability from state x to k and V;; denotes the probability of the
most probable state sequence responsible for the first # observations that has k as its final
state.

In the backward procedure, the most probable final state is determined first and then the
algorithm will trace back previously computed forward probabilities to find the most
probable state sequence. Denoting the x selected in (5.2) by Ptr(k, t), the backward

procedure is formulated in (5.3) and (5.4).
xT = arg maXxeS (I/T,x) (53)
x,_, = Pt(x,,7) (5.4)

5.2.2 Learning
Learning aims at estimating the HMM parameters, including the transition matrix, the

emission function parameters and the initial state probabilities under an certain output
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sequence. Usually, it is intractable to find the global maximum for such a problem, however
a local maximum can be derived efficiently using the famous Baum-Welch algorithm which
is a maximum-likelihood approach. Baum-Welch algorithm requires prior distribution of
parameters @ and consists of a forward procedure, a backward procedure and an update
procedure. In the forward procedure and the backward procedure, the forward probability,
which is the probability of being at state k and seeing current and previous outputs, can be
calculated as (5.5); and the backward probability which is the probability of seeing future

outputs conditioned on currently being at state &, can be calculated as (5.6).

F;,k:P(K:yla-"ayz:met:k'e) (5.5)

B, =P, =Yy =3, | X, =k,0) 56)

Furthermore, (5.7) and (5.8) shows the posterior distributions of states and state

transitions respectively, which can be calculated based on (5.5) and (5.6),

Y =PX, =k|Y,0) (5.7)

S =PX, =0,X,,=JY.,0) (5.8)

t+1

Finally, the parameters € can be updated based on (5.7) and (5.8), and was resent to (5.5)
until it converges.
5.2.3 The HMM for NILM

In order to better model loads, in this paper an extension of the HMM called Factorial
HMM (FHMM) is adopted [83]. As illustrated in Fig. 1, the FHMM consists of a set of

parallel HMMs that share a common output.
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Figure 5.1 Architecture of factorial-HMM.

As shown in Figure 5.1, each HMM in FHMM represents a load and the shared output
represents the first order difference of the aggregated power signal. The output is thus the
sum of first order power differences of individual loads, which are modeled by state-
dependent Gaussian distributions and are characterized by means and variances attached to
individual states of the loads. Therefore, the shared output is also Gaussian distributed,

whose mean and variance are the sum of means and variances that are associated with the

current states of the HMMs. A detailed explanation will be given in next section.

As stated above, since HMMs are required to model the first order power differences,
states in the HMMSs represent change of mode. As illustrated in Figure 5.2, states in the

HMM are not ‘mode’ of loads (‘on’ and ‘off”), instead the change of ‘mode’ (‘off-off’, ‘off-

on’, ‘on-on’, ‘on-off”) [83].
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Figure 5.2 A typical state transition diagram of HMM aiming at modeling first-order
power difference of loads.

Further, the user behavior of loads is introduced in the proposed model, characterized
by a 96-dimensional (corresponding to the daily 96 smart metering point) turn-on time

distribution vector associated with each HMM. To summarize, all the parameters in the

proposed FHMM model is listed in Table 5.1.

Table 5.1 Parameters in the factorial-HMM model.

S.T. Load

7i(0) | Initial state probability distribution vector for load i.

A; State transition matrix for load i.

An N-by-2 matrix, where N denotes the number of states in load i. First column

B; of the matrix denotes the means associated with the states of load i, and the

second column denotes the variances.

C; A 96-demensional vector, denoting turn-on time distribution of load i.
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5.3 Proposed Disaggregation Algorithm

The unsupervised learning algorithm consists of several sequentially connected modules
as illustrated in Figure 5.3. First, aggregated signals are preprocessed. Second, the
preprocessed signals are broken up into event snippets where an event snippet is defined as a
signal segment that starts with a large rising edge and ends with returning to initial power
level. Third, event snippets are mapped to feature vectors. Forth, event snippets are clustered
based on their associated feature vectors. The feature vector and the clustering algorithm are
designed so that the snippets within each cluster are generated by one common load. At last,
an HMM is constructed for each cluster and all the HMMs constitute the FHMM.
5.3.1 Preprocessing

Modeling aggregated power signal with an HMM suggests that aggregated power
should be piecewise constant due to the finite state nature of the HMM. However, affected
by brown loads along with noise signal, the aggregated signal exhibits itself as finite number
of power levels combined with small disturbances. These undesirable fluctuations might
have a bad influence on the disaggregation accuracy of the signal. The brown load here is
referred to the frequently used small power loads. Usually it is the base energy consumption

of a residential house, shown in Figure 5.4.
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Figure 5.3 The unsupervised learning method.

To mitigate the influence of noise, a preprocessing algorithm, ‘Fused Lasso’ [164], is
implemented to make the signal piecewise constant. Denoting the raw signal by y = (3, ...,
V), the algorithm reconstructs the signal through an optimization procedure shown in (5.9)

n ) 1 n n—1
,8=argmm52(y,~—ﬂ,~)2+/IZ|,3,»+1—ﬂ,~| (5.9)
i=1 i=1

ﬁER”

where f is the reconstructed signal and 4 the penalty factor. The algorithm uses f to
estimate the raw signal, minimizing the squared error while penalizing on the first order
difference of f. Instead of taking the squared form or forms of higher order, the penalty term
in (9) adopts the first order form (absolute value) because in quadratic optimization
problems with first order penalty terms like (9), with the growth of penalty factor A, the
penalty terms decrease and what’s more, they vanish, which is a favorable feature because it
makes the reconstructed signal f piecewise constant. As illustrated in Figure 5.4, with the
preprocessing algorithm, the raw power signal (above) is converted to the piecewise style

(below), accommodating further process by the remaining parts in the framework.
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Figure 5.4 An illustration of the ‘Fused Lasso’ preprocessing algorithm.

Next, to eliminate the influences of the brown loads, different from the tradition
threshold selection method [165], a self-adjusted threshold is applied for different houses.
Firstly, the statistical analysis of eleven houses’ three month smart meter data is given. The
frequency distribution histogram of the power change of a single house is shown in Figure
5.5. In the histograms, it can be found that most power changes are lower than 200W.
Furthermore, the number of the events whose powers are larger than 300W is much smaller.
Given that the number of brown loads is much larger than that of the major loads, while the

power of rising edges of brown loads are much smaller than those of major loads, the



threshold could be the inflexion of the frequency distribution histogram In Figure 5.5, it is

200W.
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Figure 5.5 Frequency Distribution Histogram.

Moreover, to eliminate the brown loads, the cubic spline interpolation is applied the

points whose power change is below the threshold, as shown in Figure 5.6.
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5.3.2 Event Detection

Event detection module aims to break the aggregated signal up into individual snippets
that start with a large power rise and end by returning to the initial power level. The event
detecting algorithm is illustrated in Figure 5.7. In details, the event detection process is
shown in Figure 5.8. The bottom figure shows the typical power match process. The above

figure shows a typical event.
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Figure 5.7 Flowchart of the event detecting module.
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Figure 5.8 Demo of the event detecting process.

5.3.3 Feature Extraction
A map from event snippets to feature vectors needs to be designed, such that feature

vectors associated with the same load are close to each other while feature vectors
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associated with different loads are far from each other. Since the only way to characterize a
load is its operating powers, the feature vector should reflect the operating powers of the
load. Since a load might have multiple operating states, we make an assumption that the
operating states of the load are ordered by a predefined way and only change of sequential
load state is allowed. To obtain the feature vector from a snippet, firstly we find the
operating powers that occur in the snippet and order them by the time of occurrence. Then,
the first order difference of the powers is calculate, as shown in (5.10), so as the length of
time for which the operating powers in the snippet last, shown in (5.11). Equation (5.11)

will later be used in HMM parameter estimation.

P={R,P,...,P} (5.10)
r={1.,T,..,T} (5.11)

5.3.4 Clustering
K-means algorithm is applied to the feature vectors generated in the previous step. K-
means requires a proper distance measure. Other than the popular Euclidean distance, we

adopt a different difference measure as shown in (5.12).

n

Z'Xi_yZ' |P 512
de,y) ={[ T ——— -

n

In (5.12), x = (x4, x2, ..., x,) and y = (ys, V2, ..., ¥n) are two vectors and d(x, y) is their
distance measure. p is a parameter. The higher p is, the more the distance measure tends to
the maximum of |x; — y;| (i = 1, .., n). When comparing the operating powers extracted from
two snippets, a large difference between one of the operating powers will greatly discredit

the judgment that the two snippets are generated from the same load. Under this
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consideration, other than two (the Euclidean distance), a larger p is preferred.

After clustering, clusters that are too disperse or too small will be filtered out to make
sure the rest clusters only contain event snippets that are generated from a common load.
5.3.5 Parameters Estimation

Baum-Welch Algorithm will be used for the HMM parameters estimation, which
usually include the transmission matrix 4, emission matrix B.

The clustering procedure actually contributes to the parameters estimation a lot by
providing three important features extracted from (5.9) and (5.10). The power distribution of
each cluster P is used to update the B matrix, which contains the mean and variance of each
cluster to promise the fault tolerance capability of the algorithm. The start-time T is used to
generate the adjustment matrix C, which plays as a multiplier for transmission matrix 4 to
generate the new A", shown as (5.13). In details, the component ¢j, in matrix C is a number
located between 0 and 1, which is decided based on the probability that if certain state j will

be turned on at time ¢. The probability is calculated based on (5.11).
A1) = {aijc}:aije = ayjcje, C(G*1): cje, the coefficient of state j works at time ¢ (5.13)

After obtaining HMMs from the snippets, parameters of the HMMs will be averaged to
constitute a HMM representing the load underlying the cluster. Since Baum-Welch
Algorithm does not guarantee a global optimum, finding close-to-optimum initial parameters
is crucial to assure high performance of the Baum-Welch Algorithm. The average on-
duration of each cluster calculated by utilizing the P in (5.10) and the 7" in (5.11) associated
with the snippet is used to update the initial states. Based on the P and 7, the state transition

diagram with predefined initial parameters is shown in Figure 5.9.
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Figure 5.9 State transition diagram of HMM with predefined initial parameters.

In Figure 5.9, {Sy, ..., Sk} is the load operating modes. Sy denotes the off state while
S1, ..., Sk denote a series of different on states. The states of the HMM is the change of load
states. According to the assumption made in Session 1.2.3, only change of two sequential
load states is permitted. Thus, the HMM state can only take the form S; to S;;; (except for

the last state Sy to Sy. Table 5.2 summarizes the values we set to the initial HMM parameters.

Table 5.2  Initial parameters for Baum-Welch algorithm.

Parameter Value
P0.0:00 0.8
P0,0,0.1 1- po.0:00
Di-1iii min(7i-1, 1)
Pi-1isii+1 1-piriii
Diiiji max(1/( i - 1), 1)
Piisii+l 1-piiii
Bi i P;
Bi; 0




5.3.6 Robust Decoding and Iterative Learning Framework

In [124], a robust Viterbi algorithm is proposed that allows the existence of unmodelled
loads. It can disaggregate power of modeled loads from the aggregated power signal while
leaving power of unmodelled loads in the residual signal. The idea behind the robust Viterbi

algorithm is quite simple. It adds a pre-filter to (5.2) as shown in (5.14) and (5.15).

Ve =P [S@) =k)ymax(a,, V., ,),if teS (5.14)
Vu=max(a,V, )ifteS (5.15)

Compared with (5.2), (5.14) and (5.15) filter out the emission probability p(Y;|S(¢) = k)
when ¢ is not in set S. S defines the set of observations that can be explained by modeled
loads. It is determined by the comparison between the Y; and the power values that can be
generated by the FHMM. Adding the pre-filter prevents unmodelled observations from
intervening the decoding result and thus makes the decoding algorithm robust against
unmodelled loads.

We extend the robust decoding algorithm to an iterative learning framework. It learns
one load in each iteration. Figure 5.10 shows the flow chart of the framework. The
framework can be divided into 4 steps, as shown below.

1) Step 0: Set the aggregated signal as Y’. Set k=0; Set FHMM" = {};

2) Step I: Apply the unsupervised learning algorithm to Y. If the learning algorithm
generates more than one load, keep the one that is most likely to be correctly
recognized as Load" and discard the others. Denote the HMM associated with Load"
by HMM* and set FHMM*"! = {FHMM*, HMM"}. If the learning algorithm learns
nothing, terminate the algorithm and return FHMM*.

3) Step 2: Use the robust decoding algorithm to disaggregate the power consumption of
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Load* from Y;. Set the residual signal as Yj;.

4) Step 3: Set k= k + 1. Return to step 1.

Begin
l Keep one load HMM*
> .
k= 0; FHMM® = {}; and discard others.
Y’ = aggregated signal l
l Disaggregate power of
k
Apply unsupervised Yes HMM" from Y.
learning algorithm to Y* l
l Y* = residual signal
FHMM""'=
No loads detected? — (FHMM* HMM*};
|
No l
v
Stop k=k+1
Return FHMM
|

Figure 5.10 The iterative learning framework.

The iterative learning framework has the following advantages. First, removing one
waveform in each iteration simplifies learning for remaining loads. Second, removing one
waveform in each iteration recovers load waveforms that overlap with other waveforms in

previous iterations.

5.4 Case Study and Validation

It is acknowledged that only large and repeatedly used loads can finally be utilized in



demand responsive or energy efficiency rebate programs, which are our targets in this paper.
Correspondingly, loads with small power consumptions are called the brown loads. This
paper focuses on the former. Specifically, this paper studies air conditioners (APP1),
bathroom GFAs (APP2) and stoves (APP3), washers and dryers (APP4), the most common
major loads in residential buildings.
5.4.1 Data Analysis

The data used in this paper come from a real project supported by American Public
Power Association, working with Marietta Power. The real smart meter data of five
residential homes are used. The Centron Type 2S meter of Itron [166] provides 15-minute
resolution data including average energy, minimum power, and peak power. A common

daily power profile is illustrated in Figure 5.11.
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Figure 5.11 Generation of 1 per 15 minutes data.
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Figure 5.12 Individual load waveforms in the aggregated signal. From top to bottom, left
to right: APP1, APP2, APP3, APP4 and brown loads.

Figure 5.11 shows parts of the power signal to be disaggregated in this case study. It is
contains four major loads along with other low power loads. Their individual waveforms are
shown in Figure 5.12. From Figure 5.11 and Figure 5.12 it is apparent that:

a) All loads have more than 2 operating states.

b) All snippets of APP1 overlap with snippets of other loads.

The length of the aggregated signal applied in this paper is 30 days. We divide it into
two parts. The first 20 days of the signal will be used for training as well as validating and

the rest 10 days will be used for test. This number is also based on the current DR baseline



load calculation standards in most of utilities or ISOs [167].
5.4.2 Performance Metrics

Regarding to the disaggregation problem, an overall disaggregation accuracy of the
loads is adopted by most of the researchers [83]. However, an individual way is applied in
this paper which is required to present the contribution of the iterative logic design. The
performance metrics used here for disaggregation error is (x; — X,)/ x; per ¢ duration where
x; is the number of the measured signal for load i, X, is the number of the signal from the
disaggregated load i.
5.4.3 Demonstration of Learning and Behavior Features

Two iterations are run for the training data. In the first iteration the unsupervised
learning algorithm detects 3 loads: APP2, APP3, APP4. The disaggregation results for the
first iteration is shown in Figure 5.13. Because of the remove of waveform of APP2, APP3
and APP4, the waveform of APP1, which in the raw signal overlapped with waveform of
APP4 and thus was not unidentifiable, is now recovered and identifiable.

Based on the residual signal we run the second iteration and detect APPI, and the

disaggregation result is shown in Figure 5.14.
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Figure 5.14 Disaggregated power signal in the second iteration.

From the figure give above, it is easily found that the algorithm successfully
disaggregated the most of the loads in the first step except the air conditioner. It is because
the air-conditioner is overlapped with lots of other appliances. However, in the second step,

the data of the other loads will be removed from the aggregated signal. Consequently, the air



conditioner is successfully disaggregated. The total power consumption estimation error of
the air-conditioner is high because the working power of air-conditioner is a continuous
value. The disaggregation rate for the demo period (4 days) is almost 100%. When the
system is used to the 10 days test data, the disaggregation results are shown in Table 5.3.
The unrecognized energy present the 8% of the total energy measured (The disaggregation

method could not obtain the name of the loads)

Table 5.3 Disaggregation results.

S.T. Load Estimated Peak Power Decoding Accuracy
AC APP1 532W 94%
GFI APP2 1146W 95%
Stove APP3 1912W 88%
Washer/Dryer APP4 2100W 96%

Given the proposed solution, all the four loads are disaggregated after two iterations,
and the average unrecognized events present the 8% of the total events measured. Moreover,
because the power difference of the tested data is large enough, few crossing identification
mistake exists. The dominant reason of event missing lies in the “event detection procedure”.
In detail, if some events happen not in the routine time that are learned in the event detection
procedure, it usually will be overlooked because the proposed algorithm focuses on the
habitual events only. In addition, because we use 15 minute resolution data, the computing
time for the four load case is less than 0.01s on a Dell PC with 64GB RAM, and Intel i7
CPU with 3.84 GHz. Since our targets are demand responsive loads, the scalability should
not be a problem for such an application.

To verify the contribution of behavior features, a new load (APPS5) similar to APP3, but

used in different time period are manually added in the raw data to generate an artificial load
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profile. As shown in Figure 5.15. In the first artificial dataset, the possible routine time range
for APPS is not overlapped with APP3, in the second artificial dataset, the 80% percent of
the routine time period of APP5 is overlapped with APP3. Table 5.4 summarizes the results.
Given the results, if the usage habit is different, i.e. used at different times or with different
durations, we can still successfully identify the loads with similar power consumption. But if
two loads have same power consumptions and usually are used at same time period, then it

is impossible to differentiate if only active power is used for the proposed algorithm.
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Figure 5.15 Artificial case profile.



Table 5.4 Disaggregation results of similar loads.

S.T. Load 1 Artificial 2" Artificial
AC APP1 94% 90%
GFI APP2 95% 95%
Stove APP3 82% 90%
Washer/Dryer APP4 96% 94%
Pseudo-Stove APP5 88% 22%

5.5 Chapter Summary

The contributions of this chapter can be summarized as following two aspects.

1) The specific design for DR. We added an unsupervised clustering process before
HMM, therefore eliminate the random behaviors and small loads, only remain the
habitual usage behavior and integrate these behavior features in the HMM model
training.

2) The iterative idea. It is greatly helpful to solve the overlap problems.

However, plenty of challenges need to be solved. First, this chapter assumes that the
load only change its operating modes in a sequential manner, while there always exist some
loads with more complicated state transition patterns. In addition, this model is based on an
assumption that users’ habits don’t change much. And the features of on-duration and
starting time may be disturbed by the brown loads or newly-introduced appliances. Future

work should be focused on these problems.



CHAPTER 6 APPLYING NILM INTO FAULT DETECTION
OF AIR CONDITIONER SYSTEM IN BUILDINGS

6.1 Chapter Overview

The faults of HVAC include hard fault, soft fault as well as imperfect operational
situations [168]. Some types of fault detection can make a big difference in the efficiency of
a building. With a proper detection system, the imperfect operation can be figured out and
energy can be greatly saved by adjusting the HVAC to the perfect state. Besides, a good
fault detection method can also reduce the probability of false detection. However, most of
the methods of the fault detection now are either not reliable enough or expensive.

Recently, an electrical measurement solution is proposed in [92] as studied in Chapter 2.
This method measures the currents and the voltages at the terminals of the electromechanical
device, and then identifies faulty mechanical behavior on the basis of these observations.
Such a solution is much easier to install, less expensive and more convenient than
conventional mechanical sensor based solutions. Besides, with the help of non-intrusive load
monitoring (NILM) technique, it can further reduce the number of sensors needed to identify
the operation of loads and monitor the whole system timely. However, these methods still
bear with many drawbacks listed in Chapter One. This chapter will continue the idea in [92],
further investigate some more robust solutions for different types of faults. Two major faults
will be considered in this chapter which are airflow blockage faults and refrigerant leakage

faults respectively.

6.2 Overview of the Proposed Solution and Introduction of Electrical Machinery

Any mechanical change happened to the HVAC system will result in the changes of the



sensing data. It is the fundamental assumption for the fault detection of HVAC no matter
whether it is a mechanical measurement based method or an electrical measurement based
method. Nevertheless searching the bijective parameters for each type of fault is the main
challenge. The first electrical measurement based solution in [92] actually bears such
problems by using working power as the major monitoring parameter. The working power
may be influenced by too many external environmental factors, therefore it is very hard to
be matched contain type of fault accurately. Figure 6.1 defines the problem of the proposed
electrical based fault detection method intuitively. It is to find a bijective function Y to
represent the measurement data with the mechanical change of the system, such as airflow
rate and temperature. Figure 6.2 further provides the theory fundamentals of the proposed
solution, which are based on the electrical machinery, signal processing, data science, and
mechanics. In detail, fluid mechanics will be used for the airflow rate modeling and

thermodynamics will be used for the thermal modeling of compressors.
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Figure 6.1 Architecture of electrical measurement based fault detection of HVAC.
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Figure 6.2 Theory fundamentals of the proposed solution.

6.2.1 Speed Estimation Algorithms

A well-known and widely applied speed estimation method is to detect the relevant
harmonics in stator current spectrum [169]. As explained in [169], the stator current is
influenced by the induced voltage which is produced via the varying air-gap flux. And the

flux is determined by the product of the air-gap mutual magnetic flux (MMF) and the



permeance. The sources of the permeance and MMF variation are briefly introduced in the
Figure 6.3. In general, the permeance variation is usually caused by the uneven air-gap due
to the surface of the slots. Thus, some current harmonics will repeatedly show up as the
rotor runs. And these harmonics contain the important speed information. The detailed
mechanical and physical principles are fully explained in [170].

In summary, the interaction between the air gap MMF and the permeance produce a set

of harmonics in the current spectrum as shown in (6.1).

f, =[(kZ+nd)1_TSiv]fS 6.1)

where f; denotes all the possible harmonic frequencies, n; = 0 or 1 indicates the
harmonics either with or without eccentricity, s is the rotor slip, v demonstrates the order of
the interacted MMF harmonics, k is the order of varying permeance, Z is the number of slots

and f; is the fundamental MMF frequency which is 60 Hz in this experiment.

Eccentricity
Saturation Permeance Variance
o108 q Air Gap Flux
Stator
MMF y
Rotor

Figure 6.3 Sources of current harmonics [170].

Although most of the harmonics expressed in (6.1) seem to contain motor speed
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information, not all the harmonics are easy to be detected, as explained in [169]. The
condition of £ = 0 andnz; = 1 is considered here, which is solely influenced by the

eccentricity, and therefore usually called eccentricity harmonics f;. It is given by,

1-
f :[J_rTSH] f (6.2)

6.2.2 Torque Estimation Model

Usually there are two major methods to estimate the motor torque, i.e. static model and
dynamic model. Both the methods have their own advantages and disadvantages, which will
be used in different situations. In the aspect of airflow blockage detection, the blockage
usually will not affect the transient process of the induction machine. Therefore the static
torque estimation model can be used here, which needs less inputs and lower measuring
requirements than the dynamic model. Admittedly, the accuracy of the static model is lower
than the dynamic model, and lots of motor constants need to be provided in advance. A
detailed introduction of the static model and dynamic model is provided below.
6.2.2.1 Static Torque Estimation Model

In the static model, the mechanical power is converted from the electrical power via
stator coils, air gap, and rotor coils because of the electromagnetic effects. Within this
process, the energy transmission efficiency under the full-load condition varies from 85% to

97%. In detail, the energy loss can be broken down roughly as Table 6.1 [171]:



Table 6.1 Composition of the energy losses of a motor.

Loss Name Percentage in Total Loss
Stator losses 25% —40%
Rotor losses 15% —25%
Iron or core losses 15% —25%
Friction and windage losses 5% — 15%
Stray load losses 10% — 20%.

Usually, the friction and stray losses only account for a minority of the total loss
comparing with the other three losses and they are relatively constant. The iron or core
losses, as one of the three major losses, are proportional to the square of flux, which are
determined by the magnitude and frequency of the supply voltage. If ignoring the voltage
drop due to the stator resistance, the iron or core loss will remain constant as long as the
supply voltage is constant. The stator losses and rotor losses are relative complex. The losses

change under different working scenarios. Typically, they are expressed by (6.3).

P.=C+P, +P, =C+3I’R +31°R, (6.3)

loss sloss rloss

where R, is the rotor resistance, Ry is the stator resistance, /, is the rotor current, /; is the
stator current, C is the sum of the constant power losses including iron losses, friction and
stray load losses, Pj,s is the total loss of the motor, and Py, as well as P,,¢ 1S the stator

losses and rotor losses respectively.
To estimate the torque, electromagnetic power is utilized, which is the sum of rotor

losses and mechanical power, shown in (6.4).

P =P +P, =P —-C-3I"R (6.4)

rloss

where, P,,, is the electromagnetic power, Py is the total input electrical power, and Py, is



the output mechanical power.

Then the torque is deduced from the electromagnetic power as (6.5).

nP, n(B,—C-3I’R))

em

T =

2
_C - 3nl "R,
o, o, 1)

S S N

(6.5)

where, w; is the synchronous speed and 7 is the number of pole pairs.
6.2.2.2 Dynamic Torque Estimation Model

Dynamic torque estimation has been widely used in direct torque control in industry
today [172]. Many different papers contribute to this area to guarantee a sufficient accuracy
of the estimation [173-176]. In this chapter, only the fundamental stator voltage model is
introduced because the motor in HVAC system seldom run at a low speed [177].

In detail, the electromagnetic torque produced by the machine can be written in terms of

the stator current and flux as (6.6).
T=n(Y s —Wsidy) (6.6)

where, n is the number of the pole pairs in the machine, ¥, and Y, are the stator flux
components in the stationary reference frame, and i, and igs are the stator current

components in the stationary reference frame.
According to (6.6), the calculation of the torque requires the stator flux, which can be
obtained based on the voltage integral model, shown in (6.7).

Vs = J.(uas —i, R )dt
(6.7)

Ve — J’ (1, —is,R Xt

where uqs and ug; are the stator voltage components in the stationary reference frame,

and R; is the stator resistance which needs to be measured in the static model.



The dynamic torque estimation model can be summarized as Figure 6.4.
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Figure 6.4 Dynamic torque estimation model.

6.2.3 Impedance Estimation Algorithms

The static equivalent circuit of an induction machine is shown in Figure 6.5.
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Figure 6.5 The steady-state equivalent circuit of an induction machine.

R, is the stator resistance, R, is the rotor resistance referred to the stator side, L, L1,
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and L,, are the stator leakage, rotor leakage and magnetizing inductance, respectively; the
stator self-inductance Ly, is the sum of L, and L,,, the rotor self-inductance L,., is the sum
of Ly,and L,,, the leakage factor o is defined as 6 = 1 — L,,,>/LsLr, and w, [rad/s] is the
angular speed corresponding to the power supply frequency.

Usually, the impedance estimation includes four parameters, the resistance R or R, and
the inductance L as well as o.

In detail, the equivalent circuit can be formulated as (6.8) and (6.9):

V=R +jo,lL)l +jo(-0)LI, (6.8)

0= jow,(1-0)LsI, +[r,+ jo,1-c)L ]I, (6.9)

The elaborate derivation can be found in [185], r, is the equivalent resistance of the
rotor and usually very small comparing to the stator resistance. It will be ignored in the

estimation process. Then (6.8) and (6.9) can be changed to (6.10).

5 (I+o)L, 5 5
(@l V, ~lL7] 7 |=VILRI 2RIV, (6.10)

where Vg, and V,, are the projection of V; on x-axis and y-axis, and the same for I, and
Isy,. (6.9) can be converted to a scalar equation, shown in (6.11).
Z/ll

_ u
UP=Y namely | *|p=[3.1sen] (6.11)

1+ O')L

where u; = [w,IVsy — w212, yi = [Ve? + I*Rs® — 2RI Viy ], P = [ 1.

To estimate the parameters of the motor, the least square algorithm is applied to the

measured (V;, I) pairs.



6.3 Airflow Fault Detection of the Air Handling Unit

Air handler unit (AHU) is considered as the main part of the HVAC system. According
to the Federation of European Heating, Ventilation and Air-conditioning Associations,
AHUs can be applied in many different conditions such as office buildings, cleanrooms,
swimming pools, etc. Before 1970, the requirements for AHUs were basically humidity and
temperature adjustment. Other requirements such as low acoustic noise were added and
explained in the literature [178]. Because of these new requirements, today’s AHUs
consume large amount of energy that account for almost 44% of the energy used by the

whole HVAC industry [22]. The structure of a typical AHU is illustrated in Figure 6.6.
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Figure 6.6 A typical AHU scheme.

An air handler is usually a large metal box containing a blower, heating or cooling
elements and filter racks or chambers. Air handlers usually connect to a ductwork
ventilation system that distributes the conditioned air through the building and returns it to

the AHU.

Air from a room is sucked through the inlet and filtered to be dust-free, before passing



through the heating and cooling coil to adjust the temperature. Evaporator here is used to
reduce the temperature. Finally, the air is accelerated by the centrifugal force from the wheel
blade which propels the air continuously towards the outlet. The speed and quantity of the
air is controlled by the blower, which can typically operate at a variety of set speeds
allowing a wide range of airflow rates.

According to Chapter 1.2, the airflow blockage has become a significant problem in
AHU. This section mainly focuses on the airflow blockage fault detection and the estimation
of insufficient airflow. To accomplish the objectives, not only an exclusive index for the
airflow rate is expected, but also a physical model that converts electrical signals to
mechanical variables is required.

6.3.1 Airflow Fault Detection

It is an intuitive idea to study the influences of the airflow blockage on the motors.
Actually, the airflow variation exists in the majority of the HVAC systems today. However
the variation resulted from the blockage is no longer able to be overlooked, and definitely
will affect the stator current of the induction motor based on the large amount of exiting
studies on the load torque detection of induction motors [179, 180]. In general, these
solutions take a frequency domain analysis by studying the spectrum of the stator current.
The original idea of the proposed work comes from [181], the frequency component resulted
from the torque oscillation will act as the major index for the airflow fault detection, as

shown in Figure 6.7.
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Figure 6.7 The illustration of the proposed solution.

In detail, the airflow blockage will result in the decrease of the airflow rate therefore
will lead a torque oscillation of the blower due to the mechanical structure based on the
aerodynamics. Usually the mechanical system is assumed linear, and then a torque
oscillation in the steady state will generate a variation in the electromagnetic torque that
contains all the frequency components of the oscillation. Moreover, the electromagnetic
torque is the interaction between the stator flux linkage and rotor current in a d-g reference
frame. Because the rotor current is not change, the stator flux linkage will keep all the
variation information of the electromagnetic torque. As a result, any oscillation in the torque
at a multiple of the rotational speed will produce a series of frequency sidebands with the
line frequency as the center in an ideal machine where the flux linkage is purely sinusoidal.
However, the sidebands are load-dependent, which needs to be tested for different case. This
sideband signal actually will be used in this work to detect the airflow blockage. A typical
FFT spectrum is shown in Figure 6.8.

As shown in Figure 6.8, to model the mechanical oscillation, the vibration power value
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of the sideband frequency harmonics are utilized. The vibration power of the first 11™ order
harmonic components is calculated considering the magnitude of the harmonics after 11

order is too small. The equation is shown in (6.12).

’ +o0
Pyibration = f f(t)z dt =
0

6.3.2 Airflow Estimation Method

(6.12)

In a blower, the air is propelled out of the wheel by the blades. When torque and speed
are estimated, airflow is determined by the configuration and dimension of the blade. The
curve denoting the volumetric airflow against mechanical power at different rotor speeds is
called the fan curve, which demonstrates the intrinsic physical characteristic of the

centrifugal fans, shown in Figure 6.9.
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The basic derivation procedures for the fan curves are explained in [92]. The airflow is
determined by the fan construction and mechanical power applied. Based on the equation of
energy conversion and momentum equation, the relationship of mechanical power and

airflow under certain speed can be expressed [92] by the following equation:

d., V
P =pV —) +— 6.13

where P, is the mechanical power, p, is the density of air, V' is the airflow, w, is the
rotor angular speed, d is the diameter of the wheel, b is the width of wheel and 8 is the
tangent angle of blade outer side, which in our case is 30 degrees.

With different rotation speeds, the airflow and mechanical power is expressed by

different lines in Figure 6.9.
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Figure 6.9 Fan curves of the AHU based on (6.13).

The airflow corresponding to a particular value of mechanical power can be found from
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the series of curves. It needs to be clarified that (6.13) only works under certain assumptions
and within a reasonable flow-rate range, dependent on different types of blowers. In this
work, all the experiment and test are located in the reasonable range to guarantee the validity
of (6.13).
6.3.3 Experiment Design and Instructions

The conceptual figure of the experimental AHU is shown in Figure 6.10. This unit was
designed to be part of a split air-conditioning system, with an evaporator and filter holder
located at the front side, and was configured as an “up-flow” mode, which means that the air
was intake from below and output in the top of the air handler unit. The unit is equipped
with a 54-blade forward-curved double duct centrifugal fan, which is ten inches in diameter
and eleven inches wide, shown in Figure 6.11. This fan is directly attached to the motor
shaft via a set screw. It is mounted in the middle of the air handler as shown in Figure 6.10.
The air handler is equipped with a 3-phase induction motor, manufactured by BALDOR
Electric Corp. and its Part Number is RM 3116A. It is a delta-connected 4-pole, 60 Hz,
induction machine. The nameplate is shown in Figure 6.12. The measuring point of the
system is shown in Figure 6.13, a 3-phase disconnection switch box. The motor is connected
to the electric utility through a circuit breaker which is the installation point of the voltage
and current sensors. One line to line voltage is monitored via a voltage probe (Tektronix
P5205). Similarly, two current probes (Tektronix TCP303) are used to measure the phase
currents /4 and /. Finally, these three signals are inputs to an oscilloscope via a computer
interface (Tektronix TDS 5054). The voltage across each pair of stator windings, as well as
the currents will be measured synchronously. The measuring devices are shown in Figure

6.14.
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Figure 6.10 The experimental AHU in this dissertation.

Figure 6.11 The internal structure of a blower.
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Figure 6.12 The specs of the motor.
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Figure 6.13 Measuring points at disconnected box.

Finally, the airflow speed is measured at the outlet, shown in Figure 6.15 by an air flow

probe (TMA-21HW). The airflow measurement is repeated 5 times at different locations

shown in Figure 6.15.
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U

Figure 6.14 Data acquisition system, oscilloscope, current probe, and voltage probe from
left to right.

Figure 6.15 Airflow speed measurement points.

6.3.4 Experiment and Data Collection

To monitor the stator current under different airflow rate, the inlet of AHU will be
blocked by a hard board simulating the dirty filters as shown in Figure 6.16. To assume the
real situation, the experiment is conducted based on the blockage area. Five conditions will
be implemented, i.e. open area, half of the open area, a quarter of the open area, 1/6 of the
open area, and fully blocked. It is noted that the size of open area cannot represent the
airflow rate and airflow input amount. The real airflow rate and input amount are monitored
by the airflow probe simultaneously. Under each condition, three measurements are
implemented with different sampling frequencies, i.e. 10 kHz, 5 kHz, and 2 kHz. Therefore
there are 15 groups of datasets. Each dataset includes two stator currents and one line-to-line

voltage of the induction motor. Table 6.2 summarizes the collected data.



Figure 6.16 The blockage method in the experiment.

Table 6.2 Summary of the measured data.

Sampling Frequency Open Area
10 kHz 100%, 50%, 25%, 17%, and 0%
5kHz 100%, 50%, 25%, 17%, and 0%
2 kHz 100%, 50%, 25%, 17%, and 0%

6.3.5 Simulation and Results Analysis
6.3.5.1 Torque Estimation

Based upon the above discussion, the constant motor loss C and rotor resistance R, need
to be provided before the torque estimation. They are typically provided by the manufacturer.
However, they are not given directly on the nameplate in our experimental platform. A
simple regression analysis is adopted here to estimate these two parameters. Table 6.3 gives
the specs of the motor under different load condition which can be found in the datasheet of
the motor. According to Table 6.3, a regression analysis for p, — p,, against 3I? is
implemented based on (6.4). The regression analysis formulation can be expressed as (6.14)
and the results are shown in Figure 6.17. In detail, the intercept denotes C (92.73) and the
coefficient of the quadratic term denotes R (3.43). This regression analysis is only suitable

for the range from 75% to 150% of the rated torque. Beyond this scope, the parameters are
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not valid with a quadratic fitting line as given by the assumed model.

P —P, =92.7255+3x3.4343]° (6.14)

Table 6.3 Data Specification Under Different Load [29].
% of Rated Load 25 50 75 100 125 150 S.F.

Power Factor | 34.0 53.0 66.0 75.0 80.0 84.0 78.0

Efficiency | 69.7 79.8 83.1 83.9 83.7 82.5 83.8
Speed | 1787.2 17753 1763.0 1749.5 1735.1 17158 1741.0

Line Amperes | 1.01 1.13 1.31 1.51 1.75 2.09 1.65
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Figure 6.17 Regression Analysis of p, — p,, against 312,

The results of torque estimation under different air blockage scenarios are listed in
Table 6.4, where the electromagnetic power is deduced from (6.3), and the toque estimated
from (6.4). The table shows an apparent torque decline as airflow blockage increases. As
expected, when airflow decreases, less air is propelled from the blower, which reduces the

air resistance and torque.



Table 6.4 Results of Torque Estimation.

Electromagnetic
Open Area | Electrical Power(W) Torque(N-m)
Power(W)
100% 1032.5 893.35 4.74
50% 1015.6 873.43 4.63
25% 990.32 854.56 4.53
17% 971.73 841.82 4.47
0% 841.38 719.33 3.82

6.3.5.2 Speed Estimation

The speed is estimated based on the eccentricity harmonics mentioned in the previous
section. Five different scenarios are shown from Figure 6.18 to Figure 6.22. To make the
spectrum recognizable, a band rejection filter is used to eliminate the main frequency
component (60 Hz) and a notch filter is utilized to eliminate the irrelevant low frequency
mechanical harmonics. The speeds at different scenarios are calculated based on (6.2). Table
6.5 summarizes the speed estimation results of the five scenarios. It is noted that error exists
in the proposed solution due to the resolution of the stator current data. In this case, 1500
cycles are used for the FFT analysis, and the resolution is 0.04 Hz. According to (6.2), the
relative error of speed estimation is calculated and listed in Table 6.5 as well. The relative
errors are acceptable. Similarly, it shows that speed increases along with airflow as expected.
However, the rotor speed is insensitive to air blockage scenarios, therefore is not a perfect

indicator for the fault.
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Figure 6.18 The eccentricity harmonics of AHU under the fully open area scenario.
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Figure 6.19 The eccentricity harmonics of AHU under the half open area scenario.
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Figure 6.20 The eccentricity harmonics of AHU under the a quarter open area scenario.
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Figure 6.21 The eccentricity harmonics of AHU under the 1/6 of open area scenario.
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Figure 6.22 The eccentricity harmonics of AHU under the fully blocked scenario.

Table 6.5 Results of speed estimation.

Open Area (Sol/:)[; Zﬁ)e;()l Relative (Sozt;ed Error
100% 244 1756 0.137
50% 2.39 1757 0.137
25% 2.39 1759 0.137
17% 2.27 1760 0.136
0% 1.72 1769 0.136

6.3.5.3 Airflow Fault Detection

To detect the airflow fault, the sideband frequency components needs to be extracted.
Based on the (6.11), the value of vibration power can be calculated. Moreover, the airflow
can also be estimated based on the (6.13) and the fun curve. To verify the experimental
results, the real output airflow is also measured. All these data are shown in Table 6.6. The
calculated airflow decreases along with the reduction of the airflow open area, and when the

open area approaches fully blocked, the estimated airflow drops sharply as observed in the



real experimental conditions.

Table 6.6 Results of airflow estimation.

Open Vibration Power Calculated Airflow Real Airflow
Area (X 1073) (cfm) (cfm)
100% 123.11 2583 1865
50% 119.37 2525 1819
25% 116.33 2468 1723
17% 114.05 2430 1699
0% 104.66 2070 1366

A regression analysis is implemented for the real and estimated airflow rate against the
vibration power. Two quadratic functions are obtained as (6.15) as well as (6.16) and the
fitted curve is shown in Figure 6.23. The vibration power is greatly dropped when the AHU
is fully blocked. It may act as a good indicator for fault detection. Besides, the trends of
estimated airflow rate is same as the real airflow rate, the reason why it higher than the real
airflow may be because of the simple of the fan curve model and torque estimation methods.
In the real application, instead of absolute value to the airflow rate, customer cares more
about the relative change of the airflow rate comparing to the initial state after using certain
of time. Therefore, the proposed electrical measurement based airflow rate estimation

method is also a simple and cheap way to provide the condition monitoring services for the

AHU.
I/est = _])vfbration + 2 66])\1ibration - 142 93 (6 15 )
I/real = _P\jbration + 203R/ibration - 1 1393 (6 16)



6.3.5.4 Results Analysis

Based on the simulation results, several conclusions are presented below:

l.

The mechanical vibration power is a good index to identify the airflow fault of the
AHU.

The relationship between the mechanical oscillation components and air-flow rate is
fitted as a quadratic curve.

The estimated airflow rate and motor speed is obviously higher than the actual speed,
which is mainly due to the fact that only basic estimation methods are used in this
work.

To use this method, a base measurement and airflow estimation are required when

the AHU is in the commissioning stage.
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Figure 6.23 Regression analysis for airflow against the vibration power of AHU.

6.4 Refrigerant Fault Detection of an Enclosure Air Conditioner

In addition to the AHU, another important air-conditioning devices used in industry,

especially in today’s data center is the enclosure air conditioner. They are also known as the

cabinet air conditioners [182], as shown in Figure 6.24. It is designed to dissipate heat from

the enclosures by cooling the air inside to protect the temperature-sensitive components.

They are usually built into the side or rear panel or into the door of the enclosure [183]. Air

from the enclosure is sucked through the inlet, through the heating and cooling coil and then

accelerated by the fan which propels the air continuously towards the outlet.



Figure 6.24 The concept figure of an enclosure air conditioner.

The air temperature is controlled by the refrigerant cycle, where the refrigerant transfers
the thermal heat from the air around evaporator to the condenser [92]. Figure 6.25 shows the
schematic diagram of the regular vapor compression air conditioner. The refrigerant flows
clockwise along the arrow, changing the status from the liquid state in the condenser to the
vapor state in the evaporator. After travelling through the compressor, the refrigerant is at a
high temperature and a high pressure. Then it is cooled by the condenser where the heat is
transferred to the air and makes the refrigerant become liquid. The expansion valve that the
refrigerant encounters next is used to regulate the flow rate and reduce the pressure. Thus
when the liquid flows to the evaporator, it starts to absorb heat like the slackening sponge

absorbing water. The heat is therefore transmitted from the evaporator to the condenser [92].
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Figure 6.25 Air conditioning cycle schematic diagram.

Faults in the enclosure air conditioner occur in the different parts such as the ducts, fans,
compressors and control systems. Among these faults, refrigerant undercharge or overcharge
may cause severe effects on the compressor lifetime, the latent heat capacity or even the
enclosure system.

The mass of refrigerant is specified for the expected cooling capacity. Too little
refrigerant will cause the superheat of the evaporator, thus reduce the heat absorption
capacity, while too much refrigerant will result in the higher pressure than rated, which will
cause other undesirable effects on the motor. The possible causes for undercharge fault are
leakage and mal-installation. The release of the chlorofluorocarbons is well-known for its
destructive power to the ozone layer. Moreover the reduced cooling capacity will increase
the power loss and thus lower the energy consumption efficiency.

This section describes a sensorless electrical measurement based study and mainly
focuses on the refrigerant undercharge fault detection. It proposes a relatively simple fault

detection method based on the temperature estimation.



6.4.1 Temperature Based Refrigerant Leakage Detection

As mentioned in above, the temperature of motor will be a good index for the
refrigerant condition. Actually, when the refrigerant is insufficient, the cooling capacity is
reduced. In order to adjust the temperature to the same level, more cooling cycles will be
required for the undercharge condition comparing to the full charge condition, and the
torque of compressor will also be higher than the rated value, thus more energy is utilized to
drive the motor. As the current magnitude goes higher, the energy loss from the stator and
the rotor resistance increases and more heat is produced inside the motor. Because the stator
and rotor resistances are assumed to have a linear relationship with the temperature, as the
time of use increase, the magnitude of the current of the undercharged air conditioner will be
lower than then fully charged one. Therefore, the ultimate goal of this work is changed to
the motor resistance estimation.

Much research has been done on the temperature estimation in induction machines
during the past few decades [179, 180]. Most of them provided solutions by monitoring the
spectrum of stator current. These literatures provide sufficient arguments for the
nonintrusive sensorless detection method. Ref [169] is a generally adopted solution, which is
greatly applied in the other works. The parameter estimation method based on both transient
model and static model is also a generally adopted solution [184]. Recently, in the work did
by Z. Gao [185], rotor resistance is used for motor temperature detection, which shows good
robustness and accuracy. This work will refer to all these excellent work, and incorporated
them into the enclosure air conditioner fault detection.

As shown in Figure 6.5, the parameters are estimated based on (6.11), therefore the

rotor resistance can be calculated from the equivalent equation as:



Rr(ji—’")2 =sw,(1-0)L, (6.17)

T

Although L, is still unknown, it will not influence the temperature estimation since both
L,, and L, are not related to the temperature and can be regarded as a constant through the
process. Therefore the relationship between the resistance ratio and the temperature can be
expressed by (6.18).

R() T(t)+k
R,  25+k

(6.18)

Where, R is the initial resistance value in the ambient temperature, which is 25°C, k is
the temperature coefficient, which is preset as 225 here [186].
6.4.2 Experiment Design and Instructions

The structure of a typical enclosure air conditioner is shown in Figure 6.26 with the
labeled components in each part. The measuring device printable circuit board (PCB)
schematic is shown in Figure 6.27. It is composed of a current sensor, a voltage sensor, and
a NI DAQ box. Beside the high frequency measurement (10 kHz), an oscilloscope based
low frequency measurement (3600 Hz) is also implemented, which runs every 15 minutes
and records only 3-5 minutes current and voltage data. The devices of the low frequency
measurement are same as the ones used in the AHU experiment. The current and voltage
probe will be applied to record the two-phase currents and one phase voltage information.
Since the compressor is paralleled with two fans inside the air conditioner as shown in
Figure 6.28, the current measurement data contains two components, i.e. the fan current and
the compressor current. Even though both the fun motor currents take up a very small

portion of the overall current, they still need to be filtered out to promise the accuracy of the



compressor performance analysis. Figure 6.29 gives a 12-minute startup current curve of the
tested enclosure air conditioner. Since both fans run regularly without any fault, a constant

phase difference is assumed for the fan current to simplify the filtering process.
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Figure 6.26 Structure of a typical enclosure air conditioner.
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Figure 6.28 Electric circuit scheme of the air conditioner.
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Figure 6.29 Start-up current of an enclosure air conditioner.

In the experiment, the air conditioner is preset to the 22°C in a space with an initial



ambient temperature of 25°C. It is kept running for one hour. The refrigerant is adjusted to
100% full, 50% full and 25% full by using the scale weighting method [187], strictly
consistent to the pressure-temperature chart of R134a. The detailed air conditioner
information is shown in Table 6.7. The 10 kHz data are divided to many segments of 2.5s,
after filtering out the fan currents. A total 800 datasets of (Vs, Is) are collected for each test.

Table 6.8 gives the summary of the measured data.

Table 6.7 The nameplate of the tested air conditioner.

Nominate Number
Rated current 60 Hz / A 2.9
Start-up current 60 Hz / A 12.7
Useful cooling output L.35L35 60 Hz / W 1460
Air throughput, internal circuit / m3/h 600
Air throughput external circuit / m3/h 900
Operating pressure p. max 25 bar

Rated operating voltage V/Hz

Useful cooling output L35L.50 60 Hz / W
Temperature range °C

Refrigerant

Start-up current 50 Hz / A

400 50/460, 60 3~
890
+20°Cto+55°
R134a

11.5




Table 6.8 Summary of the measured data.

Sampling Frequency Charging Condition
3.6 kHz 100%, 50%, and 25%
10 kHz 100%, 50%, and 25%

6.4.3 Simulation and Results Analysis

Based upon the models and theories, the required parameters are shown in Table 6.9.
These parameters are derived from the 6.2.3. R, was measured as 5.33 Q and substituted into

the (6.9) as an initial input of the parameter estimation algorithm. The least square method is

applied to the (Vs, Is) datasets to obtain the parameters.

Table 6.9 Parameters under different conditions.

Condition Ls oLs
100% 3.69 0.083
50% 1.44 0.097
25% 0.88 0.112

The results of speed estimation are based on the slot frequency method demonstrated in
6.2.1. One example of the extracted slot harmonics from the undercharge scenario is shown
in Figure 6.30. The slot frequency and slip are calculated for each segment, and the trend
curves of the slip series under different refrigerant conditions are shown in Figure 6.31.

Given all the analysis above, the rotor resistance are estimated based on (6.17), where

L . s .
Rr(—L’")2 are calculated first. Assuming the initial rotor temperature is the same as the
T

ambient temperature, i.e. 25°C. The time-series temperature curve calculated based on (6.18)
can be drawn in Figure 6.32. Furthermore, the trend of temperature can be fitted by an

exponential curve. It is clear to see the temperature of undercharge condition is higher than
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that in full charge condition in the figure. This proves the theoretical analysis that the
compressor has to work ’harder’ to compensate the reduced heat capacity with insufficient

refrigerant, thus the temperature rises higher than the normal condition.
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Figure 6.30 A sample slip frequency spectrum of the studied air conditioner.
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Figure 6.31 The time-series slip curves of the three studied refrigerant conditions.
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Figure 6.32 Estimated temperature curves of the three studied refrigerant conditions.

Based on the simulation results, several conclusions are presented below:

1. The estimated temperature curve is a good index to identify the refrigerant charge
condition of air conditioners which can be used for non-intrusive fault detection.

2. The result is robust and evident to estimate the temperature. The less accuracy of
data points in the figure is mainly due to some basic assumption of constant
inductance and phase difference.

3. To use this method, the initial ambient temperature should be measured before

running the algorithm, while no other input is needed for the method.

6.5 Chapter Summary
This chapter investigates the benefits of the electrically-based fault detection techniques
used in the HVAC system. It is proved that the electrical instrumentation is often easier to
install, more reliable, and less expensive than comparable mechanical instrumentation.

Moreover, electrically-based FDD techniques can have inherent advantages over mechanical
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sensors in some circumstances. It is also apparent from the results of this research that the
electrical signals contain a significant amount of information about the mechanical state of
the system, though many electrical processing methods discard this information, its effective
use can provide an abundance of additional information about the state of the system.

To sum up, based on the discussion about the electrically-based FDD method for
HVAC, it is believed that its merits and advantages over the conventional methods will

make it popular, especially with the development of HEM and smart home.



CHAPTER 7 CONCLUSIONS, CONTRIBUTIONS, AND
RECOMMENDATIONS FOR FUTURE WORK

7.1 Conclusions

Achieving a high efficiency and sustainable buildings is a challenge that has to be
conquered. The smart building areas that have been developed for the past decades heavily
rely on the massive mechanical sensors, offline monitoring and expensive retrofits. The
large-scale deployment of small energy efficiency and sustainability techniques requires
innovations of advanced monitoring technologies. The proposed research focuses on four
aspects of building fault detection: proposing a model-driven feature selection and non-
intrusive load monitoring framework, improving the end-device level load identification
algorithm by introducing an online learning algorithm, proposing a circuit breaker level load
disaggregation algorithm based on the 15-minute resolution smart meter data, and studying
the potential of non-intrusive load monitoring technology employed in the fault detection of
the air conditioning devices.

A robust feature selection is critical in the non-intrusive load monitoring study, however
the available features used today cannot provide sufficient information. It is not even known
whether these features are really useful and efficient. The proposed work introduces a new
and pioneering prior-knowledge-based model-driven framework. The prior-knowledge
includes front-end power supply circuit identification and electrical operating principles.
This dissertation proposed a bi-level taxonomy for the load space from the power
electronics' point of view. Moreover, a commercial power supply market survey guarantees
that the proposed taxonomy represents the majority of appliance loads in the real world.

Under the proposed taxonomy, a complete model-driven hierarchical feature extraction

157



method is presented, and the features extracted from this method prove much simpler and
more feasible in differentiating the subtle differences between similar loads.

Even though a model driven solution can improve the identification efficiency and
accuracy, it is still impossible to find an algorithm suitable for all the loads in the market,
because the new types of load come to the market day by day. The proposed work comes up
with an adaptive nonintrusive load identification model to address this problem. The
proposed model is not dedicated to identify all the loads around the world, but it will grasp
knowledge from samples that are not identified in the real application, and gradually form a
new learning procedure so as to identify more and more new samples correctly. Random
forest algorithm is introduced here to realize the objective and a case study is carried out to
verify the effectiveness of the model. The adaptive model might present a practical and
effective future of NILM.

In addition, the amount of data available for training is limited for the end device
identification. It impedes the identifier to do a feasible learning. However, at the same time,
the large amount of unused smart meter data comes to be the thumb problem for utilities.
This work proposes a smart meter analyzer which can estimate the states and power
consumptions of the individual load in a residential home, by only utilizing the power
signals sampled by a smart meter, i.e., at a low sampling rate of 1 per 15 minutes. The
Factorial Hidden Markov Model (FHMM) is adopted here and an adaptive unsupervised
learning method, which does not require individual load waveforms or prior load knowledge,
is also incorporated into the FHMM. All FHMM structures and parameters are learned
automatically from the aggregated signal. A case study is conducted to verify the
effectiveness of the proposed smart meter analyzer for those major high power loads in a

residential house. Even though the information learnt from the 15-minute resolution smart
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meter data cannot be equal to 1Hz data, it still can help utilities and load aggregators in
many ways. Since the studied four loads are major demand responsive load. Demand
responsive load modeling and DR capacity estimation is one of the very important
applications for the proposed study. In addition, DR customer selection based on the
statistical analysis of the disaggregated loads by providing the variance and average power
of each load is also another important application. These statistic factors act as important
metrics in the customer selection and the reward program.

Finally, most of the industrial members and the research institutes have been trying to
find a more specific application for NILM with a more reasonable complexity for a long
time. The fault detection of the air conditioning system proves to be a promising application
area of NILM due to the reduced load space and the rich load data. This work proposes an
electrical measurement based study and mainly focuses on the airflow blockage fault and the
undercharge of refrigerant, which are two most important faults. The simple non-intrusive
fault-detection method is based on the induction machine fault detection works. The fan
torque and speed are estimated in order to get the relationship between the airflow variation
and the stator current of the induction motor. A real AHU system as well as an enclosure air
conditioner is built to validate the proposed solution. The obtained results show a great
potential of the electrical measurement based method.

A lot more still need to be done to achieve a future smart building. The methods and
discussions presented in this dissertation provide some insights into solving the challenged

of the building energy monitoring technology.

7.2 Contributions
The contributions from this dissertation are summarized as follows:

The concept of “a Model-Driven Taxonomy” has been proposed by utilizing a priori
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knowledge of appliances. This includes front-end electronic circuit topologies, electrical
operation principles, and customer behaviors. This concept establishes a full load space, and
provides a guideline to deal with the very wide diversity of the plug-in loads.

An extensive study on the power supply topology and the operation principles has been
conducted to help establish a hierarchical structure taxonomy of appliances with a 95%
coverage of present loads. The advantage of this multilevel structure taxonomy and the
feasibility analysis of this multilevel structure have also been discussed in the dissertation.

The feature extraction has been driven by the understanding of the relationship between
different steady state current waveforms and their corresponding circuit topologies and
operation principles. The preliminary analysis has proved that this established relation is
very helpful to optimize the feature space and to define simpler features.

Instead of introducing more features, an adaptive solution consisting of an unknown
detection and an online identification are proposed for device level load identification. The
adaptive solution proves to be able to recognize those easily misclassified loads as unknown
loads first, and then correctly identify them after gaining knowledge. This adaptive model
might present a practical and effective future for NILM in the energy auditing application.

A smart meter data disaggregation analysis is conducted and an unsupervised learning
algorithm that can learn automatically without individual load waveforms or any other a
priori load knowledge is proposed. The proposed algorithm estimates the number of loads
and their parameters from only the aggregated signal.

An iterative learning framework as well as some new usage behavior features like usage
duration and time stamp are introduced to overcome the challenge of low sampling
frequency and further enhance the learning performance by greatly increasing the

disaggregation rate of simultaneous events.
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A new airflow fault detection method for the AHU is proposed. Based on the simulation
results, a good indicator to detect the airflow fault of the AHU is introduced, which is the
mechanical vibration power in the stator current spectrum. The relationship between the
index and air-flow rate is fitted as a quadratic curve. The proposed non-intrusive solution
outperforms in an online fault detection model and cost savings than the conventional
mechanical measurement based solution.

A new refrigerant undercharge detection method for the enclosure air conditioner is
proposed. It proposes a relatively simple fault detection method based on the rotor
temperature estimation. Based on the simulation results, the rotor temperature in the
undercharge condition is obviously higher than that in the full charge condition. The
proposed non-intrusive solution outperforms in cost saving than the conventional
mechanical measurement based solution as well.

Five journal papers, eight conference papers, and three patents have been published
from the proposed dissertation research:

D. He, L. Du, Y. Yang, R. G. Harley, and T. G. Habetler, “Front-End Electronic Circuit
Topology Analysis for Model-Driven Classification and Monitoring of Appliance Loads in
Smart Buildings,” Smart Grid, IEEE Transactions on, vol.3, no.4, pp.2286-2293, Dec. 2012.

D. He, W. Lin, N. Liu, R. G. Harley, and T. G. Habetler, “Incorporating Non-intrusive
Load Monitoring into Building Level Demand Response,” Smart Grid, IEEE Transactions
on, vol.4, no.4, pp.1870,1877, Dec. 2013.

L. Du, Y. Yang, D. He, R. G. Harley, and T. G. Habetler, “Feature Extraction for Load
Identification Using Long-Term Operating Waveforms,” Smart Grid, IEEE Transactions on,
vol.6, no.2, pp.1870,1877, Mar. 2015.

L. Du, D. He, R. G. Harley, and T. G. Habetler, “Electric Load Classification by Binary

161



Voltage-Current Trajectory Mapping,” Smart Grid, IEEE Transactions on, accepted.

D. He, L. Du, Y. Yang, R. G. Harley, and T. G. Habetler, “Electronic Circuit Survey for
Office Load Monitoring and Identification”, Energy Conversion Congress and Exposition
(ECCE), 2012 1IEEE , pp.1228-1232, 15-20 Sept. 2012

D. He, J. Mei, R. G. Harley, and T. G. Habetler,” Utilizing Building-level Demand
Response in Frequency Regulation of Actual Microgrids”, IECON 2013 — 39th Annual
Conference on IEEE Industrial Electronics Society.

L. Du, D. He, et.al, “Self-Organizing Classification and Identification of Miscellaneous
Electric Loads”, Power and Energy Society General Meeting, 2012 IEEE, pp.1,6, 22-26 July
2012, San Diego, CA, USA.

W. Lin, D. He, R. Xia, and T. G. Habetler, “The Impact of Demand Response on Rural
Island Power System Operation,” IEEE PES GM 2013, Vancouver, CA, July 2013.

L. Du, Y. Yang, D. He, R. G. Harley, T. G. Habetler, and B. Lu, “Support vector
machine based methods for non-intrusive identification of miscellaneous electric loads”,
IECON 2012 — 38th Annual Conference on IEEE Industrial Electronics Society, pp.4866-
4871, 25-28 Oct. 2012

D. He, J. Mei, R. G. Harley and T. G. Habetler, “A Study on Electrical Operation
Principles of the Residential Loads for Building Monitoring,” [EEE PES GM 2014,
Washington DC, July 2013, under review.

Mei. J, S. Yan, G. Qu, and D. He, “Design Considerations for Non-Intrusive Load
Monitoring Hardware Platforms in Smart Building,” Industry Applications Society Annual
Meeting, 2013 IEEE, pp. 1-6, 6-11 Oct, 2013

Mei. J, D. He, R. Harley, and T. Habetler, “Random Forest Based Adaptive Non-

Intrusive Load Identification,” World Congress on Computational Intelligence, 2014 1EEE,
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pp-1978-1983, 6-11 Jul 2014

Y. Yang, L. Du, D. He, “Method And System Employing Graphical Electric Load
Categorization to Identify One of A Plurality of Different Electric Load Types,” US Patent
20,140,365,490.

Y. Yang, L. Du, D. He, “System and Method for Instantaneous Power Decomposition
and Estimation,” US Patent 20,140,371,932.

L. Du, Y. Yang, R. G. Harley, and T. G. Habetler, D. He, “Method And System
Employing Finite State Machine Modeling To Identify One Of A Plurality Of Different

Electric Load Types,” US Patent 20,140,371,932.

7.3 Recommendations for Future Work

The following investigations are recommended for the continuing research based on the
results presented in this dissertation work.
7.3.1 Data Acquisition and Feature Study

Since the load space and consumer electronics technology updates very quickly, new
loads come to the market day by day. The knowledge database has to be updated time by
time. Actually, as the development of the proposed self-adaptive and self-debugging
algorithm in this work, a self-learning feature selection method corresponding to the
identification algorithm is also expected. Besides, there are no criteria for data acquisition
today. The data measured by different researchers cannot be applied by others due to the
measuring discrepancy. Therefore, the algorithms are always exclusive to some specific data
measured with certain frequency, certain duration at certain point of time, which makes peer
evaluation of these algorithms impossible. Moreover, a uniform evaluation system of NILM

is absent. A standard bench mark for data collection is also required.



7.3.2 Adaptive Online Learning for Plug-in Load Identification

Even though, the adaptive method can successfully solve the challenge of extreme large
load space, the similarity problem is still not be touched at all. Future work should focus on
the identification of very similar loads by introducing more features, such as the behavior
information. In addition, the parameter selection of the GLR based solution is still empirical
which impedes its widely application. A theoretical analysis on the trade-off between
precision and recall for the binary classification should be further studied. Finally, the
feature selection algorithm also needs to be updated to a self-learning algorithm to overcome
the increasing load number.
7.3.3 15-minute Resolution Smart Meter Data Disaggregation

Even though the information learnt from the 15 minute smart meter data can help future
utilities and load aggregators in many ways. There are lots of challenges to be solved. First,
this work assumes that the load only change its operating modes in a sequential manner,
while there always exists some loads with more complicated state transition structures. In
addition, this model is based on an assumption that users’ habits don’t change much in up to
three months. And the features of on-duration and starting time may be disturbed by the
brown loads or newly-introduced appliances. Future work should be focused on these
problems.
7.3.4 Airflow Fault Detection of AHUSs

The main contribution of the proposed work is to present the potential application of
electrical measurements for AHU fault detection. There are many problems to be solved.
The estimated airflow rate and motor speed is obviously higher than the actual speed, which
is mainly due to the fact that only basic estimation methods are used. Some more robust

speed, torque and airflow estimation methods need to be developed. In addition, the thermal
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influence analysis is mandatory before this research comes to an actual application, because
some experimental phenomenas show that the change of stator winding temperature has
some non-negligible influences on the results.
7.3.5 Refrigerant Fault Detection of Enclosure Air Conditioner

Same as airflow fault detection, this part of study is a preliminary exploration of the
potential of NILM used in air-conditioner fault detection. Regarding the refrigerant
undercharge detection, several assumptions like constant inductance and constant phase
difference are made, which reduces the accuracy of the temperature estimation. Some more
accurate parameter estimation method considering the skin effect of the rotor may be
introduced. Error analysis is also needed to improve the validity of the proposed method.
Finally, the proposed study is still in the concept stage, a detailed industrial application

design is also expected.
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