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SUMMARY 

 

The importance of zinc for cellular proliferation and growth is well established.1 

As the maternally derived yolk stores are the primary source of nutrients for the embryo, 

this pool supplies all developing tissues and organs with zinc, likely orchestrated through 

an elaborate network of zinc transporters.2 On a cellular level, at the onset of mitosis 

there is a 2 to 3-fold increase of zinc in a cell,3 this too must be facilitated through a 

regulatory process. In summary, this thesis is about gaining a basic understanding of 

zinc distribution in two key biological events, cell division and embryogenesis. Where is 

the zinc and what is the best way to observe and measure the zinc in a biologically 

relevant manner? 

 

Chapter 1 summarizes the current knowledge surrounding the properties and 

functions of zinc in nature. This chapter also reviews the vital need of zinc in cell division 

and cell proliferation as well as outlines the overall approach presented this thesis. 

 

 Chapter 2 investigates labile zinc in live NIH 3T3 fibroblasts using a newly 

developed Zn(II)-selective ratiometric probe capable of two-photon excitation. Cells are 

monitor during mitosis, thorough characterization of the probe is presented, and 

fluorescent organelle markers are used to identify localization of labile Zn(II). 

 

 Chapter 3 utilizes synchrotron X-ray fluorescence (SXRF) microtomography to 

image the distribution of zinc, iron and copper with 2 – 3 μm resolution of zebrafish 

embryos in the pharyngula and hatching periods, approximately 24 and 48 hours post 

fertilization.4 



 
xviii 

 Chapter 4 investigates the distribution of labile zinc during the first 24 hours of 

zebrafish embryogenesis. Live, real time imaging is used to image labile Zn(II) dynamics 

and high resolution imaging stacks are acquired on fixed embryos to acquire greater 

detail in a specific point of development.  

 

 Chapter 5 provides conclusions and possible future directions this work may one 

day lead to. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Importance of Zinc in Biology 

Zinc is an essential micronutrient required in all forms of life. After iron, it is the 

second most abundant biologically important trace element.1 A bioinformatics study of the 

human genome published in 2006 predicted that roughly 10% of the proteome binds zinc 

with significant affinity.2 Generally, the concentration of the total cellular Zn(II) in 

mammalian cells ranges between 0.1-0.5 mM.3 Zinc is not only abundant, but 

indispensable in many cellular processes, affecting cell proliferation,4,5 cell 

differentiation,6,7 growth5,8 and development.9,10 

As a transition metal, zinc belongs to the d-block elements in the periodic chart. 

Unlike other divalent first-row transition metals, Zn(II) has a full d10 electron configuration 

rendering the metal cation redox inactive.11 The ability of Zn(II) to catalyze reactions relies 

on its Lewis acid properties, which are utilized in numerous enzymes for the activation of 

substrates.1,11 Due to the lack of ligand field stabilization energy, a consequence of the d10 

electron configuration, Zn(II) offers a flexible coordination sphere with coordination 

numbers ranging from 4 to 6, and adopts tetrahedral, trigonal bipyramidal, or octahedral 

geometries.12 Given the inherent flexibility of its coordination preferences, Zn(II) readily 

forms stable complexes with a wide range of ligands. This property has been exploited by 

nature for stabilizing protein folds such as zinc-finger motifs found in many transcription 

factors. In conjunction with its Lewis acid properties, Zn(II) acts as a co-factor in many 

enzymes where it can readily accommodate changes in coordination occurring in the 

course of a catalytic cycle. Overall, the versatility of Zn(II) allows for three main categories 

of primary functions in biology: as a structural support of protein folds, a Lewis acid 

catalyst, and a second messenger in signaling processes.1 
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1.1.1 A Structural Component  

Structural zinc binding sites utilize Zn(II) to maintain and increase the stability of a 

wide range of proteins. Over 20% of zinc enzymes use zinc for structural purposes.13 

These binding sites typically consist of four protein ligands and a tetrahedral Zn(II) center 

devoid of coordinating water molecules.14 Cysteine and histidine side chains are the first 

and second most common ligands, respectively, in a structural zinc binding site.14 A classic 

example of a structural zinc binding site is found in alcohol dehydrogenase (ADH), a family 

of enzymes responsible for the reversible oxidation of alcohols in a variety of biochemical 

reactions such as the conversion of retinol to retinal in the vision cycle.15 In this structural 

binding site, four cysteines of alcohol dehydrogenase bind to zinc to yield a tetrahedral 

coordination geometry.12 In addition to the structural zinc site, ADH contains a Zn(II) center 

in the active site where it plays a critical role in substrate binding and catalytic activity of 

the enzyme. 

Zinc also has a structural role in maintaining the stability of zinc fingers, a common 

protein domain characterized by a tetrahedral Zn(II) binding site composed of two cysteine 

and two histidine residues. Although the structure of these small proteins varies widely, 

classic zinc fingers are characterized by their DNA binding properties, a chain length of 

roughly 30 amino acids, and a compact zinc binding site surrounded by an α-helix and β-

sheet in a “ββα” fold.16,17 The functions of zinc fingers are diverse and include DNA 

replication and repair, RNA packaging, activation of transcription, protein folding, and 

regulation of cell proliferation and apoptosis.18,19 

 

1.1.2 A Catalytic Cofactor 

Zinc is a catalytic component of over 60% of known zinc-containing proteins. In six 

main enzyme classes: hydrolases, transferases, oxidoreductase, lyases, ligases and 
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isomerases, zinc acts as a cofactor.1,13 In hydrolases, the catalytic zinc site creates a 

hydroxide anion by lowering the pKa of a coordinated water molecule, thus facilitating 

nucleophilic attack on the substrate.11,13 One example of a zinc-hydrolase is the 

mononuclear metalloprotease, carboxypeptidase A (CPA).20 The zinc binding site is 

located inside this globular protein and contains two histidines, one glutamic acid, and a 

water molecule.13 The catalytic mechanism of CPA is classified as an induced-fit model. 

As the substrate enters the active site, the globular protein closes around it, forcing the 

substrate into place for hydrolysis aided by the zinc ion and water molecule. The significant 

change in shape of the CPA active site demonstrates zinc’s inherent flexibility of 

coordination. 

ADH, previously mentioned for its use of Zn(II) as a structural component, also 

contains a Zn(II) center in the active site where it plays a critical role in substrate binding 

and catalytic activity of this oxidoreductase. Binding of the coenzyme (NAD+/NADH) 

induces a conformational change that adjusts the structure of the catalytic zinc site.21 In 

this reaction the function of the metal ion differs between the forward and reverse 

processes. Whereas the activation of an aldehyde for the transfer of a hydride ion requires 

what Maret et al. refer to as an “electron pull”, the activation of the alcohol requires an 

“electron push”.22 These transitions induce changes of both the geometry and coordination 

number of the catalytic zinc ion.23
 

 

1.1.3 A Second Messenger in Signaling Pathways 

In addition to its structural and catalytic roles Zn(II) can also act as an extracellular 

or intracellular signaling mediator, allowing communication to occur between cells in an 

autocrine, paracrine, or endocrine manner.24 Zinc signaling is the product of alterations in 

both intracellular and extracellular zinc concentrations. Some of the first zinc-secreting 

cells to be characterized were the insulin-secreting cells of the pancreas.25 In this example 
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glucose stimuli activate the co-release of zinc and insulin from pancreatic β cells, which 

can then suppress hepatic insulin and reduce insulin secretion.26-28 In the central nervous 

system, Zn(II) ions are released from presynaptic neurons into the synaptic cleft upon 

membrane depolarization and are believed to modulate synaptic transmission by binding 

to different transporters and receptor channels on postsynaptic neurons.25 

Zinc signaling has often been compared to the well-researched calcium signaling. 

Frederickson et al. even referred to zinc signaling as “the calcium of the 21st century”.25 

Similar to calcium, zinc appears to play an important role as an ionic signal in the brain. 

All calcium channels have some level of zinc permeability, thus allowing the passage of 

Zn(II) ions through otherwise gated membranes.25,29,30 As with calcium, an excess of 

extracellular Zn(II) ions in brain tissue, a condition induced by seizures, can be highly 

toxic. This is due in part to the ability of Zn(II) to bind and inhibit glyceraldehyde-3-

phosphate, an intermediate in several metabolic pathways designed to supply glucose to 

the brain.25,31 

 

1.2 Regulation of Zinc 

Given its central role in many fundamental biological processes, it is not surprising 

that cellular zinc concentrations are tightly controlled and regulated through a 

sophisticated network of zinc transporters and metalloproteins32,33 (Figure 1.1). Two 

families of zinc transporters, the ZIP (Zrt-, Irt- like protein, SLC39A) and ZnT (SLC30A) 

proteins, are key components of the homeostatic machinery. The ZIP family of proteins is 

responsible for transporting Zn(II) from the extracellular space or lumen of organelles into 

the cytosol. Conversely, the ZnT family is responsible for transporting Zn(II) from the 

cytosol into intracellular organelles or the extracellular space.3 Additionally, 

metallothioneins can bind seven Zn(II) ions per protein and appear to be a critical 

contributors to zinc homeostasis.34  
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Figure 1.1: Distribution of zinc transporters. The ZIP family (blue arrows) is responsible 
for transporting Zn(II) into the cytosol and the ZnT family (red arrows) is responsible for 
transporting Zn(II) out of the cytosol.3 Seven zinc ions bind to metallothionein (MT) found 
in the mitochondria, cytosol or nucleus.  
 
 
 
 
1.2.1 Zinc Transporters: ZIP Family 

There are currently 14 members of the ZIP family identified in humans, 

characterized by 8 transmembrane domains and a long, variable loop between domains 

3 and 4 that frequently contains a histidine-rich sequence (Figure 1.2A). The function of 

the variable loop and the mechanism of zinc transport is unclear.35 The highly conserved 

sequence of domain 4 is predicted to form an amphipathic helix with a conserved histidine 

residue. It is possible this region forms an intramembranous metal binding site where 

metals can pass.35,36 

Many ZIP transporters have been implicated in diseases. A major focus has been 

placed on the LIV-1 family of ZIP proteins and the role it may have in breast cancer.37-43 
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Although all nine human LIV-1 family members have been investigated, ZIP6, ZIP7, ZIP10 

and ZIP14 appear to certainly have a connection with the disease and saturate the 

literature in this area.38-46 For example, ZIP7 is known to promote an aggressive phenotype 

in breast cancer cells and elevated expression of ZIP6 is associated with invasive, 

metastatic cancer progression.46,47  

 

1.2.2 Zinc Transporters: ZnT Family 

In contrast to the ZIP transporters, the ZnT family transports zinc from the 

cytoplasm into organelles or the extracellular space. These proteins are predicted to have 

6 transmembrane domains with a long, variable loop between domains 4 and 5 (Figure 

1.2B). Similar to the ZIP proteins, this loop also contains a histidine-rich sequence.48 Nine 

ZnT transporters have been identified and characterized.36,48 Of these nine proteins, the 

ZnT8 protein has been extensively researched and is classified as a pancreatic β cell-

specific zinc transporter.49,50 

ZnT8 is expressed in the hormone producing pancreatic islet cells 2-3 fold higher 

than all other tissue examined.51 The elevated ZnT8 transports zinc into insulin-containing 

granules in islet β cells where insulin is stored as a hexamer bound with two zinc ions 

before secretion.26,28 As mentioned in the Section 1.1.3, zinc and insulin are co-released 

from pancreatic β cells, which can then lead to the suppression of hepatic insulin and 

reduction of insulin secretion from the cells.26-28 While the majority of research in this area 

agrees that the loss of ZnT8 function may increase the susceptibility to type 2 

diabetes,26,49,51 recent studies of genotyping and sequencing approximately 150,000 

individuals report the identification of 12 rare ZnT8 variants that reduced the risk of type 2 

diabetes by 65%.27,52 
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Figure 1.2: Predicted membrane topologies of ZIP and ZnT zinc transporters. A. ZIP 
(SLC39) transporters have eight predicted transmembrane domains (TMDs) and a large 
histidine-rich domain between TMD3 and TMD4. B. ZnT (SLC30) transporters have six 
predicted TMDs and a large histidine-rich domain between TMD4 and TMD5. The 
direction of Zn(II) flux in relation to the cytoplasm is illustrated on the right. 
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1.2.3 Zinc Regulation by Metallothioneins 

In addition to the two families of zinc transporter proteins, the family of metal-

binding proteins known as metallothioneins (MT) contribute to the absorption, secretion, 

and overall regulation of zinc ions.53 The metal binding domain of MT contains 20 highly 

conserved cysteine residues with sulfhydryl groups capable of binding 7 moles of divalent 

zinc ions per mol of MT.34,54,55 The apoprotein, thionein (T), has no defined secondary 

structure and relies on the binding of the seven zinc ions to shape the protein into a defined 

three dimensional structure.56 MTs are primarily located in the cytoplasm and 

mitochondria; however, their location is regulated by the oxidative state of their 

environment.34,57 During oxidative stress, MTs are rapidly translocated from the 

mitochondria to the nucleus where they are then oxidized and transported to the cytosol.58 

As a metal-trafficking protein, MT can transport zinc from the cytoplasm to the nucleus or 

the mitochondrial intermembrane space,59 two intracellular locations for which there are 

no identified zinc transporters.60 In addition to metal transport, MTs have been associated 

with a barrage of functions including metabolism regulation, angiogenesis, cell 

differentiation, apoptosis, and cell cycle regulation as well as metal storage, detoxification, 

and homeostasis.34,53,56,61 With a capacity to bind seven Zn(II) ions simultaneously, MTs 

actively participate in zinc buffering and can serve as a major source of Zn(II) ions to other 

metalloproteins and transcription factors.32,57,62 

 

1.3 Cell Proliferation 

Cell proliferation is essential to many biological processes such as tissue repair, 

fertilization, embryogenesis, and growth. Although cell replication is intricately regulated 

in normal tissues, it is an irregular process during the progression of diseases such as 

cancer,63 delayed wound healing,64,65 and growth defects.66,67 Because of the morbidity 

and mortality associated with these processes, there is an elevated interest in the 
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underlying mechanisms of cell cycle progression. Cell proliferation is a tightly controlled 

process leading to the duplication of cellular DNA and division of a single cell into two 

identical daughter cells. Cells can exist in either the resting phase, G0, or the active phase. 

The replication of mammalian cells is a cyclic process where cells move from G0 to the 

first gap phase, G1, where they prepare for the synthesis phase, S, in which DNA is 

replicated, followed by the second gap phase, G2, and finally the mitotic phase, M, in which 

the DNA separates into chromatids and the cell divides. The progression between phases 

is highly regulated, containing many “checkpoints” that are controlled by proteins known 

as cyclins.68  

 

1.3.1 Zinc in Cell Proliferation  

Zinc plays a direct role in cell cycle progression.5,6 At the cellular level, zinc is 

required to progress from G1 to S phase69,70 and G2 to M phase.71,72 Furthermore, zinc is 

involved in the formation and function of chromatin,73,74 transcription of DNA,73,75 and gene 

expression.76-78 For example, zinc is required to stabilize the DNA, RNA and ribosome 

structure.75 Many enzymes necessary for DNA and RNA synthesis are also considered 

metalloenzymes such as RNA polymerase, transcription factor IIIA, and reverse 

transcriptase.75 Zinc has been linked to multiple growth factors necessary for DNA 

synthesis including insulin-like growth factor-I (IGF-I)79 and zinc deficiencies are reported 

to impair IGF-I-induced DNA synthesis.80 Overall, DNA synthesis has been reported to 

decrease in zinc deficient conditions and increase in the presence of elevated zinc levels. 

During cell proliferation, synthesis of the zinc-binding protein metallothionein (MT) 

is increased.81 Similar to zinc,82 MT concentrations are cell cycle dependent, peaking in 

cytoplasmic concentration during late G1 and G1/S phases.83 MT has also demonstrated 

a role in regards to zinc regulation during the cell cycle.34 Overall, it is suggested MT is a 

key component in cell proliferation and growth. 
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1.3.2 Changes in Zinc Levels as a Function of Cell Cycle 

 To monitor the intracellular Zn(II) concentrations throughout the cell cycle, Li et al. 

employed the Zn(II)-selective fluorescent probe, FluoZin-3, in synchronized rat 

pheochromacytoma (PC12) cells.84 The data revealed cell-cycle dependent fluctuations of 

cytosolic Zn(II) concentrations, with a spike of Zn(II) during the early G1 phase and a 

second at the late G1/S phase.84 More recently, McRae et al. investigated total trace metal 

distribution through various stages of mitosis by performing X-ray fluorescence 

microscopy (SXRF) studies on non-synchronized proliferating NIH 3T3 fibroblasts82 

(Figure 1.3). These data revealed a distinct redistribution pattern of zinc that was found to 

be spatially correlated with copper and sulfur densities but not phosphorous. During 

metaphase, two distinct high-density locations of zinc were found adjacent to the 

metaphase plate of the cell. The high-density regions of zinc, copper, and sulfur are then 

relocated to the center of the dividing cell during anaphase. Upon formation of the 

cleavage furrow, these central pools are divided into similar portions and distributed into 

the two daughter cells during telophase and cytokinesis.  

 In addition to the striking redistribution pattern, the data also revealed a 2 to 3-fold 

increase of zinc during mitosis. Specifically, interphase cells possess roughly 3-4 fmol of 

total zinc whereas mitotic cells were found to contain zinc levels between 8-10 fmol, 

implying an active import of zinc at the G2/M transition. These data indicate total zinc 

concentrations in interphase cells around 1.4–2 mM assuming an average volume of 2 pL 

for 3T3 cells in solution and an increase to 16-20 mM of total zinc throughout all mitotic 

stages during which the cell volume shrinks to approximately 0.5 pL.85 
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Figure 1.3: SXRF 2D sub-cellular distributions of transition metals. Copper (Cu), zinc (Zn), 
sulfur (S) and phosphorus (P) during select stages of mitosis: metaphase (M), anaphase 
part 1 (A1), anaphase part 2 (A2), telophase – cytokinesis (T/C), and cytokinesis (C). Scale 
bar = 20 µm. 
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1.4 Zinc in Pregnancy, Growth and Development 

Zinc is a well-known vital nutrient during embryogenesis.9,10,86  The effects of zinc 

deficiency on the growth and development of cells and whole organisms has been studied 

for over half of a century. For example, zinc deficiency in rats is estimated to adversely 

affect up to 90% of all implantation sites in utero and impacts the development of nearly 

all organ systems with the most extensive malformations found in neural tissue such as 

the brain and spinal cord.87,88 Zinc deficiency has led to an array of teratogenic effects in 

animal models such as structural skeletal malformations, low birth weights, low survival 

rate, and soft tissue abnormalities.88,89 

 

1.4.1 Zinc Requirements in Oocytes and Embryos 

As intrinsic parts of embryogenesis, the development and fertilization of the female 

gamete are both zinc-dependent processes.90-92 Regulatory fluxes referred to as “zinc 

sparks” are required in the meiotic cell cycle of a mammalian egg.93,94 Using oocytes 

collected from the ovaries of adult mice, Kim et al. determined zinc to act as a key regulator 

of the oocyte-to-egg and egg-to-embryo transitions.91 Control and zinc-insufficient oocytes 

were fertilized in vitro and monitored for development using 5-methylcytidine staining to 

detect methylated DNA. The absence of fluorescence in both embryos indicated 

successful fertilization; however, the control embryos advanced to the two-cell stage by 

24 hours post fertilization (hpf) while the zinc-insufficient oocytes remained at the pro-

nucleus stage immediately following fertilization. Continued observation revealed the 

control embryos reached the blastocyst stage at 120 hpf, but the zinc-insufficient group 

had only completed one round of cell division.91 Therefore, although zinc deficient oocytes 

are capable of fertilization they are compromised and unable to progress efficiently in 

embryogenesis indicating zinc’s important role in oocyte development.  
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1.5 Thesis Objectives 

The biological importance of zinc has been well established. It plays an indispensable 

role in a multitude of biological processes, either as a structural, catalytic, or signaling 

component. A sophisticated network of transporters controls zinc regulation tightly, and 

an imbalance in zinc homeostasis is linked to various diseases and abnormalities. Zinc 

deficiency results in the loss of cell proliferation leading to delayed wound healing, growth 

malformations, and pregnancy defects. Overall, the distribution and regulation of zinc ions 

is not trivial and involves high levels of specificity in order to maintain the numerous 

biological functions dependent on zinc. Visualizing zinc dynamics during processes such 

as cell division and embryogenesis is the first step towards understanding the cellular 

transport and control of zinc, which is in turn a prerequisite for a better understanding of 

the various cellular functions critical to life. 

Many fundamental questions regarding zinc homeostasis during cell division and 

early embryonic development remain unanswered. What regions are associated with 

increased labile zinc or total zinc demand during different points of embryogenesis? To 

what extent does labile zinc correlate with total zinc in both single cells and developing 

embryos? Are subcellular areas with elevated labile zinc visible using a zinc-selective 

probe in live, dividing cells similar to that found in previous SXRF microscopy studies? Are 

labile zinc pools spatially correlated with identifiable organelles?   

With these questions in mind, the aim of this thesis is to investigate the 

redistribution of zinc during cell proliferation and early embryonic development. 

Specifically, labile zinc pools of live NIH 3T3 fibroblasts were monitored using a newly 

developed Zn(II)-selective probe, Chromis1, and two-photon excited emission ratiometric 

imaging for the purpose of better understanding labile zinc dynamics on a cellular level. 

To elucidate the location of the labile pools, comparative fluorescent imaging of Chromis1 

and fluorescent markers for mitochondria, lipid droplets and the endoplasmic reticulum 
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was performed. Additionally, live cell characterization of Chromis1 was a critical piece of 

this study in order to accurately analyze the data collected. To achieve this end, Chromis1 

was evaluated in live cells under excessive exogenous Zn(II) levels, in the presence of a 

high-affinity chelator, and under oxidative stress in order to promote endogenous Zn(II) 

release from metalloproteins. Neutralization of Chromis1-treated cells was also performed 

to examine Chromis1 fluorescence emission response for signs of pH-dependency.  

 For a further understanding of metal distribution and dynamics in a developing 

organism, zebrafish embryos were used in both SXRF tomography and live fluorescent 

imaging experiments. SXRF provides insight into the location of total zinc, iron, and copper 

in a specimen, thus revealing the areas of high or low metal content during a stage in 

development. This information may identify particular locations or specific organs with 

higher demands for these trace nutrients during embryogenesis, which in turn may lead 

to a better understanding of the development and regulation of function for these particular 

anatomical structures. Lastly, this work investigates labile zinc dynamics of a developing 

zebrafish embryo during the first 24 hours of embryogenesis. Complementary to the 

information gained in SXRF tomography, these data will also contribute to a better 

understanding of zinc distribution in development. Together, the information collected in 

this research will provide a clearer picture of zinc distribution in a single cell and throughout 

embryogenesis. 
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CHAPTER 2 

PROBING LABILE ZINC POOLS IN PROLIFERATING CELLS 

 

 As mentioned in Chapter 1, previous studies using synchrotron X-ray fluorescence 

(SXRF) microscopy revealed an influx of zinc into NIH 3T3 fibroblasts at the onset of 

mitosis.1 Although SXRF was able to reveal the location of total metal content and 

quantitatively determine a 2 to 3-fold increase of zinc during mitosis, whether the influx of 

zinc constitutes part of the labile pool remains unclear. The aim of Chapter 2 is to 

determine if the influx of zinc observed during the onset of mitosis is tightly bound to 

ligands, or part of the labile pool. Complementary to the previous SXRF experiment the 

dynamic, labile zinc in proliferating NIH 3T3 fibroblasts was imaged using a recently 

developed Zn(II)-selective, ratiometric probe capable of two photon excitation (Chromis1). 

Additionally, an important objective in this chapter was the proper characterization of the 

probe thereof. Lastly, fluorescent indicators specifically highlighting the endoplasmic 

reticulum, mitochondria and lipid droplets, are used in combination with Chromis1 to study 

the location of the labile zinc pools in relation to these select intracellular organelles.  

 

2.1 Background 

 Zinc is an essential micronutrient required for cell division,2-6 however the 

mechanisms of regulation and redistribution of zinc during cell division remain largely 

elusive. To investigate total trace metal distribution as cells pass through the various 

stages of mitosis, McRae et al. performed X-ray fluorescence microscopy (SXRF) studies 

on individual, proliferating NIH 3T3 fibroblasts.1 The data revealed a distinct redistribution 

pattern of zinc that was found to be spatially correlated with copper and sulfur densities 

but not phosphorus as well as a 2 to 3-fold increase of zinc during mitosis. While zinc is 

required for cell division what could be the purpose of such significant inundation? 
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Signaling? Catalytic functions? The first step to investigate these types of questions is to 

determine if the zinc is free and available or already tightly bound to proteins during the 

influx. 

 The total zinc content of a cell or biological specimen can be categorized into two 

different groups: tightly bound to proteins or kinetically labile zinc involved in an 

exchangeable buffering system.7-9 The majority of cellular zinc is tightly bound to proteins 

for catalytic or structural purposes; however, the subpool of labile zinc is critical for 

signaling and regulating functions.10 Free zinc ions as well as zinc reversibly bound to 

proteins constitute the labile pool. Proteins that transport zinc across membranes, 

distribute zinc amongst organelles, and rely on zinc for regulation will all interact with zinc 

ions in a reversible manner.9 Use of synthetic and genetically encoded fluorescent probes 

have revealed this labile, exchangeable zinc pool in mammalian cells is buffered at 

picomolar to low nanomolar concentrations.11-13 Chapter 1 provides more detail about the 

structural, catalytic, and signaling roles zinc can fulfill. 

 For a comprehensive understanding of zinc regulation and distribution during cell 

division, all forms of zinc should be studied. Depending on the method applied, different 

subsets of zinc pools are detected. SXRF microscopy used to collect the data reported by 

McRae et al. provides information about the total metal content in the cell without any 

indication if the zinc is tightly bound to proteins or kinetically labile and involved in the 

exchangeable buffering system. In order to better understand the purpose of the influx at 

the onset of mitosis, it is important to determine which of the two categories of zinc are 

responsible. For this reason, zinc-selective fluorescent probes can be used to selectively 

detect only the exchangeable zinc pools in the sample.  
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2.2 Fluorescent Probes for the Detection of Labile Zinc 

 For the detection of labile cellular Zn(II), synthetic fluorescent probes that can 

engage in a competitive exchange with the endogenous pool are particularly promising 

tools. As most laboratories are equipped with standard fluorescence microscopes, this 

technique is widely accessible and cost effective. Fluorescence detection offers 

exceptional sensitivity and allows for the detection of fluorophores at the single molecule 

level. A majority of fluorescent probes function as “turn-on” sensors. Such probes typically 

consist of a chelator moiety, which selectively binds the metal ion of interest, and a 

fluorophore that translates the metal binding event into an emission increase. The change 

in fluorescence emission can be used to estimate the concentration of free Zn(II) ions 

present in solution; however, there are several limitations for applying this approach 

towards the determination of free Zn(II) in a cellular environment as outlined in the 

following section. 

 Assuming a 1:1 stoichiometry, the solution equilibrium (1) between a probe P and 

the free buffered Zn(II) ions can be described by the mass action equation (2) 
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where kf and kr refer to the forward and reverse rate constants, respectively, K is the 

stability constant, and [P], [Zn(II)], and [PZn(II)] are the respective concentrations of each 

species at equilibrium. Furthermore, the fractional saturation f of the probe may be defined 

as the ratio of the probe-bound Zn(II) and the total probe concentration [P]total: 

 

 

 (3) 

 

 

 After combining equations (2) and (3), the fractional saturation f can be expressed 

as a function of the Kd and the free Zn(II) concentration: 

 

 

 (4) 

 

 

 If the concentration of Zn(II)free = Kd, P and PZn(II) are present at equimolar 

concentrations, the fractional saturation of the probe f  is 0.5 (50%). A plot of f vs. [Zn(II)]free 

further illustrates that the largest changes of f occur when the free Zn(II) concentrations 

vary within the vicinity of the Kd (Figure 2.1, Kd = 10–12 M), and for this reason, the response 

of a fluorescent probe is strongest, if its dissociation constant (Kd) is similar compared to 

the buffered concentration of the Zn(II) pool to be probed. 
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Figure 2.1: Relationship between free Zn(II) concentration and the fractional saturation of 
a fluorescent probe. With an increase in metal ion concentration, an increase in 
fluorescence is observed. Shaded blue square represents the ideal Kd range. At 50% 
fractional saturation, the metal concentration equals Kd of probe. 
 

 

 According to Deranleau, reliable measurements are obtained between 20-80% 

fractional saturation, whereas outside this range the error increases exponentially.14,15 

Therefore, fluorescent probes with 1:1 binding stoichiometry cover a dynamic range of 

about two logarithmic units of free Zn(II) concentrations as illustrated with the blue-shaded 

area in Figure 2.1. If the probe dissociation constant is much higher or lower than the 

buffered cellular Zn(II) concentrations, the saturation level falls outside the 20-80% 

window and therefore the probe will not be able to reliably report on dynamic changes or 

properly reflect differences in the subcellular distribution of Zn(II) pools.  Additional factors 

such as photobleaching, subcellular sequestration, ionophore redistribution or cell-to-cell 

variability of the probe concentration further hinder the ability to reliably detect dynamic 
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changes and the distribution of labile Zn(II). These problems may result in misleading 

staining artifacts that do not reflect the actual cellular zinc status.  

 

2.2.1 Ratiometric Fluorescent Probes  

To overcome some of the typical challenges associated with fluorescent probes, 

Tsien and coworkers introduced the use of ratiometric probes that undergo a spectral shift 

of the excitation or emission band upon binding the metal ion of interest.16 The ratio R of 

the fluorescence intensities can then be used to determine the free metal ion concentration 

according to equation (5) without the knowledge of the probe concentration.  
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In equation (5), R is the ratio of the two fluorescence intensities at the two excitation 

or emission wavelengths, Kd is the dissociation constant of the 1:1 Zn(II)-probe complex, 

Rmin and Rmax are the minimum and maximum fluorescence intensity ratios for the free and 

Zn(II)-saturated probe, and Sf and Sb are instrument dependent parameters that need to 

be determined through an independent calibration. 

A number of ratiometric Zn(II) probes have been developed for biological imaging 

(Table 1), however, none of these probes have been widely used. 
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Table 2.1: Zn(II)-responsive ratiometric fluorescent probes 

Compound λex (nm)a λem (nm) a Kd
b Rmax/Rmin

c Ref 
Fura-Zin 378 (-48) 510 (0) 2.10 x10-6 9 17,18 

 
Indo-Zin 350 (0) 480 (-85) 3.00 x10-6  17 

 
ZnAF-R2 365 (-30) 495 (0) 2.80 x10-9 7 19 

 
DPA-COUM-4 400 (+31) 484 (+21) 5.00 x10-7  20 

 
ZNP1 499 528/624 5.5 x10-10 17.8 21 

Zinbo-5 337 (39) 407 (36) 2.20 x10-9 33 22 

CZ1  488/534d 2.50 x10-10 8 23,24 

CZ2  590/535 d  1.7 e 24 

DIPCY 627 (+44) 758 (+7) 2.30 x10-8 1.5 25 
 

ZnIC 513 543 (+15) 1.30 x10-12 2.4 26 
 

RF3 514 (-19) 540 (-17) 2.20 x10-5 2.4 27 
 

ZTRS 360 (0) 483 (+31) 5.70 x10-9 30 28 
aspectral change upon saturation with Zn(II). bdissociation constant. cdynamic range 
according to eq. (1). dtandem sensing scheme with two fluorophores. evalue reported in 
vivo. 

 

 

As an alternative to small-molecule fluorescent probes, genetically encoded 

protein-based probes are a major fluorescence-based tool to image Zn(II) in vivo. These 

biosensors are comprised of one or more fluorescent proteins (FP) fused to a metal 

binding domain. While binding of the metal triggers a change in fluorescence intensity or 

wavelength of a single-FP probe, metal binding alters the intermolecular distance or 

orientation of the donor or acceptor fluorophores of multi-FP probes thus altering the rate 

of energy transfer between the two.12,13,29 Therefore, multi-FP probes typically rely upon 

Förster Resonance Energy Transfer (FRET) to measure the concentration of a particular 

metal. Similar to ratiometric probes, multi-FP genetically encoded probes can provide 
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quantitative measurements of buffered ion concentrations using the ratio of two 

fluorescent intensities, the donor fluorescent intensity and the acceptor fluorescent 

intensity. 

 

2.2.2  Two-Photon Excitation Microscopy (TPEM)  

Compared to conventional single photon excitation, two-photon excitation 

microscopy (TPEM) offers intrinsic 3D resolution, reduced toxicity, increased specimen 

penetration, and negligible background fluorescence. Two-photon excitation involves two 

photons of approximately equal energy simultaneously interacting with a fluorophore, 

producing an excitation equivalent to the absorption of a single photon possessing twice 

the energy.30-32 Thus, two-photon excitation only requires half of the energy or twice the 

wavelength in order to excite a fluorophore. 

Although some of the probes listed in Table 2.1 have been utilized for two-photon 

imaging, none of them have been characterized in terms of the actual two-photon excited 

fluorescence response and the two-photon absorption (TPA) cross section. This presents 

two potential limitations. First, the fluorophore brightness may be compromised due to a 

low TPA cross section. Second, many of these probes undergo a shift of excitation rather 

than emission wavelength upon saturation with Zn(II), requiring more than one excitation 

wavelength rendering these probes unsuitable for two-photon microscopy. To 

synchronously excite the sample with two multiphoton lasers would be impossible. 

Unfortunately, few emission ratiometric probes optimized for two-photon excitation exist. 

For this reason, a new Zn(II)-responsive fluorescent probe, Chromis1, was developed and 

characterized. 
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Figure 2.2: Ratiometric Zn(II)-responsive two photon probe for live cell imaging of labile 
Zn(II) ions, Chromis1. The red piece of the structure indicates the tris(2-picolyl)amine 
functional group that acts as the zinc binding domain. Synthesis performed by Dr. 
Sumalekshmy Sarojini. 
 
 
 

 

 

 
Figure 2.3: Fluorescence emission spectrum of Chromis1 indicating spectral changes 
upon saturation with Zn(II). Multiple samples of a known probe concentration were 
incubated overnight in increasing concentrations of Zn(II) buffer. Dr. Sumalekshmy 
Sarojini recorded fluorimeter measurements with each sample excited at 355 nm. As the 
Zn(II) concentration increased, a spectral shift and an increase in fluorescence intensity 
is observed. (10 mM PIPES, pH 7, 0.1 M KClO4) 
 

Chromis1 
Chromis1-ethyl ester R = CH2CH3 
Chromis1-acid  R = H 
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2.2.3  Zn(II)-Selective Probe, Chromis1 

In order to detect and visualize the location and distribution of labile Zn(II) pools in 

live cells and tissues, a Zn(II)-selective ratiometric fluorescent probe, Chromis1, optimized 

for two photon excitation at 720-760 nm was developed (Figure 2.2). The tris(2-

picolyl)amine functional group of the probe acts as a chelator moiety which permits 

selective binding of Zn(II) in a 1:1 complex with a Kd around 1.55 nM. Upon saturation with 

Zn(II), the probe responds with a strong red-shift, approximately 40 nm, of the 

fluorescence emission, which is suitable for ratiometric quantification (Figure 2.3).  

 

2.3 Establishing Ratiometric Imaging Conditions 

Prior to using Chromis1 to monitor labile zinc in proliferating cells, it is important to 

establish the probe’s capabilities in live cell conditions.  In order to trust the validity of the 

data, Chromis1 must first be properly characterized in terms of its permeability, chemical 

stability, resistance to change in pH, and response rate in both high and low Zn(II) 

concentrations. To begin, NIH 3T3 mouse fibroblast cells were incubated with 10 µM 

Chromis1-ester for 15 minutes in 37°C then imaged using a Zeiss LSM710 microscope 

equipped with a multiphoton laser tuned to 720 nm to initially confirm the probe’s 

permeability. The resulting ratiometric fluorescence images demonstrated intracellular 

staining by Chromis1-ester throughout the cytoplasm and excluded from the nucleus. To 

compare, the same experiment was performed using 10 µM Chromis1-acid. As predicted, 

this derivative was unable to permeate the cell resulting in no detectable fluorescence 

(Data not shown). Next, a series of time-lapse imaging studies were performed to establish 

the ability of Chromis1-ester to monitor dynamic changes in intracellular labile Zn(II). 
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Figure 2.4: Ratiometric response to addition of ZnSO4 and TPEN. Two-photon excited 
ratiometric imaging of Zn(II) fluxes in live 3T3 fibroblasts. Cells were treated with 10 μM 
Chromis1-ester then imaged inside of a temperature-controlled chamber mounted on the 
microscope stage. After 20 minutes, the cells were exposed to a buffer solution containing 
100 μM ZnSO4 / pyrithione followed by a second buffer containing 100 μM TPEN at the 
41-minute mark. A: False color ratiometric images acquired at the indicated time points. 
B: Average intensity ratio change vs. time for the region of interest shown as a circle in 
the left panel of (A). C: False color ratiometric kymograph for the region of interest shown 
as a dotted line in the left panel of (A). Two-photon excitation occurred at 720 nm, the 
emission was collected between 425-462 and 478-540 nm. Scale bar = 20 μm. 
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2.3.1  Calibration of Zn(II)-Selective Probe, Chromis1, in Live Cells 

To demonstrate Chromis1-ester as a fluorescent ratiometric probe for two-photon 

imaging of dynamic cellular Zn(II), time-lapse sequences were acquired of adherent NIH 

3T3 cells preloaded with 10 µM of the probe. Images were taken every 20 seconds for 

roughly 1 hour. After 20 minutes of imaging in basal conditions, cells were exposed to 

ZnSO4 together with the ionophore pyrithione. This was followed by a perfusion at 41 

minutes with a cell permeable, non-fluorescent, high-affinity Zn(II) chelator, N,N,N’,N’-

tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN). The image was produced from the 

ratio of emission intensities at (478 nm – 540 nm) / (425 nm – 462 nm). 

Cells grown under basal conditions initially indicate a low intensity ratio of 0.6 

dispersed uniformly throughout the cytoplasm (Figure 2.4). This ratio changes in a manner 

dependent upon the availability of Zn(II) within the cell. After perfusion with 

ZnSO4/pyrithione, the fluorescence ratio increased more than 3-fold reaching 2.5. To 

confirm the change of fluorescence intensity resulted from the increased concentration of 

Zn(II)-Chromis1, cells were then treated with TPEN. Perfusion with TPEN led to a 

complete reversal of the intensity ratio down to 0.5, slightly lower than that of the unbound 

probe under basal conditions.  

Effectively, the two-photon ratiometric images confirm intracellular zinc availability 

can be readily gauged using this Zn(II)-selective probe. This experiment also 

demonstrated Chromis1-ester to be robust and nontoxic to the cells. The probe did not 

photobleach and cells were healthy and alive after almost an hour of imaging. A plot of 

the fluorescence intensity ratio vs. time revealed surprisingly rapid dynamics, both for 

Zn(II) binding and release which each occurred in seconds (Figure 2.4B). In conjunction 

with the false color images, this plot indicated the TPEN successfully returned the ratio to 

lower than basal level, therefore the response was completely reversible. This reveals the 

probe has an appropriate binding affinity capable of releasing Zn(II). Furthermore, the 
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decrease in ratio lower than basal conditions indicates the Chromis1-ester was initially 

detecting endogenous zinc. Using equation (5) from section 2.2.1, the buffered Zn(II) 

concentration can be calculated as approximately 300 pM. Additionally, Chromis1-ester 

demonstrated the ability to monitor a high dynamic range of zinc fluctuations. Figure 2.4 

illustrates a ratio change from 0.6 to 2.4, corresponding to a 4-fold increase of detection 

level. Due to the difficulties balancing this large of a dynamic range on the microscope, 

Chromis1-ester fluorescence was over exposed at the highest ratio when imaging. With 

the proper equipment and settings Chromis1-ester could reveal an even larger dynamic 

range of zinc fluctuations. Lastly, the cytosolic staining of Chromis1-ester appears to be 

punctate and localized in subcellular compartments, presumably the probe is lipophilic 

and transitions into membranes. To further investigate where Chromis1-ester is inside the 

cell, a series of localization studies with Chromis1-ester and other fluorescent indicators 

of organelles was performed. 

 

2.3.2  Elucidation of the Subcellular Localization of Chromis1-Ester 

The punctate staining pattern observed for Chromis1-ester in the previous 

experiments suggests it is localized to specific cellular structures. After the 

characterization in NIH 3T3 fibroblasts, the ratiometric Zn(II)-selective probe can now be 

utilized to asses the intracellular location of Chromis1-ester and subsequently reveal the 

locations of labile Zn(II) pools. Using both plasmid transfection and live cell fluorescent 

markers, the purpose of this study is to elucidate the location of Chromis1-ester compared 

to mitochondria, endoplasmic reticulum (ER) and lipid droplets. 

 

2.3.2.1 Spatial Correlation of Chromis1-Ester and Mitochondria 

Zn(II) pools are essential for sustaining mitochondrial protein functions. 

Mitochondria house numerous Zn(II) dependent enzymes,33,34 primarily metallothioneins 
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(MTs), a major source of labile zinc.35,36 This family of metal-binding proteins is capable of 

reversibly binding seven Zn(II) ions simultaneously and creating labile pools for other 

metalloproteins and transcription factors to bind. For these reasons, mitochondria are a 

reasonable target location to examine for colocalization with Chromis1-ester.  

 

 

 
 

Figure 2.5: Spatial correlation analysis of Chromis1-ester with mitochondria in 3T3 cells. 
(Left) Epifluorescence image of Chromis1-ester excited via a pulsed IR/multiphoton laser 
tuned to 720 nm, emission collected 400 - 498 nm. (Center) Epifluorescence image of 
mitochondria labeled via transfection of pDs_Red2-mito, excited at 561 nm, emission 
collected 570 - 700 nm. (Right) Overlay image indicating the negligible amount of spatial 
correlation between Chromis1-ester and pDs_Red2-mito in orange/yellow color, 
corresponding to a Pearson correlation coefficient of 0.19. Scale bar = 20 µm. 
 

 

Cells were transfected with the pDs_Red2-mito plasmid for mitochondria before 

treatment with Chromis1-ester and undergoing live cell fluorescent imaging. Fluorescence 

emission of Chromis1-ester and the fluorescent organelle marker were collected 

simultaneously with the laser and filter settings switching on a line-by-line basis. In the 

resulting images, Chromis1-ester produces a strong fluorescence pattern distributed 

throughout the cytoplasm. Mitochondria are distinct intracellular structures made clearly 

visible in fluorescence microscopy from the pDs_Red2-mito plasmid. As illustrated in 

Figure 2.5, fluorescent imaging revealed Chromis1-ester and mitochondria are not 
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correlated in location. Chromis1-ester (green) and the dsRed-Mito expression (red) are 

distinct in the overlay image. No spatial correlation (indicated by yellow) is observed. 

Additionally, pixel-by-pixel analysis was performed for a quantitative assessment of the 

degree of correlation between the two images. Using the Coloc2 plugin of ImageJ37 

software, Pearson’s correlation coefficient (PCC) can be calculated as a measurement of 

the linear correlation between two variables. PCC values range between +1 and -1, where 

1 represents a complete positive correlation, 0 is no correlation at all and -1 is a total 

negative correlation.38,39 For the Chromis1-ester vs. dsRed-Mito comparison, Coloc2 

calculated a PCC of 0.19, therefore indicating a very low, almost negligible correlation. 

 

2.3.2.2 Spatial Correlation of Chromis1-Ester and Endoplasmic Reticulum 

  Labile Zn(II) pools have been identified at the endoplasmic reticulum (ER). Results 

based on ratiometric imaging using a genetically encoded sensor, ER-ZapCY1, estimate  

0.9 pM of Zn(II) in the ER of HeLa cells.12 Labile Zn(II) is also implicated as a second 

messenger from the ER required for signaling in the tyrosine kinase pathways.40 

Regulated by ZIP7, zinc is released from intracellular stores in the ER resulting in Zn(II)-

mediated inactivation of protein phosphatases, consequentially allowing for the activation 

of multiple tyrosine kinases.41  

Similar to the mitochondrial imaging, cells were transfected with pEYFP-ER 

plasmids following treatment with Chromis1-ester for live cell imaging. Fluorescence 

emission of Chromis1-ester and the fluorescent ER marker were collected simultaneously 

with the laser and filter settings switching on a line-by-line basis. As with mitochondria, 

Chromis1-ester and the ER have limited spatial correlation (Figure 2.6). Chromis1-ester 

(green) and the EYFP-ER expression (red) are distinct in the overlay image. No spatial 

correlation (indicated by yellow) is observed and a PCC value of 0.38 was calculated using 

the ImageJ plugin, Coloc2, indicating a very low, almost negligible correlation. 
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Figure 2.6: Spatial correlation analysis of Chromis1-ester with ER in NIH 3T3 fibroblasts. 
(Left) Epifluorescence image of Chromis1-ester excited via a pulsed IR/multiphoton laser 
tuned to 720 nm, emission collected 400 - 498 nm. (Center) Epifluorescence image of ER 
labeled via transfection of pEYFP-ER, excited at 514 nm, emission collected 525 – 675 
nm. (Right) Overlay image indicating the amount of spatial correlation between Chromis1-
ester and pEYFP-ER in orange/yellow color, corresponding to a Pearson correlation 
coefficient of 0.38.  Scale bar = 20 µm. 

 

 

2.3.2.3 Spatial Correlation of Chromis1-Ester and Lipid Droplets 

Lastly, cells were co-stained with Chromis1-ester and BODIPY 493/503, a 

fluorescent indicator of neutral lipids. Fluorescence emission of Chromis1-ester and 

BODIPY 493/503 were collected simultaneously with the laser and filters settings 

switching on a line-by-line basis. As illustrated in Figure 2.7, a substantial degree of spatial 

correlation, indicated in yellow, between Chromis1-ester (green) and BODIPY 493/503 

(red) was observed. Additionally, a PCC value of 0.67 was calculated using the ImageJ 

plugin, Coloc2, quantitatively suggesting Chromis1-ester is more spatially correlated with 

lipid droplets than it is with mitochondria or ER. 
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Figure 2.7: Spatial correlation analysis of Chromis1-ester with lipid droplets in NIH 3T3 
fibroblasts. (Left) Epifluorescence image of Chromis1-ester excited via a pulsed 
IR/multiphoton laser tuned to 720 nm, emission collected 400 - 498 nm. (Center) 
Epifluorescence image of lipid droplets labeled via BODIPY 493/503, excited at 488 nm, 
emission collected 525 – 675 nm. (Right) Overlay image indicating the amount of spatial 
correlation between Chromis1-ester and BODIPY 493/503 in orange/yellow color, 
corresponding to a Pearson Correlation Coefficient of 0.67.  Scale bar = 20 µm. 
 

 

 

2.3.3  Neutralization to Exclude pH Sensitivity 

Potentiometric studies of Chromis1-acid revealed protonation constants of 5.5 and 

1.2 (Scheme 2.1), where the latter could be attributed to protonation of the fluorophore 

pyridine nitrogen (data not shown). Although the double-protonated probe is non-

fluorescent, the charge-transfer character of the emissive state results in excited state 

protonation of the fluorophore to produce a weak red-shifted fluorescence emission 

(Scheme 2.2). While intracellular pH levels are maintained at approximately 7.4 in the 

cytosol,42,43 lysosomes and other acidic compartments contain proton pumps that lower 

the pH to 5.0.44 Presumably due the increased lipophilicity compared to the acid form, 

Chromis1-ester is distributed throughout the cytoplasm and appears as punctate staining, 

likely associated with the membrane of vesicular structures or organelles, possibly 

lysosomes.  Although emitting with significantly lower quantum yield, the red-shifted 

emission of the proton transfer species, which is the dominant form at lower pH, might 
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yield an intensity ratio increase similar to the one observed for the Zn(II)-bound probe. In 

order to test whether the fluorescence intensity ratio of Chromis1-ester is affected by a 

rapid change of the pH in acidic compartments, a neutralization study was performed 

using Bafilomycin and LysoTracker Red. 

 

 

 

 

Scheme 2.1: Protonation constants of Chromis1. 
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Scheme 2.2: Excited state proton transfer (ESPT) of Chromis1. 

 

 

Bafilomycin acts as a specific inhibitor of vacuolar-type H+-ATPase, thus rapidly 

neutralizing acidic compartments, including lysosomes, in cells.45 Additionally, 

commercially available LysoTracker dyes can be used to track acidic organelles.46 These 

sensors consist of a fluorophore linked to a weak base that is only partially protonated at 

neutral pH. As cell permeable probes, LysoTracker dyes can be used to identify acidic 

compartments in live cells based on standard fluorescence microscopy imaging 

approaches. With absorption and emission maximums at 577 nm and 590 nm, 

respectively, LysoTracker Red was specifically selected due to the lack of spectral overlap 

with Chromis1-ester. To rule out pH dependence of the Zn(II)-selective probe, NIH 3T3 

fibroblasts co-stained with Chromis1-ester and LysoTracker Red were imaged in real-time 

before and after the addition of Bafilomycin. Cells stained with LysoTracker Red have a 

distinct fluorescence in basal conditions that attenuates dramatically when neutralized by 

the introduction of Bafilomycin. The emission ratio response of Chromis1-ester will 

determine the probe’s sensitivity to intracellular fluctuations of pH. If attenuation occurs, 

the Zn(II)-selective sensor is sensitive to changes in pH, however, retaining its 

fluorescence intensity ratio after neutralization will suggest that Chromis1-ester is not 

associated with acidic compartments. 
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NIH 3T3 cells were treated with 10 μM Chromis1-ester and 6 nM LysoTracker Red 

for 60 minutes at 37°C in a 5% CO2 atmosphere. The cells were then transferred to a 

temperature-controlled chamber mounted on the microscope stage. Both Chromis1-ester 

and LysoTracker Red could not be imaged simultaneously. The two-photon laser 

excitation of Chromis1-ester at 720 nm was followed by 561 nm excitation of LysoTracker 

Red, alternating between two channels after each complete scan. Each individual scan 

took 20 seconds to complete, therefore each set of Chromis1-ester and LysoTracker Red 

images took 40 seconds. After 15 minutes of imaging under basal conditions, Bafilomycin 

was added to the imaging dish to a final concentration of 900 nM. 

As indicated in Figure 2.8, the addition of Bafilomycin caused immediate 

attenuation of LysoTracker Red emission, therefore, indicating the successful inhibition of 

vacuolar-type H+-ATPase and intracellular neutralization. A sharp line across the resulting 

kymograph (Figure 2.8B) illustrates the abrupt change in LysoTracker Red emission. 

Conversely, negligible change is detected in the fluorescence emission of Chromis1-ester 

after neutralization (Figure 2.8C). This suggests the fluorescence emission of Chromis1-

ester during live cell imaging is not a product of fluctuations in pH. 
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Figure 2.8: Chromis1-ester response to neutralization via Bafilomycin. Imaging of 
Chromis1-ester and LysoTracker Red treated live NIH 3T3 fibroblasts. Cells were pre-
treated with 10 μM Chromis1-ester and 6 nM LysoTracker Red then imagined in a 
temperature-controlled chamber using a Zeiss LSM710. The cells were then exposed to 
900 nM Bafilomycin. A: False color imaging pre- and post-Bafilomycin addition of 
LysoTracker Red (left), Chromis1-ester (center) and an overlay of the two (right). Scale 
bar = 50 μm. B. False color kymographs of LysoTracker Red (left) and Chromis1-ester 
(right) for the region of interest shown as a dotted white line in upper right panel of (A). 
Time scale on the far left, 0 – 30 minutes. C. Average intensity of emission ratio of 
Chromis1-ester (green line) and the fluorescence of LysoTracker Red (red line) over the 
30 minutes of time-lapse imagining. Two-photon excitation of Chromis1-ester occurred at 
720 nm and emission was collected between 425-462 and 478-540 nm. LysoTracker Red 
was excited using a 561 nm laser and emission was collected between 584-612 nm. 
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2.4 Monitoring Endogenous Zn(II) 

The previous experiment monitoring exogenous changes in zinc concentration 

confirmed the ability of Chromis1-ester to detect high concentrations (100 μM) of 

ZnSO4/pyrithione added to the imaging media. Before adding the exogenous zinc, the 

probe appears to primarily be in apo-form, not bound to any zinc at all. The exogenous 

zinc inundated the cells and saturated Chromis1-ester almost entirely. While this does 

confirm the probe can detect fluctuations in zinc, it is unknown if Chromis1-ester can detect 

endogenous zinc changes. It is important to determine if Chromis1-ester can detect zinc 

ion transients when they are induced specifically in biologically meaningful ways before 

assuming the probe can detect fluctuations that occur naturally. 

 

2.4.1  Oxidative Stress Induced Release of Endogenous Zn(II) 

In order to induce intracellular zinc ion fluctuations in a biologically relevant 

manner, strong oxidizing agents were applied to the cells to oxidize the zinc/thiolate sites 

in redox regulated proteins, such as metallothionein (MT), resulting in zinc dissociation 

(Scheme 2.3).47,48 This procedure mimics the naturally occurring oxidative chemical 

processes that regulate and mobilize zinc from MT. Specifically, redox reactions will occur 

between the sulfur compounds of different oxidation states and consequentially, the 

disulfides will release zinc from the zinc/thiolate sites by thiol/disulfide exchange 

reactions.49,50  The free zinc would then be accessible to Chromis1-ester, allowing the 

probe to detect the increase in available zinc and undergo a shift in emission. For these 

experiments hydrogen peroxide (H2O2) and 2,2′-dithiodipyridine (DTDP) were applied 

individually and an influx of available Zn(II) for Chromis1-ester to bind was expected to 

increase in the ratio similar to what is observed with the addition of exogenous Zn(II) 

(Figure 2.4). 
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Scheme 2.3: Proposed mechanism of zinc dissociation by oxidation of sulfur donors. 

 

 

 

NIH 3T3 cells were grown glass bottom culture dishes (MatTek), treated with 10 

μM Chromis1-ester for 30 minutes at 37°C and transferred to a temperature-controlled 

chamber mounted on the microscope stage. Images were acquired every 20 seconds. 

During basal imaging the cells indicate a low intensity ratio of 0.6 dispersed uniformly 

throughout the cell cytoplasm (Figure 2.9). After 33 minutes acquiring images of cells 

under basal conditions, the cells were exposed to a buffer solution containing 50 μM H2O2, 

causing the fluorescence ratio to increase to as high as 2.5 around both the extracellular 

and intracellular membranes surrounding the nucleus. The ratio in the cytoplasm reached 

approximately 1.6. Roughly 25 minutes after the addition of H2O2, the ratio decreased 

independent of any additional reagents reaching approximately 0.7 after 45 minutes. 
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Figure 2.9: Ratiometric response to oxidative stress via H2O2. Two-photon excited 
ratiometric imaging of Zn(II) fluxes in live NIH 3T3 fibroblasts. Cells were pre-treated with 
10 μM Chromis1-ester (30 min) and imaged in a temperature-controlled chamber using a 
Zeiss LSM710. The cells were then exposed to a buffer solution containing 50 μM H2O2. 
A: False color ratiometric images acquired at the indicated time points (minutes in lower 
right corner of images). B: False color ratiometric kymograph for the region of interest 
indicated by the dotted line in the upper left panel of (A).  C: Average intensity ratio change 
vs. time from region of interest indicated by the white circle in the upper left panel of (A). 
Two-photon excitation occurred at 720 nm. Emission was collected between 425-462 and 
478-540 nm. 
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Further oxidative stress experiments were performed using DTDP to induce a 

release of endogenous intracellular Zn(II). NIH 3T3 cells were treated with 10 μM 

Chromis1-ester for 30 minutes at 37°C and transferred to a temperature-controlled 

chamber mounted on the microscope stage. After 10 minutes of imaging under basal 

conditions cells were exposed to a buffer solution containing 100 μM DTDP (Figure 2.10), 

causing the fluorescence ratio to increase from a basal ratio of 0.5 to as high as 1.8 around 

both the extracellular and intracellular membranes surrounding the nucleus. The ratio in 

the cytoplasm reached approximately 1.5. Roughly 40 minutes after the addition DTDP, 

the ratio began to decrease independent of any additional reagents. Approximately 70 

minutes following the addition of DTDP, the ratio completely returned to 0.5. 

 

 

 

Figure 2.10: Ratiometric response to oxidative stress via DTDP. Two-photon excited 
ratiometric imaging of endogenous Zn(II) fluxes in live fibroblasts induced by DTDP. Cells 
were pre-treated with 10 μM Chromis1-ester (30 min) and imagined in a temperature-
controlled chamber using a Zeiss LSM710. After 10 minutes of imaging under basal 
conditions, the cells were exposed to a buffer solution containing 100 μM DTDP. False 
color ratiometric images acquired at the indicated time points. Two-photon excitation 
occurred at 720 nm. Emission was collected between 425-462 and 478-540 nm. 
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2.4.2  Imaging Labile Zn(II) in Mitosis 

As previously mentioned, zinc is essential to cell proliferation and cell-cycle 

dependent zinc fluxes have been observed. SXRF microscopy on NIH 3T3 fibroblasts in 

various stages of cell division revealed a 2 to 3-fold increase along with distinct 

redistribution patterns of zinc during mitosis.1 It is unclear if this influx of zinc is tightly 

bound to proteins or labile. Chromis1-ester was used to investigate labile zinc distribution 

of live, dividing cells. 

NIH 3T3 cells were grown on glass bottom culture dishes, treated with 10 μM 

Chromis1-ester for 30 minutes at 37°C with 5% CO2 and transferred to a temperature-

controlled chamber mounted on the microscope stage. Cells were maintained in this 

incubation chamber on the Zeiss LSM710 microscope stage for the duration of the 

experiment. Images were acquired every 5 seconds for approximately 15 minutes using a 

63x objective. As illustrated in Figure 2.11A and Figure 2.11B, cells in G1 and M phases 

appear to retain a steady ratio between 0.50 and 0.65, indicating mostly the apo-form of 

Chromis1-ester, throughout the duration of imaging. Faint vesicular structures noticeable 

in the dividing fibroblast have a slightly higher ratio than the rest of the cell. 

Additional experiments using similar preparation protocols were performed to 

visualize proliferating cells in a larger area over an extended amount of time. Images in 

this experiments were acquired every 2 minutes over four and a half hours using a 20x 

objective. Chromis1-ester was not toxic to the cells, nor did it attenuate or photobleach, 

keeping its initial fluorescence for the duration of the experiment. Outliers were also 

observed with some cells demonstrating higher ratios than others (Figure 2.11C). 
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Figure 2.11: Live cell imaging of labile zinc during mitosis. Two-photon excited ratiometric 
imaging of Zn(II) in live NIH 3T3 fibroblasts. Cells were grown on glass bottom culture 
dishes, incubated with 10 μM Chromis1-ester (30 min), and transferred to a temperature-
controlled chamber mounted on the microscope stage. All images were obtained in basal 
conditions. A: False color ratiometric images acquired at the indicated time points using a 
63x objective. Cell labeled “G1” does not divide, while cell labeled “M” divides in 15 
minutes. B: Average intensity ratio change vs. time for the regions of interest (ROI) shown 
as circles in the left panel of (A). The ROI of the G1 cell is denoted with a red circle in (A) 
and a red line in (B). The ROI of the M cell is denoted with a white circle in (A) and a blue 
line in (B). The ratio of the G1 cell averages between 0.55 - 0.70 and the dividing cell, M, 
averages between 0.45 - 0.60. C: Overview of two large areas on the dish using a 20x 
objective demonstrating the heterogeneous distribution of zinc between cells. Two-photon 
excitation occurred at 720 nm, the emission was collected between 425 - 462 and 478 - 
540 nm.  
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2.5 Conclusions 

Chromis1-ester has been thoroughly characterized in NIH 3T3 fibroblasts as a 

ratiometric Zn(II)-selective probe capable of detecting both exogenous and endogenous 

zinc fluxes.  In a neutralization experiment, Chromis1-ester confirmed it is not sensitive to 

intracellular pH fluctuations. Localization experiments revealed a small amount of spatial 

correlation in Zn(II) labile pools and lipid droplets, but not with mitochondria or the ER. 

Additionally, proliferating NIH 3T3 fibroblasts were imaged over extended periods of time 

without photobleaching of Chromis1-ester or noticeable harm to the cells. These data also 

revealed some cells to have a higher ratio than others, indicating a heterogeneous 

distribution of labile Zn(II) between individual cells. Lastly, neither the 2 to 3-fold influx nor 

the distinct redistribution pattern of zinc observed by SXRF microscopy in dividing cells 

was reproduced by the labile Zn(II) visualized via Chromis1-ester. Therefore, the influx of 

Zn(II) observed in the SXRF microscopy data is likely bound to ligands with a higher affinity 

than the Zn(II)-selective fluorescent probe, Chromis1-ester. 

 

2.6 Materials and Methods 

 

2.6.1  Cell Culture and Reagents 

NIH 3T3 mouse fibroblasts were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM, GIBCO) supplemented with 10% bovine serum (GIBCO), penicillin/streptomycin 

(50 IU/mL), 200 μM L-glutamine, and 100 μM sodium pyruvate at 37°C under an 

atmosphere of humidified air containing 5% CO2.  Imaging media was prepared using fully 

supplemented (10% bovine serum, 50 IU/mL penicillin/streptomycin, 200 μM L-glutamine, 

and 100 μM sodium pyruvate) DMEM containing 25 mM HEPES buffer and without 

phenyl-red. Both the culture media and imaging media were sterilized by filtration through 

0.2 µm filters. 
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2.6.2  In Situ Characterization of Chromis1 

NIH 3T3 mouse fibroblasts were grown on glass bottom culture dishes (MatTek) 

to 70% confluency then incubated with 10 µM Chromis1-ester in un-supplemented DMEM 

for 15 minutes at 37˚C in a 5% CO2 atmosphere. DMEM/Chromis1 was then aspirated 

and replaced with pre-warmed imaging media before mounting the dish on the microscope 

stage enclosed in an incubation box equipped to maintain 37˚C and humid, 5% CO2 

atmosphere. All imaging experiments were performed using a Zeiss LSM Confocal/NLO 

710 microscope with a pulsed IR/multiphoton laser tuned to 720 nm for excitation of 

Chromis1-ester. Both 20x and 63x (oil-immersion) objectives were used. The fluorescence 

emission of Chromis1-ester was collected in two separate channels simultaneously: (1) 

425-462 nm and (2) 478-540 nm.  

Ratiometric emission response was stimulated via ZnSO4:pyrithione (100 μM:10 

μM), followed by a perfusion with 100 μM of a cell permeable, non-fluorescent, high-affinity 

Zn(II) chelator, N,N,N’,N’-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN). Oxidative 

stress response was stimulated by exposure to a buffer solution containing either 50 μM 

hydrogen peroxide (H2O2) or 100 μM 2,2′-dithiodipyridine (DTDP). The effect of pH was 

monitored using cells simultaneously treated with 10 μM Chromis1-ester and 6 nM 

LysoTracker Red (Invitrogen) in DMEM (without additives) for 60 minutes at 37°C in a 5% 

CO2 atmosphere. After roughly 15 minutes of imaging under basal conditions in fully 

supplemented imaging media, 900 nM of Bafilomycin (Sigma) was added to the dish.  

 

2.6.3  Localization of Chromis1 

NIH 3T3 mouse fibroblasts were cultured onto glass bottom dishes (MatTek). Upon 

reaching 30-40% confluency, cells were transfected using 200 μL non-supplemented 

DMEM, 4 μL Turbofect (Thermo Scientific) and 2 μg of either pDs_Red2-mito or pEYFP-

ER plasmids for mitochondria or ER respectively. After 24 hours, the regular growth media 
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supplemented with the plasmid was replaced with pre-warmed imaging media and cells 

were imaged on a Zeiss LSM Confocal/NLO 710 microscope with a 63x oil-immersion 

objective. Fluorescence emissions of both Chromis1-ester and the fluorescent organelle 

marker were collected simultaneously with the laser and filters settings switching on a line-

by-line basis. Chromis1-ester: excitation via a pulsed IR/multiphoton laser tuned to 720 

nm, emission collected from 400 - 498 nm. pDs_Red2-mito: excitation at 561 nm, emission 

collected from 570 - 700 nm. pEYFP-ER: excitation at 514 nm, emission collected from 

525 - 675 nm.  

Cells were co-stained with 10 μM Chromis1-ester and 2 μM BODIPY 493/503 (4,4-

Difluoro-1,3,5,7,8-Pentamethyl-4-Bora-3a,4a-Diaza-s-Indacene, Molecular Probes), a 

fluorescent indicator of neutral lipids, for 30 minutes. Fluorescence emission of Chromis1 

and BODIPY 493/503 were collected simultaneously with the laser and filters settings 

switching on a line-by-line basis. Chromis1-ester: excitation via a pulsed IR/multiphoton 

laser tuned to 720 nm, emission collected from 400 - 498 nm. BODIPY 493/503: excitation 

at 488 nm, emission collected from 525 - 675 nm. 

 

2.6.4  Image Processing 

The quantitative image analysis software package, Image J,37 was used to analyze 

the change in the fluorescence emission ratio of Chromis1 over time. The ratio values and 

their corresponding time points were graphed using ProFit software. 
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CHAPTER 3 

3D IMAGING OF TRANSITION METALS IN THE ZEBRAFISH EMBRYO BY X-RAY 

FLUORESCENCE MICROTOMOGRAPHY 

 

Previous X-ray fluorescence imaging studies of NIH 3T3 fibroblasts revealed an 

intriguing redistribution of zinc and copper during cell division with a 2 to 3-fold increase 

of zinc at the onset of mitosis compared to interphase cells.1 In the case of in vitro cell 

cultures, the increased zinc demand can be readily met through import of exogenous 

zinc from the surrounding growth medium. In contrast, developing embryos of fish, 

reptiles, birds, or primitive mammals are self-sufficient during early development and 

retrieve most nutrients from the yolk enclosed within an extraembryonic membrane.2,3 As 

the essential transition metal requirements vary widely between organs,4,5  the 

developing embryo is most likely forced to redistribute the limited supply of trace 

nutrients during development to meet these demands.  

In this chapter, synchrotron X-ray fluorescence (SXRF) microtomography is 

utilized to image the distribution of zinc, iron and copper with 2 – 3 μm resolution of 

zebrafish embryos in the pharyngula and hatching periods, approximately 24 and 48 

hours post fertilization (hpf) respectively. Using both the established progressive 

lowering of temperature method (PLT) with femtosecond-based two-photon laser 

sectioning the specimen’s structural integrity is preserved inside a polymer block. Post-

acquisition data processing was accomplished using the iterative maximum likelihood 

expectation maximization (MLEM) algorithm, reducing the noise level and streak artifacts 

allowing data to be clearly visualized and examined in a true three-dimensional state. 

These data revealed new insights into the spatial distribution of transition metals during 

these key time points in embryogenesis.  
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3.1 Background 

Transition metals, such as zinc, iron, and copper, are vital trace nutrients 

necessary for all forms of life. They are essential components of numerous enzymes, 

proteins and reactions required for cell proliferation,6,7 cell differentiation,8,9 growth7,10 

and development.11-13 For example, the availability of zinc, iron or copper can have great 

impacts during pregnancy. Deficiencies of any one of these essential nutrients can lead 

to severe complications including low birth weight, premature delivery, and structural and 

biochemical abnormalities of the fetus.12,14,15 Despite the established importance of 

transition metals in development, little is understood regarding the redistribution and 

organization of zinc, iron and copper during embryogenesis. To understand the 

regulating mechanisms of transition metal homeostasis, a detailed knowledge of the 

metal ion distribution inside cells, tissues and whole organisms is essential. 

Zebrafish present an ideal model system when studying metal distribution during 

embryogenesis. These embryos develop as lecithotrophic organisms requiring only the 

nutrition found in their yolk sac.2 Zebrafish can survive on this nutrition source for 3 - 4 

days post fertilization (dpf) before the embryo requires exogenous feeding.16 They are 

essentially a closed system already containing all essential nutrients, including trace 

metals, needed for the first few days of development.  

What begins as a single cell containing a defined, fixed amount of trace metals 

develops into a multicellular organism comprised of various cells, tissues, and organs all 

with varying trace metal requirements.4,5 Given the limited external supply of nutrients 

during embryogenesis, developing organs most likely redistribute zinc from neighboring 

cells to satisfy their increased demand, thus raising the question of how the limited 

supplies of zinc in a fertilized egg is redistributed in the course of embryonic 

development. The ability to image this elemental distribution in biological samples can 

be challenging due to the small size of embryos and the small amount of trace metals 
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each embryo contains. Bulk analysis techniques do not provide a detailed image of the 

metal ion distribution inside an individual embryo, therefore microanalytical techniques 

are ideal.  

 

3.1.1  Microanalytical Techniques Used for Trace Metal Imaging 

While numerous microanalytical techniques exist, each presents its own set of 

advantages and limitations. When selecting an analytical technique one must consider 

the method’s sensitivity to detect trace concentrations of elements, spatial resolution to 

clearly visualize metals within cellular structures, and selectivity to accurately detect 

multiple elements. Electron-probe energy-dispersive spectroscopy (EDS), laser ablation 

– inductively coupled plasma – mass spectrometry (LA-ICP-MS), secondary ion mass 

spectrometry (SIMS), proton beam microprobe – particle induced X-ray emission (PIXE), 

and synchrotron x-ray fluorescence (SXRF) microscopy, are each capable of 

quantitatively mapping the trace elemental distributions within biological samples at 

micron to submicron resolution.17-24 

In order to study the trace metal distribution of zebrafish embryos, a quantitative, 

sensitive (< 1 µg/g) method with high spatial resolution capable of imaging thick (>1 

mm), hydrated biological samples is required. These restrictions eliminate most available 

microanalytical techniques as suitable methods (Table 3.1). EDS utilizes scanning 

electron microscopes fitted with energy dispersive X-ray detectors to determine the 

elemental composition of a sample.25 While EDS is capable of very fine spatial resolution 

of 0.03 µm and is well-suited for cellular localization imaging, this technique is not 

sensitive enough. Furthermore, only vacuum compatible materials can be analyzed due 

to the sample chamber under vacuum pressure, a requirement of all electron column 

techniques.26 PIXE uses nuclear microprobes to simultaneously detect over 20 

elements. Using a tightly focused proton beam, this method stimulates X-ray emission 
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while scanning across the surface of the sample, therefore detecting the lateral 

distribution of elements.27 The proton beam utilized in PIXE has a 10-fold improvement 

of sensitivity compared to EDS. This method also does not posses the analytical depth 

required for imaging zebrafish. Additionally, PIXE requires the sample to be analyzed 

under vacuum pressure, thereby eliminating the option to use hydrated specimens.27 

SIMS uses a focused primary ion beam consisting of heavy particles to bombard the 

specimen causing charged particles (secondary ions) to be ejected from the sample 

surface. The secondary ions are then introduced to a mass spectrometer detector where 

they are identified by their mass-to-charge ratio to determine the elemental, isotopic, or 

molecular composition of the sample.28 Capable of submicron spatial resolution (50 nm) 

and an analytical depth of 0.1 µm, SIMS is only utilized for sub-cellular localization 

studies of specimen such as thin cells or tissues.29  Similar to EDS and PIXE, hydrated 

samples are not compatible with SIMS due to the required vacuum sample chamber. LA-

ICP-MS is another widely used mass spectrometry technique for elemental analysis.30-33 

In this method, a short-pulsed, high-power laser beam instantaneously converts a finite 

volume of a solid sample into its vapor phase constituents. The ablated particles are 

then transferred to a second excitation source where a plasma torch further decomposes 

the particles into individual atomic ions.  The ions are subsequently introduced to a mass 

spectrometer detector where they are identified by their mass-to-charge ratio.31 The 

advantages of this technique are an analytical depth of 200 µm, the ability to apply this 

method directly to the solid sample and to quantitatively distinguish between individual 

isotopes with high accuracy and precision while a disadvantage is destroying the sample 

in the process.30 
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Table 3.1: Spatially resolved microanalytical techniques for quantitative imaging of trace 
metals23,34,35 

 

 

While all of these techniques have their advantages, with a sensitivity of 0.1 - 1 

µg/g and a spatial resolution of 0.03 – 0.2 µm, SXRF was the optimal choice. This limit 

of detection allows for study at the single cell level of embryos. Capable of an analytical 

depth greater than 100 µm and ability of analyzing hydrated samples, this technique is 

ideal for thick biological tissues such as zebrafish. 

 

3.1.2  Synchrotron X-Ray Fluorescence Microtomography  

Synchrotron X-ray fluorescence (SXRF) based imaging allows for the 

quantification of trace metals within hydrated cells and tissue sections to yield 2D 

distribution maps at submicron spatial resolution.18-20,24 In this method, atoms of a 

sample are directly excited by an external X-ray source resulting in the expulsion of a 

core shell electron, creating a vacancy in the orbital and consequentially resulting in a 

Analytical Method Detection  
Limit (µg/g)   

Spatial 
Resolution 

(µm) 

Analytical   
Depth (µm) Quantification 

Electron-probe energy-
dispersive spectroscopy  
(EDS)26,36 

100 - 1000  0.03 0.1 – 1 Semiquantitative 

Proton beam microprobe – 
particle induced X-ray 
emission (PIXE)27,37-40 

1 - 10 0.2 – 2 10 – 100 Quantitative 

Synchrotron X-ray 
fluorescence microscopy 
(SXRF)24 

0.1 – 1 0.03 – 0.2 > 100 Quantitative 

Secondary ion mass 
spectrometry 
(SIMS)28,41-43 

0.1 – 1 0.05 – 0.15 0.1 Quantitative 

Laser ablation - inductively 
coupled plasma - mass 
spectrometry 
(LA-ICP-MS)33,44-51 

0.01 > 1  200 Semiquantitative 
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high energy, unstable configuration of the atom. To restore equilibrium, an electron from 

a higher energy, outer orbital fills the vacancy left by the expelled electron. In the 

process, the excess energy from the outer orbital electron is released in the form of a 

characteristic fluorescence emission unique to the specific element. 

SXRF microtomography utilizes the two-dimensional SXRF information collected 

from many neighboring sections to create three-dimensional volumetric data. SXRF 

microscopy operates in the hard X-ray energy regime. This technique has been used to 

visualize the elemental distributions of thick hydrated tissues or small organisms such as 

nematodes52 and 3 µm thick zebrafish eye sections;53 however, the resulting 2D maps 

correspond to projections of the integrated metal content along the excitation trajectory 

and thus fail to provide unambiguous insights into the actual 3D structural organization. 

With advancements in X-ray imaging technology, such as the development of multi-

element detectors electronics with improved sensitivity and 3rd generation synchrotron 

radiation light sources, visualization of 3D elemental distributions based on tomographic 

projections became possible.54,55 For example, SXRF microtomography has been 

employed to study the iron distribution in wild-type and mutant Arabidopsis seeds lacking 

an iron uptake transporter,56 and more recently, de Jonge et al. succeeded in visualizing 

the quantitative 3D elemental distribution in a diatom57 and in C. elegans.58  

In all previous examples, the elemental distribution was reconstructed from 2D 

SXRF projection maps, which were acquired by scanning the specimen through the 

stationary beam at varying projection angles. This approach requires that the sample 

has sufficient mechanical stability for mounting on a rotational stage. Additionally, long 

data acquisition times and matrix effects can create inhibitive challenges when applying 

SXRF tomography to obtain 3D elemental distributions. Therefore, although this method 

permits quantitative imaging of hydrated biological samples, SXRF tomography is 
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restricted to mechanically stable specimens capable of withstanding the long data 

acquisition times with microprecision.  

 

3.1.3  X-Ray Fluorescence Imaging Optics 

X-ray fluorescence imaging optics determines the ability to achieve desirable 

resolution or photon flux. Two of the most common methods of focusing X-ray beams to 

a submicron spot include Kirkpatrick-Baez (K-B) mirrors and Fresnel zone plates. A 

Fresnel zone plate consists of a series of concentric rings. These rings, referred to as 

“zones”, become increasingly narrower the larger the radii and alternate between 

opaque and transparent. They are specifically spaced so the diffracted light by the 

transparent zones constructively interferes at the desired focus. As X-rays hit the 

Fresnel zone plate it will diffract around the opaque zones. With this method, focal length 

is dependent on the X-ray energy. Alternatively, K-B mirrors consist of two spherical or 

cylindrical mirrors in a crossed configuration where the surface of the first mirror is 

aligned horizontally and the second is aligned vertically.59  Both mirrors are curved 

elliptically in order to set the horizontal focus line of the first mirror and the vertical focus 

line of the second mirror in the same plane to create a single focal point. These curved 

mirrors have adjustable bend radii to achieve optimum focus at different wavelengths. 

This system typically produces beam sizes focused to 1-5 µm but can create focal 

diameters as small as 50 nm.60 Both the Fresnel zone plate and the K-B mirrors have 

advantages and limitations. The Fresnel zone plate offers higher resolution at the 

expense of photon flux, while conversely, K-B mirrors offer more flux but at the cost of 

resolution. 
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3.1.4 Synchrotron X-Ray Fluorescence Instrument Setup 

Synchrotron radiation X-ray fluorescence (SXRF) microscopy was preformed at 

the 2-ID-E beamline of the Advance Photon Source located at the Argonne National 

Laboratory (ANL). This specific beamline is equipped with a number of essential 

components such as the undulator, double monochromator, Fresnel zone plate, and 

silicon drift detector (Figure 3.1). The undulator consists of periodic dipole magnets used 

to generate a static magnetic field at specific harmonics, forcing the electrons to undergo 

oscillations and radiate energy. The adjacent double monochromator then narrows the 

spectrum of radiation to a selected wavelength. Together, the undulator and double 

monochromator provide high brilliance X-rays with a tunable energy range between 8-20 

keV. The sample is mounted on an aluminum stick and placed onto a rotational stage 

located inside a helium-filled chamber in order to reduce scatter signals from air. The 

Fresnel zone plate works to focus the high-energy X-ray beam to a submicron spot on 

the sample. The resulting emitted X-ray emission spectrum is then collected with an 

energy dispersive silicon drift detector. By raster scanning the specimen through the 

incident X-ray beam at a series of projection angles, quantitative elemental density maps 

can be generated. The raw data collected is then processed with  MAPS61 and MATLAB 

software packages. 

Although the 2-ID-E beamline offers a resolution of 0.2 µm, the total acquisition 

time for a sample as large as a zebrafish embryo is approximately 25 hours for each 

projection. To circumvent this hindrance, decreasing resolution to 2 µm reduces total 

acquisition time to under 2 hours per projection. For the initial data set, 60 projections 

were collected over approximately 100 hours. A resolution of 0.2 µm would require more 

than 60 projections for proper reconstruction; however, 60 projections at 25 hours would 

take more than 60 days to complete. Therefore, larger biological samples are unable to 

utilize this high spatial resolution due to prohibitively long acquisition times. Acquisition 
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of the copper distribution in the original 24 hpf embryo was successful, but the increased 

size of the 48 hpf embryo proved challenging in obtaining similar distribution information 

at a reasonable resolution in a practical amount of time. 

 

 

 

 

 

 

 

Figure 3.1: Schematic illustration of the X-ray fluorescence tomography instrument at 
the 2-ID-E beamline at the Advanced Photon Source (Argonne National Laboratory, 
USA). The embedded specimen was attached to an aluminum stick (circle inset) and 
mounted on the xz/rotation stage. As the stage rotates, the sample is raster-scanned 
through the focused beam for each projection angle. The emitted photons were 
subsequently captured by an energy-dispersive X-ray detector. Raw data was processed 
with MAPS61 and MATLAB software packages. 
 



	
66 

To achieve the highest resolution possible at the 2-ID-E station would require 

inhibitive long data acquisition times. For this reason, the large embryo samples required 

2-3 µm step sizes despite the beam focused to 300 nm, consequentially under-sampling 

the total elemental content. Using a larger sample such as a 72 hpf embryo would result 

in an even lower signal to noise ratio with higher data acquisition times.  

 

3.2 Visualizing 3D Transition Metal Distribution in a Zebrafish Embryo 

 

3.2.1  Specimen Preparation  

 Standard SXRF sample preparation often involves inherently thin samples, such 

as cells or thinly sliced tissue attached directly to a silicon nitride window. Preparations 

of this nature are not suitable for large samples such as zebrafish embryos and inhibit 

the ability to acquire projections over a full 180 degrees, thus, preventing the acquisition 

of truly three-dimensional data. Other methods of sample preparation include sealing the 

specimen in a liquid suspension in order to obtain projections over the full 180-360 

degrees. Lengthy data acquisition times along with the essential micro-precision stability 

of the sample eliminate this technique due to the potential movement of the soft, flexible 

specimens such as a zebrafish embryo. In order to preserve its structure and position for 

long periods of time, the embryo must be embedded in a durable material. The 

composition of this material is important. This polymer must be resilient to high energy 

X-rays and contribute minimal fluorescence attenuation during the SXRF experiments.  

Attenuation of the signal from the resin can cause a misinterpretation of data by 

underestimating the metal content. 

 The sample preparation was performed in collaboration with Dr. Hong Yi from the 

Integrated Electron Microscopy Core at Emory University. Initially, high-pressure 

freezing was utilized in an attempt to preserve the zebrafish embryos at 24 hours post 
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fertilization (hpf) but led to fractures, likely due to insufficient cooling rates associated 

with specimens of this size. Alternatively, the dechorionated embryos were fixed first in 

paraformaldehyde solution followed by embedding using progressive lowering of 

temperature (PLT) methods.62 Using PLT, samples were embedded in Lowicryl resin 

followed by UV polymerization from established protocols. 

 Further complications arise after embedding the sample in the Lowicryl resin. 

The polymer block must be cut down to reduce the amount of material between the X-

rays and the actual zebrafish specimen. The block is so small it cannot be cut down by 

hand and any knife would leave trace metal behind interfering with the data analysis of 

the sample itself. The specimen must also be attached to an aluminum stick provided by 

the ANL that is required for mounting the sample on the rotational stage for data 

acquisition at the beamline. 

 To address this concern, the polymer embedded sample was shipped to 

Germany where it was cut down in size using a two-photon laser-based microtome 

system developed by Rowiak (TissueSurgeon, ROWIAK GmbH, Hannover, Germany). 

The sample was mounted on a microscope slide and trimmed using this femtosecond 

laser microtome for a close and contact free cut. As illustrated in Figure 3.2, the 

embedded embryo was excised using 4 lateral contact-free line sections (A) followed by 

a coplanar section on the ventral side that released the cube from the resin block (B). 

The extraneous resin was successfully removed at a distance of 60 µm away from the 

embryo while preserving the integrity of the embryo as shown by the near-infrared 

brightfield micrograph (C). Once excised from the larger polymer, the specimen was 

then mounted onto a thin aluminum arm with a drop of epoxy glue. This sample holder is 

then screwed into place on a kinematic stage at the 2-ID-E beamline of the Advanced 

Photon Source (Argonne National Lab, USA) allowing it to rotate to the required 

positions for acquiring SXRF data sets. 
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Figure 3.2: Preparation of resin embedded specimens for SXRF tomography using a 
femtosecond laser sectioning microtome system (TissueSurgeon, LLS Rowiak 
LaserLabSolutions, Germany). A zebrafish embryo at 24 hpf was fixed and embedded in 
resin (Lowicryl K4M) by the progressive lowering of temperature method (PLT). The 
cured resin block was mounted on a microscope slide and trimmed by 4 contact-free 
lateral line sections A followed by a coplanar section on the ventral side of the embryo 
B. The near-infrared (800 nm) brightfield image C confirmed the integrity of the 
specimen. 
 

 

3.2.2 Data Acquisition  

 The completed SXRF tomographic data set of the zebrafish embryo 24 hpf was 

composed of 60 projections spread over an angular space of 180°. The data were 

collected in two batches with a 3 degree offset and 6 degree intervals. The sample itself 

is rotated to each position where a sinogram is then acquired. For each orientation, the 

specimen was translated horizontally through the stationary beam with excitation at 10 

keV and a step size of 2 μm, which required over 100 hours for the collection of 

approximately 20 million individual emission spectra. 

 Gaussian fitting of the raw emission spectra data for each image pixel was 

processed through the MAPS software package to generate elemental maps within the 

zebrafish embryo.  Matching X-ray emission lines to Gaussian peaks, the fluorescence 

signals for each element could be charted.  Because the cross section of the resin block 

varies as a function of the acquisition angle, the integrated fluorescence intensity was 

non-uniform across the projection series. To correct for the attenuation differences, each 

projection was normalized to the maximum integrated emission intensity. The resulting 



	
69 

elemental distributions were calibrated to elemental area densities (μg cm-2) by 

comparing sample signal strength of X-ray fluorescence to those of thin film standards 

SRM 1832 and 1833 of the National Bureau of Standards (NBS/NIST, Gaithersburg). 

Based on this procedure, a total zinc content of 7.1 ng was determined, which is in 

agreement with the average zinc content of ~7.3 ng at 24 hpf reported in the literature.63 

 

3.2.3 Tomographic Reconstruction  

The SXRF microtomography data collected could, in theory, be processed with 

the same algorithms developed for absorption-based X-ray computed tomography (X-ray 

CT). A common approach for the three-dimensional reconstruction of X-ray CT data is 

the filtered back projection (FBP) algorithm. A derivation of the philosophy behind pencil-

beam reconstruction, beams are emitted in a cylindrical arrangement to create 

differences in grey values in pixels crossed by the beam. FBP produces blurred trans-

axial images, where filtering and varying interpolation techniques render higher 

resolution projections that are used for reconstruction.64 

As illustrated in Figure 3.3, this method is not well suited for reconstruction of 

fluorescence-based projections, often producing artifacts in the reconstructed images. 

The Iterative Maximum Likelihood Expectation Maximization (MLEM) algorithm was 

found to be most suitable for the reconstruction of the SXRF data to reduce artifacts and 

noise. This method derives a correction function from a sinogram and guessed model, 

then uses the function again and adjusts to a better guess. The process is repeated 

several times, each time trying to correct the model and find the best guess.  
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Figure 3.3: Tomographic reconstruction of the elemental densities of zinc, iron and 
copper in the zebrafish embryo 24 hpf. Reconstructions based on the corresponding 
SXRF emission projection data sets. A. Comparison of the reprojected elemental 
densities based on a filtered back projection algorithm with Ramachandran–
Lakshminarayanan (‘‘Ram–Lak’’) ramp-filter and an iterative maximum likelihood 
expectation maximization (MLEM) algorithm. The MLEM algorithm leads to significantly 
improved reconstructions in the case of noisy datasets. B. Intensity profile of the 
reconstructed density images shown in (A) along the white dashed line. The 
fluorescence detector was positioned on the left side relative to the reconstructed 
images of panel (A).  
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Figure 3.4: Tomographic reconstruction of the elemental densities of zinc, iron and 
copper in the zebrafish embryo 48 hpf. Reconstruction is based on a single-line 
sinogram using the iterative maximum likelihood expectation maximization (MLEM) 
algorithm. A. Comparison of the reprojected elemental densities based on a filtered back 
projection algorithm with Ram–Lak ramp-filter and the MLEM algorithm. The latter leads 
to significantly improved reconstructions for noisy datasets. B. Density profiles of the 
reconstructed images shown in (A) along the white dashed line. The fluorescence 
detector was positioned on the left side relative to the reconstructed images of panel (A).  
 

 

In addition to being less sensitive towards projection noise compared to FBP, the 

MLEM algorithm has the advantage to yield back projections with only positive densities 

as illustrated with the profiles in Figure 3.4. As the MLEM algorithm approaches 

convergence with increasing iteration numbers, there is also a concomitant increase of 

the noise amplitude. Conversely, the noise level is reduced at lower iteration values but 

at the expense of image resolution. For this reason, the optimal iteration number differs 

depending on the noise level of the raw sinogram and must be determined empirically. 

Based on this approach, a compromise between sharpness and noise level was 

determined and the zinc, iron and copper distributions were reconstructed for the 24 hpf 
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embryo using 70, 30 and 15 iterations respectively and iteration values of 15 for zinc and 

7 for iron were used for the 48 hpf embryo. 

As the total amount of copper in most organisms is lower, by approximately one 

order of magnitude, than zinc and iron, it is not surprising that the signal-to-noise ratio of 

the copper Kα emission sinogram is much lower compared to the iron and zinc data. 

Concluding from the MLEM reconstructions of the 48 hpf embryo shown in Figure 3.4, 

the number of photons collected within the copper Kα spectral region was insufficient to 

arrive at meaningful elemental densities, regardless of the number of iterations. By 

comparison, FBP of the same set of sinograms resulted in reconstructed densities with 

much higher noise amplitudes, to the extent that the noise partially or completely 

obscured the elemental density distributions in the reconstructed images.  

 

3.2.4 Attenuation Correction 

The collected photon counts from the acquired raw data must be compared to 

relative standards and converted to elemental content. The Lowicryl resin used for 

embedding the specimen results in attenuation of both the excitation and fluorescence 

emission intensities in an energy-dependent manner, altering the data interpretation of 

the converted elemental content. To compensate for the loss of photons due to matrix 

absorption, element specific linear scaling factors were applied to the raw projections. 

According to the Beer-Lambert law (1), the intensity I of the X-ray beam is attenuated as 

a function of the pathlength l in an exponential fashion with 

 

(1) 

 

I = I0 ⋅e
– lµ
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where I0 corresponds to the incident beam intensity, and μ is the energy-dependent 

linear attenuation coefficient of the specimen and embedding material. As the sample 

rotates, the angular position of the specimen relative to the incident beam and emission 

detector changes. The attenuation of the excitation and emission intensities for a given 

volume element will vary for each tomographic projection. In a cylindrical sample, the 

attenuation of photons emitted at the axis of rotation remains constant regardless of 

angular position. Emission intensity I at the detector is given by the geometric mean 

according to equation (2) 

(2) 

 

where μex and μem are the linear attenuation coefficients for the material at the respective 

excitation and emission energies. These coefficients together represent the total 

attenuation. Half of the pathlength l/2 represents the center point of rotation. To 

compensate for the attenuation of photons at l/2, a linear scaling factor f is applied 

according to equation (3) 

(3) 

 

Linear attenuation correction is only a useful approximation if the sample is 

uniform in shape, characterized by short pathlengths and small attenuation coefficients 

at the emission energies of the elements of interest. According to previous attenuation 

simulations, using a phantom embedded within polymethyl methacrylate (PMMA) with 

square-shaped cross section, the attenuation corrected elemental concentrations should 

I = I0 ⋅e
– l
2
(µex+µem )

f = e
l
2
(µex+µem )
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be accurate within an error margin of 20% or better for zinc, copper, and iron for this size 

of specimen. 65 

To estimate the linear attenuation coefficient μex of the Lowicryl resin for the 

excitation beam at 10 keV, the difference in photon flux before and after passing through 

the sample was measured. As illustrated with Figure 3.5, the intensity drops by 

approximately 20% if the resin block is positioned at a 0° or 180° angle relative to the 

incoming beam, and by approximately 30% at a 90° angle. From the attenuation profiles 

shown in Figure 3.5B, the corresponding pathlength l of the cuboid-shaped resin block 

and the average attenuated intensities for each of the three angular orientations can be 

determined. On the basis of these, Beer-Lambert’s law (1) may be applied and the 

average attenuation coefficient μex (10 keV) for Lowicryl was determined to be 3.96 ± 

0.04 cm–1, a value that is in good agreement with previous measurements.  

The attenuation coefficients for the element specific Kα emissions of zinc, 

copper, and iron were obtained from simulations with the software WinXCOM assuming 

PMMA as matrix material with a density of 1.18 g/cm3 to yield the values μZnKα = 6.09 

cm–1, μCuKα = 7.52 cm–1, and μFeKα = 15.00 cm–1, respectively. Figure 3.6 illustrates the 

energy-dependent attenuation of the excitation beam and the Kα emissions of zinc, 

copper, and iron as a function of the pathlength through the matrix based on the 

estimated attenuation coefficients. The corresponding attenuation length, defined as the 

depth into a material where the X-ray intensity falls to 1/e of the initial value (37%), 

decreases from 2.5 mm for the incident beam to 0.67 mm for the Kα emission of iron. 

Altogether, these data demonstrate that Lowicryl is well suited as an X-ray compatible 

matrix material for imaging the biologically relevant first-row transition elements in 

specimens of up to approximately 1 mm of thickness. 
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Figure 3.5: Attenuation of the incident X-ray beam (10 keV) by the Lowicryl resin matrix. 
A. Absorption contrast images of the resin block at 0°, 90°, and 180° orientations relative 
to the incident beam. Scale bar: 200 μm. B. Transmission profiles across the image 
coordinate marked with a dashed line in panel (A). Note that compared to the matrix, 
absorption by the zebrafish embryo is negligible.  
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Figure 3.6: Energy-dependent attenuation of photons passing through a PMMA matrix 
as a function of pathlength. Calculated according to equation (1). The following 
attenuation coefficients were used for the plot: μ10keV = 3.96 cm–1, μZnKα = 6.09 cm–1, μCuKα 
= 7.52 cm–1, and μFeKα = 15.00 cm–1. The dashed line indicates the average pathlength of 
the resin matrix (l = 740 μm).  
 

 

 

 

Figure 3.7: Zinc and iron distribution within the zebrafish embryo at 48 hpf. 
Reconstructed on the basis of 60 tomographic projections using an iterative maximum 
likelihood expectation maximization (MLEM) algorithm. The false-color calibration bar 
reflects a dynamic range from 0 - 2 mM for Zn and 0 - 1 mM for Fe. For comparison, the 
phase image (top) shows the resin-embedded embryo along the same projection axis. 
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3.3 Volumetric Transition Metal Reconstructions 

Using the optimal number of iterations, the MLEM algorithm was applied to each 

of the 815 line-sinograms to generate complete 3D elemental distributions for zinc and 

iron for the 48 hpf embryo (Figure 3.7). To arrive at actual elemental concentrations, the 

raw photon counts were compared with the emission intensity of a thin film standard 

containing known amounts of zinc, copper, and iron. Corresponding linear scaling 

factors were applied as described in the previous paragraph to compensate for signal 

attenuation by the Lowicryl resin. Based on the calibrated volumetric data, which entail 

over 63 million voxels with the dimension 3.5 x 3.5 x 3.5 μm3, a total zinc content of ~8.2 

ng was determined. This value is in good agreement with the average zinc content 

reported in the literature for an embryo at this stage of development.63  

In order to assess the quality of the reconstructed volumetric data sets, 

projections of the zinc and iron densities at an angle of 0 degree relative to the incident 

beam were calculated (Figure 3.8 and Figure 3.9). A comparison with the raw data 

acquired at the same projection angle revealed an overall small error for the difference 

image. As illustrated by the intensity profile shown in Figure 3.8B and Figure 3.9B, the 

error was dominated by the increased noise-amplitude of the unprocessed data rather 

than a systematic deviation due to reconstruction artifacts. 
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Figure 3.8: Comparison of the experimental and reconstructed elemental densities at a 
projection angle of 0 degree in the 24 hpf embryo. A: The volumetric distribution of each 
element was reconstructed using the iterative maximum likelihood expectation 
maximization (MLEM) algorithm, and the reconstructed data were projected at the same 
angle as the measured data (2nd column). The 3rd column illustrates the unsigned error 
in the form of difference images. The panels for each element are based on different 
density scales as indicated by the calibration bars on the left. B: Intensity profiles of the 
experimental (black) and reconstructed data (red) across the dashed line indicated in the 
projection images. The graph below each profile illustrates the signed difference 
between the experimental and reconstructed profiles. 
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Figure 3.9: Comparison of the experimental and reconstructed elemental densities at a 
projection angle of 0 degree in the 48 hpf embryo. A: The volumetric distribution of each 
element was reconstructed using the iterative maximum likelihood expectation 
maximization (MLEM) algorithm, and the reconstructed data were projected at the same 
angle as the measured data (2nd column). The 3rd column illustrates the unsigned error 
in the form of difference images. The panels for each element are based on different 
density scales as indicated by the calibration bars on the left. B: Intensity profiles of the 
experimental (black) and reconstructed data (red) across the dashed line indicated in the 
projection images. The graph below each profile illustrates the signed difference 
between the experimental and reconstructed profiles. 
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3.3.1  Pharyngula Period, 24 Hours Post Fertilization 

 At 24 hpf, the embryo has just transitioned out of segmentation and into the 

pharyngula period, which is characterized by a well-developed notochord, elongated tail 

and a brain sculpted into distinguishable lobes and ventricles.66 To illustrate the most 

pertinent aspects of the zinc, iron, and copper distributions, Figure 3.10 shows a series 

of virtual sagittal, coronal and transverse sections of the embryo. The position of each 

slice is depicted in column A in the form of a 3D rendering, and the corresponding 2D 

elemental maps are illustrated in column B. To accommodate the differences in dynamic 

range between the elements, the false-color maps are reproduced with different 

concentration scales. Furthermore, column C features normalized dual-color overlays to 

visualize the relative spatial relationships between pairs of elements.  

 Among the three metals, zinc is the most abundant with concentrations 

approaching 7 mM (Figure 3.10B). The most significant pool, comprising more than 80% 

of the total zinc content, is found in the yolk (yo) and yolk extension (ye) (Figure 3.10, 1st 

and 2nd row). The early pharyngula period is also marked by the formation of the 

circulatory system, and the presence blood vessels (bv) can be recognized as voids 

within the zinc distribution of the yolk. These blood vessels, such as the common 

cardinal veins or ducts of Cuvier, carry blood ventrally across the yolk to supply blood to 

the heart.67 The zinc distribution can be further correlated with structures of the nervous 

system such as the notochord (nc), the neural tube (nt), and the brain. Similar to the 

blood vessels, the notochord region is marked by a low metal content, whereas the 

neural tube is set apart by areas of high zinc (Figure 3.10B, 1st row, transverse section). 

The ventricles of the brain appear as voids within the zinc maps; specifically, the third 

(tv) and fourth (fv) ventricles can be identified in the sagittal section (Figure 3.10B, 1st 

row). While the ventricles uniformly exhibit low trace metal levels, various regions of the 

grey matter can be identified, including the mesencephalon (mc), cerebellum (cb), the 
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telencephalon (tc) and diencephalon (dc) of the forebrain, and the rhombencephalon (rc) 

of the hindbrain. Finally, the sagittal section (Figure 3.10, 3rd row) reveals a distinct 

accumulation of zinc at the tip of the tail (tl), mostly localized to peripheral cell layers. 

Altogether, this area exhibits the highest concentration of zinc within the embryo.  

By comparison, the iron distribution appears less localized with maximum 

concentrations not exceeding 2 mM. As evident from the overlays in Figure 3.10C (1st 

column), iron and zinc are distributed in an anti-correlated fashion throughout most 

regions of the embryo. A detailed analysis revealed two distinct populations of voxels 

with anti-correlated zinc and iron contents as well as a low Pearson’s correlation 

coefficient of 0.117 (Figure 3.11). The highest concentration of iron can be found in the 

medial region of the tail as well as in areas of the brain, whereas the yolk and yolk 

extension are characterized by overall low iron levels. Instead, both structures are 

surrounded by a thin iron veneer, which does not overlap with regions of high zinc. 

Similarly, the areas of high zinc at the tip of the tail are low in iron and set apart from the 

iron-rich regions in the medial body. Although zinc and iron are anti-correlated 

throughout most of the embryo, there are still a few notable similarities. For example, the 

notochord appears to be void of iron, whereas the neighboring neural tube contains 

much higher concentrations. Similar to zinc, the anatomical features of the brain can be 

readily recognized based on the iron distribution.  
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Figure 3.10: Visualization of elemental distribution in a zebrafish embryo (24hpf) by X-
ray fluorescence tomography. Reconstructed using MLEM algorithm. A. 3D-rendering of 
the embryo indicating the spatial orientation of the virtual slices that are displayed in 
panels B and C. Slices include a sagittal and transverse section (top), coronal section 
(middle), and a second sagittal section offset to the left (bottom). B. Elemental 
distributions of Zn, Fe, and Cu for each of the 4 slices. Individual concentration scales 
for each element are displayed at the bottom of each column. Abbreviations: third 
ventricle (tv), fourth ventricle (fv), cerebellum (cb), notochord (nc), neural tube (nt), yolk 
syncytial layer (ysl), blood vessels (bv) hindbrain (hb), yolk (yo), yolk extension (ye), 
myosine (my), telencephalon (tc), mesencephalon (mc), diencephalon (dc), 
rhombencephalon (rc), spinal chord (sc) and tail (tl). C. False color overlays of the 
elemental distributions of Zn, Fe, and Cu indicating regions of spatial correlation. The 
concentration scales of each element were normalized and color-coded as follows: Zn 
(green), Fe (blue), and Cu (red). Areas of spatial correlation appear in the corresponding 
mixed hues. 
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Figure 3.11: Scatter plot illustrating the correlation between the Zn and Fe distribution in 
a zebrafish embryo at 24 hpf. Each pixel indicates the elemental concentration of a voxel 
in the reconstructed data set. Due to the large size of the original data set, the voxels 
were binned by a factor of 64 to yield a total of 1.95 million pixels. The Pearson’s 
correlation coefficient r was calculated based on the binned data set.  

 

 

Given the low concentration of copper throughout the embryo, the reconstructed 

data set is of lower quality and characterized by a significant level of background noise. 

Nevertheless, the 3D model revealed distinct regions that could be correlated with the 

zinc and iron distributions. Most notable is the high concentration of copper located at 

the tip of the tail also observed for zinc. The high degree of spatial correlation between 

the two metals is apparent in the overlay plot as orange-yellow regions (Figure 3.10C, 

3rd row). Similar to iron, the copper concentration within the yolk and yolk extension is 

low, but appears increased within a peripheral layer surrounding both structures.  
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3.3.2 Hatching Period, 48 Hours Post Fertilization 

The reconstructed volumetric data shown in Figure 3.7 reveal distinct differences 

in the zinc and iron distributions, most notably regions of elevated concentrations appear 

mutually exclusive. While the highest levels of zinc are found in the yolk and yolk 

extension, the iron concentration in both regions remains low. Conversely, areas with 

increased iron levels, including the myotome extending along the dorsal side or various 

regions of the brain, are consistently low in zinc. To provide a more detailed picture of 

the elemental localizations and how these regions relate to specific anatomical features, 

Figure 3.12 and Figure 3.13 reveal a series of virtual sagittal, coronal and transverse 

sections of the embryo. The 3D renderings in column A represent isodensity surfaces of 

zinc to illustrate the position of each section corresponding to the 2D elemental maps 

arranged in column B. 

 The yolk (yo) and yolk extension (ye) constitute approximately 83% of the total 

zinc content in the embryo at this stage of development. High levels of zinc, which range 

between 0.5 and 1.5 mM, are evident in both the sagittal and coronal sections depicted 

in Figure 3.12. The blood vessels throughout the yolk appear as voids. In contrast, the 

yolk syncytial layer (ysl) exhibits a higher concentration of iron, likely due to enhanced 

expression of the iron transporters ferroportin1 and transferrin in the YSL.68,69 A blue-

green false color overlay indicates strong anti-correlation between the iron 

 (blue) and zinc (green) levels throughout this region of the embryo (Figure 3.12C), an 

observation that is similar to the elemental distribution found at 24 hpf.65 Anterior to the 

yolk sac, the pericardial cavity (pc) is notably void of both zinc and iron. This cavity 

contains the heart and is filled with pericardial fluid, composed primarily of lactate 

dehydrogenase and other non-metalloproteins.70 Additionally, transverse sectioning of 

the elemental reconstructions in Figure 3.13 reveals the single atrium (at) of the heart 

located inside the pericardial cavity. Based on the overlay image of both zinc and iron,  
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Figure 3.12: Visualization of elemental distribution in a zebrafish embryo (48 hpf) by X-
ray fluorescence tomography. Reconstructed using MLEM algorithm. A. 3D-rendering of 
the embryo indicating the spatial orientation of the virtual slices that are displayed in 
panel B. Slices include a sagittal section (top) and a coronal section (bottom). B. 
Elemental distributions of Zn and Fe for each of the 2 slices. Individual concentration 
scales for each element are displayed at the bottom of each column. Abbreviations: 
Mesencephalon (mc), retina (rt), third ventricle (tv), cerebellum (cb), fourth ventricle (fv), 
pericardial cavity (pc), yolk (yo), yolk extension (ye), yolk syncytial layer (ysl), medulla 
oblongata (mo), liver (lv), notochord (nc), myotome (mt), and lens (le). The third column 
contains false color overlays of the elemental distributions of Zn and Fe indicating 
regions of spatial correlation. The concentration scales of each element were normalized 
and color-coded as Zn (green) and Fe (blue). Areas of spatial correlation appear in the 
corresponding mixed hue. 
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the atrium is rich in zinc. Moreover, the liver (lv) appears as a prominent, iron rich 

anatomical feature of the 48 hpf embryo. At this stage of embryogenesis, liver 

morphogenesis is well underway and is characterized by visible liver rudiments, 

continued budding, and the early formation of the hepatic duct.71 As a major storage site 

of ferritin, the primary protein responsible for intracellular iron storage and release, this 

organ is readily identified in the iron distribution map. In contrast, at 24 hpf the zebrafish 

liver is described as only a flat endoderm in the pharyngeal region and cannot be readily 

recognized within the elemental distributions previously reported for this stage of 

development.65  

The development of the lens (le) and the retina (rt) give rise to distinct differences 

in the 24 hpf and 48 hpf elemental maps of the embryo. At 48 hpf, the lens has detached 

from the overlying ectoderm and developed into a large spherical structure separate 

from the retina.72 These structures are easily distinguished in the reconstructions due to 

the elevated concentrations of zinc and iron. Notably, the zinc distribution map indicates 

a higher level of zinc in the outer layers of the retina with concentrations ranging 

between 1 and 1.5 mM. SXRF microscopy studies on 3 μm thick eye sections from a 

zebrafish 5 days post fertilization (dpf) also indicated increased zinc concentrations in 

the retinal pigment epithelium.53 Additionally, SXRF microscopy studies on 30 μm-thick 

freeze-dried cryosections of rat retina revealed a similar distribution with increased zinc 

concentrations in the retinal pigment epithelium as well as the photoreceptor inner 

segment and outer limiting membrane.73 Although these studies also indicated increased 

levels of iron in the outer layers, the results show a more uniform distribution throughout 

this region. The critical role of zinc and iron in the normal function of the lens and retina 

is well established.73-77 For example, high concentrations of histochemically reactive zinc 

have been identified in the mouse and rat retina, with the highest levels localized to the 

retinal pigment epithelium and the inner segment of the photo receptors.78-80 These 
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areas also coincide with increased expressions of the zinc transporters ZnT-3 and ZnT-

7,78,81 thus underscoring the importance of retinal zinc homeostasis, not only for the 

metalation of Zn-dependent proteins critical to vision,82,83 but likely also for supporting 

the role of zinc as a neuromodulator.84 Similarly, high levels of iron in the retinal 

epithelium are consistent with the presence of several Fe-dependent enzymes critical for 

cellular function, most notably RPE, an iron-dependent microsomal enzyme responsible 

for converting trans-retinyl ester to 11-cis retinol during the visual cycle.77 

Dorsal to the lens and retina, high concentrations of both zinc and iron define the 

grey and white matter of the brain, a region that contrasts the low trace metal 

concentrations found in ventricles. The medulla oblongata (mo), hypothalamus (hy), 

myelencephalon (my), and mesencephalon (mc) including the cerebellum (cb) as well as 

the third (tv) and fourth ventricle (fv) can all be distinguished in both elemental maps. 

Similar to studies performed on human brain tissue,85,86 the concentrations of zinc and 

iron show variability as they are heterogeneously distributed throughout different regions 

of the brain. As a major metal repository and one of the brain structures richest in iron 

and zinc85-87 it is not surprising that the cerebellum stands out in both sagittal and 

transverse sections of the elemental maps. Additionally, intracellular concentrations of 

zinc and iron are critical for the normal function of the brain,11,88,89 and are tightly 

regulated by a number of importers, exporters, and storage proteins. For example, the 

iron regulatory proteins ferritin and transferrin are found in the grey and white matter of 

the brain.88,90 Although iron uptake into the brain remains essential throughout life, it 

peaks during embryogenesis characterized by rapid growth and development of this 

organ.91 Additionally zinc-finger-containing gene fezl is expressed in the forebrain during 

zebrafish embryogenesis and is required to define the developing regions of the 

telencephalon, diencephalon and hypothalamus92-94 and  Early growth response 1 (Egr1) 

is strongly expressed at 48 hpf in the forebrain and midbrain, specifically diencephalon, 
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hypothalamus, and the myelencephalon.95 This essential growth protein has a highly 

conserved structure that contains three zinc-finger sequences.96,97 Egr1 is also 

expressed in the heart at this stage of embryogenesis95 which may contribute to the zinc 

observed in the atrium of the 3D reconstructions.  

 

 

 

 

Figure 3.13: Visualization of elemental distribution in a zebrafish embryo (48 hpf) by X-
ray fluorescence tomography using MLEM reconstruction. A. 3D-rendering of the 
embryo indicating the spatial orientation of the two virtual transverse slices that are 
displayed in panel B. Elemental distributions of Zn and Fe for each of the 2 slices. 
Individual concentration scales for each element are displayed at the bottom of each 
column. Abbreviations: Fourth ventricle (fv), mesencephalon (ms), retina (rt), cerebellum 
(cb), hypothalamus (hy), pericardial cavity (pc), atrium (at), and myelencephalon (my). 
The third column contains false-color overlays of the elemental distributions of Zn and 
Fe indicating regions of spatial correlation. The concentration scales of each element 
were normalized and color-coded as Zn (green) and Fe (blue). Areas of spatial 
correlation appear in the corresponding mixed hue. 
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Lastly, the posterior body of the embryo is largely defined by the tail and 

notochord (nc). The notably low metal content in the notochord is an intriguing 

observation for a structure often characterized as an essential organ in development.98,99 

This finding parallels the low trace metal concentration found in the elemental 

reconstructions of the embryo at 24 hpf.65 In contrast to the notochord, the mytome (mt) 

of the tail appears to be iron rich and a distinct accumulation of zinc is found at the tip of 

the tail. Both features are in agreement with the previously reported elemental 

distributions of the 24 hpf embryo.65 

 

3.4 Conclusions 

The importance of zinc for cellular proliferation and growth is well established.7 

As the maternally derived yolk stores are the primary source of nutrients for the embryo, 

this pool supplies all developing tissues and organs with zinc, likely orchestrated through 

an elaborate network of zinc transporters.63 For example, the reduced expression of 

ZIP7, a zinc importer of the SLC39 solute carrier family of proteins, led to markedly 

decreased zinc levels in the eye at 72 hpf whereas the total zinc content of the embryo 

remained unaltered.100 In contrast, both iron and copper are more concentrated in the 

yolk syncytial layer (ysl) surrounding the yolk and yolk extension. This extra-embryonic 

tissue serves critical functions in cell fate specification, morphogenesis, and nutrient 

transport.101 The iron transporters ferroportin1 and transferrin are specifically expressed 

in the YSL,68,69 underscoring its role in iron mobilization. Likewise, ceruloplasmin, the 

major Cu-carrying protein that also assists in iron transport,102 is localized to the YSL at 

this stage of development.103 Furthermore, at 24 hpf, pigment formation is initiated by 

melanophores, which depend on copper to supply the enzyme tyrosinase involved in 

melanogenesis.104,105 The melanophores start to develop dorsolaterally throughout the 

body of the tail, an area that is also characterized by increased levels of copper. Finally, 
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the markedly increased levels of zinc and copper at the posterior end of the embryo 

coincide with areas of progenitor cell differentiation106 and cellular proliferation,107 which 

are responsible for most of the body growth during the pharyngula period.99  

This study demonstrates that X-ray fluorescence tomography has matured into a 

powerful technique for the high-resolution 3D visualization of transition metals, even for 

large specimens such as a zebrafish embryo. The reconstructed elemental densities 

provided intriguing insights into the 3D distribution of zinc, copper, and iron at these two 

stages of embryonic development and revealed distinct areas of localizations that could 

be correlated with characteristic anatomical features. Furthermore, a total zinc content of 

7.1 ng and 8.2 ng were calculated based on the data collected for the zebrafish embryos 

at 24 hpf and 48 hpf, respectively. These values are in good agreement with the average 

zinc content of ~7.3 ng at 24 hpf reported in the literature.63 Additionally, the preparation 

technique, which combines the progressive lowering of temperature method with 

femtosecond laser sectioning, should be applicable to a wide range of soft tissue 

specimens.  

 

3.5 Materials and Methods 

 

3.5.1 Sample Preparation  

Adult wild-type zebrafish were housed and mated under standard laboratory 

conditions. Fertilized embryos were harvested and kept in E3 medium (5 mM NaCl, 0.17 

mM KCl, 0.4 mM CaCl2 and 0.16 mM MgSO4) at 28.5°C. At 24 hpf, embryos were 

anesthetized using 0.02% Tricaine, manually dechorionated and fixed using 4% 

paraformaldehyde in 0.1M sodium phosphate buffer (pH 7.4) at 4°C. After two hours in 

the fixative, embryos were washed three times with the same buffer, dehydrated in 

ethanol, and then embedded in Lowicryl K4M resin at -20°C following the progressive 
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lowering of temperature (PLT) protocol.108 The polymer block containing the zebrafish 

embryo was trimmed with a diamond saw (Buehler Isomet 1000, Germany) coplanar to 

the frontal plane on the ventral side of the embryo. The resulting plane was mounted 

onto a microscope slide with UV curing glue (Panacol Vitralit, Germany), and 4 contact-

free line sections around the embryo were performed with a femtosecond laser system 

(TissueSurgeon, LLS Rowiak LaserLabSolutions, Germany). Two of the sections were 

placed on each lateral side at a distance of 60 μm from the embryo, one section at 60 

μm from the caudal end and perpendicular to the two lateral sections, and one section at 

500 μm from the cranial end of the embryo, again perpendicular to the lateral sections. 

To remove metal contaminations and ridges from the diamond saw, an additional 

coplanar section below the ventral side of the embryo was performed at a distance of 60 

µm from the embryo. For sample adjustment and quality control, optical coherence 

tomography (OCT) images were acquired with a spectral radar system (Thorlabs) 

modified for integration in TissueSurgeon. The peak wavelength of the OCT light source 

is 930 nm, offering an axial resolution of 5–7 μm and lateral resolution of <5 μm within 

the focal plane. Brightfield images were acquired with an integrated CCD-camera (768 x 

494 pixel size). Illumination was realized with a custom-made condenser and a high 

power LED at a wavelength of 800 nm for optimal transmission across the NIR-

optimized objective lens. The excised sample was attached with epoxy glue along the 

cranial surface onto an aluminum holder for mounting on the kinematic stage of the 

SXRF tomography setup.  

 

3.5.2 Instrumentation  

Synchrotron radiation X-ray fluorescence (SXRF) tomography data were 

acquired at the 2-ID-E beamline of the Advanced Photon Source (Argonne National 

Laboratory, Illinois, USA). The beamline is equipped with an undulator and double 
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monochromator, which provide high brilliance X-rays with a tunable energy range 

between 8–20 keV. The X-ray beam is focused to a spot size of 0.6 x 0.5 μm2 using the 

first order diffraction peak of a 320 μm diameter Fresnel zone plate (Xradia, Carl Zeiss, 

Germany). Higher order diffraction peaks and scattered photons are blocked by a 30 µm 

diameter tungsten pinhole (order sorting aperture), which is positioned 10 mm upstream 

of the sample. To minimize scatter signals from air and ambient argon fluorescence, the 

sample is placed inside a helium-filled chamber equipped with a kapton window for 

beam entrance. The sample is mounted on an aluminum stick and placed onto a 

kinematic holder controlled by a stack of 3 piezo-encoded stages (Physik Instrumente 

GmbH, Germany), a rotation stage and two lateral stages for aligning the sample along 

the tomographic rotation axis. For raster-scanning of the sample, the entire chamber is 

moved by two additional vertical and horizontal stages, which offer step sizes down to 50 

nm, and if desired, travel distances up to several millimeters. For each focused spot, a 

full fluorescence spectrum is acquired using an energy dispersive silicone drift detector 

(Vortex ME-4 by SII Nano Technology, Northridge, CA) positioned at 90 degrees to the 

incident beam. The detector snout is placed inside the sample chamber and covered 

with an off-center aluminum collimator specifically designed for the geometry of the 4-

element fluorescence detector. A second kapton window allows the beam to reach a 

downstream ion chamber for monitoring the signal intensity after passing the sample and 

all optical components. The change in signal intensity compared to the upstream ion 

chamber provides an absorption contrast signal of the sample. At the downstream end of 

the microprobe the transmitted beam enters a custom-built configured charge-integrating 

silicon detector, which provides differential phase contrast.109 All motorized stages are 

controlled through EPICS (Experimental Physics and Industrial Control System, Argonne 

National Laboratory).  
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3.5.3 Data Acquisition  

The SXRF tomographic data set of the zebrafish specimen was composed of 60 

projections acquired at intervals of 3 degrees covering a total angular space of 180 

degrees. To minimize errors introduced through radiation damage and potential 

registration drifts, the projections were acquired in two batches with a 3 degree offset 

and 6 degree intervals. For each orientation, the specimen was translated through the 

stationary beam with excitation at 10 keV and a step size of 2 μm, covering a total scan 

area of 840 x 1562 µm. To minimize the data collection time, horizontal scans were 

acquired in a continuous motion mode110 with an average dwell time of 10 ms per pixel. 

Composed of ~20 million individual emission spectra, the complete tomographic data set 

required over 100 hours of beam time.  

 

3.5.4 Data Processing and Tomographic Reconstruction  

For each projection angle elemental maps were generated by Gaussian fitting of 

the averaged raw emission spectra from 3 x 3 adjacent pixels (2D boxcar averaging) 

using the MAPS software package.61 The Gaussian peaks were matched to the 

characteristic X-ray emission lines to determine the fluorescence signal for zinc, copper, 

and iron. Calibration to elemental densities ρ (μg cm -2) was achieved by comparing the 

fluorescence emission of the sample with that of a thin film standard (Axo Dresden, 

Germany) relative to the photon flux captured by two ion chambers positioned upstream 

and downstream of the sample (see also above description of the instrumentation). Due 

to signal attenuation by the resin, calibration relative to the up- and downstream photon 

fluxes yielded either underestimated or overestimated densities ρus and ρds, 
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respectively. The two values are related to the linear attenuation coefficient µex and 

attenuation pathlength l according to the Beer–Lambert law (1)  

ρus = ρds⋅e -lµex   (1) 

The absorption contrast generated by the sample can be judged based on the 

ratio between the photon counts of the upstream and downstream ion chambers. 

Concluding from the transmission profile across the sample, the embedding material is 

responsible for the majority of the beam attenuation. With excitation at 10 keV, the 

transmission is reduced to 77% across the pathlength of the Lowicryl matrix, and only 

lowered to 75% by the yolk, which corresponds to the largest volume of the specimen. 

For this reason, we approximated the elemental concentrations in the reconstructed 

model only based on the corresponding linear attenuation coefficients of the matrix and 

the average attenuation pathlength l. The 3D elemental distributions were reconstructed 

based on downstream-calibrated projections, which were imported into MATLAB 

(R2012b), normalized to the integrated density averaged over all projections, and 

processed using custom made MATLAB codes. For reconstructions based on the filtered 

back projection algorithm, the elemental maps were processed with the iradon routine 

using the ‘‘Ram–Lak’’ ramp-filter as implemented in the MATLAB Image Processing 

Toolbox. The code for maximum likelihood expectation maximization (MLEM) 

reconstruction was derived from the standard iterative algorithm111 employing the radon 

and unfiltered iradon MATLAB routines for projection and back-projection, respectively. 

Prior to processing of the actual experimental data set, the performance of the code was 

evaluated based on the reconstruction accuracy of a computer generated Shepp–Logan 

phantom image. To generate volumetric elemental distributions of the zebrafish 24 hpf, 

sinograms were derived for each of the 781 y-positions and the corresponding 2D 

elemental densities were iteratively reconstructed using the MLEM code. For the 
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reconstruction of the zinc distribution a total of 70 iterations were employed. To improve 

signal-to-noise ratios, the iron and copper data sets were processed with smaller 

iteration numbers of 30 and 15, respectively. Iteration values of 15 for zinc and 7 for iron 

were used for the 48 hpf embryo. To gauge the quality of the reconstructed volumetric 

data sets, projections for each of the 60 acquisition angles were computed and the 

corresponding difference images derived based on the original measured projections. 

The final elemental distributions were estimated by converting the pixel-based area 

densities of each slice to voxel-based concentrations, followed by linear scaling. 

 

3.5.5 Data Visualization  

All volumetric renderings were generated with the Paraview software package.112 

For this purpose, the reconstructed volumetric data were exported from MATLAB as 32-

bit z-stacks, converted to 16-bit stacks using ImageJ,113 and then imported into Paraview 

for 3D processing and visualization.  
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CHAPTER 4 

INVESTIGATING LABILE ZINC POOLS DURING ZEBRAFISH EMBRYOGENESIS 

 

 While zinc is recognized for its importance during fertilization and early 

embryogenesis, it continues to be necessary throughout the life of an organism. For 

example, some organs such as the prostate, kidney, eye and brain require a higher zinc 

concentration for their normal function.
1
 Given the limited external supply of nutrients 

during embryogenesis, developing organs most likely redistribute these essential 

micronutrients from neighboring cells to satisfy their increased demand, thus raising the 

intriguing and fundamental question of how the limited supply of trace metals in the yolk 

of a fertilized egg is redistributed in the course of embryonic development.  

Despite the established importance of zinc in embryogenesis and development, 

little is understood regarding the mechanisms of the redistribution and organization of 

zinc during these vital processes. SXRF microscopy data (Chapter 3) can only provide 

the total zinc content of the specimen. Similar to the cell culture studies performed in 

Chapter 2, the next step in understanding zinc distribution is to investigate the labile zinc 

in comparison to the total zinc information acquired with SXRF microscopy. To further 

investigate, the Zn(II)-selective fluorescent probe, Chromis1, was used in combination 

with zebrafish model systems to study the redistribution dynamics of labile Zn(II) pools in 

a zebrafish embryo during the first 24 hours post fertilization.  

 

4.1 Background 

The importance of zinc for cellular proliferation and growth is well established.
2 

As the maternally derived yolk stores are the primary source of nutrients for the embryo, 

this pool supplies all developing tissues and organs with zinc, likely orchestrated through 

an elaborate network of zinc transporters.
3
 For these reasons, synchrotron X-ray 
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fluorescence (SXRF) tomography was initially utilized to detect total metal content of a 

developing embryo.
4
 The SXRF tomography data discussed in Chapters 3 provided 

intriguing insight into the total metal distribution of a zebrafish embryo at two different 

stages of development. In both pharyngula and early hatching periods the SXRF 

revealed over 80% of the zinc is found in the yolk while copper and iron are 

predominantly in the body of the embryo, leaving the yolk almost void. Additionally, the 

highest concentration of zinc is observed in the tip of the tail during both stages of 

embryogenesis. Presumably, zinc is mobilized and sequestered in to these areas. These 

two distinct accumulations are indicative of an essential heterogeneous zinc distribution 

regulated during development.  

 

4.1.1  Zebrafish as a Model System 

As previously mentioned in Chapter 3, zebrafish are an ideal model system for 

studying metal distribution during embryogenesis. Zebrafish embryos develop as 

lecithotrophic organisms requiring only the nutrition found in their yolk sac for the first 3 - 

4 days post fertilization (dpf).
5,6

 This closed system presents a unique opportunity to 

study the distribution of a set metal content, eliminating the need to account for 

additional nutrition acquired during feeding. The optically clear 

 Furthermore, during early zebrafish embryogenesis the cell cycle is atypical with 

varying cycle lengths and division patterns.
7
 The initial cleavage events of a fertilized 

embryo occur in 15 minute intervals. These early divisions are synchronous, rapid, 

symmetrical and meroblastic, or incomplete.
7
 After 2.25 hours the embryo begins to 

transition out of the cleavage period and into the blastula period. The cleavages are now 

considered metasynchronous. They no longer occur at the same time; rather they divide 

in a wave starting at the animal pole in the center on the blastodisc and move outward. 

Further into this stage of development cell cycle lengthening begins. Not all of the cell 
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cycles lengthen to the same extent. The cells begin to differentiate as the blastula period 

continues and the epiboly begins to form.
8
 

 Experimentally, zebrafish are a very practical tool to use in the lab. Much smaller 

than the mouse models, zebrafish can be kept in larger quantities. The high fecundity of 

the zebrafish allows the researcher to collect hundreds of embryos a week.
9
 The large 

size of the embryo permits them to be easily manipulated or microinjected and the fast, 

external development is advantageous for development studies. Researchers can 

observe a zebrafish develop from a single cell to a small fish in 24 hours.
8
 Lastly, 

zebrafish embryos are optically translucent, therefore ideal organisms to partner with 

fluorescent imaging tools.
10

 

 

4.1.2  Zebrafish Embryogenesis  

 During the first three days post fertilization zebrafish embryos undergo major 

morphological changes forming organs, tissues, and growing more than triple in size. 

Starting with a fertilized single cell during the zygote period, zebrafish embryogenesis 

can be described as a complex array of developmental stages. Subsequent to the 

zygote period, the cleavage and blastula periods are primarily characterized by the 

number of dividing cells on top of the yolk. During the successive gastrula period, a thin 

layer of cells known as the epiboly engulfs the yolk. Transitioning into segmentation at 

10 hpf, the tail bud becomes visible and somite sections of the tail start to form. By 24 

hpf the embryo exhibits a developed brain with distinguishable lobes and ventricles and 

the pharyngula period begins during which the fins being to form.  As the hatching period 

begins at 48 hpf, organs, such as the liver and heart, as well as distinct lens and retina 

of the eye can be observed. Embryogenesis concludes at 72 hpf as the zebrafish 

transitions from embryo to larva.
8
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What begins as a single cell containing a defined, fixed amount of trace metals 

develops into a multicellular organism comprised of various cells, tissues, and organs all 

with varying trace metal requirements.
11,12

 Given the limited external supply of nutrients 

during embryogenesis, developing organs most likely redistribute zinc from neighboring 

cells to satisfy their increased demand, thus raising the question of how the limited 

supplies of zinc in a fertilized egg is redistributed in the course of embryonic 

development.  

 

4.1.3  Previous Fluorescence Microscopy Studies in Zebrafish 

As optically transparent organisms, zebrafish have been widely utilized for 

fluorescence imaging studies. For example, using both a protein-based bioluminescent 

aequorin imaging method
13-15

 and the fluorescent Ca(II) reporter, Calcium Green-1 

dextran,
15

 extensive research in calcium fluctuations during the fertilization and 

embryonic development of zebrafish have been reported.
16

 These data revealed 

patterned Ca(II)-mediated intercellular waves permeating each stage of embryogenesis 

with different concentrations and timing. Activation and fertilization of a zebrafish oocyte 

triggers a rapid increase of calcium in the oocyte cortex which continues to increase 

during the first 12-15 minutes post fertilization.
17

 During the cleavage period, close 

spatial correlation between elevated intracellular calcium and the cleavage furrows of the 

dividing cells is observed.
18

 The blastula period is characterized with localized elevations 

of calcium, otherwise known as calcium spikes, generated in individual cells throughout 

the blastoderm.
19

 Observations of this nature are only possible using an optically 

transparent, externally developing embryo such as the zebrafish. 

Additionally, Zn(II) imaging in live zebrafish embryos has been reported using 

various membrane-permeable Zn(II) sensors.
20-23

 In all studies, zebrafish between 19 hpf 

– 5 days post fertilization (dpf) were incubated in the fluorescent sensor for 20 – 90 
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minutes. Ma et al. reports zebrafish 3 dpf were fed a solution containing Zn(II) at varying 

concentrations. Using the ratiometric luminescent iridium(III) chemosensor, the zebrafish 

fed with Zn(II) revealed a red-shifted fluorescence emission in the abdomen indicating 

an accumulation of Zn(II) compared to blue-shifted fluorescence observed in the 

abdomens of the the control zebrafish. Additionally, the emission shifted back to that of 

basal conditions after introducing the strong chelator, TPEN, to the imaging solution 

surrounding the Zn(II)-fed samples.
20

  

Using a synthetic Zn(II) sensor (SBD-TPEA) developed from the Zn(II) chelator, 

N,N,N’-tri(pyridin-2-ylmethyl)-ethane-1,2-diamine (TPEA), and fluorophore sulfamoyl-

benzoxadiazole, Liu et al. observed two bright regions of fluorescence located between 

the eyes of zebrafish larva 3 dpf. This fluorescence was also reversible after introducing 

TPEN to the imaging solution.
21

 Xu et al. report the use of a Zn(II) selective, ratiometric  

probe (ZTRS) developed from an amide-containing Zn(II) receptor and a napthalimide 

fluorophore. ZTRS consistently indicated red-shifted fluorescence spots in the anterior 

region of the yolk at various time points between 19 – 54 hpf. These spots increased 

with the addition of exogenous Zn(II) and disappeared with the addition of TPEN.
22

 

Similarly, Qian et al. observed the same spotted pattern using a Zn(II) probe termed 

NBD-TPEA, designed from the fluorophore 4-amino-7-nitro-2,1,3-benzoxadiazole and 

the chelator TPEA.
23

 Additionally, this probe indicated fluorescent spots between the 

eyes similar to the fluorescence observed with SBD-TPEA.
21
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4.2 Imaging of Labile Zn(II) Pools in Developing Zebrafish Embryos 

Chromis1, the Zn(II)-selective, emission ratiometric probe characterized in 

Chapter 2, is well suited for ratiometric imaging of labile Zn(II) pools in a wide range of 

biological environments. Taking advantage of the optically transparent phenotype and 

their external development, zebrafish are ideal model organism to study using a 

fluorescent probe.
24

 Additionally, their ability to progress from a single cell to resembling 

a fish in the matter of hours permit the study of various developmental changes in a 

single day.
8
  

To enforce a uniform cytosolic distribution of Chromis1 and avoid accumulation 

within subcellular compartments, an NHS-ester derivative of Chromis1 was conjugated 

to 70 kDa amino-functionalized dextran (Figure 4.1). Dextran, a branched 

polysaccharide composed of glucose molecules, is hydrophilic and therefore unable to 

cross cellular membranes including those of intracellular organelles where a fluorescent 

probe may otherwise accumulate. Upon microinjection into the single-cell zygote, the 

probe remains trapped within the cell and will be passed on to the daughter cells upon 

cell division. In comparison with membrane-permeate AM esters, cell-permeable dyes, 

dextran conjugated probes show no compartmentalization and have low toxicity.  

Fluorescently labeled dextran conjugates have been widely utilized in lineage 

labeling of zebrafish cells,
25,26

 neuronal tracing studies,
27,28

 and imaging calcium waves 

during embryonic development.
15

 Calcium Green-1 dextran is the most common calcium 

imaging dye used in zebrafish.
16,29

 Injections of Calcium Green-1 dextran into embryos 

at the single-cell stage have revealed calcium fluctuations during fertilization, cleavage 

and blastula period.
15

  

The final 70 kDa dextran conjugate contained an average of 10 probe molecules 

per dextran and is referred to as Chromis1-dextran in the following sections (Figure 4.1). 
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Figure 4.1: Preparation of a 70 kDa dextran conjugate starting from the amine-reactive, 

NHS-ester functionalized ratiometric Zn(II)-responsive two photon probe. After 

microinjection, the conjugate cannot cross the plasma membrane and remains trapped 

within a single cell. Synthesis preformed by Dr. Sumalekshmy Sarojini. 

  

 

 

 To rule out concerns of hydrolytic cleavage, which would release Chromis1 from 

the 70 kDa dextran, Chromis1-dextran was co-injected with a rhodamine-dextran 

conjugate purchased from Invitrogen into a single-cell zebrafish embryo. As in 

Chromis1-dextran, the rhodamine-dextran was conjugated to a 70 kDa dextran. 

Indicated in Figure 4.2, the co-injected rhodamine-dextran conjugate and Chromis1-

dextran appear to be well distributed throughout the embryo in the blastula stage (4 hpf) 

and the late segmentation / early pharyngula stage (29 hpf) suggesting the conjugated 

probe does in fact stay intact.  During the blastula stage it is also apparent the neither 

the rhodamine-dextran conjugate nor Chromis1-dextran have leaked from the blastodisc 

and into the yolk suggesting the conjugated molecules are prevented from crossing 

cellular membranes. 
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Figure 4.2: Z projection images of Chromis1-dextran and 70 kDa Dextran-Rhodamine 

co-injection. 4 nL of a 2:1 mixture of Chromis1-dextran: Dextran conjugated rhodamine 

was injected during the single cell stage of embryogenesis of a wild type zebrafish 

embryo. A: Blastula period, 4 hours post fertilization (hpf), indicates similar distribution of 

both Chromis1-dextran and 70 kDa dextran-rhodamine. B: Pharyngula period, 29 hpf, 

the dextran-rhodamine conjugation appears evenly distributed throughout the embryos, 

suggesting the molecule does not form aggregates while the Chromis1-dextran appears 

to have areas of high concentration indicating labile Zn(II) pools.  
 

 

4.2.1 Titration Using EDTA In Vivo 

 Establishing a Zn(II) concentration of a zebrafish embryo is necessary to assess 

the fractional saturation of Chromis1-dextran in experimental conditions and to better 

understand the dynamic range of the probe. Without a clear understanding of how much 

zinc is available for the probe to bind, it is difficult to determine the accuracy of 

Chromis1-dextran. If there is an abundance of zinc, the probe may be saturated and 

changes in zinc distribution may be challenging to image. Conversely, if there is very 

little zinc available the changes may also be difficult to detect.  
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Conflicting reports cite different amounts of total zinc found inside an entire 

zebrafish embryo.
3,4,30

 Using acid digested oocytes analyzed via atomic absorption 

spectroscopy, Riggio et al. reports  30 - 100 ng of Zn/oocyte. This amount is size-

dependent and appears to increase after fertilization, peaking at 2.45 hpf with over 500 

ng of total zinc found in each embryo. This value then decreases over the next two 

hours, returning to approximately 100 ng per embryo around 5.25 hpf.
30

 Conversely, 

data collected by Ho et al. using inductively coupled plasma - optical emission 

spectroscopy indicates a much smaller value of 7.5 ng Zn/embryo between 0 - 120 

hours post fertilization (hpf).
3
 This aligns well with the reported 7.1 ng calculated from the 

SXRF studies performed on zebrafish 24 hpf and discussed in Chapter 3.
4
 Given two of 

the three independent findings are similar, there is likely 7 - 7.5 ng Zn/embryo. 

To verify that the fluorescence emission ratio changes are due to differences in 

fractional saturation of the probe, the labile Zn(II) pool of embryos at the single-cell stage 

were titrated with the membrane-impermeant chelator ethylenediaminetetraacetic acid 

(EDTA). At neutral pH, EDTA exhibits an apparent dissociation constant of 16 fM, which 

is approximately three orders of magnitude lower compared to the Kd of Chromis1-

dextran. Solutions of Chromis1-dextran containing either 200 mM, 400 mM or 500 mM of 

EDTA were microinjected into the blastodisc of single-cell stage wild type zebrafish 

embryos. Using the microscope, approximate embryo dimensions were measured. From 

those measurements, the volume of the single cell on top of the yolk was calculated to 

be approximately 70 nL. Based on this calculated volume, the approximate volume of 4 

nL microinjected based on the instrument parameters, and the concentrations of the 

prepared EDTA solutions (considering the dilution of EDTA mixing with the 1 mM 

Chromis1-dextran in a 1:1 ratio) the final intracellular concentrations of EDTA are 

estimated as 3, 6 and 9 mM, much higher than the calculated final concentration of 

Chromis1-dextran (50 μM).  
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Figure 4.3 illustrates the average emission ratio decreased with increasing EDTA 

concentration from 1.14 (no EDTA) to 0.69 (9 mM EDTA). These data not only confirm 

that the ratiometric probe Chromis1-dextran is capable of reporting dynamic changes of 

Zn(II) availability, but also indicate the presence of a sizable pool of labile Zn(II). 

 

 

 

 

 
Figure 4.3: High resolution stacks of wild type zebrafish embryos after injection of 1:1 

Chromis1-dextran:EDTA mixture. All stacks were obtained within 20 minutes of injection. 

Only the embryos injected with 200 mM EDTA / Chromis1-dextran developed pass the 

single cell stage, however they did not survive past 2 divisions. This experiment resulted 

in a visible drastic drop in saturation as the concentration of EDTA increased.  
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Figure 4.4: Variations in Zn(II) saturation due to concentration of EDTA. High-resolution 

stacks were imaged (Figure 4.3) and the ratio was calculated on a pixel-by-pixel basis 

using ImageJ software and the Average Z Projection images. Average ratios were 

calculated as: no EDTA = 1.14, 3 mM EDTA = 0.96, 6 mM EDTA = 0.77, and 9 mM 

EDTA = 0.69. Data was collected as indicated on bottom right insert, selecting a single 

line across each embryo.  

 

 

4.2.2  Distribution of Labile Zn(II) at Fixed Stages of Development  

 To explore the distribution of labile Zn(II) pools during early zebrafish 

embryogenesis, fertilized embryos at the single-cell stage, approximately 15 minutes 

post fertilization, were microinjected with 4 nL of a 1 mM stock of Chromis1-dextran in 

physiological buffer (pH 7.2, HEPES, 0.1 M KCl). This results in an approximate 50 μM 

final probe concentration within the injected cell. For ratiometric two-photon imaging, the 

embryos were transferred to a glass-bottom Petri-dish containing Danieau’s solution and 

a thin layer of agarose with spherical mounting grooves. Embryonic development was 

directly followed on-stage by maintaining the ambient temperature at 28°C through a 

continuous air-flow incubator (Neftek). To minimize movements during image 

acquisition, approximately 300 μL of tricaine was added to the Petri-dish in order to 

anesthetize embryos at 19 hpf or later. A multiphoton laser was used to excite at 760 
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nm, and emission was collected with two band pass filters between 450-480 nm and 

510-540 nm, respectively. Figure 4.5 illustrates the ratiometric data for selected 

development stages in form of projections of high-resolution z-stacks that were acquired 

with 5 μm spacing. 

 

 

 

 
Figure 4.5: Ratiometric imaging of labile Zn(II) pools during the first 24 hours of 

zebrafish embryogenesis. Each false color image represents a projection using 5 μm 

ratiometric image slices of a unique embryo (excitation: 760 nm, channels: 450-480 nm 

and 510-540 nm). DIC: Differential Interference Contrast, projected light image; Z 

Projection: Average ratio across the entire z-stack, Intensity-corrected z-projection: a 

corrected average ratio was determined based on the number of z-slices that contained 

ratiometric data above the noise-threshold. Ratios increase in the order blue-green-

yellow-orange-red. Scale bar: 300 μm (hpf = hours post fertilization). 

 

 

 

Chromis1-dextran is membrane impermeable and is therefore contained within 

the blastodisc located at the animal pole of the embryo (0.2 hpf). The projections 

revealed a homogenous distribution during the zygote that continues through the early 

stages of embryogenesis. This is consistent with the rapid cell division that occurs during 

the development of the blastocyte that does not involve a significant change in cell 

cluster volume.  As the cell divides, the probe is evenly distributed into the two daughter 
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cells (0.75 hpf). The intensity corrected projections reveal a ratio that corresponds to full 

saturation of the probe, suggesting the presence of a readily available Zn(II) pool that is 

buffered significantly above the probe’s binding affinity. During the late blastula (4 hpf) to 

early gastrula (5 hpf) period, the high probe saturation and even ratio distribution are no 

longer observed. During epiboly, which is characterized by a coordinated cell movement 

around the yolk (9 hpf), distinct areas of higher fractional Zn(II) saturation of the probe 

appear. Finally, during the segmentation period, starting around 13 hpf, localized pools 

appear distributed over the entire animal body. Detailed quantitative analysis of the 

ratiometric data revealed that the fractional saturation of the probe significantly 

decreased over the first 24 hours, with an average ratio change from 1.1 at the single-

cell stage to 0.8 at 24 hpf (Figure 4.6). 

 

 

 

Figure 4.6: Variations in Zn(II) saturation over time. High-resolution stacks were imaged 

(Figure 4.5) and the ratio was calculated on a pixel-by-pixel basis using ImageJ software 

and the Average Z Projection images. Four major stages of development are 

represented here. For these four stages the following average ratios were calculated: 0.2 

hpf : 1.12, 4 hpf : 0.95, 9 hpf : 0.81, and 24 hpf : 0.85. Overall, the average ratio 

decreased from approximately 1.1 - 0.8 over the first 24 hours of development.  
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4.2.3 Live Imaging of Zn(II) Redistribution During Embryogenesis 

To test whether it would be possible to follow the development of the same 

embryo over an extended time period, ratiometric image stacks composed of 22 frames 

in 5 minute intervals were acquired over 14 hours, corresponding to a total of more than 

3600 individual two-photon scans (Figure 4.7).  

 

 

 
Figure 4.7: Redistribution of labile Zn(II) pools in the course of zebrafish 

embryogenesis. Chromis1-dextran was injected into a fertilized embryo. A total of 3600 

frames (145 stacks) were acquired over 14 hours with two-photon excitation at 760 nm. 

Each false color image represents a projection of 25 emission ratiometric images 

(channels: 450-480 nm and 510-540 nm). The labels refer to hours post fertilization 

(hpf). Ratios increase in the order blue-green-yellow-orange-red. Scale bar: 400 μM. 

 

 

 Similarly to the individual high-resolution stacks, the time-lapse imaging revealed 

labile zinc appears evenly distributed throughout early developmental stages. As the 

embryo further develops there is a clear compartmentalization of labile zinc in different 

regions of the developing fish. Additionally, due to the low-energy excitation at 760 nm, 

no noticeable damage to the embryo was observed. Furthermore, the fluorescence 

signal after 14 hours was comparable to previous experiments in individual embryos 

were imaged at a single developmental stage (Figure 4.5), indicating negligible 

photodecomposition of the probe. 
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4.3 Conclusions 

Chromis1-dextran permits the dynamic imaging of labile Zn(II) pools in live, 

developing zebrafish embryos.  The live microscopy provided high-resolution images 

without harming the zebrafish or photobleaching the probe, rendering long acquisition 

times with a single embryo. Zinc concentrations were evenly distributed throughout the 

cell during the early stages of embryogenesis, appearing to fully saturate Chromis1 in 

the single cell. Throughout development there appears to be a redistribution supplying 

zinc to areas of the zebrafish with a higher demand. 

 

4.4 Materials and Methods 

 

4.4.1  Zebrafish Maintenance and Husbandry 

Adult wild-type zebrafish were housed and mated under standard laboratory 

conditions. Crosses were prepared with 2 males and 2 females separated by a divider. 

After roughly 16 hours in the crossing tanks the dividers were removed and the zebrafish 

were allowed to mate. Fertilized embryos fall to the bottom of the mating tank, below a 

grate. After roughly 100 embryos were deposited, the zebrafish were returned to their 

storage tanks and the newly fertilized embryos were collected with a net and transported 

to a portable dish. Fertilized embryos were harvested and kept in E3 medium (5 mM 

NaCl, 0.17 mM KCl, 0.4 mM CaCl2 and 0.16 mM MgSO4) at 28.5°C. 
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4.4.2  Live Fluorescence Imaging of Chromis1 in Zebrafish 

Collected zebrafish embryos were microinjected with approximately 4 nL of a 1 

mM stock of Chromis1-dextran solution prepared in physiological buffer (pH 7.2 HEPES, 

0.1 M KCl). Embryos where stabilized in a gel made from low melting agarose poured 

into a glass bottom dish. Holes were cut into the agarose for the embryo to stay while 

imaging and 0.02% Tricaine was used to anesthetize the embryos when they were old 

enough to move. Embryos were maintained in ambient temperature at 28°C through a 

continuous air-flow incubator (Neftek) or incubation chamber mounted on to the 

microscope.  

The commercially purchased Ethylenediaminetetraacetic acid (EDTA), a metal 

chelator, was utilized to perform a titration on in vivo. Wild type zebrafish embryos were 

injected with a 1:1 mixture of Chromis1-dextran and varying concentrations of EDTA 

solutions. EDTA stock solutions of 200 mM, 400 mM, and 600 mM were individually 

mixed with one part Chromis1-dextran (1.18 mM) and subsequently injected (4 nL) into 

embryos at the single cell stage. Assuming a cell volume of approximately 70 nL, the 

intracellular concentration of EDTA is estimated to be 3, 6, and 9 mM respectively, an 

amount that is much higher than the approximate intracellular concentration of 

Chromis1-dextran (50 μM). 

 

 

4.4.3  Image Processing 

The quantitative image analysis software package, Image J,
31

 was used to 

analyze the change in the fluorescence emission ratio of Chromis1 over time.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

5.1 Probing Labile Zinc Pools in Proliferating Cells 

 

5.1.1  Adjusting the Affinity of Chromis1 

 As indicated in Chapter 2, no significant changes in labile Zn(II) were detected in 

dividing 3T3 cells using Chromis1-ester. Both the distribution pattern of total zinc and the 

2 to 3-fold increase of zinc observed in the SXRF experiments1 were absent in labile Zn(II) 

imaging. These results indicate the influx of Zn(II) observed in SXRF microscopy data is 

likely bound to ligands with a higher affinity than the Zn(II)-selective fluorescent probe, 

Chromis1-ester. In order to image the influx of Zn(II) during cell division, higher affinity 

Zn(II)-selective probes must be used. Efforts of this nature are already underway. 

Derivatives of Chromis1-ester have been designed and are currently being characterized 

in solution and in cell culture (Figure 5.1).  

 

5.1.2 Identifying Key Zn(II) Transporters During Mitosis 

 To further study metal distribution during mitosis, cell populations should be 

synchronized. Cell synchronization methods such as the Double Thymidine Block or 

Serum Starvation could interfere with Zn(II) homeostasis, therefore these techniques 

should be avoided. Alternatively, synchronization using mechanical separation via cellular 

elutriation is an effective method to isolate mitotic cells without interfering with Zn(II) 

regulation. Synchronized populations of cells can then be evaluated using mass 

spectrometry or western blotting approaches to determine if any zinc transporters (ZIPs 

or ZnTs) are up-regulated as a function of the cell cycle. If so, these specific transporters 

can be inhibited then SXRF microscopy can be used on individual cells to determine if 
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these transporters affect the distribution pattern or influence the uptake of zinc during 

mitosis. For example, zinc transporters ZIP6 and ZIP10 have been identified as two of the 

most abundantly expressed transporters in an oocyte and are required components of 

oocyte maturation in meiosis.2 To determine if ZIP6 and ZIP10 play an important role in 

mitosis as well, antibodies can target and block these zinc transporters potentially altering 

zinc homeostasis during cell division. These cells can then be imaged using SXRF 

microscopy to determine if the absence of function from these specific zinc transporters 

effect the zinc influx prior to mitosis or the zinc distribution pattern in the individual cell. 

 

 

 

 

Figure 5.1: Detecting labile Zn(II) using various Chromis1 derivatives. Cells were treated 
with various Chromis1 derivatives. The first column is Chromis1-ester, the second column 
is Chromis1-AM ester, and the remaining 5 columns are derivatives with unpublished 
structures. Ratio scale is from 0 – 4.0 for all images. Cells were imaged in basal conditions 
(top row), followed by perfusion of 100 μM ZnSO4 : 10 μM pyrithione (middle row) and 
finally 100 μM  TPEN (bottom row). The various derivatives have different binding affinities 
and therefore result in different reported ratio changes even when introduced to a constant 
concentration of exogenous zinc or TPEN.  
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5.2 3D Imaging of Transition Metals in the Zebrafish Embryo by SXRF 

 

5.2.1  Improved SXRF Microtomography Using Kirkpatrick-Baez Mirror Optics 

 The beamline, 2-ID-E (Advance Photon Source, Argonne National Laboratory, 

Argonne, IL), used to collect the original X-ray fluorescence data of the 24 and 48 hpf 

zebrafish embryos has limitations restricting the possible resolution. While this system 

offers highly focused optics allowing for high spatial resolution of a typical sample, the 

photon flux is limited. Therefore, larger biological samples such as a zebrafish embryo is 

unable to utilize this high spatial resolution. To achieve a higher resolution possible at 2-

ID-E would require inhibitive long data acquisition times. For this reason, the 24 hpf 

embryo required 2-3 μM step sizes despite the beam focused to 300 nm, consequentially 

under-sampling the elemental content. Using a larger sample such as the 48 hpf embryo 

resulted in an even lower signal to noise ratio and longer data acquisition times. The 

copper data collected for this sample had such a high signal to noise ratio, the information 

was unusable. For these reasons, the micro-focusing Kirkpatrick-Baez (K-B) mirror optics 

are a suitable solution. The two curved mirrors of the K-B optics system work to directly 

focus the beam and allow for a tunable spot size to achieve optimum focus at different 

wavelengths.3 This optical configuration allows the user access to optimize the final focus 

spot in order to establish either high flux or ultimate spatial resolution. The 13-ID-E 

beamline of the Argonne National Lab is equipped with K-B mirror optics and incorporates 

an advanced direct-drive rotary stage with an air-bearing and ferro-fluid seal to provide a 

frictionless, ultra-smooth and precise movement of the sample which is critical for 

microtomography.    

To demonstrate the advantages of using the K-B mirror optics for our larger 

samples, a tomographic data set of a 24 hpf embryo was collected on the 13-ID-E 

beamline. Transverse brain sections from reconstructions of 24 hpf embryos collected 
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using both 2-ID-E (A) and 13-ID-E (B) are compared in Figure 5.2.  The level of detail and 

clarity offered from the 13-ID-E beamline using the K-B mirror optics is apparent by eye. 

While the lobes and ventricles of the brain can be distinguished in the 2-ID-E data set 

obtained via Fresnel zone plate, the optic cup and lens are hardly noticeable at all. The K-

B mirror optics offer clear separation of the various lobes and ventricles of the brain. In 

Figure 5.2, the diencephalon, mesencephalon, cerebellum, third ventricle and fourth 

ventricle are well established. Furthermore, the level of detail seen in the optic cup and 

lens of the eye is significantly improved. The resolution offered using the K-B mirror optics 

offers a more detailed look into the anatomy of the zebrafish embryo using x-ray 

fluorescence.  

 

 

 

 
Figure 5.2:  Comparison of Fresnel zone plate and K-B mirror optics demonstrated via 
transverse sections of the zebrafish brain, 24 hpf. A: Data collected using the 2-ID-E 
beamline with Fresnel zone plate. While some anatomical features can be distinguished, 
the signal to noise ratio interferes with observing details. B: Data collected using the 13-
ID-E beamline with K-B mirror optics permits imaging clear details of anatomical features.  
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 These methods should also be used to detect the total zinc throughout all stages 

of development to create a further understanding of the metal distribution throughout the 

first few days of embryogenesis. Previous attempts to prepare early stage embryos for 

SXRF microscopy using PLT methods described in Chapter 3 failed. The embryos can not 

be dechorionated at early stages, leaving the chorion to fold into the embryo during the 

processes. Additionally, the fragile embryos fall apart. Sample preparation techniques 

must be further developed in order to perform SXRF microtomography on early stage 

embryos. 

 

5.2.2 Investigating the Increased Zinc Levels in the Zebrafish Retina 

 The zebrafish retina is a prominent feature observed in both the total zinc maps of 

the SXRF reconstructions (Chapter 3) and the labile zinc distribution using Chromis1-

dextran (Chapter 4). Numerous ZIP and ZnT transporter proteins have been identified in 

the retina. ZIP1, ZIP2, ZIP3, ZIP4, ZIP12, ZnT3, ZnT6 and ZnT7 have all been identified 

in human retinal pigment epithelium (RPE) cells.4,5 In addition to ZnT3, ZnT6, and ZnT7, 

ZnT8 and Metallothionein are found throughout many other layers of the retina in both 

mouse and human models.4,5 Using Chromis1-dextran with zebrafish models containing 

morpholino knockdowns of individual zinc transporters, key transporters can be identified. 

These knockdown models could also be used in SXRF microtomography to determine a 

change in total zinc versus labile zinc as seen with Chromis1-dextran. Understanding zinc 

homeostasis in the retina can lead to a better understanding of zinc’s role in the vision 

cycle and how this process is regulated. 
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5.2.3  Investigating the Increased Total Zinc Levels in the Zebrafish Tail Bud 

Sagittal sectioning of the reconstructed 3D metal distribution maps of the zebrafish 

embryo 24 hpf revealed a distinct accumulation of zinc at the tip of the tail, mostly localized 

to peripheral cell layers (Chapter 3, Figure 3.10).6  This area exhibits the highest 

concentration of zinc within the embryo, raising the question of what is occurring in the tip 

of the tail during this stage of development that requires so much zinc? 

The zebrafish body develops in an anterior-to-posterior progression.7,8  It is also 

believed that a population of stem cells resides in the tail bud.9 How these unspecified 

cells determine their fate during development is unknown. Interestingly, the high 

concentration of zinc and copper is observed at the tip of the tail where these proposed 

stem cells are located during a time (24 hpf) the tail is undergoing much of its development. 

A possible approach in the investigation of the zinc and copper at the tail bud 

involves exploring the relationships these transition metals have with the canonical Wnt 

signaling pathway. Canonical Wnt signaling has many roles in embryogenesis including 

acting as a critical component in the posterior development of the vertebrate embryonic 

body.10,11 This signaling pathway affects the progenitor cell differentiation occurring at the 

tip of the tail.12 The proteins involved in this pathway are specifically expressed in the tail 

bud, in the same region the increased concentrations of zinc and copper are observed. 

By performing SXRF microtomography on transgenic zebrafish lacking function of the Wnt 

pathway12 a possible link with zinc and copper could be determined. 
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5.3 Correlating Zn(II) Distribution with Proliferating Cells During Embryogenesis 

To further investigate the temporal changes of both labile and total metal compared 

to areas of proliferating activities in a developing zebrafish, zinc, iron and copper 

reconstructions can be compared to the cell-cycle progressions in a single embryo. To do 

so, the non-invasive Fluorescence Ubiquitination Cell Cycle Indicator (FUCCI) developed 

by Miyawaki and coworkers can be utilized to identify cells in specific stages of the cell 

cycle.13 The FUCCI system takes advantage of a fluorescent protein based sensor using 

fluorescent markers fused to different regulators of the cell cycle, Cdt1 and geminin. These 

two regulators are complementary in their production and degradation throughout the cell 

cycle. By tagging Cdt1 and geminin with red and green fluorescent proteins, respectively, 

their cell-cycle dependent oscillations can be followed in live cells. During the G1 phase 

of the cell cycle, geminin is proteolytically degraded allowing only Cdt1 tagged with the 

red fluorescent protein to be imaged. Conversely, Cdt1 is proteolytically degraded during 

the S, G2 and M phases allowing geminin tagged with green fluorescence to be imaged. 

During the G1/S transition both proteins are present in the cell yielding yellow fluorescent 

nuclei due to the overlay of the two fluorescent signals.13 

 Miyawaki and colleagues further developed the FUCCI system by creating a 

transgenic FUCCI zebrafish known as zFucci, granting the ability to examine cell cycle 

behavior in vivo.14 This transgenic line of zebrafish begin FUCCI expression at 

approximately 12 hpf and allow the observation of dynamic patterns of cell-cycle 

progression in several parts of the developing embryo. This particular line of fish allows 

for use of both Chromis1-dextran and SXRF to compare the labile zinc pools, total zinc, 

and cell-cycle progression all in a single embryo. 

 As an initial approach, fish from the transgenic zFucci line Tg(EF1α:mAG-

zGem(1/100)) expressing green fluorescence in S/G2/M phase nuclei and 

Tg(EF1α:mKO2-zCdt1(1/190)) expressing red fluorescence in G1 phase nuclei were 
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crossed to produce embryos containing both red and green fluorescence markers. 

Embryos were harvest and allowed 24 hours to develop. Embryos were imaged prior to 

fixation to identify cells in specific stages of the cell cycle in the 24hpf embryos (Figure 

5.3). Lastly, the embryos were fixed in 4% paraformaldehyde overnight before undergoing 

low-temperature embedding and excision via femtosecond laser sectioning just as the 

previous samples were prepared. 

 

 

 

 
 
 
 
Figure 5.3: Transgenic zFucci imaging pre-fixation. Embryos were immediately fixed with 
4% paraformaldehyde and underwent PLT methods in order to embed the embryos for 
SXRF microtomography. Expression level pattern in zFucci was limited by unexpected 
self-absorption which prevented imaging the entire fish.  
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