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ABSTRACT

Spin Torques in Systems with Spin Filtering and

Spin Orbit Interaction

Christian Ortiz Pauyac

In the present thesis we introduce the reader to the field of spintronics and explore

new phenomena, such as spin transfer torques, spin filtering, and three types of spin-

orbit torques, Rashba, spin Hall, and spin swapping, which have emerged very recently

and are promising candidates for a new generation of memory devices in computer

technology. A general overview of these phenomena is presented in Chap. 1. In Chap.

2 we study spin transfer torques in tunnel junctions in the presence of spin filtering.

In Chap. 3 we discuss the Rashba torque in ferromagnetic films, and in Chap. 4 we

study spin Hall effect and spin swapping in ferromagnetic films, exploring the nature

of spin-orbit torques based on these mechanisms. Conclusions and perspectives are

summarized in Chap. 5.
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Chapter 1

Introduction

1.1 Motivation

Conventional micro-electronics is based on measuring the tiny electrical charge of

electrons passing through electronic circuits; an alternative approach, which emerged

after the discovery of the electron’s spin through the Stern-Gerlach [1] and the fine

structure [2] experiments, revealed that not only the electron’s charge but also the

fundamental quantum-mechanical property known as the spin can be used to repro-

duce micro-electronic logic/memory devices. Referred to as spintronics, this alterna-

tive approach offered potential advantages over conventional micro-electronic devices.

Whereas the latter requires semiconductor materials in order to control the flow of

the charge through transistors, the former can be measured in common metals and

ferromagnets since the spin behaves like tiny magnetic fields that can store and trans-

fer information. Therefore, less power consumption is needed to change the electron’s

spin than to generate a current to maintain electron charges in a device. Moreover,

because the electron’s spin is not energy-dependent, spin is non-volatile, meaning that

information stored in the spin will remain fixed even after loss of power.

It was not until 1988, with the discovery of giant magnetoresistance (GMR) by

2007 Nobel Prize in Physics Albert Fert and Peter Grunberg [3], that the first appli-

cation of spintronics to computers shed its lights. GMR revealed that the electrical
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resistance (magnetoresistance) changes as high as 50% at low temperatures in multi-

layered Fe-Cr structures. It was shown to be much stronger than the usual anisotropic

magnetoresistance [4] and was explained in terms of spin-flip scattering of the con-

duction electrons caused by the antiparallel alignment of the magnetizations in the

Fe-layers. This discovery found immediate applications such as magnetic sensors and

magnetic random access memories (MRAM), which in contrast to previous memory

types, e.g., SRAM, DRAM, FLASH, HDD, offered non-volatility, high-speed reading

and writing, random access to data, and low cost.

In the same decade, the phenomenon of spin-dependent tunneling (SDT), found

on junctions between very thin superconducting aluminum films and ferromagnetic

nickel films [5], led to the discovery of tunneling magnetoresistance (TMR) in mag-

netic tunnel junctions (MTJs), i.e., a stack of ferromagnetic layers (FM) separated

by an insulating barrier (I), see top schemes in Fig. 1.1. The pioneering work in

1975 revealed a modest change in tunneling resistance (14%) when the magnetiza-

tion of the electrodes were switched from parallel to antiparallel configuration [6]. It

was understood in terms of the difference in electronic density of states at the Fermi

level between spin-up and spin-down electrons in the magnetized ferromagnets. Be-

cause electrons preserve their spin orientation during tunneling processes, they can

only tunnel into the sub-band of the same spin orientation. When a bias voltage

is placed across the barrier, electrons will tunnel, e.g., from left to right, depending

on the availability of free states for its spin direction. Thus, if two FM layers are

parallel, see Fig. 1.1(a), a majority of electrons in one FM will find many states of

similar orientation in the other FM, causing a large current to tunnel through and a

lowering of the overall resistance. However, if they are antiparallel, see Fig. 1.1(b),

both spin directions will encounter a bottleneck resulting in a higher total resistance.

Initially, TMR did not attract too much attention due to its low magnetoresistance

value compared to GMR devices; however, in 2001 a dramatic variation was predicted



10

DOS FM DOS FM

FM / I / FM

DOS FM DOS FM

FM / I / FM

a)

b)

Figure 1.1: Density of states of a magnetic tunnel junction of the form ferromag-
net/insulator/ferromagnet (FM/I/FM) in a) parallel configuration and b) antipar-
allel configurations.

considering Fe as the ferromagnets and MgO as the insulator [7]. It was explained

that in these type of junctions the symmetric crystallographic structure allowed co-

herent wave function symmetry filtering, which implied that only bloch states with

a defined symmetry of wave functions can tunnel through. The same year, the first

experimental results in MgO-based tunnel junctions were given [8]; and in the fol-

lowing years, giant TMR values over 200% were obtained in Fe/MgO/Fe systems [9]

and over 600% in CoFeB/MgO/CoFeB junctions [10]. These results led to a new

kind of MRAM technology based on TMR; nonetheless, it encountered some difficul-

ties centered around two factors, stability and scalability. Since external fields were

needed to switch the magnetization vectors, as the system scaled down parasitic field

disturbances appeared leading to data loss. These difficulties were solved consider-

ing a new generation of MRAM devices, which based its functionalities in the spin
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transfer torque (STT) phenomenon. And more recently (to the date of publication of

this thesis), a new kind of MRAM technology is emerging considering the spin-orbit

torque (SOT) phenomenon. Coined SOT-MRAM, it offers potential advantages over

conventional STT-MRAM devices, e.g., lower switching currents and lower density.

In this chapter we briefly introduce the phenomena behind novel approaches in

STT- and SOT- MRAM technologies, i.e., spin transfer torques, spin filtering, and

three types of spin-orbit torques: Rashba, spin Hall, and spin swapping. And in the

following chapters we discuss in detail these novel approaches, which may impact the

future of MRAM technology.

1.2 Spin transfer torques

The intensive search for innovative devices enabling the efficient electrical control of

magnetization direction has led to the discovery of Spin Transfer Torque (STT) [11].

In contrast to TMR and GMR, which refer to a controllable electron flow by playing

with the relative directions of the magnetic states, STT considers a flowing charge

current that is polarized by the first (reference) magnetic layer and exerts a torque on

the second (free) magnetic layer as a result or spin transfer from conduction electrons

in junctions with non-collinear magnetizations [12], see Fig. 1.2.

FM / S / FM

p m

T

T

Figure 1.2: Spin transfer torques, T‖ and T⊥, in tunnel junctions of the form, ferromag-
net/spacer/ferromagnet (FM/S/FM). The spacer can be either metallic or insulating.

STT has emerged as an efficient mechanism to induce magnetization reversal

and excitations, resulting in immediate applications such as magnetic random access
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memories (MRAM) and spin torque oscillators, respectively [13]. Conventionally,

the torque is partitioned into an out-of-plane component, T⊥, along m × p, and an

in-plane component, T‖, along m × (m × p) direction, where m (p) represents the

free (reference) layer magnetization unit vector, see Fig. 1.2. The relative magni-

tude of these spin torque components is dependent on material and device structure

and is critical in determining the threshold currents for magnetization switching or

magnetization oscillations. From the expressions, it is inferred that the in-plane (out-

of-plane) torque is odd (even) in m, and therefore acts as an antidamping (real field)

component [14].

Initially studied in metallic spin valves [15], STT was soon extended to magnetic

tunnel junctions (MTJs), where the spacer was replaced by non-magnetic insulating

barriers such as Al2O3 [16] or MgO [17]. The latter, in contact with Fe(100) electrodes,

captured the attention due to its crystallographic configuration that allowed coherent

wave function symmetry filtering [18], giving rise to large tunneling magnetoresistance

[19]. Meanwhile, STT in MgO-based tunnel junctions became the most promising

ingredient for high-density, nonvolatile MRAM devices due to the combination of

large TMR and low critical switching current. Substantial studies in ballistic regime

[20, 21] revealed, for low bias (V), the following form of the spin torque components,

T‖ = a1V + a2V2, (1.1)

T⊥ = b0 + b1V + b2V2, (1.2)

where the extra linear term of T⊥, b1, only appears due to symmetry breaking [22]

originated from band filling mismatch of the electrodes [23], asymmetric barriers

[24, 25], or interfacial disorders [26].
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1.3 Spin filtering

Alternative tunneling systems have been proposed after the discovery of GMR and

TMR. As an extension of conventional MTJs we have ferroelectrics and magnetic

insulators (MI). Ferroelectric junctions display electro-resistance due to the electrical

control of charge accumulation at the interfaces [27], whereas magnetic insulators

exhibit spin filtering effect, which in contrast to symmetry filtering, selectively fil-

ters majority carriers due to the spin-dependent evanescence of the wave function in

the barrier [28]. Consequently, even when considering a normal metal (NM) refer-

ence layer, higher spin polarization is obtained as a result of charge current being

exponentially dependent on the exchange splitting of the barrier (∆B) [29], see Fig.

1.3.

DOS NM DOS FM

MI

NM / MI / FM

Figure 1.3: Density of states in parallel configuration of a spin filter tunnel junction
of the form, normal metal/magnetic insulator/ferromagnet.

Magnetic insulators have attracted also increasing interest in magnonics and spin-

caloritronics devices due to its ultra-low damping coefficient [30]. Several architec-

tures of spin filter based tunnel junctions (SFTJs) have been proposed, such as single

junctions [31], double junctions [32], partial junctions [33], and symmetric junctions

of the form FM/MI/FM [34]. These structures rely on either ferromagnetic or fer-

rimagnetic insulating barriers. The former includes Eu chalcogenides materials such
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as EuS [35], EuSe [36], and EuO [37], which present low Curie temperature (Tc), i.e,

∼ 69K [37]. The latter covers spinel-based materials such as CoFe2O4 [38], NiFe2O4

[39], NiMn2O4 [40], BiMnO3 [41], and CoCr2O4 [42], which exhibit Tc values above

room temperature. Most of the works on these architectures have focused on under-

standing spin polarization and TMR, where the latter tends to be much larger than

conventional MTJs. However, the spin transfer torque has been mostly overlooked

and little has been done from a theoretical perspective [43].

1.4 Spin orbit torques

The concept of current-driven spin-orbit torques in ultrathin ferromagnetic heterostruc-

tures [44] and diluted magnetic semiconductors [45] started to attract attention very

recently (to the date of publication of this thesis) for providing an efficient magne-

tization switching mechanism using just one ferromagnet. In contrast to the spin

transfer torque mechanism that requires inhomogeneous magnetic textures (non-

collinear magnetizations), the spin-orbit torque accomplishes magnetization switching

by transferring angular momentum between the spin and orbital degrees of freedom

through a spin-orbit coupling. In the following, we introduce two types of systems

where spin-orbit torques can be evidenced. First, in §1.4.1, we consider ferromagnetic

heterostructures, typically made of magnetic trilayers comprising an ultrathin ferro-

magnetic film sandwiched between a noble metal and an insulator. We show that

intrinsic spin-orbit torques are evidenced as a result of Rashba and spin Hall effect.

Then, in §1.4.2, bilayer structures, comprising a normal metal layer in the presence

of spin-orbit coupled impurities and a ferromagnet adjacent to it, are considered. We

show that extrinsic spin-orbit torques are evidenced as a result of spin swapping and

spin Hall effect.
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1.4.1 Intrinsic spin-orbit torque

Experiments and theories have uncovered spin-orbit torques of the form [46, 47, 48]

T = T‖m× (ŷ ×m) + T⊥ŷ ×m, (1.3)

in ferromagnetic heterostructures of the form given in Fig. 1.4. In Eq. (1.3),

m is the magnetization direction and ŷ is the directional unit vector. Similar to

the spin transfer torque components discussed in §1.2, the two components in Eq.

(1.3) are usually referred to as in-plane (T‖) and out-of-plane (T⊥) torques. The

current understanding of the origin of this type of spin-orbit torque in ferromagnetic

heterostructures in the presence of intrinsic spin-orbit coupling combines spin-Hall

effect [49] and spin-orbit field effects. In the former, a spin current is generated by

the spin-Hall effect in the noble metal layer and injected into the ferromagnet to

produce a torque [50, 51]. As shown in Fig. 1.4(a), the spin current generated by

the spin Hall effect is independent of magnetization direction; therefore, the torque

is considered even as a function of m and exhibits a damping-like character.

E

Metal

FM

Oxide

BR

m

T

T

E

Metal

FM
m

T

T
Oxide

SHE

Rashba Torque

Spin Hall Torque

b)

a)

x

yz

Figure 1.4: Intrinsic spin-orbit torques, a) Spin Hall torque and b) Rashba torque

In the latter, symmetry breaking across the interface between the noble metal

and the ferromagnet induces a spin splitting in the band structure, leading to a non-
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vanishing current-induced spin-orbit field, BR ∝ ẑ×E, where E is the applied electric

field directed parallel to the thin film ferromagnet. This field eventually gives rise

to a non-equilibrium spin-orbit torque known as Rashba torque. As shown in Fig.

1.4(b), the Rashba torque depends on magnetization direction; therefore, the torque

is considered odd as a function of m and exhibits a field-like character. However,

it has been shown very recently (to the date of publication of this thesis), consid-

ering semiclassical Boltzmann equations, that both effects contribute to both types

of torques [51]; consequently, further studies are needed to clarify the experimental

results.

1.4.2 Extrinsic spin-orbit torque

Extrinsic spin Hall effect, which converts a charge current into a transverse spin

current, is generated in normal metals as a result of the scattering with the spin-orbit

coupled impurities. This spin current will eventually induce a torque in an adjacent

ferromagnet, see Fig. 1.5(a). Two distinct mechanisms of extrinsic spin Hall effect,

or anomalous Hall effect in ferromagnets [52], have been identified, i) skew scattering,

and ii) side-jump scattering. The former scatters asymmetrically as a result of a

scattering cross section that depends not only on the scattering angle, but also on the

relative sign of the orbital and the spin angular momentum [53], whereas the latter

originates from the anomalous form of the velocity operator [54].

An additional extrinsic effect was recently predicted in a similar structure. Re-

ferred to as spin swapping, Lifshits and D’yakonov showed that, in contrast to the

spin Hall effect, spin swapping converts a primary spin current into a secondary spin

current with interchanged spin direction and the direction of flow [55]. Initially de-

rived as an extrinsic mechanism [56], it was soon extended to appear from intrinsic

contributions such as Rashba [57]. To detect spin swapping, bilayer structures have

been proposed, where a polarized current is generated in a ferromagnetic layer and
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b)

a)
SOC-impurities

Metal

FM

SHE

SOC-impurities

m

SW
FM Metal

Extrinsic Spin Hall Effect

Extrinsic Spin Swapping

Figure 1.5: Extrinsic spin-orbit torques, a) spin Hall effect and b) spin swapping.

injected in the normal metal where the spin swapping is studied [58], see Fig. 1.5(b).

Based on these phenomena we proceed in the following chapters to study novel

avenues in MRAM technology. In Chapter 2 we discuss the interplay of spin transfer

torques and spin filtering and in Chapter 3 and Chapter 4, we study new approaches

in current-induced spin-orbit torques.
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Chapter 2

Spin Transfer Torques in Spin

Filter Tunnel Junctions

2.1 Introduction

In the present chapter we study spin transfer torques in magnetic tunnel junctions 

in the presence of magnetic insulators. Referred to as spin filter tunnel junctions, 

these junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator

(MI) or two FM separated by a MI. Based in free electron (§2.2) and tight binding 

(§2.3) models we find (§2.4) that the presence of the magnetic insulator dramatically

enhances the magnitude of the spin torque components compared to conventional 

magnetic tunnel junctions, offering novel avenues in STT-MRAM technology. The 

out-of-plane torque is driven by the spin-dependent reflection at MI/FM interface, 

which results in a small reduction of its amplitude when an insulating spacer (S) is 

inserted to decouple MI and FM layers. Meanwhile, the in-plane torque is dominated 

by the tunnelling electrons that experience the lowest barrier height. We propose a 

device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics 

and allows for tuning the spin torque magnitudes over a wide range just by rotation 

of the magnetization of the insulating layer. Conclusions are summarized in §2.5.
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2.2 Free-electron model based in WKB approxi-

mation

In this section, considering a free-electron model based in Wensetz-Kramers-Brillouin

approximation, we develop analytical expressions for the in-plane and out-of-plane

spin torque components in partial spin filter tunnel junctions, i.e., NM/MI/FM. An

important feature of tunnel junctions with dimensions in the scale of 1-5 nm is that

transport is considered to be in the ballistic regime; therefore, the electron does not

lose track of its k−vector and a plane wave solution is a good approximation. In a free-

electron model interactions are neglected, e.g., electron-electron, electron-phonon,

electron-impurities. Consequently, the plane wave solutions are treated by matching

the wave-functions and its derivatives at the interfaces. In particular, in Wensetz-

Kramers-Brillouin approach, to be referred to as WKB approximation, Schrodinger

equation is solved considering a wavefunction solution in the barrier that requires a

slowly varying potential. Details of this approach are neglected in the present thesis as

this model is well established and appears in many textbooks of quantum mechanics

[59]. We therefore address, in the following, the most important mathematical details

in calculating the in-plane and out-of-plane spin torque components.

2.2.1 Eigenenergies and eigenfunctions in a ferromagnet

In a free-electron approximation of the spin-polarized conduction electrons inside the

ferromagnet, the one-electron Hamiltonian may be written as,

H0 =
~2k2

2m
− Jσ̂ ·m. (2.1)

The first term in Eq. (2.1) represents the kinetic part, where p = ~k is the

momentum and m is the mass of the electron. The second term is the s-d exchange
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interaction. J is the exchange coupling parameter, σ̂ = (σx, σy, σz) is the Pauli matrix

vector, and m is the magnetization unit vector, which in spherical coordinates is

defined by the angles θ and φ. Two possible eigenenergies are obtained, Es = ~2k2

2m
−sJ ,

where s = ±1 or ⇑ (⇓). In principle we consider E+ = ~2k2

2m
−J the energy for majority

carriers and E− = ~2k2

2m
+ J the energy for minority carriers. The eigenfunctions of

the Hamiltonian are,

Ψ⇑ =

cos θ
2
e−iφ

sin θ
2

ψ↑, Ψ⇓ =

− sin θ
2
e−iφ

cos θ
2

ψ↓. (2.2)

Ψ⇑(⇓) is the eigenfunction for spin-up (-down) state and ψ↑(↓) is the plane-wave

associated to it, e.g., ψ↑(↓) = eik
↑(↓)r. In tunnel junctions, ψ↑(↓) becomes a linear

combination of incident and reflected waves. Considering m to be restricted to the

xz−plane and defining basis states along the z-quantization axis, i.e., |⇑〉z = [1 0]t

and |⇓〉z = [0 1]t, the total eigenfunction, Ψ = Ψ⇑ + Ψ⇓, becomes,

Ψ =
[

cos
θ

2
ψ↑ − sin

θ

2
ψ↓
]
|⇑〉z +

[
sin

θ

2
ψ↑ + cos

θ

2
ψ↓
]
|⇓〉z, (2.3)

2.2.2 Wavefunctions in ideal spin filter tunnel junctions

In the present analysis we consider semi-infinite ferromagnetic electrodes separated

by a finite magnetic insulator of thickness d. In the electrodes the magnetization

vectors, mL and mR, are constraint to the xz−plane, transverse to the propagation

direction, given along y, whereas in the barrier mB = ẑ. At position y = |d/2| we are

at the barrier - electrode interface, See Fig. 2.1.

The Hamiltonians for each layer are given as follow,
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x

z

y
L R

Left Ferromagnet Right FerromagnetInsulating barrier

y=-d/2 y=+d/2

mB

mm R
L

Figure 2.1: Spin filter tunnel junction made of two semi-infinite ferromagnetic layers
and a finite magnetic insulating barrier. The magnetization vectors in the ferromag-
netic layers, mL and mR, are constraint to the xz−plane and therefore are defined
by θL and θR, respectively. The magnetization vector in the barrier is set to mB = ẑ.

ĤL =
p2

2m
− JLσ̂ ·mL +

eV

2
, y ≤ −d/2, (2.4)

ĤB =
p2

2m
+ U0 − JBσ̂ ·mB −

eV

d
y, − d/2 ≤ y ≤ d/2, (2.5)

ĤR =
p2

2m
− JRσ̂ ·mR −

eV

2
, d/2 ≤ y. (2.6)

L (R) stands for the left (right) ferromagnetic layer and B for the insulating

barrier. As shown in Fig. 2.2, U0 is the barrier potential, d is the barrier thickness,

and eV is the voltage drop across the sample. Other parameters were defined in §2.2.1

To describe the propagation of the electron along y, transmitted and reflected one-

dimensional plane waves are considered, i.e., eiky(y−y0) (e−iky(y−y0)) describes a plane

wave going from left to right (right to left). Notice that for y = y0 the plane-wave

vanishes; therefore, y0 = +d/2(−d/2) in the right (left) electrode. Considering Eq.

(2.3), the wavefunctions in the electrodes are,
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Left Ferromagnet Insulating barrier Right Ferromagnet

U0 -eV/2

y
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d
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R

R

R

R

d

y=-d/2 y=+d/2

+eV/2

+JB

-JBaB

cB

bB

dB

Figure 2.2: Schematic illustration of the transmitted and reflected waves in the elec-
trodes and the evanescent waves in the barrier.

ΨL = [ψ↑L cos
θL
2
− ↓

L sin
θL
2

] |⇑〉z + [ψ↑L sin
θL
2

+ ↓
L cos

θL
2

] |⇓〉z, (2.7)

ΨR = [ψ↑R cos
θR
2
− ↓

R sin
θR
2

] |⇑〉z + [ψ↑R sin
θR
2

+ ↓
R cos

θR
2

] |⇓〉z, (2.8)

with

↑
L = (aLe

ik↑L(y+d/2) + bLe
−ik↑L(y+d/2)), (2.9)

↓
L = (cLe

ik↓L(y+d/2) + dLe
−ik↓L(y+d/2)), (2.10)

↑
R = (aRe

ik↑R(y−d/2) + bRe
−ik↑R(y−d/2)), (2.11)

↓
R = (cRe

ik↓R(y−d/2) + dRe
−ik↓R(y−d/2)), (2.12)

and
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k
↑(↓)
L =

√
2m

~2
(E ± JL −

eV

2
− E||) =

√
2m

~2
(E ± JL −

eV

2
)− k2

||, (2.13)

k
↑(↓)
R =

√
2m

~2
(E ± JR +

eV

2
− E||) =

√
2m

~2
(E ± JR +

eV

2
)− k2

||. (2.14)

In Eqs. (2.9) - (2.12), aL(R)(bL(R)) and cL(R)(dL(R)) account for the coefficients of

spin up and spin down plane waves going from left (right) to right (left), respectively.

As shown in Fig. 2.2, a total of 4 plane waves are defined in each electrode. In Eqs.

(2.13) and (2.14), E|| = ~2(k2
x+k2

z)
2m

=
~2k2
||

2m
is the in-plane energy and ky = kL(R) is

wave-vector in the electrode.

In the barrier the wavefunction is given by,

ΨB = ψ↑B |⇑〉z + ψ↓B |⇓〉z (2.15)

with

↑
B = (

aB√
κ↑(y)

e−ξ
↑(y) +

bB√
κ↑(y)

eξ
↑(y)), (2.16)

↓
B = (

cB√
κ↓(y)

e−ξ
↓(y) +

dB√
κ↓(y)

eξ
↓(y)), (2.17)

and

κ↑(↓)(y) =

√
2m

~2
(U0 −

eV

d
y ∓ JB − E + E||), (2.18)

ξ↑(↓)(y) =

∫ y

y0

κ↑(↓)(u)du = (
d~2

3meV
)
[
κ3↑(↓)(y0)− κ3↑(↓)(y)

]
, (2.19)
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where we have considered WKB approximation and mB = z. In Eqs. (2.16) and

(2.17), aB(bB) and cB(dB) are the spin-up and spin-down coefficients of the evanescent

waves going from left (right) to right (left), respectively, see Fig. 2.2. κ↑(↓)(y) defines

the wave-vector in the barrier and e−ξ
↑(↓)(y)(+ξ↑(↓)(y)) describes the evanescent decaying

exponential wave from left (right) to right (left). Notice that our wavefunctions

are normalized with respect to the wave-vector, e.g., For a spin-up (down) electron

incident from left to right we have aL = 1/
√

2k↑L (cL = 1/
√

2k↓L). To finalize, we

solve Eq. (2.19) for y = d/2 and get

ξ↑(↓)(d/2) =

∫ d/2

−d/2
κ↑(↓)(u)du =(

d~2

3meV
)

[(2m

~2
(U0 + eV/2∓ JB − E + E||)

)3/2

−
(2m

~2
(U0 − eV/2∓ JB − E + E||)

)3/2
]
.

(2.20)

Considering that WKB approximation is valid for low voltage, then we can perform

a Taylor expansion in terms of eV . Consequently, Eq. (2.20) reduces to,

ξ↑(↓)(d/2) = d

√
2m

~2
(U0 ∓ JB − E + E||)− d

√
m
~2 (U0 ∓ JB − E + E||)

48
√

2(U0 ∓ JB − E + E||)2
eV 2, (2.21)

which shows that ξ(d/2) is independent of the sign of eV. Moreover, for eV = 0,

it reduces to the case of a spatially independent barrier potential [60].

2.2.3 Charge and spin current densities in spin filter tunnel

junctions

The charge (ρ) and spin (S) densities are defined as,
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ρ = e
∑
σ

ψ∗σψσ = e(ψ∗↑ψ↑ + ψ∗↓ψ↓), (2.22)

S =
∑
σ,σ′

ψ∗σsσ,σ′ψσ′ , (2.23)

where e is the charge of the electron, σ =↑ (↓) represents the spin orientation, σ̂

is the Pauli matrix vector, and s = ~
2
σ̂ = ~

2
(σx, σy, σz) is the spin operator. Similarly,

the charge (je) and spin (Js) current densities are defined as,

je = e
∑
σ

ψ∗σvψσ = −e(i~
m

)(ψ∗↑∇ψ↑ + ψ∗↓∇ψ↓), (2.24)

J s =
∑
σσ′

ψ∗σsσσ′ ⊗ vψσ′ , (2.25)

where v = − i~
m
∇ is the velocity operator, ~ is Planck’s constant, and m is the

mass of the electron. In three dimensional systems, a total of 9 components are given

for the spin current density. However, in tunnel junctions, where transport is given

along y−axis, only the y−components survive, i.e., Jxy , J
y
y , J

z
y (upper index refers to

the spin space and sub-index to the spatial space). We proceed now to calculate the

spin current densities, Jxy and Jyy at the right interface (y=d/2) in spin filter tunnel

junctions. Considering the local representation we have,

Jxy = − i~
2

2m
(ψ∗↑R

∂ψ↓R
∂y

+ ψ∗↓R
∂ψ↑R
∂y

), (2.26)

Jyy =
~2

2m
(−ψ∗↑R

∂ψ↓R
∂y

+ ψ∗↓R
∂ψ↑R
∂y

), (2.27)

where ψ↑R and ψ↓R are defined in Eqs. (2.11) and (2.12), respectively.

Let’s consider first spin-up and spin-down electrons incident from left to right,
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i.e., bR = 0 and dR = 0. Replacing Eqs. (2.11) and (2.12) in Eqs. (2.26) and (2.27)

we have,

Jxy (y = d/2)
↑(↓)
L→R =

~2

2m
(a∗RcRk

↓
R + aRc

∗
Rk
↑
R), (2.28)

Jyy (y = d/2)
↑(↓)
L→R =

i~2

2m
(−a∗RcRk

↓
R + aRc

∗
Rk
↑
R), (2.29)

where the coefficients are derived by matching the wavefunctions and its deriva-

tives at the interfaces. Considering then electrons from right to left we get different

expressions for up and down spins. For spin up (↑) electrons flowing from right to

left (R→ L) we have dR = 0 and bR = 1/
√

2k↑R, then

Jxy (y = d/2)↑R→L =
~2

4m
√
k↑R

[cRk
↓
R(
√

2 + 2a∗R

√
k↑R) + c∗Rk

↑
R(−
√

2 + 2aR

√
k↑R)],

(2.30)

Jyy (y = d/2)↑R→L = − i~2

4m
√
k↑R

[cRk
↓
R(
√

2 + 2a∗R

√
k↑R) + c∗Rk

↑
R(
√

2− 2aR

√
k↑R)].

(2.31)

For spin-down (↓) electrons flowing from right to left (R → L) we have bR = 0

and dR = 1/
√

2k↓R, then
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Jxy (y = d/2)↓R→L =
~2

4m
√
k↓R

[a∗Rk
↓
R(−
√

2 + 2cR

√
k↓R) + aRk

↑
R(
√

2 + 2c∗R

√
k↓R)],

(2.32)

Jyy (y = d/2)↓R→L =
i~2

4m
√
k↓R

[a∗Rk
↓
R(−2cR

√
k↓R +

√
2) + aRk

↑
R(
√

2 + 2c∗R

√
k↓R)].

(2.33)

Finally, in equilibrium, the total spin current density measured on the right elec-

trode at y = d/2 shall be given by summing up the 4 contributions, i.e.,

J iy(total) = J iy(y = d/2)↑L→R + J iy(y = d/2)↓L→R + J iy(y = d/2)↑R→L + J iy(y = d/2)↓R→L,

(2.34)

2.2.4 In-plane and out-of-plane spin torques

In this section we proceed to study the spin transfer torque mechanism. In the

literature, for transport given along y, the spin torque components are defined as

T|| = Jxy , (2.35)

T⊥ = Jyy . (2.36)

T|| is the in-plane torque and T⊥ is the out-of-plane torque. As shown, the spin

torque components are equivalent to the spin current densities that are transverse

to the magnetization direction. These definitions are found in many textbooks and

reviews, we therefore won’t give much details about its derivations. Notice that the

above definitions are correct as long as we work in the local representation.
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Considering the definitions given, we proceed to study partial spin filter tunnel

junctions, i.e., NM/MI/FM, where JL = 0 in Eq. (2.13) and therefore kL = k
↑(↓)
L .

In the thick barrier limit, to the lowest order in the transmission, the out-of-plane

component of the spin torque for electrons flowing from left to right (L → R) and

right to left (R→ L) read,

TL→R
⊥ =

8~2

mηθR
(k↓2R − k

↑2
R )kLq

↓
Rq
↑
R

∑
σ

[
σ
e−2ξσqσL
k2
L + qσ2

L

]
sin θR, (2.37)

TR→L
⊥ =

2~2

mηθR
(k↓R − k

↑
R)(q↓R − q

↑
R)(k↓Rk

↑
R − q

↓
Rq
↑
R) sin θR. (2.38)

ηθR = [(k↓R + k↑R)(q↓R + q↑R) − (k↓R − k↑R)(q↓R − q↑R) cos θR]2 + 4(q↓Rq
↑
R − k↓Rk

↑
R)2,

κ↑(↓)(+d/2) = qR, κ↑(↓)(−d/2) = qL, and ξ↑(↓) ≡ ξ↑(↓)(d/2). In Eqs. (2.37) and

(2.38) ηθR depends on the free layer magnetization direction and is driven by the

exchange splitting of the barrier. This term brings an out-of-plane torque angular

dependence that deviates from the conventional sin θR dependence encountered in

MTJs. Of great importance is the non-vanishing zeroth-order term of TR→L
⊥ , given

in Eq. (2.38), which demonstrates that the out-of-plane torque is dominated by the

spin-dependent reflection at MI/FM interface, depending strongly on q↑R − q↓R and

k↑R−k
↓
R and being independent of the barrier width. Meanwhile, the in-plane compo-

nents, for electrons flowing from left to right and right to left, are both second order

in barrier transmission, ∼ e−2ξ↑(↓) and strongly depend on the barrier width. T‖ for

MTJs and p-SFTJs to the lowest order in the thick barrier limit are given by,



29

TL→R‖(MTJ) =
2~2

m

(k↓L − k
↑
L)(k↓R + k↑R)(k↓Lk

↑
L − q2

L)(k↓Rk
↑
R + q2

R)qLqRe
−2ξ

(k↓2L + q2
L)(k↑2L + q2

L)(k↓2R + q2
R)(k↑2R + q2

R)
sin θR

≡ TLPL sin θR, (2.39)

TL→R‖(pSFTJ) =
8~2

mηθR
(k↓R + k↑R)kL

[
e−2ξ↑q↑Lq

↑
R(k↓Rk

↑
R + q↓2R )

k2
L + q↑2L

− e−2ξ↓q↓Lq
↓
R(k↓Rk

↑
R + q↑2R )

k2
L + q↓2L

]
sin θR

≈ 8~2

mηθR
(k↓R + k↑R)kL

[
e−2ξ↑q↑Lq

↑
R(k↓Rk

↑
R + q↓2R )

k2
L + q↑2L

]
sin θR. (2.40)

For simplicity we have considered the contribution of electrons incident from the

left layer only. TL and PL, defined in Ref [60], are the transmissivity and effective

Slonczewski polarization of the left layer, respectively. It is straightforward to notice

from Eq. (2.39) that in MTJs the sign of T‖ is determined by the sign of the polariza-

tion PL ∝ (k↓L − k
↑
L) whereas in p-SFTJs, given in Eq. (2.40), PL is absent and no

sign reversal is expected since T‖ is driven by the tunneling electrons that experience

the lowest barrier height (majority electrons in Eq. 2.40).

2.3 Tight binding model based in Keldysh Formal-

ism

Most of the existing theories of spin transfer torque in metallic spin-valves nanos-

tructures use semiclassical approaches based on the generalization of the Valet-Fert

theory for GMR [61] since the spin dependent transport in such structures is usu-

ally considered diffusive and quantum effects are not important. However, in tunnel

junctions, a quantum treatment must be considered and, therefore, it is important

to describe the system more realistically using quantum techniques. In the present,

to describe spin filter tunnel junctions we use the tight binding (TB) model for a

ballistic description of spin transport - based on an extension of the Keldysh formal-
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ism [62] - to the case of non-collinear orientation of the magnetizations. Whereas the

previous model, i.e., free electron model based in WKB approximation, is restricted

to thick barriers with high barrier potentials, in this case we are allowed to consider

thin barrier layers. Moreover, a tight binding analysis takes into account the atomic

potentials in the system, which play a crucial role in the energy dispersion. In ad-

dition, Keldysh formalism is a powerful approach that provides means of calculating

the density matrix through the Keldysh function, providing an exact description of

the system even if the system does not have a well defined wavefunction, e.g., it al-

lows to keep track of phase correlations between different points (or states) during

non-equilibrium processes due to irreversible effects caused by inelastic interactions

or due to applied fields that modify the distribution of the electrons inside the system.

2.3.1 Tight binding Hamiltonian in second quantization

For a single electron one dimensional problem, an operator Ô, in second quantization,

reads

Ô =
∑

j,j′,σ,σ′

T σ,σ
′

j,j′ ĉ
†σ′
j′ ĉ

σ
j =

∑
j,j′

T ↑,↑j,j′c
†↑
j′ c
↑
j + T ↑,↓j,j′c

†↓
j′ c
↑
j + T ↓,↑j,j′c

†↑
j′ c
↓
j + T ↓,↓j,j′c

†↓
j′ c
↓
j . (2.41)

ĉ†σ
′

j′ (ĉσj ) is the creation (annihilation) operator on site j′ (j) with spin index σ′(σ)

and T σ,σ
′

j,j′ is the matrix element defined as,

T σ,σ
′

j,j′ = 〈j′, σ′ | Ô | j, σ〉 (2.42)

Considering these definitions in a three dimensional case, we study a trilayer

structure made of two semi-infinite ferromagnetic electrodes separated by a magnetic



31

insultating barrier. Transport is defined along the y−axis and the magnetization

vector in each layer is restricted to the xz−plane, i.e., in spherical coordinates is

defined by the angle θ. The Hamiltonian for each layer was defined in Eqs. (2.4)-

(2.6). Notice however that in this case we will adopt a different convention, e.g., the

Hamiltonian of the barrier reads,

ĤB =
p̂2

2m
+ ∆σ̂ ·mB + V̂ , (2.43)

where ∆ is the exchange coupling parameter and V̂ is the potential. Discretizing

the problem, we have,

p̂2

2m
=
∑
ijkσ

−~2

2ma2

[
ĉ†σi+1,jkĉ

σ
ijk − 3ĉ†σijkĉ

σ
ijk + ĉ†σij+1,kĉ

σ
ijk + ĉ†σij,k+1ĉ

σ
ijk + h.c.

]
, (2.44)

∆σ̂ ·mB =
∑
ijk

∆
[

cos θĉ↑†ijkĉ
↑
ijk + sin θĉ↑†ijkĉ

↓
ijk + sin θĉ↓†ijkĉ

↑
ijk − cos θĉ↓†ijkĉ

↓
ijk

]
, (2.45)

V̂ =
∑
ijk

U(y)
[
ĉ†↑ijkĉ

↑
ijk + ĉ†↓ijkĉ

↓
ijk

]
. (2.46)

Subindex i, j, and k refer to site enumeration along the x, y and z axis, respec-

tively. ĉ†ijk(ĉijk) is the creation (annihilation) operator on site ijk, a is the lattice

parameter, and h.c. is the Hermitian conjugate. U(y) is the potential in the barrier,

U(y) = 0 otherwise. Considering t = − ~2

2ma2 and ε = 6~2

2ma2 + U(y), the Hamiltonian

for each layer becomes,

ĤΩ =
∑
j

(j∈Ω)

{
εΩ,j ĉ

†
j ĉj + ∆Ω

[
ĉ†jσ̂ ·mĉj

]}
+ t

∑
ijk

(ijk∈Ω)

[
ĉ†i+1ĉi + ĉ†j+1ĉj + ĉ†k+1ĉk + h.c.

]
,

(2.47)

where only the relevant subindex is considered as the system is conserved trans-
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verse to the propagation direction. ĉ†j = (ĉ†↑j , ĉ
†↓
j ) and ĉj = (ĉ↑j , ĉ

↓
j)
t. Ω represents the

uncoupled left (L), right (R), or barrier (B) region. t is the hopping matrix element,

which couples the orbital states and therefore allows the electron to hop from one

site to one of its neighbors and ε is the on-site energy. Notice that we are assuming a

spin-independent hopping matrix element. Considering ε↑(↓) = ε∓∆ the total on-site

energy for majority (minority) carriers, then we define,

ε0 =
ε↓ + ε↑

2
, (2.48)

∆ =
ε↓ − ε↑

2
. (2.49)

ε0 is referred to as the averaged on-site energy. To couple the barrier layer with the

electrodes we consider an interaction Hamiltonian; therefore, the total Hamiltonian

reads,

Ĥ = ĤL + ĤR + ĤB + Ĥint. (2.50)

The first three terms correspond to the isolated contribution and the last term

define the coupling with the electrodes,

Ĥint = t
[
ĉ↑†a ĉ

↑
α + ĉ↓†a ĉ

↓
α + ĉ↑†b ĉ

↑
α′ + ĉ↓†b ĉ

↓
α′ + h.c.

]
. (2.51)

In Eq. (2.51), site j = α (α′) in the left (right) electrode is next to site j = a (b)

in the insulating region, see Fig. 2.3(a). In Fig. 2.3(b) we show the potential profile

of the system, describing the averaged on-site energies and the exchange-splittings.

In the barrier, the on-site energy varies linearly with site number j as

εσBj = εσB + eV
j − 1

N − 1
, (2.52)
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being eV = µR − µL, with µj the chemical potential in the lead, and N the

number of atomic sites in the barrier. In the present setup, shown in Fig. 2.3(a), the

magnetization of the barrier (mB) is defined along the z−axis (θB = 0), and in the

left (right) electrode it is rotated in the xz− plane with angle θL (θR). The barrier

is made up of 3-atomic sites numbered from 1 to 3. The right electrode is numbered

from 4 to ∞ and the left electrode from −∞ to -1.

Figure 2.3: (Color online) a) Schematic structure of a SFTJ of the form FM/MI/FM.
The magnetization vector on each layer is rotated by an angle θ in xz−plane. Sub-
scripts L, R, and B stands for left, right, and barrier, respectively. The atomic layers,
represented by green crosses, are enumerated from 1 to 3 in the barrier (NB = 3).
Subscripts next to left (right) interface are denoted a (b) in the barrier and α (α′)
in the lead. b) Potential profile describing the averaged on-site energies (ε0L, ε0B, and
ε0R) and exchange-splittings (∆L, ∆B, and ∆R). eV = µR − µL, with µ the chemical
potential in the lead. EF = 0 eV refers to Fermi energy level. For negative bias,
the electron flow density (Je) goes from reference layer (left) to free layer (right). c)
Density of states at zero bias for ε0R = +5 eV and ε0R = −1 eV cases.

Considering that transverse to y−axis, k = (kx, ky, kz) is conserved then we can

consider a solution of the form,
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| ψσkx,kz〉 =
1√
Nx

1√
Nz

∑
l∈x
m∈z

eikxaleikzam | l,m, σ〉, (2.53)

〈ψσ′kx,kz | =
1√
Nx

1√
Nz

∑
l′∈x
m′∈z

e−ikxal
′
e−ikzam

′〈l′,m′, σ′ | . (2.54)

This is the usual Bloch wavefunction solution for a periodic potential in a tight

binding model. Nx(z) and l (m) represent the number of lattice points and site enumer-

ation along x (z). If we consider in Eq. (2.47), Ĥk|| = t
∑

ik

[
ĉ†i+1ĉi + ĉ†k+1ĉk + h.c.

]
,

then its matrix elements, in terms of Eqs. (2.53)-(2.54), are

Ĥσ,σ′

k||
= 〈ψσ′kx,kz | Ĥk|| | ψ

σ
kx,kz〉

=
1

NxNz

∑
ll′,mm′

eikxa(l−l′)eikza(m−m′)〈l′,m′, σ′ | Ĥk|| | l,mσ〉. (2.55)

To solve Eq. (2.55) a simple cubic lattice in the nearest neighbor approximation

is considered, which gives,

Ĥ↑,↑k|| = 2t(cos kxa+ cos kza), (2.56)

Ĥ↓,↓k|| = 2t(cos kxa+ cos kza). (2.57)

We define εk‖ = 2t(cos kxa + cos kza) as the in-plane energy and proceed to give

a solution for the total wavefunction in the uncoupled region Ω (L, R, or B). We

employ the Green’s function formalism in Schrodinger’s equation, i.e., (E − H)ψ =

0→ (E −H)G = I, where G denotes the Green’s function, H is given in Eq. (2.47),

and E is the energy. Our final expression becomes,
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∑
p1

{{
[(E − εk||)δpp1 −Hpp1 ]Î − δHp,p1

[
cos θΩ sin θΩ

sin θΩ − cos θΩ

]}
ĝp1q

}
= δpq Î . (2.58)

p1, p, and q denote atomic sites along y−axis. Î is the 2×2 unit matrix operator,

and θΩ is the angle of the magnetization with respect to the z−axis. Hpq = ε0Ωδpq +

t(δp,q+1 + δp,q−1) and δHpq = ∆Ωδpq, where ε0 and ∆ are defined in Eqs. (2.48)-(2.49).

It is important to remark that in equilibrium Eqs. (2.53)-(2.54) can be extended

to three dimensions and therefore for a simple cubic tight-binding model in nearest

neighbor approximation we have,

Ĥσ,σ
k||

= 2t(cos kxa+ cos kya+ cos kza), (2.59)

which shows its maxima and minima at 6|t|. Consequently, considering Eq. (2.47),

the energy limits of the density of states (DOS) are given by Eσ
min(max) = εσΩ ± 6t,

which brings different band filling values in the electrodes associated with the DOS

at Fermi level (EF = 0 eV). Notice that we are choosing t = −1.0 eV. In the

present work, four band filling cases are studied where ∆Ω = +2 eV unless stated

otherwise; therefore, for the parameters considered here, ε0L(R) = +5 eV, given on Fig.

2.3(c) top-panel, defines the half metallic case which considers no states at EF for

minority carriers. ε0R = +3 eV, in contrast, allows a small contribution of minority

spin states at Fermi level, see Fig. 2.3(b). Both cases are referred to be in the low

band filling regime which applies reasonably well to transition metals (Fe, Co, Ni)

and their compounds. The tight-binding modeling of spin transfer torque in MgO-

based tunnel junctions yields bias-dependences and magnitudes in semi-quantitative

agreement with the experimental observations [63]. We additionally investigate the
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cases ε0R = +1 eV and ε0R = −1 eV, where the population of minority carriers at Fermi

level increases until it becomes larger than the population of the majority carriers;

therefore, a polarization inversion is expected as the system moves towards the high

band filling regime, see Fig. 2.3(c) bottom-panel.

Our model being limited to a single band, it does not capture the specific wave-

function symmetries that would arise in crystalline junctions, such as Fe/MgO [64].

However, limiting this study to low bias voltage, this model provides a qualitative

description of the spin transport in spin filter junctions.

2.3.2 Isolated Green’s functions

We first proceed to give a solution for the isolated Green’s functions. In the barrier,

for N = 3, Eq. (2.58) in its matrix representation reads,


E − εσB1

−t 0

−t E − εσB2
−t

0 −t E − εσB3



ĝσ11 ĝσ12 ĝσ13

ĝσ21 ĝσ22 ĝσ23

ĝσ31 ĝσ32 ĝσ33

 =


1 0 0

0 1 0

0 0 1

 . (2.60)

Notice that we are considering mB = z; therefore, the 2 × 2 Green’s function

matrix ĝ has off-diagonal terms equal to zero, i.e., ĝ↑↓ = ĝ↓↑ = 0, and the diagonal

terms can be solved separately. For simplicity we consider ĝ↑↑ = ĝ↓↓ = ĝσ, with σ

being either ↑ or ↓. In Eq. (2.60), εσBj is defined in Eq. (2.52) and E = E0− εk‖ + iδ,

where E0 is the energy and iδ is the imaginary term that appears in the definition

of the retarded Green’s function. Solving Eq. (2.60) we obtain our isolated retarded

Green’s functions, ĝr,
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ĝr,σ11 = ĝσaa + t2ĝσabĝ
σ
baD

σ
3 , ĝr,σ12 = ĝσab + t2ĝσabĝ

σ
bbD

σ
3 , ĝr,σ13 = tĝr,σ12 Dσ

2 , (2.61)

ĝr,σ21 = ĝσba + t2ĝσbbĝ
σ
baD

σ
3 , ĝr,σ22 = ĝσbb + t2ĝσbbĝ

σ
bbD

σ
3 , ĝr,σ23 = tĝr,σ22 Dσ

2 , (2.62)

ĝr,σ31 = tĝr,σ21 Dσ
2 , ĝr,σ32 = tĝr,σ22 Dσ

2 , ĝr,σ33 = (1 + tĝr,σ23 )Dσ
2 ,

(2.63)

with

ĝσaa = (E − εσB2
)Dσ

1 , Dσ
1 = ((E − εσB1

)(E − εσB2
)− t2)−1, (2.64)

ĝσbb = (E − εσB1
)Dσ

1 , Dσ
2 = (E − εσB3

)−1, (2.65)

ĝσab = ĝσba = tDσ
1 , Dσ

3 = (E − εσB3
− t2ĝσbb)−1. (2.66)

To obtain solutions for the isolated Green’s functions in the electrodes we directly

solve Eq. (2.58), which turns into a system of 4 equations (ĝ↑↑pq , ĝ
↑↓
pq , ĝ

↓↑
pq , and ĝ↓↓pq).

Considering nearest neighbors only, i.e., ĝp+1,q = ĝpqe
ika and ĝp−1,q = ĝpqe

−ika, we

have

ĝ↑↑(↓↓)pq =
δpq
2

[
1± cos θ

E − ε↓ − 2t cos ka
+

1∓ cos θ

E − ε↑ − 2t cos ka

]
, (2.67)

ĝ↓↑(↑↓)pq =
δpq
2

[
sin θ

E − ε↓ − 2t cos ka
− sin θ

E − ε↑ − 2t cos ka

]
, (2.68)

Then, considering a Fourier transform in the first Brillouin zone and replacing

E → E + iδ to define the retarded Green’s function we have,

ĝr(l,m,E) =
a

2π

∫ π/a

−π/a
ĝpqe

ika(l−m)dk, (2.69)
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and consequently,

ĝr,↑↑(↓↓)(l,m;E) = − i
2

[
(1± cos θ)

n↑|l−m|

d↑
+ (1∓ cos θ)

n↓|l−m|

d↓

]
, (2.70)

ĝr,↓↑(↑↓)(l,m;E) = − i
2

[
sin θ

n↑|l−m|

d↑
− sin θ

n↓|l−m|

d↓

]
, (2.71)

with

n↑(↓) =
E − ε↑(↓)

2t
− i
√

1−
(E − ε↑(↓)

2t

)2

, (2.72)

d↑(↓) =
√

4t2 − (E − ε↑(↓))2. (2.73)

l and m represent atomic sites. Notice however that Eqs. (2.70)-(2.71) constitute

our isolated retarded Green’s functions for an infinite electrode. In the case of a semi-

infinite system we need to consider the interaction at the interface, i.e., ˜̂gαα =
ĝαµ′

tĝα′µ′
,

which appears as a result of Dyson’s equation in a system made of two semi-infinite

leads. ˜̂g is the semi-infinite Green’s function, ĝ is the infinite Green’s function, greek

symbols represent the atomic sites, and (non-) prime symbols refer to one of the

semi-infinite regions. Replacing µ′ = α+1 = α′ we get ˜̂gαα = ĝα,α+1

tĝα+1,α+1
. Consequently,

following a similar derivation, our semi-infinite retarded Green’s functions become,

ĝr,↑↑(↓↓)(l,m;E) = − i
2

[
(1± cos θ)

n↑|l−m| − n↑(l+m)

d↑
+ (1∓ cos θ)

n↓|l−m| − n↓(l+m)

d↓

]
,

(2.74)

ĝr,↓↑(↑↓)(l,m;E) = − i
2

[
sin θ

n↑|l−m|

d↑
− sin θ

n↓|l−m|

d↓
+ sin θ

n↓(l+m)

d↓
− sin θ

n↑(l+m)

d↑

]
,

(2.75)
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where we neglected the “˜” symbol for simplicity and considered l,m instead of

α, µ.

2.3.3 Coupled Green’s functions

For a barrier system in contact with two electrodes, the Hamiltonian given in Eq.

(2.50) in its block form reads,

Ĥ =


ĤL ĤLB 0

Ĥ†LB ĤB Ĥ†RB

0 ĤRB ĤR

 , (2.76)

where ĤLB and ĤRB are the two components of the interaction Hamiltonian given

in Eq. (2.51). A schematic representation of Eq. (2.76) is given in Fig. 2.4.

LEFT

ELECTRODE

RIGHT

ELECTRODE

HL HR

HLB HRB

BARRIER

SYSTEM

HB

Figure 2.4: (Color online) Hamiltonian representation of a barrier system in contact
with two electrodes. HLB and HRB are the components of the interaction Hamilto-
nian. HΩ is the isolated Hamiltonian, Ω = L,R or B.

Solving Schrodinger’s equation in the Green’s function representation we have,
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E − ĤL −ĤLB 0

−Ĥ†LB E − ĤB −Ĥ†RB

0 −ĤRB E − ĤR



ĜLL ĜLB 0

ĜBL ĜBB ĜBR

0 ĜRB ĜRR

 = Î , (2.77)

which gives rise to a solution of the form (E − ĤB − Σ̂)ĜBB = Î, with Σ̂ =

Ĥ†LB(E− ĤL)−1ĤLB + Ĥ†RB(E− ĤR)−1ĤRB. Replacing Eq. (2.51) in the definition of

Σ̂ we have, Σ̂ = taαĝααtαa + tbα′ ĝα′α′tα′b, where site α (α′) in the left (right) electrode

is next to site a (b) in the insulating region, see Fig. 2.3(a). Notice that ĝαα(α′α′) is

the 2× 2 isolated semi-infinite retarded Green’s function matrix derived in §2.3.2. In

what follows, upper-index r is removed for simplicity. Σ̂ describes the propagation of

the electron across the interfaces and is referred to as the self energy term. It can be

partitioned in two components,

Σ̂aa = taαĝααtαa, Σ̂bb = tbα′ ĝα′α′tα′b. (2.78)

We now proceed to couple the full system made of semi-infinite electrodes and a

barrier layer. For this we solve a system of Dyson’s equations of the form

Ĝpq = ĝpq + ĝpaΣ̂aaĜaq + ĝpbΣ̂bbĜbq, (2.79)

where Ĝ (ĝ) is the 2×2 coupled (isolated) retarded Green’s function matrix. p and

q denote atomic sites in the barrier. Eq. (2.79) is self-consistent, which means that

each coupled Green’s function can be described in terms of isolated Green’s functions.

For example we have,
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Ĝaq = (I − ĝaaΣ̂aa)
−1ĝaq + (I − ĝaaΣ̂aa)

−1ĝabΣ̂bbĜbq, (2.80)

Ĝbq = (I − ĝbbΣ̂bb)
−1ĝbq + (I − ĝbbΣ̂bb)

−1ĝbaΣ̂aaĜaq. (2.81)

Replacing Eq. (2.81) in Eq. (2.80), we get,

Ĝaq = (I − (I − ĝaaΣ̂aa)
−1ĝabΣ̂bb(I − ĝbbΣ̂bb)

−1ĝbaΣ̂aa)
−1(I − ĝaaΣ̂aa)

−1ĝaq

+ (I − (I − ĝaaΣ̂aa)
−1ĝabΣ̂bb(I − ĝbbΣ̂bb)

−1ĝbaΣ̂aa)
−1ĝabΣ̂bb(I − ĝbbΣ̂bb)

−1ĝbq.

(2.82)

Similar calculations are performed for the advanced Green’s functions, Ĝa
pq, given

as the Hermitian conjugate of Ĝpq.

2.3.4 Quantum kinetic equation

The next step is to solve the quantum kinetic equation in the framework of Keldysh

formalism. Here we need to consider other type of Green’s functions. For systems in

equilibrium or not far from equilibrium it is sufficient to consider the casual Green’s

function, Ĝc, at zero temperature (T = 0K) or the Matsubara Green’s function, ĜM ,

for T > 0K; as well as the retarded, Ĝ, and advanced, Ĝa, Green’s functions, where

the latter two describe the propagation of particles forward and backward in time,

respectively. For systems far from equilibrium, Keldysh showed [62] that the system

can be described considering additional Green’s functions, i.e., the lesser, Ĝ<, the

greater, Ĝ>, and the anticasual, ˆ̃Gc, Green’s functions. We therefore have,
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Ĝc
pq(t1, t2) = −i〈0 | T̂{ĉp(t1)ĉ†q(t2)} | 0〉, (2.83)

Ĝ<(t1, t2) = +i〈0 | ĉ†q(t2)ĉp(t1) | 0〉, (2.84)

Ĝ>(t1, t2) = −i〈0 | ĉp(t1)ĉ†q(t2) | 0〉, (2.85)

ˆ̃Gc(t1, t2) = −i〈0 | T̃ ĉp(t1)ĉ†q(t2) | 0〉, (2.86)

where ĉp and ĉ†p are the annihilation and creation operators. T̂ denotes the time

ordering operator from −∞ to +∞, T̃ denotes time ordering from +∞ to −∞, and

the brackets, 〈...〉, denote the averaging over some quantum state. For T = 0K, the

average is performed over the ground state of Ĥ, i.e., 〈...〉 = 〈0 | ... | 0〉. For major

details of Keldysh contour and formalism refer to Ref. [62]. In the present thesis we

focus instead on the quantum kinetic equation arising in Keldysh space. It is shown

that a Dyson’s equation may be written as,

Ĝpq(t1, t2) = ĝpq(t1, t2) +

∫
ĝpm(t1, t)Σ̂mn(t, t′)Ĝnq(t

′, t2)dtdt′ (2.87)

where,

Ĝ =

 Ĝc Ĝ<

Ĝ> ˆ̃Gc

 , Σ̂ =

 Σ̂c Σ̂<

Σ̂> ˆ̃Σc

 . (2.88)

Ĝ and ĝ are the Green’s function matrices, in presence and absence of perturba-

tions, respectively. Σ̂ is the self-energy matrix. Considering a canonical transforma-

tion, i.e., (1−iσ̂y
2
Ĝ1+iσ̂y

2
) [62], Eq. (2.87) becomes,
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 0̂ Ĝa

Ĝ ĜK

 =

0̂ ĝa

ĝ ĝK

+

0̂ ĝa

ĝ ĝK


Σ̂K Σ̂

Σ̂a 0


 0̂ Ĝa

Ĝ ĜK

 , (2.89)

where subscripts have been removed for simplicity and the following relationships

hold,

ĜK = Ĝc + ˆ̃Gc = Ĝ< + Ĝ>, (2.90)

Ĝ = Ĝc − Ĝ< = − ˆ̃Gc + Ĝ>, (2.91)

Ĝa = Ĝc − Ĝ> = − ˆ̃Gc + Ĝ<, (2.92)

Σ̂K = Σ̂c + ˆ̃Σc = −(Σ̂< + Σ̂>), (2.93)

Σ̂ = Σ̂c + Σ̂< = −( ˆ̃Σc + Σ̂>), (2.94)

Σ̂a = Σ̂c + Σ̂> = −( ˆ̃Σc + Σ̂<). (2.95)

Thus, from Eq. (2.89) we obtain a set of three equations, the off-diagonal terms

are the usual Dyson’s equations for the retarded and advanced Green’s functions,

whereas the diagonal term gives,

ĜK
pq = ĝKpq + ĝpq1ΣK

q1q2
Ĝa
q2q

+ ĝpq1Σ̂q1q2Ĝ
K
q2q

+ ĝKpq1Σ̂a
q1q2

Ĝa
q2q

(2.96)

ĝK is the non-equilibrium 2×2 Green’s function matrix for the uncoupled region,

and the self energy takes the form

Σ̂q1q2 = tÎ(δq1αδq2a + δq1α′δq2b) + h.c. (2.97)
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Being the perturbation instantaneous, then Σ̂ ≡ Σ̂a [62]. Therefore, considering

Eqs. (2.93)-(2.95), we have ΣK = 0 and the kinetic equation given in Eq. (2.96)

reduces to,

ĜK
pq = ĝKpq + ĝpq1Σ̂q1q2Ĝ

K
q2q

+ ĝKpq1Σ̂q1q2Ĝ
a
q2q
. (2.98)

Replacing Eq. (2.97) in Eq. (2.98) we have,

ĜK
pq = ĝKpq + ĝpαtĜ

K
aq + ĝpatĜ

K
αq + ĝKpαtĜ

a
aq + ĝKpatĜ

a
αq + ĝpbt

′ĜK
α′q + ĝpα′t

′ĜK
bq

+ ĝKpbt
′Ĝa

α′q + ĝKpα′t
′Ĝa

bq. (2.99)

Since we are interested in evaluating the spin torque on the right interface. We

solve for ĜK
bα′(α′b). Because the various ĜKs are coupled, once needs to write similar

kinetic equations for additional terms. For ĜK
bα′ the coupled system of equations,

derived from Eq. (2.99), reads

ĜK
bα′ = ĝbatĜ

K
αα′ + ĝbbt

′ĜK
α′α′ , (2.100)

ĜK
α′α′ = ĝKα′α′ + ĝα′α′t

′ĜK
bα′ + ĝKα′α′t

′Ĝa
bα′ , (2.101)

ĜK
αα′ = ĝααtĜ

K
aα′ + ĝKααtĜ

a
aα′ , (2.102)

ĜK
aα′ = ĝaatĜ

K
αα′ + ĝabt

′ĜK
α′α′ . (2.103)

Considering Σ̂R = t′ĝα′α′t
′ and Σ̂L = tĝααt, Eqs. (2.100)-(2.103) become,
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(Î − ĝbbΣ̂R)ĜK
bα′ = ĝbaΣ̂LĜ

K
aα′ + ĝbatĝ

K
ααtĜ

a
aα′ + ĝbbt

′ĝKα′α′ + ĝbbt
′ĝKα′α′t

′Ĝa
bα′ , (2.104)

(Î − ĝaaΣ̂L)ĜK
aα′ = ĝabt

′ĝKα′α′ + ĝabΣ̂RĜ
K
bα′ + ĝabt

′ĝKα′α′t
′Ĝa

bα′ + ĝaatĝ
K
ααtĜ

a
aα′ . (2.105)

Taking Â = (Î − ĝaaΣ̂L)−1, B̂ = (Î − ĝbbΣ̂R)−1, and D̂ = (Î − B̂ĝbaΣ̂LÂĝabΣ̂R)−1,

Eqs. (2.104)-(2.105) simplify to ĜK
bα′ = ĜK,L

bα′ + ĜK,R
bα′ with

ĜK,L
bα′ = t2D̂B̂ĝbaĝ

K
ααĜ

a
aα′ + t2D̂B̂ĝbaΣ̂LÂĝaaĝ

K
ααĜ

a
aα′ , (2.106)

ĜK,R
bα′ = tD̂B̂ĝbbĝ

K
α′α′(Î + tĜa

bα′) + tD̂B̂ĝbaΣ̂LÂĝabĝ
K
α′α′(Î + tĜa

bα′). (2.107)

Similarly, for ĜK
α′b we have ĜK

α′b = ĜK,L
α′b + ĜK,R

α′b with

ĜK,L
α′b = tL̂N̂Σ̂RĝbaM̂ĝKααĜ

a
ab, (2.108)

ĜK,R
α′b = t′L̂N̂ ĝKα′α′Ĝ

a
bb, (2.109)

where N̂ = (Î − Σ̂Rĝbb)
−1, M̂ = (Î − Σ̂Lĝaa)

−1, and L̂ = (Î − N̂Σ̂RĝbaM̂Σ̂Lĝab)
−1.

Considering Eqs. (2.90)-(2.92) the following relationship holds,

Ĝ<
pq =

1

2
[ĜK

pq + Ĝa
pq − Ĝpq] (2.110)

Moreover, by definition we have,

ĝ< = iÂεfΩ, (2.111)
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where Aε = i[ĝ− ĝa] is the spectral function and fΩ is the Fermi Dirac distribution

given by,

fL =
1

e(E−µL)/kBT + 1
, (2.112)

fR =
1

e(E−µR)/kBT + 1
. (2.113)

Consequently,

gKα,µ = (1− 2fL)(ĝα,µ − ĝaα,µ), (2.114)

gKα′µ′ = (1− 2fR)(ĝα′,µ′ − ĝaα′,µ′), (2.115)

and the kinetic equation can easily be transformed in terms of lesser Green’s

functions. We therefore have,

Ĝ<,L
bα′ = t2D̂B̂ĝbaĝ

<
ααĜ

a
aα′ + t2D̂B̂ĝbaΣ̂LÂĝaaĝ

<
ααĜ

a
aα′ , (2.116)

Ĝ<,R
bα′ = tD̂B̂ĝbbĝ

<
α′α′(Î + tĜa

bα′) + tD̂B̂ĝbaΣ̂LÂĝabĝ
<
α′α′(Î + tĜa

bα′), (2.117)

Ĝ<,L
α′b = tL̂N̂Σ̂RĝbaM̂ĝ<ααĜ

a
ab, (2.118)

Ĝ<,R
α′b = t′L̂N̂ ĝ<α′α′Ĝ

a
bb, (2.119)

and

Ĝ<
bα′ = Ĝ<,L

bα′ + Ĝ<,R
bα′ (2.120)

Ĝ<
α′b = Ĝ<,L

α′b + Ĝ<,R
α′b . (2.121)
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2.3.5 Spin current densities and spin transfer torques

In the Heisenberg representation, the full quantum description of a system consisting

of N particles is provided using the density matrix which is defined as,

ρ̂σσ
′
(r1, r2, t) =

1

N
〈Ψ̂†σ

′

H (r2, t)Ψ̂
σ
H(r1, t)〉

= ∓ i

N
Ĝ<σ,σ′(r1, t; r2, t), (2.122)

being Ψ̂H the field operator and Ĝ< the lesser Green’s function. If Ôσσ′ is a

single-particle operator of any physical observable then its average value in second

quantization is given by

〈O〉 =
∑
σσ′

〈Ψ̂†σ
′

H (r, t)Ôσσ′Ψ̂σ
H(r, t)〉d3r,

= N
∑
σσ′

∫
[Ôσσ′ ρ̂σ

′σ(r1, r2, t)]r2=r1=rd
3r,

= ∓i
∑
σσ′

∫
[Ôσσ′Ĝ<σ,σ′(r1, t; r2, t)]r2=r1=rd

3r. (2.123)

Then, the average of any observable can be expressed in terms of the lesser Green’s

function. Similar to §2.2.3 we proceed to express the charge and spin (current) den-

sities. The particle number (n) and spin density (S) at a given point in second

quantization are,

n(r, t) =
∑
σ

Ψ̂†σ
′

H (r, t)Ψ̂†σ
′

H (r, t), (2.124)

S(r, t) =
∑
σ

Ψ̂†σ
′

H (r, t)ŝσσ
′
Ψ̂†σ

′

H (r, t), (2.125)
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where ŝσσ
′

is defined in §2.2.3. Therefore, considering Eq. (2.123), the average

particle number, 〈n(r, t)〉, and average spin density, 〈S(r, t)〉, become,

〈n(r, t)〉 = N
∑
σ

ρ̂σσ(r, r, t) = −i
∑
σ

Ĝ<σ,σ(r, t; r, t), (2.126)

〈S(r, t)〉 = N
∑
σ

ŝσσ
′
ρ̂σ
′σ(r, r, t) = −i

∑
σ′σ′

ŝσσ
′
Ĝ<σ′,σ(r, t; r, t). (2.127)

Similarly, the average charge, 〈je(r, t)〉, and spin current densities, 〈Q(r, t)〉, be-

come,

〈je(r, t)〉 = − e~
2m

∑
σ

[(∇r −∇r′)Ĝ<σ,σ(r, t; r′, t)]r′=r, (2.128)

〈Q(r, t)〉 =
~

2m

∑
σσ′

[ŝσσ
′ ⊗ (∇r −∇r′)Ĝ<σ′,σ(r, t; r′, t)]r′=r, (2.129)

Discretizing the problem and integrating over E and k‖ we have,

je =
et

2π~

∫
Tr[(Ĝ<σ,σ′

p+1,p − Ĝ
<σ,σ′

p,p+1)Î]dEdk‖, (2.130)

Qxy
p,p+1 =

t

4π

∫
Tr[(Ĝ<σ,σ′

p+1,p − Ĝ
<σ,σ′

p,p+1)σ̂x]dEdk‖, (2.131)

Qyy
p,p+1 =

t

4π

∫
Tr[(Ĝ<σ,σ′

p+1,p − Ĝ
<σ,σ′

p,p+1)σ̂y]dEdk‖, (2.132)

Qzy
p,p+1 =

t

4π

∫
Tr[(Ĝ<σ,σ′

p+1,p − Ĝ
<σ,σ′

p,p+1)σ̂z]dEdk‖. (2.133)
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je is the charge current density and Q corresponds to the spin current density

tensor, which is separated in its three components associated to the respective Pauli

matrices, σ̂. Since the transverse spin current density is not conserved, the spin

current lost at an atomic site p is transferred to its local magnetic moment, thereby

exerting a local torque Tp. In general we have

Tp = −∇ ·Q = Qp−1,p −Qp,p+1, (2.134)

where the second equality represents the discrete form of the divergence of the spin

current density. To obtain the net torque in the right electrode we sum all the

localized torque values, i.e., T =
∑∞

p Tp, where p refers to atomic sites in the right

electrode. This eventually leads to a total torque given by the spin current density

at the interface,

TR = Qbα′ . (2.135)

The spin transfer torque can be separated in two components perpendicular to

the magnetization direction. Then, considering that mR rotates in the xz−plane, we

have

TR
‖ = Qxy

bα′ cos θR −Qzy
bα′ sin θR, (2.136)

TR
⊥ = Qyy

bα′ . (2.137)
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2.4 Results and discussion

First we investigate structures where insulating spacers needed to magnetically de-

couple the MI and FM layers are disregarded. Here we study the bias dependence

of STT in partial SFTJs (§2.4.1) and the angular dependence of STT in junctions

of the form FM/MI/FM (§2.4.2). The former is set considering θR(B) = π/2(0) and

∆L = 0, the latter takes into account θL(R) = π/2(0). In both cases ε0L = ε0R and

the barrier height is set as close as possible to the Fermi level to guarantee large

current densities. To avoid Fowler Nordheim effect [65], ε0B = +9 eV and ∆B = +2

eV are considered, which brings at zero-bias, E↑min = +1 eV. In §2.4.3, we study the

case where insulating spacers are inserted between FM and MI in order to decouple

the two magnetic layers. Such an insertion is in principle expected to dramatically

reduce both TMR and STT amplitudes. However, it has been shown experimentally

that insertion of 0.8 nm-thick SrTiO3 non-magnetic insulating spacer between FM

electrode and magnetic insulating barrier in La2/3Sr1/3MnO3/(SrTiO3)/NiFe2O4/Au

junctions, is efficient in decoupling the exchange interaction between the magnetic

insulator and the electrode without substantially modifying the TMR ratio [39]. We

show how the spin transfer torque components are modified when inserting the non-

magnetic insulating spacer. The in-plane torque dramatically decreases in magnitude

preserving its qualitative behavior as a function of bias. In contrast, the magnitude of

the out-of-plane torque is only slightly reduced in both partial and symmetric SFTJs.

Therefore, disregarding such spacers does not bring major changes in the out-of-plane

component, which should be measurable experimentally.

2.4.1 Partial Spin Filter Tunnel Junction

As displayed in Figs. 2.5(a)(b), main panels, for the aforementioned band filling

cases, it is found that a bilayer system of the form MI/FM is enough to dramatically
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Figure 2.5: (Color online) Bias dependence of non-equilibrium (a) in-plane T‖, and
(b) out-of-plane, T⊥ − T0

⊥, spin torque components, for NM/MI/FM (main panels)
and FM/I/FM (insets) structures, with θR = π/2, θL(B) = 0 and ε0B = +9 eV for
different values of spin averaged on-site energies in the leads (ε0L = ε0R). ∆L = 0 and
∆R(B) = +2 eV in p-SFTJs (former). ∆B = 0 and ∆L(R) = +2 eV in MTJs (latter).
NB = NI = NMI = 3, and the hopping parameter is t = -1 eV. In all cases the
magnitude of the torques are given in µeV/Λ where Λ denotes the interfacial unit
area.

enhance the spin torque components compared to MTJs, displayed on insets. In

Figs. 2.6(a)(b), the torque efficiencies are displayed as a function of band filling for

V = −1.0 V. Whereas T‖/je magnitude remains in same order of MTJs, (T⊥−T0
⊥)/je

is increased by a factor of 10 in low band filling regions up to a factor of 100 as

the system moves towards higher band filling values. Notice that the equilibrium

interlayer exchange coupling (IEC) [60], i.e., the zero-bias value of T⊥, T0
⊥, has been

subtracted.

The underlying mechanism of the out-of-plane torque is first understood in the
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V. Similar parameters as in Fig. 2.5 are considered. In panel b) MTJ magnitude is
multiplied by 10 to fit in the graph. Insets refer to the torque efficiencies of the
p-SFTJ as a function of barrier thickness (NB = NMI), given in numbers of atomic
layers, for V = −1.0 V and ε0L(R) = +3 eV. The magnitude of the torque efficiencies

are given in units of h/e.

framework of free electron approach based in Wentzel-Kramers-Brillouin (WKB) ap-

proximation. As derived in §2.2.4, the out-of-plane torque is dominated by the spin-

dependent reflection at MI/FM interface, depending strongly on q↑R− q
↓
R and k↑R−k

↓
R

and being independent of the barrier width. This result is confirmed in the TB ap-

proach. For this, in Eqs. (2.120) and (2.121) we vanish G<R
bα′(α′b) (G<L

bα′(α′b)) to describe

the interaction arising from the left (right) layer only. It is found that even in the

presence of a thin magnetic insulating barrier, for all band filling, the non-equilibrium

out-of-plane torque, T⊥ − T0
⊥, is driven by the spin-dependent reflection at MI/FM

interface, and the contribution of the tunneling electrons (L→ R) becomes negligible
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in high band filling regime. Meanwhile, the in-plane components, for electrons flowing

from left to right and right to left, are both second order in barrier transmission, ∼

e−2dκ↑(↓) (not shown here), and strongly depend on the barrier width.

On insets in Figs. 2.6(a)(b), the torque efficiencies as a function of the barrier

width for ε0L(R) = +3 eV and V = −1.0 V are displayed. Whereas T‖/je remains

constant as a result of T‖ and je decaying at same rate, (T⊥ − T0
⊥)/je exponentially

increases in agreement with Eq. (2.38). The torkances of the STT components,

∂T /∂V , as the system moves towards higher band filling, are of particular interest.

First, in agreement with a recent work [43], due to the asymmetry of the junctions, the

out-of-plane torque depends linearly as a function of bias voltage; however, as ε0L(R)

decreases, ∂(T⊥ −T0
⊥)/∂V changes sign, see Fig. 2.5(b). The underlying mechanism

is inferred from Eq. (2.38), TR→L
⊥ ∝ (k↑R − k

↓
R), where the torkance changes sign as

a result of polarization inversion. Meanwhile, the in-plane STT component exhibits

an important feature in contrast to MTJs. Whereas in MTJs ∂T‖/∂V changes sign

as ε0L(R) decreases [see inset in Fig. 2.5(a)], in p-SFTJs it does not [see main panel in

Fig. 2.5(a)]. This behavior is understood considering WKB approximation. As given

in §2.2.4, it is straightforward to notice from Eq. (2.39) that in MTJs the sign of T‖ is

determined by the sign of the polarization PL ∝ (k↓L−k
↑
L) whereas in p-SFTJs, given

in Eq. (2.40), PL is absent and no sign reversal is expected since T‖ is driven by

the tunneling electrons that experience the lowest barrier height (majority electrons

in Eq. 2.40).

2.4.2 Symmetric Spin Filter Tunnel Junction

In §2.4.1, we have seen that a magnetic insulating barrier adjacent to a ferromagnetic

layer dramatically enhances the torque amplitude compared to magnetic tunnel junc-

tions. The out-of-plane torque is driven by the spin-dependent reflection at MI/FM

interface, whereas the in-plane torque is dominated by the tunneling electrons that
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experience the lowest barrier height. To exploit these important features, we propose

a device of the form FM/MI/FM, referred to as symmetric spin filter tunnel junction,

or s-SFTJ. The system now consists of two ferromagnets separated by a magnetic

insulator, the left layer is referred to as the reference layer and the right layer is the

free layer on which the torque is exerted. In this device, when the magnetization

direction of the barrier is aligned on the magnetization of the free layer, the junction

is expected to behave like a MTJ. In contrast, when the magnetization of the barrier

is misaligned with respect to the magnetization of the free layer, the system behaves

like the p-SFTJ discussed in §2.4.1. Therefore, the magnitude of the spin transfer

torques can be tuned, depending on the relative angle between the magnetizations of

the barrier and free layer. In Figs. 2.7(a)(b) we display the angular dependence of

the STT components for V = +1.0 V. For this study, the magnetization of the barrier

is rotated by an angle θB while the magnetization of the leads are kept perpendicular

to each other, θL(R) = π/2(0), as sketched in Fig. 2.7(b). When the magnetization

of the barrier is perpendicular to the magnetization of the free layer, the out-of-plane

torque is driven by the spin-dependent reflection. Thus, as shown in Fig. 2.7(d)

(bottom-right panel), where we have plotted the case ε0L(R) = +3 eV and θB = 3π/2

for s-SFTJ and p-SFTJ junctions, the out-of-plane torque is likely to be indepen-

dent on the details of the electronic structure of the reference layer and therefore

displays a bias dependence similar to partial SFTJs. In contrast, when the barrier is

aligned or anti-aligned to the free layer, Eqs. (2.37) and (2.38) vanish; therefore, the

contribution to the out-of-plane torque is driven by the leads, recovering MTJ bias

characteristics, as shown in Fig. 2.7(d) (bottom-left panel) for the case θB = 0, where

the slight enhancement is due to the spin-filtering imposed by the magnetic insulating

barrier. Similar outputs are found in other band filling cases. Consequently, at low

voltage, the bias dependence of the non-equilibrium out-of-plane torque in s-SFTJs
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Figure 2.7: (Color online) Angular dependence of non-equilibrium (a) in-plane torque,
(b) out-of-plane torque, and (c) electron flow density, for FM/MI/FM structure (s-
SFTJ) with V=+1.0 V and four values of the spin-averaged on-site energy. (d) Bias
dependence of the spin torque components for 1/4 band filling case (ε0L(R) = +3

eV). Left- (Right-) hand insets compare the s-SFTJ solutions with a MTJ (p-SFTJ)
structure with parameters similar to those given in Fig. 2. The magnetization of
the barrier is rotated by an angle θB while the magnetization of the leads are kept
perpendicular to each other, θL(R) = π/2(0). ∆L(R)(B) = +2 eV in s-SFTJ.

can be expressed as

T⊥ − T0
⊥ = b1(θB)V + b2(θB)V

2, (2.138)

where the coefficients, in contrast to Eq. (1.2), depend on θB.

The in-plane STT component shows a more complex angular behavior which de-

pends also on band filling regime and on the relative orientation of the magnetizations

in the barrier and left layer. For the half metallic case, depicted by the filled green

dots in Fig. 2.7, the reference layer filters the spin states. If these states are anti-

aligned with the magnetization of the barrier (θB = 3π/2), the electron flow density
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exponentially drops, as shown in Fig. 2.7(c); therefore, T‖ is dramatically reduced,

see Fig. 2.7(a). However, if the spin states are aligned with the magnetization of the

barrier (θB = π/2), the enhanced electron tunneling results in a dramatic increase

in the torque amplitude and in the electron flow density, see Figs. 2.7 (a)(c). Fur-

thermore, when the magnetization of the barrier is aligned on the magnetization of

the free layer (θB = 0), the system behaves like a MTJ with an enhancement in the

torque amplitude due to the magnetic nature of the insulating layer. This effect per-

sists for higher band filling values, as displayed in Fig. 2.7(d), top-left panel, for the

case ε0L(R) = +3 eV. An important feature in non-half metallic cases appears when

the magnetization of the barrier is antiparallel (θB = 3π/2) or parallel (θB = π/2) to

the magnetization of the reference layer. In the former, given in Fig. 2.7(d) top-right

panel, for ε0L(R) = +3 eV, T‖ behaves like in partial SFTJs, whereas in the latter,

the magnitude is reduced, see Fig. 2.7(a). To understand these effects, we recall the

discussion in the previous section, where we mentioned that T‖ in p-SFTJs is driven

by the tunneling electrons that experience the lowest barrier height, implying that

when the polarization inversion is reached (high band filling regime), JAP > JP , being

JAP (P ) the charge current density in antiparallel (parallel) configuration, θB = 0 and

θR = π(0). Similarly, in s-SFTJ for the antiparallel alignment between the magnetiza-

tion of the barrier and the magnetization of the reference layer, polarization inversion

allows higher current densities, which results in larger torque amplitudes compared

to the parallel configuration, see Figs. 2.7(a)(c).

2.4.3 Spin Filter Tunnel Junctions with insulating spacers

In §2.4.1 the bias dependence of partial spin filter tunnel junctions (NM/MI/FM)

was studied. A dramatic enhancement of the spin torque components compared to

magnetic tunnel junctions was uncovered, as well as a domination of the out-of-

plane term compared to the in-plane torque (T⊥ > T‖). It was additionally found
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that the efficiency of T‖ remains in same order as in MTJs, whilst the efficiency

of T⊥ is dramatically enhanced. In §2.4.2 the angular dependence of symmetric

structures of the form FM/MI/FM was studied, and we showed that depending on

the relative orientation of the magnetizations in the barrier and free layer the system

behaves like a MTJ or partial-SFTJ. These results may be put under debate since

realistic structures require additional spacers to break the exchange interaction of the
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Figure 2.8: (Color online) MTJ and p-SFTJ efficiencies for the non-equilibrium (a)
in-plane and (b) out-of-plane spin torque components as a function of bias. Three
p-SFTJ structures of the form NM/MI/S/FM are studied, where the thickness of MI
is fixed to NMI = 3 and of S to NS = 0, 1, or 2 monolayers. The barrier thickness of
the MTJ is set to NI = 3. Insets refer to the bias dependence of the non-equilibrium
(top) in-plane and (bottom) out-of-plane torque. In all cases ε0L(R) = +5 eV, ε0B = +9

eV, θR = π/2, θL(B) = 0, and t= -1 eV. ε0S = +7 eV, ∆R(B) = +2 eV, and ∆L(S) = 0
in p-SFTJs. ∆L(R) = +2 eV and ∆B = 0 in MTJs.

magnetic insulator and the ferromagnetic electrode; for this reason we study here two

architectures, a partial SFTJ of the form NM/MI/S/FM, and a symmetric junction
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of the form FM/S/MI/S/FM, where S stands for the insulating spacer defined by NS

atomic layers. The barrier height of the spacer is set to ε0S = +7 eV and ∆S = 0,

which guarantees large current densities without reaching the resonant regime. We

also set ε0B = +9 eV and ∆B = +2 eV and fix the other parameters as in the previous

sections. It is found that insertion of insulating spacers does not qualitatively change

our conclusions. In Fig. 2.8 main panels (insets) we display the bias dependence of

the spin torque efficiencies (components) for a MTJ with NI = 3 and p-SFTJs with

NMI = 3 and NS = 0, 1 and 2. Only the half metallic case is given, but similar

results are obtained in other band filling cases. Whereas in MTJs, the insertion of a

spacer between the barrier and free layer modifies the quadratic profile of the out-of-

plane torque by inducing a linear term in V, in p-SFTJs, spacers do not affect the

linear profile reported in Fig. 2.5(b); moreover, because the torque is driven by the

spin-dependent reflection, its amplitude exhibits a small decrease, which for NS = 2

remains still higher than MTJs, see inset in Fig. 2.8(b).

In contrast, the in-plane torque being driven by the tunneling electrons that ex-

perience the lowest barrier height, this component dramatically decreases with the

insertion of an insulating spacer (inset of Fig. 2.8(a)). These results are confirmed

by considering the torque efficiencies, displayed in main panels. Whereas the effi-

ciency of the in-plane torque, T‖/je, remains unaffected by the insertion of the spacer

(∼ −0.079), the efficiency of the perpendicular torque, (T⊥ − T 0
⊥)/je, increases; con-

sequently, T⊥ � T‖ when insulating spacers are taken into consideration. Indeed, the

dramatic enhancement of the spin torque magnitudes in p-SFTJs is reduced in the

presence of insulating spacers; however, when considering thin spacers the predicted

spin torque is still higher than in MTJs.

We have extended this study to the case of a symmetric spin filter tunnel junction

of the form FM/S/MI/S/FM withNMI = 3 andNS = 1. The barrier heights are set to

ε0B = +9 eV and ε0S = +7 eV for the magnetic insulator and the spacers, respectively.
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by 10. Other parameters are similar to previous Figs.

We found that the angular dependence of the torque becomes qualitatively similar to

the case discussed in §2.4.2, where insulating spacers are neglected (not shown). In

Fig. 2.9 the STT bias dependence of this symmetric junction in the low band filling

regime (ε0L(R) = +3 eV) is displayed for two configurations, θB = 0 and θB = 3π/2.

The leads are set to θL(R) = π/2(0), see top sketches in Fig. 2.9. The former

case (θB = 0) defines a symmetric SFTJ with MTJ-like characteristics. Here we

compare our solutions with two types of MTJs with similar barrier thicknesses, NI =

5, and different barrier heights, ε0B = +7 eV and +9 eV. When the barrier height

is closer to the Fermi level, the torque amplitudes are much larger; therefore, the
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MTJ with ε0B = +7 eV (ε0B = +9 eV) shows much larger (lower) amplitudes than the

symmetric SFTJ, as given in Figs 2.9(a)(c). If a MTJ of the form FM/S/I/S/FM

is considered with similar parameters as the symmetric SFTJ, the latter will show

torque amplitudes slightly enhanced due to the spin filtering imposed by the magnetic

insulator (not show), in clear agreement with the ideal case given in Fig. 2.7(d) left-

panels. The latter case (θB = 3π/2), which defines a symmetric SFTJ with p-SFTJ-

like characteristics becomes more interesting. Here, the in-plane torque amplitude

in the symmetric structure is lowered with respect to partial SFTJs of the form

NM/MI/S/FM with NMI = 3 and NS = 1, in contrast to the ideal case given in Fig.

2.7(d) top right-panel where both, symmetric and partial junctions showed similar

amplitudes. This is due to the extra spacer added between the reference and barrier

layers which contributes to an exponential decay of the electrons tunneling. Despite

this decay, the magnitude is still larger than in MTJs with NI = 3, see Fig. 2.9(b)

and inset in Fig. 2.5(a). Meanwhile, the out-of-plane torque amplitude remains much

larger than in MTJs and similar to partial SFTJs of the form NM/MI/S/FM because

the contribution of electrons incident from the free layer (right to left) dominates;

consequently, even if thick spacers are considered to decouple the reference and barrier

layers, the torque magnitude shall not decrease significantly, see Fig. 2.9(d).

2.5 Conclusion

To conclude, using a free-electron model based in WKB approximation and a tight-

binding model based in Keldysh formalism, we have theoretically studied the spin

transfer torque mechanism in junctions involving a magnetic insulating barrier. In

the case of partial spin filter tunnel junction, composed of a magnetic tunnel bar-

rier adjacent to a metallic ferromagnet, NM/MI/FM, we have shown a strong en-

hancement of the torque amplitudes compared to conventional MTJs. When insu-
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lating spacer is added to decouple the exchange interaction between MI and FM,

i.e., NM/MI/S/FM, we have shown that for thin spacers made of 1 or 2 monolay-

ers, the torque amplitudes remain larger than conventional MTJs. The out-of-plane

torque strongly depends on the spin-dependent reflection at MI/FM interface. Mean-

while, the in-plane torque is driven by the tunneling electrons that experience the

lowest barrier height. To exploit these important features and those of conventional

MTJs, a hybrid device has been proposed, referred to as symmetric spin filter tunnel

junction, and composed of two ferromagnetic electrodes separated by a magnetic tun-

neling barrier, FM/(S)/MI/(S)/FM. In such structure, we have shown that the STT

components can be tuned from conventional MTJ-like to partial SFTJ-like behavior

just by rotating the magnetization of the insulating layer. This offers the possibility

of fabricating a device that is able to retrieve bias characteristics of both systems,

partial SFTJ and conventional MTJ, which opens novel avenues in the future de-

velopments of STT-MRAM technologies, i.e., current-induced-magnetization-reversal

and -excitation devices.
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Chapter 3

Rashba Torque in Ferromagnetic

Films

3.1 Introduction

In contrast to the conventional spin transfer torque mechanism, discussed in Chap. 

2 for non collinear magnetization structures such as spin filter tunnel junctions [66], 

in-plane current induced spin-orbit torques (SOT) are present even in collinear ho-

mogeneous ferromagnetic layers [44] offering novel avenues in magnetic memory tech-

nology. Referred to as SOT-MRAM, this new approach, in contrast to conventional 

STT-MRAM, offers lower switching currents and lower density.

Two mechanisms for the spin-orbit torques have been proposed in ferromag-

net/heavy metal bilayers: i) the bulk spin Hall effect generated in the heavy metal 

and acting in the ferromagnet [50], ii) the interfacial spin-orbit coupling effect referred 

to as the Rashba effect [48, 46]. It has been shown that both effects contribute to the 

in-plane and out-of-plane spin-orbit torque components; therefore, substantial efforts 

to qualitatively and quantitatively determine the contribution of each effect has been 

under discussion in recent years (to the date of publication of this thesis) [67]. Here 

we study the so called Rashba effect at the interface of a ferromagnet and heavy 

metal and provide a qualitative description of the Rashba torque. For this, in §3.2
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we develop a set of drift diffusion equations that provides a coherent description to

the diffusive spin dynamics. This model, based in Keldysh formalism under Wigner

expansion, captures quantum effects that are usually neglected in semiclassical ap-

proaches [68]; therefore, it provides a complete picture of the system. In §3.3 the

characteristics of the spin torque and its implication on magnetization dynamics are

discussed for a wide range of relative strength between Rashba spin-orbit induced

energy splitting and the ferromagnetic exchange. Of particular interest is the strong

dependence of the spin torque components on magnetization direction, a behavior to

be referred to as angular dependence. Comparing the experimental results of the an-

gular dependence [69, 70] with our calculated results provides clues to the mechanism

of the spin-orbit torque. In §3.4 we summarize the major conclusions.

3.2 Quantum kinetic equation

In this section, considering a diffusive model based on Keldysh formalism under

Wigner expansion, we develop analytical expressions for the in-plane and out-of-plane

spin-orbit torque components in ferromagnets in the presence of Rashba spin-orbit

coupling. The typical system we have in mind is a magnetic trilayer such as, but not

limited to, Pt/Co/AlOx. Although the charge transport in such a system is three

dimensional, for the sake of simplicity we model this system by a two dimensional

electron that accommodates both magnetism and Rashba spin-orbit interaction.

3.2.1 Kinetic equation in Keldysh space

In Keldysh formalism the left- and right-hand Dyson’s equations read,
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(Ĝ−1
0 − Σ̂)⊗ Ĝ = Î , (3.1)

Ĝ⊗ (Ĝ−1
0 − Σ̂) = Î . (3.2)

Each term is defined in Keldysh space and is represented by the advanced (ĜA, Σ̂A),

retarded (ĜR, Σ̂R), and Keldysh (ĜK , Σ̂K) functions. In §2.3.4 the Green’s function,

Ĝ, and self-energy, Σ̂, matrices were defined according to Ref. [62]. Here we perform

a different canonical transformation [71] that gives rise to a set of matrices of the

form,

Ĝ =

ĜR ĜK

0 ĜA

 , Ĝ−1
0 =

[ĜR
0 ]−1 0

0 [ĜA
0 ]−1

 , Σ̂ =

Σ̂R Σ̂K

0 Σ̂A

 . (3.3)

It is important to distinguish between the Green’s functions in absence (Ĝ0) and

presence (Ĝ) of perturbations. The former is given by Ĝ
R(A)
0 = 1

E−H0±iδ and the

latter by ĜR(A) = 1
E−H0−ΣR(A) . Ĥ0 is the unperturbed Hamiltonian, E is the energy,

and Σ̂ takes into account the perturbation. Therefore, the following relation holds,

[ĜR(A)]−1 = [Ĝ
R(A)
0 ]−1 − ΣR(A). Eqs. (3.1)-(3.2) simplify to,

[ĜR]−1 −Σ̂K

0 [ĜA]−1


ĜR ĜK

0 ĜA

 =

ĜR ĜK

0 ĜA


[ĜR]−1 −Σ̂K

0 [ĜA]−1

 , (3.4)

where the off-diagonal term gives rise to a quantum kinetic equation of the form,

[ĜR]−1 ⊗ ĜK − ĜK ⊗ [ĜA]−1 = Σ̂K ⊗ ĜA − ĜR ⊗ Σ̂K . (3.5)
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⊗ refers to a convolution product. We proceed now to study our system which

is defined as a quasi-two-dimensional ferromagnetic metal layer rolled out in the xy

plane. Two asymmetric interfaces provide a confinement in the z direction, along

which the potential gradient generates a Rashba spin-orbit coupling. Therefore a

single particle Hamiltonian for an electron of momentum k̂ is (~ = 1 is assumed

throughout)

Ĥ =
k̂2

2m
+ ασ̂ · (k̂ × ẑ) +

1

2
∆xcσ̂ ·m+ Ĥ i (3.6)

where σ̂ is the Pauli matrix, m the effective mass, andm the magnetization direction.

The ferromagnetic exchange splitting is given by ∆xc and α represents the Rashba

constant (parameter). The Hamiltonian Ĥ i =
∑N

j=1 V (r − Rj) sums the contribu-

tion of the non-magnetic impurity scattering potential V (r) localized at Rj. The

importance of the impurity potential will be discussed in Chap. 4 where we consider

spin-orbit coupled impurities.

To derive a diffusion equation for the non-equilibrium charge and spin densities,

Eq. (3.5) is considered [72], where all Green’s functions are full functions with inter-

actions taken care of by the self-energies Σ̂R,A,K . The retarded (advanced) Green’s

function in momentum and energy space is

ĜR(A)(k, ε) =
1

ε− εk − σ̂ · η(k)− Σ̂R(A)(k, ε)
, (3.7)

where εk = k2/(2m) is the single particle energy. We have introduced a k-dependent

total effective field η(k) = ∆xcm/2 + α(k × z) with magnitude ηk = |∆xcm/2 +

α(k × z)| and the direction η̂ = η(k)/ηk.

Neglecting localization effects and electron-electron interactions, we assume a

short-range δ-function type impurity scattering potential, i.e., V (r) = V0δ(r −Rj),

where V0 is the potential magnitude. At a low impurity concentration and a weak
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electron-impurity coupling we assume a spin-independent momentum relaxation, i.e.,

independent of exchange splitting and spin-orbit interaction [73]. Therefore, in the

first Born approximation the self-energy, in k−space, reads

Σ̂R,A,K = niV
2

0

∫
d2k′

(2π)2
GR,A,K

0 (3.8)

and the momentum relaxation, τ , becomes,

1

τ
≈ 2πniV

2
0

∫
d2k′

(2π)2
δ(E − Ek′). (3.9)

∓ i
2τ̂

= Σ̂R(A) and ni is the impurity concentration. Notice that in order to ob-

tain macroscopic values, the potential had been averaged over the possible positions

which the impurities may have in the solid. In Chap. 4 we discuss in detail the mo-

mentum relaxation and self-energy derivations without neglecting the spin-dependent

contribution. Here we address the results directly.

3.2.2 Wigner expansion

The Keldysh formalism is a general powerful approach which provides a means to

calculate the density matrix through the Keldysh function, providing an exact de-

scription of the system. Therefore, the equation of motion of ĜK , given in Eq. (3.5),

constitutes the quantum-kinetic equation. To solve it and derive a set of transport

equations in the diffusive limit, we introduce the ingredients of the gradient expansion

scheme, known as Wigner expansion. The Green’s functions in general are given by

Ĝj = Ĝj(r1, t1, r2, t2), where 1 and 2 denote two points in real space (r) and real

time (t), and j = R,A,K. We consider now a new set of coordinates and define

R = (r1 +r2)/2, T = (t1 + t2)/2, r = (r1−r2), and t = (t1− t2). The first two are the
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center of mass coordinates and the last two are the relative ones. The separation in

this manner is aiming at distinguishing the microscopic variable (r, t) describing the

quantum character of the system and the macroscopic one (R, T ) that represents the

non-equilibrium semiclassical response of the system under an external disturbance,

such as the presence of an applied field. As mentioned in §3.2.1, the product, ⊗, in

the quantum kinetic equation is a convolution product, this means,

C(r1, t1, r2, t2) = [Â⊗ B̂](r1, t1, r2, t2) =

∫
dr′dt′Â(r1, t1; r′, t′)B̂(r′, t′; r2, t2),

(3.10)

where C is the convolution operator and Â and B̂ represent any of the terms

given in Eq. (3.5). The same convolution product can be described in terms of new

coordinates, such as,

C(R + r/2, T + t/2,R− r/2, T − t/2) = [Â⊗ B̂](R + r/2, T + t/2,R− r/2, T − t/2)

=

∫
dr′dt′[Â(R + r/2, T + t/2; r′, t′)B̂(r′, t′; R− r/2, T − t/2).

(3.11)

Notice that Eq. (3.11) is exactly the same as Eq. (3.10). We define a new

convolution operator of the form,

C(R, T, r, t) = C(R + r/2, T + t/2,R− r/2, T − t/2) (3.12)

Therefore, in this new representation we have,
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Â(
R + r/2 + r′

2
,
T + t/2 + t′

2
; R + r/2− r′, T + t/2− t′) = Â(R + r/2, T + t/2; r′, t′),

(3.13)

B̂(
R− r/2 + r′

2
,
T − t/2 + t′

2
; r′ −R + r/2, t′ − T + t/2) = B̂(r′, t′; R− r/2, T − t/2).

(3.14)

Consequently, the new convolution operator reads,

C(R, T, r, t) =

∫
dr′dt′Â(...)B̂(...). (3.15)

Since the intergral is only for variables r′ and t′, we make a shift (r′, t′) → (r′ +

R− r/2, t′ + T − t/2), after which Eq. (3.15) becomes,

C =

∫
dr′dt′Â(R + r′/2, T + t′/2; r− r′, t− t′)B̂(R− r/2 + r′/2, T − t/2 + t′/2; r′, t′).

(3.16)

Notice that C ≡ C(R, T, r, t). In Eq. (3.16) we Fourier transform the convolution

operator to remove the relative coordinates, C(R, T,k, ω) =
∫
drdte−i(kr−ωt)C(R, T, r, t),

then

C =

∫
drdte−i(kr−ωt)

∫
dr′dt′

∫
dω′

2π

d3k′

(2π)3
eik
′(r−r′)−iω′(t−t′)Â(R + r′/2, T + t′/2; k′, ω′)∫

dω′′

2π

d3k′′

(2π)3
eik
′′r′−iω′′t′B̂(R− r/2 + r′/2, T − t/2 + t′/2; k′′, ω′′). (3.17)

Notice that we have removed the overline symbol for simplicity and C ≡ C(R, T,k, ω).
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Now we perform a two dimensional Taylor expansion on Â and B̂ with respect to the

variables R and T . To the first order in the Taylor expansion we have,

Â(R + r′/2, T + t′/2; k′, ω′)

= Â(R, T ; k′, ω′) +
r′

2

∂Â

∂R
(R, T ; k′, ω′) +

t′

2

∂Â

∂T
(R, T ; k′, ω′), (3.18)

B̂(R− r/2 + r′/2, T − t/2 + t′/2; k′′, ω′′)

= B̂(R, T ; k′′, ω′′) +
r′ − r

2

∂B̂

∂R
(R, T ; k′′, ω′′) +

t′ − t
2

∂B̂

∂T
(R, T ; k′′, ω′′). (3.19)

Therefore to the first order in gradient expansion we have,

Â(R + r′/2, T + t′/2; k′, ω′)B̂(R− r/2 + r′/2, T − t/2 + t′/2; k′′, ω′′)

≈ Â(...)B̂(...) +
r′ − r

2
Â(...)

∂B̂

∂R
(...) +

t′ − t

2
Â(...)

∂B̂

∂T
(...)

+
r′

2
B̂(...)

∂Â

∂R
(...) +

t′

2
B̂(...)

∂Â

∂T
(...), (3.20)

where Â and B̂ on the right hand side depend on (R, T ; k′, ω′) and (R, T ; k′′, ω′′),

respectively. The first term in Eq.(3.20) is at zeroth-order in gradient expansion

whereas the other terms are given at first order. We now proceed to solve Eq. (3.17)

considering each of the terms derived in Eq.(3.20). The zeroth order term simplifies

to Â(R, T ; k, ω)B̂(R, T ; k, ω), where we have considered the following properties of

delta functions,

δ(k − k0) =

∫
ei(k−k0)xdx (3.21)

δ(x) = δ(−x) (3.22)
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The second and third terms in Eq. (3.20) are a bit more tricky to solve. For these

terms we notice that,

i

2

∂

∂k′
[eik

′(r−r′)] =
r′ − r

2
eik
′(r−r′),

− i
2

∂

∂ω′
[e−iω

′(t−t′)] =
t′ − t

2
e−iω

′(t−t′). (3.23)

Replacing (3.23) in Eq. (3.17) we have,

=

∫ [
i

2

∂

∂k′
[eik

′(r−r′)]A(...)
∂B̂

∂R
(...)− i

2

∂

∂ω′
[e−iω

′(t−t′)]Â(...)
∂B̂

∂T
(...)

]
, (3.24)

where
∫
≡
∫
drdte−i(kr−ωt)

∫
dr′dt′

∫
dω′

2π
d3k′

(2π)3 e
−iω′(t−t′) ∫ dω′′

2π
d3k′′

(2π)3 e
ik′′r′−iω′′t′ . Con-

sidering a partial integration over k′ and ω′ and the properties given in (3.21)-(3.22),

Eq. (3.24) becomes, − i
2
∂A
∂k

(R, T ; k, ω) ∂B̂
∂R

(R, T ; k, ω)+ i
2
∂Â
∂ω

(R, T ; k, ω)∂B̂
∂T

(R, T ; k, ω).

Similarly, for the fourth and fifth terms in Eq. (3.20), we consider the following

relations,

− i
2

∂

∂k′′
[eik

′′r′ ] =
r′

2
eik
′′r′

i

2

∂

∂ω′′
[e−iω

′′t′ ] =
t′

2
e−iω

′′t′ , (3.25)

which gives rise to i
2
∂A
∂R

(R, T ; k, ω)∂B̂
∂k

(R, T ; k, ω)− i
2
∂Â
∂T

(R, T ; k, ω)∂B̂
∂ω

(R, T ; k, ω).

In total, the convolution operation, given in Eq. (3.17), becomes
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C(R, T ; k, ω) = Â(R, T ; k, ω)B̂(R, T ; k, ω)− i

2

∂Â

∂k
(R, T ; k, ω)

∂B̂

∂R
(R, T ; k, ω)

+
i

2

∂Â

∂ω
(R, T ; k, ω)

∂B̂

∂T
(R, T ; k, ω) +

i

2

∂Â

∂R
(R, T ; k, ω)

∂B̂

∂k
(R, T ; k, ω)

− i

2

∂Â

∂T
(R, T ; k, ω)

∂B̂

∂ω
(R, T ; k, ω), (3.26)

or in a more compact form is given by,

C(R, T ; k, ω) = ÂB̂ +
1

2i
(
∂Â

∂k

∂B̂

∂R
− ∂Â

∂ω

∂B̂

∂T
− ∂Â

∂R

∂B̂

∂k
+
∂Â

∂T

∂B̂

∂ω
). (3.27)

Eqs. (3.27) is referred to as the Wigner expansion. Consequently, by inspection,

the terms of our quantum kinetic equation, given in Eq. (3.5), can be expressed in

the new representation as follow,

[ĜR]−1 ⊗ ĜK ≈ [E − (Ek + σ̂ · η)− Σ̂R]ĜK(R, T ; k, E)

+
i

2

( ∂

∂k
(Ek + σ̂ · η)

∂ĜK

∂R
(R, T ; k, E) +

∂ĜK

∂T
(R, T ; k, E)

)
, (3.28)

ĜK ⊗ [ĜA]−1 ≈ ĜK(R, T ; k, E)[E − (Ek + σ̂ · η)− Σ̂A]

− i

2

(∂ĜK

∂R
(R, T ; k, E)

∂

∂k
(Ek + σ̂ · η) +

∂ĜK

∂T
(R, T ; k, E)

)
, (3.29)

Σ̂K ⊗ ĜA ≈ ΣK(R, T ; k, E)ĜA(R, T ; k, E), (3.30)

ĜR ⊗ Σ̂K ≈ ĜR(R, T ; k, E)Σ̂K(R, T ; k, E), (3.31)

where we have considered the definition given in Eq. (3.7) and E ≡ ~ω, with

~ = 1. For simplicity we consider ĝ = ĜK(R, T ; k, E), then the kinetic equation

becomes,
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[ĝ, σ̂ · η(k)] +
i

τ
ĝ + i

∂ĝ

∂T
+
i

2

{
k

m
+ α(ẑ × σ̂),∇Rĝ

}
= Σ̂KĜA − ĜRΣ̂K , (3.32)

where [·, ·] and {·, ·} are the conmutator and anticommutator, respectively.

3.2.3 Density matrix

The relaxation time approximation indulges the right hand side of Eq.(3.5) as

Σ̂KĜA − ĜRΣ̂K ≈ 1

τ

[
ρ̂(ε, T,R)ĜA(k, ε)− ĜR(k, ε)ρ̂(ε, T,R)

]
(3.33)

where we have introduced the density matrix by integrating out k′ in ĝ, i.e.,

ρ̂(E, T,R) =
1

2πN0

∫
d2k′

(2π)2
ĝk′,ε(T,R), (3.34)

For the convenience of discussion, the time variable is changed from T to t. At

this stage, we have a kinetic equation depending on ρ̂ and ĝ,

i[σ̂ · η(k), ĝ] +
1

τ
ĝ +

∂ĝ

∂t
+

1

2

{
k

m
+ α(ẑ × σ̂),∇Rĝ

}
=
i

τ

[
ĜR(k, ε)ρ̂(ε)− ρ̂(ε)ĜA(k, ε)

]
.

(3.35)

A Fourier transformation

ĝ(t) =

∫
dω

2π
e−iωtĝ(ω), (3.36)

ρ̂(t) =

∫
dω

2π
e−iωtρ̂(ω), (3.37)

leads to,
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(ω +
i

τ
)ĝ − ηk[Ûk, ĝ] = − i

2

{
k

m
+ α(ẑ × σ̂),∇Rĝ

}
− 1

τ

[
ĜR(k, ε)ρ̂(ε)− ρ̂(ε)ĜA(k, ε)

]
.

(3.38)

Simplifying the notation we have,

Ωĝ − ηk[Ûk, ĝ] = iK̂, (3.39)

where Ω = ω + i/τ and the operator Ûk ≡ σ̂ · η̂ satisfies ÛkÛk = 1. The right

hand side of Eq.(3.39) is partitioned according to

K̂ = −1

2

{
k

m
+ α(ẑ × σ̂),∇Rĝ

}
︸ ︷︷ ︸

K̂(1)

+
i

τ

[
ĜR(k, ε)ρ̂(ε)− ρ̂(ε)ĜA(k, ε)

]
︸ ︷︷ ︸

K̂(0)

. (3.40)

The equilibrium part is denoted by K̂(0) and the gradient term K̂(1) is treated as

perturbation. Functions ĝ and ρ̂ are both in frequency domain.

We solve Eq. (3.39) formally to find a solution to ĝ

ĝ = i
(2b2

k − Ω2)K̂ + 2b2
kÛkK̂Ûk − Ωbk[Ûk, K̂]

Ω(4b2
k − Ω2)

≡ L [K̂]. (3.41)

An iteration procedure to solve Eq.(3.41) has been outlined in Ref. [73]. We adopt

the procedure here: according to the partition scheme of K̂, we use K̂(0) to obtain

the zeroth order approximation given by ĝ(0) ≡ L [K̂(0)(ρ̂)] which replaces ĝ in K̂(1)

to generate a correction due to the gradient term, i.e., K̂(1)(ĝ(0)); we further insert

K̂(1)(ĝ(0)) back to Eq.(3.41) to obtain a correction L [K̂(1)(ĝ(0))], then we have the
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first order approximation to the quasiclassical distribution function,

ĝ(1) = ĝ(0) + L [K̂(1)(ĝ(0))]. (3.42)

The above procedure is repeated to desired orders using

ĝ(n) = ĝ(n−1) + L [K̂(1)(ĝ(n−1))]. (3.43)

In this work, the second order approximation is sufficient. The full expression of the

second order approximation for ĝ is tedious thus to be excluded in the following.

3.2.4 Diffusion equations

The diffusion equation is derived by an angle averaging in momentum space, which

allows all terms that are of odd order in ki (i = x, y) to vanish while the combinations

such as kikj contribute to the averaging by a factor k2
F δij [74].

Furthermore, a Fourier transform from frequency domain back to the real time

brings a diffusion-like equation for the density matrix,

∂

∂t
ρ̂(t) =D∇2ρ̂− 1

τDP
ρ̂+

1

2τDP
(ẑ × σ̂) · ρ̂(ẑ × σ̂) + iC [ẑ × σ̂,∇ρ̂]−B {ẑ × σ̂,∇ρ̂}

+ Γ [(m×∇)zρ̂− σ̂ ·m∇ρ̂ · (ẑ × σ̂)− (ẑ × σ̂) ·∇ρ̂σ̂ ·m]

+
1

2τφ
(σ̂ ·mρ̂σ̂ ·m− ρ̂)− i∆̃xc[σ̂ ·m, ρ̂]− 2R {σ̂ ·m, (m×∇)zρ̂} ,

(3.44)

where all quantities are evaluated at Fermi energy εF . In a two-dimensional sys-

tem, the diffusion constant D = τv2
F/2 is given in terms of Fermi velocity vF and

momentum relaxation time τ . The renormalized exchange splitting reads ∆̃xc =
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(∆xc/2)/(4ξ2 + 1) where ξ2 = (∆2
xc/4 + α2k2

F )τ 2. The other parameters are given by

C =
αkFvF τ

(4ξ2 + 1)2
, Γ =

α∆xcvFkF τ
2

2(4ξ2 + 1)2
,

R =
α∆2

xcτ
2

2(4ξ2 + 1)
, B =

2α3k2
F τ

2

4ξ2 + 1
,

1

τDP
=

2α2k2
F τ

4ξ2 + 1
,

1

τφ
=

∆2
xcτ

4ξ2 + 1
.

τDP is the relaxation time due to the D’yakonov-Perel mechanism [75]. Equation

(3.44) is valid in the dirty limit ξ � 1, which enables the approximation 1 + 4ξ2 ≈ 1.

Charge density n and the nonequilibrium spin density S are introduced by the vector

decomposition of the density matrix ρ̂ = n/2 + S · σ̂. In real experiments [46], spin

transport in a ferromagnetic film suffers from random magnetic scatterers, for which

we introduce, phenomenologically, an isotropic spin-flip relaxation S/τsf .

Eventually, we obtain a set of diffusion equations for the charge and spin densities

of the form [48],

∂n

∂t
= D∇2n+B∇z · S + Γ∇z ·mn+R∇z ·m(S ·m), (3.45)

and

∂S

∂t
=D∇2S −

S‖
τ‖
− S⊥
τ⊥
−∆xcS ×m−

m× (S ×m)

τφ
+B∇zn+ 2C∇z × S

+ 2R(m ·∇zn)m+ Γ [m× (∇z × S) + ∇z × (m× S)] , (3.46)

where ∇z ≡ ẑ ×∇. The spin density S‖ ≡ Sxx̂ + Syŷ is relaxed at a rate 1/τ‖ ≡

1/τDP + 1/τsf while S⊥ ≡ Szẑ has a rate 1/τ⊥ ≡ 2/τDP + 1/τsf .

For a broad range of the relative strength between the spin-orbit coupling and the

exchange splitting, i.e., αkF/∆xc, Eq.(3.45) and Eq.(3.46) describe the spin dynamics

in a ferromagnetic film. When the magnetism vanishes (∆xc = 0), the B term provides
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a source that generates spin density electrically [76, 73]. On the other hand, when the

Rashba spin-orbit coupling is absent (α = 0), the first two lines in Eq.(3.46) describe

a diffusive motion of spin density in a ferromagnetic metal, which agrees excellently

with early results [77]. The C term describes the coherent precession of the spin

density around the effective Rashba field. The precession of the spin density (induced

by the Rashba field) around the exchange field is described by the Γ term, is thus

at a higher order (compared to C) in the dirty limit for Γ = ∆xcτC/2. The R term

contributes to the magnetization renormalization, and τφ is the dephasing term [78].

3.2.5 Spin-orbit torques

The spin torque exerted on the local magnetization by the nonequilibrium spin density

is given by

T = ∆xcS × m̂+
1

τφ
m̂× (S × m̂), (3.47)

which takes into account a fieldlike spin precession (first term) and dephasing

of the transverse component (second term). At a stationary state ∂S/∂t = 0, Eq.

(3.46), in the weak Rashba regime (αkF < ∆xc) leads to

T = T‖m× (ŷ ×m) + T⊥ŷ ×m, (3.48)

where m is the magnetization direction and ŷ is the directional unit vector, see

Fig. 3.1(a). Two components in Eq.(3.48) are usually referred to as in-plane (T‖)

and out-of-plane (T⊥) torques, which is in agreement with experiments and theories

reported initially [46, 48, 47]. In the following section we will show that in the strong

Rashba regime (αkF > ∆xc) anisotropic spin relaxation rates driven by the Rashba

spin-orbit coupling assign the spin torque a general expression T = T y‖ (θ)m × (ŷ ×

m) + T y⊥(θ)ŷ ×m + T z‖ (θ)m × (ẑ ×m) + T z⊥(θ)ẑ ×m, where the coefficients T y,z‖,⊥
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depend on the magnetization direction.

3.3 Results and discussion
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Figure 3.1: (Color online)(a) Schematic view the device cross section. A charge
current is flowing along the x direction, generating an effective Rashba field BR

(dotted yellow line) that is pointing to y. L is the size of the lateral dimensions. (b)
Spin torque components Tφ and Tθ in a spherical coordinate, with θ and φ being the
azimuthal and the in-plane angle, respectively. Dashed lines show the magnetization
directions.

A schematic view of the device is shown in Fig. 3.1(a). The inversion asymmetry

across the interfaces generates a Rashba type spin-orbit coupling from the potential

gradient along the ẑ direction. In this quasi-two-dimensional system, the diffusive

dynamics of nonequilibrium spin density S and charge density n are described by

Eqs. (3.45) and (3.46). First, we numerically solve these equations to demonstrate

that they provide a coherent framework to describe the spin-dynamics in the diffusive

regime for a wide range of parameters. Here, we consider an in-plane magnetization

that lies along the x̂ direction. Using finite element methods in COMSOL, for a

two-dimensional electron system we adopt the following boundary conditions: (i)

vanishing spin accumulation at the edges along the transverse direction i.e., S(y =

0, L) = 0; (ii) an electric field is implemented along the x̂ direction therefore we

set the charge densities at two ends of the propagation direction to be constant

nL = nR = nF . Equivalently, one can use a voltage drop (along the transport
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direction) instead of the explicit inclusion of an electric field. The first boundary

condition implies a strong spin-flip scattering at the edges, which is consistent with

the experimental observations in spin-Hall effect [79]. The second boundary condition

sets the charge density at the Fermi level.

The numerical results of nonequilibrium spin densities are summarized in Fig. 3.2.

When viewing from the top panels (i.e., (a) and (b)) to the lower ones (i.e., (c) and

(d)), for a fixed value of exchange splitting, we are moving across from the regime

of a weak spin-orbit coupling (i.e., weak coupling) to the opposite limit of a strong

spin-orbit coupling (i.e., strong coupling). It is rather clear from, for example panel

(c), that in the strong coupling regime, the spin-Hall signature emerges, i.e., the Sz

is peaked at boundaries while Sy is robust in the bulk.
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Figure 3.2: (color online). Spatial profile of the nonequilibrium spin density Sz (a),(c)
and Sy (b),(d) for various values of the Rashba constant. The width of the wire is
L = 50 nm. The magnetization direction is along the x̂ axis. Other parameters
are: momentum relaxation time τ = 10−15 s, exchange splitting ∆xc = 0.01 eV, spin
relaxation time τsf = 10−12 s, and the Fermi vector kF = 4.3 nm−1.

The symmetry distortion is a manifestation of the competition of the Rashba

and exchange fields. In the weak coupling regime, the total field is dominated by

the exchange field pointing at the x̂ direction, around which yields a spin accumula-
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tion profile that is symmetric. This is reflected by the curves with small α in Figs.

3.2(a)(b). As the spin-orbit coupling increases, the total field is tilted towards the ŷ

axis, then the spin projection along +y and −y is no longer symmetric, as indicted

by curves with intermediate α values in Figs. 3.2(a)(b). When the system is ruled by

a large α over the exchange field, the antisymmetric profile in Sz and the symmetric

one of Sy follow naturally from the spin-Hall effect induce by a Rashba spin-orbit

coupling.
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Figure 3.3: (color online). The magnitude of the out-of-plane torque T⊥ (a) and in-
plane torque T‖ (b) as a function of Rashba constant for various exchange splitting.
Other parameters are the same as in Fig. 3.2.

The out-of-plane and in-plane torques, given in Eq. (3.47) are plotted in Fig. 3.3

as functions of the Rashba constant for various exchange splitting. The transition

regions are of particular interest. During the transition from the weak to strong

coupling, the out-of-plane torque T⊥ (see Fig. 3.3(a)) first experience a decrease in

the magnitude then rises again as the α increases. In the large α limit, though the

magnitude of the torque increases with α, the torque efficiency defined as dT⊥/dα

is actually smaller than it is in the weak coupling. The in-plane torque T‖ behaves

differently. In the strong coupling limit, T‖ is proportional to 1/α due to the large

D’yakonov-Perel spin relaxation rate that is of the order α2. Therefore a stronger

spin-orbit coupling means a decrease in the torque magnitude. In fact, the transition
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suggests that the optimal magnitude of the in-plane torque is achieved when the

exchange energy is about the same order of magnitude of the Rashba splitting αkF .
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Figure 3.4: (Color online) Spatial distribution of the Rashba torque along the y axis
in a yz− plane located at the center of the device of size L = 25 nm. Panels (a) and
(c) refer to the in-plane component (here T‖ ≡ Tφ). Panels (b) and (d) are for the
out-of-plane component (T⊥ ≡ Tθ). Panels (a) and (b): weak Rashba regime (α =
0.001 eV nm, ∆xc = 0.1 eV). Panels (c) and (d): strong coupling (α = 0.05 eV nm,

∆xc = 0.01 eV). The inset in panel (c) displays: T φ(m=y) = (1/L)
∫ y=L

y=L/2
Tφ(m=y)dy for

different widths. In panels (a),(b) and (d), Tφ(m=y) is multiplied by a factor 10. The
Fermi energy is EF = 0.7 eV, kF = 4.3 nm−1 and vF = 5× 1014 nm s−1. τ = 10−15 s
and τsf = 10−12 s.

We now discuss the symmetries and the angular dependence of the Rashba torque.

Here we argue that reducing the size of the device further changes the symmetry of

the torque. To support our argument, we plot in Fig. 3.4 the spatial distribution of

the spin torque density along the y axis in the yz−plane, for various magnetization

directions in both weak (∆xc � αkF ) and strong (∆xc � αkF ) coupling regimes. In

Fig. 3.1(b), the spin torque density T = Tφêφ+Tθêθ is in a spherical coordinate that is

more general than Eq. (3.48). On the right column of Fig. 3.4, Tθ is robust in the bulk,

resulting from a robust nonequilibrium spin density Sy driven by the spin-galvanic

effect discussed by Edelstein [76]. This effect disappears towards the boundaries, as
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imposed by the boundary conditions [79]. An important feature in Fig. 3.4 appears

to be the nonvanishing spin torque at the edges even when the magnetization m

is parallel to BR, see the deep blue curves. In general, as the angle between the

exchange field m and BR closes, the spin torque amplitude decreases. For a strong

spin-orbit coupling, the spin-Hall effect drives oppositely polarized spin densities Sz

accumulating at opposite edges [49]. In our finite-size device, within the distance of

spin-flip relaxation length from the edges, the spin density Sz distributed along the

y direction generates a nonvanishing local spin torque at the edges even when m is

aligned parallel toBR. As the spin-orbit coupling weakens, torques atm ‖ BR driven

by the spin-Hall effect become negligible, see Fig. 3.4(a). Meanwhile, as the sample

size increases L � λsf , the expression T φ(m=y) = (1/L)
∫ y=L

y=L/2
Tφ(m=y)dy decreases,

see inset in Fig. 3.4(c). Another feature is the inhomogeneous profile of Tφ, which

is driven by the competition between the spin-Hall effect and spin precession around

the total field. The spin-Hall effect (precession around the total field) is dominant in

the strong (weak) Rashba regime. When m = ẑ, spin density Sz does not contribute

to the spin-Hall induced torque and the in-plane torque becomes homogeneous, as

confirmed by the solid black line in Fig. 3.4(c). In a finite-size device, these effects

contribute to the angular dependence discussed in the following.

First, in an infinite system with a weak Rashba spin-orbit coupling, once the

anisotropy in spin relaxation rates due to the D’yakonov-Perel mechanism is quenched,

Eq. (3.46) gives rise to a torque described by Eq. (3.48) [48]. However, as the spin re-

laxation rate becomes anisotropic, the torque assumes a complex angular dependence.

By setting ∇xy = ẑ × eE∂εx̂, Eq. (3.46) reduces to

1

τ∆

S ×m+
1

τϕ
m× (S ×m)

+
1

τxy
Sxx+

1

τxy
Syŷ +

1

τz
Szẑ = X, (3.49)
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where τ∆ = 1/∆xc and last three terms on the left hand side subscribe to both

the D’yakonov-Perel mechanism and spin relaxation induced by random magnetic

impurities: τ−1
xy = τ−1

DP + τ−1
sf and τ−1

z = 2τ−1
DP + τ−1

sf . On the right hand side,

X ≡ neE

εF
(Bŷ + ΓPFm× ŷ ×m

+ 2CPF ŷ ×m+ 2Rmym), (3.50)

where PF is the spin polarization at Fermi energy εF . Analytical solutions to Eq.

(3.49) in the strong coupling limit (B,C � Γ, R) gives rise to a spin torque of the

form

T =
neE

εF
εθ[(C̃κ+Bβ̃)ŷ ×m+ (Bκ− C̃β̃)m× ŷ ×m

− αθ((Bκ− C̃β̃)mymz +Bβ̃mx)m× ẑ ×m

+ β̃αθ(−(C̃δ +B)mymz +Bδmx)ẑ ×m], (3.51)

where C̃ = 2CPF , εθ = 1
1+ξβ̃αθ sin2 θ

, αθ = χ
β+χ cos2 θ

, ξ = τ∆
τϕ

+ τ∆
τxy
, β = τ∆

τxy
, χ =

τ∆
τz
− τ∆

τxy
= τ∆

τDP
, β̃ = β

1+ξ2 , κ = 1− ξβ̃, and δ = ξ − β.

Equation (3.51) comprises one of the major results in this letter. The spin torque

in Eq. (3.51) consists of both odd and even components with respect to the inversion

of magnetization direction m, which agrees with Eqs. (9) and (10) proposed by

Garello et al in Ref. [69]. In particular, in Eq. (3.51) the first term (out-of-plane

torque) is a direct consequence of the spin-galvanic effect [44, 76] meeting magnetism

and the second term (in-plane torque) originates from the Slonczewski-Berger type

spin-transfer torque accounting spin-dephasing. The last two terms arise from the

anisotropic spin relaxation that allows for the generation of spin density components

perpendicular to both m and BR [80]. It is worthy pointing out that the relative
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magnitude of the torque components is material-dependent and their complex angular

dependence is determined by the anisotropy in spin-relaxation times. By setting

τz ≈ τxy (χ� 1) to suppress the anisotropy, the complex angular dependence vanishes

and the torque reduces to

T =
neE

εF

(
A⊥ŷ ×m+ A‖m× ŷ ×m

)
, (3.52)

where A⊥ = C̃κ + Bβ̃ and A‖ = Bκ − C̃β̃. In our model, this anisotropic spin

relaxation is driven by the D’yakonov-Perel mechanism in the presence of a Rashba

spin-orbit coupling [75]. We note here that Eq. (3.51) is obtained in a sample of

infinite size.
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Figure 3.5: (Color online) Angular dependence of spin torque as m varies in the
xz−plane in a system with L = 25 nm. Panels (a) and (c): in-plane torque; panels
(b) and (d): out-of-plane component. Panels (a) and (b): weak Rashba regime; panels
(c) and (d): strong Rashba regime. Solid red curves are taken at the center of the
device. Empty and solid black dots are taken at positions near two edges along the y
direction. Insets in panels (a) and (b) refer to the zoom in of solid red and solid cyan
curves (L =∞). Solid green lines display the magnitude of the average spin torque,

defined as 〈T‖(⊥)〉 = (1/L)
∫ L

0
T‖(⊥)dy, for L = 25 nm.

We show in Fig. 3.5 that the angular dependence of the Rashba torque also
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exists in a finite-size device. In addition, we also explain in Fig. 3.5 the symmetry

properties of the spin torque at sample edges and analyze the angular dependence for

various m in the xz−plane at three particular locations in the device: in the center

at x, y = 12.5 nm to highlight the bulk values, and two other locations near the edges

along y at x = 12.5 nm.

In the weak Rashba regime, when m is along ẑ, the spin density components

that contribute to the torque show a symmetric profile [48]. As m moves towards

the x̂ direction, the spin density generated perpendicular to (m,BR) points to the

ẑ direction. In contrast to the case when m = ẑ, the faint presence of spin-Hall

effect, however, renders the profile on one edge more negative than the other, which

contributes to the angular dependence at the device edge, as depicted by the open

and filled black dots in Fig. 3.5(a)(b). In the strong Rashba regime, the spin-Hall

effect is dominating, producing a more pronounced angular dependence, as shown by

the open and filled black dots in Fig. 3.5(c)(d).

To illustrate the above effects when the magnetization is in the xz− plane, we

study the angular dependence in the bulk for different device sizes (in Fig. 3.5,

L = 25 nm and L = ∞, only). In the strong Rashba regime, D’yakonov-Perel spin

relaxation rules, the angular dependence is pronounced and insensitive to the change

in device size, which shall eventually approach the limit characterized by Eq. (3.51).

In contrast, in the weak Rashba regime the relaxation rate is mostly isotropic, which

results in a weak angular dependence vanishing as the size increases. These numerical

results are consistent with the argument that the angular dependence of spin torque

in the bulk is driven by the anisotropy in spin relaxation rate. Furthermore, in a

finite system with isotropic spin relaxation rates, oscillations may arise due to edge

effects diffusing towards the center and such a phenomenon is better seen in the weak

Rashba regime depicted in the inset in Fig. 3.5(a).

We summarize in Fig. 3.6 the angular dependence of the spin torque density in
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the bulk as m rotates in the xz−, xy− and yz− planes. First we describe the strong

Rashba regime where a general trend emerges: the in-plane component T‖ has a more

pronounced angular dependence than T⊥, see Figs. 3.6(c)(d). For the parameters

used here (τDP � τsf , τφ), we reduce the expressions by taking εθ ≈ (1 + cos2 θ)/2,

and obtain

T
xy(xz)
‖ ≈ neE

εF

A‖
2

(1 + cos2 θ), T yz‖ ≈
neE

εF
A‖, (3.53)

T
xy(xz)(yz)
⊥ ≈ neE

εF

(
β̃B + C̃κ

cos2 θ

2

)
, (3.54)

which indicates that the angular dependence is determined by A‖ and A⊥ components,

respectively. In the weak Rashba regime (B ∼ 0) the angular dependence is driven

by higher order terms, i.e. the variation of the in-plane torque in the yz− plane is

much more significant due to the R−term contribution, see Fig. 3.6(a).
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Figure 3.6: (Color online) Angular dependence in the bulk as m varies in the xz, xy
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3.4 Conclusions

Using Keldysh technique, in the presence of both magnetism and a Rashba spin-orbit

coupling, we derived a spin diffusion equation that provides a coherent description to

the diffusive spin dynamics. In particular, we have derived a general expression for the

Rashba torque in the bulk of a ferromagnetic metal layer, at both weak and strong

Rashba limits. We found that the magnetization dynamics driven by the Rashba

torque presents several interesting similarities to that induced by SHE torque [50]. We

have shown also that the spin torque is nonvanishing at the edges of the sample even

when the magnetization and the effective Rashba field are parallel, due to the spin-

Hall effect. Furthermore, the symmetry and angular dependence of the spin torque

are in general complex and consisting of more than the commonly accepted in-plane

and out-of-plane components. In an infinite system, we have obtained an analytical

expression for the spin-orbit torque that shows both odd and even components against

magnetization inversion and agrees favorably with the empirical expression derived

from experiments. We expect that results presented in this chapter not only provide

a better understanding to the key mechanisms behind the experimental observations

but also shed light on the design of realistic spin-orbit torque devices.
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Chapter 4

Spin Swapping and Spin Hall

Effect in Ferromagnetic Films

4.1 Introduction

The exploitation of spin-orbit coupling to probe and control the magnetization of 

nanodevices has been extensively studied, uncovering many physical properties and 

phenomena such as, but not limited to, anomalous Hall effect [81], spin Hall effect 

[82], tunneling anisotropic magnetoresistance [83], electrically controlled perpendic-

ular magnetic anisotropy [84], and spin orbit torques (refer to §1.4). The latter, 

observed in multilayers comprising ferromagnets and heavy metals displayed both, 

spin orbit torques induced by interfacial inverse spin galvanic effect [46] and spin 

transfer torques induced by spin Hall effect [50]. In Chap. 3 we discussed the so 

called Rashba spin-orbit torque, which arises in the presence of intrinsic spin-orbit 

coupling and gives rise to an interfacial inverse spin galvanic effect [68, 85]. In this 

chapter we study a new kind of spin-orbit torque, recently discovered in normal met-

als (to the date of publication of this thesis) in the presence of extrinsic spin-orbit 

coupling [55]. Referred to as spin swapping torque, this torque acts in a similar way 

to the spin transfer torque induced by spin Hall effect. In this case however, the 

transverse spin current generated appears as a result of spin-spin conversion (refer to
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§1.4 for major details). We discuss spin swapping torque in single layer ferromagnets

in the presence of spin orbit coupled impurities, which may offer potential advantages

in device design in contrast to normal metals and may open novel avenues in SOT-

MRAM technology. To do so, we develop in §4.2 a set of drift-diffusion equations

in systems involving spin-orbit coupled impurities and exchange interaction. The

theory is developed considering quantum kinetic equations within Keldysh formalism

and performing a Wigner expansion. In §4.3 we show that the interplay between

spin swapping, spin Hall effect, and spin precession around the magnetization results

in a rich spatial profile of the spin accumulation that can be exploited to generate

spin torques. Of particular interest is the role of the geometry to control magne-

tization switching, an approach that is capturing more attention as it may lead to

new ways of nucleating and propagating magnetic domain walls [97]. We show that a

diamond-like structure may contribute to magnetization switching through the spin

swapping-induced spin accumulation.

4.2 Quantum kinetic equation

In this section, considering a diffusive model based on Keldysh formalism under

Wigner expansion, we develop analytical expressions for the spin and charge dynamics

in ferromagnets in the presence of spin-orbit coupled impurities.

4.2.1 Unperturbed Green’s function

The Hamiltonian of an unperturbed ferromagnet is given by,

H0 =
k2

2m
+ Jσ̂ ·m (4.1)

The first term in Eq. (4.1) represents the kinetic part, where p = ~k is the

momentum and m is the mass of the electron. Notice that throughout this chapter
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we are going to consider ~ = 1 and remove the “ ˆ ” symbol in the operators. The

second term is the s-d exchange interaction. J is the exchange coupling parameter,

m = (mx,my,mz) is the magnetization unit vector, and σ̂ = (σx, σy, σz) is the Pauli

matrix vector. This expression is similar to the one described in §2.2.1, where the sign

difference is only a matter of convention. We first proceed to derive the unperturbed

retarded (R) and advanced (A) Green’s functions (G0), defined as,

G
R(A)
0,k =

1

ε−H0 ± iO+
=

∑
s | ψ〉s〈ψ |s

ε− εk,s ± iO+
. (4.2)

εk′,s = k′2

2m
+ sJ is the eigenenergy and | ψ〉s is the eigenstate of H0, where index

s = ±1 refers to the spin. Notice from Eq. (4.2) that in order to define a proper

Green’s function we first need to calculate the eigenstate | ψ〉s. The analysis here is

similar to §2.2.1, we therefore address directly the result,

| ψ〉s =

se−iφ
√

1+s cos θ
2√

1−s cos θ
2

 . (4.3)

Replacing Eq. (4.3) in Eq. (4.2), our unperturbed Green’s functions become,

G
R(A)
0,k =

1

2

∑
s(I + sσ̂ ·m)

ε− εk,s ± iO+
. (4.4)

Using the Sokhatsky-Weierstrass theorem, for a small imaginary part the above equa-

tion simplifies to

G
R(A)
0,k =

1

2

∑
s

(I + sσ̂ ·m)
[
p.v.(

1

ε− εk,s
)∓ iπδ(ε− εk,s)

]
, (4.5)

where the principal value (p.v.) only contributes to an energy shift that can be ne-

glected by selecting an energy reference. Therefore,
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G
R(A)
0,k =

1

2

∑
s

(I + sσ̂ ·m)
[
∓ iπδ(ε− εk,s)

]
. (4.6)

Eq. (4.6) corresponds to the unperturbed Green’s function of a ferromagnetic

metal.

4.2.2 Spin orbit coupled impurities

We consider now a ferromagnet in the presence of spin-orbit coupled impurities. The

Hamiltonian in real space is given by,

H =
p2

2m
+ Jσ̂ ·m + V (r). (4.7)

The first two terms are described in §4.2.1. The third term is the impurity poten-

tial which, for random distributed impurities, is defined as

V (r) =
N∑
j

[
Vimp(r−Rj) + ξσ̂ · (∇Vimp(r−Rj)× p)

]
. (4.8)

N is the number of impurities and Vimp is a general function that depends on the

positions of the electron, r, and of the random distributed impurities, Rj. In Eq.

(4.8), the second term appears in the presence of spin-orbit coupling only, where ξ is

the spin-orbit coupling parameter, assumed independent of momentum and position.

In reciprocal space we have,

Vk,k′ ≡ 〈k|V̂ |k′〉 ≡
∫
V

u∗k(r)V (r)uk′(r)dr, (4.9)

Eq. (4.9) represents the matrix element of V . If we consider a plane wave solution

for the unperturbed problem, then the wave function is given by uk(r) = 1√
Ω
eikr,

where Ω is the volume of the sample. Therefore,



91

Vk,k′ =
1

Ω

N∑
j

∫
V

[
e−ikrVimp(r−Rj)e

ik′r + e−ikrξσ̂ · (∇Vimp(r−Rj)× p)eik
′r
]
.

(4.10)

Considering short-range impurity scattering then Vimp(r − Rj) = V0δ(r − Rj),

where V0 is the magnitude, assumed constant and positive for all impurities. Eq.

(4.10) simplifies to,

Vk,k′ =
V0

Ω

N∑
j

∫
V

[
e−i(k−k

′)rδ(r−Rj) + e−ikrξσ̂ · (∇δ(r−Rj)× k′)eik
′r
]
. (4.11)

where we have replaced p = −i ∂
∂r

and noticed that this momentum operator acts

in eik
′r, i.e., −i∂eik

′r

∂r
= k′eik

′r. To solve Eq. (4.11) we consider the following properties

of delta functions,

∫
V

f(r)δ(r− r0) = f(r0), (4.12)∫
V

f(r)[∇δ(r− r0)] = −
∫
V

∇f(r)[δ(r− r0)], (4.13)

therefore,

Vk,k′ =
V0

Ω

N∑
j

e−i(k−k
′)Rjuk,k′ , (4.14)

where uk,k′ = [1 − iξσ̂ · n] and n = k′ × k. In order to obtain macroscopic

values, the potential must be averaged over the possible positions that the impurities

may have in the solid. This was derived by Kohn and Luttinger in 1957 [86]. They
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assumed the impurities to be identical, and therefore the averaging only involved the

phase factor
∑N

j e
−ikRj . It was obtained for instance,

〈 N∑
j

e−ikRj
〉

= Nδk,0, (4.15)

where 〈. . . 〉 denotes ensemble averaging, N is the number of impurities, and δk,0

is Kronecker’s delta. Eq. (4.15) is non-zero only when k = 0, this is because in

any other case the summation cancels out after averaging over the possible impurity

positions. It was obtained also,

〈 N∑
j

e−ik1Rj

N∑
l

e−ik2Rl
〉

=
〈 N∑
j 6=l

e−ik1Rje−ik2Rl +
N∑
j=l

e−i(k1+k2)Rj
〉

= N(N − 1)δk1,0δk2,0 +Nδk1+k2,0

≈ N2δk1,0δk2,0 +Nδk1+k2,0 (4.16)

4.2.3 Self-energy

The self-energy terms read,

ΣR,A, = niV
2

0

∫
d3k′

(2π)3
[1− iξσ̂ · n]GR,A

k′ [1 + iξσ̂ · n], (4.17)

ΣK = niV
2

0

∫
d3k′

(2π)3

{
[1− iξσ̂ · n]gKk′,E(R, T )[1 + iξσ̂ · n]

+
ξ

2
{σ × (k − k′),∇RgKk′,E(R, T )}

}
, (4.18)
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4.2.4 Momentum relaxation

The imaginary part of the retarded (advanced) self-energy is related to the damping

of the particle [87], i.e.,

∓ i

2τ̂
= Σ̂R(A). (4.19)

τ̂ is the momentum relaxation and Σ̂R(A) = ∓iΣ̂, given in Eq. (4.17), is the

self-energy term. Replacing Eq. (4.17) in Eq. (4.19), we have

1

τ̂
= πu1B

∫
d3k′

(2π)3

[
1− iξσ̂ · n

]∑
s

(I + sσ̂ ·m)
[
1 + iξσ̂ · n

][
δ(ε− εk′,s)

]
. (4.20)

To simplify the above expression we make use of the following properties,

∫
k2dksinθdθdφ

(2π)3
kj = 0,

∫
j 6=l

k2dksinθdθdφ

(2π)3
kjkl = 0, (4.21)

which states that terms linear in kj vanish after k integration. Notice that in

spherical coordinates d3k′ = k′2dk′sinθdθdφ. Consequently the expression reduces

to,

1

τ̂
= πu1B

∑
s

∫
d3k′

(2π)3

(
1 + sσ̂ ·m + ξ2σ̂ · nσ̂ · n + ξ2sσ̂ · nσ̂ ·mσ̂ · n

)
δ(ε− εk′,s).

(4.22)

To simplify Eq. (4.22) we consider the following properties of vectorial products,
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(σ̂ · a)(σ̂ · a) = a2I, (4.23)

(σ̂ · a)(σ̂ · b) = abI + iσ̂ · (a× b), (4.24)

a× (b× c) = b(ac)− c(ab), (4.25)

(σ̂ · a)(σ̂ · b)(σ̂ · a) = σ̂ · (2a(ba)− ba2), (4.26)

and the following relation of delta functions,

δ(ε− εk′,±) =
δ(k′ − k′0,±)

k′0,±~2

m

. (4.27)

Consequently,

1

τ̂
= πu1B

∫
d3k′

(2π)3
(1 + ξ2n2)

[δ(k′ − k′0,+)
k′0,+~2

m

+
δ(k′ − k′0,−)

k′0,−~2

m

]
+ (σ̂ ·m + ξ2σ̂ · (2n(mn)−mn2)

[δ(k′ − k′0,+)
k′0,+~2

m

− δ(k′ − k′0,−)
k′0,−~2

m

]
.

(4.28)

Notice that we have reconsidered ~ to give a proper definition to the momen-

tum relaxation. Eq. (4.27) is a direct consequence of the property δ(f(x)) =

(x − x0)/|f ′(x0)|, where x0 is the root of function f . In this case we took f(x) ≡

ε − εk′,± = εF − ~2k′2

2m
∓ J , with εF being the energy at Fermi level (see §4.2.1) and

x0 ≡ k′0,± =
√

(εF ∓ J)2m/~2. To simplify Eq. (4.28) the following properties are

considered,
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∫
d3k′

(2π)3
k′j

[δ(k′ − k′0,+)
k′0,+~2

m

± δ(k′ − k′0,−)
k′0,−~2

m

]
= 0, (4.29)∫

d3k′

(2π)3
k′ik
′
j

[δ(k′ − k′0,+)
k′0,+~2

m

± δ(k′ − k′0,−)
k′0,−~2

m

]
= 0, (4.30)

∫
d3k′

(2π)3
k′2j

[δ(k′ − k′0,+)
k′0,+~2

m

± δ(k′ − k′0,−)
k′0,−~2

m

]
=

∫
d3k′

(2π)3
k′2i

[δ(k′ − k′0,+)
k′0,+~2

m

± δ(k′ − k′0,−)
k′0,−~2

m

]
,

(4.31)∫
d3k′

(2π)3
n2 =

∫
d3k′

(2π)3
2k2k′2j , (4.32)

where i 6= j; therefore,

1

τ̂
= πu1B

∫
d3k′

(2π)3
(1 + ξ22k2k′2j )

[δ(k′ − k′0,+)
k′0,+~2

m

+
δ(k′ − k′0,−)

k′0,−~2

m

]
+ (σ̂ ·m + ξ2σ̂ · (−2k′2j k(k ·m))

[δ(k′ − k′0,+)
k′0,+~2

m

− δ(k′ − k′0,−)
k′0,−~2

m

]
.

(4.33)

Integrating out k′ we get,

1

τ̂
= πu1B

[(k0,+ + k0,−)m

2~2π2
+ 2ξ2k2

(k3
0,+ + k3

0,−)m

6~2π2
+ σ̂ ·m(k0,+ − k0,−)m

2~2π2

− 2ξ2σ̂ · k(k ·m)
(k3

0,+ − k3
0,−)m

6~2π2

]
. (4.34)

Because k0 depends on J, we perform a Taylor expansion to second order in ex-

change coupling; then,
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1

τ̂
=

1

τ0

[
1− β2

2
+

2

3
ξ2k2k2

F + ξ2k2k2
Fβ

2 − βσ̂ ·m + 2ξ2k2
Fβσ̂ · k(k ·m)

]
. (4.35)

εF =
~2k2

F

2m
, 1
τ0

= u1Bm
√

2εFm
~3π

= u1BmkF
~2π

=
u1Bm(k↑F+k↓F )

2~2π
= πu1B(N↑ + N↓), and β =

J
2εF

. τ0 is the spin-independent momentum relaxation term and β is the polarization

factor. Neglecting terms at higher order in exchange and spin-orbit coupling, Eq.

(4.35) simplifies to,

1

τ̂
=

1

τ0

[
1 +

2

3
ξ2k2k2

F − βσ̂ ·m
]
. (4.36)

4.2.5 Kinetic equation

The Hamiltonian describing a ferromagnetic layer in the presence of spin-orbit coupled

impurities is given in Eq. (4.7). In reciprocal space it reads,

Hkk′ =
k2

2m
+ Jσ̂ ·m+ Vkk′ , (4.37)

where Vkk′ is defined in §4.2.2. In §3.2.1 we derived the quantum kinetic equation

in Keldysh space [88], which reads,

[GR]−1 ⊗GK −GK ⊗ [GA]−1 = ΣK ⊗GA −GR ⊗ ΣK . (4.38)

Gi = Gi(r, t; r′, t′) with i = K,A,R represent the real space real time Keldysh,

advanced, and retarded Green’s functions, respectively. All G’s are supposed to be

full functions which account all interactions through the self-energy term, Σ. Eq.
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(4.38) is then expanded to the first order in spatio-temporal gradient using Wigner

expansion method. This method was derived in §3.2.2 and has been used in various

contexts such as spin-orbit coupled transport in normal metals [56], non-magnetic and

magnetic Rashba gases [89], and topological insulators [90]. Similar to the derivation

of Eq. (3.32) given in §3.2.2, in this case our kinetic equation becomes,

[gK , Jσ̂ ·m] + i
∂gK

∂T
+
i

2
{∂g

K

∂R
,
∂Hkk′

∂k
} = ΣKGA −GRΣK − i{gK ,Σ}, (4.39)

where gK is the Fourier transform of the Keldysh function, i.e.,

GK(r, t; r′, t′) =

∫
dE

2π

d2k

(2π)2
eik·(r−r

′)−iE(t−t′)gKk,E(T,R), (4.40)

with R = (r+r′)/2 and T = (t+ t′)/2. Notice that Eq. (4.39) no longer depends

on the relative spatial (r − r′) and temporal (t − t′) coordinates but instead in the

center of mass coordinates, R and T. To remove the energy dependence in Eq. (4.39)

we consider a function hk(R, t) that satisfies,

∫
dE

2π
gKk,E(t,R) = −ihk(t,R). (4.41)

Then

−i[hk, Jσ̂ ·m] +
∂hk
∂T

+
1

2
{∂hk
∂R

,
∂Hkk′

∂k
} = −{hk,

1

2τ̂
}+

∫
dE

2π
(ΣKGA −GRΣK),

(4.42)

where we have considered Eq. (4.19) to express the self-energy in terms of the

momentum relaxation. The left-hand side is the coherent term that appears in ab-
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sence of perturbations, whereas the right-hand side, referred to as the collision term

in analogy to semiclassical Boltzmann transport equations, takes into account the

scattering events and relaxation. Eq. (4.41) is satisfied through the anzat relation,

gKk′,E(t,R) = GR
k′,Ehk′(t,R)− hk′(t,R)GA

k′,E. (4.43)

First we study the right-hand side of Eq. (4.42). Considering Eq. (4.18) we have,

ΣKGA = u1B

∫
d3k′

(2π)3

[
gKk′G

A
k + iξ(gKk′σ̂ · nGA

k − σ̂ · ngKk′GA
k ) + ξ2σ̂ · ngKk′σ̂ · nGA

k

]
+ u1B

∫
d3k′

(2π)3

ξ

2

[
σ × (k − k′)(∇RgKk′) + (∇RgKk′)σ × (k − k′)

]
GA
k , (4.44)

GRΣK = u1B

∫
d3k′

(2π)3

[
GR
k g

K
k′ + iξ(GR

k g
K
k′ σ̂ · n−GR

k σ̂ · ngKk′ ) + ξ2GR
k σ̂ · ngKk′ σ̂ · n

]
+ u1B

∫
d3k′

(2π)3

ξ

2
GR
k [σ × (k − k′)(∇RgKk′) + (∇RgKk′)σ × (k − k′)]. (4.45)

Injecting Eq. (4.43) in Eqs. (4.44)-(4.45), and considering
∫

dE
2π
G
R(A)
k′,E G

R(A)
k,E = 0,

we have

∫
dE

2π
ΣKGA = u1B

∫
dE

2π

∫
d3k′

(2π)3

[
GR
k′hk′G

A
k + iξ(GR

k′hk′σ̂ · nGA
k − σ̂ · nGR

k′hk′G
A
k )

+ ξ2σ̂ · nGR
k′hk′σ̂ · nGA

k +
ξ

2

[
σ × (k − k′)GR

k′(∇Rhk′) +GR
k′(∇Rhk′)σ × (k − k′)

]
GA
k

]
(4.46)∫

dE

2π
GRΣK = u1B

∫
dE

2π

∫
d3k′

(2π)3

[
−GR

k hk′G
A
k′ − iξ(GR

k hk′G
A
k′σ̂ · n−GR

k σ̂ · nhk′GA
k′)

− ξ2GR
k σ̂ · nhk′GA

k′σ̂ · n−
ξ

2
GR
k [σ × (k − k′)(∇Rhk′)GA

k′ + (∇Rhk′)GA
k′σ × (k − k′)]

]
.

(4.47)
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In Eqs. (4.46)-(4.47), the energy integral is transformed into a complex integral,

e.g.,

∫
dE

2π
GR
k hk′G

A
k′ =

π

4

∑
s,s′

δ(Ek′,s′ − Ek,s)(1 + sσ̂ ·m)hk′(1 + s′σ̂ ·m), (4.48)∫
dE

2π
GR
k′hk′G

A
k =

π

4

∑
s,s′

δ(Ek′,s′ − Ek,s)(1 + s′σ̂ ·m)hk′(1 + sσ̂ ·m) (4.49)

where δ(Ek′,s′ − Ek,s) acquires the following values,

δ(Ek′,+ − Ek,+) = δ(Ek′ − Ek),

δ(Ek′,+ − Ek,−) = δ(Ek′ − Ek + 2J),

δ(Ek′,− − Ek,+) = δ(Ek′ − Ek − 2J),

δ(Ek′,− − Ek,−) = δ(Ek′ − Ek). (4.50)

Ek′,s = k′2/2m+ sJ, and Ek = k2/2m. Eq. (4.49) was derived for hk′ but it does

not restrict us to consider any other function or operator. Therefore, the solution

applies very well to any term in Eqs. (4.46) and (4.47). We proceed now to solve the

expression,

C =

∫
dE

2π
(ΣKGA −GRΣK), (4.51)

which is given by subtracting Eqs. (4.46)-(4.47), i.e.,



100

C = u1B

∫
dE

2π

∫
d3k′

(2π)3

[
ξ2
(
σ̂ · nGR

k′hk′σ̂ · nGA
k +GR

k σ̂ · nhk′GA
k′σ̂ · n

)
+GR

k′hk′G
A
k +GR

k hk′G
A
k′ + iξ

(
[GR

k′hk′ , σ̂ · n]GA
k +GR

k [hk′G
A
k′ , σ̂ · n]

)
+
ξ

2

[
σ × (k − k′)GR

k′(∇Rhk′)GA
k +GR

k′(∇Rhk′)σ × (k − k′)GA
k

]
+
ξ

2
[GR

k σ × (k − k′)(∇Rhk′)GA
k′ +GR

k (∇Rhk′)GA
k′σ × (k − k′)]

]
(4.52)

Considering Eq. (4.49), we get for each term of Eq. (4.52),

∫
dE

2π
(GR

k′hk′G
A
k +GR

k hk′G
A
k′) = 2πhk′δΣ, (4.53)∫

dE

2π
ξ2(σ̂ · nGR

k′hk′σ̂ · nGA
k +GR

k σ̂ · nhk′GA
k′σ̂ · n) = 2πξ2σ̂ · nhk′σ̂ · nδΣ, (4.54)∫

dE

2π
iξ([GR

k′hk′ , σ̂ · n]GA
k +GR

k [hk′G
A
k′ , σ̂ · n]) = 2iξπ[hk′ , σ̂ · n]δΣ

− ξπ

2
{hk′ , σ̂ · (m× n)}δ∆, (4.55)∫

dE

2π

ξ

2

[
σ × (k − k′)GR

k′(∇Rhk′)GA
k +GR

k′(∇Rhk′)σ̂ × (k − k′)GA
k

]
=

ξπ

2
{σ̂ × (k − k′), (∇Rhk′)} δΣ +

ξπ

8
(σ̂ × (k − k′))[σ̂ ·m,∇Rhk′ ]δ∆

+
ξπ

8
[σ̂ ·m,∇Rhk′σ̂ × (k − k′)]δ∆,

(4.56)∫
dE

2π

ξ

2
[GR

k σ × (k − k′)(∇Rhk′)GA
k′ +GR

k (∇Rhk′)GA
k′σ × (k − k′)] =

ξπ

2
{σ × (k − k′), (∇Rhk′)} δΣ +

ξπ

8
[σ̂ × (k − k′)(∇Rhk′), σ̂ ·m]δ∆

+
ξπ

8
[∇Rhk′ , σ̂ ·m](σ̂ × (k − k′))δ∆,

(4.57)

where δ∆ = δ(Ek′,+ − Ek,−)− δ(Ek′,− − Ek,+) and δΣ = δ(Ek′ − Ek). Then,
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C ≈ 2πu1B

∫
d3k′

(2π)3

[
hk′ + iξ[hk′ , σ̂ · n] + ξ2σ̂ · nhk′σ̂ · n+

ξ

2
{σ × (k − k′), (∇Rhk′)}

]
δΣ

+
πu1B

2

∫
d3k′

(2π)3

[
− ξ{hk′ , σ̂ · (m× n)}+

ξ

4
(σ̂ × (k − k′))[σ̂ ·m,∇Rhk′ ]

+
ξ

4
[σ̂ ·m,∇Rhk′σ̂ × (k − k′)] +

ξ

4
[σ̂ × (k − k′)(∇Rhk′), σ̂ ·m]

+
ξ

4
[∇Rhk′ , σ̂ ·m](σ̂ × (k − k′))

]
δ∆ (4.58)

Introducing a more familiar distribution function, gk = (1 − hk)/2, Eq. (4.58)

becomes

C = 2πu1B

∫
d3k′

(2π)3

[
− 2gk′ + (1 + ξ2n2)− 2iξ[gk′ , σ̂ · n]− 2ξ2σ̂ · ngk′σ̂ · n

− ξ {σ × (k − k′), (∇Rgk′)}
]
δΣ

+ πu1B

∫
d3k′

(2π)3

[
ξ{gk′ , σ̂ · (m× n)} − ξ

4
(σ̂ × (k − k′))[σ̂ ·m,∇Rgk′ ]

− ξ

4
[σ̂ ·m,∇Rgk′σ̂ × (k − k′)]− ξ

4
[σ̂ × (k − k′)(∇Rgk′), σ̂ ·m]

− ξ

4
[∇Rgk′ , σ̂ ·m](σ̂ × (k − k′))

]
δ∆ (4.59)

Similarly, the momentum relaxation in terms of gk′ reads,

1

τ
≈ 1

τ0

(1 +
4

3
k2ξ2mεF − βσ̂ ·m) = 2πu1B

∫
d3k′

(2π)3
(1 + ξ2n2 − β{gk′ , σ̂ ·m})δΣ,

(4.60)

{2gk,
1

2τ
} ≈ {gk, 2πu1B

∫
d3k′

(2π)3
(1 + ξ2n2 − βσ̂ ·m)δΣ}, (4.61)

Therefore the collision term (coll), given in Eq. (4.42) reads,
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coll = 2πu1B

∫
d3k′

(2π)3

[
2(1 + ξ2n2)(gk − gk′)− β{σ̂ ·m, gk − gk′} − 2iξ[gk′ , σ̂ · n]

+ 2ξ2(n2gk′ − σ̂ · ngk′σ̂ · n)− ξ {σ × (k − k′), (∇Rgk′)}
]
δΣ

+ πu1B

∫
d3k′

(2π)3

[
ξ{gk′ , σ̂ · (m× n)} − ξ

4
(σ̂ × (k − k′))[σ̂ ·m,∇Rgk′ ]

− ξ

4
[σ̂ ·m,∇Rgk′σ̂ × (k − k′)]− ξ

4
[σ̂ × (k − k′)(∇Rgk′), σ̂ ·m]

− ξ

4
[∇Rgk′ , σ̂ ·m](σ̂ × (k − k′))

]
δ∆, (4.62)

where we added and subtracted the term 4πniV
2

0

∫
d3k′

(2π)3 ξ
2n2gk′δΣ to give a proper

form to the collision term.

Consequently, the kinetic equation given in Eq. (4.42) becomes,

−i[hk, Jσ̂ ·m] +
∂hk
∂T

+
1

2
{∂hk
∂R

,
k

m
} = coll. (4.63)

Replacing hk = 1− 2gk, it simplifies to

−2

(
− i[gk, Jσ̂ ·m] +

∂gk
∂t

+
k

m

∂gk
∂r

)
= coll. (4.64)

where we have replaced (R, T )→ (r, t) for simplicity. Finally our kinetic equation

reads,
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− i[gk, Jσ̂ ·m] +
∂gk
∂t

+
k

m

∂gk
∂r

= 2πu1B

∫
d3k′

(2π)3

[
(gk′ − gk) + iξ[gk′ , σ̂ · n]

+ ξ2(σ̂ · ngk′σ̂ · n− n2gk′) +
ξ

2
{σ × (k − k′), (∇Rgk′)}+

β

2
{σ̂ ·m, gk − gk′}

]
δΣ

− πu1B

2

∫
d3k′

(2π)3

[
ξ{gk′ , σ̂ · (m× n)} − ξ

4
(σ̂ × (k − k′))[σ̂ ·m,∇Rgk′ ]

− ξ

4
[σ̂ ·m,∇Rgk′σ̂ × (k − k′)]− ξ

4
[σ̂ × (k − k′)(∇Rgk′), σ̂ ·m]

− ξ

4
[∇Rgk′ , σ̂ ·m](σ̂ × (k − k′))

]
δ∆. (4.65)

4.2.6 Quantum Boltzmann equations

To consider a set of quantum Boltzmann equations we partition the distribution

function, gk, into its charge, fk, and spin components, sk, i.e., gk = fk + σ̂ · sk. The

following relations hold for the coherent term,

−i[gk, Jσ̂ ·m] = 2Jσ̂ · (sk ×m), (4.66)

∂gk
∂t

=
∂fk
∂t

+ σ̂ · ∂sk
∂t

, (4.67)

k

m

∂gk
∂r

=
k∇
m

fk +
k∇
m

(σ̂ · sk), (4.68)

and for the collision term,
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gk′ − gk = fk′ − fk + σ̂ · sk′ − σ̂ · sk, (4.69)

[gk′ , σ̂ · n] = 2i[σ̂ · (sk′ × n)], (4.70)

σ̂ · ngk′σ̂ · n− n2gk′ = σ̂ · n(sk′n)− σ̂ · (n× (sk′ × n))− n2σ̂ · sk′ ,

(4.71)

{σ × (k − k′), (∇Rgk′)} = 2σ̂ · ((k − k′)×∇)fk′ + 2((k − k′)×∇)sk′ (4.72)

{σ̂ ·m, gk − gk′} = 2σ̂ ·m(fk − fk′) + 2(sk − sk′)m, (4.73)

{gk′ , σ̂ · (m× n)} = 2fk′σ̂ · (m× n) + 2sk′(m× n), (4.74)

(σ̂ × (k − k′))[σ̂ ·m,∇Rgk′ ] = 2i((k − k′)×∇)(m× sk′)

− 2σ̂ · (((k − k′)×∇)× (m× sk′)), (4.75)

[σ̂ ·m,∇Rgk′σ̂ × (k − k′)] = 2iσ̂ · (m× ((k − k′)×∇))fk′

+ 2σ̂ · (m× (((k − k′)×∇)× sk′)), (4.76)

[σ̂ × (k − k′)(∇Rgk′), σ̂ ·m] = −2iσ̂ · (m× ((k − k′)×∇))fk′

+ 2σ̂ · (m× (((k − k′)×∇)× sk′)), (4.77)

[∇Rgk′ , σ̂ ·m](σ̂ × (k − k′)) = −2i((k − k′)×∇)(m× sk′)

− 2σ̂ · (((k − k′)×∇)× (m× sk′)), (4.78)

where ∇ · (σ̂ × (k − k′)) = σ̂ · ((k − k′)×∇). In Eqs. (4.66)-(4.78) we take the

trace to separate between the charge (Tr[...]) and spin equations (Tr[σ̂...]); therefore,

∂fk
∂t

+
k∇
m

fk = 2πu1B

∫
d3k′

(2π)3

[
(fk′ − fk) + ξ((k − k′)×∇)sk′ + β(sk − sk′)m

]
δΣ

− ξπu1B

∫
d3k′

(2π)3
sk′(m× n)δ∆. (4.79)

and
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∂sk
∂t

+
k∇
m
sk + 2J(sk ×m) = 2πu1B

∫
d3k′

(2π)3

[
(sk′ − sk) + ξ((k − k′)×∇)fk′

+ β(fk − fk′)m
]
δΣ − 4πu1B

∫
d3k′

(2π)3

[
ξ(sk′ × n) + ξ2(n× (sk′ × n))

]
δΣ

− ξπu1B

∫
d3k′

(2π)3
fk′(m× n)δ∆ −

ξπu1B

2

∫
d3k′

(2π)3

[
sk′ × (m× ((k − k′)×∇))

]
δ∆

(4.80)

We consider the distribution function to be partitioned into f ′k = f̄ + f oddk′ and

s′k = s̄ + 2Jτ0(s̄ ×m) + soddk′ , where the former term is an even function, i.e. f̄ =∫
d3k′

(2π)3fk′/
d3k′

(2π)3 , and the latter is an odd function. This is a general approach and

applies to any function. We remark the following relationships of an odd function

∫
d3k′

(2π)3
f oddk′ = 0,

∫
d3k′

(2π)3
k′2i f

odd
k′ = 0,

∫
d3k′

(2π)3
k′ik
′
jδf

odd
k′ = 0.

(4.81)

Consequently, our quantum Boltzmann transport equations (BTEs) simplify to,

∂fk
∂t

+
k∇
m

fk =
˜̄f − f̃k
τ0

+ 2ξπu1B

∫
d3k′

(2π)3
((k − k′)×∇)sk′δΣ

− ξπu1B

∫
d3k′

(2π)3
sk′(m× n)δ∆, (4.82)

∂sk
∂t

+
k∇
m
sk + ∆(sk ×m) =

˜̄s+ ∆τ0(s̄×m)− s̃k
τ0

+ 2ξπu1B

∫
d3k′

(2π)3
((k − k′)×∇)fk′δΣ

− 4

3

ξ2εFm

τ0

(k2s̄+ k(s̄k))− 4πu1B

∫
d3k′

(2π)3
ξ(sk′ × n)δΣ − ξπu1B

∫
d3k′

(2π)3
fk′(m× n)δ∆

− ξπu1B

2

∫
d3k′

(2π)3

[
sk′ × (m× ((k − k′)×∇))

]
δ∆, (4.83)
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where f̃k = fk − βskm and s̃k = sk − βfkm. ∆ = 2J in order to differentiate

it from β and δ∆ ∝ J . To solve (4.82) and (4.83) we first need to express the delta

functions in terms of k′. We have,

δΣ = δ(εk′ − εk) =
δ(k′ − k)

|k/m|
, (4.84)

δ∆ = δ(εk′ − εk + 2J)− δ(εk′ − εk − 2J) =
δ(k′ −

√
k2 − 4mJ)

|
√
k2 − 4mJ/m|

− δ(k′ −
√
k2 + 4mJ)

|
√
k2 + 4mJ/m|

(4.85)

Therefore, the integrals will have solutions of the form

∫
d3k′

(2π)3
δΣ ≈

kFm

2π2
, (4.86)∫

d3k′

(2π)3
k
′2
i δΣ ≈

k3
Fm

6π2
, (4.87)∫

d3k′

(2π)3
k
′2
i δ∆ ≈ −2

kFm
2J

π2
, (4.88)∫

d3k′

(2π)3
δ∆ ≈ −2

m2J

kFπ2
, (4.89)

where we have assumed k ≈ kF . These solutions require an approximation to

be taken in the distribution function. The zeroth-order approximation is given by

neglecting exchange (J = β = 0) and spin-orbit coupling (ξ = 0) in Eqs. (4.82) and

(4.83). Therefore the BTEs become,

∂fk
∂t

+
k∇
m

fk =
(f̄ − fk)

τ0

,
∂sk
∂t

+
k∇
m
sk =

(s̄− sk)

τ0

, (4.90)

and the solutions in steady state are,
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fk ≈ f̄ − τ0

m
(k∇)f̄ , sk ≈ s̄−

τ0

m
(k∇)s̄. (4.91)

Replacing Eqs. (4.86), (4.89), and (4.91) in the integrals with δ∆ then,

−ξπu1B

∫
d3k′

(2π)3
sk′(m× n)δ∆ = −2Jξs̄(m× (∇× k)), (4.92)

−ξπu1B

∫
d3k′

(2π)3
fk′(m× n)δ∆ = −2Jξm× (∇× k)f̄ , (4.93)

−ξπu1B

2

∫
d3k′

(2π)3

[
sk′ × (m× ((k − k′)×∇))

]
δ∆ =

ξJ

2εF τ0

s̄× (m× (k ×∇))

(4.94)

Replacing Eqs. (4.92)-(4.94) in Eqs. (4.82)-(4.83) we have,

∂fk
∂t

+
k∇
m

fk =
˜̄f − f̃k
τ0

+ 2ξπu1B

∫
d3k′

(2π)3
((k − k′)×∇)sk′δΣ − 2Jξs̄(m× (∇× k)),

(4.95)

and

∂sk
∂t

+
k∇
m
sk + ∆(sk ×m) =

˜̄s+ ∆τ0(s̄×m)− s̃k
τ0

+ 2ξπu1B

∫
d3k′

(2π)3
((k − k′)×∇)fk′δΣ −

4

3

ξ2εFm

τ0

(k2s̄+ k(s̄k))

− 4πu1B

∫
d3k′

(2π)3
ξ(sk′ × n)δΣ − 2Jξm× (∇× k)f̄ +

ξJ

2εF τ0

s̄× (m× (k ×∇)).

(4.96)

To solve the δΣ− integrals we consider the BTEs in the presence of exchange
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coupling. i.e.,

fk = f̄ − βτ0(v∇)s̄m− τ0(v∇)f̄ (4.97)

sk = s̄− τ0(v∇)s̄− βτ0(v∇)f̄m+ ∆τ 2
0 (v∇)s̄×m (4.98)

Consequently ,

2ξπu1B

∫
d3k′

(2π)3
((k − k′)×∇)fk′δΣ = 2ξπu1B

∫
d3k′

(2π)3
(k ×∇)f̄ δΣ

=
ξ

τ0

(k ×∇)f̄ , (4.99)

2ξπu1B

∫
d3k′

(2π)3
((k − k′)×∇)sk′δΣ = 2ξπu1B

∫
d3k′

(2π)3
(k ×∇)s̄δΣ

=
ξ

τ0

(k ×∇)s̄, (4.100)

−4πu1B

∫
d3k′

(2π)3
ξ(sk′ × n)δΣ = −4πu1Bξ

∫
d3k′

(2π)3

[
− τ0(v′∇)(s̄+ βf̄m)× n

+ ∆τ 2(v′∇)(s̄×m)× n
]

= −4

3
ξεF (s̄+ βf̄m)× (k ×∇)

+
4

3
∆ξτ0εF [(s̄×m)× (k ×∇)]. (4.101)

Replacing the expressions in our BTEs, we have,

∂fk
∂t

+
k∇
m

fk =
˜̄f − f̃k
τ0

+
ξ

τ0

(k ×∇)s̄− 2Jξs̄(m× (∇× k)), (4.102)
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and

∂sk
∂t

+
k∇
m
sk + ∆(sk ×m) =

˜̄s+ ∆τ0(s̄×m)− s̃k
τ0

+
ξ

τ0

(k ×∇)f̄

− 4

3

ξ2εFm

τ0

(k2s̄+ k(s̄k))− 4

3
ξεF (s̄+ βf̄m)× (k ×∇) +

4

3
∆ξτ0εF [(s̄×m)× (k ×∇)]

− 2Jξm× (∇× k)f̄ +
ξJ

2εF τ0

s̄× (m× (k ×∇)). (4.103)

Simplifying the expressions,

∂fk
∂t

+
k∇
m

fk =
˜̄f − f̃k
τ0

+
ξ

τ0

(k ×∇)s̄− 2Jξs̄(m× (∇× k)), (4.104)

and

∂sk
∂t

+
k∇
m
sk + ∆(sk ×m) =

˜̄s+ ∆τ0(s̄×m)− s̃k
τ0

+
ξ

τ0

(k ×∇)f̄

− 4

3
ξεF (s̄+ βf̄m)× (k ×∇)− 2Jξm× (∇× k)f̄ +

4

3
∆ξτ0εF [(s̄×m)× (k ×∇)]

+
ξJ

2εF τ0

s̄× (m× (k ×∇)) (4.105)

Vanishing the time dependence we have,

fk = f̄ − βs̄m+ βskm− τ0
k∇
m

fk + ξ(k ×∇)s̄− 2Jξτ0s̄(m× (∇× k))

= f̄ − τ0β(v∇)sm+ ξβ(k ×∇)f̄m− 4

3
τ0ξβεF [s̄× (k ×∇)]m− τ0

k∇
m

f̄

+ ξ(k ×∇)s̄− 2Jξτ0s̄(m× (∇× k))

= f̄ − τ0(v∇)(f̄ + βsm) + ξ(k ×∇)(s̄+ βf̄m)− (
4

3
τ0ξβεF + 2Jξτ0)[s̄× (k ×∇)]m

(4.106)
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and

sk = s̄− βf̄m+ βfkm− τ0
k∇
m
sk + ∆τ0(s̄×m)−∆τ0(sk ×m) + ξ(k ×∇)f̄

− 4

3
ξεF τ0(s̄+ βf̄m)× (k ×∇)− 2Jξτ0m× (∇× k)f̄

+
4

3
∆ξτ 2

0 εF [(s̄×m)× (k ×∇)] +
ξJ

2εF τ0

s̄× (m× (k ×∇))

= s̄− βτ0(v∇)f̄m+ ξβ[(k ×∇)s̄]m− τ0(v∇)s̄+ ∆τ 2
0 (v∇)(s̄×m)

−∆ξτ0(k ×∇)×mf̄ +
4

3
ξ∆τ 2

0 εF (s̄× (k ×∇))×m+ ξ(k ×∇)f̄

− 4

3
ξεF τ0(s̄+ βf̄m)× (k ×∇)− 2Jξτ0m× (∇× k)f̄

+
4

3
∆ξτ 2

0 εF [(s̄×m)× (k ×∇)] +
ξJ

2εF τ0

s̄× (m× (k ×∇))

= s̄− τ0(v∇)(s̄+ βf̄m) + ξβ[(k ×∇)s̄]m+ ∆τ 2
0 (v∇)(s̄×m)

+ (∆ξτ0 + 2Jξτ0)m× (k ×∇)f̄ +
4

3
ξ∆τ 2

0 εF (s̄× (k ×∇))×m+ ξ(k ×∇)f̄

− 4

3
ξεF τ0(s̄+ βf̄m)× (k ×∇) +

4

3
∆ξτ 2

0 εF [(s̄×m)× (k ×∇)]

+
ξJ

2εF τ0

s̄× (m× (k ×∇)) (4.107)

4.2.7 Diffusion Equations

To derive the set of diffusion equations we consider the steady state solution of fk and

sk to the first order in exchange and spin-orbit coupling. Integrating Eqs. (4.106)-

(4.107) over k we obtain the spin densities. To derive the current densities we consider

the velocity operator given by v = k
m
− ξ

τ0
k × σ̂ + ξβ

τ0
k ×m, e.g., the charge current

density is given by je =
∫

d3k
(2π)3 ( k

m
fk − ξ

τ0
k × sk + ξβ

τ0
k ×mfk). Therefore our final

expressions become
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∂µc
∂t

= ∇2[µc + βµ ·m], (4.108)

∂µ

∂t
= −∇ ·Qj +

1

τφ
(µ×m)×m− 1

τL
(µ×m)− 1

τsf
µ, (4.109)

je
D

= −∇(µc + βµ ·m) + αsj∇× (µ+
β

2
µcm)− αswβ∇× (µ×m), (4.110)

Qj

D
= −Q0

j + αsj∇× (µcêj + βmjµ)− αsw∇× (êj × (µ+ βµcm))
]

(4.111)

µc and µ are the charge and spin accumulations. je and Qj are the charge

and spin current densities, where subindex j represents the spin orientation. Q0
j =

∇ · (µj + βµcmj − τ0
τL

(µ×m)j + τ0
τφ

((µ×m)×m)j). The spin-flip relaxation time

due to the spin-orbit interaction, τso = 9
8
τ0
α2 , and the dephasing term of ferromagnets

[93], τφ = ~2/4J2τ0, are given at higher order in spin-orbit coupling and exchange

interaction, respectively. Eqs. (4.108)-(4.111) correspond to one of the major results

of this work. In the absence of SOC, these equations are equivalent to Petitjean et al.

[93], and in the absence of exchange, to Shchelushkin and Brataas [56]. D = τ0v
2
F/3

is the diffusion coefficient and α = ξsok
2
F is the dimensionless spin-orbit coupling

parameter. αsw = 2α/3 and αsj = α/lFkF are the dimensionless spin swapping and

side-jump terms, respectively. vF is the Fermi velocity, lF = τ0vF is the mean-free

path, and τL = ~/2J is the spin precessional time around the magnetization, known

as Larmor precessional time. The present model was derived for weak - compared to

the Fermi enegy - ferromagnets. In a magnetic system with SOC, the competition

between spin precession, spin relaxation, spin Hall and spin swapping effects are

governed by the ratio between the different characteristic lengths: spin dephasing,

spin relaxation and spin precession lengths. In a bulk homogeneous ferromagnet,

spin swapping and spin Hall effects are not operative (∇=0), and only survive close

to the interfaces. Therefore, in a strong ferromagnet where dephasing is shorter than

spin relaxation, one expects that these two effects will vanish. Consequently, any
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spin that is transverse to the magnetization will eventually align or anti-align in the

direction of m [92]. In contrast, in weak ferromagnets, the dephasing length is larger

and these effects can become prominent.

4.3 Results and discussion
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Figure 4.1: (Color online) Schematic view of the device in 3D (top) and 2D (bottom).
Two types of geometries are considered: a) squared-lattice, b) diamond-like. In
the squared-lattice-geometry the ferromagnet (shaded green) is 50× 50 nm2 and the
normal metal (shaded red) is 110×110 nm2. In the diamond-like-geometry the lateral
sides are tilted 45◦ with respect to the base. Current flows along x̂ and m = ŷ. As
boundary condition we set µ = 0 in all sides of the normal metal (blue lines in 2D
schemes). Three spin current densities are defined in the ferromagnetic layer, Qxy,
Qyz, and Qyx.

Fig. 1 depicts the two types of geometries considered in this work, a) squared-

lattice, b) diamond-like. In both cases, all sides of the ferromagnet are in contact

with normal metals. We impose µ = 0 as boundary condition in the normal metal

and set m = ŷ in the ferromagnet. As shown in the top scheme in Fig. 4.2, a charge

current flowing along x̂ in the normal metal becomes spin polarized along ŷ in the

ferromagnet, i.e., a spin current density Qxy ∼ −D∇xµy is induced in the magnetic

layer, where Qij is the spin current density component with spatial direction given

along i and spin orientation defined along j. Due to the interplay between Larmor

precession and spin flip relaxation, spin accumulation along ŷ is localized at the
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normal metal/ferromagnet interfaces along the transport direction, in agreement with

Valet-Fert theory [94].

+8.0

-8.0

S
p
in

 a
cc

u
m

u
la

ti
o
n
 (

1
/
m

 )
 x

 1
0

3

a) b)

x

y

x-component 
4.2

14

z-component 

-4.2

0.7

-0.7

jx

x

z
y

m

jx

x

z
y

m

c) d)
1.7

-1.7

6.4

-6.4

Just spin Hall effect

Just spin swapping

Figure 4.2: (Color online) Spin accumulation profiles µx (left) and µz (right) in a
squared-lattice geometry. (a)(b) Top panels refer to the accumulations when only
spin swapping and Larmor precession are considered, (c)(d) Bottom panels refer to
the case when only spin Hall effect and Larmor precession are considered. m = ŷ
and transport is given along x̂. The spin diffusion length is lsf =

√
Dτsf = 2 nm,

the Larmor precessional length is lJ =
√
DτL = 2 nm, and the dephasing length is

lφ =
√
Dτφ = 3.4 nm. The mean free path is lF = τ0vF = 2.5 nm, the velocity is

vF = 5×105 m/s, and the Fermi wave-vector is kF = 4.3 nm−1. εF = 0.7 eV, J = 0.15
eV, and α∗ = 0.1 eV.nm, where α∗ = α~vF .

Before presenting the complete numerical results for this system, we first attempt

to give some insight of the impact of Larmor precession on spin swapping, for this we

consider a toy model where we vanish in Eq. (4.111) the side-jump contribution, the

polarization factor, and the dephasing term. The equation then reduces to,
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Qyx

D
= −∇yµx −

τ0

τL
∇yµz +

2

3
αsw∇xµy, (4.112)

Qyz

D
= −∇yµz +

τ0

τL
∇yµx. (4.113)

Eq. (4.112) shows that due to spin swapping mechanism, Qxy ∼ −D∇xµy builds

Qyx ∼ −D∇yµx, in agreement with previous results reported in normal metals [58],

where the spin accumulation generated, µx, vanishes far from the interfaces due to

spin-flip mechanisms. In top scheme in Fig. 4.2 we depict this situation for the case

of ferromagnets, where, in contrast to normal metals, an additional term arises that

couples Qyx to Qyz, see Eq. (4.113). It means that spin swapping builds also spin

accumulation polarized along z, which resembles spin Hall effect (this is not spin Hall

Effect, this is spin swapping + precession). On Figs. 4.1(a)(b) we plot the x− and

z− components of the spin accumulation. Similar results are obtained if we neglect

spin swapping and focus on spin Hall effect instead, see Ref [95], where the authors

considered an external magnetic field. In this case, depicted in bottom scheme in Fig.

4.2, the spin accumulations do not vanish far from the interfaces as the driven source

is the charge current density [96]. Results are shown in Figs. 4.2(c)(d).
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Figure 4.3: (Color online) Spin accumulation profiles µx (left) and µz (right) described
by Eqs. (4.108)-(4.111) in a squared-lattice geometry. Parameters are given in Fig.
4.2.
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We now proceed to give the complete numerical results of Eqs (4.108)-(4.111) for

a squared-lattice geometry. µz is dominated by the spin Hall effect, giving rise to a

robust accumulation at the lateral sides of the ferromagnet, see Fig. 4.3(b). Mean-

while, the accumulation µx strongly depends on the contribution of spin swapping,

see Fig. 4.3(a) where we have considered αsw = 4α. On bottom insets we display the

spin accumulation profiles for different values of αsw. To enhance the contribution of

spin swapping, we can decrease the side-jump contribution by increasing the mean

free path or the momentum relaxation time.

In the following we introduce the diamond-like geometry, depicted in Fig. 4.1(b).

The importance of the geometry to control magnetization switching was discussed

in Ref. [97]. In this case, we explore the role of the geometry in nucleation and

propagation of domain walls in systems involving spin swapping, spin Hall effect, and

Larmor precession. In contrast to the squared-lattice geometry, in a diamond-like

structure spin flip scattering lengths near the tilted sides of the ferromagnet become

asymmetric, giving rise to a symmetry breaking of the spin accumulations, i.e., in

contrast to the symmetric profiles given in Figs. 4.3(a)(b), here, the spin accumulation

at one side is larger than at the other side, see Figs. 4.4(a)(b). Considering that spin

swapping is localized near the edges, this geometry may contribute to nucleation of

domain walls in the regions where the spin swapping magnitude is higher. Eventually,

due to spin transfer mechanism, this domain wall will propagate, leading to possible

new avenues in magnetization switching, see top scheme in Fig. 4.4

Notice that in Figs. 4.4(a)(b) we have considered different spin flip relaxation

lengths in the normal metal, i.e., we set lsf = 3 nm in the top NM region (T), lsf = 1

nm in the bottom NM region (B), and lsf = 2 nm in the middle region (M), see Fig.

4.4(a). Therefore, in this configuration, spins at the top interface, in contrast to the

spins at the bottom interface, will experience longer times to relax, giving rise to an

enhancement of the spin accumulations.
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Figure 4.4: (Color online) Spin accumulation profiles, a) µx and b) µz in a diamond
like geometry. m = ŷ and transport is given along x̂. In the normal metal, the
bottom region (B) is set to lsf = 1 nm, the middle region (M) to lsf = 2 nm, and
the top region (T) to lsf = 3 nm. The ferromagnet is kept with lsf = 2 nm. Other
parameters are given in Fig. 4.1.

4.4 Conclusions

We have studied the spin accumulation in 2 types of ferromagnetic films in the pres-

ence of spin-orbit coupled impurities. In the first configuration, a squared-lattice ge-

ometry, we showed that µx and µz are driven by the competing terms of spin Hall effect

and spin swapping. µx strongly depends on the spin swapping mechanism, exhibiting

higher amplitudes at the lateral edges of the sample. Meanwhile, µz is dominated by

spin Hall effect, exhibiting a robust accumulation at both sides of the ferromagnet. In

the second configuration, a diamond-like geometry, we showed that tilting the sides

of the ferromagnet and considering different spin-flip relaxation lengths contribute to

a symmetry breaking of the spin accumulation, which may lead to spin orbit torque

effects governed by spin swapping. In contrast to the conventional Rashba torque and

spin Hall torque, which act in the full system, spin swapping torque is localized at

the interfaces, opening novel avenues in nucleation and propagation of domain walls.
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Chapter 5

Concluding Remarks

5.1 Summary

The intensive search for innovative ways in MRAM technology to control and mea-

sure magnetization orientation in nanodevices has led to the discovery of spin torques.

In the present thesis we have investigated two kind of spin torques: i) spin transfer

torques and ii) spin-orbit torques. The former appears as a result of angular mo-

mentum transfer from the conductive electrons to the localized magnetization vector,

whereas the latter appears as a result of spin-orbit fields acting in the sample.

In Chap. 2 we studied spin transfer torques in spin filter tunnel junctions. In

contrast to conventional magnetic tunnel junctions, where two non-collinear ferro-

magnetic electrodes are separated by a thin insulating barrier, in spin filter tunnel

junctions the ferromagnetic electrodes are separated by a magnetic insulator. We

showed that the spin transfer torque amplitude in spin filter tunnel junctions is much

higher than in conventional magnetic tunnel junctions, as a result of spin filtering

effect acting in the magnetic barrier. Of particular interest in our calculations is the

angular dependence of the spin transfer torque. We showed that the torque ampli-

tude can be tuned over a wide range just by rotation of the magnetization vector in

the magnetic insulator. These results open promising novelties in the fabrication of

STT-MRAM devices.
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In Chap. 3 we studied Rashba torque in ferromagnetic films. In contrast to the

spin transfer torque mechanism, the spin-orbit torque, referred to as Rashba, appears

even in collinear homogeneous ferromagnetic layers. Therefore, memory devices based

on Rashba require a stack of layers much lower than the ones given in tunnel junctions,

offering efficient ways of achieving magnetization reversal and excitations. We showed

that the spin-orbit torque is dominated by the out-of-plane component, as a result of

inverse spin galvanic effect, which generates a continuous non-equilibrium spin den-

sity along the Rashba field. Moreover, to provide a better understanding to the key

mechanisms behind the experimental results and be able to distinguish this effect from

the so called spin Hall torque, the angular dependence of the Rashba torque has been

studied. We showed that in the strong Rashba regime, the in-plane torque component

exhibits a strong angular dependence. The origin of the angular dependence within

this model is the anisotropy of the spin relaxation, which arises naturally since the

Rashba spin-orbit interaction is responsible for the anisotropic D’yakonov-Perel spin

relaxation mechanism. For the out-of-plane torque component, in contrast, we found

it to be almost constant even when the spin relaxation is anisotropic. Experimentally

however, both spin torque components depend strongly on magnetization orientation,

and therefore, further studies have been considered very recently (to the date of pub-

lication of this thesis) to quantitatively distinguish the contributions of spin Hall and

Rashba torques. Nonetheless, this type of structure remains a promising candidate

in future developments of SOT-MRAM devices.

In Chap. 4 we studied spin swapping and spin Hall effect in ferromagnetic films

arising from the spin-orbit coupled impurities in the sample. In contrast to Chap. 3,

which is referred to as an intrinsic spin-orbit coupling effect, in Chap. 4 we discussed

the nature of extrinsic spin-orbit coupling in ferromagnetic films. We showed that spin

orbit torques may appear in the form of spin swapping torque and spin Hall torque.

However, in diamond-like geometries, the torque is governed by spin swapping as it
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is highly localized at the interfaces, offering the possibility to nucleate and propagate

domain walls.

In conclusion, we have discussed new ways to control and measure magnetization

orientation in nanodevices that may impact the future of spintronics technology.

5.2 Perspectives

Electric currents and the magnetic moments of elementary particles give rise to a

magnetic field, which acts on other currents and magnetic moments. This well estab-

lished concept has given rise to outstanding applications in our everyday life, ranging

from compasses to tapes and disk drives. In spintronics, the remarkable discovery of

Giant Magnetoresistance has led to many applications in diverse fields. For instance,

in medicine it is well used to track bacterias through magnetic biosensors, and in

computer technology, it is used to read and store information in magnetic random

access memories. The key ingredient of spintronics is the spin, a quantum mechani-

cal property that appears in particles such as the electron. It is described as a tiny

magnetic moment that the particle has and allows it to interact with other magnetic

moments and fields. The most promising material for spintronics technology has been

the ferromagnet, e.g., a magnetic tunnel junction is based on two non-collinear fer-

romagnetic layers separated by a thin oxide. More recently, new types of materials

have been discovered to be useful for a new generation of spintronics technology, e.g.,

antiferromagnets, spin-orbit coupled heavy metals, magnetic insulators, skyrmions,

topological insulators, graphene, transition metal dichalcogenides, organic semicon-

ductors, etc. Due to the inclusion of these exotic materials, spintronics is regarded

nowadays as a broader and multidisciplinary field; however, the concept of memory

devices based on current induced magnetization reversal and excitation remains to be

the main objective in spintronics research. For this reason as a perspective work we
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aim to take one step forward and study the interaction of electromagnetic waves with

the spin of the electron and open possible novel avenues in a new type of memory

devices. This approach comes by understanding that technology is currently moving

towards the capacity of playing with single particles, such as single electron tran-

sistors and inverters, which are at the scope of current nano-electronics technology.

Therefore, at this quantum level, electromagnetic waves are no longer regarded as

beams because the wavelengths become comparable to the dimensions of the system.

In the near future we may start speaking of single spin technology and its interaction

with light. In this sense, we propose to study Casimir effect and surface plasmons in

exotic materials related to spin-electronics. The former appears due to the zero-point

quantum fluctuations of the electromagnetic field, whereas the latter appears in the

presence of visible light. To simplify the picture, in this section we discuss Casimir

effect only.

Casimir effect is of great interest nowadays as it offers the possibility to use the

ground state energy to generate forces. Richard Feynman once said, “there is plenty

of room at the bottom,” referring to the advantages of nanotechnology over microtech-

nology. Casimir effect can be regarded as, “there is plenty of energy at the bottom,”

as there is a huge amount of zero-point energy that can be used for free once we reach

the level of single particle technology. In his seminal work [98], Casimir showed that

the force acting on a pair of two perfectly conducting plates in vacuum is attractive

and decays as 1/a4, being a the separation distance between the plates. This effect

was explained in terms of the zero-point quantum fluctuations of the electromag-

netic field in vacuum under variations of the boundary condition which yields a finite

change of the zero-point energy of the system, and therefore results in an observable

force, i.e., the radiation pressure of the field outside two plates is slightly greater than

that between the plates. Later, Lifshitz [99] generalized this result considering two

slabs with dielectric functions εL and εR, immersed in a fluid (εB), and found that
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when εL < εB < εR the force becomes repulsive, yielding possible outcomes in quan-

tum levitation. Nowadays, there is a broader literature of Casimir effect in condensed

matter physics and the interest is increasing because they dominate the interaction

between nanostructures and are responsible for the adhesion or repulsion between

moving parts in small devices such as micro- and nano- electromechanical systems.

In spintronic devices, Casimir effect is showing its presence since the discovery of fer-

romagnetic slabs inducing variations in the Casimir force due to the magneto-optical

Kerr effect. In particular, in a recent paper [100] it was shown that when considering

a ferromagnet plate next to an isotropic metallic mirror one obtains a Casimir energy

that depends on magnetization orientation, meaning that Casimir effect gives rise to

magnetic anisotropy in the ferromagnetic layer due to the magneto-optical Kerr ef-

fect. Consequently, any system with magneto-optical properties are good candidates

to be studied. In our case we propose to consider one of the slabs to be a mag-

netic dielectric material. The system is likely to be solved considering the generalized

Lifshitz approach and therefore a repulsive Casimir force may be expected. Besides

ferromagnetic slabs, new kind of exotic materials are under investigation regarding

the Casimir effect, such as topological insulators. Topological insulators in contact

with the exchange interaction of a magnetic material suffers time-reversal symmetry

breaking and therefore its surface states (metallic states) give rise to magneto-electric

properties such as quantum anomalous Hall effect. These magneto-electric effects

can be probed optically using linearly-polarized light, resulting in Faraday rotation

in the transmitted light and Kerr rotation in the reflected light, leading to dramatic

magneto-optical effects [101] that will eventually affect the Casimir force when con-

sidering two slabs in vacuum [102]. Similarly, here we propose to study Casimir effect

in two slabs of graphene samples, as it has been shown that graphene in contact with

the exchange interaction of atoms or substrates induces a Zeeman field on graphene

itself. Moreover, the combine influence of induced Rashba spin-orbit coupling and
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Zeeman field opens up a band gap at the Dirac point of graphene, resulting in a

quantum anomalous Hall effect [103]. Of relevant interest also is the interaction be-

tween scatterers in two dimensional systems, which results in a Casimir-type problem

[104], and more recently, the concept of Casimir-induced-spin-torques between lo-

cal spins in noncollinear quantum antiferromagnets [105] is opening novel avenues in

Casimir-spin-effects.
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