
TACTICAL HPC:
SCHEDULING HIGH PERFORMANCE COMPUTERS IN

A GEOGRAPHICAL REGION

A Thesis
Presented to

The Academic Faculty

by

Alireza K. Monfared

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2016

Copyright c© 2016 by Alireza K. Monfared

TACTICAL HPC:
SCHEDULING HIGH PERFORMANCE COMPUTERS IN

A GEOGRAPHICAL REGION

Approved by:

Professor Mary Ann Weitnauer,
Committee Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor George Riley
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Ellen W. Zegura, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Jim Xu
School of Computer Science
Georgia Institute of Technology

Professor Mostafa H. Ammar, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. David Doria
Computational and Information
Sciences Directorate (CISD)
United States Army Research Laborato-
ries

Date Approved: 4 December 2015

To my parents,

who sacrificed their happiness to support my success.

iii

PREFACE

This work was supported in part by the US National Science Foundation through

grant CNS 1161879 and United States Army Research Laboratory through grant No.

36566CB.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisors, Professor Ellen W. Zegura

and Professor Mostafa H. Ammar for their guidance, understanding, patience, and

most importantly, their unconditional support during my graduate studies at Georgia

Tech. I would appreciate the input and careful feedback of my committee members,

Dr. George Riley, my respected Academic Advisor, Dr. Mary Ann Weitnauer, my

respected committee chair, Dr. Jim Xu, and last but not least, Dr. David Doria

who has been a great colleague and friend throughout this journey and has provided

utterly constructive feedback on my work at numerous occasions.

I would also like to extend my appreciation to all the academic members of the

School of Electrical and Computer Engineering as well as College of Computing at the

Georgia Institute of Technology for their helpful and critical reviews throughout the

Ph.D. program. In specific, I have to extend my gratitude to Ms. Daniela Staiculescu

who has given me guidance on the logistics of the defense and has been a great guide

to help me with the formalities of completing a Ph.D. I would also like to thank all

my colleagues at Network Research Group in Georgia Tech who have always given

me great feedback.

On the non-academic front, I would like to extend my sincere thanks to my room-

mate for five years, Dr. Nassir Mokarram, who has also been like a brother to me,

and to Izadi family, who have been like my family away from home. I would also

like to thank my girlfriend, Parnia, for making the last part of this adventure even

more exciting. And finally, my last and largest thanks shall go to my family, to my

most loving father and mother and sister, that without slightest doubt, whatever

that I have achieved during the past 29 years of my life, is the fruit of their love and

v

sacrifice.

vi

TABLE OF CONTENTS

DEDICATION . iii

PREFACE . iv

ACKNOWLEDGEMENTS . v

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xvi

I BACKGROUND AND LITERATURE OVERVIEW 1

1.1 Introduction . 1

1.2 Literature Review . 3

1.2.1 Cloud Computing and Mobile Cloud Computing 3

1.2.2 Cloudlets . 4

1.2.3 Cyber Foraging . 5

1.2.4 Vehicular Cloud Computing 6

1.2.5 Data MULES . 7

1.2.6 Message Ferries . 7

1.2.7 Tactical Clouldlets . 9

1.3 Organization of the Thesis . 9

II COMPUTATIONAL FERRIES: SCHEDULING FOR MOBILE HIGH
PERFORMANCE COMPUTING 12

2.1 Introduction . 12

2.2 Problem Framework . 14

2.2.1 Framework Structure and Problem Settings 14

2.2.2 Structure of the Solution . 18

2.2.3 Objective Value . 19

2.2.4 Work Conservation, Preemption, and Processor Sharing . . . 21

2.3 System Architecture . 22

vii

2.4 Mathematical Model of MHPC Problem 26

2.4.1 Complexity Analysis for an Exact Algorithm 30

2.5 Theoretical Foundations . 31

2.5.1 Bounds on the Performance of the Offline Heuristic 32

2.6 Offline MHPC Problem . 33

2.6.1 Constructive Heuristic . 34

2.6.2 Improvement Heuristics . 35

2.6.3 Applying Heuristics to Solve Variants of MHPC Scheduling
Problem . 37

2.7 Online MHPC Problem . 38

2.7.1 Base Online Algorithm . 39

2.7.2 Cutting Algorithm . 40

2.7.3 Merging Solutions . 43

2.8 Evaluation . 43

2.8.1 Examples of the Offline MHPC Problem 43

2.8.2 Validation of the Offline MHPC Heuristic 44

2.8.3 Performance of the Offline MHPC Heuristic versus Number of
Processors for Non-preemptive and Preemptive Schedulers . . 46

2.8.4 Performance of the Offline MHPC Heuristic versus Preemption
Overhead . 48

2.8.5 Performance of the Offline MHPC Heuristic versus Task Avail-
ability . 50

2.8.6 Performance of the Online MHPC Heuristic versus Task Ar-
rival Frequency . 50

2.8.7 Performance of the Online MHPC Heuristic versus Size of Task
Groups . 52

2.8.8 Performance of the Online MHPC Heuristic versus Task Dead-
lines . 53

2.8.9 Examination of Effects of Travel Distances on the Online MHPC
Heuristic . 54

2.8.10 Examination of Effects of Mobility Pattern on the Online MHPC
Heuristic . 57

viii

2.8.11 Examination of Benefits of Increasing Vehicles versus Proces-
sors for the Online MHPC Heuristic 59

2.9 Conclusions and Future Work . 61

III MESSAGE FERRYINGWITHA PURPOSE: SCHEDULING FER-
RIES TO PROVIDE SERVICE ON A TACTICAL HIGH PER-
FORMANCE COMPUTER . 63

3.1 Introduction . 63

3.2 Problem Framework . 66

3.2.1 Framework Structure and Problem Settings 66

3.2.2 Structure of the Solution . 70

3.2.3 Objective Value . 72

3.3 System Architecture . 74

3.4 Mathematical Model of HPC+MF Problem 78

3.4.1 Complexity of the Heuristics 82

3.5 Offline HPC+MF Problem . 83

3.5.1 Constructive Heuristic . 83

3.5.2 Earliest Delivery Scheduling for HPC+MF 84

3.5.3 Applying Heuristics to Solve Variants of HPC+MF Scheduling
Problem . 85

3.6 Online HPC+MF Problem . 86

3.6.1 Base Online Algorithm . 86

3.6.2 Cutting Algorithm . 87

3.6.3 Merging Solutions . 90

3.7 Evaluation . 91

3.7.1 Examples of the Offline HPC+MF Problem 91

3.7.2 Performance of the Offline HPC+MF Heuristic versus Number
of Processors for Non-preemptive and Preemptive Schedulers 92

3.7.3 Performance of the Online HPC+MF Heuristic versus Task
Arrival Frequency . 93

3.7.4 Performance of the Online HPC+MF Heuristic versus Task
Deadlines . 95

ix

3.7.5 Examination of Effects of the Relative HPC Location on the
Online HPC+MF Heuristic 97

3.8 Conclusions and Future Work . 100

IV TOWARDS UNDERSTANDING THE VALUE OF CONTROL-
LING MOBILITY IN A TACTICALHIGH PERFORMANCECOM-
PUTING CLOUD SERVICE . 105

4.1 Introduction . 105

4.2 Non-Controlled Mobility Service for the MHPC Framework 107

4.3 Non-Controlled Mobility Service for the HPC+MF Framework . . . 108

4.4 Evaluation . 111

4.4.1 Evaluation Setup . 111

4.4.2 Effect of Controlling Mobility versus MHPC/MF Speed . . . 113

4.4.3 Effect of Controlling Mobility versus Task Arrival Rate . . . 117

4.4.4 Effect of Computation on the Move 120

4.5 Conclusions . 126

V PLAUSIBLE MOBILITY INFERENCE FROM WIRELESS CON-
TACTS USING OPTIMIZATION 129

5.1 Introduction . 129

5.2 Mobility Inversion Algorithms . 133

5.3 Evaluation . 136

5.3.1 Evaluation Methodology . 136

5.3.2 Evaluation Setup . 137

5.3.3 Mobility-level Comparison 138

5.3.4 Contact-level Comparison . 139

5.3.5 Packet Delivery Ratio Comparison 140

5.4 Conclusions and Future Work . 141

VI CONCLUSION AND EXTENSIONS 143

REFERENCES . 150

x

LIST OF TABLES

1 Parameters and Decision Variables used in the MHPC formulation. . 26

2 Parameters and Decision Variables used in the HPC+MF formulation. 78

3 Classification of proposed heuristics according to the dimensions of
“Computation on the Move” and “Controlled Mobility”. 107

4 Parameters used in the Mobility Inference Algorithm 8. 133

xi

LIST OF FIGURES

1 Examples of ultra-rugged, battle-proven, high-performance computers
used as HPCs in battlefield and disaster relief scenarios. We consider
mounting these HPCs on vehicles and communicating with user nodes
directly (1a) and also as stationary entities communicating with user
nodes via Message Ferries. 2

2 A simple example of MHPC scheduling problem with two nodes and a
single processor MHPC. Sample task and MHPC features and distances
among entities are shown on the figure. 14

3 A framework for the MHPC problem. TheMHPC Controller is notified
about the tasks at the User Nodes which are served by the MHPCs. . 16

4 A system architecture for the MHPC problem. Three components of
the system are: (1) User Nodes that own the tasks, (2) MHPCs that
provide the communication and computation service by picking up,
processing, and delivering the tasks, and (3) MHPC Controller that
plans the mobility and task execution schedule on the MHPCs. 24

5 Example used in the proof of Lemma 2. A single processor MHPC
is initially placed at location 0. There are jobs of durations T1 at
locations 1 and jobs of duration T at locations 2 and 3. Time taken to
travel between any two locations is shown in the figure. 32

6 Life cycle of a task in the MHPC framework: (1) The task initially
resides on user’s hand-held device, (2) It is picked up by the MHPC
and awaits processing, (3) It receives processing at the MHPC, (4) It
awaits delivery at the MHPC after completion of processing, (5) The
result is delivered back to the user node. 41

7 MHPC Tour and Task Execution Schedule of a sample solution of an
MHPC problem with a two processor MHPC serving 4 user nodes.
Tour starts from location 0 and can be followed using the numbered
arrows. r+i, r−i, Wi indicate the pick up, delivery, and waiting times of
the single task at location i. Each schedule shows intervals that either
of the two processors of the MHPC are busy processing a task. 45

8 Comparison of the exact solution and the heuristic for a non-preemptive
single processor MHPC serving 4 tasks. 46

9 Comparison of the preemptive and non-preemptive scheduling for an
MHPC problem. The x-axis shows behavior of each scheduler as the
number of processors grow. The y-axis shows the objective value RT
in hours. 48

xii

10 Effect of preemption overhead on a preemptive MHPC. The dashed
line shows the non-preemptive problem as baseline and the solid line
shows the behavior of the MHPC problem asthe preemption overhead
grows on X-axis. The objective value, RT, is used for comparison along
Y-axis. 49

11 Effect task availability on the performance of a quad-processor MHPC
system. An upper bound and lower bound for the solution is shown
according to the descriptions of Section 2.5.1. This example concerns
averaging performance of offline instances of the problem as tasks be-
come available more sparsely into near future. X-axis shows the scale
parameter for the exponential process governing inter-arrival time of
task availabilities. Y-axis shows the objective value, RT, in hours. . . 51

12 Effect of arrival frequency of tasks on the performance of online MHPC.
X-axis shows the mean value for exponential process governing inter-
arrival time of tasks. Tasks arrive more sparsely along this axis. The
metric measured on Y-axis is noted o the corresponding captions. . . 53

13 Effect of number of tasks arriving in each batch on the performance of
online MHPC. X-axis shows the mean number of tasks arriving in each
group. The metric measured on Y-axis is noted o the corresponding
captions. 54

14 Effect of task deadlines on the performance of online MHPC. X-axis
shows deadline margin of the tasks defined in Section 2.8.8. Deadlines
become looser along this axis. The metric measured on Y-axis is noted
o the corresponding captions. 55

15 Framework for testing various effect on the performance of the on-
line MHPC heuristics in Sections 2.8.9, 2.8.10, and 2.8.10. Tasks can
be generated at each of the numbered locations as described in each
experiment. 57

16 Effect of distance among task locations on the performance of the on-
line MHPC heuristic. Groups of bars on the X-axis shows the ex-
periment for small, medium, and large tasks, respectively. One task
is always placed at location 1 in Figure 14. Each group repeats the
second task placed at 8, 5, 4 and 1 of Figure 14 respectively. Y-axis
measures the objective value, average NAF. 58

xiii

17 Effects of the mobility behavior of MHPCs on the performance of the
online MHPC heuristic. Groups of bars on the X-axis shows the ex-
periment for small, medium, and large tasks, respectively. One task is
always placed at location 1 in Figure 14. Each group repeats the sec-
ond task placed at 8, 5, and 4 of Figure 14 respectively. The framework
consists of two MHPCs placed near one of the task locations initially.
Y-axis measures the percentage of the time that each MHPC spends
serving the nearby task location. 59

18 Effect number of MHPCs (V) vs number of processors per MHPC (m)
on the performance of the online MHPC heuristic. Groups of bars on
the X-axis shows the experiment for small, medium, and large tasks,
respectively. Each group compares the three cases of one MHPC with 4
processors, two MHPCs with two processors, and 4 MHPCs with single
processors respectively. Y-axis measures the objective value, average
NAF. 61

19 A simple example of a HPC+MF scheduling problem with two nodes
and a single processor HPC. Sample task and MF features and dis-
tances among entities are shown on the figure. 65

20 A framework for the HPC+MF problem. The HPC is notified about
the tasks at the User Nodes. These tasks are picked up by MFs and
dropped off at the HPC for processing and given back to the MFs for
delivery to the user nodes. 67

21 A system architecture for the HPC+MF problem. Three components
of the system are: (1) User Nodes that own the tasks, (2) MFs that
provide the communication service by picking up tasks, dropping them
off to the HPC, receiving the results from the HPC, and delivering them
back to the user nodes (3) HPC that provides computation service by
processing the tasks. It also plans the mobility of the MFs. 76

22 Life cycle of a task in the HPC+MF framework: (1) The task initially
resides on user’s hand-held device, (2) It is picked up by the MF and
eventually reach the HPC, (3) It is received at the HPC but awaits
processing, (4) It receives processing at the HPC, (5) It awaits to be
transferred to an MF for delivery after completion of processing, (6) It
is transferred to an MF that will eventually deliver it, (7) The result
is delivered back to the user node. 88

23 MF Tour and Task Execution Schedule of HPC for a sample solution of
an HPC+MF problem with a two processor HPC serving 4 user nodes.
The MF Tour can be followed using the numbered arrows. Pickup and
delivery time for each task is shown on its location. Each schedule
shows intervals that either of the two processors of the HPC are busy
processing a task. 92

xiv

24 Comparison of the preemptive and non-preemptive scheduling for an
HPC+MF problem. The x-axis shows behavior of each scheduler as
the number of processors grow. The y-axis shows the objective value
RT in hours. 94

25 Effect of arrival frequency of tasks on the performance of online HPC+MF.
X-axis shows the mean value for exponential process governing inter-
arrival time of tasks. Tasks arrive more sparsely along this axis. The
metric measured on Y-axis is noted o the corresponding captions. . . 95

26 Effect of task deadlines on the performance of online HPC+MF. X-axis
shows deadline margin of the tasks defined in Section 3.7.4. Deadlines
become looser along this axis. The metric measured on Y-axis is noted
o the corresponding captions. 97

27 Framework for testing the effect of relative HPC location on the perfor-
mance of the online HPC+MF heuristics. Two user nodes are placed
at locations U1 and U2. The HPC is placed at Loc.1, Loc.2, and Loc.3
in various experiments. 99

28 Effect of HPC location on the performance of the online HPC+MF
heuristics. Groups of bars on the X-axis shows the experiment for
small, medium, and large tasks, respectively. Each group repeats the
experiment with the HPC placed at Loc.1, Loc.2, and Loc.3 shown in
Figure 27 respectively. The metric measured on Y-axis is noted o the
corresponding captions. 104

29 A framework for the MHPC problem without Controlled Mobility. The
MHPCs follows a pre-determined route and User Nodes can exchange
tasks and results as they meet the MHPCs enroute. 108

30 A framework for the HPC+MF problem without Controlled Mobility.
The MFs follows a pre-determined route and User Nodes can exchange
tasks and results as they meet the MFs en-route. All the MF routes
need to meet the HPC. 110

31 Georgia Tech bus route map. We have used the stations, 112

32 Effect of controlling speed versus vehicle speed on the objective value
and distance throughout for the MHPC system. 116

33 Effect of controlling speed versus vehicle speed on the objective value
and distance throughout for the HPC+MF system. 117

34 Effect of controlling speed versus task arrival rate on the objective
value and distance throughout for the MHPC system. 119

35 Effect of controlling speed versus task arrival rate on the objective
value and distance throughout for the HPC+MF system. 120

xv

36 Effect of computation while moving versus task arrival rate on the
objective value and distance throughput. 122

37 Effect of computation while moving versus number of processors on
the objective value and distance throughput. The MHPC plot shows
the baseline case for a system consisting of three MHPCs with a single
processor. 124

38 Effect of computation while moving versus vehicle speed on the ob-
jective value and distance throughput. The MHPC plot shows the
baseline case for a system consisting of three MHPCs moving at 2 m/s
and another with three MHPCs moving at 10 m/s. 127

39 An illustrative description of mobility traces and contact traces. . . . 131

40 Optimization-based algorithm takes an initial point (Xinit = X(:, :
, k− 1)), a contact trace (Ck = C(:, :, k)) along with its corresponding
radio range (R) and a value of maximum speed (v) to infer a mobility
(X = X(:, :, k)) in an iterative manner. Inferred locations for each
time step are given as an initial point to the solver for the next step.
This process is repeated for t = t0, . . . , tT−1. 135

41 An illustration of concepts of original trace, inferred trace, original
contact trace, and inferred contact trace. This figure explains which
two traces are compared in mobility level and contact level comparisons.137

42 Pairwise distance histograms. Horizontal (Vertical) axis shows distance
among node-pairs in the original (inferred) trace normalized by the
value of the transmission range. Color intensities are proportional to
the number of node-pairs having distances in the corresponding bin. . 139

43 Contact-level errors over time. Extra link errors (Extra) are missing
in the original, but present in the inferred contact trace. Missing link
errors (Missing) are present in the original, but missing in the inferred
contact trace. Total link errors (Total) is the sum of these. The hor-
izontal axis represents time and the vertical axis shows the errors as
percentage of the total number of possible links. The figure includes
all three types of errors for the optimization-based algorithm (Opt.)
and the total link errors for the force-based heuristic(FB). 140

44 Message Delivery Ratio versus time. Vertical axis shows the total num-
ber of messages delivered until the current time divided by the total
number of messages sent. 141

xvi

SUMMARY

Mobile devices are often expected to perform computational tasks that may

be beyond their processing or battery capability. Cloud computing techniques have

been proposed as a means to offload a mobile device’s computation to more powerful

resources. In this thesis, we consider the case where powerful computing resources

are made available by utilizing vehicles. These vehicles can be repositioned in real

time to receive computational tasks from user-carried devices. They can be either

equipped with rugged high-performance computers to provide both computation and

communication service, or they can be simple message ferries that facilitate commu-

nication with a more powerful computing resource. These scenarios find application

in challenged environments and may be used in a military or disaster relief settings.

It is further enabled by increasing feasibility of (i) constructing a Mobile High Perfor-

mance Computer (MHPC) using rugged computer hardware with form factors that

can be deployed in vehicles and (ii) Message Ferries (MF) that provide communication

service in disruption tolerant networks. By analogy to prior work on message ferries

and data mules, one can refer to the use of our first schema, MHPCs, as computa-

tional ferrying. After illustrating and motivating the computational ferrying concept,

we turn our attention into the challenges facing such a deployment. These include

the well-known challenges of operating an opportunistic and intermittently connected

network using message ferries – such as devising an efficient mobility plan for MHPCs

and developing techniques for proximity awareness. In this thesis, first we propose

an architecture for the system components to be deployed on the mobile devices and

the MHPCs. We then focus on defining and solving the MHPC movement scheduling

xvii

problem with sufficient generality to describe a number of plausible deployment sce-

narios. After thorough examination of the MHPC concepts, we propose a scheme in

which MHPCs are downgraded to be simple MFs that instead provide communication

to a stationary HPC with powerful computing resources. Similar to the MPHCs, we

provide a framework for this problem and then describe heuristics to solve it. We

conduct a number of experiments that provide an understanding of how the perfor-

mance of the system using MHPCs or MFs is affected by various parameters. We

also provide a thorough comparison of the system in the dimensions of Computation

on the Move and Controlling the Mobility.

xviii

CHAPTER I

BACKGROUND AND LITERATURE OVERVIEW

1.1 Introduction

As computing devices become more powerful, expectations for performance and rich-

ness of applications rise as well. This creates an ever-present cycle of software exceed-

ing current hardware capabilities and driving future development. This trend applies

across many computing device types but is especially acute for mobile wireless de-

vices, which are increasingly expected to perform demanding computational tasks.

However, mobile devices have capability limits, battery lifetime limits, and compute

power limits that restrict their ability to perform intensive computational tasks. This

gap between expectations and mobile device capability is likely to continue.

In this thesis, we consider two ways to deploy powerful computing resources locally

to enable mobile devices to accomplish what is asked of them. In the first case,

resources are deployed on a vehicle, thus they can be repositioned in real-time. In

the second case, resources are deployed in a fixed location with vehicles providing

connectivity to this location. Mobile devices initiate computing tasks that they desire

to run remotely, yet cannot reliably run on a remote cloud via the Internet. This

scenario is found in challenged environments such as military or disaster relief efforts.

It is further enabled by the increasing feasibility of constructing a (i) mobile high

performance computer (MHPC) using rugged computing hardware with form factors

that can be deployed in vehicles and (ii) also by application of a Message Ferry (MF)

and Tactical High Performance Cloudlets (HPC). While expectations in challenged

environments are often tempered, low-latency, computationally intensive applications

can be important. The United States Army has research interests in this direction,

1

(a) HPC mounted on a military vehicle. (b) A sample HPC module, TSY-300X
3U VPX by Themis Computers [20].

Figure 1: Examples of ultra-rugged, battle-proven, high-performance computers used as
HPCs in battlefield and disaster relief scenarios. We consider mounting these HPCs on
vehicles and communicating with user nodes directly (1a) and also as stationary entities
communicating with user nodes via Message Ferries.

under the label of Tactical High Performance Computing[35, 46, 50]. Figures 1a and

1b show examples of tactical HPCs used in combat vehicles.

In both of the above problems, there exists a request for assistance with compu-

tationally intensive tasks. The goal is to provide assistance with processing of the

tasks. These tasks are initiated by user nodes that can be soldiers in a combat field or

social workers in a disaster relief setting. The user nodes are geographically dispersed

in the area. In the first problem, which we call the MHPC problem, we provide the

assistance via the MHPCs that can go to each user node and receive tasks from them,

process these tasks and bring back the results to the user node at a later time. In the

second problem, which we call the HPC+MF problem, the computation resource is

placed at a fixed location rather than being mounted on the vehicles. In this scenario,

MFs provide communication for the user nodes and the HPC by picking up the tasks

and dropping them off at the HPC, as well as receiving the processed results from the

HPC and delivering them to the user nodes. The HPC then focuses on the processing

2

of these tasks.

In this thesis, we attempt to address various questions regarding the applicability

of the MHPCs or the combination of the HPC and MFs to serve the computationally

intensive tasks of the user nodes. We will review similar problems addressed in

literature in the next section.

1.2 Literature Review

Our work draws on and complements work in mobile cloud computing, vehicular cloud

computing, and disruption tolerant networks as well as tactical high performance

computing trend of work in the military. In this section, we will summarize and

discuss relevant work from these fields.

1.2.1 Cloud Computing and Mobile Cloud Computing

Cloud computing (CC) is defined as “a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g.,

networks, servers, storage, applications, and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction.” by The

National Institute of Standards and Technology (NIST) [32]. In a high-level view,

cloud computing techniques propose a means to offload intensive computational tasks

from a mobile device to more powerful computing resources reached over the Internet

or a similar network. Note that the term Cloud Computing can either refer to the

services provided by applications that run over these networks or the actual hardware

and architecture that provides such services [4].

Mobile Cloud Computing (MCC) brings the CC paradigm to the world of non-

stationary devices. MCC is formally defined as “an infrastructure where both the

data storage and data processing happen outside of the mobile device. Mobile cloud

applications move the computing power and data storage away from mobile phones

and into the cloud, bringing applications and MCC to not just smartphone users but a

3

much broader range of mobile subscribers” [16]. Many forms of data processing have

been shown to be advantageous if performed remotely, including image processing,

natural language processing, crowd computing, sharing GPS/Internet data, sensor

data applications, multimedia search, and social networking [18]. In [15] Cuervo

et al. propose a system to offload fine-grained pieces of code that are chosen in

an online manner in order to maximize the energy savings. This is an example of

how MCC can be used to help with heavy computational tasks and save energy

while minimally burdening the programmer of the original applications. In their

evaluations, the authors apply MCC to face recognition and mobile games. Another

example of automation of offloading is proposed by Chun et al.[13] where applications

are partitioned at runtime and offloaded. Their evaluations shows up to 20x execution

speed-up and 20x energy savings versus running the job on the mobile device, verifying

the applicability of MCC in various scenarios.

1.2.2 Cloudlets

In the standard offloading scenario, the mobile device has a stable connection to

the cloud to which it can offload computations and receive results back. However,

the cloud need not necessarily reside on a remote Internet server. Satyanarayanan

et al.[41] concentrate on using virtual machines to instantiate the required services

on more powerful computing resources close to mobile devices, such as in a coffee

shop. Such resources are called cloudlets and are formally defined as “a trusted,

resource-rich computer or cluster of computers that’s well-connected to the Inter-

net and available for use by nearby mobile devices” [41]. Leveraging cloudlets has

been shown to decrease the response time which is essential for many delay-intolerant

mobile applications. The authors also describe that cloudlets facilitate serving mul-

tiple users in situations where bandwidth demand is near its peak. Customization of

such cloudlets is less challenging than that of remote clouds. Note that stationary

4

cloudlets are complementary to our proposal of deploying MHPCs. Each of these

approaches has its own advantages and disadvantages depending on the environment.

Indeed, stationary cloudlets can be viewed as the same continuum of the MHPCs,

where the difference is the time scale of (re)deployment. Another line of research

related to stationary cloudlets involves a network design problem which attempts to

place stationary HPCs to cover the computational needs of a group of users in an

area. In [46], Shires et al. develop strategies for placement of tactical cloudlets, which

are essentially parallel high performance computers (HPCs) in rough environments

where the dominant infrastructure is ad hoc. They call this cloudlet seeding and

define it as “the static strategic placement of HPC assets in deployed settings in such

a way to balance computational load and limit hops to both stationary and mobile

HPC nodes” [46]. Our problem is similar to this in that we must plan for computa-

tional needs of users in a geographic space, though because our HPCs are mobile, we

have a route planning problem rather than a placement problem. The HPC seeding

problem is also different to our proposal of combining the HPC and MFs as, again,

the communication is provided through planning of the routes of the MFs and not

the placement of the HPC(s). Finally, Zhang et al. focus on offloading algorithms

considering the local load that users have and the availability of the cloudlets in an

intermittently connected environment with mobile cloudlets by leveraging Markov

Decision Processes (MDPs) [56].

1.2.3 Cyber Foraging

In [7], Balan et al. describe how MCC can opportunistically exploit the computing

resources in a device’s surrounding environment. In this architecture, known as cyber

foraging, nearby computing and data storage servers are discovered during the course

of a user’s movement. These servers help improve the performance of the interactive

applications and distributed file systems that are run locally. In an extended version

5

of this work, Flinn [19] introduces the concept of surrogate computing resources which

are wired servers that possibly provide greater computing resources as compared to

the mobile devices. Surrogates bear close similarity to the cloudlets introduced above.

Taking the idea of using opportunistic resources one step further, Shi et al.[45] use

intermittently connected clouds where the mobile device is assumed to have variable

connectivity to the cloud. This, in essence, moves the computational dependence

from a remote cloud to the mobile device’s contacts which are opportunistically en-

countered. A second work of the same authors ([44]) explores improvements in the

offloading of computation-intensive tasks of a mobile device to the cloud by both

considering the performance seen by the user as well as the costs to the provider.

1.2.4 Vehicular Cloud Computing

Vehicular Cloud Computing (VCC) is formally defined as “[a] group of largely au-

tonomous vehicles whose corporate computing, sensing, communication and physical

resources can be coordinated and dynamically allocated to authorized users”[17]. In

[52] Whaiduzzaman, et al. explain that VCC aims to exploit the underutilized compu-

tational resources of vehicles on streets, roadways and parking lots as computational

nodes in a cloud computing architecture. Examples of where computational resources

of vehicles can be used are cars parked in the long-term parking of an airport, a mall,

or a small business. Another, more obvious example is utilizing the computational

power of the large number of cars stuck in a traffic jam after a sporting event by the

municipal authority, to reschedule traffic lights which will ultimately help dissipate

the traffic jam as soon as possible [37]. VCC emphasizes the fact that while resources

on these vehicles will be used for various services, there is no designated vehicle with

the responsibility to provide services to other mobile or stationary users, thus issues

of distributed cooperation and coordination are central[22]. While we also rely on

6

vehicles with computing or communication capacity, our work differs because we as-

sume an MHPC or MF with controlled mobility that is given the task of supporting

other users.

1.2.5 Data MULES

Another related line of research is the vast amount of work that proposes to utilize

data MULEs (Mobile Ubiquitous LAN Extensions) [42]. By analogy to our MHPCs

and MFs, MULEs are assumed to be equipped with a short-range wireless commu-

nication interface that can exchange data with nearby sensors that are encountered

while moving. Similar to our MHPCs and MFs, MULEs can pick up data when in

range of a source, buffer the data, and drop it off when they are in range of the

destination. In contrast to our work, data MULEs usually follow a pre-determined

path and initially broadcast their beacons so that stationary sensor nodes identify if

they are on the MULE’s path or can reach it through another node (initialization),

and then in the subsequent rounds, data is collected from nodes on the MULE’s path.

These nodes pass their own data and the data of their children that cannot directly

reach the MULE [26]. In contrast, our work mostly focuses on MHPCs or MFs with

controlled mobility that are mostly responsible for helping nodes with computational

tasks rather than data collection. The task scheduling component is also mostly ab-

sent in the data MULE line of work, while our work relies on properly scheduling the

tasks on the MHPCs or on the HPC. We will discuss the value of this control over

mobility in Chapter 4 of this thesis.

1.2.6 Message Ferries

Networking in challenging settings received research attention starting in 2005, un-

der the term disruption tolerant or opportunistic networks [24]. Disruption tolerant

routing could be used in combination with MHPCs or MFs to communicate tasks

and results without requiring that the MHPCs and user nodes travel within radio

7

range. One piece of work in this area, with which we share our motivations partly,

involves the original message ferrying literature. In a delay tolerant network, Message

Ferries (MF) are a set of special mobile nodes that provide communication services

for other (possibly stationary) nodes in the network [57]. Similar to our MHPCs,

which by analogy can be called “Computational Ferries”, Message Ferries enjoy con-

trolled mobility in order to serve their purpose. Usage of Message Ferries is justified

in crisis scenarios where infrastructure does not exist and nodes can easily go out of

range of one another, in area sensing and surveillance applications where sensors are

sparsely deployed, or in scenarios where economic or privacy considerations makes

them a more suitable alternative [57]. Zhao et al. [58] suggest the possibility of using

the stationary nodes or even multiple ferries as relays while exchanging data. In this

framework, data might be picked up by one ferry, dropped at an intermediary node,

and picked up and ultimately delivered by another ferry. Similarly, data can be ex-

changed among ferries before final delivery. Mukarram, et al. [10] present a variant

of the Message Ferrying problem where limited mobility of nodes among which ferries

move is allowed. This includes scenarios where nodes have a periodic mobility or

a known mobility model. In contrast, our computational ferries provide processing

services to nodes rather than data exchange services. In our frameworks, there is a

possibility that the source and destination nodes are the same, but a task needs to

be picked up, processed and returned. This incurs a necessary wait time in addition

to the time needed to exchange data between the node and the ferry. Considering

these examples, the emphasis of our work is on computation, not message delivery as

considered in MF work. This makes our problem inherently different from that of the

original MF. In our HPC+MF work, we use MFs as communication devices in their

original form, but we add a processing unit to the picture which affects the requests

for delivery of results.

8

1.2.7 Tactical Clouldlets

Another piece of literature that is of interest to our work is on Tactical Cloulets. This

work is of interest of United States Army Research Laboratory [46, 50, 30, 12] and

Department of Defense through the Software Engineering Institute (SEI) at Carnegie

Melon University [35, 29]. This latter piece of work complements our work in the sense

that it places an emphasis on developing a system that discovers the computation re-

sources in the vicinity. In these works, specific attention is given to development of

algorithms for code offloading, state synchronization and the deployment of tactical

cloudlets is explored through development of the cyber-foraging architecture[7, 19].

This trend of work further verifies the feasibility of our proposal for deploying the

MHPC and MF systems. Our work, in contrast to the above, focuses on the de-

velopment of algorithms for controlling the mobility of the vehicles and for better

scheduling of the tasks on the available compute resources and places less emphasis

on the system architecture.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we present the problem

of providing computation service to users in an area via high performance computers

mounted on vehicles (MHPCs). In Section 2.1, we motivate the problem. Then

we describe, in detail, the framework of the problem is Section 2.2. In Section 2.3,

we investigate the problem from a systems point of view. We then formulate the

problem in Section 2.4 and gaining some understanding of the fundamental features

of it in Section 2.5. In Section 2.6 and 2.7, we use the lessons learned from the previous

sections to propose scalable heuristics for scheduling the movement and task execution

on the MHPCs, first with the assumption of complete knowledge of information into

future, and then by lifting this assumption for a more general case. Finally, in Section

2.8, we perform extensive evaluations to observe the effect of various parameters on

9

the system.

In Chapter 3, we present the second problem, which suggests using Message Ferries

(MFs) to provide communication for serving computation needs of user nodes via

a stationary High-Performance Computer (HPC). In Section 3.1, we motivate the

problem and describe its differences from the problem of Chapter 2. In Section 3.2,

we present the framework of the problem. In Section 3.3, we look into the problem

from a systems point of view. We then move into first formulating the problem in

Section 3.4. In Section 3.5 and 3.6, we propose scalable heuristics for scheduling the

movement and task execution on the problem, first with the assumption of complete

knowledge of information into future, and then by lifting this assumption for a more

general case. Finally, in Section 3.7, we perform extensive evaluations to observe

the effect of various parameters on the system. Many sections of Chapter 3 can be

compared side by side with those of Chapter 2 to gain a better understanding of the

systems and their differences.

In Chapter 4, we introduce a new dimension to the problem: controlling the

mobility of the vehicles. In Section 4.1, we present a new classification of the problems

solved in Chapter 2 and 3. In Section 4.2, we present a counterpart for the heuristics

of Chapter 2 that does not control the mobility of the MHPCs. Similarly, in Section

4.3, we present a counterpart for the heuristics of Chapter 3 that does not control the

mobility of the MFs. Finally in Section 4.4, we use these newly developed heuristics to

perform more experiments that reveal the value of controlling mobility of the vehicles

in Chapters 2 and 3.

In Chapter 5, we introduce a heuristic for obtaining mobility traces from contact

traces. In Section 5.1, we introduce integrating unconditional mobility of user nodes

as the next logical step for the work of Chapter 2 and 3, and we motivate inference of

mobility traces from contact traces as a more technically feasible method and describe

how obtaining of mobility traces can help integration of the user node mobility into

10

the problems of Chapter 2 and 3. In Section 5.2, we formally introduce our heuristics

for inferring mobility traces from contact traces. Finally in Section 5.3, we evaluate

the proposed heuristics and compare it to previous work.

11

CHAPTER II

COMPUTATIONAL FERRIES: SCHEDULING FOR

MOBILE HIGH PERFORMANCE COMPUTING

2.1 Introduction

In this chapter, we introduce the first of the problems proposed in Section 1.1. In

this problem, we consider the case where computationally intensive computations are

off-loaded to a more powerful computing resource mounted on a vehicle. We refer to

this vehicle as a Mobile High Performance Computers(MHPCs). These computations

are usually intensive tasks owned by users1 dispersed in an area with no Internet

connectivity infrastructure.

Our presentation of this problem, named the MHPC problem, focuses on the

controlling of the mobility of this computing resources (MHPCs) as well as proper

scheduling of computation on the processors of these vehicles in order to achieve

various objectives including finishing computation as soon as possible, minimizing

travel and fuel consumption, providing the most timely service to all users in the area

with computationally intensive tasks, etc. Complementing our work is the Tactical

Cloudlet work from the Software Engineering Institute (SEI) [29] that focuses on

development of a detailed system architecture and communication protocols that

allows the users to utilize the nearby computational resources. While that work

provides a framework for the components of problems similar to ours to interact with

each other in the field, our work focuses more on the abstract features of the problem

and proposing best solutions, in lieu of a minimalistic solution, for serving the user

nodes

1Interchangeably called “user nodes” in this text.

12

As mentioned in Chapter 1, this problem finds its applications in the situations

where connectivity to the infrastructure Internet is not readily available and also when

the area of coverage is large relative to the reach of communication channels that can

support a reasonable bandwidth for communication of the tasks. Notably, in the

former case, traditional cloud computing solutions [16, 18] can address the problem,

while in the latter, placement of a stationary cloudlet that can be reached by all

users in its vicinity [46, 12, 56, 30] seems to be a more viable solution. Hence, using

mobility-controlled vehicles (MHPCs) to serve the computational tasks of all users in

the area is useful in an environment without traditional communication infrastructure

and large enough that cloudlet seeding[46] is not a feasible solution.

To illustrate the problem setting, consider the simple system shown in Figure

2. An MHPC travels in the region at an average speed of 10 m/s. It has a single

preemptive processor2. Assuming that we describe distances as driving time of the

MHPC, user Node 1 is located five minutes away from the current location of the

MHPC, while User Node two is located two minutes away. The user nodes are four

minutes apart from each other. In this simple example, the user nodes are stationary

for the time period under consideration. Each user node generates a task at time

0, Node 1 has a task that will take 10 minutes on the MHPC, while Node 2 has a

task that will take three minutes. Assume that the processor on the MHPC allows

preemption, thus a task that is started on the processor can be interrupted to allow

work on another task, with resumption later from the point of interruption. The

MHPC can compute and travel simultaneously.

In what order should the MHPC visit the task locations? In what order should

the processor work on the two tasks? What is a reasonable metric for quality of

a solution? What changes if task 2 is not known to the MHPC until two minutes

into the scenario? Our MHPC framework and solutions address solutions to such

2For a formal definition of preemptive processing, refer to Section 2.2.4

13

Figure 2: A simple example of MHPC scheduling problem with two nodes and a single
processor MHPC. Sample task and MHPC features and distances among entities are shown
on the figure.

problems.

We describe a formal framework for the above mentioned problem is Section 2.2.

We then propose a mathematical formulation of this problem is Section 2.4 and use

this formulation to derive some insights and develop scalable heuristics for a version of

the problem that assumes complete in-advance knowledge in Section 2.6. In Section

2.7, we extend the previous heuristics to deal with more realistic scenarios where

information is revealed as users request computational assistance from the MHPC.

Finally, we present evaluations in Section 2.8 that further our knowledge of how

the system is affected by various parameters and how to make decisions in choosing

resources when serving a given scenario.

2.2 Problem Framework

2.2.1 Framework Structure and Problem Settings

In this section, we describe the general framework in which the MHPC problem

is studied. We consider a system with mobile user nodes traveling in a bounded

geographic area. Also present in the area are V MHPCs, initially located at known

locations. Each MHPC is assumed to have m processors; i.e. it is capable of executing

14

m computational tasks simultaneously, one per processor. The vehicles on which

MHPCs are mounted are assumed to be identical and to take a known constant time

to travel between a pair of nodes as a function of locations of those two nodes. Finally

an MHPC Controller is present in the area that coordinates the efforts of the MHPCs

to serve the tasks. This will be discussed in more detail in Section 2.3. We introduce

the problem with these simplifying assumptions to streamline the exposition and allow

the key insights to be highlighted. We challenge and relax some of these assumptions

later in the thesis.

We assume that user nodes notify the MHPC Controller of the existence of com-

putational tasks for offloading, using a long-range, low-bandwidth radio such as the

ones suggested in [57, 9]. This radio is assumed to be only useful for control plane

operations and not capable of exchanging tasks/results. The user nodes are mobile,

thus to facilitate task and result exchanges in the future, it is necessary to provide for

meetup opportunities. In our formulation, the user node specifies a location where

the MHPC can pick up the task and a location (possibly different) where the MHPC

can deliver the result. Without loss of generality, we demonstrate two examples of

specifications of such locations:

• In a military setting, these locations can be considered as stationary Forward

Operating Bases (FOBs) used as readily available resources for tactical mis-

sions without the need of reacquiring or moving resources. These FOBs may

have inexpensive storage capabilities similar to throwboxes in Delay Tolerant

Networks [59], and while soldiers can move, they can place their tasks in their

corresponding FOB after notifying the MHPC and receive the results from the

same or a different FOB. An example of this setting is shown in Figure 3.

• In a more general setting without FOBs as meeting locations, we assume there

are a finite number of locations designated exclusively to facilitate task pickup

15

and delivery. These could be chosen, for example, based on prior semantic

information about the geographic field, such as safe spaces, common areas for

mobile node congregation, etc. The algorithms will also work if the meeting

locations are arbitrary (not chosen from a finite set of fixed locations), but

fixed locations enhance the scalability.

Figure 3: A framework for the MHPC problem. The MHPC Controller is notified about
the tasks at the User Nodes which are served by the MHPCs.

As far as the MHPCs and MHPC Controller are concerned, tasks arrive in groups

of one or more generated at different locations. In a general case, this can imply some

batching of the tasks before they are processed by the MHPC. As we will describe

in Section 2.7, it may save some re-calculations of the solution if arriving tasks are

revealed in groups rather than individually. Each task, i, in a group is represented

by the vector (Ri, Di, Ti, LPi, LDi), where Ri is the time that task i is available for

pick up at the location, LPi. The value of Ri denotes the time taken for the user

node to get to the designated location. Di is the deadline for the task, after which

the user node is no longer interested in the result of the processing, and LDi is the

designated delivery location for the results of the processed task. In the case that

LPi = LDi ∀i, we call them task locations ;otherwise we call them pick up locations

or delivery locations based on designation. Finally, Ti is the duration of time that it

takes to process the task on one of the processors of an MHPC.

16

After being notified of the task, the MHPC Controller can commit an MHPC

to the task, in which case it will schedule the pick up, computation and delivery of

results to complete before the deadline, or it can reject the task. One interpretation

of the deadline is as an estimate of the local running time of the task. In this case, the

rejection of the task by the MHPC means that the user node will obtain the result

faster if it processes it locally. Further work on offloading decisions can be found

in [13]. Another interpretation of a deadline is an estimate of the remaining power

on the user node’s hand-held device. In this case, delivery of the result will not be

helpful, since the device’s battery will be depleted before the result is obtained.

Note that there is significant flexibility in our task arrival and availability for-

mulation. For example, we can model the scenario where all tasks are immediately

ready by setting all availabilities of tasks to the corresponding times when they are

generated. Conversely, we can relax the deadlines by setting them to a sufficiently

large value.

An MHPC can pick up a task if it visits the pick up location of the task at or

after the task availability time. The MHPC travels in the region, picking up available

tasks, scheduling and completing their execution on its processors, and delivering the

results. As it will be described in Section 2.7, the arrival of groups of tasks affects the

MHPCs’ schedule for new pickups, deliveries, and processing, but does not affect its

previous commitments. Note that there is no recommendation about picking up all

available tasks first and then delivering all the results, or serving one task completely

before getting to another. All such decisions are made only to achieve the minimal

objective value.

Pick up and delivery of the tasks are either done through a wired connection,

in case of user nodes exchanging tasks through FOBs or using a short-range, high-

bandwidth radio in the case of a designated location. We assume that the transmission

range of this radio is negligible compared to the dimensions of the field where MHPCs

17

travel; otherwise, instead of using MHPCs, a stationary HPC can be placed in a proper

location where it can communicate with all user nodes. We assume that any time

required for task pick up and result delivery is negligible compared to travel and

execution time. This assumption can also be lifted by adding a communication delay

proportional to the size of the task / result for each data exchange.

We also assume that the MHPC schedule is computed in a bounded amount of

time by the MHPC Controller, given the current schedule of all MHPCs and the

newly obtained groups of tasks. This time is assumed to be negligible compared to

the duration of the tasks. Finally, we assume that each MHPC can store all received

tasks pending their execution and can store all execution results pending delivery; i.e.

the size of the buffers at the MHPCs is much larger than the amount of information

that they require to hold at a time.

An important feature of our model is that the MHPCs can compute while moving

so that travel times between nodes can be used to work on tasks that available at the

MHPC. This implies that if a better solution requires so, the MHPC can pick up a

task and start processing it while moving towards another pickup or delivery.

2.2.2 Structure of the Solution

We are interested in producing a schedule for our MHPC system that has three

components:

• MHPC Assignment: This specifies the subset of tasks that are assigned

to each MHPC. Each MHPC will be responsible for pick up, processing and

delivery of its assigned tasks. No inter-MHPC communication is used during

job processing. The tasks that are not assigned to any MHPC will be rejected

since they cannot be delivered by the desired deadline.

• MHPC Tour: This is a pick up / delivery location visit schedule for each

MHPC and comprises a vector of tuples in the form (location id, location visit

18

time, location visit duration). The location visit time specifies the time that

the MHPC arrives for pick up / delivery. For example, an entry (±i, r±i, wi)

specifies that the MHPC arrives at location i for pick up (+) or delivery

(−) at time r±i and waits for an amount of time wi to be able to perform

the pickup/delivery3.The location visit duration specifies how long the MHPC

pauses at a location during a visit. Unlike the standard traveling salesman

problem, where this time is always 0, the MHPC may find it advantageous to

arrive early and wait either for task completion or for a task to become available

for pick up.

• Task Execution Schedule: This is the schedule of task execution on each

processor for each MHPC. This component comprises m vectors, one for each

of the m available processors of the MHPC. Each vector consists of tuples in

the form (interval, scheduled task), where interval denotes the time period when

the MHPC is working on the specified scheduled task. For example, an entry

((t1, t2), i) for processor j specifies that processor j is working on task i from

time t1 to t2, inclusive.

2.2.3 Objective Value

In this section, we describe the various objective values that can be minimized as

our goal in the MHPC problem. Note that in our implementation, objective value

of the problem is an independent module that can be replaced based on the specific

requirements of the instance of the problem to be solved. Any objective value that

depends on travel times and task durations and other known inputs of the problem can

be interchanged regardless of the details of the algorithms used to solve the problem.

A few possibilities for the objective value that we have considered are described

3Such wait occurs due to the MHPC arriving at the pick up location earlier than the task is
available or the MHPC arriving at the delivery location before the task has completed its processing

19

below. These objective values can be either directly integrated into the instance of

the problem that is being solved or they can be calculated on a solution that has been

provided for the problem to study the effect of minimizing one objective value on the

value of another. For example, we study the effects of providing a timely service on

the distances traveled by the MHPCs.

• Return Time (RT): This is one of the simplest and most natural objective

values for the problem. RT is defined as the time that it takes for the latest

MHPC to finish processing of its last task and deliver it to the designated

location. This is used if total time, in the view of the MHPC, is of most

interest.

• Time Throughput (TT): TT is similar to RT. It is defined as n/RT where n

is the total number of tasks that the system has processed up until the current

time. In essence, TT represents the number of tasks served per unit time that

the system was running. One must note that TT shall be maximized for better

performance as a larger value means that more tasks are served in the same

amount of time.

• Average Completion (AC): AC is defined as the average of the delivery

moments for all tasks by all MHPCs. This is useful, if providing early service

to all user nodes is of most interest.

• Average Flow (AF): AF is the average of the difference between pick up

and delivery for all tasks served by all MHPCs. AF modifies AC by penalizing

lateness in the delivery of the result only relative to the time that the task is

revealed and avoids skewing to penalize tasks that are revealed later more than

the earlier tasks.

• Average Wait (AW): AW is the average time that MHPCs wait in delivery

20

locations before they can deliver tasks. This can be useful if vehicle needs to

have high mobility due to strategic reasons.

• Average Travel (AT): AT is the average time that each MHPC is moving.

This metric might be of interest in the cases that fuel consumption of MHPC

is an important metric to be minimized.

• Distance Throughput (DT): DT is similar to AT. It is defined as 1/AT or

total number of tasks that the system has processed up until the current time

divided by the total distance traveled by all MHPCs. In essence, DT represents

the number of tasks served per unit distance that the MHPCs have traveled.

One must note that DT shall be maximized for better performance as a larger

value means that more tasks are served while traveling the same.

• Normalized Average Flow(NAF): NAF is defined below:

NAF = max
k∈V ehicles

(

Average
i∈Tasks

r−i − Ri

Ti

)

where, r−i indicates the time when the results of the task are delivered. Other

notations were introduced earlier in this section. This metric, like AF, envisions

providing a timely service to each task that is requested relative to the time

that the task is revealed, but it also normalizes this value by task duration so

that larger tasks are not penalized for worse service simply due to their duration

being longer than shorter tasks. Note that this metric will be equal to one if

there is a dedicated MHPC that is present at the location of each task before

it is revealed.

2.2.4 Work Conservation, Preemption, and Processor Sharing

In this subsection, we describe the options for the scheduling of task execution on

MHPC processors.

21

Work Conservation: The MHPC may deploy either work conserving or non-work-

conserving scheduling. In a work conserving schedule the MHPC never queues a task

if there are available processors. A non-work-conserving schedule, on the other hand,

may allow a task to be queued (not immediately processed) even though there are

available idle processors. We will show later than work conservation is implied in the

choice of preemptive or non-preemptive scheduling (defined below) in our model.

Preemption: The MHPC may allow preemption or not. In a schedule that allows

preemption (preemptive schedule), a task already in process may be paused in favor

of another task. The preempted task is resumed at a later time. In general, there

are two types of preemption, non-resume and resume. In the former, when a task

is preempted, it must start from the beginning when scheduled again, while in the

latter the task can start from where it was left off. We use preemptive resume in this

thesis. A non-preemptive schedule on the other hand requires a task that is scheduled

to completely finish processing before another task can start processing on the same

processor. Our model allows both preemptive and non-preemptive scheduling. We

assume that all these processors in the MHPC are of the same compute power.

Processor Sharing: This is also a possibility for task scheduling. With processor

sharing, the same processor can process k tasks in parallel with 1/k of its processing

power. Our model, however, for task processing on the MHPC’s m processors assumes

no processor sharing. That is each processor is allocated at most one task at a time.

2.3 System Architecture

In his section, we describe the components of the system depicted in Figure 3 from

a system’s standpoint. The details of this section can help future researchers to

implement their own version of our system.

22

A system deploying MHPCs shares many of the same challenges faced by oppor-

tunistic communication systems. These challenges include concerns for accommo-

dating various user node mobility patterns as well as using mechanisms for neighbor

discovery that allow for efficient use of communication opportunities. In addition, an

MHPC system, similarly to systems using message ferries [10, 57], requires careful

scheduling of ferry mobility as well as efficient coordination among the ferries when

more than one is used [58]. A computational ferrying system, however, possesses sig-

nificant additional features that warrant special attention. These stem primarily from

the fact that the MHPC is not simply delivering data but also performing computa-

tion. While data transmission is required to and from the MHPC in order to perform

the computation offloading, there is an additional requirement to deliver the result

when computation is completed. Furthermore, an MHPC is performing computation

while moving. These features require new techniques for scheduling of movement and

computation on an MHPC. We develop an architecture for such an MHPC system in

this section.

Figure 4 provides a high-level overview of the main components of the MHPC

system. It consists of three components: a number of User Nodes that generate

computational tasks and seek service fromMHPCs; a set ofMHPCs which are vehicles

with a high performance computer on-board that are responsible for providing the

actual service; and an MHPC Controller that manages the requests received, and

dictates to MHPCs their future plan for picking up, processing and delivering tasks.

We also describe the Radio Environment through which the communications happen

as a part of this architecture.

Radio Environment The three components can exchange high-level task meta-

data using a long-range, low-bandwidth radio such as those suggested in [57, 9].

Wide-coverage, low-bandwidth infrastructure using unlicensed bands may also be

23

available and has been deployed [47]. This radio is assumed to be only useful for con-

trol plane operations and not capable of exchanging tasks/results. Actual tasks and

results are exchanged via a short-range, high-bandwidth channel. Lewis, et. al [29]

investigate a detailed client-server architecture along with the proper communication

protocols for such exchanges of information.

Figure 4: A system architecture for the MHPC problem. Three components of the system
are: (1) User Nodes that own the tasks, (2) MHPCs that provide the communication and
computation service by picking up, processing, and delivering the tasks, and (3) MHPC

Controller that plans the mobility and task execution schedule on the MHPCs.

User Nodes User Nodes are the owners of the tasks. Once a task is generated at a

User Node, its Offloading Controller module decides whether the request must be

sent with the task metadata to the MHPC Controller or the tasks must be processed

locally. Various reasons ranging from privacy to time trade-offs may contribute to

a decision to process the task locally, the details of which are outside the scope of

24

this work. The interested reader can refer to [45] for examples of work focusing on

offloading decisions. Once the User Node sends out the task metadata, if it does not

receive a rejection via the Long-range Radio from the controller, it will continue

communicating with the assigned MHPC if necessary until the MHPC is within its

range so that the task/result can be exchanged via the Short-range Radio module.

MHPC The MHPCs are the providers of computational service in the system.

Multiple MHPCs can operate in the same area. In addition, each MHPC can have

multiple processors and is able to execute several computational tasks simultaneously.

The MHPCs receive their assigned tasks, mobility plan and task execution schedule

from the controller via the long-range radio. The Processors of the MHPC work on

the picked up tasks according to the specified execution schedule. They also report on

the state of their allocated tasks to the Controller over the same radio. The Mobility

Controller follows the MHPC tour indicated by the controller to visit the User Nodes

for pick up and delivery. If the User Nodes are mobile, this module needs to use the

long-range radio to repeatedly query the User Nodes for their current location and

plan accordingly to meet them. Once the MHPC is in range with a User Node as

notified by its Neighbor Discovery module, it can exchange the corresponding

tasks/results to the User Nodes.

MHPC Controller This component handles the task offloading requests received

from User Nodes. These requests are in the form of task metadata using a long-range

and low-bandwidth radio. The MHPC controller uses knowledge of MHPC and User

Node locations as well their states to compute a computation and mobility schedule

for the MHPCs the components of which are detailed in Section 2.6 and 2.7. The

computation and mobility schedule is communicated to the MHPCs and updated as

needed via the long-range radio.

In this thesis, our main focus is to propose mechanisms for MHPC Controller to

25

provide the best computation and mobility schedule.

2.4 Mathematical Model of MHPC Problem

In this section, we propose a mathematical model to describe the MHPC problem

of Section 2.2. To model the MHPC problem, we need to make further simplifying

assumptions to the general problem stated in Section 2.2. We consider complete

knowledge of the tasks into the future. We also restrict this formulation to have a

single MHPC with a single non-preemptive processor serving tasks 1, . . . , n. Further,

we assume that all tasks are available to be processed from time zero and there is no

deadline4.

Tables 1a and 1b summarize the parameters and decision variables used in the

following formulation of the MHPC problem for the above framework.

Table 1: Parameters and Decision Variables used in the MHPC formulation.

(a) Summary of known parameters in the
problem formulation.

Param. Interpretation

+i Id for pick up location of
task i

−i Id for delivery location fo
task i

Ti Time duration of task i
tij Travel time between loca-

tion of tasks i and j
M A very large number
±N Set of all pick up and deliv-

ery locations

(b) Summary decision variables in the prob-
lem formulation.

Decision
Var.

Interpretation

xij 1, if task at location j is vis-
ited right after i and 0 oth-
erwise

r±i Time that task at node i is
picked up/delivered

wi Waiting time at location of
task i before delivery

si Time that task at location i
starts processing

yij 1, if the task at location j is
scheduled right after i and 0
otherwise

In this model, we represent the single MHPC as node 0 and the task at location

4We have formulations for multiple processors, multiple vehicles, non-zero availability, and non-
zero deadlines which are skipped in this proposal due to space constraints. In Section 3.4, we present
a slightly more complicated version of a similar problem

26

1 through n as 1, . . . , n5. For simplicity, we formulate the problem such that the

MHPC returns to its starting location. First, we makes two copies of each of these

tasks. We label one copy as +0,+1, . . . ,+(n − 1) to indicate pick up locations, and

label the other copy as −0,−1, . . . ,−(n − 1) to indicate the delivery locations6. In

this notation, ±0 refers to the starting location of the MHPC starts. This reduces

the problem to a combination of a Traveling Salesman Problem (TSP) that finds

the minimum cost tour of {+0,+1, . . . ,+(n − 1),−0,−1, . . . ,−(n − 1)} given some

precedence and scheduling constraints and a Processor Scheduling Problem. The

objective value of this formulation is RT (refer to Section 2.2.3 for definition.)

These constraints can be described as follows:

• A tour must visit all of the locations ±i in some order. This means that all the

tasks shall be picked up, processed and delivered before completing the tour.

• Delivery location −i can only be visited after pick up location +i is visited.

This means that a task can only be delivered if it has already been picked up.

• Processing of task i must start sometime after pick up location +i is visited.

This means that processing of a task must start sometime after its pickup.

• If the task i is not finished by the time that delivery location −i is visited, we

shall wait until the task is finished. This means that we may need to wait at

delivery locations so that the completed task can be returned to the node.

• If task j is scheduled right after task i and all the above constraints are satisfied

in such scheduling, it must start at a time later than the time task i has started

processing plus the duration of the task, Ti. Note that task j starts either

5There is no requirement that locations 1, . . . , n are distinct, hence multiple tasks can be generated
at the same location.

6In general, the pick up and delivery location can be distinct. In this formulation, we assume
they are the same for each task. Extension to distinct locations is straightforward.

27

immediately after task i if it has already been picked up, or it starts once the

task has been picked up.

This problem can be formulated as a Mixed-integer Linear program (MILP) as

follows:

minimize
x,r,w,s,y

(r−0) (1)

subject to
∑

j∈V

xji = 1 ; ∀i ∈ V (2)

∑

j∈V

xij = 1 ; ∀i ∈ V (3)

x−0,+0 = 1 (4)

si ≥ r+i ; ∀i ∈ N (5)

si + Ti ≤ r−i + wi ; ∀i ∈ N (6)

r−i ≥ r+i ; ∀i ∈ N (7)

r+i + tij − (1− xij)M ≤ rj ; ∀i ∈ N , ∀j ∈ V , j 6= i, 0 (8)

r−i + wi + tij − (1− xij)M ≤ rj ; ∀i ∈ N , ∀j ∈ V , j 6= i, 0 (9)

r+0 = 0; s0 = 0; w0 = 0 (10)

si + Ti − (1− yij)M ≤ sj ; ∀i ∈ N , ∀j ∈ N , j 6= i (11)

yij + yji = 1 ; ∀i ∈ N , ∀j ∈ N , j 6= i (12)

xij ∈ {0, 1} ; ∀i, j ∈ V , j 6= i (13)

yij ∈ {0, 1} ; ∀i, j ∈ N , j 6= i (14)

ri, si, wi ≥ 0 : Free ; ∀i (15)

In the above formulation:

• Objective (1) minimizes r−0, which is the time that the moving vehicle returns

to the initial location. This is the Return Time, RT, described in Section 2.2.3.

28

Since the formulation forces −0 to be the last stop in the tour, r−0 is the time

that all tasks have been pickup, processed, delivered, and the vehicle returns

to its starting location. This implies that we want this to finish the service as

soon as possible.

• Constraints (2) and (3) confirms that each pick up / delivery location in V is

entered once and exited once respectively, i.e. visited one time and no more.

• Constraint (4) ensures that the tour starts at +0, initial location of the MHPC,

and ends at −0, the final location of the MHPC.

• Constraints (5) and (6) enforce that processing of task i starts after the task

has been picked up and ends before the time that the delivery location is to be

visited plus the waiting time at the delivery location.

• Constraint (7) indicates that task i needs to be pickup before it is delivered.

• Constraints (8) and (9) indicate that visit time of the consecutive pick up or de-

livery locations shall be separated by, at least, the corresponding edge traversal

time (plus the waiting time at a delivery location) provided that first location

is visited for a pickup (delivery) location.

• Constraint (11) indicates that if task i is processed before task j, the starting

time of the processing of these tasks shall be separated by at least the duration

of the task, Ti.

• Constraint (12) indicates that either task i is processed before task j or vice

versa.

• Constraints (15) indicate that the values of visit times, start of processing times

and wait times can be any positive real numbers.

• Constraints (13) and (14) indicate that the variables x and y are binary.

29

Solving the MILP Problem: A typical solver will attempt to solve this problem

using a branch-and-cut or branch-and-bound method. The former procedure manages

a search tree consisting of nodes. Every node represents a linear subproblem (LP) to

be solved and checked for integrability. A branch is the creation of two new nodes

from a parent node and occurs when the bounds on a single variable are modified. In

our case, for binary variables, two new nodes, one node with a modified upper bound

of 0 (the downward branch), and the other node with a modified lower bound of 1

(the upward branch) are created which will yield distinct solution domains. A cut is

a constraint added to the model. The purpose of adding any cut is to limit the size of

the solution domain while not eliminating legal integer solutions. It can be shown that

such a method smartly reduces the number of possibilities to be checked on binary

variables compared to the brute-forced method of checking all possibilities. But in

the case of TSP, and hence or problem, it cannot reduce the order of such possibilities

to be checked beyond a factorial order, which makes the problem to remain NP-hard.

2.4.1 Complexity Analysis for an Exact Algorithm

The MHPC problem is easily seen to be NP-Hard. A special case of the MHPC

problem occurs when there is a single vehicle with a single processor and all the tasks

are known in advance (A). A special case of (A) is TSP when the the minimum travel

time among every location is larger than the maximum duration of the processing

of the task. Since TSP is NP-Hard, (A) and MHPC are as well. It can be shown

that even the simplified version of the MHPC problem presented above has (2N)!(N !)
2N

feasible solutions. As a result, a brute force approach of trying all possibilities to find

the solution is ineffective even for small number of nodes. This drives us to study the

formulation and understand basic features of the problem that allow us to propose

scalable heuristics for the problem.

30

2.5 Theoretical Foundations

The following lemmas capture some understanding gained by studying the concepts

of work-conservation and preemption introduced in Section 2.2.4 and the formulation

of Section 2.4.

Lemma 1: If task preemption is allowed in the MHPC scheduling then an

optimal schedule is always work conserving. In a work conserving schedule the MHPC

never queues a task if there are available processors.

Proof: To see this, if we discretize the time with the pick up and delivery mo-

ments, in any non-work-conserving solution, there exists at least one node i for which

its task is picked up at time ri but the CPU has been kept idle until the next pick

up at some rj > ri. Since the preemption is permitted, the non-usage of the interval

[r,rj] can result in a longer waiting time at the delivery of i or a node picked up before

i and delivered after it, which could have been avoided (alleviated) if i or the other

node would have been processed in (a part of) this interval.

Lemma 2: An optimal schedule for the preemptive MHPC with resume given

a specific visit order, is one that visits the accepted tasks of the MHPC in the order

of delivery. Preemption might happen when a newly picked up task is scheduled to

be delivered earlier.

Proof: It suffices to propose an example where an non-work-conserving is optimal.

Such setting is depicted in Figure 5 for a single processor MHPC . Assume that the

job at user node 1 is much longer than the other two, i.e., T1 ≫ T , also assume

the processing time of this job is at least twice its distance from user node 2, i.e.,

T1 > 2t. Finally assume that depot location ,0, is much closer to user node 1 than 3,

i.e., t′0 ≫ t0. It can be shown that an optimal visit order is as follows: [+0→ +1→

+2 → −2 → +3 → −3 → −1 → −0] the optimal schedule holds processing task at

user node 1 once picked up and only starts this task, after the task at user node 3 is

picked up and finished processing. Such solution is non-work-conserving and optimal

31

with a total time of t0 + t + T + t + T + T1 + t0, any work-conserving solution that

processes task at user node 1 immediately after pick up can be shown to have a total

time of t0 + T1 + T + t + T + 2t + t0 which is t time units longer. This means that

the work-conserving is not always optimal for the MHPC Scheduling Problem with

non-preemptive scheduler.

Figure 5: Example used in the proof of Lemma 2. A single processor MHPC is initially
placed at location 0. There are jobs of durations T1 at locations 1 and jobs of duration T
at locations 2 and 3. Time taken to travel between any two locations is shown in the figure.

In the algorithms presented in Section 2.6, we use these lemmas to determine the

order of processing the tasks on each MHPC.

2.5.1 Bounds on the Performance of the Offline Heuristic

In this section, we propose two simple upper and lower bounds on the optimal solution

of the formulation in this section. These bounds are derived by decoupling the tour

component from the task scheduling component.

When the problem sizes are too large to solve the optimization formulation, these

bounds can be sued to compare the performance of the heuristic to these bounds.

• Upper Bound: A trivial but non-efficient solution to the problem is a TSP

tour of the tasks 0, 1, . . . , n − 1 that visits each task location, picks up the all

tasks at that location, stays in place and processes them, delivers the result,

and then visits the next task location on the tour.

The total completion time under such scenario is tTSP ∗ +
∑n

i=1

∑li
k=1 Tik, where

32

tTSP ∗ is the time for the optimal TSP tour. Note that finding tTSP ∗ is an NP-

hard task. An efficiently computable (though of course looser) upper bound

can be found by replacing the optimal time with the result from well-known

polynomial approximation algorithms for TSP. It is obvious that any optimal

solution to the problem will result in a completion time at most equal to this

bound.

• Lower Bound: A simple lower bound ignores the requirement to travel be-

tween task locations and instead is the completion time of the best schedule for

processing of all tasks. A lower bound on this time is given by max(
∑n

i=1

∑li
k=1

Tik/m , max
i

(Tik)) for a non-preemptive scheduler and
∑n

i=1

∑li
k=1 Tik/m for a

preemptive scheduler.

2.6 Offline MHPC Problem

In this section, we turn into development of heuristics that consider the offline version

of the problem. Since the MHPC problem, as described in Section 2.4, is NP-Hard,

we need to develop efficient algorithms to solve it. On the other hand, it is obvious

that at the heart of the general problem described in Section 2.2 is an assignment

of tasks to MHPCs given their commitments (similar to a bin-packing problem), a

pick up / delivery order planning (similar to TSP) and a task scheduling problem

that is solved on the processors of each MHPC. This encompasses the offline problem

studied in this section. Since greedy algorithms are widely used to solve each of these

problems, we adopt a similar approach to solve the offline MHPC problem.

To offer a scalable solution, first, we propose a greedy heuristic that builds a

solution by considering one task at a time and assigning it to the best vehicle in

the best tour location and task execution schedule assuming complete knowledge of

tasks. In the next chapter, we extend this to non-complete knowledge. We provide one

construction heuristic and one improvement heuristic and describe the applicability

33

of each below.

2.6.1 Constructive Heuristic

The constructive heuristic builds the solution from scratch inserting tasks one by one

until all of them are placed. It uses a greedy approach to do so.

We describe a constructive heuristic that accounts for both preemption and non-

preemption. The constructive heuristic starts with an empty MHPC Tour and Task

Execution Schedule (as described in Section 2.2.2) and then considers the tasks at user

nodes one at a time and determines the best place in the current tour of some vehicle.

To select which vehicle and tour location (or equivalently task) to visit at each step,

the heuristic tries the current task under examination in each possible position in

the tour of each vehicle for pick up and delivery. For each of these placements that

does not violate the precedence and deadline requirements, it finds the best schedule.

If scheduler is preemptive, this schedule is earliest delivery order first according to

the visit order that the tour forces. If the scheduler is non-preemptive, all nk + m

positions for a candidate processing order on an MHPC with m processors with the

addition of the new node into a tour of currently nk tasks are tested and the one that

gives minimal increase in the objective value is chosen. At the end of each iteration,

the MHPC Assignment, MHPC Tour and Task Execution Schedule that gives the

smallest increase in the objective value is chosen. The offline heuristic for preemptive

case is formally described in Algorithm 1.

The order in which tasks are visited for this greedy heuristic, noted in Algorithm

1, can be chosen in various ways including choosing tasks by index order, choosing the

nearest (farthest) node to the MHPC, choosing the nearest (farthest) task to the latest

currently inserted task. Alternatively, a “pure” greedy approach can be used that

considers every task at every step and chooses the task that gives minimal increase

in the objective value for final placement. This approach requires considerably more

34

Algorithm 1: Offline MHPC heuristic pseudo-code

Input: Number of tasks: n, Specifications of each task i: (Ri, Di, Ti, LPi, LDi),
Number of MHPCs/processors per MHPC: (V,m)

Output: Solution = MHPC Assignment (per instance): tasksk ∀k ∈ V ,
MHPC Tour (per MHPC): tourk = {. . . , (±i, r±i, wi), . . . }; ∀k ∈ V ,
Task Execution Schedule (per MHPC):
schedk = {((t1, t2), i)} ∀k ∈ V

1 Initialization: Mark all tasks as not-visited ;
2 Sort the tasks to examine in some order ;
3 while There exists not-visited tasks do
4 Take the next not-visited task, i.
5 for Each MHPC, K, in V do
6 for Each placement of task i’s pick up and delivery in the current

MHPC tour that does not violate the deadline and precedence
requirements do

7 Schedule task execution according to an earliest delivery order first;
8 Store this assignment, tour, and execution schedule as Temporary

Solution.
9 if Temporary Solution Increase the objective value minimally then

10 Choose Temporary Solution as Solution.
11 end

12 end

13 end

14 end
15 Based on the Task Execution Schedule and MHPC Tour in Solution, calculate

r±i and wi for each pick up / delivery. return Solution, Non-scheduled tasks as
rejected.

computation time.

2.6.2 Improvement Heuristics

We propose two improvement heuristics that enhance an existing solution. These

heuristics have the same assumptions as the constructive heuristics of Section 2.6.1.

They use an existing solution as their input and create a solution with a lower objec-

tive value if an improvement is possible. We propose an inter-route and an intra-route

improvement heuristic.

The intra-route improvement heuristic enhances the placement and schedule of

each MHPC tour independently. The heuristic traverses each of the existing tours of

35

MHPCs, starting with the first task the tour visits when the MHPC leaves its initial

location, and attempts to reposition that task in the same tour and adjusts the task

schedule for a local improvement, i.e., this heuristic does not touch the assignment

component of the solution. The heuristic does this by trying all possible re-positioning

of the specific pick up or delivery of the task (less than 2n possibilities), and match-

ing it with the best possible schedule if scheduler is non-preemptive (less than n+m

possibilities) or with the earliest delivery order first schedule if the scheduler is pre-

emptive. If the attempt changes the tour or schedule, the heuristic calculates the

objective value again and in case of a lesser value, it changes the specific tour and

schedule. It then reconsiders the first task of the new tour after leaving the initial

location and repeats the re-positioning attempt. If the attempt does not change the

tour or schedule or does not result in an improvement, then the heuristic moves on to

the next task in the tour and once it is done with the tour of an MHPC, it moves to

the tour of the next MHPC. The heuristic self-terminates if it has examined all tasks

and all of the tours. When we use this improvement heuristic, we terminate it after

a fixed number of iterations if it has not already self-terminated.

The inter-route improvement heuristic works similarly. It enhances the solution

by attempting to change the MHPC assignment of a task. The heuristic traverses

each of the existing tours, starting with the first task the tour visits when the MHPC

leaves the initial location, and attempts to reposition that task in the tour of another

MHPC and adjusts the execution schedule for a local improvement. The heuristic

does this by trying all possible placements of the specific pick up or delivery of the

task (at most 2n possibilities) in the new tour, and matching it with the best possible

schedule if scheduler is non-preemptive (less than n + m possibilities) or with the

earliest delivery order first schedule if the scheduler is preemptive. It also updates

the assignments and the tour of the MHPC to which the task used to be assigned

to with its deletion. The heuristic calculates the objective value after this attempt

36

and in case of a lesser value it changes the assignment and the corresponding tours

and schedules. It then moves on to the next task in the tour and once it is done

with the tour of an MHPC, it moves to the tour of the next MHPC. The heuristic

self-terminates if it has examined all tasks and all of the tours. When we use this

improvement heuristic, we terminate it after a fixed number of iterations if it has not

already self-terminated.

2.6.3 Applying Heuristics to Solve Variants of MHPC Scheduling Prob-
lem

In this section, we discuss how the heuristics of Sections 2.6.1 and 2.6.2,can be applied

to the variants of MHPC Scheduling Problem.

To do this, we go over the list of MHPC Scheduling Problem variants again and

describe the correct choice of heuristics for each variant:

• Multiple Processors: Both heuristics are proposed for a general case of mul-

tiple processors. A single processor problem will a special case of these with

number of processors equal to 1. We can use the heuristic of Section 2.6.1 and

combine it with an improvement step using the heuristic of Section 2.6.2.

• Multiple Tasks per User Node: With multiple tasks, all the above heuristics

are applicable. It suffices to define a distinct pick up and delivery version for

each task of a location in that case. Travel times among different pick up and

delivery in the same location will be 0 in this case.

• Task Availability Times: In all other variants of MHPC Scheduling Problem,

we have considered waiting times only at the delivery locations, i.e. that we only

have to wait when the moving vehicle is at a delivery location but the task to be

delivered has not yet finished processing. In this variant, waiting may also be

required at pick up location, if the task is not yet available. Then the heuristics

are applicable with this consideration and will still attempt to minimize both

37

travel times and these generalized waiting times. Current implementations of

all heuristics allow for definition of any availability times for tasks.

• Scheduling Overhead: Scheduling overhead refers to the time that is ac-

counted for preempting a task for another or for scheduling a new task on a

processor after the previous is finished. Note that in the non-preemptive case,

it suffices to add n× number of the tasks × new task overhead to the run-

ning time to consider the overhead. In the preemptive case, the preemption

overheads need to be added with more consideration. Current implementations

allow for addition of such overheads as well.

• Objective Values: All of the above heuristics build a tour greedily or improve

it in the direction of a given objective. We have allowed both TT and ATC to

be chosen as the direction of building or improving a tour, and addition of any

other objective seems straightforward.

It must be emphasized that both heuristics are sub-optimal because they build

a tour greedily and at each step they do not consider the future, or equivalently, it

does not consider that changing the past decisions that may result in an improved

solution.

2.7 Online MHPC Problem

In this section, we turn into the online version of the MHPC problem. This is a

generalization of the problem introduced in Section 2.6.In this case, we assume that

knowledge of the tasks arriving is only revealed to the MHPC Controller and hence

the corresponding MHPCs only after the User Node has requested service. We are

interested in a complete schedule, defined as one in which all the tasks have been fully

executed and their results delivered.

Before we develop a proper heuristic for this problem, we turn our interest to the

38

proper choice of an objective value. Since in the online problem tasks continuously

arrive over time, RT loses its meaning, as there is no “last task” that the MHPCs

have to serve. There are a number other of possible optimization metrics among

those introduced in Section 2.2.3 for this problem, though. Among them, we have

chosen NAF which is a metric that can be properly applied to the scenario when an

unknown number of tasks arrive over time. A closer look into the value of NAF defined

in Section 2.2.3 shows that it considers the interest of user nodes in its numerator

by trying to deliver the tasks as soon as possible while being fair by applying a

normalization in the denominator to not prioritizing a long task over many short

tasks7.

2.7.1 Base Online Algorithm

In this section, we present the high-level view of the MHPC scheduling algorithm.

The online instance is described above. To solve such online instance of the MHPC

problem, it suffices that we repeatedly solve the offline problem any time a (group

of) task(s) arrives. To see this, we introduce Algorithm 2 as follows:

The online algorithm uses the task information that is already revealed to obtain

an initial solution. It then repeatedly “cuts” the solution (see Section 2.7.2) when

new tasks arrive, recalculates the solution for the portion of the current solution that

is not served after this revealing moment, as well as the newly arrived information,

and “merges” this new solution with the preserved portion of the solution (see Section

2.7.3). Note that the online algorithm assumes that the time taken to calculate the

New Solution using Algorithm 2 is negligible compared to the time that it take to

process the tasks; otherwise, one can add this computation time as a function of

7The algorithms described in this section and Section 2.6 are capable of replacing any objective
value fitting other scenarios without affecting the behavior of the algorithm. Some other possible
objective values of interest include RT (the time that the latest MHPC finishes the processing of
its last task), average completion (the average time between pick up and delivery of all tasks), and
average waiting time for all tasks.

39

Algorithm 2: Online MHPC heuristic pseudo-code.

Input: Groups of tasks: (ti,Gti), Number of MHPCs/processors per MHPC:
(V,m) , Service period: tS

Output: Base Solution = MHPC Assignment (per instance): tasksk ∀k ∈ V ,
MHPC Tour (per MHPC): tourk = {. . . , (±i, r±i, wi), . . . }; ∀k ∈ V ,
Task Execution Schedule (per MHPC) schedk = {((t1, t2), i)} ∀k ∈ V

1 Initialization: Use Algorithm 1 to solve for the tasks available at time 0 ;

2 Store this solution as Base Solution. ;
3 while time < ts do
4 for Each task group (ti,Gti) do
5 Use Cutting Algorithm to cut the solution at ti;

6 Store the portion of the base solution before ti and store it in Base
Solution. ;

7 Merge the portion of the solution after ti with the tasks in Gti ;
8 Use Algorithm 1 to solve for the merged input ;

9 Store this solution as New Solution ;
10 Properly Merge New Solution into Base Solution

11 end

12 end
13 return Base Solution ;

the size of the problem and slightly modify the behavior of the MHPC Controller to

address this. Our implementation allows for batching the groups of tasks in these

cases. This batching will require the MHPCs to recalculate the solution only after

either a specific amount of time has passed since the arrival of the first group of

newly arriving tasks or a specific number of tasks have arrived. Batching is usually

only needed to avoid frequent re-calculations of the solution. In our implementation

batching is given and implied, i.e., we do not focus on the best practices to perform the

batching and rather assume that revealing of tasks in groups rather than individual

tasks is due to some batching that is underway.

2.7.2 Cutting Algorithm

As described in Algorithm 2, we need to cut the solution at the moment that a new

group of tasks arrive. This action involves keeping the parts of the solution on which

the MHPC has already done some work and re-planning for tasks that are not yet

40

served or are partially served along with the new group of tasks. A task, in this

framework, goes over the following phases that are depicted in Figure 6 as well:

Figure 6: Life cycle of a task in the MHPC framework: (1) The task initially resides on
user’s hand-held device, (2) It is picked up by the MHPC and awaits processing, (3) It
receives processing at the MHPC, (4) It awaits delivery at the MHPC after completion of
processing, (5) The result is delivered back to the user node.

1. It may not even be picked up by the time that the new information arrives.

In this case, the task is treated as another piece of new information that has

arrived and must receive full pickup, processing and delivery service. This is

phase 1 in Figure 6.

2. It may be picked up, but its processing may not have yet started by the time

that the new information arrives. In this case, the task needs processing and

delivery services. This is phase 2 in Figure 6.

3. It may be picked up and partially processed by the time that the new infor-

mation arrives. In this case, the task needs to be processed for the remaining

41

portion of it and then needs to be delivered. Note that the remaining processing

is re-planned by the controller and does not necessarily occur immediately after

the arrival of the new information as a continuum of the previous processing.

This is phase 3 in Figure 6.

4. It may be picked up and completely processed. In this case, the results need

to be delivered properly to complete the service on the task. This is phase 4 in

Figure 6.

5. It may be completely processed by the time that the new information arrives.

In this case, the task does not need any further service and “cutting” has no

effect on it. This is phase 5 in Figure 6.

To explain the operations involved in cutting the solution at the moment ti when

a new group of tasks arrives, assume, for the tour of kth MHPC that that tk is the

moment that the MHPC finishes serving (i.e., delivering all the result) the last task

among those for which it has been planning since the last period.

• If ti ≥ tk, we assume that each MHPC has stopped at the location of delivery

of its last task. When planning for a new group of tasks, we assume that these

are the new initial locations and use Algorithm 2. All of the solution in the

previous step is marked as served and Algorithm 1 solves the problem only for

the newly arrived groups of tasks to deliver the New Solution.

• If ti < tk, we need to re-plan for any pick up, processing and delivery that has

occurred after ti. To do this, we need to find the location that each MHPC will

be at time tk. At this moment, the MHPC will be either traveling between two

user nodes and its location can be found using interpolation or it will be finished

with the last task and its location will be the location of that task. To cut the

solution at tk, we shall keep tasks of the first four categories described above

42

and treat them accordingly for the completion of service on them, whether it is

pick up, processing, delivery or a combination of those. We then add the new

group of tasks to this list of non-served tasks and use Algorithm 1 to deliver the

New Solution. Note that any of the tasks that remain after cutting the solution

will be marked as served.

2.7.3 Merging Solutions

This operation merges the New Solution that results after applying Algorithm 1 with

the Base Solution. This merging shall account for the offset the time that the new

information is revealed, ti imposes. The merged solution will have the same format

as described for any solution in Section 2.2.2 and will be used as the Base Solution

in the next iteration of the for loop in Algorithm 2. This will provide a complete

solution to the problem.

2.8 Evaluation

In this section, we perform various experiments to understand the performance of

the algorithms presented in Sections 2.6 and 2.7. We start by reviewing examples of

simple instances of the offline problem to understand the structure of the solutions.

Then we move forward to understanding the offline algorithm and how its performance

compares to the formulation of Section 2.4. Finally, we present various experiments

that study the online heuristics that solve a more realistic instance of the problem.

2.8.1 Examples of the Offline MHPC Problem

In this section, we study some examples of performance of Algorithm 1 for both pre-

emptive and non-preemptive scheduling. While this gives us a preview of components

of the solution, discussed in Section 2.2.2, it also helps understand the difference in

behavior of the algorithm in case of preemption and how it may benefit the solution.

Our experimental setting for this section is depicted in Figure 7a. Assume that

43

a two processor MHPC is initially at location 0, and there are tasks of duration

10, 20, 50, 100 at user nodes 1, 2, 3, and 4 respectively all known to the MHPC at the

beginning of time.

Since there is a single MHPC in question, we do not have any MHPC assignment in

the provided solutions. Figures 7a and 7b show the MHPC Tour and Task Execution

Schedule for the instance described above using a non-preemptive and a preemptive

scheduler respectively in a pictorial manner. Note that the tour specifies visit times,

r+i for pick up and r−i for delivery, and visit durations, in the form of waiting time

before delivery, W+i. It is evident from the figure that even though for the shorter

tasks of T1 and T2 a better strategy is to pick up, process and deliver results back

without moving, for longer tasks the power of computation while moving leads to

saving some time. Also, as expected, the non-preemptive solution takes a total of 211

while the preemptive takes a total of 198, confirming the assumption that preemption

can make the operations more efficient. To complete this example, we have shown

the Task Execution Schedule component of the solutions in Figure 7c. Note that as

expected for the non-preemptive case, each task is scheduled only once, while for the

preemptive, tasks may be sub-divided and scheduled over different intervals and/or

on different processors.

2.8.2 Validation of the Offline MHPC Heuristic

In this section, we run a simple example to compare the offline heuristic of Sec-

tion 2.6 with the solution obtained from solving the formulation of Section 2.4 using

CPLEX [2]. With a similar experiment setting to the one described in SEction 2.8.1,

where we use a non-preemptive scheduler and single processor MHPC, and we assume

all tasks are available from the start. We keep all four tasks equally long and change

their time duration from 1s to 100s. As shown in Figure 8, the objective value, which

is RT in this case for both heuristic and the exact solution increases with larger tasks,

44

(a) MHPC Tour / non-
preemptive Scheduler.

(b) MHPC Tour / preemp-
tive Scheduler.

T2 T1

Processor 1

Processor 0

Time0 20 40 60 80 100 120 140 160 180 200 220

T2

T3
T1

T4

Preemptive

Non-preemptive

Time0 20 40 60 80 100 120 140 160 180 200 220

Processor 1

Processor 0

(c) Task Execution Sched-
ule.

Figure 7: MHPC Tour and Task Execution Schedule of a sample solution of an MHPC
problem with a two processor MHPC serving 4 user nodes. Tour starts from location 0 and
can be followed using the numbered arrows. r+i, r−i, Wi indicate the pick up, delivery, and
waiting times of the single task at location i. Each schedule shows intervals that either of
the two processors of the MHPC are busy processing a task.

with the exact solution outperforming the heuristic modestly at some of the points.

Once the tasks get longer than 53s, both the heuristic and the exact solution have

objective values increasing linearly. This occurs due to the fact that for long tasks,

the lower bound becomes dominant in the objective value. In fact, it can be shown

that for the single processor non-preemtpive example after this point, the time to

return to depot exactly equals to min1
i

t0i + min2
i

t0i +
∑n−1

i=1 Ti, where min1 and

min2 are the first and the second minimum of the given vector. We have repeated

this experiment for various smaller examples and for multiple processors, and the

results have been similar in all cases. We expect the gap between exact and heuristic

solutions to be larger for bigger examples due to the fact that the heuristic is built

greedily and an early deviation from the optimal solution propagates into the further

steps of the heuristic.

45

0 20 40 60 80 100

Duration of each Task(seconds)

2

3

4

5

6

7

To
ta

lT
im

e
(m

in
ut

es
)

Exact Solution
Heuristic

Figure 8: Comparison of the exact solution and the heuristic for a non-preemptive single
processor MHPC serving 4 tasks.

2.8.3 Performance of the Offline MHPC Heuristic versus Number of Pro-
cessors for Non-preemptive and Preemptive Schedulers

In this section, we explore the effect of number of processors on RT as the objective

value of examined instances to understand the advantages of preemption in multiple

processor cases by comparing the preemptive and non-preemptive cases. In this ex-

periment, we use 25 task locations, including a depot location representing the initial

location of our single MHPC and deploy them in a 10km × 10km field. To do so,

we use a Clustered Gaussian Model(CGM), in which we deploy, almost equal number

of users around some hotspots according to a Gaussian distribution. We manually

place four hotspots, reasonably far from each other. To keep the settings reasonable,

we do not allow the creation of a node in a 100m radius of each created node. Note

that if two nodes are too near to each other, namely within the wireless transmission

46

range, then having a trip from the location of one to the other might not be the wisest

strategy for task processing and instead the vehicle can park in an area that is within

the range of both user nodes to pick up or deliver tasks to/from them. This case will

effectively be equivalent to having a single user node with two tasks. We also derive

the duration of the tasks from a similar one dimensional CGM, with means around

the values of 10s, 25s, 50s, 100s, 200s, 600s, 800s, 1200s and 2000s. This guarantees

that all sorts of short and long tasks are present in the experiment. Finally, we assign

an availability value to each task durations from a uniform distribution between 0

and 300 seconds (5 minutes). These availability values make the scenario similar to

the online case that tasks arrive over time, except that to keep the offline nature of

instances in these experiments, we assume all these availabilities are known at time

0. In both experiments we run the construction heuristic of Section 2.6.1 followed by

an improvement step as suggested by Section 2.6.2.

We change the number of processors from 1 to 10 and observe the total completion

time for the improved version of non-preemptive and preemptive heuristics. Figure

9 shows this effect for the both experiments. We observe that as we increase the

number of processors the completion time almost flattens for both types of schedulers

when we have 8 processors. This is due to the fact that with the given tasks, extra

processors will not be needed. It is also notable that preemptive scheduling results

in lower objective value, translated to better performance for the preemptive case.

This is also intuitive as in general, non-preemption can be viewed as a special case of

preemption that the algorithm can choose to adopt if it results in a better objective

value. It is notable that the advantages of preemption are generally more evident

with lower number of processors.

47

1 2 3 4 5 6 7 8 9 10

Number of processors

4

6

8

10

12

14

16

18

20

22

T
o
ta

l
T

im
e

(h
o
u
rs

)

Effect of Number of Processors on Total Time

Non-Preemptive

Preemptive

Figure 9: Comparison of the preemptive and non-preemptive scheduling for an MHPC
problem. The x-axis shows behavior of each scheduler as the number of processors grow.
The y-axis shows the objective value RT in hours.

2.8.4 Performance of the Offline MHPC Heuristic versus Preemption
Overhead

In this section, we explore the effects of preemption overhead. In a realistic scenario,

on a preemptive scheduler, once a task is decided to be preempted, the context switch

will incur an overhead. This overhead can be more than the overhead incurred by

replacing a new task for a finished task. We use the same settings as Section 2.8.3

with 2 processors. We assume a new task overhead of 0, as it affects both preemptive

and non-preemptive variants the same way, while we vary the preemption overhead.

As shown in Figure 10, the preemptive scheduler does better than the non-preemptive

the overhead becomes nearly 140 seconds. Notice that in the figure and after this

value we have many points that the preemptive scheduler’s completion time crosses

48

0 50 100 150 200 250 300

Preemption Overhead (seconds)

2.4

2.5

2.6

2.7

2.8

2.9

3.0

To
ta

lT
im

e
(h

ou
rs

)

Effect of Preemption Overhead on Total Time

Non-Preemptive
Preemptive

Figure 10: Effect of preemption overhead on a preemptive MHPC. The dashed line shows
the non-preemptive problem as baseline and the solid line shows the behavior of the MHPC
problem asthe preemption overhead grows on X-axis. The objective value, RT, is used for
comparison along Y-axis.

the non-preemptive. This is due to the fact that with large overhead values few

more preemptions affect the running time significantly. In an optimal solution one

would expect that with a larger preemption overhead there is a low cost solution, the

same can be used with a slightly smaller preemption overhead, but since the heuristic

constructs the solution greedily such assumption does not hold and the behavior is not

surprising. In the rest of this thesis, we ignore the preemption overhead for simplicity

and to focus on studying the effects of other parameters.

49

2.8.5 Performance of the Offline MHPC Heuristic versus Task Availabil-
ity

In our last experiment with the offline version of the MHPC heuristic, we explore

the effect of having tasks available at a later time on the completion time. This is

interesting to later contrast with the online case. Having task availabilities makes a

scenario very similar to the online case, except that the MHPC Controller has advance

knowledge of when new tasks will be revealed to it and what the value and location

of those tasks will be. We assume the same settings as Section 2.8.3 except that we

set the means for the derivation of the task durations to slightly smaller values of 5s,

10s, 25s, 50s, 100s, 200s, 500s and 600s and an MHPC serving 7 user nodes each

having 3 tasks as an example of the MHPC scheduling problem with multiple tasks

per node.

To study the effect of task availability times, we derive the inter-arrival times

between the availability of each of the 21 tasks from an exponential distribution. We

change the scale parameter (inverse of rate) from 1 to 20. Each time we change the

distribution to derive the task availability values from, we average over 10 runs to

alleviate the effect of randomness of the distribution.

As shown in Figure 11, making tasks available at a later time makes the total

time slightly higher, but the heuristic is capable of accommodating the availability to

suggest a tour that serves the earlier tasks first. This is also due to advance knowledge

of these information to the MHPC Controller. We do not expect such behavior in

the real online case where arrival and metadata of these arriving task are not know

apriori.

2.8.6 Performance of the Online MHPC Heuristic versus Task Arrival
Frequency

In this section, we study the effect of the frequency of task arrival on the system.

We turn into a more diverse model for instance generation in this case. To disperse

50

0 5 10 15 20

Scale Parameter for Inter-arrival Time of Tasks

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

To
ta

lT
im

e
(h

ou
rs

)

Effect of Task Duration on Total Time

Heuristic
Lower Bound
Upper Bound

Figure 11: Effect task availability on the performance of a quad-processor MHPC system.
An upper bound and lower bound for the solution is shown according to the descriptions
of Section 2.5.1. This example concerns averaging performance of offline instances of the
problem as tasks become available more sparsely into near future. X-axis shows the scale
parameter for the exponential process governing inter-arrival time of task availabilities.
Y-axis shows the objective value, RT, in hours.

the task locations, we divide the area into zones, as seen in Figure 15, some of these

zones correspond to the areas in the field that users cannot access, e.g. unreachable

mountains, areas with severe weather, contaminated areas, etc. To account for this,

with some probability (set to 80% in our experiments), we mark each zone as usable.

For each usable zone, we disperse a number of locations, drawn from a uniform

distribution with a mean of nz ≃
n

|Zu|
, where n is the total number of task locations

and |Zu| is equal to the number of usable zones. In all the evaluations that will follow,

we assume that there are 10 such task locations.

We run the system with 3 MHPCs serving 600 tasks arriving over time. Each

51

task has a duration around one of the cluster centers of 30, 60, 120, 240, 360, 600, 900,

and 1200 second plus a small Gaussian error. This represents various job types that

MHPCs have to handle. Tasks are available for pick up after notification at a time

exponentially distributed with a mean of 60 seconds and they do not have deadlines.

We run the test for MHPCs moving with speeds of 1, 2, 5, 10, and 20m/s, 20 times for

each speed and report averages. We change the expected inter-arrival time of tasks

from a minimum value respecting the capacity of the system to 3500 seconds in 500

second steps8.

Figure 12a shows the average NAF (see Section 2.2.2 for definition) value for

various speeds. It shows that both increasing the speed and increasing the inter-

arrival time of tasks decreases the cost. However, in the latter once the MHPCs have

enough time to serve all the tasks that arrive before new tasks arrive, their behavior

and thus the cost remains constant. Figure 12b shows the utilization of all MHPCs,

defined as average time that one MHPC is using its processors. The value of the

utilization is the same for all speeds, since task durations are about the same and the

only difference in behavior of MHPCs under various speeds is that at higher speeds

there is more idle time and less travel time and vice versa for lower speeds. The

utilization, however, decreases as tasks arrive less frequently in all cases due to the

fact that there is more idle time for the MHPCs. These figures collectively show that

while having less frequent tasks allows the MHPCs to serve them better, this will

result in more resources being wasted.

2.8.7 Performance of the Online MHPC Heuristic versus Size of Task
Groups

In this section, we study the effect of the size of groups of tasks as they arrive. This

can represent the effect when more tasks are batched together. Such a case might

8The minimum arrival rate used for the speeds are one task every 1000, 500, 250, 150, and 150
seconds respectively for lower to higher speeds

52

0 500 1000 1500 2000 2500 3000 3500
Expected Task Inter-Arrival Time (sec)

0

20

40

60

80

100

120

Av
er
ag

e
NA

F

Effect of Task Arrival

Speed: 1 m/s
Speed: 2 m/s
Speed: 5 m/s
Speed: 10 m/s
Speed: 20 m/s

(a) The Objective Value, average NAF.

0 500 1000 1500 2000 2500 3000 3500
Expected Task Inter-Arrival Time (sec)

0

20

40

60

80

100

Av
er
ag
e
Ut
ili
za
tio

n

Effect of Task Arrival

Speed: 1 m/s
Speed: 2 m/s
Speed: 5 m/s
Speed: 10 m/s
Speed: 20 m/s

(b) Average Utilization of the MHPC pro-
cessors.

Figure 12: Effect of arrival frequency of tasks on the performance of online MHPC. X-
axis shows the mean value for exponential process governing inter-arrival time of tasks.
Tasks arrive more sparsely along this axis. The metric measured on Y-axis is noted o the
corresponding captions.

happen if, for example, the FOBs perform some internal batching to inform the MHPC

only after a certain amount of time or the collection of a certain number of tasks. To

respect the system capacity, arrival rates are chosen to be 10000, 5000, 3000, 2000, and

1500 for speeds of 1, 2, 5, 10, and 20 m/s respectively. All other settings are similar

to Section 2.8.6. We change the size of the task groups from 1 to 9 tasks.

As Figure 13 shows, it is observed that with larger groups, there is more load

on the MHPC, making it less effectively serve the tasks while utilizing more of its

processing power.

2.8.8 Performance of the Online MHPC Heuristic versus Task Deadlines

In this section, we study the effect of deadlines. A standard test will be to utilize a

scenario similar to Section 2.8.6 and vary the deadline margin to see how it affects

task rejection, as well as cost. To be fair among different task durations, we define

deadlines for each task as “task revealing time + task duration + deadline margin”.

Here, task revealing time is the moment that MHPC Controller is notified of the

arrival of the new task. We change this margin in 500 increments until it is 7500

53

1 2 3 4 5 6 7 8 9
Number of Tasks in each Arriving Group

0

5

10

15

20

25

Av
er
ag
e
NA

F

Effect of Distribution of Size of Arrving Groups of Tasks

Speed: 1 m/s
Speed: 2 m/s
Speed: 5 m/s
Speed: 10 m/s
Speed: 20 m/s

(a) The Objective Value, average NAF.

1 2 3 4 5 6 7 8 9
Number of Tasks in each Arriving Group

0

10

20

30

40

50

60

70

Av
er

ag
e

Ut
ili

za
tio

n
(%

)

Effect of Distribution of Size of Arrving Groups of Tasks

Speed: 1 m/s
Speed: 2 m/s
Speed: 5 m/s
Speed: 10 m/s
Speed: 20 m/s

(b) Average Utilization of the MHPC pro-
cessors.

Figure 13: Effect of number of tasks arriving in each batch on the performance of online
MHPC. X-axis shows the mean number of tasks arriving in each group. The metric measured
on Y-axis is noted o the corresponding captions.

seconds. Figure 14a shows that in such a test, with higher deadline margin, there

are fewer rejected tasks since the MHPCs will have more time to deliver results by

the given deadline. Figure 14b shows that while the cost initially increases, when

there are fewer task rejections, the cost remains steady, as the MHPC will deliver the

same service and the extra deadline margin will not be helpful. Note that the reason

that in the region of very small margins the cost for speeds of 1 and 2 are better

than speed of 5 is due to the fact that in these small margins the high percentage of

rejected tasks by the slower MHPCs results in a better service to the few remaining

tasks.This, however, does not mean that the system is giving better service with

respect to all tasks though. These figures show that while some deadline margin will

help the MHPCs to serve the tasks instead of rejecting them, there is no necessity for

very large margins.

2.8.9 Examination of Effects of Travel Distances on the Online MHPC
Heuristic

In the last three experiments that we perform on the MHPC scheduling algorithm,

we turn our attention into simple experiments that can reveal more understanding

54

0 1000 2000 3000 4000 5000 6000 7000 8000
Deadline Margin (sec)

0

10

20

30

40

50

60

70

80

Re
je
ct
ed
 Ta

sk
s
(%

)

Effect of Deadlines

Speed: 1 m/s
Speed: 2 m/s
Speed: 5 m/s
Speed: 10 m/s
Speed: 20 m/s

(a) Average percentage of rejected tasks.

0 1000 2000 3000 4000 5000 6000 7000 8000
Deadline Margin (sec)

0

2

4

6

8

10

12

14

16

18

Av
er
ag
e
NA

F

Effect of Deadlines

Speed: 1 m/s
Speed: 2 m/s
Speed: 5 m/s
Speed: 10 m/s
Speed: 20 m/s

(b) The Objective Value, average NAF.

0 1000 2000 3000 4000 5000 6000 7000 8000
Deadline Margin (sec)

0

10

20

30

40

50

60

70

Re
je
ct
ed
 Ta
sk
s
(%
)

Effect of Deadlines for Various Task Durations

Small tasks : 30 sec
Medium tasks : 300 sec
Large tasks : 1000 sec

(c) Effect of deadlines on task rejections with task duration.
Figure 14: Effect of task deadlines on the performance of online MHPC. X-axis shows
deadline margin of the tasks defined in Section 2.8.8. Deadlines become looser along this
axis. The metric measured on Y-axis is noted o the corresponding captions.

about the behavior of the system and aid in design choices.

We perform these evaluations with some simple tests designed to understand the

55

behavior of the algorithm. The baseline for these tests are as follows: task locations

are chosen to be at the center of one of the 8 numbered zones in the 5km×5km field

shown in Figure 15. Pick up and delivery locations of each task are the same, aka

task locations. MHPCs move with an average speed of 10 m/s. All task durations are

the same and they are immediately available after the MHPC is notified and do not

have a deadline. Tasks arrive in groups of 1 generated by a Poisson process. For the

experiments that follow we generate 600 tasks with a 1000 second mean inter-arrival

time. Note that the inter-arrival time between these notifications shall not exceed

the system capacity, i.e. tasks shall arrive in a way that the MHPCs can eventually

serve them; otherwise delivery time of results will keep increasing and the system

cannot serve the tasks. A very rough experimental estimate for a proper arrival rate

is 1
(ni/V)Ti+d/ν

where ni is the average number of tasks in each group that arrives, V

is the number of MHPCs, Ti is the average duration of the tasks, d is the dimension

of the larger side of the rectangular field, and ν is the average speed of the MHPCs.

Arrival rates lower than this number will result in MHPCs serving the tasks with less

delay.

The first experiment investigates the effect of the distance between task locations

on the performance of the algorithm. We assume a single vehicle serving the baseline

system, initially placed at the center of zone 1. Tasks are generated at two locations.

One of the locations is always at the center of zone 1, the other location is located

at center of zones 8, 5, 4, and 1 respectively9. We repeat the tests 10 times and for

three task durations: small tasks of 30 seconds, medium tasks of 300 seconds, and

large tasks of 1000 seconds duration.

As Figure 16 suggests, making the locations of task generation farther apart always

results in worse performance as the MHPC has to travel longer distances. This

9In the case that both task locations are at the center of zone 1, we move each about 150 meters
from the center diagonally to keep two distinct locations.

56

Figure 15: Framework for testing various effect on the performance of the online MHPC
heuristics in Sections 2.8.9, 2.8.10, and 2.8.10. Tasks can be generated at each of the
numbered locations as described in each experiment.

difference is more evident in the case of smaller tasks, as the MHPC will process the

tasks right after pick up and going back and forth between two far locations degrades

its performance. It is also notable to see that the value of NAF is smallest for medium

tasks. To understand why, one shall notice that the cost for small tasks are higher,

because of the normalization by the task duration which is essential for fairness when

considering mixture of tasks. For larger tasks the time difference from availability

to delivery is much larger compared to task durations and this in turn degrades the

performance. This also shows that the MHPCs best serve medium sized tasks, with

durations around half the time to travel the diameter.

2.8.10 Examination of Effects of Mobility Pattern on the Online MHPC
Heuristic

In this section, we perform another simple experiment to understand how the MHPCs

move. To do this, consider the same setting of Section 2.8.9 while the second location

57

Small: 30 sec Medium: 300 sec Large: 1000 sec
Task Sizes

0

2

4

6

8

10

12

14

Av
er
ag
e
NA
F

Effect of Location Distribution on Cost

Loc.2 @ zone 8
Loc.2 @ zone 5
Loc.2 @ zone 4
Loc.2 @ zone 1

Figure 16: Effect of distance among task locations on the performance of the online MHPC
heuristic. Groups of bars on the X-axis shows the experiment for small, medium, and
large tasks, respectively. One task is always placed at location 1 in Figure 14. Each group
repeats the second task placed at 8, 5, 4 and 1 of Figure 14 respectively. Y-axis measures
the objective value, average NAF.

is located at zones 8, 5, and 4 only. We call the zone where the initial location of each

MHPC its “home”. We then track the percentage of pick ups done by each MHPC at

its home zone. Figure 17 shows the percentage of pick ups done by the second MHPC

that are in its home zone. This behavior is symmetric for the other MHPC. It shows

that for short tasks, the MHPCs always remain in the zone where they are initially

placed. As the task size grows though, each MHPC may move to the other zone as

well. This is, again, due to the fact that when the MHPCs are busy processing a

task, they will use the power of computation while moving to pick up tasks even in

the other zone. While for short tasks, deliveries are mostly immediately followed by

pick ups.

58

Small: 30 sec Medium: 300 sec Large: 1000 sec
Task Sizes

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f P
ic

k
up

s
at

 H
om

e
(%

)

Mobility behavior of MHPCs with Task Size

Loc.2 @ zone 8
Loc.2 @ zone 5
Loc.2 @ zone 4

Figure 17: Effects of the mobility behavior of MHPCs on the performance of the online
MHPC heuristic. Groups of bars on the X-axis shows the experiment for small, medium,
and large tasks, respectively. One task is always placed at location 1 in Figure 14. Each
group repeats the second task placed at 8, 5, and 4 of Figure 14 respectively. The framework
consists of two MHPCs placed near one of the task locations initially. Y-axis measures the
percentage of the time that each MHPC spends serving the nearby task location.

2.8.11 Examination of Benefits of Increasing Vehicles versus Processors
for the Online MHPC Heuristic

In this section, we investigate the effect of number of the MHPCs and processors.

We started the experiments in this section with settings similar to Section 2.8.9,

changing the number of MHPCs and in another experiment the number of processors

of each MHPC from 1 to 10. They indicate that increasing the number of MHPCs

or processors will decrease the cost as well as the utilization. It was noted that

after a point, while there is not much decrease in the cost, utilization continues to

decrease. This indicates that while increasing the number of MHPCs and processors

59

are generally helpful, increase after a point will only waste resources and not provide

better service.

Instead of this obvious experiment, we decided to answer a more interesting ques-

tion: “how does an increase in the number of vehicles compare to an increase in the

number of processors?”. An answer to this question can be insightful in terms of de-

signing the system, when one can choose between mounting a second or better HPC

on the same vehicle or obtaining a new vehicle with a similar HPC.

To demonstrate this, we placed 8 task locations in the 8 shown zones of Figure

15 while the rest of the settings are similar to those of Section 2.8.9. For each of the

task sizes, we compare three scenarios: 1 MHPC with 4 processors, 2 MHPCs with 2

processors per each, a single MHPC with 4 processors. While the compute power of

these three cases are equal, their mobility is different.

Figure 18 shows that going from 1 MHPC to 2 MHPCs gives considerable im-

provements in cost, especially when tasks are small or medium size. Dedicating 4

single processor MHPCs does not give comparable improvements compared to 2 dual

processor MHPCs. The reason is that in this experiment the task locations 1, 2, 3, 4

can be considered one cluster and the locations 5, 6, 7, 8 can be considered another.

Having one MHPC serving each cluster can improve the performance but two MHPCs

serving the same cluster will not bring significant improvements. It is also noted that

these improvements are more evident for small and medium task sizes due to the fact

that with larger tasks most of the traveling happens while the MHPC is processing a

task and this dominates the time taken to travel for pick up and deliveries. Because of

this, we suggest that designers of MHPC-based systems consider employing a strategy

of initially positioning MHPCs to serve geographic clusters of mobile users.

60

Small: 30 sec Medium: 300 sec Large: 1000 sec
Task Sizes

0

2

4

6

8

10

12

Av
er
ag
e
NA

F

Effect of Compute Mobility on Cost

V=1 , m=4
V=2 , m=2
V=4 , m=1

Figure 18: Effect number of MHPCs (V) vs number of processors per MHPC (m) on
the performance of the online MHPC heuristic. Groups of bars on the X-axis shows the
experiment for small, medium, and large tasks, respectively. Each group compares the three
cases of one MHPC with 4 processors, two MHPCs with two processors, and 4 MHPCs with
single processors respectively. Y-axis measures the objective value, average NAF.

2.9 Conclusions and Future Work

Motivated by computational offloading requirements in mobile cloud computing, in

this chapter, we explored the architecture of a computational ferrying scheme where

mobile high performance computers (MHPCs) provide compute resources to wireless

user nodes. We studied the problem of scheduling the MHPCs’ movement and pro-

cessing. We started by modeling and formulating the design of such schedules as an

optimization problem. We have discussed the challenges of this type of system and

have developed algorithms that can be used to produce schedules for larger scale prob-

lems. We performed an extensive set of experiments to demonstrate applicability of

the algorithms and show the effect of various system parameters on the performance

61

of such a computational ferrying scheme.

This work represents a first step towards the design and evaluation of the operation

of an MHPC-based mobile cloud computing system. There are a number of interesting

future directions which include:

• Understanding the robustness of an MHPC system to malfunctioning of its

MHPCs and how to design failure recovery mechanisms.

• Enhancements to the model to include variations such as processor-sharing

scheduling on the MHPC and the possibility of picking multiple pieces of a

computation from different locations or delivery to multiple user nodes.

• Integrating more complicated communication models in the framework, includ-

ing modeling of wireless channels for both short-range and long-range radio with

loss. This might require optimizing the heuristics of Section 2.6 and 2.7 so that

the MHPCs start exchanging information with the user nodes once they are

at an optimal distance. There is also a requirement to deal with unsuccessful

exchange of information due to channel imperfections.

• The consideration of communication among MHPCs either using user nodes

as relays or direct exchange of information motivated by the work on multiple

message ferry scheduling (e.g., [58]).

62

CHAPTER III

MESSAGE FERRYING WITH A PURPOSE:

SCHEDULING FERRIES TO PROVIDE SERVICE ON A

TACTICAL HIGH PERFORMANCE COMPUTER

3.1 Introduction

In this chapter, we introduce the second of the problems proposed in Section 1.1.

In this problem, we consider the case where computationally intensive computations

are offloaded to a more powerful computing resource located in a stationary High

Performance Computer (HPC) that cannot be reached directly by a reasonable com-

munication channel. To communicate tasks to this computation resource, we utilize

nodes called Message Ferries (MF) to carry tasks and results. Unlike MHPCs of Sec-

tion 2.1, MFs have no computational capacity and can only store any message and

transfer it between two entities. Thus the fundamental difference between the MHPC

work of Chapter 2 and the HPC+MF work of this chapter is that while in the for-

mer the computation and communication resources of the system are both combined

in the MHPC, here the computation resource is the HPC and the communication

resource is MF. We call this feature that is present in the MHPC and non-present

in the problem presented in this chapter, Computation on the Move and discuss its

possible advantages and disadvantages in Chapter 4 in more detail.

Our presentation of this problem, named the HPC+MF problem, similarly to Sec-

tion 2.1, focuses on the controlling of the mobility of these communication resources

(MFs) as well as proper scheduling of computation on the computation resource

(HPC) in order to achieve various objectives including finishing computation as soon

63

as possible, minimizing travel and fuel consumption, providing the most timely ser-

vice to all users in the area with computationally intensive tasks, etc. Complementing

our work is the body of literature on Cloudlet seeding [46]. This work is similar to

that of this chapter in the sense that it also suggests providing computation resources

via a stationary, more powerful computer, but it differs from our work as Shires et

al. focus on placement of these resources, called cloudlets in their work, in multiple

locations each within reach of multiple user nodes via a direct short-range communi-

cation channel. Questions of where and how many cloudlets to place are addressed

in that line of research. In contrast, our work assumes that a single HPC is placed

at a location and we focus on making it reachable through MFs; hence questions of

how to move the MFs are more relevant to our work.

Similar to the MHPC problem of Chapter 2, this problem finds its applications

in situations where connectivity to the infrastructure Internet is not readily available

and also when the area of coverage is large relative to the reach of communication

channels that can support a reasonable bandwidth for communication of the tasks. In

the environments that we consider, one feasible solution is utilization of a mobility-

controlled vehicle (MF) to serve the computational tasks of all users in the area

through a stationary computation resource (HPC).

To illustrate the problem setting, consider the simple system shown in Figure 19.

An MF travels in the region at an average speed of 10 m/s. Tasks are served in

a stationary HPC with a single preemptive processor1. Assuming that we describe

distances as driving time of the MF, user Node 1 is located five minutes away from

the current location of the MF, while User Node two is located two minutes away

and the HPC is located slightly less than six minutes away. The user nodes are four

minutes apart from each other and the HPC is nine and five minutes away from them

respectively. In this simple example, the user nodes are stationary for the time period

1For a formal definition of preemptive processing, refer to Section 2.2.4

64

under consideration. Each user node generates a task at time 0. Node 1 has a task

that will take 10 minutes on the HPC, while Node 2 has a task that will take three

minutes. Assume the HPC processor allows preemption, thus a task that is started

on the processor can be interrupted to allow work on another task, with resumption

later from the point of interruption. The MF needs to pickup and drop off each task

at the HPC before it starts processing.

Figure 19: A simple example of a HPC+MF scheduling problem with two nodes and a single
processor HPC. Sample task and MF features and distances among entities are shown on
the figure.

In what order should the MF visit the task locations? In what order should it

drop the tasks at the HPC and in what order should it receive the results for delivery

from the HPC? In what order should the HPC processor work on the two tasks?

What is a reasonable metric for quality of a solution? What changes if task 2 is not

known to the HPC until two minutes into the scenario? Our HPC+MF framework

and solutions address solutions to such problems.

We describe a formal framework for the above mentioned problem is Section 3.2.

We then propose a mathematical formulation of this problem is Section 3.4 and use

this formulation to derive some insights and develop scalable heuristics for a version of

the problem that assumes complete in-advance knowledge in Section 3.5. In Section

3.6, we extend the previous heuristics to deal with more realistic scenarios where

65

information is revealed as users request computational assistance from the HPC.

Finally, we present evaluations in Section 3.7 that further our knowledge of how the

system is affected by various parameters and how to make decisions about choosing

resources when serving a given scenario.

3.2 Problem Framework

3.2.1 Framework Structure and Problem Settings

In this section, we describe the general framework in which the HPC+MF problem

is studied. We consider a system with mobile user nodes traveling in a bounded

geographic area. Also present in the area are V MFs, initially located at known

locations. There is single HPC in the area that is equipped with m processors; i.e. it

is capable of executing m computational tasks simultaneously, one per processor. MFs

are assumed to be identical and to take a known constant time to travel between a

pair of nodes as a function of locations of those two nodes. Finally an MF Controller

unit is present in the area that coordinates the efforts of the MFs to pickup and

deliver the tasks/results. We assume that this controller is a part of the HPC unit

and hence we refer to both the controller and the processing unit as HPC hereafter.

This will be discussed in more detail in Section 3.3. We introduce the problem with

these simplifying assumptions to streamline the exposition and allow the key insights

to be highlighted. A high-level view of system framework is shown in Figure 20.

We assume that user nodes notify the HPC of the existence of computational tasks

for offloading using a long-range, low-bandwidth radio such as the ones suggested in

[57, 9]. This radio is assumed to be only useful for control plane operations and not

capable of exchanging tasks/results. The user nodes are mobile, thus to facilitate task

and result exchanges in the future it is necessary to designate meetup opportunities.

In our formulation, the user node specifies a location where the MF can pick up the

task and a location (possibly different) where the MF can deliver the result. Without

66

loss of generality, we have demonstrated examples of these locations in Section 2.2.

The HPC unit also is intended to represent a base station with abundant power

supply and processing power. In military settings, the base stations [48] are usu-

ally equipped with satellite that can act as a gateway to the Internet plus high-

performance local computer with access to generators that eliminate power con-

straints. In other scenarios, e.g. disaster scenarios, the base station can represent

a high-performance computing power set up in a fixed location.

Figure 20: A framework for the HPC+MF problem. The HPC is notified about the tasks
at the User Nodes. These tasks are picked up by MFs and dropped off at the HPC for
processing and given back to the MFs for delivery to the user nodes.

As far as the MFs and the HPC are concerned, tasks arrive in groups of one or more

generated at different locations. In a general case, this can imply some batching of

the tasks before they are picked up by the MF and brought to the HPC for processing.

As we will describe in Section 3.6, it may save some re-calculations of the solution if

arriving tasks are revealed in groups rather than individually. Similar to Section 2.2,

each task, i, in a group is represented by the vector (Ri, Di, Ti, LP, LDi), where Ri

is the time that task i is available for pick up at the location, LP , which is the same

value for all tasks in the group, which denotes the time taken for the user node to get

to the designated location. Di is the deadline for the task, after which the user node is

no longer interested in the result of the processing, and LDi is the designated delivery

location for the results of the processed task. In the case that LP = LDi ∀i, we call

67

them task locations ;otherwise we call them pick up locations or delivery locations

based on context. Finally, Ti is the duration of time that it takes to process the task

on one of the processors of an HPC.

After being notified of the task, the HPC can commit an MF to pick up that task.

Each MF initially plans to visit a number of task locations, pick up some tasks and

bring them to the HPC. Once the HPC receives some tasks, it starts processing them.

The details of this processing will be described in the algorithms of Section 3.5 and

3.6. Once a task has finished processing the HPC commits a MF to receive the result

from the HPC and deliver it to the desired user node. The HPC may decide to wait

for a number of tasks to finish processing and then give the results of them together

to a MF. It may also commit the same MF to pick up some other tasks that have

been revealed to the HPC from the last visit of a MF. It is also notable that there

is no requirement that the same MF that has picked up a task must be responsible

for the delivery of the result. The assignments of MFs for pickup and delivery of

the tasks are made by the HPC in order to provide better service to the system

according to some objective value (see Section 3.2.3 for more information). This is

in contrast to the MHPC framework of Section 2.2 where an MHPC is committed to

pick up, processing and delivery of the same task and no inter-MHPC communication

is allowed. Another difference of the HPC+MF problem compared with the MHPC is

evident in the fact that while in both problems each task location is only visited once

for pick up and once for delivery2, in the HPC+MF problem the HPC location can

be visited many times. This means that based on the objective value requirements

the HPC might dictate to the MFs to visit its location various times for dropping of

their picked up tasks and receiving the processed results.

Deadlines Di of the tasks can also be interpreted similarly as an estimate of the

2Pick up and delivery location of a task can be distinct in both problems. In this case, there will
be one visit to the pick up and one visit to the delivery location per task.

68

local running time of the task. In this case, the rejection of the task by the HPC means

that the user node will obtain the result faster if it processes it locally considering

the requirement of two MF travels between the node location and the HPC location.

Further work on offloading decisions can be found in [13]. Another interpretation of

a deadline is an estimate of the remaining power on the user’s hand-held device. In

this case, delivery of the result will not be helpful, since the device’s battery will be

depleted before the result is obtained.

Note that there is significant flexibility in our task arrival and availability for-

mulation. For example, we can model the scenario where all tasks are immediately

ready by setting all availabilities of tasks to the corresponding times when they are

generated. Conversely, we can relax the deadlines by setting them to a sufficiently

large value.

An MF can pick up a task if it visits the pick up location of the task at or after

the task availability time. The MF travels in the region, picking up available tasks

and dropping them off at the HPC location. The HPC then plans for scheduling

these tasks on its processors. As it will be described in Section 3.6, the arrival of

groups of tasks affects the MFs’ mobility schedule and the HPC’s processing schedule

for new pickups, deliveries, and processing, but does not affect its previous commit-

ments. Note that there is no recommendation about picking up all available tasks

first, processing them at the HPC, and then delivering all the results, or dropping off

a single task to the HPC before getting to another nor there is any recommendation

on how many times an MF responsible for a number of tasks shall visit the HPC. All

such decisions are made only to achieve the minimal objective value.

In this new framework, pick up and delivery of tasks from its location and drop off

and receiving of the task/result at the HPC location is done similarly to the MHPCs

of Section 2.2. They are either done through a wired connection in case of user nodes

exchanging tasks through FOBs or using a short-range, high-bandwidth radio in the

69

case of a designated location. We assume that the transmission range for this radio

is negligible compared to the dimensions of the field where MFs travel. if that is not

the case, instead of using MFs serving the HPC, a stationary HPC, similar to the

cloudlets of [46], can be placed in a proper location where it can communicate with

all user nodes. We assume that any time required for task pick up and result delivery

as well as task drop off and receipt of results is negligible compared to travel and

execution time. This assumption can also be lifted by adding a communication delay

proportional to the size of the task / result for each data exchange.

We also assume that the HPC execution schedule is computed in a bounded

amount of time, given the current task awaiting for processing at the HPC and the

newly picked up tasks on their way to the HPC. This time is assumed to be negligible

compared to the duration of the tasks. Finally, we assume that each MF can store

all received tasks pending their execution and can store all execution results pending

delivery; i.e. the size of the buffers at the MFs is much larger than the amount of

information that are required to hold at a time.

3.2.2 Structure of the Solution

We are interested in producing a schedule for our HPC+MF system that has three

components:

• MF Assignment: This specifies the subset of tasks that are assigned to each

MF for pick up or delivery. Each MF will be responsible only for the specific

service on its assigned tasks. No inter-MF communication is allowed in the

model. Note that a task can be picked up and dropped off at the HPC by one

MF while the corresponding processed results can be received and delivered by

another MF. The assignment of these services to the MFs are implied in the

MF Tour explained below.

• MF Tour: This is a pick up / delivery / HPC location visit schedule for each

70

MF and comprises a vector of tuples in the form (location id, location visit time,

other information). There are two classes of locations that an MF will visit.

One is the location of a regular node which will be visited for task pick up or

result delivery. The other is the location of the HPC which will be to drop off

tasks that the MF has picked up and possibly receive some of the results that

the HPC commits the MF to deliver.

For a regular node, the generic visit entry above is in the form (location id,

location visit time). In this notation, the location visit time specifies the time

that the MF arrives for pick up / delivery at a regular node. For example, an

entry (±i, r±i) specifies that the MF arrives at location i for pick up (+) or

delivery (−) at time r±i.

For an HPC, the generic visit entry above is in the form (0, HPC visit time,

HPC visit duration, Pickup list, Delivery List). In this notation, 0 stands for

the location id of the HPC. HPC visit time time specifies the time that the

MF arrives at the HPC for task/result exchange. HPC visit duration refers to

the time the MF may have to wait, in the case when the HPC commits it to

delivery of some results that are not yet ready and hence MF waits till they are

ready to be received from the HPC for delivery. Pickup list is the list of tasks

that the MF has picked up since its last visit to the HPC and is dropping off

for processing. Delivery list is the list of tasks that have been processed by the

HPC and are handed to the MF for delivery.

• Task Execution Schedule: This is the schedule of task execution on the

processors of the HPC. This component comprises m vectors, one for each of

the m available processors of the HPC. Each vector consists of tuples in the

form (interval, scheduled task), where interval denotes the time period when

the HPC is working on the specified scheduled task. For example, an entry

71

((t1, t2), i) for processor j specifies that processor j is working on task i from

time t1 to t2, inclusive.

3.2.3 Objective Value

In this section, we describe the various objective values that can be minimized as

our goal in the HPC+MF problem. Similar to the MHPC problem, the objective

value of the problem is an independent module that can be replaced based on the

specific requirements of the instance of the problem to be solved. Any objective

value that depends on travel times and task durations and other known inputs of the

problem can be interchanged regardless of the details of the algorithms used to solve

the problem.

A few possibilities for the objective value that we have considered are listed be-

low. These objective values can be either directly integrated into the instance of the

problem that is being solved or they can be calculated on a solution that has been

provided for the problem to study the effect of minimizing one objective value on the

value of the other. For example, we study the effects of providing a timely service on

the amount of trips made by the MFs. Most of these objective values are very similar

to those defined in Section 2.2.3 that have been re-defined for the new framework.

• Return Time (RT): This is one of the simplest and most natural objective

values for the problem. RT is defined as the time that it takes for the latest MF

delivers the processed result of the last task to which it has been committed

to its designated location. This is used if total service time, in the view of the

MFs and HPC, is of most interest.

• Time Throughput (TT): TT is similar to RT. It is defined as n/RT where n

is the total number of tasks that the system has processed up until the current

time. In essence, TT represents the number of tasks served per unit time that

the system was running. One must note that TT shall be maximized for better

72

performance as a larger value means that more tasks are served in the same

amount of time.

• Average Completion (AC): AC is defined as the average of the delivery

times for all tasks by the MFs that have committed to them. This in turn

implies the processing time of these tasks by the HPC as well. This is useful if

providing early service to all user nodes is of most interest.

• Average Flow (AF): AF is the average of the difference between pick up and

delivery for all tasks served by the MFs. Note that this metric is calculated in

the view of each served task and the pick up and delivery MF are not necessarily

the same. AF modifies AC by penalizing lateness in the delivery of the result

only relative to the time that the task is revealed and avoids skewing to penalize

tasks that are revealed later more than the earlier tasks.

• Average Wait (AW): AW is the average time that MFs wait at their visits to

the HPC location before they can receive processed tasks for delivery. It must

be emphasized that each MF might visit the HPC location numerous times. It

is also notable that waiting can only occur at the HPC location and unlike the

MHPC problem, a visit by an MF to a delivery location is simply dropping off a

processed result that incurs no wait. This metric can be useful if vehicles need

to have high mobility for strategic reasons.

• Average Travel (AT): AT is the average time that each MF is moving. This

metric might be of interest in the cases that fuel consumption of MF is an

important metric to be minimized.

• Distance Throughput (DT): DT is similar to AT. It is defined as 1/AT or the

total number of tasks that the system has processed up until the current time

divided by the total distance traveled by all MFs. In essence, DT represents

73

the number of tasks served per unit distance that the MFs have traveled. One

must note that DT shall be maximized for better performance as a larger value

means that more tasks are served while traveling the same amount.

• Normalized Average Flow(NAF): NAF is defined below:

NAF = max
k∈V ehicles

(

Average
i∈Tasks

r−i − Ri

Ti

)

where, r−i indicates the time when the results of the task are delivered. Other

notations were introduced earlier in this section. This metric, like AF, envisions

providing a timely service to each task that is requested relative to the time

that the task is revealed, but it also normalizes this value by task duration so

that larger tasks are not penalized for worse service simply due to their duration

being longer than shorter tasks. Note that this metric will be equal to one if

there is a dedicated MF that is present at the location of each task before it is

revealed.

3.3 System Architecture

In this section, we describe the components of the system depicted in Figure 20

from a systems standpoint. The details of this section can help future researchers to

implement their own version of our system.

A system deploying MFs that serve the HPC shares many of the same challenges

faced by opportunistic communication systems. These challenges include concerns

for accommodating various user node mobility patterns as well as using mechanisms

for neighbor discovery that allow for efficient use of communication opportunities.

In addition, the HPC+MF system, similar to systems using message ferries [10, 57],

requires careful scheduling of ferry mobility as well as efficient coordination among

the ferries when more than one is used [58]. The message ferrying with purpose, how-

ever, possesses significant additional features that warrant special attention. These

74

stem primarily from the fact that data delivery of MFs is always to/from the HPC.

The availability of the results for the MFs to deliver also depends on the schedule

of the HPC. Hence the message ferrying problem is interwoven with a scheduling

problem. Thus the full communication requirements in this problem involves compu-

tation offloading to/from the HPC by the MFs and transfer of tasks/results to/from

MFs by the regular user nodes that partly depend on the scheduling side of the prob-

lem. These features require new techniques for scheduling of movement of the MFs

and scheduling of computation on the HPC. We develop an architecture for such an

HPC+MF system in this section.

Figure 21 provides a high-level overview of the main components of the HPC+MF

system. It consists of three components: a number of User Nodes that generate

computational tasks and seek service from the HPC; a set of MFs which are vehicles

with storage capability that are responsible for providing communication service; and

an HPC that integrates an MF controller which manages the requests received, and

dictates to MFs their future plan for picking up and delivering tasks. It also plans

execution of these tasks on the processors of the HPC once they reach it. We also

describe the Radio Environment through which the communications happen as a part

of this architecture.

Radio Environment The three components can exchange high-level task meta-

data using a long-range, low-bandwidth radio such as those suggested in [57, 9].

Wide-coverage, low-bandwidth infrastructure using unlicensed bands may also be

available and has been deployed [47]. This radio is assumed to be only useful for con-

trol plane operations and not capable of exchanging tasks/results. Actual tasks and

results are exchanged via a short-range, high-bandwidth channel. Lewis, et. al [29]

investigate a detailed client-server architecture along with the proper communication

protocols for such exchanges of information.

75

Figure 21: A system architecture for the HPC+MF problem. Three components of the
system are: (1) User Nodes that own the tasks, (2) MFs that provide the communication
service by picking up tasks, dropping them off to the HPC, receiving the results from the
HPC, and delivering them back to the user nodes (3) HPC that provides computation
service by processing the tasks. It also plans the mobility of the MFs.

User Nodes User Nodes are the owners of the tasks. Once a task is generated at

a User Node, its Offloading Controller module decides whether the request must

be sent with the task metadata to the HPC or the tasks must be processed locally.

Various reasons ranging from privacy to time trade-offs may contribute to a decision

to process the task locally, the details of which are outside the scope of this work.

The interested reader can refer to [45] for examples of work focusing on offloading

decisions. Once the User Node sends out the task metadata, if it does not receive a

rejection via the Long-range Radio from the HPC, it will continue communicating

with the assigned MF if necessary until the MF is within its range so that the task

can be picked up via the Short-range Radio module. If an MF is assigned to

76

deliver results to a User Node by the HPC’s Mobility Planner, the User Node will be

contacted by the assigned MF and they will continue communicating until the MF is

within its range so that the task can be picked up via the Short-range Radio module.

MF The MFs are the providers of communication service in the system. Multiple

MFs can operate in the same area. In addition, each MF can provide communication

service to multiple tasks simultaneously. The MFs receive their assigned tasks for

pick up and delivery through a mobility plan from the controller embedded in the

HPC via the long-range radio. They report on the state of their allocated pick up /

delivery to the Controller over the same radio. The Mobility Controller supervises

the mobility of the MF to follow the tour indicated by the Mobility Planner of the

HPC to visit the User Nodes for pick up and delivery or to visit the HPC for drop-off

and receipt of tasks/results. If the User Nodes are mobile, this module needs to use

the long-range radio to repeatedly query the User Nodes for their current location

and plan accordingly to meet them. Once the MF is in range with a User Node

as notified by its Neighbor Discovery module, it can exchange the corresponding

tasks/results to the User Nodes.

HPC This component handles the task offloading requests received from User Nodes.

These requests are in the form of task metadata using a long-range and low-bandwidth

radio. The HPC uses knowledge of MF and User Node locations as well their states

to compute a mobility schedule for the MFs and a task execution schedule for its own

processors. The Processors of the HPC work on the picked up tasks according to

this specified execution schedule. The components of these are detailed in Section 3.5

and 3.6. The mobility schedule is communicated to the MFs and updated as needed

via the long-range radio.

In this thesis, our main focus is to propose mechanisms for the HPC unit and how

it schedules mobility and computation of the units to provide the best service to the

77

user nodes.

3.4 Mathematical Model of HPC+MF Problem

In this section, we propose a mathematical model to describe the message ferrying

with purpose problem. To model the this problem, we need to make further simplify-

ing assumptions to the general problem stated in Section 3.2. We consider complete

knowledge of the tasks into the future. We also restrict this formulation to have a

single HPC with a single non-preemptive processor serving tasks 1, . . . , n. We allow

for multiple MFs in this formulation. Further, we assume that all tasks are available

to be processed from time zero and there are no deadlines. We have intended the

model in this section to present a slightly more complex version of problem compared

to that of Section 2.4 to capture more variables in the problem.

Tables 2a and 2b summarize the parameters and decision variables used in the

following formulation of the problem for the above framework.

Table 2: Parameters and Decision Variables used in the HPC+MF formulation.

(a) Summary of known parameters in the
problem formulation.

Param. Interpretation

+i Id for pick up of task i
−i Id for delivery of task i
Ti Time duration of task i
tij Travel time between loca-

tion of tasks i and j
M A very large number

(b) Summary decision variables in the prob-
lem formulation.

Decision
Var.

Interpretation

Xr
ijk 1, if task j is visited right

after i by vehicle k in its rth

trip and 0 otherwise
tr0k Time that vehicle k reaches

to the HPC location in its
rth trip.

wr
0k Waiting time of vehicle k at

the HPC in its rth trip.
si Time that task i starts pro-

cessing
yij 1, if the task j is scheduled

right after i and 0 otherwise

In this model, we represent the HPC as node 0 and the tasks as 1 through n.

For the purpose of keeping track of the variables and for each task i, we create a

78

pickup version +i and a delivery version −i. We use the set N = {±1,±2, . . . ,±n}

to represent all pickup and delivery versions of the tasks, and the set N+ = N ∪ {0}

to include the HPC as well. .This notation allows us to reduce the problem to

a combination of a Multiple-Trip Vehicle Routing Problem (MTVRP) given some

precedence and scheduling constraints and a Processor Scheduling Problem.

These constraints can be described as follows:

• Each MF can visit the HPC location as many times as the solution requires it

to. For all other tasks (pickup/delivery version), they can only be visited once

per trip of each MF.

• Between pick up and delivery of each task, there has to be at least one visit

paid to the HPC. This allows the task to be processed.

• Delivery of a task (−i) can happen no sooner than the time it is picked up (+i)

plus the time required to process it (Ti). This means that a task can only be

delivered if it has already been picked up and processed.

• Processing of task i must start sometime after it has been picked up and the

HPC must be visited afterwards.

• In any visit to the HPC, if the task i is planned for delivery in the trip imme-

diately following the current visit to HPC, the MF needs to wait at the HPC

until this task has finished processing. This implies that any visit to HPC might

incur wait times until all tasks to be delivered in the next visit are finished.

• If task j is scheduled right after task i and all the above constraints are satisfied

in such scheduling, it must start at a time later than the time task i has started

processing plus the duration of the task, Ti. Note that task j starts either

immediately after task i if it has already been picked up, or it starts once the

task has been picked up.

79

This problem can be formulated as a Mixed-integer Linear program (MILP) as

follows:

minimize
X,w,s,y

max
k,r

(tr0k) (16)

subject to
∑

i∈N

V
∑

k=1

R
∑

r=1

Xr
ijk = 1 ; ∀j ∈ N (17)

∑

j∈N

V
∑

k=1

R
∑

r=1

Xr
ijk = 1 ; ∀i ∈ N (18)

∑

i∈N

Xr
i0k =

∑

j∈N

Xr
j0k ; ∀k = 1, . . . , V ; ∀r = 1, . . . , R (19)

∑

i∈N+

Xr
ihk −

∑

j∈N+

Xr
hjk = 0 ; ∀k = 1, . . . , V ; ∀r = 1, . . . , R (20)

∑

j∈N

Xr
0jk ≥

∑

j∈N

Xr
0j(k+1) ; ∀k = 1, . . . , V − 1; ∀r = 1, . . . , R (21)

∑

j∈N

Xr
0jk ≥

∑

j∈N

Xr+1
0jk ; ∀k = 1, . . . , V ; ∀r = 1, . . . , R− 1 (22)

∑

i∈N

∑

j∈N

Xr
ijk ≤ |N |−1 = 2n− 1 ; ∀k = 1, . . . , V ; ∀r = 1, . . . , R (23)

si ≥ tr+1
0k +M(

∑

j∈N

Xr
ijk − 1) (24)

∀i = +1,+2, . . . ,+n; ∀k = 1, . . . , V ; ∀r = 1, . . . , R

si + Ti ≤ tr0k + wr
0k −M(

∑

j∈N

Xr
−ijk − 1) (25)

∀i = +1,+2, . . . ,+n; ∀k = 1, . . . , V ; ∀r = 1, . . . , R

tr+1
0k = tr0k + wr

0k + (
∑

i∈N+

∑

j∈N+

Xr
ijktij) (26)

∀k = 1, . . . , V ; ∀r = 1, . . . , R

si + Ti − (1− yij)M ≤ sj ; ∀i ∈ N , ∀i, j = +1,+2, . . . ,+n (27)

t00k, w
0
0k = 0 ; ∀k = 1, . . . , V (28)

yij + yji = 1 ; ∀i ∈ N , ∀i, j = +1,+2, . . . ,+n (29)

80

Xr
ijk ∈ {0, 1} ; ∀i, j ∈ N , ∀k = 1, . . . , V ; ∀r = 1, . . . , R (30)

yij ∈ {0, 1} ; ∀i, j ∈ N+ (31)

tr0k, w
r
0k ≥ 0 ; ∀k = 1, . . . , V ; ∀r = 1, . . . , R (32)

si ≥ 0 ; ∀i = +1,+2, . . . ,+n (33)

In the above formulation:

• The objective (16) minimizes the latest time that one of the MFs returns to the

HPC.

• Constraints (17) and (18) confirm that only one MF and only in one of its trips

visits a task location for pickup or delivery.

• Constraint (19) confirms that while an HPC can be visited more than once by

each MF, total in-flow and out-flow of HPC shall be the same.

• Constraint (20) confirms that the in-flow and out-flow of each pickup and de-

livery location of each task shall be the same.

• Constraint (21) confirms that a new vehicle among the V available vehicles is

only used if a previous vehicle has already been used.

• Constraint (22) confirms that a vehicle makes a new trip only if in its previous

trip at least one location has been already visited.

• Constraint (23) is a version of the traditional subtour elimination constraints

used in Traveling Salesman Problem formulations.

• Constraint (24) confirms that the processing of a task can only start after the

HPC is visited for the first time following the pickup of that task.

81

• Constraint (25) confirms that the delivery of a task can only happen if an HPC

is visited for the last time (and at least once) before the delivery trip is started

and after proper wait at the HPC before that trip is started.

• Constraint (26) indicates that the time between any two consecutive visits to

the HPC by a MF is separated by the waiting time at the HPC after the former

visit plus the time to travel among the locations to be visited in the trip.

• Constraint (27) indicates that if task i is processed before task j, the starting

time of the processing of these tasks shall be separated by at least the duration

of the task, Ti.

• Constraint (29) indicates that either task i is processed before task j or vice

versa.

To solve this problem using this formulation a branch-and-cut or branch-and-

bound method must be used, similar to those described in Section 2.4.

3.4.1 Complexity of the Heuristics

The HPC+MF problem is easily seen to be NP-Hard. A special case of the HPC+MF

problem occurs when there is a single vehicle with a single processor and all the

tasks are known in advance (A). A special case of (A) is MTVRP when the the

minimum travel time among every location is larger than the maximum duration of

the processing of the task. Since MTVRP is NP-Hard, (A) and HPC+MF are as well.

It can be shown that even the simplified version of the HPC+MF problem presented

above has (3N)!(N !)
2N

feasible solutions. As a result, a brute force approach of trying all

possibilities to find the solution is ineffective even for small number of nodes. This

drives us to study the formulation and understand basic features of the problem that

allow us to propose scalable heuristics for the problem.

82

3.5 Offline HPC+MF Problem

In this section, we develop heuristics for the offline version of the problem. Since

the HPC+MF problem, as described in Section 3.4, is NP-Hard, we need to develop

efficient algorithms to solve it. It is obvious that at the heart of the general problem

described in Section 3.2 is an assignment of tasks to MFs given their commitments

(similar to a bin-packing problem), a pick up / delivery order planning (similar to

MTVRP) and a task scheduling problem that is solved on the processors of the

single HPC. This encompasses the offline problem studied in this section. Since

greedy algorithms are widely used to solve each of these problems, we adopt a similar

approach to solve the offline HPC+MF problem.

To offer a scalable solution, first, we propose a greedy heuristic that builds a

solution by considering one task at a time and assigning it to the best vehicle in the

best tour location and task execution schedule assuming complete knowledge of tasks.

In the next section, we extend this to non-complete knowledge.

3.5.1 Constructive Heuristic

The constructive heuristic builds the solution from scratch by inserting tasks one by

one until all of them are placed. It uses a greedy approach to do so.

We describe a constructive heuristic that accounts for both preemption and non-

preemption. The constructive heuristic starts with an empty MF Tour at all MFs and

an empty Task Execution Schedule at the HPC (as described in Section 3.2.2) and

then considers the tasks at user nodes one at a time and determines the best place

in the current tour of each vehicle once for their pickup and once for their delivery.

To select which vehicles and tour locations (or equivalently tasks) to visit at each

step, the heuristic tries the current task under examination in each possible position

in the tour of each vehicle for pick up and delivery (pick up and delivery MF tours

can be distinct). This insertion shall be in accordance with the logical constraints

83

of Section 3.4. A solution needs to make sure that after a MF picks up each task,

it visits the HPC location at least once to drop off the task. It also needs to make

sure that before an MF delivers any result it has visited the HPC location to receive

those results for delivery. There is also a requirement that the drop off visit of a

HPC shall happen before the HPC visit for receiving the results of the same tasks.

For each of these placements that does not violate the above requirements and the

deadline requirements, it finds the best schedule. If the scheduler is preemptive, we

use earliest delivery order first approach according to the order (or estimated time)

when these tasks are supposed to be delivered. If the scheduler is non-preemptive, we

use the simplified option of scheduling tasks with the same logic of earliest delivery

first, except that preemptions are not allowed, even if a later task can improve the

solution by preempting an earlier one. The offline heuristic for preemptive case is

formally described in Algorithm 3.

The order in which tasks are visited for this greedy heuristic, noted in Algorithm

3, can be chosen in various ways including choosing tasks by index order, choosing the

nearest (farthest) node to the MF, choosing the nearest (farthest) task to the latest

currently inserted task. Alternatively, a “pure” greedy approach can be used that

considers every task at every step and chooses the task that gives minimal increase

in the objective value for final placement. This approach requires considerably more

computation time.

3.5.2 Earliest Delivery Scheduling for HPC+MF

The preemptive scheduling in Algorithm 3 starts by assigning visit times to all tasks

in the current tour purely based on travel times among locations and completely

ignoring task durations. We call these “estimated visit times”. It then schedules

the task with the earliest “estimated delivery time”. If this incurs a waiting time

at the delivery HPC, the algorithm takes it into account and adjusts the visit times

84

of all locations in the tour accordingly. It then schedules the next task with earliest

“estimated delivery” and repeats the same process until all tasks are scheduled. Since

tasks are scheduled in their delivery order, preemption is implied and we do not need

to explicitly enforce it, i.e. task that have priority are scheduled first and tasks with

lesser priority are only taking the remaining processor time. This scheduling scheme

is slightly more complex than that of Section 2.6 and is described in Algorithm 4.

3.5.3 Applying Heuristics to Solve Variants of HPC+MF Scheduling
Problem

In this section, we discuss how the heuristics of Section 3.5.1, can be applied to the

variants of HPC+MF Scheduling Problem.

To do this, we go over the list of HPC+MF Scheduling Problem variants again

and describe the recommended choice of heuristics for each variant:

• Multiple Processors: The proposed heuristic accounts for the general case of

multiple processors. A single processor problem is a special case of these with

number of processors equal to 1.

• Multiple Tasks per User Node: With multiple tasks, all of the heuristics

are applicable. It suffices to define a distinct pick up and delivery versions for

each task of a location in that case. These location may coincide for which the

heuristic is accommodating. Travel times among different pick up and delivery

in the same location will be 0 in this case.

• Objective Values: All of the above heuristics build a tour greedily or improve

it in the direction of a given objective. We have tested both TT and NAF as the

objective value in our experiments. The addition of any other objective seems

straightforward.

It must be emphasized that both heuristics are sub-optimal because they build

a tour greedily and at each step they do not consider the future, or equivalently, it

85

does not consider that changing the past decisions that may result in an improved

solution.

3.6 Online HPC+MF Problem

In this section, we turn into the online version of the HPC+MF problem. This is

a generalization of the problem introduced in Section 3.5. In this case, we assume

that knowledge of the tasks arriving is only revealed to the HPC and hence the

corresponding MFs only after the User Node has requested service. We are interested

in a complete schedule, defined as one in which all the tasks have been fully executed

and their results delivered.

Before we develop a heuristic for this problem, we turn our interest to the proper

choice of an objective value. One can keep using RT as an internal metric in this case

for any sub-problem that uses Algorithm 3, but as an overall metric for the problem

that considers incomplete knowledge of the tasks, RT loses meaning since a notion of

“last task” loses meaning as well, i.e., the algorithm is not supposed to have knowledge

of which task is the last, if any. Among metrics to measure the performance of the

online problem, we have chosen NAF which is a metric that is not affected by tasks’

arrival order. A closer look into the value of NAF defined in Section 3.2.3 shows that

it considers the interest of user nodes in its numerator by trying to deliver the tasks

as soon as possible while being fair by applying a normalization in the denominator

to not prioritizing a long task over many short tasks3.

3.6.1 Base Online Algorithm

In this section, we present the high-level view of the HPC+MF scheduling algorithm.

The online instance is described above. To solve such online instance of the HPC+MF

problem, it suffices that we repeatedly solve the offline problem any time a (group

3The algorithms described in this section and Section 3.5 are capable of replacing any objective
value fitting other scenarios without affecting the behavior of the algorithm.

86

of) task(s) arrives. To see this, we introduce Algorithm 5 as follows:

The online algorithm uses the task information that is already revealed to obtain

an initial solution. It then repeatedly “cuts” the solution (see Section 3.6.2) when

new tasks arrive, recalculates the solution for the portion of the current solution that

is not served after this revealing moment as well as the newly arrived information,

and “merges” this new solution with the preserved portion of the solution (see Section

3.6.3). Note that the online algorithm assumes that the time taken to calculate the

New Solution using Algorithm 5 is negligible compared to the time that it takes to

process the tasks; otherwise, one can add this computation time as a function of the

size of the problem and slightly modify the behavior of the HPC to address this. Our

implementation allows for batching the groups of tasks in these cases. This batching

will require the HPC to recalculate the solution only after either a specific amount of

time has passed since the arrival of the first group of newly arriving tasks or a specific

number of tasks have arrived. Batching is usually only needed to avoid frequent re-

calculations of the solution. In our implementation batching is given and implied,

i.e., we do not focus on the best practices to perform the batching and rather assume

that revealing of tasks in groups rather than individual tasks is due to some batching

that is underway.

3.6.2 Cutting Algorithm

As described in Algorithm 5, we need to cut the solution at the moment that a new

group of tasks arrive. This action involves keeping the parts of the solution that

have received partial service and re-planning for tasks that are not yet served or are

partially served along with the new group of tasks.A task, in this framework, goes

over the following phases that are depicted in Figure 22 as well:

1. It may not yet been picked up by an MF by the time that the new information

arrives. In this case, the task is treated as another piece of new information

87

Figure 22: Life cycle of a task in the HPC+MF framework: (1) The task initially resides
on user’s hand-held device, (2) It is picked up by the MF and eventually reach the HPC,
(3) It is received at the HPC but awaits processing, (4) It receives processing at the HPC,
(5) It awaits to be transferred to an MF for delivery after completion of processing, (6) It
is transferred to an MF that will eventually deliver it, (7) The result is delivered back to
the user node.

that has arrived and must receive full service. This is phase 1 in Figure 22.

2. It may be picked up by an MF but has not yet arrived at the HPC and hence

its processing may not have yet started by the time that the new information

arrives. In this case, we keep that task on the pickup list of that MF, and while

the MF might make detours due to arrival of the new information, it will drop

this task off to the HPC once it visits the HPC location. This is phase 2 in

Figure 22

3. It may be picked up by an MF and has arrived at the HPC, but its processing

88

may not have yet started by the time that the new information arrives. In

this case, the HPC can continue planning for the tasks that it has awaiting

processing, including this task. The delivery MF and delivery time may change

due to re-planning for the newly arrived tasks though. This is phase 3 in Figure

22

4. It may be picked up by an MF, have arrived at the HPC and be partially

processed by the time that the new information arrives. In this case, the HPC

can continue planning for the tasks that it has awaiting processing, including

this task. The HPC may choose to continue processing of this task or it may

choose to preempt it for another task that in the new re-planing might need

an earlier delivery. The delivery MF and delivery time may also change due to

re-planning for the newly arrived tasks. This is phase 4 in Figure 22

5. It may be picked up by an MF and completely processed and waiting for a de-

livery service at the HPC. In this case, the HPC will assign an MF for delivering

the results of this task. This assigned MF may have changed from the previous

plan due to arrival of the new information. This is phase 5 in Figure 22

6. It may be picked up by an MF and completely processed and the results already

transferred to an MF for final delivery. In this case, that MF will keep its

commitment for delivery of the results of this task, but the time of delivery

might change due to re-planning imposed by the HPC for the newly arrived

information. This is phase 6 in Figure 22

7. It may be completely processed and delivered by the time that the new infor-

mation arrives. In this case, the task does not need any further service and

cutting has no effect on it. This is phase 7 in Figure 22

To explain the operations involved in cutting the solution at the moment ti when a

89

new group of tasks arrives, assume, for the tour of kth MF that that tk is the moment

that the MF finishes serving (i.e., delivering all the results) the last task among those

for which it has been planning since the last period.

• If ti ≥ tk, we assume that each MF has stopped at the location of delivery of

its last task. When planning for a new group of tasks, we assume that these

are the new initial locations and use Algorithm 5. All of the solution in the

previous step is marked as served and Algorithm 3 solves the problem only for

the newly arrived groups of tasks to deliver the New Solution.

• If ti < tk, we need to re-plan for any pick up, drop-off at HPC, processing,

receipt of results from the HPC, and delivery that has occurred after ti. To

do this, we need to find the location that each MF will be at time tk. At this

moment, the MF will be either traveling between two user nodes, or a user

node and the HPC. In both cases the MF location can be found with either

of the following three possibilities: (i)using interpolation or (ii) the MF will be

finished with the last task and its location will be the location of that task or

(iii) it may be at the location of HPC without any current assignment. To cut

the solution at tk, we keep tasks of the first six categories described above and

treat them accordingly for the completion of their service, whether it is pick up,

dropping off at the HPC, processing, assigning the results to an MF, delivery,

or a combination of those. We then add the new group of tasks to this list of

non-served tasks and use Algorithm 3 to deliver the New Solution. Note that

any of the tasks that remain after cutting the solution will be marked as served.

3.6.3 Merging Solutions

This operation merges the New Solution that results after applying Algorithm 3 with

the Base Solution. This merging shall account for the offset the time that the new

information is revealed, ti, imposes. The merged solution will have the same format

90

as described for any solution in Section 3.2.2 and will be used as the Base Solution

in the next iteration of the for loop in Algorithm 5. This will provide a complete

solution to the problem.

3.7 Evaluation

In this section, we perform various experiments to understand the performance of

the algorithms presented in Sections 3.5 and 3.6. We start by reviewing examples of

simple instances of the offline problem to understand the structure of the solutions.

Then, we present various experiments that study the online heuristics that solve a

more realistic instance of the problem.

3.7.1 Examples of the Offline HPC+MF Problem

In this section, we study some examples of performance of Algorithm 3 with preemp-

tive scheduling. This gives us a preview of components of the solution, discussed in

Section 3.2.2.

Our experimental setting for this section is depicted in Figure 23a. Assume that

a two processor MF is initially at the location seen in the figure, and there are tasks

of duration 10, 20, 60, 90 sec at user nodes 1, 2, 3, and 4 respectively, all known to the

HPC at the beginning of time.

Since there is a single MF in the framework, we do not have any MF assignment in

the provided solutions. Figures 23a and 23b show the MF Tour and Task Execution

Schedule of the HPC for the instance described above using a preemptive scheduler

in a pictorial manner. Pickup and delivery time of each task is shown at its location.

HPC is visited twice and there is a wait of 10 and 20 sec respectively for the prepara-

tion of the results to be delivered by the MF during its next tour. It is evident from

the solution that in this small instance, an ideal strategy is to pick up the two nearby

tasks at locations 1 and 4 and wait at the HPC for the processing of the shorter task,

1, followed by delivery of the short task and pickup of all other tasks during the next

91

(a) MF Tour / preemptive Scheduler. (b) Task Execution Schedule.
Figure 23: MF Tour and Task Execution Schedule of HPC for a sample solution of an
HPC+MF problem with a two processor HPC serving 4 user nodes. The MF Tour can be
followed using the numbered arrows. Pickup and delivery time for each task is shown on
its location. Each schedule shows intervals that either of the two processors of the HPC are
busy processing a task.

round. The MF’s final round includes a wait for all of these tasks to finish processing

and delivery of all the results. This solution takes a total of 309 sec to serve all

the tasks. To complete this example, we have shown the Task Execution Schedule

component of the solutions in Figure 23b. Note that in this specific instance since

there is not an occasion of the MF having more than two tasks awaiting processing,

preemption is not exercised.

3.7.2 Performance of the Offline HPC+MF Heuristic versus Number of
Processors for Non-preemptive and Preemptive Schedulers

In this section, we explore the effect of number of processors on RT as the objective

value of examined instances to understand the advantages of preemption in multiple

processor cases by comparing the preemptive and non-preemptive cases. In this ex-

periment, we use assume 40 task locations that are mapped to locations of Georgia

Tech bus stops in a 2km × 2km area as shown in Figure 31. The HPC location is

shown as a star shape on the Figure. 50 tasks are generated, each at one randomly

chosen location among the 40 locations described above. We assume that pickup and

delivery location of each task is the same. Durations of these tasks are derived from

92

the CERIT-SC workload log [3] which is a list of computational jobs submitted to the

MetaCentrum distributed computing infrastructure4 in the year 2013. Since some of

these tasks were too short and a good number of them were too long, taking weeks

to complete on the MetaCentrum infrastructure, we filtered the dataset to keep only

tasks with durations between 60 sec and 3600 sec. We also assume all tasks are

available at the beginning of time and no task has a deadline.

We have changed the number of processors from 1 to 10 and observe the return

time (RT) time for both non-preemptive and preemptive heuristics. Figure 24 shows

this effect for both experiments. We observe that as we increase the number of

processors RT almost flattens for both types of schedulers when we have 8 processors.

This happens as extra processors will not be needed for a fixed load in the system.

It is also notable that preemptive scheduling results in a lower objective value which

translates to better performance for the preemptive case. This is also intuitive as

in general, non-preemption can be viewed as a special case of preemption that the

algorithm can choose to adopt if it results in a better objective value. It is notable

that the advantages of preemption are generally more evident with a lower number

of processors.

3.7.3 Performance of the Online HPC+MF Heuristic versus Task Arrival
Frequency

In this section, we study the effect of the frequency of task arrival on the system. We

use a similar model to that of Section 3.7.2 for the basic environment settings that is

described in below.

There are 3 MFs serving the system and a single HPC is placed as shown in Figure

31. we serve 600 batches of one or two tasks arriving according to a Poisson process.

Pickup and delivery location of the tasks and their duration are chosen similar to

Section 3.7.2. We vary the mean inter-arrival time for the exponential process that

4http://metavo.metacentrum.cz/en/index.html

93

http://metavo.metacentrum.cz/en/index.html

1 2 3 4 5 6 7 8 9 10
Number of Processors

0

2

4

6

8

10

12

14

16

R
et
u
rn

 T
im

e
(h

ou
rs
)

Effect of Number of Processors on Return Time

Non-preemptive

Preemptive

Figure 24: Comparison of the preemptive and non-preemptive scheduling for an HPC+MF
problem. The x-axis shows behavior of each scheduler as the number of processors grow.
The y-axis shows the objective value RT in hours.

governs the inter-arrivals for five sets of experiments with MFs traveling at speeds

of 1, 2, 5, 10, 20 m/s. For each of these experiments, we repeat the experiment 20

times and average the results. In these exemptions, we have varied the expected inter-

arrival time of tasks from a minimum value respecting the capacity of the system to

1500 seconds in 50 second steps5.

Figure 25a shows the average NAF (see Section 3.2.2 for definition) value for

various speeds. It shows that both increasing the speed and increasing the inter-

arrival time of tasks decreases the cost. However, in the latter once there is enough

time to serve all the tasks that arrive before new tasks arrive, their behavior and

5The minimum arrival rate used for the speeds are one task every 750, 500, 250, 250, and 250
seconds respectively for lower to higher speeds

94

thus the cost remains constant. To explore deeper into the effect of task arrivals,

in Figure 25b, we have plotted average queue length for the same experiments. The

average queue length is obtained by looking into the number of tasks that are awaiting

processing at the HPC at discrete moments in time and averaging this number over

the run. Figure 25b shows that in general average queue length drops with increasing

the task inter-arrival time as well as speed. It is also notable that since each of the 20

runs of the experiment is a randomly generated instance, while the decreasing with

larger inter-arrival time trend is true on the macro-level, it may not be true from

one run to adjacent run due to randomizing effects. These figures collectively show

that while the system experiences larger queues and worse performance on densely

arriving tasks, after some threshold, its performance does not change considerably

even with tasks arriving more sparsely.

200 400 600 800 1000 1200 1400 1600
Expected Task Inter-arrival Time(sec)

2

4

6

8

10

12

14

16

A
v
e
ra
g
e
 N
A
F

Effect of Task Arrival

Speed: 1 m/s

Speed: 2 m/s

Speed: 5 m/s

Speed: 10 m/s

Speed: 20 m/s

(a) The Objective Value, average NAF.

200 400 600 800 1000 1200 1400 1600
Expected Task Inter-arrival Time(sec)

2.5

3.0

3.5

4.0

4.5

5.0

A
v

e
ra

g
e

 Q
u

e
u

e
 L

e
n

g
th

 (
n

u
m

b
e

r
o

f
ta

sk
s)

Effect of Task Arrival

Speed: 1 m/s

Speed: 2 m/s

Speed: 5 m/s

Speed: 10 m/s

Speed: 20 m/s

(b) Average Queue Length for awaiting tasks
at the HPC.

Figure 25: Effect of arrival frequency of tasks on the performance of online HPC+MF.
X-axis shows the mean value for exponential process governing inter-arrival time of tasks.
Tasks arrive more sparsely along this axis. The metric measured on Y-axis is noted o the
corresponding captions.

3.7.4 Performance of the Online HPC+MF Heuristic versus Task Dead-
lines

In this section, we study the effect of deadlines. The purpose of this section is to

understand the capacity of the heuristics of Section 3.6 in accommodating tasks with

95

deadlines of various levels of tightness. We study the behavior of the heuristics from

the standpoint of the percentage of the tasks rejected and the performance of the

heuristics on the accepted tasks as the task deadlines become more relaxed.

Experiment setup for this section is similar to Section 3.7.3 with 3 MFs and one

HPC having 2 processors. We serve 600 batches of one or two tasks arriving according

to a Poisson process with an exponential mean inter-arrival time of 250 sec. These

tasks have pickup and delivery location and duration chosen as described in Pickup

and delivery location of the tasks and their duration are chosen similar to Section

3.7.2.

We vary the deadline margin to see how it affects task rejection, as well as cost.

Deadlines for each task is defined as “task revealing time + task duration + deadline

margin”. Here, task revealing time is the moment that HPC is notified of the arrival

of the new task. We use the values of 0, 20, 50, 100, 200, 500, 1000, 2000, 5000,

10000, 20000 sec as the value of deadline margin for five sets of experiments with

MFs traveling at speeds of 2, 5, 10, 20 m/s. For each of these experiments, we repeat

the experiment 20 times and average the results.

Figure 26a shows the percentage of all tasks submitted by user nodes that are

denied service as the deadline margin grows larger and hence the service require-

ments become more relaxed. It is observed that with higher deadline margin there

is a less portion of tasks rejected service. This can be easily seen since with loser

deadline requirements , the HPC will have more time to process the tasks by the

given deadline and the MFs are more likely to deliver the results before the deadline.

As a reminder, note that the system makes estimate for when each piked up tasks

can be delivered given the time that it can be picked up and processed and rejects

the task for any service including pickup if it determines that the rest of the service

cannot be completed in a timely manner to satisfy the deadline requirements. It is

also observed that there is less rejection of tasks with higher MF speeds.

96

Figure 14b shows that initially the service given becomes worse with a higher

deadline margin. This is seen when one considers that we a looser deadline require-

ment, there are more tasks accepted for service and the system is more overloaded

providing a service of lesser quality to each task. Eventually as the deadline margin

grows higher, we observe that the performance stabilizes. This shows that while for

a very small number of tasks the system can provide a better service, there is a range

of for the load for which the system is able to provide the same service. It is ex-

pected that if the load gets near system capacity one observes a sudden deterioration

of service. The stabilization of service is more evident for higher speeds and not yet

reached for lower speeds. This shows that the stabilization region is reached later if

the MFs travel slower since such system has lesser capacity of service in general.

0 20000 40000 60000 80000 100000
Deadline Margin (sec)

50

60

70

80

90

100

R
e
je
ct
e
d
 T
a
sk
s
(%

)

Effect of Task Deadlines

Speed: 2 m/s

Speed: 5 m/s

Speed: 10 m/s

Speed: 20 m/s

(a) Average percentage of rejected tasks.

0 20000 40000 60000 80000 100000
Deadline Margin (sec)

0

5

10

15

20

A
v
e
ra
g
e
 N
A
F

Effect of Task Deadlines

Speed: 2 m/s

Speed: 5 m/s

Speed: 10 m/s

Speed: 20 m/s

(b) The Objective Value, average NAF.
Figure 26: Effect of task deadlines on the performance of online HPC+MF. X-axis shows
deadline margin of the tasks defined in Section 3.7.4. Deadlines become looser along this
axis. The metric measured on Y-axis is noted o the corresponding captions.

3.7.5 Examination of Effects of the Relative HPC Location on the Online
HPC+MF Heuristic

In this section, we examine the effect of the location of the single HPC in the frame-

work of Section 3.2 on the performance of the online heuristic of Section 3.6. It

must be emphasized that HPC placement is not the goal of the heuristics presented

in this chapter. It is assumed in this work that the HPC is a fixed entity, e.g. a

97

military computing base station, that has access to an abundance of communication

and computation resources and is placed in a location that is decided independent of

the locations or mobility of the user nodes. The problem of HPC placement has been

addressed in works like [46] for the case where numerous HPC cloudlets are placed in

the area and groups of user nodes that are around each of them have access to the

HPC via a direct communication channel. In our work, it is assumed that the HPC

location is given and it is the job of the MFs to provide proper communication to

the HPC for the user nodes. Hence, the results presented in this section are merely

intended to understand and study the effect of the location of the HPC on the perfor-

mance of the system and do not intend to propose placement heuristics for the HPC

unit.

To test this effect, we use the framework presented in Figure 27. We place two

User Nodes in locations U1 and U2 in a 5km×5km field. We generate 600 batches of

one or two tasks where each task has both its pickup and delivery randomly chosen

at location U1 or U2 and its arrival is governed by a Poisson process with a 300 sec

exponential inter-arrival time between tasks. These tasks are served by a single MF.

There is also one HPC in the framework that has two processors. We perform three

sets of experiments with the location of the HPC at Loc 1(blue), Loc 2(red), and

Loc 3(black) respectively. In each set of the experiments we perform three sub-

experiments. One with all tasks of small duration (all being similarly 10 sec in

duration), one with all tasks of medium duration (all being similarly 100 sec in

duration), and one with all tasks of large duration (all being similarly 800 sec in

duration). Each of the nine experiments described above is repeated 20 times and

the results are averaged.

Figure 28a shows the average NAF for the described experiments. Our first ob-

servation of the results is that the difference in service is more obvious for short and

medium tasks compared to large tasks. This is expected as for the case of very large

98

Figure 27: Framework for testing the effect of relative HPC location on the performance of
the online HPC+MF heuristics. Two user nodes are placed at locations U1 and U2. The
HPC is placed at Loc.1, Loc.2, and Loc.3 in various experiments.

tasks the processing and pickup/delivery order is less relevant as the service is dom-

inated by the time spent to process the tasks at the HPC processors. Secondly, it

is observed that for the short and medium tasks there is better service for the HPC

being at location 3, location 2, and location 1 respectively. This shows that in general

if HPC is closer to every user node, best performance is expected. Note that in case

of location 2, the HPC is very near to one of the user nodes but far from the other

one and in case of location 1 it is far from both. We expect that for more complex

scenarios other features of the environment weigh in affecting the performance of the

system.

Figure 28b shows the distance throughput for the same experiment. Since distance

throughput only measures the amount of trips for serving each task, we do not see

a distinction among the three cases of short, medium, and large tasks. It is also

observed that for all three cases there is a higher throughput for the HPC being at

99

location 3, location 2, and location 1 respectively. This can be easily seen by noticing

the fact that for the HPC being place at location 3, the average distance to both user

nodes is smallest and for the HPC being at location 1 it is the largest. When the HPc

is place at location 2, it is very near to one user node U1 and its distance to user node

U2 is equal to the average distance to the user nodes. In contrast, when the HPC is

at location 3, the average distance to user nodes is still the same as HPC being at

location 2. Despite this fact, there is on average less travel made when the HPC is

placed at location 3. This shows that when the HPC is generally more accessible for

all user nodes, better decisions can be made for deciding when the MF travels to the

HPC or to the user nodes and if some of these decisions are proven to be not optimal

considering the future tasks, the effects of such mistakes are less evident.

3.8 Conclusions and Future Work

Motivated by message ferrying literature [57] and the idea of computational offload-

ing, in this chapter, we expanded the architecture of a computational ferrying scheme

of Chapter 2 to the case where the computation and communication resources are

separated and Message Ferries (MFs) provide connectivity to a High Performance

Computer (HPC) for a group of wireless user nodes. We studied the problem of

scheduling the MFs’ movement and HPC’s processing. We started by modeling and

formulating the design of such schedules as an optimization problem. We have dis-

cussed the challenges of this type of system and have developed algorithms that can

be used to produce schedules for larger scale problems. We performed an extensive

set of experiments to demonstrate applicability of the algorithms and show the effect

of various system parameters on the performance of such this framework.

This work represents a first step towards the design and evaluation of the operation

of an MF-based mobile cloud computing system. There are a number of interesting

future directions which include:

100

• Understanding the robustness of an MF system to malfunctioning of its MFs

and how to design failure recovery mechanisms by providing service through

other MFs.

• Enhancements to the model to include variations such as processor-sharing

scheduling on the HPC and the possibility of MFs picking multiple pieces of

a computation from different locations or delivery to multiple user nodes.

• Integrating more complicated communication models in the framework, includ-

ing modeling of wireless channels for both short-range and long-range radio

with loss. This might require optimizing the heuristics of Section 3.5 and 3.6 so

that the MFs starts exchanging information with the user nodes once they are

at an optimal distance. There is also a requirement to deal with unsuccessful

exchange of information due to channel imperfections.

• The consideration of communication among MFs either using user nodes as

relays or direct exchange of information motivated by the work on multiple

message ferry scheduling (e.g., [58]).

101

Algorithm 3: Offline HPC+MF heuristic pseudo-code

Input: Number of tasks: n, Specifications of each task i: (Ri, Di, Ti, LPi, LDi),
Number of MFs: V , Number of HPC Processors: m.

Output: Solution = MF assignment (per instance): ±ik ∀k ∈ V , ∀i ∈ tasks,
MF Tour (per MF):
tourk = {. . . , (±i, r±i, other information), . . . }; ∀k ∈ V , Task
Execution Schedule (per instance): schedk = {((t1, t2), i)} ∀k ∈ V

1 Initialization: Mark all tasks as not-visited ;
2 Sort the tasks to examine in some order ;
3 while There exists not-visited tasks do
4 Take the next not-visited task, i.
5 for Each MF, K, in V do
6 for Each placement of task i’s pick up in some MF’s tour do
7 for Each placement of task i’s delivery in some MF’s tour (same or

distinct MF from pick up) do
8 if If the above assignments do not violate the requiremenst of

Section 3.4 then
9 Schedule task execution according to an earliest “estimated”

delivery first and preempt existing tasks if necessary;
10 Store this assignment, tour, and execution schedule as

Temporary Solution.
11 if Temporary Solution does not violate the deadlines and

increases the objective value minimally then
12 Choose Temporary Solution as Solution.
13 end

14 end

15 end

16 end

17 end

18 end
19 Based on the Task Execution Schedule and MF Tour in Solution, calculate r±i

and wi for each pick up / delivery. return Solution, Non-scheduled tasks as
rejected.

102

Algorithm 4: Preemptive scheduling for HPC+MF based on earliest delivery

Input: Number of tasks: n, Specifications of each task i:
(Ri, Di, Ti, LPi, LDi), Number of MFs: V , Number of HPC Processors:
m, MF assignments: ±ik ∀k ∈ V , ∀i ∈ tasks, MF Tours:
tourk = {. . . , (±i, r±i, other information), . . . }; ∀k ∈ V ,

Output: Preemptive Schedule = Task Execution Schedule (per instance):
schedk = {((t1, t2), i)} ∀k ∈ V

1 Initialization: Find travel time among all consecutive locations (ignore task
durations). Store these values as Estimated Visit Times and mark all tasks as
not-scheduled;

2 while There exists not-scheduled tasks do
3 Take the task with earliest estimated delivery time (estimated visit time of

delivery location). ;
4 Schedule this task on any available (remaining processors). Processing can

start as soon as task arrives at the HPC. Do not preempt earlier tasks. if
Insertion o the new Schedule incurs waiting at the delivery MF’s visit to
the HPC then

5 adjust the schedules and visit times according to the incurred wait.
6 end

7 end
8 return Final Schedule.

Algorithm 5: Online HPC+MF heuristic pseudo-code.

Input: Groups of tasks: (ti,Gti), Number of MFs: V , Number of HPC
Processors: m, Service period: tS

Output: Base Solution = MF assignment (per instance):
±ik ∀k ∈ V , ∀i ∈ tasks, MF Tour (per MF):
tourk = {. . . , (±i, r±i, other information), . . . }; ∀k ∈ V , Task
Execution Schedule (per instance): schedk = {((t1, t2), i)} ∀k ∈ V

1 Initialization: Use Algorithm 3 to solve for the tasks available at time 0 ;

2 Store this solution as Base Solution. ;
3 while time < ts do
4 for Each task group (ti,Gti) do
5 Use Cutting Algorithm to cut the solution at ti;

6 Store the portion of the base solution before ti and store it in Base
Solution. ;

7 Merge the portion of the solution after ti with the tasks in Gti ;
8 Use Algorithm 3 to solve for the merged input ;

9 Store this solution as New Solution ;
10 Properly Merge New Solution into Base Solution

11 end

12 end
13 return Base Solution ;

103

Small: 30 sec Medium: 300 sec Large: 800 sec
Task Sizes

0

20

40

60

80

100

120

140

N
A

F

Effect of HPC Location on Service

Loc.1
Loc.2
Loc.3

(a) The Objective Value, average NAF.

Small: 30 sec Medium: 300 sec Large: 800 sec
Task Sizes

0.0

0.1

0.2

0.3

0.4

0.5

D
is

ta
n
ce

 T
h
ro

u
g
h
p
u
t

(t
a
sk

s/
km

)

Effect of HPC Location on Service

Loc.1
Loc.2
Loc.3

(b) Average Distance Throughput in tasks/km.
Figure 28: Effect of HPC location on the performance of the online HPC+MF heuristics.
Groups of bars on the X-axis shows the experiment for small, medium, and large tasks,
respectively. Each group repeats the experiment with the HPC placed at Loc.1, Loc.2,

104

CHAPTER IV

TOWARDS UNDERSTANDING THE VALUE OF

CONTROLLING MOBILITY IN A TACTICAL HIGH

PERFORMANCE COMPUTING CLOUD SERVICE

4.1 Introduction

In this chapter, we present two simplified heuristics that intend to provide computa-

tional service in frameworks similar to those presented in Sections 2.2 and 3.2. To

provide ground for these new heuristics, we note that in Chapter 2 we have used the

concept of Computation on the Move to introduce the MHPC heuristics. In these

heuristics the computation resource is mounted on the vehicles and hence the pro-

cessing of a task can start as soon as the vehicle has picked it up. In Chapter 3,

we have traded the Computation on the Move feature for having access to a possi-

bly more powerful computation resource which is set up as a stationary HPC. The

MHPC heuristics of Chapter 2 and HPC+MF heuristics of Chapter 3 both have one

feature in common: they both control the mobility of the vehicles. Whether it is

the MHPCs or the MFs, in both frameworks, the mobility of the vehicles is dictated

through a controller which directs them where to go and in which order visit the task

locations. This Controlled Mobility, allows for better optimization of service in the

environment and aligns the efforts of the vehicles towards providing better service

to the user nodes. In this chapter, we introduce heuristics that do not enjoy the

Controlled Mobility feature.

Such scenarios can be reasonable in settings where the primary goal of vehicles is

not serving the user nodes, but instead the vehicles follow a per-determined route and

we utilize their mobility to provide service to the user nodes in the area. Examples of

105

these scenarios are road vehicles, e.g. buses. These vehicles follow known routes and

one can envision either mounting computation resources (e.g. cloudlets) on them or

using them as message ferries to serve computation tasks offloaded by user nodes that

meet these vehicles on their path. A fundamental feature of this framework is that

the vehicles are supposed to follow their pre-determined route and while the heuristic

can optimize scheduling of computation, they will not have any control over mobility

of these vehicles.

In COSMOS [44], Shi et al., suggest using their infrastructure for offloading com-

putation to local resources and test the idea by using campus shuttles that experience

variable connectivity to local wifi. Our work suggests the other side of this picture

where the computation is stationary and resources can be mounted on the shuttle. In

Cirrus Cloud [43], the authors classify computing resources as user-carried mobile de-

vices, mobile computing resources attached to moving vehicles, infrastructure-based

computing resources (similar to cloudlets), and Central cloud resources. They sug-

gest utilizing mobility of vehicles like buses to provide communication among these

elements that ultimately help the user-carried mobile devices to have access to better

computation resources. FemtoClouds [23] also nicely categorizes the spectrum of us-

ing mobile entities as computing resources with respect to stability and predictability

of their movement. Finally Zhao et al. [57] contrast two message ferrying schemes,

namely, Node-Initiated MF (NIMF) and Ferry-Initiated Message Ferrying (FIMF).

Both schemes support using message ferries to provide pure communication service

in disruption tolerant settings. In contrast, our HPC+MF is comparable to FIMF

that controls ferry mobility to provide computation service. A counterpart to their

NIMF is an scheme that uses the predictable mobility of vehicles to transfer tasks

and results to/from users and the HPC as they meet these vehicles along their routes.

Table 3 summarizes classification of our problems on the dimensions of Computa-

tion on the Move and Controlling Mobility and how the heuristics of Chapter 2 and

106

3 and this chapter are placed with respect to this classification.

Table 3: Classification of proposed heuristics according to the dimensions of “Computation
on the Move” and “Controlled Mobility”.
P
P
P
P
P
P
P
P
P
P
P
P
P
P
PP

Comp. on
the Move

Controlled
Mobility

Yes No

Yes
MHPC Heuristics

of Chapter 2
MHPC Heuristics
of Section 4.2

No
HPC+MF Heuristics

of Chapter 3
HPC+MF Heuristics

of Section 4.3

4.2 Non-Controlled Mobility Service for the MHPC Frame-

work

In this section, we describe the first of our two heuristics that do not control vehicle

mobility. The framework for this heuristic is depicted in Figure 29. In this framework

the MHPCs follow a repeated and pre-determined route. User Nodes can meet the

MHPCs on their route. We assume that the time needed to exchange information

between the MHPC and the User Nodes is negligible and exchange can happen once

the user nodes are within range of the MHPCs on their route. One can also assume

that the User Node locations in Figure 29 are meetup locations, similar to FOBs of

Section 2.2 and User Nodes leave their tasks in these meetup locations so that the

MHPCs can receive them.

In our proposed heuristic for the MHPC problem with non-controlled mobility,

each MHPC has a known route. It keeps visiting locations on its route one by one.

It is possible that a location is shared within the routes of two or more MHPCs.

Once an MHPC visits a location with a User Node, it commits for processing all

tasks at that location. It schedules each task in a First Come First Serve (FCFS)

manner, i.e., there is no intelligence in the scheduling of the MHPCs. They simply

schedule tasks for processing in the same order that they are picked up. When a task

is picked up, it goes to a FCFS queue. If MHPC has an empty processor, the task

107

Figure 29: A framework for the MHPC problem without Controlled Mobility. The MHPCs
follows a pre-determined route and User Nodes can exchange tasks and results as they meet
the MHPCs enroute.

will immediately be scheduled; otherwise it will start processing as soon as all tasks

picked up earlier than it have also started processing. It must be noted that if pickup

and delivery location of a task are the same, for non-controlled mobility MHPC, this

FCFS scheduler is equivalent to earliest delivery first scheduling of Section 2.6. Once

a task is processed, it goes to a “ready queue” of the scheduler and is delivered once

the MHPC visits the delivery location. It is assumed in this heuristic that either

pickup and delivery location of each task are the same, or if they are distinct, they

are both on the route of an MHPC; otherwise the task cannot be served properly

under this scheme. This above heuristic is formally described in Algorithm 6.

4.3 Non-Controlled Mobility Service for the HPC+MF Frame-

work

In this section, we describe the second of our two heuristics that do not control vehicle

mobility for MFs and employs a stationary HPC. The framework for this heuristic

is depicted in Figure 30. In this framework the MFs follow a repeated and pre-

determined route. User Nodes can meet the MFs on their route. We assume that

the time needed to exchange information between the MF and the User Nodes is

negligible and exchange can happen once the user nodes are within range of the MFs

108

Algorithm 6: Heuristic for MHPC problem with non-cotrolled mobility

Input: Groups of tasks: (ti,Gti), Number of MHPCs/processors per MHPC:
(V,m), MHPC Routes: {Li ∀i ∈ MHPC route}

Output: Solution = MHPC Assignment (per instance): tasksk ∀k ∈ V , Task
Execution Schedule (per MHPC): schedk = {((t1, t2), i)} ∀k ∈ V

1 for Each MHPC k ∈ V do
2 while True do
3 Visit the next location, Lk, on MHPC route.
4 for Each task i with pickup location LPi == Lk do
5 Assign task i to MHPC k ;
6 Add j to the queue for MHPC’s FCFS scheduler.

7 end
8 for Each task j that the MHPC’s scheduler has finished processing do
9 if Delivery location of j, LDi == Lk then

10 if Current Time ≤ Deadline for Task j, Di then
11 Mark task j as served.
12 else
13 Mark task j as rejected.
14 end

15 end

16 end
17 if all tasks are served an no further tasks are supposed to arrive to the

system then
18 Terminate
19 end

20 end

21 end
22 return Solution= {MHPC Assignment, FCFS Schedule for each MHPC},

Rejected tasks.

on their route. One can also assume that the User Node locations in Figure 30 are

meetup locations, similar to FOBs of Section 2.2, and User Nodes leave their tasks in

these meetup locations so that the MFs can receive them.

In our proposed heuristic for HPC+MF problem with non-controlled mobility,

each MF has a known route. It is required that the MFs visit the HPC location on

their route as the HPC is the processing unit in the framework (shown in Figure 30).

Unless MFs can drop off tasks at the HPC location, no service can be provided in

109

Figure 30: A framework for the HPC+MF problem without Controlled Mobility. The MFs
follows a pre-determined route and User Nodes can exchange tasks and results as they meet
the MFs en-route. All the MF routes need to meet the HPC.

the system1. It is possible that some other locations are also shared within routes of

two or more MFs. The MF keeps visiting locations on its route one by one. Once an

MF visits a location with a User Node, it picks up all of the tasks at that location.

These tasks are stored on the MF until it reaches the HPC location. At that point,

the MF drops all these tasks at the HPC for processing. The HPC schedules each

task in a First Come First Serve (FCFS) manner, i.e., there is no intelligence in its

scheduling. They simply schedule tasks for processing in the same order that they

are picked up. When a task is dropped at the HPC, it goes to a FCFS queue. If

it has an empty processor, the task will immediately be scheduled; otherwise it will

start processing as soon as all tasks dropped off at the HPC earlier than the current

one have also started processing. Once a task is processed, it goes to a “ready queue”

of the scheduler. Every time that an MF visits the HPC location, the HPC hands

all the finished tasks whose delivery locations are on the route of that MF. The MF

then delivers these tasks once it visits their delivery location. This allows for one MF

to pick up the task and another MF to deliver the result. This can happen under

two scenarios. If the pick up and delivery location of a task are the same but are

1One can extend this framework so that each MF meets a distinct HPC on its route, or they can
even meet a cloudlet that has Internet access. We assume that the MFs meet the same HPC to keep
the framework comparable to the one presented in Section 3.2.

110

on the route of at least two MFs, or if the pick up and delivery location are distinct

and each is on the route of a different MF. Note that in the non-controlled mobility

MHPC heuristic of Section 4.2, in the former case, it is required that the same pickup

MHPC provides processing and delivery service, even if the location is visited by other

MHPCs and in the latter case service is not possible since the pickup MHPC cannot

visit the delivery location and no inter-MHPC communication is allowed. This above

heuristic is formally describe in Algorithm 7.

4.4 Evaluation

In this section, we start by describing the evaluation settings and then present various

results that explore the value of controlling mobility.

4.4.1 Evaluation Setup

To create plausible scenarios for testing the heuristics described in this chapter, we

have turned to a new testing platform.

In all of the below scenarios, we assume that the field of interest matches the

map of Georgia Institute of Technology as show in Figure 31. This covers an area of

approximately 2km×2km. We generate tasks from a Poisson process at the locations

of the bus stops, shown as black dots in Figure 31. We report the mean inter-arrival

time of the resulting exponential process that governs arrival of the tasks to the

controller in each section separately.

At each of the arrival moments generated from the above process, we randomly

generate one or two tasks from randomly chosen locations among the bus stops. As

it does not add any information to our experiments, we keep the pickup and delivery

location of each task to be the same2. Arrival of one or two tasks in each arrival

2In general, all of the heuristics proposed in this thesis allow for distinct pickup and delivery
location. We have only chosen these locations to coincide since their distinction did not reveal any
additional observations for our experiments.

111

HPC

Figure 31: Georgia Tech bus route map. We have used the stations,

moment also means a low batching window. One can have more tasks arrive and

hence imply a more conservative batching in the system.

In the experiments presented below and for the cases of non-controlled mobility,

we assume that the vehicles follow the routes of Tech Trolley (Yellow), Green, and

Blue buses in Figure 31. These vehicles follow their routes indefinitely and provide

computation or communication services as they move3.

Durations of the tasks are derived from the CERIT-SC workload log [3] which is

a list of computational jobs submitted to the MetaCentrum distributed computing

infrastructure4 in the year 2013. Since some of these tasks were too short and many

3This assumption holds for the purpose of this simulation. In reality, the period of service for the
vehicles must be much longer than the periods of the running of the algorithm for this assumption
to hold

4http://metavo.metacentrum.cz/en/index.html

112

http://metavo.metacentrum.cz/en/index.html

of them were too long (taking up weeks to complete on the MetaCentrum infrastruc-

ture), we filtered the dataset to keep only tasks with durations between 60 sec and

3600 sec. Tasks that take longer than this to complete processing are usually above

the capability of a system with few processors, as in our cases. We have also kept

task processing time above a minimum value to avoid skewing the system to mostly

consist of very short tasks. For such cases, we expect the problems to be reduced to

variations of TSP. Tasks are assumed to have no deadline unless stated otherwise.

4.4.2 Effect of Controlling Mobility versus MHPC/MF Speed

In this section, we run various experiments to understand the effects of the vehicle

speed on the performance of the heuristics. The goal of this section is to understand

how much advantage is gained when we control the mobility as the vehicles move

faster.

The experiment setting is similar to the scenario described in Section 4.4.1. There

are 3 vehicles serving the system described in Figure 31. We generate 600 batches of

one or two tasks from a Poisson process. The approach taken for deriving the pickup

and delivery location and duration of these tasks is described in Section 4.4.1. The

inter-arrival time between these tasks is an exponential process. The mean inter-

arrival time for the tests that use the MHPC framework is 250 sec and for the tests

that use the HPC+MF framework is 150 sec. The reason for this difference is that

in general, the MHPC framework is capable of handling systems of higher capacity

due to the fact that tasks immediately arrive to the processing queue compared to

the HPC+MF framework where tasks need extra travel on the MFs to arrive into the

HPC’s processing queue. We have chosen these values so that each system performs

in an area that it is neither performing over nor under capacity. In each experiment,

we vary the vehicle speed from 2 m/s to 40 m/s and observe the effects. The cases

that test MHPC framework consider 2 processors on each MHPC. The cases that

113

consider the HPC+MF framework consider a single HPC with 3 × 2 = 6 processors

placed on the designated location on Figure 31. We have run each of the tests 20

times, each time generating a new random set of data, and have averaged the results.

Results are shown in Figures 32 and 33. Each of these figures compares two cases.

These cases are described below:

• Controlled Mobility: We use the heuristics of Section 2.7 for the MHPC

system and heuristics of Section 3.6 for the HPC+MF system. In both of these

cases, we control the mobility of the vehicles to gain a better objective value,

which is completing the service for each bath of arriving tasks and the previously

awaiting tasks as soon as possible (refer to definition of RT in Section 2.2.3 and

3.2.3). These cases cover the first column of Table 3.

• Non-controlled Mobility: we use the heuristics of Section 4.2 for the MHPC

system and heuristics of Section 4.3 for the HPC+MF system. As stated in

Section 4.4.1, we assume that the three vehicles in these cases follow the blue,

green, and yellow routes shown on Figure 31. These cases cover the second

column of Table 3.

Figure 32 shows the comparison of the controlled mobility and non-controlled

mobility case for the MHPC system (first row Table 3). We first compare the NAF

value of the overall solution for the two cases in Figure 32a. It is evident from the

figure that controlling the mobility significantly boosts the quality of the service that

tasks receive, measured by NAF. This improvement is 6-fold in this case. It is also

evident that in both cases of controlled and non-controlled mobility, increase of speed

beyond some point does not improve the service. Finally, it is also notable that the

difference between the controlled mobility and non-controlled mobility is fundamental

and has its roots in the dynamics of the heuristics behind each in a way that even the

highest speed for the non-controlled mobility does not perform as goos as the lowest

114

speed for the controlled mobility case. This means that switching to controlling

mobility, if possible, is a much better recommendation for improving the performance

of the system than increasing the speed.

Figure 32b compares the value of distance throughput (defined in Section 2.2.2)

for the cases of controlled mobility and non-controlled mobility. Note that while a

higher distance throughput means that the system is capable of serving the tasks while

making less travels, it is not an objective of neither the heuristics of Section 2.7 for the

controlled mobility nor the heuristics of Section 4.2 for the non-controlled mobility

case. Figure 32b shows that while for the lowest speed of 2 m/s the HPC+MF

provides a better service, the two cases quickly diverge with the controlled mobility

case always outperforming the non-controlled mobility case thereafter. To understand

the above observations, first note that for the very low speeds while distance that all

MHPCs cover is less, their movements are not coordinated towards better serving

the tasks. Instead in the controlled mobility case, the MHPCs slightly longer travels

are coordinated to serve the tasks. This implies that even in the slower speeds, the

MHPCs that provide service travel less, but the total trip of all MHPCs is shorter for

the non-controlled mobility case. As the speeds grow, the total distance of the MHPCs

in the non-controlled mobility grows much higher than the controlled mobility. This is

due to the fact that in the non-controlled mobility, they cover more distances on their

pre-determined route as their speed grows and in contras to the controlled mobility

case, there is no correlation between the covered distance and the provided service.

Figure 33 shows the comparison of the controlled mobility and non-controlled mo-

bility case for the HPC+MF system (second row Table 3). We first compare the

NAF value of the overall solution for the two cases in Figure 33a. It is evident from

the figure that controlling the mobility significantly boosts the quality of the service

that tasks receive, measured by NAF in this case as well. This improvement is al-

most 15-fold in this case. Similarly, in both cases of controlled and non-controlled

115

0 5 10 15 20 25 30 35 40
Vehicle Speed (m/s)

0

2

4

6

8

10

12

14

A
v

e
ra

g
e

 N
A

F

Effect of Controlling Mobility vs Vehile Speed for MHPC

Controlled Mobility

Non-Controlled Mobility

(a) Effect on average objective value.

0 5 10 15 20 25 30 35 40
Vehicle Speed (m/s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

ta
n

ce
 T

h
ro

u
g

h
p

u
t

(t
a

sk
s

/
km

)

Effect of Controlling Mobility vs Vehile Speed for MHPC

Controlled Mobility

Non-Controlled Mobility

(b) Effect on distance throughput.
Figure 32: Effect of controlling speed versus vehicle speed on the objective value and dis-
tance throughout for the MHPC system.

mobility, increase of speed beyond some point, 10 m/s in this case, does not improve

the service. Finally, we observe the same fundamental difference between the per-

formance of the controlled and non-controlled mobility case. This means, similar to

the MHPC instance, switching to controlling mobility, if possible, is a much better

recommendation for improving the performance of the system than increasing the

speed.

Figure 33b compares the value of distance throughput (defined in Section 3.2.2)

for the cases of controlled mobility and non-controlled mobility. This figure shows

that in contrast to the MHPC system of Figure 32b, in the HPC+MF system, the

controlled mobility case always has the superiority in distance throughput as well. To

understand the this observation, note that starting of any processing in the HPC+MF

system requires the MFs to visit the HPC location. This incurs significant extra

travel, specially on the non-controlled mobility case as the HPC location will be only

visited once per pre-determined route. This makes the non-controlled mobility case

to have extra rounds and deteriorates its distance throughput quickly. As the speeds

grow, similar to the MHPC case, the total distance of the MFs in the non-controlled

mobility grows much higher than the controlled mobility. This is due to the fact that

in the non-controlled mobility, they cover more distances on their pre-determined

116

route as their speed grows and in contras to the controlled mobility case, there is no

correlation between the covered distance and the provided service.

0 5 10 15 20 25 30 35 40
Vehicle Speed (m/s)

0

50

100

150

200

A
v
e
ra
g
e
 N
A
F

Effect of Controlling Mobility vs Vehile Speed for MHPC

Controlled Mobility

Non-Controlled Mobility

(a) Effect on average objective value.

0 5 10 15 20 25 30 35 40
Vehicle Speed (m/s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

D
is

ta
n

ce
 T

h
ro

u
g

h
p

u
t

(t
a

sk
s

/
km

)

Effect of Controlling Mobility vs Vehile Speed for MHPC

Controlled Mobility

Non-Controlled Mobility

(b) Effect on distance throughput.
Figure 33: Effect of controlling speed versus vehicle speed on the objective value and dis-
tance throughout for the HPC+MF system.

4.4.3 Effect of Controlling Mobility versus Task Arrival Rate

In this section, we run various experiments to understand the effects of the task arrival

density on the performance of the heuristics. The goal of this section is to understand

how much advantage is gained when we control the mobility as the tasks arrive denser

or sparser from each other.

The experiment setting is similar to the scenario described in Section 4.4.1. There

are 3 vehicles serving the system described in Figure 31. The cases that test MHPC

framework consider 2 processors on each MHPC. The cases that consider the HPC+MF

framework consider a single HPC with 3× 2 = 6 processors placed on the designated

location on Figure 31. We generate 600 batches of one or two tasks from a Pois-

son process. The approach taken for deriving the pickup and delivery location and

duration of these tasks is described in Section 4.4.1. The inter-arrival time between

these tasks is an exponential process. The mean inter-arrival time for the tests that

use the MHPC framework is changed from 250 sec to 1500 sec for the MHPC tests

and from 150 sec to 1500 sec for the HPC+MF tests in 50 sec increments. We have

117

run each of the tests 20 times, each time generating a new random set of data, and

have averaged the results. Results are shown in Figures 34 and 35. Each of these

figures compares two cases of controlled mobility and non-controlled mobility similar

to those described in Section 4.4.2.

Figure 34 shows the comparison of the controlled mobility and non-controlled

mobility case for the MHPC system (first row Table 3). We first compare the NAF

value of the overall solution for the two cases in Figure 34a. It is evident from the

figure that controlling the mobility significantly boosts the performance specially for

densely arriving tasks. In fact, this difference is so huge that we needed to include

the smaller figure inside Figure 34a to magnify the behavior of the NAF for the

controlled mobility case. It is also observed that this difference in performance, while

still present, is much less if tasks arrive more sparsely. The reason is that for sparsely

arriving tasks both systems have much more time to react to the arriving information

and the difference in planning (controlled mobility) vs piggybacking (non-controlled

mobility) of computation becomes less evident.

Figure 34b compares the value of distance throughput (defined in Section 2.2.2)

for the cases of controlled mobility and non-controlled mobility. It is observed that

the distance throughput for the controlled mobility case always shows superiority

to the non-controlled mobility case. Beyond this, we also observe that the distance

throughput increase for the controlled mobility case as the tasks arrive more sparsely.

This is due to the fact that with more sparse tasks the controlled mobility system

can better plan to serve tasks that have lesser accumulation in the processors’ queues

and it also avoids any unnecessary travels. The non-controlled mobility case on the

other hand does not appear to perform better even if the tasks are arriving sparser

since it does not use the more planning time to the benefit of the system and always

relies on the pre-determined routes of the MHPCs to serve no matter how dense or

sparse the tasks arrive.

118

0 5 10 15 20 25
Expected Task Inter-Arrival (min)

0

20

40

60

80

100

A
v
e
ra
g
e
 N
A
F

Effect of Controlling Mobility vs Task Arrival Rate for MHPC

Controlled Mobility

Non-Controlled Mobility

0 5 10 15 20 25
Expected Task Inter-Arrival (min)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
v
e
ra
g
e
 N
A
F

(a) Effect on average objective value.

0 5 10 15 20 25
Expected Task Inter-Arrival (min)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
is

ta
n

ce
 T

h
ro

u
g

h
p

u
t

(t
a

sk
s

/
km

)

Effect of Controlling Mobility vs Task Arrival Rate for MHPC

Controlled Mobility

Non-Controlled Mobility

(b) Effect on distance throughput.
Figure 34: Effect of controlling speed versus task arrival rate on the objective value and
distance throughout for the MHPC system.

Figure 35 shows the comparison of the controlled mobility and non-controlled

mobility case for the HPC+MF system (second row Table 3). We first compare the

NAF value of the overall solution for the two cases in Figure 35a. The trend is similar

to those observed for the MHPC system except that ue to the requirement of visiting

the HPC for processing any picked up task and since the non-controlled mobility

system visits the HPC location once per round of visit of locations per route, the

opportunity to start processing of the tasks occur with extra delays and hence the

service given to the tasks is evn worse resulting in even more divergent performance

compared to the controlled mobility system whose performance is magnified in the

smaller figure inside Figure 35a.

Figure 35b compares the value of distance throughput (defined in Section 3.2.2)

for the cases of controlled mobility and non-contsrolled mobility. The behavior is

similar to that observed in Figure 34b with the increase in performance for the con-

trolled mobility system and non-difference for the non-controlled mobility system.

The reasoning behind the observed behavior is similar.

119

0 5 10 15 20 25
Expected Task Inter-Arrival (min)

0

100

200

300

400

500

600

700

800

900

A
v
e
ra
g
e
 N
A
F

Effect of Controlling Mobility vs Task Arrival Rate for HPC+MF

Controlled Mobility

Non-Controlled Mobility

0 5 10 15 20 25
Expected Task Inter-Arrival (min)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

A
v
e
ra
g
e
 N
A
F

(a) Effect on average objective value.

200 400 600 800 1000 1200 1400 1600
Expected Task Inter-Arrival (sec)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
is

ta
n
ce

 T
h
ro

u
g
h
p
u
t

(t
a
sk

s
/
km

)

Effect of Controlling Mobility vs Task Arrival Rate for HPC+MF

Controlled Mobility

Non-Controlled Mobility

(b) Effect on distance throughput.
Figure 35: Effect of controlling speed versus task arrival rate on the objective value and
distance throughout for the HPC+MF system.

4.4.4 Effect of Computation on the Move

In this section we compare the MHPC and HPC+MF heuristics. This is a comparison

along the first row of Table 3. The MHPC framework allows computation on the

move as the MHPCs can start processing tasks once they are picked up and as they

are moving towards other tasks for pickup and delivery, they can process the tasks

that they have already picked up. The HPC+MF framework, on the other hand

does not enjoy the computation while moving paradigm and instead separates the

communication and computation components. In this framework, picked up tasks

shall be dropped off at the stationary HPC for processing and the results shall be

received back from the HPC before delivery. While the HPC can process these tasks

in the same time that the MFs are off to other pickup/deliveries, there is an explicit

requirement to visit the HPC location in this framework. It is expected that this

requirement results in an inferior performance compared to the MHPC framework.

We start this section by comparing the performance of the two systems for similar

batches of tasks that arrive with various rates. The goal of this first experiment to

understand the fundamental performance differences between the two systems. The

experiment settings are mostly the same as Section 4.4.3 for both the MHPC and

120

HPC+MF frameworks. The mean inter-arrival time for the tests that use the MHPC

framework is changed from 250 sec to 1500 sec for the MHPC tests and from 150 sec

to 1500 sec for the HPC+MF tests in 50 sec increments. To keep the MHPC and

HPC+MF frameworks of this experiment comparable, we use 3 MHPCs each with 2

processors and compare it with a system of 3 MFs and an HPC of 3×2 = 6 processors.

This way, the computational capacity of the two systems are comparable and we can

focus on contrasting the fundamental difference of them.

Figure 36a shows the NAF versus the arrival rate for both MHPC and HPC+MF

systems. While both perform better with tasks arriving more apart from each other,

it is obvious that the MHPC heuristic always outperforms the HPC+MF. This can

be seen when one notices the fundamental difference of the two frameworks. Under

similar scenarios, the computation on the move is always an advantage allowing to

provide better service. One may also compare Figure 36a with Figures 34a and 35a.

While both computation on the move and controlling mobility provide an edge in

performance the latter provide a much larger advantage compared to the former.

This means that in general changing a non-controlled mobility system to a controlled

mobility system by using heuristics of Chapter 2 or 3 is a better investment than

changing an HPC+MF to an MHPC system that allows computation on the move.

Figure 36b shows the distance throughput versus the arrival rate for both MHPC

and HPC+MF systems. It is observed that both systems eventually present an in-

crease in distance throughput as tasks arrive more sparsely which stems from the

fact that both MHPC and HPC+MF frameworks apply control over mobility of the

vehicles. It is also observed that the MHPC system always makes less trips to serve

the same tasks since it does need the extra trip to the HPC location.

In the second experiment of this section, we make an attempt to understand the

reason for the performance gap observed in Figure 36 and to understand if there

121

0 5 10 15 20 25
Expected Task Inter-arrival Time(min)

1

2

3

4

5

6

7

A
v
e
ra
g
e
 N
A
F

Effect of Computation on the Move vs Task Arrival Rate

HPC + MF

MHPC

(a) Effect on average objective value.

0 5 10 15 20 25
Expected Task Inter-Arrival (min)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

D
is
ta
n
ce

 T
h
ro
u
g
h
p
u
t
(t
a
sk
s
/
km

)

Effect of Computation on the Move vs Task Arrival Rate

HPC + MF

MHPC

(b) Effect on distance throughput.
Figure 36: Effect of computation while moving versus task arrival rate on the objective
value and distance throughput.

are alternative approaches to upgrade an HPC+MF system in order to provide com-

parable service to an MHPC system. In this experiment, we add processors to an

122

HPC+MF system and compare it with a baseline MHPC system that employs a sin-

gle processor. Both frameworks use 3 vehicles (MFs or MHPCs) and they both serve

600 tasks generated from an Poisson process with a 200 sec inter-arrival time and

similar settings to those described in Section 4.4.1. Figure 37 provides comparisons

for objective value and distance throughput. It shall be noted that the MHPC system

always has a single processor and the x-axis only shows the increase of processors for

the HPC+MF and not for the MHPC system. The goal is to observe if increasing the

processors of an HPC+MF system and hence its computation capabilities can rem-

edy its deficiency of computation on the move when compared to a baseline MHPC

system. Figure 37a shows that while initially the MHPC system performs better than

the HPC+MF with a 3-fold advantage in the case of similar single-processor systems,

eventually the HPC+MF catches up in performance. In specific, in Figure 37a and

HPC+MF system of 5 processors can perform slightly better than the MHPC system.

This shows that if mounting the computation resources on the vehicles in an infeasi-

ble proposal for boosting the performance of a system one can alternatively provide

a higher performing stationary computation resource and get similar performance in

some cases. Figure 37b shows that the MHPC system always serves more tasks with

the same travel in this case. This is obvious as increasing the number of processors

is not expected to affect the trips that the vehicles make. In fact, in Figure 37b the

HPC+MF system does not exhibit any better performance with number of processors

and hence if one is concerned about the HPC+MF system making more trips due to

the requirement to visit the HPC, increasing the number of processors cannot help

remedy for the more trips.

In the third experiment of this section, we make the MFs serving in an HPC+MF

system increasingly faster and compare it with a baseline MHPC system that em-

ploys MHPCs moving at a very slow speed (2 m/s) another baseline MHPC system

123

1 2 3 4 5 6 7 8 9 10
Number of Processors

4

6

8

10

12

A
v
e
ra
g
e
 N
A
F

Effect of Computation on the Move vs # processors

HPC+MF

MHPC w/ 1 Processr

(a) Effect on average objective value.

1 2 3 4 5 6 7 8 9 10
Number of Processors

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

D
is

ta
n
ce

 T
h
ro

u
g
h
p
u
t

(t
a
sk

s
/

km
)

1e−7Effect of Computation on the Move vs # processors

HPC+MF

MHPC w/ 1 Processr

(b) Effect on distance throughput.
Figure 37: Effect of computation while moving versus number of processors on the objective
value and distance throughput. The MHPC plot shows the baseline case for a system
consisting of three MHPCs with a single processor.

124

that employs MHPCs moving at a regular speed (10 m/s). Similar to previous ex-

periment, both frameworks use 3 vehicles (MFs or MHPCs) and they both serve 600

tasks generated from an Poisson process with a 200 sec inter-arrival time and similar

settings to those described in Section 4.4.1. Figure 37 provides comparisons for objec-

tive value and distance throughput. It shall be noted that the MHPC system always

moves at a speed of 2 m/s or 10 m/s in the two baseline cases and the x-axis only

shows the increase of speed for the MFs for the HPC+MF and not for the MHPC

system. The goal is to observe if increasing the speed of a MFs and hence the com-

munication capabilities of the HPC+MF system system can remedy its deficiency of

computation on the move when compared to a baseline MHPC system. Figure 38a

shows that while initially the slow-moving MHPC system (2 m/s) performs better

than the HPC+MF with a 3+-fold advantage in the case of similar HPC+MF system,

eventually the HPC+MF catches up in performance as the MFs move faster. In spe-

cific, in Figure 38a and HPC+MF system with MFs moving at 10 m/s can perform

more than twice better than the MHPC system. As for the regular-moving MHPC

system (10 m/s) the HPC+MF system can only catch up at very high speeds of

40 m/s. This shows that if mounting the computation resources on the vehicles in an

infeasible proposal for boosting the performance of a system, another alternative is to

provide faster moving vehicles. Figure 38b shows that the MHPC system makes less

trips than the HPC+MF in general. The only exception is for very low speed of 2 m/s

on the HPC+MF system having better performance than both MHPC systems. We

account this to the fact that in this case the HPC+MF makes very conservative visits

to the HPC location, which can also be a task location as well in general and in both

the HPC+MF and MHPC frameworks, and since the cost of too many visits to the

HPC location is higher for the HPC+MF location in terms of service quality (NAF)

there is less trips made in the HPC+MF system. Despite this, soon after increasing

the MF speed, the HPC+MF makes more aggressive visits to the HPC location as it

125

incurs less cost on the service and hence its total trips grows higher than the baseline

MHPC systems. It also shows that although with increase of speed both MHPC and

HPC+MF make more aggressive trips, but the HPC+MF utilizes the ability to have

faster moving MFs more aggressively as visits to the HPC location on high speeds

can significantly help the performance of the system.

4.5 Conclusions

Motivated by the Node-Initiated Message Ferrying (NIMF) proposed by Zhao et al.,

[57], we have explored the dimension of non-controlled mobility on the heuristics

of Chapter 2 and 3. We have further categorized the algorithms on the dimen-

sion of computation on the move which is the distinction between the MHPC and

HPC+MF problems. After elaborating on how these dimensions differ, we have de-

veloped heuristics that utilize pre-determined mobility of vehicles to piggyback a

computation service (Section 4.2) or a communication service (Section 4.3) on them.

We have compared these heuristics to their counterparts in Sections 2.7 and 3.6, re-

spectively. Through the experiments, we have demonstrated the value in controlling

mobility and that it brings significant performance gains to the system. This estab-

lishes the value of our work in Chapter 2 and 3 compared to the related work that does

not attempt to control the mobility and instead relies on the pre-determined move-

ment of network elements. Finally, we have demonstrated that there is also value in

using the MHPCs compared to the combination of HPC and MFs. This is due to the

fact that the MHPC combines the computation and communication services while the

HPC+MF separates the two between the HPC and the MFs. We have shown that

in this case, it is more feasible to make up for the lack of computation on the move

by adding either more processors to the HPC and hence making computation more

powerful or by having faster moving MFs and hence improving the communication

capabilities.

126

0 5 10 15 20 25 30 35 40
Vehicle Speed (m/s)

0

2

4

6

8

10

12

14

16

A
v
e
ra
g
e
 N
A
F

Effect of Computation on the Move vs Speed

HPC+MF

MHPC w speed 2 m/s

MHPC w speed 10 m/s

(a) Effect on average objective value.

0 5 10 15 20 25 30 35 40
Vehicle Speed (m/s)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

D
is
ta
n
ce
 T
h
ro
u
g
h
p
u
t
(t
a
sk
s
/
km
)

Effect of Computation on the Move vs Speed

HPC+MF

MHPC w speed 2 m/s

MHPC w speed 10 m/s

(b) Effect on distance throughput.
Figure 38: Effect of computation while moving versus vehicle speed on the objective value
and distance throughput. The MHPC plot shows the baseline case for a system consisting
of three MHPCs moving at 2 m/s and another with three MHPCs moving at 10 m/s.

127

Algorithm 7: Heuristic for HPC+MF problem with non-cotrolled mobility

Input: Groups of tasks: (ti,Gti), Number of MFs: V , Number of HPC
Processors: m, MF Routes: {Li ∀i ∈ MF route}

Output: Solution = MF Assignment (per instance): ±ik ∀k ∈ V , ∀i ∈ tasks,
Task Execution Schedule (per instance):
schedk = {((t1, t2), i)} ∀k ∈ V

1 Initialization:
2 for Each MF k ∈ V do
3 Pickup List = {};
4 Delivery List = {}.

5 end
6 for Each MF k ∈ V do
7 while True do
8 Visit the next location, Lk, on MF route.
9 if Lk is not the HPC location then

10 for Each task i in the MF’s Pickup List do
11 if Pickup location of i, LPi == Lk then
12 Add the task to Pickup List ;
13 end

14 end
15 for Each task j in the MF’s Delivery List do
16 if Delivery location of j, LDi == Lk then
17 if Current Time ≤ Deadline for Task j, Di then
18 Mark task j as served.
19 else
20 Mark task j as rejected.
21 end

22 end

23 end

24 else if Lk is not the HPC location then
25 for Each task i in the MF’s Pickup List do
26 Add i to the queue for HPC’s FCFS scheduler.
27 end
28 Pickup List = {} for Each task j in the in HPC’s ready queue

(finished tasks) do
29 if MF k visits delivery location LDj or task j then
30 Add j to Delivery List of MF k.
31 end

32 end

33 end
34 if all tasks are served an no further tasks are supposed to arrive to the

system then
35 Terminate
36 end

37 end

38 end
39 return Solution= {MF Assignment, FCFS Schedule for HPC}, Rejected tasks.128

CHAPTER V

PLAUSIBLE MOBILITY INFERENCE FROM WIRELESS

CONTACTS USING OPTIMIZATION

5.1 Introduction

In this chapter, we introduce utilities that help further the research on computational

ferries and message ferry-assisted computational clouds. One of the first assumptions

in the framework of problems described in Chapter 2 and 3 that can be challenged

is the fact that either user nodes are stationary or the locations where tasks/results

are exchanged is a fixed location. In a more general case, user nodes can be truly

mobile and the MHPCs or MFs shall account for this mobility when they attempt to

exchange task/results with them. This mobility can be handled with any of the three

following assumptions:

• One can assume that location and mobility of all user nodes are known at any

point of time in the future. This assumption is the least realistic handling of

mobility and can be reasonable only if user nodes have a predictable mobility

pattern..

• One can assume that MHPC or the MF can always inquire about the current

location of the the user nodes and then track them with persistent update

requests until they can meet or get within range of the user node for information

exchange.

• One can assume that the user nodes either broadcast their location periodically

or assuming that they move with some average speed, they only broadcast any

change in their direction. These broadcasts can be received by MHPCs or MFs

129

and they can adjust their mobility to meet with the user node accordingly.

All of these assumption require access to some sort of mobility trace. In this chap-

ter, we argue alternate ways to collect and maintain mobility traces. Contributions

of this chapter can be used as a tool that helps better integrate mobility into these

frameworks.

In general, studies of mobile wireless protocols benefit from real-world traces that

measure and record node locations over time. These mobility traces can be combined

with radio models to produce network connectivity for simulation studies. Measuring

node locations with fine-grained time and space granularity is challenging and hence

the number of real world datasets on mobility that are publicly available is not signif-

icant. Examples of mobility traces are reported by Rhee et al. [39] with scenarios in

a university campus and in public places and by Banerejee et al. [8] for public transit

buses in a campus. A typical mobility trace that records snapshots of nodes’ mobility

over time is depicted in Figure 39b.

As an alternative, contact traces measure and record pairwise node connectivity

over time and do not require accurate positioning systems. Since they come from

radio transmissions, contact traces are able to capture environmental effects on com-

munication capability such as obstacles. These effects are mostly missing in mobility

traces. Contact traces record on-off timing information about links, hence they can

be more compact than mobility traces that record location data at every time instant.

A typical contact trace that records the pairwise proximity-based connections among

nodes in depicted in Figure 39a.

Contacts are typically recorded by using Bluetooth or WiFi in an infrastructure-

less mode such that all devices in range are seen as a contact. In such experiments,

mobile devices equipped with a wireless interface are attached to moving entities such

as people or vehicles. These mobile devices sample their environments periodically

and log the presence of neighboring nodes. At the conclusion of the experiment these

130

(a) A mobility trace records node mobility
over time.

(b) A contact trace records pairwise node
connectivity over time.

Figure 39: An illustrative description of mobility traces and contact traces.

logs are collected and a contact trace is constructed from them. Contact trace collec-

tion and analysis is reported in the literature and is used extensively to study mobile

networks for various settings ranging from a campus scenario [33][49] to urban scenar-

ios [36] or a disaster area [5]. Aschenbruck et al. [6] summarize these datasets. While

contact trace collection is easier than mobility trace collection, it is still considered

a challenging task. It requires instrumenting nodes with collection capability and

conducting a well-planned and coordinated collection “run”.

Despite collection difficulties, contact traces remain more available to researchers

than mobility traces. However, mobility traces offer an opportunity for more detailed

simulations and can be used to explore new scenarios, for example by combining

mobility with alternative radio models to generate new contact traces. For these

reasons, we are interested in the problem of inferring a plausible mobility trace from a

131

contact trace. A plausible mobility trace is one that can produce the given contract

trace. In general, there are many mobility traces that are consistent with a given

contact trace, and it is impossible to reconstruct exact locations. However, we believe

that exact locations are not required in many experiments that deal with studying

mobility. Our research explores the effect of this loss of accuracy in relative locations

that results from our inference algorithm.

Few solutions are proposed for this specific problem. Wang et al.[51] and Ris-

tanovic et al. [40] describe the inference problem and suggest some approaches.

These works are evidence that the problem is of interest to the community but nei-

ther explores the solution in detail.

Whitbeck et al. [54] propose a complete algorithm for the mobility inversion

problem. This algorithm is inspired by the work in dynamic graph drawing and is

based on the concepts of physical forces. The goal of the algorithm is to satisfy three

fundamental constraints on the mobility of the nodes. These constraints limit the

speed of nodes and their distances as they setup and lose contact. To do this, the

authors define three forces on each node based on their contact history and future; it

is the equilibrium of these forces that gives a relative set of locations satisfying the

given contacts.

A major disadvantage of the force-based algorithm is its dependence on many

parameters that need to be tuned properly in order for the algorithm to provide

accurate contact to mobility transformation. These include the rigidity constant,

the damping factor, the intensity constant, cutoff distance, etc. that are used in

the calculation of the forces. There is no general rule for tuning these parameters

for the algorithm. Our work is motivated by the need to find a contact to mobility

transformation algorithm that will work without the need for such parameter tuning.

Our proposed algorithm uses an approach based on formulating plausible mobility

inference as a feasibility problem for a small set of fundamental constraints on mobility

132

of the nodes. Our algorithm provides more accurate results and is more robust against

choices of parameters.

5.2 Mobility Inversion Algorithms

Let N be the number of nodes that reside in a d = 2 dimensional L× L square field

that consists of T time instances. A contact trace in this setting corresponds to a

N × N × T matrix. This representation implies that we have access to snapshots of

the connectivity structure of nodes at time instants T = {to, ..., tT−1} where |T |= T ,

i.e. we know the connectivity structure for T discrete snapshots1. A mobility trace

is a d× N × T matrix, X , where each element xk
i = (:, i, k) is the location of node i

at time tk.
2. A summary of these parameters is provided in Table 4.

Table 4: Parameters used in the Mobility Inference Algorithm 8.

Parameter Interpretation

N Number of nodes
R Transmission range.
v Maximum speed
T Number of snapshots of the

trace
d Number of dimensions
L Size of the simulation field
tk Time instant of the kth

snapshot of the trace
xk
i Location of node i at time

tk

Our algorithm does not use any information about initial locations nor does it

makes any assumptions about the underlying mobility behavior of the nodes. The

only assumptions made are the following:

1Note that most real traces are in the form of a “continuous” contact trace in which start and stop
times of contact events are recorded with some precision. Such contact traces can be transformed
into our desired discrete notation by capturing connectivity structure of nodes at discrete time
instants with a uniform step of ∆t = tk− tk−1. The value of ∆t needs to be chosen carefully to keep
the contact trace reasonably small in size while capturing all contact events that are long enough.

2Throughout this paper, we use the notation of MATLAB-like colons,(..., :, ...), to represent spe-
cific dimensions in a multidimensional matrix. For example A(:, 2) corresponds to the second column
in the matrix A.

133

• At any moment tk ∈ T in time, two nodes i and j are in contact once their

distance, ||xk
i − xk

j ||2 is less than a given radio range minus a margin, R(1− ǫ),

and are out of contact if this distance is larger than R(1 + ǫ) (modified circular

transmission range radio model).

• Nodes move slower than a given maximum speed v. This means that the dis-

tance between the location of a node i at time tk and tk−1 (tk ∈ T \{t0}), which

is represented as ||xk
i − xk−1

i ||2 is smaller than the maximum possible distance

that can be traveled, namely v × ∆t, where ∆t is the time difference between

snapshots.

• Nodes are always confined inside the L× L mobility field.

Now we describe the inference process followed by our algorithm. We use the

notation G = (V,E) for the evolving graph corresponding to the input contact trace

matrix, C. In this notation V = {1, 2, . . . , N} is the set of all nodes. This evolving

graph is a time-series of ordinary graphs Gk = (V,Ek) . An edge ekij ∈ Ek represents

a connection between nodes i and j at time instant tk. We associate graph G, with

its adjacency matrix C, i.e., each of the graphs Gk has an adjacency matrix Ck = C(:

, :, k).

A high-level description of our algorithm is illustrated in Figure 40. The algorithm

starts by finding an initial set of locations for nodes that is consistent with the initial

state of the contact trace at time t0, namely G0 with adjacency matrix C(:, :, 0). After

this initial step, to find the locations of the nodes at time instants t1, . . . , tT−1, we

solve a feasibility problem3 to find a set of locations for each of the snapshots in the

contact trace corresponding to these time instants. This feasibility problem ensures

3We have tried various objectives to solve the problem as a complete optimization problem.
Examples include minimizing nodes movement and minimizing node deviation from the center of
the field. Despite this, our simulations show that the best results are achieved when the problem
is stated as a feasibility problems. Besides this, there is no justification for an objective to be
minimized in this problem.

134

consistency with the three fundamental assumptions mentioned earlier. We use the

location of nodes at the previous step as the initial point for the next step, and solve

the problem iteratively to find the location of the nodes at each of the snapshots.

This process is described in Algorithm 8.

Algorithm 8: Mobility inversion algorithm.

Input: Contact Trace CN×N×T , Transmission range R, Maximum speed v
Output: Mobility trace Xfinal

1 Initialization: Find a set of initial locations X0;
2 Xfinal(:, :, 0)← X0 .
3 Optimization:
4 for k := 1 to T − 1 do
5 Xinit ← Xfinal(:, :, k − 1);
6 Solve the nonlinear optimization problem in Figure 40 with

Ck = C(:, :, k), Xinit, R, v to find X ;
7 Xfinal(:, :, k)← X .

8 end
9 return Xfinal

X
0
= X(:,:,k-1)

from previous step

minimize (0)

X ∈ RN × d

St.

 || X
i
 - X

j
 ||

2
 ≤ R(1- ϵ) ;∀i,j : C(i,j,k) = 1

 || X
i
 - X

j
 ||

2
 ≥ R(1+ϵ) ;∀i,j : C(i,j,k) = 0

 || X
i
 - X

0i
 ||

2
 ≤ v × ∆t ; ∀i

 X resides in the field.

Inferred

Locations

X = X(:,:,k)

R

V

CK

Figure 40: Optimization-based algorithm takes an initial point (Xinit = X(:, :, k − 1)), a
contact trace (Ck = C(:, :, k)) along with its corresponding radio range (R) and a value of
maximum speed (v) to infer a mobility (X = X(:, :, k)) in an iterative manner. Inferred
locations for each time step are given as an initial point to the solver for the next step. This
process is repeated for t = t0, . . . , tT−1.

Choice of the Initial Value: To address the issue of choosing a suitable value

for X0, we use the same method as above, except that the maximum speed constraint

135

is ignored. Since the solver still needs an initial point to seek the stationary point of

the subproblem solved at the first iteration of the algorithm, we construct a distance

matrix by finding the shortest path among all node pairs in terms of the number of

hops using the initial connectivity structure, G0. Next, we multiply this hop-count

matrix by the transmission range R, i.e., we assume two nodes m hops from each

other are at a distance m×R, and replace unreachable node pairs with a reasonably

large distance. Finally, we apply the classical Multidimensional Scaling (MDS) [14]

on this matrix to yield a decent initial point.

5.3 Evaluation

5.3.1 Evaluation Methodology

Similar to the work in [54] our evaluation is based on using the “original” contact

traces derived from known original mobility traces. Our algorithm is applied to pro-

duce an inferred mobility trace from this contact trace. This in turn is used to derive

an inferred contact trace using the known radio range. We then compare the original

contact trace with this inferred contact trace to judge the accuracy of our algorithm.

We use three levels of comparison. This process is illustrated in figure 41.

Mobility-level Comparison: Assuming that we have access to the mobility

trace from which the input contact trace originated. We can compare the original

mobility trace and the inferred mobility trace for each location. As a direct compar-

ison of absolute locations will not bear much information, we compare the distance

between each node-pair at each time step for both traces in a two-dimensional his-

togram.

Contact-level Comparison: This comparison evaluates how accurately our

algorithm replicates the connectivity structure of the original contact trace in the

inferred contact trace. We compare the evolving graphs corresponding to these two

contact traces over time based on the number of missing links, i.e., links present in

136

the input contact trace and missing in the inferred contact trace, extra links, i.e., links

only seen in the inferred contact trace, and the sum of these two numbers.

Original

Mobility

Inferred

Mobility
C C’Algorithm

InferredContact

Trace

Original

Contact Trace

R R

Contact Level Comparison

R , V
m

Mobility Level Comparison

Figure 41: An illustration of concepts of original trace, inferred trace, original contact trace,
and inferred contact trace. This figure explains which two traces are compared in mobility
level and contact level comparisons.

Packet Delivery Ratio: This comparison involves running a simulation on

the original and the inferred traces using the Opportunistic Network Environment

simulator (ONE) [27]. In these experiments, we send random packets with a specific

time to live (TTL) from a randomly chosen node destined for another randomly chosen

node at every time step. Then, we compare the cumulative number of messages that

reach their destinations before the TTL to total number of messages sent (packet

delivery ratio) at every time step.

5.3.2 Evaluation Setup

We use three traces, two synthetic and one real, to evaluate our algorithm.

• Random Waypoint (RWP)[11], which is often used for simulation purposes in

mobility literature despite its known limitations[55]. In this model speed, di-

rection, and destination of each node are chosen randomly and independently

137

of other nodes. Our RWP instance consists of 50 nodes with a duration of 1000

seconds with snapshots taken every second, spanning over a 1000 × 1000 m2

field. Maximum speed is 10m/s and transmission range is set to 100m.

• Self-similar Least Action Walk (SLAW)[28], which tries to capture statisti-

cal patterns of human mobility including truncated power-law distribution of

flights, pause-times and inter-contact times, and heterogeneously defined areas

of individual mobility. One of the main features of this model is that it captures

social contexts. The model is heavily based on GPS traces of human walks, in-

cluding 226 daily traces collected from 101 volunteers in five different outdoor

sites. Our instance of SLAW consists of 50 nodes simulated over 10 hours with

snapshots taken every minute. The simulation field is 2000×2000m2; maximum

speed is 10m/s and transmission range is 60m. Other important parameters of

the SLAW are 0.75 for the self-similarity of waypoints (on a scale of 0 to 1),

and a minimum (maximum) pause of 30 seconds (1 hour) for the individuals

chosen to match human mobility in a social setting.

5.3.3 Mobility-level Comparison

Figure 42 shows the histogram for pairwise distances normalized to the value of

transmission range. We do not expect to see a perfect correlation between the original

and inferred distances since the algorithm does not have any auxiliary information

about the locations of the nodes. Instead, we observe a trend of large distances versus

large distances and small distances versus small distances in the original and inferred

traces respectively. Note that in the ideal case the histogram should have high values

along its diagonal.

As the figures suggest, for RWP (Figure 42a), most of the distances are mapped

accordingly in the inferred trace with a distribution of errors around the diagonal.

For SLAW (Figure 42b), most of distances are small and mapped correctly (notice

138

the dark areas in the bottom left)and for a few larger distances(the lighter areas in

the upper half of the figure) performance deteriorates.

0 5 10
0

5

10

Original Trace

In
fe
rr
ed

T
ra
ce

Pairwise Distances Correlation Histogram

0

200

400

600

800

1000

1200

1400

1600

(a) RWP

0 5 10 15
0

5

10

15

Original Trace

In
fe
rr
ed

T
ra
ce

Pairwise Distances Correlation Histogram

0

2000

4000

6000

8000

10000

12000

(b) SLAW

Figure 42: Pairwise distance histograms. Horizontal (Vertical) axis shows distance among
node-pairs in the original (inferred) trace normalized by the value of the transmission range.
Color intensities are proportional to the number of node-pairs having distances in the cor-
responding bin.

5.3.4 Contact-level Comparison

Figure 43 shows the contact-level errors. For a more meaningful comparison, we use

the force-based heuristic of Whitbeck et al., [54] to infer the same trace. Except for

the obvious choices like transmission range and maximum speed, we use the default

values in the force-based heuristic. To preserve the readability of the figure, we plot

the missing, extra, and total link errors for our optimization-based heuristic and only

the total link errors for the force-based heuristic. For RWP, the figure suggests that

most of the error is in the missing links which are present in the original contact trace

but absent in the inferred contact trace. The total link errors are less than 2%, which

corresponds to 0.02× 1225 ≃ 24 errors out of the 1225 possible links.

For SLAW, although the trace is based on a much more complicated model and

is hours long in duration with update intervals of minutes, Figure 43b suggests errors

139

lower than 1%, i.e., at most 12 links in error, almost all of which are missed connec-

tions as seen in the figure. This is 3 times lower than the error of the force-based

heuristic.

0 200 400 600 800
0

2

4

6

8

10

Time

E
rr
or

(%
)

Link Prediction Errors in Connectivity Graph

Missing, Opt.
Extra ,Opt.
Total, Opt.
Total, FB

(a) RWP

0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1

2

3

4

5

Time
E
rr
or

(%
)

Link Prediction Errors in Connectivity Graph

Missing, Opt.
Extra ,Opt.
Total, Opt.
Total, FB

(b) SLAW

Figure 43: Contact-level errors over time. Extra link errors (Extra) are missing in the
original, but present in the inferred contact trace. Missing link errors (Missing) are present
in the original, but missing in the inferred contact trace. Total link errors (Total) is the
sum of these. The horizontal axis represents time and the vertical axis shows the errors as
percentage of the total number of possible links. The figure includes all three types of errors
for the optimization-based algorithm (Opt.) and the total link errors for the force-based
heuristic(FB).

5.3.5 Packet Delivery Ratio Comparison

Figure 44 shows the packet delivery ratio, calculated as the total number of packets

received by a destination node divided by the total number of packets sent to that

node up until the current time. In these experiments, we send a 1KB packet from

a randomly chosen node to another randomly chosen node every second. The value

of the TTL for messages is set to one-fifth of the trace length, e.g., 3 minutes for

RWP. We use the Probabilistic ROuting Protocol using History of Encounters and

Transitivity (PROPHET) [31] as the routing protocol for the simulation over simpler

routing protocols like flooding in order to have a more realistic situation. Despite

this, our complete set of results show that the choice of routing protocol has the

140

same effect on original and inferred contact traces and is irrelevant. We include the

simulation results for the original trace, inferred trace using the optimization-based

algorithm, and inferred trace using the force-based heuristic.

All figures suggest that the original and inferred traces show very similar behavior

in packet delivery. The figures also suggest that the errors in Figure 43 do not

significantly affect the packet delivery behavior. In all cases, force-based heuristic

shows a higher packet delivery ratio, which means it has unnecessary links in the

inferred trace (extra link errors). Also, the inferred trace using optimization-based

algorithm always performs more closely to the original trace than the force-based

heuristic with the difference most obvious in Figure 44a.

0.0 0.2 0.4 0.6 0.8 1.0

Time ×10
3

0.0

0.2

0.4

0.6

0.8

1.0

D
el

iv
er

y
R

at
io

Original Trace

Optimization
Force-Based

(a) RWP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Time ×10
4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
el

iv
er

y
R

at
io

Original Trace

Optimization
Force-Based

(b) SLAW

Figure 44: Message Delivery Ratio versus time. Vertical axis shows the total number of
messages delivered until the current time divided by the total number of messages sent.

5.4 Conclusions and Future Work

In this chapter, we have explored an optimization-based algorithm to solve the prob-

lem of inferring mobility from contacts. Our algorithm accepts a contact trace that

contains information about connectivity of nodes over time. Without any extra infor-

mation or assumptions about the locations of these nodes, we infer a set of locations

that could generate these contacts. Through extensive experiments with synthetic

and real traces, we show that this inferred mobility has connectivity characteristics

141

that are comparable to the original trace and can be used in simulations instead of

the original contact trace.

As stated earlier, our algorithm, unlike the work in [54] has the important ad-

vantage that it works without needing cumbersome and error-prone parameter tun-

ing. The optimization framework on which our algorithm is built also has additional

promise for future extensions including:

• In this work we have assumed a simple circular radio range model, i.e., two nodes

are in contact whenever their distance is less than a given transmission range

and disconnected otherwise. In reality, a contact trace should be interpreted

along with its corresponding radio model which specifies the circumstances un-

der which two nodes are actually in contact and factors such as the existence

of obstacles, fading and shadowing, and inequality of signal strength inside the

transmission range need to be taken into account. We believe our approach pro-

vides a suitable framework for incorporating a radio model since the feasibility

constraints explicitly incorporate the radio range. One idea would be to replace

R in the constraints with a random number drawn from a distribution of radio

ranges derived from a specific radio propagation model.

• An input contact trace induces a set of constraints in our algorithm. Because

of this, our algorithm can take as input multiple contact traces which simply

translates into multiple sets of constraints for which an approximate feasible

solution can be obtained. We believe this will allow us to produce more accurate

contact to mobility transformation. If this is confirmed it may indicate that

trace collection exercises can enhance their usability if they are augmented to

obtain multiple traces simultaneously.

142

CHAPTER VI

CONCLUSION AND EXTENSIONS

In this thesis, we have explored the problem of using HPCs as means of computational

offloading to help users dispersed in a geographical region with the intensive tasks

on their hand-held devices. After motivating the problem of mobile offloading and

reviewing its requirements, we have surveyed related literature in Chapter 1 of the

thesis to understand the position of our research relative to similar problems. Specif-

ically, we have laid the foundation of the problems considered in this thesis around

scenarios where connectivity infrastructure is not available and size of the geographic

region along with bandwidth considerations do not allow direct communication for all

users. We have proposed and provided extensive study of the following two problems

in Chapters 2 and 3:

• Computational Ferrying via MHPCs (MHPC Problem): This work has

considered an algorithm for scheduling computation on a Mobile High Perfor-

mance Computer (MHPC). We have suggested a framework where a number of

User Nodes that have computationally expensive tasks will receive computation

help from the MHPCs. These MHPCs are vehicles on which a High-Performance

Computer (HPC) is mounted. They can go to the location of the User Nodes,

pick up their tasks, process them and deliver the results back to the User Node.

The premise of the work was the possibility of computation (on the MHPC)

while moving. We have modeled this problem as an MILP and have used in-

sights from the model to propose heuristics to solve the problem at scale. An

extensive evaluation of various scenarios and effects of different parameters in

the system has been performed as well.

143

• Message Ferrying with a Purpose (HPC+MF Problem):This work has

considered an algorithm for a similar problem where the communication and

computation component of the MHPCs is separated as follows: A stationary

HPC is placed somewhere in the field (similar to military base stations) and the

vehicles act as “Message Ferries (MF)” that provide communication (moving

tasks and results) between the User Nodes and the HPC. In this scenario, the

HPC will take the role of the computational component. We have described

the fundamental differences of this problem to the MHPC system which neces-

sitates proposing completely new heuristics for the system. We have developed

the framework, mathematical formulation, scalable heuristics and their imple-

mentation, and evaluation of the system in Chapter 3.

After extensive study of the above problems, in Chapter 4, we have investigated

heuristics that instead of planning for the mobility of the vehicles (MHPCS or MFs)

use pre-determined routes of vehicles and piggyback computation or communication

services on this movement. We have explored this possibility in detail and have pre-

sented two more heuristics for these scenarios in MHPC and HPC+MF frameworks.

We have then provided extensive comparison of the these systems that are based on

a characteristic of “non-controlled mobility” with those of Chapter 2 and 3 that en-

joy “controlled mobility”. We also compared the MHPC and HPC+MF heuristics in

Chapter 4 noting that the former enjoys “computation on the move” while the latter

does not.

In Chapter 5 of the thesis, we have made first steps towards the next possible addi-

tion to this work, integration of unknown user mobility in the MHPC and HPC+MF

frameworks. We have considered methods for using easily collectible contact traces

and proposed techniques to infer highly demanded mobility traces from them. This

is complemented by detailed description and analysis of the proposed algorithm.

There are many avenues of research that can be followed from this work. These

144

include:

• Integration of Unknown User Node Mobility: This extension of our work

includes consideration of the frameworks where user nodes move and various,

possibly low, levels of information about their mobility is given into the future.

One can expand the MHPC and HPC+MF heuristics for such scenarios. In

Section 5.1 we have categorized these avenues.

For the case that location of each user node is known for any instance in time,

we can break down the mobility of each user node into way points. We have

shown that one can find the earliest time and location that a vehicle with con-

trolled mobility and fixed speed can intersect a user node with non-controlled

but known mobility. This is done in two steps; first by finding the first two

way points on the route of the user node that the vehicle can intersect, then by

solving a quadratic equation that yields the time and location of the intersec-

tion. With this and knowledge of mobility of all user nodes, the extension to

integrate mobility seems straightforward. However, the assumption of knowing

mobility for all time instants through future is not realistic. A second sugges-

tion is to track the user node until it is met. In this scheme, the vehicle can ask

for the current location, direction, and speed of a user node and assume that

it moves with those specifications forever and find the intersection point. This

intersection point is guaranteed to be found by solving a quadratic equation.

After finding the intersection point the vehicle must go to that location. If the

user node is present, i.e. it does not change direction by the time of intersect,

the exchange of information can happen; otherwise the vehicle must inquire

the location, direction, and speed of the user node again and repeat the same

procedure from its new location. The problem with this approach is that the

number of such attempts must be limited to be able to deliver reasonable ser-

vice in the system. A final recommendation to accommodate mobility involves

145

assuming that user nodes update the corresponding vehicles about any change

of direction. In this case the vehicle can initially go on an intersect course

and whenever it gets an update from the user node, it can change the intersect

course accordingly. The issue with this approach is also similarly the problem

of chasing user nodes for a long time. In both cases, limitation of the number

of attempts seems necessary.

• Integration of Complex Communication Models: Another recommended

addition is modification or proposal of new heuristics for more complex com-

munication scenarios. These can include scenarios where the short-range and

long-range radios of the systems suffer from various imperfection of wireless

channels. For example, one can modify the mobility of the MHPCs or MFs

to get optimally close to the user nodes for information exchange, considering

that the closer they get, the better their experienced communication quality is

expected to be. Other considerations that are worthy are integration of various

wireless effects like fading or shadowing into the model.

• Handling Imperfect Data Transmissions: With an imperfect wireless

channel, loss of data is inevitable. In our work, the assumption is that such

losses are handled by TCP or another underlying transport protocol. While it

is possible to handle the loss at lower levels, it may also be worth considering

handling the loss at the application level. This will provide an opportunity to

integrate the loss handling into the heuristics directly. For example, one can

consider rejecting tasks if the actual task or the result fail to be transferred

between a vehicle and the user node after a given number of attempts.

• Redundancy: The current implementation of our heuristics assume that once

a vehicle is assigned to a task, it will be able to serve it successfully unless the

task deadline is missed. However, there may be other reasons resulting in failure

146

of service to a task including communication imperfections (as noted above), ve-

hicle malfunctions, road conditions, etc. While rejecting tasks assigned to such

vehicles is one option, another approach to this issue can be using redundancy.

In such cases, for some or all tasks more than one vehicle can be responsible

for providing service. In the event that one of the vehicles fails, the others may

make up for the failure.

• Distributed Systems: Proposing distributed heuristics for the MPHC prob-

lem seems another appealing addition. One may consider the case that there is

no need for an MHPC controller and suggest mechanisms to coordinate among

the MHPCs to process the tasks. This problem can introduce many new issues

including proper state synchronization among the vehicles. Request for service

in these cases can be sent as a broadcast or multicast message that is possibly

received by many vehicles. Once a vehicle commits to service, it shall notify the

others of the state of service being provided and if successful, there will not be

a need for other vehicles to help serve that task. Redundancy can be added to

the distributed solution as well making it capable of serving tasks in the event

of failure of one vehicle.

• Message Relaying: Similar to the work of Zhao et al. [58], it is also possible to

use the user nodes and the vehicles (MHPCs or MFs) as message relays that help

in communication and facilitate the transfer of data among the components of

the system. This addition can be broken down to the following possibilities: (i)

an MHPC may have a task picked up, partially processed or ready for delivery.

It can leave that task at a user node that is not supposed to receive the results

so that another MHPC that can provide a more timely service can pick it up

and continue with the serving of that task. (ii) In a similar scenario as i, an

MHPC can meet another MHPC and exchange some of its tasks with it if it

147

determines that the other MHPC can serve those tasks better. This second

scenario needs handling of mobility of the vehicles and might be considered in

conjunction with integration of mobility to the model. (iii) An MF that has a

task picked up or has a result to be delivered can similarly use any regular node

as a relay. Note that our HPC+MF heuristic already uses the special HPC

node as a relay as it does not require the pickup MF to be the same as the

delivery MF. This possibility can be extended to using regular nodes as relays

if it improves the service. (iv) Finally, in the same scenario as iii, MFs that

meet each other on their routes or get into each others communication range

can exchange their picked up tasks or ready-to-deliver results. This will happen

if the other MF will visit the HPC (in case of pickup) or the delivery user node

(in case of delivery) sooner.

• Addition of more Features to the System: There are many additional

features that can be added to the system and may need modification of the

heuristics. To name a few, processor sharing in the schedulers, more complex

scheduling models, consideration of physical size of the tasks/results and the

required time to transfer them among components of the system, and consider-

ation of the computation of the optimal solution as yet another tasks that shall

itself be scheduled are all examples of possible additions to our work.

• Building the Systems: Finally, a last proposal includes building an actual

system that uses vehicles and deployed user nodes and tests the functionality

of the proposed heuristics and possibly reveals the the required modifications

to deal with real-world situations. This can be done in various scales, from

using small computers and controlled robots to deploying the actual system in

a battlefield. One can consider to study the problem on a smaller scale using

Raspberry Pi [1] computers mounted on robots with controlled mobility. While

148

this can mimic an MHPC and might reveal insights regarding the problem and

issues that may be faced with a full-scale implementation, it will still be far

from a full implementation of the system which will use actual military vehicles

similar to those of Figure 1a to serve computational tasks of soldiers in a combat

field.

149

REFERENCES

[1] “Raspberry pi foundation.” Raspberry Pi 2.

[2] “IBM ILOG CPLEX Optimizer.”
urlhttp://www-01.ibm.com/software/integration/optimization/cplex-
optimizer/, Last 2010.

[3] “CERIT-SC (a part of metacentrum) workload log,” tech. rep., CERIT-SC and
the Czech National Grid Infrastructure MetaCentrum, 2013.

[4] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H.,
Konwinski, A., Lee, G., Patterson, D. A., Rabkin, A., Stoica, I.,
and Zaharia, M., “Above the clouds: A berkeley view of cloud computing,”
Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California,
Berkeley, Feb 2009.

[5] Aschenbruck, N., Gerhards-Padilla, E., and Martini, P., “Modeling
mobility in disaster area scenarios,” Performance Evaluation, vol. 66, no. 12,
pp. 773–790, 2009.

[6] Aschenbruck, N., Munjal, A., and Camp, T., “Trace-based mobility mod-
eling for multi-hop wireless networks,” Computer Communications, vol. 34, no. 6,
pp. 704–714, 2011.

[7] Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S., and
Yang, H.-I., “The case for cyber foraging,” in Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pp. 87–92, ACM, 2002.

[8] Banerjee, N., Corner, M., and Levine, B., “An energy-efficient architec-
ture for DTN throwboxes,” in INFOCOM 2007. 26th IEEE International Con-
ference on Computer Communications. IEEE, pp. 776–784, IEEE, 2007.

[9] Banerjee, N., Corner, M. D., and Levine, B. N., “Design and Field
Experimentation of an Energy-Efficient Architecture for DTN Throwboxes,”
IEEE/ACM Transactions on Networking, vol. 18, pp. 554–567, April 2010.

[10] Bin Tariq, M. M.,Ammar, M., and Zegura, E., “Message ferry route design
for sparse ad hoc networks with mobile nodes,” in Proceedings of the 7th ACM
international symposium on Mobile ad hoc networking and computing, pp. 37–48,
ACM, 2006.

[11] Camp, T., Boleng, J., and Davies, V., “A survey of mobility models for ad
hoc network research,” Wireless communications and mobile computing, vol. 2,
no. 5, pp. 483–502, 2002.

150

[12] Chen, M., Hao, Y., Li, Y., Lai, C.-F., and Wu, D., “On the computation
offloading at ad hoc cloudlet: architecture and service modes,” Communications
Magazine, IEEE, vol. 53, no. 6, pp. 18–24, 2015.

[13] Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A., “Clonecloud:
elastic execution between mobile device and cloud,” in Proceedings of the sixth
conference on Computer systems, pp. 301–314, ACM, 2011.

[14] Colliat, G., “OLAP, relational, and multidimensional database systems,”
ACM Sigmod Record, vol. 25, no. 3, pp. 64–69, 1996.

[15] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu,
S., Chandra, R., and Bahl, P., “MAUI: making smartphones last longer
with code offload,” in Proceedings of the 8th international conference on Mobile
systems, applications, and services, pp. 49–62, ACM, 2010.

[16] Dinh, H. T., Lee, C., Niyato, D., and Wang, P., “A survey of mobile cloud
computing: architecture, applications, and approaches,” Wireless Communica-
tions and Mobile Computing, 2011.

[17] Eltoweissy, M., Olariu, S., and Younis, M., “Towards autonomous vehic-
ular clouds,” in Ad hoc networks, pp. 1–16, Springer, 2010.

[18] Fernando, N., Loke, S. W., and Rahayu, W., “Mobile cloud computing: A
survey,” Future Generation Computer Systems, vol. 29, no. 1, pp. 84–106, 2013.

[19] Flinn, J., “Cyber foraging: Bridging mobile and cloud computing,” Synthesis
Lectures on Mobile and Pervasive Computing, vol. 7, no. 2, pp. 1–103, 2012.

[20] Forbes, D., “TSY-300X 3U VPX, 8-Slot Preconfigured System, high perfor-
mance computers (HPCs).” Themis Computer.

[21] Gao, L., Yu, S., Luan, T. H., and Zhou, W., Delay Tolerant Networks.
Springer, 2015.

[22] Gerla, M., “Vehicular cloud computing,” in Ad Hoc Networking Workshop
(Med-Hoc-Net), 2012 The 11th Annual Mediterranean, pp. 152–155, IEEE, 2012.

[23] Habak, K., Ammar, M., Harras, K. A., and Zegura, E., “Femto clouds:
Leveraging mobile devices to provide cloud service at the edge,” IEEE 8th In-
ternational Conference on Cloud Computing, 2015.

[24] Jain, S., Fall, K., and Patra, R., Routing in a delay tolerant network, vol. 34.
ACM, 2004.

[25] Jain, S., Shah, R. C., Brunette, W., Borriello, G., and Roy, S., “Ex-
ploiting mobility for energy efficient data collection in wireless sensor networks,”
Mobile Networks and Applications, vol. 11, no. 3, pp. 327–339, 2006.

151

[26] Jea, D., Somasundara, A., and Srivastava, M., “Multiple controlled mobile
elements (data mules) for data collection in sensor networks,” in Distributed
Computing in Sensor Systems, pp. 244–257, Springer, 2005.

[27] Keränen, A., Ott, J., andKärkkäinen, T., “The one simulator for dtn pro-
tocol evaluation,” in Proceedings of the 2Nd International Conference on Simu-
lation Tools and Techniques, Simutools ’09, (ICST, Brussels, Belgium, Belgium),
pp. 55:1–55:10, ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009.

[28] Lee, K., Hong, S., Kim, S. J., Rhee, I., and Chong, S., “SLAW: A New
Mobility Model for Human Walks.,” in INFOCOM, pp. 855–863, IEEE, 2009.

[29] Lewis, G., Echeverŕıa, S., Simanta, S., Bradshaw, B., and Root, J.,
“Tactical cloudlets: Moving cloud computing to the edge,” in Military Commu-
nications Conference (MILCOM), 2014 IEEE, pp. 1440–1446, IEEE, 2014.

[30] Li, B., Pei, Y., Wu, H., and Shen, B., “Heuristics to allocate high-
performance cloudlets for computation offloading in mobile ad hoc clouds,” The
Journal of Supercomputing, pp. 1–28, 2015.

[31] Lindgren, A., Doria, A., and Schelen, O., “Probabilistic Routing in In-
termittently Connected Networks.,” in SAPIR (Dini, P., Lorenz, P., and
de Souza, J. N., eds.), vol. 3126 of Lecture Notes in Computer Science, pp. 239–
254, Springer, 2004.

[32] Mell, P. and Grance, T., “The nist definition of cloud computing,” 2011.

[33] Meroni, P., Gaito, S., Pagani, E., and Rossi, G. P., “CRAW-
DAD data set unimi/pmtr (v. 2008-12-01).” Downloaded from
http://crawdad.cs.dartmouth.edu/unimi/pmtr, Dec. 2008.

[34] Monfared, A., Ammar, M., Zegura, E., Doria, D., and Bruno, D.,
“Computational ferrying: Challenges in deploying a mobile high performance
computer,” inWorld of Wireless, Mobile and Multimedia Networks (WoWMoM),
2015 IEEE 16th International Symposium on a, pp. 1–6, IEEE, 2015.

[35] Morris, E., “A new approach for handheld devices in the military,” SEI Blog,
2011.

[36] Natarajan, A., Motani, M., and Srinivasan, V., “Understanding urban
interactions from bluetooth phone contact traces,” Passive and Active Network
Measurement, pp. 115–124, 2007.

[37] Olariu, S., Hristov, T., and Yan, G., “The next paradigm shift: from ve-
hicular networks to vehicular clouds,” Basagni, S. and Conti, M. and Giordano,
S. Stojmenovic, I),(Eds), Mobile Ad hoc networking: the cutting edge directions,
Wiley and Sons, New York, 2012.

152

http://crawdad.cs.dartmouth.edu/unimi/pmtr

[38] Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., and Venkata-

subramanian, N., “Mobile cloud computing: A survey, state of art and future
directions,” Mobile Networks and Applications, vol. 19, no. 2, pp. 133–143, 2014.

[39] Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., and Chong, S., “On the
levy-walk nature of human mobility.,” IEEE/ACM Trans. Netw., vol. 19, no. 3,
pp. 630–643, 2011.

[40] Ristanovic, N., Tran, D., and Le Boudec, J., “Tracking of mobile de-
vices through Bluetooth contacts,” in Proceedings of the ACM CoNEXT Student
Workshop, p. 4, ACM, 2010.

[41] Satyanarayanan, M., Bahl, P., Caceres, R., and Davies, N., “The
case for vm-based cloudlets in mobile computing,” Pervasive Computing, IEEE,
vol. 8, no. 4, pp. 14–23, 2009.

[42] Shah, R. C., Roy, S., Jain, S., and Brunette, W., “Data mules: Modeling
and analysis of a three-tier architecture for sparse sensor networks,” Ad Hoc
Networks, vol. 1, no. 2, pp. 215–233, 2003.

[43] Shi, C., Ammar, M. H., Zegura, E. W., and Naik, M., “Computing in
cirrus clouds: the challenge of intermittent connectivity,” in Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pp. 23–28, ACM,
2012.

[44] Shi, C., Habak, K., Pandurangan, P., Ammar, M., Naik, M., and Ze-

gura, E., “Cosmos: computation offloading as a service for mobile devices,”
in Proceedings of the 15th ACM international symposium on Mobile ad hoc net-
working and computing, pp. 287–296, ACM, 2014.

[45] Shi, C., Lakafosis, V., Ammar, M. H., and Zegura, E. W., “Serendipity:
Enabling remote computing among intermittently connected mobile devices,” in
Proceedings of the thirteenth ACM international symposium on Mobile Ad Hoc
Networking and Computing, pp. 145–154, ACM, 2012.

[46] Shires, D., Henz, B., Park, S., and Clarke, J., “Cloudlet seeding: Spa-
tial deployment for high performance tactical clouds,” Parallel and Distributed
Processing Techniques and Applications, 2012.

[47] SIGFOX, “White paper: M2m and iot redefined through cost effective and
energy optimized connectivity,” tech. rep., 425, rue Jean Rostand, 31670 Labege
FRANCE, 2015.

[48] Soyata, T., Enabling Real-Time Mobile Cloud Computing through Emerging
Technologies. IGI Global, 2015.

[49] Srinivasan, V., Motani, M., and Ooi, W. T., “CRAW-
DAD data set nus/contact (v. 2006-08-01).” Downloaded from
http://crawdad.cs.dartmouth.edu/nus/contact, Aug. 2006.

153

http://crawdad.cs.dartmouth.edu/nus/contact

[50] Teller, P., McGarry, M., Shires, D., Park, S.-J., Naguyen, L., and
Deroba, J., “Enabling battlefield decision making in the tactical cloud,” in
Army High Performance Computing Research Center, 2013.

[51] Wang, P., Gao, Z., Xu, X., Zhou, Y., Zhu, H., and Zhu, K., “Automatic
inference of movements from contact histories,” in Proceedings of the ACM SIG-
COMM 2011 conference on SIGCOMM, pp. 386–387, ACM, 2011.

[52] Whaiduzzaman, M., Sookhak, M., Gani, A., and Buyya, R., “A survey
on vehicular cloud computing,” Journal of Network and Computer Applications,
vol. 40, pp. 325–344, 2014.

[53] Whitbeck, J., Conan, V., and Dias de Amorim, M., “Critical analysis of
encounter traces,” in Proceedings of the 2010 ACM workshop on Wireless of the
students, by the students, for the students, pp. 29–32, ACM, 2010.

[54] Whitbeck, J., De Amorim, M., Conan, V., Ammar, M., and Zegura,

E., “From encounters to plausible mobility,” Pervasive and Mobile Computing,
vol. 7, no. 2, pp. 206–222, 2011.

[55] Yoon, J., Liu, M., andNoble, B., “RandomWaypoint Considered Harmful.,”
in INFOCOM, 2003.

[56] Zhang, Y., Niyato, D., Wang, P., and Tham, C.-K., “Dynamic offloading
algorithm in intermittently connected mobile cloudlet systems,” in Communi-
cations (ICC), 2014 IEEE International Conference on, pp. 4190–4195, IEEE,
2014.

[57] Zhao, W., Ammar, M., and Zegura, E., “A message ferrying approach for
data delivery in sparse mobile ad hoc networks,” in Proceedings of the 5th ACM
international symposium on Mobile ad hoc networking and computing, pp. 187–
198, ACM, 2004.

[58] Zhao, W., Ammar, M., and Zegura, E., “Controlling the mobility of multiple
data transport ferries in a delay-tolerant network,” in INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 2, pp. 1407–1418, IEEE, 2005.

[59] Zhao, W., Chen, Y., Ammar, M., Corner, M., Levine, B., and Zegura,

E., “Capacity enhancement using throwboxes in dtns,” in Mobile Adhoc and
Sensor Systems (MASS), 2006 IEEE International Conference on, pp. 31–40,
IEEE, 2006.

154

	Titlepage
	Signatures
	Dedication
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Background and Literature Overview
	Introduction
	Literature Review
	Cloud Computing and Mobile Cloud Computing
	Cloudlets
	Cyber Foraging
	Vehicular Cloud Computing
	Data MULES
	Message Ferries
	Tactical Clouldlets

	Organization of the Thesis

	Chapter 2 — Computational Ferries: Scheduling for Mobile High Performance Computing
	Introduction
	Problem Framework
	Framework Structure and Problem Settings
	Structure of the Solution
	Objective Value
	Work Conservation, Preemption, and Processor Sharing

	System Architecture
	Mathematical Model of MHPC Problem
	Complexity Analysis for an Exact Algorithm

	Theoretical Foundations
	Bounds on the Performance of the Offline Heuristic

	Offline MHPC Problem
	Constructive Heuristic
	Improvement Heuristics
	Applying Heuristics to Solve Variants of MHPC Scheduling Problem

	Online MHPC Problem
	Base Online Algorithm
	Cutting Algorithm
	Merging Solutions

	Evaluation
	Examples of the Offline MHPC Problem
	Validation of the Offline MHPC Heuristic
	Performance of the Offline MHPC Heuristic versus Number of Processors for Non-preemptive and Preemptive Schedulers
	Performance of the Offline MHPC Heuristic versus Preemption Overhead
	Performance of the Offline MHPC Heuristic versus Task Availability
	Performance of the Online MHPC Heuristic versus Task Arrival Frequency
	Performance of the Online MHPC Heuristic versus Size of Task Groups
	Performance of the Online MHPC Heuristic versus Task Deadlines
	Examination of Effects of Travel Distances on the Online MHPC Heuristic
	Examination of Effects of Mobility Pattern on the Online MHPC Heuristic
	Examination of Benefits of Increasing Vehicles versus Processors for the Online MHPC Heuristic

	Conclusions and Future Work

	Chapter 3 — Message Ferrying with a Purpose: Scheduling Ferries to Provide Service on a Tactical High Performance Computer
	Introduction
	Problem Framework
	Framework Structure and Problem Settings
	Structure of the Solution
	Objective Value

	System Architecture
	Mathematical Model of HPC+MF Problem
	Complexity of the Heuristics

	Offline HPC+MF Problem
	Constructive Heuristic
	 Earliest Delivery Scheduling for HPC+MF
	Applying Heuristics to Solve Variants of HPC+MF Scheduling Problem

	Online HPC+MF Problem
	Base Online Algorithm
	Cutting Algorithm
	Merging Solutions

	Evaluation
	Examples of the Offline HPC+MF Problem
	Performance of the Offline HPC+MF Heuristic versus Number of Processors for Non-preemptive and Preemptive Schedulers
	Performance of the Online HPC+MF Heuristic versus Task Arrival Frequency
	Performance of the Online HPC+MF Heuristic versus Task Deadlines
	Examination of Effects of the Relative HPC Location on the Online HPC+MF Heuristic

	Conclusions and Future Work

	Chapter 4 — Towards Understanding the Value of Controlling Mobility in a Tactical High Performance Computing Cloud Service
	Introduction
	Non-Controlled Mobility Service for the MHPC Framework
	Non-Controlled Mobility Service for the HPC+MF Framework
	Evaluation
	Evaluation Setup
	Effect of Controlling Mobility versus MHPC/MF Speed
	Effect of Controlling Mobility versus Task Arrival Rate
	Effect of Computation on the Move

	Conclusions

	Chapter 5 — Plausible Mobility Inference from Wireless Contacts Using Optimization
	Introduction
	Mobility Inversion Algorithms
	Evaluation
	Evaluation Methodology
	Evaluation Setup
	Mobility-level Comparison
	Contact-level Comparison
	Packet Delivery Ratio Comparison

	Conclusions and Future Work

	Chapter 6 — Conclusion and Extensions
	References

