
SELF-RECONFIGURABLE MULTI-ROBOT SYSTEMS

A Dissertation
Presented to

The Academic Faculty

by

Daniel Pickem

In Partial Ful�llment
of the Requirements for the Degree

Doctor of Philosophy in
Robotics

School of Electrical and Computer Engineering
Georgia Institute of Technology

May 2016

Copyright c© 2016 by Daniel Pickem

SELF-RECONFIGURABLE MULTI-ROBOT SYSTEMS

Approved by:

Professor Magnus Egerstedt, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Martha A. Grover
School of Chemical and Biological
Engineering
Georgia Institute of Technology

Professor Je� S. Shamma, Co-Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Jun Ueda
School of Mechanical Engineering
Georgia Institute of Technology

Professor Justin Romberg
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 28 March 2016

ACKNOWLEDGEMENTS

First and foremost I would like to thank both my advisors, Dr. Magnus Egerstedt and Dr.

Je� S. Shamma. I was fortunate enough to work with not one, but two great minds during

my graduate life and bene�t from their vast knowledge in control theory, game theory, and

robotics. Their two very di�erent advising styles enriched my Ph.D. experience through

both fast-paced, high-intensity meetings as well as extended meetings focused on discussion,

learning, and brainstorming. What both of them share, however, are their unmatched

abilities as mentors and teachers. Not only are their lectures inspiring and entertaining,

but their guidance in both my academic and professional life has been invaluable. My

interactions with Je� and Magnus have not only shaped my way of thinking and approaching

problems but my approach to research as a whole.

I would also like to thank my committee members for their valuable feedback and sug-

gestions that guided the latter stages of my research. Their diverse perspectives and insights

enabled interesting extensions to my research.

Countless interactions and discussions with members of the GRITS lab and the DCL lab

were instrumental in charting the waters of my Ph.D. and furthering my research agenda.

I would not want to miss the opportunity to thank each and every one of them for their

input, ideas, and feedback on my doctoral research over the years.

I would also like to express my sincere gratitude to my parents and sister - Eva, Herbert

and Judith - for their love and support over the many years of my student life - both in

Austria and even more so in the US. They always encouraged me to seek out new heights in

my education, even if that meant watching me move farther and farther away. No matter the

large distances, they were always there for me. From a young age, they not only instilled a

passion for creating and building in me but also an insatiable curiosity. They never stopped

me when I disassembled or accidentally blew up yet another piece of electronics just to learn

about its inner workings. I owe my adventuresomeness and curiosity to them! Liebe Mutti,

iii

lieber Papa, liebe Jutzi, besten Dank f�ur eure Unterst�utzung und Liebe �uber all die Jahre.

Es bedeutet die Welt f�ur mich! Of course, I would also like to thank Yulia's family for their

sincere interest, kind wishes, and encouragement over the years.

Finally, I cannot even begin to express how thankful I am for the unconditional love,

unwaivering support, and true friendship of my signi�cant other - Yulia. I could always rely

on her for advise, counsel, and encouragement. Her attentiveness, eye for detail, and critical

thinking helped me improve my work countless times and not only shaped my dissertation

but my research as a whole. Yulia always had an open ear for when I started talking about

Markov chains or robots yet another time and her challenging questions routinely made me

rethink aspects of my research. Throughout my years as a graduate student, Yulia was

always there for me, supporting me emotionally and being my source of inspiration. She

made me grow as a researcher, but more importantly as a person, friend, and partner. Yulia

is not only my strongest pillar of support but the most loving woman in my life. Without

her, I would not be where and who I am today. ß î÷åíü ñèëüíî òåáÿ ëþáëþ, ìîÿ äîðîãàÿ

Þëåíüêà!

iv

Contents

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xiii

I INTRODUCTION . 1

II BACKGROUND . 7

2.1 Self-recon�gurable Systems . 7

2.1.1 A Taxonomy . 9

2.1.2 Abstractions and Models . 14

2.1.3 Control Approaches . 18

2.1.4 Applications and Opportunities . 25

2.1.5 Challenges . 28

2.2 The Self-Recon�guration Problem . 32

2.3 System Representation . 33

2.4 Conclusions . 35

III CENTRALIZED SELF-RECONFIGURATION PLANNING 37

3.1 Homogeneous Self-Recon�guration . 41

3.1.1 Problem Setup . 41

3.1.2 Planning Approach . 42

3.1.3 Hole and Enclosure Detection and Avoidance 50

3.1.4 Completeness . 54

3.1.5 Examples . 55

3.1.6 Results . 56

3.2 Heterogeneous Self-Recon�guration . 63

3.2.1 Problem Setup . 64

3.2.2 Planning Approach . 66

3.2.3 Assignment Resolution . 67

3.2.4 Completeness . 71

v

3.2.5 Results . 72

3.3 Conclusions . 73

IV DECENTRALIZED SELF-RECONFIGURATION PLANNING 75

4.1 A Graph Grammar-based Approach . 76

4.1.1 Graph Grammars . 77

4.1.2 Problem Setup . 79

4.1.3 Rule Structure . 80

4.1.4 Rule Generation . 83

4.1.5 Ruleset Execution . 86

4.1.6 Convergence . 87

4.1.7 Results . 88

4.2 Game-theoretic Recon�guration . 89

4.2.1 Problem Formulation . 90

4.2.2 Action Set Computation . 93

4.2.3 Deterministic Completeness . 96

4.2.4 Stochastic Recon�guration . 99

4.2.5 A decentralized Algorithm . 103

4.2.6 Results . 105

4.3 Conclusions . 108

V ADAPTIVE DECENTRALIZED METHODS109

5.1 Adaptive Learning Rate . 110

5.1.1 In�uence of the Learning Rate . 112

5.1.2 Results . 113

5.2 Switching Utility Functions . 114

5.2.1 Utility Function Components . 116

5.2.2 Utility Functions as Weighted Sums 120

5.2.3 Utility Function Switching . 122

5.2.4 Results . 128

5.3 Conclusions . 134

vi

VI ROBOTIC IMPLEMENTATION .136

6.1 Self-Recon�guration on Robots . 137

6.1.1 Low-level Control . 138

6.1.2 High-level Control . 142

6.1.3 Experimental Results . 143

6.2 The Robotarium Concept . 146

6.3 Design Requirements . 149

6.3.1 Robots . 151

6.3.2 User Experience . 157

6.3.3 Network Design . 157

6.4 The GRITSBot . 158

6.5 The Robotarium Testbed . 163

6.5.1 Calibration . 164

6.5.2 Wireless Programming . 165

6.5.3 Global Positioning . 166

6.5.4 Charging . 169

6.6 Conclusions . 169

VII CONCLUSIONS AND FUTURE WORK171

7.1 Conclusions . 171

7.2 Future Work . 173

Appendix A � ROBOT DESIGN .176

Appendix B � ROBOTARIUM MATLAB API185

REFERENCES .188

vii

List of Tables

1 Recon�guration planning results for overlapping box con�gurations 61

2 Recon�guration planning results for overlapping random con�gurations 62

3 Recon�guration planning results for recon�gurations from random to box
con�gurations . 73

4 Recon�guration planning and rule generation results for overlapping box con-
�gurations . 89

5 Recon�guration planning and rule generation results for overlapping random
con�gurations . 89

6 In�uence of the learning rate τ on the acceptance of actions with decreasing
utility. 113

7 Parameters used for the control of the GRITSBot. 139

8 Numeric results for a self-recon�guration sequence of eight robots. 145

9 An Overview of Multi-Robot Platforms . 156

10 Total parts cost per robot excluding assembly 164

11 Total cost per robot including assembly . 164

12 List of distributors. 176

13 Miscellaneous components used in the assembly of the GRITSBot. 177

14 Bill of materials of the main board (optional components highlighted in green).182

15 Bill of materials of the motor board (optional components highlighted in green).183

16 Bill of materials of the sensor board (optional components highlighted in green).184

17 List of functions the Matlab API provides (part 1). 186

18 List of functions the Matlab API provides (part 2). 187

viii

List of Figures

1 Example of a two-dimensional recon�guration sequence. 3

2 Example of a self-recon�guration trial on a team of eight GRITSBots. The
full image sequence is shown in Chapter 6. 5

3 Examples of hardware instantiations of chain-type systems. 13

4 A 10-module con�guration of the Distributed Flight Array as an example of
a mobile self-recon�gurable system. 14

5 Examples of unlabeled and labeled graphs. 16

6 Visualization of motion primitives. 34

7 Example of a connectivity graph of a random con�guration. 39

8 Representation of the overlapping, the movable, and the immediate target
successor set . 45

9 Example construction of a con�guration as outlined in case 1 of Lemma 2 to
show the nonempty nature of the movable setM. On the left, the initial and
target con�guration are shown together with the overlap O = CT ∩CT . On the
right, for each step, the currently added cube is numbered while articulation
points are marked with a red dot. 48

10 Example of an empty movable setM according to case 2 of Lemma 2. On the
left, the initial and target con�guration are shown together with the overlap
O = CT ∩ CT . On the right, an empty setM is shown caused by every cube
ci ∈ CI \CT being an articulation point in GC . Articulation points are marked
with a red dot. The de�nition of R in Def. 7 speci�cally rules out a case as
shown. 49

11 Hole detection uses the connectivity graphs of the con�guration C and the
planning space N (C). Note that the current con�guration C is represented by
�lled black nodes while its hull N (C) is represented by hollow white nodes. . . 51

12 Example of a homogeneous recon�guration sequence used for locomotion. . . 57

13 Example of a homogeneous recon�guration sequence showing the assembly of
a chair con�guration given a random initial con�guration. 58

14 Example of a homogeneous recon�guration sequence showing a recon�gura-
tion from a chair to a table con�guration. 59

15 Example of a homogeneous recon�guration sequence showing a recon�gura-
tion from a chair to a table con�guration with obstacles in the environment.
In this speci�c example, obstacles are shown as black cubes and represent a
ground plane. 60

16 Cumulative length of paths and required runtime of recon�guration of box
con�gurations. 62

ix

17 Cumulative length of paths and required runtime of recon�guration of random
con�gurations. 63

18 Example of a heterogeneous initial and target con�guration comprised of col-
ored unit cubes. 65

19 Example of a recon�guration sequence using assignment resolution. Opaque
cubes represent the current con�guration, transparent cubes represent unoc-
cupied target positions. The goal is to move the line con�guration three steps
to the right. Shown are two assignment resolution step, in which the red cube
has to be moved two steps to the right before the recon�guration can continue. 69

20 Example of a heterogeneous recon�guration from a random three-dimensional
con�guration to a layered pyramid. 74

21 Examples of motion rule showing the three-dimensional representation of the
rule in the top row and the labeled graph representation in the bottom row.
The active cube is shown in red (with ID 5), its motion neighbors according
to Def. 17 in green and cubes outside its motion neighborhood in light blue.
A nodes ID is shown in bold font as the �rst component of each node label. . 82

22 Examples of grounded con�gurations and feasible motions of cubes. 97

23 Example of a grounded con�guration CG, the ground plane SGP, associated
connectivity graph G. Gz>1 represents all agents not on the ground plane,
while all agents on the ground plane are represented by a single node in G′′. . 99

24 Example of forward and reverse actions with their associated proposal prob-
abilities qij , qji, and q

′
ji. Note that xi, xj , x

′
j are states of the entire con�gu-

ration, and agent k is the currently active agent. 102

25 Convergence times for di�erent types of con�gurations and sizes ranging from
10 to 30 agents. A �xed learning rate τ = 0.001 was used for the shown results.106

26 Examples of various randomly generated scenarios for each combination of
two- and three-dimensional initial and target con�gurations. 107

27 Adaptation strategy for τ with τnom = 0.01, τmax = 1.0, and N = 15. Shown
is an example of a utility function time series for a single agent together with
a time series of the corresponding learning rate τ 111

28 Convergence times for two- and three-dimensional recon�guration sequences
containing 20 agents for varying values of τ . The results of four di�erent
learning rates τ are shown: τ = 0.01, τ = 0.1, τ = 1, and a time-varying τ
according to Section 5.1. In both �gures, an example of the initial con�gura-
tion CI is shown on the left (in red, opaque), obstacles are shown in the center
(in black, opaque), and the target con�guration CT is shown on the right (in
green, semi-transparent). 115

29 Example of a user-speci�ed transition graph and the utility switching state
machine constructed from it. 124

x

30 Convergence times for a con�guration containing 36 agents using four di�er-
ent incentivization strategies: a �xed target-seeking utility (Section 4.2), an
adaptive target-seeking utility (Section 5.1), switching utility functions (Sec-
tion 5.2), as well as adaptive switching utility functions (a combination of
Section 5.1 and Section 5.2). The initial and target box con�gurations are
spaced eight units apart. 130

31 Examples of dendrite-like sub-con�gurations forming that prevent the assem-
bly of the target con�guration within the 10,000 time step horizon. 131

32 Convergence times for a con�guration containing 48 agents using four di�er-
ent incentivization strategies: a �xed target-seeking utility (Section 4.2), an
adaptive target-seeking utility (Section 5.1), switching utility functions (Sec-
tion 5.2), as well as adaptive switching utility functions (a combination of
Section 5.1 and Section 5.2). 132

33 Convergence time results for an example comparing endogenous and exoge-
nous switching strategies. The basic switching strategy of Section 5.2.3 is
compared against three exogenous switching strategies using di�erent switch-
ing thresholds: 80%, 90%, 95% of the maximum achievable global potential
for a given utility mode. 133

34 Examples of a spread out con�guration caused by a too large switching thresh-
old in an exogenous switching example. 134

35 Isometric and top view of the GRITSBot. 136

36 Unicycle model for di�erential drive robots based on the geometry of the
GRITSBot. 139

37 Average convergence time for a two-dimensional con�guration of eight agents
based on 10 trials. 146

38 Image sequence of a self-recon�guration trial on a team of eight GRITSBots. . 147

39 System architecture overview. The current prototype includes components
that are executed locally on Robotarium infrastructure as well as user-facing
components that run on remote user machines (APIs or simulation front end).
Three components interact directly with the robot hardware - tracking, wire-
less communication, and virtualization. The remaining components handle
user management, code veri�cation and upload, as well as coordination of
user data and testbed-generated data. 149

40 The current revision of the GRITSBot. 159

41 Bottom view of the three layers of the GRITSBot. 159

42 Top view of the three layers of the GRITSBot. 160

43 Automatic sensor calibration station . 165

44 Examples of markers used for position tracking. 168

45 The charging station for autonomous recharging of the GRITSBot's battery. . 169

xi

46 Schematic of the main board. 178

47 Schematic of the motor board. 179

48 Schematic of the sensor board (part 1). 180

49 Schematic of the sensor board (part 2). 181

xii

SUMMARY

Self-recon�gurable robotic systems are variable-morphology machines capable of

changing their overall structure by rearranging the modules they are composed of. Indi-

vidual modules are capable of connecting and disconnecting to and from one another, which

allows the robot to adapt to changing environments. Optimally recon�guring such systems

is computationally prohibitive and thus in general self-recon�guration approaches aim at

approximating optimal solutions. Nonetheless, even for approximate solutions, centralized

methods scale poorly in the number of modules. Therefore, the objective of this research is

the development of decentralized self-recon�guration methods for modular robotic systems.

Building on completeness results of the centralized algorithms in this work, decentralized

methods are developed that guarantee convergence to a given target shape. A game-theoretic

approach lays the theoretical foundation of a novel potential game-based formulation of the

self-recon�guration problem. Stochastic convergence guarantees are provided for a large

class of utility functions used by purely self-interested agents. Furthermore, two extensions

to the basic game-theoretic learning algorithm are proposed that enable agents to modify the

algorithms' parameters during runtime and improve convergence times. The �exibility in the

choice of utility functions together with runtime adaptability makes the presented approach

and the underlying theory suitable for a range of problems that rely on decentralized local

control to guarantee global, emerging properties.

The experimental evaluation of the presented algorithms relies on a newly developed

multi-robotic testbed called the �Robotarium� that is equipped with novel custom-designed

miniature robots, the �GRITSBots�. The Robotarium provides hardware validation of self-

recon�guration on robots but more importantly introduces a novel paradigm for remote

accessibility of multi-agent testbeds with the goal of lowering the barrier to entrance into

the �eld of multi-robot research and education.

xiii

Chapter I

INTRODUCTION

Self-recon�gurable systems are comprised of individual modules which are able to connect

to and disconnect from one another to form larger structures. These systems therefore have

the ability to change their morphology, structure, and functionality through changing the

relative positions of their modules. Changes to the system's con�guration allow the aggregate

robot to adapt to new tasks, changing environments, or replace broken or malfunctioning

modules. In the context of search and rescue, for example, such a change in morphology

could be warranted by a change of terrain from �at surfaces to rough terrain. A modular

robot could then recon�gure from a wheeled con�guration into one that features legged

locomotion and subsequently traverse the challenging terrain. Another bene�t of modular

robots is that broken modules can be replaced by functional ones or new modules can be

added without changing the general functionality of the structure [196, 71, 164].

Their modular architecture allows �ne-grained control of self-recon�gurable systems

(SRS) but introduces signi�cant computational and controls-related complexities as the

number of modules is scaled up and the number of degrees of freedom increases. On the one

hand, as mentioned in [1], the number of possible con�gurations grows exponentially in both

the number of modules and the number of connectors per module. On the other hand, the

self-recon�guration problem (SRP) itself is NP-hard due to the highly combinatorial nature

of the problem, which is stated as follows. Solving the self-recon�guration problem requires

planning a sequence of individual module motions that optimally transforms an initial into

a desired target con�guration (an example of such a sequence is shown in Fig. 1).1 Because

of the intractability of computing optimal solutions for large self-recon�gurable systems, the

majority of approaches is either limited to small systems or aims at approximating optimal

1Optimality for the SRP can be formulated in a number of ways but is most often stated as the minimum
cumulative distance traveled by all modules.

1

solutions.

The overarching goal of the presented work is therefore the development of methods

that make the control of large modular robotic systems tractable by sacri�cing optimality

in favor of scalability. In particular, the objective of this research is twofold. On the one

hand, it explores scalable distributed algorithms for the control of self-recon�gurable systems

in Chapter 3 - 5. On the other hand, a full-�edged multi-robot testbed based on custom-

designed miniature robots is developed in Chapter 6 that allows the experimental veri�cation

of the presented algorithms as well as multi-agent algorithms in general. The algorithmic

and theoretical components of this work place the focus on scalable and decentralized ap-

proaches that solve the self-recon�guration problem in a provably complete manner and thus

guarantee convergence to the desired target con�guration. Novel approaches for the decen-

tralized recon�guration of modular robots from arbitrary initial con�gurations to desired

target con�gurations are presented in Chapter 4 and Chapter 5.

Before these decentralized methods are developed, Chapter 3 explores centralized plan-

ning methods and aims at establishing an understanding of the challenges associated with

self-recon�guration. More speci�cally, Chapter 3 investigates the di�culties of centralized

planning in such high-dimensional spaces and presents novel algorithms that can be applied

to homogeneous as well as heterogeneous systems. While heterogeneous systems feature

modules that di�er in one or more properties - for example shape, size, or capabilities -

homogeneous systems are comprised of completely identical and interchangeable modules.

This module interchangeability in homogeneous systems typically simpli�es the recon�gu-

ration planning problem, but just as for heterogeneous systems, the potential for deadlocks

exist. Therefore, the focus of Chapter 3 lies in the detection and avoidance of deadlocks such

that the assembly of the target con�guration can be guaranteed. In fact, the main contribu-

tion of Chapter 3 is the development of provably complete algorithms for both homogeneous

and heterogeneous self-recon�guration planning. However, given the high computational

complexity of the self-recon�guration problem (even after the requirement of optimality is

dropped), centralized methods scale poorly in the number of modules. Therefore, the meth-

ods shown in Chapter 3 aim at establishing completeness in the algorithmic sense rather than

2

Figure 1: Example of a self-recon�guration sequence from an initial random 2D con�guration
(left, opaque blue) to a 2D target con�guration (right, semi-transparent green) using the
adaptive learning rate strategy outlined in Chapter 5 (also see [147] and [148]). Note that
not every time step is shown.

3

solving large problem instances. These completeness results lay the theoretical groundwork

for the decentralized methods in Chapter 4 and Chapter 5, which are the main contributions

of this work.

The literature discusses numerous centralized and decentralized solutions methods for

the SRP. However, the majority of algorithms include caveats that potentially compromise

their scalability or generality. For example, some distributed methods require a large amount

of communication [61] or precomputation [60, 145], others either focus on locomotion [30] or

functional target shape assemblies alone [109]. Distributed approaches have often relied on

precomputation of rulesets [66, 145], policies [60], or entire sets of paths/folding schemata of

agents [42]. Chapter 4 aims at rectifying these shortcomings by presenting a fully decentral-

ized approach to homogeneous self-recon�guration for which no precomputation is required.

Our method guarantees convergence to the target con�guration even though each module

acts as a purely self-interested decision maker with local information only (and therefore

little communication overhead). Modules are represented by game-theoretic agents and the

overall self-recon�guration problem is formulated as a potential game that can be solved

using game-theoretic tools. In particular, the main contribution of this section is a novel

game-theoretic learning algorithm that guarantees stochastic convergence to the target con-

�guration for a large class of utility functions.2 Flexibility in the choice of utility functions

makes the presented approach and the underlying theory suitable for a wide array of prob-

lems that rely on decentralized local control to guarantee globally emerging properties.

Future applications for self-assembling and self-recon�guring systems are plentiful and

widely varied. On the more practical end of the spectrum, these applications include re-

con�gurable structures such as furniture, vehicles, or buildings, planetary exploration, or

adaptable search and rescue robots. More futuristic applications range from self-assembling

nano-robots (for example for health care), programmable matter (for example to change op-

tical or acoustical properties of materials), or even accelerated robotic evolution (see [131]).

2Utility functions incentivize agents on a local level in such a way as to guarantee global properties, for
example, the assembly of the target con�guration.

4

Figure 2: Example of a self-recon�guration trial on a team of eight GRITSBots. The full
image sequence is shown in Chapter 6.

However, all of these applications require scalable and adaptive methods capable of control-

ling large numbers of modules. Chapter 5 therefore addresses the limited adaptability of

the methods presented in Chapter 4 by introducing time-varying learning rates as well as

assembly mode switching using di�erent utility functions. Time-varying learning rates allow

agents to modify their aggressiveness level with respect to the exploration of the state space

(as opposed to greedily exploiting their knowledge for the assembly of the target con�gu-

ration). An assembly mode switching scheme allow agents to select a bene�cial assembly

mode based on local state information with the goal of improving convergence rates to the

target con�guration (compared to the results achieved in Chapter 4). A number of utility

functions are presented to exemplify the design of assembly modes and to demonstrate the

e�ectiveness of assembly mode switching. The main theoretical contributions of this chapter

are the proofs of convergence for both adaptive methods, which are based on the theory in

Chapter 4.

All of the methods introduced so far have been validated extensively in simulation.

5

Ultimately, however, what makes a self-recon�guration algorithm useful is its applicability

to robotic systems. As such, Chapter 6 leaves the sheltered existence of simulation and

instantiates the algorithms developed in Chapter 4 and Chapter 5 on robotic hardware

(an example is shown in Fig. 2). Speci�cally, a novel multi-robotic testbed is presented

that allows the execution of self-recon�guration algorithms. While developed with self-

recon�guration in mind, this testbed - dubbed the Robotarium - aims at being a much more

general, usable, and accessible research instrument. The Robotarium contains miniature

wheeled robots - the GRITSBots - which were speci�cally designed for compact multi-agent

experiments [144]. While Chapter 6 focuses on showing the feasibility of our two-dimensional

recon�guration methods on the Robotarium, it is just one of many example application

supported by the GRITSBot. Robotarium users have instantiated algorithms for tasks as

varied as consensus, cyclic pursuit, leader-follower networks, formation control, and coverage

control.

Altogether, the research in this work seeks to advance the �eld of self-recon�gurable

robotics through novel and scalable control methods on the one hand and an exemplary

instantiation on a custom-designed yet general-purpose multi-robot testbed on the other

hand. The underlying theory based on graph- and game-theoretic tools is suitable for a

wide array of problems that rely on decentralized local control to guarantee globally emerging

properties.

6

Chapter II

BACKGROUND

This section introduces the concept of self-recon�gurable systems, their properties, potential,

challenges, opportunities, and ultimately the underlying goal of developing and using them in

real-world applications. We will survey existing architectures, present common abstractions

used in modeling these systems, discuss popular control approaches that are capable of

handling such high degree of freedom systems, and outline applications and opportunities.

While self-recon�gurable systems have great potential, a number of research questions need

to be resolved before they will �nd widespread use in real-world applications. Therefore,

this section also presents an overview of the unsolved challenges these systems face. In

concluding this chapter, we also de�ne the self-recon�guration problem in a rigorous fashion

and detail the speci�c abstraction used to represent self-recon�gurable systems in this work.

The main purpose of this chapter is twofold. On the one hand, it serves as a character-

ization of self-recon�gurable systems and introduces their appealing properties that could

make their use bene�cial for a wide range of applications (assuming that the challenges

mentioned in Section 2.1.5 can be addressed). As such, this chapter aims to survey the rich

literature on self-recon�gurable systems and embed the presented research therein. On the

other hand, this chapter provides a general problem setup used throughout this work with

chapter-speci�c modi�cations.

2.1 Self-recon�gurable Systems

Self-recon�gurable systems (SRS) are composed of (large numbers of) physically intercon-

nected modules. A module can be thought of as the basic building block of SRS much like

cells are the basic building block of biological systems. Unlike their biological counterpart

however, modules are capable of computation and in most cases actuation as well (though

robots with passive modules exist). The great potential of SRS arises from the fact that

their morphology or shape is not �xed but can be modi�ed at any time by changing the

7

connectivity of their modules. Modifying their structural con�guration allows SRS to adapt

to multiple functional requirements, tasks, or environmental conditions. Unlike traditional

robots, which are designed to perform a speci�c task, SRS are designed bottom-up, where

a basic module design enables various geometries, functions, and capabilities of the aggre-

gate system. The potential of self-recon�gurable system arises from a number of di�erent

dimensions such as robustness, fault-tolerance, extensibility and modularity, versatility and

adaptability, low-cost, and resource reuse (see [101, 196]).

Robustness Another potential advantage of self-recon�gurable systems is their inherent

robustness to perform a task despite partial failures. Whereas conventional robots are often

rendered nonfunctional in the face of hardware failures, SRS can eject and replace broken or

malfunctioning modules (assuming an oversupply of modules in the system). The capability

of autonomously replacing faulty parts leads to a notion of self-repair (see [196]).

Versatility and Adaptability One of the biggest advantages of self-recon�gurable sys-

tems is their potential for versatility and adaptability. Their ability to dis- and reassemble

allows them to form new morphologies that are better suited for new tasks and new en-

vironments. For example, a robot using legged locomotion can recon�gure into a wheeled

con�guration. Regarding manipulation, a robot could, for example, extend or shorten its

manipulator arms and end-e�ectors during runtime, or add/remove arms altogether. As

such, SRS support multiple modes of locomotion, manipulation, and also perception. How-

ever, SRS are likely to be less e�cient when compared to monolithic task-speci�c robots.

For example, a wheeled robot is likely to be able to drive faster than an SRS in a wheeled

con�guration (see [101, 196]).

Extensibility and Modularity Extensibility and modularity of self-recon�gurable sys-

tems was highlighted in [101]. Whereas the traditional design paradigm of robots emphasizes

designs with a minimum number of components, SRS are built on the premise of an abun-

dance of modules. This makes SRS inherently extensible systems, since additional modules

allow the aggregate system to perform a larger set of tasks or execute them in a more parallel

8

fashion. The minimal design of traditional robots on the other hand, limits their ability to

adapt to new tasks or extend their functionality. As an example, imagine a scenario where

an armed manipulator tries to grasp an object but fails because the object has a too irregular

shape. A traditional robot would fail for lack of adaptability. A modular robot on the other

hand can simply change its gripper geometry or assemble a new manipulator altogether.

Low Cost and Mass Production In [196], Yim et al. argue that economies of scale and

mass production of modules could work in favor of self-recon�gurable systems. This could

particularly prove true for SRS that are composed of a single type (or few types) of modules,

in which case, large numbers of modules could be built at low cost. Additionally, SRS allow

resource reuse in the sense that they can be disassembled after a task is completed and their

modules reused for a di�erent purpose.

The use of self-recon�gurable systems however does not come without certain disad-

vantages. For example, the inherently large number of modules increases the mechanical

complexity of the overall system as well as the computational complexities of controlling an

SRS. However, the main point of criticism of SRS is the fact that such a modular robot is

likely inferior at performing a certain task than a robot speci�cally tailored, designed, and

built for that task. In that sense, SRS will be most advantageous and live up to their promise

in scenarios, where multiple tasks need to be addressed that would otherwise require a set

of �xed-morphology robots (see [196]). The following sections present a taxonomy of SRS,

commonly used abstractions and models, a review of controls approaches, as well as current

and future applications. A more detailed discussion of the challenges that self-recon�gurable

robots face will then be presented in Section 2.1.5.

2.1.1 A Taxonomy

Self-recon�gurable systems can be di�erentiated along a number of dimensions: size, shape,

geometry, homogeneous versus heterogeneous systems, active versus passive actuation, etc.

Following the general consensus in the literature, we present a classi�cation by geometry

which includes lattice-type, chain-type, and mobile systems, as well as other types that do

not �t in either category. This section intends to give an overview of the major categories.

9

A comprehensive list of historic and current hardware implementations is shown in [71, 131,

175, 196]. Note that the recon�guration approaches in Chapter 3 to 5 are applicable to

lattice-based systems and are then mapped to the dynamics of a mobile system in Chapter

6.

Lattice-type Systems In lattice-based systems, units are arranged and connected in

a regular two- or three-dimensional grid pattern. Cubic lattices are most commonly used

([5, 23, 24, 70, 73, 155, 154]), but other types such as hexagonal grids ([190, 44]) or triangular

grids ([94]) have also appeared in the literature. In general, module geometries that create

regular periodic grids require a certain degree of symmetry. Murata et al. [131] compare

the modules in these systems to cells in biological systems or to the atoms in crystal.

Lattice-based systems are appealing from a simulation perspective because they allow

abstractions that facilitate generic recon�guration algorithms. The reason for this is that

the lattice type implicitly speci�es the allowable motions on that lattice. Furthermore,

modules are only able to move to a discrete set of adjacent lattice positions. This discrete

nature of possible module motions allows them to be open loop because they do not require

precise relative alignment between modules. The actuators and connectors embedded in the

modules have to enable them to execute motions and connect to adjacent modules either

in a self-actuated fashion or with the help of other modules. This is where a high degree

of symmetry is disadvantageous because the higher the symmetry, the higher the number

of degrees of freedom and the higher the number of actuators and connectors required to

accomplish module motion. This in turn leads to high hardware complexity, complicates

the design, and leads to low power-to-weight ratio of modules (see [71, 131, 196]).

For these reasons, hardware implementations tended to be large and bulky ([106]), op-

erated in two-dimensional workspaces (the Crystal system[160] or EM-cubes [5]), or relied

on external actuation (the Miche and the Pebbles systems [72, 73, 74], or systems sus-

pended in �uids [192, 136, 187]). Most lattice-based systems featured modules that could

only execute motions with the help of other modules (for example the Molecule system

[100]). Only recently, a cubic hardware implementation was presented that was capable

10

of full three-dimensional motion with few actuators ([154, 155]). The 3D M-Blocks rely

on a single �y-wheel actuator that allows them to locomote in three dimensions while the

connection mechanism uses permanent magnets. It remains to be seen whether this novel

hardware leads to increased popularity of lattice-based systems in physical implementations.

In the simulation domain, lattice-based systems already enjoy a certain popularity because

of the relative ease and compactness with which lattice-based systems can be computation-

ally represented and controlled (compared to chain-type systems operating in a continuous

domain).

In the presented work, we exclusively develop methods for lattice-type systems containing

modules that are arranged in a regular grid, more speci�cally in a cubic grid. Details about

the particular abstraction used in this work are shown in Section 2.3.

Chain-type Systems Chain-type systems consist of modules that are connected in a

serial chain of actuated joints and links between joints. Depending on the number of con-

nectors on each module these topologies can either be purely serial (in the case of two

connectors per module), create tree topologies or even include cycles (in the case of branch-

ing modules with more than two connector interfaces). Tree-like structures allow the system

to create multi-limbed structures with a variable number of variable-length limbs, which

makes this type of self-recon�gurable system appealing, for example, for space applications.

An advantage of using chain-type systems is that they can fold up to become space �lling,

i.e. emulate lattice-based systems. So even though the underlying architecture is serial,

these systems can arrange modules in a grid pattern. On the other hand, lattice-based

systems can appear like chain-type systems if modules are connected in a linear chain (see

[71, 131, 196]). Intuitively, chain-type systems can be thought of as n-link kinematic chains

or serial manipulators with a variable architecture. Tree con�gurations appear similar to

parallel manipulators though they do not necessarily have a platform or an end-e�ector as

the central component.

Chain-type systems typically have a lower degree of symmetry, which means that module

11

designs require fewer actuators and connectors to be functional. The resulting lower hard-

ware complexity goes hand in hand with a higher power-to-weight ratio, which means that

motion generation is more easily accomplished than on lattice-based systems. However, the

continuous nature of module motions complicates self-recon�guration of chain-type systems

because precise alignment between modules is required to establish a connection between

modules. As such, chain-type systems tend to be more di�cult to control, more complex

to represent, and harder to analyze. Yet they o�er the potential to reach any point in the

con�guration space and, therefore, are potentially more versatile than lattice-based systems

(see [131]). Popular con�gurations of chain-type systems include legged topologies, wheeled

con�gurations, or snakes.

The lower degree of symmetry present in most chain-type systems facilitates hardware

design, which is one of the reasons, the literature feature a number of physical realizations

of chain-type systems. Examples include the CONRO system (see [39, 38, 169, 168, 177]),

the various iterations of the M-TRAN system (M-TRAN I [108, 110], M-TRAN II [107],

and M-TRAN III [131, 109], see Fig. 3a1), the SuperBot (which can be thought of as

a modi�ed M-TRAN module with an added degree of rotational freedom [167, 163]), the

CKBot ([141]), the Molecube ([203, 202], see Fig. 3b2), or the Roombot ([174, 173]). What

all of these systems have in common is their relatively low number of degrees of freedom

per module (up to two DoF according [196] with the exception of the SuperBot, which

has three DoF). These modules, however, allow the formation of complex structures with

signi�cant �exibility. Another chain-type system is the Milli-Motein system [98]. While

most self-recon�gurable systems allow modules to connect and disconnect from one another,

the Milli-Motein's topology is �xed and self-recon�guration happens through changing the

folding schemata similar to protein folding in biology. Related, though purely in simulation,

is the work by Cheung et al. on universally foldable strings [42].

1Image courtesy of H. Kurokawa (AIST), licensed under Creative Commons Attribution 2.5 Generic
2Image courtesy of Victor Zykov (Cornell Computational Synthesis Lab), licensed under Creative Com-

mons Attribution-ShareAlike 2.5

12

(a) Shape metamorphosis shown on the M-TRAN III
system developed at AIST (Advanced Industrial Science
and Technology, Japan)

(b) The Molecube system developed at the
Cornell Computational Synthesis Lab.

Figure 3: Examples of hardware instantiations of chain-type systems.

Mobile Systems The modules of this type of self-recon�gurable system do not necessarily

depend on other modules to move but can instead use environmental features for locomotion.

These modules can form chains of modules as well as complex lattice patterns or alternatively

move through the environment completely independently from other modules. An example

of a robots that falls into this category is ModRED system [81] or the distributed �ight

array [138] that consists of units that are capable of wheeled locomotion on the ground and

rely on other modules to �y (since each module houses only a single rotor, see Fig. 43). The

system presented in Chapter 6 also falls into this category of systems.

Other types Not all systems that have been proposed over the years allow the above

categorization. Truss systems, for example, are neither of the above types of systems. They

contain active elements or struts that achieve deformation through contraction and expan-

sion. These active elements are connected through passive links and joints. Examples of

truss systems include Morpho [199] and Odin [116]. Intuitively these systems form objects

that bear similarity to sca�olding. Another type that does not �t the conventional cate-

gorization are free-form systems such as the MEMS-based devices shown in [51] and [52].

These MEMS devices are controlled through voltage pulses that allow them to move in the

plane. They can also be controlled to dock and form larger planar structures. Catoms, for

example, ([77, 93, 76]) represent another system that could be considered free-form. These

3Image courtesy of Raymond Oung (ETH Zurich), licensed under Creative Commons Attribution-Share
Alike 3.0 Unported

13

Figure 4: A 10-module con�guration of the Distributed Flight Array as an example of a
mobile self-recon�gurable system.

cylindrical modules are actuated by 24 electromagnets arranged around their circumference.

While capable of forming regular lattices, these modules are also fully functional without a

lattice.

2.1.2 Abstractions and Models

Numerous methods of representing self-recon�gurable systems have been proposed over the

years. In this section we want to provide a brief overview of the most commonly used

abstraction methods of self-recon�gurable systems. Unlike [1], which provides a thorough

and detailed list categorized by solution methods, this section groups abstraction meth-

ods by the underlying data structure. As such, we categorize the various abstractions

into graph-based representations (connectivity and connector graphs, lattice connectivity

graphs), matrix-based representations (incidence matrices), discretization and grid-based

methods, and geometric approximations.

In general, abstractions facilitate the control of complex systems. In the case of self-

recon�gurable systems, abstractions allow to decouple the complexities of transitioning be-

tween states from the self-recon�guration algorithm itself (for example in the sliding cube

14

model described below). A module motion planner, for example, does not need to know

the details of how a primitive motion is executed, it only needs to know the set of possible

motions. The recon�guration planning methods of Chapter 3 as well as the agent-based

methods in Chapter 4 rely on such an abstraction of the motion model. In Chapter 6 we

then show how abstract motion primitives can be mapped to the continuous dynamics of

robotic hardware.

Graph-based representations Graph-based abstractions represent a self-recon�gurable

system as a set of vertices and a set of edges, where a vertex represents a module and an

edge represents a connection between two modules. These connectivity graphs (or module

graphs as they were initially called in [36]) represented a con�guration of modules as a

graph, which made it accessible to graph-theoretic tools and e�cient solution methods. In

[140] for example, a graph-theoretic similarity metric between di�erent con�gurations was

proposed that relied on a similar connectivity notion called the lattice connectivity graph.

This metric could then be used to estimate the number of module motions to transition from

one con�guration to another and determine whether two con�gurations are equivalent. One

of the main downsides of using connectivity graphs, however, was the fact that di�erent

con�gurations could have the same graph topology (see [1]) because connectivity graphs

were unlabeled. This issue was addressed in [82] through labeled graphs (more speci�cally

edge labeled graphs that described the connector state of modules) and directed graphs that

encoded additional information in the direction of edges ([38]). Later work by Asadpour et

al. ([8, 9]) used the notion of graph isomorphism to determine whether two con�gurations

were equivalent and if not, determine their dissimilarity. They introduced the notion of

graph signatures that were based on connectivity information between modules and labeled

edges. These labeled graphs could then be used for con�guration discovery through graph

isomorphism checks, i.e. a self-recon�gurable system could determine how its modules were

currently arranged.

In general, graph-based abstractions are compact and concise representations of a system

and are well suited for the application of search-based solution methods (see [1]). Because

15

1

2 3

4

5

6

7

8

(a) Example of an unlabeled graph.

F

D

H

B

N

M

S

6
5
0 780

490

450

58
0

600

49
0

210 63
0

210
230

(b) Example of a labeled graph containing both edge and
vertex labels.

Figure 5: Examples of unlabeled and labeled graphs.

the complexities of a system are abstracted away and encoded in a set of vertices and edges

that can be traversed easily, these search-based methods tend to be fast and e�cient. The

approaches shown in Chapter 3 rely on a graph-based representation of the system but also

make use of notions from grid-based abstractions shown below.

Matrix-based representations Matrix-based representations are closely related to graph-

based ones in that they also encode the connectivity information of a self-recon�gurable

system in a structured form. Incidence matrices (see [40]), for example, are the matrix

equivalent to connectivity graphs. An incidence matrix is an n ×m matrix where n is the

number of vertices (or modules in the system) and m is the number of edges (or the number

of connectors/joints of a module). Here, an entry ai,j ∈ {0, 1} indicates the absence or

presence of a connection between link i and joint j. The incidence matrix notation's main

disadvantage is that it encodes no information about the connectors' docking orientation and

the permutation in which connections are established. It therefore does not fully describe

a con�guration. A slight twist on the notion of incidence matrices was introduced in [41]

through assembly incidence matrices that replaced 0 and 1 entries by port numbers that

described through which port of a connector a module i was connected to another module j.

16

This modi�cation allowed the identi�cation of isomorphic con�gurations and the introduc-

tion of equivalence classes of con�gurations. A specialized matrix notation for truss-based

systems was introduced through the con�guration coupling model that used an n× 3 matrix

to describe a con�guration (see [53]).

Grid-based representations A number of methods rely on grid-based representations

of self-recon�gurable systems and the environment they are embedded in. Two methods in

this category are the sliding cube model initially introduced in [28] and the pivoting cube

model [184]. Both models represent modules as cubes in a discrete regular lattice. These

cubes can occupy positions in the grid and move between grid cells using primitive motions.

While the sliding cube model allows for two primitive motions - sliding motions and convex

transitions around other modules - the pivoting cube model only o�ers a single motion

primitive. Modules are only allowed to pivot (rotate) around an edge shared with another

module.

The sliding cube model has been used extensively since its introduction (for example in

[30, 61, 64, 145, 146]) and instantiated on a number of hardware implementations - most

notably the Superbot system [163, 167], the M-TRAN system [130, 108, 107, 110, 131, 109],

and similar systems such as the Crystal [160] and the Telecube robots [189]. The pivoting

cube model was introduced only recently but already found application on the M-Block [154]

and 3D M-Block system [155].

The main advantage of these models is that they decouple the complexities associated

with executing low-level motion primitives from the actual self-recon�guration algorithm

itself (see [1]). Note that in this research, we will exclusively use the sliding cube model

and impose a varying number of constraints on the system depending on the speci�c self-

recon�guration algorithm used. A detailed description of the sliding cube model can there-

fore be found in Section 2.3. Additionally, in Chapter 6 we will show how a high-level

self-recon�guration algorithm can be instantiated on a physical system using a low-level

control layer responsible for executing primitive actions.

17

Approximation-based representations The main goal of approximation methods is

a compact description of a (target) con�guration either by using a volume or a surface

approximation. The approach is similar for both methods in that a geometric expression is

used to describe a con�guration. For the volume approximation method, a con�guration

can be represented by bounding boxes of equal size (as shown in [63, 4, 70]) or of variable

size (as shown in [182, 179]). Clearly, the quality and accuracy of such an approximation

depends on the number and sizes of bounding boxes used. Larger numbers of small boxes

increase the accuracy of this approach (see [181]). The surface approximation approach on

the other hand characterizes a con�guration by its external surface (see [1]). This surface can

be thought of as partitioning the space into an interior and exterior subspace. A module's

goal is to occupy a position in the interior subspace. Therefore, for this approach to work,

modules need to be able to determine in which subspace they currently reside. This is a

tried and tested approach in computer graphics, where volumes are often approximated using

triangular surfaces. However, it is not clear that modular robots with limited processing

power are able to handle this computationally intensive method (see [181]).

Other methods A variety of other types of representations exist in the literature. Here,

two loosely biologically inspired examples are presented that contrast the approaches intro-

duced above. Both of the following approaches are based on folding. Whereas Cheung et al.

[42] introduce a method that folds one-dimensional strings into two- and three-dimensional

structures similar to protein folding, Nagpal et al. [135, 134] fold two-dimensional sheets of

modules into two- and three-dimensional objects. The latter method was inspired by paper

folding (origami). Hardware implementations already exist for both types. Foldable strings

of modules have been presented in [98] (called the Milli-Motein) whereas foldable robots

have been presented in [127]

2.1.3 Control Approaches

A recent overview paper [1] identi�ed nine basic operations for modular robots, which in-

cluded self-recon�guration, self-assembly, self-disassembly, self-adaptation, grasping, collec-

tive actuation, �ow, gait, and enveloping. In this section, the focus lies on self-recon�guration

18

with tangential coverage of the neighboring �elds of self-(dis)assembly and �ow. Specif-

ically, in this work, we treat �ow (or locomotion through self-recon�guration) as part of

self-recon�guration. More generally, the approaches presented in this document allow for

self-assembly, self-disassembly, self-recon�guration, as well as �ow. This sections loosely fol-

lows the categorization shown in [1] with a focus on search-based and agent-based methods,

as the methods shown in this work can be categorized as such.

Note that control approaches could also be categorized according to a number of other

attributes such as deterministic versus stochastic control (see [196]), centralized versus de-

centralized control, serial versus parallel module motion, or online versus o�ine planning

(precomputation). In this section however, we focus on a categorization based on the un-

derlying solution mechanism.

Search-based methods Search-based methods have their origin in the arti�cial intelli-

gence domain where for example Russell et al. [161] de�ne a search problem as having �ve

basic components: an initial state, a (state-dependent) set of actions, a transition model,

a goal test, as well as a path cost. The �rst three elements implicitly de�ne a state space,

which in turn gives rise to a directed transition graph in which nodes are states and edges

are actions that lead from one state to another. The goal of a search-based method is to

�nd a sequence of actions from the initial state to a desired goal state (i.e. the target con�g-

uration) through the state space. Applied to the self-recon�guration domain, a state in the

state space is that of an entire con�guration, a path through the state space is a sequence of

con�gurations, and actions are taken by individual modules that change the con�guration.

The most elementary search methods do not require any knowledge about the search

problem beyond the above de�nition of the �ve key elements. This group of algorithms in-

clude depth-�rst search, breadth-�rst search, or Dijkstra's algorithm (see [161]). The lack of

additional knowledge about the search domain, however, introduces a high branching factor

and a state space that is exponential in the number of modules, which makes uninformed

search intractable for general self-recon�guration problems. According to [1], one of the

tractable scenarios occurs when the size of the con�guration graph (i.e. the state space) is

19

small enough (see [191]). Alternatively, search methods can be used as an auxiliary compo-

nent, for example, for computing a module's path from one lattice position to another (as

done in [100, 160, 63, 112]).

Search methods that have access to specialized knowledge about the search domain allow

a guided search towards promising directions or states that are likely to lead to goal states.

These methods are called informed search methods and include algorithms such as A∗ or

D∗, which are both optimal and complete. In other words, they are guaranteed to �nd the

shortest path from an initial state to the goal state. A∗, for example, has been applied to

the self-recon�guration problem in [13, 145, 146], D∗ in [19]. These search methods rely on a

heuristic function to estimate the distance of a state to the goal state. Various such heuristics

have been proposed in the literature (for example in [140, 9, 8]). While originally developed

as centralized methods, all of the above mentioned informed and uninformed methods can

also be implemented as distributed algorithms but then rely extensively on information

exchange via message passing. Methods that were speci�cally developed for distributed

execution are shown in [46, 47]. These methods equip each module with the capabilities

to plan its own actions based on local information gathered via local perceptions or local

communication.

While the above methods work in a deterministic fashion, random and stochastic ap-

proaches have also been applied to the self-recon�guration problem, for example, Proba-

bilistic Roadmaps (PRM, [87]) or Rapidly-exploring Random Trees (RRT, [113]). RRTs

generate random trees rooted in the initial con�guration and have been shown to �nd solu-

tions faster than A∗ given that the self-recon�guration problem was su�ciently di�cult (see

[25]). Improvements to RRT-based methods with respect to the Superbot and M-TRAN

modules were studied in [78]. Another probabilistic method is based on simulated annealing

and has been employed in [140, 43].

In this work, search-based methods are employed in the centralized approaches of Chap-

ter 3 to compute individual module paths to goal locations as well as in Chapter 4 (Section

4.2) to verify the groundedness of modules.

20

Agent-based methods An agent, according to [161], is �anything that can be viewed

as perceiving its environment through sensors and acting upon that environment through

actuators.� This fairly broad de�nition applies to software-based agents, but can also be

applied to physical and simulated robots, for example, modules in a self-recon�gurable sys-

tem. In this context, a module interpreted as an agent can be viewed as an autonomous

rational entity that can e�ect change in the environment through actuators and perceive

the world through its onboard sensors. Agent-based methods give rise to a natural way of

distributing the intelligence and decision making authority in a self-recon�gurable system

since every agent has to make decisions based on local information that it can gather via

its own sensors or communication with other autonomous agents. From an agent's perspec-

tive, the world can be partitioned into two components: the agent's interior state and the

environment (or everything that is external). In that sense, the environment includes other

agents that impose kinematic constraints upon each other. This category includes a cornu-

copia of solution approaches (see [1]), for example, local rule-based methods ([86, 26, 146],

cellular automata [29, 31, 28, 30, 178], MDP-based formulations and dynamic program-

ming [60, 64, 162], reinforcement learning-based methods [171], game-theoretic methods

[153, 152, 54], and leader-follower approaches applied to self-recon�guration [115, 83].

Here, we will focus on rule-based and game-theoretic approaches since the methods in

this work and speci�cally in Chapter 4 are based on these techniques. Rule-based methods

including cellular automata induce �nite state machines, in which an individual agent de-

termines its next action based on its current state and the state of its neighbors. Cellular

automata have been introduced by John von Neumann in the 1940s and were �rst applied

to self-recon�guration in [29]. In that particular work, manually designed rules enabled a

self-recon�gurable system to locomote through environments with obstacles. Further exten-

sions in [28, 30, 31] allowed the system to split and merge as well as self-replicate. While the

rules used in these publications were manually designed for a particular tasks, a number of

approaches for automatic rule-generation exist. Rule generation for two-dimensional recon-

�guration has been demonstrated in [86], rules for the three-dimensional case were covered

in [146, 178] (and also Chapter 4), and auto-generated rules were applied to the ATRON

21

system in [26]. While local rules are computationally cheap to verify and apply by an agent

using only local information, their main disadvantage is that they have to be precomputed

or manually designed before an agent can use them. As such, their adaptability to changing

environmental conditions is limited.

Game theory is widely used in the �eld of multi-agent and swarm robotic system with

a rich body of work to tap into. More generally, game-theoretic methods have been applied

to numerous academic and non-academic domains including modeling of stock markets,

resource allocation in networking, behavioral psychology and modeling of biological systems,

arti�cial intelligence and decision making, or politics. Speci�cally in the multi-agent domain,

game theory found applications in vehicle-target assignment [7], coverage control [114, 119],

sensor-deployment problems [119], the consensus problem [119], congestion games and tra�c

modeling [120], and numerous others. However, game-theoretic formulations of the self-

recon�guration problem remain few. To date, self-recon�guration has only been formulated

as coalition games, which incentivizes agents to form and remain in teams (see [153]. This

coalition game structure was then used in [152] as a connectivity preserving mechanism

which allowed further coordination towards assembling the target con�guration. In [54, 55],

Dutta et al. exploit coalition forming to �nd the best con�guration of a modular robotic

system to perform a given task e�ciently. However, other game-theoretic tools such as

potential games or learning algorithms such as log-linear learning have not yet been applied

to the self-recon�guration problem.

In Chapter 4, we will show how a novel game-theoretic formulation can solve the self-

recon�guration problem in a decentralized fashion while guaranteeing global properties.

Modules will be represented as autonomous decision makers that select their actions based on

local information. Yet, we will be able to guarantee the assembly of the target con�guration,

which is a global property of the aggregate system.

Biologically inspired methods Bio-inspired methods are similar to agent-based meth-

ods in that they assume a module to be a self-contained entity capable of autonomous

decision making such that the aggregate system exhibits some desirable global behavior.

22

The �eld of biologically inspired multi-agent control algorithms for self-recon�guration is

too varied to cover in su�cient detail and breadth. This section therefore only aims at

providing exemplary evidence while a more thorough overview is provided in [1].

In [79], for example, a hormone-based control approach is presented that uses evolu-

tionary computation to adapt controllers to environmental conditions. A related approach

borrows ideas from biology through a hormone-inspired communication protocol in [168].

Also related to hormone-inspired control are gradient-based methods where a control policy

guides modules to follow a gradient to a goal position (see [1]). The complexity in these

approaches is shifted to computing gradients as opposed to computing local control signals.

Seed nodes are used in [178] that act as attractors similarly to arti�cial chemical. Modules

then compute a concentration of these arti�cial chemicals and follow a gradient in a steepest

descent fashion. Similar methods have also been applied in [176, 180].

One last class of algorithms that falls both into the category of probabilistic search

methods as well as bio-inspired methods are genetic algorithms, which maintain populations

of solutions and then iteratively propagate the �ttest solution through reproduction and

selection. For example, genetic algorithms have been used to evolve emergent behaviors

[111] and controllers [183], but also for adaptive action selection [90]. In connection with

simulated annealing genetic algorithms have been used to solve multi-objective optimization

problems [53].

Nano-inspired methods The idea of micro- and nano-assembly was proposed as far back

as the 1960s by Richard Feynman [58] who hypothesized about the possibility of manipulat-

ing matter on an atomic level. A thorough review of applications ranging from manufacturing

techniques to micro robots is given in Chapter 18 of [172]. An excellent overview paper [20]

speci�cally focuses on self-assembly at the meso-scale (microns to millimeters). Methods

that cover the smaller range of nanometers to microns are presented in [193] together with

a general outline of the e�ects in�uencing self-assembly at such a scale. The remainder of

this section provides a brief introduction of nano-inspired methods and focuses on a select

few publications relevant to the �eld of self-assembly on a micro- and nano-scale level. Note

23

that all presented systems in this sections contain passive building blocks or particles. How-

ever, the advent of MEMS (microelectromechanical systems) is beginning to change passive

towards active modules (see Chapter 18 of [172]).

Common themes in nano-inspired methods include the use of anisotropy of particles,

interaction of heterogeneous particles, the lock-and-key principle of interlocking parts, and

the design of interaction forces that in turn determine which con�gurations can be assembled.

In [126], for example, local rules are designed based on heterogeneous shapes of parts and

varying attractive forces (in this work this property is referred to as patchiness) that give rise

to planar assemblies of parts. These local rules are similar to the cellular automata-based

and rule-based approaches which were mentioned above for agent-based control strategies.

An overview of the parameters that can be used in the design of rules was shown in [188],

which include curvature radius, patch size, aspect ratio, roughness, and a host of others.

Similar work on the tunable self-assembly of colloidal crystals using recon�gurable build-

ing blocks was investigated in [99]. Design parameters in this paper are the size ratio of

overlapping spheres that building blocks are composed of as well as tunable interaction forces

between particles, for example, depletion or attraction forces.4 A related paper elaborated

on the lock-and-key principle used for assembling colloidal molecules and included a richer

model that allowed for more �ne-grained control over the recon�guration of building blocks.

While these approaches do not allow for runtime modi�cations, more recently a method en-

abling the real-time controlled assembly of colloidal particles (insoluble particles suspended

in another substance) was shown in [12]. In this work, a high-dimensional particle system

is observed through real-time imaging sensors. This sensor data then informs the design of

a Markov Decision process-based control policy that controls the assembly process through

externally applied force manipulation. This approach presents an externally actuated, cen-

tralized self-assembly process with passive parts. In this work however, we focus on active

agents capable of autonomous decision making and self-actuation based on local information.

4Note that tunable parameters are meant in a sense that rules can be manually tuned during the design
phase. No real-time adjustments during the assembly process are possible.

24

2.1.4 Applications and Opportunities

Even though the �rst self-recon�gurable system was proposed in the late 1980s ([67]) and

algorithmic and theoretic results are already mature to the point where millions of modules

can be modeled and controlled, hardware implementations are still lagging behind. The lack

of general purpose hardware modules (as mentioned in Section 2.1.5) complicates application

development and currently requires specialized hardware for every application. Nonetheless

self-recon�gurable systems show great promise for the future. As we will see in this section,

there already exist numerous prototypes for diverse applications. Up to this point however,

no �killer� application has emerged (see [196]).

Exploration One can imagine any number of futuristic application of self-recon�gurable

systems. In this section however, we will focus on those applications for which prototypes al-

ready exist or will materialize in the not too distant future. In general, suitable applications

will exploit, in one way or another, the key features of self-recon�gurable systems - adaptabil-

ity, robustness, and low cost (once a general module can be mass-produced). Adaptability

and robustness carry signi�cant importance in environments which are not easily accessible

or o�er limited opportunity for human intervention. A lack of accessibility can stem both

from a physical restriction (such as small scales in the micro and nano domain, great dis-

tances in space, or remote, hostile, and inaccessible environments) or arti�cial restrictions

such as cost. It is, for example, prohibitively expensive to deliver �xed-geometry robots

that have been designed for speci�c tasks into space or to explore deep sea regions. Ad-

ditionally these environments require adaptability to unforeseen circumstances (see [196]).

Space exploration as an application well-suited for modular robots has been mentioned in

([131, 195, 196]). It requires autonomous robots that are self-sustaining over long periods

of time and can adapt their functionality without human intervention, self-repair in case of

broken modules, or simply adapt to unforeseen circumstances. Self-recon�gurable systems

are better able to handle tasks that are not known a priori than monolithic robots with

�xed con�gurations because traditional monolithic robots typically require to be modi�ed

by human operators if a new task arises. An example of a hardware implementation that is

25

geared towards exploration through various modes of locomotion is the chain-type Superbot

system shown in [165, 166, 167].

Shape Duplication Another group of applications �ts the theme of shape duplication

and assembly of shapes from programmable parts. Yim et al. [196] call it bucket of stu�,

Pillai et al. [149, 150] named it the 3D fax, Goldstein et al. [76] refer to it as programmable

matter or synthetic reality, Yu et al. [200] use the term dynamic rendering, and Gilpin et

al. [75] simply call it 3D shape duplication. The underlying idea is similar in all of these

approaches: A set of modules is given a user-speci�ed task and assembles into an aggregate

system to complete the task. Such a task could simply be the assembly of a desired shape

or furthermore using the assembled structure to ful�ll a higher-level function. An example

of such a higher-level function is the real-time and remote replication of objects with the

goal of eliminating the need for virtual and augmented reality gear by allowing the physical

realization of computer-generated objects in real time ([76]). Unlike augmented reality

methods, programmable matter would allow the physical interaction (even remotely) with

computer-generated objects. The 3D fax is a non-real-time method capable of achieving

shape duplication with modules depending on external actuation (see [149, 150]). The

main obstacle between these ideas and a large-scale hardware prototype is the necessary

miniaturization of modules since current instantiations like the robot pebbles [72] are still

centimeter-sized. After all, in this scenario, robotic modules are meant to act similarly to

cells in biological systems which requires modules at the millimeter or even micrometer-

scale (advances at that scale are shown in Section 2.1.3 - Nano-inspired methods as well

as in Section 2.1.5). For example, robotic modules would equip a robot with the ability to

heal, self-repair ([24, 47, 46, 103, 132, 159, 170, 182]), and re-grow severed limbs ([176]).

Collective Tasks Tasks that can be accomplished with a given robot are generally gov-

erned on a hardware level by its size, the speci�cations of its actuators, and the physical

limits of its links and hinges. Speci�cally for self-recon�gurable robots, there is a tradeo�

between the size and power (i.e. forces that can be exerted) of its modules. Smaller modules

can be deployed in larger quantities which typically increases adaptability and the number of

26

con�gurations that can be assembled. However, decreasing module size comes at the cost of

lower power and dictates module designs with lower complexity. On the other hand, larger

modules are typically equipped with stronger actuators and hinges but tend to be overly

specialized for speci�c tasks (see [32]). In this section, we therefore review approaches that

make use of the collective nature of self-recon�gurable systems in order to increase (or even

multiply) the forces individual modules can exert and the tasks the aggregate system can

accomplish.

Collective actuation, for example, is proposed in [32]. The authors present a method to

assemble large-scale joints and muscle-like actuators with the goal of making actuator ca-

pacity and range a function of the system con�guration/geometry as opposed to immutable

properties of the module design. Collaborative manipulation is shown in [18], where Room-

bot modules are used for moving passive objects in 3D space. A similar approach is pre-

sented in [24] using ATRON modules. Here, modules are assembled into conveyor surfaces

and robotic arms for handling objects. A more swarm-robotic twist on collective manipu-

lation limited to two dimensions (collective transport) is shown in [158]. This paper also

introduces the Kilobot, a novel miniature robot using vibration as locomotion modality.

An approach and a prototype for collective construction of three-dimensional structures has

been introduced in [143]. The system labeled TERMES uses mobile robots to assemble

structures out of specialized passive building blocks.

Just like shape duplication applications, collective tasks will bene�t from smaller and/or

more capable modules. At smaller-scales, self-recon�gurable systems will enable applications

such as real-time in vivo diagnostics, collective repair of biological systems, or imitation of

biological components such as muscles. At a larger scale, self-recon�guration can aid or

replace the traditional approach of erecting and renovating buildings, improve the transport

of objects, for example, on manufacturing �oors, and add adaptability and versatility to

manufacturing in general.

Adaptive Structures This last group of applications focuses on the adaptive capabilities

of self-recon�gurable systems in the domains of furniture, transportation, and structures

27

and buildings. Adaptive furniture, for example, has been explored in [173, 175] together

with intuitive user interfaces [17, 139]. An adaptive aerial transportation system called the

distributed �ight array has been presented in [138] which is capable of adapting its lifting

power according to changing payload needs by simply adding more rotor modules. In the

future, earthquake resistant structures as well as terrain-adaptive bridges and buildings will

be enabled by an approach similar to the one shown in [200, 199]. In this work, adaptive

platforms are constructed using CONRO modules and controlled using a tensegrity model

of cellular structures.

2.1.5 Challenges

Despite the promising outlook and the many applications that could arise from the use of

modular self-recon�gurable systems, many challenges remain. Currently, there still exists

a disconnect between the size of systems that can be simulated (millions of modules, see

[60, 10]) and hardware instantiations of systems (which hovered around 50 modules for over

a decade according to [196] and has only recently been extended to 1024 Kilobot modules

in [157, 158]). A number of key steps need to be realized before self-recon�gurable systems

will be able to ful�ll their promises of versatility, robustness, adaptability, and low cost. In

this section, we will explore challenges on the hardware front but also regarding simulation,

controls, and algorithm-related issues.

At a more abstract level, there remain gaps in the basic understanding of the possibili-

ties of self-recon�gurable systems. While methods, prototypes, and approaches exist on the

hardware, controls, algorithm, and software side, one key issue remains to be fully under-

stood: Is there a general shape for a robotic module similarly to cells in biological systems?

And if so, which shape should that be? Currently, hardware instantiations are built with a

certain set of tasks in mind and no basic, general-purpose building block or module exists.

As such self-recon�gurable systems are capable of executing tasks in their speci�c niche,

but have not been fully able to live up to their promise of versatility. The geometry and

capabilities of a module however are the most fundamental properties of a self-recon�gurable

system. They dictate which aggregate con�gurations can be built, which motions can be

28

executed by individual modules and by the aggregate system, and which tasks an assembled

system can accomplish. Versatility and adaptability require the use of highly symmetric

geometries such as cubes or spheres. High degrees of symmetry however come at the cost

of a large number of degrees of freedom and a high control and modeling complexity. This

trade-o� between geometric simplicity and symmetry often prompts researchers to sacri-

�ce symmetry (or isotropy) to simplify the design of modules (like the M-TRAN module

[131, 109]). However, it cannot currently be quanti�ed whether such design simpli�cations

compromise the functionality of an aggregate system comprised of these modules (compared

to modules with higher symmetry). What is lacking is a systematic method of determining

which tasks can be accomplished given a certain module geometry and actuation strategy

(see [131]). Solving this design space challenge will be necessary for the development of a

general-purpose module.

Hardware Challenges Hardware challenges of self-recon�gurable systems are mostly re-

lated to cost and reliability. The mechanical, electrical, and connector reliability of modules

is a key issue standing in the way of widespread deployment of self-recon�gurable systems.

Low reliability is the reason for both an upper limit to the number of modules in a sys-

tem as well as a lower limit on the size of each module. Therefore, current systems do not

yet scale up in numbers and down in size to the point where they become useful ([131]).

While electrical reliability can be handled well by current mass-production techniques, me-

chanical reliability cannot be predicted until a su�cient number of modules has been built

or until a smaller number of modules has been operative su�ciently long. Connector re-

liability is addressed by two main approaches: magnetic connectors (using electromagnets

or electropermanent magnets) or connectors using a hooking mechanism. Both approaches

have been studied extensively for the purpose of self-recon�guration. Magnetic connectors

have been used for the EM-cube [5], Miche [70, 73], robot pebbles [72], M-Blocks [154],

and 3D M-Blocks [155]. Hooking mechanisms are used by the ATRON system [84, 24], by

M-TRAN [109], [109], by Superbot [163], or the Roombot [174]. No consensus exists as

to which method is more reliable. Magnetic connectors o�er a mechanism without moving

29

parts, while hooking connectors establish a stronger connection without requiring energy to

maintain the connection. Murata et al. [131] argue that the hooking mechanism used on the

M-TRAN III system is faster, stronger, and more reliable than the previously used magnetic

connectors, which [196] con�rms by labeling M-TRAN III the most robust self-recon�gurable

system.

Another key hardware issue is the limiting nature of module geometry since the capa-

bilities, power, and possible tasks of the aggregate system are determined by the geometry

and speci�cation of the basic module. Limits on module power, for example, become espe-

cially apparent when we examine chain-type systems. The longer a chain of modules, the

more force/torque is required by the module at the base. In current systems, the overall

functionality is therefore limited by the maximum power of the base module as it limits the

maximum length of any chain of modules. An approach similar to one shown in [32] would

be required to multiply the forces that individual modules can exert. This system enabled

the creation of large-scale joints and the robotic equivalent of muscles. As a result, the max-

imum actuator force and the actuator range were not �xed by the individual module design

anymore but became a function of the topology of the aggregate system. While Campbell

et al. do not address the reliability issue, their approach would allow the miniaturization

of modules, since the overall forces that can be exerted by the aggregate system is less

dependent on module properties but increasingly dependent on ensemble topology.

One last hardware challenge concerns miniaturization of modules to enable a larger

number of applications. Miniaturization will require advances in computation, actuation,

and power aspects. While the increase in computing power follows Moore's law [129] and

approaches exist for miniaturizing actuator sizes (for example through MEMS devices, see

[21]), supplying su�cient amounts of power to modules will remain a signi�cant challenge

as modules are built at smaller and smaller scales. The main problem here is the limited

power density of current technologies, which in turn presents a hard lower bound on the

minimum battery size for a required battery capacity. One possible solution is a power

grid-like structure that routes power to all modules in the aggregate system through wired

connections. Alternatively, SRS will have to face the tradeo� between energy e�ciency of

30

module motion, power density of batteries, and the size of batteries that modules carry

onboard (see [101]).

Control and Algorithmic Challenges This class of challenges can be mostly stated as

coordination issues of large numbers of modules. A self-recon�gurable system essentially

is a networked system whose network structure is dynamic and not necessarily known by

all modules. As such, control algorithms for large-scale systems will have to be inherently

distributed and able to achieve key functions despite a lack of full state information. Mu-

rata et al. [131] identi�ed these key functions as synchronization for motion generation,

distributed high-level decision making, as well as di�erentiation of module roles. While

these tasks mostly rely on reliable, e�cient, and scalable communication, another set of

challenges needs to be addressed that concern parallelism, optimality, and robustness. Yim

et al. [196] identi�ed a number of algorithmic challenges including parallel motion of mod-

ules in large-scale systems (for both locomotion and manipulation), optimal recon�guration

planning (with respect to time and energy), robust handling of a variety of failure modes (for

example misaligned, erratically behaving, or broken units), and a method for determining

the optimal con�guration for a given task and environment.

A practical challenge that will require a generalized re-de�nition of self-recon�gurable

systems is mentioned in [131] concerning the connectivity of a system. Most approaches cur-

rently require connectivity to be maintained at all times, which rules out systems composed

of multiple components or systems that merge into one larger aggregate system. However,

multiple connected components of modules blur the boundary of what a self-recon�gurable

system actually is. Is a connected component its own system or just part of a larger one?

The game-theoretic approach shown in Section 4.2 addresses this problem by de�ning a

module as an autonomous agent that is loosely coupled to other agents in the system but

allows them to disconnect and merge at any time.

Another challenge is the co-evolution of form and function of self-recon�gurable systems.

Two components contribute to this challenge. On the one hand, a general method is required

to determine which morphologies can be achieved given a module geometry, which we have

31

eluded to before. On the other hand, a method is needed to estimate which functions and

motions an aggregate system can achieve given a certain morphology. This co-evolution of

form and function will require signi�cant computing power to overcome the inherent expo-

nential complexity as the number of modules grows and will remain a signi�cant challenge

(see [131]).

Grand Challenges In addition to the challenges outlined above, Yim et al. [196] list a

number of grand challenges. These include robustly operating large-scale systems (on the

order of thousands of robots), self-repairing systems (such that systems can autonomously

recover from damage), self-sustaining systems (such that systems can operate autonomously

over long stretches of time), and self-replicating systems (using raw materials that the sys-

tem can mine itself). With regard to creating programmable matter, Gilpin et al. [71]

mention the necessity to miniaturize modules to micro- or even nanometer-sized modules

while addressing the inherently stochastic nature of nano-scale systems (see [196]).

2.2 The Self-Recon�guration Problem

Self-recon�guration in this work is understood to solve the following problem (see [147]).

Given an initial geometric arrangement of modules CI5 and a desired target con�guration CT ,

the solution to the self-recon�guration problem is a sequence of primitive module motions

that recon�gures the initial into the target con�guration (an example of such a sequence is

shown in Fig. 1). For planning-based solution methods, this means computing a feasible

plan of module motions from CI to CT , where feasibility requires all the constraints to be

adhered to (at a minimum the motion model and collision constraints but sometimes also

connectivity constraints). For agent-based methods (such as the one shown in Section 4.2),

which do not use a planning algorithm, �nding such a motion sequence requires agents

to collaborate through proper incentivization and exploration of the underlying Markov

process. Note that most frequently recon�guration approaches assume �xed initial and

target con�gurations. Section 4.2, however, will show an approach that is able to cope with

5A geometric arrangement of cubes is furthermore referred to as a con�guration.

32

changing target con�gurations during runtime. Depending on the level of information about

the global state that is given to each module during planning/decision making, we speak of

centralized solutions (where modules know the global state of the system) and distributed,

reactive solutions (where modules only know their own state and the states of a small set of

neighbors).

In this work we assume that all modules share a common coordinate system or frame of

reference. A modules state is then given by its position in the shared lattice, but the state

can also include any number of additional attributes required by the speci�c recon�guration

algorithm (such as module type, labels, current operating mode/role, etc.). For example,

Fitch [61] adds the space requirements of any intermediate con�guration between CI and CT

to the speci�cation of the self-recon�guration problem. Given this general de�nition of a

module's state, we will point out speci�c modi�cations in each chapter.

2.3 System Representation

The Sliding Cube Model In this work, the building blocks of modular robotic systems

are visually represented by cubes. As mentioned in Section 2.1.2, this model is commonly

referred to as sliding cube model (see [28, 30, 61, 145, 146]), where cubic modules are

embedded in a discrete two- or three-dimensional lattice. According to the taxonomy in [196],

these systems are categorized as lattice-type systems. The sliding cube model signi�cantly

simpli�es modeling of self-recon�gurable systems because it decouples modules' transition

dynamics and kinematic constraints from the self-recon�guration algorithms themselves.

The motion of cubic modules is simply described by discrete steps from one grid cell in the

lattice or environment E = Zd to another.6 Without loss of generality, the cubes are assumed

to have unit dimension. Furthermore, a cube's current state is its position in the lattice

ci ∈ Zd. For the planning algorithms outlined in Chapter 3 these cubic modules also feature

globally unique identi�ers. Furthermore, a collection of cubes is called a con�guration.

Therefore, a con�guration C composed of N cubes is a subset of the representable space

ZdN as shown in [146].

6Since we present two- and three-dimensional self-recon�guration, the dimensionality d will be d ∈ {2, 3}.

33

Figure 6: Visualization of motion primitives.

Motion Model In the sliding cube model, a cube features connectors on each of its

surfaces7 and is therefore able to connect to neighboring modules as well as to perform two

primitive motions - sliding and corner motions (also referred to as convex or concave motions

according to [28]). In general, a motion speci�es a translation along coordinate axes and is

represented by an element m ∈ Zd. A sliding motion ms is characterized by ‖ms‖L1
= 1,

i.e. ms,i = 1 for one and only one coordinate i{∈ 1, . . . d}, which translates a cube along

one coordinate axis. A corner motion mc on the other hand is de�ned by ‖mc‖L1
= 2 such

that mc,i = 1 for exactly two coordinates i{∈ 1, . . . d}, which translates a cube along two

dimensions (see Figure 6).

Constraints The sliding cube model can incorporate any number of constraints on mod-

ule motion. In this work, however, we do not impose any physical constraints such as

7Therefore, two cubes are considered adjacent if they are connected through a shared face.

34

module masses, gravity, or other forces.8 Only collision avoidance between cubes is en-

forced. Additionally, cubes are required to maintain global connectivity at all times for the

centralized methods in Chapter 3 and the graph grammar-based method in Section 4.1. The

game-theoretic approach shown in Section 4.2 relaxes the connectivity constraint and allows

modules to split and merge at will. Additionally all the approaches shown in Chapter 3,

4, and 5 are able to incorporate space constraints such as walls, �oors, ground planes or

surfaces, or general obstacles. In Section 4.2 we speci�cally enforce a groundedness con-

straint, which requires agents to remain connected to a ground plane. Obstacle constraints,

or space constraints in general, con�ne the planning space of the centralized recon�guration

algorithms in Chapter 3 and the action space of individual agents in Chapter 4 and 5. The

general problem setup (with case-speci�c modi�cations depending on the speci�cs in each

chapter) is the following.

• The environment E is a �nite two- or three-dimensional discrete grid E ⊆ Zd with

d ∈ {2, 3}.

• N cubes (or modules) move in discrete steps through that grid.

• Without loss of generality, cubes have unit dimensions.

• Each module is capable of sliding and corner motions subject to collision avoidance.

2.4 Conclusions

This chapter has introduced the notion of self-recon�gurable systems and provided an

overview of their properties that make them appealing for a range of applications. While

these systems show great potential, their widespread use will depend on solving a number

of open research questions. These challenges (see Section 2.1.5) span a variety of hardware,

algorithmic, and theoretical issues. In this research, speci�cally, we will address the topics

of scalability and decentralization from both a theoretical and an algorithmic point of view.

In doing so, we rely on the general de�nition of the self-recon�guration problem (Section

8These assumptions are made to focus the contribution on the self-recon�guration process rather than
on implementation-speci�c details.

35

2.2) and a common abstraction of self-recon�gurable systems called the sliding cube model

(Section 2.3). Additionally, we will concern ourselves with the question of how the developed

methods can be instantiated on actual robotic hardware. Before doing so, the next chapter

will establish key concepts in the domain of centralized self-recon�guration that serve as the

theoretical foundation for the decentralized approaches in later chapters.

36

Chapter III

CENTRALIZED SELF-RECONFIGURATION PLANNING

This chapter presents centralized methods for recon�guration planning for homogeneous

systems in Section 3.1 and heterogeneous systems in Section 3.2. Self-recon�guration, as

mentioned in previously in Section 2.2, requires to move every cube from its position in

an initial con�guration CI to a position in the target con�guration CT . As such, motion

sequences need to be computed for every cube that obey motion and collision constraints.

The methods in this chapter rely on a centralized node to compute these sequences in

a deterministic fashion. Centralized methods like the planning algorithms presented in

Section 3.1.2 and Section 3.2.2 enjoy the bene�t of access to global state information of the

entire con�guration, which facilitates the derivation of global convergence and completeness

guarantees. Global information also allows the planner to avoid undesirable states during the

recon�guration process such as deadlocks, holes, and enclosures (as we will see in Section

3.1.3 and Section 3.2.3). From an analysis perspective, global information o�ers another

bene�t - it facilitates the characterization of the system behavior on a global level (as

opposed to on a module level).

Centralized methods for self-recon�guration planning have been studied extensively in

the literature. The majority of these methods apply to either lattice-based systems or

chain-type systems (as de�ned in Section 2.1.1), which are the system types predominantly

used in the literature. The discrete nature of lattice-based systems often favors search-based

methods that can take advantage of the �nite action sets of agents during planning. Rus et al.

[160], for example, present a homogeneous recon�guration planning algorithm designed for

their Crystalline system. A planner tailored to another hardware system, the Molecule robot,

was developed in [102, 105], which demonstrated how sca�old planning allowed modules to

tunnel through structures. Another discretization-based method utilized the D* algorithm

to generate motion sequences for the Roombot modules [19]. Unlike these algorithms that

37

were developed with certain hardware platforms in mind, other work applies to more abstract

system models. An algorithm that recon�gures generic two-dimensional hexagonal modules

was presented in [112]. Though completeness is sacri�ced, this planner manages to solve

certain problem instances in O(N) time. Another abstraction, the sliding cube model, is

used in [3]. Featuring a time complexity of O(N2), the planning algorithm in this paper,

however, requires an intermediate con�guration before assembling the target con�guration.

Sung et al. [184] developed planning methods for the pivoting cube abstraction. Their

algorithm executes in O(N2) time but is restricted to target con�gurations in the shape of

lines.

Unlike lattice-based solution methods, planning algorithms for chain-type systems have

to cope with the continuous nature of their motion models. Action sets are not discrete,

�nite sets but a continuous range of joint angles of modules' actuators. Asadpour et al.

[9] approach this problem using a graph-based representation and stochastic optimization

methods similar to simulated annealing. A graph similarity metric is used as a heuristic

to guide the optimization process in �nding a sequence of con�gurations from an initial to

the target con�guration. Hou et al. [83] apply graph matching techniques and reduce the

recon�guration problem to a constraint optimization problem. Though speci�cally developed

for chain-type systems, these techniques could also be applied to lattice-based systems.

In this chapter, we present centralized recon�guration planning approaches that are

provably complete, can cope with deadlocks, enclosures, and holes, and feature a worst-case

time complexity of O(N3). Before we present the details of our approach, we review some

graph theoretic concepts - most importantly the notion of connectivity. Generally, two grid

cells (whether occupied by cubes or empty) are considered to be adjacent if they are located

at a distance dL1 = 1.1 This notion of adjacency is used to de�ne the connectivity graph of

a con�guration as follows.

De�nition 1. Let G = (V,E) be an undirected graph composed of N nodes with V =

{v1, v2, . . . , vN}, where node vi represents cube ci. Then G is called the connectivity graph of

1This notion of adjacency is used in this work because modules are represented by cubes of unit size
according to the sliding cube model.

38

(a) Random con�guration.

1

2

3

4

5

6

7

8

(b) Corresponding connectivity
graph.

Figure 7: Example of a connectivity graph of a random con�guration.

a con�guration C if E = V ×V with eij ∈ E if ‖ci − cj‖L1
= 1 (with positions ci, cj ∈ C ⊆ E).

This de�nition implies that two nodes vi, vj in the connectivity graph are adjacent, if

cubes ci and cj are located in neighboring grid cells (an example of a con�guration and the

corresponding connectivity graph is shown in Fig. 7). Note that a connectivity graph can

be computed for any set of grid positions, whether these positions are occupied by cubes

or not. For example, the hull of a con�guration (see Def. 4 in Section 3.1.2), which is a

set of empty lattice positions can be represented as a connectivity graph. De�nition 1 is

not only used for recon�guration planning in this chapter, but also for generating graph

grammatical rules in Section 4.1 and for proving completeness and convergence in Section

4.2. We furthermore use the concepts of paths and graph connectivity in the usual graph

theoretic sense. Related to graph connectivity is the notion of articulation points or cut

vertices. Articulation points become important in Section 3.1.3, where they are used to

detect holes and enclosures during recon�guration.

De�nition 2. An articulation point v in a graph G is a node whose removal would increase

the number of connected components c(G), i.e. c(G− v) > c(G).2

The notion of connectivity of a con�guration allows us to de�ne the constraints we impose

2Connected components of a graph G are its maximal connected subgraphs. A connected graph G has only
one connected component.

39

on both homogeneous and heterogeneous systems in this chapter.

Constraints

• Collision: A cube ci is allowed to move to a position pi ∈ E (where E is a �nite

environment) if pi is not already occupied by another cube cj . Motions are therefore

not allowed to cause collisions between cubes.

• Connectivity : The con�guration C needs to remain connected at all times. In this

sense, a cube requires a connected substrate of other cubes to execute a motion.

This constraint also implies that the initial and the target con�guration have to be

connected.

• Mobility : Cubes have to adhere to the motion model outlined in Section 2.3 and are

therefore only allowed to perform sliding and corner motions.

• Permanence: Once a cube reaches a target position pj ∈ CT , it remains at that target

positions until the end of the recon�guration sequence.

A rigorous de�nition of permanence requires a notion of system time. For that purpose,

let the current con�guration at the initial time t0 be C(t0) = CI . A time step 4t is the time

required to move a cube ci ∈ C from its initial position to a target position pi ∈ CT . As such,

a time step 4t is interpreted as the time required for a cube to execute an entire motion

sequence. The current time t is therefore de�ned as t = t0 + n4t, where n is the number

of cubes that have been moved to their respective target position. In this sense, the �nal

time tf is the time at which every cube ci ∈ C has been moved to its respective pi ∈ CT ,

i.e., tf = t0 + (N − 1)4t, where N is the number of cubes in the con�guration C. Note that

only N − 1 cubes have to be moved because of the initial overlap of size one (which will be

discussed in Section 3.1.1).

De�nition 3. Permanence requires that once a cube ci reaches a target position pi ∈ CT it

remains at pi until CT has been fully assembled, i.e., until C = CT . More formally, we de�ne

40

permanence as

ci(ttarget) = pi ∈ CT → ci(t) = pi ∈ CT , ∀t ∈ [ttarget, tf]

where ttarget is the time at which cube ci �rst occupied a target position and tf is the �nal

time.

Permanence therefore requires a cube to remain at the target position pi that it reached

�rst, which is essential in showing completeness for both the homogeneous planning approach

in Section 3.1 as well as the heterogeneous planning approach in Section 3.2.

3.1 Homogeneous Self-Recon�guration

In this section we present a method for recon�guring homogeneous con�gurations. Any

initially connected and enclosure-free con�guration can be recon�gured into any other con-

nected and enclosure-free target con�guration. To focus the contribution of this section

on the self-recon�guration aspect instead of on locomotion, we assume that the initial and

target con�guration overlap by at least one module. Note however, that multiple pairwise

overlapping target con�gurations can be chained together to enable locomotion as well as

the assembly of con�gurations. The algorithm in this section is provably complete and yields

a self-recon�guration sequence if there exists one (see Theorem 3). Example applications of

this homogeneous recon�guration approach are shown in Section 3.1.5 while numeric results

are presented in Section 3.1.6.

3.1.1 Problem Setup

The homogeneous self-recon�guration problem can be stated in similar terms as the gen-

eral self-recon�guration problem in Section 2.2. Given a homogeneous initial and target

con�guration, �nd a sequence of primitive module motions that recon�gures the initial into

the target con�guration. What simpli�es the homogeneous compared to the heterogeneous

self-recon�guration problem is the fact that all modules are interchangeable because they

are identical in all their properties. The consequence of this interchangeability is that every

module can occupy any target position. As stated previously, in this work the sliding cube

model is used as an abstraction of self-recon�gurable systems. Therefore module motion

41

is governed by the motion model outlined in Section 2.3. In addition to the assumptions

and constraints of the general sliding cube model, we impose another set of constraints that

govern the homogeneous self-recon�guration planning approach in this section.

Assumptions

• The initial con�guration CI and the target con�guration CT are known to the planner.

• CI and CT contain the same number of modules.

• Both CI and CT are connected con�gurations.

• Without loss of generality we assume that there exists an overlap between CI and CT

of exactly one cube ci which means that ci is already at its target position. In general,

this overlapping region O = CI ∩ CT can contain more than a single cube as long as it

remains connected.

• The con�guration is initially enclosure-free and remains enclosure-free throughout the

recon�guration. As shown in Section 3.1.3 (and also in [145]), this assumption is

required to ensure that the planning space N (C) remains connected.

• The target con�guration is hole-free. This assumption is required to show completeness

of the recon�guration algorithm in Section 3.1.3. In case the overlap of the initial and

the target con�guration contains more than one cube, the overlap needs to be hole-free

as well to guarantee completeness.

Holes and enclosures are unreachable positions in the target and current con�guration,

respectively, and are formally de�ned in Section 3.1.3. They will become important in

showing completeness of the recon�guration algorithm.

3.1.2 Planning Approach

Recon�guring a homogeneous system requires to move every cube from its initial positions to

a target positions. Therefore, a recon�guration algorithm has to compute paths (sequences

of primitive module motions) for cubes ci ∈ CI to their desired positions pi ∈ CT . Cubes ci

42

in the initially overlapping region O = CI ∩ CT (see Fig. 8a) do not have to be moved and

are excluded from the planning process. Recon�guration planning can be broken down into

three basic steps: selecting a mobile cube, assigning a valid target position, and planning a

motion sequence for the selected cube.

The connectivity constraint prohibits moving cubes which are articulation points in the

connectivity graph of the current con�guration because their motion would disconnect the

graph and therefore the con�guration. Therefore, all articulation points are excluded from

the set of mobile cubes, which is furthermore called the movable set. The de�nition of this

set depends on the hull and the one-hop-neighborhood of a set of cubes.

De�nition 4. Given a set of cubes S, its hull N (S) is the set of all unoccupied lattice

positions adjacent to S.

N (S) =

{
pi : min

ci∈S
‖ci, pi‖L1

= 1, pi ∈ Zd \ (S ∪ C)
}

(1)

Here, ci is a cube in the set S, C is the current con�guration, and pi is an unoccupied lattice

position.

Note that a hull N (S) can be computed for any set of cubes S (or any set of lattice

positions, whether occupied or not). The hull N (C), in particular, represents all positions

adjacent to the current con�guration and is used as the planning space for the path planner.

It also plays an important role in de�ning which cubes are mobile at any given time (see

Figure 8b) and which positions can be reached from the current con�guration C. Similarly,

one can de�ne the k-hop-neighborhood of a set of lattice positions (occupied or unoccupied)

as follows.

De�nition 5. Given a set of lattice positions S, its k-hop-neighborhood Nk(S) is the set of

all occupied lattice positions within a distance of k to S.

Nk(S) =

{
cj ∈ C : min

ci∈S
‖ci, cj‖L1

≤ k
}

(2)

Here, ci is a lattice position in the set S and cj is an occupied lattice position (or a cube).

The movable set (see Fig. 8b) is furthermore de�ned as follows, where the set of all

articulation points of the connectivity graph G(C) is denoted as A and the set of cubes

43

which are immobile as I. Note that a cube ci ∈ C is immobile if it is surrounded by four

neighbors such that |N1(ci)| = 4 (in two dimensions) or six neighbors such that |N1(ci)| = 6

(in three dimensions).

De�nition 6. The movable set M is the set of all cubes at non-target positions that can

move without violating collision and connectivity constraints.

M = C \ (A ∪ I ∪ CT) (3)

This de�nition (similar to [61]) only allows modules on the surface of the con�guration

to move. Similarly, cubes at target positions will not be considered mobile and remain

�xed for the remaining recon�guration sequence. Moving a cube from CI to CT requires an

assignment of a mobile cube to an unoccupied target position. Therefore, we introduce the

target successor set R as the set of positions pi ∈ CT that can be reached from the current

con�guration, i.e. positions adjacent to C (see Figure 8c). Note that the set of all positions

pi ∈ CT that would create enclosures and the set of all positions pj ∈ CT that would create

holes if occupied are excluded from the target successor set. These sets are denoted as E and

H respectively. The concepts of enclosures and holes will be de�ned rigorously in Section

3.1.3. For now, su�ce it to say that holes and enclosures are unreachable positions in the

current or target con�guration that are completely enclosed by other cubes.

De�nition 7. The target successor set R is the set of all unoccupied target positions pi ∈ CT

adjacent to currently already occupied target positions ci ∈ CT . Let the set T contain all

empty target positions adjacent to C that do not create holes or enclosures if occupied.

T = CT ∩ (N (C) \ (H ∪ E)) (4)

Note that T contains all target positions pi adjacent to C.3 This set is further restricted to

form R as follows.

R =

{
pi ∈ T : max

ci∈CT
‖ci − pi‖L1

= 1

}
(5)

3The connectivity graph of the set T , however, is in general not connected. A disconnected connectivity
graph needs to be avoided because otherwise the movable set M could be empty in certain cases (see case 2
of Lemma 2).

44

(a) Initial con�guration (translu-
cent green, left), target con�gura-
tion (translucent blue, right), and
overlapping nodes (red, opaque,
center)

(b) Movable nodes (red, opaque)
as part of the initial con�guration
(translucent green

(c) Immediate target successor
positions (red, opaque) as neigh-
boring positions of the current
con�guration (translucent green,
left)

Figure 8: Representation of the overlapping, the movable, and the immediate target succes-
sor set

This de�nition of R ensures that all occupied target positions always form a connected

connectivity graph, which avoids problematic edge cases such as the one shown in Fig. 10.

Note that R is a subset of the planning space N (C), in which sequences of primitive cube

motions are planned from ci ∈ M to pi ∈ R. To ensure completeness of the planning

approach, we �rst have to show that both M and R are nonempty unless the target con-

�guration is fully assembled. Proving nonemptiness of M depends on the following graph

theoretic result.

Lemma 1. According to Lemma 6 in [160], any �nite graph G = (V,E) with at least two

vertices (such that |V | ≥ 2) contains at least two vertices that are not articulation points.4

Lemma 2. The movable set M is nonempty unless the target con�guration CT is fully

assembled.

Proof. To prove this lemma, we �rst note that a movable cube mi ∈ M has to be located

on the surface of the con�guration because by Def. 6 any mi ∈ M has fewer than four

4An articulation point is a vertex in a graph whose removal would disconnect the graph (see Def. 2).

45

neighbors.5 Additionally, a movable cube has to be a non-articulation point in the connec-

tivity graph GC of the current con�guration C. We then construct the current con�guration

inductively with the cubes at target positions being the roots of the con�guration. In this

construction, one can show that in any such con�guration, there exists at least one surface

module that is movable. Let GT = (VT , ET) be the connectivity graph of all occupied target

positions cl ∈ CT . Then two cases are di�erentiated. The �rst case covers all situations

for which GT is connected, while the second case discusses those situations where GT is

disconnected.6

Case 1. GT is connected.

This part is proved by induction, where the basic case is as follows. Without loss of generality

assume that the vertex set VT contains a single vertex, which is the case for the initial setup

where the overlap of O = CI ∩ CT = {cl} is a single cube. Furthermore, assume that one

cube ci ∈ C \CT is connected to cl. Such a cube is always available unless C = CT , i.e. unless

the target con�guration has been fully assembled. An example of selecting ci is shown in

the �rst step of Fig. 9. Note that ci is a surface module by de�nition (because only two

cubes are part of the con�guration). Let GC = (VC , EC) be the connectivity graph of the

cubes {ci, cl}, which is by de�nition connected. According to Lemma 1, in any graph, there

exist at least two non-articulation point vertices. Because GC contains only two vertices,

both must be non-articulation points. Therefore there exists a surface module that is not

an articulation point in GC and thus movable.

The following induction step shows that adding a cube to the con�guration (i.e. adding

a vertex to GC) does not reduce the number of surface modules that are non-articulation

points. In other words, the number of movable modules is non-decreasing as new cubes are

added. Note that a cube cj is always added as close as possible to the root cube cl ∈ CT .

Two sub-cases have to be di�erentiated as a new cube cj is added.
7

5This proof is formulated for two-dimensional recon�guration, where a cube can have up to four one-hop
neighbors. In three-dimensions, the proof follows an equivalent logic with a maximum of six one-hop-
neighbors.

6Note that a disconnected GT is ruled out through the construction of the setR. However, it is mentioned
here to highlight the issues with a disconnected GT .

7Note that by de�nition cj ∈ C \ CT .

46

Case 1.1. Adding cube cj removes another module ck from the movable set.

A module ck is removed from the movable set either because it is removed from the set

of surface cubes or because it becomes an articulation point. Removal from the surface

happens when cube cj is added as the fourth neighbor of ck (or the sixth neighbor in three

dimensions). This removal decreases the number of surface cubes by one. However, the

newly added cube cj has to be a surface module because of enclosure- and hole-freedom in

the current con�guration C. In addition, a newly added module cannot be an articulation

point in the graph GC because GC was already connected before adding cj . Therefore, the

cube cj is a movable surface module and thus increases the number of movable modules by

one. As such the number of movable modules is non-decreasing.

Alternatively, ck could be removed from M if it became an articulation point of GC

through the addition of cj (which is shown in Fig. 9 when cube 5 is added). Since the

newly added cube cannot be an articulation point of GC , the number of movable cubes is

also non-decreasing.

Case 1.2. Adding cube cj does not remove another module ck from the movable

set.

This is the trivial case, where the newly added cube cj is both a surface module as well as a

non-articulation point in GC by following the same logic as outlined in the case above (see

Fig. 9, for example, when module 4 is added). As such the number of movable cubes in the

setM increases.

Case 2. GT is disconnected.

This case covers scenarios such as the one shown in Fig. 10, where the movable set M is

empty (because all of the cubes ci ∈ C \ CT are articulation points in GC). The de�nition of

the target successor set R in Def. 7 rules this case out and only allows the construction of

a connected GT . However, it is instructive to show these edge cases to explain the rational

behind the de�nition of R.

Note that this inductive construction of C will not prematurely terminate, because the

con�guration C is both connected and hole- and enclosure-free. As such, a cube ci can always

47

CT

CI

O

Figure 9: Example construction of a con�guration as outlined in case 1 of Lemma 2 to show
the nonempty nature of the movable setM. On the left, the initial and target con�guration
are shown together with the overlap O = CT ∩CT . On the right, for each step, the currently
added cube is numbered while articulation points are marked with a red dot.

be added until the full con�guration is constructed. By inductively constructing both the

graph GC and the current con�guration C, we ensure that the number of movable modules

is nondecreasing. Furthermore, by showing that a newly added surface module cannot be

an articulation point, we have ensured that the movable set M is nonempty unless CT is

fully assembled.

Lemma 3. The target successor set R is nonempty until the target con�guration CT is fully

assembled.

Proof. This proof is based on the observation that the initial con�guration CI as well as the

target con�guration CT are connected and hole- and enclosure-free by assumption. Addi-

tionally CI and CT are connected through the overlapping set O = CI ∩ CT . By maintaining

global connectivity throughout the recon�guration sequence, CI and CT remain connected

at all times.

Let Co be the set of all occupied target positions ci such that ci ∈ CT , ∀ci ∈ Co. Note that

the connectivity graph GCo of the sub-con�guration Co is connected by construction, which is

guaranteed by the de�nition of R. Then, the hull N (Co) is nonempty and connected because

of hole- and enclosure freedom of CT . Additionally, the hull of the current con�gurationN (C)

is also nonempty, connected, and hole- and enclosure-free because C is. As a consequence,

the overlap of N (Co) ∩ N (C) is nonempty because C and CT are connected through the

initially overlapping region O = CI ∩ CT . The result then follows from the observation that

48

CT
CI

O

Figure 10: Example of an empty movable setM according to case 2 of Lemma 2. On the left,
the initial and target con�guration are shown together with the overlap O = CT ∩ CT . On
the right, an empty setM is shown caused by every cube ci ∈ CI \ CT being an articulation
point in GC . Articulation points are marked with a red dot. The de�nition of R in Def. 7
speci�cally rules out a case as shown.

R can also be expressed as R = N (Co) ∩N (C).

Note that a nonempty set R contains only those target positions that do not create

holes or enclosures if occupied by a cube. Lemma 3, however, hinges on the fact that hole-

and enclosure-freedom can be maintained throughout the recon�guration. This issue will be

addressed in Section 3.1.3. Assuming that holes and enclosures can be avoided, Lemma 2 and

Lemma 3 show that by constructionM and R are nonempty unless the target con�guration

has been assembled. Therefore, there exists a module that can be moved from its initial

position to an unoccupied target position at any time (we have shown a similar result in

[145]). Given two nonempty setsM and R, a single movable cube has to be assigned to a

single target position before a module path can be planned. In this work, we use a greedy

assignment approach to assign a cube ci ∈M to a target position pj ∈ R. The pairwise costs

between any cube ci and target position pj are computed and the assignment with the lowest

cost is chosen for path planning. Paths of primitive agent motions are then planned using

a complete planning algorithm. In this work, we use A∗ with the Manhattan distance as

49

heuristic function.8 This assignment and planning step is repeated for all cubes ci ∈ CI \ CT

and results in a set of paths that describe the entire recon�guration sequence from CI to

CT . The homogeneous self-recon�guration algorithm is shown in Algorithm 1. While hole

and enclosure freedom is required for showing completeness of the homogeneous planning

approach, we have neither de�ned these terms nor described how to detect and avoid them.

Hole and enclosure detection and avoidance is therefore the topic of the next section.

Algorithm 1 Centralized Homogeneous Recon�guration

Require: Current and target con�guration C and CT
1: while C 6= CT do
2: ComputeM
3: Compute R
4: Compute assignment a = {ci, pj}, with ci ∈M and pj ∈ R
5: Compute planning space N (C)
6: p = planPath(a, N (C))
7: executePath(p)
8: end while

3.1.3 Hole and Enclosure Detection and Avoidance

The planning approach outlined above potentially creates enclosures or holes in the current

con�guration, which is an issue because the occurrence of either disconnects the planning

space N (C). However, the completeness of the planning approach in Section 3.1.2 hinges

on the connectedness of N (C). This section will therefore formally introduce the notion

of holes as well as methods for detecting and avoiding them. In this research, a hole is

de�ned as a position h ∈ CT that can not be reached by any cube ci ∈ (C \ CT) at the

current time or any future time because of permanence. As we will show, holes obstruct

the completion of a recon�guration sequence because they create permanent deadlocks and

must therefore be avoided at all cost. Enclosures are hole-like structures in the current

con�guration C \ CT that present temporary deadlocks because they cannot be reached at

the current time. However, because enclosures are not bound by permanence, they may be

resolved at a later point in time. Nonetheless, because holes as well as enclosures disconnect

8Note that any complete path planning algorithm can be used and the completeness result of Theorem
3 would still hold.

50

(a) Connectivity graph of a con�guration before
a hole is created.

H

∂ H

(b) Connectivity graph of con�guration after a
hole is created. ∂H is indicated by green nodes.

Figure 11: Hole detection uses the connectivity graphs of the con�guration C and the plan-
ning space N (C). Note that the current con�guration C is represented by �lled black nodes
while its hull N (C) is represented by hollow white nodes.

N (C) and the detection algorithm (Algorithm 2) relies on a connected planning space, both

are prevented from forming. The algorithm presented in this section provably detects holes

and can invalidate assignments that would create either. The following de�nitions formalize

holes and their boundaries (also see [71]).

De�nition 8. Let H be a set of unoccupied target positions pi ∈ CT \ C and ∂H a set of

occupied target positions ci ∈ CT ∩ C such that the following holds.

∂H =

{
∂h ∈ CT ∩ C : max

h∈H
‖∂h, h‖L2 < 2

}
(6)

Then H is called a hole if for any cube ci ∈ C\CT (cubes not at target positions) the following

holds.

∀h ∈ H ∃! path(ci, h) (7)

In other words, a hole H is an unoccupied target position ci ∈ CT (or a set thereof)

that is surrounded by occupied target positions (the boundary ∂H) such that no path exists

between any cube ci ∈ C \ CT at non-target positions and any position h ∈ H in the hole.

The creation of a hole in a two-dimensional case is shown in Fig. 11, which illustrates that

the existence of a hole implies that the planning space N (C) becomes disconnected and

contains more than one connected component (with H being one of them and N (C) \ H

51

being another). Fig. 11 also shows the boundary of a hole ∂H, which is de�ned in Eqn. 6 as

all occupied target positions at a maximum distance of at most one primitive motion from

a position h of hole H. Since both H ⊂ CT and ∂H ⊂ CT , once a hole is created, it can not

be resolved because of the permanence constraint. Hole-like structures can also occur in the

current con�guration. These temporary holes are referred to as enclosures and de�ned as

follows.

De�nition 9. Let E be a set of unoccupied positions pi ∈ E (where E is the environment)

and ∂E a set of occupied positions ci ∈ C such that the following holds.

∂E =

{
∂e ∈ C : max

e∈E
‖∂e, e‖L2 < 2

}
(8)

Then E is called an enclosure if for any cube ci ∈ C \ ∂E (cubes not in the boundary of the

enclosure) the following holds.

∀e ∈ E ∃! path(ci, e) (9)

Note that a hole (and its boundary) are entirely contained within the target con�gura-

tion. An enclosure may be partly contained within CT or lie entirely outside CT . Therefore,

permanence does not apply to enclosures and they do not obstruct the successful comple-

tion of a recon�guration sequence. However, enclosures disconnect the planning space N (C),

which is why assignments that create enclosures are also invalidated. The importance of hole

avoidance is shown in the following theorem.

Theorem 1. A hole obstructs the successful completion of a recon�guration sequence.

Proof. The proof follows directly from the de�nition of a hole, where H ∈ CT , i.e. H

contains unoccupied target positions. By de�nition, ∂H ∈ CT , which means that because of

the permanence constraint none of the cubes ci ∈ ∂H will be moved until the recon�guration

process is completed. However, the recon�guration process will never terminate because it

contains a hole H and its boundary ∂H, which blocks the occupation of any empty position

h ∈ H ⊂ CT . Therefore, a recon�guration sequence cannot be completed when a hole is

exists.

52

Theorem 1 shows that a successful recon�guration sequence cannot contain any holes.

The following algorithm (Algorithm 2) provably detects both holes and enclosures and en-

ables the avoidance of either. In a nutshell, Algorithm 2 determines whether a given assign-

ment disconnects the planning space N (C). It is based on the assumption of an initially

connected planning space N (C), which is the case because CI is connected and hole- and

enclosure-free. In a �rst step, Algorithm 2 computes the number of connected components

of the connectivity graph GN (C) of the planning space N (C), which is equal to the number

of zero eigenvalues of the associated graph Laplacian L (according to [123]).

If GN (C) is disconnected, the algorithm reports the detection of a hole or an enclosure

for any assignment and will essentially stop the recon�guration. Therefore, it is crucial to

maintain hole- and enclosure-freedom throughout the recon�guration. If GN (C) is connected,

Algorithm 2 determines whether the execution of given assignment a = {ci, pj} creates a

hole or an enclosure. A hypothetic move of cube ci to position pj is executed (lines 7 to

8) and the number of connected components is recomputed (lines 9 to 10). An increase in

the number of zero eigenvalue indicates a disconnected planning space, which invalidates

assignment a. Furthermore, Def. 8 and Def. 9 can be used to di�erentiate between holes

and enclosures. However, since holes as well as enclosures have to be avoided, Algorithm 2

simply determines whether a given assignment would disconnect N (C).

Algorithm 2 Hole Detection

Require: Assignment a = {ci, pj} and current con�guration C
1: Compute N (C)
2: Compute GN (C) of N (C)
3: Compute L of GN (C)
4: if |λi = 0| > 1,∀λ ∈ eig(L) then
5: Return true
6: else
7: Remove pj from N (C)
8: Update ci's origin to pj (in C)
9: Recompute N (C), GN (C), and L
10: if |λi = 0| > 1,∀λ ∈ eig(L) then
11: Return true
12: else
13: Return false
14: end if
15: end if

53

As long as CI is a hole- and enclosure-free initial con�guration, the recon�guration al-

gorithm (Algorithm 1) will guarantee hole and enclosure freedom throughout the recon�g-

uration sequence because Algorithm 2 will detect any holes and enclosures and invalidate

assignments that create either. The following theorem shows that this algorithm indeed

guarantees the detection of holes and enclosures.

Theorem 2. Algorithm 2 detects a hole (or an enclosure) if and only if there exists a hole

(or enclosure).

Proof. The proof is based on the assumption that the current con�guration C is hole and

enclosure-free. Therefore, the connectivity graph GN (C) of N (C) is connected.

• Necessity (D→ H): The detection of a hole is based on the eigenvalues λi of the graph

Laplacian L, where the multiplicity of λi = 0 (the number of zero eigenvalues) indicates

the number of connected components of the graph. Therefore, we can conclude that

GN (C) is disconnected if the multiplicity of λi = 0 is larger than 1. By construction, N

is connected, which means that the occurrence of two or more connected components

implies the existence of either a hole or an enclosure.

• Su�ciency (H → D): Starting with an initially connected N and using the fact that

a hole or an enclosure increases the number of connected components of GN (C), the

hole-detection problem is reduced to determining how many connected components

GN (C) contains. If the con�guration C contains a hole or an enclosure, L has more

than one zero eigenvalue, and we immediately detect the hole or the enclosure.

3.1.4 Completeness

One important property of any self-recon�guration algorithm is the guarantee that it ter-

minates successfully and provably yields a recon�guration sequence from the initial con�g-

uration to the target con�guration. According to [161], a complete algorithm is one that is

guaranteed to �nd a solution if there exists one. Using the hole detection algorithm from

Section 3.1.3 we can now prove this completeness property.

54

Theorem 3. Given any pair of hole- and enclosure-free two- or three-dimensional initial

and target con�gurations CI and CT , the homogeneous recon�guration algorithm (Algorithm

1) will compute a sequence of primitive cube motions that recon�gure CI into CT if such a

sequence exists.

Proof. Lemma 2 and Lemma 3 guarantee that both the movable setM and the reachable set

R are nonempty unless CT is fully assembled. Therefore, at every time step, an assignment

a = (ci, pi) with ci ∈M and pi ∈ R exists. This statement holds because in a homogeneous

system, any movable cube ci ∈M can be assigned and moved to any target position pi ∈ R.

A valid assignment guarantees that a path can be planned from ci to pi through N (C)

because N (C) is connected by construction. The connectivity of N (C) is guaranteed by

Theorem 2, which ensures enclosure and hole freedom of the current con�guration C. Because

a complete path planner is used for planning individual cube paths, such a path will be found

because it is guaranteed to exist (sinceN (C) is connected and the target position pi ∈ N (C)).

Every valid assignment enables a cube to be moved to the target con�guration CT ; and,

therefore, the number of cubes occupying target positions pj ∈ N (C) is strictly monotonically

increasing in time. Because the con�guration consists of a �nite number of cubes, this process

will terminate in a �nite number of steps and CT is guaranteed to be assembled.9

3.1.5 Examples

This section shows a number of example applications of the centralized homogeneous self-

recon�guration approach presented above. These examples include locomotion through

self-recon�guration, self-assembly starting from an initial random con�guration, recon�g-

uration from a structured initial con�guration to another, as well as obstacle-constrained

self-recon�guration.

Locomotion In this example, a cubic initial con�guration is translated along the x-axis

by 1.5 times the length of the initial con�guration. As can be seen in Fig. 12, the shown

9A similar proof of completeness was also shown in [145].

55

initial and target con�gurations do not overlap, which is why an intermediate con�gura-

tion (not shown in the �gure) is required. The cubic initial con�guration is recon�gured

to an intermediate cubic con�guration that overlaps both the initial and the �nal target

con�guration.

Assembly This example shows the capabilities of Algorithm 1 for the purposes of self-

assembly. In the speci�c case shown in Fig. 13, a random two-dimensional initial con-

�guration is recon�gured into a three-dimensional chair con�guration. One can recognize

chain-like branches extending from the base of the chair con�guration, which is an arti-

fact of the greedy assignment method as well as connectivity maintenance throughout the

recon�guration sequence.

Recon�guration This example shows a recon�guration sequence from a structured initial

con�guration to another structured target con�guration. In this particular setup in Fig. 14,

a chair is recon�gured into a table con�guration. Note that here, the initial overlapping

region O = CI ∩ CT contains more than a single cube, which the assumptions shown in

Section 3.1.1 allow and Theorem 3 covers.

Obstacle-constrained Recon�guration Similar to the above recon�guration example,

this last scenario in Fig. 15 shows an obstacle-constrained self-recon�guration sequence

from an initial chair to a table con�guration. In this case, the planning space N (C) is

restricted by a set of obstacle positions which represent a ground plane. In other words, the

recon�guration is restricted to the lattice positions above the ground plane. Note, however,

that all the theoretic results in this section as well as the completeness theorem (Theorem

3) still hold.

3.1.6 Results

This section presents simulation results obtained in two experiments. We simulated the

recon�guration of overlapping con�gurations in the form of rectangular prisms (see Fig.

16) and the recon�guration of overlapping random con�gurations (see Fig. 17). These

56

Figure 12: Example of a homogeneous recon�guration sequence used for locomotion.

57

Figure 13: Example of a homogeneous recon�guration sequence showing the assembly of a
chair con�guration given a random initial con�guration.

58

Figure 14: Example of a homogeneous recon�guration sequence showing a recon�guration
from a chair to a table con�guration.

59

Figure 15: Example of a homogeneous recon�guration sequence showing a recon�guration
from a chair to a table con�guration with obstacles in the environment. In this speci�c
example, obstacles are shown as black cubes and represent a ground plane.

60

Table 1: Recon�guration planning results for overlapping box con�gurations

Size Overlap [N]/[%] Path Length Runtime [min]

100 30 / 30% 837 3.70

200 60 / 30% 1543 16.65

300 90 / 30% 2426 63.26

400 120 / 30% 3279 135.64

500 150 / 30% 4275 246.93

con�gurations ranged in size from 100 to 500 modules. Our test system was equipped

with an Intel Core i5-540M dual core processor and 4GB of DDR3 memory. Our simulator

was implemented in Matlab 2010a running on Ubuntu 11.04. As shown in the �gures,

the cumulative path length increases approximately linearly with the number of modules

in the system, while the runtime of the centralized homogeneous algorithm (Algorithm 3)

increases approximately with the third power of N for the box and random con�gurations.

The runtime is primarily determined by the planning approach (introduced in Section 3.1.2),

which necessitates planning a path for every individual module. Algorithm 3.1.2 features a

time complexity ofO(N2) for the relocation of an individual cube and a total time complexity

of O(N3) for the entire recon�guration process. The experimental results shown in Fig.

16 and Fig. 17 con�rm this expected time complexity of O(N3). The details of each

recon�guration sequence for all sizes are summarized in Table 1 and Table 2. In these

tables, the �eld Size refers to the number of modules in the con�guration, Overlap is the

number of initially overlapping modules, Path Length is the cumulative path length of all

cubes to achieve the desired recon�guration, and Runtime is the time it took to complete the

planning stage. Note that unlike in the assumptions outlined in Section 3.1, the overlapping

region contains more than a single cube. Such overlapping regions are possible as long as

they do not contain any enclosures or holes. The con�gurations used for the results shown

below satisfy these requirements.

61

Table 2: Recon�guration planning results for overlapping random con�gurations

Size Overlap [N]/[%] Path Length Runtime [min]

100 36 / 36% 352 2.25

200 114 / 57% 403 10.97

300 157 / 52.3% 893 40.52

400 182 / 45.5% 1674 120.84

500 231 / 46.2% 2327 272.68

Configuration size [N]
100 150 200 250 300 350 400 450 500

R
u

n
ti
m

e
 [

m
in

]

0

50

100

150

200

250

C
u

m
u

la
ti
v
e

 P
a

th
 L

e
n

g
th

 [
N

]

1000

2000

3000

4000

Runtime [min]

Cumulative Path Length [N]

Cubic approximation of runtime

Linear approximation of path length

C
u

m
u

la
ti
v
e

 P
a

th
 L

e
n

g
th

 [
N

]

1000

2000

3000

4000

Figure 16: Cumulative length of paths and required runtime of recon�guration of box con-
�gurations.

62

Configuration size [N]
100 150 200 250 300 350 400 450 500

R
un

tim
e

[m
in

]

0

100

200

300

C
um

ul
at

iv
e

P
at

h
Le

ng
th

 [N
]

1000

2000

Runtime [min]
Cumulative Path Length [N]
Cubic approximation of runtime
Linear approximation of path length

C
um

ul
at

iv
e

P
at

h
Le

ng
th

 [N
]

1000

2000

Figure 17: Cumulative length of paths and required runtime of recon�guration of random
con�gurations.

3.2 Heterogeneous Self-Recon�guration

The existing self-recon�guration literature focused extensively on homogeneous systems, in

which all modules are identical and interchangeable (for example [160, 189, 101, 103, 73, 30]).

Whereas homogeneity typically reduces the complexity of recon�guration algorithms (see

[11]), homogeneous recon�guration can not guarantee absolute module positioning in the

sense that a module ci is guaranteed to be moved to a speci�c target position pi. It is

simply moved to any location in the target con�guration (see [62]). Since modules are in-

terchangeable, this restriction does not matter in a homogeneous system. Heterogeneous

systems on the other hand are comprised of modules with di�erent capabilities and poten-

tially shapes and sizes. In this case, interchangeability of modules is lost and it is conceivable

that absolute placement of modules becomes important. Therefore, heterogeneous recon-

�guration algorithms (for example [61, 65, 62]) have to be able to move a module ci to a

suitable target position pi. For example, a heterogeneous recon�guration algorithm has to

guarantee that any target position suitable only for battery modules is occupied by no other

type than battery modules.

Another restriction of homogeneous modular robots is their limited extendability of

63

functionality (see [11, 62]). One can of course add more modules to a homogeneous robot,

but extending module capabilities is di�cult because either all modules have to be extended

by the same capability (e.g. an additional sensor) or the basic assumption of homogeneity is

violated. As soon as a single module di�ers from all others, the robot has to be treated as a

heterogeneous system. The relevant characteristics of heterogeneous systems in this section

are summarized as follows:

• Heterogeneous robots are comprised of (groups of) modules with distinct properties.

• Without loss of generality, in this section, modules di�er only in color as the de�ning

characteristic.

• All modules are identical in size and shape.

• Absolute positioning of modules needs to be guaranteed for heterogeneous robots.10

The loss of interchangeability in heterogeneous systems introduces additional complica-

tions such as the potential for creating deadlocks (see [28]). In the presented algorithm, the

avoidance of deadlocks translates into the avoidance of holes and enclosures (similarly to

the homogeneous case) during the recon�guration process. Additionally, we have to ensure

the existence of valid assignments to avoid deadlocks.

This section outlines an approach for recon�guring heterogeneous systems from any

connected, initially hole- and enclosure-free con�guration into any other connected, hole- and

enclosure-free target con�guration. The main theoretic contribution is a provably complete

algorithm for heterogeneous systems that avoids deadlocks. The planning approach builds

on Section 3.1 and previous work we have published in [145, 146].

3.2.1 Problem Setup

The heterogeneous self-recon�guration problem is equivalent to the homogeneous problem

described in Section 3.1.1 with the additional twist that a module has to be assigned to a

10If a con�guration contains groups of modules with identical properties, these modules are interchangeable
within their group. Within a group, identical modules act like a homogeneous system. Absolute module
placement can then only guarantee that a module is placed at any target position suitable for that group.

64

(a) (b)

Figure 18: Example of a heterogeneous initial and target con�guration comprised of colored
unit cubes.

target position with matching properties. As such, modules are no longer interchangeable

and the assignment of modules to target positions has to take this loss of interchangeability

into account. The solution to the heterogeneous self-recon�guration problem is still a set of

individual module paths that move all modules from their initial positions to their respective

and matching target positions.

A heterogeneous con�guration is once again represented using the sliding cube model

detailed in Section 2.3 but the state of a cube now contains its origin, its ID, as well as a set of

properties. Without loss of generality, we represent the heterogeneity of cubes with di�erent

colors (see Fig. 18). Therefore the set of properties of cubes contains a single element -

color. This restriction can be made because even if cubes di�er in just one property the

assumption of homogeneity is violated and the system has to be treated as a heterogeneous

system. The full set of assumptions imposed on the heterogeneous system is summarized

below.

Assumption

65

• The initial con�guration CI and the target con�guration CT are known.

• CI and CT contain the same number of modules of each property.

• Both CI and CT are connected con�gurations.

• Without loss of generality we assume that there exists an overlap between CI and CT

of exactly one cube. This cube matches the properties of its position (i.e., it is already

at its target position).

• The con�guration is initially enclosure-free and remains enclosure-free throughout the

recon�guration. As shown in Section 3.2.2 (and also in [145, 146]), this assumption is

required to ensure that the planning space N (C) remains connected.

• The overlap of the initial and the target con�guration is hole-free. This assumption is

required to show completeness of the recon�guration algorithm in Section 3.1.3.

Holes and enclosures have been de�ned in Section 3.1.3 and will become important in

showing completeness of the heterogeneous recon�guration algorithm in Section 3.2.4.

3.2.2 Planning Approach

Heterogeneous recon�guration planning requires the computation of motion sequences for

all cubes from their position ci in the initial con�guration CI to matching positions pi in the

target con�guration CT . The heterogeneous planning approach is similar to the homogeneous

method outlined in Section 3.1.2 in the sense that as a �rst step, the movable set of cubes

M (see Def. 6), the planning space N (C) (see Def. 4), as well as the target successor

set target successor set R (see Def. 7) are computed. As before, global connectivity has

to be maintained throughout the recon�guration sequence, which means that articulation

points of the connectivity graph GC are excluded from movable set M. In addition, all

cubes ci ∈ CT that already occupy target positions are considered immobile in the sense of

permanence (see Def. 3).

The main di�erence between heterogeneous and homogeneous recon�guration planning

66

is that target positions pi ∈ R in the target successor set of a heterogeneous target con�g-

uration have properties just like actual cubes ci ∈ C.11 Whereas for homogeneous systems,

any cube in ci ∈M can be moved to any target position pi ∈ R (due to interchangeability),

a heterogeneous assignment requires matching properties of ci ∈M and pi ∈ R, which gives

rise to the notion of valid assignments.

De�nition 10. Let Q be the set of all properties de�ned for cubes. A valid assignment

a = {ci, pi} with ci ∈ M and pi ∈ R is one where all properties of ci and pi match. More

formally it is de�ned as follows.

a = {ci, pi}, with ci ∈M, pi ∈ R

and qk(ci) = qk(pi),∀qk ∈ Q

As shown in Lemma 2 and Lemma 3, by construction M and R are nonempty sets

unless the target con�guration has been assembled. For homogeneous recon�guration, there

exists a module that can be moved from its initial to a target position at any time. For

heterogeneous self-recon�guration, this is not generally true even for nonempty setsM and

R. If no cube ci ∈ M matches the properties of any pi ∈ R then no valid assignment can

be found. An example is shown in Fig. 19 where M contains only red cubes and R only

yellow ones. To avoid deadlocks created by a lack of valid assignments, an algorithm called

assignment resolution is used (see Algorithm 3, line 7). After a valid assignment has been

computed, the algorithm plans a path from ci ∈M to pi ∈ R through planning space N (C)

equivalently to the homogeneous recon�guration planning approach in Section 3.1.2. The

complete algorithm is outlined below as Algorithm 3.

3.2.3 Assignment Resolution

The purpose of assignment resolution is to resolve a lack of valid assignments and avoid

deadlocks that would prevent the successful completion of the heterogeneous recon�guration

sequence. As such, assignment resolution is only needed if no valid assignment according to

Def. 10 can be found. In that case a randomly chosen mobile cube is moved to a temporary

11Empty positions pi ∈ N (C), however, do not have any properties, i.e. any module can occupy a position
in N (C), which is essential for path planning.

67

Algorithm 3 Centralized Heterogeneous Recon�guration

Require: Current and target con�guration C and CT
1: while C 6= CT do
2: ComputeM
3: Compute R
4: Compute planning space N (C)
5: Compute assignment a = {ci, pj}
6: while !isValid(a) do
7: assignmentResolution(M, R, N (C), E)
8: RecomputeM
9: Recompute assignment a = {ci, pj}
10: end while
11: p = planPath(a, N (C))
12: executePath(p)
13: end while

position in the hull N (C) of the current con�guration according to the following assignment

resolution rule (as in Section 3.1.2, the set of positions in pi ∈ N (C) that would create

enclosures if occupied is denoted as E).

De�nition 11. Assignment resolution computes an assignment as follows.

a = {mi, ti}

with ti = rand(N (C) \ (R∪N (R) ∪ E))

Instead of moving a cube mi ∈ M to a target position, it is moved to a random temporary

position ti in the hull of the current con�guration which is neither a reachable target position

nor in the neighborhood of a reachable target position. Additionally, mi can not be picked

such that its occupation will create an enclosure.

The rationale behind assignment resolution is that as long as cubes mi ∈M are moved

randomly to positions assigned by Def. 11, assignment resolution will eventually add a cube

to the movable set whose properties match those of a position pi ∈ R. At that point, a valid

assignment can be computed and the assembly of the target con�guration can continue.

Note that assignment resolution will never obstruct the assembly of CT because it will never

move a cube to a reachable target position nor into the neighborhood of a reachable target

position. Therefore, it will never create a hole or an enclosure. Another consequence of

assignment resolution is that a target position will never be occupied by a non-matching

68

M
R

(a) Step 1: No valid assignment

M

R

(b) Step 2: Result of random motion of the red
cube

M

R

(c) Step 3: Valid assignment results in yellow cube
being moved to pi ∈ CT

M

R

(d) Step 3: Valid assignment results in red cube
being moved to pi ∈ CT

Figure 19: Example of a recon�guration sequence using assignment resolution. Opaque
cubes represent the current con�guration, transparent cubes represent unoccupied target
positions. The goal is to move the line con�guration three steps to the right. Shown are two
assignment resolution step, in which the red cube has to be moved two steps to the right
before the recon�guration can continue.

69

cube.

Theorem 4. Assignment resolution will enable the computation of a valid assignment with

probability 1.

Proof. This result is shown in two steps. First we show that a deterministic sequence of

moves can recon�gure all cubes that are not at their target position into an intermediate

con�guration in which all cubes are movable and a valid assignment can be computed.

Then we show that the random cube motions of assignment resolution will assemble such a

con�guration with probability 1.

1. Starting in any nonterminal con�guration, an intermediate con�guration in which a

valid assignment can be computed is reachable. For the purpose of this proof, let the

intermediate con�guration be a double line, which consists of two connected linear one-

dimensional chains of cubes (such as the one shown in Fig. 19). Any con�guration can

be recon�gured into a double line according to Theorem 3, which shows completeness

for homogeneous recon�guration.12 However, it applies here because a recon�guration

from any con�guration to a double line can be treated as a homogeneous problem.

This is true because for the purpose of assignment resolution, the absolute position

of cubes in this double line is irrelevant. In a double line con�guration, every cube is

movable without disconnecting the con�guration (see [61, 65]). Therefore, the movable

set contains every cube ci ∈ C \ CT , i.e., every cube that is not at a target position.

Because R is nonempty unless C = CT (see Lemma 3), at least one cube mi ∈ M

matches a position pi ∈ R and a valid assignment can be found.

2. Using only random cubes motions, the probability of reaching a double line con�gu-

ration approaches 1 as t → ∞. That is because N cubes can only be arranged in a

�nite number of con�gurations assuming that at least one cube is �xed (see assump-

tions made in Section 2.3). Therefore, we can interpret a recon�guration process as

a �nite state machine, in which each state corresponds to a con�guration and each

12Note that a double line can always be assembled despite a subset of cubes being �xed to target positions
due to permanence. This holds, because all occupied target positions form a connected sub-con�guration Co
whose connectivity graph Go is connected (as shown in Lemma 2 and 3).

70

transition to a cube motion. In such a state machine the probability of reaching a

double line con�guration from any state (i.e. con�guration) is non-zero. Therefore,

the random cube motions caused by assignment resolution will recon�gure the cur-

rent con�guration into a double line as t → ∞, in which a valid assignment can be

computed.

Note that in most practical cases a double line will not actually be assembled but as-

signment resolution will enable the computation of a valid assignment before. The recon-

�guration process can then proceed towards assembling the target con�guration. Referring

to Fig. 19, the only reachable position in the �rst frame is a yellow position. Yet the only

movable cube is red. Therefore, assignment resolution has to be applied to the red cube to

move it to a random position. Once a yellow cube becomes movable the recon�guration can

proceed to assemble CT .

3.2.4 Completeness

Having de�ned the algorithm for heterogeneous recon�guration and all its components in

Section 3.1.3, Section 3.2.2, and Section 3.2.3, we can now prove its key property - complete-

ness. In Theorem 1 that a successful homogeneous recon�guration sequence cannot contain

any holes. For heterogeneous systems, however, we cannot conclude that the absence of

holes implies a successful recon�guration because potential deadlocks can still prevent the

completion of the recon�guration sequence. Speci�cally, in this section we have shown that

a deadlock can occur because of a lack of valid assignments. However, the assignment res-

olution algorithm introduced in Section 3.2.2 resolves these situations and guarantees the

successful completion of heterogeneous recon�guration.

Theorem 5. Given any pair of heterogeneous, hole- and enclosure-free, two- or three-

dimensional initial and target con�gurations CI and CT , the heterogeneous recon�guration

algorithm (Algorithm 3) will compute a sequence of primitive cube motions that recon�gures

CI into CT if such a sequence exists.

71

Proof. As shown in Theorem 4, assignment resolution ensures that a valid assignment can

be found as long as the recon�guration has not been completed (because M and R are

nonempty as long as C 6= CT , as shown in Lemma 2 and Lemma 3). A valid assignment

guarantees that progress is made towards assembling CT , i.e., the number of cubes occupying

positions pi ∈ CT is strictly monotonically increasing in time. This property follows from

Theorem 3, where we have shown for homogeneous systems that a valid assignment ensures

that a path can be computed from ci ∈ M to pi ∈ R. This statement holds because the

planning space N (C) is connected and a complete path planner is used. Connectivity of

N (C) depends on the avoidance of holes and enclosures which is guaranteed by Algorithm

2 and Theorem 2.

Given that a valid assignment can always be computed using assignment resolution and

a valid assignment means progress towards assembling CT is made, we can guarantee that

CT is indeed assembled.

3.2.5 Results

This section presents numerical results based on recon�guration sequences from random

three-dimensional initial con�gurations to box con�gurations in Table 3. Additionally, a full

recon�guration sequence from a random con�guration to a layered pyramid is shown in Fig.

20. In Table 3, the �eld Size refers to the size of the con�gurations, Detected Holes reports

the number of holes and enclosures detected during recon�guration, and # of Resolutions

denotes the number of assignment resolution steps that occurred during each recon�guration

sequence. The results indicate a larger number of assignment resolution steps for small

con�gurations. This can be attributed to the larger number of movable and reachable cubes

in larger con�gurations, which makes it very likely that a valid assignment can be found.

However, in this experiment it is most likely an artifact of the randomly generated initial

con�gurations. The complete absence of holes and enclosures may also be an artifact of

this speci�c set of randomly generated problem instances. However, the occurrence of holes

and enclosures is very unlikely in general and requires multiple consecutive assignment or

assignment resolution steps to arrange cubes in speci�c shapes. Nonetheless, holes and

72

Table 3: Recon�guration planning results for recon�gurations from random to box con�gu-
rations

Size Steps Detected Holes # of Resolutions

10 33 0 3

20 69 0 1

30 107 0 0

40 150 0 0

50 233 0 1

enclosures are theoretically possible and need to be avoided in a complete heterogeneous

self-recon�guration algorithm as we have shown in this chapter.

3.3 Conclusions

This chapter has introduced basic graph theoretic notions required for self-recon�guration

planning, a system model including constraints and assumptions imposed on the system,

as well as basic concepts of self-recon�guration planning. Algorithms for centralized ho-

mogeneous as well as heterogeneous self-recon�gurable systems have been presented which

have been shown to be provably complete. Despite being centralized approaches that use

sequential planning and motion of cubes, the results in Section 3.1.6 and Section 3.2.5 show

their feasibility for systems containing up to hundreds of cubes. Under mild constraints of

enclosure and hole freedom Algorithm 1 and Algorithm 3 can be used for scenarios such

as locomotion of self-recon�gurable systems, self-assembly, self-recon�guration, and self-

disassembly.

The next chapter makes use of the theory established for centralized recon�guration

in Section 3.1 and 3.2 to develop more scalable approaches through decentralization. Two

approaches will be presented, one based on graph grammars and one that uses game theory

to model the self-recon�guration problem.

73

Figure 20: Example of a heterogeneous recon�guration from a random three-dimensional
con�guration to a layered pyramid.

74

Chapter IV

DECENTRALIZED SELF-RECONFIGURATION PLANNING

This chapter outlines two decentralized approaches to homogeneous self-recon�guration.

Section 4.1 presents a method based on graph grammars which are automatically generated

on a central node and then applied in a decentralized fashion. Section 4.2 formulates the

self-recon�guration problem as a potential game-based coverage problem and introduces a

novel game-theoretic learning algorithm that solves it in a globally optimal fashion.1 In

this potential game, modules are represented as autonomous decision makers that can se-

lect actions based on local information. This chapter focuses speci�cally on homogeneous

self-recon�guration approaches, however, the presented methods can also be applied to het-

erogeneous systems with minor modi�cations. Graph grammars would have to be generated

based on the set of paths computed through the algorithm in Section 3.2, while the util-

ity functions in Section 4.2 would have to penalize a mismatch in agent positioning for

heterogeneous agents.

A number of decentralized approaches to self-recon�guration have been presented in the

literature. Especially relevant to the results in this chapter are approaches such as the

ones in [29, 30, 104], which employ cellular automata and manually designed local rules

to model and recon�gure the respective systems. Similar work shown in [60] represents

self-recon�guration as a Markov decision process with state-action pairs that are continu-

ously updated at runtime. Whereas these approaches are decentralized in nature, they are

only able to accomplish locomotion of self-recon�gurable systems and do not generalize to

the assembly of arbitrary con�gurations. A decentralized approach based presented in [66]

automatically generates graph grammars that can be used to assemble arbitrary target con-

�gurations. Similar to Section 4.1, rulesets are precomputed for every target con�guration.

1Note that optimality here is de�ned in terms of agents' utility value and not in terms of minimal
cumulative distance traveled, as is usually the case.

75

However, the approach in [66] only allows target con�gurations that can be represented by

acyclic connectivity graphs.

Approaches that most closely resemble the formulation in Section 4.2 are shown in [186,

192], in which stochastic self-assembly methods are applied to a robotic system. The shown

online-assembly approach can robustly handle uncertainty and is able to pursue multiple

paths in parallel. However, it depends on a central coordinating node.

4.1 A Graph Grammar-based Approach

Graph grammars are a popular graph rewriting mechanism that allow the manipulation and

replacement of arbitrary subgraphs of a host graph. They were initially introduced in the 80s

[56, 133] and found applications in image processing, software engineering and veri�cation,

layout algorithms, as well as image generation (see [57, 1]). More recently graph grammars

have also been applied to distributed self-assembly on simulated systems [97, 66, 145] as well

as modular robotic hardware implementations [14, 96, 94]. In [66, 145], graph grammars are

automatically generate based on desired target con�gurations, while [97, 14, 96, 94]) relies

on manually synthesized rule sets to form speci�c structures. Graph grammars as a tool for

decentralization are an intuitive choice since the rules they are composed of are inherently

local - checking for applicability of a rule and applying it only requires information from the

local neighborhood in the graph. Graph grammars, however, are just one form of localized

control of self-recon�guration and a variety of rule-based recon�guration approaches have

been presented in the literature over the years.

Rule-based systems inspired by cellular automata, for example, were presented in [29,

28, 30]. The shown rulesets are designed manually and enable groups of modules to split

and merge, climb over, or move around obstacles. Another rule-based control strategy was

introduced in [26], where rules were automatically generated based on graph connectivity

information. In [86], automatically generated rules were applied to two-dimensional self-

assembly. Another approach to local control is shown in [59], where the recon�guration

problem is formulated as a Markov decision process and actions are mapped to lattice

positions. Similarly, [194] formulates stochastic self-assembly as a Markov chain and designs

76

transition probabilities to optimize convergence rates.

In this section, we show how graph grammatical concepts can bridge the gap between

global information that is available during planning and local information that is available

during recon�guration. Sets of paths obtained through centralized planning (see Section 3.1)

are rewritten into rules that can be checked locally for applicability. Unlike rules based on

connectivity information (such as [24, 26]), graph grammars o�er �ne-grained control over

the applicability of rules and allow the encoding of additional information into the labels

of the rules. The approach outlined in this section relies on some basic graph grammatical

terminology (see [56, 133, 57, 95]) that will be brie�y reviewed in the following section.

4.1.1 Graph Grammars

Graph rewriting systems like graph grammars require a host graph to operate on. In prin-

ciple, graph grammars can be applied to unlabeled graphs, in which case they would have

to rely exclusively on the graph structure. In this work however, we apply them to labeled

graphs only, because labels allow the encoding of additional information and thus the oppor-

tunity of applying graph grammars in a more �ne-grained and targeted fashion. A thorough

review of graph grammatical concepts with applications to modular robotics is given in [95].

De�nition 12. Let Σ be an alphabet. Then the tuple G = (V,E, lV , lE) is called a labeled

graph composed of N nodes with a vertex set V = {v1, v2, . . . , vN}, an edge set E = V × V ,

and two labeling functions lV : V → Σ and lE : E → Σ. A label is an element from the

alphabet Σ and assigned to all (or a subset of all) vertices and edges.2

We will use labeled graphs extensively in the de�nition, generation, and application of

graph grammatical rules, which are the basic components of graph grammars.

De�nition 13. A graph grammatical rule r = {gl, gr} consists of two labeled graphs: a

left-hand side gl and a right-hand side gr. It describes a transformation of a graph GS, that

is isomorphic to gl, from GS to gr. Note that Vgl = Vgr (i.e. the vertex set of left and right

hand side are the same) and the size of the rule is given by |Vgl | = |Vgr |.

2Note that this de�nition of labeled graph di�ers from [95], which de�nes labels only for vertices.

77

Note that typically GS is a subgraph of the full host graph. Therefore graph grammatical

rules operate on a local subset of vertices. The diameter of gl and gr
3 is a measure of how

local a rule is - the smaller the diameter the more local the rule. Note that this notion of

locality di�ers from [95], where locality is de�ned as the number of nodes in the vertex set

Vgl and Vgr of the left and right hand side of a rule. In other words, the rule size determines

the total number of nodes a module has to communicate to execute a rule. Our notion of

locality is based on the number of hops required to check a rule for applicability (since the

diameter measures a distance in hops). For both notions of locality, however, larger rules

require more communication between agents because they need to determine whether their

neighborhood structure matches the left hand side of a rule. A set of rules that operate on

a graph G is furthermore called a graph grammar Φ. A rule r ∈ Φ can be applied to G only

when it is applicable.

De�nition 14. A rule r ∈ Φ is applicable to G if there exists a subgraph GS of G that is

isomorphic to gl. This is also denoted as GS ∼= gl.

If a rule r is applicable to G, its application yields a new graph Gi
r−→ Gi+1, where Gi+1

results from Gi by replacing the subgraph GS with gr. Each step in the recon�guration

process yields a graph Gi that is part of a trajectory, i.e. a �nite or in�nite sequence of

graphs {Gi}ki=0 s.t. there exists a sequence of applicable rules {ri}k−1
i=0 where ri ∈ Φ and

Gi
ri−→ Gi+1. Each graph Gi as part of a trajectory is called reachable by the system (G0,Φ).

A reachable graph can be temporary, such that some rule r ∈ Φ is applicable to it, or stable

(see [95]).

De�nition 15. A graph G is stable, if no rule in Φ is applicable to it.4

Stable graphs play an important role in this section. Theorem 6 proves that the graph

representing CT is the only reachable stable graph given a system (G0,Φ) where G0 is the

graph representing the initial con�guration CI and Φ is an automatically generated graph

grammar.

3The diameter of a graph G is the longest shortest path between any pair of vertices vi, vj ∈ G.
4Note, however, that this does not mean that no more rules are applicable to G, merely that it is left

unchanged by the application of any further rules.

78

4.1.2 Problem Setup

This graph grammar-based approach rests on the assumption that a set of individual mod-

ule paths have already been computed and are available as input to the graph grammar

generator. Speci�cally, this section uses paths that were generated using the homogeneous

self-recon�guration method shown in Section 3.1 but can be equivalently used with paths

generated for heterogeneous systems (as shown in Section 3.2). Given a set of module paths

as input, this section focuses on the automated generation of rulesets that encode this set of

paths as graph grammatical rules (see Section 4.1.4). Therefore, the decentralized execution

of the generated graph grammar yields the exact same motion sequence as the centralized

method in Section 3.1.2.

Graph grammar generation relies on the representation of the current state of the self-

recon�gurable system as a labeled graph (as will be shown in Section 4.1.3). The execution of

the ruleset however, uses the original recon�gurable system represented by the sliding cube

abstraction from Section 2.3. More speci�cally, each cube will be treated as an autonomous

agent that is responsible for periodically checking the ruleset for currently applicable rules

and then executing them. The rule applicability check can be done with local information

where local is de�ned as a distance of at most two hops (with hops used in the same sense

as in Def. 5). Each rule therefore describes a small neighborhood of the current cube and as

such a rule can only manipulate cubes in that neighborhood (either through position or label

updates). The rule execution is done in a decentralized fashion during which each cube can

only access neighborhood information and the ruleset (see Section 4.1.5). In addition to the

assumptions and constraints stated for centralized homogeneous recon�guration in Section

3.1, we clarify another set of assumptions that govern the rule generation and execution in

this section.

Assumptions

• A set of module paths that recon�gures an initial con�guration CI into a target con-

�guration CT is available as input.

79

• Each rule can encode a cube motion, label updates, or both.

• Each rule can move a single cube at a time but is able to update the labels of all or a

subset of the cubes in the local neighborhood.

• Since valid paths are encoded in the ruleset, every rule obeys the motion model as

well as any other constraints imposed in Section 2.3, Section 3.1.1 and Chapter 3 in

general.

4.1.3 Rule Structure

The two labeled graphs gl and gr of a rule in our system are derived from local neighborhoods

of cubes. Therefore, a mapping from connected sets of cubes to labeled graphs is required.

De�nition 16. The mapping f : ZdN → GLN (with d ∈ {2, 3}) maps from the space of

con�gurations composed of N cubes to the space of labeled connectivity graphs on N nodes

such that f(C) = G(V,E, lG). The vertex and edge set are computed according to Def. 1

(unlabeled connectivity graphs) while the edge and vertex labels are de�ned as follows.

lG(vi) = l(ci) with vi ∈ V, ci ∈ C

lG(eij) =


bk if (ci − cj) · bk < 0

−bk o.w.

with eij ∈ E

Here, bk is a basis vector of the lattice Zd.

This de�nition implies that vertex labels are equivalent to the labels of the cubes, while

edge labels preserve information about the two- or three-dimensional structure of the con�g-

uration. Therefore, the labels of edges eij and eji di�er in sign. The mapping f preserves the

entire state of a con�guration in the labeled graph. As such, the inverse f−1 : GLN → ZdN of

a labeled connectivity graph can be computed and a two- or three-dimensional con�guration

can be recovered. Note that edge labels are computed automatically based on the relative

position of the cubes to each other. Edge labels are not used in the a rule's label update

mechanism but need to be part of the labeled graph such that the mapping f is invertible

(through preserving the full two- or three-dimensional structure of the con�guration in the

labeled graph).

80

For the de�nition of the left- and right-hand side gl and gr consider a path pi =

{p0, p1, . . . , pm} of cube ci (with ci = p0 and m = |pi|) and the following neighborhood.

De�nition 17. Let the neighborhood

N2(ci) = {cj : ‖ci − cj‖L2
< 2, ci, cj ∈ C} (10)

denote the motion neighborhood of cube ci, i.e. the set of all cubes that are within one

primitive motion of ci.
5

The elements pji of path pi (with j ∈ {0, . . . , |pi|}) represent the positions of cube ci as

it moves along path pi. Given these prerequisites, the components gl and gr of a rule r can

now be de�ned as follows (note that here j ∈ {0, . . . , |pi| − 1}).

gl = f
(
N2(pji)

)
(11a)

gr = f
(
N2(pj+1

i)
)

(11b)

The application of a rule r to a subgraph GS yields a new graph G′S . The changes in

the edge and label set described by G = (V,E, lG)
r−→ (V,E′, l′G) = G′ represent a motion in

the con�guration space, i.e. cube ci has moved from position pji to position p
j+1
i .

As part of gl and gr, each rule contains information about how the labels of the current

node change through the application of the rule as well as optional label updates for the

neighbors (an example is shown in Listing 4.1 and the corresponding three-dimensional and

graph representation in Fig. 21). Since the labels of gl and gr in the generated rules are

essential in guaranteeing the properties of our recon�guration approach, we will present a

detailed description of their structure. Listing 4.1 shows that each label is composed of

multiple, comma-separated data �elds. These data �elds include the node ID, the rule ID,

a �ooding �ag indicating the start and the end of the �ooding process, and a �eld storing

the latest �nished path (see �elds gl_labels and gr_labels in Listing 4.1). The node ID and

the rule ID are globally unique integers and ensure the uniqueness of each rule and the

unambiguity of the whole recon�guration. The �ooding �ag controls the start and end of

5This de�nition di�ers slightly from Def. 5 in that the L2 norm is used here instead of the L1 norm.

81

(a) 3D representation of the left hand side (b) 3D representation of the right hand side

1,*,0,2

2,*,0,2

3,*,0,2

4,*,0,2

5,10,0,2

−
b
y

b
y

−b
x

b x
b
y

−
b
y

b z

−b
z

(c) Graph representation of the left hand
side of the rule

1,*,0,2

3,*,0,2

4,*,0,2

5,11,0,2

−
b
y

b
y

b
y

−
b
y

b x

−b
x

(d) Graph representation of the right
hand side of the rule

Figure 21: Examples of motion rule showing the three-dimensional representation of the rule
in the top row and the labeled graph representation in the bottom row. The active cube
is shown in red (with ID 5), its motion neighbors according to Def. 17 in green and cubes
outside its motion neighborhood in light blue. A nodes ID is shown in bold font as the �rst
component of each node label.

82

the propagation process to update every node's knowledge about the latest �nished path.

The �eld last path concludes a label and stores the most recently �nished path locally at

every node. This �eld also controls the execution sequence of all individual paths, since the

execution of path pi depends on the conclusion of path pi−1. The initial labeling of all nodes

of the graph G0 = f(CI) and the label update mechanism through rules are designed such

that only one motion rule (see Section 4.1.4) is applicable to the current con�guration C at

any given time. Therefore, the recon�guration sequence is unambiguous and deterministic.

ID : 10

g l_st ruc t : [1 x1 s t r u c t]

g l_ l abe l s : ' 5 ,10 ,0 ,2 '

gr_struct : [1 x1 s t r u c t]

g r_labe l s : ' 5 ,11 ,0 ,2 '

update ne ighbors : []

Listing 4.1: Example of a motion rule. The application of the shown rule with ID 10 changes

the edge set of a local neighborhood of node 5 (the edge set is speci�ed by gl_struct and

gr_struct) and updates the labels of node 5 such that the next applicable rule is the rule

with rule ID 11 (see �eld gl_labels and gr_labels).

4.1.4 Rule Generation

This section outlines the automatic generation of a graph grammar Φ that unambiguously

recon�gures the initial into the target con�guration by repeatedly rewriting the host graph

G = f (C). The result is a trajectory given by f (CI)
Φ−→ f (CT). Rules are generated

based on a set of cube paths P that can be computed using the approaches shown in

Chapter 3. For each path pi ∈ P a sub-ruleset Rpi = {{rm,j}|pi|j=1, rpr, rf} is generated that

consists of |pi| motion rules rm,j (where |pi| is the path length), one �ooding activation

rule rf , and one propagation rule rpr. The graph grammar Φ is then the set of all sub-

rulesets Φ =
{
{Rpi}

|P|
i=1

}
. The labels of each rule (i.e. the labels of gl and gr) contain

strictly monotonically increasing rule IDs which result in a sequential application of rules.

83

Additionally each rule's labels contain the ID of the cube it applies to ensuring that only

one cube in the con�guration can apply each rule (for motion and �ooding activation rules).

Propagation rules are wildcard rules that can be applied by every cube in the con�guration.

Rule Types Three types of rules are generated - motion, �ooding activation, and prop-

agation rules (introduced in [145]). Intuitively, a motion rule represents a primitive cube

motion by rewriting the edge set and labels of a local neighborhood of the host graph through

its application.6 A �ooding activation rule triggers at the end of each path, changes the

labels of the applying cube, and starts the propagation process. Propagation rules inform

the whole con�guration about the conclusion of the latest path, which is required because

paths are strictly ordered and the start of path pi+1 depends on the conclusion of path pi.

Note that �ooding activation and propagation rules do not result in cube motions but only

in label updates.

As the name suggests, a motion rule results in the motion of a cube ci and therefore

modi�es the edge set of its neighborhood. In addition a cube ci's labels are updated such

that the next rule is applicable to it and the �ooding �ag is reset.

De�nition 18. A motion rule rm moves a cube ci by rewriting the host graph G = (V,E, lG)

according to (V,E, lG(vi))
rm−−→ (V,E′, l′G(vi)) with edge and label updates computed as follows.

E′ = (E − Egl) ∪ Egr

The labels change from lG(vi) to l
′
G(vi) as follows:

l′G(vi) −→ rule ID = lG(vi) −→ rule ID + 1

l′G(vi) −→ �ooding = 0

For each pair of consecutive positions pji and p
j+1
i on path pi, the neighborhood structure

of the active cube is computed (according to Eqn. 11) and stored in the labeled graphs gl

and gr of the corresponding motion rule. Once a cube ci completes its path, a �ooding

6Note that according to De�nition 1 an edge between nodes in the connectivity graph exists only for
cubes located at neighboring grid positions. Therefore a change to the edge set requires the motion of a
cube.

84

activation rule triggers an update process that uses a propagation rule to inform the whole

con�guration of the conclusion of path pi of cube ci. A �ooding activation rule updates the

labels of the current cube only. Therefore, no motion occurs and neighboring cubes are not

a�ected by the label update.

De�nition 19. A �ooding activation rule rf updates the last path �eld of the current node

vi and sets the �ooding �ag from 0 to 1, which activates the corresponding propagation rule.

More formally, rf rewrites the host graph G = (V,E, lG) according to (V,E, lG(vi))
rf−→

(V,E, l′G(vi)) with the edge set remaining unchanged and the labels updated from lG(vi) to

l′G(vi) as follows:

l′G(vi) −→ rule ID = lG(vi) −→ rule ID + 1

l′G(vi) −→ �ooding = 1

Once a �ooding rule is triggered, a propagation rule ensure that the whole con�guration

is informed of the latest �nished path. Similar to �ooding activation rules, a propagation rule

only updates labels and does not change the edge set of G. Therefore, no motion occurs,

only the labels of the current node itself as well as all of its neighbors are updated. A

propagation rule is a wildcard rule, i.e. it applies to every node irrespective of its node ID if

all other label �elds agree. Therefore, one rule is su�cient to update the entire con�guration

after a single path has concluded.

De�nition 20. A propagation rule rp updates the current node vi's labels by setting its

�ooding �ag from 1 to 0 and incrementing its last path �eld. It also sets the �ooding �ag

of all its neighbors vj ∈ f(N2(ci, C)) to 1 so that the same rule rp is applicable to them.

More formally, rp rewrites the host graph G = (V,E, lG) according to (V,E, lG(vi, vj))
rp−→

(V,E, l′G(vi, vj)) with the labels changing as follows.

l′G(vi) −→ rule ID = lG(vi) −→ rule ID + 1

l′G(vi) −→ path = lG(vi) −→ path + 1

l′G(vi) −→ �ooding = 0

For all adjacent nodes vj ∈ f(N2(ci, C)) the following label updates are performed.

l′G(vj) −→ �ooding = 1

85

To avoid propagation messages being passed back and forth between nodes, only those

rules with a higher rule ID than the one currently stored in a node's labels are executed.

This avoids the repeated execution of the same propagation rule by a single node because

the executing node's rule ID �eld is incremented to a value larger than the propagation

rule's ID. Below, we summarize how the labels of gl and gr of each rule are computed. In

general, for a given position pji on path pi, the labels of gl are de�ned as follows:

lG(gli,j) =



lG(gri,j−1) if j > 1

lG(gri−1,|pi−1|
) if j = 1, i > 1

lG,init otherwise

(12)

The labels of gr are derived from the labels of gl via the label update mechanism de�ned

for motion rules, �ooding rules, and propagation rules and can be summarized as follows.

lG(gri,j) =



lG(gli,j)
rm−−→ lG(gri,j) for motion rules

lG(gli,j)
rf−→ lG(gri,j) for �ooding rules

lG(gli,j)
rp−→ lG(gri,j) for propagation rules

(13)

The labels are created with a strictly monotonically increasing global rule ID ensuring

that each rule is globally unique and describes exactly one step in the complete recon�g-

uration sequence. For every path pi, |pi| motion rules, one �ooding activation rule, and

one propagation rule are generated, resulting in a ruleset Rpi = {{rmi}
|pi|
i=1, rp, rf}. This

rule generation process is repeated for every path pi, i ∈ {1..|P |}) until the recon�guration

sequence is completed, i.e. until the target con�guration CT has been assembled.

4.1.5 Ruleset Execution

Given a system (G0,Φ), the application of Φ results in the recon�guration sequence G0
r1−→

G1
r2−→ G2

r3−→ . . .
rN−−→ Gstable, where G0 = f(CI), Gstable = f(CT) (the fact that the

only stable graph is Gstable = f(CT) will be shown in Section 4.1.6). To accomplish this

recon�guration, every node vi ∈ G periodically checks the ruleset for applicable rules. If a

cube's local neighborhood GS = f (N2(ci)) is isomorphic to the left-hand side gl of some

86

rule r ∈ Φ, r is applied to the current node vi = f(ci). The application of r rewrites the

subgraph GS into gr. In the case of motion rules, such rewriting results in a motion in

the con�guration space. The execution of the last motion rule rm of a path pi triggers the

application of a �ooding activation rule rf which in turn triggers a propagation rule rp. The

repeated application of rp to every node vi ∈ V updates every node's local state about the

completion of the latest path.7

This process is repeated until every path pi is completed and no more rules in Φ are

applicable to any node vi ∈ V , at which point a stable graph is reached. Unlike the cen-

tralized path planning and ruleset generation stage, decentralized execution relies on local

neighborhood information only. Therefore, rulesets can be executed in a highly parallel

fashion with each module checking simultaneously for applicable rules.

4.1.6 Convergence

The sequential nature of the generated rules ensures that the only reachable, stable graph

as de�ned in Def. 15 is the graph representing the desired target con�guration f (CT). In

other words, the ruleset Φ results in a uniquely determined sequence of cube motions that

unambiguously assembles CT (see [145]). The following theorem formalizes this statement

and proves convergence to CT .

Theorem 6. The graph GT = f(CT) is the only reachable, stable graph of the ruleset Φ

when applied to the initial graph G0 = f(CI).

Proof. By assumption, the graph grammar generator is given a set of paths that is guar-

anteed to assemble the target con�guration CT from a given initial con�guration CI (by

Theorem 3). What remains to be shown is that the execution of the generated graph gram-

mar obeys the same sequence of module motions and paths as the centralized planner in

Section 3.1. To show this result, we will rely on the strictly monotonically increasing and

globally unique rule numbers.

Rules are generated for each path pi in sequence, i.e. |pi| motion rules, one �ooding

activation rule, and one activation rule are generated before path pi+1 is used. Therefore,

7Note that propagation rules are wildcard rules and hence applicable to every node in the graph.

87

each rule ri,j ∈ Rpi (where j ∈ {1, . . . , |Rpi |} and Rpi = {{rm,k}
|pi|
k=1, rp, rf} is the sub-ruleset

of path pi) has a lower rule number than any rule ri+1,k ∈ Rpi+1 (where k ∈ {1, . . . , |Rpi+1 |}).

These rule numbers are unique, strictly monotonically increasing, and are encoded in the

labels of ri,j . As a result, the applicability of rule ri,j depends on the successful execution

of rule ri,j−1 (for any rule but the �rst rule ri,1 in each sub-ruleset Rpi+1) and on ri−1,|Rpi−1 |

(for the �rst rule of each path pi). As such, the execution of motion rules clearly cannot

change the sequence of motions. Flooding activation rules are executed only once at the end

of each path by the currently active node and have no in�uence on other modules in the

system. Propagation rules also execute a single time, but on every module in the system.

Therefore propagation rules ensure that after N executions (once on each module) the entire

con�guration is informed as to which path has just been completed (through the last path

�eld) and which path has to be executed next.

Therefore, the same sequence of recon�guration steps is achieved as in the planning stage

and the execution of the ruleset can only result in the target con�guration CT . Therefore,

we can conclude that the only reachable, stable graph is (V,E, lG) = f(CT).

4.1.7 Results

This section presents rule generation results based on paths generated in Section 3.1 (ho-

mogeneous recon�guration planning). As in Section 3.1, the recon�guration sequences and

rule sets were generated through simulation in Matlab. Con�gurations ranged in size from

100 to 500 modules and were either randomly generated or arranged in box con�gurations

(examples are shown in the insets of Fig. 16 and Fig. 17). The parameters and results of

these simulations are summarized in Table 4 and Table 5. In these tables, the �eld Size

refers to the number of modules in the con�guration, Overlap is the number of initially

overlapping modules, Path Length is the total number of motions of all modules to achieve

the desired recon�guration, and Rules is the total number of rules in the ruleset.

As shown in Table 4 and Table 5 the size of the ruleset increases approximately linearly

with the number of modules and shows a similar trend as the cumulative path length. Given

88

Table 4: Recon�guration planning and rule generation results for overlapping box con�gu-
rations

Size Overlap [N]/[%] Path Length Rules

100 30 / 30% 837 977

200 60 / 30% 1543 1823

300 90 / 30% 2426 2846

400 120 / 30% 3279 3839

500 150 / 30% 4275 4975

Table 5: Recon�guration planning and rule generation results for overlapping random con-
�gurations

Size Overlap [N]/[%] Path Length Rules

100 36 / 36% 352 480

200 114 / 57% 403 575

300 157 / 52.3% 893 1179

400 182 / 45.5% 1674 2106

500 231 / 46.2% 2327 2865

the rule generation approach the rule set size can be computed as follows.

|Φ| = cumulative path length + 2(|CI | − |O|)

Essentially, the ruleset size is determined by the cumulative path length while an additional

two rules are generated for every completed path.

4.2 Game-theoretic Recon�guration

In this section, we present a scalable and fully distributed approach to homogeneous self-

recon�guration that does not rely on a central decision maker, requires no precomputation,

and uses only limited communication between agents. The homogeneous self-recon�guration

problem is formulated as a constrained potential game and solved in a provably globally

optimal fashion using a novel game-theoretic learning algorithm.8 This learning algorithm

induces a Markov process that is guaranteed to converge to the unique stochastically stable

8Note that optimality here is de�ned in terms of agents' utility value and not in terms of minimal
cumulative distance traveled, as is usually the case.

89

state that maximizes the global potential, i.e. the desired target con�guration. Convergence

to the target con�guration is provably achieved even though each agent acts as a purely self-

interested individual decision maker with local information only. Furthermore, decision

making requires no (in the two-dimensional case) or limited communication (in the three-

dimensional case). The learning algorithm relies on a parameter τ that is commonly referred

to as the learning rate and determines the tradeo� between exploration of the state space

and exploitation (i.e. maximization of an agent's utility). This section introduces a learning

strategy that uses a �xed learning rate τ , which will be compared to an adaptive learning

rate in Chapter 5. The problem setup can be brie�y summarized as follows and will be

rigorously de�ned in Section 4.2.1.

• The environment E is a �nite two- or three-dimensional discrete grid, i.e. E ⊂ Z2 or

E ⊂ Z3.

• N agents P = {1, 2, . . . , N} move in discrete steps through that grid.

• An agent's full action set Ai contains every grid position ai ∈ E .

• Each agent has a restricted action set Ri which contains only a subset of all its possible

actions Ai.

• An agent's utility or reward Ui(a ∈ A) is inversely proportional to the distance to the

target con�guration.

• The con�guration C composed of all N agents does not have to remain connected.

4.2.1 Problem Formulation

The work presented in this section relies on the sliding cube abstraction shown in Section 2.3,

in which individual agents are represented as cubic modules that move through a discrete

lattice or environment E = Zd in discrete steps (with d being the dimensionality of the

environment d ∈ {2, 3}). The motion model is equivalent to Section 2.3, however, an agent

does not require a substrate of other agents to execute a motion. An agent i's current state

or action ai (in a game-theoretic sense) is a position in the lattice ai ∈ Zd. Note that

90

an agent's action is equivalent to its position in the lattice. Cubes can be thought of as

geometric embeddings of the agents in our system. Note that in this section, we model a

homogeneous self-recon�gurable system. Hence, all agents have the same properties and are

completely interchangeable.

The homogeneous self-recon�guration is furthermore formulated as a potential game

(see [128]), which is a game structure amenable to globally optimal solutions and can be

decentralized in a straightforward fashion. Generally, a game is speci�ed by a set of players

i ∈ P = {1, 2, . . . , N}, a set of actions Ai for each player, and a utility function Ui(a) =

Ui(ai, a−i) for every player i. In this notation, a = (a1, a2, . . . , aN) denotes a joint action

pro�le of all N players, and a−i is used to denote the actions of all players other than agent

i. In a constrained game, the actions of agents are constrained through their own and other

agents' actions. In other words, given an action set Ai for agent i, only a subset Ri(a)) ⊂ Ai

is available to agent i. A constrained potential game is furthermore de�ned as follows.

De�nition 21. A constrained exact potential game (see [201]) is a tuple G = (P,A,

{Ui(.)}i∈P , {Ri(.)}i∈P ,Φ(A)), where

• P = {1, . . . , N} is the set of N players

• A = A1 × · · · × AN is the product set of all agents' action sets Ai

• Ui : A→ R are the agents' individual utility functions

• Ri : A → 2Ai is a function that maps a joint action to agent i's restricted action set

Additionally, the agents' utility functions are aligned with a global objective function or

potential Φ : A → R if for all agents i ∈ P, all actions ai, a′i ∈ Ri(a), and actions of other

agents a−i ∈
∏
j 6=iAj the following is true

Ui(a
′
i, a−i)− Ui(ai, a−i) = Φ(a′i, a−i)− Φ(ai, a−i)

The last condition of Def. 21 implies an alignment of agents' individual incentives with

the global goal. Therefore, under unilateral change (only agent i changes its action from ai

to a′i) the change in utility for agent i is equal to the change in the global potential Φ. This is

91

a highly desirable property since the maximization of all agents' individual utilities yields a

maximum global potential. Additionally, for potential games (see [117, 118, 128]), it can be

guaranteed that there exists at least one pure Nash equilibrium, which is the action pro�le

maximizing Φ. We can now formulate the self-recon�guration problem in game-theoretic

terms and show that it is indeed a constrained potential game.

De�nition 22. Game-theoretic self-recon�guration can be formulated as a constrained po-

tential game, where the individual components are de�ned as follows:

• The set of players P = {1, 2, . . . , N} is the set of all N agents in the con�guration.

• The action set of each agent Ai = E ⊂ Zd is a �nite set of discrete lattice positions

(i.e. every position in the environment E)

• The restricted action sets Ri(a ∈ A) are computed according to Section 4.2.2.

• The utility function of each agent is Ui(ai) = 1
d(ai)+1 . Here, d(ai) speci�es the mini-

mum distance to the target con�guration CT as d(ai) = minaj∈CT ‖ai − aj‖L2
.

• The global potential Φ(a ∈ A) =
∑
i∈P

Ui(ai).

Note that the utility of an agent is independent of all other agents' actions and de-

pends exclusively on its distance to the target con�guration. It is this decoupled expression

of agents' utility functions that allows the expression of the global potential as a sum of

individual utilities. The coupling between agents is then introduced through an agent's re-

stricted action set computation (see Section 4.2.2), which is constrained by its own as well

as other agents' actions. The goal of the game-theoretic self-recon�guration problem is to

maximize the potential function, i.e.

max
a∈A

Φ(a) = max
a∈A

∑
i∈P

Ui(ai) (14)

This can be interpreted as a coverage problem where the goal of all agents is to cover

all positions in the target con�guration. Therefore maximizing the potential is equivalent

to maximizing the number of agents that cover target positions ai ∈ CT . The following

propositions shows that this formulation indeed yields a potential game.

92

Proposition 1. The self-recon�guration problem in Def. 22 constitutes a constrained po-

tential game with Φ(a) =
∑
i∈P

Ui(a) and Ui(a) = 1
d(ai)+1 .

Proof. Note that the dependence of an agent's utility exclusively on its own state allows

us to express agent i's utility as U(ai, a−i) = U(ai) and the global potential Φ(ai, a−i) =

U(ai) +
∑

j∈P\{i} Uj(aj). Therefore the desired result follows directly from the de�ning

equation of potential games.

Ui(a
′
i)− Ui(ai) = Φ(a′i, a−i)− Φ(ai, a−i)

As we will see in Section 4.2.5, this potential game structure allows us to derive a

decentralized version of the presented learning algorithm.

4.2.2 Action Set Computation

A core component of constrained potential games is the computation of restricted action

sets. Unlike in previous work (for example [118, 201]), agents in our setup are constrained

not just by their own actions, but also those of others. In this section we present methods for

computing restricted action sets that obey motion constraints as well as collision constraints

imposed by other agents.

2D recon�guration In the two-dimensional case agents are restricted to motions on the

xy-plane. Unlike in previous work (see [145, 146]) where we required a con�guration to

remain connected at all times, in this work, agents are allowed to disconnect from all (or a

subset of) other agents. This approach enables agents to separate from and merge with other

agents at a later time. To formalize this idea, we �rst review some graph theoretic concepts.

Note that the following de�nitions have been adapted from similar concepts introduced in

Section 3 to �t the game-theoretic setup in this section.

De�nition 23. Let G = (V,E) be the graph composed of N nodes with V = {v1, v2, . . . , vN},

where node vi represents agent i's position ai. Then G is called the connectivity graph of

93

con�guration C if E = V ×V with eij ∈ E if ‖ai − aj‖ = 1 (where ai, aj ∈ C are the positions

of agents i, j ∈ P).

This de�nition implies that two nodes vi, vj in the connectivity graph are adjacent, if

agent i and j are located in neighboring grid cells. Note that a connectivity graph can be

computed for any set of grid positions, whether these positions are occupied by agents or

not. We furthermore use the notions of paths on graphs and graph connectivity in the usual

graph theoretic sense. Note that G is not necessarily connected since (groups of) agents can

split o�. Based on the connectivity graph G and the current joint action a, we now de�ne

the function Ri : A → 2Ai , which maps from the full joint action set to a restricted action

set for agent i and is based on the following two de�nitions of primitive actions sets.

De�nition 24. The set of all currently possible sliding motions Ms is de�ned as follows

(where ms = a′i − ai).

Ms =
{
a′i ∈ Zd \ a−i : ‖ms‖L1

= 1
}

(15)

De�nition 25. The set of all currently possible corner motions Mc is de�ned as follows

(where j ∈ [1, . . . , d] and mc = a′i − ai).

Mc =
{
a′i ∈ Zd \ a−i : ‖mc‖L1

= 2 ∧ mc,j ∈ {0, 1}
}

(16)

Note that Ms and Mc in Def. 24 and Def. 25 are equally applicable to 2D and 3D.

These de�nitions encode the motion model and collision avoidance constraint outlined in

Section 2.3. They allow us to de�ne the restricted action set in two dimensions as follows.

De�nition 26. The two-dimensional restricted action set is given by R2D
i (a) =Ms ∪Mc.

This de�nition ensures that agent i can only move to unoccupied neighboring grid po-

sitions a′i through sliding or corner motions (or stay at its current position ai). All other

agents replay their current actions a−i.

3D recon�guration Whereas in the 2D case agents were allowed to move to all unoccu-

pied neighboring grid cells regardless of connectivity constraints, in the three-dimensional

94

case we introduce the requirement of groundedness. Intuitively, groundedness requires agents

to remain connected to a ground plane and prevents agents from occupying arbitrary po-

sitions in the three-dimensional lattice. As such, groundedness enforces a certain level of

cohesion among agents while at the same time allowing them to disconnect from the main

con�guration and merge at a later time. In this sense, groundedness a�ords agents more

�exibility in selecting their actions than global connectivity, which requires all agents to

remain connected at all times. An agent is furthermore immobile, if executing an action

would remove its own groundedness or that of any of its neighbors. The required notion of

a ground plane is de�ned as follows.

De�nition 27 (Ground Plane). The ground plane is the set SGP = {s ∈ E : sz = 0}

where E is a �nite environment E ⊂ Z3 and the corresponding connectivity graph is GGP =

(VGP, EGP) with eij ∈ EGP if ‖si − sj‖ = 1.

Note that the ground plane is de�ned as the xy-plane and its connectivity graph GGP

is, by de�nition, connected. Positions s ∈ SGP are not allowed to be occupied by agents,

therefore ai ∈ Ai \ SGP, ∀i ∈ P. Using the graph GGP, we de�ne G
′ = (V ′, E′) as V ′ =

V ∪VGP and E′ = V ′×V ′ such that eij ∈ E′ if for vi, vj ∈ V ′ we have ‖ai − aj‖L1
= 1. Note

that G′ represents the current con�guration including the ground plane, and ai represents

an action of an agent or an unoccupied position in the ground plane.

De�nition 28 (Groundedness). An agent i is grounded if there exists a path on G′ from

vi ∈ V ⊂ V ′ to some vk ∈ VGP ⊂ V ′.9 A con�guration C is grounded if every agent i ∈ P is

grounded.

The idea behind groundedness hints at an embedding of a self-recon�gurable system in

the physical world, where agents cannot choose arbitrary positions in the environment. Typ-

ically, agents are prevented from disconnecting from the rest of the con�guration through

connectivity maintenance (for example [30, 60]). Connectivity, however, is a global prop-

erty that is computationally costly to enforce and requires the con�guration to move as one

9Here, vi represents agent i in the connectivity graph G (see Def. 23) and vk represents an unoccupied
ground plane position s ∈ SGP in the connectivity graph GGP.

95

joint group of modules. Although connectivity does enforce cohesion among agents, it is a

rather in�exible property as it does not allow splitting and merging of (subsets of) agents.

Groundedness, like connectivity, also enforces some level of cohesion (since it prevents �oat-

ing agents), but without incurring computationally expensive global connectivity checks.

One can think of a grounded con�guration as one that remains globally connected through

the ground plane. In addition, we can use the notion of groundedness to prove completeness

of deterministic recon�guration in Section 4.2.3.

An agent can verify groundedness in a computationally inexpensive way through a depth-

�rst search, which is complete and guaranteed to terminate in time proportional to O(N)

in a �nite state space. The notion of groundedness also informs the restricted action set

computation. If all of agent i's neighbors Ni = {vj ∈ V : eij ∈ E} (see Def. 23) can compute

an alternate path to ground (other than through agent i) then agent i is allowed to move. To

formalize this idea, let G−i = (V−i, E−i) with V−i = V ∪VGP\{vi} and E−i = V−i×V−i such

that eij ∈ E−i if for vi, vj ∈ V−i we have ‖ai − aj‖L1
= 1. G−i is therefore the connectivity

graph of the current con�guration including the ground plane without agent i. R3D
i (a) is

then de�ned as follows.

De�nition 29. The three-dimensional restricted action set R3D
i (a) =Ms∪Mc if all agents

vj ∈ Ni are grounded on G−i. Otherwise, R
3D
i (a) = {ai}.

This de�nition encodes the same criteria as the two-dimensional action set with the

additional constraint of maintaining groundedness (an example is shown in Fig. 22). If

agent i executing an action would leave any of its neighbors ungrounded, agent i is not

allowed to move.

4.2.3 Deterministic Completeness

In this section we establish the completeness of deterministic recon�guration in two and

three dimensions. We show that for any two con�gurations CI and CT there exists a de-

terministically determined sequence of individual agent actions such that con�guration CI

will be recon�gured into CT . These results are required to show irreducibility of the Markov

chain induced by the learning algorithm outlined in Section 4.2.4. Irreducibility guarantees

96

C

SGP

c1

c2

(a) Movement of agent c1 would remove ground-
edness of agent c2.

C

SGP

c2

c1

c3

(b) Agent c1 can move without breaking the
groundedness constraint for agents c2 and c3.

Figure 22: Examples of grounded con�gurations and feasible motions of cubes.

the existence of a unique stationary distribution and furthermore a unique potential function

maximizer. The results below have also been presented in [144, 147].

Theorem 7 (Completeness of 2D recon�guration). Any given two-dimensional con�guration

CI can be recon�gured into any other two-dimensional con�guration CT , i.e. there exists a

�nite sequence of con�gurations {C0, C1, . . . , CM} (with C0 = CI and CM = CT) such that two

consecutive con�gurations di�er only in one individual agent motion.

Proof. Without loss of generality, assume that CI and CT do not overlap, i.e. for no ci ∈ CI

is it true that also ci ∈ CT . Additionally, assume that CI and CT are separated along one

dimension k ∈ {bx, by, bz} (with bx, by, bz being the basis vectors of the lattice), i.e. ∀ci,k ∈ CI

we have that ci,k < cj,k, ∀cj ∈ CT . Then at each time step t, select the agent i whose current

position ci ∈ C is closest to an unoccupied position cj ∈ CT . Plan a deterministic path of

primitive agent motions pi = {a0
i , a

1
i , . . . , a

m
i } from an initial module position a0

i = ai to

a target position ami = ati using a complete path planner such as A∗. Note that such a

path always exists since we do not require agents to remain connected to any other agents.

97

Therefore, the path planning problem is reduced to single agent path planning on a discrete

�nite grid, which is complete because A∗ is complete. This greedy selection process of the

agent-target pairs together with a complete path planning approach su�ces to recon�gure

any two-dimensional con�guration into any other two-dimensional con�guration.

The result in Theorem 7 holds for any con�guration, even con�gurations that consist

of multiple connected components. A similar result can be shown for three-dimensional

recon�guration as follows.

Theorem 8 (Completeness of 3D to 2D recon�guration). Any �nite grounded 3D con�g-

uration CG,3D can be recon�gured into a 2D con�guration C2DInt , i.e. there exists a �nite

sequence of con�gurations {C0, C1, . . . , CM} (with C0 = CG,3D and CM = C2DInt) such that two

consecutive con�gurations di�er only in one individual agent motion.

Proof. Without loss of generality, assume that the connectivity graph of CG,3D consists of

one connected component. In any �nite grounded 3D con�guration, there always exists an

agent i ∈ P with a nonempty restricted action set |Ri(a)| > 0. Agent i is therefore mobile

and there exists a �nite path of individual agent motions pi = {a0
i , a

1
i , . . . , a

m
i } (with a0

i = ai

being the agent's current action) such that for some s ∈ SGP, ‖ami , s‖L1
= 1, i.e. the agent's

�nal action is a position on the ground plane SGP.

Let the subset of agents Pz>1 ⊂ P contain those agents whose positions are not on the

ground plane and Gz>1 = (Vz>1, Ez>1) the corresponding connectivity graph. Furthermore,

let G′′ = (V ′′, E′′) be such that V ′′ = Vz>1 ∪{vGP}, where vGP is a single node representing

all the agents on the ground plane and E′′ such that eij ∈ E′′ if for vi, vj ∈ V ′′ we have

‖ai − aj‖L1
= 1. According to Def. 29, an agent i is mobile if it is not an articulation point

in the connectivity graph G′′ (see Fig. 23). In G′′, vGP may or may not be a non-articulation

points, but according to Lemma 1, in every connected graph there always exist at least two

non-articulation points. Therefore, there exists at least one agent i that has a nonempty

restricted action set. For that agent, one can compute a deterministic action sequence that

moves agent i to the ground plane. Observe that agent i remains mobile on its action path

since it is the only agent moving. In other words, at each iteration t we transfer one vertex

98

CG

G′′

Gz>1

G

SGP

Figure 23: Example of a grounded con�guration CG, the ground plane SGP, associated
connectivity graph G. Gz>1 represents all agents not on the ground plane, while all agents
on the ground plane are represented by a single node in G′′.

from Vz>1 to vGP such that |V t
z>1| = |V t−1

z>1 | − 1 until |Vz>1| = 0 and all agents have been

moved to vGP. This process terminates in a �nite number of time steps because the initial

con�guration CG,3D is �nite. The result is a 2D con�guration C2DInt representing G′′.

Corollary 1. Any �nite grounded 3D con�guration CG,3D
I can be recon�gured into any other

�nite grounded 3D con�guration CG,3D
T .

Proof. Since, according to Theorem 8, any �nite grounded 3D con�guration CG,3D
I can be

reduced to an intermediate 2D con�guration C2DInt in a �nite number of steps, the reverse

is also true - any �nite grounded 3D con�guration CG,3D
T can be assembled from some 2D

con�guration C2D′Int in a �nite number of steps. According to Theorem 7, any 2D con�guration

C2DInt can be recon�gured into any other 2D con�guration C2D′Int . Therefore, there exists a

deterministic �nite action sequence from CG,3D
I to CG,3D

T .

4.2.4 Stochastic Recon�guration

Building on the problem formulation in Section 4.2.1 and the completeness results in the

previous section, in this and the following section we introduce a stochastic recon�guration

algorithm to solve the game-theoretic self-recon�guration problem. The presented algorithm

99

is fully distributed, does not require any precomputation of paths or actions, and can adapt

to changing environment conditions. Problems that can be formulated as game-theoretic

coverage problems are often solved using methods like log-linear learning (LLL, [15]) or

variants such as binary log-linear learning (BLLL, see [7, 114, 117, 118]). However, neither

can handle the general constraints imposed by the motion and collision constraints of the

sliding cube model. LLL is not capable of handling restricted action sets at all while BLLL

can only handle action sets constrained by an agent's own previous action. Unlike LLL

and BLLL, the algorithm presented in this section guarantees convergence to the potential

function maximizer even if action sets are constrained by all (or a subset of other) agents'

actions.

Our algorithm is based on the Metropolis-Hastings algorithm ([80, 124]), which allows

the design of transition probabilities such that the stationary distribution of the underlying

Markov chain is a desired target distribution. In this work the target distribution was chosen

to be the Gibbs distribution in accordance with the log-linear learning literature. This

choice enables a distributed implementation of the learning rule in Theorem 9 through the

potential game formalism (see Corollary 2). The Metropolis-Hastings algorithm guarantees

two results: the existence and the uniqueness of a stationary distribution. We will use

these properties to show that the only stochastically stable state (see Def. 30) is x∗, the

potential function maximizer. The following theorem provides a precise formulation of the

desired target distribution and demonstrates how to construct transition probabilities that

guarantee convergence to the target distribution.

Theorem 9. Given any two states xi and xj representing global con�gurations and a learn-

ing rate τ > 0, the transition probabilities10

pij =


qjie

1
τ

(Φ(xj)−Φ(xi)) if e
1
τ

(Φ(xj)−Φ(xi)) qji
qij
≤ 1

qij o.w.

(17)

guarantee that the unique stationary distribution of the underlying Markov chain is a Gibbs

10Note that qij = 1
|Rk|

, i.e. a random choice among all available actions in the restricted action set Rk of

agent k.

100

distribution of the form Pr[X = x] = e
1
τ Φ(x)∑

x′∈X e
1
τ Φ(x′)

.

Proof. Let X be a �nite state space containing all possible states of con�gurations com-

posed of N agents.11 On that state space, let the desired target distribution be π(x) =

Pr[X = x] = e
1
τ Φ(x)∑

x′∈X e
1
τ Φ(x′)

with Φ de�ned in Def. 22. By applying the Metropolis-Hastings

algorithm, we can compute transition probabilities P = {pij} such that π is the station-

ary distribution of P , i.e. π = πP . In the Metropolis-Hastings algorithm, a transition

probability is represented as pij = g(xi → xj)α(xi → xj), where g(xi → xj) is the proposal

distribution and α(xi → xj) is the acceptance distribution. Both are conditional probabilities

of proposing/accepting a state xj given that the current state is xi.

Let agent k achieve the transition from state xi to xj through action ak ∈ Rk(a).

Then one possible choice for the proposal distribution is g(xi → xj) = qij = 1
|Rk| , ∀j ∈

{1, . . . , |Rk|}, i.e. a random choice among all available actions of agent k. According to

Hastings ([80]), a popular choice for the acceptance distribution is the Metropolis choice

αij = min
{

1,
πjqji
πiqij

}
. Note that unlike in the original formulation ([124]), we do not assume

symmetric proposal probabilities, i.e. qij = qji (see Fig. 24 for an illustration of qij and qji).

These choices result in the following transition probabilities:

pij =


qji

πj
πi

if
πjqji
πiqij

≤ 1

qij o.w.

(18)

It is easily veri�ed that these pij satisfy the detailed balance equation πipij = πjpji and thus

guarantee the existence of a stationary distribution (see [80, 124]). The resulting pij follow

from the de�nition of πi = e
1
τ Φ(xi)∑

x′∈X e
1
τ Φ(x′)

and similarly πj . Uniqueness of the stationary

distribution follows from the irreducibility of the Markov chain induced by P = {pij}, which

is the case for our choice of proposal and acceptance distribution because they assign a

nonzero probability to every action in any restricted action set. By Theorem 8 and Corollary

1 we know that any state xj can be reached from any other state xi and vice versa. Thus

any action path has nonzero probability and irreducibility follows.

11Such a space is �nite if we assume a �nite environment.

101

a1

a2

State xi

|Rk| = 2

qij = 1
|Rk| = 1

2

State xj

a1

|Rk′ | = 1

qji = 1
|Rk′ |

= 1

a1 a2

State xj′

a3

|Rk′′ | = 3

qji′ = 1
|Rk′′ |

= 1
3

Figure 24: Example of forward and reverse actions with their associated proposal probabil-
ities qij , qji, and q

′
ji. Note that xi, xj , x

′
j are states of the entire con�guration, and agent k

is the currently active agent.

Theorem 9 applies equally for 2D and 3D con�guration. However, for 3D recon�gura-

tion, the proof relies implicitly on the notion of groundedness to show irreducibility of the

underlying Markov chain (through the computation of R3D
i). The following theorem requires

the de�nition of stochastic stability.

De�nition 30 (Stochastic Stability [66, 197, 198]). A state xi ∈ X is stochastically stable

relative to a regular perturbed Markov process P ε with noise parameter ε > 0 if the following

holds for the stationary distribution π.

lim
ε→0+

πεxi > 0 (19)

Note that the Markov process is de�ned through the transition probabilities in Theorem

9 and the stationary distribution is a Gibbs distribution. Furthermore ε is equivalent to the

learning rate τ in the following proof.

Theorem 10. Consider the self-recon�guration problem in Def. 22. If all players adhere to

the learning rule in Theorem 9 then the unique stochastically stable state x∗ is the state that

102

maximizes the global potential function.

Proof. Note that this result holds by de�nition of the desired target distribution, which

is a Gibbs distribution centered at the state of maximum global potential and de�nes the

probability of being in a state x as Pr[X = x] = e
1
τ Φ(x)∑

x′∈X e
1
τ Φ(x′)

. The learning rate or

temperature τ represents the willingness of an agent to make a suboptimal choice (i.e.

explore the state space). As τ → 0, Pr[X = x] → 0 for all states x 6= x∗ which are not

potential function maximizers (see [15, 118]). Since the global potential as well as the desired

target distribution have a unique maximizer, the set of stochastically stable states contains

a single, unique state x∗.

Note that the maximum global potential is achieved when all agents are at a target

position ai ∈ CT . Algorithm 4 shows an implementation of Theorem 9. In Algorithm 4,

similarly to the Metropolis-Hastings algorithm in [80], pii = 1−
∑

j 6=i pij .

Algorithm 4 Centralized game-theoretic learning algorithm. Note that state xj is the result
of agent k applying action ai→j,k and xi and xj refer to states of the entire con�guration.

Require: Current and target con�guration C and CT
1: while True do
2: Randomly pick an agent k in state xi
3: Compute restricted action set Rk
4: Select ai→j,k ∈ Rk with probability qij = 1

|Rk|

5: Compute αij = min
{

1,
qji
qij
e

1
τ

(Φ(xj)−Φ(xi))
}

6: if αij == 1 then
7: xt+1 = xj
8: else

9: xt+1 =

{
xj with probability αij

xi with probability 1− αij
10: end if
11: end while

4.2.5 A decentralized Algorithm

Algorithm 4 shows a centralized implementation of the game-theoretic learning method of

Theorem 9 which requires the computation of a global potential function Φ(xi) and depends

on the current joint action xi (i.e. the entire current con�guration CI).12 A decentralized

12Note that a global state of a con�guration xi and a joint action a are used interchangeably.

103

algorithm, however, is desirable to execute the learning rule of Theorem 9 on a team of

agents without a central coordinator. The formulation of the self-recon�guration problem

as a potential game allows us to rewrite the transition probabilities in a decentralized fashion

as follows.

Corollary 2. The global learning rule of Theorem 9 can be decentralized through locally

computable transition probabilities pij, where

pij =


qjie

1
τ

(Uk(a′k)−Uk(ak)) if e
1
τ

(Uk(a′k)−U(ak)) qji
qij
≤ 1

qij o.w.

(20)

Proof. Note that for agent k, we can express the global states or joint actions xj and xi

as (a′k, a−k) and (ak, a−k) respectively. According to Proposition 1, we can then rewrite

Φ(xj)− Φ(xi) as follows.

Φ(xj)− Φ(xi) = Φ(a′k, a−k)− Φ(ak, a−k)

= Uk(a
′
k, a−k)− Uk(ak, a−k)

= Uk(a
′
k)− Uk(ak)

The last step in this rewriting relies on the fact that an agent's individual utility function

depends only on its own action and not the action of any other agents. The resulting

transition probabilities pij then follow from Theorem 9. Since qij , qji, Uk(a
′
k), as well as

Uk(ak) can be computed with local information, so too can the transition probabilities. The

stationary distribution of the Markov process described by pij is the same Gibbs distribution

as in Theorem 9.

Note that local information in this context can mean multiple hops, because the compu-

tation of restricted action sets requires the maintenance of groundedness of all neighboring

agents. Verifying groundedness requires N − 1 hops in the worst case (for the case of a line

con�guration of agents).

Algorithm 5 shows a decentralized implementation of Algorithm 4 and Corollary 2. Note

that a transition from con�guration xi to xj is accomplished by agent k executing action

104

a′k ∈ R(ak, a−k) based on its current position or action ak. Therefore, we can interpret qij as

the transition probability of the forward action and qji as that of the reverse action (see Fig.

24). Also note that any action is always reversible, i.e. for any action a′k ∈ R(ak, a−k) it is

always true that ak ∈ R(a′k, a−k). It is therefore always possible to revert back to ak after

executing an action a′k ∈ R(ak, a−k). Note that a−k in this section only refers to agents in

the local neighborhood of agent k and not all agents in the con�guration. In Algorithm 5,

decentralization is achieved by forcing agents to take turns in executing actions. Each agent

uses a speci�c type of clock that ticks according to a rate 1 Poisson process. According to

[22], on average only one clock ticks per time step, meaning that, on average, only one agent

is active and moves at a time.13

Algorithm 5 Decentralized self-recon�guration using game-theoretic learning, that each
agent can executes with local information. Note that xt, xt+1 refer to consecutive states of
the active agent.

Require: Target con�guration CT
1: Start clock (see [22])
2: while True do
3: if Clock ticks then
4: Compute current restricted action set Rk
5: Select a′k ∈ R(ak, a−k) with probability q = 1

|R(ak,a−k)|

6: Compute α = min
{

1,
|R(ak,a−k)|
|R(a′k,a−k)|e

1
τ

(U(a′)−U(a))
}

7: if α == 1 then
8: xt+1 = a′

9: else

10: xt+1 =

{
a′ with probability α

a with probability 1− α
11: end if
12: end if
13: end while

4.2.6 Results

Algorithm 5 was implemented and evaluated in Matlab with a learning rate τ = 0.001 that

struck a balance between greedy maximization of agent utilities and exploration of the state

space through suboptimal actions. Agents' restricted action sets depended on the agents'

13If more than one agent is active in the same local neighborhood, a decentralized blocking mechanism is
used to ensure the sequential execution of actions.

105

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

Time to convergence using τ =0.001

Time steps

G
lo

b
a

l
P

o
te

n
ti
a

l

Size 10: 2D to 2D

Size 10: 2D to 3D

Size 10: 3D to 2D

Size 10: 3D to 3D

Size 20: 2D to 2D

Size 20: 2D to 3D

Size 20: 3D to 2D

Size 20: 3D to 3D

Size 30: 2D to 2D

Size 30: 2D to 3D

Size 30: 3D to 2D

Size 30: 3D to 3D

Figure 25: Convergence times for di�erent types of con�gurations and sizes ranging from 10
to 30 agents. A �xed learning rate τ = 0.001 was used for the shown results.

joint action and the environment - in these simulations only the ground plane (agents were

initialized on or above the ground plane, i.e. their z-coordinate z ≥ 1). In a straightforward

extension to this algorithm, obstacles can be added to restrict the environment even further.

Fig. 25 shows convergence results of Algorithm 4 of con�gurations containing 10, 20,

and 30 agents. Four types of recon�gurations have been performed: 2D to 2D, 2D to 3D,

3D to 2D, and 3D to 3D (see Fig. 26). Ten trials were conducted for each scenario and

convergence was achieved once the con�guration reached a global potential of Φ = N , i.e.

every agent reached a utility of Ui = 1. The vertical lines in Fig. 25 represent the average

time to convergence of all four types of recon�gurations of a certain size (e.g. the leftmost

line represents the average convergence time of a con�guration of 10 agents). Note that for

the scenarios of Fig. 25, the target con�guration was o�set from the initial con�guration

by a translation of 10 units along the x-axis (this o�set is not shown in Fig. 26). One can

observe that at the beginning of each recon�guration the global potential ramps up very fast

(within a few hundred time steps), but the asymptotic convergence to the global optimum

can be slow (see the case 3D to 2D for 30 agents).

106

(a) 2D to 2D recon�guration (b) 2D to 3D recon�guration

(c) 3D to 2D recon�guration (d) 3D to 3D recon�guration

Figure 26: Examples of various randomly generated scenarios for each combination of two-
and three-dimensional initial and target con�gurations.

107

4.3 Conclusions

This chapter introduced two methods for accomplishing decentralized self-recon�guration.

The graph grammar-based method in Section 4.1 relies on sets of paths as input and pre-

computes a graph grammar, which can then be executed on a set of agents in a distributed

fashion. While allowing a decentralized execution, this method relies on precomputation as

well as messages being broadcast to the entire con�guration.

The game-theoretic method presented in Section 4.2 alleviates these issues and adds a

number of appealing properties to a novel self-recon�guration approach. First, we formu-

lated the self-recon�guration problem as a potential game with each cube being modeled as

an autonomous decision maker or agent. Each agent is capable of determining its own action

set together with transition probabilities for each action. Actions are chosen based on local

information but guarantee the assembly of the global target con�guration. This property

is guaranteed by Theorem 9 and Theorem 10 through the computation of transition proba-

bilities which are based on the Metropolis-Hastings algorithm. The resulting decentralized

self-recon�guration algorithm (Algorithm 5) then requires only local information for decision

making, does not rely on precomputation, uses no (in the 2D case) or limited communication

(in the 3D case), can assembly arbitrary two- or three-dimensional con�gurations, and is

guaranteed to converge. Additionally, it can adapt during runtime to changes in the envi-

ronment, the target con�guration, or even the number of agents part of the con�guration.

However, the main contribution of the presented algorithm is the fact that it guarantees

convergence despite the fact that agents can constrain each other. Neither of the often used

algorithms - log-linear learning and binary log-linear learning - is capable of handling this

type of constraint.

The next chapter will focus on extensions to the basic algorithms outlined in Section 4.2

with the goal of improving convergence rates. Speci�cally, Chapter 5 investigates extensions

that are capable of adjusting the learning rate or the utility function used in an agent's

learning rule during runtime. The goal is to equip the basic game-theoretic learning rule

with a certain degree of adaptability to changing or unknown environments while retaining

convergence guarantees.

108

Chapter V

ADAPTIVE DECENTRALIZED METHODS

The game-theoretic learning method introduced in Section 4.2 relies on a �xed rule for

computing transition probabilities for available agent actions. While these probabilities

can vary depending on an agent's immediate surroundings and its restricted action set, the

decision making rule remains �xed. As we have seen in Section 4.2.6, �xed learning rates τ

or �xed utility functions can lead to fast convergence times in speci�c scenarios but perform

poorly in others. For example, environments containing obstacles typically favor larger

values for τ or utility functions with built-in obstacle avoidance. However, the assembly of

target con�gurations in obstacle-free environments typically converges faster when using low

values of τ or utility functions geared towards assembly. Since no given �xed learning rule

�ts all scenarios, the performance of game-theoretic self-recon�guration will bene�t from a

certain level of adaptability in the learning algorithms.

Therefore, in this section we will outline two approaches that make the learning rules

of Algorithm 4 and 5 tunable at runtime with the goal of improving convergence times to

the target con�guration. The computation of transition probabilities allows two approaches

to runtime adaptation - modifying an agent's learning rate τ (which changes an agent's

willingness to explore or exploit) or modifying an agent's utility function (giving it essentially

a di�erent objective to pursue). We will �rst discuss an adaptive learning rate method in

Section 5.1 and proceed by introducing a method for switching utility functions in Section

5.2. More speci�cally, Section 5.2 presents a framework for creating �nite state machines

that control the utility switching of individual agents. Simulation results for both methods

(shown in Section 5.1.2 and 5.2.4) indicate improved performance over the basic approach

in Section 4.2 for non-trivial scenarios. The main theoretic contributions of this section

provide convergence guarantees for both adaptive methods and prove that a given target

con�guration will indeed be assembled.

109

5.1 Adaptive Learning Rate

As previous results indicate (see Section 4.2.6 and [144, 147]), �xed values of τ in the learning

rule of Theorem 9 can lead to slow convergence for both small and large values of τ . Fixed,

large values of τ lead to rapid exploration, which is advantageous when obstacles are present

in the environment. However, such agent behavior is typically ill-suited for �nalizing the

assembly of CT because of its propensity to explore the state space. Inferior actions are

therefore more readily accepted and agent motions tend to be more volatile. Small values of

τ , on the other hand, lead to greedy exploitation and a rapid approach of CT . However, self-

recon�guration with small values of τ tend to take a large number of iterations to overcome

obstacles because the probability of accepting inferior actions is small. In general, neither

small nor large values of τ lead to low convergence times but the performance for a �xed value

is highly scenario-dependent. In this section we therefore outline a strategy for adapting the

value of τ on the �y and on a per-agent basis meaning that di�erent agents can use di�erent

values of τ at any given time.

The adaptation strategy in this section is based on the idea that by default, an agent

uses a small nominal value of τ = τnom (i.e. greedily exploits) and temporarily increases its

own learning rate to τmax if no improvement in utility can be achieved within N iterations

(for the results shown, we chose N = 15).1 An increase in τ increases an agent's probability

of accepting inferior actions and thus its willingness to explore. However, to maintain a

notion of cohesion among agents and a�nity to CT , τ undergoes an exponential decay back

to its nominal value τnom. Figure 27 shows an example of this adaptive-τ -strategy where

discontinuous jumps in the value of τ can be seen after an agent executes actions for N

iterations without an improvement in utility.

As shown in Fig. 28 this time-varying trade-o� between exploration (large values of τ)

and exploitation (small values of τ) improves convergence times in randomly generated en-

vironments containing obstacles. Note that this adaptation strategy is just one example of

1Regarding large values of τ , note that as τ → ∞ the performance of the self-recon�guration process
deteriorates to a naive random walk in the state space of the underlying Markov chain. Therefore values of
τmax should be chosen conservatively to avoid poor performance. In simulation, values of τmax ∈ [1, 10] have
shown good performance.

110

Number of selections of current agent

0 20 40 60 80 100 120

C
u
rr
en
t
v
a
lu
e
o
f
τ

0

0.2

0.4

0.6

0.8

1

Evolution of τ

Number of selections of current agent

0 20 40 60 80 100 120

C
u
rr
en
t
u
ti
li
ty

U

0

0.2

0.4

0.6

0.8

1

Evolution of utility U

τmax

τnom

No utility

improvement

Switch to τmax

Figure 27: Adaptation strategy for τ with τnom = 0.01, τmax = 1.0, and N = 15. Shown is
an example of a utility function time series for a single agent together with a time series of
the corresponding learning rate τ .

how the value of τ can be adapted to improve the performance of the learning rule of Theo-

rem 9. For Theorem 10 to hold, it is required that the time-inhomogeneous Markov process

(caused by agents adapting their value of τ and thus modifying their transition probabil-

ities) eventually settles into a time-homogeneous Markov process with constant transition

probabilities. Therefore, our approach deactivates an agent's adaptive behavior as soon as

it reaches a target position ci ∈ CT , which is guaranteed to happen in a �nite state space

(even for a naive random walk). Even after deactivating the adaptive behavior, the nominal

value of τ = τnom allows for a su�cient level of exploration of the state space and ensures

that the Markov process remains irreducible (as required by Theorem 9). At the same time,

it also ensures that agents do not block each other from completing the assembly. As a

consequence, Theorem 9 and Theorem 10 still hold for the adaptive behavior.

111

5.1.1 In�uence of the Learning Rate

As shown in Theorem 9, transition probabilities consist of a proposal probability and an

acceptance probability for each possible action of an agent. Proposal probabilities are ex-

clusively a function of the size of the restricted action set. Acceptance probabilities for a

chosen alternative action a′, however, depend on the utility di�erence between the current

and an alternative action. As such, the utility di�erence is a function of both τ as well as

the distance d of action a′ to CT .

An approximation of the in�uence of the value of τ on the acceptance ratio αij of inferior

actions (those that decrease the utility of an agent) is shown in Table 6. Note that Table 6

is a simpli�cation of the probabilities of Theorem 9 because it examines agents in isolation

such that qij = qji. In other words, an agent's actions are not restricted by other agents and

the restricted action sets have the same size for the forward and reverse actions. Regardless,

Table 6 highlights a noteworthy trend of the acceptance ratio αij . An agent is more likely

to accept an inferior action as it moves farther away from CT (i.e. larger d) and as the value

of τ increases. In other words, the performance deteriorates towards a naive random walk

with increasing distance to CT and increasing τ .2 For example, a value of τ = 1 in Table 6

indicates an acceptance ratio of inferior actions of 0.606 as d→ 0. However, as d→∞ such

an action is accepted with near-certainty of 0.99. On the other hand, for a value of τ = 10,

inferior actions are accepted with a probability of 0.95 even as the distance d→ 0.

The acceptance ratio as a function of d and τ can be interpreted as the trade-o� between

exploration of the state space and greedy exploitation (i.e. motion towards CT). It is

conceivable that neither small nor large values of τ are well-suited for all scenarios. As we

will show in the next section, the adaptive-τ -strategy outlined in this section combines the

rapid exploitation of using small values of τ and the propensity towards exploration of large

values of τ and outperforms any single �xed value of τ used in this section.

2Note that in a �nite state space even a naive random walk of agents will eventually lead to the assembly
of the target con�guration. However, convergence times will be poor since the size of the state space is
exponential in the number of agents.

112

Table 6: In�uence of the learning rate τ on the acceptance of actions with decreasing utility.

τ αij
d→ 0 d→∞

10 0.95 0.999
1 0.606 0.99
0.1 0.006 0.90
0.01 1.92E-22 0.36
0.001 7E-218 4.5E-5

5.1.2 Results

In this section we compare the performance of the basic decentralized implementation of

Algorithm 5 using �xed learning rates τ to an implementation of Algorithm 5 using the

adaptive-τ -strategy outlined in this section. Both algorithms were implemented and eval-

uated in Matlab. Agents' actions were restricted according to the action set computation

outlined in Section 4.2.2, the motion model in Section 2.3, the ground plane, as well as

obstacles present in the environment. Agents' positions were initialized above the ground

plane such that their z-coordinate z ≥ 1. Both the initial and the target con�guration CI

and CT were randomly generated. An example of these random scenarios for both two-

and three-dimensional recon�guration is shown in the insets of Fig. 28a and Fig. 28b

respectively.

Fig. 28 shows convergence time results for initial and target con�gurations contain-

ing 20 agents for two- and three-dimensional recon�guration sequences and values of τ ∈

{0.01, 0.1, 1.0, τadaptive}. Ten trials were conducted for each value of τ for both the two-

dimensional and three-dimensional scenarios respectively. The vertical lines in Fig. 28

represent the average time to convergence for varying values of τ (e.g. the leftmost line

represents the average convergence time for τ = τadaptive). Convergence is achieved, if the

con�guration reaches a global potential of Φ = N , i.e. every agent achieves a maximum

utility of Ui = 1. Trials that did not converge within 10,000 time steps were aborted.

Note that in the scenarios of Fig. 28, the target con�guration was o�set from the initial

con�guration by a translation of three units along the x-axis. Additionally, CI and CT were

separated by an obstacle. One can observe that at the beginning of each recon�guration the

113

global potential ramps up very fast (within a few hundred time steps), but the asymptotic

convergence to the global optimum can be slow or even fail within the chosen time horizon

of 10,000 time steps (for certain values of τ and certain scenarios). As seen in Fig. 28,

recon�guration sequences using the adaptive-τ -strategy converged for each of the ten trials.

For �xed values of τ , some of the trials did not converge within the allowed time horizon

(this can be seen in the �gure where the global potential does not reach its maximum value

Φ = N). Note however, that convergence to the target con�guration is still guaranteed by

Theorem 10 (but would require a longer time horizon).

5.2 Switching Utility Functions

Utility function switching is the second approach to runtime adaptation of the learning rule

outlined in Section 4.2.4. As opposed to modifying the learning rate τ , in this section we

modify the utility function or replace it altogether. In the interest of enabling agents to make

utility switching decisions as autonomously as possible, we are interested in an endogenous

utility switching approach. In other words, an agent should be capable of determining a

switching condition and executing it based on its own state rather than on the global state

of the aggregate system or the state of a set of neighbors.

Alternatively, one could focus the decision making capabilities regarding utility function

switches in a set of leader agents and set up the problem as a leader-follower network.

Leader agents would determine switching conditions, execute switches, and disseminate

that information to all followers. While this approach might be advantageous in a setting

with asymmetric information (i.e. leaders have access to more information than followers),

the setup in this Section guarantees information symmetry because it relies on state-based

switching conditions (see Def. 31). As such, followers can determine switching conditions

based on the same information that leader agents would have access to. In such a setting,

leader-based switching would actually remove granularity by forcing followers to switch

based on the leader's state as opposed to their own individual state. While this section does

not investigate the leader-follower approach any further, Section 5.2.4 presents results on a

fully centralized switching approach that could be interpreted as a single leader agent. The

114

(a) Convergence times for two-dimensional recon�guration sequences.

(b) Convergence times for three-dimensional recon�guration sequences.

Figure 28: Convergence times for two- and three-dimensional recon�guration sequences
containing 20 agents for varying values of τ . The results of four di�erent learning rates τ
are shown: τ = 0.01, τ = 0.1, τ = 1, and a time-varying τ according to Section 5.1. In
both �gures, an example of the initial con�guration CI is shown on the left (in red, opaque),
obstacles are shown in the center (in black, opaque), and the target con�guration CT is
shown on the right (in green, semi-transparent).

115

results in that section suggests that removing granularity actually slows down convergence.

Another alternative is a fully centralized approach that induces switching through ex-

ogenous signals such as a broadcast to all agents. This method would require a broadcasting

framework or alternatively a global synchronizing signal (for example a magnetic or electric

�eld, or a signal that all agents can measure with onboard sensors). A similar approach

has been investigated in [12] in which a self-assembly process is controlled through external

force manipulation of particles. While this is a viable approach if a broadcasting signal can

be provided to the entire con�guration, in this section, we focus on a distributed approach

to switching. However, Section 5.2.4 investigates exogenous (centralized) versus endogenous

(distributed) utility switching with respect to convergence rates and presents simulation

results that suggest faster convergence for endogenous switching. Additionally, this sec-

tion presents a number of possible utility functions, combines them in linear weighted sums

to form new behaviors, and introduces theoretic results that guarantee convergence in the

presence of utility function switching.

5.2.1 Utility Function Components

In this section we exclusively present utility functions that depend on an agent's individual

state or a measurable state component of the static environment (such as static obstacles).

No knowledge about neighboring agents (if any are available) is required for an agent to

compute its utility function. The main reason for this is to avoid coupling between the

agents through the utility function. Coupling is limited to collision avoidance and ground-

edness maintenance (in the restricted action set computation). A consequence of decoupled

utility functions is that information requirements are lower which reduces delays in the

computation of utilities and in the decision making process overall. An agent does not have

to gather information about neighboring agents to determine its utility, update its transi-

tion probabilities, and then choose an action. All utility function components shown below

are limited to the interval (0, 1] (or [−1, 0) for the obstacle-averse utility function) so that

their combination as linear weighted sums produces predictable outcomes. Other desirable

properties of utility functions are the following.

116

• Utility functions should satis�es the potential game formalism in Def. 21 to allow a

decentralized computation and execution.

• Utility function values should depend exclusively on an agent's own state (or the state

of static objects in the environment such as obstacles) to avoid additional coupling

between agents beyond collision avoidance and groundedness maintenance.

• The maximum utility value needs to be placed at an action representing a target po-

sition (for guaranteeing convergence to the target con�guration). Any utility function

for which this property does not hold can only be used temporarily (see Theorem 12).

Target con�guration-seeking utility This utility function is the default function used

for assembling arbitrary structures in Section 4.2. It rewards actions more highly that are

closer to the target con�guration.

UT,af(d) =
1

d+ 1
or alternatively UT,af(d) = e−kd (21)

It was already shown in Chapter 4 (Section 4.2) that this utility function satis�es the poten-

tial game formalism, which is a requirement for the decentralization of the game-theoretic

learning algorithm of Section 4.2.5.

Distance-seeking utility Distance-seeking utility functions are a generalization of target-

seeking utility functions in the sense that their maximum is centered at a desired distance

to the target con�guration. As such, they are formulated as follows.

UD,af(d) = e
−(d−ddes)

2

2σ2 (22)

Here, ddes is the desired distance to the target con�guration and σ is a parameter that deter-

mines the standard deviation of the normal distribution. In simulation, values of σ ∈ [2, 10]

exhibited good performance. This type of utility function can be used in the construction

of utility switching state machines as shown in Section 5.2.

Lemma 4. The distance-seeking utility function UD,af = e
−(d−ddes)2

2σ2 satis�es the potential

game formalism according to De�nition 21 and De�nition 22.

117

Proof. This proof follows the same reasoning as shown in Proposition 1 and expresses the

global potential Φ as follows.

Φ(ai, a−i) =

e−(di−ddes)
2

2σ2 +
∑

j∈P\{i}

e
−(dj−ddes)

2

2σ2


(where di is a shorthand notation for di = d(ai) = minaj∈CT ‖ai − aj‖L2

). The result

then follows from the de�ning equation for potential games Ui(a
′
i) − Ui(ai) = Φ(a′i, a−i) −

Φ(ai, a−i).

Ground-seeking utility Ground-seeking utility functions reward actions closer to the

ground plane more highly. Used by itself, this type of utility function would cause agents

to seek positions on the ground plane and essentially �melt� the con�guration (similar to an

approach shown in [61]). Ground-seeking utility potentially speeds up the recon�guration

from tall three-dimensional initial con�gurations to other arbitrary two-dimensional or three-

dimensional con�gurations (see Section 5.2.4). It also o�ers a potential speedup in the

locomotion of a con�guration.

UG,af(z) =
1

z + 1
or alternatively UG,af(z) = e−kzz (23)

One can additionally include a distance-dependent term, which makes agents more ground-

seeking the farther they are located from the target con�guration as follows.

UG,af(d, z) = (1− e−kd) 1

z + 1
or alternatively UG,af(d, z) = (1− e−kd)e−kzz (24)

The rationale behind this distance-dependency is that high agent positions are more likely

to slow down convergence when agents are located farther from the target con�guration.

Simulation suggest that this behavior can indeed slow down convergence through the for-

mation of dendrite-like sub-structures as shown in Fig. 31. Two gain parameters need to be

chosen for the distance-dependent ground-seeking utility function: k and kz. In trials shown

in Section 5.1.2, values of k = 0.02 and kz ∈ [0.3, 0.5] exhibited good performance.

Lemma 5. The distant-dependent ground-seeking utility function UG,af(d, z) = (1−e−kd) 1
z+1

(and also UG,af(d, z) = (1 − e−kd)e−kzz or either function without distance dependence)

satis�es the potential game formalism according to De�nition 21 and De�nition 22.

118

Proof. This proof follows the same reasoning as shown in Proposition 1 and expresses the

global potential Φ as follows (zi is a shorthand notation for the z-component of action ai).

Φ(ai, a−i) =

(1− e−kdi) 1

zi + 1
+

∑
j∈P\{i}

(1− e−kdj) 1

zj + 1


The result then follows from the de�ning equation for potential games Ui(a

′
i) − Ui(ai) =

Φ(a′i, a−i)− Φ(ai, a−i).

Ground-averse utility Similar to ground-a�nity, the ground-averse utility function relies

on the z-coordinate of an action as input. In this case however, actions with a z-coordinate

close to a desired target height are more highly rewarded. To ensure that this type of utility

function has a unique maximum, a normal distribution-based formulation centered around a

desired target height zdes is used. This utility function can potentially speed up the assembly

of tall target structures and is formulated as follows.

UG,av(z) = e
−(z−zdes)

2

2σ2 (25)

As before, one can include a distance-dependent term, which makes agents more ground

averse the farther (or closer) they are located from the target con�guration.

UG,av(d, z) =


e
−(z−zdes)

2

2σ2 (1− e−kd) higher in�uence farther from CT

e
−(z−zdes)

2

2σ2 e−kd higher in�uence closer to CT
(26)

Values of σ ∈ [2, 10] exhibited good performance in simulation.

Lemma 6. The ground-averse utility function UG,av(z) = e
−(z−zdes)2

2σ2 (with or without a

distance-dependent term) satis�es the potential game formalism according to De�nition 21

and De�nition 22.

Proof. This proof is equivalent to Lemma 5 with the only di�erence being the substitution

of the exact utility term. Since the ground-averse utility function can be decomposed in the

exact same way, the result still holds.

119

Obstacle-averse utility The obstacle-averse utility function de�nes utility in terms of

distance to obstacles and causes agents to avoid moving too close to static obstacles in the

environment. In essence, this utility function acts like a potential �eld around obstacles and

is formulated as follows.

UO,av(do) = umine
−kodo (27)

In this formulation, do = do(ai) = minoj∈O ‖ai − oj‖L2
where O is the set of obstacle

positions in the environment. Unlike the aforementioned utility functions, obstacle-averse

utility punishes proximity to obstacles in the sense that it assigns a negative utility value to

an action. The parameters that need to be chosen here are a gain term ko and a minimum

utility value (or a maximum negative utility that is awarded to actions). Values of ko ∈

[1.0, 2.0] showed good performance in simulation. The value of umin is required to be in the

interval umin ∈ [−1, 0) such that the obstacle-averse utility term remains in the negative

unit interval [−1, 0).

Lemma 7. The obstacle-averse utility function UO,av(do) = umine
−kodo satis�es the potential

game formalism according to De�nition 21 and De�nition 22.

Proof. This proof is equivalent to Lemma 5 with the only di�erence being the substitution

of the exact utility term. Since the obstacle-averse utility function can be decomposed in

the exact same way, the result still holds.

5.2.2 Utility Functions as Weighted Sums

The above-mentioned utility function components can be combined as linear weighted sums

and still satisfy the potential game requirement; and, thus, allow the computation of utility

values with local information only. The following formulation combines the presented utility

functions in Section 5.2.1 as such sums and enables the creation of scenario-speci�c behaviors

of the overall system. For example, one could create a utility function that causes agents to

�melt� any three-dimensional con�guration into to a two-dimensional one by picking a set

of coe�cients c = [c1, c2, c3, c4, c5] = [0, 0, 1, 0, 0].

U = c1UT,af + c2UD,af + c3UG,af + c4UG,av + c5UO,av (28)

120

Here, the utility is not limited to the unit interval but can take on values in the interval

U ∈ [−1.0, 3] for values ci ∈ [0, 1]. This range for coe�cients ci is chosen such that individual

utility component values remain in the unit interval.3 The following lemma proves that this

type of utility function still satis�es the potential game formalism.

Lemma 8. Given any set of coe�cients ci ∈ [0, 1], ∀i ∈ {1, 5} the weighted sum utility

function shown in Equation 28 satis�es the potential game formalism according to De�nition

21 and De�nition 22.

Proof. This proof is based on Lemma 1, Lemma 4, Lemma 5, Lemma 6, and Lemma 7 and

expresses an agent i's utility as follows.

Ui(ai) = c1Ui,T,af(ai) + c2Ui,D,af(ai) + c3Ui,G,af(ai) + c3Ui,G,av(ai) + c5Ui,O,av(ai) (29)

Since this formulation of the utility function still only depends on an agent's individual state

and does not introduce coupling between agents, the decomposition of the global potential

(as shown in Lemma 4) is still possible. Therefore, the de�ning equation Ui(a
′
i)− Ui(ai) =

Φ(a′i, a−i)−Φ(ai, a−i) also holds and the weighted sum utility function satis�es the potential

game formalism.

Note that while any set of coe�cients ci ∈ [0, 1] yields a utility function that conforms

to the potential game formalism, not every set of coe�cients will lead to convergence to

the target con�guration under Theorem 9 and Theorem 10. Theorem 10 explicitly states

convergence to the potential function maximizer. Therefore, only those utility functions

guarantee convergence whose maximum is located at an action ai ∈ CT (as was shown in

Section 4.2). For example, the set of coe�cients c = [c1, c2, c3, c4, c5] = [1, 0, 0, 0, a] with

a ∈ [0, 1], ko = 1.0, and umin ∈ [−1.0, 0) satis�es this criterion and adds obstacle avoidance

behavior to the target-seeking utility function.

Theorem 11. Given a weighted sum utility function U (Eqn. 28) with any set of constant

coe�cients ci such that ci ∈ [0, 1], ∀i ∈ {1, 5}, the self-recon�guration algorithm (Algorithm

3Note that the restriction to coe�cient values ci ∈ [0, 1] is an arbitrary choice to enable more predictable
utility values and more consistent convergence times. However, the results in this section and the following
still hold for any �nite real values of ci.

121

4 or Algorithm 5) is still guaranteed to converge to the target con�guration under Theorem

9 and Theorem 10 as long as the maximum of U is achieved at target positions aj ∈ CT .

Proof. The requirement that the utility function maximizer is located at a target position

aj ∈ CT ensures that the potential function maximizer is located at the target con�guration

CT . As such, constant coe�cients ci induce an irreducible time-homogeneous Markov process

for which Theorem 9 and Theorem 10 guarantee convergence. Irreducibility is given by the

fact that the transition probability of any possible action (according to Theorem 9)

pij =


qjie

1
τ

(Uk(a′k)−Uk(ak)) if e
1
τ

(Uk(a′k)−U(ak)) qji
qij
≤ 1

qij o.w.

are guaranteed to be nonzero irrespective of the utility values.4

5.2.3 Utility Function Switching

This section introduces a utility switching scheme that enables agents to adjust their utility

function during runtime and independently of other agents in the system. Switching between

utility functions can be thought of as a modi�cation of the coe�cients in the weighted sum

utility function in Eqn. 28 or a complete replacement of the utility function altogether. As

stated in Section 5.2.1 however, any utility function that is used in this switching scheme

is required to depend only on the individual agent's state or the state of static objects

in the environment (to avoid additional coupling between agents). State-based switching

conditions are then introduced that allow individual agents to determine autonomously

when to switch to another utility functions. These switching conditions depend only on an

agent's individual state (such as the height above ground) or quantities that can be derived

from it without communicating or cooperating with other agents (such as the distance to

the target con�guration or the distance to a static obstacle in the environment).

The utility switching scheme is designed as a �nite state machine (FSM) in which each

state represents a speci�c utility function to be used by an agent (an example is shown in Fig.

4Even for the case when the utility Ui(ai, a−i) = 0, ∀ai ∈ E , the performance would deteriorate to naive
random walk, but the convergence guarantee would still hold. In fact, any �nite utility value results in
nonzero transition probabilities.

122

29b). Agents are initialized in a state s0 and are only allowed to transition between states as

speci�ed by a transition function δ. This transition function encodes a user-speci�ed tran-

sition graph Gtr that contains utility modes as well as switching conditions between modes.

Each switching condition represents an edge between two states (e.g. δ(s0, x) represents a

switching condition between states s0 and s1 in Fig. 29b). Note that an edge does not have

to exist between every pair of states. However, the input transition graph Gtr is required

to be a directed graph that is weakly connected. Moreover, Gtr has to contain a unique

global sink, i.e. a unique absorbing state sM of the state machine that cannot be left once

reached.5 In other words, agents stop switching utility modes as soon as they reach the �nal

state sM (in Fig. 29b sM = s3). The utility function associated with the �nal state sM is

required to be target-seeking (or in general reach a maximum at target positions ai ∈ CT)

such that convergence to the target con�guration can be guaranteed (see Theorem 12). The

utility functions of all other state of the FSM, however, do not have to be target-seeking and

are therefore not required to reach their maximum value at target positions. For example, a

utility function that causes the con�guration to �melt� could have a maximum at positions

z = 1 on the ground plane.

In this section, as a general guideline, utility functions are used that reach their maximum

value at the respective switching condition to the next state. For example, U0's global

maximum is located at a state that triggers the switching condition z < 2 in Fig. 29a.

However, note that in �nite spaces this is not required as it can be guaranteed that agents

reach state-based switching conditions even without any incentivization (using only naive

random walk). The speci�c design of switching conditions and utility functions in this

section however is intended to speed up the convergence to these switching conditions. The

following de�nition makes the notion of switching conditions more concrete.

De�nition 31 (State-based Switching Condition). A state-based switching condition is one

that can be decided upon by an individual agent without the cooperation or information from

other agents. It is triggered by a change in an agent's individual state (i.e. its position ai in

5A sink node vi in a graph is a node with outdegree 0, i.e. no path exists from vi to any other node in
the directed graph.

123

U0 U1

U2

U3

z < 2 d < 2

d
o <

5
d
o >

5 ∧
d
>

2
d o
>

5
∧ d
<

2

(a) Example of a user-speci�ed transition graph Gtr

which contains utility functions as its nodes and
switching conditions as its directed edges. This
transition graph is also used in Example 1.

s0 s1

s2

s3

δ(s0,x)

δ(s
1 ,x)δ(s

2 ,x)

δ(s1,x)

δ(
s 2
,x

)

(b) Example of a �nite state machine showing the
set of states S = {s0, s1, s2, s3} and the transition
function δ. The �nal state s3 is the only absorbing
state of the FSM.

Figure 29: Example of a user-speci�ed transition graph and the utility switching state
machine constructed from it.

the environment E), a component thereof, or a quantity that can be derived from the agent's

state based on its own knowledge about E. As such, the following switching conditions are

considered.

• Target distance-based: d ≷ ddes (with ddes ≥ 0)

• Height-based: z < zdes (with zdes ≥ 1)

• Obstacle distance-based: do ≷ do,des (with do,des ≥ 0)6

Note that conditions such as z > zdes or |Ni| ≷ k (the cardinality of an agent's neigh-

borhood set) are explicitly excluded from the set of potential switching conditions because

triggering these conditions requires either the cooperation (for reaching a certain target

height z > zdes) or information (for computing the cardinality |Ni| of an agent's neighbor-

hood) from other agents. As such, coordination between agents would be required to trigger

these conditions. However, since every agent acts in a purely self-interested way, agents are

not incentivized to cooperate with other agents. The de�nition of switching conditions al-

lows the automatic design of utility functions for the individual modes of the state machine

by employing the formulations from Section 5.2.1. A height-based switching condition of the

form z < zdes, for example, can use ground-seeking utility functions of the form UG,af = e−kzz

(as shown in Eqn. 23). The following de�nition incorporates switching conditions from Def.

31 to rigorously specify the �nite state machine used for utility switching.

6Clearly, an obstacle-based switching condition is only useful if there exist obstacles in the environment.
Otherwise, by default do = 0.

124

De�nition 32 (Utility Switching State Machine). Let the utility switching state machine

USSM be a quintuple (Σ, S, s0, δ, F) representing a deterministic �nite state machine with

the following components (for example [27]).

• Σ is an input alphabet (or a �nite nonempty set of inputs). Speci�cally, Σ is the set of

all integer triplets (di, zi, do,i) that are possible for agent i within a given �nite environ-

ment E. These variables represent an agent's distance di to the target con�guration,

an agent's height above ground zi, and an agent's distance do,i to the nearest obstacle.
7

• S is a �nite, nonempty set of states, where each state represents a utility function to be

used by agents (i.e. a node in the transition graph). Speci�cally, S = {s0, s1, . . . , sM}

where M is the cardinality of the set S or the number of utility modes speci�ed in the

transition graph (see Fig. 29a).

• s0 ∈ S is the initial state or the initial utility mode.

• δ is the state transition function δ : S × Σ → S that maps a current state based on

inputs (di, zi, do,i) to new states in S. The transition function encodes the user-speci�ed

transition graph Gtr (see Fig. 29b). This graph Gtr has to be weakly connected such

that a directed path exists from any state si to the �nal state sM . More speci�cally,

the state sM has to be the unique global sink in Gtr. Note that δ is a total function,

i.e. it is de�ned for every possible combination of state si and input x = (di, zi, do,i)

such that every combination results in a deterministic output.

• F is the set of �nal states and contains a single element such that F = {sM} (the �nal

utility mode using a target-seeking utility function). In other words the state sM is the

only absorbing state of the state machine.

A single utility switching state machine USSM is de�ned for the aggregate system. How-

ever, every individual agent i, instantiates and executes its own copy of that state ma-

chine and determines transitions in that state machine based on its own state-based input

7Note that the distance to the target con�guration di and the distance to obstacles do,i are real values and
thus have to be rounded to integers. Otherwise the alphabet Σ would contain in�nitely many elements which
violates the de�nition of a �nite state machine.

125

(di, zi, do,i). As such, all agents do not have to execute the same utility mode at the same

time. The following example clari�es the construction of the utility switching state ma-

chine based on a user-speci�ed transition graph which contains utility modes and switching

conditions de�ned in Def. 31.

Example 1. Consider the transition graph in Fig. 29a. This graph contains four utility

modes {U0, U1, U2, U3} that will be mapped to a set of states S = {s0, s1, s2, s3} and �ve

switching conditions that will be encoded in δ. In this example, these utility functions Ui

are de�ned as follows.

U0 = e−0.2z

U1 = e−0.1d + (1− e−0.02d)e−0.2z

U2 = e−0.1d + (1− e−0.02d)e−0.2z + umine
−kodo

U3 = e−0.1d

Utility function U0 is a purely ground-seeking utility function and thus �melts� the con-

�guration into a two-dimensional con�guration. U1 combines a target-seeking term with a

distance-dependent ground-seeking term that decreases in in�uence as agent i moves closer

to CT . U2 adds obstacle avoidance behavior to utility function U1 in case an agent moves

too close to obstacles. Finally, U3 is a purely target-seeking utility function and reaches its

maximum at target positions ai ∈ CT as required by Def. 32.

Having de�ned the set of states, we can set the initial state to s0 and determine the set

of �nal states F = {s3}. Most importantly, we can now de�ne the transition function and

126

ensure that δ is a total function.

δ = {δ(s0, x), δ(s1, x), δ(s2, x), δ(s3, x)}

δ(s0, x) =


s1 if z(x) < 2

s0 o.w.

δ(s1, x) =



s3 if d(x) < 2

s2 if do(x) < 5 ∧ d(x) > 2

s1 o.w.

δ(s2, x) =



s3 if do(x) > 5 ∧ d(x) < 2

s1 if do(x) > 5 ∧ d(x) > 2

s2 o.w.

δ(s3, x) = s3

Using the alphabet Σ as de�ned in Def. 32, the utility switching state machine is now fully

de�ned (see Fig. 29b) and can be executed by each agent.

Based on the outlined utility switching setup, the following theorem proves convergence

to the desired target con�guration CT .

Theorem 12. Given a transition graph Gtr that fully de�nes a utility switching state ma-

chine (USSM, Def. 32), the aggregate self-recon�gurable system converges to the unique

stochastically stable state CT if the utility function UM of the �nal state sM ∈ S is target-

seeking.

Proof. This result is shown in two steps. First, it is demonstrated that an individual agent

is guaranteed to reach the �nal state sM of the USSM. Second, we show that the results

from Theorem 9 (or Corollary 2) and Theorem 10 are applicable to prove stochastic stability

of CT .

Given a �nite environment and transition probabilities that are non-zero for every pos-

sible action of every agent regardless of the utility function used (according to Theorem 9

or Corollary 2), any possible action path of an individual agent has a non-zero probability

127

of occurring. Since this is true irrespective of the utility function used (as shown in The-

orem 11), it is also true for any sequence of utility functions used, i.e. for any number of

switches between states in the USSM. As such, an action path leading a single agent to a

position that satis�es a switching condition to the �nal state sM has non-zero probability

and will eventually occur. This is true for every agent i in the aggregate system, which

means, eventually all agents will switch to state sM .

Once all agents have switched to state sM with utility function UM , they will use a

�xed utility function and the requirements for Theorem 9 are satis�ed. Since UM is target-

seeking, it reaches its maximum at target positions ai ∈ CT . Therefore, the maximum global

potential is reached in a state in which every agent is at a target position aj ∈ CT . Theorem

9 (or Corollary 2) can then be applied to show convergence to the desired target distribution

and Theorem 10 guarantees stochastic stability of the target con�guration CT .

5.2.4 Results

In this section we compare the performance of four variations of the decentralized implemen-

tation of Algorithm 5 which use di�erent incentivization schemes. The basic target-seeking

utility shown in Def. 22 and Eqn. 21 is compared against an adaptive target-seeking utility

(using results from Section 5.1), a utility function switching scheme (according to Section

5.2), and a combination of utility function switching and an adaptive learning rate. As

before, both algorithm were implemented and evaluated in Matlab. The adaptive learning

rate strategies used the same parameters as shown in Section 5.1.2 where τnom = 0.01,

τmax = 1.0, and N = 15. The utility function switching scheme used three utility functions

and two switching conditions summarized as follows (note that d is the distance of an action

to the closest target position and z is an action's height above the ground plane).

U1 = Umaxe
−0.2z

U2 = Umaxe
−0.1d + (1− e−0.02d)e−0.2z (30)

U3 = Umaxe
−0.1d

Utility function U1 is a purely ground-seeking utility function and thus �melts� the con�g-

uration into a two-dimensional con�guration. An agent i switches to utility function U2

128

when the �rst trigger condition z ≤ 2 is met, i.e. when agent i occupies a position on the

ground plane. U2 combines a target-seeking term with a distance-dependent ground-seeking

term that decreases in in�uence as agent i moves closer to CT . Once the second switching

condition d ≤ 4 is triggered, agent i switches to a purely target-seeking utility function U3.

As in Section 5.1.2, agents compute their actions according to Section 4.2.2. Agents'

actions were restricted by other agents' actions and the ground plane. No obstacles were

added to the environment in this section. Three scenarios are presented below that highlight

the strengths and weaknesses of all four incentivization schemes. For all scenarios below,

ten trials were run for each incentivization scheme and for each scenario.

Low box con�gurations containing 36 agents without obstacles Fig. 30 shows

the result of recon�guration sequences from an initial box con�guration to a target box

con�guration. These boxes had dimensions 3×3×4 cubes (for a total of 36 cubes) and were

spaced 8 grid cells apart (the speci�c setup is shown in the inset of Fig. 30). Convergence is

achieved when the global potential reaches a value of Φ = 36 (represented by the horizontal

red line in the �gure). The vertical lines in Fig. 30 represent the average time to convergence

for the four di�erent approaches. The �gure shows similar convergence times for all four

approaches with a small speedup for the utility switching approaches. This is an expected

result for two reasons. First, the initial and target con�guration are located too close to

each other for dendrite-like sub-structures to form (as shown in Fig. 31) because agents

can essentially form bridges from the initial to the target con�guration. Second, the initial

con�guration is not tall enough for the �melting� utility function U1 to have a signi�cant

e�ect on the speedup of the recon�guration sequence.

Tall box con�gurations containing 48 agents without obstacles Fig. 32 shows the

result of recon�guration sequences from an initial box con�guration to a target box con�g-

uration. These boxes had dimensions 2 × 3 × 8 cubes (for a total of 48 cubes) and were

spaced 15 grid cells apart (the speci�c setup is shown in the inset of Fig. 32). Convergence is

achieved when the global potential reaches a value of Φ = 48 (represented by the horizontal

red line in the �gure). The vertical lines in Fig. 32 represent the average time to convergence

129

Figure 30: Convergence times for a con�guration containing 36 agents using four di�erent
incentivization strategies: a �xed target-seeking utility (Section 4.2), an adaptive target-
seeking utility (Section 5.1), switching utility functions (Section 5.2), as well as adaptive
switching utility functions (a combination of Section 5.1 and Section 5.2). The initial and
target box con�gurations are spaced eight units apart.

130

for the four di�erent approaches. As can be seen in the �gure, the adaptive utility switch-

ing approach converges fastest on average, closely followed by the basic utility switching

approach. Both target-seeking (�xed and adaptive) approaches showed signi�cantly slower

convergence with the adaptive target-seeking method faring notably better. The reason

for this discrepancy is that the target-seeking utility function encourages the formation of

dendrite-like substructures as shown in Fig. 31 which are unlikely to be resolved within the

given time horizon of 10,000 time steps. Note that failed trials also mean that the average

global potential for certain approaches does not reach the maximum possible potential. This

is shown for the target-seeking, adaptive target-seeking, and basic switching utility traces

in Fig. 32 that do not reach Φ = 48 after 10,000 time steps.

Figure 31: Examples of dendrite-like sub-con�gurations forming that prevent the assembly
of the target con�guration within the 10,000 time step horizon.

Exogenous versus endogenous switching This experiment presents a twist on the

switching paradigm where two switching strategies are compared. The �rst strategy uses the

previously outlined endogenous switching where agents decide autonomously based on their

own state when to switch. The second strategy uses exogenous switching, where all agents

131

receive a switching signal in a broadcast fashion and switch at the same time. The latter

can be thought of as an external entity initiating a switch based on observed information

about the aggregate system. The goal of this experiment is to compare the performance of

these switching approaches and evaluate whether exogenous switching, which has access to

global information, results in faster convergence times. The exogenous switch is based on the

observed global potential (i.e. cumulative utility of all agents in the system). Three switching

thresholds are compared: 80%, 90%, 95% of the maximum achievable global potential for

a given utility mode. For example, a switching threshold of 95% using a ground-seeking

utility function �melts� an initial three-dimensional con�guration almost completely into a

two-dimensional con�guration before switching to the next utility mode. A threshold of 80%

switches while sub-con�guration still exhibits three-dimensional structure.

Similar to the previous experiment, here, recon�guration sequences from an initial box

con�guration to a target box con�guration are shown. These boxes had dimensions 2×3×8

cubes (for a total of 48 cubes) and were spaced 15 grid cells apart (the speci�c setup is shown

Figure 32: Convergence times for a con�guration containing 48 agents using four di�erent
incentivization strategies: a �xed target-seeking utility (Section 4.2), an adaptive target-
seeking utility (Section 5.1), switching utility functions (Section 5.2), as well as adaptive
switching utility functions (a combination of Section 5.1 and Section 5.2).

132

in the inset of Fig. 33). Again, convergence is achieved when the global potential reaches a

value of Φ = 48 (represented by the horizontal red line in the �gure). The vertical lines in

Fig. 33 represent the average times to convergence for the four di�erent approaches. The

basic endogenous switching strategy outlined in Section 5.2 performs the best with almost

a 10% speedup over the closest exogenous switching approach that uses a threshold of 95%.

The main reason for the slower convergence of exogenous switching was its comparable

crudeness. Whereas endogenous switching allows �ne-grained control over when individual

agents switch, exogenous switching treats the con�guration as an aggregate system and

switches based on the global state. Therefore, if the switching threshold was set too low, the

con�guration tended to switch too early and dendrites formed as shown in Fig. 31. If the

switching threshold was set too high, the con�guration was almost completely �melted� into

a two-dimensional structure, which slowed down convergence and caused agents to spread

out farther as shown in Fig. 34.

Figure 33: Convergence time results for an example comparing endogenous and exogenous
switching strategies. The basic switching strategy of Section 5.2.3 is compared against three
exogenous switching strategies using di�erent switching thresholds: 80%, 90%, 95% of the
maximum achievable global potential for a given utility mode.

Note that the reason, the global potential traces shown in Fig. 33 do not reach 80%,

133

90%, or 95% of the maximum achievable global potential before switching is that the shown

results are averaged over ten trials. Switches for the individual trials still occurred at these

thresholds, however, the averaged utility time series cannot visualize that fact. Also note

that the drop in global potential for the exogenous switching strategies is caused by a sudden

change in utility function of all agents simultaneously. While these drops are also noticeable

in the endogenous switching strategy, they are less pronounced.

Figure 34: Examples of a spread out con�guration caused by a too large switching threshold
in an exogenous switching example.

5.3 Conclusions

This chapter has introduced two extensions to the basic game-theoretic algorithm shown in

Section 4.2 that allow the runtime adjustment of the learning rate of Algorithm 5 on the

one hand and the switching of utility functions on the other hand. Various utility functions

have been discussed in the context of switching together with desirable utility function

properties that allow the decentralized execution and avoid additional coupling between

agents. Additionally, a systematic method for designing switching sequences and switching

134

conditions has been introduced.

The theoretic contributions in this chapter show that convergence guarantees are retained

for both adaptive methods while simulation results (shown in Section 5.1.2 and Section 5.2.4)

indicate that improved convergence rates for both approaches can indeed be achieved for

certain scenarios. This is the case particularly for scenarios which contain tall initial and/or

target con�gurations that are spaced far apart. Scenarios containing obstacles were solved

faster using the adaptive learning rate (with or without utility function switching). No

signi�cant improvement was observed for trivial scenarios with con�gurations with small

numbers of agents or initial and target con�gurations that were located close to each other.

The next chapter will focus on showing how the algorithms presented in Chapter 4 and

5 can be instantiated on robotic hardware. Speci�cally, Chapter 6 will explain in detail the

development of a multi-robotic testbed including the design of a novel miniature robot, the

GRITSBot.

135

Chapter VI

ROBOTIC IMPLEMENTATION

This chapter discusses the design and development of a novel miniature wheeled robot called

the GRITSBot, a remotely accessible swarm-robotic testbed called the Robotarium, and the

implementation of decentralized game-theoretic self-recon�guration on a team of GRITSBot

robots (see Fig. 35). While a number of wheeled robots are available o� the shelf, the

GRITSBot and the Robotarium serve a larger purpose than to create another robot and to

simply instantiate a self-recon�guration algorithm. The overarching goal of the Robotarium

is to create accessible multi-robotic hardware and lower the barrier to entrance into the �eld

of multi-agent robotics. Therefore, this chapter does not only elaborate on the instantiation

of the game-theoretic self-recon�guration algorithm (Algorithm 5) on the GRITSBots but

also illuminates the concept of the Robotarium and its mission of democratizing multi-agent

robotics.

31 m
m

(a) Assembled robot with motor and
main layer.

(b) Assembled robot with tracking tag.

Figure 35: Isometric and top view of the GRITSBot.

Before introducing the Robotarium in detail, however, the next section discusses how

the self-recon�guration algorithm can be executed on a team of robots. Therefore, Section

136

6.1 presents the dynamical model of the GRITSBot, derives low-level velocity and position

control laws, and �nally shows how Algorithm 5 can be mapped onto the continuous dynam-

ics of the robot. Experimental results with eight robots then demonstrate the feasibility of

two-dimensional self-recon�guration in practice. The remainder of this chapter is dedicated

to the presentation of the Robotarium. Speci�cally, in Section 6.2 we introduce a high-level

view of the concept and the objectives of the Robotarium. Section 6.3 then outlines how the

Robotarium is structured and, in particular, how the explicit focus on being a remote-access

research platform informs the design of the testbed itself and the robots it contains. The

speci�cations and detailed designs of both the GRITSBot robots and the full Robotarium

testbed are then described in Section 6.4 and 6.5.

6.1 Self-Recon�guration on Robots

The self-recon�guration algorithms presented in Chapter 3 to 5 implicitly rely on the discrete

motion primitives imposed by the sliding cube model in Section 2.3. Whereas the sliding

cube model can be simulated in a straightforward fashion, the execution on robots requires

the mapping of this motion model onto the speci�c continuous dynamics of the chosen

hardware platform. In this section, we therefore describe the instantiation of the game-

theoretic self-recon�guration algorithm (Algorithm 5) on the GRITSBots (see Fig. 35).

Speci�cally, this section presents low-level controllers for velocity and position control of

the robots and elaborates on the mapping of discrete actions to the continuous dynamics of

the robot. We �rst outline the dynamical model of the robot before discussing the overall

system architecture that allows the integration of high and low-level control as well as the

general interaction with the Robotarium.

For the purpose of self-recon�guration on robots, this section just brie�y introduces

the GRITSBot while an in-depth presentation of the design and speci�cation details is

deferred until Section 6.4. The GRITSBot is a novel di�erential-drive robot with a modular

layered design as shown in Fig. 35. While similar in capabilities to most commonly used

platforms for multi-agent research, the GRITSBot features a signi�cantly smaller footprint

(approximately 30×30 mm) and lower cost (approximately $40 in parts). It is equipped with

137

an accurate locomotion system, infrared-based distance sensing, and WiFi communication

that allows the GRITSBot to be easily integrated into an existing network. Additionally

the robot is equipped with convenience features that allow a human operator to e�ortlessly

control a large collective of robots. These features include automatic battery charging,

wireless reprogramming, and automatic sensor calibration and will be discussed in Section

6.5.

6.1.1 Low-level Control

Dynamics The GRITSBot is a di�erential drive robot whose state can be described by a

three-dimensional state vector containing its position in the plane (px, py) and its heading an-

gle θ with respect to a global coordinate system. Its state vector can thus be summarized as

x = [px, py, θ]. A common dynamical model for di�erential drive robots is the unicycle model,

which captures the nonlinear dynamics of the robot and its nonholonomic constraints, more

speci�cally, its non-integrable velocity constraints. Intuitively these constraints describe the

fact that a unicycle-type robot cannot move perpendicular to the direction of its wheels

(see [45]), i.e. instantaneously move sideways. These dynamics can be described using the

following equation.

ẋ = f(x, u) =


v cos(θ)

v sin(θ)

ω

 (31)

Note that the linear and angular velocity v and ω appear in those dynamics equations as

inputs to the system. Used for convenience and a cleaner formulation, these velocity inputs

need to be mapped to wheel velocities that directly control the motors of the robot. The

mapping to wheel velocities is given by the following one-to-one mapping.wL
wR

 =

(2v − ωKB)/KR

(2v + ωKB)/KR

 (32)

Note that KR is the wheel diameter and KB is the wheel base shown in Figure 36. The

parameter values are summarized in Table 7. Additionally, since the GRITSBot's motors

are stepper motors, these wheel velocities need to be mapped to delays between individual

138

px

py

K
B

KR

ω
L

ω
R

u

d x̃

x
θ

Figure 36: Unicycle model for di�erential drive robots based on the geometry of the GRITS-
Bot.

Table 7: Parameters used for the control of the GRITSBot.

Parameter Value
KB 31 mm
KR 10 mm
d 5 mm

motor steps. The mapping from linear and angular velocities to wheel velocities to delays

between steps is computed directly on the motor board of the GRITSBot (see Fig. 41a and

42a) based on the fact that the GRITSBot's motors are capable of 40 steps per rotation.

A number of approaches are available in the literature for controlling robots with unicycle

dynamics (for example [45]). In the following sections we will show a feedback linearization-

based position controller and a controlled Lyapunov function (CLF)-based pose controller.

Feedback Linearization-based Control One way of dealing with the non-holonomic

nature of unicycle dynamics is to control a point located in front of the robot by some

distance d instead of the true robot state located at the center of the wheel base (see Figure

36). Through this o�set d one essentially creates a new state x̃ that is controlled instead

of the original state x. Intuitively, controlling x̃ can be thought of as dragging the robot

through an imagined rigid rod connected to the wheel base of the robot. The end of this rod

is where this new state x̃ is located, which can be moved instantaneously in every direction

139

in the plane and is therefore holonomic (because no velocity constraints are associated with

x̃). This state x̃ is di�eomorphic to the true state x and as such can be mapped directly

to motion in the true state. The following mapping that is parametrized by the robot's

orientation θ and the length d formalizes the mapping from x̃ to x.

x̃ = x+


d cos(θ)

d sin(θ)

0

 (33)

The dynamics of x̃ are then given by the following time derivative.

˙̃x = ẋ+


−d sin(θ) θ̇

d cos(θ) θ̇

0

 =


v cos(θ)− dω sin(θ)

v sin(θ) + dω cos(θ)

ω

 (34)

The state x̃ can be controlled through feedback linearization if we limit ourselves to

position control instead of full state control including orientation (this restriction is required

to ensure that the matrix G shown below is invertible). Using a two-dimensional state space

with x̃ = [px, py], we can formulate the velocity control law in the following compact form.

˙̃x =

ṗx
ṗy

 =

cos θ − sin θ

sin θ cos θ


1 0

0 d


v
ω

 = R(θ)S(d)

v
ω

 = G(θ, d)

v
ω

 (35)

Using the rotation matrix R(θ) and the scaling matrix S(d) we can de�ne the matrix

G(θ, d) = R(θ)S(d) and use G to de�ne a mapping between the linear velocities of state x̃

and the linear and angular velocities of the original state as follows.v
ω

 = G−1(θ, d)

vx
vy

 (36)

Note that vx and vy are the linear velocities applied to the di�eomorphic state x̃ in the

x and y direction. This the two-dimensional state x̃ is completely controllable in the plane

and its dynamics are holonomic. The dynamics ˙̃x are then feedback linearized as follows.

˙̃x = R(θ)S(d)

v
ω

 = R(θ)S(d)G−1

vx
vy

 = R(θ)S(d)S(d)−1R(θ)−1

vx
vy

 =

vx
vy

(37)
140

This transformed system now has linear dynamics (single integrator dynamics), where

the input vlin = [vx, vy] can be directly used to control the di�eomorphic state x̃. The

following expressions summarize how the actual control inputs v and ω are computed on the

robot itself based on linear velocities vlin.

v = cos(−θ)vx − sin(−θ)vy

ω =
1

d
(sin(−θ)vx + cos(−θ)vy) (38)

The linear input velocities vx and vy in the above equation are computed using linear

feedback position control. The position controller shown below derives linear velocities as

inputs to the di�eomorphic state x̃ (i.e. vx and vy) based on the position error e = x̃− xD

(where xD is a desired target position).

vlin =

vx
vy

 = −Ke (39)

Here, K is a gain matrix that is constant in this implementation but can alternatively

be computed as the LQR gain matrix by solving an LQR problem at every time instant.

This feedback law reduces the dynamics of the system to the following form.

˙̃x = vlin = −Ke (40)

A Controlled Lyapunov Function Approach In this section we outline an approach for

pose control (as opposed to the position control approach presented above) that is partially

based on controlled Lyapunov functions. The method shown in this section leads directly to

a smooth control law that allows position and orientation control of robots using unicycle

dynamics. The derived control law is similar to the one shown in [2]. But instead of enabling

steering, path-following, and navigation as shown in this paper, we simplify the control law

to only enable a go-to-goal behavior. The desired target position being constant and time-

invariant simpli�es the design of the position control law as compared to [2]. The error in

heading however is time-varying and as such allows no such simpli�cation. Instead of a full

CLF-based method, a proportional controller is therefore used here to control the heading of

the robot. Using a target pose r = [rx, ry, rθ] we can represent the position and orientation

141

error as follows. Note that the heading of the robot is not controlled to align with the target

orientation rθ but with the error vector e = [ex, ey]
T instead for smoother motion.

ex

ey

eθ

 =


rx

ry

atan2(ey, ex)

−

px

py

θ

 (41)

Using these error quantities, the full pose control law can be formulated that computes

linear and angular velocities updates. We forgo the derivation of the CLF-based position

control law and just note that the Lyapunov function V (x) = e2x
2 +

e2y
2 is used to derive it.

v = Kv (excos(θ) + eysin(θ)) (42)

ω =


Kω (atan2(ey, ex)− θ) if

∥∥[ex, ey]
T
∥∥

2
> dmin

Kω (rθ − θ) otherwise

(43)

Note that angular velocity control di�erentiates between positions far to the target (i.e.∥∥[ex, ey]
T
∥∥

2
> dmin) and those close to the target. In the �rst case, the controller tries to

align the robot's orientation with the orientation of the error vector [ex, ey]
T for a smooth

trajectory. In the latter case, when the robot is close enough to the target, the controller

tries to match the target orientation rθ.

6.1.2 High-level Control

The main task of the high-level controller is to map the primitive motions that are computed

by the self-recon�guration algorithm to target poses that are fed into the low-level pose

controller. This section describes the toolchain required to relay these target poses to the

robots and close the position feedback loop through the overhead tracking camera. As

shown in Figure 39, the main mode of interaction with the robots in the Robotarium occurs

through a Matlab API - an interface class that enables the message exchange between

the coordinating server application and the user (a comprehensive list of API functions is

provided in Appendix B). The self-recon�guration algorithm computes target poses in the

workspace of the robots and submits these target pose requests to the server application. All

142

communication between the user application and the robots is handled by the server, which

relays these target pose updates wirelessly to the respective robots. The pose controller

outlined in Section 6.1.1 is executed directly on the robots. The feedback loop that enables

pose control, however, is closed through the server and the tracking system. More speci�cally,

the vision-based tracker detects the current poses of all robots and sends them through

the server to the robots at approximately 25 Hz. The main di�erence between simulated

self-recon�guration and recon�guration on hardware is the fact that the simulation treats

primitive motions of agents as instantaneous. The execution on hardware is obviously bound

by minimum execution times of these motions. Therefore, the self-recon�guration algorithm

has to wait until the respective robot �nishes the execution of a motion.

The communication channels required to send target and current poses to the robots re-

lies on two messaging interfaces. Communication between Matlab, the coordinating server

application, and the tracker is based on the Lightweight Communications and Marshalling

(LCM) library1, which enables the exchange of structured messages. This library was chosen

for interprocess communication for two main reasons. On the one hand, it requires little

overhead in terms of resource usage and integration into the various software components

of the framework. On the other hand, it requires no central node as the coordinating mas-

ter node. LCM is implemented as a fully distributed publisher-subscriber message-passing

framework. Though implemented very e�ciently, LCM still requires too much memory to

run on embedded hardware such as the main microcontroller on the GRITSBot. Therefore,

the communication between the server and the robots relies on a di�erent communication

channel. Speci�cally, it uses WiFi networking and standard UDP sockets for message ex-

change.

6.1.3 Experimental Results

This section describes the setup and experimental results of two-dimensional game-theoretic

self-recon�guration on a team of eight GRITSBots. While the low-level controllers are

executed on the robots themselves, the high-level self-recon�guration algorithm runs in

1LCM is available at http://lcm-proj.github.io/

143

Matlab on the server. The basic decentralized algorithm (Algorithm 5) in connection with

the adaptive learning rate as outlined in Section 5.1 accomplishes high-level control and

decision making.

A Matlab script also performs the initial setup phase, i.e. moving all robots to their

respective positions in the randomly generated initial con�guration. To minimize the num-

ber of potential collisions during this setup phase, the Hungarian assignment algorithm

computes an optimal assignment between positions the robots occupy at boot-up and their

respective positions in the initial con�guration. The Hungarian algorithm minimizes the

cumulative distance traveled of all agents but potentially creates intersecting paths through

its assignment. Therefore, in addition to the Hungarian algorithm, robots are equipped

with basic obstacle and collision avoidance. After the setup phase is completed and agents

start self-recon�guring, collisions will not occur anymore due to the nature of the primitive

motions of the sliding cube model. In other words, neither a sliding nor a corner motion will

result in a collision given that grid cells are spaced su�ciently far apart. For the experiment

shown in this section, neighboring grid cells were spaced 10 centimeters apart. This grid

spacing has been chosen as a tradeo� between the available testbed surface area (120 × 80

cm) and the minimum distance between agents required to avoid collisions. A tighter grid

may be possible but would complicate agent motion due to an increased number of potential

collisions.

The experiment in this section shows a recon�guration sequence from an initial random

con�guration to a rectangular con�guration that is o�set along the x-axis by one grid cells (an

example is shown in the inset of Fig. 37). The initial and target con�guration contained eight

GRITSBot robots.2 The self-recon�guration sequence itself is equivalent to a simulation

trial, the di�erence now being that target position updates are sent to the robots as well. The

Matlab API brie�y discussed in Section 6.1.2 bridges the gap between the self-recon�guration

simulator and the robotic hardware. Unlike in simulation, where a motion is assumed to

be instantaneous, the robots' velocities are limited, which introduces a minimum execution

time per motion primitive. Therefore, the high-level self-recon�guration algorithm has to

2Eight robots are the currently maximum number of available robots.

144

Table 8: Numeric results for a self-recon�guration sequence of eight robots.

Total number of time steps [N] 371
Total number of motions [N] 134
Total number of sliding motions [N] 81
Total number of corner motions [N] 53
Total distance traveled [m] 15.59
Total recon�guration time [min] 15.46
Average time per move [sec] 6.9

wait for the low-level controller to �nish executing a motion before commanding another

robot to start executing another action.

Simulation results suggest convergence times on the order of 250 to 350 time steps (see

Fig. 37, shown is the average of 10 trial runs for each learning rate). The actual robotic

experiment shown below required a total of 371 time steps to converge. Note however, that

not all of these time steps represent agent actions. The majority of these time steps actu-

ally represent agents remaining at their current position without moving. According to the

image sequence in Fig. 38 and the numeric results summarized in Table 8, out of 371 total

time steps, only 134 represent agent motions for this speci�c hardware trial. Given that

on average a motion takes 6.9 seconds to complete, even for such small con�gurations, the

recon�guration sequence lasted approximately 15.5 minutes. However, seven out of eight

agents occupied target positions after only 6 minutes, while the remaining 9.5 minutes were

required for the last agent to converge to its target position. In that sense, the hardware

experiment con�rmed the key characteristic of the game-theoretic self-recon�guration ap-

proach: the initial fast ramp-up in global potential and the slower convergence to the global

potential maximizer. As the number of modules in a system increases, this initial steep

increase in potential will become more important compared to the eventual convergence to

the full assembly of the target con�guration. That is because even though not every module

is at a target position, the con�guration will closely resemble the target con�guration in

shape and function after the initial ramp-up already.

The experimental results presented in this section relied on a hardware setup that has

been custom-designed and built for swarm-robotic experiments. As mentioned before, eight

145

Figure 37: Average convergence time for a two-dimensional con�guration of eight agents
based on 10 trials.

GRITSBot robots have been used. These robots are embedded in a novel open-access multi-

agent testbed called the Robotarium. The following sections will detail the concept of the

Robotarium, the design requirements imposed on such a shared research instrument, and

the design evolution of both the Robotarium testbed and the GRITSBots it contains.

6.2 The Robotarium Concept

Multi-robot research has seen a considerable growth during the last decade, with a num-

ber of coordinated control algorithms being developed for tasks ranging from environmental

monitoring (e.g. [48, 49, 201]) to collective material handling (e.g. [143]). This growth has

been driven by a combination of algorithmic advances, increased hardware miniaturization,

and cost reduction. However, despite the reduction in cost, it is still a prohibitively costly

proposition to move from theory and simulation, via a few robots, all the way to the de-

ployment of a truly large-scale robot system. State-of-the-art experimental setups can cost

tens of thousands of dollars in hardware alone, while the cost of maintaining and operat-

ing such testbeds can exceed the initial price tag. That is why currently there are only a

146

Figure 38: Image sequence of a self-recon�guration trial on a team of eight GRITSBots.

147

handful of laboratories around the world that can �eld massive numbers of robots in the air,

underwater, or on the ground (e.g.[85, 125, 50, 157, 158]). To advance multi-robot research

further, actual deployment is crucial since it is increasingly di�cult to faithfully simulate

all the issues associated with making multiple robots perform coordinated tasks due to the

increased task complexity. At its core, the Robotarium is therefore a shared multi-robot

testbed that aims at remedying these issues by enabling researchers to remotely access a

state-of-the-art multi-robot test facility. A number of elegant remote-access robot systems

have been developed in the past ([85, 50, 151, 37]). What makes the Robotarium di�erent,

however, is its explicit focus on supporting multi-robot research, as opposed to, for example,

educational applications or single-robot systems.

As part of the Robotarium's mission of providing access to multi-robot testbeds, the un-

derlying robotic architecture needs to �t as many applications as possible. This requirement

of generality is why the testbed is based on wheeled miniature ground robots. Speci�cally

we use the GRITSBot, a low-cost di�erential-drive miniature robot designed with similar

capabilities as most-commonly used platforms in academia (see [144] and Fig. 35). This

robot architecture was chosen because a number of tasks can be accomplished with generic

wheeled ground robots, such as vehicle routing [6], coverage control [7], or collective ex-

ploration [142, 185]. Therefore, the GRITSBot allows for a straightforward transition from

current experimental setups to a GRITSBot-based system and enables researchers to set up

a multi-agent testbed that resembles current state-of-the-art platforms at a fraction of the

cost. In this sense, the Robotarium aims at providing not just an a�ordable, accessible, and

user-friendly but also a �exible testbed that can be easily replicated. The general structure

of the Robotarium infrastructure is shown in Fig. 39. Note that two approaches to remote

access are currently implemented. Track 1 relies on the direct interaction of a user with

the Robotarium through a Matlab or Python API. This allows both a centralized or decen-

tralized execution by sending velocity or target position commands to the robots through a

server application. Alternatively, users can submit code to the Robotarium server that will

be veri�ed, compiled, and uploaded to the robots. While code upload allows to close the

feedback loop locally and has the potential to improve the performance of delay-sensitive

148

Figure 39: System architecture overview. The current prototype includes components that
are executed locally on Robotarium infrastructure as well as user-facing components that
run on remote user machines (APIs or simulation front end). Three components interact
directly with the robot hardware - tracking, wireless communication, and virtualization.
The remaining components handle user management, code veri�cation and upload, as well
as coordination of user data and testbed-generated data.

applications, this second track is currently still a manual process. The current web front

end for code upload is still in its infancy and not fully integrated into the Robotarium. Note

however, that the shown prototype of the Robotarium is fully functional and capable of

executing multi-robot experiments. In fact, algorithms as varied as consensus/rendezvous,

formation control, leader-follower networks (with and without connectivity maintenance),

coverage control, circular path following, and self-recon�guration have been successfully im-

plemented on the Robotarium hardware. The next section discusses the design requirements

that enable remote interaction and addresses usability, safety, and security challenges.

6.3 Design Requirements

As a shared, remotely accessible, multi-robot facility, the Robotarium's main purpose is

to lower the barrier to entrance into multi-agent robotics. Similar to open-source software

that provides access to high quality software, the Robotarium aims at providing universal

access to state-of-the-art robotic infrastructure and enabling fast prototyping of multi-agent

and swarm robotic algorithms. The Robotarium was designed primarily as a research and

149

educational tool that will function as a gateway to higher STEM education on the one hand

and as an accessible and capable research instrument on the other hand. As such it is

conceivable that a pervasive robotic testbed such as the Robotarium will have to exhibit a

subset or all of the following high-level characteristics to ful�ll its intended use e�ectively.

• Simple and inexpensive replicability of the system - both the testbed itself and the

contained robots.

• Intuitive interaction with and data collection from the testbed.

• Tight and seamless integration of the simulation work�ow for algorithm prototyping

and code execution on the robots.

• Minimization of both cost and maintenance e�ort while keeping the robots and testbed

extensible.

• Built-in safety and security measures to protect the system from damage and misuse.

These desired high-level characteristics can be mapped onto more speci�c constraints

that inform the hardware design as well as the software architecture - both low-level controls

on the robots as well as the coordinating server applications. An overview of our current

instantiation of such a remote-access multi-robot testbed is shown in Fig. 39. Whereas

this implementation already serves as a fully functional small-scale prototype, a full-�edged

Robotarium implementation should include the following features.

• Large numbers of low-cost robots (on the order of hundreds, see Section 6.3.1)

• Convenience features to simplify maintenance of large collectives of robots (see Section

6.5)

• Immersive user-experience through a fully remotely accessible testbed with live video

and data streaming (see Section 6.3.2)

• Public interface to allow users to schedule time on the testbed and get assigned a

number of robots for use (see Section 6.3.3)

150

These design requirements can be categorized along three dimensions: robot design,

user-experience, and network design.

6.3.1 Robots

Several hardware implementations have been proposed to serve as inexpensive robots for

multi-agent experiments and experimental veri�cation of algorithms for collective tasks.

For example, self-recon�guration has been executed on the M-blocks system [154], 2D self-

assembly and collective transport have been implemented on the Kilobots [157][158], and

collective construction has been veri�ed on the TERMES system [143]. Most of these hard-

ware platforms, however, have been tailored for use in a speci�c setting. A number of

collective tasks, however, can be implemented using wheeled ground robots, for example,

vehicle routing [6], coverage control [7], or collective exploration [142]. Even biologically

inspired research such as the development of tracking algorithms for animals (for example

ants) could be studied on the Robotarium [92]. Therefore, as varied as these research do-

mains and results are, the systems used for implementation and veri�cation of theoretic

results are similar in most research labs - wheeled di�erential drive ground robots and op-

tionally a motion capture system to track the position and orientation of robots. A number

of wheeled ground robots are commercially available and used for research purposes - some

of the most prevalent include the Khepera3, the e-Puck (see [16]), or the r-one robots (see

[121]).

The Robotarium, however, is meant to provide a well integrated, immersive user experi-

ence with the smallest possible footprint, and features that allow a large swarm to be main-

tained e�ortlessly. Such tight integration is only possible with custom hardware. Therefore,

our custom-designed robots, the GRITSBots (see [144]), form the core of the Robotarium.

These miniature robots ensure that the user community is not limited to simulating robots

locally, but is also able to deploy its own low-cost, high-performance robots in conjunction

with the Robotarium's robots - robots that already integrate the remote-access aspect as a

key characteristic of their design. With ease of deployment in mind, we have designed the

3http://www.k-team.com/mobile-robotics-products/khepera-iii

151

GRITSBots to be user-friendly, simple to maintain, and to tie in seamlessly with the Rob-

otarium. Overall, the goals for the GRITSBot are twofold: to remove the barrier to entry

by signi�cantly lowering the price tag of a multi-robot testbed and to make swarm robotics

accessible and user-friendly for a wider research community by enabling a straightforward

transition from current experimental setups to the GRITSBot.

Generally, the required capabilities and speci�cations of a testbed are determined by

the algorithms that its robots are tasked to execute. The decentralized nature of a variety

of multi-agent algorithms (such as rendezvous, formation control, vehicle routing), at a

minimum, require local sensing and accurate locomotion. Furthermore, to broaden the scope

of such a robotic testbed, it should o�er the capability of remotely operating robots or closing

the feedback loop through a remote machine. To enable automated maintenance tasks, some

form of global communication and positioning system is also required. In summary, a robot

used for inexpensive multi-robotic testbeds and swarm experiments should have at least the

following capabilities.

• High resolution and accuracy locomotion

• Range and bearing measurements

• Global positioning system

• Wireless communication with a global host

• Small footprint

Furthermore, as robots are scaled down in size and scaled up in numbers additional

maintenance and usability features become indispensable. These features allow a single

user to easily handle large numbers of robots without the need to individually operate,

program, charge, or calibrate them. These convenience features signi�cantly speed up the

experimental process and simplify the maintenance of a large collection of robots.

• Automatic sensor calibration

• Autonomous battery charging

152

• Wireless programming

• Local communication between robots

While the above outlined speci�cations presented desired hardware features of the robot

and the testbed, a number of high-level design principles guided the development of the

GRITSBot.

Simplicity Commercial availability is an advantage for those labs not equipped to assem-

ble miniature robots. However, it introduces a signi�cant markup over the cost of parts

alone. The GRITSBot was designed with ease of assembly in mind. Therefore, the total

number of surface mount devices (SMD) components per board was kept to a minimum.

The motor board contains 11 SMD parts, the main board 32, and the sensor board 45.

Therefore, not counting the header pins that connect the individual boards, the total part

count comes to just 88 components.4 Outsourcing the assembly to dedicated circuit board

manufacturers, a robot can be fully assembled within 15 to 30 minutes since only the connec-

tors and motors need to be soldered on. A comparison of parts cost alone versus assembly

cost of the boards through a dedicated board manufacturer is shown in Tables 10 and 11.

Modularity Multi-robot systems can be used in a variety of settings each with speci�c

requirements regarding sensing, actuation, and processing. Adaptability to environmental

constraints and functional requirements dictates a modular design. For example, certain

experiments might not require sensing (see Section 6.1.3), in which case it should be simple

to reduce the robots functionality. The layered design of the GRITSBot allows for �ne-

grained adaptability of its functionality by removing or adding layers. Removing the sensor

board, for example, would allow to reduce the weight of the robot and increase its battery

lifetime. An additional bene�t of this modular design is that users are then enabled to build

their own custom layers to extend the robots functionality.

4By comparison, the Kilobot uses 78 parts (based on the public bill of materials) but is arguably not as
versatile and capable a platform as the GRITSBot.

153

Scalability In simulation, multi-robot experiments can contain thousands or even millions

of robots. However, typical hardware implementations are limited to at most hundreds of

robots [34][91] or in the case of the Kilobot to 1024 [157]. Depending on the required capabil-

ities, certain limitations are imposed on the number of concurrently operating GRITSBots

as well. On the one hand, the �eld of view of the overhead camera limits the total size of

the environment (if absolute positioning is required). On the other hand, the bandwidth

of the WiFi channel limits the total number of concurrently operating robots (if global

communication is required). In typical experiments, data is exchanged with a single robot

at a rate of approximately 1 - 5 KB/sec. Given the 54 MBit/s bandwidth o�ered by the

GRITSBot's WiFi chip, a conservative estimate puts the total number of supported robots

at 1350 robots per WiFi channel. Typical WiFi routers o�er between 4 (non-overlapping)

and 14 (overlapping) channels in the 2.4 GHz band that is used by the GRITSBot.5 Given

that the number of robots does not seem to be limited by the communication bandwidth for

any practical purpose, an upper limit will be imposed by the available testbed area and the

maximum supported density of robots. This maximum density will vary depending on the

executed algorithm, but current experiments suggest that densities of 20 to 30 robots per

square meter represent a soft upper limit for typical swarm algorithms. Self-recon�guration,

where robots can be more tightly packed, potentially supports upwards of 30 robots per

square meter.

Low Cost A major barrier for the widespread adoption of multi-agent testbeds is their

prohibitive cost and to a lesser extent their size (of individual robots and of the full testbed

setup). Whereas commercially available, wheeled robots are being sold at prices as low as

$99 (e.g. the 3pi robot by Pololu, see Table 1 in [121]), few of these low-cost platforms are

viable for research (for a number of reasons including a lack of required sensors, a too large

footprint, too low accuracy of motion, di�culty of integration of large numbers of robots).

Robots such as the e-Puck and the Khepera III are fully capable and assembled research

5Channel speci�cation according to the IEEE 802.11 standard available at
http://standards.ieee.org/about/get/802/802.11.html

154

platforms, however their price limits their use to well funded labs (see Table 9). On the

lower end of the price spectrum one �nds the Jasmine robot (see [91]), the Alice robot (see

[34], [34]), the R-One (see [122]), and the newest addition, the Kilobot ($14 to $50 in parts

depending on order quantities or $115 fully assembled, see [157]). With the exception of the

Kilobot, these robots are neither commercially available nor are their designs fully disclosed

or available for replication anymore. The GRITSBot is fully open-source and available online

and a single robot can be built for approximately $40 (or $70 pre-assembled, see Tables 10

and 11).

Small Form Factor Available space in terms of room size often restricts the total number

of robots in multi-agent experiments to a few dozens of robots (for example [16], [121]).

Recently a lot of work has been dedicated to miniaturizing robots to the extent where

a testbed �ts on a table (see [34] or [157]). This miniaturization enables a much larger

audience to participate in multi-robot experiments at a fraction of the cost and with much

lower space requirements compared to previous hardware implementations. The GRITSBot

features a footprint of 31 × 31 millimeters, which is approximately the size of a Kilobot.

This small size allows swarm experiments with dozens of robots on testbeds as small as a

few square meters.

Usability Since ease of use was one of the main design requirements for the GRITSBot,

tools for setting up and maintaining a collective of miniature robots were required. As

indicated in [157], such convenience features include collective programming, powering and

charging, as well as collective control. An additional tool we developed was automatic

sensor calibration (see Section 6.5). All these tools aim at automating the menial tasks of

maintaining a large collective of robots by minimizing physical interaction with them. For

example, an EEPROM chip on the GRITSBot enables wireless programming of both the

motor and the main board. In addition to individually reprogramming a robot based on its

unique wireless IP, it is also possible to broadcast reprogram all available robots or groups

of robots connected to the same subnetwork.

155

Table 9: An Overview of Multi-Robot Platforms

Robot Cost Scalability Odometry Sensors Locomotion Size [cm] Battery [h]
GRITSBot $∼ 501 charge, program stepper motors distance, bearing, wheel, 25cm/s 3 1-5

calibrate 3D accel., 3D gyro
Kilobot [157] $501,2,4 charge, power other agents distance, ambient light vibration, 1cm/s 3.3 3-24

program
Jasmine [91, 88] $1301 charging wheel encoders distance, bearing, color wheel, 50cm/s 3 1-2
Alice [34, 33, 35] N/A none wheel encoders distance, bearing, cli� wheel, 2cm/s 2.1 1-10
r-one [122] $2201 none wheel encoders visible light, 3D accel., wheel, 30cm/s 10 6

2D gyro, bump, IR
SwarmBot [121] N/A charge, program, wheel encoders range, bearing, camera, wheel, 50cm/s 12.7 3

power, calibrate bump
e-puck [16] $979 none wheel encoders range, bearing, 3D accel. wheel, 13cm/s 7.5 1-10

microphones
Khepera III3 $2750 none wheel encoders distance, bearing, wheel, 50cm/s 13 1-8

IR ground sensors

1 Cost of parts
2 Note that this price refers to order quantities of 100 or fewer
3 Available for purchase at http://www.k-team.com/mobile-robotics-products/khepera-iii
4 Available for purchase at http://www.k-team.com/mobile-robotics-products/kilobot for $1150 for 10 robots

156

6.3.2 User Experience

Being an integrated research instrument, the user experience needs to be a vital part of the

design of a testbed such as the Robotarium. On the instrumentation side, the Robotarium is

equipped with cameras that provide a video stream of the experiments, tracking cameras for

localization, and projectors for adding virtual robots to the Robotarium �oor that behave

as if they were actual physical robots. These virtual robots enable interaction with other

virtual and physical robots alike, where such interactions include both collision and obstacles

avoidance.

6.3.3 Network Design

The shared nature of the Robotarium requires precautions to be taken against unauthorized

access or abusive use of the system. Access to such a testbed will therefore have to be

managed through a user veri�cation and authentication system (for example LDAP in com-

bination with SSH). Users will only be able to access the robots they have been approved

to use during their assigned time slot. These access control mechanisms ensure security for

the Robotarium by managing outside threats. The current prototype guards against these

threats by only allowing users to access the Robotarium through a local wireless network.

Alternatively, remote code submission and upload to the robots is possible but currently

still a manual process. In the future, code upload will rely on secure access mechanisms,

user authentication, and user vetting.

Closely linked to security is the safety aspect of the system, i.e. ensuring that the

system does not damage itself. Therefore a vital component of the Robotarium's software

architecture will be formal code veri�cation to guarantee the avoidance of damage to the

hardware through faulty, corrupted, or malicious code. The current prototype does not use

formal code veri�cation and instead relies on simulation-based veri�cation. Before user code

is allowed to be executed on the robots, it has to pass a simulation that veri�es obstacle

and collision avoidance. In addition, the velocities of the robots are limited to values that

do not cause damage to the robots even when head-on collisions occur.

157

In addition to safety and security, network design has to take delay-tolerance into ac-

count. It is conceivable that a remotely accessible testbed has to accommodate user-testbed

interaction on di�erent timescales and with di�erent delay tolerances. As shown in Fig. 39,

two options for remote access are enabled by the Robotarium. Delay-insensitive applica-

tions and algorithms can remotely close the feedback loop through the provided APIs. This

method will prove useful for quick prototyping and testing of algorithms that do not require

high update rates, large amounts of data to be transfered, or a large number of robots to be

involved. This use-case would apply to largely autonomous robots that require occasional

user input to, for example, switch operating modes.

Delay-sensitive applications that require closing the feedback loop locally can make use

of the second track of remote operation. User code is initially simulated on the user's local

machine, and, after initial testing and veri�cation, the code can be uploaded to the Robo-

tarium. The code then undergoes simulation-based code veri�cation and is executed locally

on Robotarium hardware. Sample applications include large-scale robotic experiments or

delay-critical applications that require robots to react quickly to sensor information.

6.4 The GRITSBot

The GRITSBot is a novel di�erential drive miniature robot that features a layered design,

where each layer ful�lls a speci�c purpose and can be swapped in case of up-/downgrades

or replacements (see Fig. 35 and Fig. 40a). This modular design was adopted for two main

reasons: �exibility in adjusting the required capabilities of the robot to speci�c experiments

and simplicity in design. This section describes each of the robot's functional blocks in detail

and discusses how they are distributed across three circuit boards or layers. In addition, the

design process is explained in detail and the design choices made throughout the development

of the GRITSBot are justi�ed.

The robot's main features include (i) high resolution and accuracy locomotion through

miniature stepper motors, (ii) range and bearing measurements through infrared distance

sensing, (iii) global positioning system and overhead camera system, and (iv) communication

with a global host through a wireless transceiver. These features are discussed below and

158

(a) Electronics of the robot (b) 3D model (c) Prototype of robot shell

Figure 40: The current revision of the GRITSBot.

(a) The motor board layer (mi-
crocontroller (A), stepper motor
driver (B), non-equipped magne-
tometer (C), non-equipped mem-
ory chip (D), line sensors (E),
stepper motors (F))

(b) The main board layer
(power switch (A), reset button
(B), voltage regulator (C), run
mode switch (D), current sensor
(E), battery charging chip (F),
charging tabs (G), voltage step-
up converter (H))

(c) The sensor board layer (mi-
crocontroller (A), infrared re-
ceiver (B), programming connec-
tor (C))

Figure 41: Bottom view of the three layers of the GRITSBot.

design changes compared to the �rst revisions of the robot in [144] are summarized.

Locomotion One of the novelties of the GRITSBot is its locomotion system. Unlike

previous miniature robots, the GRITSBot does not use conventional DC motors and, there-

fore, does not require encoders to estimate their velocities. Instead, locomotion is based

on miniature stepper motors. By their very nature, stepper motors completely obviate the

need for velocity estimation since the target velocity of each motor can just be set through

regulating the delay between individual steps. Odometry, therefore, is reduced to merely

counting steps, which can be used to compute the velocities of the robot and estimate its

159

(a) The motor board layer (b) The main board layer (c) The sensor board layer

Figure 42: Top view of the three layers of the GRITSBot.

position.

Since encoders can introduce estimation inaccuracies, others have attempted to circum-

vent their use. A recent approach to encoder-free odometry has been proposed in [89]. In

that implementation, however, complex signal processing is required to compute motor ve-

locities. The Kilobot (see [157] and [158]) addresses odometry in a di�erent way. Since its

vibration motors do not allow for encoder-based odometry in the �rst place, the Kilobot

estimates its position based on measured distances to stationary neighbors. A drawback of

this approach is the dependence on other agents. In the design of the Kilobot, vibration-

based actuation was chosen for cost reasons. However, the costs of the encoder-free stepper

motor design of the GRITSBot are comparable6, yet it o�ers high-accuracy locomotion at

much higher top linear velocities of up to 25 cm/sec and rotational velocities of up to 820

degrees/sec.

Sensing A primary requirement of a miniature robot used in a multi-robot testbed is the

measurement of distances and bearings to neighboring agents and obstacles. For reasons

of both sensor size and cost, the GRITSBot, like most other miniature robots, relies on

infrared-based (IR) distance sensing. Six IR transmitters and receivers are arranged in 60◦

increments around the circumference (see Fig. 41c(B)). These IR sensors are capable of

6The locomotion system of the GRITSBot costs $5.28 compared to $3.12 for the Kilobot (at quantities
of 1000 robots). The cost estimates refer to quotes retrieved on February 1st, 2016 (see Appendix A).

160

measuring distances in the range of approximately 1 - 10 cm.7

In addition to IR sensing, the sensor board can be equipped with an accelerometer and

gyroscope whose data can be fused into the velocity and position estimation to account,

for example, for slip. Since few multi-agent experiments rely on acceleration and gyroscope

data, this component is not equipped by default (according to Tables 10 and Table 11)

but can be added to the robot for an additional $5.75. One more sensor that is mounted

on the main board is a battery voltage and current sensor(see Fig. 41b(E)), whose data

informs the control of the robot's autonomous charging behavior (see Fig. 6.5.4). The

motor board can additionally be equipped with downward-facing infrared sensors for line-

following applications (see Fig. 41a(E)) as well as a digital compass (see Fig. 41a(C)). The

modular architecture of the robot allows to easily extend or change capabilities of the robot

by replacing the sensor board with a custom board or simply stacking a second sensor board

on top.

Processing The GRITSBot is equipped with two microcontrollers, an Atmega 168 chip

on the motor board and an ESP8266 chip on the main board. Whereas the Atmega 168 chip

(running at 8 MHz) is solely responsible for motor velocity control of the stepper motors,

the ESP8266 chip (running at 80 or 160 MHz) is tasked with wireless communication, sensor

data processing, low-level control of the robot (including the nonlinear velocity and position

controller), and user-de�ned high-level tasks such as obstacle avoidance or other behaviors.

Previous versions of the GRITSBot relied on the Atmega 328 chip as the main processing

chip, but was upgraded to the more powerful ESP8266 chip that was also capable of built-in

WiFi communication.

Communication The main ESP8266 microcontroller doubles as a WiFi transceiver sup-

porting the IEEE 802.11 B/G/N standards. Unlike the wireless transceivers used on the

GRITSBot in [144], WiFi o�ers much higher bandwidth but comes at the cost of higher

7For detailed speci�cations and parts lists see Appendix A.

161

power consumption (on average 150 mA). To o�set the reduced battery life, we have in-

creased battery capacity to 400 mAh compared to the 150 mAh used in [144]. The bene�ts

of WiFi, however, far outweigh its increased power consumption. WiFi o�ers a reliable

communication channel based on standard UDP sockets and a single WiFi access point is

able to service hundreds of clients.

Previous versions of the GRITSBot were equipped with lower power RF transceivers.

The �rst iteration of the robot was out�tted with HopeRF RFM69W transceivers8 with

a bandwidth of 300 Kbit/s and a power consumption in the range of 16 - 45 mA. These

modules operated at 433 MHz or alternatively at 915 MHz. The relatively low bandwidth

of these modules did not support high enough position or velocity update rates (in excess

of 20 Hz) to large numbers of robots and was therefore abandoned for scalability reasons.

The second iteration of the GRITSBot employed Nordic Semiconductor nRF24L01+

transceivers9 operating at 2.4 GHz. These low-power devices consumed below 15 mA even

at their maximum transmission rate of 2 MBit/s. Initial experiments with small numbers

of robots (on the order of two to three robots) showed that this bandwidth was su�cient

for fast enough position or velocity updates to the robots. However, as more robots were

added, either data packages were lost (in case no packet collision avoidance was used), or the

transmission rate dropped signi�cantly (when packet collision avoidance was used). For this

reason, the robots were eventually equipped with far more capable WiFi modules, which

both increased the available bandwidth and lowered the overall cost of the robot. The cost

savings were achieved because the ESP8266 WiFi modules replaced both the nRF24L01+

transceiver and the Atmega328 microcontroller.

A desirable feature of a multi-robot testbed is certainly local communication. Whereas

in principle the GRITSBot is capable of local IR-based communication, no such commu-

nication protocol is currently implemented. Note, however, that on the one hand, local

communication is not required for most multi-robot experiments where distance and bear-

ing measurements are available. On the other hand, local communication can be simulated

8RFM69W transceivers are available at http://www.hoperf.com/rf_transceiver/modules/RFM69W.html
9nRF24L01+ transceivers are available at https://www.nordicsemi.com/eng/Products/2.4GHz-

RF/nRF24L01P

162

through global communication to a host system should the need arise.

Power System The GRITSBot is powered by a 400 mAh single-cell lithium polymer

(LiPo) battery that supplies a nominal voltage of 3.7V to the robot. The battery voltage

is then regulated down to 3.3V - the system operating voltage - and stepped up to 5V -

the voltage supplied to the motors. Both the power regulation and the battery charging

circuitry are embedded into the main board, which supplies power to the motor and sensor

board through header pins. The charging circuitry of the robot operates at 5V input voltage.

When connected to a power supply, it charges the battery through a single-cell LiPo charging

chip (see Fig. 41b(F)). The charging chip supplies up to 500 mA of current, which means

the battery can be fully charged within approximately 45 minutes. Currently, depending on

the activity level of the robot, it can operate between 40 to 60 minutes. Note that with the

charging behavior in place the robot can recharge its battery autonomously, thus extending

its battery life inde�nitely. As shown in Section 6.5.4, the charging station is embedded into

the testbed walls and, therefore, the robot can recharge without operator intervention.

Cost The costs per robot are based on order quantities of at least 50 robots, which results

in parts cost of approximately 40$ per robot making the cost comparable to the Kilobot at

low quantities. Table 10 summarizes the total parts cost by boards (assembly is not factored

in).10 The total cost of an assembled robot is shown in Table 11 and remains below 70$.11

Note that assembly refers to populating the bare circuit boards with SMD components,

which means that any through-hole components such as connectors and motors need to be

soldered on by hand.

6.5 The Robotarium Testbed

The design of the GRITSBot and the Robotarium testbed allows a single user to easily

operate and maintain a large collective of robots through built-in features such as (i) au-

tomatic sensor calibration, (ii) wireless (re)programming, (iii) automatic registration with

10Note that the design allows adding an IMU (gyroscope and accelerometer) for an additional 5.75$.
11The cost estimates refer to quotes retrieved on February 1st, 2016. The complete bill of materials

including distributors is shown in Appendix A.

163

Table 10: Total parts cost per robot excluding assembly

Component Cost Function
Main board 16.44 Power management, WiFi, main processing, battery
Motor board 10.22 Actuation and motor control, motors, wheels
Sensor board 12.58 IR sensing, sensor data processing
Total 39.24

Table 11: Total cost per robot including assembly

Component Cost Function
Main board 26.07 Power management, WiFi, main processing, battery
Motor board 18.24 Actuation and motor control, motors, wheels
Sensor board 24.48 IR sensing, accelerometer, gyro
Total 68.79

the overhead tracking system, and (iv) autonomous battery charging. A possible extension

that could signi�cantly enhance multi-agent experiments is local communication, which the

robot's sensor board supports with its dual-use infrared distance sensors. This section de-

scribes these convenience features in detail and provides insight into how they �t into the

larger picture of remotely accessible testbeds.

6.5.1 Calibration

Since the robot measures voltages through its IR sensors and not metric distances per se,

one has to establish the mapping between these voltages and the actual distance values in

meters. The calibration station (see Fig. 43) provides such a mechanism and enables the

automatic calibration of the robot's IR sensors. In case the calibration data is overwritten or

corrupted, the robot can be recalibrated with minimal user intervention. The current model

of the calibration station uses two stepper motors - one that rotates a platform holding the

robot and one that linearly moves an obstacle. The rotating stepper motor ensures that

only one of the robot's distance sensors is active and pointing directly at the obstacle. The

second motor varies the distance of the obstacle to the robot in known increments which are

then mapped to each of the corresponding sensor voltages. After this process is repeated

for all six sensors, the con�guration is written to the non-volatile EEPROM memory of the

robot's main board. Therefore, the robot retains its calibration data and does not have to

be recalibrated even after a power cycle. In the larger context of the Robotarium, automatic

164

Figure 43: Automatic sensor calibration with the following components: (A) stepper motor
rotating the robot platform, (B) a GRITSBot being calibrated, (C) controlled obstacle,
(D) stepper motor controlling linear distance of obstacle to robot, (E) microcontroller, (F)
communication and power supply between robot and calibration station.

sensor calibration ensures consistent sensor readings across multiple robots despite variations

in the sensor hardware.

6.5.2 Wireless Programming

The main board's ESP8266 microcontroller supports over-the-air programming (OTA), which

enables wireless reprogramming of individual robots, groups of robots, or even reprogram-

ming a whole swarm in a broadcast fashion. It is even possible for one robot to reprogram

another, which o�ers an array of research challenges in the domain of wireless security, as

well as evolutionary and collaborative robotics. The Robotarium hardware enables OTA

through the coordinating server application, which is capable of reprogramming robots over

WiFi.

165

6.5.3 Global Positioning

The global position of all robots is retrieved through an overhead tracking system and

is required to close the position control feedback loop, which the autonomous charging

behavior of the robots depends on. Throughout the development of the Robotarium, the

tracking system has undergone multiple revisions, which will be outlined below to highlight

advantages and disadvantages of each approach as well as the reasons for switching to the

current version using ArUco-based tracking (see [69]).12 Note that for all tracking methods

shown in this section that relied on tags, the tag size was limited to approximately 35 x 35

millimeters (the size of the robot footprint).

Most decentralized algorithms do not rely on global position updates but rather sensor

data. Therefore, global positioning is not essential to their function. However, system main-

tenance such as recharging robots automatically or setting up an experiment (i.e. moving

robots to user-speci�ed positions) relies on globally accurate position data. As such some

form of overhead tracking is key to the robust operation and maintenance of the Robotarium.

First Iteration - AprilTags-based Tracking This tracking method relied on QR-code-

like identi�cation tags called AprilTags (see [137] and Figure 44a).13 Each robot was

equipped with an identi�cation tag and tracked using an overhead camera (more speci�-

cally, a Microsoft LifeCam Studio webcam). This computer vision-based overhead setup

required image processing on a host machine and allowed the tracking of absolute coordi-

nates as well as the orientation of the robots. The downside of having to equip every robot

with an ID tag was outweighed by the accurate pose data that could be retrieved. However,

the update rate proved to be too low to execute any fast robot motions accurately (linear

robot velocities had to be limited to below 0.08 m/sec or approximately 30% of the maximum

velocity). Even at relatively low resolutions of 800x600 using an Intel i7-4500U processor,

the maximum achievable update rates averaged 10 Hz for up to �ve tracked robots and 5-7

Hz for up to 25 robots. Ultimately, the limited update rate was too restrictive to be useful.

12ArUco is a minimal library for Augmented Reality applications based on OpenCV and can be found at
http://www.uco.es/investiga/grupos/ava/node/26

13The AprilTags C++ library is available at http://people.csail.mit.edu/kaess/apriltags/

166

Second Iteration - Color Tag-based Tracking This tracking method relied on an

integrated vision sensor called CMUcam5 Pixy [156], which was developed at Carnegie

Mellon University and provided high-speed vision processing.14 An update rate of 50 Hz was

enabled by a dedicated hardware vision processing chip that was capable of tracking colored

blobs as well as color tags (see Figure 44b). Using color tags, the system was able to quickly

and accurately detect both the position as well as orientation of the robots. However, since

the system relied on an accurate representation of color it was very susceptible to changes

in lighting conditions. Whereas lighting conditions could be controlled, the main downside

was the limited �eld of view of the camera. The small tag size of 35 x 35 mm required

the camera to be located close to the robots it tracked (about 0.7 meters above the testbed

�oor). This small �eld of view would have required large numbers of cameras to cover the

whole testbed area and was therefore unsuitable.

Third Iteration - Blob-based Tracking The third iteration of the overhead tracking

system was based on blob tracking using a standard webcam (Microsoft LifeCam Studio

HD camera). As such, no identi�cation tags needed to be attached to the robots. The blob

tracker was tuned to the color and size of the robots. While blob tracking allows the fast and

e�cient recovery of blob positions, the orientation of a blob cannot be recovered easily and

requires additional post-processing using the motion model of the robots. The video stream

was fed into an OpenCV-based blob tracking algorithm15 which recovered time-stamped blob

positions. These blob positions were associated with individual robots and their positions

recorded over time. Position updates were then sent wirelessly to the robots and fed into a

Kalman �lter that computed orientation estimates in real-time. While the update rate of

this approach was su�ciently high (in the range of 25 - 35 Hz depending on the number

of blobs tracked and the background workload of the host machine), the convergence time

of the Kalman �lter limited the velocity of the robots and the aggressiveness of maneuvers

that could be executed. Speci�cally, 180 degree-turns as well as turns on the spot were not

14The CMUcam5 Pixy is available at http://www.cmucam.org/projects/cmucam5.
15http://opencv.org/

167

(a) Apriltags marker (b) Color tag marker (c) ArUco marker

Figure 44: Examples of markers used for position tracking.

handled well and showed oscillations until the Kalman �lter converged.

Fourth Iteration - ArUco-based Tracking The current iteration of the overhead track-

ing system relies on tools borrowed from the augmented reality community, speci�cally on

a tag-based tracking method called ArUco (see [69]).16 Automatically generated identi�-

cation tags similar to AprilTags (see Figure 44a) have to be attached to each robot and

can be tracked in real time using an e�cient C++ implementation that relies on OpenCV -

the de facto standard for computer vision applications.17 The ArUco library provides well-

documented code for the generation of tags and calibration boards, for camera calibration,

and for the tracking of tags. In the conducted trials, the provided sample tracking code

managed to maintain an update rate in excess of 25 Hz even for 200 tags present in the

�eld of view of the camera. As is common for tag-based tracking method, ArUco retrieves

both the position and the orientation of the tags it tracks - with millimeter accuracy after

calibrating the camera. Besides accurate tracking, the main advantage is the large �eld of

view that this approach supports despite the small 35 x 35 mm tags. The camera is located

approximately 1.5 meters above the testbed �oor, which allows the testbed to be covered

by a single camera (see Figure 44c).

16ArUco is available at http://www.uco.es/investiga/grupos/ava/node/26.
17OpenCV is available at http://opencv.org/.

168

(a) GRITSBot approaching the
charging station.

(b) GRITSBot connected to
charging station.

(c) A side view of the GRITSBot
connected to charging station.

Figure 45: The charging station for autonomous recharging of the GRITSBot's battery.

6.5.4 Charging

Arguably the most crucial component of a self-sustaining and maintenance-free testbed is

an automatic recharging mechanism for the robots. The GRITSBot has been designed for

autonomous recharging through two extending magnetic pins at the back of the robot that

can connect to magnetic charging strips built into the testbed walls. One of the metal strips

supplies a 5V input voltage while the other serves as ground. This setup together with global

position control through the camera feedback loop allows the GRITSBot to autonomously

recharge its battery (see Fig. 45).

In the larger context of remotely accessible testbeds, the charging behavior is the key

aspect of the GRITSBot that will enable automated use of the robots and management of

the Robotarium hardware without operator intervention. As part of the time scheduling

mechanism, the Robotarium back end will not only assign a time slot to a user but also a

number of available robots that are guaranteed to have been charged before the start of the

experiment. After the conclusion of a user's experiment, the back end ensures that all used

robots are returned to the charging station and prepared for the next time slot. Automating

the recharging of robots is essential to making the continuous operation of the Robotarium

economically feasible, especially as the number of robots is scaled up.

6.6 Conclusions

In this chapter, we have demonstrated how the self-recon�guration algorithms introduced in

Chapter 4 and 5 can be instantiated on robots. Speci�cally, we have shown how the discrete

169

motion primitives of the sliding cube model can be mapped to the continuous dynamics of

the GRITSBots. Section 6.1 introduced velocity and position control laws that allow precise

execution of these motion primitives in the continuous domain. A two-dimensional self-

recon�guration example established the feasibility of the algorithms presented in Chapter 4

and 5 through their execution on a novel testbed called the Robotarium.

The design and development of the Robotarium, a multi-robotic testbed geared towards

remotely accessible and user-friendly multi-robot experiments, has been laid out in detail in

this chapter. In particular, the Robotarium relies on the GRITSBot, a novel miniature robot

designed to be the core component of the Robotarium. The GRITSBot is a highly capable

wheeled research platform focused on low cost, simplicity in design, and ease of use. While

being remotely accessible through the Robotarium, the GRITSBot can be easily replicated

and employed in other research and educational institutions. A basic GRITSBot testbed

can be set up with a handful of robots and a webcam used for tracking. The robot's design is

fully open source and shown in detail in Appendix A, while the design process and iterations

have been detailed in this chapter. As such, the GRITSBot's and the Robotarium's mission

is to make multi-agent robotics available to a much larger target audience than it is today.

170

Chapter VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The notion of self-recon�gurable systems was �rst introduced in the late 1980s by Fukuda et

al. [68] who proposed applications in manipulation, mobility, and manufacturing. Since then

self-recon�gurable systems have found their way into robotics, computer science, biology,

chemistry, nanotechnology, and numerous other disciplines. Inspired by the assembly of bio-

logical cells in living organisms and the growth of organic and inorganic compounds such as

crystals, the self-assembly of the future will rely on smaller and smaller modules. Regardless

of the speci�c architecture of the basic building block of self-recon�gurable systems (whether

organic or robotic), growing numbers of increasingly small modules in these systems under-

score the importance of scalable approaches and a well-founded theoretic understanding of

the workings of these systems. The research covered in this work aims at improving our

understanding of self-recon�gurable systems, while moving the �eld of self-recon�gurable

systems closer towards the deployment of truly large-scale systems.

After reviewing the current state-of-the-art of self-recon�gurable systems, this research

began by developing centralized methods for self-recon�guration planning. System models

for both homogeneous and heterogeneous self-recon�gurable systems were de�ned, based on

which provably complete recon�guration planning algorithms were introduced. While the

algorithmic results enabled a number of use-cases such as locomotion, self-(dis)assembly,

and self-recon�guration, the theoretic results served as the foundation for the decentral-

ized methods in this work. Instead of computing motion plans on a central node, these

decentralized methods enable modules to act as autonomous decision makers.

In particular, the main theoretic contribution of this research was then presented in the

form of a game-theoretic formulation of the self-recon�guration problem and a novel learning

algorithm that provably solves it in a distributed fashion relying only on local information

171

and little communication between agents. Based on Metropolis-Hastings, this learning al-

gorithm enables agents to weigh their probabilistic action selection in a way that provably

guarantees the assembly of the target con�guration. While capable of the same use-cases

as the centralized methods, this agent-based formulation additionally enables scenarios such

as splitting, merging, or avoiding obstacles in the environment. The key contribution of

this approach is a theoretic framework that enables local, autonomous decision making with

guaranteed global properties. The developed game-theoretic learning algorithm is suitable

for a wide array of problems that rely on decentralized local control to guarantee globally

emerging properties. While this decentralized approach already provides a number of at-

tractive features for distributed execution, it is further extended to provide adaptability to

the environment and improve convergence times. In particular, two approaches were pre-

sented that enable the runtime modi�cation of the learning rate (used to adjust an agent's

aggressiveness level towards exploration of the state space) and of the utility functions (used

as incentivization for agents' action selection). Simulations show that for non-trivial scenar-

ios, these methods have the potential to improve convergence rates compared to the basic

non-adaptive method.

Finally, a complete multi-robotic testbed was developed including custom-designed minia-

ture robots to validate these self-recon�guration methods on actual hardware. An exper-

iment executed by a team of eight robots showed the feasibility and utility of the game-

theoretic self-recon�guration approach. More importantly, this testbed - called the Rob-

otarium - serves the much greater purpose of making multi-agent robotics accessible and

a�ordable. Designed with a focus on remote-accessibility and user-friendliness, the Robo-

tarium aspires to be to robotics what software as a service (SaaS) is to the software industry

- a democratizing tool that makes state-of-the-art multi-agent robotics accessible to every-

body.

In conclusion, this research investigated the self-recon�guration problem from a mod-

eling, algorithmic, theoretic, as well as hardware standpoint. By doing so, it not only

provided deeper insights into the challenges and di�culties associated with each aspect of

self-recon�guration, but speci�cally addressed the issue of guaranteed convergence as well

172

as scalability through decentralized solution methods.

7.2 Future Work

The methods presented in this research provide a basis for the decentralized control of

lattice-based self-recon�gurable systems. While theoretical as well as simulation and robotic

results in this work con�rm the feasibility and utility of a game-theoretic approach to self-

recon�guration, future work could investigate a number of open challenges related to game-

theoretic self-assembly.

For example, one direction of future work could investigate the informational require-

ments of this approach. Currently, each agent is required to know the shape of the target

con�guration as well as its pose in the environment. Storing all positions of the target con�g-

uration in every agent's local memory may be feasible for systems on the order of thousands

of robots. However, this strategy will have to be rethought as the number of modules in

self-recon�gurable systems increases beyond millions of modules and/or the sizes of modules

decreases. A possible solution might use approximation-based methods as shown in Section

2.1.2, for example, bounding box-based approaches.

Another future direction that could have major implications on the convergence rate is

the notion of motion parallelism. Currently, agents take turns in executing actions. The

resulting sequential nature of motions presents a limit to improving convergence rates. While

the theory developed in Chapter 4 does not rule out parallel motions, the results will have

to be adapted to guarantee convergence despite motion parallelism. However, the gains in

convergence times could be signi�cant.

Another possible way of improving convergence times addresses the asymptotic nature of

the assembly of CT . In the current framework, using target-seeking utility functions does not

inform agents which target positions are still unoccupied. Lacking this piece of information

can cause agents to explore the vicinity of the target con�guration for a large amount of time

before eventually discovering the last remaining target positions. A possible future direction

could explore methods of augmenting the data available to agents through communication

with neighboring agents. For example, a gradient that guides agents towards unoccupied

173

target positions could be added to the game-theoretic framework for self-recon�guration.

Lastly, the presented methods were developed for lattice-based systems, which charac-

teristically rely on discrete and �nite action sets. One major direction of future work is

the extension of this approach to chain-type systems with their continuous and, therefore,

in�nite action sets. Can these continuous action sets be mapped to discrete action sets and

handled by the presented algorithms without compromising the �uidity of motion of chain-

type systems? Or alternatively, can the algorithms in this research be extended to be able

to handle continuous action sets? While discretization might be able to represent in�nite

action sets in a feasible way, it is not immediately obvious how to incentivize the possible

actions of chain-type systems. For example, a speci�c actuator joint angle might have to

be awarded a much higher utility in one con�guration versus another. The assumption of

decoupled utility functions, which this research rests on, might have to be dropped to be

able to model chain-type systems e�ectively.

When it comes to the Robotarium concept of remotely accessible multi-robot testbeds,

the �eld is still largely unexplored. We are only at the beginning of understanding the needs,

requirements, challenges, and opportunities associated with this new paradigm of making

robots remotely accessible to the wider research community and eventually the general pub-

lic. The primary research problems at this point concern infrastructure development, where

the most challenging question is how to provide scalability and accommodate hundreds of

mobile robots in real-time. The continuous and smooth operation of such a large-scale

testbed will not only require reliable high-bandwidth wireless and wired connections but

also a robust scheduling mechanism for assigning robots to users. As of right now, the

most promising route to establish such scalability hints at web-based toolchains that sup-

port simulation, code veri�cation, and eventually code upload to the physical assets of the

Robotarium. Safety and security of the system will also pose major challenges. As an in-

herently shared and remotely accessed research instrument, the Robotarium is meant to be

open-access. This open nature, however, will pose a signi�cant challenge to address secu-

rity needs in an e�ort to prevent misuse and malicious attacks on the one hand and safety,

or the accidental damage to the system, on the other hand. Formal code veri�cation or

174

simulation-based veri�cation of algorithms could be used to diminish the risk of accidental

damage, while proper user authorization and vetting will be potential methods to address

the security needs.

175

Appendix A

ROBOT DESIGN

This appendix provides design �les, bills of materials, as well as lists of manufacturers and

distributors of parts. It provides speci�cs to facilitate sourcing of components and assembly

of GRITSBot robots. In addition to the bill of material lists provided in Table 14, Table

15, and Table 16, Table 12 below summarizes details about all manufacturers and distrib-

utors used. Table 13 lists all miscellaneous components required for the assembly of the

GRITSBot. Note that sourcing miniature stepper motors proved less reliable than sourcing

all other electronic components. In general, 2-phase 4-wire stepper motors operating at 5V

are required for the motor board. Miniature stepper motors with approximate dimensions

of 4 - 6 mm in diameter and between 8 to 10 mm in length �t the design. One example of

such a motor is listed in Table 13. This type of motor can also be found on Ebay as well as

Amazon under the search term miniature stepper motor.

Table 12: List of distributors.

Distributor Website Info
Digi-Key Electronics www.digikey.com SMD electronics components
Mouser Electronics www.mouser.com SMD electronics components
Seeedstudio www.seeedstudio.com PCB manufacturing and assembly
OSH Park www.oshpark.com PCB manufacturing
Tower Hobbies www.towerhobbies.com LiPo batteries
Ebay www.ebay.com Stepper motors, ESP8266
Banggood www.banggood.com Connectors, ESP8266
Adafruit www.adafruit.com ESP8266 microcontroller
RobotShop www.robotshop.com Miniature wheels
Amazon www.amazon.com Charging pins

176

Table 13: Miscellaneous components used in the assembly of the GRITSBot.

Part Description Distributor Part Number Info
Stepper motors Banggood 981643 2-phase, 4-wire, 5V
Rubber wheels RobotShop RB-Sbo-09 10 mm outer diameter
LiPo battery TowerHobbies L5WLT902 3.7V, 400 mAh, 1S
Connectors Banggood 1033759, 945516 Male/female header pins
Charging pins Banggood 1011128 Brooch safety pins

177

VCC:	3.3V

VBAT	should	be	
a	single-cell	
LiPo	battery.

SJ3	and	SJ1	allow	auto-control	of
GPIO0	for	programming.

Disconnecting	may	be	required
to	use	serial	terminal	debugging.

Charge	current:
500mA

Current	Sensor	I2C
I2C	address:	0x45

I2C	address:	0x60

GPIO4	and	5	seem	to	be	switched	in	Arduino	IDE	

LED	is	on	GPIO4
MPU	interrupt	pin	on	GPIO5

Charge	notification	-	pulled	
HIGH	when	charger	is	connected

VCC	...	Normal	runmode
GND	...	Programming/Bootloader	Mode

STAT	indicates	
end	of	charging

LOW	...	Charging
HIGH	...	Done

LED1	ON	when	charging
LED3	ON	when	done

2.
2k

2.
2k

M02PTH

MOTOR

0.1uF

GND

0.1

GND

1.
0u
F

10
K

VCC

10
K

GND

VCC

1.0uF

2.2uF

GND

GND

MCP73831

GNDGNDGND

4.
7u
F

GND

R
ED

G
N
D 1k

1k
AP2112K-3.3V

VCC

BAT20J

GREEN

2.
0k

GND

LiPo

10
K

VCC

GND

VC
C

GND

10
K

GND

G
N
D

ATECC108-SSHDA

VCC

GND

10
K

MCP1640

4.7uH

4.
7u
F

10
uF

GND

97
6k

30
9k

GND

0.
1u
F

MOTOR

M01NOSILK-KIT
M021X02_NO_SILK

10
K

G
R
EE
N

GND

1k

R
10

R
11

1
2

CHRG

1
2
3

MOTOR

1_VIN+1
2_VIN_-2
3_GND3
4_VS4 5_SCL 56_SDA 67_A0 78_A1 8

C8

R8

C
12R
6

R
15

C13

C14

MCP73831
VIN4

STAT1

VBAT 3
PROG 5
VSS 2

C
15

LE
D
1

R17

R19

AP2112K

IN

GND

OUT

EN BP

D5

LED2

R
22

LIPO1

1
2

R
5

POWER_SWITCH

FTDI

1
2
3
4
5
6

RESET1
ADC2
CH_PD3
GPIO164
GPIO145
GPIO126
GPIO137
VCC8 GND 9GPIO15 10GPIO2 11GPIO0 12GPIO5 13GPIO4 14RXD 15TXD 16

R
1

1 2
BTN_RST

GND4 VCC8 SCL 6
SDA 5

U1

1 2 3

RUNMODE_JUMPER

R
4

SW 1

GND2 EN3
VFB 4VOUT 5VIN6

MCP1640 L1

C
11

C
1

R
2

R
3

C
2

1
2
3

SENSE

1
2

I2C1

ST2
RUNMODE_SWITCH

JP8

1
2

R
7

LE
D
3

R
9

GND

GND

GND

GND

GND

VCC

VCC

VCC
VCC

VCC

VCC

VCC

VCC

U0RXI

U0RXI

U0TXO

U0TXO

GPIO15

DTR

DTR

DTR

GPIO14/SCL

GPIO14/SCL

GPIO14/SCL

GPIO14/SCL

ADC

GPIO0

GPIO0

GPIO0

GPIO5GPIO16

GPIO2/SDA

GPIO2/SDA

GPIO2/SDA

GPIO2/SDA

VC
H
RG

VCHRG

STAT

STAT

VBAT

VB
AT

VIN

GPIO4/MPU-6050

RESET

RESET

VCC_5V
VCC_5V

VSWITCH

VSWITCH

Daniel	Pickem

Voltage	Regulator	&
LiPo	Charger

ESP8266

Headers

Auto-Prog	Jumper

v10

5V	Step-up	Converter

Authentication	Chip	(SHA)

Standoffs	for	stability Runmode	switch Fiducials

Released	under	the	Creative	Commons
Attribution	Share-Alike	4.0	License
	https://creativecommons.org/licenses/by-sa/4.0/

Design	by:

Figure 46: Schematic of the main board.

178

AT24C256C
Q
R
E1
11
3 100

10k

Q
R
E1
11
3 100

10k

ATMEGA168

30uF

red
1kG

N
D

10k

GND

VCCVCC

GND

GND

VCC

GND

VCC

LB1836M

10uF

LB1836M

10uF

HMC5883LSMD

.1uF

.22uF4.7uF

GND GND GND M01NOSILK-KIT

GNDGND

VCC VCC

M021X02_NO_SILK

MEM

1
2

I2C

1
2
3

SUPPLY

1
2
3
4

SPI

11

22

3 3

4 4

11

22

3 3

4 4

LI
N
E_
2

R5

R6

LI
N
E_
1

R7

R8

PB5(SCK) 17

PB7(XTAL2/TOSC2)8

PB6(XTAL1/TOSC1)7

GND3
GND21

VCC4
VCC6

AGND5

AREF20

AVCC18

PB4(MISO) 16PB3(MOSI/OC2) 15PB2(SS/OC1B) 14PB1(OC1A) 13PB0(ICP) 12

PD7(AIN1) 11PD6(AIN0) 10PD5(T1) 9PD4(XCK/T0) 2PD3(INT1) 1PD2(INT0) 32PD1(TXD) 31PD0(RXD) 30

ADC7 22ADC6 19PC5(ADC5/SCL) 28PC4(ADC4/SDA) 27PC3(ADC3) 26PC2(ADC2) 25PC1(ADC1) 24PC0(ADC0) 23PC6(/RESET)29

ATMEGA168P

C2

LED

R1

R2

VCC1
IN12
OUT13
VS14
OUT25
IN26
GND7 VCONT 8IN4 9OUT4 10VS2 11OUT3 12IN3 13GND1 14

M_CTRL_2

C9

VCC1
IN12
OUT13
VS14
OUT25
IN26
GND7 VCONT 8IN4 9OUT4 10VS2 11OUT3 12IN3 13GND1 14

M_CTRL_1

C1

U1

SCL 1

VDD 2NC3

S1 4NC5
NC6
NC7

SETP 8
GND9

C110

GND11 SETC 12

VDDIO 13

NC14

DRDY 15

SDA 16
C4

C10C11

ST2

A01
A12
A23
GND4 SDA 5SCL 6WP 7VCC 8

JP8

1
2

SJ1

GND

GND

GND

GND
GND

GND

VCC
VCC
VCC

VCC

VCC

VCC

VCC

VCC

M2IN3

M2IN3

M2IN4

M2IN4

M2IN1

M2IN1

M2IN2

M2IN2

M2OUT1

M2OUT1

M2OUT2

M2OUT2

M2OUT3

M2OUT3

M2OUT4

M2OUT4
M1IN1

M1IN1

M1OUT1

M1OUT1

M1OUT2

M1OUT2

M1IN2

M1IN2

M1IN3

M1IN3

M1OUT3

M1OUT3

M1OUT4

M1OUT4

M1IN4

M1IN4

MOSI

MOSI

MISO

MISO

SCK

SCK

RESET

RESET

LED_IND

LED_IND

AD2_LINE_RIGHT

LINE_RIGHT

LINE_RIGHT

LINE_LEFT

LINE_LEFT

AD6_LINE_LEFT

VBAT

VBAT VBAT

VBAT VBAT
A4_SDA

A4_SDA

A4_SDA

A4_SDA

A5_SCL

A5_SCL

A5_SCL

A5_SCL

AD3_LINE_RIGHT
AD2_LINE_LEFT

INT_MAG

Connectors Microcontroller	
Atmega	Atmega168P

Visual	output	LED

Motor	Controllers
LB1836M

Stepper	MotorsIR	Line	Sensors	
Fairchild	QRE1113

Magnetometer

Standoffs	for	stability Fiducials

Memory	Chip

Daniel	Pickem

Released	under	the	Creative	Commons
Attribution	Share-Alike	4.0	License
	https://creativecommons.org/licenses/by-sa/4.0/

Design	by:

Figure 47: Schematic of the motor board.

179

SDOM/AG
0x1C
0x1E

AG	Addr.
0
1

M	Addr.
0x6A
0x6B

Set	the	SDO_AG	and	SDO_M	to	set	the
accel/gryo	and	mag	I2C	addresses:

SJ1	pulls	up	the	chip-select	(CS)	pins.
Closed:	Sets	LSM9DS1	to	I2C	mode.
Open:	Allows	for	CS	control	in	SPI	mode.

SJ2	pulls	up	the	serial	data	out	(SDO)	pins.
Closed:	Sets	I2C	addresses	in	I2C	mode.
Open:	Floats	SDO	pins	-	can	be	used	to	set
I2C	address,	or	be	used	for	SPI	control

TX1 TX2

TX3 TX4

TX5 TX6

ATMEGA328P10K

VCC VCC

GND

10
0

TSSP77038SIDEGND

VCC

10
0

0.1uF

TSSP77038SIDEGND

VCC

10
0

0.1uF

LSM9DS1

0.1uF

0.1uF

0.1uF10nF

10uF

GNDGNDGNDGNDGND

10K

10K

10K

10K

NDS7002A

1k

GND

VCC

VCC

VCC

VCC

TSSP77038SIDEGND

VCC

10
0

0.1uF

TSSP77038SIDEGND

VCC

10
0

0.1uF

TSSP77038SIDEGND

VCC

10
0

0.1uF

TSSP77038SIDEGND

VCC

10
0

0.1uF

10
0

NDS7002A

1k

GND

VCC

10
0

NDS7002A

1k

GND

VCC

10
0

NDS7002A

1k

GND

VCC

10
0

NDS7002A

1k

GND

VCC

10
0

NDS7002A

1k

GND

VCC

3X2_SMD_HEADER

GND

M01NOSILK-KIT
M021X02_NO_SILK

1
2

I2C

PB5(SCK) 17

PB7(XTAL2/TOSC2)8

PB6(XTAL1/TOSC1)7

GND3
GND5

VCC4
VCC6

AGND21

AREF20

AVCC18

PB4(MISO) 16PB3(MOSI/OC2) 15PB2(SS/OC1B) 14PB1(OC1A) 13PB0(ICP) 12

PD7(AIN1) 11PD6(AIN0) 10PD5(T1) 9PD4(XCK/T0) 2PD3(INT1) 1PD2(INT0) 32PD1(TXD) 31PD0(RXD) 30

ADC7 22ADC6 19PC5(ADC5/SCL) 28PC4(ADC4/SDA) 27PC3(ADC3) 26PC2(ADC2) 25PC1(ADC1) 24PC0(ADC0) 23PC6(/RESET)29

IC1

R7

R
18

IR
_T

X1

GND1
VS2
OUT3
GND4

IR_RX1

R
3

C3

GND1
VS2
OUT3
GND4

IR_RX2

R
4

C4

GND19*2

C124 CAP21

DEN_A/G 13

INT_M 10DRDY_M 9

INT1_A/G 11
INT2_A/G 12

VDD22*2
VDDIO1*2

CS_M 8

CS_A/G 7

SCL/SPC 2

SDO_M 6

SDO_A/G 5

SDA/SDI/SDO 4
IMU

RES14*5

C2

C1

C5C6

C7
R1

R2

R5

R6

G1

S
2

D
3 Q1

R
12

GND1
VS2
OUT3
GND4

IR_RX3

R
8

C8

GND1
VS2
OUT3
GND4

IR_RX4

R
9

C9

GND1
VS2
OUT3
GND4

IR_RX5

R
10

C10

GND1
VS2
OUT3
GND4

IR_RX6

R
11

C11

R
13

IR
_T

X2

G1

S
2

D
3 Q2

R
14

R
15

IR
_T

X3

G1

S
2

D
3 Q3

R
16

R
17

IR
_T

X4

G1

S
2

D
3 Q4

R
19

R
20

IR
_T

X5

G1

S
2

D
3 Q5

R
21

R
22

IR
_T

X6

G1

S
2

D
3 Q6

R
23

1 2
3 4
5 6

PROG

4-DIN 2-DOUT

1-
VD

D
3-

G
N

D

LED2

SUPPLY

1
2
3

ST2JP9

1
2

GND

GND

GND

VCC

VCC

RESET

RESET

D11_MOSI

D11_MOSI

D12_MISO

D12_MISO

D13_SCK

D13_SCK

A4_SDA

A4_SDA

A4_SDA

A5_SCL

A5_SCL

A5_SCL

IR_RX2

IR_RX2

IR_RX1

IR_RX1

SDO_A/G

SDO_A/G

CS_A/G

CS_A/G

SDO_M

SDO_M

CS_M
CS_M

INT1_A/G
INT2_A/G
DEN_A/G

DRDY_M
INT_M

IR
_T

X1

IR_TX1

IR_RX3

IR_RX3

IR_RX4

IR_RX4
IR_RX5

IR_RX5

IR_RX6

IR_RX6

IR
_T

X2

IR_TX2

IR
_T

X3

IR_TX3

IR
_T

X4

IR_TX4

IR
_T

X5

IR_TX5

IR
_T

X6

IR_TX6

VCC_5V

VCC_5V

LED_RGB

LED_RGB

SERIAL_RX

SERIAL_RX

SERIAL_TX

SERIAL_TX

Daniel	Pickem

Connectors

Microcontroller	
Atmega	Atmega168P IR	Transmitter	LEDsIR	Receivers

9-DoF	IMU RGB	LEDFiducials Standoffs	for	stability

Daniel	Pickem

Released	under	the	Creative	Commons
Attribution	Share-Alike	4.0	License
	https://creativecommons.org/licenses/by-sa/4.0/

Design	by:

Released	under	the	Creative	Commons
Attribution	Share-Alike	4.0	License
	https://creativecommons.org/licenses/by-sa/4.0/

Design	by:

Figure 48: Schematic of the sensor board (part 1).

180

SDOM/AG
0x1C
0x1E

AG	Addr.
0
1

M	Addr.
0x6A
0x6B

Set	the	SDO_AG	and	SDO_M	to	set	the
accel/gryo	and	mag	I2C	addresses:

SJ1	pulls	up	the	chip-select	(CS)	pins.
Closed:	Sets	LSM9DS1	to	I2C	mode.
Open:	Allows	for	CS	control	in	SPI	mode.

SJ2	pulls	up	the	serial	data	out	(SDO)	pins.
Closed:	Sets	I2C	addresses	in	I2C	mode.
Open:	Floats	SDO	pins	-	can	be	used	to	set
I2C	address,	or	be	used	for	SPI	control

TX1 TX2

TX3 TX4

TX5 TX6

ATMEGA328P10K

VCC VCC

GND

10
0

TSSP77038SIDEGND

VCC

10
0

0.1uF

TSSP77038SIDEGND

VCC

10
0

0.1uF

LSM9DS1

0.1uF

0.1uF

0.1uF10nF

10uF

GNDGNDGNDGNDGND

10K

10K

10K

10K

NDS7002A

1k

GND

VCC

VCC

VCC

VCC

TSSP77038SIDEGND

VCC

10
0

0.1uF

TSSP77038SIDEGND

VCC

10
0

0.1uF

TSSP77038SIDEGND

VCC

10
0

0.1uF

TSSP77038SIDEGND

VCC

10
0

0.1uF

10
0

NDS7002A

1k

GND

VCC

10
0

NDS7002A

1k

GND

VCC

10
0

NDS7002A

1k

GND

VCC

10
0

NDS7002A

1k

GND

VCC

10
0

NDS7002A

1k

GND

VCC

3X2_SMD_HEADER

GND

M01NOSILK-KIT
M021X02_NO_SILK

1
2

I2C

PB5(SCK) 17

PB7(XTAL2/TOSC2)8

PB6(XTAL1/TOSC1)7

GND3
GND5

VCC4
VCC6

AGND21

AREF20

AVCC18

PB4(MISO) 16PB3(MOSI/OC2) 15PB2(SS/OC1B) 14PB1(OC1A) 13PB0(ICP) 12

PD7(AIN1) 11PD6(AIN0) 10PD5(T1) 9PD4(XCK/T0) 2PD3(INT1) 1PD2(INT0) 32PD1(TXD) 31PD0(RXD) 30

ADC7 22ADC6 19PC5(ADC5/SCL) 28PC4(ADC4/SDA) 27PC3(ADC3) 26PC2(ADC2) 25PC1(ADC1) 24PC0(ADC0) 23PC6(/RESET)29

IC1

R7

R
18

IR
_T

X1

GND1
VS2
OUT3
GND4

IR_RX1

R
3

C3

GND1
VS2
OUT3
GND4

IR_RX2

R
4

C4

GND19*2

C124 CAP21

DEN_A/G 13

INT_M 10DRDY_M 9

INT1_A/G 11
INT2_A/G 12

VDD22*2
VDDIO1*2

CS_M 8

CS_A/G 7

SCL/SPC 2

SDO_M 6

SDO_A/G 5

SDA/SDI/SDO 4
IMU

RES14*5

C2

C1

C5C6

C7
R1

R2

R5

R6

G1
S

2
D

3 Q1
R

12

GND1
VS2
OUT3
GND4

IR_RX3

R
8

C8

GND1
VS2
OUT3
GND4

IR_RX4

R
9

C9

GND1
VS2
OUT3
GND4

IR_RX5

R
10

C10

GND1
VS2
OUT3
GND4

IR_RX6

R
11

C11

R
13

IR
_T

X2

G1

S
2

D
3 Q2

R
14

R
15

IR
_T

X3

G1

S
2

D
3 Q3

R
16

R
17

IR
_T

X4

G1

S
2

D
3 Q4

R
19

R
20

IR
_T

X5

G1

S
2

D
3 Q5

R
21

R
22

IR
_T

X6

G1

S
2

D
3 Q6

R
23

1 2
3 4
5 6

PROG

4-DIN 2-DOUT

1-
VD

D
3-

G
N

D

LED2

SUPPLY

1
2
3

ST2JP9

1
2

GND

GND

GND

VCC

VCC

RESET

RESET

D11_MOSI

D11_MOSI

D12_MISO

D12_MISO

D13_SCK

D13_SCK

A4_SDA

A4_SDA

A4_SDA

A5_SCL

A5_SCL

A5_SCL

IR_RX2

IR_RX2

IR_RX1

IR_RX1

SDO_A/G

SDO_A/G

CS_A/G

CS_A/G

SDO_M

SDO_M

CS_M
CS_M

INT1_A/G
INT2_A/G
DEN_A/G

DRDY_M
INT_M

IR
_T

X1

IR_TX1

IR_RX3

IR_RX3

IR_RX4

IR_RX4
IR_RX5

IR_RX5

IR_RX6

IR_RX6

IR
_T

X2

IR_TX2
IR

_T
X3

IR_TX3

IR
_T

X4

IR_TX4

IR
_T

X5

IR_TX5

IR
_T

X6

IR_TX6

VCC_5V

VCC_5V

LED_RGB

LED_RGB

SERIAL_RX

SERIAL_RX

SERIAL_TX

SERIAL_TX

Daniel	Pickem

Connectors

Microcontroller	
Atmega	Atmega168P IR	Transmitter	LEDsIR	Receivers

9-DoF	IMU RGB	LEDFiducials Standoffs	for	stability

Daniel	Pickem

Released	under	the	Creative	Commons
Attribution	Share-Alike	4.0	License
	https://creativecommons.org/licenses/by-sa/4.0/

Design	by:

Released	under	the	Creative	Commons
Attribution	Share-Alike	4.0	License
	https://creativecommons.org/licenses/by-sa/4.0/

Design	by:

Figure 49: Schematic of the sensor board (part 2).

181

Table 14: Bill of materials of the main board (optional components highlighted in green).

Part Designator Part Number Quantity Info Distributor

AP2112K AP2112K-3.3TRG1 1 Voltage regulator Digi-Key
BTN_RST PTS820 J15M SMTR LFS 1 Reset button Digi-Key
C1 CC0805ZKY5V6BB106 1 10uF Digi-Key
C2, C8 CC0603KRX7R7BB104 2 0.1uF Digi-Key
C11, C15 CC0603KRX5R6BB475 2 4.7uF Digi-Key
C12, C13 CC0603ZRY5V7BB105 2 1.0uF Digi-Key
C14 CC0603KRX5R6BB225 1 2.2uF Digi-Key
ESP8266 ESP8266 ESP-12E 1 Microcontroller + WiFi Ebay
INA219 INA219AIDCNR 1 Current sensor Digi-Key
L1 NR3015T4R7M 1 4.7uH Digi-Key
LED1 5988020107F 1 red Digi-Key
LED2, LED3 5988060107F 2 green Digi-Key
MCP1640 MCP1640BT-I/CHY 1 Step-up converter Digi-Key
MCP73831 MCP73831T-2ACI/OT 1 Lipo charging chip Digi-Key
POWER, RUNMODE PCM12SMTR 2 Switches Digi-Key
R1, R4, R5, R6, R7, R15 RC0603FR-0710KL 5 10k Digi-Key
R2 RC0603FR-07976KL 1 976k Digi-Key
R3 RC0603FR-07309KL 1 309k Digi-Key
R8 ERJ-8BWFR100V 1 0.1 Digi-Key
R10, R11, R22 RC0603FR-072KL 3 2.0k Digi-Key
R9, R17, R19 RC0603FR-071KL 2 1.0k Digi-Key
U1 ATECC108A-SSHCZ-B 1 Encryption chip Digi-Key

182

Table 15: Bill of materials of the motor board (optional components highlighted in green).

Part Designator Part Number Quantity Info Distributor

ATMEGA168P ATMEGA168PB-AU 1 Microcontroller Digi-Key
C1, C9 CC0805ZKY5V6BB106 2 10uF Digi-Key
C2 TAJA336K004RNJ 1 33uF Digi-Key
C4 CC0603KRX7R7BB104 1 0.1uF Digi-Key
C10 CC0603KRX7R8BB224 1 0.22uF Digi-Key
C11 CC0603KRX5R6BB475 1 4.7uF Digi-Key
LED 5988060107F 1 green Digi-Key
LINE1, LINE2 QRE1113GR 2 IR line sensor Digi-Key
M1, M2 Stepper Motors, LPD4 2 Stepper motors Ebay
MEM AT24CM01-SSHM-B 1 EEPROM memory Digi-Key
M_CTRL_1, M_CTRL_2 LB1836M-TLM-E 2 Motor controller Digi-Key
R1 RC0603FR-071KL 1 1k Digi-Key
R2, R6, R8 RC0603FR-0710KL 3 10k Digi-Key
R5, R7 RC0603FR-07100RL 2 100 Digi-Key
U1 HMC5883L-TR 1 Magnetometer Digi-Key

183

Table 16: Bill of materials of the sensor board (optional components highlighted in green).

Part Designator Part Number Quantity Info Distributor

C1, C2, C3, C4, C5, C8, C9, C10, C11 CC0603KRX7R7BB104 9 0.1uF Digi-Key
C6 CL10B103JB8NNNC 1 10nF Digi-Key
C7 CC0805ZKY5V6BB106 1 10uF Digi-Key
IC1 ATMEGA328P-AU 1 Microcontroller Digi-Key
IMU LSM9DS1TR 1 Gyro/Accelerometer Digi-Key
IR_RX1 - IR_RX6 TSSP77038TT 6 IR receiver Digi-Key
IR_TX1 - IR_TX6 VSMB10940 6 IR transmitter Digi-Key
PROG 20021321-00006C4LF 1 Programming header Digi-Key
Q1, Q2, Q3, Q4, Q5, Q6 NDS7002A 6 Transistor Digi-Key
R1, R2, R5, R6, R7 RC0603FR-0710KL 5 10k Digi-Key
R2, R3, R8, R9, R10, R11 RC0603FR-07100RL 6 100 Digi-Key
R12, R14, R16, R19, R21, R23 RC0603FR-071KL 6 1k Digi-Key
R13, R15, R17, R18, R20, R22 RC0603FR-071RL 6 1 Digi-Key

184

Appendix B

ROBOTARIUM MATLAB API

This appendix provides a list of all functions the Matlab API provides for the control of

robots in the Robotarium. Detailed inline documentation regarding the input and output

parameters of each function is provided directly in the API implementation.

185

Table 17: List of functions the Matlab API provides (part 1).

Function Name

Constructor
function r = robotariumMatlabAPI(scenario, N)
function initializeScenario(r, scenario)
Communication primitives with back end
function sendMessage(r, IP, msgType, parameters)
function receiveMessage(r)
function s = requestData(r, IP, msgType, parameters)
GET functions
function p = getState(r, id)
function p = getTargetPose(r, id, fromRobot)
function v = getVelocity(r, id)
function [v, i] = getBatteryLevel(r, id)
function d = getIRDistance(r, IP, sensorID)
function d = getIRDistances(r, id)
function [N, X] = getNeighbors(r, id, maxDistance)
function [N, X] = getNeighborsFromTopology(r , id)
SET functions
function setVelocity(r, id, v)
function setVelocityMax(r, id, v)
function setTargetPose(r, id, pose)
function setSimulationMode(r, simMode)
GET GROUP functions
function N = getAvailableRobots(r)
function X = getStates(r)
function X = getPoses(r)
function V = getVelocities(r)
function P = getTargetPoses(r)
function [V, I] = getBatteryLevels(r)
SET GROUP functions
function setTargetPoses(r, poses)
function setVelocities(r, velocities)
function stopAllRobots(r)

186

Table 18: List of functions the Matlab API provides (part 2).

Function Name

Scenario-related GET functions
function F = getFormation(r)
function d = getDensity(r, x, y)
function d = getMaxDistance(r)
Scenario-related SET functions
function setMaxDistance(r, maxDistance)
function setTopology(r, adjMatrix)
function setDensity(r, n)
function setDensityFunction(r, densityFcnHandle)
function setDeltaDiskDistance(r, maxDist)
UPDATE functions
function update(r)
function updateDynamics(r)
function updateWaypoints(r)
DRAW / DISPLAY functions
function draw(r, axesHandle)
function updateEdges(r, Xe, Ye, axesHandle)
UTILITY functions
function n = N(r)
function [v, s] = saturateVelocities(r, vRaw)
function [T, B, L, R] = getDistanceToBoundaries(r , id)
function b = isWithinBoundaries(r, pose)
function b = isAtTarget(r, id, thresholds)
function b = allAtTarget(r, thresholds)

187

REFERENCES

[1] Ahmadzadeh, H. andMasehian, E., �Modular robotic systems: Methods and algo-
rithms for abstraction, planning, control, and synchronization,� Arti�cial Intelligence,
vol. 223, pp. 27�64, 2015.

[2] Aicardi, M., Casalino, G., Bicchi, A., and Balestrino, A., �Closed loop steer-
ing of unicycle like vehicles via lyapunov techniques,� Robotics Automation Magazine,
IEEE, vol. 2, no. 1, pp. 27�35, 1995.

[3] Aloupis, G., Collette, S., Damian, M., Demaine, E. D., Flatland, R.,
Langerman, S., O'Rourke, J., Ramaswami, S., Sacristan, V., and Wuhrer,

S., �Linear recon�guration of cube-style modular robots,� Computational geometry,
vol. 42, no. 6, pp. 652�663, 2009.

[4] Aloupis, G., Collette, S., Damian, M., Demaine, E. D., Flatland, R.,
Langerman, S., O'Rourke, J., Ramaswami, S., Sacrist�an, V., and Wuhrer,

S., �Linear recon�guration of cube-style modular robots,� in Algorithms and Compu-
tation, pp. 208�219, Springer, 2007.

[5] An, B. K., �Em-cube: cube-shaped, self-recon�gurable robots sliding on structure
surfaces,� in Robotics and Automation (ICRA), 2008 IEEE International Conference
on, pp. 3149�3155, 2008.

[6] Arsie, A., Savla, K., and Frazzoli, E., �E�cient routing algorithms for multiple
vehicles with no explicit communications,� Automatic Control, IEEE Transactions on,
vol. 54, no. 10, pp. 2302�2317, 2009.

[7] Arslan, G.,Marden, J., and Shamma, J., �Autonomous vehicle-target assignment:
A game-theoretical formulation,� Journal of Dynamic Systems, Measurement, and
Control, vol. 129, no. 5, pp. 584�596, 2007.

[8] Asadpour, M., Ashtiani, M., Sproewitz, A., and Ijspeert, A., �Graph signature
for self-recon�guration planning of modules with symmetry,� in Intelligent Robots and
Systems (IROS), 2009 IEEE/RSJ International Conference on, pp. 5295�5300, 2009.

[9] Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., and Ijspeert,
A., �Graph signature for self-recon�guration planning,� in Intelligent Robots and Sys-
tems (IROS), 2008 IEEE/RSJ International Conference on, pp. 863�869, 2008.

[10] Ashley-Rollman, M., Pillai, P., and Goodstein, M., �Simulating multi-million-
robot ensembles,� in Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on, pp. 1006�1013, May 2011.

[11] Balch, T. and Parker, L. E., Robot teams: from diversity to polymorphism. AK
Peters, Ltd., 2002.

188

[12] Bevan, M. A., Ford, D. M., Grover, M. A., Shapiro, B., Maroudas, D.,
Yang, Y., Thyagarajan, R., Tang, X., and Sehgal, R. M., �Controlling assembly
of colloidal particles into structured objects: Basic strategy and a case study,� Journal
of Process Control, vol. 27, pp. 64 � 75, 2015.

[13] Bhat, P., Kuffner, J., Goldstein, S., and Srinivasa, S., �Hierarchical motion
planning for self-recon�gurable modular robots,� in Intelligent Robots and Systems
(IROS), 2006 IEEE/RSJ International Conference on, pp. 886 �891, 2006.

[14] Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp,
N., and Nguyen, T., �Programmable parts: a demonstration of the grammati-
cal approach to self-organization,� in Intelligent Robots and Systems (IROS), 2005
IEEE/RSJ International Conference on, pp. 3684�3691, 2005.

[15] Blume, L. E., �The statistical mechanics of strategic interaction,� Games and eco-
nomic behavior, vol. 5, no. 3, pp. 387�424, 1993.

[16] Bonani, M., Raemy, X., Pugh, J., Mondana, F., Cianci, C., Klaptocz, A.,
Magnenat, S., Zufferey, J. C., Floreano, D., andMartinoli, A., �The e-puck,
a robot designed for education in engineering,� Proceedings of the 9th Conference on
Autnomous Robot Systems and Competitions, vol. 1, pp. 59�65, 2009.

[17] Bonardi, S., Blatter, J., Fink, J.,Moeckel, R., Jermann, P., Dillenbourg,
P., and Ijspeert, A., �Design and evaluation of a graphical ipad application for
arranging adaptive furniture,� in Robot and Human Interactive Communication (RO-
MAN), 2012 IEEE International Symposium on, pp. 290�297, 2012.

[18] Bonardi, S., Vespignani, M., Moeckel, R., and Ijspeert, A., �Collaborative
manipulation and transport of passive pieces using the self-recon�gurable modular
robots roombots,� in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Inter-
national Conference on, pp. 2406�2412, 2013.

[19] Bonardi, S., M�ockel, R., Spr�owitz, A., Vespignani, M., and Ijspeert, A.,
�Locomotion through recon�guration based on motor primitives for roombots self-
recon�gurable modular robots,� in Robotik, 2012 7th German Conference on Robotics,
pp. 1�6, 2012.

[20] Boncheva, M., Bruzewicz, D. A., andWhitesides, G. M., �Millimeter-scale self-
assembly and its applications,� Pure Applied Chemistry, vol. 75, no. 5, pp. 621�630,
2003.

[21] Bourgeois, J. and Goldstein, S., �Distributed intelligent mems: Progresses and
perspectives,� Systems Journal, IEEE, vol. 9, no. 3, pp. 1057�1068, 2015.

[22] Boyd, S., Ghosh, A., Prabhakar, B., and Shah, D., �Randomized gossip algo-
rithms,� Information Theory, IEEE Transactions on, vol. 52, no. 6, pp. 2508�2530,
2006.

[23] Brandt, D. and Christensen, D., �A new meta-module for controlling large sheets
of atron modules,� in Intelligent Robots and Systems (IROS), 2007 IEEE/RSJ Inter-
national Conference on, pp. 2375�2380, 2007.

189

[24] Brandt, D., Christensen, D., and Lund, H., �Atron robots: Versatility from self-
recon�gurable modules,� inMechatronics and Automation (ICMA), 2007 International
Conference on, pp. 26�32, 2007.

[25] Brandt, D., �Comparison of a and rrt-connect motion planning techniques for self-
recon�guration planning,� in Intelligent Robots and Systems (IROS), 2006 IEEE/RSJ
International Conference on, pp. 892�897, 2006.

[26] Brandt, D. and Østergaard, E. H., �Behaviour subdivision and generalization
of rules in rule based control of the atron self-recon�gurable robot,� in Robotics and
Automation (ISRA), 2004 International Symposium on, pp. 67�74, 2004.

[27] Brookshear, J. G., Theory of computation: formal languages, automata, and com-
plexity. Benjamin-Cummings Publishing Co., Inc., 1989.

[28] Butler, Z., Kotay, K., Rus, D., and Tomita, K., �Generic decentralized control
for a class of self-recon�gurable robots,� in Robotics and Automation (ICRA), 2002
IEEE International Conference on, vol. 1, pp. 809�816 vol.1, 2002.

[29] Butler, Z., Kotay, K., Rus, D., and Tomita, K., �Cellular automata for de-
centralized control of self-recon�gurable robots,� in Workshop on Modular Robots at
Robotics and Automation (ICRA), 2001 IEEE International Conference on, pp. 21�26,
2001.

[30] Butler, Z., Kotay, K., Rus, D., and Tomita, K., �Generic decentralized con-
trol for lattice-based self-recon�gurable robots,� International Journal of Robotics Re-
search, vol. 23, no. 9, pp. 919�937, 2004.

[31] Butler, Z., Murata, S., and Rus, D., �Distributed replication algorithms for self-
recon�guring modular robots,� in Distributed Autonomous Robotic Systems (DARS),
2002 International Symposium on, pp. 37�48, 2002.

[32] Campbell, J. D. and Pillai, P., �Collective actuation,� International Journal of
Robotics Research, vol. 27, no. 3-4, pp. 299�314, 2008.

[33] Caprari, G., Arras, K., and Siegwart, R., �The autonomous miniature robot
alice: from prototypes to applications,� in Intelligent Robots and Systems (IROS),
2000 IEEE/RSJ International Conference on, pp. 793�798, 2000.

[34] Caprari, G., Balmer, P., Piguet, R., and Siegwart, R., �The autonomous micro
robot alice: a platform for scienti�c and commercial applications,� inMicromechatron-
ics and Human Science (MHS), 1998 IEEE International Symposium on, pp. 231�235,
1998.

[35] Caprari, G. and Siegwart, R., �Mobile micro-robots ready to use: Alice,� in In-
telligent Robots and Systems (IROS), 2005 IEEE/RSJ International Conference on,
pp. 3295�3300, 2005.

[36] Casal, A. and Yim, M. H., �Self-recon�guration planning for a class of modular
robots,� in Intelligent Systems and Advanced Manufacturing, 1999 SPIE International
Symposium on, pp. 246�257, 1999.

190

[37] Casan, G., Cervera, E., Moughlbay, A., Alemany, J., and Martinet, P.,
�Ros-based online robot programming for remote education and training,� in Robotics
and Automation (ICRA), 2015 IEEE International Conference on, pp. 6101�6106,
2015.

[38] Castano, A. andWill, P., �Representing and discovering the con�guration of conro
robots,� in Robotics and Automation (ICRA), 2001 IEEE International Conference on,
pp. 3503�3509, 2001.

[39] Castano, A. and Will, P., �Mechanical design of a module for recon�gurable
robots,� in Intelligent Robots and Systems (IROS), 2000 IEEE/RSJ International
Conference on, pp. 2203�2209, 2000.

[40] Chen, I.-M. and Burdick, J. W., �Enumerating the non-isomorphic assembly con-
�gurations of modular robotic systems,� International Journal of Robotics Research,
vol. 17, no. 7, pp. 702�719, 1998.

[41] Chen, I.-M. and Yang, G., �Automatic model generation for modular recon�gurable
robot dynamics,� Journal of Dynamic Systems, Measurement, and Control, vol. 120,
no. 3, pp. 346�352, 1998.

[42] Cheung, K. C., Demaine, E. D., Bachrach, J., and Griffith, S., �Pro-
grammable assembly with universally foldable strings (moteins).,� Robotics, IEEE
Transactions on, vol. 27, no. 4, pp. 718�729, 2011.

[43] Chiang, C.-J. and Chirikjian, G. S., �Modular robot motion planning using simi-
larity metrics,� Autonomous Robots, vol. 10, no. 1, pp. 91�106, 2001.

[44] Chirikjian, G. S., �Kinematics of a metamorphic robotic system,� in Robotics and
Automation (ICRA), 1994 IEEE International Conference on, pp. 449�455, 1994.

[45] Choset, H. M., Principles of robot motion: theory, algorithms, and implementation.
MIT Press, 2005.

[46] Christensen, D. J., �Evolution of shape-changing and self-repairing control for the
atron self-recon�gurable robot,� in Robotics and Automation (ICRA), 2006 IEEE In-
ternational Conference on, pp. 2539�2545, 2006.

[47] Christensen, D., �Experiments on fault-tolerant self-recon�guration and emergent
self-repair,� in Arti�cial Life (ALIFE), 2007 IEEE Symposium on, pp. 355�361, 2007.

[48] Cortes, J., Martinez, S., Karatas, T., and Bullo, F., �Coverage control for
mobile sensing networks,� Robotics and Automation, IEEE Transactions on, vol. 20,
no. 2, pp. 243�255, 2004.

[49] Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., and Sukhatme,
G., �Robomote: enabling mobility in sensor networks,� in Information Processing in
Sensor Networks (IPSN), 2005 International Symposium on, pp. 404�409, 2005.

[50] De, P., Raniwala, A., Krishnan, R., Tatavarthi, K., Modi, J., Syed, N. A.,
Sharma, S., and Chiueh, T.-c., �Mint-m: an autonomous mobile wireless experi-
mentation platform,� inMobile Systems, Applications and Services, 2006 International
Conference on, pp. 124�137, 2006.

191

[51] Donald, B. R., Levey, C. G., McGray, C. D., Paprotny, I., and Rus, D., �An
untethered, electrostatic, globally controllable mems micro-robot,� Microelectrome-
chanical Systems, Journal of, vol. 15, no. 1, pp. 1�15, 2006.

[52] Donald, B. R., Levey, C. G., and Paprotny, I., �Planar microassembly by parallel
actuation of mems microrobots,� Microelectromechanical Systems, Journal of, vol. 17,
no. 4, pp. 789�808, 2008.

[53] Dong, B. and Li, Y., �Multi-objective-based con�guration generation and opti-
mization for recon�gurable modular robot,� in Information Science and Technology
(ICIST), 2011 IEEE International Conference on, pp. 1006�1010, 2011.

[54] Dutta, A., Dasgupta, P., Baca, J., and Nelson, C., �A block partitioning
algorithm for modular robot recon�guration under uncertainty,� in Mobile Robots
(ECMR), 2013 IEEE European Conference on, pp. 255�260, 2013.

[55] Dutta, A., Dasgupta, P., Baca, J., and Nelson, C., �A fast coalition structure
search algorithm for modular robot recon�guration planning under uncertainty,� in
Distributed Autonomous Robotic Systems, pp. 177�191, Springer, 2014.

[56] Ehrig, H., �Introduction to the algebraic theory of graph grammars (a survey),� in
Graph-Grammars and Their Application to Computer Science and Biology, Lecture
Notes in Computer Science, ch. 1, pp. 1�69, 1979.

[57] Fahmy, H. and Blostein, D., �A survey of graph grammars: theory and appli-
cations,� in Pattern Recognition Methodology and Systems, 1992 IAPR International
Conference on, pp. 294 �298, 1992.

[58] Feynman, R. P., �There's plenty of room at the bottom,� Engineering and Science,
vol. 23, no. 5, pp. 22�36, 1960.

[59] Fitch, R. and Butler, Z., �Million module march: Scalable locomotion for large self-
reconguring robots,� in Robotics and Automation (ICRA), 2007 IEEE International
Conference on, pp. 2248 �2253, 2007.

[60] Fitch, R. and Butler, Z., �Million module march: Scalable locomotion for large
self-recon�guring robots,� International Journal of Robotics Research, vol. 27, no. 3-4,
pp. 331�343, 2008.

[61] Fitch, R., Butler, Z., and Rus, D., �Recon�guration planning for heterogeneous
self-recon�guring robots,� in Intelligent Robots and Systems (IROS), 2003 IEEE/RSJ
International Conference on, pp. 2460 � 2467, 2003.

[62] Fitch, R., Butler, Z., and Rus, D., �In-place distributed heterogeneous recon�gu-
ration planning,� in Distributed Autonomous Robotic Systems 6, pp. 159�168, Springer,
2004.

[63] Fitch, R., Butler, Z. J., and Rus, D., �Recon�guration planning among obstacles
for heterogeneous self-recon�guring robots.,� in Robotics and Automation (ICRA),
2005 IEEE International Conference on, pp. 117�124, 2005.

192

[64] Fitch, R. and McAllister, R., �Hierarchical planning for self-recon�guring robots
using module kinematics,� in Distributed Autonomous Robotic Systems (DARS), 2013
Springer International Symposium on, pp. 477�490, Springer, 2013.

[65] Fitch, R. C., Heterogeneous self-recon�guring robotics. PhD thesis, Hanover, NH,
USA, 2004.

[66] Fox, M. and Shamma, J., �Probabilistic performance guarantees for distributed self-
assembly,� Automatic Control, IEEE Transactions on, vol. 60, no. 12, pp. 3180�3194,
2015.

[67] Fukuda, T., Nakagawa, S., Kawauchi, Y., and Buss, M., �Self organizing robots
based on cell structures - cebot,� in Intelligent Robots, 1988 IEEE International Work-
shop on, pp. 145 �150, 1988.

[68] Fukuda, T. and Nakagawa, S., �Dynamically recon�gurable robotic system,� in
Robotics and Automation (ICRA), 1988 IEEE International Conference on, pp. 1581�
1586, 1988.

[69] Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F. J., and Marin-

Jimenez, M. J., �Automatic generation and detection of highly reliable �ducial mark-
ers under occlusion,� Pattern Recognition, vol. 47, no. 6, pp. 2280 � 2292, 2014.

[70] Gilpin, K., Kotay, K., and Rus, D., �Miche: Modular shape formation by self-
dissasembly,� in Robotics and Automation (ICRA), 2007 IEEE International Confer-
ence on, pp. 2241�2247, 2007.

[71] Gilpin, K. and Rus, D., �Modular robot systems,� Robotics Automation Magazine,
IEEE, vol. 17, no. 3, pp. 38�55, 2010.

[72] Gilpin, K., Knaian, A., and Rus, D., �Robot pebbles: One centimeter modules for
programmable matter through self-disassembly.,� in Robotics and Automation (ICRA),
2010 IEEE International Conference on, pp. 2485�2492, 2010.

[73] Gilpin, K., Kotay, K., Rus, D., and Vasilescu, I., �Miche: Modular shape forma-
tion by self-disassembly,� International Journal of Robotics Research, vol. 27, no. 3-4,
pp. 345�372, 2008.

[74] Gilpin, K. and Rus, D., �Self-disassembling robot pebbles: New results and ideas
for self-assembly of 3d structures.,� in Robotics and Automation (ICRA), 2010 IEEE
International Conference on, Workshop "Modular Robots: The State of the Art",
pp. 94�99, 2010.

[75] Gilpin, K. and Rus, D., �What's in the bag: A distributed approach to 3d shape
duplication with modular robots.,� in Robotics: Science and Systems (RSS), 2012
Conference on, 2012.

[76] Goldstein, S., Campbell, J., and Mowry, T., �Programmable matter,� Com-
puter, IEEE, vol. 38, no. 6, pp. 99�101, 2005.

[77] Goldstein, S. C. and Mowry, T. C., �Claytronics: A scalable basis for future
robots,� in RoboSphere, 2004.

193

[78] Golestan, K., Asadpour, M., and Moradi, H., �A new graph signature calcula-
tion method based on power centrality for modular robots,� in Distributed Autonomous
Robotic Systems, pp. 505�516, Springer, 2013.

[79] Hamann, H., Stradner, J., Schmickl, T., and Crailsheim, K., �A hormone-
based controller for evolutionary multi-modular robotics: From single modules to gait
learning,� in Evolutionary Computation (CEC), 2010 IEEE Congress on, pp. 1�8,
2010.

[80] Hastings, W. K., �Monte carlo sampling methods using markov chains and their
applications,� Biometrika, vol. 57, no. 1, pp. 97�109, 1970.

[81] Hossain, S., Nelson, C. A., and Dasgupta, P., �Hardware design and testing of
modred: A modular self-recon�gurable robot system,� in Advances in Recon�gurable
Mechanisms and Robots I, pp. 515�523, Springer, 2012.

[82] Hou, F. and Shen, W.-M., �On the complexity of optimal recon�guration planning
for modular recon�gurable robots.,� in Robotics and Automation (ICRA), 2010 IEEE
International Conference on, pp. 2791�2796, 2010.

[83] Hou, F. and Shen, W.-M., �Graph-based optimal recon�guration planning for self-
recon�gurable robots,� Robotics and Autonomous Systems, vol. 62, no. 7, pp. 1047�
1059, 2014.

[84] Joergensen, M., Ostergaard, E., and Lund, H., �Modular atron: modules for a
self-recon�gurable robot,� in Intelligent Robots and Systems (IROS), 2004 IEEE/RSJ
International Conference on, pp. 2068�2073, 2004.

[85] Johnson, D., Stack, T., Fish, R., Flickinger, D., Stoller, L., Ricci, R.,
and Lepreau, J., �Mobile emulab: A robotic wireless and sensor network testbed,�
in Computer Communications (INFOCOM), 2006 IEEE International Conference on,
pp. 1�12, 2006.

[86] Jones, C. and Mataric, M. J., �From local to global behavior in intelligent self-
assembly,� in Robotics and Automation (ICRA), 2003 IEEE International Conference
on, pp. 721�726, 2003.

[87] Kavraki, L., Svestka, P., claude Latombe, J., andOvermars, M., �Probabilis-
tic roadmaps for path planning in high-dimensional con�guration spaces,� in Robotics
and Automation (ICRA), 1996 IEEE International Conference on, pp. 566�580, 1996.

[88] Kernbach, S., �Swarmrobot. org-open-hardware microrobotic project for large-scale
arti�cial swarms,� arXiv preprint arXiv:1110.5762, 2011.

[89] Kernbach, S., �Encoder-free odometric system for autonomous microrobots,� Mecha-
tronics, vol. 22, no. 6, pp. 870�880, 2012.

[90] Kernbach, S., Schmickl, T., Hamann, H., Stradner, J., Schlachter, F.,
Schwarzer, C. S. F., Winfield, A. F. T., and Matthias, R., �Adaptive ac-
tion selection mechanisms for evolutionary multimodular robotics,� in Arti�cial Life
(ALIFE), 2010 IEEE Symposium on, pp. 781�788, 2010.

194

[91] Kernbach, S., Thenius, R., Kernbach, O., and Schmickl, T., �Re-embodiment
of honeybee aggregation behavior in an arti�cial micro-robotic system.,� Adaptive
Behaviour, vol. 17, no. 3, pp. 237�259, 2009.

[92] Khan, Z., Balch, T., and Dellaert, F., �Mcmc-based particle �ltering for tracking
a variable number of interacting targets,� Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 27, no. 11, pp. 1805�1819, 2005.

[93] Kirby, B., Campbell, J., Aksak, B., Pillai, P., Hoburg, J., Mowry, T.,
and Goldstein, S. C., �Catoms: Moving robots without moving parts,� in Arti�cial
Intelligence, 2005 AAAI National Conference on, pp. 1730 � 1731, 2005.

[94] Klavins, E., �Programmable self-assembly,� Control Systems, IEEE, vol. 27, no. 4,
pp. 43�56, 2007.

[95] Klavins, E., Ghrist, R., and Lipsky, D., �A grammatical approach to self-
organizing robotic systems,� Automatic Control, IEEE Transactions on, vol. 51, no. 6,
pp. 949 � 962, 2006.

[96] Klavins, E., Burden, S., and Napp, N., �Optimal rules for programmed stochastic
self�assembly,� in Robotics: Science and Systems (RSS), 2006 Conference on, 2006.

[97] Klavins, E., Ghrist, R., and Lipsky, D., �Graph grammars for self assembling
robotic systems,� in Robotics and Automation (ICRA), 2004 IEEE International Con-
ference on, pp. 5293�5300, 2004.

[98] Knaian, A., Cheung, K. C., Lobovsky, M. B., Oines, A. J., Schmidt-Nielsen,
P., and Gershenfeld, N., �The milli-motein: A self-folding chain of programmable
matter with a one centimeter module pitch.,� in Intelligent Robots and Systems (IROS)
2012 IEEE/RSJ International Conference on, pp. 1447�1453, 2012.

[99] Kohlstedt, K. L. and Glotzer, S. C., �Self-assembly and tunable mechanics of
recon�gurable colloidal crystals,� Physical Review E, vol. 87, no. 3, p. 032305, 2013.

[100] Kotay, K. and Rus, D., �Algorithms for self-recon�guring molecule motion plan-
ning,� in Intelligent Robots and Systems (IROS), 2000 IEEE/RSJ International Con-
ference on, pp. 2184 �2193, 2000.

[101] Kotay, K., Self-recon�guring Robots: Designs, Algorithms, and Applications. PhD
thesis, Hanover, NH, USA, 2003.

[102] Kotay, K. and Rus, D., �Locomotion versatility through self-recon�guration,�
Robotics and Autonomous Systems, vol. 26, no. 2, pp. 217�232, 1999.

[103] Kotay, K. and Rus, D., �Generic distributed assembly and repair algorithms for
self-recon�guring robots,� in Intelligent Robots and Systems (IROS), 2004 IEEE/RSJ
International Conference on, pp. 2362 � 2369, 2004.

[104] Kotay, K. and Rus, D., �E�cient locomotion for a self-recon�guring robot,� in
Robotics and Automation (ICRA), 2005 IEEE International Conference on, pp. 2963�
2969, 2005.

195

[105] Kotay, K. D. and Rus, D. L., �Scalable parallel algorithm for con�guration planning
for self-recon�guring robots,� in Intelligent Systems and Smart Manufacturing, 2000
SPIE Conference on, pp. 377�387, 2000.

[106] Kurokawa, H., Murata, S., Yoshida, E., Tomita, K., and Kokaji, S., �A 3-
d self-recon�gurable structure and experiments,� in Intelligent Robots and Systems
(IROS), 1998 IEEE/RSJ International Conference on, pp. 860 �865, 1998.

[107] Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., and Kokaji, S., �M-
tran ii: Metamorphosis from a four-legged walker to a caterpillar,� in Intelligent Robots
and Systems (IROS), 2003 IEEE/RSJ International Conference on, pp. 2454�2459,
2003.

[108] Kurokawa, H., Kamimura, A., Yoshida, E., Tomita, K., Murata, S., and
Kokaji, S., �Self-recon�gurable modular robot (m-tran) and its motion design,� in
Control, Automation, Robotics And Vision (ICARCV), 2002 International Conference
on, pp. 51�56, 2002.

[109] Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., and Mu-

rata, S., �Distributed self-recon�guration of M-TRAN III modular robotic system,�
International Journal of Robotics Research, vol. 27, no. 3-4, pp. 373�386, 2008.

[110] Kurokawa, H., Tomita, K., Kamimura, A., Yoshida, E., Kokaji, S., and
Murata, S., �Distributed self-recon�guration control of modular robot m-tran,� in
Mechatronics and Automation, 2005 IEEE International Conference, pp. 254�259,
2005.

[111] Lal, S. P., Yamada, K., and Endo, S., �Emergent motion characteristics of a mod-
ular robot through genetic algorithm,� in Advanced Intelligent Computing Theories
and Applications. With Aspects of Arti�cial Intelligence, pp. 225�234, Springer, 2008.

[112] Larkworthy, T. and Ramamoorthy, S., �An e�cient algorithm for self-
recon�guration planning in a modular robot,� in Robotics and Automation (ICRA),
2010 IEEE International Conference on, pp. 5139�5146, 2010.

[113] Lavalle, S. M., �Rapidly-exploring random trees: A new tool for path planning,�
tech. rep., 1998.

[114] Lim, Y. and Shamma, J., �Robustness of stochastic stability in game theoretic learn-
ing,� in American Control Conference (ACC), 2013, pp. 6145�6150, 2013.

[115] Liu, J. and Wu, J., Multiagent Robotic Systems. CRC Press, 2001.

[116] Lyder, A., Garcia, R., and Stoy, K., �Mechanical design of odin, an extendable
heterogeneous deformable modular robot,� in Intelligent Robots and Systems (IROS),
2008 IEEE/RSJ International Conference on, pp. 883�888, 2008.

[117] Marden, J. R., Arslan, G., and Shamma, J. S., �Connections between cooperative
control and potential games illustrated on the consensus problem,� in European Control
Conference (ECC), 2007, pp. 4604�4611, 2007.

196

[118] Marden, J. R. and Shamma, J. S., �Revisiting log-linear learning: Asynchrony, com-
pleteness and payo�-based implementation.,� Games and Economic Behavior, vol. 75,
no. 2, pp. 788�808, 2012.

[119] Marden, J., Arslan, G., and Shamma, J., �Cooperative control and potential
games,� Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,
vol. 39, no. 6, pp. 1393�1407, 2009.

[120] Marden, J., Arslan, G., and Shamma, J., �Joint strategy �ctitious play with iner-
tia for potential games,� Automatic Control, IEEE Transactions on, vol. 54, pp. 208�
220, Feb 2009.

[121] McLurkin, J., Lynch, A. J., Rixner, S., Barr, T. W., Chou, A., Foster,
K., and Bilstein, S., �A low-cost multi-robot system for research, teaching, and
outreach,� in Distributed Autonomous Robotic Systems (DARS), 2013 International
Symposium on, pp. 597�609, Springer, 2013.

[122] McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., and Schmidt,
B., �Speaking swarmish: Human-robot interface design for large swarms of au-
tonomous mobile robots.,� in AAAI Spring Symposium: To Boldly Go Where No
Human-Robot Team Has Gone Before, pp. 72�75, 2006.

[123] Mesbahi, M. and Egerstedt, M., Graph Theoretic Methods in Multiagent Net-
works. Princeton University Press, July 2010.

[124] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E., �Equation of state calculations by fast computing machines,� Journal of
Chemical Physics, vol. 21, pp. 1087�1092, 1953.

[125] Michael, N., Fink, J., and Kumar, V., �Experimental testbed for large multirobot
teams,� Robotics Automation Magazine, IEEE, vol. 15, no. 1, pp. 53�61, 2008.

[126] Millan, J. A., Ortiz, D., van Anders, G., and Glotzer, S. C., �Self-assembly of
archimedean tilings with enthalpically and entropically patchy polygons,� ACS Nano,
vol. 8, no. 3, pp. 2918�2928, 2014.

[127] Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R., and Rus, D., �An
untethered miniature origami robot that self-folds, walks, swims, and degrades.,� in
Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 1490�
1496, 2015.

[128] Monderer, D. and Shapley, L. S., �Potential games,� Games and Economic Be-
havior, vol. 14, no. 1, pp. 124�143, 1996.

[129] Moore, G., �Cramming more components onto integrated circuits,� Electronics,
vol. 38, no. 8, pp. 114�116, 1965.

[130] Murata, S., Yoshida, E., Tomita, K., Kurokawa, H., Kamimura, A., and
Kokaji, S., �Hardware design of modular robotic system,� in Intelligent Robots and
Systems (IROS), 2000 IEEE/RSJ International Conference on, pp. 2210�2217, 2000.

[131] Murata, S. andKurokawa, H., �Self-recon�gurable robots,� Robotics & Automation
Magazine, IEEE, vol. 14, no. 1, pp. 71�78, 2007.

197

[132] Murata, S., Yoshida, E., Kurokawa, H., Tomita, K., and Kokaji, S., �Self-
repairing mechanical systems,� Autonomous Robots, vol. 10, no. 1, pp. 7�21, 2001.

[133] Nagl, M., �A tutorial and bibliographical survey on graph grammars,� in Graph-
Grammars and Their Application to Computer Science and Biology, pp. 70�126,
Springer, 1979.

[134] Nagpal, R., �Programmable pattern-formation and scale independence,� in Complex
Systems (ICCS), 2002 International Confernce on, 2002.

[135] Nagpal, R., �Programmable self-assembly using biologically-inspired multiagent con-
trol,� in Autonomous Agents and Multiagent Systems (AAMAS), 2002 International
Conference on, pp. 418�425, 2002.

[136] Neubert, J., Cantwell, A. P., Constantin, S., Kalontarov, M., Erick-
son, D., and Lipson, H., �A robotic module for stochastic �uidic assembly of 3d
self-recon�guring structures.,� in Robotics and Automation (ICRA), 2010 IEEE Inter-
national Conference on, pp. 2479�2484, 2010.

[137] Olson, E., �AprilTag: A robust and �exible visual �ducial system,� in Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pp. 3400�3407, 2011.

[138] Oung, R. and D'Andrea, R., �The distributed �ight array,� Mechatronics, vol. 21,
no. 6, pp. 908�917, 2011.

[139] Ozgur, A., Bonardi, S., Vespignani, M., Mockel, R., and Ijspeert, A., �Nat-
ural user interface for roombots,� in Robot and Human Interactive Communication
(RO-MAN), 2014 IEEE International Symposium on, pp. 12�17, 2014.

[140] Pamecha, A., Ebert-Uphoff, I., and Chirikjian, G. S., �Useful metrics for mod-
ular robot motion planning,� Robotics and Automation, IEEE Transactions on, vol. 13,
no. 4, pp. 531�545, 1997.

[141] Park, M. and Yim, M., �Distributed control and communication fault toler-
ance for the ckbot,� in Recon�gurable Mechanisms and Robots (ReMAR), 2009 AS-
ME/IFToMM International Conference on, pp. 682�688, 2009.

[142] Parker, L. E. and Howard, A., �Experiments with a large heterogeneous mobile
robot team: Exploration, mapping, deployment and detection,� International Journal
of Robotics Research, vol. 25, pp. 431�447, 2006.

[143] Petersen, K., Nagpal, R., andWerfel, J., �Termes: An autonomous robotic sys-
tem for three-dimensional collective construction.,� in Robotics: Science and Systems
(RSS), 2011 Conference on, 2011.

[144] Pickem, D., Lee, M., and Egerstedt, M., �The GRITSBot in its natural habitat -
a multi-robot testbed,� in Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pp. 4062�4067, 2015.

[145] Pickem, D. and Egerstedt, M., �Self-recon�guration using graph grammars for
modular robotics,� in Analysis and Design of Hybrid Systems (ADHS), 2012 IFAC
Conference on, 2012.

198

[146] Pickem, D., Egerstedt, M., and Shamma, J. S., �Complete heterogeneous self-
recon�guration: Deadlock avoidance using hole-free assemblies,� in Distributed Es-
timation and Control in Networked Systems (NecSys), 2013 IFAC Workshop on,
pp. 404�410, 2013.

[147] Pickem, D., Egerstedt, M., and Shamma, J. S., �A game-theoretic formulation of
the homogeneous self-recon�guration problem,� in Decision and Control (CDC), 2015
IEEE Conference on, pp. 2829�2834, 2015.

[148] Pickem, D., Egerstedt, M., and Shamma, J. S., �Homogeneous self-
recon�guration: A game theoretic approach,� Automatic Control, IEEE Transactions
on, 2016. (submitted).

[149] Pillai, P. and Campbell, J., �Sensing and reproducing the shapes of 3d objects
using claytronics,� in Embedded Networked Sensor Systems, 2006 international Con-
ference on, pp. 369�370, 2006.

[150] Pillai, P., Campbell, J., Kedia, G.,Moudgal, S., and Sheth, K., �A 3d fax ma-
chine based on claytronics,� in Intelligent Robots and Systems (IROS), 2006 IEEE/RSJ
International Conference on, pp. 4728�4735, 2006.

[151] Pitzer, B., Osentoski, S., Jay, G., Crick, C., and Jenkins, O., �Pr2 remote
lab: An environment for remote development and experimentation,� in Robotics and
Automation (ICRA), 2012 IEEE International Conference on, pp. 3200�3205, 2012.

[152] Ramaekers, Z., Dasgupta, R., Ufimtsev, V., Hossain, S. G. M., and Nelson,
C., �Self-recon�guration in modular robots using coalition games with uncertainty.,�
in Automated Action Planning for Autonomous Mobile Robots, 2011 AAAI Workshop
on, 2011.

[153] Ray, D., A game-theoretic perspective on coalition formation. Oxford University Press,
2007.

[154] Romanishin, J., Gilpin, K., and Rus, D., �M-blocks: Momentum-driven, mag-
netic modular robots.,� in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pp. 4288�4295, 2013.

[155] Romanishin, J., Gilpin, K., Claici, S., and Rus, D., �3d m-blocks: Self-
recon�guring robots capable of locomotion via pivoting in three dimensions,� in
Robotics and Automation (ICRA), 2015 IEEE International Conference on, pp. 1925�
1932, 2015.

[156] Rowe, A., Rosenberg, C., and Nourbakhsh, I., �CMUcam: a low-overhead vision
system,� in Intelligent Robots and Systems (IROS), 2002 IEEE/RSJ International
Conference on, 2002.

[157] Rubenstein, M., Ahler, C., and Nagpal, R., �Kilobot: A low cost scalable robot
system for collective behaviors,� in Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pp. 3293�3298, 2012.

[158] Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., and
Nagpal, R., �Collective transport of complex objects by simple robots: theory and

199

experiments,� in Autonomous Agents and Multiagent Systems (AAMAS), 2013 Inter-
national Conference on, pp. 47�54, 2013.

[159] Rubenstein, M. and Shen, W.-M., �Scalable self-assembly and self-repair in a col-
lective of robots.,� in Intelligent Robots and Systems (IROS), 2009 IEEE/RSJ Inter-
national Conference on, pp. 1484�1489, 2009.

[160] Rus, D. and Vona, M., �Crystalline robots: Self-recon�guration with compressible
unit modules,� Autonomous Robots, vol. 10, no. 1, pp. 107�124, 2001.

[161] Russell, S. J. and Norvig, P., Arti�cial Intelligence: A Modern Approach. Pearson
Education, 2010.

[162] Sadjadi, H., Al-Jarrah, M. A., and Assaleh, K., �Morphology for planar hexago-
nal modular self-recon�gurable robotic systems,� in Mechatronics and its Applications
(ISMA), 2009 International Symposium on, pp. 1�6, 2009.

[163] Salemi, B., Moll, M., and Shen, W.-M., �Superbot: A deployable, multi-
functional, and modular self-recon�gurable robotic system.,� in Intelligent Robots and
Systems (IROS), 2006 IEEE/RSJ International Conference on, pp. 3636�3641, 2006.

[164] Schultz, U. P., Bordignon, M., and Støy, K., �Robust and reversible self-
recon�guration,� in Intelligent Robots and Systems (IROS), 2009 IEEE/RSJ Inter-
national Conference on, pp. 5287�5294, 2009.

[165] Shen, W.-M., �Self-recon�gurable robots for adaptive and multifunctional tasks,� in
Autonomous/Unmanned Systems, 2008 Army Science Conference on, 2008.

[166] Shen, W.-M., Chiu, H., Rubenstein, M., and Salemi, B., �Rolling and climbing
by the multifunctional superbot recon�gurable robotic system,� in Space Technology
and Applications (STAIF), 2008 AIP International Forum on, pp. 839�848, 2008.

[167] Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., and
Venkatesh, J., �Multimode locomotion via superbot robots,� in Robotics and Au-
tomation (ICRA), 2006 IEEE International Conference on, pp. 2552�2557, 2006.

[168] Shen, W.-M., Salemi, B., and Will, P., �Hormone-inspired adaptive communica-
tion and distributed control for conro self-recon�gurable robots,� Robotics and Au-
tomation, IEEE Transactions on, vol. 18, pp. 700�712, Oct 2002.

[169] Shen, W.-M. and Will, P., �Docking in self-recon�gurable robots,� in Intelligent
Robots and Systems (IROS), 2001 IEEE/RSJ International Conference on, pp. 1049�
1054, 2001.

[170] Shen, W.-M., Will, P., Galstyan, A., and Chuong, C.-M., �Hormone-inspired
self-organization and distributed control of robotic swarms,� Autonomous Robots,
vol. 17, no. 1, pp. 93�105, 2004.

[171] Shiba, S., Uchida, M., Nozawa, A., Asano, H., Onogaki, H., Mizuno, T.,
Ide, H., and Yokoyama, S., �Autonomous recon�guration of robot shape by using
q-learning,� Arti�cial Life and Robotics, vol. 14, no. 2, pp. 213�218, 2009.

200

[172] Siciliano, B. and Khatib, O., Springer handbook of robotics. Springer Science &
Business Media, 2008.

[173] Sproewitz, A., Pouya, S., Bonardi, S., van den Kieboom, J., Moeckel, R.,
Billard, A., Dillenbourg, P., and Ijspeert, A., �Roombots: Recon�gurable
robots for adaptive furniture,� Computational Intelligence Magazine, IEEE, vol. 5,
pp. 20�32, Aug 2010.

[174] Sproewitz, A., Billard, A., Dillenbourg, P., and Ijspeert, A. J., �Roombots-
mechanical design of self-recon�guring modular robots for adaptive furniture.,� in
Robotics and Automation (ICRA), 2009 IEEE International Conference on, pp. 4259�
4264, 2009.

[175] Sproewitz, A., Moeckel, R., Vespignani, M., Bonardi, S., and Ijspeert,

A. J., �Roombots: A hardware perspective on 3d self-recon�guration and locomotion
with a homogeneous modular robot,� Robotics and Autonomous Systems, vol. 62, no. 7,
pp. 1016 � 1033, 2014.

[176] Stoy, K. andNagpal, R., �Self-recon�guration using directed growth,� in Distributed
Autonomous Robotic Systems 6, pp. 3�12, Springer, 2007.

[177] Stoy, K., Shen, W.-M., and Will, P., �Using role-based control to produce loco-
motion in chain-type self-recon�gurable robots,� Mechatronics, IEEE/ASME Trans-
actions on, vol. 7, no. 4, pp. 410 �417, 2002.

[178] Støy, K., �Controlling self-recon�guration using cellular automata and gradients,� in
Intelligent Autonomous Systems (IAS), 2004 International Conference on, pp. 693�
702, 2004.

[179] Stoy, K., �How to construct dense objects with self-recond�gurable robots,� in Eu-
ropean Robotics Symposium 2006, pp. 27�37, 2006.

[180] Stoy, K., �Using cellular automata and gradients to control self-recon�guration,�
Robotics and Autonomous Systems, vol. 54, no. 2, pp. 135�141, 2006.

[181] Stoy, K., Brandt, D., and Christensen, D. J., Self-recon�gurable robots: an
introduction. MIT Press, 2010.

[182] Stoy, K. and Nagpal, R., �Self-repair through scale independent self-
recon�guration,� in Intelligent Robots and Systems (IROS), 2004 IEEE/RSJ Inter-
national Conference on, pp. 2062�2067, 2004.

[183] Stradner, J., Hamann, H., Schmickl, T., Thenius, R., and Crailsheim, K.,
�Evolving a novel bio-inspired controller in recon�gurable robots,� in Advances in
Arti�cial Life (ECAL), 2009 European Conference on, vol. 5777 of Lecture Notes in
Computer Science, pp. 132�139, Springer, 2011.

[184] Sung, C., Bern, J., Romanishin, J., and Rus, D., �Recon�guration planning for
pivoting cube modular robots,� in Robotics and Automation (ICRA), 2015 IEEE In-
ternational Conference on, pp. 1933�1940, May 2015.

[185] Thrun, S. and Liu, Y., �Multi-robot slam with sparse extended information �lers,�
in Robotics Research, 2005 International Symposium on, pp. 254�266, 2005.

201

[186] Tolley, M. T. and Lipson, H., �On-line assembly planning for stochastically re-
con�gurable systems.,� International Journal of Robotics Research, vol. 30, no. 13,
pp. 1566�1584, 2011.

[187] Tolley, M. T. and Lipson, H., �Programmable 3d stochastic �uidic assembly of
cm-scale modules.,� in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Inter-
national Conference on, pp. 4366�4371, 2011.

[188] van Anders, G., Ahmed, N. K., Smith, R., Engel, M., andGlotzer, S. C., �En-
tropically patchy particles: Engineering valence through shape entropy,� ACS Nano,
vol. 8, no. 1, pp. 931�940, 2013.

[189] Vassilvitskii, S., Yim, M., and Suh, J., �A complete, local and parallel recon�gu-
ration algorithm for cube style modular robots,� in Robotics and Automation (ICRA),
2002 IEEE International Conference on, pp. 117 � 122, 2002.

[190] Walter, J. E., Tsai, E. M., and Amato, N. M., �Algorithms for fast concurrent
recon�guration of hexagonal metamorphic robots,� Robotics, IEEE Transactions on,
vol. 21, no. 4, pp. 621�631, 2005.

[191] Wei, H., Li, H., Tan, J., and Wang, T., �Self-assembly control and experiments in
swarm modular robots,� Science China Technological Sciences, vol. 55, no. 4, pp. 1118�
1131, 2012.

[192] White, P., Zykov, V., Bongard, J. C., and Lipson, H., �Three dimensional
stochastic recon�guration of modular robots.,� in Robotics: Science and Systems
(RSS), 2005 Conference on, pp. 161�168, 2005.

[193] Whitesides, G. M. and Boncheva, M., �Beyond molecules: Self-assembly of meso-
scopic and macroscopic components,� Proceedings of the National Academy of Sciences,
vol. 99, no. 8, pp. 4769�4774, 2002.

[194] Xue, Y. andGrover, M., �Optimal design for active self-assembly system,� in Amer-
ican Control Conference (ACC), 2011, pp. 3269�3274, 2011.

[195] Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., and Homans, S.,
�Modular recon�gurable robots in space applications,� Autonomous Robots, vol. 14,
no. 2-3, pp. 225�237, 2003.

[196] Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins,
E., and Chirikjian, G. S., �Modular self-recon�gurable robot systems � challenges
and opportunities for the future,� Robotics & Automation Magazine, IEEE, vol. 14,
no. 1, pp. 43�52, 2007.

[197] Young, H. P., �The evolution of conventions,� Econometrica: Journal of the Econo-
metric Society, pp. 57�84, 1993.

[198] Young, P., Individual Strategy and Social Structure: An Evolutionary Theory of
Institutions. Princeton University Press, 1998.

[199] Yu, C.-H., Haller, K., Ingber, D., and Nagpal, R., �Morpho: A self-deformable
modular robot inspired by cellular structure,� in Intelligent Robots and Systems
(IROS), 2008 IEEE/RSJ International Conference on, pp. 3571�3578, 2008.

202

[200] Yu, C.-H., Willems, F.-X., Ingber, D., and Nagpal, R., �Self-organization of
environmentally-adaptive shapes on a modular robot,� in Intelligent Robots and Sys-
tems (IROS), 2007 IEEE/RSJ International Conference on, pp. 2353�2360, 2007.

[201] Zhu, M. and Martinez, S., �Distributed coverage games for energy-aware mobile
sensor networks,� SIAM Journal on Control and Optimization, vol. 51, no. 1, pp. 1�
27, 2013.

[202] Zykov, V., Chan, A., and Lipson, H., �Molecubes: An open-source modular robotic
kit,� in Workshop on Self-Recon�gurable Robotics at Intelligent Robots and Systems
(IROS), 2007 IEEE/RSJ International Conference on, 2007.

[203] Zykov, V., Mytilinaios, E., Desnoyer, M., and Lipson, H., �Evolved and de-
signed self-reproducing modular robotics,� Robotics, IEEE Transactions on, vol. 23,
no. 2, pp. 308�319, 2007.

203

