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ABSTRACT

On the Performance Analysis of Digital Communication

Systems Perturbed by Non-Gaussian Noise and Interference

Hamza Soury

The Gaussian distribution is typically used to model the additive noise a↵ecting

communication systems. However, in many cases the noise cannot be modeled by a

Gaussian distribution. In this thesis, we investigate the performance of di↵erent

communication systems perturbed by non-Gaussian noise. Three families of noise

are considered in this work, namely the generalized Gaussian noise, the Laplace

noise/interference, and the impulsive noise that is modeled by an ↵-stable

distribution. More specifically, in the first part of this thesis, the impact of an

additive generalized Gaussian noise is studied by computing the average symbol

error rate (SER) of one dimensional and two dimensional constellations in fading

environment. We begin by the simple case of two symbols, i.e. binary phase shift

keying (BPSK) constellation. From the results of this constellation, we extended the

work to the average SER of an M pulse amplitude modulation (PAM). The first

2�D constellation is the M quadrature amplitude modulation (QAM) (studied for

two geometric shapes, namely square and rectangular), which is the combination of

two orthogonal PAM signals (in-phase and quadrature phase PAM). In the second

part, the system performance of a circular constellation, namely M phase shift

keying (MPSK) is studied in conjunction with a Laplace noise with independent
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noise components. A closed form and an asymptotic expansion of the SER are

derived for two detectors, maximum likelihood and minimum distance detectors.

Next, we look at the intra cell interference of a full duplex cellular network which is

shown to follow a Laplacian distribution with dependent, but uncorrelated, complex

components. The densities of that interference are expressed in a closed form in

order to obtain the SER of several communication systems (BPSK, PAM, QAM,

and MPSK). Finally, we study the statistics of the ↵-stable distribution. Those

statistics are expressed in closed form in terms of the Fox H function and used to

get the SER of BPSK, PAM, and QAM constellations. An approximation and an

asymptotic expansion for high signal to noise ratio are presented also and their

e�ciency is proved using Monte Carlo simulations. It is worth mentioning that all

the error rates presented in this work are averaged over a generalized flat fading,

namely the extended generalized K, which has the ability to capture most of the

known fading distribution. Many special cases are treated and simpler closed form

expressions of the probability of error are derived and compared to some previous

reported results.
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Chapter 1

Introduction

1.1 Motivation

The performance of digital communication systems has been extensively studied in

the presence of a Gaussian noise and flat fading [1, 2, 3, 4, 5]. Actually the additive

Gaussian noise (GN) model is widely used in the performance analysis of most of

the communication systems because its quadratic form makes the minimization of

the mean square error (MSE) as the best criteria to find filters and estimate system

parameters. In digital communication, the quadratic form of Gaussian distribution

reduces the maximum likelihood detector to the minimum distance detector using

the euclidian distance which is commonly used. Furthermore, it is known that the

Gaussian distribution is the limit of the arithmetic mean of independent random

variable (RV) according to the central limit theorem (CLT) which makes the

Gaussian noise a suitable choice in the presence of many additive perturbations in

the channel. However, this theorem is valid only within particular conditions that

are not always satisfied and the sum of RVs may not be very large to reach the

normal distribution. The limitation of the CLT and the real characteristics of the

noises has pushed researchers to deal with another type of noise, namely

non-Gaussian noise [6]. Many families of non-Gaussian noise are available in the

literature. Three families of them are considered in this thesis, namely the
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generalized Gaussian [7, 8, 9], Laplacian distribution [10, 11], and the so called ↵

stable family [12, 13, 14, 15].

In several communication systems, it has been suggested that the noise follows a

generalized Gaussian distribution (GGD)[7, 8, 9]. For instance, in [7], the GGD was

used to model the noise for an underwater communication channel. In addition, in

[8] and [9] the GGD was used to model the additive noise for sensor network and

local spectrum sensing applications. On the other hand, it has been widely reported

that the GGD can model di↵erent type of noise. For instance, the Gaussian,

uniform, and Laplace distributions, which are special cases of the GGD [8, 9].

The second non-Gaussian perturbation, viz Laplace, has pinched research interest

for a long time for its properties. It is widely used and is indeed quite popular in

signal processing, signal detection, and communication studies to model impulsive

noise/interference. Many communication systems, in which the Laplace noise (LN)

is applicable, can be found in the literature. Indeed, studies of multiple access

interference (MAI) in time hopping (TH) ultra-wide bandwidth (UWB), with

Laplacian perturbation, were conducted in [16, 17, 18, 19, 20, 21, 22, 23, 24]. In

[18], an accurate evaluation of the multiple access performance in TH-PPM and

TH-UWB systems was conducted. Actually, the probability density function (PDF)

of the sum of the interference and the Gaussian noise in the discrete time model was

established. The results of [20] show that this PDF can not be a Gaussian

distribution (see [18, Fig.2 and Fig.3]). An approximation of that PDF was made in

[16, 17], where Beaulieu et al. proved that the cumulative MAI in the discrete time

model can be modeled as a Laplacian distribution for TH-UWB systems. In fact in

[16, Fig.2], the authors have shown that the PDF of the multiple interference,

coming form the multi-user, can be approximated by the Laplacian PDF. More

specifically, the tail of the simulated PDF is near the Laplacian PDF tail. Moreover,

in [17], the authors proved that the MAI in discrete time model can be modeled as
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an additive noise which can not be a Gaussian distribution. Actually they tried

three types of distributions, one of them is the Laplacian distribution, which was

shown to o↵er a better fit than the Gaussian approximation for the MAI as

described in [17, Fig.1]. On the other hand, in the UWB wireless systems, the

multi-user interference can be modeled also by the Laplace distribution [10, 11]. In

addition, the LN is studied in the free-space optics (FSO) communication context as

a non Gaussian additive noise [25]. Besides its use as an additive noise, the Laplace

distribution can also model the interference in full-duplex networks operating over

Rayleigh fading channels.

Another motivation to deal with non Gaussian perturbation is the impulsive

character of such noise/interference. More specifically, in real life applications,

severe impairments and perturbations may have an impulsive nature [26, 15]. These

perturbations can deteriorate the performance of many communication systems.

The impulsive noise can be modeled by many distributions such as ↵-stable

[27, 28, 29, 15, 30]. In fact, in [30], the ↵-stable distribution has been firstly studied

by Feller after it was defined the first time by Lévy [31]. Since then the ↵-stable,

considered as the generalization of stable distribution, has motivated researchers to

analyze its behavior in communication systems because of its properties and ability

to model di↵erent kind of perturbations. Indeed, Cardieri presented a nice survey in

[29] about the interference models used in wireless ad hoc networks and the used

models to describe the interference, one of this model is the ↵-stable distribution.

Also in [13], the authors have modeled the noise (which also can be considered as

additive interference/perturbation) by an ↵-stable model. Therewith, some other

works were proposed in the literature to solve the problem of filtering in impulsive

noise environment that can be modeled by ↵-stable distribution

[32, 33, 34, 35, 36, 37]. In fact these works proposed a full rank adaptive filters

which are built by optimizing an objective function that contains a combination of
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L

1

and L

2

norms.

Though its widely use in wireless communication, the PDF and the cumulative

distribution function (CDF), of the ↵-stable distribution, have a closed-form only

for three special cases, say, Gaussian (↵ = 2), Cauchy (↵ = 1), and Pearson (↵ = 1

2

)

[38], which motivates the investigation of the statistics of the ↵-stable distribution.

Subsequently, the performance analysis of communication systems subject to an ↵

stable perturbation (noise, interference,...) can be also studied using the obtained

results.

1.2 Related Work

As mentioned above, the generalized Gaussian (GG) noise is used in sensor

networks, sensing applications, and UWB communication systems. In addition, due

to its generic character, it is used to model several types of noise. One of these

noises could be the impulsive noise, uniform or Laplace which has many

applications in digital communication and signal processing. For instance, in [21]

the multi user interference in UWB was modeled as GG noise (GGN). In addition,

Fiorina introduced in [21] a method to estimate the distribution parameter ↵ using

an estimation of the kurtosis of the GGD that depends only on the second and

fourth moments. Moreover, a recent work studied the properties of the sum of two

independent GG random variables (GGRV) [39]. Indeed, Zhao et al. studied in [39]

the properties of the PDF of the sum of two GGRVs. They proved that such PDF

has the same properties of the PDF of GGD (symmetry, convexity, monotonicity...)

but they did not compute the PDF of the sum. On the other hand, they gave an

approximation of the PDF of the sum of two identically independent distributed

(i.i.d.) GGDs.

Beside the GGD, the Laplace distribution, which appears as a special case of the
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GGD, is also well studied in the literature. For example in the UWB wireless

systems, the multi-user interference can be modeled by the Laplacian distribution

[17, 18, 21, 22, 23, 10, 11, 24]. Furthermore, the LN was studied by Kamboj et al.

[25] in an FSO communication context as a non Gaussian additive noise. In another

area of research, Beaulieu et al. designed an optimal detector for LN [40, 41], and

studied some properties of the LN by computing the bit error rate of binary data

[42]. Finally, work in [43] dealt with detection problems in LN environment, while in

[44] the authors were focusing on the discrete-time detection of a time-varying LN.

More specifically, most of those previous works were dealing with the bit error rate

(BER) of binary phase shift keying (BPSK) constellation for di↵erent system

models. In addition, Beaulieu and Young studied some optimal detectors in LN

using di↵erent filter structure for UWB systems. In fact, the intention was to find

the best optimal filter (either matched filter or other filter) to get the lower bit error

rate for a BPSK constellation in this environment. On the other hand, Kamboj et

al. focused on getting the probability of false alarm in FSO systems in presence of

slow Rayleigh fading.

Furthermore, several works studied the performance of systems perturbed by

noise/interference modeled by ↵-stable distribution [12, 13, 14, 15]. Some of these

works were focusing on the detection in presence of ↵-stable distribution. In fact a

near optimal detection has been investigated in [15], while a multi user detection

using filtering in impulsive noise is described in [12]. In addition, the authors in [14]

studied the deductibility matter in a sensor network where the noise is assumed to

be impulsive ↵-stable by approximating its PDF to obtain the detection probability.

On the other hand, the ↵-stable process has been used to model impulsive

perturbation to build a particle filter for acoustic source [27], and to study a reduced

rank adaptive filter in the same environment [45]. Moreover, the estimation of the

stable parameter ↵, known also as the characteristic parameter, seems interesting to
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researchers, which can be confirmed by looking into [28, 46, 47]. Moreover, several

works investigated the PDF of the ↵-stable distribution without obtaining a closed

form [29]. In [14] an approximation of the PDF has been used for performance

analysis of the used system. In addition, it has been claimed in [48] that optimal

processing cannot be done if the perturbation PDF is not analytically expressed.

Another area of research is considered in this thesis which is the computation of the

probability of error for di↵erent 1�D and 2�D constellations perturbed by non

Gaussian noise. Many works dealt with the average symbol error probability of

di↵erent digital communication systems in the presence of a Gaussian noise

[1, 2, 3, 4, 5]. Furthermore, the performance analysis of such systems over

generalized fading channels subject to additive white Gaussian noise (AWGN) has

been extensively studied [49, 50, 51, 52] to obtain the probability of error of those

communication systems. In addition, several expressions including integral forms

and approximations of the symbol error rate (SER) were derived in [53].

1.3 Summary of Contributions

In this work, we investigate the performance of di↵erent communication systems by

computing the average probability of error of di↵erent shapes of constellations

applied to communication systems perturbed by non Gaussian noise (in particular

GGN, LN, and ↵ stable type of noise) over generalized flat fading. In fact, we

couple a one dimensional (1�D) and two dimensional (2�D) constellations with

the used perturbation distribution to get the average SER (ASER) over generalized

flat fading. More specifically, we consider a system with an input signal generated

according to a given constellation fed to a channel with an Extended Generalized-K

(EGK) fading envelope [54], and subject to non Gaussian noise or/and interference.

Hence the goal is to obtain a generic expression for the probability of error of the
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system under consideration and then to simplify this expression as much as possible

for di↵erent values of the fading and noise parameters. Since the deployed noise and

fading families are general distribution that can cover several special cases of the

well known distribution, only some selected special cases are investigated in this

thesis to obtain simpler closed form of the analyzed error rates.

On the other hand, note that in the derivation of the average symbol error

probability of a 2�D modulation in the standard Gaussian case, the challenge

consists of solving an integral involving the product of two traditional Gaussian Q

functions [1, 3, 2, 4]. Here, in the presence of other type of noise, the problem is

more complicated because we have to derive an integral of the product of two CDFs

of the deployed non Gaussian perturbation. Such integral expression appears when

we consider the ASER over EGK fading. In the 1�D case, the problem is less

complex because we need to evaluate an integral involving one CDF. Moreover, the

EGK distribution is a versatile fading envelope model that describes signal

fluctuations in received signal-to-noise ratio (SNR) due to multi-path, shadowing, or

a mixture of such processes in the environment. Indeed, it has five parameters and

includes most of the well-known fading distributions in the literature as either

special or limit cases as shown in Table A.1. The major contribution of this work is

to express the derived ASER in a closed form in terms of a family of special

functions defined by the Mellin contour integrals [55]. However, before proceeding

to the mathematical analysis, the discrete time model in non Gaussian noise should

be defined and investigated.

1.4 Discrete Time Model

In [19, 20] Dhibi et al. studied the impulsiveness of the multi user interference

(MUI) in UWB systems. In [19], they presented a mathematical proof of the
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impulsiveness of the MUI after filtering [19, Eq. 18]. Actually they showed that the

PDF of the MUI describes the so-called Middleton Class A (MCA) noise, which is

an impulsive noise distribution. In our model, one may replace the MCA

distribution by a non Gaussian distribution. Therefore, the works

[16, 17, 18, 19, 20, 21] have studied the discrete time model of an UWB system with

MUI. They proved that the MAI (or the MUI), in discrete time model, can be

modeled as a non Gaussian noise and that the thermal noise component (Gaussian

noise) can be neglected. These previous studies were made for UWB systems.

Nevertheless, our model is applicable for any system using the same discrete time

model and is as such not limited to UWB systems.

It is worth noting that the linear filter is no longer optimal in presence of non

Gaussian noise in general, and Laplacian noise in particular as proved in [56], where

in [56, Fig.5 and Fig.6] the optimal filter has better performance than the linear

filter. Actually, the superiority of the soft limiting receiver, built in [16], over the

matched filter is intuitive, as mentioned in [16].

1.5 Outline of Thesis

According to the description given above, the remaining of this thesis is organized

as follows. In Chapter 2, the probability of error is computed and expressed in a

closed form for communication systems, mapped using BPSK, pulse amplitude

modulation (PAM), and quadrature amplitude modulation (QAM) constellations,

perturbed by GG noise through an EGK channel. The probability of error of the

M -ary phase shift keying (MPSK) constellation cannot be expressed in closed form

in the presence of GGN, so its error rates are described through a Laplace noisy

channel with independent components in Chapter 3. Continuing with the Laplace

perturbation, the intra cell interference in a full duplex network is studied in
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Chapter 4 where it is proved to be Laplacian with dependent, uncorrelated

components. Furthermore, the probability of error of the user in the full duplex

network are investigated through an EGK fading. The last family of noise

distribution (↵ stable) is analyzed in Chapter 5 where the statistics of such

distribution are studied and the probability of error of some digital communication

systems is studied as an application. Finally, some concluded remarks and further

possible extensions are provided in Chapter 6.
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Chapter 2

Error Performance Over

Generalized Gaussian Noise

One of the most known non-Gaussian noise families is the GGN [7, 8, 9] where its

PDF is defined later. In this chapter, the probability of error of several digital

communication systems perturbed by GGN is analyzed. For instance, the BER of

BPSK and the SER of PAM, square QAM, and rectangular QAM constellations are

studied and derived in closed form. Moreover, these error rates are derived in terms

of the instantaneous SNR, so an average expressions of them are investigated in the

presence of a versatile fading distribution, such as the EGK distribution.

2.1 Noise and Fading Distributions

2.1.1 Generalized Gaussian

In many communications systems the noise is typically considered as an AWGN,

but in this part we assume that the noise is an additive white GGN (AWGGN) with

zero mean and variance N

0

/2. More specifically, the PDF of the AWGGN noise is
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given in [57, Eq. (6.2)], that is

pN (n |µ, �,↵) = ↵⇤

2� (1/↵)
exp (�⇤↵|n� µ|↵) , (2.1)

defined over n 2 R, where the parameters ↵ 2 R+ and µ 2 R denote the shaping

parameter and the mean, respectively. Moreover, the coe�cient ⇤, which is

considered to normalize the noise PDF, is defined as

⇤ =
⇤

0

�

=

s
2�(3/↵)

N

0

�(1/↵)
, (2.2)

where ⇤
0

=
p
�(3/↵)/�(1/↵) is the normalizing coe�cient with respect to the

shaping parameter ↵, and the parameter �2 = E[N 2]� µ

2 = N

0

/2 denotes the

variance of the AWGGN noise. Furthermore, in (2.1) (i.e., also seen in (2.2)), �(·)
denotes the Gamma function defined in [58, Eq. (6.1.1)]. Note that the distribution

of the AWGGN random variable strictly depends on its shaping parameter ↵. As

such, the AWGGN distribution demonstrates a superior fit to the measured noise

data over a wide range of physical channel conditions. In other words, most of the

common noise types can be shown to be special cases of the GGN. For example, it

simplifies to the well-known Gaussian noise for ↵ = 2, and Laplacian noise for

↵ = 1. In addition, the statistical properties of the AWGGN have been studied in

[59] for ↵ = 1

2

and ↵ = 1

3

, and specific simulation techniques were developed for

these values. Table 2.1 illustrates some special cases of the GGN. Furthermore, the

PDF of the GGD is plotted in Fig. 2.1 of some values of the shape parameter ↵.

In order to compute the average probability of error in a AWGGN channel and

simplify integrals arising in the derivation steps, we present the generalized

Q-function Q↵(·), namely also the complementary CDG (CCDF) of GGD, which is
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Figure 2.1: Representation of the generalized Gaussian noise for di↵erent values of
↵, with zero mean and unit variance.

Table 2.1: Some Special Cases of Generalized Gaussian Distribution

Noise Distribution ↵
Impulsive 0
Laplace 1
Gaussian 2
Uniform 1

given by

Q↵(x) =
↵⇤

0

2�(1/↵)

Z 1

x

exp (�⇤↵
0

|u|↵) du, (2.3)

defined over x � 0, where ⇤
0

is defined in (2.2). It is useful to note that for x  0

we can use the following identity

Q↵(x) = 1�Q↵(�x). (2.4)
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In addition, by a simple change of variable, the generalized Q-function Q↵(·) can
also be written as

Q↵(x) =
1

2�(1/↵)

Z 1

⇤

↵

0

x↵

u

1/↵�1 exp(�u) du, (2.5)

=
1

2�(1/↵)
�(1/↵,⇤↵

0

x

↵), (2.6)

where �(a, x) is the upper incomplete gamma function defined in [58, Eq. (6.5.3)].

2.1.2 EGK Distribution

In the present thesis, we assume that the fading envelope, H, follows an EGK

distribution which is a versatile fading envelope model that generalizes many of

commonly used statistical models that describe signal fluctuations in the received

SNR due to multi-path, shadowing, or a mixture of such processes in the

environment[54]. It has five parameters and includes most of the well-known fading

distribution in the literature as either special or limit cases as shown in Table A.1.

With the EGK model, the PDF of the fading envelope H is given in [54, Eq. (2)], as

pH(h) =
2⇠

�(ms)�(m)

✓
�s�

⌦

◆m⇠

h

2m⇠�1�

 
ms �m

⇠

⇠s

, 0,

✓
�s�

⌦

◆m⇠

h

2⇠
,

⇠

⇠s

!
, (2.7)

defined over h 2 (0,1), where the parameters m (0.5  m < 1) and ⇠ (0  ⇠ < 1)

represent the fading figure (diversity severity / order) and the fading shaping factor,

respectively, while ms (0.5  ms < 1) and ⇠s (0  ⇠s < 1) represent the shadowing

severity and the shadowing shaping factor (inhomogeneity), respectively. In

addition, the parameter � = �(m+ 1/⇠)/�(m) and �s = �(ms + 1/⇠s)/�(ms), while

⌦ = E[H2] (0  ⌦ < 1). In (2.7), �(·, ·, ·, ·) is the extended incomplete Gamma
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function defined in [57, Eq. (6.2)] as

�(a, x, b, �) =

Z 1

x

r

a�1 exp (�r � br

��)dr, (2.8)

where a, �, b 2 C and x 2 R+.

H is not practicable to use in computation of the probability of error, instead of it

we are using the SNR �. In fact, � denotes the received SNR for the symbols

distorted by non-Gaussian noise/interference at the receiver and can be defined as

� =
E[R]2

E[R2]� E[R]2
=

H2

ES
N

0

, (2.9)

where ES denotes the average power of the transmitted symbols S,
(ES = E[S2] < 1), R is the received signal, and N

0

represents the noise variance.

Then, starting from (2.7) and using a standard transformation of RV, we can write

the PDF of � as [54, Eq. (3)]

p�(�) =
⇠

�(ms)�(m)

✓
�s�

�

◆m⇠

�

m⇠�1�

 
ms �m

⇠

⇠s

, 0,

✓
�s�

�

◆m⇠

�

⇠
,

⇠

⇠s

!
, (2.10)

where � = E[�] = E[H2]ES/N0

is the average SNR per symbol.

2.1.3 Alternative Expressions of Q↵(·) and p�(·)

In order to simplify the computation in the next steps, we express the generalized Q

function and the PDF of EGK distribution alternatively in terms of the Fox H

function (FHF), Hm,n
p,q [ · ], whose definition is given by [55, Eq. (1.1.1)] and [60] as

Hm,n
p,q


z

����
(ai,↵i)1,p
(bj, �j)1,q

�
=

1

2⇡i

Z

C

mQ
j=1

�(bj + �js)
nQ

i=1

�(1� ai � ↵is)

pQ
j=n+1

�(ai + ↵is)
qQ

j=m+1

�(1� bj � �js)
z

�s
ds, (2.11)
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where C denotes Mellin-Barnes contour. The FHF can be e�ciently computed using

MATHEMATICA® [61, Appendix].

Actually, an explicit relation between the incomplete Gamma function and the

Meijer’s G function (MGF) [55, Eq. (2.9.1)] is given in [60, Eq. (8.4.16/2)]. In

addition, the MGF appears as a special case of the FHF [55, Eq. (2.9.1)] and it is a

built in function in MATHEMATICA®. Thus by using [60, Eq. (8.3.2/21)] in (2.6),

we obtain a new expressions of Q↵(·) in terms of the FHF, that is

Q↵(x) =
1

2�(1/↵)
H2,0

1,2


⇤↵

0

|x|↵
����

(1, 1)

( 1
↵
, 1), (0, 1)

�
. (2.12)

On the other hand, the PDF of the SNR could be expressed in terms of the FHF.

Indeed we utilize the identities [57, Eq. (6.22)] and [55, Eqs. (2.1.4), (2.1.5), and

(2.1.11)] to express (2.10) in terms of the Fox’s H function, as

p�(�) =
1

�(ms)�(m)�
H2,0

0,2

"
�s�

�

�

�����(ms,
1

⇠
s

), (m,

1

⇠
)

#
. (2.13)

Once all the mathematic tools are defined, a general expression for the conditional

probability of error is studied in what follows assuming a fixed fading coe�cient.

Subsequently, as a result of that, we average these expressions over the PDF of the

channel fading distribution. A general expression is obtained whose special cases are

highlighted in order to check analytical correctness.

2.2 Bit Error Rate of BPSK System

Let us consider a typical BPSK communication system which consists of a

transmitter, a channel, and a receiver. The signal transmission in this system is

termed a single input single output (SISO) transmission whose well-known
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mathematical model is given by[5]

R = HS +N , (2.14)

where S 2 {S
+

, S�} represents the transmitted BPSK symbol, S
+

= �S� =
p
ES ,

and ES is the energy of the symbol (i.e., energy per bit in this case). Moreover,

R 2 R denotes the received signal in which the transmitted symbol S is multiplied

by the channel fading coe�cient H 2 R+ and added to some additive GG noise

N 2 R.

2.2.1 Conditional BER

Referring to the mathematical model given in (2.14), the received signal R can be

modeled for each symbol transmission as a AWGGN random variable with mean

µ = HS± and variance N

0

. Consequently, assuming that the channel fading

envelope H is flat (i.e., slowly changes during symbol transmission), and then

utilizing (2.9), the conditional PDFs, pR(r|S±, �), for two signals can be obtained as

pR(r|S±, �) =
↵⇤

2�(1/↵)
exp

⇣
�⇤↵

���r �
q

N
0

ES
� S±

���
↵⌘

. (2.15)

Since the AWGGN distribution is symmetric around its mean and the transmitted

BPSK symbols S± have the same a-priori probability of occurrence (i.e.,

Pr{S
+

}=Pr{S�}=1/2), the maximum likelihood (ML) detector decides S± if

pR(r|S±, �) � pR(r|S⌥, �). After some algebraic manipulations, the ML decision

rule can be simplified to

Decide S± if

�����R�
r

N
0

ES
� S±

����� 
�����R�

r
N

0

ES
� S⌥

����� . (2.16)
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The resulting conditional error probability Pr (e|�) in AWGGN channel can be

written as Pr (e|�) = (1/2) Pr (R < 0|S
+

) + (1/2) Pr (R > 0|S�). Using (2.15), the

conditional BER Pr (e|�) is found to be given by

Pr (e|�) = ↵⇤

2�(1/↵)

Z 1

0

exp
��⇤↵

��
r �p

N

0

�

��↵�
dr, (2.17)

which can be re-written as

Pr (e|�) = Q↵

⇣p
2�
⌘
. (2.18)

The definition of the generalized Gaussian Q-function will help us in the following

subsection computing the average BER (ABER) of BPSK signalling in AWGGN

channel subjected to EGK fading.

2.2.2 Average Error Probability

The ABER can be, in general, written as

Pr (e) =

Z 1

0

Pr (e|�) p�(�) d�, (2.19a)

=

Z 1

0

Q↵

�p
2�
�
p�(�) d�, (2.19b)

where p�(�) represents the PDF of the instantaneous SNR � given in (2.10).

Substituting both (2.13) and (2.12) into (2.19b), the ABER over EGK fading

channel can be expressed as

Pr (e) =
1

2�(1/↵)�(ms)�(m)

Z 1

0

1

�

H2,0
1,2

⇣p
2� ⇤

0

⌘↵ ����
(1, 1

↵
)

( 1
↵
,

1

↵
), (0, 1

↵
)

�

⇥ H2,0
0,2

"
�s�

�

�

�����(ms,
1

⇠
s

), (m,

1

⇠
)

#
d�. (2.20)
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Using the identity [55, Eq.(2.8.4)] to solve the integral of the product of two FHFs

Z 1

0

t

⌘�1Hm,n
p,q


zt

�

����
(ai,↵i)1,p
(bj, �j)1,q

�
HM,N

P,Q


wt

����
(ci, �i)1,P
(dj, �j)1,Q

�
dt

= w

�⌘Hm+N,n+M
p+Q,q+P


zw

��

����
(ai,↵i)1,n, (1� dj � ⌘�j, ��j)1,Q, (ai,↵i)n+1,p

(bj, �j)1,m, (1� cj � ⌘�j, ��j)1,P , (bj, �j)m+1,q

�
, (2.21)

and after some algebraic manipulations, (2.20) simplifies to

Pr (e) =
1

↵�(1/↵)�(ms)�(m)
H2,2

2,3

"
�s�

2⇤2

0

�

�����
(1� 1

↵
,

2

↵
), (1, 2

↵
)

(ms,
1

⇠
s

), (m,

1

⇠
), (0, 2

↵
)

#
. (2.22)

For the purpose of checking this closed-form result, it is necessary, as a preliminary

matter, to note that (2.22) is a general expression for the ABER of BPSK signaling

over AWGGN channel subjected to an EGK fading distribution. As such, we will

discuss, in the following, some special cases of noise and fading yielding more

simplified expressions.

2.2.3 Special Cases

2.2.3.1 EGK Fading over Gaussian Noise

For standard additive Gaussian noise, setting ↵ = 2 in (2.22) and using the fact that

�(1/2) =
p
⇡ and �(3/2) =

p
⇡/2, we can readily simplify (2.22) to

Pr (e) =
1

2
p
⇡�(ms)�(m)

H2,2
2,3

"
�s�

�

�����
(1
2

, 1), (1, 1)

(ms,
1

⇠
s

), (m,

1

⇠
), (0, 1)

#
, (2.23)

which is in agreement with the expression given in [54, Eq.(34)] for b = 1

2

and a = 1,

as expected.
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2.2.3.2 EGK Fading in Additive Laplace Noise Channel

The Laplace noise is obtained for ↵ = 1. As such, substituting ↵ = 1 in (2.22)

results in the ABER in additive Laplace noise channel subjected to the EGK Fading

channel, i.e.

Pr (e) =
1

�(ms)�(m)
H2,2

2,3

"
�s�

4�

�����
(0, 2), (1, 2)

(ms,
1

⇠
s

), (m,

1

⇠
), (0, 2)

#
. (2.24)

Using the identity [55, Eq.(2.1.1)], and noticing that the first argument of the FHF

is equal to the last argument of the second row of parameters, (0, 2), we can re-write

(2.24) in a simple form as

Pr (e) =
1

�(ms)�(m)
H2,1

1,2

"
�s�

4�

�����
(1, 2)

(ms,
1

⇠
s

), (m,

1

⇠
)

#
. (2.25)

It may be of interest to mention that, in additive Laplace noise channel, we can

derive more special cases by setting ⇠ and ⇠s in the general formula (2.25) to the

desired values. For example, for the special case of ⇠ = 1 and ⇠s = 1, the fading

distribution is reduced to the generalized-K fading. Then, as a result of substituting

⇠ = 1 and ⇠s = 1 into (2.25), the average error probability Pr (e) for the

Generalized-K fading yields

Pr (e) =
1

�(ms)�(m)
H2,1

1,2


ms m

4�

����
(1, 2)

(ms, 1), (m, 1)

�
. (2.26)

In addition, if we set ⇠s = 1 and let ms ! 1, we have a generalized Nakagami-m

fading model. A limit property of the FHF can be shown, using the well-known

relation lim
m!1

m�s

�(m+s)
�(m)

= 1 in the Mellin-Barnes representation of the FHF [55,

Eq.(1.1.1) and Eq.(1.1.2)], as

Hm,n
p,q


z

����
(ai,↵i)1,p
(bj, �j)1,q

�
= lim

m!1
1

�(m)
Hm+1,n

p,q+1


mz

����
(ai,↵i)1,p

(m, 1), (bj, �j)1,q

�
. (2.27)
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Replacing the values of ⇠s and ms in (2.25), and using the result given in (2.27), we

can derive a compact closed-form expression for the generalized Nakagami-m fading,

that is

Pr (e) =
1

�(m)
H1,1

1,1

"
�

4�

�����
(1, 2)

(m,

1

⇠
)

#
. (2.28)

2.2.3.3 Nakagami-m Fading in AWGGN Channel

It helps to remember that the Nakagami-m fading is obtained by substituting the

shadowing severity ms ! 1, shadowing shaping factor ⇠s ! 1 and fading shaping

factor ⇠ ! 1 into (2.22), and then utilizing the identity given in (2.27).

Consequently, we have a new closed-form result for the ABER in AWGGN channel

subject to the Nakagami-m fading given by

Pr (e) =
1

↵�(1/↵)�(m)
H1,2

2,2


m

2⇤2

0

�

����
(1� 1

↵
,

2

↵
), (1, 2

↵
)

(m, 1), (0, 2

↵
)

�
. (2.29)

2.2.4 Numerical Results

In this section, we study the behavior of BPSK signalling for di↵erent values of the

noise parameter ↵.

The numerical results obtained using (2.29) are illustrated in Fig. 2.2 for two values

of shape factor m and di↵erent values of the GGD parameter ↵, these numerical

results are compared with the simulation results. It is shown that the numerical

results and simulations are in perfect agreement. Furthermore, it is worth

mentioning that the system has better performance for high value of the fading

figure (diversity order) m of the channel fading and high value of shape parameter ↵

of the AWGGN noise. For lower m (i.e. m = 1), the fading dominates the error.

However, as m increases, the error tends to be mostly due to the additive noise.

As another numerical example, note that the generalized-K fading is obtained by

setting the fading shaping factor ⇠ and the shadowing severity ⇠s to one (i.e.
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Figure 2.2: ABER of BPSK over Nakagami-m fading (the dot markers denote
simulation results while dashed and solid lines represent analytical results).

⇠ = 1, ⇠s = 1) in (2.22). In this case the ABER can be re-written as

Pr (e) =
1

↵�(1/↵)�(ms)�(m)
H2,2

2,3


msm

2⇤2

0

�

����
(1� 1

↵
,

2

↵
), (1, 2

↵
)

(ms, 1), (m, 1), (0, 2

↵
)

�
. (2.30)

For the ABER of generalized-K fading, numerical results, obtained by (2.30), and

simulations are drawn in Fig. 2.3 for di↵erent values of AWGGN shaping factor ↵,

channel fading figure m, and shadowing fading severity ms, and are shown to be in

perfect agreement.

In this section, we analyzed the average bit error probability of binary coherent

signaling when transmitted over a AWGGN channel subjected to extended

generalized-K fading. Some numerical results were presented to illustrate the

mathematical formalism and to show the impact of the GGD and fading parameters
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Figure 2.3: ABER of BPSK over generalized-K fading (the dot markers denote
simulation results while lines represent analytical results).

on the average probability of error. In the next sections, PAM and QAM

constellations are taking into consideration to get the probability of error.

2.3 Symbol Error Rate of M-PAM

In pulse amplitude modulation, PAM, the information is conveyed by the amplitude

of the pulse. In this section we investigate the closed form of the average symbol

error rate ASER for MPAM in the presence of GGN and EGK fading. The PAM

case can be analyzed using the BPSK results of previous section. Actually, we

consider the same system model used in previous section (2.14), where the

transmitted signal S is multiplied by a channel fading envelope H that has a

generalized flat fading characteristics and the resulting signal is then corrupted at
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the receiver end by an AWGGN N with zero mean, variance �2, and shaping

parameter ↵ (2.14). Indeed the transmitted signal S is mapped according to an

M -PAM constellation. In [5], the probability of error of the system above is well

studied for the Gaussian noise case, and the resulting SER was shown to be given

by [5, Eq. (8.3.5)] for the PAM constellation.

Since the generalized Gaussian distribution and the Gaussian distribution have the

same symmetry properties, the SER of the MPAM signalling over an AWGGN

channel can be easily written as

PPAM(e) = 2

✓
1� 1

M

◆
Q↵

✓
d

2�

◆
, (2.31)

where d is the decision distance.

Before proceeding to the proof, we remember the expression of the conditional BER

of the BPSK constellation that is given in (2.18) as

PBPSK = Q↵

✓
d

2�

◆
, (2.32)

for d is the decision distance and �2 is the noise variance.

It appears from (2.16) that the decision region is based on the euclidian distance

between the received signal and the constellation symbols. In the present case,

consider an MPAM constellation with decision distance d. The probability of error

for the PAM is divided into two terms, one for the outermost points (2 points) and

the other for the remaining M � 2 points. The first term is similar for both points

and is equal to the error between one outermost point and its closest neighbor which

is equal to the error of BPSK with decision distance d, so Pouter = Q↵

�
d
2�

�
. On the

other hand, each of the remaining M � 2 points has two neighbors from both sides,

so the probability of error is twice the probability of error between two symbols

Pinter = 2 Q↵

�
d
2�

�
. By the end, since all symbols are equiprobable, the total
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probability of error of the MPAM is given by

PPAM(e) = 2
1

M

Q↵

✓
d

2�

◆

| {z }
Two outermost points

+2(M � 2)
1

M

Q↵

✓
d

2�

◆

| {z }
The remaining M � 2 points

= 2

✓
1� 1

M

◆
Q↵

✓
d

2�

◆
.

(2.33)

In the presence of a slow fading channel, the ASER is given by averaging the

conditional SER (2.31) over the PDF of the fading envelope H (2.7), pH(h), yielding

PrPAM (e) = 2

✓
1� 1

M

◆
I
✓

d

2�

◆
, (2.34)

where we define

I(x) =
Z 1

0

Q↵ (hx) pH(h) dh (2.35)

with x takes the value d
2�

in (2.35). This definition will be helpful in the following

sections.

Now let us consider an EGK fading environment with average fading power

⌦ = E[H2]. Thereby, I(x) reduces to the mean of a generalized Q function over an

EGK distribution which has been already solved in (2.22)

I(x) = 1

↵�(1/↵)�(ms)�(m)
H2,2

2,3
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�s�
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s

), (m,
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⇠
), (0, 2
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)

#
. (2.36)

2.4 Symbol Error Rate of QAM Constellation

In this section, we consider a rectangular QAM mapping for the transmitted signal

S. Actually, the QAM constellation is formed by two independent and orthogonal

M -ary PAM signals, such that the in-phase and quadrature phase constellations.

More specifically, MI-ary PAM and MQ-ary PAM, where M = MIMQ.
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2.4.1 Conditional SER

In [1], the probability of error of the system is well studied for the Gaussian noise

case, and the resulting SER was shown to be given by [1, Eq. (10)] for the QAM

constellation. By replacing the Q function by the previously defined Q↵, the SER of

the M -QAM can be written as

PQAM(E) = 2

✓
1� 1

MI

◆
Q↵ (AI) + 2

✓
1� 1

MQ

◆
Q↵ (AQ)

�4

✓
1� 1

MI

◆✓
1� 1

MQ

◆
Q↵ (AI)Q↵ (AQ) ,

(2.37)

where AI =
d
I

2�
, AQ = d

Q

2�
, dI and dQ are the in-phase and quadrature phase decision

distances, respectively. According to these notations the average energy per symbol

ES can be expressed as

ES =
1

12

�
d

2

Q(M
2

Q � 1) + d

2

I(M
2

I � 1)
�

=
1

12
d

2

I

�
⌧

2(M2

Q � 1) + (M2

I � 1)
�

=
1

3
A

2

I�
2

�
⌧

2(M2

Q � 1) + (M2

I � 1)
�
, (2.38)

where ⌧ = dQ/dI = AQ/AI is the in-phase-to-quadrature-phase decision ratio. If we

denote by ⌦ the average fading power ⌦ = E[H2], the average SNR can be written as

� =
1

6
A

2

I⌦
�
⌧

2(M2

Q � 1) + (M2

I � 1)
�
. (2.39)

The results found in (2.47) can be proven even without using the similarity of the

distributions of each noise. In fact, from (2.33) the SER of the in-phase MI-PAM
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and the quadrature phase MQ-PAM are given by

PI = 2

✓
1� 1

MI

◆
Q↵

✓
dI

2�

◆
, (2.40)

PQ = 2

✓
1� 1

MQ

◆
Q↵

✓
dQ

2�

◆
. (2.41)

Furthermore, a correct reception of the QAM symbol appears only when we have a

correct reception in the in-phase signals and the quadrature phase signals. Since

both constellations are independent, the probability of correct symbol reception for

the rectangular M -QAM system is given by

Pc = (1� PI(e))(1� PQ(e)),

and the SER is obtained as

PS = 1� Pc = 1� (1� PI)(1� PQ) = PI + PQ � PIPQ. (2.42)

Using (2.40) and (2.41) in (2.42), we get

PS = 2

✓
1� 1

MI

◆
Q↵ (AI) + 2

✓
1� 1

MQ

◆
Q↵ (AQ)

�4

✓
1� 1

MI

◆✓
1� 1

MQ

◆
Q↵ (AI)Q↵ (AQ) . (2.43)

The ASER is obtained by averaging the conditional SER (2.43) over the PDF of the

slow fading H, yielding

PrQAM (e) = 2

✓
1� 1

MI

◆
I(AI)+ 2

✓
1� 1

MQ

◆
I(AQ)� 4

✓
1� 1

MI

◆✓
1� 1

MQ

◆
J ,

(2.44)
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where I(·) is defined in (2.35), and J is defined as follows

J =

Z 1

0

Q↵ (hAI)Q↵ (hAQ) pH(h) dh. (2.45)

It is important to note that this closed-form result (2.44) is a new generic expression

for the ASER of rectangular M-QAM signaling perturbed by GGN.

2.4.2 Conditional SER of Square QAM

The square QAM modulation is obtained from the rectangular QAM studied in the

previous section by setting MI = MQ =
p
M and dI = dQ = d (i.e. AI = AQ = A).

According to these setting, the decision distance can be written in terms of the

average energy per symbol, ES, as d =
q

6E
S

M�1

and so A =
q

6E
S

(M�1)4�2

=
q

3E
S

(M�1)N
0

.

Thus the conditional SER is derived from (2.43) as

PS(E) = 4

✓
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 s
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� 4
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(2.46)

Conditioning on the channel, the SER is expressed in terms of the instantaneous

SNR as

Pr(e|�) = 4

✓
1� 1p

M

◆
Q↵

 r
3�

M � 1

!
�4

✓
1� 1p

M

◆
2

Q

2

↵

 r
3�

M � 1

!
, (2.47)

where � = H2ES
N

0

is the instantaneous SNR per symbol at the receiver. In what

follows, only the quantities I(·) and J are studied for di↵erent fading models. The

square QAM case can be deduced easily from these expressions.
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2.4.3 Average SER over EGK Fading

As mentioned previously, H is following an EGK PDF (Sec. 2.1.2), with average

fading power ⌦ = E[H2]. I(·) is already investigated in the previous section.

However, J is di�cult to compute using the classical expressions of the EGK

distribution and the GGD. Thereby, we use the alternative expressions of Q↵(·) and
pH(h) given in Sec. 2.1.3, in order to derive a closed-form expressions for J and, as

a result, for the ASER. More specifically, J can written as an integral involving the

product of three FHFs (product of two Q↵ functions and pH(h)). Such integral can

be solved using the identity [62, Eq. (2.3)] that involves the product of three FHFs
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(2.48)

Using (2.48), J can be expressed in terms of the FHF of two variables defined in

[62], also known as the Bivariate Fox H-function (BFHF) H·,·;·,·;·,·
·,·;·,·;·,·[·, ·] and whose

MATLAB implementation is outlined in[63]. Finally a closed form of J is found as

J =
1

2↵�(1/↵)2�(ms)�(m)
(2.49)
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To conclude this section, a closed-form of the ASER of QAM is obtained using

(2.36) and (2.49) in (2.44). This closed-form is a general expression of the ASER of

rectangular and square QAM in arbitrary EGK fading subject to AWGGN, and

holds as such for a considerable range of noise and fading parameters.

At this stage, the ASER of either PAM or QAM is totally expressed in terms of I(·)
and J . In the next section we are focusing on some special cases of noise and fading
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to simplify their closed form.

2.4.4 Special Cases of Noise and Fading

2.4.4.1 EGK Fading with Additive Laplace Noise

The first special case of the generalized Gaussian noise appears when ↵ equals to 1

(i.e. Laplace noise). Using the properties and the special cases of the FHF [55], and

BFHF functions [62], The quantities I(·) (2.36) and J (2.49) can be re-written as

I(x) = 1

�(ms)�(m)
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⇠
)

����(0, 1)

#
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In fact, J can be expressed in terms of I(·) for the LN. Indeed using the Mellin

definition of the BHFH [62, Eq. (1.1)], we re-write J as

J =
1

2�(ms)�(m)

1

(2⇡i)2

Z

L
1

Z

L
2

�(�2s� t)�(ms + s/⇠s)�(m+ s/⇠)�(t)

⇥
✓
�s�

2A2

I⌦

◆�s

⌧

�t
dt ds. (2.52)

Using the inverse Mellin transform of the extended incomplete Gamma function

�(·, ·, ·, ·) [57, Eq. (6.29)], and its special case presented in [57, Eq. (6.42)], we get

1

2⇡i

Z

L
2

�(�2s� t)�(t)⌧�t
dt = �(�2s, 0, ⌧,�1) = �(�2s) (1 + ⌧)2s . (2.53)
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Replacing (2.53) in (2.52)

J =
1

2�(ms)�(m)

1

2⇡i

Z

L
1

�(ms + s/⇠s)�(m+ s/⇠)�(�2s)
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!�s
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�����
(1, 2)

(ms,
1

⇠
s

), (m,

1

⇠
)

#

=
1

2
I(AI + AQ). (2.54)

Hence, in the presence of LN, the ASER is totally characterized by I(·). The
expression (2.50) contains also the FHF but with a lower rank than the general

expressions given in (2.36), which means that it can be computed with a reduced

complexity of evaluation. Since the LN is an interesting case of study, it is also of

interest to study other special cases of fading in conjunction with the LN.

2.4.4.2 Generalized Nakagami-m Fading with Laplace Noise

A special case of the previous studied case is to couple the generalized Nakagami-m

(GNM) fading with Laplace noise. The GNM fading is obtained by setting ⇠s = 1

and ms ! 1 in (2.50). Therefore I(·) simplifies to

I(x) = 1

�(m)
H1,1

1,1

"
�

2x2⌦

�����
(1, 2)

(m,

1

⇠
)

#
. (2.55)

Re-writing the expression of the FHF, using some changes of variable, and the

identity [57, Eq. (6.29)], a new expression of I(·) can be obtained as

I(x) = ⇠

�(m)

✓
�

2x2⌦

◆m⇠

�

 
2m⇠, 0,

✓
�

2x2⌦

◆⇠

,�2⇠

!
. (2.56)

Recall that J = 1

2

I(AI +AQ). Thus the ASER of QAM is well defined according to

(2.44).
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2.4.4.3 Rayleigh Fading with Laplace Noise

Keeping an additive LN, the Rayleigh fading case is obtained by setting m = 1 and

⇠ = 1 in (2.56). From (2.56) and with a simple manipulation of �(·, ·, ·, ·), it can be

shown that I is equivalent to

I(x) =
1

2x2⌦
�

✓
2, 0;

1

2x2⌦
;�2

◆

[57,Eq. (6.2)]
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, (2.57)

which is a very simple expression involving only the standard Gaussian Q function

(i.e. Q(x) = Q

2

(x)). To the best of the author’s knowledge, the expression of the

ASER with additive LN and Rayleigh fading in (2.57) is a new expression that has

not been reported previously.

2.4.4.4 Generalized K Fading with Gaussian Noise

The last two special cases will focus on the classical Gaussian noise with di↵erent

fading distributions. The first example deals with the performance of M -QAM over

a Generalized-K (GK) fading subjected to an AWGN channel. This case is obtained

by setting ↵ = 2, ⇠ = 1, and ⇠s = 1. With these settings, the main integrals in (2.36)

and (2.49) can be reduced to

I(x) = 1

2
p
⇡�(ms)�(m)

G2,2
2,3


2msm

x

2⌦

����
1

2

, 1

ms,m, 0

�
. (2.58)
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where J is expressed in terms of the bivariate Meijer G-function (BMGF) whose

MATHEMATICA® implementation is given in [64, Table II].

2.4.4.5 Rayleigh Fading with Gaussian Noise

The Rayleigh fading is a special case of the GK distribution by simply setting

m = 1 and tending ms ! 1. In this case, the main integrals, I(·) and J in (2.58)

and (2.59), respectively, reduce to

I(x) = 1

2
p
⇡

G1,2
2,2


2

x

2⌦

����
1

2

, 1

1, 0

�
. (2.60)
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The expressions in (2.60) and (2.61) involve reduced rank MGF and BMGF

functions in comparison with (2.58) and (2.59). However, it is interesting to note

that these formulas are numerically equivalent to

I(x) = 1

2
� 1

2

r
x

2⌦

2 + x

2⌦

J =
1

4
� 1

2⇡

"s
A
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(2.62)

+

s
A

2

Q⌦

2 + A

2

Q⌦
tan�1

 
AQ

AI

s
2 + A

2

Q⌦

A

2

Q⌦

!#
,

where tan�1(.) is the inverse tangent function, in agreement with the known

expressions of Beaulieu [1, Eq. (5)] of the ASER of M -QAM over Rayleigh fading

through an AWGN channel.

It is worth mentioning that in these special cases, we are not just setting the
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parameters in the general expression (2.36) and (2.49). Rather, in each case, we

o↵ered simplified closed-form expressions of the main parts of the ASER with

reduced computational complexity. In fact, from the definition of the FHF [55,

Eq.(1.1.1)], the complexity of evaluating the Mellin integral is based on the rank of

the FHF, which is reduced in these special cases. In what follows some selected

numerical results and simulations are analyzed for square and rectangular QAM in

di↵erent communication schemes/scenarios.

2.4.5 Simulation Results for Square 16-QAM
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Figure 2.4: ASER of 16-QAM over Nakagami-m fading subject to Laplace noise and
Gaussian noise. The markers denote simulation results while solid lines represent

analytical results.

In this section, we plot the ASER of 16-QAM signaling for di↵erent type of noise

(i.e. di↵erent values of ↵), and fading (i.e. di↵erent values of m, ms, ⇠, and ⇠s). As
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a first numerical example, we look into Gaussian and Laplace noise in conjunction

with Nakagami-m fading. The numerical results of this example are presented in

Fig. 2.4 for four values of the Nakagami-m fading parameter, namely m = 1

2

, 2, 4,

and 1. The numerical results obtained from the main formula (2.44) are compared

to computer-based Monte-Carlo simulation results. It is clear that the numerical

results and simulation results match perfectly as a validation of our analytical

results. In both noise cases, the ASER improves as the fading parameter m

increases, as expected. In addition, for a high amount of fading (i.e. m = 1

2

), the

ASER for the Laplace case is better than the ASER for the Gaussian case.

However, for a low amount of fading (i.e. m � 2), we note that there are two

regimes. The first regime is for low SNR (�  12 dB) in which the Laplace noise has

better performance than the Gaussian noise, and in second regime, for high SNR

(� > 12dB) in which ASER for the Gaussian case is better than the ASER for the

Laplace case.

In Fig. 2.5, we look into the Rayleigh fading case and vary the noise parameter ↵.

Note again, from Fig. 2.5, that the simulation results match perfectly the analytical

results obtained from (2.44). In this case of Rayleigh fading, it is worth mentioning

that the system has better performance by decreasing the noise parameter ↵, which

confirms the result found in the previous example when the Laplace noise has better

performance than the Gaussian noise for high amount of fading. At high SNR

(� > 28dB), the performance of the system converges essentially to one curve for

di↵erent values of noise parameter.

Finally, in order to see the impact of the fading parameter, we draw the ASER for

the case of Nakagami-4 fading and the same values of the noise parameter in

Fig. 2.6. Similar to what happened in the first example, we have also in this case

two regions. For low SNR the ASER decreases with the noise parameter. However,

for high SNR, the system performance gets better by increasing ↵.
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Figure 2.5: ASER of 16-QAM over Rayleigh fading subject to generalized Gaussian
noise (the markers denote simulation results while solid lines represent analytical

results).

Another illustration is presented in the next section for a rectangular QAM

constellation.

2.4.6 Simulation Results for 8⇥ 4 -QAM

Let us consider a 32-QAM system (i.e. 8⇥ 4-QAM), and investigate the system

performance as a function of the SNR for di↵erent type of noise (i.e. di↵erent values

of ↵), and fading (i.e. di↵erent set of values of m, ms, ⇠, and ⇠s). From (2.39), the

average SNR can be written as � = 0.5A2

I⌦ (5⌧ 2 + 21). Thereby A

2

I⌦ = 2�
5⌧2+21

and

A

2

Q⌦ = 2⌧2�
5⌧2+21

. For instance, ⌧ is fixed (⌧ = (21/5)1/2), so the average energies of the

in-phase and quadrature phase signals are equal.

The first studied case is a comparison between the Gaussian and Laplace noises in
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Figure 2.6: ASER of 16-QAM over Nakagami-4 fading subject to generalized
Gaussian noise (the markers denote simulation results while solid lines represent

analytical results).

conjunction with Nakagami-m fading. Note that the Nakagami-m fading is obtained

by setting the fading shaping factor ⇠ = 1 in (2.56) for the LN. Fig. 2.7 shows the

ASER as a function of the average SNR per symbol � for both cases Gaussian and

Laplace and for four values of the fading parameter, namely m = 1

2

, 2, 4, and 1. A

comparison between the analytical results, presented in this section, and a

computer-based Monte-Carlo simulations results are presented also. The simulation

results match perfectly the analytical results derived previously. A general look at

the figure shows us that the performance of the system is improved by increasing the

fading parameter m, as expected. In addition, for lower SNR (i.e. SNR< 15 dB), we

note that the ASER of the LN is better than the ASER of the Gaussian noise. The

situation reverse for high SNR and low amount of fading (m � 2) since the Gaussian
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Figure 2.7: ASER of 8⇥4-QAM over Nakagami-m fading subject to Laplace noise
and Gaussian noise. The dots denote simulation results while the lines represent

analytical results.

noise yields better results than LN. However for high amount of fading, such as for

example m = 1/2, the performance in LN is better than in the Gaussian noise case.

In the second numerical example, we compare the Rayleigh fading and the

Nakagami-4 fading. For instance, in Fig. 2.8, we draw the ASER in function of the

SNR per QAM symbol for di↵erent values of ↵. Note again that the simulation

results match perfectly the analytical results obtained from (2.36) and (2.49). In

Rayleigh fading case, it is worth mentioning that the system has better performance

by decreasing the noise parameter ↵, which confirm the result found in the previous

example when the LN had better performance than the Gaussian noise for high

amount of fading. However, the situation becomes di↵erent for lower amount of

fading (i.e. when m = 4), and we get two regions. For low SNR the ASER decreases
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Figure 2.8: ASER of 8⇥4-QAM over Rayleigh and Nakagami-4 fading subject to
generalized Gaussian noise. The dots denote simulation results while the lines

represent analytical results.

with the noise parameter, and for high SNR it gets better by increasing ↵. A similar

results to those studied in the square 16-QAM scenario.

A new parameter appears on the energy expression, which is the ratio ⌧ , and in this

numerical example we want to see the e↵ect of ⌧ on the system performance.

Therefore Fig. 2.9 draws the ASER of the system described above (32-QAM with

di↵erent values of ⌧) as a function of the SNR and for di↵erent values of the

in-phase-to-quadrature decision distance ratio. It is clear that the best case is when

the in-phase and quadrature distance are equal (i.e. ⌧ = 1) for both cases of noise.

For equal energy between the in-phase and quadrature signal (i.e. ⌧ = (21/5)1/2),

the system looses in performance but in small amount (about 1 dB for

SER = 6⇥ 10�4). However, the loss is more important when the quadrature signal
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Figure 2.9: ASER of 8⇥4-QAM over Nakagami-4 fading subject to Laplace and
Gaussian noise. The dots denote simulation results, the solid lines (red) represent
the Laplace noise case, and the dashed lines (blue) represent Gaussian noise case.

has 21/5 times the average energy of the in-phase signal (i.e. ⌧ = 21/5), since it

incurs a loss of about 4 dB for SER = 6⇥ 10�3, relative to the case where ⌧ = 1.

2.5 Conclusion

In this chapter, we studied the average symbol error probability of di↵erent

modulations schemes such as the BPSK, PAM, square QAM, and rectangular QAM.

These digital communication systems are assumed to be perturbed by an additive

GGN over a generalized fading ditribution, namely EGK channel. A closed form of

the ASER was derived in terms of the FHF and BFHF. Furthermore, several special

cases of the noise, covered by the selected noise family, and di↵erent type of fading
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included in the EGK family. By the end an illustration of the mathematical

formalism is presented. Actually, some selected numerical results are described for

the Nakagami-m fading and Rayleigh fading in conjunction with the Gaussian,

Laplace noise, and other type of noise. In the next chapter, we study another

constellation, viz MPSK modulation when it is perturbed by a Laplace noise.
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Chapter 3

Error Rate of MPSK Over Laplace

Noise

In this chapter, we consider a channel with additive white Laplace noise (AWLN).

In this case, the ML detector di↵ers from the minimum distance (MD) detector. As

such, we present the decision regions corresponding to both MD detector and ML

detector and derive the SER of M-PSK using both detectors (ML and MD). That

decision regions should help to get the conditional SER. Besides the additive noise,

it is assumed that the communication is a↵ected also by a multiplicative noise that

behaves as a flat fading, which is modeled by an EGK distribution.

3.1 Detection Regions in Laplace Noise

3.1.1 System Model

Let us consider a SISO communication system. S, the transmitted signal, is

mapped according to an MPSK constellation, where M is a power of 2. The

symbols are distributed uniformly over the circle with radius
p
ES, defined as the

energy per symbol, all symbols are equal likely. The mathematical model of the

system was given in (2.14), where S is multiplied by a channel fading coe�cient
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H 2 R+ and added to a Laplace noise N . In (2.14), R denotes the received signal.

S, N , and R have two components (in-phase and quadrature phase components).

The noise is considered as Laplace noise with zero mean and one side power spectral

density �2 = N

0

/2. More specifically, the PDF of a Laplace random variable is

defined as [43, 44, 42]

X ⇠ L(µ, �) , fX(x;µ, �) =
1p
2�

e

�p
2

|x�µ|
�

, (3.1)

where µ represents the location parameter and is equal to the mean, while � is the

variance.

In the following analysis of the detection regions, the system performance is

conditioned over the instantaneous received SNR �, which is defined as (2.9)

� = H2ES
N

0

. Without loss of generality, we normalize S in (2.14) by dividing it by

Hp
ES. The resulting normalized system model is given by

r = s+ n, (3.2)

where s has a unit energy per symbol and n has a variance equal to 1

�
.

The in-phase component is indexed by I, while the quadrature phase component is

indexed by Q in all signals. Indeed, (sI , sQ) are the components of s, (nI , nQ) are

the components of n, and (I,Q) are the received components. The components of

the normalized system model can be re-written as

8
><

>:

I = sI + nI

Q = sQ + nQ.

(3.3)

Note that nI and nQ are independent random variables that follow a Laplace

distribution with zero mean and variance 1

2�
each. Therefore, (I,Q) can be modeled

as two independent Laplace random variables with mean (sI , sQ) and covariance
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matrix 1

2�
I

2

(I
2

denote the identity matrix of order 2). From (3.1), the joint PDF of

(I,Q) can thus be written as

fIQ(I,Q) = �e

�2

p
�(|I�s

I

|+|Q�s
Q

|)
, 8 I, Q 2 R. (3.4)

3.1.2 Maximum Likelihood Detector

The transmitted symbols are distributed uniformly over the unit circle, which

means that (skI , s
k
Q) = (cos(�), sin(�)), where � = 2k⇡

M
and k 2 {0, 1, . . .M � 1}.

Consider two equal likely symbols s� = (s�I , s
�
Q) and s

✓ = (s✓I , s
✓
Q) with angles � and

✓. In what follows, we will refer to the angles instead of the signal to mention the

desired symbol. Since the angles are equal likely, the maximum a posteriori (MAP)

probability detector coincide with the ML detector. Thereby, the detector decides �

if fIQ(I,Q|�, �) > fIQ(I,Q|✓, �). In other words the following condition should be

satisfied to decide � instead of ✓

|I � cos(�)|+ |Q� sin(�)| < |I � cos(✓)|+ |Q� sin(✓)| . (3.5)

This condition can be also re-written using the L

1

norm as

k r � s

� k
1

<k r � s

✓ k
1

.

It is obvious that this condition is similar to the known minimum euclidian distance

condition (in particular in the Gaussian noise case). However instead of using the

euclidian distance, the rule deploys the L

1

norm distance to detect the better angle

(symbol).
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Figure 3.1: Signal constellation and decision regions using the ML rule for 8-PSK.

3.1.2.1 Decision Regions for 8-PSK

Consider for example an 8-PSK constellation as shown in Fig. 3.1. In this example,

we will produce the decision regions of the 8-PSK and draw it. Considering the

symmetric properties of the PDF of the received signal fIQ(I,Q), we can focus only

on the quarter of the plan lying between the I axis and the Q axis, where � 2 [0, ⇡
2

].

Afterwards, we are focusing on the decision boundaries between s

0

, s
1

, and s

2

. From

(3.5), we decide � = 0 (instead of � = ⇡
4

) when

|I � 1|+ |Q| <
�����I �

p
2

2

�����+

�����Q�
p
2

2

����� . (3.6)

To solve this inequality, three intervals appear according to the value of I, which are

I <

p
2

2

,
p
2

2

 I < 1, and 1  I. The same analysis appears when dealing with the

decision boundaries between � = ⇡
4

and � = ⇡
2

, but the intervals appear according to

the value of Q. Note that the region near the origin (0, 0) is a conflict zone between
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� = 0 and � = ⇡
2

which needs to be studied separately. Near the origin, (3.5) can be

simplified, and we decide � = 0 when Q < I. Finally, the decision boundaries

between � = 0, � = ⇡
4

, and � = ⇡
2

, can be summarized in Table 3.1. The symmetric

Table 3.1: Decision Regions of 8PSK using ML detector in Laplace noise

I 2 [0,
p
2�1

2

] [
p
2�1

2

,

1

2

] [1
2

,

p
2

2

] [
p
2

2

, 1] [1,+1[

� = 0 Q < I Q <

p
2�1

2

Q <

p
2�1

2

Q < I � 1

2

Q <

1

2

� = ⇡
4

?
p
2�1

2

 Q < I + 1

2

p
2�1

2

 Q I � 1

2

 Q

1

2

 Q

� = ⇡
2

Q � I I + 1

2

 Q ? ? ?

of these decision boundaries relative to the I axis and Q axis, constructs the

decision regions of the remaining 3 quarters of the plan to get the decision

boundaries for all symbols. These boundaries are drawn in Fig. 3.1.

3.1.2.2 General MPSK

The analysis of the decision boundaries in the general case of MPSK is more

complicated. To simplify the procedure, we can find first the decision region of an

angle � and its complementary angle ⇡
2

� � together (for example (S
0

and S

4

) and

(S
1

and S

3

) in Fig. 3.3). Then the boundary between these two angle is the first

bisector (line with equation Q = I). More specifically, it is easier to begin by finding

the decision boundary between two adjacent angles � and ✓ lying between 0 and ⇡
4

with � > ✓. Hence to decide �, condition (3.5) should be satisfied. In more details
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S
φ
+

S
φ

Lower Boundary S
φ
−

S
π/2−φ

Upper Boundary

Q

I

Figure 3.2: Decision regions of two complementary angles � and ⇡
2

� �.

the decision between � and ✓ can be summarized as follows

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

If I 2 [
c
�

+s
�

+s
✓

�c
✓

2

, c�]

8
><

>:

✓ if Q <
c
�

+s
�

+s
✓

�c
✓

2

� if Q � c
�

+s
�

+s
✓

�c
✓

2

if I 2 [c�, c✓]

8
><

>:

✓ if Q < I +
s
✓

+s
�

�c
✓

�c
�

2

� if Q � I +
s
✓

+s
�

�c
✓

�c
�

2

if I 2 [c✓,+1[

8
><

>:

✓ if Q <
s
✓

+c
✓

+s
�

�c
�

2

� if Q � s
✓

+c
✓

+s
�

�c
�

2

, (3.7)

where cx = cos(x) and sx = sin(x) for any angle x.

Given the previous analysis, the decision boundaries of � and ⇡
2

� � are described in

Fig. 3.2. In fact, in Fig. 3.2 the lower boundary (between S

�
� with angle �� and S

+

�
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S14

S15

S1S7

S9
S10

S0

S3
S6 S2

S5 S4

S8

S13S11 S12

Figure 3.3: Signal constellation and decision regions using the ML rule for 16-PSK.

with angle �+) is obtained with substituting ✓ by �� in (3.7), where the upper

boundary is obtained with replacing � by �+ and ✓ by � in (3.7). In addition, the

image of the lower and the upper boundaries by the axial symmetry, with axe the

first bisector, represent the decision boundaries corresponding to ⇡
2

� �. A full

illustration of 16-PSK is presented in Fig. 3.3.

As shown in the previous example (8-PSK), the construction of the decision

boundaries in L

1

norm is complicated, especially for higher M (16, 32, 64...) which of

course leads to more complications in the SER calculation. However, the usual

minimum euclidian distance presents a simple detector which leads to less

complicated SER computations and final expressions.
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3.1.3 Detection with L2 Norm

When the receivers assume that the additional noise is Gaussian, while it is Laplace

in reality, the receiver uses the minimum euclidian distance detector instead of the

L

1

norm detector. Therefore, it is necessary to study the behavior of the model

presented above using the MD detector (L
2

norm detector) and compare the system

performance of both detectors in presence of additive Laplace noise.

Q

S
(− cos(φ), − sin(φ))

Iφ

X1

Y1

X2

Y2

Figure 3.4: Signal constellation and decision regions using the L

2

norm for 8-PSK.

To get the decision regions of an MPSK constellation using L

2

norm, we go back to

(3.5) and replace the L

1

norm by the L

2

norm. In this case, decide � if

|I � cos(�)|2 + |Q� sin(�)|2 < |I � cos(✓)|2 + |Q� sin(✓)|2 . (3.8)

The decision region of � lies in the part of the plan between the two angles �� ⇡
M
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and �+ ⇡
M
. Fig.3.4 presents the detection zones for an example of 8-PSK. It is clear

that these detection zones are less complex than those presented in Fig.3.1. The

axis (X
1

, Y

1

) and (X
2

, Y

2

) are a rotational transformation of (I,Q) and are used in

the next section.

3.2 Conditional SER of M-PSK

As the previous section, we will compute the conditional SER using both detectors.

3.2.1 SER using L1 Norm Detector

3.2.1.1 SER of 8-PSK

From the general analysis given in Sec. 3.1.2 and the decision boundaries presented

in Table 3.1, the SER can be obtained from the probability of correct detection. In

fact the probability of correct detection of � can be evaluated as

P
c

(�|�) =
Z

Detection zone of �

fIQ(I,Q|�, �)dIdQ. (3.9)

Replace the detection zone and PDF of (I,Q), we get the probability of correct

detection of each symbol. The total probability of error can be obtained as

Pr(e|�) = 1� P
c

(�) = 1� 1

8

7X

k=0

P
c

✓
2k⇡

8

���� �
◆

=
1

8

h
4
⇣
2 + (

p
2� 1)

p
�

⌘
e�
p

�/2 +
⇣
�1 + (2�

p
2)
p
�

⌘
e�

p
2�
i
.

(3.10)

A generalization of this result is developed in the next subsection.
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3.2.1.2 SER of General M-PSK

To compute the SER for general MPSK constellation (M � 8), we proceed like in

the previous special case by computing first the probability of correct detection and

the probability of error of each symbol. The total SER is then obtained as the mean

of all of the probability of error per symbol. As the decision regions are symmetric

relative to the first bisector, we can limit our interest to the symbols with angles lie

between 0 and ⇡
4

. The two limit cases, such that 0 and ⇡
4

, can be treated separately

since their angles are known. Hence, using the decision region presented in

subsection 3.1.2.2, the probability of error of � = 0 can be evaluated as

Pe(0, �) = 1� 2�

✓Z t

0

Z I

0

e

�2

p
�(1�I+Q)

dQdI +

Z
cos(2✓)

t

Z t

0

e

�2

p
�(1�I+Q)

dQdI

+

Z
1

cos(2✓)

Z I+t�cos(2✓)

0

e

�2

p
�(1�I+Q)

dQdI +

Z 1

1

Z t+1�cos(2✓)

0

e

�2

p
�(I�1+Q)

dQdI

!
,

(3.11)

where t = 1

2

(cos(2✓) + sin(2✓)� 1), and ✓ = ⇡/M .

In the same way, for � = ⇡
4

the PDF of (I,Q) is defined by

fIQ(I,Q) = �e

�2

p
�
⇣
|I�

p
2

2

|+|Q�
p

2

2

|
⌘

.
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Thus the probability of error of � = ⇡
4

can be expressed as

Pe(� =
⇡

4
, �) = 1� �

 Z p
2

2

p
2�u+v

2

Z p
2

2

p
2�u+v

2

e

2

p
�(I+Q�p

2)
dQdI

+

Z u+v

2

p
2�u+v

2

Z I+u�v

2

p
2

2

e

2

p
�(I�Q)

dQdI +

Z p
2

2

u+v

2

Z
+1

p
2

2

e

2

p
�(I�Q)

dQdI

+

Z u

p
2

2

Z p
2

2

I+ v�u

2

e

2

p
�(Q�I)

dQdI +

Z
+1

u

Z p
2

2

u+v

2

e

2

p
�(Q�I)

dQdI

+

Z
+1

p
2

2

Z
+1

p
2

2

e

�2

p
�(I+Q)�p

2

dQdI

!
, (3.12)

where u = cos(⇡
4

� 2⇡
M
) and v = sin(⇡

4

� 2⇡
M
). Finally, evaluating the above integrals

and using algebraic simplifications and trigonometric formulas, (3.11) and (3.12) can

be simplified to

Pe(0, �) =
p
� sin

⇣
⇡

M

⌘
cos
⇣
⇡

M

+
⇡

4

⌘
e�

p
2�

+

✓
1 +

p
2� sin

⇣
⇡

M

⌘
2

◆
e�2 sin(

⇡

M

) cos( ⇡

M

�⇡

4

)p�

Pe

⇣
⇡

4
, �

⌘
=� 1

4
e�2 sin(

2⇡

M

)

p
�

+
⇣
1 +

p
2� sin

⇣
⇡

M

⌘
cos
⇣
⇡

M

+
⇡

4

⌘⌘
e� sin(

2⇡

M

)

p
�
. (3.13)

On the other hand, the probability of error of other symbols is more complicated.

For a general symbol i.e. angle � = 2k⇡
M

, lies between 2(k�1)⇡
M

and 2(k+1)⇡
M

for

1  k  M
8

� 1, the probability of error can be expressed in terms of cosine and sine

of these angles. For that let us define the series ck = cos(2k⇡
M

), and sk = sin(2k⇡
M

). A

simple integration of the PDF of the received signal (I,Q) over the decision region
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of � gives the expression in (3.14)

Pe(
2k⇡

M

, �) =

Z s
k

c

k

+s

k

+s

k�1

�c

k�1

2

Z I

c

k

+s

k

+s

k�1

�c

k�1

2

e

2

p
�(I�c

k

+Q�s
k

)

dQdI

+

Z c
k

s
k

Z s
k

c

k

+s

k

+s

k�1

�c

k�1

2

e

2

p
�(I�c

k

+Q�s
k

)

dQdI

+

Z c

k+1

+s

k+1

+s

k

�c

k

2

s
k

Z I

s
k

e

2

p
�(I�c

k

�Q+s
k

)

dQdI

+

Z c
k

c

k+1

+s

k+1

+s

k

�c

k

2

Z c

k+1

+s

k+1

+s

k

�c

k

2

s
k

e

2

p
�(I�c

k

�Q+s
k

)

dQdI

+

Z c
k

c
k+1

Z I+
s

k+1

�c

k+1

+s

k

�c

k

2

c

k+1

+s

k+1

+s

k

�c

k

2

e

2

p
�(I�c

k

�Q+s
k

)

dQdI

+

Z c
k�1

c
k

Z s

k

�c

k

+s

k�1

+c

k�1

2

I+
s

k

�c

k

+s

k�1

�c

k�1

2

e

2

p
�(�I+c

k

+Q�s
k

)

dQdI

+

Z
+1

c
k

Z s
k

s

k

�c

k

+s

k�1

+c

k�1

2

e

2

p
�(�I+c

k

+Q�s
k

)

dQdI

+

Z
+1

c
k

Z c

k

+s

k

+s

k+1

�c

k+1

2

s
k

e

2

p
�(�I+c

k

�Q+s
k

)

dQdI. (3.14)

By computing these integrals and making some algebraic and trigonometric

operation, Pe can be written in a simpler closed form

Pe(
2k⇡
M

, �) =
1

2

h
e�2� cos((2k�1)✓�⇡

4

)p�
⇣
1 +

p
2�� sin ((2k � 1)✓)

⌘

+e�2� cos((2k+1)✓�⇡

4

)p�
⇣
1 +

p
2�� sin ((2k + 1)✓)

⌘i

+
1

8

h
e�2 cos(2k✓+⇡

4

)p�
⇣
1 + 4

p
�� cos

⇣
(2k + 1)✓ +

⇡

4

⌘⌘

�e�2 cos(2(k�1)✓+⇡

4

)p�
i
,

(3.15)

where � = sin(✓).

Assembling those expressions, the total symbol error rate is the average of the
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probability of error of all symbols which can be written as

Pr(e|�) = 4

M

2

4
Pe(0, �) + 2

M

8

�1X

k=1

Pe (2k✓, �) + Pe

⇣
⇡

4
, �

⌘
3

5
. (3.16)

Note that the SER of the previous special case (8-PSK) is included in this generic

expression and equal to

Pr(e|�) = 1

2

h
Pe(0, �) + Pe

⇣
⇡

4
, �

⌘i
. (3.17)

The expression given in (3.16) does not cover the special cases of QPSK (4-PSK)

and BPSK (2-PSK) because the decision region analysis, presented above, is

constructed for M � 8. These two cases are very simple to deal because the decision

region using L

1

norm is the same as the decision region using L

2

norm. Therefore,

the SER of these special cases are presented in the next subsection which focuses on

the SER of M-PSK using the L

2

norm detector.

3.2.2 SER using L2 Norm Detector

The general analysis of SER of MPSK constellation in Gaussian noise environment

was presented in [52]. We use, in what follows, a similar analysis to compute the

SER of MPSK in LN environments. Assume that s = (sI , sQ) = (� cos(�),� sin(�))

is sent. The objective is to compute the probability of error detection of s for

general �. To do so, consider two rotation of coordinates, i.e. rotation

transformation from (I,Q) to (X
1

, Y

1

) with rotation angle �� ✓, and from (I,Q) to

(X
2

, Y

2

) with rotation angle �+ ✓ (see Fig.3.4). Using two transformation matrices,
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we get the new basis from the initial basis as

2

64
X

1

Y

1

3

75 =

2

64
cos(�� ✓) sin(�� ✓)

� sin(�� ✓) cos(�� ✓)

3

75

2

64
I

Q

3

75 , (3.18)

and 2

64
X

2

Y

2

3

75 =

2

64
cos(�+ ✓) sin(�+ ✓)

� sin(�+ ✓) cos(�+ ✓)

3

75

2

64
I

Q

3

75 . (3.19)

From Fig.3.4, the SER can be expressed as

Pe(�, �) = Pr(Y
1

� 0) + Pr(Y
2

 0)� Pr(Y
1

� 0, Y
2

 0). (3.20)

Thus, to compute the SER for MPSK, we have to find the PDF of Y
1

and Y

2

separately and also their joint PDF. From (3.18) and (3.19), Y
1

and Y

2

appear as

the sum of two independent Laplace random variables with means E[Y
1

] = � sin ✓,

EY
2

] = sin ✓, and variances �2

Y
1

= �

2

Y
2

= 1

2�
, respectively.

Let us consider two independent Laplace random variables

(Z
1

, Z

2

) ⇠ (L(0, �
1

),L(0, �
2

)), and suppose Y = Z

1

+ Z

2

. The PDF of Y is given

in [?, Eq. (3.3.23)] as

fY (y) =

8
><

>:

1

2�

⇣
1p
2

+ |y|
�

⌘
e

�p
2

|y|
� if � = �

1

= �

2

1p
2(�2

1

��2

2

)

⇣
�

1

e

�p
2

|y|
�

1 � �

2

e

�p
2

|y|
�

2

⌘
if �

1

6= �

2

.

(3.21)

This property can be extended to the non zero mean case by a centralization of the

random variable Y

0 = Y � E[Y ]. Consequently, the PDF of Y
1

and Y

2

can be
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obtained as follows

fY
1

(y) =

p
�

cos 2(�� ✓)

⇣
| cos(�� ✓)|e�

2

p
�|y+sin✓|

| cos(��✓)| � | sin(�� ✓)|e�
2

p
�|y+sin✓|

| sin(��✓)|

⌘

fY
2

(y) =

p
�

cos 2(�+ ✓)

⇣
| cos(�+ ✓)|e�

2

p
�|y�sin✓|

| cos(�+✓)| | sin(�+ ✓)|e�
2

p
�|y�sin✓|

| sin(�+✓)|

⌘
.

(3.22)

Using (3.22), the probabilities Pr(Y
1

� 0) and Pr(Y
2

 0) in (3.20) can be easily

obtained as

Pr(Y
1

� 0) =

Z 1

0

fY
1

(y
1

)dy
1

(3.23)

=
1

2 cos 2(�� ✓)

⇣
cos2(�� ✓)e

�2 sin ✓

| cos(��✓)|
p
� � sin2(�� ✓)e

�2 sin ✓

| sin(��✓)|
p
�
⌘

Pr(Y
2

 0) =

Z 1

0

fY
2

(y
2

)dy
2

(3.24)

=
1

2 cos 2(�+ ✓)

⇣
cos2(�+ ✓)e

�2 sin ✓

| cos(�+✓)|
p
� � sin2(�+ ✓)e

�2 sin ✓

| sin(�+✓)|
p
�
⌘
.

Now, we have to evaluate the probability Pr(Y
1

� 0, Y
2

 0) in (3.20) and this

represents the probability of the shaded region in Fig.3.4. First we have to find the

joint PDF of (Y
1

, Y

2

). From (3.18) and (3.19), (Y
1

, Y

2

) can be written as a linear

transformation of (I,Q) as

2

64
Y

1

Y

2

3

75 =

2

64
� sin(�� ✓) cos(�� ✓)

� sin(�+ ✓) cos(�+ ✓)

3

75

2

64
I

Q

3

75 = A

2

64
I

Q

3

75 (3.25)

Using this change of variable, the joint PDF of (Y
1

, Y

2

) can be obtained from the

joint PDF of (I,Q) (3.4) using the transformation formula

fY
1

Y
2

(y
1

, y

2

) =
1

det(A)
fIQ(A

�1[y
1

, y

2

]t)

=
�

sin 2✓
e

� 2

p
�

sin 2✓

T
, (3.26)
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where

T = | cos(�+ ✓)(y
1

+ sin ✓)� cos(�� ✓)(y
2

� sin ✓)|
+| sin(�+ ✓)(y

1

+ sin ✓)� sin(�� ✓)(y
2

� sin ✓)|.

Once we obtain fY
1

Y
2

(y
1

,y
2

)

, the probability Pr(Y
1

� 0, Y
2

 0) can be easily obtained

as

Pr(Y
1

� 0, Y
2

 0) =

Z 1

0

Z
0

�1
fY

1

Y
2

(y
1

, y

2

)dy
2

dy

1

=

8
><

>:

sin ✓
2(cos ✓+sin ✓)

e

�2

p
� if � = 0

sin 2✓
4(cos 2✓+sin 2�)

e

�2

p
�(cos�+sin�) if � > 0.

(3.27)

At this point, by substituting (3.23),(3.24), and (3.27) into (3.20), we get the

probability of error of s = (� cos�,� sin�) for general � 2 [0, ⇡
2

[, Pe(�,�)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Pe (�, 0) = 1

1�tan(✓)2
e

� tan(✓)
p
2� � tan(✓)

2(1�tan(✓))
e

�p
2�

Pe (�,�) = 1

2 cos 2(��✓)

⇣
cos2(�� ✓)e

�2 sin ✓

cos(��✓)

p
�

� sin2(�� ✓)e
�2 sin ✓

sin(��✓)

p
�
⌘

+ 1

2 cos 2(�+✓)

⇣
cos2(�+ ✓)e

�2 sin ✓

cos(�+✓)

p
�

� sin2(�+ ✓)e
�2 sin ✓

sin(�+✓)

p
�
⌘

� sin 2✓
4(cos 2✓+sin 2�)

e

�2(cos�+sin�)
p
�
.

(3.28)

As the symbols are equiprobable and distributed uniformly on the unit circle and

from the symmetric properties of the PDF of Laplacian random variable, we can

limit ourselves to the symbols lying between 0 and ⇡
2

so 0  � <

⇡
2

. In addition, �

can take the values � = 2k⇡
M

, for k = 0, 1 . . . M
4

� 1, and the total SER can be

expressed as

Pr(e|�) = 4

M

M

4

�1X

k=0

Pe

✓
2k⇡

M

, �

◆
. (3.29)

Finally, combining (3.28) and (3.29) with ✓ = ⇡/M , and using some algebraic
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simplifications, it can be shown that the general closed-form expression for the

conditional SER of MPSK over LN using the L

2

norm detector, Pr(e|�), can be

expressed as

Pr(e|�) = 8

M

M

4

�1X

k=0

g(k, �) +
2 tan(✓)2e�2

p
�

M(1� tan(✓)2)
, (3.30)

where

g(k, �) =
1

2 cos (2(2k + 1)✓)

⇣
cos ((2k + 1)✓)2 e

�2p

p
�

cos((2k+1)✓) � sin ((2k + 1)✓)2 e
�2p

p
�

sin((2k+1)✓)

⌘

� sin(2✓)

8 (cos(2✓) + sin(4k✓))
e

�2

p
2 cos(2k✓�⇡

4

)p�
, (3.31)

and ✓ defined above as ✓ = ⇡
M
. For M � 8, more simplification can be made using

some of the properties of g(k, �). Hence (3.30) can be written compactly as

Pr(e|�) = 16

M

M

8

�1X

k=0

g(k, �)

� 1

M

tan
⇣
⇡

M

⌘✓
e

�2

p
2� � 2

1� tan( ⇡
M
)
e

�2

p
�

◆
.

(3.32)

The above expression is valid for M � 8. However, the special case of M = 4 (i.e.

✓ ! ⇡
4

) appears as a limit case of (3.30) where the SER can be expressed as

Pr(e|�) =
✓
3

4
+
p
�

◆
e

�2

p
�
. (3.33)

For M = 2, the conditional SER can be evaluated from the original expression

(3.20) as

Pr(e|�) = 1

2
e

�2

p
� = Q

1

(
p
2�), (3.34)

which is the same result found in (2.18) (rcall that Q
1

(x) = 1

2

e

�p
2x). Note, as

mentioned at the end of subsection 3.2.1.2, that the results in (3.33) and (3.34) are

the same using L

2

or L
1

norm. They will be treated as special cases in the following
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section since they can not be included in the generic formula.

Let us focus now on the case of M � 8. Using some of the properties of g(k, �)

(3.30) can be further simplified and written compactly as

Pr(e|�) = 16

M

M

8

�1X

k=0

g(k, �)� 1

M
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⇣
⇡

M

⌘✓
e

�2

p
2� � 2

1� tan( ⇡
M
)
e

�2

p
�

◆
.

(3.35)

In fact g(k, �) has the following property

g(
M

4
� k � 1, �) = g(k, �)

+ sin(2�)
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.

Thus the sum of g(k, �) can be simplified as follows
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3.2.3 Comparison between the SER using L1 Norm and L2

Norm Detectors
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Figure 3.5: Di↵erence between the L

1

norm and L

2

norm detectors in AWLN
channel.

In Fig. 3.5 we draw the conditional SER for di↵erent size of constellation versus the

instantaneous SNR for the ML detector and the MD detector. From the curves it is

clear that the system performance degrades by increasing the constellation size M .

Moreover, as mentioned before, the results in the QPSK case are the same using the

L

1

norm or the L

2

norm detectors. For M � 8, the di↵erence between the SER of

both detectors is small with an advantage to the L

1

norm (solid lines), ML detector,

as expected. In addition, it should be noted that by increasing M , the SNR gap for

a fixed SER between the two detectors becomes smaller (from 0.6 dB for 8-PSK to

0.2 dB for 64-PSK at SER= 10�5). To explain this fact, Fig. 3.6 represents the
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Figure 3.6: Intersection between decision regions created by the ML and MD
detectors for 8-PSK.

intersection zones between the decision regions created by ML and MD detectors for

8-PSK (these zones are colored in black). From Fig. 3.6, we note that the area of

di↵erent decisions between the two detectors is very low compared to the remaining

surface, which explains why the performance gap is small. As a consequence of

these results, the use of L
2

norm in detection of signals subject to AWLN, by wrong

assumptions of the noise distribution or simplification of detector, does not a↵ect

harmfully the performance of the system especially for higher size of the

constellation. In the next section, we include the multiplicative fading noise in our

model to quantify the impact of fading on the performance of MPSK in presence of

additive Laplace noise.
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3.3 Average SER of MPSK

3.3.1 General Formula

All the analysis presented above are conditioned on the fading coe�cient, and are as

such function of the instantaneous SNR. In the presence of slow fading, the ASER

can be obtained by averaging the SER issued from both detectors, (3.16) and (3.30),

over the PDF of the SNR �, p�(�), yielding

Pr(e) =

Z 1

0

Pr(e|�)p�(�) d�. (3.37)

Two types of integrals appears in the evaluations of the ASER, while the first

integral, called L(x), considers an integral of the product of the PDF of �, p�(�),

and an exponential, the second integral, named L
1

(x), consist of an integral of the

product of the PDF of �, an exponential function, and square root of �. More

specifically, they are defined as

L(x) =

Z 1

0

p�(�)e
�x

p
�
d�, 8 x � 0 (3.38)

L
1

(x) =

Z 1

0

p
�p�(�)e

�x
p
�
d� = �L0(x), 8 x � 0. (3.39)

By derivation of L with respect to x, we can get easily L
1

which is the opposite of

the derivative of L, namely L0. Therefore, the ASER of the MPSK system,

computed by L

1

norm or L
2

norm techniques, is expressed in terms of the functions

L and L0 in the next analysis.

3.3.1.1 General Expression using ML detector

The ASER of MPSK constellation using the ML detector can be deduced from the

general conditional expression (3.16) and the averaging formula (3.37), the final
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ASER expression, for M � 8, can be presented as

PrML(e) =
1

M
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where the generic function F (k) is expressed as
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(3.41)

3.3.1.2 General Expression using MD Detector

Using the same method to compute the average probability of error, the ASER of

MPSK constellation using MD detector can be expressed, for M � 8, as

PrMD(e) =
8

M

M

4

�1X

k=0

G(k) +
2 tan(✓)2

M(1� tan(✓)2)
L(2), (3.42)

where

G(k) = � sin(2✓)

8 (cos(2✓) + sin(4k✓))
L
⇣
2
p
2 cos

⇣
2k✓ � ⇡

4

⌘⌘

+
1

2 cos 2(2k + 1)✓


cos ((2k + 1)✓)2 L

✓
2 sin(✓)

cos ((2k + 1)✓)

◆

� sin ((2k + 1)✓)2 L
✓

2 sin(✓)

sin ((2k + 1)✓)

◆�
. (3.43)
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As mentioned before, this expression is actually valid for M � 4, since the M = 4

case appears as a limit case. In particular, from (3.33), the ASER of QPSK with

ML and MD detector can be evaluated as

PrQPSK(e) =
3

4
L(2)� L0(2). (3.44)

Finally, for M = 2, from (3.34) the ASER is equal to PrBPSK(e) = L(2)/2.
The major remark from the previous analysis is that the ASER, using ML and MD

detectors, is fully defined by knowing L(·) and L0(·) for the desired type of fading.

Consequently, we are focusing on the next subsections on the evaluation of L(·) and
L0(·) for the case of EGK distribution based on the alternative formula of its PDF

given in Sec. 2.1.3.

3.3.2 EGK Fading

Substitute the alternative expression of p�(�) (2.13) and the expression of the

exponential in terms of the FHF [55, Eq. (2.9.4)] in L(x), and use the identity

(2.21) that computes the integral of the product of two FHFs, the integral function

L(x) can be expressed in terms of the FHF as

L(x) = 1

�(ms)�(m)�
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#
. (3.45)

The identity [55, Eq. (2.2.1)] gives the derivative of the FHF, that is used to

computed L0(·) and which is equal to

L0(x) =
�2

x�(ms)�(m)
H2,1

1,2

"
�s�

�x

2

�����
(0, 2)

(ms,
1

⇠
s

), (m,

1

⇠
)

#
. (3.46)
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The results given in (3.45) and (3.46) are valid for the general EGK fading scenario.

In the next subsections, we simplify these results for some useful special cases such

as the Generalized-K, Generalized Nakagami-m, Nakagami-m, and Rayleigh fading

distributions.

3.3.3 Generalized-K Fading

As mentioned in the previous chapter, the GK fading is obtained by setting ⇠ = 1

and ⇠s = 1 in the parameters of the EGK distribution (2.7), and in this case m and

ms become the parameters of the GK distribution. By replacing ⇠ and ⇠s by their

value in (3.45), L(·) can be re-written as

L(x) = 2

�(ms)�(m)
H2,1

1,2


mms

�x

2

����
(1, 2)

(ms, 1), (m, 1)

�
. (3.47)

Using relation between the FHF and the MGF for rational parameters given in [60,

Eq. (8.3.22)], L(·) can be expressed in terms of the standard MGF as

L(x) = 1

�(ms)�(m)
p
⇡

G2,2
2,2


4mms

�x

2

����
1, 1/2

m,ms

�
. (3.48)

Using the derivative properties of the MGF [60, Eq. (8.2.34)], L0(·) is evaluated as

L0(x) =
�2

x�(ms)�(m)
p
⇡

G2,2
2,2


4mms

�x

2

����
0, 1/2

m,ms

�
(3.49)

These final expressions in terms of the MGF are less complex than the expressions

in terms of the FHF, since the MGF is already a built-in function in

MATHEMATICA®.
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3.3.4 Generalized Nakagami-m Fading

This type of fading is obtained by setting the quadruplet (m, ⇠,ms, ⇠s) to

(m, ⇠,1, 1) in (2.7). Using the limit property given in (2.27) and the inverse Mellin

transform of the extended incomplete Gamma function �(·, ·, ·, ·) [57, Eq. (6.29)],
one can show that

L(x) =
2
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!
.

(3.50)

A similar expression of L0(·) is obtained using the derivative expression of the FHF

and the Mellin transform of the extended incomplete Gamma function, its closed

form is evaluated as

L0(x) =
�2⇠

x�(m)

✓
�

x

2

�

◆m⇠

�

 
1 + 2m⇠, 0;
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!
. (3.51)

3.3.5 Nakgami-m Fading

From the previous case, the Nakagami-m fading may be obtained by replacing ⇠ by

1. By using the special case of the extended incomplete Gamma function [57, Eq.

(6.44)], L(·) can be expressed as

L(x) = 2

�(m)

✓
m
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2

�
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◆
, (3.52)
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where U(·, ·, ·) is the Tricomi confluent hypergeometric function [58, Chapter 13].

Using the derivative of the U(·, ·, ·) function [58, Eq. (13.4.21)], we get L0(·) as

L0(x) = ��(2m)�x

4m�(m)
U

✓
m+ 1,

3

2
,

�x

2

4m

◆
. (3.53)

Table 3.2: L(·) for Di↵erent Channels

Fading Distribution L(x)
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3.3.6 Rayleigh Fading

The Rayleigh fading is one of the basic fading models, and is a special case of the

Nakagami-m fading be setting m = 1. Using the special cases of the Hypergeometric

function, and an integration by parts, the principal function L(·) may be simplified

in this case to
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Table 3.3: L0(·) for Di↵erent Channels

Fading Distribution L0(x)
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Moreover, the derivative of L(·) can be obtained easily by taking the derivative of

the Q function yielding

L0(x) =
1

2
�x� 1

2
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p
�⇡e
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 r
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Finally to summarize all these cases and special cases, we note that from the generic

expression of L(·) and L0(·) in (3.45) and (3.46), one can get the ASER of MPSK

over any type of fading covered by the EGK distribution, perturbed by AWLN, and

get a simplified expression by doing the necessary manipulations. As a conclusion,

Tables 3.2 and 3.2 summarizes all these cases and define the generic integral L(·)
and its derivative.
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3.4 Asymptotic Results for High SNR

It seems interesting to explore an asymptotic study of the SER for high SNR.

Because the SER is expressible in terms of the FHF, the known results of the

asymptotic expansion of the FHF, near zero (i.e. for high SNR �), could be used to

write down the asymptotic expression of the SER for high SNR in presence of EGK

fading. As the SER is totally defined by knowing L(x), an asymptotic expression of

L(x) is studied for the di↵erent fading channels seen above. In fact, from (3.45) and

[55, Eq. (1.8.4)], we have
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(3.56)

This asymptotic expression is more simplified than the general expression (3.45). Its

derivative can also be easily found as its dependence on x is very simple. Finally,

such expression of L(x) in the selected special cases of fading are summarized in

Table 3.4.

Table 3.4: Asymptotic Expansion of L(x) and L0(x) for Di↵erent Channels
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3.5 Simulation of MPSK Constellation

In this section, we perform some numerical results to investigate the system

performance by drawing the SER and the ASER versus the received average SNR

and for di↵erent size of the MPSK constellation. Moreover, some types of fading are

tested to see the impact of the channel on the system performance.
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Figure 3.7: Di↵erence between the L

1

norm and the L

2

norm detectors in a
Rayleigh fading environment.

In Fig. 3.7, we compare the system performance of both the ML and MD detectors.

This illustration is an extension of the results presented in Fig. 3.5 since the ASER

of the system over Rayleigh fading is drawn with the conditional SER. In both cases

we draw the SER for 4, 8, 16, 32, and 64 PSK. From a mathematical point of view,

and from the simulation results, both detectors give the same results in QPSK case.

However for M � 8 there is a small di↵erence between the two detectors with a



89

little advantage to the ML detector (as described in subsection 3.2.3). Furthermore,

it is clear that by increasing M the gap is going down. In the ideal case (without

fading), the gap is clear and it is less than 1 dB for all cases. However in Rayleigh

fading case, the curves are very close and the gap become very small (< 0.3 dB),

and by increasing M the curves get close to each other. For example for 64-PSK the

ML and MD detectors have approximately the same performance.

On the other hand it is clear that the system performance improves by decreasing

the constellation size M . Also the SER is better in the environment without fading

than in the Rayleigh fading case. One more remark is that the numerical results

match perfectly the simulation results.
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m = ∞
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QPSK

32−PSK

Figure 3.8: Comparison between di↵erent type of Nakagami fading severity for two
constellations (QPSK and 32-PSK). The lines represent the analytical results while

the dots denote the simulation results.

Fig. 3.8 shows the system performance in the presence of a Nakagami-m fading for

di↵erent values of m, considering the QPSK and 32-PSK constellations. The first



90

remark that one can conclude is that the simulation results match perfectly with the

analytical results. As in the previous figure, the performance in the QPSK case are

better than the performance in the 32-PSK case, which is explained by the fact that

the distance between the symbols in the QPSK case is bigger than the distance in

the 32-PSK case. Looking at the e↵ect of the fading, one can conclude that the SER

has better values by increasing m, the fading figure, and the best curves appears for

m ! 1 in both cases. In fact for small values of the fading figure (i.e. m = 1) the

fading dominates the error which becomes higher. Also by increasing m, the fading

e↵ect on the signal decreases and the system becomes without fading for large

values of m (m ! 1), which is the best scenario.
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Figure 3.9: Comparison between ML and MD detectors in Generalized-K fading for
16-PSK. The lines represent the analytical results, while the dots denote the

simulation results, and the dashed lines represent the asymptotic results for high
SNR.
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In the last illustration, Fig. 3.9 draws the SER issued from both detectors MD and

ML for a generalized-K distribution (i.e. ⇠ = 1 and ⇠s = 1) for di↵erent values of the

figures m and ms. In fact such results allow us to compare both detectors in the

presence of variety of fading severity. Also the asymptotic results for high SNR are

drawn, but only using the ML detector, to confirm its utility. It is important to note

that the results for ms = 1 and m = 1 (i.e. Rayleigh fading) are the same as

ms = 1 and m = 1, so only one case is drawn. Also the case ms = 1 and m = 1
represents the case without fading. Thereby, it is clear from the figure, that the

system performance gets better by increasing the fading and shadowing figures (i.e.

reduce the severity of the fading and shadowing). Moreover, it is seen that both

detector keep a closer performance even for di↵erent values m and ms. However, we

note that for high severity (i.e. m = 1 and ms = 1) the di↵erence is negligible

relative to the gap in less severity cases (ms = 1). On the other hand, the

asymptotic results for high SNR (dashed lines) show a good approximation for the

SER in the treated cases. Finally the simulated results match perfectly the

theoretical results which validate again our mathematical model and analytical

calculations.

3.6 Conclusion

In this chapter, we described the decision regions of an M-ary PSK constellation

transmitted over a Laplace noise channel, assuming two detectors (ML and MD).

According to these decision regions, the average symbol error rate is evaluated over

an EGK distribution and a closed form is given using the FHF. A simplified

expressions of the ASER are derived for special cases of fading. Finally some

selected numerical results confirm the analytical results for di↵erent sizes of the

constellation and many types of fading. It is worth mentioning that the probability
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of error of MPSK over a generalized Gaussian noise has been studied also but since

it is hard to get a closed form expressions and the mathematical derivations were

very complicated. Thereby, that part has been omitted and only the Laplace noise

case was presented in this chapter. In fact while dealing with the generalized

Gaussian noise, it appears that the distribution of the sum of two generalized

Gaussian random variable should be investigated which was not done before. This

observation opens a new window of research, such the study of the distribution of

the sum of two independent generalized Gaussian noise, the obtained results on this

subject are presented in Appendix B. In future work, the obtained results regarding

the sum of two GG random variables will be used to compute the SER of MPSK

system perturbed by GGN.

On the other hand, as seen in this chapter, the analysis of the performance of digital

communication systems over Laplace noise leads to some interesting results. Thus,

another type of Laplace perturbation (additive interference) is studied in the

following chapter in the context of full duplex communication networks.
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Chapter 4

Error Rates and Throughput of

Full-duplex Networks Through

Laplacian Interference

This chapter presents a statistical study for the intra-cell interference problem in

3-node topology (3NT) full-duplex (FD) cellular networks. Assuming Rayleigh

fading on the mutual channel between the interfering users equipment (UE) and

that the interfering UE is transmitting Gaussian signals1, we show that the intra-cell

interference has circularly symmetric Laplacian distribution with dependent real

and imaginary components. The interference distribution is exploited to

characterize the error rates for BPSK, PAM, QAM, and MPSK modulations over

EGK fading channel Sec.2.1.2. Moreover, a unified closed-from expression for the

average SER is derived. To this end, the throughput of the 3NT FD scheme is

characterized and compared to its half-duplex (HD) counterpart. It is ought to be

mentioned that outage probability and achievable rate analysis for the 3NT network

were conducted in [67, 68, 69, 70]. Di↵erent from [67, 68, 69, 70], in this chapter we

present for the first closed form expressions for the intra-cell interference, then

1The Gaussian signaling abstraction for the interfering symbols is shown to have negligible e↵ect
on the error rate performance [65, 66]. The Gaussian signaling assumption is also validated in this
chapter.
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derive exact error rates for di↵erent modulation schemes, and show the explicit

e↵ect of intra-cell interference of the throughput of each modulation scheme.

Notations: In what follows subscripts r and i denote the real and imaginary parts,

respectively, and ⇢(x) = 1� 1

x
.

4.1 Full Duplex Cellular Network

In-band full-duplex communication is introduced as a promising technology that

would provide several benefits to cellular networks. Compared to its HD

counterpart, FD communication has the potential to improve spectrum utilization,

increase link capacity, enhance physical layer security, and reduce relaying

latency [71]. The aforementioned benefits brought by FD communication are all

derived from its ability to simultaneously transmit and receive within the same

frequency band. The ability of simultaneous transmission and reception for FD

transceivers emerges from recent advances in radio frequency circuit design that

enables su�cient self-interference (SI) cancellation, and hence, eliminates the

necessity for transmission/reception orthogonalization employed by HD

transceivers [72, 71, 73, 74]. To reap the aforementioned benefits of FD

communication, FD enabled transceivers are required at both sides of the

communication link, which is hard to realize in the context of cellular networks.

Cellular networks operators can only enforce FD upgrade in their networks from the

base stations’ (BS) side and do not have direct access to upgrade the UE side.

Furthermore, implementing SI cancellation at the UE can be expensive in terms of

complexity, power consumption, and/or terminal price. Hence, backward

compatibility between FD BSs and HD UEs is required especially at the early FD

rollout phase. In this context, the 3NT is proposed to serve HD users via FD BSs

and yet benefit from FD communication [75, 76]. In the 3NT, the BS groups the
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Full-duplex	mode	Half-duplex	mode	

Intra-cell	interference	

Ch1	 Ch2	 Ch3	 Ch4	 Ch1	 Ch2	

B	 2B	

Figure 4.1: Channel assignment in the 3NT FD and HD schemes.

UEs into pairs and simultaneously reuse the uplink channel of one UE in the

downlink direction of the other UE in each pair, as shown in Fig. 4.1. Compared to

the HD case, the 3NT requires half the number of channels to serve the same

number of users, and hence, the bandwidth (BW) occupied by each channel can be

doubled.

Doubling the channel BW directly implies doubling the transmission rate, but not

necessarily doubling the throughput. This is because the BW improvement o↵ered

by the 3NT comes at the expense of creating SI at the BS side and intra-cell

interference at the UE side, which impose decoding errors. The BS exactly knows

the interfering codeword and can accurately estimate the SI channel, and hence, SI

can be su�ciently suppressed using SI cancellation techniques [72, 71, 73, 74].

However, the UE does not have information about the signal being transmitted by

the interfering UE, and hence, interference cancellation is not always viable.

In the next section the system model of the 3NT system is described before

handling the distribution of the intra-cell interference and the system performance.
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4.2 System Model of 3NT FD Cellular Network

This chapter explicitly focuses on the intra-cell interference problem imposed by

3NT shown in Fig. 4.1. Therefore, we consider a single cell scenario with an FD BS

and two HD UEs. Without loss in generality, we assume that the spectrum can be

either divided into four non-overlapping channels that are assigned in HD mode or

two non-overlapping channel that are assigned using the 3NT FD mode, as shown in

Fig. 4.1. In the HD case, each user is assigned an interference free BW B Hz in each

of the uplink and downlink directions. On the other hand, the 3NT FD mode

doubles the BW to 2B in each of the uplink and downlink directions at the expense

of SI in the uplink and intra-cell interference in the downlink. Without loss of

generality, we focus on the downlink performance of one of the UE. The complex

base-band received signal at the test UE can be expressed as

r =
p

PdAdhs+
p

PuAugx+ n, (4.1)

where Pd is the downlink transmit power, Ad is a constant that captures downlink

large-scale power attenuation, s is the intended symbol drawn from a unit power

constellation, h is the intended channel with unit-mean EGK distributed power

gain, Pu is the power transmitted by the interfering UE, Au is a constant that

captures large-scale interference power attenuation, x is the intra-cell interfering

Gaussian symbol, g is the unit variance circularly symmetric complex Gaussian

mutual channel gain between the UEs, and n is the additive white Gaussian noise.

The random variables h, s, g, x, and n are assumed to be independent.

It is worth mentioning that the circularly symmetric Gaussian distribution of g

models the sever Rayleigh fading, which occurs in non-line of sight (NLOS)

environments with rich scattering object. The Rayleigh fading assumption on the

interference channel can be justified by multi-user diversity in which the BS would
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pair UE with poor mutual channel condition (i.e., NLOS UEs) on the same channel.

It is worth noting that the analysis in [67, 68, 69, 70] is based on the Rayligh fading

assumption on both the interfering and the useful links.

On the other hand and unlike g, which is assumed Rayleigh by virtue of the

multi-user diversity, h is modeled using the more general EGK fading distribution

which models diverse types of fading channels that can appear between the user and

the BS.

Furthermore, Gaussian signals provide accurate approximation for the interference

generated from a single node transmitting on a faded channel [65]. This assumption

is also validated in Section 4.7. In addition, the intended signal power is Pd and the

interfering signal power is Pu because we study the downlink transmission in which

the intra-mode interference comes from an uplink UE, as shown in Fig. 4.1.

We assume that the intra-cell interference dominates the noise, and hence, the noise

term is ignored in the analysis. The accuracy of this approximation is validated in

the results section with realistic noise power. Ignoring the white noise, the received

signal r can be re-written as

r ⇡
p

PdAdhs+
p
PuAugx. (4.2)

The received signal r is a complex valued random variables with real and imaginary

components, which are represented as r = R(r) + jI(r), where R(·) and I(·) denote
the real and imaginary parts r respectively, and j =

p�1 is the imaginary unit. To

study (4.2), we first focus on the interference term, which can be considered as an

additive complex perturbation for the useful symbol s.

In the next section, we study the normalized intra-cell interference, denoted as

Z = gx. The normalized intra-cell interference Z is characterized by closed form

expressions for its PDF and CDF.
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4.3 Distribution of the Intra-cell Interference

Since g and x are both zero-mean unit-variance complex Gaussian random variables,

their real part and imaginary part are independent Gaussian random variables with

zero-mean and variance 1

2

. The intra-cell Interference Z is represented as

Z = gx =
⇣
R(g)R(x)� I(g)I(x)

⌘
+ j

⇣
R(g)I(x) + I(g)R(x)

⌘
. (4.3)

The distribution of Z can be obtaining using the relations between the characteristic

function (CHF), the PDF, and the CDF (Fourier transform). To benefit from these

relations, the CHF, denoted by 'Z(t1, t2), should be derived firstly.

4.3.1 CHF of Intra Cell Interference

Actually, from the definition of the CHF, we get

'Z(t1, t2) = E
⇥
e

j(t
1

R(Z)+t
2

I(Z))

⇤
. (4.4)

Replacing the real and imaginary parts of Z as follows in (4.4)

R(Z) = grxr � gixi

I(Z) = grxi + gixr, (4.5)

to obtain the following new expression of the CHF

'Z(t1, t2) = E
h
exp

⇣
jxr(t1gr + t

2

gi)
⌘
⇥ exp

⇣
jxi(t2gr � t

1

gi)
⌘i

. (4.6)

By conditioning with respect to gr and gi (which are independent Gaussian random

variables), the CHF of Z can be written as the product of the CHF of xr and xi,

since xr and xi are independent among themselves and independent to gr and gi.
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Now the CHF of Z can be expressed as the mean over gr and gi of the conditional

CHF

'Z(t1, t2) = Eg
i

,g
r

h
'x

r

(t
1

gr + t

2

gi)⇥ 'x
i

(t
2

gr � t

1

gi)
i
. (4.7)

Note that if Y follows a Gaussian distribution with zero mean and variance �2, its

CHF is expressed as 'Y (y) = e

� 1

2

�2y2 . Using this fact in (4.7), will give us the

expression of 'Z(·, ·) as

'Z(t1, t2) =

Z

R

Z

R
fg

r

(gr)fg
i

(gi)e
� 1

4

(t
1

g
r

+t
2

g
i

)

2

e

� 1

4

(t
2

g
r

�t
1

g
i

)

2

dgrdgi

=

✓
1p
⇡

Z

R
e

� 1

4

u2

(4+t2
1

+t2
2

)

du

◆
2

. (4.8)

Finally, the last integral can be solved using the Gaussian PDF as

1p
⇡

Z

R
e

� 1

4

vu2

du =
2p
v

, 8v > 0. (4.9)

Thus, the CHF of the intra-cell interference from a dominant UE transmitting

Gaussian signals over a Rayleigh faded channel has the following characteristic

function

'Z(t1, t2) =
4

4 + t

2

1

+ t

2

2

=
1

1 + |t|2
4

, (4.10)

where the vector t = (t
1

, t

2

).

We can conclude at this point that the expression of the CHF of Z in (4.10) is a

special case of the bivariate Laplace distribution [77]. Furthermore, the CHF of Z is

independent of the angle between the real and imaginary components. Consequently,

(4.10) shows that Z follows a circularly symmetric complex Laplace distribution.
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4.3.2 CDF of Intra Cell Interference

The CDF is defined as the primitive of the inverse Laplace transform of the CHF

(also primitive of the PDF that vanishes at (�1,�1)). The relation between the

CHF and the CDF of a vector of two random variable can be given as follows

FZ(zr, zi) = FZ
r

(zr)+FZ
i

(zi) + c

+
1

4⇡2

ZZ

z
r

,z
i

ZZ

t
1

,t
2

e

j(z
r

t
1

+z
i

t
2

)

'Z(t1, t2)dt1dt2dzrdzi,

where FZ
r

(·) and FZ
i

(·) are the CDFs of Zr and Zi respectively, and c is a real

constant to be determined. In the following analysis we are focusing on the last part

(four integrals), namely FZ(zr, zi), which is the CCDF.

Looking at the CHF (4.10), one notice that it is an even function on both variables,

so the Laplace transform becomes a cosine transform

FZ(zr, zi) =
1

⇡

2

ZZ

z
r

,z
i

Z 1

0

Z 1

0

cos(zrt1) cos(zit2)'Z(t1, t2)dt1dt2dzrdzi

=
4

⇡

2

Z 1

0

Z 1

0

sin(zrt1) sin(zit2)

t

1

t

2

(4 + t

2

1

+ t

2

2

)
dt

1

dt

2

. (4.11)

Using the representation of the sine function in terms of the MGF and its

Mellin-Barnes representation [55, Eq. (1.1.2)], yields

sin(x) =
p
⇡ G1,0

0,2


x

2

4

����
�
1

2

, 0

�

=
p
⇡

1

2⇡j

Z

C

�(1
2

+ s)

�(1� s)

⇣
x

2

⌘�2s

ds. (4.12)

Substituting the expression of the sine function (4.12) in (4.11), we get another
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expression of the CCDF as

FZ(zr, zi) =
4

⇡

1

(2⇡j)2

Z

C
1

Z

C
2

�(1
2

+ s)�(1
2

+ t)

�(1� s)�(1� t)

⇣
zr

2

⌘�2s ⇣
zi

2

⌘�2t

⇥
Z 1

0

Z 1

0

t

�2s�1

1

t

�2t�1

2

4 + t

2

1

+ t

2

2

dt

1

dt

2

dsdt. (4.13)

The last double integral over t
1

and t

2

has a closed from solution which is equal to

Z 1

0

Z 1

0

t

�2s�1

1

t

�2t�1

2

4 + t

2

1

+ t

2

2

dt

1

dt

2

= 2�4�2s�2t�(1 + s+ t)
�(1� s)�(1� t)�(s)�(t)

�(1 + s)�(1 + t)
.

(4.14)

This result is valid for s 2 C
1

and t 2 C
2

. Hence (4.13) can be re-written as a double

Mellin-Barnes type contour integral [62]

FZ(zr, zi) =
1

4⇡

1

(2⇡j)2

Z

C
1

Z

C
2

�(1 + s+ t)�(s)�(t)
�(1

2

+ s)�(1
2

+ t)

�(1 + s)�(1 + t)
z

�2s
r z

�2t
i dsdt

=
1
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,

1
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����
0
����
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�
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Since Zr and Zi have marginal Laplace distribution, their CDFs have the same form

that is given by 8
><

>:

FZ
r

(zr) = 1� 1

2

e

�2z
r

FZ
i

(zi) = 1� 1

2

e

�2z
i

.

(4.16)

Finally it is easy to proof that c = �1 by setting the limit of FZ
r

,Z
i

(·, ·) at (1,1) to

1. Thereby, the CDF of the intra-cell interference from a dominant UE transmitting

Gaussian signals over a Rayleigh faded channel, Z, has the following expression

FZ(zr, zi) = 1� 1

2

�
e

�2z
r + e

�2z
i

�
+

1

4⇡
G0,1,0,2,0,2

1,0,2,1,2,1


1

z

2

r

,

1

z

2

i

����
0
����

1

2

, 1

0

����
1

2

, 1

0

�
, (4.17)

Consequently, the PDF can be derived by derivation in the next subsection.
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4.3.3 PDF of Intra Cell Interference

The PDF is the derivative of the CDF with respect to zr and zi,

fZ(zr, zi) =
@

2

FZ(zr, zi)

@zr@zi

.

While both marginal CDF components vanish after the second derivation, only the

CCDF component is remaining. Therefore, from (4.15) and with the help of a

change of variable, the PDF of Z can be written as

fZ(zr, zi) =
1

⇡

1

(2⇡j)2

Z

C
1

Z

C
2

�(1 + s+ t)�(
1

2
+ s)�(

1

2
+ t)z�2s�1

r z

�2t�1

i dsdt

v=1/2+s,u�v=t+1/2
=

1

⇡

1

(2⇡j)2

Z

C
1

�(u)z�2u
i

Z

C
2

�(u� v)�(v)

✓
zr

zi

◆�2v

dvdu. (4.18)

Using the identity [55, Eq. (2.9.5)] to solve the second integral, we can write

1

2⇡j

Z

C
2

�(u� v)�(v)

✓
zr

zi

◆�2v
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2
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2
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����
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0
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◆�u

.

Finally, the PDF is simplified to the desired expression in terms of the MGF using

the identity [55, Eq. (2.9.31)]

fZ(zr, zi) =
1

⇡

1

2⇡j

Z

C
1

�(s)�(s)
�
z

2

r + z

2

i

��s
ds

=
1

⇡

G2,0
0,2


z

2

r + z

2

i

���� 0, 0

�
(4.19)

By the end, using the identity [55, Eq. (2.9.39)], the intra-cell interference from a

dominant UE transmitting Gaussian signals over a Rayleigh faded channel has the

following PDF

fZ(zr, zi) =
2

⇡

K

0

✓
2
q
z

2

r + z

2

i

◆
, (4.20)
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where K

0

(·) is the 0-th order modified Bessel function of the second kind [58, Eq.

(9.6.21)].

The PDF expression in (4.20) clearly shows that Z does not have independent real

and imaginary components because the joint PDF in (4.20) cannot be expressed as

the product of two marginal Laplace PDFs (3.4). Moreover, the problem of

decoding in the presence of additive Laplacian perturbation (i.e., noise or

interference) has been widely addressed in Chapter 3 and the literature [42, 44].

However, as assumed in Chapter 3, a common assumption in this literature is that

the Laplacian perturbation have independent real and imaginary components.

Hence, the work presented in this chapter contributes to the present thesis by

modeling the case with dependent real and imaginary components. Furthermore,

the previous analysis rigorously derives the Laplacian distribution of the

interference from the system model rather than assuming a Laplacian perturbation.

By the end, exploiting the interference characterization in this section, the error

rate performance is analyzed in the next sections.

4.4 Conditional Error Rates

This section characterizes the downlink decoding errors that may occur due to the

Laplacian intra-cell interference. In particular, we evaluate the probability of BPSK,

PAM, QAM, and MPSK. At first, the conditional (i.e., conditioning on the intended

channel gain) SER as a function of the signal-to-interference ratio (SIR), denoted as

� = P
d

A
d

|h|2
P
u

A
u

, is investigated. The conditional error rate analysis can also be

considered as the error rate over unfaded downlink channel2. A unified expression of

the conditional SER is given in the end this section.

For the sake of organized presentation, and since all the constellations studied in the

2An important application for the unfaded channels appears in massive MIMO systems due to
the channel hardening e↵ect [78].
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previous chapters are treated here, we classify the studied modulation schemes into

two sets, namely, (i) one dimensional constellations (1D) (i.e. BPSK and M-PAM)

and (ii) two dimensional constellations (2D) (i.e. M-QAM and MPSK).

4.4.1 Error Rates for 1D Constellations

4.4.1.1 BER of BPSK

Since the BPSK transmits real symbols s = ±Es, the conditional PDF of the

received signal r is obtained from (4.20) as fr(r) = e

�2|r⌥E
s

|. Moreover, the optimal

decision, ML detector, is obtained by minimizing the distance d(r,±Es). Given that

the BPSK symbols are equiprobable, the probability of error can be computed as

Pr(e|�) =
Z 1

0

fr(r|S = �Es) dr.

Assuming unit energy constellation, and set Es = 1, the conditional downlink bit

error rate in 3NT with Laplacian intra-cell interference and maximum likelihood

detector for the BPSK modulation is given by

PBPSK(e|�) = 1

2
e

�2

p
�
. (4.21)

4.4.1.2 SER of PAM

The SER of PAM directly follows from the BER of a BPSK modulation as

PPAM(e) = 2

✓
1� 1

M

◆
PBPSK(e).

Hence, the conditional downlink bit error rate in 3NT with Laplacian intra-cell

interference and maximum likelihood detector for the PAM modulation can be



105

deduced from (4.21) as

PPAM(e|�) =
✓
1� 1

M

◆
e

�2

q
3�

M

2�1

, (4.22)

where the exponent argument
q

3�
M2�1

is obtained by calculating the average energy

per symbol for PAM.

4.4.2 Error Rates for 2D Constellations

In this section we consider 2D constellations formed by in-phase and quadrature

phase components. Particularly, we focus on the M-QAM and the MPSK

constellations. While the exact closed-from expressions of the SER for the M-QAM

and the MPSK schemes are derived, we also present simplified approximations in

order to present a unified error rate expression for all of the considered modulation

schemes.

4.4.2.1 SER for Rectangular QAM

A rectangular M -QAM is formed by one in-phase MI-PAM and orthogonal

quadrature phase MQ-PAM, as mentioned in Sec. 2.4, which means that QAM

constellation contains M = MIMQ symbols. These symbols can be classified as

follows: 4 corner symbols, 2(MI � 2) edge symbols with decision distance dI ,

2(MQ � 2) edge symbols with decision distance dQ, and (MI � 2)(MQ � 2) inner

symbols. To compute the conditional error probability, we need to get the

probability of error of each symbol and then the SER is obtained by averaging these

probabilities over the probability of occurrence of each symbol. Let us begin with

the corner symbols. Actually the probability of error of the corner symbol can be
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given as

P

cor
e = 1�

Z 1

� d

I

2

Z 1

� d

Q

2

fZ(x, y)dxdy = 1� FZ(
dI

2
,

dQ

2
)

=
1

2

�
e

�d
I + e

�d
Q

�� FZ(
dI

2
,

dQ

2
), (4.23)

where FZ(·, ·) is defined in (4.15).

The calculation of the probability of error of the edge points is similar for the

in-phase points and the quadrature-phase points, hence we are focusing on the

in-phase points. Furthermore, the probability of error detection of an in-phase edge

symbol is obtained as

P

edg,I
e = 1�

Z 1

� d

I

2

Z d

Q

2

� d

Q

2

fZ(x, y)dxdy

= 2� 1

2
e

�d
I � 2FZ(

dI

2
,

dQ

2
)

=
1

2

�
e

�d
I + 2e�d

Q

�� 2FZ(
dI

2
,

dQ

2
). (4.24)

Per consequence, the probability of error detection of a quadrature phase edge

symbol is given by

P

edg,Q
e =

1

2

�
e

�d
Q + 2e�d

I

�� 2FZ(
dQ

2
,

dI

2
)

=
1

2

�
e

�d
Q + 2e�d

I

�� 2FZ(
dI

2
,

dQ

2
). (4.25)

Finally, the probability of error detection of an inner symbol is obtained as

P

inn
e = 1�

Z d

I

2

� d

I

2

Z d

Q

2

� d

Q

2

fZ(x, y)dxdy

= e

�d
I + e

�d
Q � 4FZ(

dI

2
,

dQ

2
). (4.26)
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Hence, assuming equiprobable symbols, the SER of rectangular QAM is derived as

PQAM(e|�) = 1

MIMQ

⇣
4P cor

e + 2(MQ � 2)P edg,Q
e

+ 2(MI � 2)P edg,I
e + (MQ � 2)(MI � 2)P inn

e

⌘
. (4.27)

Let us defined the in-phase-to-quadrature phase decision distance ratio ⌧ as ⌧ = d
Q

d
I

and d =
q

(M2

I � 1) + ⌧

2

�
M

2

Q � 1
�
. Then the probability of error of rectangular

can be obtained by replacing the decision distances by their values dI =
2

p
3�
d

,

dQ = ⌧dI , and operating some algebraic manipulation to (4.27). Thereby, the

conditional downlink bit error rate in 3NT with Laplacian intra-cell interference and

maximum likelihood detector for the rectangular QAM modulation is given by

PQAM(e|�) = ⇢(MI)e
�2

p
3�

d + ⇢(MQ)e
�2⌧

p
3�

d

� 1

⇡

⇢(MI)⇢(MQ)G
0,1,0,2,0,2
1,0,2,1,2,1


d

2

3�
,

d

2

3⌧ 2�

����
0

�
����

1

2

, 1

0

����
1

2

, 1

0

�
, (4.28)

recall that ⇢(x) = 1� 1

x
.

A special case of that result is the square QAM, where MI = MQ =
p
M and ⌧ = 1.

Using the double Mellin-Barnes contour integral of the BMGF [62] and the

expression of the SER in (4.28), the SER of square QAM can be deduced to

PQAM(e|�) = 2⇢(
p
M)e�

q
6�

M�1

� 1

⇡

⇢(
p
M)2G0,2,0,1,2,0

2,1,1,0,1,2


2(M � 1)

3�
, 1

����
1

2

, 1

0

����
1

1

2

, 0

����
0

�
�
. (4.29)

The error rate for rectangular QAM modulation given in (4.28) is expressed in terms

of the BMGF, which imposes high computational complexity. Therefore, a simpler

approximation of the SER is proposed. In fact, the approximation is obtained by

considering a QAM modulation formed by two orthogonal (approximated as
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independent in presence of Laplace interference) PAMs. Thereby, a correct detection

of the M -QAM appears only for a correct detection in the MI-PAM and MQ-PAM.

Consequently, the probability of error of M -QAM may be approximated as

P

A
QAM(e) = 1� (1� PPAM

I

(e))
�
1� PPAM

Q

(e)
�

= PPAM
I

(e) + PPAM
Q

(e)� PPAM
I

(e)PPAM
Q

(e). (4.30)

Then by replacing (4.22) in (4.30), the conditional downlink bit error rate in 3NT

with Laplacian intra-cell interference and maximum likelihood detector for the

rectangular QAM modulation can be approximated by

P

A
QAM(e|�) = ⇢(MI)e

�2

p
3�

d + ⇢(MQ)e
�2⌧

p
3�

d � ⇢(MI)⇢(MQ)e
�2(1+⌧)

p
3�

d

. (4.31)

In the case of square QAM modulation, the SER approximation reduces to

P

A
SQAM(e|�) = 2⇢

⇣p
M

⌘
e

�
q

6�

M�1 � ⇢

⇣p
M

⌘
2

e

�2

q
6�

M�1

. (4.32)

4.4.2.2 SER of MPSK

This section considers the case where the transmitted signal s is modulated via an

MPSK scheme with M being a power of 2. The MPSK symbols are distributed

uniformly over the unit circle and all symbols are equiprobable. Unlike the previous

modulation schemes, the decision regions for the MPSK symbols is not known a

priori for that type of perturbation and has to be characterized for each complex

perturbation. Using the same notation as Chapter 3, let I and Q be the received

normalized in-phase and quadrature phase components of transmitted MPSK

symbol. Then, according to the PDF of Z in (4.20), the likelihood function can be

written as

`k =
2�

⇡

K

0

⇣
2
p
�

p
(I � cos'k)2 + (Q� sin'k)2

⌘
, (4.33)
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where 8
><

>:

I = s

(k)
r + z

rp
�

= cos'k +
z
rp
�

Q = s

(k)
i + z

ip
�

= sin'k +
z
ip
�
.

(4.34)

From [58, Eqs. (9.6.27) & (9.6.1)], we know that dK
0

(x)
dx

= �K

1

(x) and that K
1

(x) is

positive for x > 0, K
1

(·) is 1-st order modified Bessel function of the second kind.

Hence, K
0

(·) is a monotonically decreasing function. Consequently, the likelihood

function, `k, is maximized by minimizing the Bessel function argument, i.e.,

minimizing the distance (I � cos'k)2 + (Q� sin'k)2. Using some algebraic

simplification, `k can be expressed as follows

`k = I cos'k +Q sin'k

= R (cos cos'k + sin sin'k) ,

where R =
p
I

2 +Q

2 and  = arctan
�
Q
I

�
.

Thus, the likelihood function for the k-th symbol sk in and MPSK constellation

under the complex Laplacian perturbation given in (4.20) can be expressed as

`k = R cos( � 'k), (4.35)

Consequently, the decision criterion for MPSK symbols can be defined by selecting

the symbol which minimizes | � 'k|, where 'k =
2k⇡
M

.

An illustrative example for the MPSK decision regions, with M = 8, that maximizes

the likelihood function `k is shown in Fig.4.2 (same decision regions as those

analyzed in Sec. 3.1.3). Following similar methodology to 3.2.2, the decision regions

are obtained by defining the two coordinates rotations (X
1

, Y

1

), with rotation angle

�� ✓, and (X
2

, Y

2

), with rotation angle �+ ✓, where � is the symbol phase and

✓ = ⇡
M
. The circular symmetry of the interference PDF in (4.20) implies that all

symbols have similar error probability, and we can focus our study to the region
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Q

S
(− cos(φ), − sin(φ))

Iφ

X1

Y1

X2

Y2

Figure 4.2: Decision regions using maximum likelihood detector for 8-PSK.

between 0 and ⇡
2

. Hence, the total error probability can be deduced by considering a

generic single symbol and the error probability can be explicitly expressed in terms

of Y
1

and Y

2

as

Pe(�,�) = Pr[Y
1

� 0] + Pr[Y
2

 0]� Pr[Y
1

� 0, Y
2

 0]. (4.36)

where Y

1

and Y

2

are obtained from the aforementioned rotation as

2

64
Y

1

Y

2

3

75 =

2

64
� sin(�� ✓) cos(�� ✓)

� sin(�+ ✓) cos(�+ ✓)

3

75

2

64
I

Q

3

75 . (4.37)

Let us begin by computing Pr[Y
1

� 0]. In fact the probability that Y
1

> 0 is

equivalent to Pr[tan('� ✓)I �Q  0], because ' 2 [0, ⇡
2

� ⇡
M
]. Now let’s call
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X = tan('� ✓)I �Q, then the PDF of X can be written as

fX(x) =

Z

R
fI,Q(u, tan('� ✓)u� x)du. (4.38)

Which gives to the following expression of the first term of (4.36) as

Pr[Y
1

� 0] = Pr[X  0]

=

Z 1

0

Z

R
fI,Q(u, tan('� ✓)u+ x)dudx

=
2�

⇡

Z 1

0

Z

R
K

0

⇣
2
p
� A(u, x)

⌘
dudx, (4.39)

where A(u, x) = (u+ cos')2 + (tan('� ✓)u+ x+ sin')2.

Using a change of variable and the fact that the marginal of (4.20) is Laplacian, we

get Z

R

2

⇡

K

0

⇣
2
p
u

2 + v

2

⌘
du = e

�2|v|
,

and (4.39) can be further simplified to

Pr[Y
1

� 0] =
1

2
e

�2 sin ✓
p
�
. (4.40)

The same analysis can be used to compute the second term of (4.36), and a similar

results can be easily obtained

Pr[Y
2

 0] =
1

2
e

�2 sin ✓
p
�
. (4.41)

Finally, to compute the last term in (4.36), Pr[Y
1

� 0, Y
2

 0], we define

W

1

= Q� tan('� ✓)I and W

2

= tan('+ ✓)I �Q, then we have

Pr[Y
1

� 0, Y
2

 0] = Pr[W
1

� 0,W
2

 0].
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The PDF of the couple (W
1

,W

2

) can be written using the PDF of (I,Q), as

fW
1

,W
2

(w
1

, w

2

) =
2�

⇡

cos'2 � sin ✓2

sin 2✓
K

0

✓
2
p
�

cos'2 � sin ✓2

sin 2✓

p
A

1

(w
1

, w

2

)

◆
, (4.42)

where A

1

(w
1

, w

2

) = (w
1

+ w

2

+ cos')2 + (tan('+ ✓)w
1

+ tan('� ✓)w
2

+ sin')2.

The desired probability can be written as

Pr[Y
1

� 0, Y
2

 0] = Pr[W
1

� 0,W
2

 0]

=

Z 1

0

Z 1

0

fW
1

,W
2

(w
1

, w

2

)dw
1

dw

2

. (4.43)

By developing the squares in A

1

(w
1

, w

2

) and using a change of variable, (4.43) can

be expressed as

Pr[Y
1

� 0, Y
2

 0] =
1

2⇡ sin 2✓

Z 1

B

Z 1

B

K

0

✓
1

sin 2✓

p
u

2 + v

2 + 2uv cos 2✓

◆
dudv,

(4.44)

where B =
p
�

cos'2�sin ✓2

cos ✓
.

An integral representation of the Bessel function, available in [79, Eq. (2.13)],

K

0

(x) = 1

2

R1
0

1

t
e

�t�x

2

4t , can be used in (4.44). Hence we obtain a double incomplete

integral of an exponential with square argument, such term can be solved using the

two dimensional Gaussian Q function Q(·, ·, ·) [49, Eq. (4.3)]. Consequently, (4.44)
can be reduced to one integral as follows

Pr[Y
1

� 0, Y
2

 0] =

Z 1

0

e

�t
Q

✓
Bp
2t
,

Bp
2t
,� cos 2✓

◆
dt. (4.45)

On the other hand, from [49, Eq. (4.7)], the two dimensional Q function can be
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reduced to only one integral if its first two arguments are equal

Q(x, x,↵) =
1

⇡

Z ⇡

4

0

p
1� ↵

2

1� ↵ sin 2�
e

�x

2

2

1�↵ sin 2�

(1�↵

2

) sin

2

�

d�,

which is the case in (4.45). Using a suitable change of variable, and the integral

representation of K
1

(·) [79, Eq. (2.13)], (4.45) can be re-written as

Pr[Y
1

� 0, Y
2

 0] =
B

2⇡

Z 1

1

1
p
u

p
u� sin2

✓

K

1

✓
B

p
u

sin ✓

◆
du. (4.46)

An alternative expression of the Bessel function and the first term, that contains the

square root, in terms of the MGF is available in [55, Eq. (2.9.19)] and [55, Eq.

(2.9.6)], respectively

K

1

(x) =
1

x

G2,0
0,2


x

2

4

����
�
0, 1

�

1p
1� x

=
p
⇡G1,0

1,1


x

����
1

2

0

�
. (4.47)

These alternative expressions transform the integral in (4.46) as an incomplete

integral of the product of two MGF functions, which can be transformed also to an

integral of 3 MGFs

Pr[Y
1

� 0, Y
2

 0] =
sin ✓

2
p
⇡

Z 1

0

u

�3/2G0,1
1,1


x

����
1

0

�

⇥G0,1
1,1


x

sin2

✓

����
1

1/2

�
G2,0

0,2


x

B

2

4 sin ✓

����
�
0, 1

�
dx. (4.48)

Such integral can be easily solved using [62, Eq. (2.3)] in terms of BMGF. The

probability of error detection of one symbol with phase ' using maximum likelihood
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detector is given as follows

Pe(�,') = e

�2�
p
� � �

2
p
⇡

G0,1,1,0,0,2
1,1,1,1,2,0


�

2

,

4�2(1� �

2)

� (cos2 '� �

2)

����
1

2

�1

2

����
1

2

0

����
1, 0

�
�
, (4.49)

where � = sin
�

⇡
M

�
and ' takes the values 2k⇡

M
.

The total probability of error of MPSK modulation can be computed as the average

of the probability of error detection over all the symbols. Since we are focusing our

study to the region between 0 and ⇡
4

, the total SER of MPSK can be written as

PMPSK(e|�) = 4

M

M

4

�1X

k=0

Pe(�,'k) =
4

M

M

4

�1X

k=0

Pe(�,
2k⇡

M

). (4.50)

Finally by replacing (4.49) in (4.50), the conditional downlink bit error rate in 3NT

with Laplacian intra-cell interference and maximum likelihood detector for the

MPSK modulation is given by

PMPSK(e|�) =e

�2�
p
� � 2�

M

p
⇡

⇥
M

4

�1X

k=0

G0,1,1,0,0,2
1,1,1,1,2,0

2

4
�

2

,

4�2(1� �

2)

�

⇣
cos
�
2k⇡
M

�
2 � �

2

⌘
����

1

2

�1

2

����
1

2

0

����
1, 0

�

3

5
. (4.51)

Similar to the MQAM scheme, the SER of MPSK is expressed in terms of the

BMGF which impose high computational complexity. Therefore, a simplifying

approximation for the SER in MPSK modulation needed to be investigated.

Actually, the exact expressions for Pr[Y
1

� 0] and Pr[Y
2

 0] are already in the

exponential form, and hence, no approximation is required for these terms. On the

other hand, the BMGF appears in Pr[Y
1

� 0, Y
2

 0], which can be approximated

assuming independent interference components as in (3.27). Thereby, the

conditional downlink bit error rate in 3NT with Laplacian intra-cell interference for
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the MPSK modulation can be approximated by

P

A
MPSK(e|�) = e

�2�
p
� +

2 tan ✓

M(1 + tan ✓)
e

�2

p
�

+
1

M

M

4

�1X

k=1

sin 2✓

cos 2✓ + sin 4k⇡
M

e

�2

p
2� sin( 2k⇡

M

+

⇡

4

)
. (4.52)

4.4.3 Unified Expression of the SER

The error rates derived in (4.21), (4.22), (4.31), (4.32), and (4.52), can be expressed

using the following unified expression

SER =
nX

k=1

ake
�b

k

p
�
, (4.53)

where n, ak, and bk are related to the used modulation. Their possible values are

summarized in Table 4.1.

4.5 Average SER over EGK Fading Channel

Using the conditional error rates obtained in the previous section, the average SER

is derived by averaging over the EGK fading distribution on the downlink channel.

In the present model, assuming that E[|h|2] = 1, the average SIR is given by

�̄ = E[�] = P
d

A
d

P
u

A
y

. The PDF of � was defined in Sec. 2.1.2. The alternative

expressions of that PDF described in Sec. 2.1.3 will be used in the following

subsections to characterize the average SER.
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Table 4.1: SER Modulation-Specific Parameters n, ak, and bk

Modulation Specific Parameters
Modulation

Scheme n k ak bk

BPSK 1 1 1

2

1

PAM 1 1 ⇢(M) 2
q

3

M2�1

Approximated

Square-QAM
2

1 2⇢(
p
M)

q
6

M�1

2 �⇢(pM)2 2
q

6

M�1

Approximated

Rectangular-QAM
3

1 ⇢(MI) 2
p
3

d

2 ⇢(MQ) 2⌧
p
3

d

3 ⇢(MI)⇢(MQ) 2(1 + ⌧)
p
3

d

Approximated

MPSK

M
4

+ 1

1  k  n� 2 sin 2✓
M(cos 2✓+sin

4k⇡

M

)

2
p
2 sin

�
2k⇡
M

+ ⇡
4

�

n� 1 2 tan ✓
M(1+tan ✓)

2

n 1 2�
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4.5.1 Unified Average SER

From (4.53), the average SER can be determined by solving the integral

L(bk) =
R1
0

p�(�)e�b
k

p
�, where bk terms are defined in Table 4.1. Such integral has

been studied in the previous chapter (3.38), it was solved using the FHF in (3.45).

Hence, the average unified SER for BPSK, PAM, approximated QAM, and

approximated MPSK in 3NT with EKG fading on the downlink, Laplacian intra-cell

interference, and maximum likelihood detector is given by

SER =
nX

k=1

2ak
�(m)�(ms)

H2,1
1,2

"
��s

�b

2

k

�����
(1, 2)

(m,

1

⇠
)(ms,

1

⇠
s

)

#
, (4.54)

where ak and bk are defined in Table 4.1.

4.5.2 Exact Average SER for Rectangular QAM

The exact average SER of the QAM constellation is obtained by averaging (4.28)

over the SIR distribution (2.13). From (4.28), the average SER can be determined

by solving an integral in the form
R1
0

p�(�)PQAM(e|�)d�. The first two terms are

similar to (4.54) and expressed in terms of the FHF. While the last term is solved

using the Mellin representation of the BMGF [62]. Thereby, the average SER of

rectangular QAM in 3NT with EGK fading on the downlink, Laplacian intra-cell

interference, and maximum likelihood detector is described as

SERQAM =
2⇢(MI)

�(m)�(ms)
H2,1

1,2

"
��sd

2

12�

�����
(1, 2)

(m,

1

⇠
)(ms,

1

⇠
s

)

#

+
2⇢(MQ)

�(m)�(ms)
H2,1

1,2

"
��sd

2

12⌧ 2�

�����
(1, 2)

(m,

1

⇠
)(ms,

1

⇠
s

)

#
(4.55)

� ⇢(MI)⇢(MQ)

⇡�(m)�(ms)
H0,2,2,0,2,1

2,1,1,2,1,2

"
⌧

2

,

��sd
2

3�

����
(1
2

, 1), (1, 1)

(0, 1)

����
(1, 1)

(1
2

, 1), (0, 1)

�����
(0, 1)

(m,

1

⇠
), (ms,

1

⇠
s

)

#
.
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4.5.3 Exact Average SER for MPSK

Using a similar proof to (4.55), the average SER of MPSK modulation can be

obtained by averaging (4.51) over the PDF of �. The first two terms will give a

results similar to (4.54), while the last term can be expressed in terms of the BFHF

using the Mellin representation of the BMGF. Thus, the average SER of MPSK in

3NT with EGK fading on the downlink, Laplacian intra-cell interference, and

maximum likelihood detector is given by

SERMPSK =
2

�(m)�(ms)
H2,1

1,2

"
��s

4�2�

�����
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⇠
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� 2�
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⇡
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⇥
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3

5
. (4.56)

4.5.4 Special Cases of Fading and Simplification of SER

In what follows we investigate several special cases for the EKG distribution where

average SER reduces to more simplified expression. Note that we only consider the

special cases for the unified average SER given in (4.54), which is given in terms of

ak and bk defined in Table 4.1. On the other hand, the exact average SER of the

rectangular QAM and MPSK cannot be further simplified because they are

expressed in terms of the BFHF. Hence, only the approximations of the QAM and

MPSK SER (that are included in the unified formula in (4.54)) are investigated in

the following special cases. Note also that we are using the results described in

Table 3.2 that contains the special cases of L(·) for di↵erent type of fading.
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4.5.4.1 Generalized-K Fading

The GK fading is obtained by setting ⇠ = ⇠s = 1. From Table 3.2, the average SER

can be simplified to

SER =
nX

k=1

akp
⇡�(m)�(ms)

G2,2
2,2


4mms

�b

2

k

����
1, 1

2

m,ms

�
. (4.57)

This expression is in terms of the MGF which is less complex in terms of

computation than the FHF.

4.5.4.2 K Fading Distribution

The K distribution is a special case of the generalized-K fading distribution, that is

obtained by setting ⇠s = ⇠ = 1 and ms = 1. Hence the average SER can be

simplified to

SER =
nX

k=1

akp
⇡�(m)

G2,2
2,2


4m

�b

2

k

����
1, 1

2

1,m

�
. (4.58)

4.5.4.3 Generalized Nakagami-m GNM

From Table 3.2 the ASER expression of GNM fading can be reduced to

SER =
nX

k=1

2ak⇠

�(m)

✓
�

b

2

k�

◆m⇠

�

 
2m⇠, 0,

✓
�
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2

k�

◆⇠

,�2⇠

!
. (4.59)

4.5.4.4 Nakagami-m

The Nakagami-m fading distribution is a special case of the GNM when ⇠ = 1.

Using the special case of L(·) in Table 3.2, the average SER further simplifies to

SER =
nX

k=1

2ak�(2m)

4m�(m)
U

✓
m,

1

2
,

b

2

k�

4m

◆
. (4.60)
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4.5.4.5 Rayleigh Fading

Rayleigh fading is the last and simplest special case, which is a special case of the

Nakagami-m fading for m = 1. In this case, the SER is obtained in its simplest form

as

SER =
nX

k=1

ak

 
1� bk

p
⇡�e

b

2

k

�

4

Q

 
bk

r
�

2

!!
. (4.61)

Although the average SER over any special case of fading of the EGK can be

deduced from (4.54) by setting the quadruplet (m,ms, ⇠, ⇠s) to the desired values,

the previous studied special cases are highlighted because they are the most

commonly used distribution to characterize the flat fading channels. Moreover, the

results obtained in this section and Table 3.2 are given in their simplest forms, which

require several manipulations after substituting (m,ms, ⇠, ⇠s) by their desired values.

4.6 Throughput Analysis

The error rate analysis shown in Section 4.4 shows only the negative e↵ect of the

FD communication in 3NT. This is because the error rate for a given modulation

scheme is a function of the SIR only which is degraded by the intra-cell interference.

In order to see the overall e↵ect of the 3NT FD communication, we look at the

throughput which is a function of both the degraded SIR as well as the improved

BW. The throughput is defined as

T =
log

2

(M)
�
1� SER

�

ts

(4.62)

where log
2

(M) is the number of bits per symbol, ts is the symbol duration, and

SER is the average SER. For the HD case, we assume error free transmission and
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channel BW of B. Consequently, the HD throughput is given by

THD = B log
2

(M). (4.63)

For the FD case, the 3NT increases the channel BW to 2B on the expense of

intra-cell interference that imposes detection errors. Consequently, the FD

throughput is given by

TFD = 2B log
2

(M)
�
1� SER

�
. (4.64)

For each modulation scheme, we define the throughput gain imposed by the 3NT

FD communication as

G =
TFD

THD

= 2
�
1� SER

�
. (4.65)

where SER is given in (4.54), (4.55), and (4.56).

4.7 Numerical Results

This section shows some selected numerical results supported by Monte Carlo

Matlab® simulations to validate the developed mathematical paradigm and obtain

insights into the 3NT FD operation. Particularly, we validate the Gaussian

signaling assumption for the interfering symbol in (4.1), the dominance of the

intra-cell interference when compared to the noise in (4.2), and the MQAM and

MPSK error rates approximations in (4.31) and (4.52), respectively.

All results are plotted against the average SIR �̄ = P
d

A
d

P
u

A
u

, which is varied from 0 dB

to 40 and/or 50 dB to capture the 3NT operation in di↵erent types of BSs. That is,

we can infer the cell size (i.e., BS type) from the average SIR value. For instance,

the transmit power of small BSs (e.g., femto and pico BSs) is comparable to the UE

power, which is typically in the range of 200 mW to 1 W. Therefore, in small BS
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scenario the average SIR term depends on the relative large-scale attenuation

factors Ad and Au, which may lead to small values of �̄. Macro BSs transmit power

is typically several tens of watts, and hence, in a Macro BSs scenario the downlink

power Pd dominates the average SIR term leading to high values of �̄.
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QPSK & Raylgeih
BPSK & Rayleigh
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Unfaded BPSK
Noisy Simulation
Simulation Scenario 2

Figure 4.3: SER of BPSK and QPSK schemes with and without Rayleigh fading.

Fig. 4.3 shows the SER of BPSK and 4-QAM (or equivalently QPSK). In Fig. 4.3

the analysis is validated via two simulation scenarios, namely the “Noisy

Simulation” and “Simulation Scenario 2”. In the Noisy Simulation, the received

signal is perturbed by a Gaussian noise in addition to the Laplacian interference,

which perfectly matches the analysis and validates the derived SER expressions.

The interfering UE in Simulation Scenario 2 randomly and uniformly alternates

between BPSK and M-QAM for M 2 {4, 16, 64}. Hence, Simulation Scenario 2

validates the Gaussian signaling assumption of the interfering UEs. The figure shows
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that the accuracy of the Gaussian signaling assumption is better for faded downlink

scenarios. This is because fading on the downlink increases the level of uncertainties

in the detection process at the test UE, which puts less significance on the

interfering symbol distribution from the interfering UE and vice versa. Nevertheless,

the Gaussian signaling approximation always shows good accuracy in the low SIR

regime, which is a critical region of operation to avoid throughput degradation.
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Figure 4.4: SER of QPSK and 16-QAM schemes over Nakagami-m fading for
m = 1, 2, and 10 and negligible noise. The stars denote the simulation results and

the squares denote the approximation SER.

Fig. 4.3 and Fig. 4.4 show the cost of intra-cell interference in terms of error

probability for di↵erent modulation schemes and fading models on the downlink.

Generally, the figures show that intra-cell interference can severely degrade the

downlink performance at low SIR, which may happen in small-cell scenario due to

the small transmit power as well as the small BS footprint (i.e., users pairs can be
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close to each other). On the other hand, the e↵ect of intra-cell interference

diminishes in macro cells (i.e., at high �̄ value) specially for good downlink channel

condition. The figure also shows that the gap between the constellations decreases

by increasing the fading severity (from 5dB to 2dB for SER=10�5), which is due to

the dominance of the fading conditions on the error probability.
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Figure 4.5: SER of 16PSK scheme through Rayleigh fading and Nakagami-4
channels with di↵erent values of INR. The stars denote the analytical results

without noise.

Fig. 4.5 is plotted to investigate the Laplacian interference dominance assumption in

(4.2) and to show the model accuracy when varying the

interference-to-noise-power-ratio (INR). The figure draws the SER of 16PSK scheme

in two types of fading channel, namely, Nakagami-4 channel and Rayleigh channel.

The SER is plotted versus the signal to interference plus noise ratio (SINR) (where

�

2

n represents the noise power) for fixed noise-plus-interference power but di↵erent
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values for the INR. Particularly, three values of INR are investigated, (i) dominant

interference INR = 20 dB, (ii) less dominant interference INR = 10 dB, and (iii)

equal ratio between interference and thermal noise INR= 0dB. At first, the figure

shows a close match between the theoretical results and simulations in all fading

scenarios and INR values at low SINR regime. However, at high SINR regime, the

model accuracy depends on the fading scheme. In the Rayleigh fading scenario, the

noise e↵ect is negligible and the theoretical results exactly matches all INR cases in

the high SINR regime. However, in Nakagami-4 scenario (i.e., less fading severity)

the theoretical results represent an upper-bound for the SER at high SINR regime

due to the heavy tailed distribution of the Laplacian perturbation. Note that the

gap between the theoretical results and simulations diminishes at sever fading (i.e.,

Rayleigh) and/or low SINR regime because the e↵ect of the noise/interference tail

distributions on the SER performance is not significant. That is, the error may

occur at low values of interference plus noise, and hence, the tail distribution does

not have a prominent e↵ect. On the other hand, at high SINR regime and/or less

sever fading, the error occurs at high interference plus noise power. Hence, the tail

distribution e↵ect becomes prominent and the gap is more noticeable.

Fig. 4.6 shows the complete picture of the intra-cell interference e↵ect imposed by

the 3NT FD by looking at the throughput gain with respect to the interference free

HD scenario. Interestingly, the figure shows that the throughput gain is always

greater than unity for BPSK regardless of the SIR severity. This is because the FD

doubles the transmission rate while the worst case error probability for BPSK is one

half. However, for higher modulation schemes, which are typical for downlink

transmission, the intra-cell interference can significantly degrade the e↵ective

throughout. For instate, and 80% throughout degradation occurs for 64-QAM

modulation at 0 dB SIR. On the other hand, at high SIR regime, 3NT doubles the

e↵ective throughput. The throughput gain, which relays on the developed error rate
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Figure 4.6: Throughput gain of BPSK and QPSK over Rayleigh and Nakagami-0.5.

model, can be used to maximize the transmission rate via adaptive modulation

based on the experienced SIR and fading severity.

4.8 Conclusion

This chapter developed a mathematical paradigm to study downlink error rate and

throughput for half-duplex users when served by FD BSs via 3-node topology

(3NT). Assuming that the interfering user transmits Gaussian signals and the

interference channel experience Rayleigh fading, the base-band intra-cell interference

is shown to be Laplacian with dependent real and imaginary parts. A closed form

expressions were derived later for the average symbol error rate for BPSK, PAM,

and QAM modulation schemes for unfaded and EKG faded downlink channel. To

this end, we derive the e↵ective throughput gain imposed by 3NT FD when
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compared to an idealized interference and noise free HD scenario. The results show

the severe degradation that may happen when employing 3NT FD in small cells,

specially for schemes with big constellation sizes. On the other hand, 3NT provide

nontrivial gains when employed in macro cells which high downlink transmission

power. The developed paradigm can be used to adaptively change the modulation

scheme according the SIR and downlink channel condition to maximize the

downlink throughput.

By the end of this part of the thesis, we may notice that we studied the performance

of several communication system that are perturbed by generalized Gaussian noise,

independent Laplace noise, and dependent Laplace interference. However, another

type of perturbation namely ↵ stable noise is of interest. In the following chapter,

the statistics of the symmetric ↵ stable distribution are investigated. Moreover, the

performance of some digital communication systems operating in environments

perturbed by ↵-stable noise is presented.
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Chapter 5

Performance Analysis over a

Channel with Additive Symmetric

↵ Stable Noise

The ↵-stable distribution was defined the first time by Lévy [31]. Actually, the

stable distribution is defined only by its CHF[12]. This distribution is parameterized

by the stable parameter ↵ (0 < ↵  2), the skewness parameter � (�1  �  1), the

scale parameter � (� > 0), also known as the dispersion, and the location µ (µ 2 R)

that gives the distribution mean for 1 < ↵  2 and the median for 0 < ↵  1. The

dispersion � denotes the spread around the location parameter µ, it behaves like the

variance [48]. The symmetric ↵-stable distribution, noted also as S↵S, is obtained

by setting � = 0. We are focusing on this chapter on the symmetric distribution

rather than the general distribution because it is the mainly used distribution in the

literature.

It should be mentioned that the PDF and CDF of the ↵-stable distribution were not

expressed in closed-form previously. Thus the purpose of this chapter is to find a

closed form expressions of the PDF and CDF of the S↵S distribution by solving the

inverse Fourier integral using the S↵S characteristic function. In addition, and as
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an application, a closed form of the probability of error of SISO digital

communication system in presence of S↵S perturbation is investigated using

di↵erent modulation schemes (BPSK, PAM, and QAM).

5.1 Statistics of the S↵S Distribution

If a random variable X follows an S↵S distribution, then its CHF can be expressed

as [12]

'X(t) = e

jµt�|ct|↵
, (5.1)

where µ is the location parameter and c is the dispersion parameter. Note that � in

[12] is replaced by c to avoid any confusion in what follows with the SNR �.

5.1.1 PDF of S↵S Random Variable

The PDF of the S↵S distribution can be obtained by the inverse Fourier transform

of the CHF. Actually the PDF of X, denoted by fX(x,↵) has an integral expression

as follows

fX(x,↵) =
1

2⇡

Z
+1

�1
'X(t)e

�jxt dt. (5.2)

The major result in this chapter is obtained by solving this integral. In fact, we may

replace the CHF by its expression in (5.2) to get

fX(x,↵) =
1

2⇡

Z
+1

�1
e

jt(µ�x)t�|ct|↵ dt. (5.3)

Since the function t ! |t| is an even function, the integral in (5.3) can be written as

a cosine transform of e�|ct|↵

fX(x,↵) =
1

⇡

Z 1

0

cos (t(x� µ)) e�c↵t↵ dt. (5.4)
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Now we recall an alternative expressions of the cosine function [55, Eq. (2.9.8)] and

exponential function [55, Eq. (2.9.4)] in terms of the FHF

cos(x) =
p
⇡ H1,0

0,2


x

2

4

����(0, 1), (1
2

, 1)

�
(5.5)

e

�x↵

=
1

↵

H1,0
0,1


x

����(0, 1

↵
)

�
. (5.6)

Then (5.4) is transformed to an integral of a product of two FHFs

fX(x,↵) =
1

↵

p
⇡

Z 1

0

H1,0
0,1


ct

����(0, 1

↵
)

�
H1,0

0,2


(x� µ)2

4
t

2

����(0, 1), (1
2

, 1)

�
dt, (5.7)

which can be solved using the identity (2.21) to get a closed form of the PDF of the

S↵S distribution as follows

fX(x,↵) =
1

↵c

p
⇡

H1,1
1,2


(x� µ)2

4c2

����
(1� 1

↵
,

2

↵
)

(0, 1), (1
2

, 1)

�
. (5.8)

Since µ is the median of the S↵S distribution and the mean is not defined for

↵ < 1, we will assume that µ behaves like the mean in the analysis below. In the

same analogy, the variance is not defined for all values of ↵ so the Gaussian variance

(i.e. �2 = 2c2) will be considered as the variance of the random variable X.

5.1.2 CDF of S↵S Random Variable

The CDF appears as the primitive of the PDF that vanishes at �1. From (5.4),

the cosine function is replaced by its primitive (i.e. sine function) and using the

representation of the sine function in terms of the FHF available in (4.12) and [55,

Eq. (2.9.7)]

sin(x) =
p
⇡ H1,0

0,2


x

2

4

����(1
2

, 1), (0, 1)

�
, (5.9)
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we get an integral of a product of two H functions which can be solved in

closed-form (2.21) to express the CDF of S↵S distribution as

FX(x,↵) =
1

2
+

sign(x� µ)

↵

p
⇡

H1,1
1,2


(x� µ)2

4c2

����
(1, 2

↵
)

(1
2

, 1), (0, 1)

�
, (5.10)

where sign(x) is the signum of x, and the 1

2

term is to ensure that the CDF vanishes

at �1.

Another function, that looks interesting to define, is the CCDF. Actually the CCDF

is used essentially to compute the probability of error of di↵erent communication

systems. To simplify things, we denote by  ↵(x) the CCDF of a standard S↵S

distribution, i.e. µ = 0 and � = 1 (c2 = 1

2

). In other words,  ↵(x) = 1� FX(x,↵)

can be expressed as

 ↵(x) =
1

2
� 1

↵

p
⇡

H1,1
1,2


x

2

2

����
(1, 2

↵
)

(1
2

, 1), (0, 1)

�
, 8 x � 0, (5.11)

and  ↵(x) = 1�  ↵(�x) for x < 0.

5.1.3 S↵S Distribution for Rational ↵

For rational values of ↵, the PDF of zero median S↵S distribution can be expressed

in terms of the MGF [55, Eq. (2.9.1)]. In fact, by application of the identity [60, Eq.

(8.3.22)], that relates the FHF and the MGF for rational parameters, to (5.8), a

new epxression of the PDF can be given as

fX(x,
p

q

) =
(2q)

q

p

c (2⇡)q

r
q

p

Gp,2q
2q,2p

2

4x
2p(2q)2q

(2pc)2p

������

�
⇣
2q, 1� q

p

⌘

�(p, 0),�(p, 1
2

)

3

5
, (5.12)

where p and q are positive integers defined as ↵ = p
q
, and �(k, b) is the sequence

defined by �(k, b) = b
k
,

b+1

k
, · · · , b+k�1

k
.

Using the same identity [60, Eq. (8.3.22)], the CCDF can be written also in terms of
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the MGF for rational values of ↵ as

 

p

q

(x) =
1

2
+

1

(2⇡)q

r
q

p

Gp,2q
2q,2p


x

2p(2q)2q
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),�(p, 0)

�
. (5.13)

5.2 Conditional Error Rates

In this section we investigate the probability of error of a SISO communication

system with di↵erent modulation schemes conditioned over the defined SNR. In

fact, let’s assume that the mathematical model of the system is similar to the

system in (2.14), R = HS +N . The perturbation N 2 R is modeled by an S↵S

distribution (rather than generalized Gaussian in Chapter 2). It can represent either

additive noise or additive interference with negligible thermal noise according to the

application in use. We assume that the discrete time model at the output of the

optimal filter is the same as described in (2.14). In addition, the noise defined

variance is �2 and the instantaneous SNR is defined in (2.9) by � = H2E
S

�2

, while the

average SNR per symbol at the receiver is equal to � = E[�] = E[H2

]ES
�2

. In what

follows, the conditional error probability of several digital communication systems

over S↵S perturbation is investigated.

5.2.1 BER of BPSK over S↵S Perturbation

Let S± = ±p
ES be the binary transmitted signal. Hence, the received signal R is

considered as an S↵S random variable with location parameter µ = ±Hp
ES. Since

the transmitted symbols have the same a-priori probability of occurrence, the ML

detector decides ±p
ES if fR(r| ±

p
ES) � fR(r|⌥

p
ES). Using a similar analysis

as that provided in Section 2.2, the decision can be made using the monotonicity of

the PDF. To do so, let us compute the derivative of the PDF of a standard S↵S to

confirm its decreasing behavior in the positive range. Actually using the derivative
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formula of the FHF [55, Eq. (2.2.7)], we obtain the following expression

dfX

dx

(x,↵) = � 2

↵cx

p
⇡

H1,1
1,2


x

2

4c2

����
(1� 1

↵
,

2

↵
)

(1, 1), (1
2

, 1)

�
. (5.14)

The FHF in (5.14) is similar to the FHF in (5.8) and so it is a positive function (it

was also checked numerically that its a positive function). Thus it is clear from

(5.14) that the fR is a decreasing function. Then the ML detector can be given as

(2.16)

Decide S± if

�����R�
r

N
0

ES
� S±

����� 
�����R�

r
N

0

ES
� S⌥

����� . (5.15)

Finally the the BER of BPSK system can be obtained as

PBPSK (e|�) =  ↵(
p
�). (5.16)

5.2.2 SER of PAM Constellation

In this application, we consider an M -PAM constellation with distance between

symbols d, the symbol error rate of PAM can be deduced from the BER of a BPSK

modulation. Similar to the analysis done in Section 2.3, the SER of PAM contains

two terms, the first term related to the outermost symbols (2 symbols), while the

second term considers the remaining M � 2 symbols. In more details, the first term

is equal to the error between an outermost symbol and its closest neighbor with

distance between them d, which results on Pout = PBPSK(e| d� ) =  ↵(
d
�
). The second

term is equal to the error between one of the M � 2 remaining symbols and its

neighbors (2 symbols), so Pin = 2PBPSK(e| d� ) = 2 ↵(
d
�
). By combining all the terms

we get the SER of the M -PAM constellation as

PPAM (e|d) = 2

M

✓
 ↵

✓
d

�

◆
+ (M � 2) ↵

✓
d

�

◆◆
= 2

✓
1� 1

M

◆
 ↵

✓
d

�

◆
, (5.17)
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where the average energy per symbol is computed as ES = d2

12

(M2 � 1). Finally the

conditional SER in terms of the SNR, �, is obtained as

PPAM (e|�) = 2

✓
1� 1

M

◆
 ↵

 r
3�

M

2 � 1

!
. (5.18)

5.2.3 SER of QAM Modulation

The QAM constellation is constructed by two orthogonal PAM modulations, such

that the in-phase MI-PAM and the quadrature phase MQ-PAM. Since both

component of noise (or interference) are assumed to be independent, a correct

reception of the QAM symbol holds only when there is a correct reception of the

independent PAM signals. An expression of the SER of QAM modulation in

presence of S↵S noise is given by

PQAM(e)=2

✓
1� 1

MI

◆
 ↵

✓
dI

�

◆
+2

✓
1� 1

MQ

◆
 ↵

✓
dQ

�

◆

� 4

✓
1� 1

MI

◆✓
1� 1

MQ

◆
 ↵

✓
dI

�

◆
 ↵

✓
dQ

�

◆
, (5.19)

where dI and dQ are the in-phase and quadrature phase decision distance,

respectively. Note that the average energy per symbol is expressed as

ES =
1

12
d

2

Q(M
2

Q � 1) +
1

12
d

2

I(M
2

I � 1). (5.20)

The product of two  ↵ functions is negligible regarding one  ↵, so the expression of

the SER of QAM modulation can be approximated as the sum of the first two terms.

It is worth mentioning that all the previous BER and SER are expressed in terms of

 ↵(t
p
�), where t depends on the desired modulation.
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5.3 Average Error Rates Over EGK Fading

5.3.1 Exact Expressions

The previous analysis is done conditioned on the channel fading. As mentioned

previously, let’s assume that the fading follows an EGK distribution Sec. 2.1.2.

Using the fact that the error rates of the BPSK, PAM, and QAM are expressed in

terms of  ↵(t
p
�), we need to average that function over the SNR distribution to

get  ↵(t)

 ↵(t) =

Z 1

0

 ↵(t
p
�)p�(�)d�. (5.21)

In fact the  ↵(·) function is already expressed in terms of the FHF and an

expression of the p�(�) in terms of FHF is available in (2.13). An integral of the

product of two FHF occurs, which can be solved using the identity (2.21) to get

 ↵(t) =
1

2
� 1

↵

p
⇡�(m)�(ms)

H3,1
2,3

"
2��s
�t

2

�����
(1
2

, 1)(1, 1)

(0, 2

↵
)(m,

1

⇠
)(ms,

1

⇠
s

)

#
. (5.22)

Thus the average error rates of BPSK and PAM and approximately the QAM are

expressed as

PrBPSK(e) =  ↵(1)

PrPAM(e) = 2

✓
1� 1

M

◆
 ↵

 r
3

M

2 � 1

!

PrQAM(e) ⇡ 2

✓
1� 1

MI

◆
 ↵ (AI) + 2

✓
1� 1

MQ

◆
 ↵ (AQ) , (5.23)

where AI = dI/� and AQ = dQ/�.

The last expression of the SER of QAM constellation is an approximation of the

exact value. In fact the last term, which is the product of two  ↵(·) functions , is
neglected regarding the first two terms that contains the sum of two  ↵(·). In
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addition, the average of the neglected term appears as an integral of the product of

three FHF, such integral can be solved using the BFHF and the identity (2.48)

which is considered as a future work together with the SER of MPSK subject to

S↵S perturbation.

5.3.2 Asymptotic Expansion

Since the expressions of the error probability are in terms of a complex function,

such that the FHF, an approximation of the error rates at high SNR is important to

study. In fact, the asymptotic approximation of the function  ↵(·) for high SNR

can be obtained from the properties of the FHF [55, Ch. 1] as

 ↵(a)
��1⇡ 1

↵

p
⇡�(m)�(ms)
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, (5.24)

where h

1

and h

2

are given by
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5.3.3 Special Cases of S↵S

The closed form of  ↵(·) in (5.22) is a general formula. We now focus on some

special cases of noise and fading. Three cases of noises will be studied in this

section. In particular, we focus on the noise with ↵ = 1

2

, the Cauchy noise for which

↵ = 1, and the Gaussian noise for which ↵ = 2.
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5.3.3.1 S↵S with ↵ = 1

2

The averaged CCDF over the EGK distribution,  1

2

(t), is obtained from (5.22) as

 1

2

(t) =
1

2
� 2p

⇡�(m)�(ms)
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2,3
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�����
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, 1)(1, 1)
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⇠
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s

)

#
. (5.25)

In Table 5.1, a simplified expressions of the function  1

2

(·) and its asymptotic

expansion are given for the GNM, Nakagami-m and Rayleigh fading distribution.

Actually these distributions can be obtained from the EGK by setting the

parameters (m,mS, ⇠, ⇠s) to (m,1, ⇠, 1), (m,1, 1, 1), and (1,1, 1, 1) respectively.

Table 5.1: Average CCDF,  1
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5.3.3.2 Cauchy Distribution, ↵ = 1

The averaged CCDF over the EGK distribution,  
1

(t), is obtained from (5.22) by

replacing ↵ by 1. The simplified results for the Cauchy distribution are summarized

in Table 5.2. In Table 5.2, �(·, ·) is the upper incomplete Gamma function [57, Eq.

(2.2)].
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Table 5.2: Cauchy Distribution: Average CCDF,  
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(a) and its asymptotic
expansion
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5.3.3.3 Gaussian Distribution, ↵ = 2

The Gaussian distribution is obtained from the S↵S distribution by setting ↵ = 2.

The simplified results for the Gaussian distribution and asymptotic approximation

are summarized in Table 5.3. Note that this is a new way to get the average SER of

the studied constellation in the presence of EGK fading and Gaussian noise. The

results presented in Table 5.3 are in agreement with those investigated in (2.23),

(2.58), and (2.62). Moreover, the newly obtained asymptotic approximations of

these SER are expressed in terms of elementary functions and can be used also in

Chapter 2.

Table 5.3: Gaussian Distribution: Average CCDF,  
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5.4 Simulations and Numerical Results

In this section, we show some selected numerical and simulated results to illustrate

the analytical results derived earlier in this chapter. The simulations are done using

the Monte Carlo method using Matlab®. The S↵S random variables are generated

using the process described in [12].
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BPSK (Analytical)
8−PAM (Analytical)
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α=1.5 

α=0.5 

Figure 5.1: SER of BPSK and 8-PAM schemes with ↵ = 0.5 and 1.5 and Rayleigh
fading. The dashed lines denote the asymptotic results, while the stars represent the

simulated results

In Fig. 5.1, we draw the probability of error versus the received SNR (dB) for two

modulation schemes (BPSK and 8-PAM) and using two values of ↵ (0.5 and 1.5)

over a Rayleigh fading. From the figure, and as expected, both modulation schemes

have better performance when operating under the larger value of the stable

parameter ↵. As a confirmation of our mathematical derivations, note that, (i) the
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simulation results match perfectly the analytical results, (ii) the asymptotic results

converge to the exact analytical results for high SNR.
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Figure 5.2: SER of 4-PAM over S↵S noise, ↵ = 0.3, 1, and 1.8 through
Nakagami-m fading (m = 1, 4, and 10). The stars represent the simulated results

The second illustration in Fig. 5.2 shows the performance of 4-PAM over the stable

noise for 3 values of the stable parameter ↵, low value ↵ = 0.3, moderate value

↵ = 1 (Cauchy), and high value ↵ = 1.8 (near Gaussian) with a Nakagami-m

channel with high fading severity m = 1, moderate severity m = 4, and low severity

m = 10. A general overview from the figure shows that the system performance

increases by increasing ↵ and the best performance is obtained when the noise tends

to be Gaussian (↵ ! 2). Furthermore, the SER decreases by increasing the fading

figure (reduce the fading severity) as expected. However, for low value of ↵ = 0.3,

the gap between the SER corresponding to m = 1 and m = 10 is small, while for
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↵ = 1.8 the gap is more important. In fact for small values of ↵, the noise becomes

more impulsive, so the error mainly happen from the potential high amplitudes of

the noise and this e↵ect dominates the errors due to the presence of the fading. On

the other hand when the noise approaches a Gaussian behavior (i.e. ↵ close to 2), it

loses its impulsive nature and the system tends to be an AWGN channel subject to

flat fading and this explains the well-known gap between the high and low severity

fading scenarios.
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Figure 5.3: SER of 4QAM and 16QAM for ↵ = 0.5, and 1.5 over Nakagami-4
fading. The dashed lines denote the asymptotic results, while the stars represent the

simulated results

Fig. 5.3 shows the performance of a QAM modulation under S↵S noise and

compare the approximated result with the exact values of the SER. As seen in

Fig. 5.1, the system performance improves by increasing ↵. Moreover, the gap

between the approximated analytical expression (5.23) and the exact results,
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obtained by simulation, is small for low SNR. The gap decreases for moderate and

high SNR and both curves match almost perfectly for high SNR and both schemes

(4-QAM and 16-QAM) and both values of ↵. In addition, the asymptotic expansion

shows a good approximation of the SER for high SNR which confirm their

usefulness in such conditions.

5.5 Conclusion

In this chapter, we derived a closed-form expression of the PDF of a symmetric ↵

stable distribution using the properties of the FHF and the inverse Fourier

transform of its CHF. As a consequence, the CDF of the S↵S distribution has been

also derived and used to compute the conditional error probability of di↵erent

modulation schemes in digital communication system (BPSK, PAM, and QAM).

Next, the average probability of error of these systems has been investigated over an

EGK flat fading distribution and some special cases were analyzed to get more

simplified expressions. Finally, Monte-Carlo simulation results confirmed the exact,

approximated mathematical results and the simpler asymptotic expressions for high

SNR. Though the average SER of QAM constellation has been derived

approximately, the exact ASER of QAM will be investigated in a future work

together with the SER of MPSK subject to S↵S perturbation.
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Chapter 6

Conclusion

6.1 Summary

In this work, we considered the performance of many communication systems

perturbed by non-Gaussian noise. Such performance are analyzed by getting the

probability of error. Many families of non-Gaussian distribution have been studied

in the literature, three of them were further investigated in this thesis, viz the GG

noise, the Laplace noise/interference, and the ↵-stable noise. The work done in the

GG part concentrated on computing and getting a closed form of the probability of

error (BER and SER) and its average for many constellation, i.e. BPSK, PAM,

QAM. For the Laplace noise, the study focused on the SER of an MPSK

constellation while the Laplace interference part, in this thesis, presented an

investigation on the PDF of the interference with application to full duplex cellular

network performance. Finally, the PDF and CDF of the ↵ stable were expressed in

closed form and the error rates of BPSK, PAM, and QAM over channels perturbed

by additive ↵ stable noise have been derived and averaged over the EGK

distribution.

In BPSK and PAM case, namely 1�D constellation, the probability of error (PE)

was easily found using the generalized Gaussian Q function, Q↵(·), which is

averaged over a generalized multiplicative noise modeled by an EGK distribution,
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such distribution can model the most common fading types. To derive a closed form

of the PE, the Q↵(·) function and the EGK distribution were alternatively expressed

in terms of the FHF, which leads to express the ABER/ASER in terms of the FHF.

On the other hand, for the 2�D constellations, QAM and MPSK, the study was

more complicated. In QAM model, the PE was expressed by assuming that a correct

decision results from a correct decision in the two phases PAM signals, in-phase and

quadrature phase signals. Hence the resulting SER contains the product of two Q↵.

By averaging it, the ASER ends up being an integral containing a product of three

FHFs and as a result the final closed form is derived in terms the BFHF. Note that

the simplified expressions were presented for special cases of noise (e.g. Gaussian,

Laplace, and uniform) and fading (e.g. Rayleigh and Nakagami-m). The other

studied constellation was the MPSK constellation. Due to its circular character, it is

di�cult to study such constellation in GG noise, so we reduced the study to a

special case of non-Gaussian distribution, namely the Laplace distribution.

Two types of Laplace distribution were used. In the first family, the complex

component of the noise are assumed to be independent and so the performance of

two detectors were analyzed, ML and MD detectors. The ML detector, that is based

on the L

1

norm, gives better results than the MD detector, based on minimum

distance. However the latter presents simpler derivation of the ASER. The gap

between these detectors was drawn using simulation results and it is shown that its

very small especially in presence of fading and by increasing the constellation size.

The selected numerical results confirm the analytical results and show the impact of

the fading parameters on the average probability of error. On the other hand, the

second Laplace family consists of a Laplace interference where the complex

components are dependent and uncorrelated. In this context, it was proved that the

intra cell interference in a full duplex BS via 3-node topology has a Laplacian

distribution with dependent complex component. A mathematical paradigm was
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developed to study downlink error rate and throughput for half-duplex users when

served by FD BSs via 3NT . Assuming that the interfering user transmits Gaussian

signals and the interference channel experience Rayleigh fading, the base-band

intra-cell interference is shown to be Laplacian with dependent real and imaginary

parts. As a result, a closed form expressions was derived for the average symbol

error rate for BPSK, PAM, QAM, and MPSK modulation schemes for unfaded and

EKG faded downlink channel. Furthermore, it was proved that the ML coincide

with the MD when dealing with such type of interference. To this end, we derive the

e↵ective throughput gain imposed by 3NT FD when compared to an idealized

interference and noise free HD scenario. The results show the severe degradation

that may happen when employing 3NT FD in small cells, specially for schemes with

big constellation sizes. On the other hand, 3NT provides nontrivial gains when

employed in macro cells which high downlink transmission power. The developed

paradigm can be used to adaptively change the modulation scheme according to the

SIR and downlink channel condition to maximize the downlink throughput.

Finally, a closed-form expression of the PDF of a symmetric ↵ stable distribution

was derived using the properties of the FHF and the inverse Fourier transform of its

CHF. As a consequence, the CDF of the S↵S distribution was also derived and used

to compute the conditional error probability of di↵erent modulation schemes in

communication system (BPSK, PAM, and QAM). An approximation of the SER of

the QAM was described and an asymptotic expansion for high SNR of the SER of

the deployed constellations was investigated also. Thereby, some selected numerical

results have showed that these expressions present a good approximations of the

error rates. Finally, the average probability of error was investigated over an EGK

flat fading distribution and some special cases were analyzed to get more simplified

expressions.



146

6.2 Possible Extensions

The present work has opened a new window on the system performance analysis

area by assuming a non Gaussian perturbation and during the period of time

allocated to that project, many other works dealing with non Gaussian noise (and

especially the GGN) have been published where di↵erent schemes are used to

analyze their performance (MIMO scheme, adaptive filtering, study of capacity...).

While this thesis presents a drop on that field, it can be extended in many ways to

explore the obtained results in the analysis performance of digital communication

system. Actually the probability of error of MPSK perturbed by an ↵ stable

noise/interference can be studied using the CDF of S↵S, its PDF also can be used

to get the decision regions of that scheme. Other possible extension is the error rate

of MPSK over GGN which was omitted in this thesis because it relies on the

distribution of the sum of two independent GG random variables. This has been

actually recently done and presented in Appendix B. In addition, a similar study

focusing on the distribution of the phase angle between two vectors perturbed by

GGN would be of great interest. Initial investigations resulted in some integral

expressions which could not be solved using the available tools in the literature,

even using the BFHF because of the definition of the GGN. However, it is expected

that some results can be obtained for the Laplacian special case. Other extensions

can also be made in the signal processing field along the lines of our work on the

design of a reduced rank adaptive filter operating in an impulsive noise

environment, which was modeled by an ↵ stable distribution [45].
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APPENDICES

Appendix A: Special Cases of the EGK

Distribution

Table A.1: Some Special Cases of the EGK Distribution

Envelope Distribution m ⇠ ms ⇠s

Rayleigh
1 1 1 1
1 1 1 1

Maxwell
3/2 1 1 1
1 1 3/2 1

Half-Normal
1/2 1 1 1
1 1 1/2 1

Exponential
1 1/2 1 1
1 1 1 1/2

Weibull
1 ⇠ 1 1
1 1 1 ⇠s

Nakagami-m
m 1 1 1
1 1 ms 1

GNM[61]
m ⇠ 1 1
1 1 ms ⇠s

Gamma
m 1/2 1 1
1 1 ms 1/2

Generalized Gamma [80, 81]
m ⇠/2 1 1
1 1 ms ⇠s/2
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Envelope Distribution m ⇠ ms ⇠s

Half-Normal-Exponential
1/2 1 1 1
1 1 1/2 1

Half-Normal-Gamma
1/2 1 ms 1
m 1 1/2 1

GNM-Lognormal
1 0 ms ⇠s

m ⇠ 1 0

Suzuki[82]
1 0 1 1
1 1 1 0

Rayleigh-Exponential 1 1 1 1

Maxwell-Lognormal
1 0 3/2 1
3/2 1 1 0

Maxwell-Exponential
1 1 3/2 1
3/2 1 1 1

Maxwell-Gamma
m 1 3/2 1
3/2 1 ms 1

Weibull-Lognormal[83]
1 0 1 ⇠s

1 ⇠ 1 0

Weibull-Exponential
1 1 1 ⇠s

1 ⇠ 1 1
Weibull-Weibull 1 ⇠ 1 ⇠s

Weibull-Gamma
m 1 1 ⇠s

1 ⇠ ms 1

Nakagami-Lognormal
1 0 ms 1
m 1 1 0

K-Distribution
m 1 1 1
1 1 ms 1

Generalized-K m 1 ms 1

GNM-Exponential
1 1 ms ⇠s

m ⇠ 1 1

GNM-Weibull
m ⇠ 1 ⇠s

1 ⇠ ms ⇠s

GNM-Gamma
m 1 ms ⇠s

m ⇠ ms 1
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Appendix B: Sum of Generalized Gaussian

Random Variables

As mentioned in [39], we need sometimes to study the sum of independent GGRV

(SGG), or a linear system of GG white noise such as AR(1) process driven by a GG

process. Furthermore, in seismic signal processing, the received seismic signal is

modeled by a convolution of seismic signals, where seismic reflective coe�cient can

be modeled by GGD [84]. Thereby the distribution of the sum, that appears also as

the convolution of the single distribution, is needed in this seismic model. Moreover,

in communications, it is shown above that in some instances the noise and the multi

user interference can be modeled as GG white noise [85, 24]. Therefore, the total

perturbations at reception, defined as the sum of noise and interference, is modeled

as the sum the GG signals. Many other applications can be found in the literature

to motivate the study of sum distribution of GG signals.

As a consequence, it is important to study the statistics and the density of the SGG

distribution. The PDF was not derived before and so the CDF. Actually, the

approach used in this work is based on the CHF which was investigated in [86] for

↵ > 1. However in our case we are studying the CHF for any value of ↵ using

another approach of calculation based on the properties of the FHF [55]. From the

CHF of one GGRV, we get the CHF of the sum. Hence, the relation between the

CHF and the distribution densities leads us to investigate the PDF and the CDF of

such distribution and its statistics (moments, cumulant, kurtosis...).
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B.1 GGD Statistics

B.1.1 Characteristic Function

Let ↵ > 0, and X be random variable following a GGD with mean µ, variance �2

and shape parameter ↵, i.e. X ⇠ GGD(µ, �,↵). Starting from the definition of the

CHF and the PDF of the GGD (2.1), the CHF can be expressed in integral form as

'↵(t) = E[eitX ] =
Z

R
e

itx
fX(x)dx =

↵⇤

2�(1/↵)
e

itµ

Z

R
e

itx exp (�⇤↵|x|↵) dx. (B.1)

Since |x| is an even function, the integral in (B.1) is the cosine transform of the

exponential component

'↵(t) =
↵⇤

�(1/↵)
e

itµ

Z 1

0

cos(tx) exp (�(⇤x)↵) dx. (B.2)

Alternative expressions of cos(x) and e

x↵

in terms of the FHF are available in [55,

Eq. (2.9.8) & Eq. (2.9.4)] and described in (5.5) and (5.6) as

cos(x) =
p
⇡ H1,0

0,2


x

2

4

����(0, 1), (1
2

, 1)

�
(B.3)

e

�x↵

=
1

↵

H1,0
0,1
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x

����(0, 1

↵
)

�
(B.4)

Hence the integral identity defined in (2.21), solves the integral of the product of

two FHF function over the positive real numbers. As a consequence the CHF of X,

E[eitX ], is given by

'↵(t) =

p
⇡⇤

�(1/↵)
e

itµ

Z 1

0

H1,0
0,2
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t

2

4
x
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�
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0,1


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����(0, 1
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�
dx

=

p
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�(1/↵)
e

itµH1,1
1,2


�
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4�(3/↵)
t

2

����
(1� 1
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,

2
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(0, 1), (1
2

, 1)

�
. (B.5)

Note that the result proved in (B.5) is valid for all positive shape parameter ↵ > 0.
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A previous demonstration was derived in [86] but only for ↵ > 1, while the authors

provided an expression of the CHF of GGD in terms of the Fox-Wright generalized

hypergeometric function p q(·), which is a special case of the FHF [55, Eq.

(2.9.29)].

B.1.2 Moment Generating Function

The moment generating function (MOGF) can be directly concluded from the CHF

by the relation M↵(t) = '↵(�it), so the MOGF is obtained by

M↵(t) =

p
⇡e

tµ

�(1/↵)
H1,1

1,2

��2�(1/↵)

4�(3/↵)
t

2

����
(1� 1

↵
,

2

↵
)

(0, 1), (1
2

, 1)

�
. (B.6)

In some special cases, the MOGF can be expressed in terms of elementary functions.

For example for Gaussian case, i.e. ↵ = 2, and using the special case of the FHF in

[55, Eq. (2.9.4)], the MOGF of Gaussian is

M

2

(t) = e

tµH1,0
0,1

��2

2
t

2

����(0, 1)

�
= e

tµ+ 1

2

�2t2
. (B.7)

Another special case appears interesting is the Laplacian distribution (i.e. ↵ = 1).

Using the identity [55, Eq. (2.9.5)], the MOGF of Laplacian distribution is given by

M

1

(t) =
p
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1,2

��2

8
t

2
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B.1.3 Moments and Cumulants

Without loss of generality, we are focusing our study to zero mean random variables

(i.e. µ = 0). Due to the symmetry of the PDF of GGD, the odd moments vanish
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and the even moments obtained as follows

8
><

>:

m

2n(X) = E[X2n] = �
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(B.9)

Once the MOGF and the moments are obtained, one can investigate the expression

of the cumulant generating function (CGF) and the cumulants of the GGD.

Actually the CGF, KX(t) (or K↵(t)), is defined as

K↵(t) = logM↵(t)

= log

✓ p
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By definition, the n-th cumulant, noted kn(X), is the n-th term in the Taylor

series expansion of K↵(t) at 0

kn(X) =
d

n
K↵(t)

dt

n

����
t=0

=
d

n
K↵(0)

dt

n
.

Since the CGF appears as the composite of two functions, we may use the Faà di

Bruno’s formula [87, Eq. (2)] that computes the n-th derivative of composite

functions

d

n
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dt

n
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m
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n
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the sum is over m
1

,m

2

, . . . ,mn such that
nX

j=1

jmj = n. Thereby, evaluating (B.11)

at zero and replacing the moments by their expressions, the even cumulants of a

zero mean GG random variable X can be expressed in terms of the even moments of
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k

2n(X) = �
X

m
1

+2m
2

+...nm
n

=n

(2n)!(m
1

+ · · ·+mn � 1)!

m

1

!m
2

! . . .mn!

Y

1jn

 
� �

2j�(1/↵)j�(2j+1

↵
)

�(3/↵)j�(1/↵)(2j)!

!m
j

,

(B.12)

and the odd cumulants are equal to zero.

The cumulants of low order are easy to express
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Another statistics appears interesting to evaluate, in occurrence the kurtosis. The

kurtosis, Kurt(X), is defined as the fourth cumulant divided by the square of the

second cumulant of the distribution. In the GGD case the kurtosis is equal to

Kurt(X) =
k

4

(X)

k

2

(X)2
=
�(1/↵)�(5/↵)

�(3/↵)2
� 3. (B.14)

One can easily check that (B.14) confirms that the Gaussian kurtosis is equal to 0

and the Laplacian kurtosis is equal to 3.

At this stage, the statistics of one GGRV are expressed in closed form. The next

section considers the densities and statistics of the SGG distribution.

B.2 Sum of Two GG Random Variables

As known the CHF of the sum of two independent RV is the product of their CHFs.

Since the CHF of the GGD is defined in the previous section, the CHF of the sum

can be easily obtained and so the densities by inverse Fourier transform of the CHF.
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In fact, let X ⇠ GGD(µ
1

, �

1

,↵) and Y ⇠ GGD(µ
2

, �

2

, �) two independent random

variables following a GGD, and let Z = X + Y be their sum. It is clear that the

first and second moment of Z are easy to find

E[Z] = µ = µ
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B.2.1 PDF of the SGG

The PDF of a random variable is known as the inverse Fourier transform of the

CHF. The CHF of Z is given by
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Let A = �2

1
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. The inverse Fourier transform of the CHF (B.16)

of Z gives the PDF as
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The first two FHFs are even functions, so the integral becomes a cosine transform of

the product of these two FHFs

fZ(z) =
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As seen before, the cosine has a representation in terms of the FHF (B.3). So we are

facing an integral that involves the product of three FHFs over the positive real

numbers. Such integral was solved (2.48) and it is expressed in terms of the BFHF.

Thereby, the PDF of the sum of two independent GG random variable can be

expressed in terms of the bivariate FHF

fZ(z) =

p
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B.2.2 CDF of the SGG

The CDF of Z is the primitive of fZ(·) that vanishes at (�1). Back to (B.18), it

appears that the CDF is expressed in terms of an integral involving the product of

two FHFs and sine function. The latter can be expressed in terms of the FHF for

positive argument (5.9). Thereby, the CDF of the sum of two independent GGRV

becomes the integral of the product of three FHFs which is evaluated in terms of

the BFHF as

FZ(z) =
1

2
+

p
⇡ sign(z � µ)
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In (B.20), sign(x) gives the signum of the real number x. The results in (B.19) and

(B.20) represent new results and they were not investigated before.

B.2.3 Statistics of Z

In the following analysis, the zero mean case is considered, while the non zero mean

random variable can be obtained from the zero mean random variable by a simple

shift Z = Z

0

+ µ.

B.2.3.1 MOGF

As mentioned before the MOGF of Z can be obtained from the CHF by the relation

MZ(t) = 'Z(�it) which gives the MOGF of Z as

MZ(t) =
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B.2.3.2 Moments

The moments of Z can be obtained from the binomial formula that describes the

integer power of the sum of two numbers. Hence known the moments of X and Y

(B.9), it appears that the odd moments of Z, m
2n+1

(Z), vanish while the even

moments are given by
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B.2.3.3 Cumulant and Kurtosis

From the MOGF, it is easy to get the CGF by applying the logarithm to the

MOGF MZ(t). Thereby the CGF of Z is the sum of the CGF of X and the CGF of

Y , KZ(t) = KX(t) +KY (t). Moreover, the cumulant of Z is expressed also as the

sum of the cumulant of X and the cumulant of Y . Note that the odd cumulant are
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equal to zero while the even ones are given by
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Once the cumulant expression is evaluated, the kurtosis of Z can be expressed, per

definition, in terms of the fourth and second moments as

Kurt(Z) =
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The final expression of the kurtosis of Z is thus given by
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B.3 Approximation of the PDF of SGG

The expression of the PDF of the sum of two independent GGRV (B.19) is quite

high complex since it is expressed in terms of the BFHF. Therefore, an

approximation of the PDF is highly recommended to simplify the calculations and

study, in simple way, the performance of systems in which the PDF of the sum is

needed, like, for example, the evaluation of the SER of an MPSK over an GGN
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channel. Such analysis needs the PDF and the CDF of the SGG distribution.

In this section we are investigating the approximation of the PDF of Z by the PDF

of another GG random variable with shape factor � to be determined. In [39], it has

been proved that the PDF of the sum cannot be a PDF of one GGRV. However the

authors proved that both PDFs have the same properties (symmetric, convexity,

monotonicity...), from that analysis, an approximation of the PDF of Z by the PDF

of GGD is needed and worth pursuing. In fact, as shown in (2.1), 3 parameters are

needed to characterize a GGD, namely, the mean, the variance and the shape factor.

The mean and the variance are given in (B.15). Therefore, we need to find a

method to get the shape factor �. In what follows, three approaches are presented.

B.3.1 Kurtosis Approach

The first method to estimate � is by using the kurtosis of the distributions. Since

the kurtosis of the sum is already known, the shape factor can be obtained by

equalizing both kurtosis. Thereby, we get the following equation to solve

Kurt(Z�) = Kurt(Z)
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while Z� ⇠ GGD(µ, �,�) is the approximated RV of Z with parameter �.

Let us define the ratio between the variance of X and Y as ! = �2
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, so the equation

on � can be written in terms of ! as
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By knowing ↵, �, and !, (B.24) is written as h(�) = C, where h(�) is a function on

�, and C is a known positive constant. In Fig. B.1, the function h is drawn versus �
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Figure B.1: Curve of h(�) for positive values of �.

to analyze its behavior. Therefore, it appears that the function h(·) is a bijection.

As such the equation h(�) = C has only one solution in the positive real axis.

Which means that � exists and it is unique, the value of � is given as �Kurt in Table

B.1 for some scenarios along with other values of � obtained from other approaches

that are discussed later on.

B.3.2 Best Tail Approximation

Another method to estimate � consist of taking the best choice of � that minimizes

the square error of the tail. In other words � is chosen so the error between the

exact PDF, fZ(z), and the approximated PDF, f�(z), at the tail is minimal. The
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tail is defined so z is above some level z � n�

�Tail = argmin
�>0

Z 1

n�

(f�(z)� fZ(z))
2

dz, (B.26)

where n is chosen to define the desired region of the tail of the distribution. The

minimization in (B.26) cannot be solved analytically by the available tools since it

contains a shifted integral of a BFHF and FHF which is not known yet. An

illustration of numerical values of �Tail is given in Table B.1 for some values of !, ↵,

and �.

B.3.3 CDF Approximation

This method is used to obtain the shape parameter that minimizes the error

between the CDF of Z and the approximated CDF. Such approximation will give an

asymptotic approximation of the complementary CDF (CCDF) which is needed in

the computation of the probability of error. Mathematically, the shape parameter is

given by

�CDF = argmin
�>0

Z 1

0

(F�(z)� FZ(z))
2

dz. (B.27)

In Table B.1 some numerical values of �CDF are given and a comparison between

three methods of shape parameter estimation is available too.

An overview from Table B.1 shows that the optimal value of �Tail is near the value

given by the kurtosis for any value of n. It is clear also that �Tail approaches closely

to �Kurt specially for n = 2 for all values of !. This analysis confirms the use of the

kurtosis to approximate the PDF of the sum of two independent GGRV by another

GGD to get a good tail approximation, this may also confirms that the kurtosis

measures the heavy tail. Unlike this observation, the � obtained by minimizing the

CDF error is a little bit far from outcomes of the kurtosis method. To conclude,
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Table B.1: Shape parameter for the approximated PDF using kurtosis, minimum
CDF error, and minimum tail error for �

1

= 1 and di↵erent values of (↵, �, !)

(↵, �,!) �Kurt �CDF
�Tail

n = 0 1 2 3

(0.5, 0.5, 1) 0.626 0.467 0.768 0.673 0.624 0.642

(0.5, 0.5, 2) 0.604 0.492 0.762 0.656 0.603 0.584

(0.5, 0.7, 2) 0.633 0.501 0.861 0.741 0.636 0.834

(0.5, 1.2, 1) 0.779 0.602 1.160 1.053 0.757 1.165

(1.5, 1.5, 2) 1.673 1.373 1.738 1.702 1.683 1.664

(1.5, 2.5, 1) 1.908 1.391 1.979 1.959 1.952 1.887

(1.5, 2.5, 2) 1.753 1.443 1.842 1.799 1.771 1.741

(2.5, 3 , 3) 2.295 1.941 2.226 2.261 2.267 2.335

these three methods can be used according to the situation we are facing.

B.3.4 PDF and CDF Simulations

The illustrations in this section are made for � = 1.5, ! = 2, and �
1

= 1. In

Fig. B.2, the PDF of the sum distribution is drawn for two values of ↵ (0.5 and 2.5)

and µ takes two values to split the curves of both cases. The exact and simulated

PDF of Z are drawn in the same figure among with the approximated PDF. The

latter is computed using the kurtosis and the optimal CDF methods. It is clear that

the exact PDF matchs perfectly the simulated PDF. Far from the mean, the

approximated PDF appears close to the exact PDF and both methods have a good

tail approximation. For ↵ < 2, the kurtosis and the optimal CDF method are close

to each other and match only the exact PDF at the tail with huge di↵erence at the

mean as mentioned in [39]. However, for ↵ > 2, the kurtosis method presents a good
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Figure B.2: Exact and approximated PDF of the sum of two GGRV, for � = 1.5,
! = 2, �

1

= 1, and two values of ↵.

approximation of the PDF even around the mean, while the optimal CDF method

represents a good approximation of the CDF as it will be seen later. We omit the

optimal tail method here because it is close to the kurtosis method as shown in

Table B.1. However one can draw it easily using the values available in Table B.1.

The second illustration is highlighted in Fig. B.3, and consists of drawing the CDF

of the sum for ↵ = 2.5, � = 1.5, ! = 2, and �
1

= 1 using all three methods to

approximate the CDF in linear scale. It is noticed that the results obtained from

the optimal tail method (for n = 3) are very close to those issued from the kurtosis

method. Another observation is that all the methods are close to each other and

close to the exact CDF at the saturation region, i.e. FZ(z) ⇡ 1. This result is more

detailed in the next figure which shows the complementary CDF in Log scale.
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= 1

In Fig. B.4, the complementary CDF of the distribution of the sum is drawn for two

values of ↵ (2.5 and 0.5). For both cases, the approximated CCDF using the

optimal CDF method matches the exact CCDF. However, as seen in Fig. B.2, for

↵ < 2, the CCDF obtained from the kurtosis and optimal tail methods is not too

close to the exact CCDF. While, for ↵ > 1, they are close to each other and

asymptotically close to the exact CCDF.
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