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NOMENCLATURE 

ST&I Science, Technology, and Innovation 

NIS National Innovation System  

RIS Regional Innovation System  

SMEs Small and Medium-Sized Enterprises 

Darwinian Sea A series of challenges, including resource constraints and 

information asymmetries, that high-technology 

entrepreneurs face 

GPT General Purpose Technology 

ICT Information and Communications Technology 

API Application Programming Interface 

ERGM (a.k.a. p* models) Exponential Random Graph Model 

Actor An individual or organization in the ecosystem network, 

also known as a user in an online network  

Linkage A relationship between any two actors, also known as a tie 

or edge  

Community A grouping of densely connected actors, also referred to as 

a cluster 

Twitter Social media platform allowing users to tweet (author) and 

read 140 characters of text 

Friend An actor whom a user follows 

Follower An actor following a user  

Timeline  All the tweets from a user’s following network placed in a 

single “feed” 

Handles A username preceded by an “@” sign 

Hashtag Topical metadata identified through the “#” symbol  

Mentioning Placing another user’s handle in the body of a tweet 

Direct messaging Tweeting to private inboxes  

Retweet Syndicating an existing tweet to a user’s followers  
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SUMMARY 

The innovation ecosystem’s online presence continues to grow with the 

emergence and maturation of ICT-based platforms.  With these new channels, a diversity 

of actors, including firms, scientists, universities, media entities, and individuals, interact 

to satisfy their information needs and to access and mobilize network-based resources. 

This research is among a growing number of social science studies examining the advent 

of social media and its influence on the innovation process, asking, “How do different 

types of actors use social media to form network linkages, and what kinds of innovation 

outcomes will result?” The purpose of this work is (1) to explore whether established 

theories relevant to science, technology, and innovation (ST&I) inquiry perform as 

expected in social media domains, and (2) to examine some of the consequences of ICT-

enabled innovation. To accomplish this task, I rely on an approach that considers both 

institutional factors (top-down and as prescribed by the broader innovation literature) and 

emergent phenomena (bottom-up interaction based on micro-level network behaviors).  

Pulling from three literature streams, I focus my theoretical development on open 

innovation, social capital, and the broader innovation system landscape to explain how 

individuals access information and resources online.  In the process, I take into account 

that social media acts as a conduit for communication, often times in platform-specific 

ways.  

To study this complex network activity, I turn to Twitter, the popular 

microblogging service, and focus on the case of graphene, a novel nanotechnology 

material consisting of a two-dimensional sheet of carbon atoms.  Twitter is one of the 

world’s most often-used social networks, boasting over 500 million users (200+ million 
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active).  Graphene, on the other hand, is a relatively well-bounded area of scientific 

inquiry with ongoing, concurrent scientific and commercialization activity.    

Twitter and graphene can be viewed as “radical” innovations (i.e., new 

technologies advancing new markets) in ostensibly divergent domains (i.e., ICTs and 

material science), yet both are approximately the same age with Twitter having been 

founded in 2006 and graphene’s first major breakthrough occurring in 2004.  This work 

provides a lens into the graphene online innovation ecosystem which has developed in 

tandem with Twitter’s distinctive brand of social media and notable impacts on popular 

culture.  

To position the value of social media as a novel method for innovation studies, I 

compare tweets from the Twitter public timeline with a random sample of graphene 

tweets.  The sample of graphene tweets shows lower frequencies of tweets containing 

mundane musings and conversational discourse, thus indicating an overall higher level of 

professionalized communication than the strictly random sample.  Twitter, I conclude, 

can act as a legitimate forum for analyzing ecosystem discourse and studying innovation 

outcomes. 

This research contains three propositions guiding the exploratory empirical 

results.  The first two propositions address how actors follow one another on Twitter to 

generate network linkages.  The third proposition posits that beneficial innovation 

outcomes result as a consequence of social media participation.  The primary sample 

dataset derives from 34 graphene firms’ friend and followers relationships captured in 

early 2014.  Nine interview transcripts supply qualitative data. 
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The results show that network formation on Twitter is not random and that actors 

choose whom to follow by mixing within and across actor affiliation types.    For 

instance, all user types are likely to follow media entities, a group of actors traditionally 

not considered important in innovation processes.  Furthermore, while nanotechnology 

firms in general are likely to follow other types of actors, these other actors are generally 

not likely to follow nanotechnology firms.   This implies that nanotechnology firms use 

Twitter to gain access to information and resources, but they face an up-hill battle.  

Consequently, the online ecosystem may look remarkably similar to the prevailing offline 

“Darwinian Sea”, where high-tech SMEs work to enhance their reputations, compete for 

scarce resources,  and struggle with market positioning and management savoir-faire to 

commercialize new inventions.  

A series of network visualizations reveal that users agglomerate in communities; 

these communities exhibit greater density than the larger ecosystem network and a 

propensity to congeal in topically focused ways.  That is, each community indicates a 

coherent topical focus, suggesting that graphene firms follow specific sets of users in 

ways that support their information and resource needs.  For example, based on ego-

network visualizations, some firms show a propensity to access regional communities 

(i.e., the actors comprising the “regional innovation system”), in addition to a globally 

disperse set of ecosystem actors (and their communities).  This finding underlines the 

importance of local contexts in high-technology entrepreneurship, even as captured on a 

globally far-reaching virtual platform such as Twitter.   At the micro-level, an 

unstructured text mining approach to operationalizing and computing information 

distance shows that increasing amounts of topical distance between any two users 
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decreases the likelihood of a tie existing.   In sum, users not only follow actors because of 

their revealed identities but also because of the information value those actors provide.  

Moreover, even whilst maintaining topical focus, actor diversity in some communities is 

the norm, not the exception.  

Are innovation outcomes more likely to occur in strategically-developed and 

information-rich social media networks?  Drawing on different sources of “behavioral 

additionality” – or changes in behaviors as a result of social media participation – I 

identify ex-ante several such plausible outcomes, which could include increased 

awareness, improved problem solving ability, community and brand development, 

enhanced participation, and greater sales.  The qualitative results show that social media 

participation results in increased awareness of graphene and related ecosystem topics, but 

engagement is a key tactical maneuver that actors pursue, often in varying ways, to 

access and mobilize other resources.  The findings also indicate that problem solving and 

deep contextual learning do not systematically occur on Twitter. 

Taken together, the findings reveal that identity and information help inform the 

following decisions of users.  In addition, the online innovation ecosystem on Twitter is 

both a broadcast communication channel where actors share and consume messages en 

masse and where strategic forms of engagement allow ecosystem actors to transfer 

resources (beyond information).   A theoretical implication of this synthesis suggest that, 

through engagement, some actors seek to influence the development of various narratives 

emerging in the graphene innovation ecosystem; that is, they shape the contour of 

discourse to build a wider following and to position themselves in the center of their 

respective communities.  
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Policy implications are targeted at intermediary institutions and scientists, while 

management implications focus on high-technology SMEs.  For example, intermediaries 

and scientists as a whole appear to interact in insular rather than boundary-spanning 

ways: Scientists follow other scientists but not nanotechnology firms; nanotechnology 

firms follow intermediaries without receiving the same level of interest in return.  If the 

online ecosystem indeed conveys the same set of information asymmetries characterizing 

the offline “Darwinian Sea”, the first step in promoting more balanced interactions is to 

encourage a more fluid set of bi-directional following relationships.  While difficult to 

manifest online in self-organizing networks, policies could facilitate the transition of 

offline casual introductions (e.g., at conferences or forums) into online following 

relationships.  In theory, while such a maneuver guarantees access to network 

relationships, it may not necessarily result in resource mobilization.  Yet, according to 

social capital theory, access is a necessary condition for mobilization to occur.   

In terms of management implications, firms should focus their efforts on 

identifying gaps in their social media presence by examining topical holes in their 

networks and/or observing the following relationships of their peers and competitors.  

There is also an opportunity for firms to look further upstream or downstream in the 

value chain to gain a better perspective of their current position and anticipated 

placement in the ecosystem.  For instance, commensurate with exploration and search, 

graphene firms manufacturing the material as an intermediate input could follow end-user 

product firms to learn more about those downstream industries.   

 This work concludes with a discussion of limitations and opportunities for future 

work. Limitations include alternative theories to explaining social media participation 
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and engagement, methodological issues, and the continuing evolution of social media 

platforms and usage patterns.  Future work is considered to address the temporal nature 

of network construction and topical growth (or constriction), as well as the ability to map 

areas of science and technology through social media data.   

In summary, this dissertation reveals that the (graphene) innovation ecosystem 

has an active and growing online footprint and that participation is more diverse than 

other models of innovation would predict.  Yet this diversity exists within the confines of 

a professionalized and on-point discourse, as mediated by dense communities with which 

actors may engage to access information and resources.  Further, through its research 

design, this work contributes to the emerging research stream known as computational 

social science, which uses ICT-based datasets to study human interaction and 

communication at multiple levels of analysis.  As ICT platforms increasingly mediate 

innovation processes and influence the socio-cultural environment in which innovation 

occurs, a computational approach to studying high-technology entrepreneurship 

acknowledges much of the extant ecosystem complexity whilst enabling novelty and 

ingenuity in research design and method.  Such a development will not only help scholars 

better characterize and understand how innovation in the 21st century will unfold but also 

act to advance a contemporary and interdisciplinary social science.  
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CHAPTER 1:  INTRODUCTION 

Today’s innovation landscape looks considerably different than it did in much of 

the second half of the 20th century, where large firms dominated the industrial R&D 

landscape (Fagerberg, 2004).  Knowledge, for one, is becoming increasingly specialized 

while at the same time becoming increasingly amenable to abstraction (A. Arora & 

Gambardella, 1994).  As a result, organizations can focus on “core competencies” and 

rely on external, often globally dispersed channels of know-how to link together 

complimentary assets across a value chain (Teece, 1986).   This type of vertical 

disintegration gives rise not only to niche markets but also embedded networks where 

actors transact for goods, services, infrastructure and intangible assets such as knowledge 

and intellectual property (Granovetter, 1985; Powell & Snellman, 2004).  The dispersion 

of innovation-related behavior across a variety of actors, including large and small firms, 

intermediaries, universities, and public labs is a hallmark of a “systems” view of 

innovation (Sharif, 2006).   More recently, an even broader framework for inclusivity, 

one that accounts for the media and public, has risen in the form of an “innovation 

ecosystem”.   

An innovation ecosystem is a “dynamic system of interconnected institutions, 

persons, and policies that are necessary to propel technological and economic 

development” (President’s Council of Advisors on Science and Technology, 2008, p. 1).  

Implicit in this definition is the underpinning role of social networks which bind actors 

together via similar interests, shared challenges, competition, and technological progress.  

Innovation ecosystems evolve in response to inputs from participants, who complement 

one another through symbiosis and learning, and as a response to exogenous stimuli 
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(Thomas & Autio, 2012).   At the heart of the ecosystem metaphor is the ability 

communicate and interact across organizational lines, and in this regard, ICTs have taken 

a prominent role in the development of the innovation ecosystem’s online footprint.  It’s 

not that ICTs are the innovation ecosystem, but rather ICTs facilitate novel ways of 

structuring, governing, funding, and profiting from the innovation process itself.  

For example, consider the proliferation of online platforms that address 

information asymmetries, uncertainty, risk, and cost in entrepreneurial markets:  In the 

crowd-funding space, sites including Kickstarter, Indiegogo, and Qwirky allow 

individuals to finance projects, many of which relate to novel science and engineering 

applications and which would otherwise not attract sufficient visibility and support to 

implement.  Open innovation sites including IdeaExchange, OpenIDEO, and Innocentive 

outsource ideation and problem solving to a community of interested, sometimes paid 

parties.  Cloud technologies simplify and reduce an organization’s cost-commitment to 

in-house computing infrastructure and ICTs to meet elastic demand.   In sum, these high-

fidelity platforms may facilitate the construction of participants’ value propositions, 

provide a framework to adjudicate the merit of ideas, and guide norms of interaction 

between members.  Through these platforms, actors access resources and information 

which can accelerate and expand the scope of innovation outcomes (Ashurst, Freer, 

Ekdahl, & Gibbons, 2012).  

Though communication with and financing from customers, the quality of an idea 

may improve with each prototype until it graduates into a bonafide product or service 

(Lynn, Morone, & Paulson, 1996).  In some cases, business model innovation also occurs 

via a “lean”, hypothesis-driven approach to maximizing resources while avoiding 
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common pitfalls in the startup’s growth cycle (Ries, 2011).  In this paradigm of 

entrepreneurial activity, the ecosystem metaphor lends itself as the setting against which 

value chains are navigated and negotiated.  Add to this “value capture” dynamic  the 

prospect of disruptive innovation (Bower & Christensen, 1995) stemming from emerging 

science-based technologies such as synthetic biology, additive (3-D) manufacturing, and 

nanotechnologies,1 and it becomes evident that value capture is a function of both 

business model innovation and sound technology development (Chesbrough, 2010):  This 

is because even good ideas and technologies must be paired with effective business 

models to achieve desirable economic outcomes. From this perspective, an entrepreneur’s 

ability to access customers in diverse markets and in their day-to-day social environments 

becomes increasingly important, e.g. to devise, monitor, and learn from interactions that 

explore different product, service, and business model possibilities.  

Operating adroitly in the ecosystem environ suggests an ability to leverage ICTs 

to get closer to end-user markets, attract resources, and even to collaborate.   Indeed, it is 

here that the literature on open innovation refers to ICT-mediated networks as enabling 

inbound (and to a lesser degree outbound) knowledge flows (Chesbrough, 2006; 

Michelino, Caputo, Cammarano, & Lamberti, 2014; Ooms, Bell, & Kok, 2015; van de 

Vrande, de Jong, Vanhaverbeke, & de Rochemont, 2009).  However, in contrast to 

platforms designed for specific functional needs such as ideation or financing, some ICTs 

facilitate communication and networking in broader terms.  These online channels, which 

include household names such as Facebook, Twitter, and LinkedIn, provide general 

                                                 
1  Futurists, and research institutes continue to conjecture on the potential of various emerging technologies.  

For example, see Manyika et al. (2013) for a survey from McKinsey Global Institute outlining several 

potentially disruptive innovations, which include nanotechnology, synthetic biology, and additive 

manufacturing.  
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forums for innovation discourse that may intersect with other, unrelated talking points 

and/or spheres of knowledge.2  These sites add a critical dimension to participation in the 

ecosystem because they attract users who would not otherwise visit a specific site to 

observe or contribute to the ecosystem.  Thus, multi-purpose social media platforms act 

as an entryway into the ecosystem; that is, these platforms boast usage from a cross-

section of actor types, even as entrants into the ecosystem setting self-select in.   

To-date, there has been a dearth of scholarship examining ecosystem network 

formation and the potential impacts of social media usage on innovation outcomes, 

particularly in high-technology entrepreneurial domains.  And yet, because of the 

increase in usage and availability of data, the empirical landscape is ripe for such 

scholarly work.  This research addresses this gap by examining the innovation ecosystem 

in the online realm, asking how do different types of actors use social media to form 

network linkages, and what kinds of innovation outcomes will result?  It posits that users 

choose their relationships based on revealed professional affiliation, as well as the degree 

of information value subjectively perceived as being accessible through such 

relationships.  In addition, this research argues that as ecosystem communications go 

online, and as network relationships become easier to form, innovation outcomes 

manifest in terms of broader awareness, deeper knowledge building and learning 

capacity, and the acquisition and transfer of resources and opportunities that may not 

otherwise be accessible without such ICT platforms.   Also foundational to this study is a 

significant explorative component which assesses the merit of social media data and 

                                                 
2 For example, Runge et al. (2013) study approximately 500,000 tweets through content analysis and find 

“that incidental exposure to nanotechnology seems plausible for Twitter users” when non-ecosystem 

stumble upon nanotechnology tweets by accident, e.g., when searching for “iPod nano”.  
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examines visualizations presenting the ecosystem’s building blocks, one network at a 

time.  

The research design is constructed in two phases: (1) a quantitative portion which 

assesses the nature of existing network linkages as a function of actor interests and goals 

and information type and content, and (2) a second segment which relies primarily on 

qualitative methods and uses a case study approach to explain innovation outcomes that 

arise as a result of social media usage and network formation.  The empirical context is 

Twitter, the popular microblogging platform, while the innovation case study setting is 

graphene, a novel nanotechnology material consisting of a single layer of carbon atoms.  

Graphene, while being very strong, exhibiting high thermal and electrical conductivity, 

and providing the material-base for a host of applications, is also characterized by 

significant risk and uncertainty. The focus on graphene is appropriate because of the high 

visibility of the technology as well as its age: Graphene is a 21st century invention, and 

Twitter is a 21st century innovation.  Consequently, this research studies one highly 

dynamic invention with numerous innovative possibilities (i.e., graphene) through 

another highly dynamic information and communication technology (ICT) platform (i.e., 

Twitter).   

This introductory chapter aims to define the ecosystem concept in further detail 

(Section 1.1), explain where the ecosystem metaphor sits in the broader innovation 

literature and discuss subsequent implications for studying communication and 

networking (Section 1.2), lay out the research question and method (Section 1.3), and 

summarize key contributions (Sections 1.4).  The chapter concludes with an overview of 

the dissertation’s organization (Section 1.5).  
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1.1. Definitions  

According to the President’s Council of Advisors on Science and Technology 

(PCAST) (2008), the innovation ecosystem is a “dynamic system of interconnected 

institutions, persons, and policies that are necessary to propel technological and economic 

development” (pg. 1).  In their 2008 report focusing on university-private sector research 

partnerships, PCAST identifies five broad areas to improve the vitality of the US 

innovation ecosystem:  basic research and innovation, the economic regulatory 

environment, open innovation, connection points between partners, and finally 

measurement of innovation.  These themes speak to the networked nature of innovation 

in the 21st century, as well as how to measure the process by which innovation occurs.   

Thomas and Autio (2012) offer a similar definition, albeit one that emphasizes the 

firm as a central actor: The innovation ecosystem is “a network of interconnected 

organizations, organized around a focal firm or a platform and incorporating both 

production and use-side participants” (p. 2).  The ecosystem, according to these authors, 

includes entities involved in the focal firm’s value chain, as well as its customers.  The 

combination of production and use side-participants distinguishes the ecosystem 

construct from other research on innovation networks, which typically address one side 

or the other (i.e., the value chain or customers).   Prahalad and Ramaswamy (2003) argue 

that marrying these supplier and customer networks facilitates innovation processes 

focused not only on products and services but also on the co-creation of value through 

customer experiences.   

As applied to geographically bound “innovation districts”, the innovation 

ecosystem consists of three primary components, according to the Brookings Institution:  
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[First,] economic assets are the firms, institutions, and organizations that 

drive, cultivate, or support an innovation-rich environment. [Second,] 

physical assets are the public and privately owned spaces—buildings, 

open spaces, streets, and other infrastructure—designed and organized to 

stimulate new and higher levels of connectivity, collaboration, and 

innovation. Lastly, networking assets are the relationships between 

actors—such as between individuals, firms, and institutions—that have the 

potential to generate, sharpen, and/or accelerate the advancement of ideas. 

These assets, taken together, create an innovation ecosystem—the 

synergistic relationship between people, firms, and place that facilitates 

idea generation and advances commercialization [emphasis added]. (Katz, 

Vey, & Wanger, 2015) 

 

I argue that the innovation ecosystem is a type of complex system that can enable 

interactions across multiple, sometimes competing value chains (c.f. Simon, 1996).  A 

complex system (1) consists of diverse and dynamic individual components, i.e., actors 

(2) responds to stimuli, (3) is organized into hierarchies, (4) and maintains a structure that 

can determine different ways of evolving (Neal, Smith, & McCormick, 2008).  Some 

complex systems exhibit emergence, which refers to “a set of arguments that higher-level 

phenomena appear to exhibit properties that are not revealed at lower levels” (Monge & 

Contractor, 2003, p. 11).  In contrast to top-down and control-centered theories that stress 

stasis and equilibrium, complex systems theory explicitly addresses dynamism and 

change.  In terms of the innovation ecosystem construct, complex systems offer value by 

encouraging flexibility, transaction cost efficiencies, and resource exchange (Thomas & 

Autio, 2012).   

Complex systems are fundamentally networks with complex topologies (Barabási, 

1999).  That is, emergence in complex systems is a result of the activities of semi-

autonomous agents who act interdependently to form local networks, which then give rise 

to meso-level communities and an overarching global structure; networks first develop at 

the local level, with structure “emerging” upward to influence the construction of 
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communities and the global structure (Monge & Contractor, 2003).  The Internet seems 

particularly amenable to promoting dynamic, self-organizing networks because of its 

ability to effectively link people, organizations, and knowledge (Wellman, 2001).  Well-

known publicly accessible online platforms for social networking include Facebook, 

Twitter, Meetup, and LinkedIn, and a host of other sites, some of which are specific to 

science and technology (e.g., ResearchGate and Engineering Exchange).   

The innovation literature assumes productive connections between agents as 

critical to innovation outcomes, and scholars have produced numerous empirical studies 

substantiating this claim.  However, research is more likely to examine formal networks 

even though informal linkages may be significantly more pervasive and consequential (C. 

Freeman, 1991; also see Blau, 1955).  An explanation of this trend is the inherent 

difficulty in tracing informal connections as they mature and wane. As communication 

and social networks increasingly move to online environments, however, additional data 

sources become available by which to test propositions regarding micro-level interactions 

that embody the informal social networks underlying the innovation ecosystem.  It is also 

becomes possible to visualize and comprehend how these micro-level linkages scale up 

into communities, and how these communities constitute smaller components of the 

larger ecosystem.  

1.2. Innovation Models and Implications for Studying Networking and 

Communication 

The notion of an innovation ecosystem stands in contrast to other models of 

innovation, including the linear model and institutional approaches such as the national 

innovation system and triple helix.  The highly stylized, yet widely deployed linear model 
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may be traced to V. Bush’s (1945) manifesto on the state of national science policy in the 

US (Godin, 2006).  The linear model positions innovation as a sequence of temporally 

distinct phases in which investments in inputs result in a series of outputs (Neal et al., 

2008):  If basic research provides the bedrock for fundamental understanding, then 

applied research and development builds on prior knowledge for the purpose of 

commercialization and productization (Figure A.1).   The linear model persists as a 

dominant archetype of innovation not because of its accuracy of how innovation actually 

progresses but rather because of its close association with innovation measurement 

(Godin, 2006).  For example, scholars will often rely on publications as a measure of 

basic and applied research and patenting activity as a proxy for invention and 

development. 

Yet the process of successfully monetizing nascent ideas presents technological, 

economic, and social challenges (Stinchcombe, 1990); that is, an invention is not an 

innovation without broader societal and market support.   In this light, innovation and 

high-technology entrepreneurship may be viewed as a continuous search for relevant and 

effective ideas, information, and resources (Nelson & Winter, 1982).  These ingredients 

are not always readily available to the people and organizations that have the potential to 

exploit them. This may result from information asymmetries, uncertainty or the friction 

not just of distance but also of different knowledge communities (Monge & Contractor, 

2003).   Thus, while the linear model suggests a straightforward unidirectional flow of 

information from upstream R&D to downstream market activities, it is not an empirically 

valid construct.  
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In response to the linear model’s deficiencies, scholars in the 1980s turned to 

institutional frameworks (Etzkowitz & Leydesdorff, 2000; Sharif, 2006).  Freeman 

(1987) defines the national innovation system as “the network of institutions in the public 

and private sectors whose activities and interactions initiate, import, modify and diffuse 

new technologies.” Lundvall (2007) contends that firms constitute the core of an 

innovation system, but these firms interact with a variety of other institutions including 

other firms, universities and national labs, the prevailing intellectual property regime, 

labor markets, and the venture capital industry.  To Lundvall, the innovation system is an 

analytical framework that explains how knowledge and learning evolves.  In particular, 

learning through tacit knowledge sharing and recombination is the result of interaction 

(i.e., in network settings).  A second institutional approach, the triple helix model, adds to 

this mix of “interactive” relationships between the governments, industry, and academic 

sectors an emphasis on evolving internal transformations within each institution.  For 

example, the university continues to take a more central role in the knowledge-economy, 

as it acts as an education, research, and technology transfer hub (Godin & Gingras, 2000; 

Youtie & Shapira, 2008).  

Both the national innovation system and triple helix model suffer from notable 

limitations, however.  The national innovation system literature lacks conceptual clarity, 

a standard set of tactics to operationalize key concepts, and prescriptive guidance for the 

policy community (Sharif, 2006).  The triple helix model, on the other hand, lacks 

explanatory power when comparing and contrasting across national boundaries (Shinn, 

2002).   Furthermore, I contend that both frameworks fail to sufficiently acknowledge the 

role of culture as a key ingredient in innovation.  Wallner and Menrad (2011) argue that 
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culture embodies “the beliefs, values, and attitudes of a social system” (p. 4) and cannot 

be created; rather culture emerges.  Moreover, the authors maintain that innovations are 

the byproduct of innovativeness, a cultural construct which can be enhanced with a 

diversity and tolerance of ideas.  The ecosystem metaphor is amenable to studying a 

culture of innovativeness, to the extent that such a construct can be measured by the 

“emergence” characteristic of complex networks and information and discourse being 

communicated across individual relationships.  

Implicit in the linear and systems models is the directionality and type of 

communication occurring among actors.  In the linear model, the flow of information is 

largely directed downstream from basic and applied researchers to technology 

development and product teams.   Based on the model (Figure A.1 in the Appendix), 

communication appears formalized and rigidly segregated between adjacent actors; for 

example, basic researchers communicate with applied researchers but not with product 

development teams.  The innovation systems and triple helix literature assumes a series 

of bidirectional communication channels, and this communication need not be formal 

when individuals and institutions facilitate the transfer of tacit knowledge in informal 

settings (Saxenian, 1996).  However, communication occurs with a select number of 

participants who often represent formal institutions.   The concept of an innovation 

ecosystem, in contrast, suggests not only maintaining bidirectional flows but also casting 

a broader net in terms of actor participation.  Thus, because communication can occur 

between any individual or institution and in any direction, the ecosystem construct is 

more amenable to empirically observing a wider array of informal networking and 

interaction than the institutional frameworks.     
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To briefly illustrate the value of the innovation ecosystem as a rhetorical device, 

consider the following set of actors and their (stylized) interests: the high-technology 

entrepreneur traverses a perilous “Darwinian Sea” in his search for funding and 

reputation, in his pursuit to find the right balance between managerial savoir faire and 

scientific expertise, and in his need to seek first mover advantages and/or protect 

intellectual property (Auersald, 2007; Auerswald & Branscomb, 2003).  The venture 

capitalist, on the other hand, invests in a number of promising private firms with the hope 

that a few will sufficiently develop to warrant a liquidity event through a merger or 

acquisition or initial public offering (IPO).  University scientists look for inspiration and 

commercialization opportunities in the “real-world” around them, while institutions foster 

a productive research and teaching environment from which to enhance their reputation 

(Stinchcombe, 1990).  Students; media professionals; professionals including 

accountants, lawyers, and consultants; government agencies; and customers and suppliers 

also seek an interest in developing and shaping an innovation ecosystem.   

In sum, the ecosystem approach explicitly recognizes a diversity of actors, some 

of whom represent formal institutions and others who do not (e.g., users with no revealed 

identity or professional affiliation).  Moreover, the innovation ecosystem is more than 

just a “fourth helix” (c.f. Leydesdorff, 2012) (re-)introducing the public into the 

innovation terrain; it is a complex system that acknowledges both top-down structural 

and bottom-up emergent phenomena.  

1.3. Research Question and Method   

This research investigates the role of online networks in innovation ecosystems, 

investigating the extent to which social media contributes to ecosystem organizing 
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activity and beneficial innovation outcomes.  In particular, it asks “How and why do 

actors in innovation ecosystems use social media to communicate, and what are the 

impacts of social media on innovation?”  The purpose of this work is (1) to explore 

whether established theories relevant to science, technology, and innovation (ST&I) 

inquiry perform as expected in social media domains, and (2) to examine some of the 

consequences of ICT-enabled innovation. To accomplish this task, I rely on an approach 

that considers both institutional factors (top-down and as prescribed by the broader 

innovation literature) and emergent phenomena (bottom-up interaction based on micro-

level network behaviors).  

At its heart, this research is an exploratory study that attempts to quantify the 

emerging role of social media in innovation processes in emerging science-based 

technologies.  The “how” aspect of the research question is tested through propositions 

that consider actor role identity, information as content, and the ensuing theoretical 

motivations for “why” individual actors would construct network ties with other actors.  

The recurring theoretical justification primarily draws on the benefits of ecosystem 

diversity, in terms of both actor diversity and information distance:  Different types of 

actors have different information and resource needs, and thus, the empirical results 

should putatively show this type of variety in terms of inter-actor class linkages and 

underlying information content.    

Beyond the propositions lie additional contextual insights which better position 

the formal results through a very pragmatic lens: Since social media is relatively novel 

both as a communication and social networking device, as well as a data source for 

research purposes, I consider descriptive aspects of the research setting to better support 
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the more sophisticated analysis.  For example, I address foundational questions that the 

curious reader may have, e.g., “What does the innovation ecosystem even look like?  

How do individual actor networks compare with one another?  And are actors actually 

communicating anything worthwhile, and if so, how might this differ from non-

innovation ecosystem domains?”  While these are not my primary research questions, I 

attempt to answer them en route for a better contextual understanding of the online 

environment and data.  

As an applied social science study, this work also provides an outcomes-based 

assessment of social media usage in the innovation ecosystem.   Social capital theory 

posits that networks are formed to access and transfer resources, resulting in returns (i.e., 

beneficial gains) to actors (Lin, 2001).  While traditional ST&I indicators include outputs 

such as published manuscripts, patent applications and issuances, and firm survival, this 

study, given the nature of the data source, assumes a different set of plausible beneficial 

outcomes.  For example, social media actors may realize improved environmental 

awareness; information transfer, learning, and problem solving; community/brand 

development; employment opportunities; and customer and revenue growth a result of 

participation.  Exactly how resources and reputation are mobilized in the online 

innovation ecosystem is an uncertain process which this research seeks to elucidate.  

I study ecosystem activity within one particular realm of social media – and 

within one particular realm of science-based technology development.  The social media 

platform of interest is Twitter, the microblogging service.  Twitter allows its users to 

“tweet” up to 140 characters; while this content may incite personal “blabber”, tweeting 

is often strategically aimed with the knowledge of a larger public audience in mind 
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(Marwick & Boyd, 2010). Twitter supports conversations, information and url sharing, 

and live news reporting in addition to personal status updates (Dann, 2010).  The social 

networking component on Twitter allows users to follow one another, and tweets are 

curated on a user’s timeline via the user’s unique network lens.  Thus, the information 

component on Twitter is highly tailored based on each user’s following choices and 

interests.  It is also possible to search for users and tweets thereby facilitating exploration 

of the larger Twitter universe.   Trending topics alert users to content which has already 

attracted a relatively large set of tweeters and readers and which may continue to attract 

even more attention.  From this perspective, Twitter also acts as an online mass-

communication channel.  

The technological domain is graphene, a highly touted nanotechnology material 

consisting of a one-layer-thick sheet of carbon atoms.  Although in an early stage of 

development, graphene is currently being incorporated into improvements to existing 

applications such as inks, composites, and RFID (Shapira, Youtie, & Arora, 2012).  In the 

future, experts expect more discontinuous advances from graphene-enabled products such 

as batteries, displays, hydrogen storage, and silicon-based transistors (Geim & 

Novoselov, 2007; Van Noorden, 2011).  Yet, uncertainty about commercialization of 

graphene-enabled products is consequential on a number of important fronts (Segal, 

2009; Van Noorden, 2011).   For instance, current costs of production are prohibitively 

high and technical obstacles impede theoretically plausible performance characteristics, 

an especially vexing problem in transistors.  In addition, graphene belongs to a broader 

class of carbon-based nanomaterials, which present a series of environmental, health, and 
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safety (EHS) concerns (Sweet & Strohm, 2006; Youtie, Porter, Shapira, Tang, & Benn, 

2011).    

The case study context is appropriate given that graphene may enable a host of 

incremental and disruptive innovations; graphene is also a “hype” technology with 

relatively broad interest from both the popular and S&T press, precisely because it is a 

material with a fast-growing research profile and commercialization trajectory.  Actors 

operating in the online graphene innovation ecosystem are subject to and exert both 

influences (i.e., they participate in the hype and in narratives shaping the realistic 

potential of graphene). Consequently, this research examines both the broadcast 

communication component of Twitter as it relates to graphene’s “hype”, in conjunction 

with Twitter’s more subtle networking and personalized information sharing services.  In 

addition, both Twitter and graphene are approximately the same age with Twitter being 

founded in 2006 and graphene having been first isolated in 2004.  Twitter is an 

appropriate platform for examining the innovation ecosystem online because it is widely 

considered as one of the more active social media platforms. Furthermore, much of its 

data is freely available via publicly accessible APIs.  

The research method uses secondary data from Twitter and primary data in the 

form of qualitative interview transcripts.  The quantitative method specifies an 

exponential random graph model (ERGM), a type of network regression approach 

allowing parameter estimations for exogenous attributes at the actor, edge, and network 

levels.  Furthermore, via simulations, the ERGM handles endogenous network 

parameters capturing emergent network behavior (e.g., reciprocity).   The quantitative 

method assesses propositions concerning emergent networking behavior.  In comparison, 
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the qualitative analysis treats each interview as a case study in a multi-case setting to 

address potential innovation-related outcomes of social media usage.  

1.4. Contributions  

The long tail of the innovation ecosystem suggests that we often are not in 

an immediate position to know its positive or negative effects until 

sometime in the future. We need more empirical research, case studies, 

and comparative analysis to better inform policymakers regarding what 

actually shapes innovation cycles. Innovation needs to be a real 

conversation starter, not just a dire warning that a particular initiative will 

have adverse consequences for our economy and our ability to enjoy the 

comforts of contemporary life. (Brotman, 2014) 

 

This excerpt from the Brookings Institution calls for new research to better 

understand the dynamics of the innovation ecosystem to inform policymakers “regarding 

what actually shapes innovation cycles”.  In response to this appeal, I contend that few 

studies examine the intersection of high-technology entrepreneurship and social media in 

the context of innovation ecosystems.  This research intends to fill that gap from both a 

theoretical and methods standpoint.  Consequently, it is of significance to scholars and 

policymakers alike on a number of different dimensions.   

From a policy perspective, Auersald (2007) argues that policymakers should 

better understand the knowledge, incentives, and constraints that actors face within the 

domain of high-technology entrepreneurship.  By illuminating (1) problem areas caused 

by a dearth of information and (2) market failures caused by underinvestment in public 

goods, policies can stimulate economic development in strategic sectors; i.e., enhanced 

ability to manage economic outcomes may result in increased economic performance.  

Economic development via increased levels of entrepreneurial activity is a particularly 

attractive talking point for policymakers, since small firms are a leading source of 
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employment in the US, contributing up to 60-80% of new jobs over the past decade 

(Wessner, 2007).  Audretsch and Beckman (2007) contend that policy interventions 

intending to develop entrepreneurial activity not only support existing business and invest 

in the creation of knowledge but also cultivate a culture of commercializing knowledge.  

Because knowledge and entrepreneurial activity can be thought of as a public good 

(Audretsch, Grilo, & Thurik, 2007; Audretsch, Weigand, & Weigand, 2002; von Hippel, 

1994), the policy intent to commercialize knowledge can be thought of as synonymous 

with the “strategic management of economies” (Audretsch & Beckman, 2007, p. 42).  By 

studying self-organizing communication patterns in innovation ecosystems, scholars may 

offer prescriptive advice to policymakers regarding the effectiveness and implementation 

of policies that compliment and/or direct online activity. 

Pulling from three literature streams, I focus my theoretical development on open 

innovation and ICTs, social capital, and the broader innovation literature to explain how 

individuals access information and resources online.   The open innovation literature 

contrasts closed modes of R&D production occurring solely within an organization (i.e., 

the “vertical integration” of R&D) to an open stance whereby firms source knowledge 

and products from outside their boundaries and export knowledge to external consuming 

entities (Chesbrough, 2006).  While not a “novel” theoretical framework by any means 

(Lichtenthaler, 2011), open innovation is a convenient label for synthesizing related work 

on “outsourcing, networks, core competencies, collaboration, and the internet” (Huizingh, 

2011, p. 3).   Few studies have examined SME orientation towards open innovation (van 

de Vrande et al., 2009), and to this author’s knowledge, no existing work investigates 

how SMEs use ICTs to further innovation outcomes.  In addition, while ample research 
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studies the content shared and diffused on social media, no systematic evaluation has 

been conducted to empirically explore Twitter “as a science communication platform 

from an audience perspective” (Brossard, 2013, p. 14100).  In this research, the audience 

consists of not only the public but also the same set of actors (firms, universities, etc.) 

that seek to influence and/or grow the ecosystem.  

Researchers have long demonstrated that innovation networks are an important 

determinant of firm performance and capabilities; yet the use of networks and the 

benefits they confer are contingent on a firm’s stage of development (Rothaermel, 

Agung, & Jiang, 2007). Implicit in this research is a focus on early activities in the 

entrepreneurial process:  Two critical phases, opportunity framing and pre-organization, 

are characterized in part by talent shortfalls, low thresholds for risk and uncertainty, 

incomplete recognition of personal limitations, insufficient access to social capital, and a 

lack of funding and tangible resources (Vohora, Wright, & Lockett, 2004).  “Not much 

has been written about what entrepreneurs can do to increase social capital or about how 

social capital can be exploited for new venture creation and development” (Simoni & 

Labory, 2007, p. 110).  Accordingly, this study examines the consequences of social 

media participation on social capital.  It does this by simultaneously considering multiple 

dimensions of network phenomena (e.g., node attributes and structural features), an area 

of “future work” recently identified by social and communication network scholars 

(Monge & Contractor, 2003; Rivera, Soderstrom, & Uzzi, 2010).   

I also contribute to the literature on innovation systems and innovative and 

behavioral additionality.  As described by Hobday (2005), recent alternatives to the linear 

model include interactive, integrated, and networked models, which portray recurring 
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(yet still stylized) interactions among institutions, markets, and firms.  However, this 

progression of models, from sequential to interactive, lacks empirical evidence.  Because 

it makes “visible the invisible” (Miller, 2011), social media sheds light on a broad cross-

section of ecosystem actors, including the media and lay public, in ways that were 

previously unattainable.  By collecting granular communication content and tie data from 

the individual user, I am able to examine the nature and quality of assumed feedback 

loops depicted in recent, non-sequential models of innovation. Furthermore, this work 

draws on the behavioral additionality (BA) literature, which distinguishes between short-

term outcomes of innovation policy interventions and longer-term increases in system 

capacity to support innovation activity, e.g., through sustained learning and collaboration 

(Georghiou, 2002; Gok & Edler, 2012).  I extend BA by applying its theoretical and 

methodological tenets on an empirical study that transcends firm-level phenomena and 

that does not rely on top-down, government intervention. 

1.5. Dissertation organization  

Chapter 2 contains the literature review, and the following short chapter sets the 

research context by further introducing Twitter and graphene as the case study context.  

Chapter 4 lays out the research design, data, and method.  Chapters 5, 6, and 7 convey the 

results: Chapter 5 descriptively overviews the sample’s network topographies through 

visualizations and interpretation.  Chapter 6 and 7 present the quantitative (regression) 

and qualitative results, respectively.  Chapter 8 comprises a detailed discussion of the 

findings, implications, and potential future work; it also concludes with some final 

thoughts.  
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CHAPTER 2:  LITERATURE REVIEW 

The innovation ecosystem is a type of complex network with multiple levels of 

organizing principles (c.f. Monge & Contractor, 2003).  Micro-level relationships are the 

foundation of this self-organizing system: Individuals generate directed network linkages 

through following requests.  These linkages, when rolled-up to a meso-level, may depict 

properties not readily discernible at lower levels (e.g., the emergence of communities).  

Taken together, the set of micro-level linkages and meso-level communities produce a 

macro-level view of the (online) innovation ecosystem.  This research primarily theorizes 

on the constitutive elements comprising micro-level behaviors, though the results show 

evidence of ecosystem organizing principles at all three layers of analysis.  

This literature review explores concepts and prior empirical work on open 

innovation, social capital theory, and different types of relevant actor classes currently on 

social media.  The purpose of this framework is to set-up a discussion on why openness 

matters and how ecosystem actors may leverage social networks to mobilize information 

and knowledge flows to their advantage.  Since open innovation is a framework and not a 

causal theory (Lichtenthaler, 2011), it directs the review only in terms of its ability to 

frame the use of ICTs as being important in producing beneficial outcomes.  I 

subsequently turn to social capital theory to consider how micro-level interactions may 

confer information and knowledge gains.   

The relationship between open innovation and social capital theory unfolds as 

follows (Figure 2.1): On one side (top path in Figure 2.1), the literature on open 

innovation considers the import of inter-actor interfaces directing innovative activity in a 

larger ecosystem environment.  ICTs facilitate the implementation of an open innovation 
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strategy with certain beneficial outcomes resulting as a consequence of usage.  On the 

other side (lower path in Figure 2.1), networks enable the organization and coordination 

of open innovation activities, often through ICT platforms such as online social networks 

and social media.  When actors participate on these platforms, information and 

knowledge is shared and developed through recombination, albeit in platform specific 

ways.  This process too leads to beneficial innovation outcomes.  In essence, Figure 2.1 

deconstructs the open innovation framework into a series of network based concepts 

stressing the importance of network linkages, information and knowledge transfer, and 

online ICTs.  Note that the open innovation literature does not necessarily invoke 

network scholarship or ICTs, e.g., as in the case when IP is transacted on the market.  

The literature review culminates in three informal propositions or areas of inquiry, 

the first of which posits that online social networks facilitate a type of network 

topography reflecting strategic interaction within and across actor types.  This anticipated 

behavior is commensurate with innovation management and policy theory describing 

how different actors are likely to connect with one another based on their information and 

resource needs.   However, online social networks are not only about exogenous actor 

attributes; they also incorporate a set of usage factors that may influence how users 

interact.  To this end, I consider in the second proposition how information distance 

impacts the relationship between actor type and network structure.  Finally, in the third 

proposition, I take into account how social media can further a broad set of innovation 

outcomes relevant to emerging technology commercialization.  
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Figure 2.1: Conceptual framework 

 

Section 2.1 covers the relationship between open innovation, ICTs and beneficial 

innovation outcomes.  Section 2.2 goes one layer deeper to describe how networks 

facilitate the development of social capital, which allows actors to effectively transfer and 

recombine information and knowledge within and across communities.  Section 2.3 

reviews several classes of innovation actors expected to participate in the online 

ecosystem along with their notional information and resource needs.   Section 2.4 

develops three propositions for empirical testing.  

2.1. Open innovation and ICTs 

In the innovation management and policy literature, the importance of networks 

has emerged as a broad and growing research field over the past 25 years (Ahuja, 

Lampert, & Tandon, 2008).  Only in the last ten years, however, has open innovation 

gained traction among scholars as a unifying framework to organize research around the 
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sourcing and sharing of ideas and resources (Dahlander & Gann, 2010).  Inherent in the 

open innovation literature is an emphasis on networks and information and 

communication technologies (ICTs) as foundational mechanisms allowing firms to 

extend their reach into the larger “innovation ecosystem”.   While “openness” is certainly 

not new as an organizational concept (Scott & Davis, 2006), some of the outcomes 

assumed as important in the open innovation literature are (Chesbrough, 2006).  For 

example, participation by a variety of actor types is considered as an important indicator 

of the evolution of innovation activity from in-house R&D dominated by corporate labs 

to a more permeable interface between firms and their many influencers.   

Chesbrough (2003) defines open innovation as “a paradigm that assumes that 

firms can and should use external ideas as well as internal ideas, and internal and external 

paths to market, as firms look to advance their technology” (p. XXIV).  Whereas the prior 

“closed” paradigm of innovation drew primarily on in-house R&D for new product 

development, open innovation assumes permeable firm boundaries such that (a) external 

ideas inform internal R&D practices, (b) internal R&D may be strategically shared with 

outsiders, and (c) new products can be sourced internally or externally (i.e., via merger or 

acquisition) or spun-out in new ventures.   

In addition to networks, the open innovation research agenda considers other 

contemporary changes in the socioeconomic landscape, including how new 

communication technologies enable novel forms of collaboration and how globalization, 

competition, and the atomization of knowledge encourage specialization and vertical 

disintegration.  Nonetheless, many innovation scholars question the utility of open 

innovation as a valid theoretical construct, criticizing it as “old wine in new bottles” 
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because it simply revisits prior work such as absorptive capacity and lead-user innovation 

(Lichtenthaler, 2011; c.f. Cohen & Levinthal, 1990 and von Hippel, 1988).  

Indeed, part of the allure of open innovation as a field of scholarship is that it is a 

convenient label for synthesizing related work on “outsourcing, networks, core 

competencies, collaboration, and the internet” (Huizingh, 2011, p. 3).  Chesbrough 

(2006) acknowledges that open innovation is closely linked to the broader R&D literature 

but argues that the paradigm offers several new contributions as a research stream.  First, 

scholarship on open innovation directly addresses the question of how much external 

sourcing of ideas and resources is optimal vis-à-vis internal processes.  Second, the 

business model takes center stage here; in the previous paradigm, outputs from in-house 

R&D fed directly into new product development, whereas in open innovation, alternative 

business models include licensing, spin-outs, and acquisitions. Third, as knowledge 

becomes increasingly diffuse, less costly to access, and of higher quality, firms realize 

efficiencies in working and learning symbiotically with external entities.  Fourth, with 

vertical disintegration and a greater intensity of interaction across network linkages, 

intermediaries play a more visible and important role in brokering connections and 

facilitating transactions.  Finally, as with the approach to studying innovation ecosystems, 

research on open innovation requires a new set of metrics that address the peculiarities of 

the framework.  

Open innovation research may incorporate varying units of analysis, including the 

firm, organization, dyad, interorganizational network, or encompassing innovation 

system (Vanhaverbeke, 2006).  Recent work by Cheng and Huizingh (2014) shows that 

open innovation activities positively affects firm performance on four dimensions, in 
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order of increasing impact: new product/service innovation, financial performance, new 

product/service success, and customer performance (i.e., customer satisfaction and 

loyalty).  The authors explain this finding by noting that broad searches are especially 

effective in producing out-of-the-box thinking and therefore in generating non-

incremental innovations.  In addition, this study tests for the moderating effect of 

entrepreneurial orientation, which captures the extent to which a firm is proactive in its 

competitive approach to market, industry, and governmental dynamism.  The results 

show that firms with high levels of entrepreneurial orientation and open innovation 

activities are more likely to experience positive performance outcomes vis-à-vis firms 

with lower levels of either measure, suggesting that “opening up” is most valuable when 

a firm subscribes to a responsive and nimble strategic disposition.  

While business models define the mechanism of “value capture” (Teece, 2010), 

the use of these models in a heavily networked context necessarily impacts and requires 

input from other actors (Thomas & Autio, 2012; Vanhaverbeke, 2006).  This is 

particularly important for the open innovation framework, which incorporates a wider 

variety of actors than more conventional models of innovation (e.g., the linear, 

innovations systems, or triple helix models).  For instance, Lee et al. (2010) provide case 

study evidence that intermediaries are becoming increasingly important in SME networks 

to facilitate faster commercialization times, to encourage cooperation among SMEs 

(instead of with large firms, where power asymmetries may disadvantage the SME), and 

to allow SMEs to focus on building core competencies.  The current research views 

network interactions in an even broader way by considering ecosystem relationships 
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among not only SMEs, established companies, and intermediaries but also scientists, the 

media, financial firms, and the general public.  

The question of how new actors emerge on ICT platforms is addressed 

by Vaast et al. (2013).  They argue that in innovation contexts new actors are a source of 

disruption, particularly in light of their ability to shape discourse around a specific set of 

technologies.  In their study of Web 2.0 innovation, the authors find that new actors 

provide additional insight and perspectives that may conflict with traditional actor 

viewpoints: Novel contributions are mediated by the collective’s within-group’s ability to 

develop a unique, legitimate, and sustained identity.  Identity "coalescence", however, is 

challenged by within-group fragmentation (where for example disparate sub-groups 

compete to set the larger collective’s agenda) and dispersion (when the line separating the 

new actor type from other established actors blurs).   Vaast et al. note limitations of their 

work as applying to only Web 2.0 innovation, and they suggest that scholars study new 

forms of ICT-mediated discourse and actor participation in other "professionalized 

fields."3 

Vaast et al. (2013) write, “Discursive practices are intricately tied to the technical 

features of the new media, and different new media are likely to result in different 

discursive practices” (pp. 1087).  Subsequently, the discourse that develops on micro-

blogs such as Twitter is likely to be much different than the discourse facilitated by 

(standard) blogs.  Moreover, as new media changes in its technical design and user 

adoption, the new actor category also evolves.  In other words, ecosystem discourse shifts 

                                                 
3 This research studies Web 2.0 enabled innovation on social media in the professionalized field of 

nanotechnology R&D.  
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not only with substantive content changes and fluid participation but also with shifts in 

the underlying ICT platform.   

In general, ICTs play an important role in the open innovation framework as 

enabling the types of interactions that result in network-driven, innovation outcomes.  

Brynjolffson (2010) remarks:  

Information technology is… a catalyst for complementary changes: It’s 

what economists call a “general purpose technology” that sets off waves 

of complementary innovations in things like business processes, new ways 

of reaching customers, new ways of connecting to suppliers, internal 

organization to the company. These complementary changes are often 10 

times as large as the size of the initial investments in the IT itself and have 

profound and long-lasting effects on our ability to create goods and 

services. 

 

But there’s a factor that has not been studied very much and, frankly, is 

not very well understood. And that is the possibility that IT can change the 

innovation process itself  [sic] (Brynjolffson, 2010).   

 

To understand how IT influences the innovation process itself, we must first 

consider the role of ICTs and knowledge in the “digital era”.  Stone (2004) argues that 

ICTs and knowledge embodied in human capital characterize production: Profits are 

often a function of intellectual property and other intangible assets, and ICTs both 

coordinate internal firm activities and provide an interface between the firm and its 

external environment.  As such, today’s firms value employee knowledge in three forms, 

including 1) technical expertise; 2) familiarity with firm business processes and 

operations; and 3) the ability to recognize and discard ineffectual approaches to problem 

solving, product development, etc.  The cognitive processing capabilities of a firm’s 

employees are likely to hinge on the quality and diversity of information sources (Cohen 

& Levinthal, 1990).  This is because learning about product development opportunities, 
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consumer preferences, technological performance, and industry adoption rates all impact 

organizational decision making (Loch & Huberman, 1999; Lynn et al., 1996).    

Recent work shows that ICT adoption furthers open innovation outcomes, but that 

selection processes determine ICT adoption patterns:  Saldanha and Krishnan (2012) find 

that firm size and degree of knowledge intensity by industry positively predict Web 2.0 

technology adoption:  Larger firms face greater coordination challenges, which Web 2.0 

technologies help address, than smaller firms, and firms in knowledge-intensive 

industries benefit from codifying tacit knowledge and promoting collaboration, both of 

which are also enabled by Web 2.0 platforms.  However, the mean firm size in Saldanha 

and Krishnan’s sample approaches 5-10 thousand employees, leaving much to be 

explained with respect to small firm adoption.  

Other empirical research reveals a broad set of open innovation outcomes as a 

result of ICT adoption.  Dodgson et al. (2006) coin the term “innovation technologies” to 

describe how Procter & Gamble uses tools to facilitate communication across knowledge 

communities internal to the firm and to find, explore, and test ideas (e.g., via simulation 

and modeling, data mining, and virtual prototyping).  The result is that by 2004 P&G was 

able to source up to 35% of its innovations externally in part due to innovation 

technology adoption (as well as other organizational changes), an increase from a 

historical rate of ~20%.  Using a case study approach to studying entrepreneurship on 

social media, Fischer and Reuber (2011) report that Twitter, through it social network 

capabilities, provides entrepreneurs a tangible source for identifying and developing 

critical resources, relationships, and business opportunities.  In their case study research 

of two large, high-technology multinationals, Ooms et al. (2015) find that social media 
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improves inbound knowledge flows into an organization by increasing availability and 

access to diverse users and communities.  

In sum, open innovation is an emerging field of research that offers a unifying 

framework for understanding inbound and outbound flows of resources and knowledge 

that traverse through networks to produce innovation outcomes.  ICTs facilitate these 

flows. However, few studies examine the intersection of ICTs, open innovation, and 

SME-based networks, and moreover, what work does exist focuses primarily on the firm 

as a unit of analysis (e.g., c.f. Ooms et al., 2015; van de Vrande et al., 2009).  This focus 

helps researchers isolate the effects of open innovation on firm outcomes (e.g., 

performance) but does little to account for how and why other actors come into 

connection with each other.  As a result, while the locus of open innovation necessarily 

resides outside any given firm, scholarship has often overlooked the “community” as a 

unit of analysis (West & Lakhani, 2008).   

Because open innovation is a framework and not a theory per se (Lichtenthaler, 

2011), a host of other literature fills in theoretical gaps to explain micro-level 

foundations.  To this end, the next section reviews background concepts on social capital 

to explain how networks facilitate the exchange of knowledge and resources both in 

dyadic and in community contexts.   

2.2. Social capital and information and knowledge as resources 

This section and the next section lay the foundations of a micro-level theory of 

social capital by considering why individuals create linkages with others and by outlining 

some key benefits with respect to information and resource access and mobilization.  

Underlying this theoretical development is the assumption that, compared to other forms 
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of organization such as markets and hierarchies, networks provide a (more) efficient 

medium by which intangible assets, such as information and knowledge, can be 

transferred (Powell, 1990).   A detailed discussion on actor class motivations and 

behaviors is deferred until the next section, but here I examine how structural positions in 

networks lead to distinct types of outcomes in terms of information access and resource 

mobialization.  The analysis primarily draws on the economic sociology literature, but it 

also acknowledges that ICT platform-specific design criteria influence how social capital 

accrues to individuals in online settings.    

Social capital is often contrasted with two other types of capital, physical and 

human capital (Coleman, 1988; Kadushin, 2011; Lin, 2001).  Physical capital conveys 

surplus and investment properties: Investments in physical capital (e.g., machinery) yield 

profits earned on transforming inputs to outputs through production processes (Lin, 2001 

citing Marx).  Human capital, on the other hand, constitutes investments in individual 

competencies, such as knowledge, skills, and aptitude, as positive predictors of 

individual, organizational, and societal outcomes (Nordhaug, 1993).  Human capital is 

particularly salient in high-technology domains where increasing levels of knowledge 

specialization require longer periods of education and larger team sizes (B. F. Jones, 

2009).  Additionally, information asymmetries and competing incentives between 

business and technology managers require scientists and entrepreneurs to traverse 

multiple landscapes (Auersald, 2007), suggesting the import of human capital in the form 

of generalized business and people skills (R. A. Baron & Markman, 2003).  

Social capital differs from other types of capital in that it is primarily accessed 

and conferred through network relationships (Coleman, 1988; Lin, 2001; Monge & 
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Contractor, 2003).  Lin (2001) defines social capital as the “resources embedded in a 

social structure which are accessed and/or mobilized in purposive actions” (p. 35).  Three 

components constitute Lin’s framework: embeddedness, capitalization, and effects 

(outcomes) (Figure A.2 in the Appendix).  Embeddedness includes collective assets (such 

as trust, norms, etc.) and structural and positional variations, both of which influence 

capitalization, or accessibility of network locations and resources.  Accessibility enables 

mobilization – i.e., the use of contacts and their resources – and both accessibility and 

mobilization result in instrumental and expressive outcomes.  Instrumental effects include 

resources the individual does not already have, while expressive effects concern 

resources that the individual would like to maintain and preserve.  This causal approach 

implies that inequalities in embeddedness levels lead to variations in capitalization and 

thus diverging outcomes.  Rarely do scholars measure investments and actual resources, 

however; the theory is usually tested with potential access to resources and perceived 

advantages as outcomes (Kadushin, 2011).  

Resource dependency and exchange theories help explain the creation and 

maintenance of network ties over time.  Exchange theory suggests that actors exchange 

resources because of resource needs and largess; furthermore, they enter into trade 

relationships to maximize power derived from their network position and to minimize 

their dependency on (and exclusion from) trade partners (Monge & Contractor, 2003).  

Resource dependency theory, conversely, posits that actors are more likely to structure 

their ties in networks to guard against environmental uncertainty (Street & Cameron, 

2007).  This occurs through two mechanisms: network extension, where organizations 

seek to develop new ties, and network consolidation, where past (positive) interactions 
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predict future relationships (Monge & Contractor, 2003). Recurring communication 

positively impacts likelihood of persistent links, even after the value of resource 

exchange declines.   

Two types of resources available via network interactions include information 

and knowledge (Phelps, Heidl, & Wadhwa, 2012).  Some scholars treat information and 

knowledge synonymously, yet there are important differences between these two 

concepts.  Information communicates data, or empirically observed (subjective or 

objective) facts, in a coherent manner (Aamodt & Nygård, 1995); information is data 

with meaning, encapsulated in a message, and therefore alters perceptions about the 

world and one’s knowledge.  High quality information informs decision making by acting 

as a catalyst in problem solving; people search selectively and incompletely for 

information to determine alternatives to and possible consequences of their decisions 

(Choo, 2006; B. D. Jones, 2003; Newman, 2010; Simon, 1997).  Information is 

particularly important in science-based domains because of the evolving nature of the 

technology, because of information asymmetries between different types of actors (e.g., 

the entrepreneur and scientist), and because of uncertain market environments (Audretsch 

et al., 2007).   

Knowledge, on the other hand, is considered as the tacit, applied form of 

information, e.g., in problem solving contexts (Zins, 2007).  In addition, knowledge is 

often conceived of as an output of learning and informs expectations about the world 

(Choo, 2006).   When communicated from one party to another, information leaves traces 

behind for empirical observation (e.g., through artifacts such as email and news media).  

While this may also be true for knowledge, highly complex information stored as know-
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how is difficult to describe and transfer, suggesting a less discernible and codifiable 

imprint than information per se (von Hippel, 1994).  

If we can think of the innovation ecosystem’s online footprint as a marketplace 

for ideas, the ability to access, recombine, and create new knowledge is an important 

outcome of social capital development.   Nahapiet and Ghoshal’s (1998) work offers a 

theoretical lens from which to view this process (Figure A.3 in the Appendix).  The 

authors distinguish between three types of social capital, structural, relational, and 

cognitive.  Structural aspects of social capital relate to network tie formation and whole 

network configuration, whereas relational capital concerns trust, norms, obligations, and 

identification (e.g., within an encompassing homogenous group).  Cognitive capital 

captures the extent to which two or more parties share a common code, language, and 

narrative.  While social, relational, and cognitive capital interact with one another, they 

also establish a framework for the creation of intellectual capital through the 

combination and exchange of existing knowledge.  Comparing Lin’s path diagram to 

Nahapiet and Goshal’s, we see that the construction of intellectual capital through social 

capital is a more specific case of Lin’s generalized framework.  With the development of 

intellectual capital (i.e., knowledge), organizations are able to develop other sources of 

competitive advantage, assuming that knowledge is the basis for other innovation 

outcomes, such as patenting and new product development (Kogut & Zander, 1992).   

Once network ties develop at the micro-level, meso-level structural phenomena 

materialize at an aggregate level.  Two camps emerge here, distinguishing between social 

capital accruing at the individual and network levels (Kadushin, 2011).  The first camp 

argues that social capital develops primarily through dense and repeated connections.  



35 

Coleman (1988, 1993) and Putnam (1995) discuss social capital in terms of the 

development of common norms and trust which facilitate low-cost monitoring and robust 

civic engagement.  In particular, Coleman’s (1988) view of social capital emphasizes the 

benefits of an ego’s placement in a densely connected group of actors (i.e., alters).  Dense 

clusters result from high levels of triadic closure, wherein ties from alter to alter 

supplement ties emanating from ego; that is, if B is connected to A and C, then A is also 

connected to C.  Closure is assumed to result in lower costs of monitoring and 

sanctioning because opportunistic behavior is 1) less likely to go unnoticed given 

network density; 2) more likely to be punished by immediate actors; and 3) less likely to 

occur because of shared norms.   Because everyone knows everyone else, closure 

contributes to reputation building (Coleman, 1988).  

Social capital as closure appears in the economic sociology literature as 

“embedded networks”, which present an economic context for transacting within the 

boundaries of well-established relationships (Granovetter, 1985).  Uzzi’s (1996, 1997)  

qualitative and quantitative studies of New York’s fashion district show that embedded 

networks exhibit three important characteristics:  (1) an ability to develop trust beyond 

contractual obligations.  Individuals can fall back on heuristics, thereby saving resources 

and time; (2) fine grained information transfer, which conveys bundles of information 

beyond price alone through a chunking mechanism.  The information is detailed, tacit and 

holistic (rather than divisible) in terms of conceptual substance; and (3) joint problem 

solving, which allows for both dynamic and ad-hoc problem solving.  Uzzi contends that 

people search deeply within relationships rather than broadly across different 

relationships.  
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The second camp of theorists considers social capital primarily as a theory of self-

interest (Lin, 2001; Monge & Contractor, 2003).   In contrast to emphasizing closure and 

overall network density, Granovetter’s (1973) seminal work stresses the benefits of weak 

ties that connect densely connected clusters of actors.  Diverse information traverses 

across these links and enables individuals to access resources that would otherwise be 

unavailable. Social capital as a theory of self-interest often adopts brokerage and 

structural holes to explain how benefits accrue at the individual level.  A broker in 

essence connects two different (i.e., non-redundant) groups that would otherwise not be 

connected without the bridging relationship.  A structural hole exists when B is connected 

to A and C, but A and C are not tied.4  In this example, B is a broker between A and C 

and may exploit the structural hole to access and filter information by sharing and 

withholding information in potentially strategic ways.  In addition, B is also the first to 

know new content originating from either A or C and therefore may enjoy referrals and 

high visibility among other actors (e.g., by being sought out for information before others 

are approached) (Burt, 1992).  Burt (2004) finds that individuals spanning structural holes 

are more likely to generate and be rewarded for subjectively perceived “good ideas” in 

part because they bridge distinct specialty areas. Yet, it is unclear whether actors always 

choose to manipulate information flows in structural holes when given the opportunity 

(Monge & Contractor, 2003).  

While brokering often results in returns to the individual in terms of an 

information or reputational advantage, the organization may benefit from employees’ 

                                                 
4 In structural hole theory, A and C belong to distinct clusters.  Multiplexity – multiple relational 

dimensions – in networks suggests multiple types of relationships between actors.  In this context, the 

network is viewed only in one dimension.  
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boundary spanning behaviors, too.   In Cohen and Levinthal’s (1990) seminal paper, the 

concept of absorptive capacity refers to a firm’s ability to exploit prior held knowledge 

via its recognition, assimilation, and application of new knowledge. Sources of absorptive 

capacity include (1) cultivating knowledge and learning in an-house manner, such as 

through R&D investments and capabilities, (2) by hiring expertise from outside the firm, 

and (3) via communication systems and networks of organizations and individuals.  The 

appropriate balance of one source vis-à-vis another is determined by how tacit and firm-

specific the knowledge is: Gilsing et al. (2008) find that cognitive and technological 

distance between two actors is curvilinear in relationship to the successful exploitation of 

the network linkage (i.e., too much or too little distance is counterproductive).  

Continuing this line of reasoning, if online communication provides codified, generalized 

information, it seems likely that communication with external entities may provide a 

source of valuable environmental information.  And by definition, if ecosystem 

communications occur in one substantive ST&I domain, then cognitive distance may 

never reach unproductive limits.   

 Both types of social capital (i.e., relational and structural) may exist within and 

across communities in a network, sometimes simultaneously.  Burt (2001) argues that 

actors within a “group” (i.e., community) can cohesively create dense linkages internally, 

thereby facilitating closure, trust, shared norms, as well as enabling a capacity to self-

monitor and implement sanctions for deviant behavior.  Linkages across groups, in 

contrast, create structural holes and the information advantage characterized most aptly 

by Granovetter (1973) and Burt (1992).   Burt (2001) shows evidence supporting better 

performance as a result of fewer network constraints (i.e., fewer dense linkages), but he 
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goes on to theorize that within group closure in conjunction with boundary spanning ties 

may result in unparalleled performance outcomes.  This claim supports Hansen’s (1999) 

results showing weak ties accelerate search processes but impede the complex transfer of 

information; organizations may wish to design internal structures that facilitate both 

search and transfer processes simultaneously depending on the complexity of the 

knowledge involved.   

I contend that online platforms alter the dynamics of social capital formation and 

maintenance vis-à-vis offline networks.  From a purely structural standpoint, closure 

resulting in dense communities and brokerage across weak ties resulting in structural 

holes are possible in the online ecosystem.   However, outcomes realized through 

different structural arrangements may depend on the platform’s design.  That is, on online 

platforms, it does not necessarily follow that closure and dense communities result in 

high levels of trust, reputation building, monitoring, and sanctioning; it also does not 

follow that brokerage and structural holes result in high levels of social capital via 

reputational and gatekeeping advantages. For example, Ganley and Lampe (2009)  study 

social capital on Slashdot, a technology centric news and commentary site and find that 

closure (“network constraint”) predicts higher levels of “karma”, or a social capital 

measure of a user’s contributions to the site.  To the surprise of the authors, however, 

between-ness negatively predicts karma.   

On Twitter, a platform with significant character constraints, strong ties via 

closure may never result in the complex transfer of knowledge, as Uzzi (1996, 1997) and 

Hansen (1999) might predict.  In addition, as Kielser et al. (2012) note, anonymity, a 

proliferation of pseudonyms, and a subsequent inability to sanction, may erode trust and a 
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sense of shared norms, impeding any sense of embeddedness.  Nevertheless, the platform 

may facilitate the development of weak ties and structural holes, which could facilitate 

the search for information across diverse topical areas.5  

Recent work shows that Web 2.0 technologies and social media can indeed 

facilitate the discovery of useful information. Ashurst et al. (2012) find that strategic use 

of Web 2.0 platforms, including social media, allow firms to effectively explore and/or 

exploit resources and business opportunities for product or process innovation.  

Exploration refers to the discovery of new concepts, innovations, and business 

opportunities outside of established organizational routines, whereas exploitation is the 

process of achieving operational efficiencies of known certainties that are, for example, 

most likely to maintain short-term revenue streams and profitability (March, 1991).  In  a 

study of  Twitter in Korea, Choi et al. (2011) compare four innovation-oriented 

communities with four non-innovation communities and find that members of 

technology-based ecosystems are more open, less geographically defined, and share more 

awareness of issues than their counterparts.   

In sum, the literature on social capital asserts that network structure and relational 

assets matter for the mobilization of resources, which include information and 

knowledge.  Network structures form over time in such a way that enhance the 

informational advantage of actors, in terms of novelty and diversity of information, as 

well as an ability to synthesize “good” ideas (Aral & Walker, 2012; Burt, 2004).  Yet, 

relational elements such as reputation, trust, and shared norms facilitate the transfer of 

complex knowledge that information exchanges alone cannot (Hansen, 1999; Uzzi, 1996, 

                                                 
5 Refer to Chapter 3 for a more detailed discussion of Twitter’s design and usage features.  
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1997). That said, in public social media contexts where participation is inexpensive and 

therefore fluid – and where reputation, trust, and shared norms can be challenging to 

normalize – it is unclear whether actors experience any returns other than improved 

awareness and an enhanced ability to explore the environment.   

2.3. Ecosystem actors  

The innovation ecosystem consists of a broad cross-section of actors who, while 

acknowledged in the open innovation literature, are rarely studied at the same time.  A 

possible explanation of this limited empirical research stems from the magnitude of 

actors’ diverse interests and motivations and the difficulty that arises with articulating a 

set of testable propositions by which theory can be explored, refuted, or confirmed.    

The full range of ecosystem actors includes a set of primary actors as identified 

by the innovation literature (e.g., Corsaro, Cantù, & Tunisini, 2012; Leydesdorff & 

Meyer, 2006; Lundvall, 2007; Neal et al., 2008): established (larger) firms, entrepreneurs 

and high-technology SMEs, financial professionals, scientists, and intermediaries.  Cooke 

(2001) also identifies a cadre of supporting agents (e.g., lawyers, consultants, and 

accountants) that facilitate the “exploitation and commercialization of scientific findings” 

(pg. 962).  Additionally, because social media is inherently a communications channel 

with strong media representation, I add to this list the media entity, which may be 

traditional or new in its choice of channel and generalist or specialist in focus.  Also 

included within the scope of ecosystem actors is “other users”, which may include 

hobbyists and individuals not ostensibly affiliated with an institution.     

Under ideal conditions, each actor in the ecosystem is conceived of as interacting 

symbiotically with other actors in terms of (a) specialization, (b) complementarities 
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within that specialization, and (c) the ability to co-evolve based on industry and 

technological progress (Thomas & Autio, 2012).  Each of these actor types are described 

below and are compared and contrasted across two dimensions, by (1) anticipated 

information needs and motivations, as informed by theory and empirical research, and (2) 

expected information behavior with respect to social media usage. Table 2.1 summarizes 

this orientation for each actor type.  

Established firms and entrepreneurs.   Small firms differ from large firms in 

several ways, and these differences influence small firms’ orientation towards network 

participation, open innovation, and social media usage. Most notably, large firms enjoy 

wide and deep resource bases, thus making the commercialization of innovations 

operationally easier than for the resource strapped SMEs (Narula, 2004; Rothwell, 1989).  

In contrast to the large firm, the entrepreneur is a risk seeker and investor of time and 

capital: In high-technology domains in particular, entrepreneurs seek to exploit 

inefficiencies in transaction costs; they evaluate opportunities and “internalize 

externalities [in order to] solve complex coordination problems” (Auersald, 2007, p. 24).  

In terms of competencies, evolutionary scholars assume that large firms are more adept at 

“scaling up” and achieving mass economies of scale than their small firm counterparts 

(Nelson & Winter, 1982), but smaller firms are more agile and responsive to changing 

environmental conditions (A. Arora & Gambardella, 1994).   This is what Rothwell 

(1989) terms the SME behavioral advantage (as opposed to the large firm’s material 

advantages).  
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Table 2.1: Ecosystem actor types, information needs, and expected behaviors 

 

 

Actor type Information needs and motivations  Expected information seeking behavior in the  

online innovation ecosystem 

Established large firms Brand management, ideation, monitoring and/or 

leading of the ecosystem environment  

Network with customers, suppliers, and employees.  Consume 

and produce information  

Entrepreneurs and SMEs Reduce uncertainty introduced by information 

asymmetries, environmental dynamism, and 

unclear goals 

Network widely across actor groups on social media to access 

diverse information and complimentary assets.  May or may not 

be a producer of information  

Supporting actors Seek to understand the market and find a niche 

for their services 

Aggressively network with potential clients (e.g., large firms 

and entrepreneurs and SMEs).  Primarily produces but also 

consumes some information 

Finance professionals Discovery of emerging technologies, product and 

market potential, and promising start-ups  

Network with media entities and thought-leaders to stay abreast 

of technological and market developments; network and engage 

with promising start-ups  

Scientists Access literature, disseminate findings, 

participate in online meetings, discover peers 

Network primarily with other scientists, media entities, and 

intermediaries.  Produce and consume of information  

Intermediaries Build entrepreneurial capacity, act as 

clearinghouses for information, increase 

participation, and confer reputational benefits  

Network with other ecosystem actor types as soft brokers (i.e., 

not economic brokers).  Produce and consume information   

Media actors Work under time constraints to access sources 

and prepare a narrative of ST&I events 

Network with other ecosystem actors to prepare and diffuse 

storylines.  Primarily produce but also consume information 

Unaffiliated “other” actors Unknown personal and/or professional interests 

and motivations  

Unknown  
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Resource and capability constraints lead small firms to seek complementarities in 

network settings, and this trend is increasing with globalization (Autio, 1997; Lee et al., 

2010; Narula, 2004).  In open innovation contexts, SMEs appear more likely to view 

external sourcing through networks as being more important in the (later) 

commercialization stages of product development than during the initial R&D stages 

because of the ability to access in-house intellectual property (Lee et al., 2010).  In other 

words, complementarities are lacking in the later stages of the commercialization process, 

including large scale production, marketing, and distribution, and therefore network 

participation is focused on addressing these deficiencies.  Using survey data, van de 

Vrande et al. (2009) provide evidence that SMEs are more likely to employ networks for 

open innovation purposes when those practices require less commitment: “The more 

popular practices like customer involvement and external networking are informal, 

unstructured practices which do not require substantial investments.  IP licensing, 

venturing and external participation on the contrary, require financial investments, 

formalized contracts and a structured innovation portfolio approach to manage the risks” 

(p. 434).  

Aslesen and Freel (2012) report that more than 50% of firms in their sample 

engage in inbound open innovation through the Internet, though high-tech firms in 

particular are more likely to resort to other channels of information including suppliers, 

customers, universities, and technology centers.  (Recall that inbound open innovation 

refers to the sourcing of new ideas and resources.)  The authors suggest that the Internet 

is less amenable to conveying tacit knowledge, and therefore, the Internet is more 

appropriate as an information source for low-tech firms.  Based on this review of the 
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literature, it appears external sourcing of R&D on social media is unlikely due to the 

public nature of the Internet, limitations of online communication in transferring tacit 

knowledge, and the broader trend for SMEs to seek later stage and lower commitment 

open innovation activities.    

According to organizational theorists, uncertainty is a primary driver of 

information seeking behavior (Case, 2012; Choo, 2006), and I contend that social media 

may be helpful to SMEs in this broader context.  Firstly, information asymmetries 

contribute to uncertainty when high-tech entrepreneurs suffer from incomplete 

information about their customers, suppliers, and funders (Audretsch et al., 2007).  

Environmental dynamism is another source of uncertainty and may stem from an 

evolving industry structure, technological landscape, and market demand (Hough & 

White, 2003; Schilke, 2013).  Finally, entrepreneurs in particular may lack clarity about 

their goals and instead elect to mobilize their resources (including network based 

resources) to effectuate an outcome (Sarasvathy, 2001).  Outcomes here are not optimized 

but are rather selected as a byproduct of the mobilization process.     

Yet, high quality information does inform better decision making (Newman, 

2010).   Uncertainty generally rises and then falls during the information seeking and 

search process, and as understanding and meaning develop, confidence, interest, and 

motivation to act increase accordingly.6  In comparison to scientists and engineers, 

however, managers must respond to pressing problems – i.e., their timeframe for 

responding is much shorter – and they rarely have an opportunity to read in detail (Case, 

2012).  Social media may then act as a way for managers to reduce information 

                                                 
6 This is the stylized application of information as knowledge argument introduced above in Section 2.2.   
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asymmetries, monitor environmental dynamism, and articulate their goals with the 

expectation of iterating in the effectuation process.  Implicit in this supposition is a 

propensity for managers and small firms to network broadly across groups to access 

information through a social network structure7, without having to invest considerable 

time in any of these activities.  

In contrast to small firms, larger firms may be more likely to use social media in 

early stage idea generation.  Dahl et al. (2011) report that firms employ social media to 

broaden the scope of participation; for example, businesses may direct ideas generated by 

consumers into R&D product funnels.   In addition, MNCs are particularly likely to 

operate multiple accounts on the same platform (e.g., Twitter) for separate business units, 

business functions, or geographic locales to manage and market their brand and to 

facilitate customer interaction from an operational perspective (Burton & Soboleva, 

2011).  It may also be the case that large firms embed themselves into an online 

ecosystem in much the same way as they do in (offline) innovation systems, e.g., where 

they may act as a central, coordinating force in a regional supply chain (Christopherson 

& Clark, 2007a, 2007b; Sternberg & Tamásy, 1999).  In this type of network setting, 

large MNEs maintain a disproportionate share of power vis-à-vis smaller firms.    

While social media is most visible in B2C channels, it is also evolving in B2B 

markets; challenges in the B2B arena include the perceived irrelevance of social media, 

unfamiliarity with the technology, and a lack of causal understanding as to how social 

media can directly support brand development (Michaelidou, Siamagka, & 

Christodoulides, 2011).  Based on a survey of 351 company executives in eight countries, 

                                                 
7 Refer to the discussion in Section 2.2 relating social capital development to information and knowledge 

development advantages  
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Baird and Parasnis (2011) find that 79% of companies have a presence on social 

networking sites, 55% on media sharing sites, and 52% on microblogging sites.   

Supporting actors.   SMEs and entrepreneurs rely on the services of supporting 

actors, such as consultants, designers, software engineers, lawyers, and accountants, to 

access complimentary assets not available within the firm (Muller & Zenker, 2001).  

Rather than being influenced by highly uncertain environments, I contend that these 

supporting actors work to decrease uncertainty8 by for example helping SMEs better 

navigate intellectual property regimes, accounting rules, and the broader ICT landscape.  

It is due to this difference in motivation that supporting agents are introduced as a 

separate actor type than high-technology SMEs and large firms, respectively.   

The practitioner literature has tracked the rise of the social media consultant, a 

profit seeking individual (or small firm) offering services to help clients develop an 

“open” and “transparent” online presence (Samuel, 2009).  A typical argument for a 

client’s social media participation is to “get closer to the customer” and to better initiate 

the front-end of the sales cycle via lead identification and relationship management 

(Giamanco & Gregoire, 2012; Kietzmann, Hermkens, McCarthy, & Silvestre, 2011).  

According to a 2013 Entrepreneur article, for the social media consultant, one way to 

demonstrate marketing know-how and effectiveness is to maintain a successful personal 

social media presence, e.g., by sharing valuable content and responding promptly to 

inquiries (Shandrow, 2013).  Another qualification of a competent social media 

                                                 
8 Muller and Zenker (2001) present a conceptual framework wherein knowledge-intensive based services 

(KIBS) firms codify and apply knowledge in manufacturing SME contexts:  KIBS firms problem solve on 

behalf of their clients and in the process generate interaction-based knowledge outputs.  Working across 

different clients promotes the recombination of knowledge and can for example guide client decision-

making based on industry best practices.  
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consultant is to understand a prospective client’s market.  Thus, since consultants (and 

other service providers) are in the business of attracting and maintaining clients, I expect 

these actors to aggressively network with ecosystem firms in such a way as to favorably 

market their competencies for the purpose of enhancing their own sales cycles.  

Financiers.  Limited research exists on the information needs and behaviors of 

professionals in financial institutions:  through a case study design, Miranda and 

Tarapanoff (2008) show organizations continuously gauge risks and valuations of 

internally controlled assets and liabilities vis-à-vis similar external market assessments.   

Information technologies facilitate the routinization of some monitoring tasks and 

consequently direct the attention of skilled individuals to problem areas on an as-needed 

basis.  Huvila (2010) examines another sample of (corporate) financial professionals and 

finds that selection of information sources is a function of perceived effectiveness.   

Information sources are diverse and include commissioned reports, market information, 

general and financial statistics, newspapers, conferences, alerts, and websites.  

Organizations and individuals seeking to invest private funds into new venture 

creation use several decision making heuristics.  Angel investors, for instance, are often 

themselves wealthy entrepreneurs or experienced business professionals, who invest in 

promising ideas with expectations for moderate returns in a 5-10 year time horizon 

(Amatucci & Sohl, 2007).  Venture capitalists, on the other hand, may expect a 40% (or 

more) rate of return and significant control over a firm’s operations, management team, 

and strategy.  Research shows that venture capitalists routinely fund a low percentage 

(e.g., ~2%) of all requests received and consider a venture’s management team, market, 

product, and financial potential when deciding which firms to invest in (Petty & Gruber, 
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2011).  In addition, internal factors, such as the current portfolio of investments, also 

provide a salient input into the decision making process.  The decision of whether to 

invest in a particular company is therefore the outcome of a complex set of selection 

rules.  Yet the pool of potential candidates for investment can be thought of as an 

exploration and discovery-driven process which may in part be facilitated by open 

innovation technologies.  With respect to product and market potential, venture capitalists 

and other financial professionals may monitor social media to assess a technology or 

company’s promise or even to solicit pitches for funding.9   

Scientists.  When not teaching, writing or reviewing proposals and manuscripts, 

and serving in a professional capacity, scientists focus on producing research that 

conforms to a generally accepted scientific method.    Intuitively, the process by which 

new scientific achievement advances may not be amenable to 140 or fewer characters or 

of text in Twitter.  In addition, increasing pressure to publish before the competition and 

to commercialize research outputs limit certain types of information and data sharing 

(Neal et al., 2008; Shibayama, Walsh, & Baba, 2012; Van Noorden, 2014).  Scientists’ 

information needs lie at the frontier of knowledge, and conferences, databases and journal 

literature, and interpersonal relationships all constitute conventional sources of 

information.  Bichteler and Ward (1989, cited in Case, 2012) find that a sample of 56 

geoscientists spent an average of four hours searching for information, and that 

interpersonal sources of information were most often used followed by the journal 

literature.   

                                                 
9 Venture capitalists are online; see http://blog.hubspot.com/blog/tabid/6307/bid/9273/30-Most-Influential-

Venture-Capitalists-on-Twitter-VC-Remix.aspx for a list of influential Twitter venture capitalists.  
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Turning to peers as a primary source of new information can also be seen in the 

context of modern ICTs, which enable interpersonal communication largely through 

social networks. As Bonetta (2009) reports, by 2009, some early adopting scientists were 

using Twitter to publicize their work, access relevant literature, disseminate findings, and 

generally promote public engagement in a spirit of “open” science (c.f. Bonte, 2011).   

By 2011, some scientists were participating in online Twitter meetings with agendas 

ranging from new work to operational aspects ongoing research (Reich, 2011), while 

others were using the platform to comment on papers post-publication (Mandavilli, 

2011).   

A 2014 survey published in Nature indicates that scientists are more likely to use 

social media to discover peers, post work content, and follow discussions than to discover 

jobs, track online metrics, and contact peers (Van Noorden, 2014).  In addition, scientists 

use social media in ways that differ sharply by platform.  For example, while almost 50% 

of the 3,000 respondents (not including researchers in the social sciences and humanities) 

report using ResearchGate, a social networking platform exclusively for researchers, less 

than 15% use Twitter.  Some platforms promote certain types of behavior, thus 

suggesting self-selection into one mode of usage vs. another.  For instance,  “half of the 

Twitteratti said that they use it to follow discussions on research related issues, and 40% 

said that it is a medium for ‘commenting on research that is relevant to my field’ 

(compared with 15% on ResearchGate)” (Van Noorden, 2014, p. 127).10 

This review of the literature suggests scientists’ usage of social media is largely 

confined to interacting with other scientists, media entities, and intermediary institutions 

                                                 
10 This survey does not address how scientists interact on social media to further innovative outcomes (e.g., 

how they interact with high-technology firms), however. 
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(e.g., professional associations) to access information and to expand the scope of their 

networks.  That is, although the ecosystem metaphor emphasizes interconnectedness 

among different actor types, there is scarce evidence that scientists as a whole are 

actively observing or engaging with downstream commercialization of research by firms, 

as revealed through their social media activity.    

New and traditional media players. The production of news content necessarily 

relies on information seeking behaviors: Journalists seek information from a broad array 

of sources to contextualize events and to devise and communicate the “news” in a 

narrative format (Case, 2012).  However, unlike scientists who have the luxury of 

contemplating the implications of events on theory and research, journalists deploy pre-

conceived frames of reference, which facilitate timely reporting but sometimes at the 

expense of objectivity.   The transition to online news production has resulted in several 

key developments, including (1) faster news cycles threatening methodical and credible 

reporting; (2) a blurred distinction between the gatekeeping role of conventional 

journalism and user-generated content; and (3) a “convergence” across media types, e.g., 

print, webs, blogs, and social (Kolodzy, Grant, DeMars, & Wilkinson, 2014; Mitchelstein 

& Boczkowski, 2009).  

In the online realm, media entities release new information, amplify trends, and 

direct traffic from social media platforms to their websites via hyperlinks.  Presumably 

many specialized sources rely on an open-access, advertising business model to generate 

revenues (c.f. Gallaugher, Auger, & BarNir, 2001 for other relevant business models).  

Increased visibility on social media sites generates traffic, which in turn increases the 

likelihood of a user clicking on a sponsor’s advertising, thus producing revenue for the 
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online site.  Colliander and Dahlen (2011) note that online publicity can result in 

noteworthy gains for firms via increased sales and enhanced reputation.  Consequently, a 

trade journalist or media entity promulgating scientific achievements and leading-edge 

industry research and development may be perceived as an authoritative source of 

information.   

For the purposes of this work, a media entity can be designated as “traditional”, 

(e.g., The New York Times, BBC, and Science Friday) maintaining print, radio, and/or 

television outlets, or “new” with a primarily online presence (e.g., Graphene Times).  

Media entities can also be designated as generalist or specialized in focus, with a possible 

correlation between traditional sources and general content and between new media 

sources and more specialized content.   The basis of this claim lies within the 

proliferation of new media entities serving the “long tail” of readers’ information needs 

and interests (Carpenter, 2010): With the falling cost of publication, more esoteric 

information sources satisfy the information preferences of an increasingly fragmented 

audience.   Large, established, and generalist media outlets may enjoy larger readership 

audiences than their newer and more specialized counterparts, and controlling for this 

size and reach differential is an important component in assessing ecosystem dynamics.  

Intermediaries.  Nationally or regionally-based intermediaries, such as economic 

development agencies, incubators, and public-private partnerships, aspire to build 

entrepreneurial capacity, diffuse knowledge and transfer technology, broker relationships, 

and increase participation (Howells, 2006).  Intermediaries may also mitigate transaction 

costs and information asymmetries among various ecosystem stakeholders (Cooke, 2002; 

Diaz-Puente et al. 2009).   Furthermore, by symbolically and financially awarding firms 
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for their ingenuity and/or market success, intermediaries confer reputational effects on 

individuals and organizations who may not otherwise be differentiated in a crowded 

milieu of actors.  Katzy et al. (2013) find that in open innovation contexts, some 

intermediaries go beyond passive facilitation to act as strategic deal-brokers by increasing 

the number of potential partners in a network and by matching select partners to meet 

client objectives. The economic utility of deal-making is due in part to information 

asymmetries that exist between network participants and concerns of moral hazard 

stemming from revealing sensitive intellectual property for assessment purposes (Lee et 

al., 2010).   

The social media presence of intermediaries may relate to promoting open 

innovation outcomes.  For example, the mission of the United States Economic 

Development Administration is to “lead the federal economic development agenda by 

promoting innovation and competitiveness, preparing American regions for growth and 

success in the worldwide economy” (EDA, n.d.).  In practice, the US Federal government 

sponsors challenge.gov, a site that offers prizes to creative problem-solving 

entrepreneurs.  Government entities participating in challenge.gov include the National 

Science Foundation, Department of Energy, Department of Commerce, Department of 

Health and Human Services, and the White House.  Each challenge features Twitter and 

Facebook widgets allowing users to “share the challenge” with their private and/or public 

networks.  

At the regional level, economic development agencies leverage social media to 

stimulate the local innovation ecosystem.  For example, Invest Atlanta in 2012 hosted 

startupatlanta.com, which offered observers an opportunity to “like” local entrepreneurs’ 



53 

videos.  The winner – the firm with the most Facebook “likes” – won ten thousand 

dollars.   However, it remains to be seen whether these government uses of social media 

engage the public and result in better entrepreneurial outcomes.  Government bodies 

recognizing the benefits of social media must also acknowledge considerable challenges: 

For example, agencies must grapple with the novelty of data sources, a lack of 

methodological know-how, and risks related to privacy, trust, and shifting perceptions of 

authority (Leavey, 2013).  

Given the objective to mediate in networked environments, intermediaries are 

expected to maintain linkages with all types of ecosystem actors to lower costs of 

transacting, reduce information asymmetries, and broker relationships.  While its social 

media presence will not likely result in newfound economic deals per se, an intermediary 

may be able to facilitate the cohesion of the ecosystem by actively or passively 

“introducing” an array of users who would not otherwise know of each other’s existence.  

2.4. Exploratory Propositions  

The exploratory propositions are guided by a simple conceptual model (Figure 

2.2), which shows information distance mediating the relationship between actor needs 

and goals and network formation.  As network structure develops, so too does social 

capital, which facilitates innovation outcomes. The conceptual model is in part inspired in 

part by a structural framework emphasizing internal and external rules of engagement 

(Figure A.4 in the Appendix) (Whitbred, Fonti, Steglich, & Contractor, 2011).  Frames of 

identity established via traditional roles – e.g., the entrepreneur, venture capitalist, 

scientist or inventor, etc. – offer a set of salient external (i.e., exogenous) structural rules 

that guide network interaction.  According to Whitbred et al. (2011), “external structural 
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rules are factors exogenous to a network and are based on theoretical mechanisms, which 

previous studies have identified as influencing communication behavior on how the 

communication network emerges” (pg. 408).  As observed above, this literature review 

draws primarily from research on innovation management and policy to develop expected 

modes of interaction conforming to external structural rules.   

 

 

Figure 2.2: Conceptual model 

 

In contrast to external motivations, a set of internal structural rules shapes the 

development of the network in a real-time and dynamic manner (Whitbred et al., 2011).  

In particular, internal rules develop as a byproduct of communication.  Outcomes after 

each time period of analysis result in one of four mutually exclusive states:  New ties 

form, old ties break, disconnected actors remain detached, or previous channels of 

communication remain intact.  Internal structures are influenced by elements of intimacy 

and influence, e.g., reciprocity, transitivity, brokerage, trust, and the ability to 

meaningfully convey status and reputation through identity.  Here, although controlling 

for some of these factors, I depart from Whitbred’s et al.’s framework to explain network 
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formation in terms of information distance, as subjectively discerned by actors 

considering the initiation of a network linkage.  

Actor needs and goals. Much of the innovation literature views relationships 

between traditional innovation actors – i.e., firms, scientists and their research 

institutions, and government – as key to developing innovative capacity (Leydesdorff & 

Meyer, 2006; Nelson & Rosenberg, 1993).  This perspective is an institutional one that 

values formal linkages between established entities. For instance, basic and applied 

research formulated in the university environment informs development and 

commercialization efforts by firms, hence the nation-state’s role in funding such research 

to promote economic growth and long-term comparative advantage (Neal et al., 2008).  

In emerging science-based industries, the pace of technological change is rapid and 

knowledge evolves quickly, suggesting the need for even more integrative coupling 

between types of actors (e.g., universities and firms) to improve learning (Lynn et al., 

1996; Owen-Smith & Powell, 2004; Powell, White, Koput, & Owen‐ Smith, 2005).   

As discussed above, new ways of thinking about “open innovation” suggest a 

variety of actors are important in the development of a sustainable and competitive 

innovative platform (Chesbrough, 2003, 2006).    Lead-user innovation, for example, 

emphasizes the role of savvy users that modify existing products and processes to build 

next generation models and production techniques (von Hippel, 1988).  In more radical 

innovation contexts, open innovation might include design and idea competitions, as well 

as informal networks that can easily arrange and reconfigure knowledge outputs to 

produce innovation outcomes.  In some sense, the broader the input from a cross-section 

of actors, the more open the innovation process is.  
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The first proposition suggests non-random interactions between classes of 

ecosystem actors; i.e., actor interests and goals shape network formation in strategic 

ways, as discussed in Section 2.3.  Small innovative firms, for example, reach out to other 

users to access critical information and resources (Hoang & Antoncic, 2003); they may 

“broker” distinct communities while at the same time embedding themselves in those 

communities to increase social capital (Simoni & Labory, 2007). Firms may also follow 

their competitors to track the evolving marketplace (Baker, 1984).  Intermediaries, on the 

other hand, may be less likely to follow one another and more likely to follow incubated 

firms.  Media entities, conversely, might follow a broad cross section of actors in their 

efforts to diffuse a broad set of ecosystem relevant news.   

Table 2.1 (third column) provides additional detail around expected networking 

behaviors (as a function of their information needs) for each actor type.   I anticipate 

large firms will follow customers, suppliers, and employees, while small nanotechnology 

firms will network widely across all actor groups on social media to access diverse 

information and complimentary assets.   Because of their continuous search for new 

business, supporting actors may aggressively network with potential clients (e.g., large 

firms and entrepreneurs and SMEs).  Financial professionals, in contrast, may follow 

media entities and thought-leaders to stay abreast of technological and market 

developments and engage with promising start-ups.  I envisage scientists primarily 

following other scientists, media entities, and intermediaries to interact and learn within 

their respective field(s) of interest.  Intermediaries may network with other ecosystem 

actor types, especially firms, as soft brokers (i.e., not economic brokers).  Finally, media 
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entities are expected to network with an array of other ecosystem actors to prepare and 

diffuse storylines.   

Rather than document as hypotheses these anticipated following relationships 

between actor types (and within an actor type), it may instead be easier to concentrate on 

the larger implications for the innovation literature.   For example, small firms, 

researchers and their universities, and government bodies could be more likely to follow 

each other in a structure that supports a traditional innovation system or triple helix 

model (Leydesdorff & Meyer, 2006; Nelson & Rosenberg, 1993).  An alternative 

viewpoint, in line with the open innovation framework, might be that traditional actors 

and firms in particular are more likely to follow non-traditional actors (e.g., media 

entities) to better access evolving research, product, and especially market-related trends.  

In this potential outcome case, actors use social media to explore the broader socio-

technical landscape.  This could occur in many different ways, e.g., when firms follow 

media entities that diffuse new research breakthroughs or when firms follow finance-

related users who discuss market trends and/or offer equity funding.    

This discussion on actor dissimilarity can be linked to the emerging literature on 

heterophily as a source of social capital.  Whereas homophily suggests that individuals of 

similar backgrounds are more likely to congregate and converse (Monge & Contractor, 

2003; Rivera et al., 2010; Rogers, 2003), heterophily offers an alternative social selection 

explanation: People of assorted professions offer distinct types of resource bases and are 

thus more likely to synergistically connect with diverse consumers of those resources.  In 

their review of the literature on heterophily, Rivera et al. (2010) report that relationships 

based on attribute dissimilarity are likely to appear in challenging, complex, and 
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collaborative tasks such as scientific research and new product development.  If 

homophily generally encourages feelings of safety and familiarity within the collective, 

heterophily drives efficiency producing and individualized behavior (Kadushin, 2011, pt. 

22%).11  In sum, diverse networks offer a wider range of interests and information than 

more homogenous networks (Kadushin, 2011).   

The low cost of participating on social media should reveal a diverse set of inter-

actor category linkages, assuming that indeed users value a diversity of opinion, 

resources, and information from these linkages.  This argument presumes that users make 

a priori value judgements about the revealed identify of other users and then proceed to 

follow across actor types to access diverse network resources.  

P1a:  Actors choose whom to follow by mixing across affiliation types (i.e., via 

heterophilous relationships). 

 

Homophily, or similarity in actor attributes, may also inform network structure in 

certain cases.  First, high-technology firms could be more likely to initiate network 

linkages with one other than non-technology firm actors for competitive and/or 

knowledge building purposes: Each high-tech firm may wish to stay abreast of product, 

technology, and marketing updates materializing from other firms in the same industry.  

Observation of the market does not help a firm anticipate the demand curve per se, as 

Harrison White (1981) explains:  While neoclassical theory posits that in perfectly 

competitive markets, firms will produce to the point that marginal cost equals marginal 

revenue (or market price if the firm is a price taker), White argues that producers watch 

                                                 
11 It is worth noting that such “social selection” processes explain how actor attributes determine network 

structure; it is distinct from contagion and social influence models that seek to explain how network 

structure affects actor characteristics (e.g., how close proximity may lead to the spread of infectious 

diseases) (c.f. Robins, Lewis, & Wang, 2012). 
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each other within a market and base their actions accordingly.   White’s model presumes 

that quality is not determined by the firm but rather by consumers, who assign different 

valuations to the firm’s product.  Because valuations and cost structures differ, firms 

operate in ecological niches such that “watching” other firms (and possibly their 

respective network interactions) can become one way of generating a firm-specific 

market schedule of revenue opportunity as a function of output.  As a second example of 

homophilous relations, scientists too may benefit from within-group interaction if it 

furthers their careers and helps coordinate ongoing work (see Section 2.3 for additional 

context).  

P1b:  Actors choose whom to follow by matching on affiliation type (i.e., via 

homophilous relationships). 

 

Both P1a and P1b assume professional identity matters in the development 

of network linkages.  If actor affiliation is not important in making following 

decisions, then homophilous matching within actor category and heterophilous 

mixing across actor categories will not constitute discernible patterns within the 

ecosystem’s structural fabric.  In this case, other explanations, such as information 

value, may be consequential.  

 

Information value.  Even when individuals weigh the consequences of different 

actions, they are unable to accurately predict outcomes, attach value to choices, and 

exhaustively consider all possible alternatives (Simon, 1997).   This is a particularly 

salient issue in entrepreneurship, where cognitive biases often lead the entrepreneur to 

overestimate the merit of his idea (De Carolis & Saparito, 2006).  However, as Simon 

(1997) argues, if the individual is incapable of being entirely rational, the organization, as 
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a set of bureaucratic processes and norms, may guide choice in rational or efficient ways. 

In a similar vein, innovation technologies – i.e., innovation that is organized around ICT 

platforms – may act to guide choice in rational or efficient ways, for example by 

surfacing important technological and market trends and providing a forum around which 

to discuss such issues.  

As opposed to offline social networks and even many online varieties, 

information on Twitter is largely public.  This means that it is relatively easy for 

individuals to survey the information landscape and follow other users to subscribe to a 

distinctive set of content.  Moreover, if after a certain period of time, individuals feel that 

the information is no longer relevant, they may unfollow users.  Indeed, Fischer and 

Reuber (2011) provide case-study evidence that entrepreneurs on Twitter build friend 

networks to learn and gain new insights.  On the other hand, if a following relationship 

becomes stale and unhelpful in this respect, the entrepreneur will “unfollow” the user in 

order to save time and reduce cognitive burden.  So, in some cases, where social media 

connections persist and offer valuable sources of information, social capital develops; in 

other cases, the relationship is too short lived to provide any meaningful value.  

Nonetheless, as theorized by Nahapiet and Ghoshal (1998), access to parties is the first 

step in developing exchanging, recombining, and creating knowledge, or intellectual 

capital.   In other words, network structure is a prerequisite to the acquisition of 

information and potential exchange and recombination of knowledge: if such a 

relationship does not exist, resource transfer is impossible to achieve.  

 “Novel information is thought to be valuable because of its local scarcity” (Aral 

& Van Alstyne, 2011, p. 92):  Note here that actors subjectively assess the merit of novel 
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information.  Assuming “performance is better when communication structure matches 

the information processing requirements of a task” (Brass, Galaskiewicz, Greve, & Tsai, 

2004, p. 799), it is likely that new ties develop in response to potential sources of new 

and valuable information.  This is essentially Granovetter’s (1973)’s argument of the 

strength of weak ties turned on its head:  Instead of weak ties providing novel 

information, it is the opportunity to access novel information that results in tie formation.  

Furthermore, highly valuable (and subjectively perceived) novel information may provide 

ecosystem actors with an opportunity to explore other scarce resources and business 

opportunities either online or offline. At the same time, knowledge acquisition is not 

entirely predicated on dialogue or interaction.  Desrochers (2001), for example, argues 

that resource and knowledge combination often occurs through observation.   

If ecosystem actors value certain types of information, then complementarities 

among actor interests and goals alone may not predict existing and new ecosystem 

linkages: although certain types of information content may be highly correlated with a 

specific actor type (e.g., researchers tweet mostly about research-based topics), this may 

not be always be the case.  For example, publishers of academic journals may tweet 

highly scientific content, and individual users not ostensibly tied to a finance organization 

may tweet actively about the stock market.  This decoupling between information content 

and actor type suggests a potentially unconventional network typology where ecosystems 

actors follow a diverse set of other users in order to access and process information.  For 

example, because of the underlying uncertainty and rapid pace of technological and 

market change, actors may be more likely to value information stemming from research, 

application/product, and market-based topical areas than other types of content, which 
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could be attuned to less relevant topics that commonly emerge on Twitter (e.g., political 

events).  Consequently, actors that provide relevant information in research, 

application/product, and market-based topical areas may be more likely to be followed, 

regardless of actor type.   

So, even if some users are more likely to follow other actors in strategic ways in 

accordance with a priori held beliefs about how ecosystem actors link to one another, 

information distance (which measures novelty) may also be likely to account for the 

creation of network ties.   This is due to the subjective perception of obtaining novel (and 

therefore valuable) information as information distance increases.  Additionally 

information distance may better explain whom users choose to follow than actor mixing 

and matching alone.12   

P2a:   Actors choose whom to follow based on the perceived novelty of 

information accessible through network linkages.  

 

P2b: Information distance explains the following decisions of users better than 

actor affiliation mixing and matching alone can.  

 

 

Innovative additionality. I argue above that network formation is determined by 

actors’ information needs, interests, and goals, as well as by information distance.  

Network formation, in turn, develops social capital (Figure 2.2).  Returns to social capital 

may include wealth, power, reputation, and physical and mental well-being, though in 

this research context, potential outputs also include effects such as patenting and 

publishing.  At first glance, the link between social media and innovation outputs appears 

tenuous.  For example, there are too many confounding factors to suggest that social 

                                                 
12 This proposition can be further formalized and tested through mediation.  A mediating relationship 

implies that the direct effect of an independent variable (in this case actor interests and goals) on the 

dependent variable (network formation) can be explained in part by a third variable (information distance).   
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media is useful in explaining publishing or patenting output. Still, the growing adoption 

of social media platforms indicates less tangible (but equally important) benefits to be 

gained.  Here I focus on building innovative capacity and pay special attention to 

information as an important resource that contributes to broader awareness, knowledge 

building, and other potential open innovation outcomes.  

Much of the work on innovation links various inputs to outputs and outcomes, 

with the open innovation framework providing yet another set of inputs.  Traditional 

inputs include science and technology workforce characteristics, R&D expenditure and 

subsidies, and resource-based views at the network, firm, or individual levels (Ahuja et 

al., 2008; Barney, 1991; David, Hall, & Toole, 2000; Felin & Hesterly, 2007; R. B. 

Freeman, 2011; Powell, Owen-Smith, & Smith-Doerr, 2011).   Open innovation inputs 

include measures such as R&D expenditures across the supply chain, investments in 

outside firms, and customer and non-R&D employment involvement (Chesbrough, 2006; 

van de Vrande et al., 2009).  Common innovation outputs include counts of patents, 

publications, prizes, educational degrees awarded, and employment opportunities 

(National Research Council, 1997).  Outcomes are often less tangible than outputs and 

might include knowledge flows, collaboration, revenue growth, and productivity (NRC, 

1997; Jaffe, 2011; K. Smith, 2004).   

If one adopts a market failure approach to innovation policy, then a 

straightforward rationale regarding intervention ensues: the policy instrument addresses 

the under-provision of innovative activity occurring as a result of appropriation concerns 

and/or information asymmetries (Auersald, 2007).  It is here that many “hyper-rational” 

innovation system models fail to adequately capture firm inexperience and trial-and-error 
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approaches to problem resolution (Hobday, 2005).  In contrast, in evolutionary economic 

theory, systemic failure results from an inability to transition from one underlying 

knowledge structure to the next; markets exist to address exchange only for operational 

purposes (Bleda & del Río, 2013).  In evolutionary economics, knowledge evolves over 

time at the individual and organizational levels, knowledge facilitates change, and change 

is essential to economic growth (Nelson & Winter, 1982).13  Consequently, instead of 

relying solely on an input-output or input-outcome view of the world, the literature on 

behavioral additionality (BA) tends also to focus on aspects of knowledge acquisition and 

learning (Clarysse, Wright, & Mustar, 2009; Gok & Edler, 2012).  For example, Autio et 

al. (2008) distinguish between first-order (R&D input and output effects) and second-

order (knowledge-spillover) additionalities and find that community development leads 

to firm-level technical, business, and marketing learning. 

Similar to policy evaluation, BA addresses impact by carefully identifying the 

value-add of the intervention in the presence of the counterfactual (i.e., if nothing 

happened) (Georghiou, 2002; also see K. B. Smith & Larimer, 2009).  This approach is 

valuable because it can explain the mechanisms that link inputs to outcomes which affect 

system capacity, e.g., through additional levels of firm collaboration (Polt & Streicher, 

2005) and broader participation from non-traditional actors.  However, as recent work 

notes, BA suffers from “conceptual fuzziness” across different types of additionality, 

imperfect operationalization of core variables, and a lack of longitudinal, process-

informed empirical data by which to test causal hypotheses (Autio et al., 2008; IDEA 

Consult & Falk, 2009; Gok & Edler, 2012).  Moreover, my use of BA departs from prior 

                                                 
13 As a normative issue, growth is good and failure is not.   
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scholarship in that (1) the firm is not the only actor under investigation, and (2) the 

government is not the sole source of the intervention.  

In the third and final proposition, I summarize this discussion by considering how 

network linkages may contribute to increased innovative capacity:  By developing 

strategic social media networks in terms of actor composition and information content, 

individuals (and their organizations) may develop broader awareness of ecosystem 

activity.   Acting “strategically” conveys a set of engagement principles wherein actors 

may diversify their networks and latch-on to communities in such a way as to make their 

contributions to the ecosystem salient and timely.  In return, these actors experience 

broader awareness, in tandem with learning and knowledge building, which may result in 

innovation outcomes, such as better product development processes, strategic alliances, 

funding opportunities, and community development.14 In short, strategically-developed 

and information-rich social media networks, when coupled with an internal capacity to 

learn, may result in innovation-related outcomes.  

P3: Innovation outcomes are likely to occur in strategically-developed and 

information-rich social media networks.  

 

In conclusion, this literature review describes and synthesizes three distinct 

research streams on open innovation, social capital, and various ecosystem actors.     

Prior work examines one or two of these literatures in isolation, but this research requires 

an integrative stance because it seeks to explain a contemporary phenomenon 

characterized by an encompassing view of ecosystem interactions.  Social media directs 

participation and behavior in platform-specific ways, and to that end, each section in the 

                                                 
14 Note that while awareness and knowledge building are two outcomes, they are intermediate effects which 

facilitate the development of more tangible outcomes.   
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literature review examines recent developments in ICTs, particularly in social media, 

where relevant for additional insight.  The mediating role of social media in innovation 

studies presents a number opportunities and challenges, as discussed in more detail in the 

following two chapters on research context and data and methods.    
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CHAPTER 3:  RESEARCH CONTEXT  

The empirical context is Twitter, the popular microblogging platform, while the 

innovation case study setting is graphene, a novel nanotechnology material consisting of 

a single layer of carbon atoms. The focus on graphene is appropriate because of the high 

visibility of the technology as well as its age: Graphene is a 21st century invention, and 

furthermore, Twitter is a 21st century innovation.  Consequently, this research studies one 

highly dynamic invention (graphene) with numerous innovative possibilities through 

another highly dynamic information and communication technology (ICT) platform 

(Twitter).   Section 3.1 covers Twitter from a usage perspective, while Section 3.2 

discusses graphene’s technical characteristics and potential socioeconomic impact. 

3.1. Twitter 

Social media and online social networks can be understood as a type of 

communication network, which consists of “patterns of contact that are created by the 

flow of messages among communicators through time and space” (Monge & Contractor, 

2003, p. 3).  Of course, each social platform designs its communication network in 

idiosyncratic ways.  Some are inherently more private; some stress certain types of 

content; and some operate in relatively narrow contexts, while others host a variety of 

interaction.  Twitter is a social networking site and microblogging service that allows 

users to share “tweets” – 140 characters of text – to a public audience while “following” 

other users.  While its user base is not as large as Facebook, which has over one billion 

accounts, Twitter far exceeds other types of public online forums in terms of user 

population.  For instance, by 2000, Usenet had 8.1 million participants posting on 80 
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thousand topics, constituting 151 million messages (Wellman, 2001).  Today, Twitter has 

amassed over 200 million active user accounts worldwide, is available in over 20 

languages, and handles 340 million tweets and over 1.6 billion search queries daily.15  On 

November 7, 2013, the company went public on the New York Stock Exchange with an 

initial valuation of $18 billion.16  

Tweets are shared with a user’s followers by default and may diffuse throughout 

the network through “retweeting”.  In 2009, only about 8% of all Twitter users set their 

accounts to private; consequently, most user content is in the public domain (Sharma, 

Ghosh, Benevenuto, Ganguly, & Gummadi, 2012).   A directed tweet is either a 

“mention” or a “reply” and occurs when users incorporate an “at” (@) sign in front of 

another user’s screen name (Page, 2012).   Not surprisingly, tweets are more likely to be 

retweeted when a message is not directed to a specific user (i.e., it is not conversational in 

nature) and when the subject content is general rather than specific (Naveed, Gottron, 

Kunegis, & Alhadi, 2011).  To facilitate topical searching, users tag subject keywords 

within a tweet’s content through hashtags (#).  

On Twitter, one’s audience may consist of friends, professional contacts, fans, the 

larger public, or no one in particular; some users tweet to themselves (Marwick & Boyd, 

2010).   Because the exact readership of public tweets is not known a priori, users will 

often envisage an audience to deal with this problem of context collapse; i.e., when 

complex and multi-faceted roles encountered in offline modes of interaction are collapsed 

and made more abstract in online communities (Xia, Huang, Duan, & Whinston, 2007).  

                                                 
15 See http://en.wikipedia.org/wiki/Twitter. Of course, this different in usage may also be explained a 

massive rise in Internet usage over the same time period. 
16 See http://finance.yahoo.com/news/twitter-raises--xx-billion-in-ipo-190114410.html 



69 

Marwick and boyd (2010) find that users, whether tweeting on behalf of an organization 

or for personal gain, balance expectations of authenticity with a propensity to fashion 

identities and disclose information strategically.  However, this calculus is not a static 

one because users routinely monitor reaction to their tweets and adjust accordingly. To 

maintain a certain level of decorum or to adhere to professional norms, users will engage 

in self-censorship.  Furthermore, to achieve authenticity, users will straddle a balance 

between the strategic management of a perceived, yet nonetheless well-defined audience 

by sharing personal stories and quaint information.   

Social media users, including those on Twitter, may self-organize into innovation-

based communities (Hautz, Hutter, Fuller, Matzler, & Rieger, 2010).  In contrast to 

“communities of practice”, which feature significant face-to-face interaction, online 

communities may best be characterized as “networks of practice”, which transcend 

geographic boundaries and involve considerable virtual communication (North & 

Smallbone, 2000; van den Hoof, Huysman, & Agterberg, 2007).  A network of practice is 

not ad hoc, however:  individuals still participate because their work tasks (or hobbies) 

benefit from transfers of knowledge and information.  In this way, actors are at least 

loosely dependent on one another.  Because of low costs of communication and due to 

technological innovations, participation in online networks of practice intensifies as a 

result of feedback among actors (Xia et al., 2007).   As noted, networks of practice may 

operate on a variety of social platforms, including Twitter, but the nature of the platform 

dictates the boundaries of communication.  For example, because Twitter limits text to 

140 characters, and because most accounts are public, sensitive discourse (e.g., 
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concerning product ordering, services, partnerships, customer feedback, etc.) is likely to 

be taken offline or into private online forums.  

Even while some types of communication are unlikely to flourish on Twitter, 

compared to email, still the most dominant information sharing medium (Bernstein, 

Marcus, Karger, & Miller, 2010), Web 2.0 technologies achieve greater levels of 

interaction.  For instance, social media exhibits high levels of social presence and media 

richness, both of which contribute to the diffusion of timely and useful information 

(Kaplan & Haenlein, 2010).  High levels of social presence denote intimate and 

synchronous channels of communication, where synchronicity refers to short-time lags in 

between bursts of communication. High media richness indicates a medium through 

which communication resolves ambiguity and uncertainty.   

3.2. Graphene 

Graphene consists of a one layer thick sheet of carbon atoms arranged in a 

hexagonal lattice pattern.   The material has been around for over twenty years, but only 

since 2004 has it emerged as one of nanotechnology’s most promising materials:  

Graphene is incredibly strong for being so light weight; it exhibits high thermal and 

electrical conductivity and is suitable for a variety of applications, including transistors, 

diodes, batteries, light bulbs, water purification, heaters, inks, composites, sensors, and 

optoelectronics (Chen, Liu, & Lin, 2013; Geim & Novoselov, 2007; Stoye, 2015).   

However, the technology is in its early stage of development, and uncertainty is high with 

respect to commercial opportunities (Segal, 2009; Van Noorden, 2011).  Today, 

incremental consumer-grade products are currently on the market, ranging from a tennis 
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racket made with graphene composite materials to graphene-enabled electrically 

conductive ink.   

In their study of graphene patenting and scholarly publishing, Shapira et al. 

(2012) find that graphene may be experiencing a period of intense, concurrent research 

and commercialization activity.  Their empirical evidence suggests a highly dynamic 

environment in which corporate and academic researchers contribute to frequent and 

interdependent breakthroughs.  On the patenting end of the spectrum, both large and 

small firms are active in the area, with large multinationals occupying the top four 

positions in terms of number of patents applied for and/or granted.  These corporations 

include Samsung (US), Sandisk (US), Teijin (JPN), and Fujitsu with at least 17 patents 

each.  Further down the list of top ten corporate patentees are two US SMEs, Vorbeck 

and Nanotek Instruments.  Arora et al. (2013), however, find that in their sample of 

twenty graphene SMEs based in the US, UK, and China, only three are listed as patent 

assignees (including Vorbeck and Nanotek Instruments).  Because small firms are less 

likely to patent than larger firms (Brouwer, 1999), Arora et al. (2013) turn to unstructured 

data from SME websites to characterize innovative activity.  They find that while some 

graphene SMEs are application and end-market oriented, many others are focused on 

producing and selling graphene as an intermediate input for further experimentation or 

downstream productization.  

Technology enthusiasts, publication outlets, and market forecasters have termed 

graphene a “hype” technology (or more perhaps appropriately, a hype material) (c.f. 

Stoye, 2015; Van Noorden, 2014).  Formally defined, the “Hype Cycle” is a Gartner 

conceptual model illustrated on two axes, one for visibility (y-axis) and another for 
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maturity (x-axis).17  The Hype Cycle is entered via a substantial technology trigger, e.g., 

graphene’s isolation by Geim and Novoselov in 2004.  Subsequent phases of the cycle 

include a period of “inflated expectations”, followed by a trough of disillusionment, slope 

of enlightenment, and plateau of productivity.  In brief, the visibility of hyped 

technologies eventually stabilize as they mature and as expectations align with R&D and 

product development accomplishments.  

The hype surrounding graphene may be well-founded.  As a material in the 

broader nanotechnology space, graphene may be considered a general purpose 

technology (GPT) (c.f. Youtie, Iacopetta, & Graham, 2007).  GPTs are characterized by 

their pervasiveness in an array of ostensibly unrelated markets, with potentially 

transformative effects on total factor productivity, gross domestic product, real wages, 

and profitability (Helpman & Trajtenberg, 1994).  Novel science-based materials such as 

graphene provide an intermediate input into more complex applications, whose 

profitability and ultimate diffusion may depend on the degree of successful integration of 

the nanomaterial into those final products.  For example, graphene is a potential 

replacement for silicon-based transistors, but scientists and engineers must first 

understand how to properly contain voltage levels so that on-off gating (to support digital 

signaling) may occur (Van Noorden, 2011).  If or when this breakthrough occurs, 

graphene enabled transistors could overcome the inherent size and processing limitations 

of conventional silicon-based semiconductors (otherwise known as Moore’s Law).    

Ott et al. (2009) argue that improvements in GPTs alter the trajectories of 

downstream (using) industries.  In addition, the peculiar nature of adoption patterns of the 

                                                 
17 See http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp.  
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GPT downstream affects the nature of R&D at the “origins of the value chain”.  For 

example, scientists may learn to manufacture graphene in large quantities to satisfy the 

unique requirements of transistor production; these manufacturing advances may then 

enhance other unrelated applications of graphene.   The bidirectional process of upstream 

innovations magnifying downstream R&D efficiency is an example of innovation 

complementarities (Bresnahan & Trajtenberg, 1995).  Because the application context is 

evolving concurrently with the underlying technology, the extent to which a GPT diffuses 

is a result of both R&D and socioeconomic factors.   

In the early phases of a technology’s lifecycle, a firm may choose to vertically 

integrate as a way to address uncertainty and complexity, but as the technology matures 

and standardized architectures emerge, it becomes more efficient to streamline 

componentization and interaction between ecosystem actors through vertical 

disintegration across the value chain (Chesbrough, 2003).  In cases where the GPT 

experiences ongoing improvements while being transacted arm’s length in markets, 

coordination between both ends of the value chain become increasingly complicated due 

to information asymmetries (Bresnahan & Trajtenberg, 1995).   Yet the long-term 

benefits of coordinating the diffusion of the GPT outweigh short-term costs (Helpman & 

Trajtenberg, 1994).  

While uncertainty is high, different narratives appear to project the emerging 

technology’s potential.  Geels and Smit (2000) view the nascent process of technology 

development as a “social function of promises and expectations” in two primary stages.  

The first stage is where opportunities are signaled, where promises are made regarding 

scenarios that feature the transformative technology’s impact, and where an agenda is 
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formed to guide the technology’s R&D.  The second stage includes formal specifications 

of requirements and a space to refine the technology’s scope and utility during 

implementation.  While the first stage is often characterized by hype and unrealistic 

expectations, Geels and Smit counter that signaling opportunities and constructing 

scenarios – even when clearly hyperboles – act as important catalysts in attracting 

attention and resources.   

Since the performance of discontinuous innovations initially lags behind that of 

the incumbent technology, but because the radical innovation’s long-term potential is so 

promising (Bower & Christensen, 1995), new technologies  

… cannot immediately compete in the market.  They first need to be 

nurtured and further developed.  Developers of new technologies, 

therefore, try to create a “protected space” in which they can improve their 

technologies, hopefully increasing performance characteristics.  In quasi-

evolutionary theories of technological developments, these protected 

spaces are called “niches”.  A niche consist of a network of actors (e.g., 

funding organisations, technology developers) that share a belief in the 

future of a new technology and are willing to invest time and money in its 

further development (Geels & Smit, 2000, p. 880).  

 

In sum, the focus on a network of actors promoting a protected space for the 

incubation of a technology may be heightened by the pervasive nature of a GPT.  In this 

case, graphene is a novel intermediate input with potential for many different final 

product applications; hence the protected space is one that may benefit from broad 

exploration of uses. Furthermore, assuming small firms are unable or unwilling to 

vertically integrate, networks consisting of many actors form because of the various 

interdependencies GPTs facilitate across the still undeveloped value chain (Ott et al., 

2009).  So, on one hand, Geels and Smit argue that a network of actors work together to 

develop a protective technological niche.  On the other hand, Ott et al. argue that the GPT 
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encourages network formation through value chain interdependencies.   Participation on 

social media may achieve both goals simultaneously; that is, social media may offer a 

protected space in which participating actors are able to construct communities and 

engage in discourse around the emerging technology to strengthen the value proposition 

of using the technology in various end-user product applications.  Therefore, the focus on 

graphene provides a suitable case study context because of the evolving nature of the 

GPT and the need to develop a protective space consisting of diverse actors representing 

various interests across the value chain.  

There are three other reasons why graphene is a suitable case-study technology 

for this research.  First, Twitter and graphene represent two classes of GPTs – ICTs and 

nanotechnology, respectively – and are about the same “age”, Twitter having been 

founded in 2006 and graphene’s major breakthrough occurring in 2004.  How Twitter 

facilitates the development of graphene is an interesting question because of the 

dynamism of both technologies: While graphene evolves in its technology profile, so too 

does the social media platform that may facilitate graphene’s commercial potential.  

Second, out of a list of approximately 100 graphene SMEs worldwide, over 30 

maintain Twitter accounts.  While some of these firms appear more active than others 

(e.g., in terms of frequency of tweeting), recent activity suggests that the platform is 

being used for more than marketing.  For example, Lomiko Metals, a Canadian firm, and 

Graphene Laboratories, based in New York, announced a strategic alliance in early 

2012.18  In this arrangement, Graphene Labs will source graphite, an input to the 

production process for graphene, from Lomiko.  This partnership is perhaps nothing out 

                                                 
18 See http://finance.yahoo.com/news/lomiko-provides-strategic-alliance-graphene-192925633.html and 

http://investorintel.com/graphite-graphene-intel/lomiko-secures-graphene-deal-through-twitter/ 
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of the ordinary, except that the two companies found each other on Twitter through the 

use of info-graphics and tweeting.  This anecdotal evidence offers some motivation that 

graphene commercialization is being furthered by the online ecosystem.   

The third rationale is a practical one:  The term “graphene” exists as a standalone 

term with no dominant synonyms; this makes searching in Twitter (and other data 

sources) relatively straightforward. While such a benefit may not seem substantial at first, 

Twitter’s data access limitations make this an important consideration.  

In an oft-cited analysis of 2000 random tweets, Pear Analytics (2009) classifies 

Twitter content into six categories, (Table 3.1).  In Table 3.1, most of the random tweets 

belong to one of two categories: “pointless babble” (40.55%) and “conversational” 

(37.55%). Table 3.1 also contains the results of coding 1000 random graphene tweets into 

the same typology.   Although no distinction is made between self-promotion, pass along, 

and news types, most of the tweets (92.60%) contain urls, retweets, or some type of brand 

promotion.  At the same time, very few of the tweets in the graphene sample can be 

characterized as pointless babble or conversational.  This preliminary analysis reveals 

that tweeting in the graphene ecosystem consists of a high level of informational content 

vis-à-vis the random sample.  However, it is not clear whether the difference in content is 

an outcome of changes in platform-wide trends (i.e., that tweeting in general has become 

more informational and less conversational since 2009) or whether some topics on 

Twitter in general attract a more professional and formal type of discourse.   

Table 3.2 contains a (non-random) sample of illustrative graphene tweets by five 

categories, as defined by Dann (2010).  Here we see evidence of users exploring future 

applications, framing the technology in terms of its GPT potential, and monitoring startup 
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company news.  While this sample provides some evidence of the types of tweets being 

authored, it does not speak to Marwick and boyd’s assertion that users are likely to 

straddle different content categories while maintaining their online presence.  

 

Table 3.1: Comparison of random tweets vs. graphene tweets by content category 

Content Type  Description  General Sample [1]  Graphene Sample [2]  

Spam  Tweets with nonsensical or 

misleading agenda   

5.85% 0% 

Self-promotion  Tweets issued to promote a 

brand, product, or service  

5.85% 

92.60% 
Pass-along  Retweets shared via the RT 

tag  

8.70% 

News  Tweets issued by well-known 

media conglomerates   

3.60% 

Pointless babble  Mundane tweets with no clear 

utility to readers   

40.55% 2.60% 

Conversational   Tweets directed to a particular 

user with an “@” sign  

37.55% 4.80% 

Sources:  [1] Pear Analytics (2009), n=2000 tweets; [2] Random sample of graphene 

tweets from early 2013, n=1000 tweets. 

 

Table 3.2: Illustrative tweets by five content categories 

Type  Tweet  

conversational  @calestous Hm. Graphene wedding rings?  

news  Ron Dennis tells us that Graphene and SAP HANA are the technologies 

of the future. HANA rocks on Cisco UCS servers #g8ic  #ciscouki  

pass along - no url  RT @AngelVentures: Philadelphia TechBreakfast Thurs June 27 

featuring Graphene Frontiers, Osmosis, EventCatalyst, OpiaTalk, 

SurveySnap. htt  

pass along – url  RT @NatureNews: Graphene knock-offs probe ultrafast electronics 

http://t.co/DlVP7iAjqq  

phatic  After my study on the hydrophobicity of reduced graphene oxide, it's on 

to sonoluminescence of imploding bubbles :3 #nerdttm  

Sources: Non-random sample of tweets captured in early 2013; typology from Dann 

(2010).  Notes: Conversational tweets are directed to other users via the “@” sign. News 

tweets, in this typology, do not contain urls, whereas pass along tweets may contain urls 

or retweet previously authored content.  The phatic category is akin to Pear Analytic’s 

(2009) pointless babble class, although in this example, the user indicates something 
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relevant to his or her work in the laboratory which may be of interest to others from a 

professional standpoint. 
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CHAPTER 4:  DATA AND METHOD 

This chapter covers the research design in terms of data and method.  It lays out 

an operational plan to answer the research question, “How do different types of actors use 

social media to form network linkages, and what kinds of innovation outcomes will 

result?” The method takes advantage of secondary data accessible through Twitter, as 

well as primary data collected via a series of interviews.    

The method connects differing units of analysis, beginning with graphene firm 

ego networks and agglomerated “combined” following and friend networks.  The 

combined networks can be visualized and segmented into communities of users around 

specific topic areas.  The method also addresses the process by which network 

connections unfold at the micro level, i.e., between any two users in the sample.   Here, 

the unit of analysis is the relationship between one Twitter user and another.  Finally, I 

present an interview protocol that addresses how individual actors accrue returns from 

their participation on social media.  With the interviews, I attempt to isolate and connect 

variations in usage to variations in innovation outcomes.  

This chapter is organized as follows.  First, I describe the data sources and 

sampling strategy for the quantitative and qualitative components of the research design 

(Section 4.1).  Next, I describe my approach to quantitative analysis (Section 4.2), which 

consists of a network visualization component, a detailed overview of variable 

operationalization, and a summary of the focal statistical model (exponential random 

graph models, or ERGMs).  Being under 25 years old – and certainly evolving 

considerably within the last ten years alone – ERGMs are a relatively new addition to the 

social science research toolkit, and hence particular attention is given to the way in which 



80 

this family of models compares to more traditional and well known regression techniques 

such as logit.  The third section (Section 4.3) outlines the qualitative analysis plan for the 

interview data and also presents a logic model highlighting the larger innovation context 

in which this research is situated.  

4.1. Data sources and sampling strategy 

Twitter offers two free APIs (application programming interfaces), a REST API 

and Streaming API.  The Streaming API pushes a limited set of real-time tweets to 

subscribed users.  This research study employs the REST API, a pull mechanism wherein 

a client specifies his search query and retrieves data from Twitter at some moment in 

time; in terms of “graphene” tweets, results may be collated to produce a longitudinal 

dataset of tweets.19 A random sample of one hundred thousand of these graphene tweets 

are used in this study. Other Twitter APIs exist to collect user and network data. Twitter 

is accessed through a custom code base, which in turn makes extensive use of a Java 

library, Twitter4J, to access Twitter data.20  Once retrieved, this data is stored into 

MySQL, an open-source relational database.  A series of Java programs access this data 

and prepares it for multivariate statistical analysis and network visualization.  

The quantitative component of the study requires no ex-ante approach for random 

sampling due to the ability to sufficiently retrieve and process all tweets in the target time 

frame; i.e., I follow a dense or saturation sample, completely “enumerating” the 

population of graphene tweets and associated users (Marsden, 1990).21 One important 

                                                 
19 To get a better understanding of the API, including search parameters and returned data, see 

http://dev.twitter.com. 
20 See http://twitter4j.org/en/.  
21 Not all tweets are returned via the Search API, which is “focused on relevance and not completeness”.  

Although I collect all graphene tweets returned by the API on an hourly basis, the sampling strategy suffers 

from this limitation.  See https://dev.twitter.com/docs/using-search.   
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caveat is the omission of some celebrity users in the combined firm-centric innovation 

ecosystem network, as described in more detail below. 

To assess P3, and to help interpret the findings from the other two propositions, I 

conducted interviews with nine ecosystem actors.  The interviews address issues related 

to awareness, problem solving, innovation additionality, and counterfactual evidence as 

highlighted in the interview protocol (see Table 4.3 below). The nonprobability sampling 

strategy combines purposive and quota approaches, accounting for both a diversity of 

role types (e.g., graphene firms, financial professionals, scientists, etc.) and activity 

measures (e.g., number of followers and frequency of communication).  A quota is set to 

ensure a range of participation and perspectives and purposive sampling is achieved by 

selecting users with compelling organizational affiliations and tweet content.   

Prospective respondents were contacted through Twitter private messaging and/or email.  

All interviews were conducted by telephone or Skype.  

4.2. Quantitative method 

P1 and P2are evaluated primarily through quantitative means via tweet, network, 

and user data, available via Twitter’s suite of free APIs.  At the heart of this exploration 

are cross-sectional, firm-centric following and friend networks.  To produce these 

networks, which consist of many types of actors, three main steps were taken, beginning 

with data capture and concluding with network build-out:  

1. I began with 37 graphene firms with Twitter accounts.  From this number, I 

subtracted three firms with very large networks (over 5,000 followers) and 

another firm maintaining a restricted (i.e., non-public) account.   

2. Collected all follower and friend relationships of these firms (i.e., the alters).  
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3. For each firm alter, captured and stored friend and follower relationships for the 

given alter to another alter, assuming that both alters have a tie to at least one of 

the graphene firms.  If the alter-of- an-alter does not maintain a link to a graphene 

firm, exclude this relationship from the sample.  This policy limits the size of the 

firm-centric network to a reasonable size (e.g., thousands of nodes vs. millions of 

nodes). These data were collected in early 2014. 

Two important filters were applied in the data capture and build-out processes.  

First, if an alter had greater than 100,000 followers, a manual review process ensued to 

verify a direct science, technology, or innovation orientation of that user.  For example, 

the alter could not be just any media entity; the user with over 100,000 followers would 

have to be focused on business, science, or technology news.  Similarly, if the user was a 

large firm, it would have to speak to a specific ST&I audience (e.g., Amazon was 

excluded due to is propensity to tweet about daily deals, while Intel was included because 

of its emphasis on technology-focused tweets).  This first filter avoided 457 popular 

celebrities and mass-media outlets with millions of followers, thereby saving weeks of 

data capture time. The second filter omitted inactive Twitter users with no active tweets 

since the beginning of 2012.  In total, 2,356 users were excluded from the follower 

network and 2,559 users from the friend network.   

The ego networks were thus combined and produced one large follower and one 

large friend graph.   The combined friend network consists of 8,621 actors and 737,360 

edges, while the combined follower network consists of 6,584 actors and 297,040 edges.  

The number of overlapping users between the two graphs stands at 3,383; that is, there 

are 3,383 common users that the firms follow and that in turn follow the firm.   A note on 
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terminology: I use actors, nodes, and sometimes vertices interchangeably in the coming 

chapters.  Ego refers to a focal node, whereas the term alters refers to his connections.  In 

addition, edges, links, and relationships are used synonymously.   

The ego networks are supplemented by user data – e.g., the number of tweets 

issued by a user, the account’s age, number of friends and followers, etc. – as well as 

“user timelines”.  Each user timeline consists of up to 200 tweets, some of which relate to 

graphene and nanotechnology and many others that do not.   In sum, the quantitative 

portion of this research study relies on four types of data from the Twitter API, including 

a) a random sample of one hundred thousand graphene tweets, b) user attributes for each 

active, non-celebrity user in the combined follower and friend networks, c) a sample of 

up to 200 tweets from each of these network user’s timelines, and d) the relationships that 

constitute the underlying network structures.  

4.2.1. Visualization 

In this research, the purpose of network visualization is to facilitate the qualitative 

exploration of the social media dataset.  As revealed in the forthcoming chapters, social 

media interaction with respect to meso and macro network structure emerges through 

micro level linkages, which I have argued develop because of information needs and 

resource seeking behavior.  How this process unfolds in a social media context is a 

relatively new stream of inquiry that benefits from illustrations showing the boundaries of 

differing communities that organize around topical areas.  Moreover, as we will see, the 

communities differ in terms of actor constitution: Some types of actors are more likely 

than others to find themselves in certain clusters of activity.  Thus, in addition to enabling 

exploration of the dataset, visualization also provides preliminary evidence with respect 



84 

to the study’s first proposition (P1a and P1b), which suggests actors develop following 

relationships in non-random ways within and across actor affiliation types.  

I sample and visualize both ego networks and global ecosystem networks. 

Visualization and community detection is performed in Gephi (Bastian, Heymann, & 

Jacomy, 2009) using the Force Atlas mapping and modularity algorithms.  Force directed 

graph algorithms use the structure of the network to produce visually appealing diagrams 

where edges are less likely to cross (Kobourov, 2012).  Modularity or community 

detection, on other hand, is particularly helpful in complex networks where both 

organization and randomness co-exist; that is, modularity is one way of isolating tightly-

knitted groups of actors for further analysis (Blondel, Guillaume, Lambiotte, & Lefebvre, 

2008).  

After producing the visualizations in Gephi, I implement pairwise mutual 

information (PMI) for all terms found in tweets sampled from the graphene firm 

combined follower network, as segregated by communities identified via the modularity 

detection algorithm.  I repeat this process for the combined friend network, as well.  The 

purpose of this analytical exercise is to identify which communities tweet about which 

topics.   

PMI is calculated for a pair of outcomes x and y derived from discrete random 

variables; in this case, X represents a community (number), and Y is a set of terms 

appearing across all tweets in the combined follower or friend network.  PMI is computed 

by first creating a contingency table of term frequencies to community numbers.  For 

example, if nodes A and B belong to one community (y = C1) and nodes C, D, and E to 

other communities, I calculate the pairwise mutual information of a given term x 



85 

appearing in C1 vis-à-vis the other communities in the network.  Nodes A and B may 

tweet nanotechnology keywords with greater frequency in comparison to nodes C, D and 

E.  Consequently, the results of PMI in this simplified example will note these 

differences.  Accordingly, I report the top ten terms with the highest PMI scores per 

community.   Words with high scores are more likely to appear in the focal community 

vis-à-vis any other community.  

4.2.2. Variables  

Actor attributes affect network structure through social selection processes.  In 

exponential random graph models (ERGMs), actor (nodal) attributes are considered 

exogenous such that these characteristics are immutable or change so slowly as to be 

considered fixed.  Exogenous variables are not influenced by the dependent variable 

(network ties) and are also independent of endogenous dependencies within the network 

structure. Social selection, simply put, occurs when actors “select one another as network 

partners, depending on the attributes that they have” (Robins & Daraganova, 2013).  In 

contrast, social influence occurs when the presence of a network tie alters the 

characteristics of an actor (Kadushin, 2011).  The foundation of this study focuses on 

social selection processes, and the variables below reflect this.  Exogenous variables 

include actor type and several user controls.  Endogenous variables include information 

content and type, as well as network structural controls. All variables are summarized in 

Table 4.1.  The primary dependent variable is tie existence between one ecosystem actor 

and another, and this variable is always measured in cross-sectional format.  
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Table 4.1: Variable operationalizations for the first research question 

Research Question and 

Propositions 

Attribute Type Operationalization  Source  Expected 

Sign 

Research Question 1: How do different types of actors use social media to form network linkages?  

P1a:  Actors choose whom to 

follow by mixing across affiliation 

types (i.e. via heterophilous 

relationships). 

P1b:  Actors choose whom to 

follow by matching on affiliation 

type (i.e. via homophilous 

relationships). 

IV: mix.actor_type Actor Examine user profiles and lists to semi-

automatically code user types (see Table 4.3) as 

nanotechnology firm, other firm, support firm, 

finance, media, intermediary, scientists, and 

unknown 

Twitter hand 

coding and 

API 

+ 

IV: match.actor_type Actor Examine user profiles and lists to semi-

automatically code user type (see Table 4.3).  

Matching only occurs across the 

nanotechnology firm, intermediary, and scientist 

categories  

Twitter 

hand-coding 

and API 

+ 

DV: directed network 

tie 

Edge Coded 1 if a tie exists between actors (i,j), 0 

otherwise  

Twitter API  

P2a:   Actors choose whom to 

follow based on the perceived 

novelty of information accessible 

through network linkages.  

P2b: Information distance 

explains the following decisions of 

users better than actor affiliation 

mixing and matching alone can. 

IV: dpq Edge Topic modeling to determine different content 

areas; the distance measure D(p,q) to compute 

the information distance between both users’ 

topic probability vectors   

Twitter API + 

DV: Presence of 

network tie  

 See above   

Controls  User status (logged) Actor Total number of tweets issued by the user 

normalized by days since account creation  

Twitter API  

Account age Actor Number of days since account creation  Twitter API  

Followers (logged) Actor Number of user’s followers  Twitter API  

Friends (logged) Actor Number of user’s friends Twitter API  

Mutuality Edge Whether a tie exists between (j,i) Twitter API  

Notes: IV = independent variable; DV=dependent variable; n.p. indicates no prediction.
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Table 4.2: Terms to identify user categories on Twitter 

Category Firm Finance Media  Scientist Intermediary 

Terms Entrepreneur, 

founder, 

manager, 

management, 

executive, 

startup,  

business, 

company  

Venture 

capital, vc, 

banker, 

investor, 

financier, 

trader  

Advertiser, 

media, 

magazine, 

association, 

news, editor, 

writer, 

author, bot, 

marketing, 

blogger, 

blogspot, 

publisher 

Scientist, 

expert, 

inventor, 

academic 

researcher, 

professor, 

faculty, 

graduate 

student, 

postgrad, 

postdoc, 

physicist, 

chemist, 

biologist, 

phd 

Incubator, 

accelerator, 

community, 

association, 

club, institute, 

intermediary, 

public interest 

organization, 

military, 

army, 

government, 

city, town, 

municipality, 

state, 

province, 

technology  

transfer, tech 

transfer, 

science park, 

national lab, 

university,  

school, 

college 

 

Independent variables. I identify two sets of explanatory variables.  First, user 

type consists of seven categorical variables, graphene firm, other firm, support firm, 

finance, media, scientist, intermediary, and unknown actors that cannot be readily 

classified in the above six categories (e.g., science and technology enthusiasts without a 

professional or organizational affiliation).  This set of variables was first coded in a semi-

automated way using public list and user profile data to classify users before a manual 

validation step.   For the semi-automated step, this study follows Sharma et al. (2012), 

who identify and compare user role metadata through three complimentary means.  First, 

the authors extract key data from self-disclosed, yet unverified, user profiles.  Second, top 

words from tweets posted by the user may suggest a genuine list of key terms 
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characterizing the user’s personal and professional interests.  Finally, the authors present 

a novel method of top words tagged by other user’s lists.  With lists, users may categorize 

their contacts into logical categories and curate these groups with meaningful metadata.  

In this study, only keywords associated with user profiles and lists were used to pre-

classify users into one of the above actor type categories.  See Table 4.2 for a list of 

various keywords that identify each type of user category.   

The literature review covers each of these ecosystem actor types besides 

“unknown” actors, but a clarification should be made at this point distinguishing firms 

into the three distinct categories (nanotechnology firms, other firms, and support firms).  

Nanotechnology firms are small-to-medium sized high-technology companies dedicated 

to the commercialization of nanomaterials and nanotechnology enabled products.  Other 

firms may also be focused in high-technology areas but exhibit a broader portfolio of 

product lines; these firms may also span industries not specifically attuned to 

nanotechnology (e.g., 3d printing and additive manufacturing).  Support firms, lastly, 

represent the digital marketing efforts of social media experts and other types of 

consultants and professionals providing soft support services to entrepreneurs.  The 

motivation for classifying firms into three different categories lies with the potentially 

divergent information and resource seeking needs of each group.  For example, 

nanotechnology-focused SMEs may have a much different profile than support firms in 

terms of connecting and engaging with scientists.  In addition, nanotechnology firms may 

be more likely to connect with intermediaries than larger, more diversified firms with 

access to in-house complimentary assets.  
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Sharma et al. (2012) find that users with few followers are unlikely to be listed 

more than ten times, and indeed this is where the semi-automated approach fails.  Rather 

than relying on more sophisticated machine learning approaches, I instead verified and 

hand-coded a total of 11,822 unique users across the friend and follower networks 

following the semi-automated classification scheme.  Some of this work (coding for 

approximately 3,000 users) was outsourced to an offshore resource in India.  A random 

sample of 582 users was coded concurrently by the author and the offshore resource with 

a reliability rate of 62.2%. Because of this low inter-coder reliability, all offshore coded 

records were again verified by the author to maintain consistency across the entire 

dataset.  The Appendix (Table A.1) contains documentation of the coding protocol 

provided by the author to the offshore resource.  

Once the actors are coded into their respective categories, specifying an ERGM 

with mixing and matching terms invokes a process by which pairs of relationships are 

automatically constructed by the model.  These pairs appear as mixing and matching 

variables to isolate the effects of heterophily (mixing) and homophily (matching) as two 

important social selection effects.  Mixing variables excluded from the model represent 

cases with unconventional pairings not necessarily relevant to the innovation context.22  

For example, whether unknown users follow media users is of little relevance for the 

present study.  The reference group is also determined by a set of salient technical 

                                                 
22 This includes relationships from intermediaries to unknown users, media entities to unknown users, 

media entities to other firms, unknown users to intermediaries, unknown users to media entities, unknown 

users to other unknown users, unknown users to other firms, other firms to intermediaries, other firms to 

media entities, other firms to unknown users, other firms to other firms, scientists to other users, and 

scientists to other scientists. 
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limitations of the selected ERGM implementation, as discussed in greater depth in 

Chapter 6.  

The second explanatory variable of interest is information distance between any 

two actors. Topics are discovered using a type of content analysis called topic modeling.  

One recently devised technique is latent Dirichlet allocation (LDA), a generative 

probabilistic model where each document in a corpus is a random mixture over latent 

topics, and each latent topic is characterized by a probabilistic distribution over observed 

words (Blei, Ng, & Jordan, 2003; Blei, 2012). Through topic modeling, it is possible to 

distinguish between the types of content that actors generate (or retweet) without having 

a human coder involved in the process.  As shown in the platelet diagram (Figure 4.1), 

LDA is conceptualized as observing N words in one of M documents.  Each latent topic z 

is a bag of w words which are distributed over each document according to a probability 

distribution θ.  α and β are Dirichlet priors on the topic and word distributions, 

respectively, and act as smoothing parameters.  See Blei et al. (2003) for a more formal 

discussion and relevant derivations.  

 

Figure 4.1: Platelet diagram. Source: Blei et al., 2003 

 

To compare information distance between one actor and the next, I train LDA in 

two separate ways.  First, I use the sample of one hundred thousand graphene tweets as 
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training material, and second, I train the model on a combined sample representing up to 

200 tweets authored by users in the focal network.  These distinct approaches build two 

different LDA models which differ in their orientation toward S&T and nanotechnology 

related concepts (found by training LDA on the set of graphene tweets) versus a broader 

cross-section of topics (found by training LDA on the network users’ tweets).  Next, I 

collate network tweet content on a user-by-user basis to produce a corpus of user 

“documents”.  These documents are then subject to an LDA inference process to 

determine the underlying topical focus of each user’s tweets.   

As described by Giffiths and Steyvers (2007), one commonly used measure of 

information distance is the asymmetric measure, dpq.  Other related measures include KL 

divergence and JS divergence.  The variable dpq is defined as follows:  

𝐷(𝑝, 𝑞) =  ∑ 𝑝𝑖 ∗  𝑙𝑜𝑔2(
𝑝𝑖

𝑞𝑖
)

𝐾

𝑖

  

where i iterates over K topics, p is the probability vector of topics to the first user’s 

corpus of tweets, and q is the probability vector of topics to the second user’s corpus of 

tweets.  The asymmetrical nature of the measure is a natural operational fit because, on 

Twitter, the first user seeks to follow a second user based on the value that the second 

user offers.  Theoretically speaking, I anticipate that the further away the second user is 

from the first, the more likely the first user is to follow that second user.   

Control variables. Blanchard and Markus (2007) characterize three social factors 

that vary from one online environment to another.  First, users project their identity and 

interpret others’ identities based on disclosed profiles and usernames.  Second, influence 

as measured by frequency of communication presents some users with the ability to 

shape social norms and sanction behavior that falls outside of established or informal 
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rules.  Third, intimacy denotes a type of content and quality of interaction which results 

in increased levels of trust and advice.  Intimate conversation establishes shared 

meanings and a common perception among participants of genuine engagement in the 

online community.   

Context cues include salient information about the communication exchange; e.g., 

the geographic locales of the participants, their positions within a formal organizational 

hierarchy, and other situational elements, such as age, gender, relationship with others, 

topic, and social norms (Sproull & Kiesler, 1986).  This discussion suggests that Twitter 

heightens some social context cues over others.  For instance, Twitter displays the 

number of friends the user follows, as well as the number of following users.  Frequency 

of activity is also revealed in the number of tweets a user issues.  Both of these metrics 

convey social context, such as position and influence in the network.  As another 

example, many users disclose personal profile information as a way to convey identity, 

social status, and geographic location.  (Indeed, identity is captured directly as the actor 

type explanatory variable.)  In contrast, level of intimacy is likely dependent on the 

specific content issued between the sender and receiver and the strength of their 

relationship (Gilbert & Karahalios, 2009); thus it is not considered here in greater depth 

because the phenomenon to model is at the network relationship level a priori to any 

other communication occurring.  

In sum, a set of control variables relates to actor attributes.  This group of 

variables covers four different aspects of a single user’s influence; these include user 

statuses, the number of tweets issued by a given user normalized by the number of days 

the account has been active; account age, the number of days since account creation; 
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followers, the number of users following ego; and friends, the number of users that ego 

follows.   

Network structural variables. A final set of variables will be included to control 

for the likelihood of certain links to occur endogenously based on network structure.  For 

example, the literature has found that in certain high risk situations unbalanced triads 

(i.e., two ties existing between three actors) are likely to close such that all three actors 

become connected, e.g., through a transitive relationship (Kadushin, 2011).  Similarly, 

depending on social norms which vary from one context to the next, network ties may be 

likely to be reciprocated.   

4.2.3. Model selection 

The unit of analysis for both P1 and P2 is the network tie.  For quantitative 

modeling, I turn to exponential random graph modeling (ERGMs) using cross-sectional 

firm-centric network data.  Also known as p* models, ERGMs test whether the observed 

network is more or less likely to occur given basic assumptions regarding how 

relationships come into being (Monge & Contractor, 2003).  Here, the sample space is the 

total number of possible configurations of network relationships given the size of the 

network and the number of observed edges.   

A brief note on terminology: sample regression coefficients are synonymous with 

the term “parameters”, while the right hand side variables are known as statistics.  In 

ERGMs, statistics are count values that capture the number of times a configuration 

occurs in a network.  For example, a network that exhibits very little reciprocity will 

maintain a small statistic for the mutual term because that configuration is rarely 
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observed.   The parameter, in contrast to the statistic, relates how important the 

configuration is in predicting whether a tie exists.   

A critical feature of an ERGM is the distinction between endogenous and 

exogenous statistics.  Exogenous attributes exist outside of the network context and are 

thus independent of how network linkages form; for example being a certain type of actor 

(venture capitalist vs. graphene firm) is not likely influenced by network structure.  On 

the other hand, endogenous variables assume some type of interdependence between the 

focal statistic and the presence or absence of a network tie.  For instance, the likelihood 

of higher organizing network phenomena such as triangle formation, triadic balancing, or 

reciprocity likely determine whether a specific directed tie between any two actors (i,j) 

exists.  In other words, endogenous statistics capture organizing principles of network 

development between any two actors embedded in a larger set of nearby relationships. 

Incorporating endogenous structural parameters into an ERGM specification is important 

because actor attribute effects depend on a correctly identified model.  Without such 

parameters, an ERGM may be underspecified in ways similar to other regression models 

suffering from omitted variable bias (Lusher & Robbins, 2013).    

The dependent variable in most ERGMs is binary, and in very simple cases 

without endogenous variables, the ERGM devolves into a logistic regression model 

where the likelihood of a tie existing is approximated via a logistic (s-curve) function 

(Koskinen & Daraganova, 2013). The special case of endogenous statistics demands a 

unique approach to parameter estimation, however: ERGMs employ Markov Chain 

Monte Carlo (MCMC) simulation to produce a number of simulated networks to compare 

against the observed network.  Yet, even in the more complicated case concerning 
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network structural variables, ERGMs may still be interpreted as conditional logits.  Here, 

the statistic is known as the “change statistic” defined by two functions, 𝛿𝑖𝑗
+, (𝑥)𝑘 , which 

represent both the count of the specified configurations in the network as well as the 

change in count values given the presence or ommission of a tie (i,j) holding the rest of 

the network constant.  The general form of the model is specified as:  

Pr(𝑋 = 𝑥|𝜃) ≡ 𝑃𝜃(𝑥) =
1

𝜅(𝜃)
exp {𝜃1𝑧1(𝑥) + 𝜃2𝑧2(𝑥) + ⋯ +  𝜃𝑝𝑧𝑝(𝑥)} 

where 𝑧𝑘(𝑥) is a function that corresponds to a change statistic 𝛿𝑖𝑗
+, (𝑥)𝑘  = 𝑧𝑘(∆𝑖,𝑗

+ 𝑥) −

 𝑧𝑘(∆𝑖,𝑗
− 𝑥) where ∆𝑖,𝑗

+ 𝑥 is a matrix x where a specific directed linkage (i,j) equals 1, and 

where ∆𝑖,𝑗
+ 𝑥 is a matrix x where (i,j) equals 0. Large positive (negative) parameter θ 

values show that the theoretical phenomena of interest occurred more often (less often) 

than we would expect in random configurations.    𝜅(𝜃) is a normalizing term that 

accounts for all possible network configurations in the sample space.   

As Monge and Contractor (2003) explain in a very simple example, relationships 

may develop according to a uniform probability distribution where there is a 50/50 

chance that a link appears from one disconnected node to another.  A more sophisticated 

way to model network link creation is through a Bernoulli distribution where we identify 

p (the probability of success) and n (the number of trials or possible links).  Because 

networks develop in non-random ways, however, we can instead rely on certain observed 

traits of the network (e.g., number of total links) to limit (i.e., condition) the sample 

space, as well as posit certain causal forces at play that direct network growth in one way 

or another.   
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Monge and Contractor (2003) recommend specifying ERGMs via log-linear 

estimation of the dependent variable (probability of a tie occurring).  Assuming a logistic 

regression-like form, the following parameters are estimated in the full model, where P is 

the probability of an observed edge; α is an edge parameter akin to a constant; X1 is a 

vector of binary actor “mixing” and “matching” types in categorical variable format, x2 is 

a continuous variable capturing information distance between two actors (i,j), X3 is a 

vector of actor attributes, and X4 is a vector of endogenous network processes (such as 

reciprocity).  Partial models will isolate the effects of control variables and the mediating 

effect of information type and content.  

ln (
𝑃

1 − 𝑃
) = ln(𝑒𝑍) , 𝑍 =  𝛼 +  𝛽1𝑋1 +  𝑏2𝑥2 + 𝛽3𝑋3  + 𝛽4𝑋4 + 𝜖 

In sum, ERGMs introduce three particularly important contributions to social 

network analysis (Robins, Pattison, Kalish, & Lusher, 2007).   Firstly, one may learn 

about the distribution and nature of outcomes through parameter estimation and statistical 

inference; it is not a purely descriptive approach to network outcomes.   Secondly, these 

models expose how “localized” social processes and structures impact global network 

patterns.  Thirdly, while not explored in this research, ERGMs can be used to understand 

network evolution over time.   

 

4.3. Qualitative method 

As described by Luker (2008) and Babbie (2004), qualitative research often 

emphasizes a process of pattern discovery.  However, qualitative modes of observation 

and analysis need not be confined to inductive modes of theory building.  Depending on 

the approach, qualitative analysis offers several appealing characteristics for deductive 
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work (Mahoney & Gertz, 2006).  Firstly, qualitative research may appeal to logic and 

causal modeling through Boolean models and set theory.  Secondly, while maintaining 

sufficient levels of internal validity and consistency, qualitative research often explains 

individual outcomes more thoroughly than quantitative analysis alone.  Lastly, and 

perhaps most importantly, since qualitative research does not assume equifinality, or one 

causal path to a particular outcome, other explanatory factors can organically surface 

even while the main causal relationships are tested.  

Each interview will be treated as a case study in a multi-case setting.  Robert Yin 

(2003) observes that the case study is often used to explain the “how and why” behind 

certain real-world phenomena when the boundaries between the phenomenon and context 

are not entirely clear.  Moreover, the case study method is appropriate when there are 

more variables than (easily accessible) data points, when there are multiple sources of 

evidence, when the analyst is required to triangulate findings, and when prior theories can 

be used to guide the data collection and analysis effort.  When employed in conjunction 

with other data sources, in this case Twitter and websites, the case method can also 

illuminate threats to internal and external validity.   

To contextualize social media usage within the larger set of ecosystem activities, 

inputs, outputs, and outcomes, I constructed a logic model which, although not explicitly 

reflected in the interview protocol, nonetheless orients the analysis around a series of 

salient and possibly conflating factors (Figure 4.2).  For example, the utility of social 

media as a novel communication platform facilitating innovative additionality could be 

related to the ability of users to transfer their networks between online and offline modes 

(or from offline to online).  Furthermore, there are many types of potential outputs and 
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outcomes that could result social media usage, but some are more likely than others.  For 

instance, new patents as an output of social media usage seems improbable, while 

learning and awareness of relevant science breakthroughs, new products, and 

environmental, health, and safety risks seem more likely.  The interview protocol directly 

addresses some of the more likely possibilities (e.g., awareness and learning), but the 

logic model as an organizing conceptual framework includes many more short-term and 

long-term outcomes.   

In line with the explanatory nature of P3, the interview protocol outlines question 

components that tie Twitter usage, network formation, and social capital to outcome 

variables of interest (Table 4.3).  The interview protocol contains 10 mutli-faceted 

questions to span approximately 30-60 minutes of engagement time.  Five pilot 

interviews were conducted in the spring of 2014 to gauge whether the protocol elicited 

appropriate feedback to sufficiently assess P3.  Some of the questions in the second 

section appeared redundant, and consequently the protocol was revised to gain a broader 

understanding of various outcomes vis-à-vis different contextual influences.  For 

instance, instead of asking, “Could you tell me about a time when your usage of Twitter 

helped you achieve something?” in the pilot interview protocol, I revised this question to 

probe more specifically, “Could you tell me about a time when your usage of Twitter 

helped you modify or create a new product, process, or service?”   Of course, depending 

on the respondent, this and other similar types of questions are not so relevant (e.g., as in 

the case of a scientist versus a firm, which may have a tangible product, process or 

service to sell or maintain).   So, while the interview protocol appears quite structured in 

its current form, it was necessary to tailor questions to each type of actor.  To this end, I 
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prepared for each interview and developed some custom questions depending on what I 

learned from the user’s Twitter profile, website, LinkedIn account, and general web 

searches.  

For each interview, responses were transcribed during the interview, and after the 

interview, clarifications and initial reactions were noted.   To facilitate analysis, the data 

were organized by theme (e.g., usage patterns and problem solving outcomes vs. 

awareness building outcomes) in a spreadsheet with rows as cases, columns as 

operationalized constructs, and cell values as findings.  Interpretation of the results is 

based on patterns across a majority of the case interviews.  Deviations that reveal a wide 

array of usage patterns are noted on a case-by-case basis. 

4.4. Summary 

This chapter presents the data and method employed in this research study.  Most 

of the data for the quantitative analysis (relating to P1 and P2) come directly from 

Twitter, though there is a fair amount of coding done to classify actors into one user 

category or another.  In contrast, the qualitative portion of the method draws heavily on 

interview data to test whether social media contributes to beneficial outcomes.   
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Figure 4.2: A logic model.  Notes: The dashed boxes are not thought to result directly 

from social media usage; shaded boxes are explicitly incorporated in the causal model 

(Figure 2.2).  The other solid line boxes are possible confounds that position social media 

usage in a broader innovation context. 

 

Table 4.3: Interview protocol 

The first set of questions asks some general questions about how you use Twitter. 

 

1. Tell me about one of your early uses of Twitter and how your use of Twitter has changed since 

then?  

 

2. How did you learn about the best way to use Twitter? What unwritten norms and rules for using 

Twitter are there? 

 

3. How do you decide what to send via Twitter? What criteria do you use? 

Probe: How would you compare your use of Twitter with other social media or communication 

platforms? e.g., LinkedIn, Facebook, and email 

Probe: Could you describe the tradeoffs you make when communicating publicly vs. privately?   

Probe: How do you orient your content to attract certain followers?  

 

4. How do you decide who to follow?   What criteria do you use?  

Clarification: For graphene and related science or technology topics, why do you follow other 

Twitter users? What do you hope to get from these relationships? 

Probe: To what extent do these relationships exist outside of Twitter, including in other social 

media and offline?  

 

5. How do your Twitter exchanges differ between those with a business affiliation versus those who 

are individuals? What kinds of benefits do you get from those affiliated with businesses? 

 

Now, I am going to ask a series of questions about how Twitter might impact innovation outcomes. I 

might ask some follow-up questions to obtain more detail.  Feel free to elaborate whenever needed.  

6. Please describe how Twitter usage has improved your awareness of issues related to graphene or 

nanotechnology. 

Probe: Graphene technological characteristics (e.g., physical structure, properties, methods of 

production, and form) and research breakthroughs? 

Probe: Graphene-enabled applications and market opportunities (circuits, transistors, biodevices, 

solar cells and batteries)? 

Probe: Environmental, health and safety risks? 

 

7. Can you describe a situation where you were able to generate a new idea or solve a problem as a 

result of your Twitter usage?  

Clarification: Does this relate to the way you approach graphene research or commercialization?  

If so, to what extent is this a result of participating in an online social media community?  
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8. Can you describe a situation where you obtained any new resources – which could include 

revenue, reputational benefits, or other business opportunities – as a result of your Twitter usage? 

Probe: If yes, what role did your network play in such an outcome? 

 

9. Could you tell me about a time when your usage of Twitter helped you modify or create a new 

product, process, or service?  

Probe:  In terms of applications for nanotechnology and graphene research, does Twitter offer a 

space to talk about potential end-use products? If so, how?  

 

10. In general, can you say that you’ve changed something about your approach to graphene research 

or commercialization as a result of your participation on Twitter?   

Clarification: For example, based on the hype around a new application that received attention 

on Twitter or other social media platforms.  

Probe: If yes, please can you elaborate.  

Probe: If no, can you think of a situation where you would change your approach based on 

Twitter usage?  
 

 

The qualitative method allows for a multiple case study analysis that considers an 

array of explanations considering the relationship between social media usage and 

innovation outcomes: The data collection effort is semi-structured, and as a consequence, 

the analysis that follows does not necessarily assume a social capital, resource exchange, 

and information seeking view of network structure and development.  The logic model 

incorporates a broad array of factors that qualify the varying impacts of social media 

usage on outputs and outcomes, and moreover, I modify the interview protocol for each 

type of user (on a case by case basis) to identify salient behaviors and usage 

consequences that fall outside of the proposed theoretical framework.   
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CHAPTER 5:  NETWORK ORGANIZATION AND ANALYSIS 

The question of whether social media facilitates the development of innovation 

ecosystems relies in part on the extent to which actors tap diverse actors and communities 

to further their innovation goals.  This is because the innovation ecosystem construct is 

an amalgamation of micro-level, self-organizing network behavior that aggregates into 

larger meso-network phenomena. This chapter examines from a descriptive perspective 

how this process unfolds.  First, I offer a case comparison between two graphene firms’ 

ego networks to demonstrate that social media participation reflects firm-specific 

resource needs and market orientation.  These ego networks convey how actors are able 

to develop a variety of connections that are often not captured and evaluated 

simultaneously in innovation research.  Second, I build on these firm ego networks to 

portray a series of combined network visualizations and related descriptive statistics to 

familiarize the reader with the global community structure of the firm-centric ecosystem.  

In particular, I contrast the combined friend network with the combined follower network 

to illustrate the asymmetric nature of the Twitter social network.  The results show that 

graphene firms follow a distinct set of users embedded in larger communities to 

strategically access content (and potentially resources); at the same time, assorted 

communities of users follow graphene firms to presumably stay abreast of graphene and 

nanotechnology developments.  

5.1. Select Firm Ego Networks  

This section provides exploratory case study evidence to explain how two select 

graphene firms manage their online networks.  The firms were not necessarily chosen to 
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select as broad a cross-section as possible (e.g., network size, tweet frequency, and 

account age) but are rather used to illustrate the types of networks that emerge in a few 

years of social media usage.  Indeed, very large networks were avoided for this analysis 

because fewer actor-nodes convey greater clarity in the diagrams.   

The purpose of this case study approach is to provide evidence that different firms 

generate different kinds of networks based on their information and resource needs; that 

is, it argues that social media networks accurately reveal how high technology firms 

navigate and develop ecosystem connections to further their innovation agenda.  This 

behavior consequently engages various types of actors in the ecosystem network.  All 

directed ties in this section show friend (i.e., following) relationships, which indicate firm 

agency in network development as opposed to the ecosystem’s interest in the firm (the 

follower relationship). In addition to visualizing the firm friend networks, descriptive 

data and tweet excerpts are also provided to expose how Twitter contributes to a firm’s 

online presence and interactions.  

5.1.1. @ZyvexTech 

Established in 1997, Zyvex Technologies is an Ohio-based firm which offers a 

suite of nanomaterial products and services.  In 2014, OCSiAl formally acquired Zyvex 

Technologies, a firm with a “graphene nanotube” product on the market.23  Zyvex created 

a Twitter account in January 2010 and as of July 2014 follows 188 users (Figure 5.1). In 

terms of actor composition, Zyvex Technologies’ friend network consists of 1.82% 

finance users, 26.06% intermediaries, 35.15% media entities, 6.67% nanotechnology 

                                                 
23 http://www.zyvextech.com/about/.  OCSiAl is not included in the larger sample of graphene companies.  

As of July 2014, OCSiAl maintains a Twitter account.   
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firms, 7.27% unknown users, 16.36% other firms, 1.82% scientists, and 4.85% support 

firms.  Nodes are shaded by their actor class affiliation; for example intermediaries are 

green, nanotechnology firms are red, and other firms are blue.  Betweenness values, 

which represent the extent to which a user “bridges” other sets of disconnected users, 

determine node size.  For instance, Alcoa, the multi-national aluminum producer, bridges 

all four communities in terms of friend relationships while the media entity, 

nanocomposites, bridges the nanotechnology and composites clusters.   

Figure 5.1 shows four distinct communities of friends centered on Columbus, OH; 

the defense industry; composites; and nanotechnology.   A fifth community of sparely 

connected actors exists in the center of the diagram.  Users in this group are fairly diverse 

in terms of geography and sector.  For example, @mcuban is the Twitter handle of sports 

mogul and business tycoon Mark Cuban.  The Kauffman Foundation, social media 

evangelists (e.g., kelleejohnson), and intermediary event organizers (e.g., chicagoideas) 

are among the other users in this unlabeled community.  

Each of the other four communities exhibits a mix of intermediaries, firms, and 

specialized media entities.  For example, the nanotechnology community contains several 

media and intermediary actors, including @nanofutures (an initiative of the European 

Union tweeting about developments in nanotechnology, including technology roadmaps), 

@nanowerk (general nanotechnology news), @NNInanonews (the US National 

Nanotechnology Initiative’s Twitter handle), and @rusnano_en (the Russian Federation’s 

nanotechnology investment fund).  Also found in this cluster are two nanotechnology 

firms, @CambridgeNano (a Harvard nanotechnology spinout) and @slebrid8 (Serge 

Lebid, Executive Vice President at NanoSpire, a nanotechnology IP holding company).  
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Similarly, the composites cluster contains a blend of intermediaries and media entities 

(e.g., @plasticnews, @CompositesWrld, and @CompositesOz, a composites and 

fiberglass Australian industry association), as well as a number of established 

multinationals, including Owens Corning and DuPont.  

 

  

 

Figure 5.1: Zyvex Technology’s friend network.  Source: Twitter; network consists of 

165 users and 1,301 directed friend ties; data collected in early 2014.  Notes: 23 

additional users are not depicted because they have not actively tweeted since early 2013 

or they maintain very large follower networks, thus precluding efficient data capture. 
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The defense and aviation industry community reveals a list of industry specific 

intermediaries, media entities, and firms.  Firms include well-established names Airbus, 

Lockheed Martin, Booz Allen Hamilton, and GE, while the list of media entities is 

specific to the industry, e.g., @aviationweek and @DefenceIQ.  Intermediary users 

include the US Army, the Naval War College, the US Department of Defense (DOD), 

and Military.com, which offers both news and membership services to active services 

members, their families, and veterans.  While the nanotechnology and composites 

clusters reveal Zyvex Technology’s interest in the “upstream” R&D market in which the 

firm operates, the defense and aviation industry community shows potential users or 

sponsors of its technologies: For example, in 2012 Zyvex entered into a cooperative 

agreement with Airbus to provide the aerospace giant with advanced materials for its next 

generation aircrafts.24  In addition, Zyvex has received over $404,000 and almost two 

million dollars in SBIR Phase I and II awards, respectively, by NASA, the Department of 

Energy, and DOD/DARPA.25  The bottom right corner of this community contains a 

small grouping of maritime industry users.   In 2010, Zyvex Technologies piloted an 

“unmanned service vessel” called Piranha, which at the time was the “largest structure 

ever built with nano-enhanced carbon fiber”.26 

The fourth community is one that is specific to the firm’s home city and state of 

Columbus, Ohio.  Zyvex Technologies moved from Dallas, Texas, to Columbus in 2008 

with the encouragement of Ohio intermediaries PolymerOhio and the Center for 

                                                 
24 See http://www.zyvextech.com/news/2012/01/airbus-announces-rd-consortium-with-national-composite-

center  
25 See https://www.sbir.gov/sbirsearch/detail/355021.  
26 See http://www.zyvextech.com/news/2010/10/zyvex-technologies-reveals-the-piranha-unmanned-

surface-vessel  



108 

Multifunctional Polymer Nanomaterials and Devices, a state backed consortium of 

business and research activity to promote the commercialization of promising polymer 

materials.27 While Zyvex Technologies (surprisingly) does not follow @PolymerOhio, 

the firm maintains linkages to several other Ohio-based institutions including The Ohio 

State University, The University of Akron, the Columbus Chamber of Commerce, and 

TechColumbus, a local startup accelerator providing venture capital funding.  According 

to Zyvex’s CEO, the state’s assistance programs helped the firm develop its supply chain 

and marketing capabilities.  Indeed, the Columbus, Ohio community shows some 

evidence of support firms, e.g., with Zyvex following @garymoneysmith, a web 

development and digital marketing specialist in nearby Illinois, and @rattlebacks, a 

marketing agency based in Columbus.   

Overall, these four communities show a mix of local, national, and global 

following connections that link Zyvex Technologies to the broader innovation ecosystem.  

The communities span the value chain from upstream nanotechnology and composites 

research, development, and commercialization to a set of downstream industry users and 

funding sponsors.  While the value chain shows a global orientation, location matters too 

with respect to embeddedness in the region.  Contrary to many qualitative studies on 

innovation networks that sample based on a specific research question that limits the 

diversity of the resulting formal networks, Figure 5.1 simultaneously shows a range of 

informal network linkages that reflect the “real-world” diversity and range in this firm’s 

innovation network.  So, while technology firms and universities are important to Zyvex 

Technologies to follow, so too are international research initiatives, local economic 

                                                 
27 See http://polymerohio.org/news/news-archive/2008-news/zyvex-performance-materials-inc/  
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development institutions, specialized media outlets, museums (e.g., COSI), marketing 

firms, politicians (e.g., Columbus mayor Michael Coleman), and even some actors with 

undisclosed professional affiliations. As a relatively mature nanotechnology firm with a 

well-developed R&D pipeline, product portfolio, and reputation, however, Zyvex seeks 

limited connections with scientists and financial institutions. 

Table 5.1 shows a non-random sample of tweets authored by Zyvex Technologies 

since 2010.  These tweets reveal how Zyvex provides information value to its followers.  

The selected tweets revolve around press releases (e.g., product announcements), an 

acquisition, a visit from the state’s governor, and interaction with conference participants 

and the broader media.  Taken together, these excerpts show that Zyvex Technologies 

tweets to better position its in-house R&D product development capabilities to a potential 

set of end-users (i.e., B2B marketing).  In addition, the firm appears to connect with and 

refer to other users on social media as a larger networking strategy that increases its 

ecosystem visibility while at the same time allowing it to monitor its image in the media.    

Table 5.1: Non-random selection of tweets issued by Zyvex Technologies 

Month of 

authorship 

Tweet content 

April 2010 Ohio Governor Strickland with ZPM staff - Thanks for visiting 

@Ted_Strickland #nanotech @techcolumbus http://twitpic.com/1gc3gl 

December 2011 @DavidShrier Great to meet you at @LivSec conference - we'll reach out 

via email... 

July 2012 Note to the editors at Plastics Technology: We dont make MWCNT - we 

just make them useful. http://bit.ly/N31OzQ 

June 2013 We are excited to be a part of @OCSiAl and to welcome the next 

generation of #composites 

January 2014 Zyvex Technologies Announces Second-Generation #Nanocomposite: 

Arovex® HT...http://www.zyvextech.com/news/ 

Source: Collected from Twitter in early 2014 
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5.1.2. @TeamGraphene 

Graphene Frontiers is a University of Pennsylvania spin-out established in 2011.  

The company has maintained a Twitter account since 2012 and follows 359 users as of 

July 2014 (Figure 5.2).  Unlike Zyvex Technologies, Graphene Frontiers is in the early 

stage of its product development lifecycle with a focus on producing graphene via a 

propriety approach to chemical vapor deposition (a bottom-up technique relying on 

chemical synthesis via a substrate).  The firm expects scalable production processes to 

“facilitate market disruption within the biosensor, desalinization, and electronics 

industries, among others.”28  Yet, according to its friend network in Figure 5.2, we see 

few signs of any downstream industry or application focus.  Indeed, Graphene Frontiers 

appears highly embedded in the Philadelphia start-up scene; the firm also maintains a 

number of connections to users involved with nanotechnology and/or graphene.  

In essence, the founders of Graphene Frontiers are trained scientists with 

intellectual property needing sufficient resources for implementation.  Accordingly, the 

firm’s friend network clearly shows a large community of venture capital institutions 

including Sequoia Capital, Greylock Partners, and Google Ventures.   Whether the firm’s 

Twitter usage actually helped it navigate and eventually secure venture capital is 

unknown, though Crunchbase, a freely accessible online database of venture capital 

transactions, shows one round of Series B investment in Graphene Frontiers totaling 

$1.6MM by Trimaran Capital Partners in July 2014.29    Trimaran Capital Partners does 

not maintain a Twitter account, making the case for a direct relationship between social 

media usage and resource acquisition problematic.  Still, this evidence lends preliminary 

                                                 
28 See http://graphenefrontiers.com/aboutgraphene.html  
29 See http://www.crunchbase.com/organization/graphene-frontiers  
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support that social media usage accurately measures a firm’s innovation-related activity 

and can potentially contribute to positive outcomes.   

The venture capital community in Figure 5.2 is noticeably homogenous in terms 

of actor type: only finance actors appear with very few media entities intermixed.  The 

nanotechnology community also appears dominated by one actor class, namely 

specialized media outlets such as @grapheneinfo, @nanowerk, and @nanoreport.  On 

closer inspection, however, the periphery of the community contains other 

nanotechnology firms including California Nanotechnologies and Oxford Nanopore 

Technologies.  The bottom right corner of this community contains several graphene 

specific media entities and graphene firms (e.g., Abacus Orange, Graphene Labs, Max 

Materials, and Blue Stone Global Technologies), while the bottom left corner reveals 

several prominent US national laboratories (e.g., Lawrence Livermore and Oak Ridge).  

The media entities in the center of the community are an artifact of the visualization 

approach which places the most well-connected actors in the center of the cluster.  So, 

media entities in this community are very likely to follow one another, and they are also 

likely to attract following relationships from other actor classes too.   
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Figure 5.2: Graphene Frontier’s friend network.  Source: Twitter; network consists of 

328 users and 8,515 directed friend ties; data collected in early 2014.  Notes: 31 
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additional users are not depicted because they have not actively tweeted since early 2013 

or they maintain very large follower networks, thus precluding efficient data capture 

 

The Philadelphia start-up community contains a section of densely connected 

intermediaries, such as PHL Life Sciences (an organization promoting life sciences in the 

region), the City of Philadelphia, various Twitter handles representing the Wharton 

School and University of Pennsylvania, and the Science Center, the oldest urban research 

park in the US.  (Graphene Frontiers is an incubated company in the Science Center.30)   

On the bottom of this community lies several local media entities including the historic 

Philadelphia Inquirer and the Geekadelphia technology blog, which covers technology 

trends, arts, and culture in the greater Philadelphia area.  In contrast, within this 

community on the upper left corner – adjacent to the large venture capital community 

with a national presence – is a finance group of users with a regional or local focus.  For 

instance, DreamIt Ventures is an accelerator with a presence in three northeast American 

cities, including Philadelphia, and provides $25,000 in seed funding to participating 

companies.31  

In sum, these three communities convey different levels of focus for Graphene 

Frontiers, reflecting the company’s diverse resource and information needs.  On one 

hand, the venture capital community signals a clear interest in obtaining investment 

funds.  On the other hand, the nanotechnology community shows a set of users involved 

in nanotechnology R&D and news reporting, as well as a set of users specializing in 

graphene.  The Philadelphia community, while highly connected from within, also shows 

some evidence of differentiation with some actors identifying purely as intermediaries, 

                                                 
30 See https://www.sciencecenter.org/companies/port-business-incubator-companies  
31 See http://www.dreamitventures.com/about/program/about-dreamit-ventures/  
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while others take on more of a financing or news reporting role.  While Graphene 

Frontiers is unlikely to determine each following decision according to a grand strategic 

plan, these results do show a type of rational approach to determining which users are 

worthwhile to follow – and which ones are not.  For instance, like Zyvex Technologies, 

Graphene Frontiers does not follow many scientists, perhaps indicating that intellectual 

property is not a significant resource constraint or that scientists are not a likely target 

customer for the firm’s products.  The end result is the same, namely a social media 

network mirroring a socioeconomic intent.  

Table 5.2 conveys a list of non-random, select tweets authored by Graphene 

Frontiers since 2010.  Although not included in detail, the firm’s complete corpus of 

tweets reveals a detailed chronology of the company’s growth from founding, conference 

events, and two funding rounds.  In addition, the tweets in Table 5.2 show a certain level 

of engagement within the graphene innovation ecosystem, e.g., as exemplified by the 

compliments to Dr. Elena Polyakova, CEO of Graphene Laboratories, and University of 

California Riverside and University of Manchester researchers, who recently achieved an 

experimental breakthrough that increased the conductivity of copper by “sandwiching” in 

graphene.   

5.1.3. Cross Case Analysis  

These two case studies show that graphene firms on Twitter develop networks in 

idiosyncratic ways depending on their market orientation and resource needs.  In both 

cases, the firms are deeply connected to their regional innovation systems, which may 

provide a set of hard and soft resources, including access to human capital, advisory 

services, office space, machinery, and reputational benefits (Cooke, 2001).  Both firms 
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also show connectivity to users in nanotechnology R&D and news clusters.   However, 

while Zyvex appears to look down market via its friend network (e.g., to potential 

customers), Graphene Frontiers follows the venture capital industry to explore potential 

sources of funding.  Chapter 7 provides additional qualitative evidence examining 

innovation outcomes resulting from social media usage.   

Table 5.2: Non-random selection of tweets issued by Graphene Frontiers 

Month of 

authorship 

Tweet content 

July 2012 We're pleased to share that Graphene Frontiers was announced as winner of 

2012 Princeton Business Plan Competition #princetonreunions 

September 

2013 

Excited to start roll-to-roll #graphene production! Graphene Frontiers 

Awarded $744k @NSF Grant! http://buff.ly/1eLobMs  

November 

2013 

Come meet us at the @IDTechEx #GrapheneLive trade show 

December 

2013 

Congratulations, Elena! @GrapheneLabs partners with @StonyBrookU and 

Lomiko Metals on graphene supercapacitor project http://buff.ly/193Txd3 

March 2014 Good work, @UCRiverside & @UoMNews: Graphene-copper sandwich 

enhances heat conduction http://buff.ly/1lWRVsh 

Source: Collected from Twitter in early 2014 

 

The first set of propositions examine the extent to which actors mix across or 

within categories to generate ecosystem diversity.   Both ego networks (Figures 5.1 and 

5.2) show distinct clusters and yet varying levels of actor mixing within each cluster.  

This is perhaps most easily seen in the finance cluster in Figure 5.2, which reveals mostly 

finance users intermixed with a few media entities (e.g., The Wall Street Journal’s 

entrepreneurship blog).  Likewise, the Philadelphia start-up community consists of 

mostly intermediaries while the nanotechnology R&D cluster contains mostly media 

users.  Zyvex Material’s ego network, while smaller than that of Graphene Frontiers, 

qualitatively displays more mixing.  Consider the defense industry cluster, for example, 

which contains sets of “other firms” such as Lockheed Martin and Booz Allen Hamilton; 
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media entities covering the defense industry; and US Department of Defense agencies 

such as the US Army.  The propensity of actors to mix within and across classes is taken 

up quantitatively in the following chapter.  

5.2. Global Patterns and Community Structure 

This section shows through network visualizations how the graphene firms’ friend 

and follower ego networks scale when combined together.  The purpose is to depict the 

sampled ecosystem as a whole and then identify meso-level communities for subsequent 

quantitative analysis.  The first part of this section presents a detailed descriptive 

summary of the combined friend network (i.e., users that the graphene firms follow); the 

second part briefly overviews the combined follower network (i.e., users that follow the 

graphene firms).  A comparison of the two networks ensues to highlight the asymmetric 

quality of social networking on Twitter.  

5.2.1. Combined Friend Network 

The combined friend network consists of the combined ego networks of 37 

graphene firms on Twitter; however only users that tweeted at least once in the prior 12 

calendar months (i.e., from February 2013 to February 2014) were retained for 

visualization and analysis purposes.  This filter resulted in three fewer firms with inactive 

accounts.  In addition, one firm maintains a private account, and its tweets and ego 

network relations are unavailable via the Twitter API.  The final number of firm ego 

networks available stands at 33, with 34 graphene firms represented in the sample 

overall.     
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Descriptive statistics for the 34 graphene firms along with their respective 

communities are found in Table 5.3.   By the first quarter of 2014, the average graphene 

firm had been on Twitter for just over 882 days, with the youngest having an account for 

just under six months and the oldest having been on Twitter for just under six years.  The 

average firm tweeted .25 times per day (median: 0.04) with the least and most active 

firms tweeting zero and 2.73 times per day, respectively.   The median graphene firm 

tweets very little about graphene (two times in total).  As discussed in Chapter 4, these 

graphene firms are grouped together with other nanotechnology firms for subsequent 

analysis, unless otherwise noted. 

The combined friend network consists of 8,621 active users (i.e., users that these 

33 firms follow) and 737,360 edges (Figure 5.3).  The overall graph density, which 

denotes the number of observed edges in relation to the number of possible edges32, is 

1%.  The average degree is 86.89.  Both the in-degree and out-degree centrality 

distributions, which reveal the number of inbound and outbound connections by user, 

respectively, are highly skewed with a few users exhibiting very high in-degree 

distributions and a few users with very high out-degree distributions.   This skewness of 

data is consistent with comparable measures from other types of social graphs, including 

co-citation, small world, and hyperlink networks (De Bellis, 2009; Kadushin, 2011).  

                                                 
32 The number of possible edges is n * (n-1) where n is the number of nodes in the network.  For the friend 

network, this product is 74,313,020.  
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Table 5.3: List of graphene firms in the sample and their corresponding cluster numbers 

Screen Name Location Account Created Date Normalized 

Status Count 

Account 

Age 

Followers 

Count 

Friends 

Count 

Graphene 

Tweets 

Cluster 

AbacusOrange Nuneaton, UK October 23, 2013 0.64 217 34 171 15 C0 

CrayoNanoAS Trondheim, Norway August 30, 2012 0.02 636 58 5 0 C0 

grapheneuk Sheffield, UK November 1, 2011 0.11 939 494 0 66 C0 

RedexNano Ghaziabad, India December 17, 2011 0.00 893 6 47 0 C0 

SolagraTech Novata, Califonia October 31, 2013 0.00 209 1 7 1 C0 

Targray Kirkland, Quebec January 6, 2012 0.02 873 76 167 0 C0 

Vorbeck Jessup, Maryland October 27, 2011 0.04 944 133 0 20 C0 

Vulvox Syosset, New York May 2, 2010 0.01 1487 23 28 0 C0 

lunainnovations Roanoke, Virginia June 16, 2008 0.06 2172 280 85 0 C1 

ZyvexTech Columbus, Ohio January 15, 2010 0.14 1594 262 187 2 C1 

Graphene3D Calverton, NY July 31, 2013 0.39 301 246 760 175 C2 

2DTECH Manchester, UK January 31, 2013 0.01 482 10 0 21 C3 

AgSterilized New Delhi, India December 12, 2013 0.01 167 2 147 0 C3 

Appliednanotech Austin, Texas September 14, 2009 0.00 1717 66 0 0 C3 

bluestonegt Wappingers Falls, NY July 10, 2012 0.02 687 77 308 7 C3 

DGSgraphene Redcar, UK April 30, 2012 0.03 758 38 38 5 C3 

Directa_Plus Lomazzo, Italy February 4, 2013 0.00 478 2 10 0 C3 

Grafentek Istanbul, Turkey June 10, 2013 0.02 352 7 74 2 C3 

grafoid Ottawa, Canada November 22, 2011 0.06 918 243 41 9 C3 

graphenea Gipuzkoa, Spain May 25, 2011 0.24 1099 818 221 233 C3 

GrapheneLabs Calverton, New York October 2, 2010 1.18 1334 1604 1941 774 C3 

grapheneplat The Woodlands, TX August 7, 2013 0.02 294 14 10 2 C3 

GrapheneTech Novato, California October 13, 2011 0.46 958 443 0 31 C3 

HarperIntl Buffalo, New York December 17, 2010 0.16 1258 187 0 12 C3 

MaxMaterials Calverton, New York November 15, 2012 0.64 559 375 1127 148 C3 

MedNanoTech Dallas, Texas January 6, 2013 0.41 507 36 87 2 C3 

NanoIntegris Skokie, Illinois September 27, 2010 0.05 1339 47 47 0 C3 
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Screen Name Location Account Created Date Normalized 

Status Count 

Account 

Age 

Followers 

Count 

Friends 

Count 

Graphene 

Tweets 

Cluster 

TiSapphire San Diego, California July 6, 2009 0.71 1787 847 1988 0 C3 

apaulgill Vancouver, British 

Columbia 

April 29, 2009 2.73 1855 1265 1649 2000 C4 

Graphenano Murcia, Spain January 23, 2012 0.18 856 201 0 21 C5 

graphenstone Seville, Spain October 14, 2013 0.00 226 3 16 0 C5 

SiNodeSystems Evanston, IL October 30, 2012 0.02 575 66 55 0 C6 

TeamGraphene Philadelphia, 

Pennsylvania 

January 13, 2012 0.01 866 136 0 72 C6 

XolveInc Middleton, Wisconsin August 2, 2012 0.00 664 3 14 0 C6 

Source: Twitter, n=34 firms collected in early 2014
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Figure 5.3: The combined firm friend network.   Source: Twitter; network consists of 8,621 

active users and 737,360 edges collected in early 2014.   Notes: Each community (Cx) is shaded 

in a different color with results from PMI run on a sample of up to 200 timeline tweets for each 

user in the cluster.  Visualization in Gephi.  C5 not visible. 

 

In Figure 5.3, the network contains seven communities, as identified by Gephi’s 

modularity detection algorithm.  Each community is shaded in a different color with 

C0: renewable, climate, clean, 
pv, emissions, grid, 
sustainable, solar, electric, 
wind 

C3: chemistry, physics, stock, 
science, scientists, market, 
investors, nanoparticles, 
nanotechnology, quantum   

C2: printer, 3d, printing, 
3dprinter, printed, printers, 
makerbot, 3dprint, 3dprinted, 
print 

 

C6: trading, stocks, ipo, chart, 
investors, penny, bounce, 
breakout, traders, shares 

 

C4: metals, gold, vancouver, 
mines, miners, canadian, 
exploration, tsx, minerals, 
canada 

C1:  rf, marketing, 
automotive, analog, 
manufacturers, eetimes, fpga, 
tips, mobile, aircraft 



121 

results from pairwise mutual information (PMI) run on a sample of up to 200 timeline 

tweets for each user in the cluster.   The following text describes each community:  

1. C0 (1013 users, or 11.75% of the network), distributed in the center of the graph, 

spans the other communities in terms of structure; it focuses on renewable energy 

topics.  

2. C1, the dispersed light green cluster consisting of 1045 users (or 12.12% of the 

network), contains a mix of terms that loosely convey a manufacturing, industrial, 

or application focus.  This notion is partly confirmed when analyzing PMI results 

from the same community analysis, but using user description content instead of 

timeline tweets; the following terms materialize: composites, semiconductor, 

electronics, manufacturing, marketing, science, chemistry, aerospace, and mining.    

3. C2, covering 1089 users or 12.63% of the network, represents a large 3d printing 

community.  One of the graphene firms, Graphene 3D, is firmly embedded in this 

cluster.   

4. C3, the largest community with 2942 users (34.13%), conveys a general 

nanotechnology and science orientation.  To confirm this inference, results from 

PMI user description data reveals the terms: chemistry, 3d, nanotechnology, 

university, physics, research, printing, phd, student, and stock.  Indeed, many of 

these terms offer a coherent message that C3 is comprised of researchers, perhaps 

based at universities, undertaking natural science research.  (See Table 5.3 for 

additional confirming evidence.)   



122 

5. C4 with 898 users (10.42%) is a mining and mineral resource cluster, in which a 

Vancouver-based graphite mining firm moving upstream to graphene production 

is a member.   

6. C5 is a Spanish speaking community consisting of only 133 actors and is not 

visible on the graph. 

7. C6, consisting of 1501 users (17.41%), is a financial markets community.   

The communities differ not only by content but also by actor composition.  Table 

5.3 contains a descriptive analysis juxtaposing actor type by community.  Here we see 

that many communities attract certain types of actors.  For example, a majority of finance 

users in the combined friend network can be found in cluster 6 (financial markets).  Over 

46% of all intermediaries, almost 75% of nanotechnology firms, over 45% of unknown 

users, and over 90% of all scientists can be found in cluster 3.  Recall that C3 appears to 

be focused on nanotechnology research based on the PMI results.  Support firms, while 

broadly distributed appear most often in C1 and C3, while other firms are most likely to 

be found in C2.  (C2 contains many startup 3d printing firms.)  Finally, media actors 

appear evenly distributed throughout the communities, with representation as a percent of 

all media actors ranging approximately from 10-25% in any given cluster.  Indeed, the 

media category represents the greatest number of users by far (33.50%) overall, followed 

by other firms (17.70%), unknown users (i.e., non-identifiable users at 13.50%), 

intermediaries (15.70%), scientists (7.60%), support firms (5.60%), finance (3.80%), and 

nanotechnology firms (2.50%).   Because users in this network are only included if they 

are followed by one of the 33 graphene firms, this finding suggests that many of the firms 

in the sample use social media for information purposes from news outlets, bloggers, and 
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market analysts (all belonging to the media category).  As suggested above, most 

graphene firms can be found in C0 (10 firms) and C3 (17 firms).33   

Each actor type exhibits a unique set of profile characteristics (Figures 5.4 – 5.7).  

Because many typical user-level Twitter variables are highly skewed, I present the 

median values for number of followers (Figure 5.4), number of friends (Figure 5.5), and 

normalized status count (i.e., the average number of tweets authored per day since 

account has been active, Figure 5.7).  However, because the median number of graphene 

tweets per actor type is zero, I show mean values for this measure by actor type (Figure 

5.6).  

Media entities, followed by intermediaries and financial organizations, attract the 

greatest number of followers with median values of 3,083, 2,528.50, and 2,456.50 

respectively.  Support firms and other firms attract a median of 1,357 and 862 followers, 

respectively.  At the lowest end of the spectrum are scientists (360), nanotechnology 

firms (201), and unknown (not readily identifiable) actors (176.50). In terms of friends, 

or users that a given user follows, support firms lead with a median value of 1000.  They 

are followed by media entities (530), other firms (496.50), financial organizations 

(451.50), intermediaries (442.50), scientists (273), unknown actors (253), and 

nanotechnology firms (146).   

 

 

                                                 
33 This is an important observation.  Refer to the Section 6.1 for additional details.  
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Actor type 

and 

community 

Number of 

actors (in 

community) 

Percent of 

actor (in 

community) 

finance 330 3.83% 

0 6 1.82% 

1 17 5.15% 

2 2 0.61% 

3 16 4.85% 

4 74 22.42% 

6 215 65.15% 

intermediar

y 

1354 15.71% 

0 290 21.42% 

1 126 9.31% 

2 107 7.90% 

3 627 46.31% 

4 41 3.03% 

6 142 10.49% 

media 2893 33.56% 

0 359 12.41% 

1 349 12.06% 

2 309 10.68% 

3 739 25.54% 

4 388 13.41% 

6 687 23.75% 

nano firm 217 2.52% 

0 16 7.37% 

1 22 10.14% 

2 5 2.30% 

3 161 74.19% 

4 2 0.92% 

6  6 2.76% 

Actor type 

and 

community 

Number of 

actors (in 

community) 

Percent of 

actor (in 

community) 

other firm 1526 17.70% 

0 185 12.12% 

1 254 16.64% 

2 528 34.60% 

3 203 13.30% 

4 199 13.04% 

6 137 8.98% 

scientist 652 7.56% 

0 14 2.15% 

1 12 1.84% 

2 13 1.99% 

3 593 90.95% 

4 3 0.46% 

6 17 2.61% 

support 

firm 

483 5.60% 

0 39 8.07% 

1 142 29.40% 

2 23 4.76% 

3 75 15.53% 

4 85 17.60% 

6 113 23.40% 

unknown 1166 13.53% 

0 104 8.92% 

1 123 10.55% 

2 102 8.75% 

3 528 45.28% 

4 106 9.09% 

6 184 15.78% 

Table 5.4: Number of users by actor type in the combined friend network 

 

Source: Twitter, n=8,621 users in the combined friend network, collected in early 2014 
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On average, nanotechnology firms tweet the most about graphene with a mean of 

over 30 tweets per user.  (The mean is not normalized by account age; these tweets were 

captured during a 1.5 year time span from late 2012 until early 2014).  Much further 

behind are media entities (7.27); financial firms, support firms, and intermediaries (each 

type with between 3 and 4 graphene tweets per user on average), scientists (2.49), 

unknown actors (1.87), and other firms (1.10).  In contrast, normalized tweet activity per 

user by actor type shows media entities as the most prolific authors with a median of 1.71 

tweets per day, followed by support firms (0.95), financial organizations (0.91), 

intermediaries (0.89), scientists (0.68), other firms (0.49), other actors (0.39), and nano 

firms (0.18).  

 

 

Figure 5.4: Median number of followers by actor type in combined friend network.  
Source: Twitter, n=8,621 users collected in early 2014 
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Figure 5.5: Median number of friends by actor type in combined friend network.  
Source: Twitter, n=8,621 users collected in early 2014 

 

 

Figure 5.6: Mean number of graphene tweets by actor type in combined friend 

network.  Source: Twitter, n=8,621 users collected in early 2014  
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Figure 5.7: Median normalized tweet activity by actor type in the combined friend 

network.  Source: Twitter, n=8,621 users collected in early 2014 

 

  

Taken together, these descriptive statistics by actor type reveal three noteworthy 

trends: First, nanotechnology firms are among the users with the smallest networks; these 

firms are not usually as active as other actor type accounts, but at the same time, they are 

more likely to tweet about graphene than other types of users.  Second, media entities 

have the largest follower networks and second largest friend network and are the most 

active tweeters.  Third, unknown actors and scientists are among the two actor types with 

the smallest follower and friend network sizes (behind nanotechnology firms).  Because 

unknown actors do not have or choose not to disclose a professional affiliation, they do 

not appear to attract much interest from the ecosystem, as evidenced by their relatively 

small friend networks.  In contrast, the small size of scientist networks may come as a 

surprise.  This could be due to many scientists using their accounts for personal reasons, 
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thus attracting only personal connections, or it could be due to highly specialized 

communication that does not easily appeal to a wide audience.  Although the results 

cannot distinguish between these competing explanations, the ERGM analysis found in 

the next chapter revisits this topic with additional scrutiny.   

The number of edges in the combined friend network stands at 737,360.  The 

“mixing matrix” in Table 5.4 shows the percent of all ties from a given actor type 

category to another actor type category.  The darker shading indicates higher percentages.  

These data provide descriptive evidence from which to evaluate P1a and P1b, which  

examine the degree of mixing within and across actor categories. Immediately visible is 

the high propensity for each type of actor category to initiate linkages with media entities; 

in aggregate, the percent of ties emanating from each of the eight categories to the media 

class ranges from 42% - 52%. The intermediary class of users is second-most likely (after 

media) to attract followers from a broad cross-section of actor types: besides the financial 

user class, at least 10% of outbound following relationships are directed to intermediary 

users with nanotechnology firms and scientists in particular directing 20% of their ties to 

intermediary users.    At first glance, this finding appears commensurate with existing 

theoretical and empirical work that places intermediaries at the center of open innovation 

networks (e.g., see Lee et al., 2010).   However, recent work by Lovejoy et al. (2012) 

assessing the Twitter usage of 73 non-profits reports that many of these organizations use 

Twitter not as a tool for engagement but rather as a medium for one-way mass 

communication.  From this perspective, intermediaries may act more like media entities 

than mediators.  In addition, each class of users besides scientists directs at least 10% of 

their following relationships to other firms.  With the exception of scientists, 
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nanotechnology firms direct a greater percentage of their overall following ties to 

scientists than any other class of users, suggesting that scientists on social media attract 

the attention of high-technology firms also on social media.  

Also visible is the relatively strong tendency for actors to follower similar actors 

in the same class; that is, homophily as a social selection process is evident here.   15% of 

all friend ties from finance users are directed to other finance users.  This percentage is 

31% for intermediaries, 33% for other firms, 21% for scientists, and 11% for support 

firms. In sum, the mixing matrix reveals homophily as a social selection process to follow 

others in the same actor category.  In addition, this descriptive data show significant signs 

of diversity in ecosystem connections in terms of following media and intermediary 

actors.   However, for some of the other inter-category relationships, the evidence is too 

ambiguous to make a final determination and requires the accuracy of statistical ERGMs 

(Chapter 7).  

Table 5.5: Mixing matrix for combined friend network 

 To         

From finance 

inter-

mediary media 

nano 

firm unknown 

other 

firm scientist 

support 

firm total 

finance 15% 8% 52% 1% 3% 13% 1% 7% 100% 

intermediary 2% 31% 42% 2% 2% 13% 5% 3% 100% 

media 4% 13% 49% 2% 3% 19% 5% 5% 100% 

nano firm 2% 20% 43% 7% 5% 12% 7% 4% 100% 

unknown 4% 16% 50% 2% 3% 17% 3% 4% 100% 

other firm 3% 11% 44% 1% 3% 33% 2% 4% 100% 

scientist 1% 20% 47% 3% 2% 5% 21% 2% 100% 

support firm 7% 11% 46% 2% 4% 18% 2% 11% 100% 

Source: Twitter, n=737,360 edges in the combined friend network, collected in early 

2014 
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5.2.2. Combined Follower Network 

Having described the friend (i.e., following) network in some detail, I now turn to 

a brief overview of the combined follower network (Figure 5.8).  In contrast to the 

combined friend network, the combined follower network contains 6,584 actors and 

297,040 directed ties.  Whereas the combined friend network consists of users that the 33 

graphene firms follow, the follower network contains all the users that have chosen (as of 

early 2014) to follow the 33 graphene firms. Of these 6,584 actors, roughly half (3,384) 

exist in the combined friend network, demonstrating that in aggregate graphene firms 

follow about half of the users that follow them.  
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Figure 5.8: The combined firm follower network. Source: Twitter, network consists of 6,584 

active users and 297,040 edges collected in early 2014.   Notes: Each community (Cx) is shaded 

in a different color with results from PMI run on a sample of up to 200 timeline tweets for each 

user in the cluster.  Visualization in Gephi.  C0, C4, C8, and C9 not included in analysis because 

of insufficient size, primarily non-English language content, and/or incoherent PMI results. 

 
 

Ten communities, also identified by Gephi’s modularity detection algorithm, exist 

in the combined follower network (Figure 5.8).   That is, there are three additional 

communities found in the combined follower network (10) than in the combined friend 

network (7).  Three of these communities are very small, consisting of fewer than 5% of 

the users in total.  These clusters are not described in detail, though based on the PMI 

C1: social , marketing, 
get, time, money, love, 
people, right, business, 
google 

C2: stocks, miners, 
metals, gold, exploration, 
minerals, mines, 
resources, trading, corp 

C3: optics, optical, laser, 
lasers, spie, photonicswest, 
module, measurement, 
imaging, uv C5:  nano, nanoparticles, 

nanotech, nanowerk, 
nanoparticle, nanotubes, 
nanomaterials, 
nanotube, 
nanomedicine, cells 

C6:  printer, 3d, 3dprinter, 
printing, 3dprint, printed, 
3dprinted, makerbot, 
printers, print 

C7: us, news, now, 
industry, market, will, 
using, can, gold, 
technology 
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results, one appears focused on a specific geographic region in Viriginia, USA, while the 

other two are non-English tweeting communities of users.  A  fourth cluster also is not 

assessed, although it is larger than the previously mentioned three with 9% of all users: 

This community appears in Figure 5.8 in the center with nodes shaded in light green.  

However, the PMI results do not convey a meaningful focus in orientation (i.e., the 

keywords are not coherently oriented around a specific topic).  

Excluding these four communities, six remain viable for analysis:  

1. C1 consists of 785 users or 12% of the combined follower network’s users and 

appears to focus on social marketing and search engine optimization.   

2. C2 contains 1084 users or 16% of the network’s users and represents users with 

mining interests (similar to C4 in Figure 5.3).   

3. C3 represents 778 users (12% of the full network) and reflects an optical and laser 

focus, indicating that users working or interested in one potential downstream 

application follow one or more of the graphene firms.   

4. C5 (785 users or 12% of the network) is a general nanotechnology research 

cluster with one keyword containing the name of a leading news portal 

(nanowerk).  To ensure the PMI results on C5 using sample tweets is not biased 

by this or any other subset of users, I reviewed the PMI key terms from the user 

description data.  The identified terms include nano, nanotech, research, science, 

3d, nanomedicine, nanoscience, materials, chemistry, and rd.  Thus, this cluster 

appears research focused in a similar way to C3 in Figure 5.3, though C5 here is 

only 27% of the size of C3 there.   
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5. C6 (762 users or 12% of the network) is a community focused on 3d printing, 

analogous to C2 in Figure 5.3.   

6. Finally, C7 (1638 users or 25% of the network) extends from the lower right hand 

corner of the graph to its center.  The key terms suggest a market and industry 

forecasting/news orientation, though additional focus is not easily obtained 

through a review of the PMI results based on user descriptions.  

 

5.2.3. Comparison  

The actor type composition of the two friend and follower social graphs look 

remarkably similar, though not exactly the same, in terms of the percentage of ties from 

one actor class to another (Table 5.5):  the percent representation of nanotechnology 

firms, other firms, support firms, financial entities, and scientists is almost the same 

between the two networks.  However, representation by actor type differs from the firm 

friend network in three specific ways.  First, media actors are much less likely to be 

included in the follower network (20%) than in the friend (34%) network.  This is likely 

due to the fact that media types attract a large number of followers themselves, but many 

accounts, especialy those of the large established outlets, do not follow many other users 

in turn.  Second, intermediaries have a much stronger presence in the friend network 

(16%) than the follower network (8%), suggesting an asymmetric level of interest in the 

intermediaries by the graphene firms; that is, intermediaries are less likely to follow 

graphene firms than graphene firms are likely to follow interemdiaries.  The third 

difference concerns the “unknown”, non-identifiable user category:  Unidentifiable users 

constitute 33% of the combined follower network and only 14% of the combined friend 
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network.  This finding can be accounted for by the role that identity disclosure plays 

online.  If accounts in general do not explicitly reveal a professional association, it may 

be more difficult to gauge the benefit of inititating a network linkage.  Thus, since this 

“unknown” account type is not as relevant to ecosystem dynamics than the other actor 

categories (e.g., scientists, small firms, intermediaries), users are less likely to begin 

following “unknown” individuals.   

Table 5.6: Number of users by actor type in the combined follower and friend 

networks 

actor type 

finance 
inter-
mediary media 

nano 
firm unknown 

other 
firm scientist 

support 
firm total 

follower   (n) 

network   (%) 

166 556 1335 196 2201 1180 403 547 6584 

3% 8% 20% 3% 33% 18% 6% 8% 100% 

friend        (n)     

network   (%) 

330 1354 2892 217 1166 1526 653 483 8621 

4% 16% 34% 3% 14% 18% 8% 6% 100% 

Source: Twitter; 8,621 users in the combined friend network, and 6,584 users in the 

combined follower network; data collected in early 2014 

 

The combined follower network is less dense than the combined friend network 

(0.007), meaning that this graph has fewer ties than the larger friend network even after 

controlling for size differences.   This may appear surprsing at first because the literature 

on social networks finds that smaller networks are often denser than larger networks 

because communication is easier to maintain, and it is less cumbersome to develop 

cognitive models of who-knows-whom (Baker, 1984; Kadushin, 2011).   However, as 

noted above, in comparison to the combined friend network, the combined follower 

network contains many more “unknown” (identity-less) users who are much less likely to 

attract following relationships than media entities or intermediaries, thus accounting for 

the additional sparsity.    
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In sum, the combined follower network (i.e., users that follow the 33 graphene 

firms) is noticeably more fragmented than the combined friend network.  While some of 

the communities overlap in focus, we see differentitation not only in the type of users in 

each network but also the content that these different communities share.   For example, 

an enegy community found in the middle of the combined follower network (Figure 5.3) 

appears to bridge the other clusters.  This energy community is not immediately visible in 

the combined friend network (Figure 5.8).  In addition, the communities in Figure 5.8 

appear less well integrated overall.  For instance, the optical and laser focused 

community exists on the periphery of the graph, as do some of the non-labeled clusters.  

The result in the combined follower network is a fragmented set of communities that 

follow one or more graphene firms in a certain context (e.g., market forecasting, regional 

economic development, specific applications or industries).  In contrast, the graphene 

firms follow users which in the aggregate generate in the combined friend network a set 

of more general industry, application, and research specific communities.  

 

5.3. Summary and Synthesis 

I conclude this chapter with a brief summary and synthesis of four key results.  

First, in the combined friend network, we see that most users are coded as media entities 

and that most users follow media entities (and to a lesser extent intermediaries).  This 

finding suggests that Twitter is first and foremost a media platform, albeit one that 

facilitates interaction and the diffusion of specialized information.  For instance, many of 

the media entities are non-traditional in the sense that they focus on new media (e.g., 

blogs) in specialized subject areas.  This can be easily seen in the types of media entities 
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that exist within the communities found in Zyvex Technologies and Graphene Frontier’s 

ego networks in Section 5.1.   

An additional consideration is an alternative mode of interacting that taps non-

media relationships across and within communities, as seen in the mixing matrix (Table 

5.4).  From this standpoint, the communities in the combined friend network show signs 

of heterophily (e.g., the research cluster consisting of scientists, other firms, 

intermediaries, nanotechnology firms, other users) and homophily (e.g., the financial 

markets cluster that contains a majority of the finance users), thus offering some 

preliminary support for both P1a and P1b.  In sum, while media entities are at the center 

of each community within the combined friend and follower networks, thus indicating 

their importance in each topical cluster, there appears to be other types of network 

linkages that also are important to ecosystem network structure.  

Second, each actor class maintains a unique set of usage characteristics.  For 

example, graphene firms tweet about graphene more than any other actor type, but these 

firms are overall much less active than the other actor types in terms of tweet frequency 

and network size.  Third, graphene firms follow many more media and intermediary 

types than non-identifiable users, but the reverse is true for users following graphene 

firms.  This suggests that Twitter as a platform for information sharing is asymmetric in 

nature: on local and global levels, the value of information is contingent on the receiver’s 

preferences such that following and friend networks diverge in substantive ways.  Indeed, 

the overlap in actor composition between the two networks shows just 3,383 common 

users, indicating that graphene firms do not always reciprocate the following relationship.  
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This topic is returned to in greater depth in Chapter 7, which provides qualitative 

evidence of usage patterns. 

Finally, the cross case comparison of two ego networks reveals that graphene 

firms develop their Twitter networks to align with high-level business development and 

information needs, e.g., in the value chain or for venture capital.  Thus, this evidence 

supports the notion that studying innovation on social media can be a fruitful exercise in 

terms of advancing our understanding how firms within the same industry and product 

space connect with different communities to further firm survival and growth.  This topic 

is also explored in greater detail in Chapter 7.  First, however, I turn to quantitatively 

testing how innovation ecosystem networks develop on social media in Chapter 6.  
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CHAPTER 6:  QUANTITATIVE MODELING  

The network analyses in the last chapter reveal the building blocks of the 

graphene innovation ecosystem through the lens of firm-centric ego networks.  In 

particular, the case studies show how two graphene firms approach their friend network 

to tap into distinct communities.  When these relationships aggregate into a combined 

network, it becomes possible to discern some of the factors shaping interaction.  For 

example, in the combined friend network, media entities permeate all communities 

whereas finance users agglomerate in a separate community.  Further, the 

nanotechnology R&D cluster contains most of the scientists and nanotechnology firms 

and just under half of all intermediaries.  Viewing actor linkages within each community, 

as well as topical differences across communities, conveys preliminary evidence 

supporting propositions that Twitter users engage in non-random relationships with an 

intent to access diverse information.  

This chapter presents results from the exponential random graph models, which 

explore through quantitative means the first two sets of propositions, P1 and P2:  P1 

speaks to the following choices of users either within and across classes of professional 

affiliation,34 thereby examining two competing (but not mutually exclusive) explanations 

of social selection processes contributing to network structure:  

P1a:  Actors choose whom to follow by mixing across affiliation types (i.e., via 

heterophilous relationships). 

 

P1b:  Actors choose whom to follow by matching on affiliation type (i.e., via 

homophilous relationships). 

                                                 
34 Note that terms related to network edges, including network structure, linkages, ties, relationships, and 

connections are used interchangeably in this chapter, while terms related to a graph’s vertices, including 

users, actors, and nodes, are also used synonymously. 
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The second set of propositions addresses the relationship between information 

distance and two actors’ likelihood of connecting.  In aggregate, this line of reasoning 

posits that R&D and entrepreneurial communities develop around disparities in topical 

content such that users can access and later recombine diverse knowledge for intellectual 

capital development (Nahapiet & Ghoshal, 1998).  P2a a positively associates 

information novelty (i.e., information distance) and the presence of following 

relationships, while P2b assesses whether information distance explains the following 

decisions of uses better than actor affiliation mixing and matching alone.  

P2a:   Actors choose whom to follow based on the perceived novelty of 

information accessible through network linkages. 

 

P2b: Information distance explains the following decisions of users better than 

actor affiliation mixing and matching alone can. 

 

Although descriptive data from Chapter 5 offers cursory evidence regarding the 

relationship between actor type and local, community, and global network structure, the 

findings below speak directly to micro-level trends.  As reviewed in Chapter 4, the 

ERGM is a statistical model that estimates parameters (i.e., sample regression 

coefficients) by isolating change statistics given the existing network structure.  ERGMs 

allow the analyst to interpret the model’s results in terms of the log-odds of an additional 

tie appearing.  This chapter begins by introducing a subset of the combined friend 

network on which the above propositions are explored (Section 6.1), followed by a set of 

simplified models that guide the reader through the interpretation of ERGM results 

(Section 6.2). Section 6.3 presents results from ERGMs examining P1a and P1b, while 

Section 6.4 addresses P2a and P2b.   I conclude with a brief summary of the main 
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findings (Section 6.5), which partially substantiate both P1a and P1b but offer no 

evidence supporting P2a and P2b.   

6.1. Modeling Issues and an Alternative Approach  

The modeling approach as described in Chapter 4 can be applied to the entire 

ecosystem sample (either the combined friend or following networks); however none of 

the several model specifications converge when using Markov Chain Monte Carlo 

(MCMC) simulation.  This may be due to the presence of several different communities, 

some of which are relatively isolated from one another, in both graphs.  Also problematic 

is the number of overall users in the network, with 5,000-10,000 users considered a large 

sized network for ERGM purposes (Goodreau, 2007). In any case, when running the 

ERGM in simulation mode with network structural parameters (e.g., gwesp, triangle, and 

mutual) using either the combined friend or follower networks, the models do not 

converge such that the log-likelihood improves and eventually stabilizes in any 

reasonable number of iterations (e.g., n=100).   Therefore any results obtained from 

modeling the entire combined friend or follower networks are subject to intractable 

concerns about validity.35  

                                                 
35 In addition, as I learned through numerous modeling iterations over the course of six months, the 

implementation of the ergm library in the R package statnet, as of version 2014.2.0, does not handle large 

networks well.   In particular, the ergm library is unable to model continuous nodal covariates in simulation 

mode (with other endogenous network structural controls); it responds with an error that indicates too little 

available memory despite adequate physical stores of RAM.   More importantly, the library is also unable 

to handle continuous attributes at the dyadic level in large networks, in or outside of simulation mode.   

This second problem was a major impediment to the successful execution of the research design because 

the information distance explanatory variable used to evaluate P2a and P2b requires pair-wise continuous 

measures at the dyadic level. These limitations were brought to the attention of the statnet development 

team but unfortunately were not attended to in a timely fashion despite a handful of follow-up requests.  

One response indicated that the first error noted above was a systematic problem in the code and would 

take some time to triage and rectify.  Regrettably, the second error was not addressed in a meaningful way 

by any member of the developer team.  Eventually, however, I realized that ergm operated as specified and 

without major issues using smaller network sizes (e.g., fewer than 1000 nodes).  
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As a consequence of these modeling difficulties and yet in light of the promise of 

using the ERGM approach with smaller networks, I turn to one particular community in 

the combined friend network to quantitatively explore P1 and P2.36   This community is 

C3 as shown in Figure 5.3, and it consists of over 46% of all intermediaries, almost 75% 

of nanotechnology firms, greater than 45% of other users, and more than 90% of all 

scientists in the combined firm friend network.  In addition, in terms of topical content 

based on the PMI results, this community appears to be focused on nanotechnology R&D 

activity, broadly construed (e.g., in terms of news coverage or university support).  Thus, 

both the actor composition and content focus of this cluster make it the most appropriate 

community in the combined friend network on which to explore the innovation 

ecosystem concepts underlying P1 and P2. C3 contains 2,942 actors in total and 205,287 

directed edges; it has a network density of 2.4%.  Recall from Chapter 5 that network 

density describes the ratio of actual ties to all possible ties; higher levels of network 

density convey greater levels of information sharing, diffusion, and general cohesiveness 

(Kadushin, 2011).  

To further reduce the number of actors in C3 to fewer than 1000 nodes, I retain 

only those users that have authored a tweet containing the term “graphene” in an 18 

month time span from the beginning of 2013 to mid-2014, as well as all graphene firms 

in the cluster.  (Five of the seventeen graphene firms show no graphene tweets on record, 

yet they are included in the sample to maintain the network as one large connected 

                                                 
36 Recall that the combined friend network is sampled by identifying the users that graphene firms follow.  

Using the friend relation as the basis for quantitative modeling necessarily omits the follower relationship; 

that is, the subsequent analyses look only at one type of relationship in the Twitter social graph.  However, 

evaluating the following relationship allows us to clearly discuss the set of relationships as an articulation 

of graphene firms’ user agency.  This is not the case with the follower relationships, where seemingly 

anyone can follow one of the sampled graphene firms.   
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component.) This results in a single sub-component of C3 containing 945 actors and 

57,935 edges.  I refer to this graph as C3-945.  Contrary to initial expectations, this 

network is even denser than C3 at 6.5%.  Thus, it appears that users tweeting about 

graphene in C3-945 are better connected as a whole than users in C3.   C3-945 is 

comprised of 35.56% media entities, 22.86% intermediaries, 18.52% scientists, 8.89% 

other unidentifiable users, 7.3% nanotechnology firms, 3.6% other firms, 2.54% support 

firms, and 0.74% financial institutions.  Because other firm, support firm, and finance 

users represent such small percentages of C3-945, I combine these users together into the 

“other firm” category for all model specifications below.  

Instead of coloring nodes by community number as done in Chapter 5, I instead 

shade them by their actor affiliation type (see caption of Figure 6.1.)  As mentioned in 

Chapter 4, Force Atlas positions nodes on a graph to minimize the distance between high-

connectivity actors and to avoid overlapping edges.   The graph shows some degree of 

actor mixing and also a fair amount of homophily.  For example, the upper right corner 

shows a section dominated by connected scientists, while the bottom part reveals a 

number of intermediaries.  Most of the nanotechnology and graphene firms can be found 

in the center and left parts of the graph.  Media entities are broadly distributed throughout 

C3-945, as are many of the other firms and “unknown” actor types.  
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Figure 6.1: C3 community from the combined friend network.  Source: Twitter; network 

consists of 2,942 users and 205,287 directed ties; data collected in early 2014.  Notes: 

Seventeen of the 33 graphene firms are found in C3; they are shaded in white and sized larger 

than the other nodes.  144 other nanotechnology related firms are yellow and appear smaller in 

size.   Other actors include 593 scientists (dark blue), 528 “unknown” users (gray), 739 media 

entities (magenta), 627 intermediaries (green), and 294 other firms (cyan), which include 

financial intuitions and support firms. 

 

Descriptive statistics and correlation matrices for continuous actor attributes 

variables are given in Table 6.1.   All variables except account_age are log transformed 
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due to the skewed nature of the distributions.  Most variables exhibit statistically 

significant positive correlations; for example, normalized tweeting activity is positively 

correlated with number of followers, number of friends, number of graphene tweets, and 

account age.  Number of followers is positively correlated with number of friends and 

account age, and number of friends is positively correlated with account age.  These 

positive correlations suggest that larger network sizes are often associated with more 

frequent usage.  Finally, number of graphene tweets is negatively correlated with account 

age, indicating that newer users in C3-945 are among the most active tweeters in this 

domain.  

 

Table 6.1: Descriptive statistics and correlations for continuous variables 

variable Mean S.d. Min Max (1) (2) (3) (4) (5) 

(1) ln_norm_status_cnt -0.26 1.79 -9.21 5.24 1     

(2) ln_followers_count 6.56 2.24 0 14.01 0.64* 1    

(3) ln_friends_count 5.76 1.61 0 9.73 0.37* 0.34* 1   

(4) ln_graphene_tweets 2.02 1.31 0 7.97 0.13* -0.01 0.04 1  

(5) account_age 1374.12 557.86 123 2695 0.33* 0.56* 0.13* -0.09* 1 

Source: Twitter, n=945 users collected in early 2014.  Notes:  Descriptive statistics and 

correlations for continuous actor attributes in C3-945.  * Denotes significance at α=.01.  

 

6.2. ERGM Example Run  

While ERGMs are becoming more common in the toolkits of social scientists, 

they are not yet broadly used (Goodreau, 2007).  The purpose of this section is to provide 

a detailed example demonstrating how this statistical approach differs from logit and 

probit regression, where the dependent variable also takes the form of 1 or 0. The 

difference between ERGM and logit or probit models, as noted in Chapter 4, is the 
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assumption of independence across observations (in logit or probit) or dependence across 

observations (in ERGMs).   ERGMs are specifically tailored for social network analysis 

in terms of accounting for endogenous network activity.  Endogenous variables (e.g., 

mutuality, triangles, and higher order organizing phenomenon such as k-stars) capture the 

process by which certain network links develop in response to the existence of other 

network connections (Lusher & Robbins, 2013). When ERGMs do not include 

endogenous network structural controls, they become very similar to logit specifications 

(Robins & Lusher, 2013).  This is because in social selection models with network 

structure as the dependent variable, all nodal and/or dyadic attribute covariates are 

considered exogenous and thus independent of one another.  For example, being a 

graphene firm is not likely to be influenced by whether or not a user is in contact with 

other graphene firms on Twitter, and thus this variable (graphene_firm) is exogenous.   

I present the full output of three related models to show how ERGMs work with 

and without endogenous structural variables (Tables 6.2-6.4).   Table 6.2 is the simplest 

model possible: The edges parameter is analogous to an intercept (Robins, Lewis, & 

Wang, 2012), and the negative statistic is often reported as the log-odds of any tie 

occurring.  In this case, the log-odds is -2.667, and the corresponding probability of any 

tie occurring in the sample is 
𝑒(−2.667)

1+𝑒−2.667
=  .065.  Recall that the density of C3-945 is 

6.5%.  Thus, an ERGM model with no other attributes gives the log-odds of the edges 

parameter that corresponds with the graph’s density.  The caption of Table 6.2 contains 

both Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

measures, which report model quality as a tradeoff between number of parameters 

(parsimony) and explanatory power.  Smaller values are better.  
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Table 6.2: Basic ERGM model on C3-945 

 Estimate Std. 

Error 

MCMC 

% 

p-value 

edges -2.667 0.004 NA 0.00 

Source: Twitter; network consists of 945 actors and 57,935 edges; 

data collected in early 2014.  Note: AIC=428841, BIC=428853. 

 

 

Table 6.3 includes one exogenous binary variable that captures whether two 

graphene firms are more or less likely to maintain a directed following tie (hence the 

variable prefix “nodematch”).  More specifically, it tests the proposition that graphene 

firms are more likely to follow each other in C3-945 than other types of non-graphene 

users.  Because ERGMs report parameters (i.e., regression coefficients) on change 

statistics assuming the addition of a tie conditional on all other ties, sets of model 

attributes can be interpreted by isolating the context in which a given tie appears.   For 

instance, if a tie links a graphene firm to a non-graphene firm, its log-odds is -2.979 

(4.8%).  However, if the tie occurs between two graphene firms, then its log-odds is -

2.979 + 1.130 = -1.849 (13.6%).  Finally, if the tie occurs between two non-graphene 

firm users, its log-odds is -2.658 (6.5%).  This finding reveals that graphene firms are 

more likely to follow one another (13.6%) than non-graphene firm actors are likely to 

follow each other (6.5%).  Additionally, graphene firms are more likely to follow each 

other than they are non-graphene firms (4.8%).  .  Thus, this model provides partial 

support for P1b, which suggests that actors choose whom to follow based on 

homophilous social selection processes.37 

                                                 
37 Note that there are no mixing terms across actor categories (e.g., between scientists and intermediaries), 

so this model says nothing about P1a. 
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Table 6.3: Adding a binary attribute for whether actors are graphene 

firms 

 Estimate Std. 

Error 

MCMC 

% 

p-value 

edges -2.979 0.026 NA 0.00 

nodematch.graphene_firm.0 0.321 0.027 NA 0.00 

nodematch.graphene_firm.1 1.130 0.179 NA 0.00 

Source: Twitter; network consists of 945 actors and 57,935 edges; 

data collected in early 2014.  Notes: AIC=428667, BIC= 428702.  

In contrast to the baseline ERGM specification containing just 

edges, the AIC and BIC improve in this model. 

 

 

What happens when we take into account the propensity of Twitter users to 

reciprocate following relationships?  In the social network literature, mutuality in directed 

ties is considered an endogenous network feature (Kadushin, 2011).  Endogenous 

network parameters cannot be estimated without simulation; thus we see the “MCMC 

(Markov chain Monte Carlo) percentage” column populated with numeric values (Table 

6.4).  Furthermore, p-values are not the only criterion by which to judge a model’s 

accuracy in simulation mode.  We also need to ensure the model converges; i.e., that it 

shows stability in log-likelihood improvements after each round of maximum likelihood 

estimation.  If the model fails to converge (or even run), this indicates that the ERGM 

cannot fit the observed network data; it is degenerate. Model degeneracy does not signify 

weaknesses in the MCMC estimation procedure per se but rather with a given model 

specification.  “The solution is to specify a better-fitting model for the data, but this is 

less straightforward for networks than for other statistical contexts. In ERG modeling, a 
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misspecified model can fail to converge, yielding no parameter estimates to guide model 

diagnosis or respecification” (Goodreau, Kitts, & Morris, 2009, p. 110).38   

The model depicted in Table 6.4 was run in a control environment with up to 100 

iterations, though it converged well before then.   Here, we see that the log-odds of a 

following relationship appearing without a mutual tie between graphene firms and non-

graphene firm users is -3.337 (3.4%).  Contrast this to a tie between two graphene firms 

(i,j) where a mutual following relationship already exists between (j,i); the log-odds is 

0.103 or a probability of 52.6%.  This suggests that once graphene firms find out about 

each other online (i.e., not necessarily that the firms exist, but that the firms have a 

Twitter account), they are quite likely to follow one another.  The AIC and BIC improve 

considerably over the model specification in Table 6.3.  This interpretation offers even 

stronger support for P1b.  

 

Table 6.4: Adding a term for mutuality 

 Estimate Std. 

Error 

MCMC 

% 

p-value 

edges -3.337 0.025 0.00 0.00 

nodematch.graphene_firm.0 0.241 0.025 0.00 0.00 

nodematch.graphene_firm.1 0.821 0.174 0.00 0.00 

mutual 2.619 0.015 0.00 0.00 

Source: Twitter; network consists of 945 actors and 57,935 edges; 

data collected in early 2014.  Note: AIC= 403038, BIC: 403085. 

 

 

                                                 
38 Recall that a lack of convergence with the combined follower and friend networks led to the eventual 

selection of C3-945 as the network to model.  
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To test the validity of the model, goodness of fit and model degeneracy analyses 

can be applied.   For illustrative purposes, I review these techniques here in some detail in 

order to briefly summarize robustness checks on the main findings later below.    

A correctly specified ERGM that converges on an observed network produces a 

probability distribution over similar networks of the same size.  Sampling from this 

distribution should ideally produce networks that are related to the observed network.  

The purpose of goodness of fit measures, therefore, is to examine whether features show 

comparable frequency distributions between the simulated networks and observed 

network; it is a validity check of sorts, often applied to non-explicitly modeled attributes 

(Goodreau, 2007).  Since the ERGM accounts for micro-level network activity which 

aggregates to higher level meso and global structural characteristics, consistency across 

the simulated and observed networks at these higher levels provide verifiable signs of 

model robustness.   For instance, suppose that in-degree and out-degree are not included 

as parameters in the ERGM.  Yet, in the network literature, distributions of centrality 

scores are important in characterizing overall network topography (Goodreau et al., 

2009).   Examining goodness of fit using centrality scores consequently offers one way to 

assess whether the simulated networks produced by the ERGM “look like” the observed 

network.  

Figures 6.2 and 6.3 illustrate the in-degree and out-degree sample distributions of 

the simulations produced by the ERGM in Table 6.4 vis-à-vis the observed in-degree and 

out-degree values from C3-945.  Figure 6.2 shows a black trend line that reflects the 

proportion of nodes in C3-945 exhibiting in-degrees from 0-25 in the observed network.  

The box plots in the background reveal the first and third quartiles of the simulated 
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network in-degree distributions.  The trend line falls within an acceptable range for in-

degrees beginning at 3.  Figure 6.3 shows the analogous diagram for out-degree.  Here 

the deviation between the observed data and simulated networks appear most significant 

at out-degree 0.39   

 

 

Figure 6.2: Goodness of fit diagnostics for in-degree distribution, 0-25.  
Source: Twitter; network consists of 945 actors and 57,935 edges; data 

collected in early 2014.  Note: Diagnostics run on ERGM reported in Table 

6.4.  

 

 

 

 

                                                 
39 Because the ERGM does a poor job of predicting a relatively large number of nodes with few in-degree 

or out-degrees, it makes sense to attempt to fit a new model specification controlling for these factors, e.g., 

adding parameters for in-degrees 0, 1, and 2, as well as out-degrees 0, 1, and 2.  However, in several 

specifications of in and out degree combinations, the resulting models failed to converge. 
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Figure 6.3: Goodness of fit diagnostics for out-degree distribution, 0-25.  
Source: Twitter; network consists of 945 actors and 57,935 edges; data 

collected in early 2014.  Note: Diagnostics run on ERGM reported in Table 

6.4.  

 

 

The next step in assessing model robustness is a series of tests to determine 

whether the model is degenerate.  Although the model presented in Table 6.4 converged, 

it is possible that individual sample statistics significantly differ from the observed 

values.  Indeed, this is the case with the mutual parameter, which shows a moderately 

significant p-value at 0.049 in Table 6.4.  Other signs of degeneracy at the individual 

variable level include (a) tests for auto-correlation across sample statistics taken in 

intervals from the simulated networks and (b) Geweke statistics that test whether means 

from two parts of the Markov chain (at 0.1 and 0.5 “windows”)  are from the same 

distribution.  The p-values for both the auto-correlation and Geweke statistics are not 

significant in the model specification found in Table 6.4.  
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The simple models presented in this section compare network relationships 

between graphene firms and non-graphene firm users.  In the following sections, I turn to 

broader classes of ecosystem actors; i.e., nanotechnology firms, of which graphene firms 

are a part; scientists; media entities; other firms; unknown users with no readily 

identifiable professional affiliation; and intermediaries.  

6.3. Testing the Relationship Between Actor Type and Network Structure 

This section quantitatively explores P1a and P1b, which propose that ecosystem 

actors on social media engage in social selection processes guided by heterophily and 

homophily, respectively.  There are six actor classes in all, and therefore a total of 36 

different types of “mixing” relationships.  To limit the quantity of pair-wise variables to a 

manageable number, only select actor mixing variables are included in the model; that is, 

I include mixing variables when there is a theoretical or methodological motivation for 

doing so.  For instance, because C3-945 contains many nanotechnology firms and 

because innovation necessarily requires the involvement of high-technology firms, I 

specify terms for all following relationships from other classes of actors to 

nanotechnology firms, and from nanotechnology firms to other actors.  As another 

example, I specify mixing variables between intermediaries and media entities and 

between scientists and media entities due to the likelihood that the media acts as a 

valuable source of S&T news, even for experts and reputable institutions. Mixing 

variables (beginning with mix.actor_type) examine heterophily when two actors are of 

dissimilar classes (e.g., scientist and firm), and matching terms (beginning with 

match.actor_type) assess homophily when the actors are within the same class.  
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Mixing variables excluded from the model represent cases with unconventional 

pairings not necessarily relevant to the innovation context.40  For example, whether 

unknown users follow media users is of little relevance for the present study. 

Furthermore, limiting the number of actor mixing variables also helps with model 

convergence.  This particular combination of actor mixing variables initially converges in 

a reasonable number of iterations (<20) in MCMC mode, a boon that becomes 

increasingly important with the addition of continuous control and explanatory variables 

in later models, which require up to 100+ iterations over 24+ hours to estimate.41    

To reiterate, the reference group with respect to mixing variables is the set of ties 

between different actor categories not explicitly modeled.  To make the presentation of 

findings easier to digest, phrases such as “less likely” and “more likely” refer to 

comparisons with this reference group.  Out of 57,935 following relationships in C3-945, 

37,185 are reflected in the mixing variables while 20,750 are in the reference group.   

Because the number of observations is so large (945 * 945 = 893,025), only 

variables significant at the p<.01 level are inferred as statistically significant in the larger 

population of Twitter users.  In general, large datasets produce narrow standard errors 

which give rise to statistical significance even in cases where the magnitude of the 

parameter’s change on the dependent variable is very small (Wooldridge, 2003).  Thus 

setting a relatively low tolerance level for Type I errors (e.g., α=.01) makes it more 

                                                 
40 This includes relationships from intermediaries to unknown users; from media entities to media entities,  

unknown users, and other firms; from unknown users to intermediaries, media entities, other unknown 

users, and other firms; other firms to intermediaries, media entities, unknown users, and other firms; and 

scientists to unknown users and to other firms.  
41 On a machine with 4 2.70GHz 8 core processors and 512GB of RAM.  
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difficult to conclude a statistically significant effect (vis-à-vis a higher tolerance level for 

Type I errors).  

Table 6.5 shows the first two models, M1 and M2, both of which include the same 

set of mixing variables.  M2 also includes a term for reciprocity (“mutual”).  In M1, six 

of the eight positive sample regression coefficients on the mixing variables are 

significant.  In contrast, thirteen of the mixing variables show negative coefficients, 

twelve of which are significant.  Table 6.6 contains a summary of these findings: Results 

for mixing and matching variables in M1 show a positive or negative sign or a symbol for 

not significant.  Cell values without such notation belong to the reference group of 

mixing relationships.42   

It appears that without additional usage controls, the ERGM shows a highly 

bifurcated network structure with many ties leading to intermediaries and media entities 

from intermediaries, nanotechnology firms, and scientists.  On the other hand, there is a 

lower probability of following ties emanating (a) from nanotechnology firms to unknown 

actors and scientists and (b) from intermediaries to nanotechnology firms, other firms, 

and scientists.  Actors with no recognizable affiliation, while included in C3-945 because 

they are followed by at least one graphene firm, are not likely to be followed by 

nanotechnology firms as a whole, nor are they more or less likely to follow those 

nanotechnology firms in turn.  As suggested in the descriptive overview in Chapter 5, this 

finding indicates “unknown” users are not broadly embedded in the innovation network; 

i.e., that a real and revealed identity plays an important role in developing social 

connections online.   

                                                 
42 Relationships not explicitly modeled are in the reference group by default.  See Section 4.2.2 and text in 

this section for a complete discussion.   
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Table 6.5: Actor mixing parameters with usage and network structural controls 

Parameter M1  M2  M3  

Edges -2.691 *** -3.145 *** -5.185 *** 

match.actor_type.intermediary.intermediary 0.223 *** 0.145 *** 0.020  

mix.actor_type.media.intermediary 0.006  -0.168 *** -0.264 *** 

mix.actor_type.nano_firm.intermediary 0.417 *** 0.681 *** 0.366 *** 

mix.actor_type.scientist.intermediary -0.142 *** 0.111 *** -0.101 *** 

mix.actor_type.intermediary.media 0.341 *** 0.376 *** 0.167 *** 

mix.actor_type.nano_firm.media 0.814 *** 1.018 *** 0.636 *** 

mix.actor_type.scientist.media 0.540 *** 0.697 *** 0.421 *** 

mix.actor_type.intermediary.nano_firm -0.783 *** -1.104 *** -0.606 *** 

mix.actor_type.media.nano_firm -0.287 *** -0.782 *** -0.235 *** 

match.actor_type.nano_firm.nano_firm 0.377 *** 0.248 *** 0.572 *** 

mix.actor_type.unknown.nano_firm -0.965 *** -0.842 *** -0.520 *** 

mix.actor_type.other_firm.nano_firm -0.308 *** -0.402 *** 0.035  

mix.actor_type.scientist.nano_firm -0.789 *** -0.796 *** -0.360 *** 

mix.actor_type.nano_firm.unknown -0.699 *** -0.476 *** 0.010  

mix.actor_type.intermediary.other_firm -0.949 *** -0.969 *** -0.788 *** 

mix.actor_type.nano_firm.other_firm 0.070  0.170  0.241 *** 

mix.actor_type.intermediary.scientist -0.977 *** -1.044 *** -0.639 *** 

mix.actor_type.media.scientist -0.259 *** -0.581 *** -0.140 *** 

mix.actor_type.nano_firm.scientist -0.265 *** -0.065  0.163 ** 

mix.actor_type.unknown.scientist -1.299 *** -1.321 *** -0.944 *** 

match.actor_type.scientist.scientist -0.031  -0.038  0.300 *** 

mutual   2.760 *** 3.138 *** 

nodeicov.ln_followers_count     0.376 *** 

nodeocov.ln_followers_count     -0.071 *** 

nodeicov.ln_norm_status_cnt     -0.137 *** 

nodeocov.ln_norm_status_cnt     0.028 *** 

nodeicov.account_age     0.000 ***  

nodeocov.account_age     -0.000 ***  

AIC 421,388 394,410 365,268 

Source: Twitter; network consists of 945 actors and 57,935 edges; data collected in early 

2014. Notes:  ** α = .01, *** α = .001.  Alternate specifications of M3 were attempted 

with parameters for in- and out-bound statistics for ln_friends_count, but these ERGMs 

did not converge in fewer than 250 iterations.  

 

Like unknown users, nanotechnology firms as a whole are less likely to be 

followed by the other categories of ecosystem actors.  However, nanotechnology firms 
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are more likely to be followed by other nanotechnology firms, suggesting that firm 

homophily is an important social selection process in social media networks.   The 

coefficient on within-category network ties among intermediaries is also positive and 

significant, indicating support for homophily as a positive social selection here as well.  

However, in this model specification, scientists are not more or less likely to follow each 

other (than the reference group).   

 

Table 6.6: Summary of s.s. sample coefficients, as reported in M1 

 To      

From 

inter-

mediary media 

nano 

firm unknown 

other 

firm scientist 

intermediary + + -  - - 

media n.s.  -   - 

nano firm + + + - n.s. - 

unknown   -   - 

other firm   -    

scientist - + -   n.s. 

Source: Twitter; network consists of 945 actors and 57,935 edges; data 

collected in early 2014. Notes: All signs significant at α = .001.  Empty 

cells indicate ties constituting the reference group. 

 

In sum, M1 shows limited support for P1a because heterophily as a positive 

predictor of network structure only occurs when ties are directed to media and 

intermediary actor types.  M1 also shows limited support for P1b due to the positive 

significant coefficients for within category ties in the intermediaries and nanotechnology 

firm actor classes.   

M2 adds a control for reciprocity.  Rather than re-interpret the model completely, 

I instead highlight two major differences between M1 and M2.  First, in M1, the log-odds 
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of an actor following another actor in the reference group of mixing and matching 

relationships is -2.691 (6.4%).  In M2, the log-odds of an actor i following another actor j 

in the reference group without a reciprocal tie (j,i) is -3.145 (4.1%); with a reciprocal tie 

it is -0.385 (40.5%).   Reciprocity, therefore, is an important control: The magnitude of 

the “mutual” coefficient accounts for more explanatory power than any of the actor 

mixing and matching variables alone (vis-à-vis M1), and the AIC decreases from 421,388 

in M1 to 394,410 in M2 just by adding this one term.  

Controlling for reciprocity in M2 always results in a lower log-odds of following 

when the tie is not reciprocated (vis-à-vis the baseline statistic in M1).  For example, the 

log-odds of intermediaries following nanotechnology firms in M2 without a reciprocal 

relationship is -4.249 (1.4%).  If the reciprocated relationship exists, the log-odds 

improves to -1.489 (18.4%).  This suggests that an intermediary will follow a 

nanotechnology firm 18.4% of the time when a nanotechnology firm follows the 

intermediary.  In M1 where mutuality is not included as a control, the log-odds of 

intermediaries following nanotechnology firms is -3.474 (3.0%).  In another case, the log-

odds of scientists following media entities in M2 without reciprocation is -2.448 (7.9%); 

with reciprocation it is 0.312 (57.7%).  In M1, the log-odds of scientists following media 

entities without controlling for mutuality is -2.151 (10.4%).  This analysis shows that 

even when paired with certain actor types who may not be as likely to “follow back” – 

e.g., media entities – reciprocation positively and significantly predicts tie formation.  

Second, two coefficients change directions between M1 and M2.  First, while the 

coefficient on following relationships between media entities and intermediaries is 

positive but not significant in M1, it becomes negative and significant in M2.  In M2, this 
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indicates that media entities are less likely to follow intermediaries than the reference 

group overall when ties are not reciprocated.  Second, while the parameter on following 

relationships between scientists and intermediaries is negative and significant in M1, it 

becomes positive and significant in M2.  This implies that once we control for mutuality 

scientists are more likely to follow intermediaries than the reference group even when the 

tie is not reciprocated.   

In general, M1 and M2 both show the bifurcation of the network in terms of 

positive and significant coefficients on following relationships toward media entities and 

intermediaries and negative and significant statistics elsewhere (again in relation to the 

reference group).  As described in Chapter 5, media and intermediary types exhibit the 

largest average follower bases vis-à-vis the other actor categories; they are also among 

the most active tweeters. Assuming these characteristics significantly predict network 

structure in C3-945, what happens to the model results once usage controls are included?  

M3 controls for number of followers, normalized status (tweet) activity, and account age, 

and it provides two sets of important results. 

The first finding from M3 provides evidence substantiating actors’ following 

choices based on actor mixing (P1a): the bifurcation in the network apparent in M1 an 

M2 partially recedes in M3, as we see the first signs of the type of actor mixing assumed 

in the innovation ecosystem construct (see Table 6.7 for a summary).  One parameter on 

the following relationship from nanotechnology firms to scientists changes direction from 

negative in M2 to positive in M3.  In addition, (a) the sample regression coefficient from 

nanotechnology firms to other firms changes from not significant to positive, and (b) the 

insignificant negative coefficient in M2 on the following relationship from 
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nanotechnology firms to scientists becomes positive and significant in M3.  Also of 

interest is the change in sign from other firms to nanotechnology firms from negative in 

M2 to positive but not significant in M3.  Comparing Tables 6.6 and 6.7 and reading 

from left to right in the third row, these changes in signs and significance are readily 

identifiable: In M3, which controls for usage factors and reciprocity, nanotechnology 

firms are more likely to follow each type of actor (besides unknown users) in the 

ecosystem than the reference group at large.  In contrast, M2 shows the aforementioned 

bifurcation of following relationships where scientists, nanotechnology firms, and other 

firms are likely to follow across actor categories only when the tie is directed to an 

intermediary or media entity.  Therefore, this evidence from M3 provides some support 

for the heterophily argument as being an important predictor of network structure, at least 

from the perspective of nanotechnology firms.  

 

Table 6.7: Summary of s.s. sample coefficients, as reported in M3 

 To      

From 

inter-

mediary media 

nano 

firm unknown 

other 

firm scientist 

intermediary n.s. + -  - - 

media -  -   - 

nano firm + + + n.s. + + 

unknown   -   - 

other firm   n.s.    

scientist - + -   + 

Source: Twitter; network consists of 945 actors and 57,935 edges; data 

collected in early 2014. Notes: All signs significant at α = .01 or α = .001.  

Empty cells indicate ties constituting the reference group. 
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The nature of homophily as a predictor of network structure also changes from 

M2 to M3: similarity between actor types also positively predicts network structure in 

M3, albeit in a slightly different way.  In M3, no longer is the positive sample regression 

coefficient on following relationships among intermediaries significant.  Like in M2, 

nanotechnology firms are more likely to follow each other in M3.  However, in M3, we 

see a change in sign on the statistic in the following relationship between scientists from 

negative to positive vis-à-vis the reference group.  This finding agrees with the reviewed 

literature that shows anecdotal evidence for professionalized interaction among scientists 

on Twitter (Bonetta, 2009; Reich, 2011).  

A series of results related to the control variables – i.e. reciprocity, number of 

followers, normalized status (tweet) activity, and account age – offer an interesting 

perspective on social selection dynamics. Because the edge parameter estimate decreases 

in magnitude from a log-odds of -3.145 in M2 to -5.185 M3, we see that all four usage 

controls account for a great deal of the variance in the dependent variable and 

subsequently act as important predictors of network structure.  For example, the log-odds 

of the “mutual term” increases from 2.760 in M1 to 3.138 in M3. Overall, M3 performs 

well (AIC: 365,268) and shows a vast improvement over M1 and M2.  

M3 includes six variables for the three types of user controls, follower count, 

normalized status count, and account age.  The ERGM includes two terms for each 

variable, one for the node sending the following tie and the other for the node receiving 

the following tie (i.e., the friend).  I specify the natural log of follower count and 

normalized status count because of the highly skewed nature of the two distributions, 

though the log-log nature of the model makes the ERGM slightly more difficult to 
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interpret.  Thus, to improve readability, I rely on language that interprets statistically 

significant changes in log-odds as general increases or decreases in the log-odds or 

probability of a tie occurring.  However, the proper way to discuss the meaning of natural 

logged variables is to interpret the log-odds coefficients as an increase or decrease in the 

dependent variable as a function of scaling up the natural logged variable by a factor of e, 

or roughly 2.718.   

The more followers a user maintains, the more likely he is to be followed by 

members of C3-945.  This comes as no surprise due to the “Matthew Effect” of 

preferential attachment in social networks whereby popular actors get more popular over 

time (Barabási, 1999; De Bellis, 2009).  Although the dataset is cross-sectional, it is 

possible to generalize by asserting that popular actors in the broader Twitter social 

network are also popular in C3-945.  However, consider the significant negative 

coefficient on the log-odds for the follower node: The more followers this user has, the 

less likely he is to initiate a following relationship overall.  This finding is also in line 

with prior work on social media, which shows that some users with high numbers of 

followers have very few friends (Kwak, Lee, Park, & Moon, 2010).   By controlling for 

number of followers, it becomes possible to isolate the effects of preferential attachment 

from certain high follower actor types (e.g., media entities and intermediaries), a 

consideration that will be explored in more detail shortly.   

Similarly, the older an account is, the less likely it is for that user to initiate 

following relationships.  At the same time, newer accounts are less likely to attract 

following relationships.  This finding also agrees with the Matthew Effect, which predicts 

that actors who have been around the longest are often the most popular nodes in a social 
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network; that is, older and established users develop large following bases due to their 

increased visibility in the social network vis-à-vis younger and less well connected users.  

At first glance, the magnitude of the coefficients on nodeicov.account_age and 

nodeocov.account_age appear minuscule in comparison to the other usage controls.  

However, recall that the parameters represent a change in tie probability given an 

additional day of age for the sender and receiver, respectively.  

The more frequently an actor tweets, the less likely he is to attract followers in 

C3-945.  Conversely, the more frequently an actor tweets, the more likely it is for him to 

follow another user (in the reference group).   This counterintuitive finding is that 

excessive tweeting will not attract followers in C3-945, holding all other variables 

constant.  Instead, users that frequently tweet are more likely to initiate following 

relationships.  In S&T domains, then, social media may reflect the ecosystem 

community’s desire for meaningful, not superfluous, content.  This finding of “less 

tweeting attracts more followers” in C3-945 runs counter to the positive correlation 

reported between number of overall followers and normalized tweet activity in Table 

6.1.43 

In terms of goodness of fit metrics, there is not a great deal of change between the 

in-degree and out-degree distributions in M2 or M3 and the trends shown in Figures 6.2 

and 6.3.  Much of the observed degree distribution is within the acceptable range of the 

metrics obtained through simulation, with the exception of those actors with very small 

in-degree and out-degree values.  Controlling for in-degree and out-degree to improve 

                                                 
43 But this finding is commensurate with the interview data showing that too much tweeting can be 

unproductive.  “It’s hard to tweet more than once or twice a day.  If you share garbage, people don’t like it 

and they’ll be done with you” (F2).  See Chapter 7 for further details.   
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goodness of fit was not successful, as parameters added to either M2 or M3 failed to 

produce convergent ERGMs.   

Both M2 and M3 show some signs of degeneracy.  For example, in M3 individual 

sample statistics significantly differ (at p<.05) from the observed values for the 

parameters, mix.actor_type.other_firm.nano_firm, mix.actor_type.media.nano_firm, 

match.actor_type.nano_firm.nano_firm, nodeicov.account_age and 

nodeocov.account_age.  Geweke statistics that test whether means from two parts of the 

Markov chain (at 0.1 and 0.5 “windows”) are from the same distribution are significant 

(i.e., this null hypothesis is rejected) for the variables: mix.actor_type.media.nano_firm, 

mix.actor_type.nano_firm.other, mix.actor_type.intermediary.scientist, 

mix.actor_type.uknown.scientist, and nodeocov.account_age. However, autocorrelation 

across sample statistics does not appear to be a problem across the simulations.  

6.4. The Mediating Role of Information Distance  

The purpose of this section is to explore the second set of propositions addressing 

the relationship between information distance and two actors’ likelihood of connecting.  

Recall that P2a suggests a positive association between information novelty (i.e., 

information distance) and the presence of following relationships, while P2b assesses 

whether information distance explains the following decisions of uses better than actor 

affiliation mixing and matching alone can. 

This section is organized in three parts.  First, I offer descriptive results of the 

topic modeling method that underlies two related operationalizations of the information 

distance measure.  Second, I present the results of including these variables into two 

ERGMs.  Because the findings do not provide support for the first proposition, I turn to a 
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post-hoc analysis to shed some additional light on how disparities in information content 

predicts network structure in the graphene-based Twitter ecosystem.  

6.4.1. Topic Modeling Descriptive Results  

LDA is run on two sets of training corpora, (a) a sample of tweets issued by 

members of C3-945, up to 200 tweets per user, and (b) a set of 100,000 random tweets 

containing the word “graphene” sampled across all of Twitter and authored between 2013 

and the first quarter of 2014.  The rationale behind this decision stems from the divergent 

content (and subsequent topics) that emerge from the different training sets.  As we’ll see, 

the topics identified from the C3-945 set of tweets encompass a variety of S&T and non-

S&T related content.  Conversely, the topics identified from the set of 100,000 graphene 

tweets appear highly related to the R&D and commercialization of nanoscience; broader 

areas of materials science, chemistry, and physics; and recent or emerging application 

areas of graphene.  As discussed in Chapter 4, the number of topics K, as well as well as 

the smoothing parameters α and β, were determined by identifying the set of parameters 

that produce the maximum log-likelihood of the posterior distribution of words to topics.  

For the set of C3-945 tweets, K=50, α=.25, and β=.10.  For the set of graphene tweets, 

K=150, α=.25, and β=.025.   See the Appendix (Tables A6.1 and A6.2) for data 

substantiating these choices.  

In this section, I provide descriptive results in terms of words comprising select 

topics from each of the training sets for three users.    The three users represent a media 

entity (@PhysicsWorld), a nanotechnology firm (@DGSGraphene), and a scientist 

(@drskyskull).  The purpose of this descriptive overview, thereafter, is to illustrate how 



165 

information distance scores change with topical similarity (or dissimilarity) between 

users.  

Table 6.8 provides the topics trained on the sample of tweets authored by C3-945 

users.  Reading from left to right, Table 6.8 shows that @PhysicsWorld tweets about 

physics news, space, and graphene in physics research.  In contrast, the scientist 

@drskyskull is likely to author tweets that span a range of non-S&T topics drawing on a 

lexicon of day-to-day activities and foreign affairs.  The nanotechnology firm 

@DGSgraphene tweets about topics related high-technology entrepreneurship, including 

content on awards, the graphene market, and conferences.  How do the asymmetric 

information distance scores dpq differ between these three users given the 50 topics 

trained on C3-945’s tweets?  The average dpq score is 6.559 with a sample standard error 

of 2.946, a minimum of 0.0, and a maximum of 18.280. The distance of (a) @drskyskull 

from @PhysicsWorld is 5.099, and 3.241 from @drskyskull to @PhysicsWorld; (b) 

@DGSgraphene from @PhysicsWorld is 5.578, and 5.490 from @DGSgraphene to 

@PhysicsWorld; and (c) @DGSGraphene from @drskyskull is 8.608, and 8.680 from 

@DGSGraphene  to @drskyskull.  

Table 6.9 contains topics trained on 100,000 random graphene tweets, and even 

for these same three users, the topical content changes accordingly to relate graphene 

centric content. Both the media user @PhysicsWorld and the scientist @drskyskull are 

most likely to share news commentary related to graphene, while the nanotechnology 

firm @DGSgraphene is likely to tweet about content pertaining to live events, research 

infrastructure, and liquidity events.  (Indeed, this firm went public on the London Stock 

Exchange in 2013.) How do the asymmetric information distance scores dpq differ 
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between these three users given the 150 topics trained on graphene tweets?  The average 

dpq score is 5.554 with a sample standard error of 2.431, a minimum of 0.0, and a 

maximum of 19.173. The distance of (a) @drskyskull from @PhysicsWorld is 3.900, and 

2.687 from @drskyskull to @PhysicsWorld; (b) @DGSgraphene from @PhysicsWorld 

is 6.945, and 5.577 from @DGSgraphene to @PhysicsWorld; and (c) @DGSGraphene 

from @drskyskull is 6.138, and 5.472 from @DGSGraphene  to @drskyskull.  

 

Table 6.8: Comparison of top three topics trained on sample tweets from C3-945 for 

three select users 

User Most likely topic Second most likely topic Third most likely topic  

@PhysicsWorld  

(media) 

 

 

Topic 14 – “physics news” 

(15.7%) 

 

physics, cern, particle, 

matter,  universe, dark, 

higgs, black, big, science 

Topic 13 – “space” 

(12.3%) 

 

 

space, nasa, earth, mars, 

moon, telescope, water, 

science, planet, launch 

Topic 1 – “graphene in 

physics” (10.5%) 

 

quantum, researchers, 

physics, magnetic, 

graphene 

energy, dots, computing, 

scientists, lab 

@drskyskull 

(scientist) 

 

 

Topic 44 – “personal” 

(38.1%) 

 

 

good, don, people, time, 

make, things, work, thing, 

love, life 

Topic 12 – “intellectual 

property law” (15.0%) 

 

court, supreme, extrusion, 

law, plastics, laws, 

packaging, patent, media, 

@iplawalerts 

Topic 46 – “foreign 

affairs” (8.5%) 

 

world, war, india, china, 

http, Russia, people, 

obama, news, state 

@DGSgraphene 

(nanotechnology 

firm) 

 

 

Topic 38 – “high-tech 

hype” (39.0%) 

 

award, prof, 

congratulations, congrats, 

research, science, awards, 

professor, wins, university 

Topic 9 – “graphene 

market” (22.3%) 

 

graphene, material, 

graphite, nasdaq, 

grapheneweek, university, 

graphenelabs, nyse, 

lomiko, applications 

Topic 35 – “conference” 

(13.9%) 

 

conference, week, booth, 

today, june, visit, 

deadline, international, 

open, day 

Source: Twitter, up to n=200 tweets from each user’s timeline; data collected in early 

2014 

 

Table 6.9 shows more overlap in the top three topics than does Table 6.8, with the 

user @drskyskull sharing his top three topics with the other two users, @PhysicsWorld 
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and @DGSgraphene.  As a consequence, the asymmetric distance scores between 

@PhysicsWorld and @drskyskull, and between @drskyskull and @DGSgraphene, 

narrow when comparing values derived from training LDA on C3-945 tweets vs. the 

random sample of tweets containing the word “graphene”.   

 

Table 6.9: Comparison of top three topics trained on 100,000 random graphene 

tweets for three select users 

User Most likely topic Second most likely topic Third most likely topic  

@PhysicsWorld  

(media) 

 

 

Topic 106 – “news 

commentary” (14.1%) 

 

future, good, article, 

interesting, read, material, 

cool, stuff, incredible, 

make 

Topic 29 – “more news 

commentary” (6.2%) 

 

video, made, material, 

future, making, amazing, 

great, watch, condoms, 

workable 

Topic 18 – “physics 

research” (5.8%) 

 

arxiv, cond, hall, 

quantum, spin, electrons, 

mat, bilayer, electron, 

dirac 

@drskyskull 

(scientist) 

 

 

Topic 106 – “news 

commentary” (35.4%) 

 

[see above] 

Topic 29 – “more news 

commentary” (7.4%) 

 

[see above] 

Topic 107 – “live event” 

(4.3%) 

 

live, ceo, event, talk, 

today, polyakova, berlin, 

ways, conference, 

graphite 

@DGSgraphene 

(nanotechnology 

firm) 

 

 

Topic 107 – “live event”  

(51%) 

 

[see previous cell]  

Topic 61 – “research 

infrastructure” (7.4%) 

 

budget, cell, centre, 

therapy, science, turing, 

data, research, centres, 

innovation 

Topic 130 – “liquidity 

event” (7.1%) 

 

aim, applied, materials, 

float, ipo, company, 

million, foams, 

conductive, material 

Source: Twitter, up to n=200 tweets from each user’s timeline; data collected in early 

2014 

 

Why is it important to compare values across different corpora using a case based 

approach such as the one presented above?  Because of the relative novelty of using topic 

modeling for social science research, such an analysis provides much needed face 

validity to the measure as a way of examining network structure.  It also reveals how 
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different training sets can alter the values of information distance between any two actors.  

I now turn to incorporating these information distance scores into a series of ERGMs.   

6.4.2. Testing the Relationship  

P2a suggests a positive relationship between greater levels of information distance 

and the presence of following ties.  P2b assesses whether information distance explains 

the following decisions of uses better than actor affiliation mixing and matching alone, 

and I explore this latter proposition through a test of mediation; that is, I examine whether 

information distance partially mediates the relationship between actor type and network 

structure.  In other words, to explore P2a, I test for a positive direct effect of information 

distance on network structure, while to study P2b, I examine the indirect effect of actor 

type on network structure as mediated by information distance.   

Table 6.10 contains model results for both measures of information distance dpq 

where LDA is trained on the sample of tweets from C3-945 (M4), as well as the random 

sample of graphene tweets (M5).  The table also includes M3 for comparison purposes.  

M4 is the best performing model yet in terms of AIC, while M5 also exhibits a noticeable 

improvement in AIC over M3.  The explanatory power of M4 exceeding that of M5 is not 

a surprise given the topics in M4 are trained on the content produced in aggregate by C3-

945.   
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Table 6.10: Model results adding information distance variables 

Parameter M3  M4  M5  Remarks 

edges -5.185 *** -4.217 *** -4.572 ***  

match.actor_type.intermediary.intermediary 0.020  0.036  -0.032   

mix.actor_type.media.intermediary -0.264 *** -0.201 *** -0.255 ***  

mix.actor_type.nano_firm.intermediary 0.366 *** 0.432 *** 0.391 *** Suppressor effect  

mix.actor_type.scientist.intermediary -0.101 *** -0.100 ** -0.149 ***  

mix.actor_type.intermediary.media 0.167 *** 0.273 *** 0.151 ***  

mix.actor_type.nano_firm.media 0.636 *** 0.669 *** 0.652 *** Suppressor effect 

mix.actor_type.scientist.media 0.421 *** 0.386 *** 0.383 ***  

mix.actor_type.intermediary.nano_firm -0.606 *** -0.564 *** -0.612 ***  

mix.actor_type.media.nano_firm -0.235 *** -0.270 *** -0.244 *** Suppressor effect 

match.actor_type.nano_firm.nano_firm 0.572 *** 0.431 *** 0.563 ***  

mix.actor_type.uknown.nano_firm -0.520 *** -0.521 *** -0.493 ***  

mix.actor_type.other_firm.nano_firm 0.035  -0.027  0.025   

mix.actor_type.scientist.nano_firm -0.360 *** -0.358 *** -0.395 ***  

mix.actor_type.nano_firm.other 0.010  0.021  0.022   

mix.actor_type.intermediary.other_firm -0.788 *** -0.701 *** -0.811 ***  

mix.actor_type.nano_firm.other_firm 0.241 *** 0.247 *** 0.256 *** Suppressor effect 

mix.actor_type.intermediary.scientist -0.639 *** -0.574 *** -0.684 ***  

mix.actor_type.media.scientist -0.140 *** -0.155 *** -0.151 *** Suppressor effect 

mix.actor_type.nano_firm.scientist 0.163 ** 0.223 *** 0.178 *** Suppressor effect 

mix.actor_type.uknown.scientist -0.944 *** -1.044 *** -0.951 *** Suppressor effect 

match.actor_type.scientist.scientist 0.300 *** 0.167 *** 0.224 ***  

mutual 3.138 *** 3.061 *** 3.125 ***  

nodeicov.ln_followers_count 0.376 *** 0.385 *** 0.374 ***  

nodeocov.ln_followers_count -0.071 *** -0.086 *** -0.081 ***  

nodeicov.ln_norm_status_cnt -0.137 *** -0.137 *** -0.142 ***  

nodeocov.ln_norm_status_cnt 0.028 *** 0.025 *** 0.019 ***  

nodeicov.account_age 0.000 ***  0.000 *** 0.000 ***  

nodeocov.account_age -0.000 ***  0.000 *** 0.000 ***  

edgecov.dpq_C3-945_tweets   -0.134 ***    

edgecov.dpq_graphene_tweets     -0.086 ***  

AIC 365,268 357,920 363,620  

Source: Twitter; network consists of 945 actors and 57,935 edges; data collected in early 

2014. Note:  ** α = .01, *** α = .001 
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In M4, the log-odds of a following tie existing between any two actors in the 

reference group, holding all other variables constant, is -4.217 (1.5%), whereas in M5 the 

log-odds of an edge existing between any two similar actors is -4.572 (1.0%).  Contrary 

to the anticipated positive direct effect of greater levels of information distance on 

network structure, both M4 and M5 show that the parameters on edgecov.dpq_C3-

945_tweets and edgecov.dpq_graphene_tweets are negative and statistically significant.  

For example, in M4, the log-odds of an edge existing between two new users in the 

reference group with no followers, no prior tweeting activity, and a one unit increase in 

information distance is -4.351 (1.3%).  In M4, the corresponding log-odds is 4.658 

(0.9%).   Since the coefficient on the two information distance terms is negative, P2a 

cannot be substantiated, and subsequently, P2b cannot be properly evaluated for 

“consistent” mediation.  This is due to the way in which consistent mediation occurs 

where the direct effects of the causal variable on the dependent variable is the same sign 

as the product of the signs constituting the indirect effect through the mediating variable 

(MacKinnon, Fairchild, & Fritz, 2007).  Usually both the direct effect and indirect effect 

are positive in mediation analysis, an outcome which is not substantiated by either M4 or 

M5.  See section 6.4.3 for details.  

Note that the signs of all coefficients between M3 and M4 and between M3 and 

M5 remain consistent, suggesting that the addition of the topic modeling based 

information distance scores might still enhance the baseline interpretation of M3.  For 

example, it may be possible that information distance acts as a type of “negative” 

suppressor variable that exhibits positive correlations with the actor type mixing variables 

as well as the network structure dependent variable.  In theory, when included in the full 
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model, the negative suppressor variable takes on a negative parameter estimate because it 

explains more in terms of the irrelevant information between itself and the other predictor 

variable (actor mixing) than it does between itself and the outcome variable (network 

structure) (Maassen & Bakker, 2001).  However, after examining the results of a bivariate 

ERGM on network structure as a function of information distance using either topic 

modeling measure, a negative and significant relationship persists.  In addition, a 

suppressor variable will often inflate the values of the primary predictor variable (actor 

mixing), which it does not systematically do in either M4 or M5.  Therefore, based on 

this evidence, information distance does not appear to be a suppressor variable.  

What do these results tell us about how information distance qualifies patterns of 

interaction in the online graphene ecosystem?  The simple answer is that individuals, at 

least in C3-945, group together in structures where decreasing levels of differences in 

tweet content result in higher probabilities of following ties.  So, while there is some 

evidence that some types of actor mixing generate network ties, information diversity has 

the opposite effect, regardless of the underling corpus used to train LDA.  

A goodness-of-fit analysis on M4 in terms of in-degree and out-degree 

distributions of the observed network vis-à-vis the simulated networks shows very similar 

results to Figures 6.2 and 6.3.  Again, the observed degree distribution is within the 

acceptable range of the metrics obtained through simulation, with the exception of those 

actors with very small in-degree and out-degree values. Similar to M3, M4 shows limited 

signs of degeneracy.  In M4 individual sample statistics significantly differ (at p<.05) 

from the observed values for the parameters, 

match.actor_type.intermediary.intermediary, mix.actor_type.nano_firm.media, 
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mix.actor_type.scientist.media, mix.actor_type.intermediary.nano_firm, 

nodeicov.account_age and nodeocov.account_age.  Geweke statistics are significant for 

the variables: mix.actor_type.media.nano_firm, mix.actor_type.nano_firm.other, 

mix.actor_type.intermediary.scientist, mix.actor_type.uknown.scientist, and 

nodeocov.account_age. Like in M4, autocorrelation across sample statistics does not 

appear to be a problem across the simulations produced in M3.  

6.4.3. Post-Hoc Analysis  

The negative coefficient on information distance using the topic modeling 

measure stands in contrast to the expected direct effect between information distance and 

network structure: It was proposed that actors choose whom to follow based on the 

perceived novelty of information.  Yet, given the focus of C3-945 as a nanotechnology 

R&D community, and given the reach of the topics, some of which do not ostensibly 

focus on graphene per se, the dpq edge covariate may capture information distance across 

too many lexical dimensions – even if those dimensions are broadly related to graphene 

R&D.  To address such a limitation, I turn to the difference in tweeting activity between 

actors in C3-945 in terms of the number of tweets with the word containing “graphene”.  

Recall that to be included in C3-945, users must have authored at least one graphene 

tweet; however there are differences even within this measure that may inform the 

development of network structure.    

In this post-hoc analysis, I test the proposition that differences in graphene 

tweeting positively predict network structure. Since C3-985 exists as a community in the 

combined friend network, wherein users follow one another to seek information, it is 

reasonable to expect that greater distances in terms of the number of graphene tweets 
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issued by two users predicts tie existence.  The rationale here is that the term “graphene” 

acts as a signal to readers about a specific topic that may be relevant to many different 

applications and industries, given the GPT nature of the nanomaterial:  While some users 

share a lot of information about graphene, others seek information about it through the 

following (i.e., friend) connection.   

I operationalize differences in graphene tweeting via two steps.  First, the natural 

log of the count values is taken due to the highly skewed nature of the distribution. 

Second, I specify an interaction term for nodal attribute mixing, similar to nodemix, 

called “absolute difference” or absdiff (Morris, Handcock, & Hunter, 2008).  However, 

unlike with nodemix, the attribute to model is quantitative, not categorical.  “absdiff” 

adds a statistic to the model equal to the sum of 

| ln_graphene_tweets(i) –  ln_graphene_tweets(j) | for each possible directed tie (i,j) in 

the network.  

To reiterate, larger distances of this measure are expected to predict network 

structure, and the results show this is indeed the case (Table 6.11).  Table 6.11 includes 

M3 as a comparison case; M6 adds the absolute difference term.  The direct effect on 

absdiff is positive and significant.  In M6, when holding usage factors constant at zero, 

the log-odds of a non-reciprocated edge existing in the network between two new actors 

in the reference group with no followers and no tweet history is -5.357, or 0.5%.  With 

reciprocation, the log odds improve to -2.226 (9.7%).  When the linear distance between 

the natural log number of graphene tweets of two actors increases by one unit, the log-

odds of a tie appearing improves to -2.149 (10.4%) with reciprocation.   
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Having established the positive direct effect of different levels of graphene 

tweeting on network structure, what about the question of how information distance 

mediates the relationship between actor mixing and network structure?  Baron and Kenny 

(1986) identify two main criteria that establish a mediating relationship.  First, the three 

variables in question (e.g., actor mixing, information distance, and network structure) 

should correlate with one another.  I provide the following evidence to prove correlation 

exists.  

1. M1 shows that actor mixing predicts network structure (i.e., the existence of 

network ties).   

2. A separate ERGM (not reported in detail) containing an edges parameter and 

another explanatory variable, the absolute difference of graphene tweeting 

between two actors (i,j), shows that differences in graphene tweeting positively 

predicts tie formation.   

3. Of the eight positive and statistically significant mixing type relationships 

reported in M3, all but one are positively and significantly correlated with greater 

levels of information distance, as measured by differences in graphene tweeting 

(bivariate output results not reported in detail).   

Second, Baron and Kenny argue that once the mediating variable is included in 

the regression model, the effects of the exogenous variable (in this case, the set of actor 

mixing types) should approach zero.  Many times, however, the effect of the independent 

variable(s) (in this case, actor mixing) still remains significant but the magnitude of the 

coefficient declines.  Before the results are discussed, I briefly turn to a technical 
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discussion of testing mediation through indirect effects; this provides a more nuanced 

interpretation of the findings ascertained from Baron and Kenney’s approach.  

Advanced tests that evaluate the statistical significance of an indirect effect 

given a mediating variable focus on either (a) the difference between the total effect 

of the primary explanatory variable on the outcome and the corresponding direct 

effect, or (b) evaluating the product of coefficients constituting the indirect effect 

(MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002) (Figure 6.4).  The total 

effect c can be isolated by regressing network structure on the presence of a specific 

actor type mixing relationship, whereas the direct effect c’ can be identified by adding 

the mediating variable to the specification.   The indirect effect lies on the path from 

the actor mixing categorical variable to the outcome variable of network structure via 

the mediator, information distance (a and b).  

 

 

Figure 6.4: Path diagram showing direct and indirect effects 
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This first approach to testing mediation effects – i.e., calculating the 

difference between the total and direct effects – is computationally incorrect in cases 

where either the outcome or mediating variable is dichotomous (MacKinnon et al., 

2007).  This is because the residuals in logit and probit models (to which ERGMs are 

related) are fixed, and therefore any given parameter estimates derived from this 

family of models depend on other parameter estimates.   However, Iacobucci (2012) 

conveniently introduces a well-articulated approach to computing whether mediation 

occurs regardless of whether the variables in question are continuous or categorical.  

This process requires standardizing the sample regression coefficients comprising the 

indirect effect (za and zb), taking their product (zab,), and formulating a “collected” 

standard error.  A “z-mediation” score can then be calculated as follows and tested 

against a standard normal the usual significance levels; e.g., mediation occurs if 

|zmediation| > 2.576 at the α=.01 significance level for a two-sided test.  

𝑧𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑧𝑎𝑧𝑏

√𝑧𝑎
2 + 𝑧𝑏

2 +  1
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Table 6.11: Adding an information distance term for differences in graphene 

tweeting 

Parameter M3  M6  Remarks z.med  

edges -5.185 *** -5.357 ***    

match.actor_type.intermediary.intermediary 0.020  0.025     

mix.actor_type.media.intermediary -0.264 *** -0.273 ***    

mix.actor_type.nano_firm.intermediary 0.366 *** 0.343 *** + magnitude ↓ 15.355 *** 

mix.actor_type.scientist.intermediary -0.101 *** -0.077 **    

mix.actor_type.intermediary.media 0.167 *** 0.164 *** + magnitude ↓ 14.880 *** 

mix.actor_type.nano_firm.media 0.636 *** 0.613 *** + magnitude ↓ 18.803 *** 

mix.actor_type.scientist.media 0.421 *** 0.430 *** + magnitude ↑ 2.805 *** 

mix.actor_type.intermediary.nano_firm -0.606 *** -0.649 ***    

mix.actor_type.media.nano_firm -0.235 *** -0.282 ***    

match.actor_type.nano_firm.nano_firm 0.572 *** 0.513 *** + magnitude ↓ 16.994 *** 

mix.actor_type.uknown.nano_firm -0.520 *** -0.558 ***    

mix.actor_type.other_firm.nano_firm 0.035  -0.009     

mix.actor_type.scientist.nano_firm -0.360 *** -0.393 ***    

mix.actor_type.nano_firm.other 0.010  -0.003     

mix.actor_type.intermediary.other_firm -0.788 *** -0.777 ***    

mix.actor_type.nano_firm.other_firm 0.241 *** 0.225 ** + magnitude ↓ 7.898 *** 

mix.actor_type.intermediary.scientist -0.639 *** -0.620 ***    

mix.actor_type.media.scientist -0.140 *** -0.135 ***    

mix.actor_type.nano_firm.scientist 0.163 ** 0.156 ** + magnitude ↓ 9.703 *** 

mix.actor_type.uknown.scientist -0.944 *** -0.898 ***    

match.actor_type.scientist.scientist 0.300 *** 0.335 *** + magnitude ↑ -21.327 *** 

mutual 3.138 *** 3.131 ***    

nodeicov.ln_followers_count 0.376 *** 0.380 ***    

nodeocov.ln_followers_count -0.071 *** -0.068 ***    

nodeicov.ln_norm_status_cnt -0.137 *** -0.143 ***    

nodeocov.ln_norm_status_cnt 0.028 *** 0.021 ***    

nodeicov.account_age 0.000 ***  0.000 ***    

nodeocov.account_age -0.000 ***  -0.000 ***    

absdiff.ln_graphene_tweets   0.077 ***    

AIC 365,268       

Source: Twitter; network consists of 945 actors and 57,935 edges; data collected in early 

2014. Note:  ** α = .01, *** α = .001 

 

 

Based on this discussion, we are most interested in what happens to the eight 

positive and statistically significant actor mixing combinations in M3 vis-à-vis M6 (Table 
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6.11).  Referring to Figure 6.4, we know b is positive, that is greater levels of disparities 

in graphene tweeting positively predict network structure.  In addition, of the 21 

categorical mixing variables, eight are of particular interest because their sample 

regression coefficients positively predict network structure.   These mixing variables live 

on path c’.  Comparing M3 to M6, six of the eight positive coefficients decrease in 

magnitude, though all are still significant.   So, for example, nanotechnology firms are 

less likely to follow intermediaries, media entities, scientists, and other nanotechnology 

firms once information distance in terms of graphene tweeting is accounted for.   Because 

these six positive coefficients decrease in magnitude (in path c’ vs. c), this indicates that 

these mixing relationships on average are associated with greater levels of disparities in 

tweets containing graphene (i.e., through the indirect effect of actor mixing on network 

structure beginning with path a in Figure 6.4).   

That is, nanotechnology firms find value not only in following a diverse set of 

users but also in the amount of graphene-related content that those relationships provide.  

Note that users tweeting about graphene represent a variety of actor categories, and thus 

these results do not suggest that disparities in graphene tweeting predict network structure 

simply because nanotechnology firms are more likely than other users to tweet about 

graphene.  (Recall for instance that to be included in C3-945, all actors must have 

tweeted about graphene at least once.)   

Surprisingly, the two mixing types that experience increases in coefficient sizes 

are following ties from scientists to media entities and from scientists to other scientists.  

This finding suggests that scientists do not follow media entities and other scientists to 

access additional quantities of graphene content.  Indeed, as indicated in the sign of 
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zmediation, the bivariate correlation between intra-scientist following relationships and 

information distance (path a in Figure 6.4) is negative.  

The zmediation scores are very unlikely to occur if the null hypothesis were true; i.e., 

if mediation did not occur.  It is worth noting, however, that zmediation scores are the results 

of a basic path analysis excluding important endogenous network and exogenous usage 

controls.  While it makes the calculation zmediation easier to compute, this simplification 

does not consider omitted variables that could confound the results.   

6.5. Summary 

This chapter examines the first two propositions of this research study, namely 

that actors choose whom to follow by mixing and matching across affiliation types, and 

that these following decisions are also informed by subjective perceptions of information 

novelty.  The findings provide preliminary support for P1b by showing that graphene 

firms are more likely to follow one another than all other actors.  The results also support 

P1b by showing larger homophily trends within the nanotechnology firm and scientist 

actor categories, once a series of other exogenous and endogenous variables are included 

as controls.  In terms of mixing across actor categories (P1a), the results show that media 

entities and intermediaries are likely to attract following relationships from all actor 

categories.  In later model specifications, we see that nanotechnology firms are also more 

likely to follow across the other firm and scientist actor categories, suggesting that 

Twitter provides a suitable platform for high-technology firms to build awareness of and 

potentially engage in ecosystem activities.  The role of social media in improving 

awareness will be explored further in the qualitative results (Chapter 7). 
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P2a, which supposes ecosystem actors choose whom to follow based on perceived 

access to information novelty, is not substantiated using the measures derived from topic 

modeling.   Because of this result, P2b, which examines the mediating influence of 

information distance on the relationship between mixing and matching of actor affiliation 

and following decisions, was not pursued further in these model specifications.  

However, when incorporating the difference in graphene tweeting as a measure of 

information distance, evidence for the positive direct effect and mediation relationship 

was found.   

In summary, these findings support the notion that the online innovation 

ecosystem is an amalgam of different types of actors who follow one another – and 

thereby gain access to content – albeit in some traditional ways.  For example, users are 

likely to follow media entities for information.  At the same time, however, the Twitter 

social graph shows that diversity is also important, particularly for nanotechnology firms, 

which are likely to maintain links to scientists and other firms.  People without 

professional affiliations – those “unknown” users – exist in the network but do not attract 

a widespread following.  In terms of information content, network linkages appear to 

develop around topical areas of shared interest, even within the diverse actor composition 

of C3-945.   However, perhaps because graphene is a technology with significant interest 

across industries and sectors, it appears that low volume tweeters in the graphene space 

are likely to follow high-volume tweeters.  (Alternatively, it could be the case that high 

volume tweeters also follow low volume graphene tweeters.)   

The findings in this chapter are subject to three main limitations.  First, while C3-

945 exhibits ecosystem qualities and thus lends itself to closer examination in terms of 
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the study’s first two propositions, this community is ultimately a network with 

boundaries defined by the constraints of the selected ERGM implementation.  As such, 

even though the total number of observations is large, the results may not generalize to 

other communities such as C3, the combined follower network, or the entire population 

of Twitter users involved in ST&I.  Assuming better tool availability, additional 

regression modeling using the same set of covariates should be employed on larger 

networks within the graphene space and even in non-related emerging technology 

domains (e.g., synthetic biology).   

Second, with different networks comes the opportunity to test alternative 

specifications of the ERGMs presented in this chapter.  The empirical literature on 

ERGMs advises the inclusion of complex network self-organizing statistics (e.g., 

geometrically weighted terms) as important controls (Hunter, Handcock, Butts, 

Goodreau, & Morris, 2008).   With these controls, however, such approaches always 

resulted in non-converging models.  Yet including additional network controls could 

produce important findings should models converge on different datasets.   

Finally, the results are also qualified by the enabling and constraining features of 

Twitter as a communication platform.  For example, it is relatively easy to connect with 

strangers on Twitter, and yet the character limits on tweets, as well as their public nature, 

may restrict the type of communication that occurs on the platform in the public timeline.  

As a result, these findings, particularly with respect to information distance, may not be 

applicable to other online platforms or offline modes of interacting where community 

formation around similar topics is less important than pursuing weak ties that can 

transmit diverse information.  
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CHAPTER 7:  QUALITATIVE FINDINGS 

The prior two chapters addressed the first two propositions based on quantitative 

evidence.  The first proposition examined whether actors choose following relationships 

based on social selection processes of similarity or dissimilarity in professional 

affiliation.   The results show that innovation networks on social media are not random 

and that there is a certain type of interaction – among traditional innovation actors, as 

well as the media – that predicts friend networks in graphene firm-centric networks.   

The second proposition builds on theory that stresses information novelty, as 

subjectively viewed by network members, as a scarce resource that offers particular value 

and relevance in the social media domain, where information traverses freely across 

traditional boundaries.  This proposition specifically assesses whether dissimilarity in 

information across ties predicts network connections.  Contrary to expectation, the results 

show a negative effect; that is, as information distance increases, the probability of a 

network tie existing goes down.   However, in a post-hoc analysis that evaluates the 

difference in the number of ‘graphene’ hashtags tweeted by one party vis-à-vis another 

potential user, as the distance between graphene tweeting increases, so too does the 

probability of a linkage.   

This chapter considers innovation outcomes that social media usage may help 

advance.  Qualitative evidence is supplied through nine interview transcripts showing 

noticeable differences in each respondent’s orientation towards Twitter and other social 

media usage (Section 7.1; refer to Table 7.1 for an overview of the sample).  The 

outcomes of interest include increased awareness (Section 7.2), better problem solving 

ability (Section 7.3), and enhanced linkages via private (and often non-Twitter based) 
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modes of communication (Section 7.4).  Other potential outcomes include sales and 

marketing gains for firms, impacts to the job market for scientific talent, and overall 

changes to the way science is adjudicated and disseminated (Section 7.5).    Each section 

presents relevant usage evidence that helps set the context as to why certain outcomes are 

more or less perceptible to the respondents.  An analysis (Section 7.6) is then undertaken 

to interpret the qualitative findings and then briefly integrate the findings from both the 

quantitative and qualitative results chapters.  

The results from this chapter suggest mixed evidence with regard to social 

media’s effects on innovation additionalities:  For most interviewees, Twitter in particular 

helps improve awareness of ecosystem topics but rarely contributes to enhanced problem 

solving outcomes.  Similarly, some users transition public Twitter interaction to private 

modes of interaction (e.g., via other online platforms including LinkedIn), while others 

do not.  Finally, Twitter and social media may facilitate sales and marketing efforts for 

nanotechnology and graphene firms, and it may also offer some benefits to job seekers in 

terms of job market related information and contacts.  Many respondents were 

enthusiastic about social media’s impacts on the scientific enterprise in terms of public 

discourse and accessing information in related fields, but they also conveyed reservations 

about how well tweeting could capture truly complex ideas.  A word table (Table 7.2) 

summarizes the results on these various outcome dimensions.  

 

7.1. Sample Overview and Usage Patterns  

The sample consists of nine interviewees with three intermediaries, three firms, 

two scientists, and one media entity.   The interviews were conducted between March 
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2014 and January 2015 and lasted between 20 and 90 minutes, with most taking between 

30 to 45 minutes. Each of the interviewee’s usage characteristics is outlined in Table 7.1.  

To ensure anonymity, respondent identifying information is obscured from interval 

values to ordinal categories where appropriate.  For example, instead of disclosing 

number of followers or friends, which can be easily viewed online, labels such as “few 

hundred” “nearly two thousand” are given instead.  See the table’s caption for a 

description of the classification scheme.  

Most of the users interviewed in this study have been on Twitter for several years 

with older accounts experiencing more followers and friends, on average, than newer 

accounts.  However, in terms of the ratio of followers to friends, it is not possible to infer 

anything about certain types of accounts having more followers than friends, or vice-

versa.  For example, a scientist and two intermediaries show more followers than friends, 

but all other accounts maintain more friends than followers.    
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Table 7.1: Interviewee profile and usage characteristics  

Id 

 

Account 

Type 

AccountAge 

(years) 

Followers Friends Ratio (followers 

to friends) 

Normalized 

Status Count 

Graphene 

Tweets 

Interview Date 

and Length (min) 

F1 Firm < 4 Couple hundred Many hundreds 0.50 Moderate 4 19/3/2014, 55 

F2 Firm < 5 Many hundreds Near two thousand 0.48 Moderate 27 27/3/2014, 45 

F3 Firm < 6 Over a thousand Near two thousand 0.59 Prolific 16 31/3/2014, 90 

I1 Intermediary < 6 Few hundred Many hundreds 0.76 Moderate 0 1/4/2014, 65 

I2 Intermediary < 3 Many hundreds Many hundreds 1.01 Infrequent 0 3/9/2014, 30 

I3 Intermediary < 7 Millions Couple hundred 20002.73 Prolific 0 19/9/2014, 30 

M

1 

Media < 2 Tens Tens 0.67 Moderate 261 14/3/2014, 20 

S1 Scientist < 6 Over a thousand Over a thousand 1.27 Prolific 2 21/11/2014, 30 

S2 Scientist < 7 Tens Tens 0.76 Moderate 8 23/1/2015, 35 

Sources: Interview transcripts and Twitter, n=9 users; Twitter data collected in early 2014, and interview data collected in 2014 and 

early 2015.  Notes: Account age is measured in years with “< N years” indicating that the account has been active between N-1 and N 

years. Follower and friend ordinal categories include tens, couple hundreds, many hundreds, over a thousand, nearly two thousand, 

and millions.  Recall that normalized status count refers to the number of tweets issued by the account since inception normalized by 

number of days since the account has been online.  Infrequent denotes fewer than 0.10 tweets per day; moderate represents between 

0.10 and ~1 tweets per day; prolific indicates greater than ~1 tweet per day. 
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Table 7.2: Word table summarizing qualitative findings 

Outcome  Comment 1 Comment 2 Comment 3 

Awareness  I would say I try to learn trends from 

Twitter… Maybe one example is graphene.  

(F3) 

Because I work at the interface of two 

research areas… I find out a lot more about 

what’s going on in some of these areas.  (S1) 

It’s less about getting information from the 

friend network, because usually the stories 

that people tweet on graphene, I get that 

morning on Google alerts. (F1) 

Problem 

solving 

capacity  

I don’t think social media has helped us 

achieve our objectives.  There are very few 

discussions that take place. (I2) 

No, [Twitter does not help solve problems].  

(S2) 

You of course want to create some 

spreadsheets about how effective social 

media and websites are….  We learned that 

it depends a lot on the product. (F1) 

Transitioning 

from public 

to private 

interaction 

We made that connection on social media 

and followed-up on phone calls and over 

email. (I1) 

We’re very cautious about working with 

companies [directly] because of Federal 

laws.  If you look at who we’re following, 

we don’t even follow our contractors. (I3) 

I am looking for people who tweet and then 

show up at other places.  (F2) 

Science jobs I don’t think people are finding jobs, though 

they may be finding out about jobs. (I1) 

If you found an opportunity on Twitter, like 

as a career change, but that’s probably pretty 

dramatic.  I never looked to Twitter for an 

opportunity. (F3) 

 

Sales and 

marketing 

In marketing, you need to make a lot of 

contacts in order for one or two to work 

out…  It might be Twitter, LinkedIn, email, 

phone calls on Skype, then a period of 

silence, and then they get back to you about 

a project.  This works more organically. (F2) 

The biggest benefit of Twitter right now is 

that we can share information in the field as 

thought leaders (e.g., conferences).  It’s not 

just about getting more sales. (F1) 

It’s a little harder to connect the dots using 

social media as a business tool. I never 

remember making a sale on Twitter. (F3) 

Impacts on 

science  

It’s [Twitter is] a good thing as long as the 

debate is civil. (S1)   

If I follow [someone tweeting about] 2D 

materials –  I might learn about transition 

metal dichalcogenides – e.g., WS2 or WSe2.  

These are the next set of 2D materials that 

are up and coming after graphene.  (S2) 

Speaking simply is important for describing 

your idea in a short amount of time. (I1) 

Sources: Interview transcripts, n=9 users, collected in 2014 and early 2015.  Note: Pseudonym legend available in Table 7.2.  
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Most respondents clearly identified their accounts as professional and not for 

personal use; even when they consume non-ST&I related tweets, the respondents are 

careful to author and retweet content that their followers would find interesting.    In 

general, individual users not readily representing the interests of their organizations tend 

to take a more laissez-faire attitude toward their following and tweeting choices than 

individuals intending to further some set of strategic goals.  That is, while active on the 

platform, some individuals do not alter their behavior to attract resources or new 

followers, at least not in the way social capital theory might predict.  Also important is 

the observation that these non-strategic users are less particular than strategic users about 

how they view and interact on different platforms (e.g. LinkedIn vs. Twitter).  As shown 

elsewhere in this chapter, this difference between usage styles is due in part because less 

strategic users expect few tangible outcomes resulting from their participation.   For 

example, one user has not changed much about his tweeting behavior since he first 

started using Twitter:  

I’ve [actively] used Twitter for 2.5-3 years. I don’t know that it [my usage] 

has changed.  If you look at what I tweet, it’s been mostly technology and 

leadership. My daughter is on Twitter, and I don’t use it as a 

communication tool with her – perhaps once a year I might mention her 

handle.  Other than that, I keep it tech focused.   

 

[Do you focus content strategically to be of value to these different 

communities?] No, I do what is interesting to me.  That’s life, the way 

Twitter works… [People can just unfollow you, right?] Yes, and they have.  

People do unfollow me, but I don’t track them down to figure out who they 

are… I don’t follow all the rules.  I don’t retweet when I’m supposed to. 

(F3) 

 

Another user echoed this informal approach to growing his network based on 

tweeting interesting content:   
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I haven’t really engaged with people to build my network.  There are some 

Twitter lists – I was on the Huffington Post’s top list of Twitter physics 

users.  If you say something that people are interested in, then you will 

automatically build a network.   (S1) 

 

The journey to develop a presence on social media took a more serpentine route 

for one small business owner looking to capitalize on building his online exposure.  By 

developing and providing a service to the nanotechnology community, he is able to 

funnel contacts from Twitter and LinkedIn to his newsletter.  

I went on Twitter in 2009.  It wasn’t particularly active at that point.  I 

thought of tweeting something about myself, but it was difficult to find 

something meaningful to send out to the world.  Even if you’re a large 

company, it’s hard to tweet more than once or twice a day.  If you share 

garbage, people don’t like it and they’ll be done with you…   

 

Then I had a chat with some people that live near me.  We all read a lot to 

what is relevant to what we do, and what our clients do.  So I decided to 

tweet what I’ve read.  As a result, people started following me and 

retweeting me – from all walks of life, people who are interested in nano.  

These are active followers. These articles I get through Google Alerts. 

 

I spoke with a few people in [my locality], and they agreed that using 

Twitter is beneficial for the community.  You start building your own 

community, rather than tweeting about a taxi ride or lunch.  From that I 

decided to consolidate my contacts through Twitter and LinkedIn through 

my newsletter.  I have [many] people who receive this newsletter, [people 

spanning] from government officials, companies, etc. The result is non-

intrusive marketing – there is valuable information but I’m not selling 

them anything.  I’m just reminding them of myself. (F2) 

 

Two of the three intermediaries (I1 and I3) are large organizations consisting of 

various divisions; a social media policy implemented by a dedicated staff governs how 

official accounts disseminate information on the platform.  To one of these 

intermediaries, each social media platform offers a distinct purpose for community 

engagement:  

On Twitter, we have so many accounts, they vary in the size of the 

following: 15,000 to a couple hundred.  On LinkedIn, we have just a group 
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for (only active) members, 20,000. We have a big following on Facebook 

too: 50,000 likes.  It [Facebook] is less used for professional purposes; it’s 

more helpful for outreach and the “lighter side of science”.  There is some 

interest in popular research on Twitter (e.g., dark chocolate is helpful for 

your health or a new polymer material for stiches).  The community on 

Twitter is much more about people actively involved with the organization 

or heavily involved in the [redacted] sciences. (I1) 

 

A third smaller intermediary (I3) maintains no such formal policy, but participants do 

discuss during meetings what to post and how to coordinate across a network of inter-

institutional accounts.    

One media entity, a moderate tweeter with the greatest number of graphene tweets 

across the sample, surprisingly does not log-in to Twitter on a regular basis.   

Twitter is not a major focus [for me].  I use several social network 

platforms, usually Facebook and LinkedIn.  It’s all automatic on Twitter 

via RSS [Really Simple Syndication].  I only have a little over [hundreds 

of] followers, it doesn’t generate a lot of traffic.  There are a lot of 

external links [that drive traffic to my site] – it’s mainly external links, 

Google or direct.  The social networks are not very important for me. 

(M1) 

 

In sum, Table 7.1 shows that the sample is diverse not only in account types but 

also with respect to tweeting rates and the extent to which those tweets contain graphene 

related content.  Several users, while found in the graphene firm networks, do not tweet 

much about graphene at all.  So, users need not tweet about graphene to be followed by 

graphene firms, and this loosely supports the notion that graphene firm networks on 

social media reveal interaction outside of a specific scientific domain to other sectors of 

the economy.  This observation can also be discerned through the combined friend 

network visualization (Figure 5.3) in Chapter 5.  
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7.2. Awareness  

Most participants in the sample acknowledged that social media, and Twitter in 

particular, facilitate increased awareness of tangential knowledge domains outside of the 

user’s core area of knowledge.  Twitter is not a platform for “drilling deep” into niche 

content domains but rather adds context to discourse.  Additionally, in most cases, 

Twitter does not offer proprietary information; it is essentially a platform for distributing 

public knowledge.44  One user (F3) uses Twitter to stay abreast of industry developments 

when it is not possible to travel:  

The benefits are that you stay on top of trends in the industry.  I probably 

did that before through talking with people.  But because of the economy, 

we can’t travel around so much anymore – there’s no money for that – so 

LinkedIn and Twitter help with that. For example, I learned that Cannon 

acquired MMI, a nanoimprint company. 

 

I would say I try to learn trends from Twitter, but I can’t say I’ve ever 

discerned one.  Maybe one example… is graphene.  In graphene, much of 

what I know is more through Twitter than through industry contacts.  (F3)  

 

A theoretical physicist specializing in 2-D materials (including 

graphene) described his experience finding new articles to cite on Twitter:  

I learned about some of my friend’s publications on Twitter… The 

publications are not necessarily related to graphene.  I was reading a 

paper [that was tweeted] from a friend, and then in the introduction I 

found and read another paper that was related to my area but that I didn’t 

know about. I cited that.  It’s like a bar hopping thing.  You find something 

interesting that you weren’t ever aware of before (S2).  

 

Another scientist related that his use of Twitter helped him gain knowledge of related 

scientific domains. Though this user set up his Twitter account to initially engage with 

students, he soon found his students were not on the platform and instead turned to 

                                                 
44 Social media and Twitter data can offer propriety insights through analytics and analysis, as seen in this 

current research.  
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accessing different “spheres of interest”.  Many of these interests are embedded in 

distinct communities.   

Because I work at the interface of two research areas, in biophysics, I find 

out a lot more about what’s going on in some of these areas.  I can’t read 

in-depth, niche publications.  I see it [Twitter] as a news feed…  I’m 

exposed to things I wouldn’t see otherwise.  For example, I’ve become 

aware of certain conferences that I’ve later attended. (S1)   

 

At one intermediary whose job it is to fund and increase the visibility of 

nanotechnology EHS research, a user finds relevant research on Twitter – but it’s not as if 

this were somehow unavailable through other channels. Rather, it’s about the speed with 

which he can access new journal literature from his mobile device.  

I become aware of papers that have been published by other groups.  It’s 

about immediate access, but these papers would come across my desk at 

some point anyway.   I don’t check my account everyday but my cell phone 

gives me notifications. (I2)  

 

Timely access to scientific content is certainly not a new concept.  Consumers of 

scholarly material, including scientists, have increasingly relied on online sources and 

indices to satisfy their information needs (Hemminger, Lu, Vaughan, & Adams, 2007), 

and the results indicate that social media is an additional (albeit more contemporary) 

channel continuing this longer-term trend.  

One professional society supports many sub-organizational accounts.  Followers 

receive tweets about a specific area of interest and this may build relationships which on 

aggregate result in community development.  Indeed, this interviewee implicitly views 

followers as community members:  

There are specialties in [a specific field], doing a lot of outreach to 32 

areas, e.g., in health and safety there is a lot of news that is generated to 

their members.  The audience can see the value of belonging to that group.  

I can’t say their attendance is increasing at meetings, but I can say that it 
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is more about reaching out and building a direct relationship.  It helps 

when you have that type of community existing. (I1) 

 

Awareness is also related to engagement.  Since information on Twitter is nearly 

costless to access and share (but not necessarily to assimilate), users benefit from learning 

about new developments and easily disseminating that information to their networks.  In 

addition, by observing the tweets of others, it becomes possible to measure the degree of 

conflict or agreement within a community regarding contentious issues in 

nanotechnology R&D.   

Yes, it has improved my awareness.  I find articles on Twitter, and can 

retweet it. Sometimes I offer my view on the article. 

 

Twitter can be used as a measure of the positive or negative reaction to an 

action.  I always wanted to get into it.  There is a lot of discussion about 

the safety of nano, and so far, surveying public opinion on this is 

extremely difficult.  The survey design has always affected the results.  If 

you’re a specialist, you can design the question [to elicit a certain 

response].  For Twitter, you have a statistically independent community of 

lots of people thinking about various things, e.g., articles and news.  The 

sentiment that people use in tweets allows you to monitor [their reactions] 

in real-time. (F2) 

 

An intermediary with millions of followers uses Twitter almost exclusively to 

generate intimacy with its user base (I3).  Before social media gained traction there, this 

respondent noted the organization produced a quality website and award winning 

multimedia content, but it was having a hard time building broad awareness of its mission 

and buy-in from the public.  For this account, Twitter is a mechanism for broadcast 

communication but with a unique element that encourages active listening: If another 

user says something interesting, they respond.  Moreover, in prior eras at this 

organization, scientists and other technical personnel were reluctant to engage with the 

public.  With Twitter, these employees were also reticent initially, but as news and 
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visibility of their work increased with tweeting and online interaction, so too did their 

interest in participating regularly.   Scientists and technicians were encouraged to set up 

official accounts so that the primary organization account could retweet their messages.  

In this way, Twitter becomes a mechanism to extract interesting and valuable information 

from down within the organization to a “master communications” account.  This 

continues to serve not only the followers of the main account with improved awareness of 

the organization’s activities but also offers research groups and individual employees 

greater visibility and outlets for their work.   

Not all users experience improved awareness of the broader R&D ecosystem, 

however.  As noted above, one media user (M1) does not “use” Twitter directly and 

rarely logs-in to read tweets; the account automatically tweets via an RSS feed that pulls 

content from a website.  Another graphene SME, while active on Twitter for building a 

community around graphene and for enhancing the organization’s reputation as a thought 

leader in the domain, builds awareness of new developments through Google Alerts.45  In 

addition, this firm does not use Twitter to advance its R&D capacity:  “People who do 

that work [R&D] stay on the cutting edge of things.  They look at scientific papers [as 

their primary source for information]” (F1).   

7.3. Problem solving  

The literature on innovation networks stresses the importance of combining 

knowledge across disparate intellectual domains, geographic locations, and industries 

(Desrochers, 2001; Nahapiet & Ghoshal, 1998; Neal et al., 2008; Phelps et al., 2012).  In 

                                                 
45 Google Alerts accepts a user’s query and scours the web for new matching results, which are then 

delivered via email.  
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the literature review I consider the possibility (Chapter 2) that social media may 

encourage the development of expansive knowledge networks and facilitate discourse 

that results in beneficial problem solving outcomes.   

The interview data provide insufficient evidence for such an assertion.  In short, 

tweeting is more amenable to high-level summary statements that quickly diffuse across 

networks, not the type of exposition and conversation that expound upon an innovation’s 

technical, economic, and social dimensions.   While dialogue can be found on Twitter, 

one interviewee (I2) commented that for his public organization this is not the case.  

I don’t think social media has helped us achieve our objectives.  There are 

very few discussions that take place.  This usually happens through email 

and meetings.  Twitter helps us make our work more public. (I2) 

  

One respondent noted that Twitter doesn’t help solve problems, but it can 

encourage reflection on particular problems that need solving:  

No, [Twitter does not help solve problems].  But I do get excited.  For 

example, on New Year’s Day, I read about a breakthrough, and it 

germinated an idea in my mind.  Someone reported an interesting result, 

but I said hey, I could solve this problem and give a model.  But then I 

took a step back because there are many other things that need 

prioritization.  But that’s the beauty of science.  There are many things 

that I can do, but [only] when I’m an independent researcher and have 

graduate students to tell [i.e., delegate to]! (S2) 

 

Yet tweeting does provide some value to participants in terms of applied problem 

solving outcomes, just not in ways that are directly relevant to material science 

innovation.  For example, one organization’s reporters are able to scour social media to 

find better sources for their reporting.   Two additional interviewees had been involved 

with initiatives to directly leverage social media data for analytics projects.  The first 

described his firm’s social media campaign in terms of gauging its effectiveness and 

modifying usage accordingly based on reporting insights.  
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You of course want to create some spreadsheets about how effective social 

media and websites are….  There were times where we were not really 

sure what kind of tweets were really engaging the most (e.g., with 

products), so I took a two month period of time, and captured what the 

tweet was and the type of tweet (e.g., a news story, humorous or not).  

Then we tracked the amount of engagement in terms of number of tweets, 

number of [new] followers, and number of favorites.   

 

[So what did you learn?]  We learned that it depends a lot on the product. 

(F1) 

 

“Depending a lot on the product” in this context means that certain product types were 

more likely to elicit interest from the community than other types of products, for 

example given the current state of the overall technology’s development and its relation 

to other popular news stories (see Box 7.1 below).   

The second interviewee (S1) recalled an instance where a large US public agency 

convened an ideation forum to brainstorm and prototype solutions to pressing problems 

aligned with the agency’s mission.  Although this “hack jam” was largely data-oriented, 

the outputs of the forum were presented at a leading US conference that “ended up in 

funded research [in the UK]” (S1). 

 

7.4. Transitioning from Public to Private Interaction 

Five of nine interviewees related positive experiences with transitioning public 

Twitter interactions into sustained private modes of communication; for these users, 

social media offers a way to expand one’s directory of contacts, and some of these 

contacts may emerge as valuable relationships requiring other modes of communication 

to develop and sustain.  Four interviewees mentioned some type of technology or 

Internet-mediated transition from their Twitter usage to LinkedIn, email, Skype, or phone 
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calls.  The responses below identify the utility of Twitter vs. other social media platforms 

where possible and as identified by the interviewee.  

One user (F3) received a tweet from a leading science agency, and by following a 

link and filling out a web form, was invited to attend an exclusive service 

commemorating the legacy of a retired program.  Still, this event did not result in an 

ongoing relationship as, to this user, social media does not facilitate “deep” relationship-

building.  In contrast, for one professional society, working across sectors to promote its 

agenda on social media is commonplace, and communication naturally shifts to other 

modes of higher fidelity interaction, including in-person meetings:  

There are members and non-members who I’ve developed relationships 

with, e.g. a woman with our small [redacted] business division.  She has a 

small analytical [redacted] business.  She does a lot of work in business 

and marketing, so she’s also somebody who will advertise meetings. She 

has coordinated tweets at our informal meet-up events.  She tweets under 

both her personal and [redacted professional] handles. (I1) 

 

For profit-seeking firms, the calculus of pursuing linkages on Twitter likely 

depends on the business model of the organization and the degree to which social media 

affects normal business activities.  For example, the founder of a service oriented firm 

linked the utility of online communities with professional circles that appear in other 

contexts.   

Social media is another way of interacting.  It doesn’t create a special 

community, and it doesn’t create a subcommunity.  If it does create a 

special subcommunity, then it’s because of people who are not real.  I am 

looking for people who tweet and then show up at other places...   

For example, on Twitter, I got into contact with NNI [the US National 

Nanotechnology Initiative].  They have difficult jobs in terms of strategy 

and administration, but they do read non-refereed articles.  People do find 

that web-sourcing of technology news is helpful.  You may have to read 1-

2-3 articles before you know [what is accurate].   

 

The NNI was more of a casual introduction. “This guy was reading 
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interesting things, and so am I.”  These aren’t permanent contacts; 

they’re not my clients. (F2)  

 

Some firms are able to mobilize social capital developed on Twitter in tangible 

ways.  This same interviewee (F2), for example, noted his ability to build relationships 

with clients from Twitter and other social media, as discussed in Section 7.5.1.  A 

representative from a second graphene firm also described the benefits that Twitter 

linkages confer with respect to sales and marketing efforts, as covered in greater detail 

below (Box 7.1).  

While small nanotechnology firms may reach out to other types of organizations 

and users for information and to network, the reverse is not always true.  That is, the 

asymmetrical nature of social media (directed) relationships, as discerned through the 

quantitative results, suggests a lack of online engagement between certain user types and 

others.  For instance, one account owner from a large intermediary conveyed his 

organization’s conservative policy towards following companies in the larger innovation 

ecosystem.   

We’re very cautious about working with companies [directly] because of 

Federal laws.  If you look at who we’re following, we don’t even follow 

our contractors.  (I3) 

 

A second interviewee echoed limited interaction with nanotechnology firms online:  

In terms of companies, [I have] not [pursued] specific relationships. I do 

follow companies, e.g., for lasers.  It gives me information about products 

and marketing [in microscopy], which link into research that uses their 

products.  Sometimes they just share pretty pictures. (S1)  

 

Three interviewees experienced very few additional offline linkages as a result of 

their Twitter usage.   Recall that one user, a media entity, rarely logs-in to Twitter and 

benefits from RSS website feeds that automatically author tweets.   This user relies on 
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LinkedIn, not Twitter, to initiate industry contacts, and Google and direct URL access to 

drive traffic to his website, which enables his business model in terms of original content, 

advertising, and professional services.  

I have developed relationships, but not through Twitter.  Many of my 

connections have developed through LinkedIn, my personal account.  

Sometimes I don’t remember where the relationships originate, but just a 

couple weeks ago, I was talking to some graphene industry people... (M1)  

 

An intermediary that infrequently tweets and follows the researchers it 

funds, also reported limited interaction with users outside of its funding umbrella. 

In terms of followers, the interviewee noted:    

I think most of the people are related to the research activity we fund.  

Now it is true that there are some faces [followers] that I’ve never met. 

But these are people mostly in the involved research cluster or broader 

research domain.  (I2)  

 

Finally, a scientist noted that the nature of his field of study precluded certain 

types of interaction on social media from becoming productive offline relationships.  

Whereas applied physicists may collaborate with hundreds or even thousands of their 

colleagues, the same is not true for theoretical physicists: “Unfortunately, I am a 

theoretician, so industry or lab collaboration is limited.  I don’t have much access to 

people.  I meet people at conferences [but not through Twitter] (S2).”  

7.5. Other Innovation Outcomes  

This section explores three innovation outcomes not directly tied to the 

exploratory propositions and literature review but still salient given the research context 

and the types of responses elicited during their interview sessions.  Firstly, sales and 

marketing impacts are one significant set of outcomes for nanotechnology and graphene 

SMEs.  Secondly, shifts in the labor market is a concern for companies, intermediaries, 
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and individuals.   Finally, all interviewees discussed their view of how social media is 

influencing the broader scientific enterprise: To these respondents, social media and 

Twitter in particular continues to act as a progressive change agent in scholarship across 

many scientific disciplines.  

7.5.1. Sales and Marketing  

Two of the three firms interviewed as part of this work use social media to 

indirectly increase sales.  For one respondent, cross-platform communications were first 

enabled through social media introductions, which then grew to email, direct private 

messaging, Skype, and in-person interviews as part of an elongated sales cycle for 

nanotechnology services. 

In marketing, you need to make a lot of contacts in order for one or two to 

work out.  For me it takes 4-5 interactions, to get them to sign-up.  It 

might be Twitter, LinkedIn, email, phone calls on Skype, then a period of 

silence, and then they get back to you about a project.  This works more 

organically. With small businesses like ours, we can’t barge in with a 

contract – they don’t like that.  We do have a niche to work with small and 

medium sized companies… (F2) 

 

This respondent would not provide additional details, but he indicated that both informal 

and formal discussions resulted from his interaction on Twitter and lead to new business 

opportunities.  

A second interviewee representing a graphene SME recounted his company’s 

early entry into social media, the diverse types of users he engages with, and some of the 

strategies he employs to increase interest in the firm’s product lines (see Box 7.1).  For 

this user, experimenting with content and engaging on social media leads to a 

combination of greater visibility in the space and increased sales through non-traditional 

customers, e.g. hobbyists, parents, and scientists as opposed to downstream firms.  Yet, 
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marketing and sales are not the sole objective of social media participation because in 

professional circles, the firm is (now) already well known.  Instead, social media expands 

the reach of the company beyond a system of competitors and distributors into the 

broader innovation ecosystem.   

Box 7.1: A graphene SME’s (F1) social media usage strategy and outcomes 

[Tell me about your strategy with respect to Twitter and social media?]  When I first started 

at the company, we didn’t have a social media presence.  I started the Twitter account.  My 

boss was really interested in it to sell products and generate buzz.  It was difficult at first 

because… we’re selling a single layer of atomic carbon.  We first learned about being 

personal about it [our tweeting], not just necessarily posting scientific content… We instead 

focus on applications and uses.  For example, we got a lot of traction when we posted about 

graphene for [a particular application area]; people were very interested in that.  We want to 

get people more interested in our content, get more followers.  We don’t want to overrun 

what we’re doing with sales pitches.  Say that a paper came out [example given], that was a 

big thing.  Then we’ll take a look at a product that was used in the paper and relate it back 

to a similar product on our website.   

 

[Have people followed up on this?]  Yes, we’ve had parents contact us.  For example, 

parents with children in science fairs will ask us for help.  Most inquiries we get are more 

business related [but those are not necessarily done through Twitter]. Most of the people that 

get interested in our company at this point are just hobbyists.  The biggest benefit of Twitter 

right now is that we can share information in the field as thought leaders (e.g., conferences).  

It’s not just about getting more sales. 

 

[How do you decide who to follow?]   [Since] the end goal is conversion to sales, [we] 

follow PhD students or Chemistry students and follow people who will potentially use our 

materials.  If they’re not a private account, then I’ll follow them.  Usually if people are 

talking about graphene, it’s about a Gizmodo article or stock or finance related, but it’s not 

often that you’ll see someone studying the material, talking about it on Twitter. We’re 

already following most of the journalists and analysts in this space.  

 

[What kinds of relationships have you developed with companies and research institutions?]  

We have done custom projects [with people] that have first contacted us on Twitter…  

Sometimes people want to partner with us, because they see that we have a social media 

campaign, but we’ll do our due diligence anyway.  A serious business person contacting us 

on Twitter – that would give us pause. 

 

[Can you describe a situation where you obtained any new resources or business 

opportunities as a result of your Twitter usage?]  Yeah definitely.  The biggest benefit has 

been through journalists or market people who follow us and learned about us on Twitter...  

When we first started, the content was drier.  I didn’t have a grasp on the materials.  It took 

a couple months, but within 6 months, we were contacted by [major media outlets].. I’m not 
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sure how they discovered us, but I’d like to think that that [i.e., social media] helped…  To 

that degree, we don’t get any more meaningful relationships.  If any company is looking for 

a relationship (distributor), they already know their space and competitors, so there’s not 

much to learn from Twitter. 

 

The user from the third SME had not experienced any sales leads as a result of his 

social media usage; however, he created his Twitter account for personal (albeit 

professional) use more so than to represent his firm. “I don’t think I can [recall a sales 

event tied to social media interaction].  It’s a little harder to connect the dots using social 

media as a business tool. I never remember making a sale on Twitter” (F3). 

An analysis of usage patterns (see Section 7.1 and Box 7.1) reveal that both F1 

and F2 engage their followers by synthesizing inbound information flows (e.g., from 

Google alerts) and then simply tweeting that content.  But these users go one step further 

by contextualizing or intermingling newsworthy content with editorial matter (e.g., 

opinions), press releases, and their products and services.  According to the interviewees, 

this type of online presence results is an authentic way of engaging in ecosystem 

communications through thought-leadership rather than pushing sales.46   However, in 

contrast to Marwick and boyd’s (2010) finding that some users achieve authenticity 

through a combination of personal and professional tweeting styles, this research shows 

that innovative nanotechnology SMEs communicate on Twitter for professional purposes 

only.  This orientation is due to the SME’s desire to increase its credibility in the space.  

In sum, the first two firms’ responses show a strategic use of Twitter to achieve 

low-cost, unobtrusive marketing and to tap into an additional sales channel.  At the same 

                                                 
46 In practitioner circles, this is often referred to as “unobtrusive marketing”  
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time, social media is part of a larger sales cycle that spans many communication 

technologies, as well as social networks that exist both on and offline.  Alignment 

between usage patterns and account strategy appears as a primary determinant of business 

outcomes: if an account is never intended for marketing purposes, then it is unlikely that 

sales opportunities will emerge as a result of usage.  That said, the two firms that 

successfully use Twitter and other social media for sales and marketing purposes do so by 

monitoring nanotechnology and/or graphene news items and carefully curating their 

tweet content to provide salient and timely information.  They also offer a glimpse into 

how their products and services fit into a larger narrative on graphene and 

nanotechnology R&D.  

7.5.2. Jobs 

The same user expressing skepticism about social media resulting in sales 

opportunities also acknowledged limitations of the platform in facilitating career moves.  

“If you found an opportunity on Twitter, like as a career change, but that’s probably 

pretty dramatic.  I never looked to Twitter for an opportunity” (F3). In contrast, a user 

from an intermediary that tracks changes in the scientific job market described a more 

nuanced understanding of social media’s place in the workforce.   

I don’t think people are finding jobs, though they may be finding out about 

jobs. I think it’s more about education stuff, resources for interviewing, 

how you’d network, writing a resume.  The nuts and bolts.  But it’s 

specifically for this audience of scientists because that’s going to be 

different than for an MBA, e.g., publications are important… 

 

The job market has changed for scientists.  One of the things we’re hoping 

to do is encourage entrepreneurship and innovation for scientists.  There 

have been huge changes, comparing the 1960s to today’s job market.  

Sometimes we need to think about different careers.  Some of it is about 

creating new opportunities, or becoming more flexible, e.g., leaving the 

country. (I1) 
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7.5.3. Impacts on the Broader Scientific Community   

Anecdotal and survey evidence from popular science magazines and journals 

suggests that most scientists are not avid social media users (Piwowar, 2013; Van 

Noorden, 2014).  However, social media usage increases with younger cohorts of junior 

scientists that have “grown up” around the web.  There are additional field level 

differences: Emerging areas of study enabled by computer networks and software are 

more active on social media than older disciplines without such computing involvement 

(I2).  In any case, many of these stories relate to the extent to which social media 

continues to have a transformative effect on the peer-review cycle.  As noted by one 

respondent, when papers present breakthrough results that cannot be easily replicated, or 

that reveal a methodological flaw, scientists turn to blogs and other forms of online 

communication to raise their concerns.   

I follow people that are engaged with nano research, for example the 

striping nano particle controversy.  These Italian researchers suggested 

that the structural layers and molecular groupings behave in a certain 

way: they used AFM [Atomic Force Microscopy] to show that there is a 

structure these molecules are deposited in.  They published in high impact 

journals, but there has been a lot of dissent.  For example, there are folks 

from the UK and Scotland that have gone through great lengths to 

challenge this work.   

 

[Is this a good thing – debate on social media?] It’s a good thing at long as 

the debate is civil.   If you can get people to engage and criticize in a 

public way with attribution, particularly in a public forum, that’s good for 

science. (S1) 

 

High-levels of interaction coupled with real-time responses allow for lively 

debates which may eventually resurface within the confines of peer reviewed literature 

(Mandavilli, 2011).  In terms of challenging the narratives that emerge around some 

hyped technologies, Cossins (2014) reports that scientists – especially the younger ones – 
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are likely to interface with the popular press to temper “unchecked hype” as 

breakthroughs appear.   

Given the increasing complexity of scientific inquiry, how well are scientific 

ideas communicated on Twitter across sectors, not just within scientific communities?  

For one scientist, bridging complex nanotechnology topics is possible on Twitter, though 

the capacity to do so is grounded in his ability to translate research findings into a context 

transcending any particular technology.   

I am interested in graphene solar cells, for example.  People are working 

hard on the theory side, and the 2D side of things. [Did you come across 

any related information on Twitter?] Twitter is helpful.  I did find 

publications on graphene and solar cells in particular. But it’s not just 

about graphene.  If I follow [someone tweeting about] 2D materials –  I 

might learn about transition metal dichalcogenides – e.g., WS2 or WSe2.  

These are the next set of 2D materials that are up and coming after 

graphene.  (S2) 

 

For another interviewee, links to additional web-based content offer enhanced 

information value within the constraints of 140 characters47; rarely in his network do 

these links direct to academic journal content, however.  

I don’t think this [Twitter] works well unless you follow the links to where 

they’re going. 90% of my tweets have links to articles [but] very seldom do 

they link back to a journal with even more depth.  Twitter helps you 

maintain a high level understanding of something, but it’s probably not 

the best thing for drilling down.  But [at the same time] when you drill 

down, you’re getting away from Twitter. (F3) 

 

The inability to “drill-down” may be a limitation that deters some scientists 

interested in acquiring further specialized knowledge from using the platform.  A second 

interviewee spoke in similar terms: The constraints of the character limit encourage a 

                                                 
47 Indeed Table 3.1 shows that 92.60% of graphene tweets, which may be representative of the broader 

nanotechnology discourse on Twitter, contain urls.  This is a much higher percentage of tweets compared to 

a random sample.  
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new set of skills for concisely sharing information.  While possibly anathema to rigorous 

scientific exposition, tweeting may appeal to a wheel-and-deal mentality common in 

business settings or in ordinary conversation.   

Speaking simply is important for describing your idea in a short amount of 

time, for example when seeking venture capital funding.  Things like 

Twitter are important because you have to explain in an almost insanely 

brief way, maybe with a link to the article.  It helps with that. (I1) 

 

7.6. Summary and Synthesis 

The results from this chapter reveal that most interviewees who actively use 

Twitter (i.e., those who log-in and read their tweets) experience increased awareness of 

ecosystem topics both within and outside of their substantive knowledge domains (Table 

7.1).  Social media does not supplant existing information channels but rather enables 1) 

more timely access to information, 2) a better way to “listen-in” on public sentiment 

related to nanotechnology R&D and commercialization, and 3) an effective mechanism to 

latch-on to subject area specific communities.    

Awareness improves inbound knowledge flows, as is the case with technology 

scouting, which seeks to identify trends rather than details in the technological landscape 

(Parida, Westerberg, & Frishammar, 2012).  In particular, higher levels of awareness of 

external sources of knowledge have been shown to improve behavioral additionality, as 

measured by a firm’s ability to improve internal processes related to innovation 

management, at low levels of experiential (hands-on) learning (Clarysse et al., 2009).  

However, because Twitter is a media platform, improved awareness is the most likely 

(and possibly least remarkable) type of outcome to assess because it moderates other 
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types of more impactful outcomes, such as hands-on learning, and does not directly result 

in improvements to behavioral additionality per se.  

This study’s results support the notion that improved awareness does not 

inevitably lead to other types of short-term innovation outcomes.   In terms of problem 

solving (e.g., hands-on learning), for example, the interviewees could not name instances 

where Twitter helped address problems within nanotechnology R&D per se, though some 

were able to identify problem solving benefits in other areas such as analytics and data-

oriented ideation.   Other potential short-term outcomes depicted in the logic model in 

Figure 4.2 include enhanced participation, community/brand development, and customer 

and revenue growth.   Five actors experienced these non-awareness outcomes as a result 

of their Twitter usage (Table 7.3).   

Aside from the lack of problem solving outcomes, a pattern appears to emerge, 

where certain types of usage behaviors result in distinct benefits accruing to individual 

users (Table 7.3):  The analysis shows that to achieve returns beyond better awareness, 

some users embark on a two-step process. First, they build and mobilize their reputation 

and credibility via their following network by sharing interesting information and 

engaging with other users.  (This is the first step in the value creation process, and relies 

on awareness of ecosystem discourse.)  Engagement appears to increase the strength of 

relationships, which initially develop as weak ties that become stronger through repeated 

interaction across multiple communication channels.  Second, depending on the nature of 

any given interaction, some users marshal their contacts’ resources to achieve some 

purposive end.  (This is the second step in the value creation process.)  In sum, 

assembling resources on social media is not decreed by order; it is a discursive, 
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sometimes spontaneous process that unfolds over time and over multiple communication 

channels.   

As part of the second step in the value creation process, there is a need to 

transition communication from the public timeline to private channels, often completely 

outside of Twitter.  Rarely did Twitter usage lead directly to a face-to-face encounter; 

other communication technologies, such as LinkedIn, email, Skype, and telephone calls 

mediated this transition. In total, five of the nine interviewees meaningfully transitioned a 

public Twitter interaction or relationship to a private channel, and the same five 

interviewees were able achieve some type of longer-term outcome that enhanced 

individual returns or indirectly did so by increasing ecosystem participation.  

(Participation is a key outcome for two of the three intermediaries in Table 7.3.)  

Taken together, the analysis reveals that information consumption on its own may 

lead to improved awareness.  However, strategic sharing of information and engagement 

on Twitter, combined with an ability to transition conversations to private channels to 

marshal network resources, may result in innovation outcomes.  These two key findings 

are discussed in further detail in the following chapter.  

There are three notable limitations to this analysis, the first of which includes the 

obvious small sample-size of the interview panel, and an apparent correlation between 

usage behaviors and outcomes of interest.   Specifically, respondents could not (or in one 

case would not) describe specific usage approaches that resulted in specific outcomes, 

and consequently, a causal argument cannot be made between usage and outcomes. A 

larger, more systematic study could isolate and quantify the potential determinants 

outlined here and measure the degree to which users are likely to experience specific 
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beneficial outcomes as a result of their social media usage.  A research design that 

records user behaviors in a controlled setting could be one way to capture the necessary 

data.    

Similarly, a second limitation of the analysis is the potential conflation of 

outcomes produced as a result of Twitter usage vs. social media usage more broadly.  

Some respondents in the panel could not remember the source of a new relationship (e.g. 

as originating on Twitter or LinkedIn), and thus the results may either under- or over-

report the outcomes of interest.   

Finally, because this study is exploratory in nature, no particular outcome of 

interest was assumed as being more or less likely a priori to the empirical work 

commencing.  Since this research finds problem solving and deep contextual learning are 

unlikely outcomes of Twitter (and perhaps other social media) usage, future work could 

drop this variable for analysis.  In this way, a more parsimonious theoretical framework 

could be developed with fewer determinants and outcome variables of interest.   

 

 

 

 

 

 

 

Table 7.3:  Usage and outcome evidence by respondent 
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Id 

 

Information sharing  Improved 

awareness 

Engagement behavior  Transitioning from public to 

private interaction 

Sustained outcome including 

behavioral additionalities (but not 

including improved  awareness)  

M1 Syndication of content 

through RSS; does not 

log-in 

No No No None 

I2 Tweeting specific 

information originally 

authored in a newsletter 

Yes, for intra-

organizational 

visibility  

No No None 

S2 Retweet science related 

news and stories 

Yes, information 

within and across 

expertise areas 

No No None 

F3 Share whatever is 

interesting in two 

communities 

Yes, discerned 

graphene as a trend 

No Attended one-time event at US 

agency 

None long-term 

F1 Share information in the 

field as a thought leader 

No, uses Google 

Alerts 

Relate products back to 

research breakthroughs, 

applications, and uses 

Media exposure, sales from 

scientists and researchers and 

“custom projects” 

Brand and community 

development, sales lift 

F2 Tweet reading material 

as a service to the 

community and thereby 

attract followers and 

retweets 

Yes, new articles 

and for public 

sentiment 

4-5 interactions are 

routine, across channels 

as needed 

Newsletter now has over 1,000 

subscribers, partly due to 

Twitter and other social media; 

slowly build relationships 

leading to eventual sales 

Brand development through 

unobtrusive marketing, community 

development, sales lift  

I1 Anything being 

promoted or shared on 

website 

Yes, indirectly citing 

the audience 

benefiting from 

members’ social 

media participation  

Promotions, 

coordinating hashtags 

for events, being aware 

of what people are 

talking about.   

Yes, through local members’ 

meetings (e.g., via Twitter, 

long-term) and through 

collaboration with a multi-

national (e.g., via social media 

in general, short-term project) 

Improved participation and 

community development (via 

Twitter in particular) and 

collaboration (social media in 

general) 

I3 Retweet content from 

official accounts 

Yes, for inter-

agency news and 

intra-organizational 

visibility  

Listening and 

conversing, encouraging 

a community of 

volunteers 

In-person volunteer meet-ups Enhanced ecosystem participation 

where volunteers take an active 

role; also engage scientific 

community within agency 

S1 Mostly professional, 

sometimes personal 

Yes, Twitter as a 

newsfeed tapping 

into research 

communities 

Ad hoc, follows users 

across spheres of interest 

Lectures and conferences Community development across 

research areas  

Sources: Interview transcripts, n=9 users, collected in 2014 and early 2015.  
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Recall that the regression analysis found non-random following relationships 

among actor types in the graphene firm-centric networks (P1): Actors choose whom to 

follow based on actor type similarity (i.e., homophily, P1a) and dissimilarly (i.e., 

heterophily, P1b).  Yet, the quantitative results also show that at the micro-level actors 

choose whom to follow based on similarities in information content (thus providing no 

support for P2a).  Clearly there remains much to be explained from the quantitative 

analysis.  For example, what explains the differences in interaction across actor types 

accounting for the homophily and heterophily effects?  Why does information distance – 

as measured by a granular topic modeling information distance measure – show a 

negative effect when Twitter is often portrayed in both the popular press and academic 

studies as an effective means for networking across interdisciplinary domains and across 

sectors?   

The qualitative data suggest that different actor types have different concerns and 

constraints, and these factors drive behavior in meaningful ways on Twitter.  However, 

this actor diversity stands in contrast to overarching similarities in information needs and 

tweeting patterns which self-organizing communities ultimately reveal.  Subjective 

perceptions of belonging to communities can be traced to online and offline benefits, 

giving users a reason for continuing to invest in their social media presence.  However, 

because individuals are embedded in communities, the quantitative method, which 

models micro-level dyadic linkages, does not adequately capture the boundary spanning 

following behaviors that some users exhibit.   The next and final chapter delves into this 

conclusion with greater precision and extracts the management and policy implications of 

identifying, analyzing, and valuing these communities on social media.  
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CHAPTER 8:  DISCUSSION AND CONCLUSION  

The prior three results chapters explore this study’s three main propositions using 

visualization, quantitative, and qualitative evidence. This final chapter summarizes these 

findings and discusses the results in the context of the literature reviewed in Chapter 2.  It 

also introduces innovation policy and management implications for using social media to 

further the goals of individuals, firms, organizations, and the broader innovation 

ecosystem.   The chapter concludes with a series of limitations, opportunities future work, 

and some final thoughts.  

In terms of propositions, the findings generally support the assertions underlying 

P1a, P1b, and P3; however, the findings do not support P2a (Table 8.1).  P1a and P1b 

suggested that following relationships are not random, and that users in the graphene 

innovation ecosystem follow others based on revealed identity and potential resources 

(e.g., certain types of information) that actor affiliation intimates.  The results indeed 

show that Twitter users in the graphene innovation ecosystem follow one another in non-

random ways that subscribe to patterns of both homophily (P1a) and heterophily (P1b).  

Note that P1a and P1b are not diametrically opposed to one another, but rather they are 

complimentary such that both types of following behavior can and do exist at the same 

time but under different circumstances. 

Take for example the nanotechnology firm:  The findings reveal that 

nanotechnology firms (which include the graphene firms in C3-445) are likely to follow 

all types of actors who tweet about graphene (e.g., media entities, intermediaries, 

scientists, and other firms), but these other types of actors are not likely to follow 

nanotechnology firms in turn.  In addition, both the descriptive and regression results 
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show that media entities are likely to attract followers from across all other actor types; 

this is not surprising given the broadcast communication design functionality built into 

Twitter.  Yet, the propensity to follow across actor affiliation types is not universal.  For 

instance, intermediaries are not likely to follow nanotechnology firms, other firms, or 

scientists who tweet about graphene; and scientists are not likely to follow intermediaries 

and nanotechnology firms that tweet about graphene   

The results also show that following within an actor category is limited to select 

cases.  Nanotechnology firms are likely to follow other nanotechnology firms, just as 

scientists are likely to follow other scientists, once controlling for confounding factors 

including reciprocity, tweeting intensity, account age, and number of followers.  

However, intermediaries are not more or less likely to follow one another, once 

accounting for the same set of controls. 

P2a proposes that actors choose whom to follow based on the perceived novelty 

of information accessible through network linkages..  The quantitative results do not 

support this proposition through the topic modeling approach used to operationalize 

information distance in the nanotechnology R&D-based community (“C3-945”).  In fact, 

the ERGM specification shows that as information distance increases, the likelihood of 

tie existence goes down.48  In a post-hoc test, however, greater differences in graphene 

tweeting positively predict tie formation.   The mediating effect of information distance 

on the relationship between actor type and network structure (P2a) was not explored as 

planned because of the initial result undermining P2a.  

                                                 
48 This finding stands in contrast to the interview evidence, which highlights that decisions on whom to 

follow are based on the type and quality of information that users tweet. 
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P3 suggests that innovation outcomes are more likely to occur in strategically-

developed and information-rich social media networks.  The qualitative findings reveal 

that information awareness is the most wide-spread advantage of using Twitter: Some 

users experience more timely access to information, while others – especially those who 

are attuned to their placement in diverse communities – learn about content related to 

their specific interests or professions.  Although other outcomes are difficult to tie 

directly to Twitter participation, respondents – depending on their role and objectives for 

using the platform – were able to access and/or mobilize non-information related 

resources leading to sales lift, community and brand development, and enhanced 

participation.   A key differentiator between improving information awareness and 

experiencing more significant tangible returns is the ability to engage the network and 

transfer communication from the public Twitter timeline to private channels of 

interaction.  
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Table 8.1: Summary of propositions, findings, and remarks 

Proposition Supported Findings Brief Interpretation   

P1a:  Actors choose whom to 

follow by mixing across 

affiliation types (i.e. via 

heterophilous relationships). 

Partially  Nanotechnology firms are likely to follow all 

types of actors who tweet about graphene, but 

these actors are not likely to follow 

nanotechnology firms in turn.    

 All actor groups are most likely to follow media 

entities.   

 Intermediaries are not likely to follow 

nanotechnology firms, other firms, or scientists 

who tweet about graphene  

 Scientists are not likely to follow intermediaries 

and nanotechnology firms that tweet about 

graphene   

Nanotechnology and graphene firms plug-in to 

existing communities to facilitate their growth and 

survival.  However, following relationships are 

generally not reciprocated at the level of actor types 

(though at the micro-level, reciprocity does predict the 

existence of a following tie).  This asymmetric 

characterization of the following network suggests 

nanotechnology firms use Twitter as a coping 

mechanism to traverse the “Darwinian Sea”.   That is, 

entrepreneurs attach to the surrounding ecosystem, but 

the ecosystem has fewer connections to these firms in 

turn.  

P1b:  Actors choose whom to 

follow by matching on 

affiliation type (i.e. via 

homophilous relationships). 

Partially  Nanotechnology firms are likely to follow other 

nanotechnology firms  

 Scientists are likely to follow other scientists   

There is some evidence that homophily is an 

important driver among actors who tweet about 

graphene.  

P2a:   Actors choose whom 

to follow based on the 

perceived novelty of 

information accessible 

through network linkages.  

Not supported Greater levels of information distance do not 

positively predict network structure  

Following relationships appear most often within 

communities sharing similar topical interests.  

However, ego network visualizations show that 

graphene firms may bridge distinct communities 

through structural holes.  

P2b: Information distance 

explains the following 

decisions of users better than 

actor affiliation mixing and 

matching alone can. 

Not explored 

as proposed  

Recall that differences in graphene tweeting between 

two actors positively predicts tie formation, and that 

for some actor groups, this has the effect of mediating 

the relationship between actor mixing and network 

structure 

Graphene is a hype technology, and within the 

nanotechnology R&D community, there is a demand 

for graphene-related content.  

P3: Innovation outcomes are 

likely to occur in 

strategically-developed and 

information-rich social 

media networks. 

Supported Engagement in social media networks builds on 

participation and bidirectional communication to 

transfer relationships offline, and to enable important 

resource transfers.  

Being embedded in a community helps focus attention 

and encourage dialog that can build relationships 

across channels and help actors achieve their goals.  

Community interfaces access social contexts in which 

strategic actors seek to construct narratives   
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This chapter synthesizes these findings in greater depth, particularly in terms of 

linking the results derived from exploratory propositions with other analytic insights 

(Sections 8.1 and 8.2).  I also discuss this work in the context of theory development 

(Section 8.3), policy and management implications (Section 8.4), limitations (Section 

8.4) and avenues for future work (Section 8.6).  The chapter concludes with some final 

thoughts (Section 8.7).  

8.1. Summary and Integration of Findings 

The Twitter-based graphene innovation ecosystem can be characterized by a 

diverse blend of user types and communities, as observed by the combined friend 

network of the 33 graphene firms in the sample.   Some firms, for example Lokimo 

Metals in the mining industry and Graphene3D in the 3d printing space, build friend 

networks predominantly in their specific domain of activity.   Firms embedded within 

visually discernible communities suggest a high percentage of non-overlapping 

connections among their friends and other firms’ friends.  While these outlier firms may 

be interested in graphene, their positioning of the technology within the value chain (e.g., 

upstream sourcing of graphite, or downstream in the 3d printing arena) is unique across 

the sample firms.   Out of the 33 firms in the sample, 17 place within the nanotechnology 

R&D community (C3) with another 10 found in the energy cluster (C0).   

As the two ego networks in Chapter 5 show, however, firms maintain linkages 

across different communities depending on their revealed information and resource 

needs.  (Some of these smaller communities simply do not appear in the larger combined 

friend network.) Recall that Zyvex Technologies is a Columbus, Ohio, based spin-out of 

Zyvex founded in 2007, and Graphene Frontiers is a University of Pennsylvania spin-out 
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established in 2011.  Both firms follow regional actors within their hometowns of 

Columbus and Philadelphia, respectively.  The presence of the regional innovation 

system (RIS) in each firm’s network is not by accident: A growing consensus of scholars 

views regional linkages as a source of competitive advantage (Asheim & Coenen, 2006), 

in part because (a) regions along with their knowledge institutions act as hubs from which 

firms can absorb tacit knowledge and build intellectual property (Shapira & Youtie, 

2008) and (b) regions promote “flexible specialization” wherein any liabilities of vertical 

disintegration are offset through agglomerated, agile supply chains (Simmie, 2005).  The 

interesting point here is that these very local linkages can be clearly identified as dense 

communities even on a globally far-reaching, virtual platform such as Twitter.   

Zyvex Technologies and Graphene Frontiers also exhibit linkages beyond their 

respective RISs.  Both firms follow actors in a larger nanotechnology R&D community 

(C3 in the combined friend network, Figure 5.3).  Zyvex Technologies follows two 

additional distinct clusters (composites and defense and aviation, C0 and C1, 

respectively), while Graphene Frontiers follows a sizeable venture capital community 

(C6).  Given where both of these firms are in their respective growth cycles, the analysis 

in Chapter 5 cites external sources of evidence to weave a narrative around how these ego 

networks reflect the real-world, multi-faceted dispositions of these SMEs.  Here we see 

the value of social media data underlying findings typically associated with multiple 

theoretical lenses – e.g., regional embeddedness, value chain placement, financing, and 

science communication – within a single empirical setting.  The ego network 

visualizations succinctly convey how high-technology SMEs bridge multiple 

communities in the innovation ecosystem; consequently these diagrams lend some 
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credibility to the way in which the network sample was constructed, i.e., using graphene 

firms as the sample to access a relevant cross-section of ecosystem actors.  

The results of the quantitative findings show that users in the graphene ecosystem 

– C3-945 to be exact – follow each other in ways that are non-random and that conform 

to some expected modes of interaction.  For example, scientists are likely to follow 

scientists, and nanotechnology firms are likely to follow nanotechnology firms.  At the 

same time, this homophily is counterbalanced by significant interaction tendencies across 

groups. As noted, all user types are less likely to follow identity-less “unknown” 

accounts, while intermediaries are less likely to follow nanotechnology firms or other 

firms in general.  The findings highlight that in contrast to traditional linear models of 

innovation essentially ignoring the role of media intermediaries and individuals, these 

two actor classes appear to be critically important in defining the structure of the social 

media based ecosystem.   

Yet, there exists a stark asymmetry between nanotechnology firms and other 

ecosystem actors: nanotechnology firms are likely to follow intermediaries, media 

entities, other nanotechnology firms, other firms, and scientists, but essentially none of 

these other actor classes are likely to follow nanotechnology firms (when controlling for 

general reciprocity and other confounding factors).  Scholars often cite information 

asymmetries between high-tech entrepreneurs and customers, suppliers, funding agents, 

employees, and other ecosystem actors as a primary hurdle in developing a business 

(Audretsch et al., 2007), though high quality information reduces uncertainty and 

contributes to decision making through better informed conclusions (Newman, 2010).   

Indeed, the results show that entrepreneurs may face the same hurdles on social media as 
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they do in offline realms, e.g., in their inability to attract influential followers.  

Consequently, while nanotechnology SMEs may use Twitter to traverse the perilous 

“Darwinian Sea” (Auersald, 2007; Auerswald & Branscomb, 2003) in the search for 

information and other resources, there is limited evidence to support that influential 

online ecosystem users systematically appreciate or are even aware of nanotechnology 

firms’ participation. 

Surprisingly, in C3-945, users are less likely to follow one another as information 

distance increases, holding all else equal.  That is, as a whole, Twitter users do not choose 

whom to follow based on the perceived novelty of information accessible through 

network linkages. Recall that this sampled and filtered community is highly focused 

around graphene and nanotechnology R&D.  So, in a stylized sense, one can imagine that 

as a user’s discourse forays into politics, popular news, and other non-S&T domains, 

actors in this specialist cluster become less likely to follow that user.  Given the insights 

from the qualitative interviews, this logic presents a conundrum:  Users join Twitter to be 

exposed to multiple information sources, but yet the quantitative results show that 

increasing levels of information distance negatively predict tie formation.  What could be 

the cause of this apparent discrepancy?   

The answer may lie in two possible explanations.  The first has to do with the 

underlying method.  On Twitter, the dynamics of micro-level behavior produce one-off 

friend requests.  ERGMs model the probability of a given network tie appearing given on 

a one unit increase (or decrease) in an explanatory variable, holding all else equal.  As 

seen with the sample network visualizations, users build their presence and attach to 

multiple communities.  These users may benefit from different types of information 
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across these communities, but in general, within the same community, content similarity 

likely prevails.  Therefore, the statistical approach models individual interactions but 

misses cross-community meso-level phenomena.  Future work is needed to test whether 

inter-community interaction can be appropriately modeled in the ERGM framework, and 

if so, whether the results validate this proposition of micro- versus vs. meso-level 

information dynamics.  

The finding that increasing levels of information distance decrease the probability 

of network ties can also be an artifact of the specialized focus of C3 as a nanotechnology 

cluster.  Here, users follow one another based on merit (i.e., value), representing the 

general ideals of the larger scientific enterprise.  In particular, users may tacitly join this 

community to learn and share about graphene research and product breakthroughs, 

observe or participate in the emerging value chain, assess EHS risks and public 

sentiment, etc.  Indeed, the result showing that the likelihood of tie formation increases as 

the difference in pairwise graphene tweeting rises offers a strong indicator that this is 

indeed the case. Consequently, if a user tweets about a broad set of topics outside of this 

information space, then they may be less likely to attract followers, at least within the 

same community.  Because differential levels of graphene suggest a producer-consumer 

market for graphene related information,49 tweeting across following relationships in C3-

945 also implies that the graphene hype effect is still ongoing, and that Twitter is an 

especially suitable platform for distributing newsworthy content to pique further interest 

in the material.  

                                                 
49 As opposed to a more even distribution of graphene information sharing across community members. 
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Taken together, the quantitative and qualitative results provide three data points 

suggesting that Twitter usage improves awareness of graphene topics.  First, the 

comparison presented in the Data and Methods chapter shows that news items are more 

often tweeted than mundane musings in the graphene S&T ecosystem vis-a-vis a random 

sample of all public timeline tweets. Thus, in the professional S&T Twitter universe, 

information sharing is based on news-worthiness.  Second, the combined and ego 

network visualizations show that users build following and friend relationships around 

topics; they seek out those who offer some kind of distinct information value.    Third, the 

qualitative interviews reveal that some users are mindful about presenting themselves on 

Twitter with an eye toward providing information value as a strategy for gaining 

followers.  Interviewees also identified learning about a variety of new topics through 

their Twitter usage, a finding also confirmed recently by Ooms et al. (2015) within a 

large firm context.  

Given that users seek and share valuable information, it follows that the social 

networking component of Twitter – i.e., the relationships directing information flows – 

are not random.  Users with identities are more likely than “unknown” accounts to attract 

a broad set of relationships; that is, users may follow an “unknown” account, but if that 

account does not represent a media entity, scientist, firm, or intermediary, then it is 

unlikely to attract additional followers.  This speaks to the highly professionalized circles 

that operate on Twitter vis-à-vis more traditional network contexts where friends of 

friends are often friends.50  In the conventional sense, people who know and often 

socialize with each other form dense cliques of relationships based on close-knit 

                                                 
50 In fact, ERMG specifications controlling for the phenomenon where “friends of friends are friends with 

one another” did not converge with either simple triangle or more sophisticated k-star parameters.   
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friendship circles (Coleman, 1988).  In the geographically dispersed, graphene-based 

innovation ecosystem, Twitter does contribute to inbound knowledge flows as conceived 

in the open innovation literature (e.g., Chesbrough, 2006), but users may not know one 

another and therefore rely on other proxies (e.g., information value, identity) when 

determining who to follow.    

As suggested above, users construct their networks and strategically orient their 

behavior around some notion of “value”.  Before discussing the types of beneficial 

innovation outcomes that ensue as a result of social media participation, I review how 

participation varies, mediates, and helps predict certain types of outcomes.  In short, I 

argue below that all active social media users can benefit from increased information 

awareness but only some users can affect resource mobilization.  

8.2. A Communication-Engagement Model to Predict Innovation Outcomes  

The literature on innovation networks acknowledges the difference between 

exploration in ideation and exploitation of opportunity (March, 1991; Powell, 1990; 

Rothaermel & Alexandre, 2009).  Exploration assumes scanning behaviors, whereby 

participants view the topography of a domain space and generate new ideas by 

recombining knowledge, finding applications for new technologies, or applying existing 

technologies to new problems.  In contrast, exploitation through networks often relies on 

the importance of persistent relationships. As Uzzi (1996, 1997) notes, these “embedded” 

relationships facilitate trust building, using heuristics to simplify decision making, 

transferring tacit and complex information, and iterating on interparty problem solving.  

The results from this study reveal that social media is squarely within the 

exploration domain of innovation activity; that is, social media participation and 
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communication exposes the latent qualities of a network to enhance relationship building 

and information diffusion.  To understand how social media encourages innovative 

activity, I present an analogy of “working the room” – albeit in a virtual environment.  In 

particular, this example uses a conference setting as a way to show how social media 

presents novel opportunities and challenges for communicating about and furthering 

outcomes related to innovation.  The plausible series of outcomes are supported by the 

cases study evidence provided in the qualitative results chapter, while the findings from 

the quantitative and visualization results chapters offer context to the type of interaction 

occurring within and across groups of actors.  

First let us begin with a hypothetical (but familiar) control scenario with face-to-

face interaction at an academic conference: Imagine walking into a large convention 

center; the vastness of the space results in some isolated conversations because of 

incomplete knowledge of the participant and conversation space.  How does one begin to 

interact?  Upon entry, the participant may choose to introduce himself casually. This 

introduction may be based on prior acquaintance or recognition, subject matter interest, 

demographic homophily, random selection, etc.  After a brief period of time, the 

gregarious onlooker may transition from one corner of the floor to another using his or 

her selection criteria (which may change) to engage different groups or individuals.   

Now compare this to entering into an ecosystem of virtual actors on social media, 

and particularly on Twitter.  First, there is no need to introduce oneself because identity, 

while perhaps helpful to attract followers, is not a prerequisite to access information and 

the structure of the latent network.  The entry strategy is therefore assymetric because 

following one user does not require reciprocation to participate, and this is akin to 
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surveying the entire landscape of the convention center and eavesdropping on many 

conversations at once.  It is here that the first outcome of social media usage is most 

apparent with an increase in awareness of ecosystem activities vis-à-vis traditional 

communication channels (or in comparison to non-participation on Twitter).   

Is this function of social media – that is, of surveying the landscape of the 

ecosystem in a short period of time – that much different from other communication 

technologies?  I argue that social media participation indeed increases awareness in ways 

that differ from mailing lists, blogs, and private online networks.  For example, a listserv 

can offer more timely access to information vis-a-vis weekly conference calls or in-

person meetings.  The interview data suggest social media offers a tangible mechanism to 

join communities and listen-in on public sentiment related to nanotechnology R&D and 

commercialization.  A mailing list’s (or blog’s) content is not curated through 

individually tailored communities; in other words, one graphene firm will never receive 

the same information inputs as another firm unless their networks are identical.   Just as a 

mailing list offers the same content to all subscribers, so too does a blog with its viewers. 

Therefore, notwithstanding saliency of information content, social media users 

experience information awareness as a function of their network participation as well as 

their ability to assimilate content, frequency of use, etc.  In some cases (e.g., F2, F3, S1), 

respondents were keenly aware of the role that networks – and specifically communities 

– play in effectively accessing and sharing valuable information.51   

“Participation” in the social media network is an ambiguous way of describing 

interaction.  As the qualitative results show, some interviewees are more or less engaged 

                                                 
51 In other cases, community development was an outcome for mobilizing resources other than information.  
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with their audiences.  For example, recall that the operator of a specialized graphene 

media outlet barely logs-in to read his tweets and instead defers to automatic tweeting 

enabled by RSS feeds from his website.  This user built a network over time by 

essentially following users in an ad hoc way or following the set of users that Twitter 

recommended. Compare this passive type of participation to one of the graphene firms 

working proactively to respond to inquiries, relate popular news stories to its product 

line, and follow students and researchers to extend the boundaries of its potential 

customer-base.  The second set of outcomes going beyond information access via a 

“news feed” appears to be mediated by the level of engagement across communities 

and/or the broader ecosystem.   

Engagement in this study was exhibited by responding to tweets, holding Twitter 

conversations, and posting relevant and useful information to followers, e.g., as part of a 

community orientation.   As one respondent noted, “The result is non-intrusive marketing 

– there is valuable information but I’m not selling them anything.  I’m just reminding 

them of myself” (F2).   I surmise that the response of this type of engagement is 

attention, a latent variable not expressly measured as part of this study’s research design.  

That is, on a platform where information may overwhelm users, engagement may lead to 

an attentive audience.  For some users, this results in community building where firms 

become thought leaders (e.g., F2), where intermediaries attract the interest and 

participation of members or volunteers in offline meetings (e.g., I1 and I3), and where 

scientists may attract followers from different research domains (e.g., S1) 

Beyond community development and enhanced participation, other sustained 

outcomes include increased sales through expanded marketing reach and improved brand 
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awareness.  Less tangible outcomes with potential longer-term implications for 

ecosystem capacity building involve disseminating job market related best practices and 

opportunities for non-traditional positions and furthering discourse of nanotechnology 

related R&D both within the scientific community and across sectors.  However, Twitter 

as a social media platform rarely resulted in a direct sales opportunity, job lead, or 

problem solving gain.  Instead the platform mediates communication that moves beyond 

the public timeline into the realm of private channels, e.g., individual inboxes, phones or 

Skype accounts, or LinkedIn private messaging.  Transitioning to private modes of 

communication is arguably a tangible outcome in professional circles, R&D or otherwise; 

it signals the germination of ideas, acquaintances, and potential partnerships or business 

arrangements.  In this way, the offline relationship building process is no different than 

exchanging personal contact information at a conference.  However, the funnel is 

arguably an infinite times wider.  Figure 8.1 shows an individual user’s communication 

pipeline beginning with participation to engagement, and the various types of outcomes 

that ensue in each mode of interaction.  I term this the social media communication-

engagement model.  
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Figure 8.1: A social media communication-engagement model building on Lin’s (2001) model of social capital development 
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With little to no engagement, actors’ latent observation of the network and 

curated content result in increased awareness of ecosystem topics.  These are passive 

users.  In this modus operandi, there is limited opportunity for other forms of resource 

transfer. However, with some degree of engagement, e.g., retweeting, directing 

conversation, and co-creating narratives, users are able to capture attention and direct 

communication to non-public channels.  These are active users.  In more intimate 

settings, resource transfer may (eventually) ensue.  The bottom of Figure 8.1 depicts the 

“capitalization” and “effects” components of Lin’s (2001) social capital path diagram 

(Figure A.2).  In essence, there is very little mobilization of resources in the bottom path, 

whereas the top part of the diagram shows users accessing network contacts and 

resources to achieve “instrumental returns”.  

8.3. Theoretical Implications    

This work makes two significant contributions to the literature.  First, it bridges 

two different but complimentary research streams, the innovation systems and 

entrepreneurship literature.    By blending institutional theories of innovation activity 

with micro-level phenomena, this research combines exogenous and endogenous 

parameters that account for both perspectives.  Second, through a novel methodological 

approach, it evaluates how information distance impacts the formation of network 

formation.  This empirical test continues an emerging trend in social network research 

that observes and quantifies the role of information in network construction, particularly 

by using online data sources such as email and social media.  Implications for theory are 

assessed at individual and agglomerated units of analysis.  
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8.3.1. Integrating Two Research Streams through Narrative Construction 

Most theoretical contributions are incremental, and the following text is no 

different in its ambition; it intends to synthesize and reconcile institutional and agency-

based explanations of innovation through the co-creation of narratives and social 

contexts.  In particular, the treatment below examines “who”, “when”, “where” and 

“how” aspects (c.f. Whetten, 1989) of narrative construction in communities active in 

innovation ecosystems. The “who” speaks to a diversity of ecosystem actors; the “when” 

conveys a specific type of interaction of engagement, not just passive participation, while 

“where” delineates the boundaries of the innovation ecosystem on social media.  Finally, 

the “how” element proposes a three-step process by which narrative construction unfolds.  

To appropriately frame this exposition, I begin with a high-level description of 

innovation systems and entrepreneurship theoretical underpinnings.  

The innovation systems literature explains regional, national, and supranational 

differences in innovative activity as a function of a geography’s institutional 

infrastructure (Cooke, 2001; Doloreux & Parto, 2005; Metcalfe, 1995; Neal et al., 2008).  

Actors such as universities, firms, public research institutions, and incubators enable and 

steer knowledge flows in ways that improve or limit innovation outcomes such as 

economic growth and competitiveness (Nelson & Rosenberg, 1993; OECD, 1997).   In 

this framework, public policies intervene into the innovation system topography to 

improve institutional interaction.  In many cases, especially at the national level, 

innovation systems exhibit path dependent trajectories as a result of the slow moving 

nature of existing market, regulatory, intellectual property, taxation, and financing laws 

and rules.  This approach, like many other institutional frameworks, does not specifically 
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acknowledge agency at the individual level; explanatory mechanisms reflect top-down 

drivers of individual activity (Autio, Kenney, Mustar, Siegel, & Wright, 2014).   

In contrast to the macro-focus of the innovation system literature, 

entrepreneurship research often concentrates on the individual (or small firm or team) as 

a primary unit of analysis (Moroz & Hindle, 2012).  Depending on the theoretical lens, 

the entrepreneur experiences beneficial outcomes by harnessing resources at the 

individual, network, or societal (i.e., institutional) levels (Garud, Gehman, & Giuliani, 

2014).  New value creation enhances the environment through either incremental or 

radical change.  While some frameworks show new venture creation as a series of 

optimizing steps for the resource constrained yet goal setting entrepreneur, other 

approaches assume the entrepreneur first surveys the environment and available resources 

before setting goals and optimizing (Sarasvathy, 2001).  

Autio et al. (2014) contend that research on “entrepreneurial innovation” can and 

should integrate the two streams on innovation system and entrepreneurship by 

recognizing a series of contextual factors.  Among these various factors is a social 

component acknowledging that “knowledge is widely dispersed among many 

heterogenous agents and that the interactions and exchanges between them are crucial for 

new knowledge production, and hence entrepreneurial innovation” (p. 1101).  This focus 

on heterogenous agents and their relationships is the primary theoretical motivation of 

this research, which argues that a descriptive understanding of the micro-foundations of 

organic network formation in high-technology environments necessarily involves a 

diversity of actors not usually observed using traditional research methods. 
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A significant theoretical implication of this work, then, stems from the social 

contexts exposed through the online innovation ecosystem.  As the empirical results 

indicate, there is no one social context to identify; instead, graphene firms access multiple 

social contexts through their online social media participation.  Furthermore, actors either 

passively or actively participate in communities via online interfaces to those 

communities:52  I posit that each user’s friend network, and the communities that may 

exist therein, acts as a postern into a given social context, which may represent a 

technology or science domain, regional interests, a value chain, venture capital, etc.  

While communities may consist of a homogenous set of actors – e.g., the venture capital 

community reveals a financing social context – online communities can incorporate a 

wide variety of user types not typically conceived of by traditional theoretic lenses.53  

Figure 8.2 summarizes this framework constituting the high-tech entrepreneur’s 

orientation towards the online ecosystem via several community interfaces and the social 

contexts they reveal.  

Recent theoretical work on social contexts transcends the individual vs. 

institutional dichotomy.  As a theoretical construct, social context is useful on several 

fronts (Garud et al., 2014): It provides the context by which entrepreneurial opportunities 

are discovered or created; it also affords a frame of reference by which agency and 

environmental factors co-emerge through recursive processes that seek to stabilize a 

capricious technology and market landscape.  Finally, social contexts help explain how 

narratives unfold in entrepreneurial innovation, a topic which was examined in some 

                                                 
52 Several interviewees recognized the difference between an offline community of individuals and their 

online personas constituting a representation of that community online.  
53 For example, the network visualizations present a venture capital community with embedded media 

entities, as well as a nanotechnology R&D community with a number of unidentifiable users. 
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detail in Chapter 3.  The primary assertion submitted then was that entrepreneurs 

continually seek to position a technology and their role in the co-creation of that 

technology into a socially acceptable narrative in order to gain stakeholder buy-in and 

build a reputation.   

The narrative concept is not new to science and technology studies, but insights 

gained from this research may better explain the processes by which narratives unfold in 

the online (or offline) innovation ecosystem.  First, generating narratives is not a 

foregone conclusion as a result of ecosystem participation, as discussed above with the 

communication-engagement model (Figure 8.1).  Entrepreneurs seeking to co-create or 

exploit narratives think carefully about audiences, the social contexts those audiences 

represent, and the best way to enter into and contribute to mediating communities.  As 

shown in Figure 8.2., it is possible for more than one community to access a social 

context, e.g., in the case of a politically divisive issue such as EHS risk of 

nanotechnology, so entering one community vis-à-vis another can be an important 

consideration.   

Second, the high-tech entrepreneur interprets content from one or more 

community.  Based on his or her discretion and anticipation of how the community will 

perceive any number of responses, the entrepreneur then chooses a reply.  The strategic 

intent behind a reply can be reproduced in future communications (e.g., tweets) to 

solidify the message.  Thus, to the extent possible, the social context is now co-created 

through a narrative that intertwines the entrepreneur’s endogenous choice in messaging 

with the narrative of the community.   
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Figure 8.2: Narrative co-creation process 

 

Third, the narrative (or more accurately, a piece of the narrative) intended for one 

community may diffuse across one or more communities.  This is a peculiar aspect of 

social media, and Twitter in particular, because of its broadcast communication design: 

Because followers receive all tweets authored by a user, individual users may be exposed 

to and begin participating in multiple communities over some time.  This may result in a 

slow but perceptible blending of social contexts over time, the implications of which 

could potentially impact individual entrepreneurs and other ecosystem actors.   This 

potential feedback between ecosystem participants and the social context, as mediated 

through community participation and engagement and as revealed through co-created 

narratives, is shown in the cyclical arrows in Figure 8.2.   
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As discussed throughout this work, the high-tech entrepreneur does not act alone 

in setting the social context; the ecosystem consists of a diverse set of actors.  

Consequently, rather than viewing the narrative as one that is encountered and 

manipulated by just the entrepreneur, it is more accurate (though methodologically more 

difficult) to capture contributions from the plethora of other actors involved in the 

narrative co-construction process.  The theoretical framework depicted in Figure 8.2 can 

therefore place the scientist, intermediary, venture capitalist, media entity, or large firm at 

the center of the diagram.  As a result, the theoretical contributions of this section are not 

limited to just innovation and entrepreneurship but may facilitate further insights and 

empirical testing in disciplines ranging from science communication and economic 

geography to strategic management.   

8.3.2. Social Capital and Information Value 

A stylized synopsis of social capital theory positions network density and 

cohesiveness vis-à-vis the importance of bridging relationships, structural holes, and 

weak ties (Burt, 2001; Granovetter, 1973; Kadushin, 2011).54  Denser networks consist of 

strong ties characterized by frequent communication and the propagation of redundant 

information.  In contrast, structural holes and the bridging relationships that link them 

tend to be associated with less frequent communication and access to non-redundant 

information. 

Aral and Walker (2011) subtly examine this continuum between structural holes 

and areas of high network density  by isolating the effects of network diversity and 

channel bandwidth on information diversity and novelty.  Using a dataset consisting of 

                                                 
54  Refer to Chapter 2+ (Literature Review) for additional details.  
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corporate emails from an executive headhunting agency, they determine that increases in 

network diversity result in higher levels of information diversity and novelty.  This 

finding mirrors the established theoretical relationship between weak ties and their ability 

to transfer non-redundant information into a cohesive group of actors.   

The authors proceed to theorize and test the mediating effect of channel 

bandwidth on the relationship between network diversity and information 

novelty/diversity, arguing that as networks become more diverse, channel bandwidth 

reduces and therefore less novel and diverse information can be communicated.  Their 

line of reasoning assumes that channel bandwidth and network diversity are inversely 

related; i.e., as network diversity increases, channel bandwidth decreases.  While this 

finding may be true for most communication channels where conversation flows 

privately from one party to another, broadcast mediums such as those found on social 

media platforms suggest a different way of theorizing this relationship. 

Counter to initial expectations, the findings in this research show increasing levels 

of information diversity result in fewer network linkages overall.55   Therefore, most 

actors with following relationships share the same topical content.  Yet it is likely that 

some of the same linkages that represent boundary spanning connections actually 

produce a significant amount of information for a focal user to process (e.g., consider 

media entities, who may be found in any community and who tweet more than any other 

user type).  Therefore, it is possible that network diversity and channel bandwidth are not 

inversely related on social media, and that perceived information novelty and diversity 

                                                 
55 Note the causal direction of this generalized relationship is reversed from what is posed by Aral and 

Walker (2011), who contend that network diversity results in greater levels of information diversity. 
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increase with network diversity until channel bandwidth saturates a user’s cognitive 

processing capacity.    

Under these assumptions, weak ties remain “weak” because of infrequent 

bidirectional communication, yet they simultaneously produce a high volume of diverse 

and novel content that users may assimilate to their benefit, depending on their absorptive 

capacity and ability to contextualize that information for their immediate problem domain 

and organizational setting.  Recent commentary in the practitioner literature recommends 

that Twitter users wanting to increase the diversity of their networks should be less 

interested in following more people than in pruning their networks periodically to 

consistently infuse heterogeneity in opinion (Parise, Whelan, & Todd, 2015).  The 

commentary also highlights a need to transition communication to higher-fidelity modes 

(e.g., in person meetings) to convert weak ties into strong (offline) ties and to further 

explore complex ideas not amenable to Twitter’s character limits.  Such advice is 

commensurate with the communication-engagement model presented in Figure 8.1, 

which implies a set of optimal usage patterns for online ecosystem users.  

8.4. Innovation Policy and Management Implications 

This research offers several innovation management and policy implications.  I 

consider policy implications primarily for intermediaries and scientists, while 

management implications are viewed from the perspective of the high-tech entrepreneur 

or startup firm.   

The first public policy implication speaks to the diversity of online ecosystems 

and the types of interactions one would expect to find in robust innovation systems.   The 

innovation system literature posits that institutions – be it at the national, regional, or 
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supranational levels – work together to shape innovation policy, the production of 

knowledge, and the diffusion of technologies (Cooke, 2001; Doloreux & Parto, 2005; 

Metcalfe, 1995; Nelson & Rosenberg, 1993).  For example, universities conduct basic 

and applied research which then may be adopted by firms, whose profit seeking motives 

require them to exploit one or more markets.  Public policy informs market and 

regulatory conditions and the funding of certain types of research.  In regional settings, 

clusters of firms, their suppliers, and universities may create a critical mass of dynamic 

knowledge spillovers that also further innovation outcomes.   

The findings in this research show that the innovation ecosystem construct, when 

applied to an online setting, reveals a trend among follower relationships that does not 

always conform to expected (i.e., ideal) modes of interaction.  For instance, many of the 

intermediaries tweeting about graphene maintain few follower linkages to firms and 

scientists; however, many of these firms and scientists are likely to follow intermediaries.  

This suggests an information asymmetry in terms of what intermediaries provide to the 

rest of the ecosystem: There may be ample opportunity for intermediaries to broadcast 

news items, events, etc. to their audience but fewer chances to listen-in and therefore 

learn from and bridge between other actors in the ecosystem.   

While any institution would have a hard time grappling with the massive amount 

of information provided in their Twitter timeline if they followed everyone who followed 

them, the results here show that communities are an important component of how the 

ecosystem takes shape online.  Being able to discern where an intermediary sits in terms 

of communities and following an ample number of users in other related communities 

may provide the university, funding agency, regulatory body, regional authority, non-
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profit think tank, etc. with a better understanding of how they are perceived and how they 

may go about furthering their missions online.   Additionally, the qualitative results show 

that some intermediaries are unable to or lack the knowledge or resources to follow other 

users in such a way.  Public policies could intervene where appropriate to encourage 

intermediaries to follow users – or at least passively monitor ecosystem development – 

whilst avoiding the impression of advocating for one type of user base vs. another.   For 

example, the technique of science maps described as future work below could be one 

useful tool in facilitating an organization’s understanding of where they fit within the 

broader ecosystem. 

Intermediaries lacking social media expertise could learn from their peers.  The 

qualitative results reveal a degree of information sharing with respect to lessons learned 

and best practices among social media experts at US federal agencies.  Another science 

and technology intermediary, however, struggles to fashion a social media niche that 

fulfills initial expectations within the constraints of available time and resources.  Formal 

and informal knowledge sharing sessions could facilitate training opportunities to help 

agencies, universities, etc. in the same region or country better utilize social media to 

achieve desirable outcomes.    

Scientists too are in a unique position to follow users in a broad arena of topics to 

further science communication.  Prior work on “open science” stresses two important 

roles of online interaction: (1) sharing data and information, and (2) providing 

opportunities for subject matter experts to identify themselves and spontaneously 

contribute in substantive ways (Woelfle, Olliaro, & Todd, 2011).  The results here show 

that scientists are likely to follow other scientists but are relatively less likely to follow 
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firms and other users.  As a result, scientists may be missing an important opportunity to 

ascertain how their research indirectly impacts and aligns with other actor interests and 

communities.  By following a broad array of user types, scientists increase the likelihood 

of users following them.  More following relationship could result in greater visibility of 

individual and collective research efforts, not limited to but including the potential for 

higher citation counts.  From the perspective of other users, scientists who engage with 

non-scientists may help close gaps in knowledge by providing valuable information, e.g., 

technical knowledge, professional guidance, etc.  Of course, Twitter and social media is 

not the only channel in the long-term communication-engagement model, but rather the 

first step.   

In sum, public policies seeking to facilitate information exchange and learning 

may encourage social media participation and engagement to help bridge knowledge and 

networking gaps between all actor types.  Implicit in this argument is the importance of 

maintaining a diversity and tolerance of ideas in innovative cultures (Wallner & Menrad, 

2011).  That is, enhancing the vitality of the online ecosystem with the intent of 

improving a culture of innovativeness should be the goal for innovation policies aimed at 

governing social media.   As discussed, when left to their own devices, users may not 

reach out to diverse actors in terms of role identity and information content.  Thus, it may 

be helpful for public sector and non-profit institutions to leverage existing in-person 

conferences, networking events, etc. to facilitate the movement of offline relationships to 

online platforms.  Not only will relationships persist even after periods of inactive 

communication but on some platforms such as Twitter these linkages can be discovered 

and reproduced by other actors.  Returns to such an intervention may include enhanced 
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knowledge sharing, better system-wide learning, and increased inter-sector collaboration 

opportunities.  For impact assessment, quantifying actual short and long-term outcomes 

would entail carefully identifying the value-add of the intervention in the presence of the 

counterfactual (i.e., if some social media relationships did not materialize as a result of 

the intervention) (Georghiou, 2002; also see K. B. Smith & Larimer, 2009).   

In terms of management implications, social media offers challenges and 

opportunities, and I consider both angles from the perspective of the high-tech startup 

firm or entrepreneur grappling to use social media (and more particularly, Twitter) in a 

cost-effective way.  First, the qualitative results show that most ecosystem users begin on 

Twitter in an ad hoc manner. For example, they experiment by following certain kinds of 

users and tweeting certain types of content.  The results and subsequent synthesis 

presented here suggest that new users should begin by learning how competitors or other 

firms in the network are using the platform.  It is not necessary for users to visualize a 

network; instead they can examine the following and friend relationships of key user 

accounts and attempt to reproduce a network in the same or similar manner.  I call this 

the “Twitter as a template” approach, which after some amount of replication, allows for 

later fine-tuning.  For example, the high-tech entrepreneur may first plug into the regional 

innovation system and then follow notable firms in the global nanotechnology supply 

chain.  Then, depending on need, specific scientists or venture capitalists can be followed 

to provide additional information and resource value.   

It is assumed that media entities will be intermingled in all communities given 

their pervasive presence on Twitter; however, it may make sense to distinguish between 

strict information providers and those actors in the network that may not tweet as often.  
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For instance, by not following media entities, or by placing media entities in separate 

user-generated lists, tweets from scientists, other firms, and intermediaries may rise to the 

surface in the entrepreneur’s news feed: Recall that part of the challenge with Twitter, as 

documented in this research and elsewhere, is to overcome information overload.  That 

said, media entities are still a critical element of the ecosystem fabric, as they have been 

shown in other settings to be the primary diffusers of information across a network (Cha, 

Benevenuto, Haddadi, & Gummadi, 2012).  

For entrepreneurs and high-tech firms already with active Twitter accounts, one 

way to get more from the social media platform is take an insular approach to examining 

extant networks.  Here, it is possible to visualize a focal ego network and identify various 

communities in a manner similar to the one presented in this research.  The goal of this 

exercise is to determine topical focus and information value deriving from each 

community in the network.  The entrepreneur may then examine the findings in the 

context of the strategic needs of his or her business coupled with an understanding of the 

limitations and opportunities afforded by Twitter.  This method of gap analysis can be 

used to promote “Twitter as a gateway” to access additional communities. 

On one hand, the quantitative results show that higher levels of information 

distance, when modeled on a per edge basis, are less likely to result in a following 

relationship; on the other hand, theoretical insights and the network visualizations show 

community clustering occurs via topical interest areas.  Using “Twitter as a gateway” 

recognizes that following recommendations from the platform largely encourage users to 

stay within their current communities.  In the S&T domain, however, there is reason to 

believe that exploration beyond one’s immediate environment could add incremental 
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benefits to network participation.  For example, there is an opportunity for firms to look 

further upstream or downstream in the value chain to gain a better perspective of their 

current position and anticipated placement in the ecosystem.  Commensurate with 

exploration and search, graphene firms manufacturing the material as an intermediate 

input could follow end-user product firms to learn more about that downstream industry, 

and vice-versa for downstream firms aiming to learn more about supply-side dynamics.  

For the entrepreneur or high-tech startup with an existing Twitter account, this 

means choosing carefully between communities to gain the most benefit from 

participation.  For instance, following scientists within the exact sphere of research 

conducted by the entrepreneur or high-tech firm may represent reputational or personal 

comradery benefits rather than incremental informational value.  However, the 

entrepreneur or high-tech firm may find it particularly helpful to follow scientists in 

related fields to track tangential developments that could potentially offer insights into 

the firm’s primary R&D efforts.  In other words, while Twitter does not act as a substitute 

for journal literature, it can complement other sources of learning about new scientific 

content (e.g., search engines and indexes, publisher notices, informal conversation, etc.)  

In this way, the high-tech entrepreneur or startup is uniquely positioned to bridge 

several different communities in the innovation ecosystem.  Indeed, the network 

visualizations show that the full graphene innovation ecosystem incorporates a diverse 

suite of actor types that do not necessarily follow one another.  As discussed with the 

communication-engagement model, it is not enough for high-tech entrepreneurs and 

firms to participate passively.  To extract resources, to transfer public interaction into 

private channels of communication, and to facilitate sales, these actors must engage with 
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other users in ways that solicit conversation and exchange;56 engagement is all the more 

important to attest to these communities that the firms exist in the first place, and that the 

firms can contribute to a meaningful narrative.  To do this well, firms may wish to invest 

in dedicated (yet part-time) social media staff, who can shape the network and who can 

effectuate the ecosystem through their engagement.   As one interviewee remarked, 

consistent engagement meant sharing salient information to its followers; eventually the 

firm was contacted by well-known media entities who would increase its visibility 

throughout the ecosystem and popular press.  

I conclude this section with a platform suggestion for Twitter.  Given the 

emphasis on community development in professional contexts (such as the graphene 

innovation ecosystem), Twitter may wish to explore its ability to increase its users’ sense 

of belonging to communities.  Consequently, instead of recommending users, the 

platform could recommend joining communities.  This would allow users to examine the 

vast social network as a (subjective) set of a handful of communities in which they could 

participate and to which they would like to belong.  To some extent, a first step in this 

direction has already been accomplished with user defined lists, but word clouds or 

network visualizations could be an alternative option for enhancing the user interface.  

After all, knowing that communities exist and exposing those communities for users to 

see and interact with are two very different things.  

8.5. Limitations 

This research is limited in three ways.  These limitations span a set of research 

design and conceptual aspects, including sampling and statistical methods, dynamism of 

                                                 
56 In truth, this same argument could be made for all types of users, not just firms per se. 
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the underlying social media platform (data source), and theoretical foundations for 

explaining social media participation in online innovation ecosystems.   

8.5.1. Alternative Explanations  

This research argues that users in the graphene innovation ecosystem participate 

on Twitter and build network linkages to access diverse information and resources.  

Diversity is approximated by heterophilous following and friend relationships across 

different actor types; diversity is also ascertained by evaluating information distance 

between users.  The findings show some evidence that Twitter indeed promotes mixing of 

actor types and information, and moreover, that some users are keenly aware of this 

benefit.  For example, participants may enhance their reputations, firms may increase 

their sales, scientists may access adjacent research fields, and intermediaries may capture 

more attention for their work.  This theoretical framework is supported by the literature 

on innovation networks, research collaboration, and entrepreneurship.   

In contrast to explaining and predicting network linkages via social capital theory, 

which posits that users access, mobilize, and transfer resources online for individual 

benefit, alternative explanations exist: Some users may participate on Twitter not for 

economic gain but to further other types of utility.  Toubia and Stephen (2013) argue that 

non-commercial users derive intrinsic and image-related utility from participation on 

Twitter.  Intrinsic utility reflects an individual’s innate satisfaction in tweeting to his or 

her audience; it increases as a function of a user’s number of followers.  Image-related 

utility, on the other hand, measures the importance of enhancing one’s online footprint, 

largely construed as a sense of “self-worth” and social acceptance; this type of utility is 

measured as a nondecreasing concave function of a user’s followers.  Through empirical 
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exploration and a dynamic discrete choice model, Toubia and Stephen observe that both 

types of utility may operate at the same time.  At first, when users have few followers, 

they tweet to increase their intrinsic utility, and this behavior increases the number of 

followers.  As time progresses, and as their follower network grows, users tweet less 

often because image-related utility becomes more important than intrinsic utility. The 

qualitative findings show that most users improve their awareness of ecosystem concepts 

and news through their network curated timelines.  This awareness utility is distinct from 

both the intrinsic and image-related varieties described above.  There are also resource 

transfers that take place in the graphene innovation ecosystem; this type of utility is akin 

to traditional notions of economic utility (albeit mediated by networks and not “informal” 

markets).   

The interview evidence suggests that social capital facilitates network transfer of 

information and resources for many users.  However, some participants (e.g., F2 and F3) 

engage on Twitter to increase intrinsic and image-related utility:  Interviewee F3, for 

example, tweets about lithography and leadership topics of interest to him, more or less 

irrespective of the appeal of such content to his followers.  From this perspective, F3 

subscribes to the intrinsic utility model of tweeting.  Interviewee F2, in contrast, tweets to 

attract followers and to enhance his image-related utility.  This user then converts interest 

gained from follower (and friend) relationships according to the social capital model 

presented in Figure A.2.  

A second alternative explanation accounting for social media participation can be 

traced to the “collective assets” component (trust, norms, etc.) of Lin’s (2001) social 

capital model (Figure A.2).   Suppose for a moment that individuals within the graphene 
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innovation ecosystem operate in diverse offline networks to further their professional 

goals.  Then, the online component of this innovation ecosystem may be a reflection of 

this offline reality.  Here the collective asset could be considered as a baseline 

community commitment to diversity and obligation to participate in similarly diverse 

ways online.  For instance, both F2 and I2 acknowledged that significant portions of their 

Twitter networks exist in the “offline world.”  F2 in particular noted that the Twitter 

community he cultivates should exist in the “real-world” because only then does it have 

meaning.   

Given the other empirical evidence, however, this alternative explanation does not 

seem entirely satisfactory because some users clearly follow others they do not know 

(e.g. celebrities, institutions, and media entities).   Additionally, many interviewees 

conceded would not be able identify all of their followers.  Consequently, I conclude that 

network development on Twitter is in part a discovery-driven process, one that does not 

rely exclusively on existing offline relationships.  

8.5.2. Methodological Reflections  

The methodological limitations in this study derive from two main components: 

the initial sampling approach and the nature of the ERGM itself.  The sample size for the 

interviews was only nine; limitations associated with the qualitative findings and 

interpretations are given at the end of Chapter 7.   While the number of interviews could 

be increased to improve validity, the findings presented here are generally commensurate 

with recent work on social media in related contexts.  For example, work by Ooms et al. 

(2015) cited in this research suggests that firms use social media to increase inbound 

knowledge flows and facilitate absorptive capacity.  (This is essentially the awareness 
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improving finding across all users recounted above.)  Lovejoy et al. (2012) find that non-

profits on Twitter use the platform not as a tool for engagement but rather as a medium 

for one-way mass communication.  (This result corresponds to this research’s finding that 

intermediaries often appear to use Twitter as a way to share news, with little interaction 

across actor types.)    

In addition, the apparent correlation between usage patterns and outcomes – i.e., 

passive users experiencing only improved awareness, while more active users mobilize 

attention and resources for other non-awareness outcomes – emerged relatively early on 

in the interview process and repeated thematically in subsequent sessions.   Differences in 

perspective quickly “saturated”, such that additional interviews conveyed less and less 

new information, thus alleviating the need for a larger sample size.57 

The sampling method for the combined friend and follower networks began with 

a sample of 37 graphene firms.  I captured the friend and follower networks of each of 

these firms in one dataset and then sought to identify linkages among each of the non-

graphene firm users.  In this way, the sampling method is quasi-snowball.  (Further 

sampling to increase the span of hops to all friends of friends would have exhausted 

available time and resources given this study’s use of the free Twitter API.)    

The set of users captured by the sample does not reflect the broader spectrum of 

graphene related discourse and activity on Twitter.  One way to measure the magnitude 

of this disparity is to compute the percentage of users in the combined friend network not 

tweeting about graphene: Out of 8,621 users, only 1,877 (21.8%) tweeted about 

graphene.  This percentage appears relatively low at first, but recall that the networks of 

                                                 
57 Refer to Mason (2010) for a discussion on saturation sampling in qualitative research designs.   
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these firms span a broad spectrum of users who tweet about topics and represent 

professions, regions, or industries, outside of the graphene R&D arena.  In short, it is 

difficult to measure exactly where a technology-based innovation ecosystem on social 

media begins and where it ends.  In this work, it begins with a set of SME graphene 

firms, but in another study, it could begin with graphene researchers or intermediaries or 

bloggers.  The focus on graphene SMEs as the seeds for sampling conveys this research’s 

fundamental interest in firm-centric innovation networks, which comprise part of the 

larger online innovation ecosystem on social media.  

A related limitation is the mode of filtering applied to the combined friend 

network to run the necessary ERGMs to examine P1and P2.  Recall that given the broad 

spectrum of users across different topical communities, only those in the nanotechnology 

R&D community (C3) were used in the regression analysis.  Moreover, the selected 

ERGM implementation in R could not run complex simulations with actor and edge 

continuous variables on large networks58, so an additional filter was applied to remove 

users who had not tweeted about graphene (C3-945).  In sum, the sampling and filtering 

approaches can be construed as a threat to external validity because the sample on which 

the propositions were explored may not reflect the entire population.  If the set of active 

Twitter users interested in and tweeting about graphene spans relationships outside of this 

sample, and if the actor type composition and behavior of these users differs greatly from 

                                                 
58 Technical issues were brought to the attention of the statnet development team, and although 

acknowledged, no timely corrections were released to the code base.  In addition, the time required to 

complete a single ERGM estimation on these large networks – even without the continuous variables – 

exceeded hundreds of iterations and 24+ hours of continuous processing, only to produce model results that 

did not converge within say a maximum of 250 or even 500 iterations.  This work was carried out on a 

high-performance 4 x 8-core Intel E5-4650 2.7GHz CPU (32 cores total) with 512GB memory.   PNet, an 

alternative software implementation of ERGMs, did not fare much better in terms of model results and 

timeliness of estimation. 
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then the sample, the results presented here cannot be generalized any further than the 

scope of this research.   In this way, the novelty of the research design may also be its 

greatest limitation.   

As noted, the filtering approach was pursued as a direct consequence of problems 

related to the ERGM implementation in R.  The ERGM is a statistical model that 

addresses network complexity through the mechanics of modeling both exogenous and 

endogenous network phenomenon.  While a theoretically powerful tool, it has 

experienced slow adoption in applied empirical research due to two main reasons 

(Goodreau, 2007).  First, conventional regression models reveal noteworthy findings in 

terms of testing causal relationships, regardless of whether the hypothesized effects are 

confirmed.  With ERGMs, Markov chain Monte Carlo estimation approaches may lead to 

severe degeneracy such that finite point estimates of model parameters cannot be 

identified.  In other words, parameter estimates cannot “settle” on specific values because 

the observed network cannot be easily reproduced given the ERGM specification.  As a 

result, a model that does not converge cannot be used for interpretation as the resulting 

parameter estimates are essentially unfit for any type of inference.  Second, if a model 

fails to converge, it provides no clear heuristics that allow the analyst to easily try related 

specifications that are more likely to reproduce the observed network.  In this research, it 

took many months of trial-and-error to land on a model specification that converged.  

This experience portends that researchers not heavily vested into a specific research topic 

and method may find this time commitment intractable.   
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8.5.3. Usage Dynamism  

People use Twitter in different ways, and this usage evolves over time.  As the 

results indicate, users change their strategies for content sharing and networking as they 

learn how to use the platform, and the platform itself changes over time (e.g., through 

hashtags, a non-standard feature of the platform initially).   

Twitter itself is a for-profit company in the highly dynamic Internet industry.  

Internet firms offer “platform technologies”, which spur complimentary innovations.  On 

Twitter, this may materialize in novel, targeted advertising campaigns; in other cases, 

Twitter itself may introduce specific experiments or interventions to incent users to 

behave in some way.  The evolving nature of the platform suggests that users will not use 

Twitter in the same way as in years past.  This fact makes it difficult to interpret a certain 

behavior or measure as representing the same logical construct over time.  For example, 

if Twitter were to introduce a feature where it automatically followed some users based 

on ascertained profile information, then this research’s conceptualization of the friend 

network as being a result of individual agency could not be defended.  In a similar vein, 

Twitter’s method of recommending friends has evolved to provide more granular 

information; e.g., it is now possible to determine whether the recommendation to follow 

someone is based on other specific users’ actions.  This increasing level of context likely 

sways users’ behaviors in ways that cannot be easily isolated or controlled in research 

design.  In brief, the social media platform evolves in such a way as to conflate and 

intermingle endogenous factors that govern how people communicate and build network 

linkages.  
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Given the number of Twitter users in general and the ephemeral boundaries of the 

graphene innovation ecosystem as operationalized in this study, it is plausible that firm-

centric networks will continue to grow over time.  The dynamic nature of Twitter – that 

is, users joining a communication platform and discovering one another through 

following and friend networks – suggests that any cross-sectional snapshot of the network 

cannot capture the evolving nature of the graphene innovation ecosystem.  I consider 

opportunities for longitudinal study in the next section on future work.  

8.6. Future Work 

The online innovation ecosystem consists of traditional institutional actors and 

other non-traditional participants; the ecosystem as revealed through social media shows 

permeable boundaries where experts, firms, media entities, universities, “unknown 

users”, etc. follow each other in ways that show the complexity of innovation activities in 

an evolving emerging technology.  As suggested above, there are a number of 

opportunities for future work to extend this research’s scope.  In particular, theoretical 

implications with respect to social contexts and narratives and social capital and 

information value would certainly benefit from confirmatory empirical testing.  In this 

section, I focus on two additional research questions:  

1. How does the innovation ecosystem on social media grow and/or contract over 

time to reflect changes in actor means and goals?   

2. Can networks of topically adjacent communities portend future developments in 

an emerging technology?  
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8.6.1 Temporality  

Introducing temporality into network studies reflects the importance of process-

based analytic frameworks in both innovation and entrepreneurship research.  For 

example, in innovation research, an invention is often considered as only the first step in 

the innovation process (Hounshell, 1980; Stinchcombe, 1990).  Further work is needed to 

socialize that invention within an organization to build support for its successful 

deployment (Stinchcombe, 1990).  In innovation networks, firms may engage externally 

across the value chain to increase supply chain efficiency, improve learning, and access 

complimentary assets (Ahuja, 2000; Autio, 1997; Rothwell, 1989; Teece, 1986).  In brief, 

numerous studies have shown that a mix of deep and dense ties, as well as weak ties, 

offer distinct and synergistic advantages, and these innovation networks are dynamic and 

change in response to market conditions, regulatory regimes, and firms’ strategic and 

tactical decisions.  

In entrepreneurship research, scholars have defined process-based frameworks for 

explaining how new venture creation unfolds (Levie & Lichtenstein, 2010; Moroz & 

Hindle, 2012).  Many of these frameworks implicitly or explicitly leverage social 

network theory and methods to motivate the research context and explain causal 

mechanisms.   For example, in Sarasvathy’s (2001) conceptualization of effectuation, 

entrepreneurial activity unfolds as a boundedly rational process wherein entrepreneurs 

assess available means and personal aspirations to determine a set of desirable (and 

plausible) events.59  The entrepreneur is less likely to make decisions based on expected 

                                                 
59 This view stands in contrast to causation processes which assume a reversal in cognition processes such 

that the entrepreneur first identifies a desirable event and then works backwards to procure or develop the 

necessary means to achieve that event.  
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return and is instead more likely to prioritize decisions based on affordable losses and 

acceptable risks.  As a result, competition is less important in positioning the new venture 

than networks, which confer a broader set of means than the entrepreneur could otherwise 

devise alone.   

In sum, these process-based views of entrepreneurship and innovation suggest 

nonlinear and dynamic network evolution to meet the strategic and tactical needs of 

ecosystem participants.  The present research acknowledges the importance of this time-

based perspective but does not directly evaluate how the ecosystem network evolves, at 

least not quantitatively; this cross-sectional orientation stems in part from the methodical 

limitations encountered with the ERGM method.   However, future work should construct 

a time-series research design to account for changes in actor means and goals, possibly 

through the Temporal ERGM (TERGM) or Separable Temporal ERGM (STERM) 

approaches (Hanneke, Fu, & Xing, 2009; Krivitsky & Handcock, 2014).60  It remains to 

be seen whether a set of deductive hypotheses can be developed and confirmed using 

these methods, but it should be possible to use egocentric data (see Krivitsky, 2012), such 

as those collected for the present study, to investigate the merit of informal propositions 

and to perform other exploratory analysis.   

Time series data sets and research designs allow the investigator to more clearly 

identify causal mechanisms at play, instead of relying on potentially spurious correlations 

(Wooldridge, 2003).   For the innovation ecosystem, this means being able to be better 

                                                 
60 The TERGM extends the ERGM by accounting for temporal changes in a network.  The STERGM 

separates the notion of tie incidence – i.e., the rate at which new ties are created over time – from that of 

duration – i.e., how long the tie lasts.  
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tease out how social media encourages ongoing exploration of resources, information 

sharing, and resource transfer to further outcomes of interest.  

Table 8.2: A set of temporality-driven propositions for future work 

Proposition Explanation 

At the micro level, 

ecosystem actors 

unfollow  users who 

tweet about topics 

that diverge from 

their existing 

network’s topical 

purview  

As noted in this cross-sectional study, topical distance predicts a lower 

probability of a following tie.  Ergo, it stands to reason that ecosystem 

users who “test trial” following relationships may unfollow whenever 

the new relationship fails to provide relevant information.  Fischer and 

Reuber (2011) provide qualitative evidence substantiating this 

proposition.  Relevance here may be modeled linearly to predict a 

simple negative relationship between topical distance vis-à-vis an 

actors’ existing timeline of tweets (as curated through his network of 

contacts), or alternatively as an inverse U-shaped relationship.  That is, 

a user is more likely to unfollow when topical distance is either very 

low or very high.  The “sweet spot”, or the apex of the inverse-U 

reflects an area where cognitive burden may be lowest (see Gilsing et 

al., 2008).  

At the macro and 

meso levels, 

ecosystem topical 

diversity grows with 

time 

The qualitative findings show that many ecosystem users participate 

on social media to access diverse content.  While not directly 

corroborated by the quantitative results here (which use a given tie as 

the outcome variable of interest), this proposition could examine 

whether diversity in content is more readily observed at the 

community level, and whether this diversity grows over time to reflect 

a broader array of technology, business, sociopolitical, and/or regional 

issues.  

New entrants to the 

ecosystem attach to 

the network via (a) 

media entities and 

institutional actors 

and (b) other users 

with high numbers of 

followers 

In science and technology studies, the Mathew Effect is a well-known 

phenomenon where highly cited papers (authors) attract additional 

citations faster than papers (authors) with fewer citations.   The same 

philosophy holds true on social media.  In addition, since the 

innovation ecosystem appears to be driven by information access 

(recall that most of the tweets in the graphene sample have URLs to 

various website content), it follows that entrants to the ecosystem will 

follow those actors offering the most relevant (and perhaps unbiased) 

news content, namely media entities and possibly institutional actors.     

Social media based 

innovation 

ecosystems behave 

differently from non-

innovation related 

social media 

networks 

This proposition is unlike the three above in that it introduces a control 

from which to test the unique behavior of social media representations 

of innovation ecosystems vis-à-vis unrelated samples.  Being able to 

identify the unique characteristics of the social media based innovation 

ecosystem will help further identify the value of social media to 

innovation studies, and to better extrapolate policy and management 

implications.  While a cross-sectional research design could reveal 

some areas of divergence, differences over time could be more fruitful 

in terms of major findings and theory construction.  
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8.6.2. Science Maps 

To understand any science map, one should first consider its standard 

mathematical definition in graph theoretic terms.  A map, simply put, is a graph 

consisting of some number of vertices connected by some number of edges.  A map of 

science, then, represents the relationships between fields, journals, subject 

areas/disciplines, authors, papers, etc.  The relationships or edges may be defined by co-

occurrences of citations, references of words, or co-authorships.  Science maps are almost 

always visually represented in spatial terms as a network whereby nodes connect to one 

another by the edges, and they are particularly revealing because they offer a relational 

perspective of one field vis-à-vis another.   This is important because “science seeks 

relatedness as much as it seeks truth, and the value of a research field is measured in large 

part by the contributions it makes and the clarifications it affords to adjacent fields” (De 

Bellis, 2009, pg. 167).   

Science maps are sensitive to database biases and threshold cutoffs, and 

consequently they are simplified representations of reality (De Bellis, 2009; Klavans & 

Boyack, 2008).  In addition, it is difficult to relate research outputs produced by a single 

organization or institution within a discipline to the rest of that discipline as a whole, at 

least from a content perspective (Rafols, Porter, & Leydesdorff, 2010).  Two recent 

trends, computerization (i.e., automation) and the development of hybrid maps (i.e., 

combining content and citations), provide two attractive ways to produce more accurate 

and revealing science maps (De Bellis, 2009).   

Here, I argue that social media can offer an additional source of data to produce 

science maps focusing on the interpretation and commercialization of inventions and 
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technologies.  Future work extending this research could examine topical communities on 

social media to compare and contrast maps derived from social media with traditional 

ones produced with bibliometric data.  Social media data do not capture the production of 

and knowledge flows across scientific fields, but to the extent that different communities 

exist around specialized science-based emerging technologies, it may be possible to show 

linkages across these communities.  For example, one might expect that a nanomaterial-

based ecosystem may be closely aligned to the optics community, which in turn may link 

to the medical community.  In fact, this research shows the first relationship between 

nanotechnology and optics (refer to the follower network in Figure 5.8), but because the 

sample is limited to graphene firms’ relations, a broader understanding cannot be gained.  

Herein lies the opportunity for future work. 

The implications of producing science maps on Twitter or related social media 

could inform public policies concerning the funding of science and its uptake in the larger 

(non-publishing) ecosystem.  These maps may hint at areas of interdisciplinary 

commercialization efforts not currently documented and understood by the academic 

literature.  For example, social media content may expose key areas of lead user 

innovation.61  In addition, funders of science could assess social media maps to examine 

novel research grant opportunities:  Scholars have argued that for science maps to be 

useful to policymakers, they need to provide interactive interfaces which respond to user 

queries and provide dynamic information (Klavans & Boyack, 2008).   The scientist 

should internally validate the use of keywords used to obtain a (local) science dataset, 

                                                 
61 Lead user innovation takes place when users recombine know-how and apply it for product innovation.  

An isolated lead user innovation may not appear in social media data, but a sizeable community of lead 

users would.  
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and the user community should externally validate the map to gauge its utility.  Social 

media data vary in real-time and are amenable to the dynamic querying and exploration 

that would make it a suitable source for interaction with various users, given the right 

human computer interface.  

Social media science maps also could improve organizational intelligence.  Rafols 

et al. (2010) present a science overlay method as a technique to evaluate the research 

contributions of an institution and/or organization.  They do this by first constructing a 

complete science map based on relationships between categories, e.g., through co-citation 

relationships.  Then, they overlay numbers of authors, documents, or citations etc. in each 

category on top of the nodes.   The overlay, as a result, depicts those areas of inquiry that 

the organization or institution has contributed to in terms of publications, citations, etc.  

Thus, this method offers a mechanism for organizations or policymakers to make more 

informed decisions about entering into unknown, emerging, or foreign “cognitive 

spaces”, especially as those spaces relate to the research target’s other competencies 

(Rafols et al., 2010).    With social media data, the overlay method may compare and 

contrast commercialization efforts and ecosystem orientations across different bodies to 

draw more wide ranging policy conclusions (for a similar policy argument, see Rafols, 

Leydesdorff, O’Hare, Nightingale, & Stirling, 2012).   

Implementing social media based science maps would require an initial sample 

covering many types of seeds and then snowballing from there.  The sampling objective 

would be to cover as many scientific areas as possible without capturing vast amounts of 

data unrelated to scientific domains.  To accomplish this difficult task, an intelligent 

automated sampling mechanism could be used to cull the dataset in near-real time to 
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avoid non-relevant actors, and therefore to mitigate the amount of unnecessary 

snowballing.  Regardless of whether this approach would classify actors as being in-

scope through a rules-based engine or via machine learning classification algorithms, any 

sampling implementation would likely suffer from the same limitation as maps derived 

from bibliometric data: That is, all maps suffer from database biases and threshold 

cutoffs, and consequently they are simplified representations of reality.  Still this 

alternative view could be a telling indicator of the broader innovation ecosystem’s 

receptivity to a given emerging technology.   

8.7. Concluding Thoughts   

This work is among a growing set of research studies that examines online 

behavior on social media as applied to innovation networks and entrepreneurial contexts.   

According to the President’s Council of Advisors on Science and Technology (PCAST) 

(2008), the innovation ecosystem is a “dynamic system of interconnected institutions, 

persons, and policies that are necessary to propel technological and economic 

development” [emphasis added] (pg. 1).    

The findings reveal the interconnected nature of individual users with enterprises, 

institutions, and other stakeholder organizations, thus offering a micro-level view of 

traditionally unobservable phenomena:  Communities organize around a limited number 

of topical themes, and information diversity exists across communities (i.e., by bridging 

structural holes).  The online innovation ecosystem, then, can be compared to a bazaar (or 

conference) where there are few tangible costs to entry, and where everyone can share (or 

promote) ideas and opinions.  Narratives unfold as users observe and potentially engage 

with various underlying social contexts, and to some extent, users that strategically 
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engage with the ecosystem attract resources that would not otherwise be available 

without their broader social media usage.  For profit-seeking firms, this may mean 

modest sales lifts through a product or service sales pipeline transcending social media 

into other communication channels; for other users, reputational benefits, increased 

public support, enhanced awareness, and broader professional networks and opportunities 

constitute other positive outcomes of social media usage.   

The communication-engagement model shows in simple terms that passive 

observation is not enough to derive benefits from social media; participation is a 

necessary but not sufficient condition for achieving tangible outcomes.  That said, many 

users continue to maintain active accounts in the hope of achieving some set of benefits 

that currently are not realized.  This indicates that social media in professionalized, S&T 

contexts represents varying levels of sophistication in its use and that networking and 

communication dynamics will continue to evolve as the platform and user base matures.  

Consequently, future work examining innovation ecosystem dynamics on social media 

will provide an especially fruitful (albeit methodologically complex) environment to 

capture endogenous and exogenous changes in behavior.  

In aggregate, social media may have limited impact on a technology’s 

development.  In the graphene setting, many interviewees active in this R&D space found 

little value in using Twitter to shape the material’s scientific trajectory.  After all, users 

with an acumen for digesting scientific minutiae consult the journal literature to track the 

latest theoretical or laboratory developments. Instead, users participate in the graphene 

ecosystem to gain valuable social context and to follower users knowledgeable (or who 

appear to be knowledgeable) about ecosystem topics, including graphene R&D.  At the 
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very least, the graphene online ecosystem embodies some degree of hype wherein users 

follow the technology because it is one of science’s trendiest materials.  Graphene’s 

evolution through the hype cycle and through future stages of development will continue 

to offer a telling case study of the robustness and staying-power of online social media 

networks in the innovation ecosystem.  

In conclusion, this research cannot point to the social media and innovation 

ecosystem construct as “doing” any one thing: I believe it does many things at once; i.e., 

with graphene it represents a hype technology with a diverse following; it consists of a 

set of passive observers who may or may not improve their awareness as a result of being 

on Twitter; it comprises another set of users who seek to co-create narratives and 

effectuate the transfer of resources; it is a forum for sharing news; and it most certainly 

dovetails into other related ecosystems and contexts which ostensibly have little to do 

with science and technology issues.  What this research does show, however, is that the 

innovation ecosystem has an online footprint, and that there is a bright and growing 

horizon for future scholarship to trace and interrogate its constitutive nature and socio-

technical and economic impacts.  
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APPENDIX 

 

Figure A.1: The linear model of innovation.  Source: 

http://curryja.files.wordpress.com/2013/05/research-linear.jpg (retrieved on September 

12, 2013).  
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Figure A.2: Modeling a theory of social capital.  Source: Lin (2001) 
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Figure A.3: Social capital and the development of intellectual capital.  
Source: Nahapiet and Ghoshal (1998) 
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Figure A.4: A structural model of network emergence.  
Source: Whitbred et al. (2011) 
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Table A.0.1: Coding Outsourcing Job Description 

MEMO FOR OUTSOURCING OF ACTOR CODING WORK  

 

Prerequisites for working on this project 

 

1. Have a Twitter account and be interested in social media more broadly  

2. Basic proficiency with Excel 

3. Be meticulous as well as a quick decision maker  

4. Be a fast learner and good communicator  

 

Project description and work task overview  

 

The purpose of this research project is to understand how people use social media to 

commercialize emerging technologies.  In particular, I’m studying a specific nanotechnology 

material science innovation called “graphene” on Twitter.   Thus far, I’ve identified about 10-15 

thousand users and need to code each user in one of eight different categories:  

 

1. Nanotechnology firm 

2. Firm offering strategy, consulting, online marketing and advertising, etc. soft support 

3. Other firms (for example in health care, computers, or automotives)  

4. Finance related firm 

5. Media entity (newspaper, magazine, television station, media personality, author, writer, 

blogger, etc.)  

6. Scientist 

7. Intermediary, including universities, professional associations, trading platforms that 

bring together buyers and sellers, government agencies, and many non-profit 

organizations  

8. Other; these are accounts which do not readily fit into the prior seven categories.  

 

Some users are very easy to classify into one of the main categories.  However, some users will 

not easily fit in one category.  For example you may find a scientist who owns his own 

nanotechnology firm, or a professional association that also publishes a number of academic 

journals.  In these cases, I ask that you make a best guess, mark the user as needing follow-up 

review, and move on.    

 

For more information regarding the coding scheme, please see the slide in the PowerPoint file, 

“Actor coding typology and decision chart.pptx.”  The PowerPoint shows that if a person is a 

scientist, even if he works for a firm, then that is the most important attribute.  In this case, mark 

the user as a scientist.  However, if a firm is marketing person working for a chemicals 

laboratory not dealing in nanotechnology, then mark that user as “other firm”.   To determine 

whether a company operates in nanotechnology or graphene, you can search for either term in 

google with the website name; for example, in Google, “nanotechnology 

site:www.polymersolutions.com” shows that this company has enough relevant to hits to be 

considered as a nanotechnology company.  
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Data specifics  

The next few paragraphs describe the data in Excel and the coding scheme.  Each bullet point 

below corresponds to a column in Excel.  

 

A. screen_name.  This Is the user’s Twitter screen_name.  For example, if you come across 

the screen name, “floatbottle”, you can add a “@” sign to search for that user on Twitter  

B. user description. This is the user’s short description of the account.  Sometimes its 

autobiographical, or about the company.  Sometimes it’s helpful, and sometimes it’s not.  

This can change, so if you check Twitter, the description may not match what is in the 

spreadsheet.  If this or the url is missing, you’ll probably want to check the user’s Twitter 

profile by searching for his or her screen_name.  

C. url.  Twitter allows users to specify an url, which is visible just below the user 

description.  If you copy the url into your browser, it can give you very helpful 

contextual information.  For example, some urls link to LinkedIn, while others link to a 

blog or company website.  By reviewing urls, you can make a more informed judgment 

regarding the appropriate user category.  However, reviewing every url is time 

consuming.  

D. Please disregard columns D-J.  

K. Columns K-L contain the eight user categories mentioned above.  Note that there can 

only be one ‘1’ in these cells for each user; that is, the categories are mutually exclusive 

such that a user can only be a firm, or a scientist, or a media entity, etc.  Even though 

there will likely be a value assigned to one of these categories, you may have to change 

it.  

S. check. If you are uncertain about a user, please insert an ‘x’ into this cell.  I will review 

the coding later and make adjustments if needed.  

Non-media firm or 
non-scientist 
employee? 

Is government? 

Is professional 
association? 

Is research entity?  

7.  Intermediary 

1. Nano or 
instrumentation 

2. Business soft 
support 

3. Else other firm 
or employee  

Investors, banks, 
VC’s etc?  

6. Financial 

Trained and 
working in 
science? 

5. Scientist 

News, blogging, 
design, art, etc. 
even in finance? 

4. Media 

If none of the 
above 

8. “Other” 
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T. notes. Please include a short but helpful explanation of the user account or your coding 

choice, if needed.  For example, if a scientist has a blog, I might insert 1 into the 

‘scientist’ column in P but then indicate “also a blogger” in column T.  

U. seen.  This field tracks when you’ve coded the user.  Please insert your initials and the 

date in the field. (You can easily copy and paste the value for sets of records all at once).  

For example, “ska_3.28.14”.  

 

When you send back a spreadsheet, please add your initials and date to the versioning.  This is 

just to make sure that I can keep track of everything. 
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Table A.0.2: Log-likelihood estimates 

  beta    

Number of 

topics alpha 0.01 0.025 0.05 0.1 

50 

0.25 -9.861545342 -9.835262731 -9.819377457 -9.818944842 

0.5 -9.928670203 -9.901281155 -9.891529561 -9.895492217 

1 -10.09970927 -10.08809497 -10.06183314 -10.05372296 

1.5 -10.21954406 -10.16275245 -10.17525451 -10.18110744 

2 -10.29169392 -10.27632438 -10.23965015 -10.22828628 

100 

0.25 -9.938833546 -9.919620816 -9.892036716 -9.88709755 

0.5 -10.07369043 -10.03531296 -10.03541984 -10.02927335 

1 -10.29044206 -10.255329 -10.22502416 -10.22497246 

1.5 -10.38424514 -10.34667848 -10.33551547 -10.35457357 

2 -10.48224887 -10.4449179 -10.44885808 -10.48278913 

150 

0.25 -10.0101591 -9.98784447 -9.975040388 -9.96562734 

0.5 -10.184892 -10.1509374 -10.15094785 -10.13425783 

1 -10.36124976 -10.33173416 -10.31404152 -10.35863989 

1.5 -10.49278668 -10.4624485 -10.47904695 -10.54247141 

2 -10.63874301 -10.60222282 -10.63282826 -10.6832915 

200 

0.25 -10.07085302 -10.03718725 -10.037084 -10.02242603 

0.5 -10.26955006 -10.22951283 -10.21463362 -10.24432211 

1 -10.44773131 -10.42204414 -10.43667642 -10.48638494 

1.5 -10.58084957 -10.5866346 -10.63219095 -10.68268819 

2 -10.7327061 -10.74083219 -10.77367241 -10.81547933 

250 

0.25 -10.12657619 -10.09715736 -10.08203394 -10.09050107 

0.5 -10.33372976 -10.28736618 -10.28211839 -10.33897257 

1 -10.49298287 -10.48590935 -10.54157351 -10.60437982 

1.5 -10.68265224 -10.67615415 -10.75408237 -10.78303576 

2 -10.82773496 -10.86131993 -10.88756579 -10.91425124 

Source: Twitter, model trained on n= 161,141 tweets authored by members of C3-945; 

data collected in early 2014.  Notes: Estimates produced after 1,000 iterations for varying 

number of topics and alpha and beta smoothing parameters.  Green shading indicates 

higher values whereas orange and red shading indicates lower values.  
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Table A.0.3: Log-likelihood estimates 

 

  beta    

Number of 

topics alpha 0.01 0.025 0.05 0.10 

25 

0.25 -7.130 -7.114 -7.104 -7.089 

0.5 -7.104 -7.086 -7.142 -7.106 

1.0 -7.145 -7.136 -7.124 -7.113 

1.5 -7.161 -7.171 -7.147 -7.153 

50 

0.25 -6.869 -6.865 -6.861 -6.836 

0.5 -6.894 -6.871 -6.876 -6.836 

1.0 -6.899 -6.897 -6.912 -6.881 

1.5 -6.947 -6.952 -6.917 -6.891 

100 

0.25 -6.655 -6.630 -6.635 -6.614 

0.5 -6.669 -6.638 -6.649 -6.623 

1.0 -6.739 -6.686 -6.661 -6.657 

1.5 -6.793 -6.746 -6.722 -6.727 

150 

0.25 -6.529 -6.502 -6.514 -6.491 

0.5 -6.556 -6.538 -6.528 -6.494 

1.0 -6.641 -6.609 -6.596 -6.583 

1.5 -6.778 -6.719 -6.708 -6.722 

Source: Twitter, model trained on n=100,000 random graphene tweets collected in 2013 

and early 2014.  Notes: Estimates produced after 1,000 iterations for varying number of 

topics and alpha and beta smoothing parameters.  Green shading indicates higher values 

whereas orange and red shading indicates lower values.  
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