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ABSTRACT

Molecular Simulation towards Efficient and Representative

Subsurface Reservoirs Modeling

Ahmad Kadoura

This dissertation focuses on the application of Monte Carlo (MC) molecular sim-

ulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of sub-

surface reservoir fluids. At first, MC molecular simulation is proposed as a promising

method to replace correlations and equations of state in subsurface flow simulators.

In order to accelerate MC simulations, a set of early rejection schemes (conserva-

tive, hybrid, and non-conservative) in addition to extrapolation methods through

reweighting and reconstruction of pre-generated MC Markov chains were developed.

Furthermore, an extensive study was conducted to investigate sorption and transport

processes of methane, carbon dioxide, water, and their mixtures in the inorganic part

of shale using both MC and MD simulations. These simulations covered a wide range

of thermodynamic conditions, pore sizes, and fluid compositions shedding light on

several interesting findings. For example, the possibility to have more carbon dioxide

adsorbed with more preadsorbed water concentrations at relatively large basal spaces.

The dissertation is divided into four chapters. The first chapter corresponds to the

introductory part where a brief background about molecular simulation and motiva-

tions are given. The second chapter is devoted to discuss the theoretical aspects and

methodology of the proposed MC speeding up techniques in addition to the corre-
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sponding results leading to the successful multi-scale simulation of the compressible

single-phase flow scenario. In chapter 3, the results regarding our extensive study on

shale gas at laboratory conditions are reported. At the fourth and last chapter, we

end the dissertation with few concluding remarks highlighting the key findings and

summarizing the future directions.
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Chapter 1

Introduction

1.1 Motivation

It is crucial for reservoir flow simulators to have robust thermodynamic models that

can accurately estimate the various thermophysical properties of the simulated sub-

surface fluid. These quantities may include both equilibrium properties (vapor pres-

sure, heat capacity, compressibility, etc.) and transport properties (viscosity, diffusion

coefficient, etc.). So far, the continuum-based models (e.g. equations of state and

correlations) have played the major role in fulfilling this task [1,2]. Nonetheless, with

the increase in exploiting the non-conventional reservoirs, the continuum-based mod-

els have faced two main challenges [3, 4]: (i) Lack of experimental data availability

due to operating under extreme pressure and/or temperature conditions, in addition

to presence of hazardous materials (e.g. corrosive, toxic and explosive). (ii) Working

at extremely small scale (e.g. tight formations and shale gas reservoirs), where the

continuum assumption might be violated.

On the other hand, and based on the concepts of statistical thermodynamics and

quantum mechanics, these thermophysical properties of interest are predictable if

one can monitor the evolution of the positions and momenta of the molecules form-

ing the fluid system beside the adequate potential function to evaluate the inter- and

intra-molecular interactions [5–8]. Lately, and due to advancements in computational
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capabilities and algorithms, researchers were successful in developing and applying

the Monte Carlo (MC) and Molecular Dynamics (MD) simulation methods. How-

ever, in comparison to classical thermodynamic models, the main disadvantage of

molecular simulation is the much higher computational cost needed. Nonetheless,

the advantages of molecular simulation are many, and evident [3, 4].

Therefore, we believe that molecular simulation can provide a suitable set to

model subsurface reservoirs over the classical models where extreme thermodynamic

conditions, often at small scales, are expected. This reflects the main motivation

behind proposing the usage of molecular simulation techniques in order to simulate

subsurface reservoirs. The conducted research has mainly focused on two cases. In the

first case, MC molecular simulation was used to replace the classical thermodynamic

models in estimating fluids thermophysical properties needed for flow simulators.

For this purpose, several methods have been developed in order to accelerate MC

simulations and make such coupling possible. In the second, both MC and MD

simulations were used to investigate different aspects of gas sorption and transport

phenomena in the inorganic part of shale at various thermodynamic conditions.

1.2 General Background

Molecular simulation considers systems at extremely small scale. It can predict a

wide range of properties of these systems by monitoring the interactions of their com-

ponents. Mainly two molecular simulation methods exist (see Fig. 1.1), Monte Carlo

(MC) and Molecular Dynamics (MD). MC molecular simulation is a statistical ap-

proach that works by generating a large number of molecular configurations. Various

elemental changes, known as MC trials (Fig. 1.2), are introduced in order to generate

these configurations. Whenever a trial is performed it is subjected to an acceptance

test. The process of accepting and rejecting these MC trials creates different con-
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Figure 1.1: Average properties are determined from ensemble averages in MC while
time averages are used in MD. Nonetheless, these averages are equivalent as a conse-
quence of ergodicity (Ungerer et al., 2006).

figurations. The collective sequence of these created configurations is called the MC

Markov chain. Averages and statistical fluctuations of the MC Markov chains can

help evaluate equilibrium properties of fluids at single- and two-phase states.

On the other hand, MD simulation involves solving the Newton’s equations of

motion. In contrast to MC, MD method tracks the time evolution of the molecular

system. Thus, MD simulation is mainly used in predicting time dependent properties

while it can be also used in studying equilibrium ones. Another important aspect

of molecular simulation is the statistical ensemble. Statistical ensembles define the

environment at which the simulation is conducted. The experimental environment

is created by subjecting the simulated molecules to a certain set of constraints, such

as imposed temperature (T ) or imposed pressure (p). Therefore, depending on the

required application different ensembles could be chosen (Table B.1 in Appendix

B). Fortunately various ensembles exist, each serving a different purpose. Each of

these ensembles is characterized by its constrained variables and probability density.
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Figure 1.2: Group of possible MC trials in Gibbs ensemble, starting from top, config-
urational trials (molecule displacement, rotation, bending, etc.), volume changes and
molecules transfers (Ungerer et al., 2006).

Table B.1 in Appendix B summarizes the main ensembles that have been used in the

dissertation work. Noting that N , V , T , p and µ refer to the number of simulated

molecules, simulation box volume, temperature, pressure and component’s chemical

potential; whereas Ntot and Vtot are the total number of molecules and total volume,

respectively, as two simulation boxes are used in Gibbs ensemble each representing a

different phase (liquid or gas).
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Chapter 2

Multi-Scale Reservoir Flow

Simulators

As stated earlier, the expensive computational cost is the main obstacle researchers

have to face when applying molecular simulation in estimating fluids thermophysical

properties needed for subsurface reservoir flow simulators. The main challenge resides

in coupling two different time scales. As flow simulators will often be idle waiting

for MD or MC routines to finish their cycles and provide estimates. The strategy

adopted, to tackle this problem, is based on creating offline table consisting of a large

number of pre-generated MC Markov chains at various uniformly spaced thermody-

namic conditions. That offline table will serve as a database to compute the relevant

thermophysical quantities and feed it to the flow simulator. In this context, two

approaches were developed to facilitate this coupling and make it more feasible. At

the first level, a set of various early rejection schemes are presented to accelerate the

MC simulations and reduce the computational time needed for generating the offline

table. At the second level, and in order to fill the gaps within the table, extrapolation

schemes through reweighting and reconstruction of the MC Markov chains are intro-

duced. At this stage, all these methods have been developed and tested for single-site

Lennard-Jones (LJ) particles. Hence, a set of optimized single-site LJ parameters

is recommended by accelerating MC simulations via polynomial chaos technique. In
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the following sections of this chapter, each proposed method and its corresponding

results are thoroughly discussed.

2.1 Early Rejection Schemes

One way of accelerating MC molecular simulations is by modifying the conventional

Metropolis algorithm [9] itself. For this purpose, several techniques have been intro-

duced [10–14]. In particular, early rejection schemes serve as a typical example for

such techniques. Early rejection methods are capable of saving part of the computa-

tional cost by reaching the rejection decision for the undesired or “doomed” MC trials

at earlier stages than the conventional algorithm. However, it is important for such

algorithms to preserve the accuracy while reducing the required simulation time. In

literature, the bond formation early rejection scheme [15] exists at which an MC trial

is rejected whenever two particles get too close to each other, forming a hypothetical

“bond”. To overcome some of the drawbacks of this method, we have first introduced

the conservative early rejection scheme. In that work [16], we have shown that the

bond formation method is inapplicable for some MC trials and it does not produce the

same Markov chain as the conventional method. Although the conservative method

solves these problems, it is still, in general, slower than the bond formation scheme.

We therefore further introduced a hybrid scheme, for Gibbs ensemble simulations,

in which the bond formation technique is used for MC trials where it is successful,

and the conservative early rejection scheme in the moves where the bond formation

technique fails.

To elaborate more on this point, the conservative early rejection scheme is based

on the fact that the Lennard-Jones (LJ) model, which is used to evaluate potential

energy between interacting particles, has a global minimum value (umin). While

looping over all the particles in the system to evaluate changes in energy due to an
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MC trial performed, the unevaluated interactions are assumed to be equal to umin.

In other words, all the particles waiting for their contribution to be evaluated are

assumed to be at that exact distance corresponding to umin away from the displaced

particle. Throughout the loop, the rejection condition is checked at every step and

whenever it is true, the loop is terminated and the move is directly rejected. Based

on this assumption, the produced Markov chain is guaranteed to be exactly the same

as the one produced by the conventional algorithm.

Later on, we have proposed the non-conservative early rejection scheme at which

only few particles (Nmin) are assumed to be at that exact distance corresponding

to umin. In fact, this assumption, as will be shown later, is more realistic. However,

results showed slight modifications in the generated Markov chains, hence the method

is called “non-conservative”. Nonetheless, these modifications are too small to cause

major changes in the final outputs such as canonical averages, while the simulation

times were significantly reduced.

In this section a large number of numerical simulations are presented in order to

compare outputs from all the different methods mentioned. In all scenarios, the non-

conservative method was much faster than the conservative scheme. It also performed

comparable to, and sometimes faster than, the bond formation scheme. In compar-

ison to the conventional algorithm, the non-conservative early rejection scheme has

reduced the simulation time by 60 % for both canonical and NV T -Gibbs ensem-

bles. These simulation time reductions were shown to be dependent on simulation

thermodynamic conditions, temperature and density in specific.1

1The content of this section appears in Molecular Physics [16] and Molecular Simulation [17]
journals.
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2.1.1 Simulation Algorithms

2.1.1.1 MC conventional algorithm

At first, the canonical ensemble is considered for introducing the conventional algo-

rithm [9]. In canonical ensemble, a group of N particles is simulated in an imaginary

box with volume V at a certain temperature T , thus it is often referred to as “NV T

ensemble”. Usually NV T ensemble is used to study single-phase behavior where the

system’s pressure (p) is the main output. For such systems, performing elemental

changes to the original configuration creates new ones. For instance, when simulating

structureless particles the only possible elemental change in NV T ensemble is dis-

placing a randomly chosen particle. The criterion below (Equ. 2.1), used to decide

whether the new configuration is to be granted or not, is dependent on the energy

difference between the new configuration and the previous one,

exp (−β∆U) ≥ R. (2.1)

Here, β is the Boltzmann’s factor, ∆U is the change in system’s energy and R is

a randomly generated number between 0 and 1. If the relation in Equ. 2.1 is true

then the MC trial is accepted and a new configuration is formed, otherwise the trial

is rejected and the previous configuration is retrieved. As a matter of fact, the change

in the system’s energy due to the particle displacement is related to the change in the

energy associated with the displaced particle, say the ith particle, itself. Therefore,

Equ. 2.1 can be rewritten as below:

exp

−β
 N∑
j=1,j 6=i

unij −
N∑

j=1,j 6=i

uoij

 ≥ R, (2.2)

where unij accounts for the energy associated with the displaced ith particle at the

new position due to its interaction with the jth one, while uoij stands for the interaction
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energy between the same particles (i and j) but prior to particle i displacement.

Therefore, the total energy associated with the displaced ith particle can be computed

by summing all the interactions with the rest N − 1 particles in the system. By

applying the logarithmic operation to both sides followed by few rearrangements, the

condition in Equ. 2.2 can be reformulated as follows:

N∑
j=1,j 6=i

unij ≤
N∑

j=1,j 6=i

uoij −
ln (R)

β
. (2.3)

Finally, Equ. 2.3 will be used as the acceptance condition in canonical ensemble.

In addition to the canonical ensemble, this paper deals with the Gibbs ensemble.

In particular, the NV T -Gibbs ensemble [18–21] at which two simulation boxes are

simulated each representing a different phase. Simulations in NV T -Gibbs ensemble

are executed under constant total number of particles of both phases (N = N1 +N2),

total volumes (V = V1 + V2) and T . In order to reach equilibrium, at least three

different types of MC trials are required. These trials are particle displacement within

a certain phase to insure thermal equilibrium, particle transfer from one phase to the

other to achieve chemical equilibrium and finally volume changes to attain mechanical

equilibrium. For more details about the Gibbs ensemble and the conditions used

to decide on accepting new configurations, reference [8] is recommended. Similar

rearrangements to the previous canonical ensemble equations have been done for the

conditions here to take the following forms for particle displacement and transfer,

respectively:
Np∑

j=1,j 6=i

unij ≤
Np∑

j=1,j 6=i

uoij −
ln (R)

β
, (2.4)
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Nin∑
j=1,j 6=i

unij ≤
Nout∑

j=1,j 6=i

uoij −
ln

[
R (Nin + 1)Vout

NoutVin

]
β

+

(Nout − 1)Etail
out − (Nin + 1)Etail

in .

(2.5)

In order to explain the equations above, it is important to highlight that the

interface between gas phase and liquid phase does not exist in Gibbs ensemble. This

implies that the particles in the two simulation boxes of the Gibbs ensemble (one for

liquid and the other for gas phase) only interact with the other particles residing the

same box. Therefore whenever a particle is displaced, a loop over the particles sharing

same box (Np) is only required as appears in Equ. 2.4. In the case of particle transfer

from one box to another, subscripts “out” and “in” refer to the box the particle was

taken out from and the box it was introduced into, respectively. N and V refer to the

number of particles and volume before the transfer has taken place. We note that,

particle transfer trial leads to change in number of particles in both boxes, hence tail

energy correction functions (Etail) need to be re-evaluated.

In summary, at every MC step in either canonical or Gibbs ensemble the relevant

relation out of the Equations (Equs. 2.3, 2.4, or 2.5) is used to determine whether the

introduced elemental change is to be accepted or not. These relations are arranged

such that, the right-hand side is known from the previous configuration in addition to

the prescribed simulation thermodynamic conditions. On the other side, the left part

of these inequalities is computed by looping over the N or Np particles to evaluate

the energy associated with the particle i at its new position. After the loop is over,

the relevant relation is tested to determine whether to accept or reject the trial.
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2.1.1.2 Bond formation algorithm

Apparently, based on the conventional scheme, one needs to loop over all the particles

in order to reach a decision whether to accept or reject the move. However, if it was

possible to reach this decision earlier, a considerable amount of simulation time might

be saved.

The first type of such methods to be discussed in this work is the bond formation

early rejection one. The bond formation early rejection method is introduced based

on the work of Wang and Swendsen [15]. In this scheme, an MC trial is rejected

whenever a “bond” is formed between the displaced molecule and any of the other

existing molecules in the simulated system. This means, MC trials are only accepted

if no “bond” is developed between any couple of molecules due to displacement. The

criterion used to decide whether a “bond” is formed or not is called the bond formation

probability (Pbond). It is a function of the energy difference due to the interaction

between the displaced molecule, say the ith molecule, at its new and old position with

respect to another jth molecule. If the energy difference was negative then no “bond”

is formed; otherwise, the bond formation probability is computed as follows

Pbond = 1− exp (−β∆uij) . (2.6)

Therefore, whenever a molecule i is moved, the difference in energy due to its

interaction with another molecule j at new position versus the old one (∆uij =

unij−uoij) is used to compute Pbond (Equ. 2.6). As stated earlier, if the energy difference

was negative, bonds could not form and the loop would continue to check with the

rest of the molecules. As soon as a positive change is detected, Pbond is evaluated and

compared against a random number (0 < R < 1). Whenever Pbond exceeds the R,

the move is immediately rejected assuming that the two molecules have got too close

to each other.
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This method significantly accelerates the MC molecular simulation, as will be

shown in the results section; however it has two main drawbacks. First, the bond

formation concept requires the knowledge of the interaction between the investigated

molecules before implementing the MC trial. Unfortunately, such knowledge is not

always available. For instance, in Gibbs ensemble the molecule transfer from one

box to another is an essential MC move. In such transfer, the molecule subjected to

this trial interacts with completely two different sets of molecules. The first group

belongs to the box it was originally residing, and the other belongs to the one it was

transferred to. As a result, the bond formation concept of comparing energies due to

interactions with same molecule at old and new position fails. The second drawback

is an expected consequence of using a different algorithm than the Metropolis one [9].

The bond formation scheme suggests a new criterion for accepting/rejecting MC trials;

thus it generates a Markov chain different from the conventional one. We note that,

however, results show that such modifications are, at most of the times, tolerable.

2.1.1.3 Conservative early rejection scheme

The conservative early rejection scheme [16] was developed as an attempt to accelerate

MC molecular simulations while overcoming the drawbacks of the bond formation

scheme. Hence, the scheme is designed to conserve the same Markov chain as the

conventional Metropolis algorithm and, more importantly, to be applicable for the

different types of MC trials in the various existing ensembles.

This scheme is based on the fact that the energy due to interaction between

any two Lennard-Jones (LJ) sites has a global minimum (Fig. 2.1). The following

paragraphs are devoted to illustrate the details of this method. A convenient starting

point for this discussion is to highlight the LJ model. It is a widely used model to

compute the energy due to dispersion-repulsion (short range) interaction between a
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Figure 2.1: Normalized potential energy (u∗ij) due to the interaction between a couple
of particles computed using LJ model (Equ. 2.20) as a function of the normalized
separating distance (r∗ij).

pair of particles

uij = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (2.7)

In Equ. 2.19, uij stands for potential energy due to dispersion-repulsion interaction

between the ith and jth particles, and rij is their separating distance. ε is the potential

well depth and σ is the “hard sphere” radius. Assuming all the simulated particles

are identical, uij and rij can be normalized with respect to ε and σ such that, u∗ij =

uij/ε and r∗ij = rij/σ and this leads to the dimensionless form of the LJ model

u∗ij = 4

[(
1

r∗ij

)12

−
(

1

r∗ij

)6
]
. (2.8)

Fig. 2.1 displays the profile of u∗ij with respect to r∗ij. It can be easily noticed that

u∗ij has a global minimum value of −1. It is straightforward to mathematically prove

that, by finding r∗ij at which the first derivative of u∗ij vanishes. Doing so, it is found

that r∗ij = 21/6 corresponds to the minimum energy u∗ij (21/6) = −1. To sum up, the

fact that the interaction energy between any two molecules has a global minimum is
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the most important factor to reach an early rejection decision as will be explained.

Now by recalling that Equ. 2.3 represents the acceptance condition for the trans-

lational MC trial move, then failing to satisfy that relation leads to the trial rejection.

Thus, the move would be rejected if, and only if, this inequality was true

N∑
j=1,j 6=i

unij >

N∑
j=1,j 6=i

uoij −
ln (R)

β
. (2.9)

At this point, and whenever a particle is displaced all the terms in the rejection

condition (Equ. 2.9) are known except the energy associated with the particle at its

new position. In the conventional algorithm, this term is evaluated by looping over

all the (N − 1) particles existing in the simulated system. As the loop is completed,

Equ. 2.9 is tested and the decision to whether accept or reject the trial is reached.

On the other side, in the conservative scheme still the same criterion in Equ. 2.9 is

used, however the inequality is tested at every step of the loop instead of checking it

only once after the loop is finished. Meanwhile, the interactions at the new position

are separated into two terms. The first term collects the evaluated interactions so far,

and the second accounts for the unevaluated interactions yet to come. To guarantee

that the proposed algorithm is reaching exactly to the same decision taken by the

conventional algorithm, the unevaluated interactions are assumed to have the value

of the smallest energy possible between any two LJ particles denoted by umin. Thus,

the condition takes the following form:

k∑
j=1,j 6=i

unij + umin(N − k) >

N∑
j=1,j 6=i

uoij −
ln (R)

β
. (2.10)

We point that, k stands for the number of the evaluated interactions, so far, in the

loop. By the same logic, the acceptance conditions used for particle displacement and

transfer in the Gibbs ensemble can be modified into the conservative scheme rejection
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conditions, respectively:

k∑
j=1,j 6=i

unij + umin(Np − k) >

Np∑
j=1,j 6=i

uoij −
ln (R)

β
, (2.11)

k∑
j=1,j 6=i

unij + umin(Nin − k) >

Nout∑
j=1,j 6=i

uoij −

ln

[
R (Nin + 1)Vout

NoutVin

]
β

+ (Nout − 1)Etail
out − (Nin + 1)Etail

in .

(2.12)

To summarise this section, both the conventional and the conservative scheme use

exactly the same criterion to check whether a move is accepted or not. However,

each of them reaches the decision based on a different workflow. The conventional

scheme computes all the interactions before checking the acceptance condition, while

the conservative early rejection scheme checks the condition at every step of the loop

assuming that the unevaluated interactions contribute with the specific minimum

energy possible umin. Based on this assumption, it is guaranteed that whenever the

rejection relation is satisfied there is no way that it can be broken as none of the

unchecked particles could contribute with energy less than umin. As a consequence,

the decision of rejection is often reached even before the loop is completed; hence the

simulation time is reduced.

2.1.1.4 Non-conservative early rejection scheme

As has been stated earlier, assuming that all the un-investigated particles reside

at the exact distance from the displaced particle i where their mutual energy is

at its minimum (umin) is non-realistic. Nonetheless, for serving the purpose of the

conservative scheme this assumption is essential to guarantee that the exactly same
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Figure 2.2: Distribution of number of particles per MC step (n) contributing with u∗ij
energy towards a randomly displaced particle i. These distributions correspond to a
system of N = 512 particles at T ∗ = 10 with ρ∗ = 0.1 (Left) and 0.9 (Right).

Markov chain as the one generated by the conventional algorithm is produced. This

argument suggests that it is possible to violate that criterion by assuming that only

few particles, instead of all, are actually residing at that specific distance. This

statement is the milestone in developing the non-conservative early rejection scheme.

As an attempt to understand how the simulated particles interact, Fig. 2.2 is cre-

ated for systems at normalized T ∗ = 10 with N = 512 particles at normalized number

densities ρ∗ = 0.1 and 0.9, simultaneously. To explain this figure, it is important to

know that the particles in the system can interact in three ways towards the particle

i. Most of the particles are located at a distance further than the normalized cutoff

radius (r∗c = rc/σ = 0.49L∗, where L∗ = L/σ is the normalized simulation box side

length) from i at which the interaction is truncated; this leads to an interaction of

u∗ij = 0. The second type of particles contribute with u∗ij > 0. These particles are

usually few and contribute with large values of u∗ij as they are located at the vicinity

of the particle i. For convenience and while creating the distributions, these contri-

butions are counted as u∗ij = 0 instead of their actual values. Finally, the rest of the

particles contribute with u∗ij < 0. Therefore, to create these distributions, at each

MC step whenever a randomly chosen particle i is displaced, the distances separating
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Figure 2.3: Same as Fig. 2.2 but with N = 256.

i from other particles are computed and collected in a histogram with binning value

of ∆r/L = 0.01. This process is repeated for every MC step. At the end, the counted

particles are divided by the total number of MC steps to get the values of “n”. Then

the distances are transferred into normalized energy values (u∗ij) using the LJ model

in Equ. 2.20.

These generated distributions show a clear dependence on the system’s density.

As ρ∗ increases, more particles start to contribute with negative u∗ij. This is due to

the fact that for dense systems particles get closer and less truncated interactions

are found, hence a shift towards negative contributions is seen. In both cases (ρ∗ =

0.1 and 0.9), it is obvious that none of the particles in the system is contributing

with the exact normalized minimum energy (u∗min = −1) and even very few are

contributing with values lower than −0.8. This agrees with the argument that the

conservative scheme is indeed “too conservative”. A final note on this discussion,

simulations at different temperatures than T ∗ = 10 lead to same results with slight,

almost unnoticeable, changes that can be safely neglected.

To take this analysis a step further, similar distributions were collected but at

two different N values 256 (Fig. 2.3) and 1024 (Fig. 2.4). According to these figures,

the distributions are also dependent on N and not merely ρ∗. To have a collective
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Figure 2.4: Same as Fig. 2.2 but with N = 1024.

perception of all the different distributions, the average contribution energy (u∗ij) of

a particle j in the system towards the displaced particle i is computed and plotted

against different ρ∗ values corresponding to systems made of different number of

particles (Fig. 2.5). Based on this figure, u∗ij is linearly dependent on ρ∗ while slope

changes as N does.

So far, the above interpretation highlights the dependence of u∗ij on both ρ∗ and

N . Nonetheless, this relation could be better represented by a single variable; which

is the normalized volume (V ∗ = N/ρ∗). By transforming all the three lines with

respect to the new suggested variable V ∗, interestingly, all the lines collapse into a

single one (Fig. 2.6). In particular, the following linear relation with respect to 1/V ∗

is reached:

u∗ij = −10.6/V ∗. (2.13)

Based on these findings, the rejection condition in Equ. 2.10 is now modified into

Equ. 2.14 assuming that only Nmin particles out of the (N − k) unchecked particles

in the system contribute with umin while the rest of the particles contribute with the
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Figure 2.5: The normalized average energy (u∗ij) contribution by any particle j towards
the randomly displaced particle i as a function of system’s normalized number density
(ρ∗). Plots of three different systems are shown, each at a different number of particles
(N = 256, 512 and 1024). The dashed lines are added to emphasize the linear relation
between u∗ij and ρ∗.

average energy uij = εu∗ij that can be calculated using Equ. 2.13

k∑
j=1,j 6=i

unij + uij(N − k −Nmin) +Nminumin >

N∑
j=1,j 6=i

uoij −
ln (R)

β
. (2.14)

To properly choose how many particles are assigned to Nmin, the both sides of

Equ. 2.13 are multiplied by N :

Nu∗ij = −10.6ρ∗, (2.15)

the left hand side of this equation (Nu∗ij) can be used to estimate the total contribution

of all the existent particles in the system towards i per configuration. In the paper’s

examples, ρ∗ values range from 0.1 to 1. By plugging the maximum value of density

(ρ∗ = 1) in Equ. 2.15, the estimated total energy contribution per MC step towards

i is Nu∗ij = −10.61. Therefore, we choose to fix 5 particles at u∗min = −1 such that

Nminu
∗
min = −5 (which is around the half of the maximum energy expected −10.61

at the highest ρ∗ = 1). For all the cases studied in this paper in both single and two-
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Figure 2.6: Same as Fig. 2.5 but this time showing the relation between u∗ij and the
inverse of the system’s normalized volume (1/V ∗). The dashed line represents the
best linear fit, so that u∗ij and 1/V ∗ are related with Equ. 2.13.

phase analysis Nmin = 5 is used. Finally, it is worth to address that it is not necessary

for Nmin to be 5, other values are also possible when simulating other systems or even

for this set of simulations. Therefore, Nmin could be optimized based on the system

to be studied.

In similar fashion, the rejection conditions in the Gibbs ensemble for the particle

displacement and particle transfer are modified to have the forms in Equs. 2.16 and

2.17, respectively. We note that, phase volumes are allowed to change during the

Gibbs simulation. As a result, at each time these volumes are changed new uij values

need to be computed using Equ. 2.13.

k∑
j=1,j 6=i

unij + uij(Np − k −Nmin) +Nminumin >

Np∑
j=1,j 6=i

uoij −
ln (R)

β
, (2.16)
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k∑
j=1,j 6=i

unij + uij(Nin − k −Nmin) +Nminumin >

Nout∑
j=1,j 6=i

uoij −

ln

[
R (Nin + 1)Vout

NoutVin

]
β

+ (Nout − 1)Etail
out − (Nin + 1)Etail

in .

(2.17)

To sum up, the key difference between the non-conservative and the conservative

early rejection schemes is by assuming only Nmin particles contribute with umin en-

ergy towards the displaced particle i instead of all the rest (N − 1) particles. The

generated distributions helped in deciding on how many of these particles were close

to umin. Actually, only few of them were observed to be close at the whole spectrum

of thermodynamic conditions investigated. As only Nmin particles are assumed to

contribute with umin, the rest un-investigated (N − k −Nmin) particles are assigned

to the average contribution energy uij that can be computed from Equ. 2.13.

2.1.2 Results and Discussion

2.1.2.1 Canonical ensemble results

In the first group of experiments, the speeding up introduced by the proposed non-

conservative early rejection method is compared with all of the other three meth-

ods discussed in the “Simulation Methods” section. In this part, the comparison

is conducted in the single-phase region simulated in canonical ensemble. Numerical

experiments are designed to show the dependence of the performance of all the four

methods at various simulation conditions. For that purpose, simulations were run for

three different number of particles N = 256, 512 and 1024. For each of these systems,

different thermodynamic conditions corresponding to β∗ = 1/T ∗ = 0.1 and 0.7 with
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Figure 2.7: Simulation time savings by each of the bond formation and conservative
early rejection schemes in addition to the proposed non-conservative method. Results
in this figure correspond to a system with N = 256 at β∗ = 0.1 (Left) and 0.7 (Right)
in canonical ensemble.

ρ∗ = 0.1, 0.3, 0.5, 0.7 and 0.9 were used. We note that, all the numerical experi-

ments conducted start from the exact same initial configuration, at which particles

are uniformly distributed in the simulation box.

For instance withN = 256 at β∗ = 0.1, five simulations per method were conducted

at the different five ρ∗ values. According to Fig. 2.7 (Left), the time saving by each

of the three early rejection methods increases as ρ∗ increases. We note that, the time

saving is calculated by the following formula:

ts(%) =
t0 − t1
t0

× 100. (2.18)

In this formula, ts stands for the percentage of the time saved, t0 is the time

needed by the conventional algorithm, and t1 is the simulation time taken by each

of the three early rejection schemes. In general, the bond formation scheme is the

fastest of all at the different densities used. It achieves a time saving of more than 60

% at ρ∗ = 0.9, while the non-conservative and the conservative achieve 50 % and 40

% time saving, respectively. The same numerical experiments were repeated but this



40

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

ρ
∗

T
im

e
S
av

in
g
s
(%

)

β
∗ = 0.1

 

 

Conservative
Bond formation
Non-Conservative

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

ρ
∗

T
im

e
S
av

in
g
s
(%

)

β
∗ = 0.7

 

 

Conservative
Bond formation
Non-Conservative

Figure 2.8: Same as Fig. 2.7 but for N = 512.

time at β∗ = 0.7 (Fig. 2.7, Right). The results are consistent in both groups with

the realization that, in general, all the three methods performed better at higher β∗

especially the bond formation method. Further analysis is done by repeating the same

experiments above, but this time for N = 512 (Fig. 2.8) and N = 1024 (Fig. 2.9). In

comparison to the previous set (Fig. 2.7), the same conclusions can be reached.

To complete the simulation time analysis, the simulation times saved by each of

the early rejection methods are plotted in Fig. 2.10 against MC trials rejection rates.

According to this chart, the simulation time saved increases as the rejection rates

of the performed MC trials get higher. The highest time savings achieved were at

rejection rates close to 1. For example, the bond formation early rejection scheme

can save up to around 75 % of the original simulation time while the non-conservative

and the conservative ones save up to around 65 and 45 %, respectively.

In addition to the rejection rates, it is also important to check the dependence of

the presented method on the cutoff radius (rc). As mentioned earlier, r∗c = 0.49L∗

was assigned for all the conducted simulations in this section. Knowing that, L∗ was

changing from one case to another, so was the value of r∗c . In order to study the effect

of r∗c on the simulation times, a group of five simulations were run for each of the
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Figure 2.9: Same as Fig. 2.7 but for N = 1024.

methods discussed earlier. All these simulations shared the same β∗ = 0.7, N = 256

and r∗c = 2.2 (The minimum r∗c that could be used is in the range of 2.2 to 2.5 as can

be seen in Fig. 2.1). By comparing the plots in Fig. 2.7 (Right) and Fig. 2.11 (Left), it

is clear that the proposed non-conservative method in addition to the other two early

rejection schemes have maintained their speed with slight decrease at low ρ∗ values.

Moreover and in agreement with the results reported in Fig. 2.10, Fig. 2.11 (Right)

emphasizes that the speeding up is primarily dependent on the MC trials rejection

rates.

Finally, all the early rejection algorithms used to obtain the simulation results of

this part are validated against the conventional algorithm outputs. As expected (see

Table B.2 in Appendix B), the normalized pressure obtained by all the early rejection

methods is in good agreement with the conventional algorithm values. The statistical

uncertainties reported in Table B.2 in Appendix B are estimated using the bootstrap

method [22,23].

To summarize the results obtained in the single phase section, the non-conservative

early rejection method was shown to be faster than the conservative scheme, and

almost matching the speed of the bond formation one. Moreover, it introduces less
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Figure 2.10: Time savings (%) by each of the three early rejection methods studied
in the canonical ensemble against the rejection rates of the MC trials performed.

modification to the original Markov chain when compared to the bond formation

method. In general, the key factor in determining the significance of the speeding is

the rejection rate of the MC trials performed.

2.1.2.2 Gibbs ensemble results

In an earlier paper [16], a hybrid early rejection method was proposed in addition

to the conservative one for generating the Gibbs ensemble results. The hybrid early

rejection scheme uses the conservative scheme for the particle transfer MC trial while

uses the bond formation scheme for the particle displacement one. The reason for

proposing such a scheme was to take advantage of the speed of the bond formation

method in particle displacement. Therefore, in this paper the non-conservative scheme

simulation times are analyzed in comparison to both the conservative and the hybrid

schemes.

For that purpose, a total of nine numerical experiments were designed each at a

different normalized temperature ranging from T ∗ = 0.8 up to 1.2, with a 0.05 temper-

ature increment. Fig. 2.12 plots all the simulation times required by the conventional
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Figure 2.11: Simulation time savings by each of the three early rejection methods at
rc = 2.3σ (Left). Relation between these time savings and the MC trials rejection
rates (Right).

algorithm in addition to each of the early rejection methods; namely the conservative,

hybrid and non-conservative, for all the different T ∗ values. By examining Fig. 2.12,

it is clear that the non-conservative method is the fastest of all regardless of the

simulation thermal condition. In general, as the system is set closer to the critical

temperature more simulation time is required except for the conventional method.

This behavior is a well-known phenomenon, and relates to the way the particles are

split into the two phases.

To highlight the significance of the reduction in the simulation time, Fig. 2.13 is

plotted. Along the whole range of temperatures used, the non-conservative scheme

was successful on saving between 30 and 65 % of the time needed by the conven-

tional method. More interestingly, this range is higher than the maximum reduction

achieved by the conservative scheme, occurring at the lowest temperature (T ∗ = 0.8)

used in the two-phase analysis.

Another important perspective to look at, is the dependence of simulation time

reduction with respect to the average rejection rate of the two MC trials implemented

(particle displacement and transfer). According to Fig. 2.14 and similar to previous
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Figure 2.12: Simulation times required by each of the bond formation and conservative
early rejection schemes in addition to the proposed non-conservative one, by 1 Intel
Xeon processor on Dell PC. Results correspond to systems with T ∗ ranging from 0.8
to 1.2 in Gibbs ensemble.

realizations, all the early rejection schemes perform better at higher rejection rates.

Moreover, this figure reveals a crucial difference between the non-conservative and

the bond formation approaches. By comparing the rejection rates reached by each

of the three methods, the rejection rates achieved by the conservative and the non-

conservative are completely consistent for all data point sets along the same temper-

ature. In contrary, the hybrid scheme, due to bond formation method involvement,

reaches higher rejection rates in most of the cases (This can be clearly seen for simu-

lations at T ∗ = 1.2). This result is in agreement with the results reported earlier in

Fig. 2.10. This implies that, part of the simulation time saved by the bond formation

early rejection scheme is due to the fact that more MC trials are rejected than usual.

In other words, the bond formation scheme accelerates MC molecular simulations

by not only rejecting “doomed” trials at an earlier stage, but also by rejecting more

successful trials than normal. Of course, this is another advantage for the proposed

non-conservative early rejection scheme over the bond formation one.

Finally and in order to validate the results obtained by all of the algorithms used

for the early rejection schemes in this section, Table B.3 in Appendix B reports the
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Figure 2.13: Simulation time savings by each of the bond formation and conserva-
tive early rejection schemes in addition to the proposed non-conservative scheme at
different T ∗ in Gibbs ensemble.

normalized number density values corresponding to the vapor (ρ∗v) and liquid (ρ∗l )

phases computed from the different simulations. For all the early rejection methods

presented, the results obtained are in good agreement with the values obtained from

the conventional algorithm. Again here the bootstrap method [22, 23] was used for

statistical errors estimation.

2.1.3 Conclusions

To conclude, in this study two early rejection schemes have been introduced the

conservative early rejection scheme and the non-conservative one. The proposed

non-conservative method succeeded in outperforming the conservative one by saving

up to around 60 % of simulation times needed by conventional algorithm in both

canonical and Gibbs ensembles. Moreover, it overcame the main problem with the

bond formation method by being applicable to all kinds of MC trials, while performing

with almost the same of its speed and even faster in some occasions. Therefore, the

non-conservative early rejection scheme combines the strength elements of each of the

other two methods.
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Figure 2.14: Time savings (%) by each of the three early rejection methods studied in
the Gibbs ensemble against the average rejection rates of the particle displacement and
transfer trials performed. Solid lines connect simulations sharing the same normalized
temperature (T ∗).

At the end, these methods has a great potential to elevate the performance of MC

molecular simulations by using the non-conservative early rejection scheme for more

complicated systems and applications such as simulating single polymer chain or sys-

tems with multiple ones. The fact that the performance of such schemes is enhanced

by the increase in rejection rates creates a great motivation to test this technique in

investigating such systems. Keeping in mind that the extension and implementation

of the proposed algorithm is programmer-friendly and straightforward.

2.2 Polynomial Chaos MC Simulations

In this part, the time consuming MC molecular simulations were replaced by fast sur-

rogate models created via Polynomial Chaos (PC) expansions. PC expansions provide

an approximate representation of the solution of the forward problem, which can be

used to reduce the computational cost of repetitive model evaluations. PC works by

representing the model variables and parameters in terms of a spectral expansion in
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an orthogonal polynomial basis according to their probabilistic distributions. The

resulting cost effective surrogate models can then be used to efficiently reproduce the

solutions and the statistical properties of Quantities of Interest (QoIs) [24–27]. The

PC-based model provides a complete probabilistic representation of the outputs in

terms of the random inputs. PC may suffer from ‘the curse of dimensionality’ [28]

that limits the application of PC to only a moderate number of stochastic parameters

for surrogate model construction. Nonetheless, PC methods have become one of the

standard approaches for solving stochastic problems, to propagate and quantify un-

certainties in various disciplines including physical [29–31], chemical, and geophysical

systems [32–35].

So far, only few studies have applied PC expansions to molecular simulations.

In fact, those studies have worked with Molecular Dynamics (MD) instead of MC

molecular simulations. For instance, Rizzi et al. have demonstrated a successful

coupling between PC and MD in studying force field parameters of water molecules

[36,37] in addition to concentration driven ionic flow in nano-pores [38,39]. Later on,

similar coupling is adopted in order to investigate flow at nanoscale [40] and quantify

parametric uncertainty in multi-scale simulations [41].

In this study, a novel combination between PC expansions and MC molecular sim-

ulations is proposed. First, two independent PC surrogate models were constructed

to replace the canonical and the NVT-Gibbs ensembles, respectively. These surro-

gates are capable of accurately reproducing the normalized supercritical isotherms

and the two-phase envelope of the Lennard-Jones (LJ) fluid. The surrogate models

estimations match the MC results within a margin of ± 3% deviation in the whole

thermodynamic range studied, while requiring a tiny fraction of the computational

time needed by the MC molecular simulations. Later on, a large-scale optimization

for force field parameters of different molecules is conducted via the pre-constructed

PC surrogates. The optimization outcome leads to a recommended set of single-site
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LJ models for a group of molecules. An excellent fit is achieved for argon (Ar), kryp-

ton (Kr), xenon(Xe), methane (CH4), nitrogen (N2), and carbon monoxide (CO).

Nonetheless, and not surprisingly, other bigger and/or polar molecules show larger

misfits due to the simplicity of the LJ model used.2

2.2.1 Simulation Methods

2.2.1.1 MC molecular simulation

The essence of MC molecular simulation is to predict macroscopic properties of fluids

by simulating the interactions among a large group of molecules (statistical ensemble)

representing the fluid. Each statistical ensemble is characterized by the different phys-

ical constraints imposed in order to capture the thermo-physical conditions at which

these fluids exist. Fortunately, nowadays a wide range of ensembles are available to

be used in MC molecular simulations. The decision of choosing the suitable ensem-

ble to work with mainly relays on the simulation output needed. For instance, in

this work, pressures under supercritical conditions and two-phase saturated densities

were needed to search for adequate LJ parameters for different molecules. Therefore,

the canonical (NVT) ensemble was used to predict single-phase pressures while the

NVT-Gibbs ensemble was adopted to compute the two-phase saturated densities.

In the canonical ensemble, a certain number of molecules (N) is trapped in a

fixed hypothetical volume (V ), leading to a constant system density (ρ = N/V )

throughout the simulation. In addition, the system’s temperature (T ) is fixed as

well. As a result, the fluid’s pressure (P ), under the prescribed ρ and T , can be

predicted. The NVT-Gibbs ensemble [18–21] is used to study phase equilibria be-

tween two phases.Two separate simulation boxes, each containing a certain number

of molecules, are created to present each of these phases. Similar to the canonical

ensemble, the temperature is kept fixed throughout the simulation. In order to reach

2The content of this section is published in Journal of Chemical Physics [42].
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equilibrium between the two phases, molecules are randomly transferred between the

two boxes (chemical equilibrium) while the individual volumes of each box are allowed

to change (mechanical equilibrium) such that the total volume is conserved. Finally

thermal equilibrium is reached by performing translational and configurational MC

trials on individual molecules. For more details about the Gibbs ensemble and the

conditions used to decide on accepting new configurations, see reference [8].

The statistical nature of the MC molecular simulation arises from the random MC

trials performed on the simulated ensembles. MC trials (e.g. molecules displacement,

molecules transfer between simulation boxes, and boxes volume change) introduce

elemental changes to the system to create a large number of different molecular con-

figurations. These configurations are sampled to construct the so-called MC Markov

chain. The decision of accepting these elemental changes or rejecting them while

creating the new configurations is related to the interactions among the simulated

molecules. Thus, a key component of any MC molecular simulation is the potential

model describing molecular interactions.

In this study, the LJ model was used to represent the molecular interactions,

in specific, the van der Waals long-range attractive force, and the repulsive force

resulting from the Pauli exclusion principle that prevents the collapse of molecules.

The LJ model relates the energy between any pair of particles to their separating

distance as follows,

uij = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
, (2.19)

where uij stands for potential energy due to dispersion-repulsion interaction between

particle i and particle j with a separating distance rij. The LJ parameters εij and σij

are the potential well depth and the “hard sphere” radius, respectively. This work

focuses only on pure component single-phase and two-phase systems, thus all particles

are identical and the LJ parameters can be reduced to ε and σ. For convenience, both

uij and rij are normalized by ε and σ such that, u∗ij = uij/ε and r∗ij = rij/σ, leading
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Figure 2.15: Normalized LJ fluid isotherms at supercritical thermodynamic condi-
tions (0.1 ≤ β∗ ≤ 0.6) generated by MC canonical ensemble simulations (symbols)
in comparison with the results obtained by the pre-constructed single-phase PC sur-
rogate model (lines). For this case, a polynomial of degree 6 was used with 64 total
quadrature nodes.

to the dimensionless LJ model form:

u∗ij = 4

[(
1

r∗ij

)12

−
(

1

r∗ij

)6
]
. (2.20)

2.2.1.2 The polynomial chaos framework

The general framework of PC technique works by treating input variables uncertain-

ties, parameters, and model state as stochastic variables. Hence, the system state can

be represented by a random vector, x(t), and its time evolution is expressed through

the following differential equation:

ẋ(t,Θ) = f(t,Θ,x,u), x(t0) = x0. (2.21)

In the equation above, Θ represents the uncertain parameter vector and u the

assumed deterministic forcing terms. The initial state estimate, x0, may also be

uncertain but here it is assumed known. The polynomial chaos method enables
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conditions (0.8≤ T ∗ ≤ 1.2) generated by NVT-Gibbs ensemble simulations (circles) in
comparison with the results obtained by the pre-constructed two-phase PC surrogate
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to compute the full pdf characterizing the space-time evolution of xk, allowing to

quantify the uncertainty of the system outputs with respect to the parameters.

Recently, new uncertainties propagation methods have been developed based on

the polynomial chaos theory. Generalized Polynomial Chaos (gPC) is an extension

of the homogeneous chaos idea of Wiener [43]. The idea is based on separating

the random variables from deterministic ones while solving the stochastic differen-

tial equation. Then the random variables are expanded using a suitable polynomial

expansion.

The gPC approach assumes that the model outputs X ∈ L2(Ω∗) to admit a

spectral expansion of the form

X =
∞∑
k=0

ckΨk=̇
P∑
k=0

ckΨk(ξ), (2.22)

where ξi
iid∼ are canonical random variables used to parameterize random inputs,

Ψk is the d-variate Legendre polynomials and ck represents the PC coefficients. The
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Figure 2.17: (a) Argon’s experimental pressure values along supercritical isotherms
ranging from 300 K to 700 K (symbols) fitted by the PC surrogate model of the MC
canonical ensemble simulations (lines). (b) Argon’s two-phase envelope (circles and
diamonds represent experimental saturated vapor and liquid densities, respectively)
fitted by the PC surrogate model of the NVT-Gibbs ensemble simulations (lines). (c)
Deviation percentages from the true experimental pressure values along the fitted su-
percritical isotherms. (d) Deviation percentages from the true experimental saturated
density in the two-phase region; dashed lines are added for eye guidance.

order of truncation Ptr depends on the stochastic dimension d and expansion order,

p, as

Ptr =
(d+ p)!

d!p!
− 1. (2.23)

Since {Ψk}Ptr
0 forms an orthogonal system, we can write the following dot product

(X,Ψk) = ck(Ψk,Ψk), (2.24)
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with

ck =
〈X,Ψk〉
〈Ψ2

k〉
. (2.25)

In Equ. 2.25, the moments 〈Ψ2
k〉 of the multivariate Legendre polynomials can be

analytically evaluated [30] while 〈X,Ψk〉 requires more elaborate computation, as we

note that

〈X,Ψk〉 =

∫
Ω∗
X(s)Ψk(s)dFξ(s), k = 0, ..., Ptr.

Hence, evaluating ck involves computing the values of a set of Ptr+1 integrals over

Ω∗ ⊆ Rd, which can be discretized as finite sums using an appropriate quadrature

formula: ∫
Ω∗
X(s)Ψk(s)dFξ(s)=̇

Nq∑
j=1

wjX(ξj)Ψk(ξj). (2.26)

In the equation above, ξj ∈ Ω∗ and wj are the nodes and weights of the quadrature

rule. In this approach, the main computational burden essentially amounts to the

deterministic evaluation of the model over the sample set of the quadrature nodes.

Let Π ∈ R(Ptr+1)×Nq be the NISP matrix,

Πk,j =
wjΨk(ξj)

〈Ψ2
k〉

, k = 0, ..., Ptr, j = 1, ..., Nq

also let ζ be the vector with coordinates ζj = X(ξj). Then the vector c can be

expressed as Πζ, or in component form:

ck =

Nq∑
j=1

Πkjζj =

Nq∑
j=1

ΠkjX(ξj), k = 0, ..., Ptr. (2.27)

With a fully tensorized quadrature rule, the complexity of NISP scales with

Nq = nd, the number of nodes n and number of uncertain parameters d. Hence,

this approach is computationally limited to a moderate number of parameters. For

detailed mathematical formulation of the NISP method, the reader is referred to [28].
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Figure 2.18: Same as Fig. 2.17 but for krypton with supercritical isotherms ranging
from 350 K to 700 K.

2.2.2 Results and Discussion

2.2.2.1 Surrogate models construction

The construction of the surrogate models through PC expansions, which are then used

to produce the MC simulation results, was conducted as follows. At first, let m =

(m1,m2, ...,mn)T be the vector of random model inputs having uniform distribution.

Specifically, the inputs mi were parameterized by ξi through

mi(ξ) = µi + σiξi, i = 1, 2, ..., n (2.28)

where ξ = (ξ1, ξ2, ..., ξn)T, µi = (1/2)(ai + bi), and σi = (1/2)(bi − ai). For a

given vector of random inputs m(ξ) the output is denoted by X(ξ) = A(m(ξ)).
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Figure 2.19: Same as Fig. 2.17 but for xenon with supercritical isotherms ranging
from 450 K to 750 K.

Note that A(m(ξ)) is the output of the MC simulation solved with the set of the

input parameters m(ξ). X may correspond to any subset of the QoIs. In the single-

phase case, X corresponds to the normalized equilibrium pressure (P ∗), while in the

two-phase scenario it corresponds to the normalized liquid- (ρ∗liq) and vapor-phase

saturation density (ρ∗vap). The stochastic variables in the single-phase simulation are

both the normalized Boltzmann’s factor (β∗) and system number density (ρ∗). In the

two-phase simulation, β∗ is the only stochastic variable.

For this study, two independent surrogate models were generated to replace single-

phase (canonical ensemble) and two-phase (NVT-Gibbs ensemble) MC simulations,

simultaneously. MC simulations in canonical ensemble were run using 216 particles

with 1×106 equilibrium MC steps, followed by 5×106 production MC steps. On the
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Figure 2.20: Same as Fig. 2.17 but for methane with supercritical isotherms ranging
from 300 K to 600 K.

other hand, a total of 686 particles (343 particles uniformly distributed in each box

at the initial configuration) were simulated in NVT-Gibbs ensemble with 10×106 and

20×106 equilibrium and production steps, respectively. In both ensembles, a cutoff

radius rc = 0.49L was imposed while energy and pressure tail correction functions

were introduced to account for the truncated interactions beyond rc. Regarding the

computational cost, each MC canonical ensemble run lasts for around 20 minutes

using an Intel Xeon processor on a Dell workstation. On the same machine, a single

NVT-Gibbs ensemble simulation requires around 150 minutes of computational time.

In the single-phase scenario, the Gaussian quadrature formula was employed to

build the NISP matrix. A total of only 64 quadrature points (8 in each input parame-

ters direction β∗ and ρ∗) was used in order to construct the surrogate model that can
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Figure 2.21: Same as Fig. 2.17 but for nitrogen with supercritical isotherms ranging
from 400 K to 1100 K.

reproduce the MC canonical ensemble results over a wide range of simulation condi-

tions. According to this, the time needed to construct the surrogate model is 64 times

the time needed by a single forward run of the canonical ensemble. However once

the surrogate model is constructed, any output can be evaluated in few seconds by

running the surrogate model itself. Similarly, only 20 quadrature points were needed

to generate the surrogate model that can produce the NVT-Gibbs ensemble results

within seconds.

According to Fig. 2.15, the results obtained by the single-phase PC surrogate

model are in excellent agreement with the P ∗ values directly calculated from the MC

canonical ensemble simulations. In fact, this surrogate model can reproduce the MC

canonical results within ± 3% error along the whole range of 0.1 ≤ β∗ ≤ 0.6 and
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Figure 2.22: Same as Fig. 2.17 but for carbon monoxide with supercritical isotherms
ranging from 200 K to 500 K.

0.1 ≤ ρ∗ ≤ 0.8. Similarly, the two-phase surrogate model can accurately estimate

both ρ∗liq and ρ∗vap generated by NVT-Gibbs ensemble (Fig. 2.16) in the normalized

temperature range of 0.8 ≤ T ∗ ≤ 1.1, with a relative error of ± 2%.

2.2.2.2 Single-site LJ parameters optimization

As a direct application to the coupling presented in this article between PC and MC

methods, a large-scale optimization for single-site LJ parameters was conducted for

several small molecules. The recommended parameters (εrec, σrec) were obtained by

minimizing the difference between various predictions from the surrogate against their

corresponding experimental measurements. All the experimental data used here were

retrieved from NIST database [44].
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Figure 2.23: (a) Supercritical isotherms of carbon dioxide data (symbols) ranging from
T = 600 K to T = 950 K fitted by the single-phase PC surrogate model (lines). (b)
Large deviation in two-phase region between experimental data (symbols) in compar-
ison with the PC model fit (lines). In contrary to the previous molecules, representing
CO2 molecule by merely an LJ sphere is not sound.

For the starting point of the optimization, a physically valid guess is needed for

both ε and σ. For this purpose, formulas obtained by fitting virial coefficient data were

used [45]. These equations are dependent on the critical properties of the component

itself:

ε0 =
T ckB

1.35
and σ0

3 =
0.35M

ρcNA

, (2.29)

where kB is the Boltzmann’s constant, NA is the Avogadro’s number, and M is the

molecular weight, whereas T c and ρc are the critical temperature and mass density,

respectively.

The optimization process was performed using the MATLAB built-in function

“fmincon”, starting with the initial guesses (ε0, σ0) from Equ. 2.29. During the fitting

process, the tuning parameters were subjected to certain lower and upper limits such

that they can only attain values satisfying these constraints. Typical ranges used

were ± 10 K for ε/kB and ± 0.25 Å for σ. These constraints were forced for two

main reasons. First, is to make sure that the optimized parameters still agree with

the theoretically expected quantities. Second, is to stay within the limits of the

constructed PC functions.
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Figure 2.24: (a) Supercritical isotherms of ethane data (symbols) ranging from 450
to 625 K fitted by the single-phase PC surrogate model (lines). (b) Large deviations
in two-phase region similar to CO2 case.

The optimization scheme aims to minimize the objective function defined as the

difference between the surrogate model predictions and corresponding experimental

data. The data used for matching were the single-phase vapor pressures along several

supercritical isotherms (T > T c and P > Pc), in addition to the two-phase (liquid

and vapor) saturation densities at different temperatures. Therefore, the objective

function (J) is formulated as the discrete norm over the experimental data used:

J =

∥∥∥∥∥P sur − P exp

P exp

∥∥∥∥∥
2

+

∥∥∥∥∥ρsur
vap − ρexp

vap

ρexp
vap

∥∥∥∥∥
2

+

∥∥∥∥∥ρsur
liq − ρ

exp
liq

ρexp
liq

∥∥∥∥∥
2

. (2.30)

Based on the described workflow above, LJ parameters for several molecules were

optimized such that a good fit with experimental data was reached. At first, LJ

parameters for three noble gases, namely Ar, Kr, and Xe, were obtained. In Figs. 2.17a

and 2.17b, experimental data used for tuning Ar parameters were plotted against the

simulated data generated by the recommended values (εrec/kB and σrec). In addition,

the relative misfits (in %) between each of these points in each phase were respectively

reported (see Figs. 2.17c and 2.17d). According to these results, the MC simulation

outputs for Ar can be reproduced in few seconds using the constructed PC surrogates



61

within ± 5% deviation for the majority of the investigated data points. It is also

evident that at supercritical conditions, larger misfits were found at lower pressures;

in other words, at temperatures closer to the critical temperature. In similar fashion,

higher deviations were observed while estimating the gas phase densities in the two-

phase envelope. Such behavior can be attributed to the misfits inherited by the PC

surrogates from the high statistical uncertainties of the MC simulations in the vapor

phase.

Similar trends, but generally with higher misfits, were reached for both Kr and Xe

(Figs. 2.18 and 2.19, respectively) when compared to Ar case. Furthermore, experi-

mental data of bigger but rather simple molecules were matched too. For instance,

results from PC surrogates showed excellent agreement with CH4 data (Fig. 2.20).

The resulting deviation was less than ±5 % for all data points studied, except for few

vapor phase densities.

In addition to CH4, both CO and N2 were modeled as single-site LJ particles.

Interestingly, the data for both molecules were reproduced with the recommended

parameters in rather good agreement, despite the simplicity of the representing molec-

ular model. Clearly, the match between experimental data and simulation results for

CO and N2, especially in the two-phase region, was not as good as the match obtained

for any of the noble gases considered or CH4.

A further, more challenging, step was taken trying to fit experimental data for CO2

and C2H6. However, and as expected, the spherical LJ model failed to capture the

complex nature of such molecules (Figs. 2.23 and 2.24). This misfit was dramatically

manifested in the two-phase region. The reason for such failure is due to the limitation

of the single-site model itself, as both CO2 and C2H6 are linear molecules instead of

spherical. Moreover, CO2 partial charges, which play a vital role in determining its

thermodynamic behavior, were not considered by the LJ model used.

To sum up, the large-scale optimization process for the LJ parameters was success-
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fully demonstrated for several noble gases, in addition to CH4, CO and N2 molecules.

On the other side, attempting to use the spherical non-polar LJ model to represent

more complex molecules has failed. Therefore, the recommended LJ parameters for

only the well-fitted molecules were reported (Table B.4 in Appendix B).

2.2.3 Conclusions

A novel approach combining MC molecular simulation with the PC expansions method

was presented. This combination is particularly successful because MC simulations

require very long computational time while having few input variables, which suits

well the PC expansion formulation. The resulting surrogate models built via PC

expansion functions allowed extremely fast and sufficiently accurate reproduction for

both single- and two-phase data of LJ fluids. In addition, an application example for

the combination of these two methods was demonstrated through conducting a large-

scale optimization of LJ model parameters for few molecules. These recommended

parameters are available in Table B.4 (Appendix B).

2.3 Reweighting and Reconstruction Method

Monte Carlo (MC) Markov chain collects the detailed configurational information of

the molecules at the microscopic level throughout the simulation. For instance, en-

semble averages such as system’s energy or pressure are found by simply averaging

these chains. In addition, fluctuations around average can be used to estimate sec-

ond derivative properties such as heat capacity and fluid compressibility. Therefore,

another way to accelerate MC molecular simulations is by extracting more informa-

tion from these Markov chains such that a merely single simulation can replace other

multiple ones. This could be an alternative path to reduce the computational cost

instead of trying to modify the Metropolis algorithm itself.
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For that purpose, researchers have developed several methods in order to re-

trieve more macroscopic information from the collected Markov chains. For exam-

ple, histogram reweighting [46–48] and thermodynamic scaling [49–56] are two well-

established methods so far. In the first, histograms generated per simulation are

grouped to form a collective distribution. The created distribution is then reweighted

by the proper factors in order to estimate ensemble averages at different conditions

than the simulated ones. As for thermodynamic scaling it refers to a family of scaling

methods based on non-physical umbrella sampling for several ensembles and various

applications.

In this context, a novel simple and self-consistent reweighting and reconstruction

scheme is proposed. In contrast to the reported methods in literature, where non-

Boltzmann distributions are utilized and some tuned parameters are required, the

proposed extrapolation schemes retain physically meaningful distributions and do

not contain any tuned parameters. The suggested method is, so far, designed for

structureless identical LJ particles in Canonical ensemble.

Coming paragraphs are devoted to highlight the theoretical basis and the work-

flow of the proposed scheme. In addition, the frontiers opened by this method by

coupling MC results with compressible single-phase single-component fluid flow in

porous media.3

2.3.1 Theoretical Basis

2.3.1.1 Ensemble averages and second derivatives

Initially and for easier presentation, three configurational quantities u, v and w are

defined. For convenience and as all the simulated particles are assumed identical, these

quantities can be normalized with respect to ε and σ. For instance, The normalized

3The material in this part appears in Journal of Computational Physics [57] and Procedia Com-
puter Science [58–60].
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potential energy of a configuration (u∗) is computed by Equ. 2.31 (see below); where,

u is normalized by ε and distance rij is normalized by σ (r∗ij = rij/σ) and further

divided by the normalized simulation box length (L∗ = L/σ) such that r∗ij = L∗s∗ij.

It is easy to see that s∗ij represents the normalized distance separating the ith and

jth particles relative to the normalized cubic simulation box length (L∗) with values

ranging from 0 to 1. Similar normalization scenario is applied to the other required

quantities in Equs. 2.32 and 2.33 below:

u∗ =
u

ε
= 4

∑
i<j

[(
1

L∗s∗ij

)12

−
(

1

L∗s∗ij

)6
]

(2.31)

v∗ =
v

ε
= 8

∑
i<j

[
2

(
1

L∗s∗ij

)12

−
(

1

L∗s∗ij

)6
]

(2.32)

w∗ =
w

ε
= 8

∑
i<j

[
10

(
1

L∗s∗ij

)12

− 3

(
1

L∗s∗ij

)6
]

(2.33)

Canonical averages and fluctuations over the total sampled configurations are used

in order to find certain quantities under interest. In particular, four quantities are

considered as a starting point to test and validate the reweighting and reconstruction

concept. These quantities are the normalized system’s energy per particle (E
∗
), the

system’s normalized pressure (p∗), the normalized isochoric heat capacity (C∗v ) and

the inverse of the normalized isothermal compressibility (c−1
T

∗
) and can be evaluated

as follows (see Appendix A for detailed derivations of these quantities):

E
∗

=
E

Nε
=

3

2β∗
+

1

N

〈
u∗
〉
can

+
1

N
E∗tail (2.34)

p∗ =
pσ3

ε
=
ρ∗

β∗
+

1

V ∗

〈
v∗
〉
can

+ p∗tail (2.35)
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Cv
∗ =

Cv
kBN

=
3

2
+

1

N
β∗2
(〈

u∗2
〉
can
−
〈
u∗
〉2

can

)
(2.36)

cT
∗−1 =

cT
−1σ3

ε
=
ρ∗

β∗
+

1

V ∗

〈
w∗
〉
can
− β∗

V ∗

(〈
v∗2
〉
can
−
〈
v∗
〉2

can

)
+ c∗tail (2.37)

where N is the total number of particles, β∗ is the normalized Boltzmann’s factor

and equivalent to the reciprocal of the normalized temperature (T ∗ = T/(ε/kB)),

kB is the Boltzmann’s constant and ρ∗ is the normalized number density (ρ∗ = ρσ3).

Whereas,
〈
X
〉
can

stands for the canonical average of property X over all the sampled

configurations and subscript “tail” corresponds to the tail correction functions used

to count for truncated interactions beyond the imposed cutoff radius (r∗c = 0.49L∗ =

s∗cL
∗). These tail correction functions can be computed using the following equations

(see Appendix A for derivations):

E∗tail =
Etail
ε

=
8

3
πNρ∗

[
1

3

(
1

L∗s∗c

)9

−
(

1

L∗s∗c

)3
]

(2.38)

p∗tail =
ptailσ

3

ε
=

16

3
πρ∗2

[
2

3

(
1

L∗s∗c

)9

−
(

1

L∗s∗c

)3
]

(2.39)

c∗tail =
ctailσ

3

ε
=

16

3
πρ∗2

[
10

3

(
1

L∗s∗c

)9

− 3

(
1

L∗s∗c

)3
]

(2.40)

2.3.1.2 Reweighting and reconstruction workflow

The general case for applying the reweighting and reconstruction scheme is to predict

an ensemble average
〈
A∗
〉
can

at certain temperature and density that are different

from the ones used to generate the MC Markov chain. In other words, the general case

will be to extrapolate ensemble averages along paths of changing temperature and
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density at same time. This is possible by first reconstructing and then reweighting

the original sampled Markov chain using the following relation

〈
A∗ (β∗n, L

∗
n)
〉
can

=

∑M
k=1 exp (−Wk)A

∗
k (β∗o , L

∗
n)∑M

k=1 exp (−Wk)
, (2.41)

Wk = β∗n [u∗k (β∗o , L
∗
n) + E∗tail (L

∗
n)]− β∗o [u∗k (β∗o , L

∗
o) + E∗tail (L

∗
o)] . (2.42)

In the equations above, the reweighting factors “exp(−Wk)” are related to the

temperature and energy difference between the reference case and the targeted one.

A can be replaced by any of the configurational quantities u, u2, v, v2 or w with

“o” and “n” subscripts representing the original thermodynamic conditions and the

new ones where the targeted point exists. Subscript “k” counts for the sampled

configurations (M) out of the total created configurations forming the Markov chain.

Based on the general Equ. 2.41, extrapolation along isothermal and isochoric paths

are also possible where both reconstruction and reweighting are required for the first,

and only the latter is needed for the second. In case of extrapolating along isotherms

both Equs. 2.41 and 2.42 reduce to

〈
A∗ (β∗o , L

∗
n)
〉
can

=

∑M
k=1 exp (−Wk)A

∗
k (β∗o , L

∗
n)∑M

k=1 exp (−Wk)
, (2.43)

Wk = β∗o [u∗k (β∗o , L
∗
n) + E∗tail (L

∗
n)− u∗k (β∗o , L

∗
o)− E∗tail (L∗o)] , (2.44)

while for extrapolation along isochors, Markov chains are only reweighted as simu-

lation box length is preserved (L∗n=L∗o). Consequently, Equs. 2.41 and 2.42 can be
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Figure 2.25: Estimated E
∗

(symbols) for long extrapolation ranges in comparison to
simulated E

∗
(circles) along ρ∗ = 0.9 isochor (Left). On right, number of relative

weighting factors which are greater than 10−6 sharply damps as the targeted point
resides a further β∗. Note that the ideal part of E

∗
is not included.

simplified to take the following forms:

〈
A∗ (β∗n, L

∗
o)
〉
can

=

∑M
k=1 exp (−Wk)A

∗
k (β∗o , L

∗
o)∑M

k=1 exp (−Wk)
, (2.45)

Wk = (β∗n − β∗o) [u∗k (β∗o , L
∗
o) + E∗tail (L

∗
o)] . (2.46)

2.3.1.3 Prediction limits

It is obvious that the suggested extrapolation scheme will have certain limits for its

prediction ranges. For this purpose the change of E
∗

with respect to β∗ along ρ∗ =

0.9 isochor was partly reproduced (Fig. 2.25 left panel). Circles correspond to the

simulated values obtained from generated MC chains for a system of 512 LJ particles,

while the other symbols represent the attempt to estimate the neighboring E
∗

by

reweighting the nearest simulated point. As can be seen, the extrapolation fails as

the distance from the simulated point increases to reach a constant value. This value

represents the tail correction function (E∗tail). In order to better understand this

result, right panel of Fig. 2.25 was created. In that figure, the number of significant
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relative weights used to reweight the residual part (u∗k) of E
∗

damps as the distance

between the simulated point and the extrapolated one increases. Due to this sharp

damping, the residual part vanishes and E
∗

approaches the constant value of E∗tail.

For more information on the prediction limits of the proposed method, the reader is

referred to our papers [57, 58].

2.3.2 NV T -NpT Switching Scheme Results

In order to be able to couple the reweighting and reconstruction scheme with Darcy-

scale flow simulator, a switching scheme that allows solving an NPT problem using

NV T Markov chains was developed [59]. Before describing the switching mechanism

from the NV T to the NpT ensemble, the application of the classical reweighting and

reconstruction scheme in predicting p∗ is first explained. Starting from Equ. 2.35, the

following relation shows how p∗ at a new temperature (β∗n = 1/T∗n) and density (ρ∗n)

can be estimated using the information from a Markov chain generated at neighboring

β∗o and ρ∗o.

p∗ (β∗n, L
∗
n) =

ρ∗n
β∗n

+
1

V ∗

〈
v∗ (β∗n, L

∗
n)
〉
can

+ p∗tail (L
∗
n) . (2.47)

In the equation above, the ideal part and the tail correction function are directly

modified to adhere with the new prescribed conditions (β∗n and ρ∗n=N/L∗
3

n ). However,

the residual part 〈v∗ (β∗n, L
∗
n)〉can is computed as explained in Equ. 2.41; such that,

the reweighting factors are evaluated as exactly shown in Equ. 2.42.

〈
v∗ (β∗n, L

∗
n)
〉
can

=

∑M
k=1 exp (−Wk) v

∗
k (β∗o , L

∗
n)∑M

k=1 exp (−Wk)
. (2.48)

So far the problem is forward, as the only targeted unknown is p∗. Nonetheless,

another way to visualize this problem is by assuming that the new pressure p∗ (β∗n, L
∗
n)

and β∗n are given and to look for their corresponding ρ∗n. In standard MC simulations,

such new formulation requires designing a new experimental setup which, as men-
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tioned earlier, is called the NpT ensemble. In other words, the numerical experiment

has to be rerun again with the same expensive computational cost. On the other

hand, this work shows that such a switch between the NV T and NpT ensembles is

fairly simple when using the reweighting and reconstruction scheme. Basically, the

same Equ. 2.47 is used but this time to search for L∗n value that successfully retains

the prescribed pressure p∗ (β∗n, L
∗
n). In the following section, the proposed scheme will

be further elaborated with more details.

The extensive analysis conducted to test and validate the proposed approach, is

based on a set of 750 Markov chains generated by MC molecular simulations in NV T

ensemble. This set spans the range of 0.05 ≤ β∗ ≤ 0.75 and 0.02 ≤ ρ∗ ≤ 1. The

β∗ range is chosen such that the system is always at a temperature higher than the

critical temperature to avoid entering the two-phase envelope. On the other hand, ρ∗

values are decided such that cases from sparse to highly dense systems are considered.

In generating the 750 chains, a system of 256 uniformly distributed structureless

LJ particles in a cubic cell with dimensions fulfilling the prescribed system’s ρ∗ is

initially used. Starting from these initial configurations, a sequence of successive

configurations is created by introducing elemental changes to the system, known as

MC trials. For this particular case, particle displacement was the only possible MC

trial. Therefore, at each MC step a particle is randomly chosen and displaced. For

each run, a total of 61,440,000 MC trials was performed to generate the same number

of configurations. The first 10 % of these configurations were discarded to account

for equilibration. Out of the 90% left, only one configuration was sampled every

1024 steps. As a result, each of these 750 Markov chains is made of 54,000 sampled

configurations. As a matter of fact, for the reweighting and reconstruction method

only the sum of the short range (1/s12) and long range (1/s6) interactions need to be

separately collected in the Markov chains.
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Figure 2.26: Extrapolated ρ∗ (·) along seven different isotherms (β∗ = 0.1, 0.2 ... and
0.7). Markov chains used as source points for extrapolation are plotted as symbols.
Each source is used to extrapolate the adjacent five dots from each side. The plots
are split into two for clarity.

2.3.2.1 Solving the NpT problem

After conducting the necessary MC simulations in NV T ensemble, a data bank of MC

Markov chains is available. In order to solve the NpT problem, p∗ is first computed

for each chain corresponding to specific β∗ and ρ∗ using Equ. 2.35. Therefore, for

every chain in the generated data bank the three thermodynamic states β∗ = 1/T ∗,

ρ∗ and p∗ are known. Assuming that we want to estimate ρ∗ at a given p∗x and β∗x,

the first step is to determine the suitable MC Markov chain from the generated set

of chains as the source of extrapolation. Considering the case of extrapolation along

isothermal paths, the chain with β∗ equal to β∗x and p∗ closest to the targeted p∗x is

chosen as the source point of extrapolation.

In Fig. 2.26, seven isotherms were reproduced. Along each isotherm only 19

Markov chains were used as source points for extrapolation. From each source point,

five adjacent ρ∗ values are predicted from each side at different p∗ values such that

the extrapolations from two consecutive source points meet at the middle. In fact,

these predictions were made using Equ. 2.47 while solving for L∗n as both p∗ (β∗n, L
∗
n)

or p∗x and β∗n or β∗x at extrapolation points are known. According to Fig. 2.26, all
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Figure 2.27: Same as Figure 2.26 but for extrapolating −E∗.
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Figure 2.28: Same as Fig. 2.26 but for extrapolating C∗v .

the isotherms are well reproduced as the transitions from one extrapolation set to

another are, in most occasions, smooth. However, in agreement with results reported

in our previous papers [57, 58], the ranges of extrapolation are dependent on the

thermodynamic states of the source points of extrapolation. It is observed that at

low temperatures (high β∗) the ranges get narrower as the system approaches the

critical temperature.

2.3.2.2 Switching back to the NV T ensemble

As the ρ∗x values associated with different pressures (p∗x) of interest are all known, it

is possible now to shift back to the regular forward reweighting and reconstruction
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Figure 2.29: Same as Fig. 2.26 but for extrapolating c∗T .

scheme to solve for the other three properties considered using Equs. 2.34, 2.36 and

2.37. In this regard, three more figures are generated reproducing isotherms of −E∗

(Fig. 2.27), C∗v (Fig. 2.28) and c∗T (Fig. 2.29). Again here, the plots were split into two

sets for clarity. Similar to ρ∗, extrapolation ranges diminish as source points approach

critical temperature. In addition, it is evident that for second derivative quantities

narrower ranges of extrapolation are expected when compared to primary quanti-

ties. To sum up, the MC Markov chains generated from NV T ensemble simulations

were used to solve for density at a given pressure and temperature. To solve the in-

verse problem, the MATLAB built-in non-linear solver “fsolve” was used. Whenever

densities are determined, the rest of the parameters are evaluated using the forward

scheme.

2.3.2.3 Extrapolation along paths of changing β and p

To take the method a step further, in fact, the extrapolation process does not have

to solely be along isotherms. It is possible to extrapolate from a certain source point

to other neighboring points at both different temperature and pressure conditions.

As an example (Fig. 2.30), source points (◦) along β∗ = 0.3 were used to extrapolate

points (·) at different pressures along two different isotherms β∗ = 0.25 (.) and 0.35
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source points. Each source point is used to extrapolate along the same isotherm and
the other two plotted ones. To better visualize the extrapolation area along different
temperature and pressure conditions, the points extrapolated by one of the source
points are removed.

(�). The symbols (. and �) are only plotted to show how well the extrapolation was.

In addition, the extrapolated points by one of the source points were removed to help

visualize the extrapolation area covered by each source point.

Moreover and in order to get a clear idea about the extrapolation limits of the

proposed scheme, the normalized quantities (β∗) are transformed into temperatures

(T ) with absolute units. By referring to Fig. 2.30, the source points along T = 490

K isotherm (◦) were successful in reproducing the other two isotherms with more

than 70 K temperature difference from both sides. Again, for more details about

extrapolation limits, our two earlier papers are recommended [57,58].

2.3.2.4 Validation

Finally, the algorithms and extrapolation schemes used in this work are all validated

by comparing the data from direct simulations and extrapolated ones with respect

to methane experimental data [44]. In specific, density values (Fig. 2.31) are used in

comparison. Moreover, and for better comparison, quantities in absolute units are
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Figure 2.31: Comparison between ρ experimental values (×) against simulated (Sym-
bols) and extrapolated (·) ones. Only five of the previous isotherms are reported as
for the other two, for the best of our knowledge, no experimental data exists.

reported instead of the normalized ones. We note that, for converting quantities into

real units ε/kB = 147 K and σ = 3.722 Å were used [57].

2.3.3 Multi-Scale Compressible Single-Phase Flow Simulator

In this part, a successful coupling between Darcy-scale flow simulator and MC molec-

ular simulation is demonstrated. In particular, a compressible single-phase flow case

is considered. MC molecular simulation, via reweighting and reconstruction method

and the switching scheme, replaces the equation of state in terms of estimating the

necessary thermophysical quantities needed by the flow simulator.

2.3.3.1 Flow governing equations

The cell centered finite difference method for compressible single-phase single-component

system was used. The system was reduced to a set of linear equations in which the

pressure field was the primary unknown. Then using MATLAB’s linear solver, these

equations were implicitly solved employing a constant time step. Simulations with

uniform and non-uniform rectangular mesh were both considered.
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The governing equations that describe the system start with the mass conservation

law, which equates the difference between the input and the output fluxes to the

accumulation term in the unit cell:

∂ (φρ)

∂t
+∇. (ρu) = q. (2.49)

In Equ. 2.49, φ is the rock porosity, ρ is the mass density, u is the Darcy velocity,

q is the mass source and t is the time. Based on the definition of the isothermal

compressibility, the mass conservation law can be formulated in terms of pressure

instead of density as follows:

φρcT
∂p

∂t
+∇. (ρu) = q, (2.50)

where p is the pressure and cT is the isothermal compressibility. On the other hand

the Darcy velocity can be expressed as follows:

u = −k
µ
∇p. (2.51)

under the assumption of no gravitational field effect, such that k and µ are the rock

permeability and fluid viscosity, respectively. As for the production well model, the

well known Peaceman radial well model [61] was employed:

q = WI (pbh − pc) , (2.52)

WI =
2πρ

√
kxkyhz

µln( re
rw

)
. (2.53)

In the Peaceman model, WI is the well index, kx and ky are the permeabilities in

the x and y directions respectively, hz is the vertical thickness, pbh is the well bottom
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hole pressure, pc is the cell average pressure, re is the cell equivalent radius and rw is

the well radius.

2.3.3.2 Reservoir fluid properties

At first, the natural gas correlation by Lee et al. [62] was adopted in order to compute

methane viscosity as function of pressure and temperature:

µg = K1e
XρY , (2.54)

K1 =
(0.00094 + 2× 10−6M)1.5

(209 + 19M + T )
, (2.55)

X = 3.5 +
986

T
+ 0.01M, Y = 2.4− 0.2X. (2.56)

In the equations above, µg is the viscosity in cp, ρ is the density in g/cm3, p is

the pressure in psia, T is the temperature in R and M is the gas molecular weight.

Finally, the reweighting and reconstruction method in addition to the NV T -NpT

schemes were used in order to have good estimations of the fluid density and isother-

mal compressibility.

2.3.3.3 Production scenarios

The proposed coupling was tested with various production scenarios from methane

gas reservoirs (Methane LJ parameters are: ε/kB= 147.4 K and σ = 3.722 Å) at

isothermal condition ( T = 368.5 K). These reservoirs have different configurations

with a 2D domain covering 240 m × 240 m area of 0.2 porosity with Neumann no

flow boundary condition. In all the studied scenarios, the production lasted for 200

days, while the initial reservoir pressure and the well down-hole pressure were 200

and 100 atm, respectively. The proposed multi-scale coupling flow chart between MC
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Figure 2.32: MC simulation and Darcy scale coupling algorithm.

molecular simulation and Darcy flow, used in simulating the studied cases in this

study, is given in Fig. 2.32.

In the first scenario, a homogeneous permeability field of 100 md was imposed

throughout the reservoir domain which was discretized as 80 × 80 cells. A single

production well was placed at the center. Fig. 2.33 shows the contour plot of pressure

field with the velocity streamlines and the production rate profile relative to initial

production. As expected, the pressure and velocity fields are symmetric around the

wellbore because of the homogeneity of the domain properties.

In the second scenario, a heterogeneous permeability field with values ranging

from less than 1 md to about 200 md was imposed throughout the reservoir domain

with a single production well at the center with 50 × 50 cells discretized domain.
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Figure 2.33: Homogeneous reservoir case: (a) Normalized production rate profile. (b)
Pressure contour map with darcy velocity streamlines after 10 days of production.
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Figure 2.34: Heterogeneous reservoir case: (a) Normalized production rate profile. (b)
Pressure contour map with Darcy velocity streamlines after 10 days of production.

The effect of the heterogeneous medium is clearly seen in the irregular shape of the

streamlines and the pressure contour plot (Fig. 2.34.b). In this case the production

rate decline is slower than the homogeneous case (Fig. 2.33.a and 2.34.a) although

the overall average rock permeability in the two cases is almost the same. This is

mainly because of the presence of dead zones in the heterogeneous reservoir that have

very low permeability and as a result, the reservoir is depleted at slower rates. In our

paper [60], more production scenarios are reported.
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2.3.4 Conclusions

An efficient coupling between MC molecular simulation and Darcy flow simulation

in porous media was developed using the reweighting and reconstruction method

along with NV T -NpT switching scheme. The proposed combination was tested on

methane system in different reservoir configurations. The accurate description of ther-

modynamic behavior of the simulated reservoir fluids using MC Molecular simulation

decreases the uncertainty in reservoir simulation predictions. The reweighting and re-

construction technique allows extrapolation in seconds instead of running the typical

molecular simulation for hours. In conclusion, the implementation of the reweight-

ing and reconstruction method using few offline, pre-computed Markov chains has

made it computationally feasible to benefit from the molecular simulation accuracy

in determining phase properties needed by the reservoir simulator.
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Chapter 3

Shale Gas Sorption and Transport

Modeling

The global natural gas market has been significantly affected by the large increase

in shale gas reservoirs exploitation. Shale gas reservoirs are categorized as unconven-

tional energy resources. They are usually characterized by extremely small grain sizes,

low permeability, and heterogeneity in chemical composition (Organic and inorganic

permeable media). These factors have increased the complexity towards understand-

ing the underlying mechanisms for gas sorption, transport and phase behavior in such

systems.

Naturally occurring clay minerals determine the key physical traits such as per-

meability and certain chemical properties such as gas adsorption of shales [63–66] and

provide a distinctive material for carbon dioxide sequestration [67–70] and selective

sorption [71–74]. Shale mineralogy varies widely such that some shales are silt-rich

or carbonate-rich whereas others are dominated by clay minerals, for example, illite,

chlorite, smectite, and kaolinite [64,75,76]. Processes such as Knudsen diffusion, slip

flow (Klinkenberg effect) and adsorption at the solid matrix can affect permeabilities

and Darcy-type flow would be disturbed in case of deviation from the laminar flow [77].

However, none of the above models predict the correct behavior of shale gas produc-

tion data. Thus in spite of the recent improved success in shale gas production [78],
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the underlying adsorption and flow mechanisms in shale media are not well under-

stood [79,80]. In nature, smectite such as montmorillonite is one of the most common

type of swelling clay minerals [81–87]. To date, there have been numerous simulation

studies on water adsorption and swelling in montmorillonites [81, 83, 84, 88–97]. The

stable basal d-spacing is around 10 Å for dry clays and increases upon interaction

with water to the range 11.5-12.5 Å forming a fully saturated monolayer (1W) wa-

ter arrangement [83, 88, 90–93, 98]. Due to intake of more water, the d-spacing can

increase to the next stable state (14.5-15.5 Å) where water forms a bilayer (2W) struc-

ture. Likewise, measured basal d-spacings for three layers of water (3W) are in the

range 18.0-19.1 Å. In recent years, molecular modeling of the structure and dynam-

ics of the water-methane mixture in the interlayer region of smectites has attracted

interest [79, 99–103]. These simulations demonstrated that montmorillonite surfaces

facilitate methane hydrate crystallization from aqueous solution in agreement with

experiments [104]. Geologic sequestration of carbon dioxide has recently emerged as

an alternative for reducing greenhouse emissions [67–70,86,103,105–110].

According to experimental investigations [67, 69], carbon dioxide adsorption ca-

pacity of clay minerals is comparable to that of coal. The swelling of organoclays

in the supercritical CO2 medium is also important in nanocomposite preparations

and applications [111, 112]. Preferential adsorption of ions and molecules on clay

minerals such as montmorillonite can be used for ion exchange [71] and gas selectiv-

ity [72–74,79,113]. The main component of shale gas is methane, but the composition

of the shale gas depends on multiple factors, most of which have geological and geo-

chemical origins [114]. An important issue relevant to methane recovery [64, 65] and

CO2 storage capacity [67, 69] in clays involves the effect of the presence of pread-

sorbed water, which cannot be avoided owing to the hydrophilic nature of the sam-

ples. The presence of such adsorbed solvents leads to, for example, a striking increase

of gas solubility in porous solids with pore size in the range of nanometers [115] and
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modified sorbate intake [116]. Experimental studies have considered adsorption on

dry [64–67,70,73] as well as on moisture equilibrated [64,65,67,69,86,108,117] clays.

The mixture adsorption data is typically predicted from pure component adsorption

measurements using the capability of approximate methods such as the ideal adsorbed

solution theory (IAST) [118,119]. In common practice, IAST can give fair predictions

of gas mixture adsorption in many zeolites [120] and metal-organic frameworks [121].

In the first study of this chapter, we chose Na-, Cs-, and Ca-montmorillonite for

the intercalation of CO2 and CH4 molecules into wet clays. This is not only with

a view to getting new insight into the effect of ionic size and charge on adsorption

behavior of CO2 and CH4 molecules, but also because they have already been elab-

orately investigated for pure water adsorption in clays, both experimentally and in

molecular simulations. The adsorption of methane or CO2 upon montmorillonite

from mixture containing species (impurities) other than hydrocarbons and water has

been rarely studied [107, 122, 123]. The objective of our present work was to sys-

tematically investigate using grand canonical Monte Carlo (GCMC) simulations the

adsorption of pure sorbate molecules such as methane, carbon dioxide, nitrogen and

hydrogen sulfide as well as their mixture upon clay minerals in the presence of wa-

ter. The number of adsorbed water molecules is kept constant in our simulations

upon subsequent gas adsorption, because typical hydrophilic pores indicate that wa-

ter remains adsorbed upon carbon dioxide and methane adsorption [65, 86, 107, 124].

The adsorption isotherms and density profiles of these four molecules, at different

basal d-spacings and densities of preadsorbed water in the interlayer of clays, are

first obtained from GCMC simulations in the µV T ensemble, where µ is the chemical

potential of the adsorbing molecule. For this study, we chose basal spacings d =

12, 15, 18, and 30 Å covering, for example, the swelling states (at fully saturated

water arrangement) ∼ 1W, ∼ 2W, ∼ 3W, and > 3W, respectively. The simulated

d-spacings are similar in spirit to previous studies [83, 84, 90, 95, 96] and consistent
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with those known for montmorillonites in the atmospheric environment containing

sorbate molecules [65, 67,69,107].

When using pre-determined interlayer distances to study the adsorption of binary

and ternary mixtures with one of their components (water) preadsorbed at certain

concentrations, the final equilibrated compositions of the mixtures do not necessarily

correspond to the thermodynamically stable states. Recent simulations employed

similar pre-determined interlayer distances for GCMC simulations of adsorption of

binary mixtures (e.g., H2O/CO2, H2O/CH4, and CO2/CH4) in clays [79,103,113,125].

The adsorption simulation using a large basal d-spacing (30 Å) would represent,

for example, gas adsorption onto an external montmorillonite surface. Since the

experimental data of ternary mixtures are not yet available, we assume that the

stable states for ternary mixtures (e.g., H2O/CO2/CH4) are also close to the above

selected d-spacings (∼ 1W, ∼ 2W, ∼ 3W etc.) over the studied conditions. In

addition, IAST based on fitting curves of single component adsorption isotherms is

used to predict mixture isotherms, and compared with the corresponding results of

our direct molecular simulations.

In the second part, molecular dynamics (MD) simulations were used to investigate

the structural and transport properties of CO2, methane, and their mixture in hy-

drated Na-montmorillonite at preadsorbed water content and 298.15 K. Our results

cover the experimental RH region, where swelling and shrinking normally occur. For

this study, we chose the same basal spacings as earlier (d = 12, 15, 18, and 30 Å).

These initial steps towards molecular understanding of water and CO2 in montmoril-

lonite interlayers are important for determining impacts from the long-term exposure

of carbon dioxide to geological formations [69,126,127]. All GCMC and MD simula-

tions conducted in this chapter were performed using MedeA software from Materials

Design.
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3.1 MC Study of CH4, CO2 and Water Adsorption

in Montmorillonite

Using grand canonical Monte Carlo (GCMC) simulations, we study the adsorption

behavior of CH4, CO2, and their mixtures at 298.15 K and pressures up to 50 bar

in Na-, Cs-, and Ca-montmorillonite clays in the presence of water. Montmorillonite

clays in the presence of preadsorbed water, preferentially adsorb CO2 over CH4 dur-

ing both pure component and mixture adsorption. We observe the general trend

that the presence of increasing preadsorbed water content in the clay interlayers, re-

duced adsorption amounts of pure CH4 and CO2 molecules. With a relatively large

basal spacing (d= 30 Å), the favorability of adsorption of CO2 by montmorillonite

at relatively low pressures and intermediate water contents has been demonstrated

using simulations. GCMC simulation is also used to assess the effect of water on

the adsorption of N2/CH4, H2S/CH4, CO2/N2, and CO2/H2S binary mixtures in Na-

montmorillonite clay. The ideal adsorbed solution theory is shown to agree well with

the observed adsorption capacities and selectivities of mixtures in Na-montmorillonite

clay.1

3.1.1 Simulation Details

3.1.1.1 Simulation cell

The model of clay used is the Wyoming-type montmorillonite [81,83,88,90,93,97,103],

which contains tetrahedral and octahedral substitutions. Wyoming-type montmo-

rillonite is commonly referred as Na-enriched montmorillonite occurring in nature.

Texas-type (Ca-enriched) montmorillonite also has tetrahedral and octahedral sub-

stitutions. The montmorillonite modeled here has a layer charge of −0.75e, ap-

1The following material corresponding to this section is published in Microporous and Mesoporous
Materials journal [128].
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proximately 66.6% of which is in the octahedral layer, and the unit cell formula

is M0.75/n(Si7.75Al0.25)(Al3.5Mg0.5)O20(OH)4, where M represents a counterion (Na+,

Cs+, or Ca2+) and n represents the charge on the ion. This clay model is based on

the pyrophyllite unit cell structure (Si8Al4O20(OH)4) with the position of the atoms

in the unit cell of the clay taken from Skipper et al. [81]. In order to minimize finite

size effect, the simulation box is made up of two tetrahedral-octahedral-tetrahedral

(TOT) clay layers [83], each containing replicated pyrophyllite unit cells (8 × 4 × 1)

with dimensions 42.24, 36.56, and 6.56 Å along x, y, and z directions, respectively.

The simulation supercell of orthorhombic symmetry, thus consists of two TOT clay

layers made up by a total of 64 unit cells.

Periodic boundary conditions were employed in all three spatial dimensions. The

two TOT clay layers are parallel to each other and considered to be rigid molecules.

At the start of each simulation, the water molecules and counterions were placed at

random within the interlayer region. The sorbate molecules are permitted to move

in and out of the simulation box, while the number of preadsorbed water molecules

and counterions are kept constant during GCMC simulations. Note, however, that

the dynamics of preadsorbed water molecules and counterions are allowed. The z

dimension of the simulation box Lz = 2d, where d is the basal spacing which is

the sum of the clay layer thickness and the interlayer space. The distance along

z direction between planes through the centers of the inner oxygen atoms of two

adjacent TOT layers defines the interlayer spacing. As in previous simulations [83,

90, 103], the clay layer of Wyoming-montmorillonite was constructed by introducing

in each clay sheet 16 isomorphic substitutions of trivalent Al atoms by divalent Mg

atoms in the octahedral sheet, 8 isomorphic substitutions of tetravalent Si atoms by

trivalent Al atoms in the tetrahedral sheets, and 24 compensating monovalent sodium

or cesium ions in the interlayer region (12 in the case of Ca-montmorillonite). All these

substitutions were assigned in a fashion to obey the Loewenstein’s rule (neighboring
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Al-O-Al avoidance).

3.1.1.2 Force fields

All atoms in the system interact via the pairwise additive Lennard-Jones (LJ) 12-6

function representing the van der Waals energy term [8,93],

ULJ(rij) = 4εij

[(σij
rij

)12

−
(
σij
rij

)6 ]
, (3.1)

where rij is the distance between the centers of i and j atoms. The parameter

εij controls the strength of the short-range interactions, and the LJ diameter σij is

used to set the length scale. The LJ parameters σij and εij are deduced from the

conventional Lorentz-Berthelot combining rules [8]:

σij =
σi + σj

2
, (3.2)

εij =
√
εiεj. (3.3)

The charged atoms are interacting with each other via the unscreened Coulomb

potential

UCoul(rij) =
qiqj

4πε0rij
, (3.4)

where qi and qj are the partial charges of the atoms i and j, respectively, and

ε0 is the dielectric permittivity of vacuum. The CLAYFF force field [93] that con-

sists of nonbonded (electrostatic and van der Waals) terms predicts thermodynamic

properties of clays in fair agreement with experiments [66, 93, 96, 97]. The CLAYFF

parametrization incorporates structural and spectroscopic data for a variety of simple

hydrated compounds. The partial charges were obtained by the electrostatic poten-

tial (ESP) analysis of the density functional theory results [93]. Thus in the present

work, the charges of the clay atoms and their Lennard-Jones parameters are taken



87

from Cygan et al. [93]. Water is represented by the extended simple point charge

(SPC/E) model, which consists of three interaction sites and a rigid structure with a

tetrahedral H-O-H bond angle and 1.0 Å O-H bond lengths [129]. The CLAYFF force

field adapted to the SPC/E water model provides flow properties in reasonable agree-

ment with experiment [96]. Na+ and Cs+ cations are modeled using the parameters

proposed by Smith and co-workers [92], and the LJ parameters of Ca2+ are taken from

Koneshan et al [130]. For sorbate molecules considered as rigid, several different force

fields are utilized that exhibit a very good ability to predict thermodynamic proper-

ties. Methane (single-site) is represented by the TraPPE force field [131]. The force

field parameters for nitrogen (three-site) [132] and hydrogen sulfide (four-site) [133]

were taken from the literature. The nitrogen model involves two LJ force centers

separated by a fixed distance of 1.098 Å as well as two negative electrostatic charges

located on the atomic centers and one positive charge (q1) on the center of mass. The

rigid H2S model has the standard H-S bond length (1.34 Å) and H-S-H angle (92°).

In this model, an additional partial charge (q1), located at a point on the bisector

of the H-S-H angle, is taken into account. The LJ parameters for carbon dioxide

are obtained from the flexible version of the EPM2 model suggested by Harris and

Yung [134]. This model approximates carbon dioxide by three sites with each site

represented by a LJ sphere with an embedded central point charge, and the bond

angle was allowed to fluctuate according to the bending potential

Uangle bend(θ) =
1

2
kθ(θ − θ0)2, (3.5)

where kθ, θ, and θ0 are the force constant, bending angle, and equilibrium bending

angle, respectively. The CO2 molecules are taken with a fixed C-O bond length of

1.15 Å, kθ = 1236 kJ/mol/rad2, and θ0 = π rad. The LJ parameters and charges

used in this study are presented in Table B.5 in Appendix B.
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3.1.1.3 Simulation methods

We used grand canonical Monte Carlo (GCMC) technique to simulate adsorption of

various sorbate molecules in the presence of water and counterions by rigid montmo-

rillonite in the µV T ensemble. In these calculations, sorbate molecules are allowed

to move in and out of the simulation box, while the number of preadsorbed water

molecules and counterions are kept constant. Note, however, that the dynamics of

preadsorbed water molecules and counterions are allowed during GCMC simulations.

Thus we simulate a clay system in equilibrium with an infinite reservoir of molecules

that fixes the chemical potential µA of each species (A = CH4, CO2, N2 or H2S) at tem-

perature T . The Monte Carlo trial moves consist of displacements and/or rotations

of different molecules in the interlayer, and deletion or insertion of sorbate molecules.

The new configuration resulting from the translational or rotational move is accepted

following the standard Metropolis acceptance criterion [8]. However, due to the high

densities of molecules in the interlayer, efficient sampling of sorbate such as CO2 in

the grand canonical ensemble requires a rotational-bias insertion technique [83]. In

this method, a CO2 molecule is inserted at a random position in the system and the

selection of its orientation is biased. The acceptance probability for the insertion step

reads

PN→N+1
acc = min

[
1, exp

(
− β

[
4U + ln

(
ZV

N + 1

)
+ β−1ln(kPj)

])]
, (3.6)

and for the deletion

PN→N−1
acc = min

[
1, exp

(
− β

[
4U + ln

(
N

ZV

)
− β−1ln(kPj=1)

])]
, (3.7)

where Pj is the probability of selecting the jth orientation from k randomly gener-

ated orientations, β = 1/(kBT ), Z = exp(βµ)/Λ3, Λ is the de Broglie wavelength, V
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the volume of the simulation box, N the number of molecules, µ the chemical poten-

tial, and 4U the change in energy resulting from the molecule insertion or deletion.

During the simulations, a 4:1:1 combination of the transfer (insertion/deletion), rigid

translation, and rigid rotation MC moves, respectively, was found to be the most

efficient choice. To bias insertion and deletion moves, k = 20 trial orientations were

used.

A cutoff radius of Lmin/2, where Lmin is the minimum dimension of the simulation

box was applied to the LJ interactions, and the long-range electrostatic interactions

were handled using the Ewald summation technique [8, 83]. In this work, the Ewald

summation parameters with real space cutoff rc = Lmin/2, convergence parameter

α = 5.6/Lmin and kmax = 8 for the sum in the reciprocal space were used. Since

the adsorbent was assumed to be a rigid structure, for computational efficiency the

interaction energies between an adsorbed molecule and the clay were pretabulated

over a grid (typical resolution is ≈ 0.2 Å in each direction) that is overlaid on the

simulation unit-cell. We used linear interpolation between the nearest eight nodes of

the grid to determine energy in a given location. Each GCMC simulation consisted

of 4× 107 Monte Carlo steps to guarantee equilibration followed by a production run

of 2 × 107 steps. For the estimation of the statistical uncertainty, each production

run was divided into 10 consecutive blocks, and the standard deviation of these block

averages was calculated [8]. Typically the uncertainties in the average number of ad-

sorbed molecules and total energy were estimated to be from 1 to 2%. The chemical

potentials of sorbate molecules needed in the GCMC simulations are computed from

the NPT ensemble Monte Carlo simulations, using the Widom’s insertion method [8].

The Widom’s method was used on a system of no less than 512 particles. The av-

eraging of measured fugacity (Widom’s method) in the clay system was performed

by an automated convergence analysis based on a block average method. The im-

posed fugacities of adsorbates are within the measured uncertainties (typically in our
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Figure 3.1: Swelling curve for the hydration of Na-montmorillonite derived from
GCMC simulations. Inset: z-axis probability distribution functions for water oxygen
atoms (aFu et al., 1990; bBoek et al., 1995).

simulations, within 2, 5, 1 and 8% for CH4, CO2, N2, and H2S, respectively).

3.1.2 Results and Discussion

3.1.2.1 Simulation model validation

The originally developed CLAYFF force field parameters are compatible with the

flexible simple point charge water and clay models, and uses a slightly different mix-

ing rule than ours [93]. To test the transferability of the CLAYFF parameters while

using SPC/E water model and rigid montmorillonite, we performed GCMC sim-

ulation in the µH2OV T ensemble. As shown in Fig. 3.1, the swelling behavior of

Na-montmorillonite under saturated vapor pressure of water (298.15 K and 1 bar)

obtained from the GCMC simulation is in agreement with experimental data [98]

and previous simulation results [88]. The density profiles for water molecules (see

inset of Fig. 3.1) display various well-defined layers (monolayer, two layer, three layer

etc. hydrated states) as a function of basal d-spacing [83, 88]. Montmorillonites are
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also known to exhibit oscillatory thermodynamic behavior associated with stepwise,

crystalline swelling [83, 90, 92, 94]. The relative stabilities of multiple stable states

in a clay system under conditions of constant T , N , and applied pressure can be

determined from the minima in the swelling free energy [83, 90, 92, 94]. As the wa-

ter content is increased in the interlayer, density profiles show that sodium ions are

able to hydrate thereby less effectively screening the negatively charged, mutually

repelling clay surfaces [83,88,95]. While calcium ions [90,95] also favor clay swelling,

cesium ions [92,95] migrate to and bind to the clay surface and act as a clay swelling

inhibitor, i.e., Cs-montmorillonites form stable monolayer hydrates in water. The

Poisson-Boltzmann treatment to describe the ionic density profile is not valid in the

low states of clay hydrations [135]. The various counterions can form, such as, inner-

sphere surface complex consisting of ions which are strongly bound to the tetrahedral

substitutions, and outer-sphere surface complex that consists of ions loosely associ-

ated with the octahedral substitution [88].
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3.1.2.2 Single component adsorption isotherms
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P (bar)

H
2
S
u
p
ta
k
e
(m

m
o
l/
g
C
la
y
)

Figure 3.2: Single-component adsorption isotherms for CH4, CO2, N2, and H2S
molecules on Ca- (squares), Na- (circles), and Cs-montmorillonite (triangles) in the
presence of 0.2 (black-filled symbols), 0.4 (open symbols), and 0.6 g/cm3 (gray-filled
symbols) of preadsorbed water at 298.15 K as computed from GCMC simulation.
The lines are fitting results to the GCMC simulation data.

GCMC simulations were performed to calculate single-component adsorption isotherms

for methane, carbon dioxide, nitrogen and hydrogen sulfide in variably hydrated mont-

morillonite at 298.15 K. The computed isotherms at basal d-spacings of 12, 15, 18
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and 30 Å are shown in Fig. 3.2 as symbols. In addition, density of water is reported

as the mass of water molecules in an interlayer in g per interlayer volume (simulation

cell area × (d − 6.56) Å) in cm3. For example, in ambient conditions and for basal

d-spacings of 12, 15, and 18 Å, we have obtained ≈ 0.52, 0.71, and 0.80 g/cm3 of sat-

urated water densities in the interlayer space of Na-montmorillonite clay, respectively

(Fig. 3.1). Over the basal d-spacings and pressure range considered in our study,

the presence of increasing water molecules in the clay typically reduced the sorbate

adsorption. Fig. 3.2 shows not only the data of our GCMC simulations but also the

best fits (lines) to these isotherm curves. Fits of the single-component isotherms us-

ing equations, such as Langmuir model [119], are needed to predict the adsorption

isotherms of gas mixtures using Ideal Adsorbed Solution Theory (IAST).

The adsorbed amounts of sorbate molecules in the clay-water system under iden-

tical conditions show the following general order: H2S > CO2 > CH4 > N2 (see

Fig. 3.2). A similar trend was noted in recent experimental studies dedicated to

montmorillonite clays [122]. The adsorption isotherms for zeolites also displayed a

similar behavior [136]. Polar H2S has much more affinity to the hydrophilic montmo-

rillonite framework than any other sorbate molecules considered in this work. In this

study, we assume that H2S is adsorbed physically to the clay [136,137]. CO2 molecule

essentially by virtue of its, e.g., quadrupole moment which is about three times larger

than N2 [120, 136], interacts more strongly with the electrostatic field defined by the

clay hydrate. CH4 has zero quadrupole moment, but higher polarizability than N2

which is responsible for their above observed order [136, 138]. The above adsorption

order is affected, however, by the selection of a relatively small basal spacing (e.g.,

for the case of d = 12 Å, N2 > CH4, possibly due to the comparatively significant

quadrupole moment of the former).

In the absence of intermolecular interactions and surface energetic heterogeneity,

the isosteric heat [139] should be constant at all loadings. The isosteric heats of
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CO2, N2, and H2S molecules on Na-montmorillonite at 298.15 K, computed using
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Å and 0.4 g/cm3, respectively.

adsorption of pure adsorbate molecules calculated by using the Clausius-Clapeyron

relation (lines) and the fluctuations of the energy (symbols), at a basal d-spacing of 18

Å and water content of 0.4 g/cm3 in the Na-montmorillonite, are shown in Fig. 3.3. It

is clear from Fig. 3.3 that the isosteric heats decrease in the order of H2S> CO2 > CH4

> N2, which is attributed mainly to weakening of fluid-solid interaction. This result

is also consistent with the preferentially adsorbed order, according to the isotherms

presented in Fig. 3.2. We also observe a monotonic increase of the isosteric heats of

adsorption of various adsorbates as a function of their loading. This is typically due

to favorable adsorbate-adsorbate intermolecular interactions and a relatively homo-

geneous adsorbent surface. Thus, the stronger the adsorbate-adsorbate interaction,

the quicker the curve rising trend.

Other than high uptake capacities, clays exhibit type IV isotherms in the Interna-

tional Union of Pure and Applied Chemistry (IUPAC) classification, for CO2 and H2S
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Figure 3.4: Equilibrium distributions of (a) CH4, (b) CO2 (carbon atoms), (c) N2

(nitrogen atoms), and (d) H2S (sulfur atoms) molecules in Na-montmorillonite at
T = 298.15 K and P = 20 bar as computed from GCMC simulation. The origin
corresponds to the clay surface oxygen. The preadsorbed water content is 0.4 g/cm3.

molecules over the studied pressure range at a basal d-spacing of 30 Å, as illustrated

in Figs. 3.2h and 3.2p, respectively. In contrast, adsorption isotherm behavior of CH4

and N2 at this basal d-spacing was not significantly different, in comparison with the

corresponding ones at small separations (basal d-spacings of 12, 15 or 18 Å). Adsorp-

tion isotherm, such as the IUPAC type IV, indicates multilayer formation followed

by condensation in the pore [119, 140]. Therefore, to explore the distribution of the

various species in the interlayer space of the clay, number density profiles were calcu-

lated at bulk pressure P = 20 bar and with 0.4 g/cm3 of preadsorbed water. Fig. 3.4

displays the resulting average density profiles of various sorbate molecules computed

along the z-axis (perpendicular to the Na-montmorillonite surface). The distributions
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of sorbate molecules indicate layered structures similar to pure hydration states such

as 1W, 2W, etc. A very high peak is obtained for the first-layer adsorption in almost

all cases, which indicates that the strong solid-fluid interaction causes the molecules

to pack much closer to the clay surface. In general, the profiles of CH4 (Fig. 3.4a) and

N2 (Fig. 3.4c) are very similar over the studied conditions. As seen in Figs. 3.4b and

3.4d, pronounced changes occur in the density profiles of CO2 and H2S with increasing

basal d-spacing. The distributions indeed confirm that at a basal d-spacing of 30 Å,

CO2 and H2S molecules significantly accumulate in the middle of the interlayer region

of the clay. H2S molecules form well-defined layered structures and CO2 molecules

also adsorb in multilayers here. The profiles obtained for CH4 and CO2 in clays are

in good qualitative agreement with previous simulations [103,106,108,113].

Very interestingly, we found that the presence of a high water content in the clay

is also favorable for the adsorption of carbon dioxide, for a basal d-spacing of 30 Å

(see Figs. 3.2h). The obvious trend in this plot is that, at relatively high pressures,

the effect of increased water is to reduce CO2 uptake. The opposite effect is ob-

served only at relatively low pressures, and even then only the intermediate amounts

of water show this enhancement. These predictions could open new possibilities for

tuning the adsorption in clays for CO2 sequestration and other applications. The

multilayer adsorption observed in clay hydrates, for example, could potentially pro-

vide a mechanism by which to adsorb CO2 selectively from gas mixtures at conditions

close to those existing in subsurface geological reservoirs and cap rocks. Note that,

the relevant P/T conditions based on lithostatic pressure and geothermal gradient

significantly differ from those used in this work [79,101,106,141]. A similar behavior

is predicted for H2S at a basal d-spacing of 30 Å (see Fig. 3.2p). In graphene-oxide

systems, however, the same phenomena have been reported using combined experi-

ment and simulation studies [142]. Jin and Firoozabadi also observed using GCMC

molecular simulations that when P < 40 bar, CO2 sorption in montmorillonite clays
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at a basal d-spacing of 46.56 Å, is comparable for preadsorbed water contents of 0.4

g/cm3 and 0.6 g/cm3, and slightly higher sorption is observed at water content of

0.6 g/cm3 [103]. Loring et al. [143] reported that the sorbed CO2 concentration in

montmorillonite clays increased dramatically at sorbed H2O concentrations from 0 to

4 mmol/g. Sorbed CO2 then decreases as sorbed H2O increases above 4 mmol/g. Ad-

sorption is a process that is a balance between energetic and entropic contributions.

Such arguments have been previously used to describe competitive CO2/CH4 adsorp-

tion in nanoporous materials of varying porosity [144]. Consistent with the above

observed adsorption preference for the four adsorbates in terms of polar interactions

with the adsorbent, the presence of some water favors adsorption of polar molecules.

This factor dominates at low loading, where not much adsorbate is present. However

at high loadings, entropic factors dominate because the presence of water occupies

pore volume, now not available to the adsorbates.
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(a) 

(b) 

Figure 3.5: Equilibrium snapshots and density profiles of clay mineral-water-CO2

system with preadsorbed water contents of (a) 0.2 and (b) 0.4 g/cm3 at T = 298.15
K and P = 10 bar as obtained from GCMC simulation. In the density profiles, the
solid, dashed, and dotted lines represent carbon, water oxygen, and sodium atoms,
respectively. Each snapshot shows only one of the two interlayers belonging to the
central simulation box, for the purpose of clarity. Color code: O, red; H, white; Si,
yellow; Al, light blue; Mg, light green; Na, dark blue; C, black. The basal d-spacing
is 30 Å.

To gain some insight into why preadsorbed water molecules increase CO2 adsorp-

tion, we examined the number density profiles from the GCMC simulations. The
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distributions of water, CO2 and counterions in the interlayer of Na-montmorillonite

at a basal d-spacing of 30 Å, P = 10 bar, and with 0.2 and 0.4 g/cm3 of pread-

sorbed water densities are shown in Fig. 3.5. Also shown are visualizations of these

average distributions of molecules in the Na-montmorillonite obtained from GCMC

simulation. Density profiles of atoms in the interlayer region with a water content of

0.2 g/cm3 clearly show separation of CO2 molecules into two distinct layers, similar

to that observed for the water molecules. Further, the sodium cations are solvated

within the water layer and mostly remain close to the clay surfaces except a few that

are distributed near the midplane of the interlayer region (see Fig. 3.5a). Inspection

of Fig. 3.5b reveals that at a water content of 0.4 g/cm3, water molecules form layered

structures (> 3W), and as mentioned above, CO2 molecules get accumulated in the

middle of the interlayer space of the clay as well. Most of the sodium ions are well

solvated due to the increase of water content in the interlayer. In contrast to low

water content behavior, the sodium ions at this condition are mostly displaced away

from the clay surfaces.

To better understand the mechanisms responsible for enhanced adsorption, we

calculated the isosteric heats of adsorption of CO2 from fluctuations of the energy [139]

in our GCMC simulations. Fig. 3.6 shows the resulting adsorbate-adsorbate (closed

symbols) and the fluid-clay contributions (open symbols) to the isosteric heats of

adsorption, at a basal d-spacing of 30 Å, and in the presence of 0.2 and 0.4 g/cm3 of

preadsorbed water densities. The analysis of the isosteric heat of adsorption clearly

shows that, initially CO2 molecules adsorbs at high-affinity adsorption sites on the

clay and subsequent adsorption is at less-favored sites. The fluid-clay isosteric heats of

adsorption are approximately of the same order of magnitude for both water densities

at all loadings. Therefore, the amount of CO2 intake is determined by the fluid-fluid

interaction. The observation that fluid-clay interactions will be of lesser importance

as the adsorbed amount or pressure of CO2 increases is very reasonable and can be
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Figure 3.6: Isosteric heats of adsorption (adsorbate-adsorbate) for single-component
adsorption of CO2 molecules on Na-montmorillonite at 298.15 K, computed using
GCMC simulations with preadsorbed water contents of 0.2 (filled squares) and 0.4
g/cm3 (filled circles). The open symbols show the corresponding fluid-clay contribu-
tion to the isosteric heats. The inset shows fluid-clay contribution to the potential
energy (same symbols as in main figure). The basal d-spacing is 30 Å.

clearly established by plotting the fluid-clay contribution to the potential energy. As

shown in the inset to Fig. 3.6, the fluid-clay energetic contribution will weaken upon

an increase in the adsorbed amount of CO2. It is also clear that, the presence of

high water content (0.4 g/cm3) in the clay is energetically less favorable for fluid-clay

interaction, in comparison to a water content of 0.2 g/cm3. On the basis of the above

analysis and visual inspection of the snapshots, we arrive at the observation that,

this enhanced fluid-fluid interaction due to multilayer adsorption of CO2 (or H2S)

molecules in the clay increases their uptake with the increase of water content.
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Figure 3.7: The ion-water radial distribution functions for hydrated clays in equilib-
rium with CH4 molecules at T = 298.15 K and P = 20 bar as computed from GCMC
simulation. The basal d-spacing and the preadsorbed water content are 15 Å and 0.6
g/cm3, respectively.

Isotherms calculated for Na-, Cs-, and Ca-montmorillonite clays indicate a strong

dependence of adsorption on the interlayer ion identity (Fig. 3.2). Under identical

conditions, Ca-montmorillonite clay displays the highest adsorption capacity and Cs-

montmorillonite the lowest for all isotherms studied. Note that the extent of water

adsorption in clays typically increases with cation-water hydration energy (Ca+2 >

Na+ > Cs+) [90, 91, 95]. In dehydrated montmorillonite, the counterions interact

strongly with the clay sheets and are trapped within stable potential wells [145]. The

radial distribution function between the counterions and tetrahedral oxygen atoms of

the dehydrated clay showed strong spatial correlation for Na+ in comparison to Ca+2.

Ions such as Ca+2 and Na+ are able to hydrate in the presence of water, thereby

becoming separated from the clay surface [83, 84, 88–90, 92, 94, 145]. In contrast,

Cs+ ions interact strongly with the rigid clay surface than with the mobile water

molecules. The occupation of the surface sites may thus render many such sorption

sites inaccessible to sorbate reducing the storage capacity of clays. Simulated radial

distribution functions describing ion-water oxygen (OH2O) spatial correlations in the
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interlayer of Na-, Cs-, and Ca-montmorillonite at a basal d-spacing of 15 Å, bulk

pressure of methane P = 20 bar, and in the presence of 0.6 g/cm3 of preadsorbed

water are compared in Fig. 3.7. The ion-water radial distribution functions of Na-

montmorillonite clay hydrates containing CO2 or CH4 are in fair agreement with

previous simulations [100, 106, 113]. According to this distribution, both Ca-OH2O

and Na-OH2O spatial correlations show sharp peaks in g(r) near ≈ 2.4 Å and ≈ 4.4 Å,

evidently because of Ca+2 and Na+ solvation effects that has been observed also for

pure water in montmorillonite [84, 106, 145]. However, this kind of structure in g(r)

is relatively weak in the Cs-montmorillonite, suggesting that solvation interactions

are important in organizing interlayer water and ions. Typically, sorbate molecules

hardly influence [106] the distribution of other atoms.
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3.1.2.3 Mixtures adsorption isotherms
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Figure 3.8: Amounts adsorbed for (a) CO2/CH4, (b) N2/CH4, and (c) H2S/CH4 bi-
nary mixtures in Na-montmorillonite at 298.15 K, computed using GCMC simulations
with CH4 mole fractions: y

CH4
= 0.2 (squares), 0.5 (circles), and 0.8 (triangles). The

open symbols represent the amount of CH4 molecules and solid symbols the amount
of either CO2, N2 or H2S molecules adsorbed. The solid curves are the predictions
of IAST. The basal d-spacing and the preadsorbed water content are 18 Å and 0.4
g/cm3, respectively. Panels (d)-(f) show selectivities from GCMC simulations (sym-
bols) and IAST (lines) under the same conditions as in panels (a)-(c), respectively:
y
CH4

= 0.2 (squares, solid lines), 0.5 (circles, dashed lines), and 0.8 (triangles, dotted
lines).
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We also carried out GCMC simulations of adsorption of binary mixtures in Na-

montmorillonite clay at 298.15 K. Figs. 3.8a-c show the behavior of CO2/CH4, N2/CH4,

and H2S/CH4 binary mixtures, respectively, as computed using GCMC simulations

(symbols) at various bulk mole fractions of CH4, a basal d-spacing of 18 Å, and in the

presence of 0.4 g/cm3 of preadsorbed water. Consistent with the single-component

isotherms described in the previous section, Na-montmorillonite selectively adsorbs

all sorbate molecules considered, except N2, relative to CH4. Our GCMC simula-

tions demonstrate that small amounts of H2S are able to extremely diminish CH4

adsorption upon montmorillonite over the studied pressure range (Fig. 3.8c). The

smooth lines in Figs. 3.8a-c represent the isotherms predicted by applying IAST to

the single-component isotherms described previously. In IAST, there is no constraint

on the mathematical formulation of the single-component adsorption isotherm, as the

integration can be done analytically or with a numerical procedure (Details can be

found in the Supporting Material of our paper [128]).

The qualitative agreement between the GCMC data and the IAST predictions

in Fig. 3.8 demonstrates that, the later coupled to the single-component adsorption

fits is a good candidate to predict the binary adsorption behavior of gas mixtures

in clays across the pressure range studied. The accuracy of IAST here extends to

adsorbed mixtures in equilibrium with gas phases that have low or moderate CH4

partial pressures. The IAST model also predicted the bisolute competitive sorption

data favorably in modified montmorillonite [146]. The IAST, however, is known

to fail to capture even qualitative features for certain non-ideal mixtures or high

pressures [144]. The discrepancy between our calculated adsorption selectivity with

IAST and with GCMC simulations is more significant for H2S/CH4 selectivity (see

below) as the size and electronic character of H2S and CH4 are significantly different.

The selectivity is a key and sensitive parameter to quantify the competitive ad-

sorption between two components [74, 120]. For example, ethane selectivity against
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methane in montmorillonite reduced with increase in pore size or pressure [74]. The

selectivity SA/B in a binary mixture of components A and B is defined as

SA/B =
xA/yA

xB/yB

, (3.8)

where xA (yA) and xB (yB) are the mole fractions of components A and B in the

adsorbed phase (bulk phase), respectively. This quantity can easily be computed

directly using results from mixture GCMC simulations as well as using IAST. The

resulting GCMC simulation data (symbols) and IAST predictions (lines) are shown in

the corresponding Figs. 3.8d-f. All the predicted selectivity values from IAST are in

quite good agreement with the simulated values as shown in Figs. 3.8d-f. The IAST

predicted H2S/CH4 selectivity, displayed the highest deviation among the three cases

that we tested here, overestimating the simulation results by factors as high as only

≈ 1.2, at the highest investigated pressure (see Fig. 3.8f). Inspection of Figs. 3.8d

and f shows that, CO2 and H2S molecules have higher affinity for the montmorillonite

surface than methane, a finding consistent with earlier observations. In addition, the

simulation and IAST results of CO2/CH4 and H2S/CH4 selectivities increase as the

bulk phase pressure is increased. By contrast, methane has a higher affinity for the

montmorillonite surface than nitrogen, and the N2/CH4 selectivity decreases as the

bulk phase pressure is increased.
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Figure 3.9: Amounts adsorbed for (a) CO2/CH4, (b) CO2/N2, and (c) CO2/H2S bi-
nary mixtures in Na-montmorillonite at 298.15 K, computed using GCMC simulations
with CO2 mole fractions: y

CO2
= 0.2 (squares), 0.5 (circles), and 0.8 (triangles). The

open symbols represent the amount of CO2 molecules and solid symbols the amount
of either CH4, N2 or H2S molecules adsorbed. The solid curves are the predictions
of IAST. The basal d-spacing and the preadsorbed water content are 30 Å and 0.2
g/cm3, respectively. Panels (d)-(f) show selectivities from GCMC simulations (sym-
bols) and IAST (lines) under the same conditions as in panels (a)-(c), respectively:
y
CO2

= 0.2 (squares, solid lines), 0.5 (circles, dashed lines), and 0.8 (triangles, dotted
lines).
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We have seen that at a basal d-spacing of 30 Å, CO2 and H2S exhibit multilayer

adsorption pattern (see, e.g., Figs. 3.4b and d). In Figs. 3.9a-c, the GCMC simulation

results (symbols) of the binary isotherms are compared to IAST (lines) for the adsorp-

tion of CO2/CH4, CO2/N2, and CO2/H2S mixtures, respectively, at various bulk mole

fractions of CO2, a basal d-spacing of 30 Å, and in the presence of 0.2 g/cm3 of pread-

sorbed water. The selectivity estimates coming from GCMC simulations (symbols)

and IAST (lines) are shown in the corresponding Figs. 3.9d-f. The IAST results cal-

culated by neglecting any nonideality, still successfully forecasts the same qualitative

behavior in adsorbed amount and selectivity as the GCMC simulations for majority

of these binary mixtures. However, the IAST predictions, for example, underestimate

the corresponding mixture GCMC results of CO2/CH4 and CO2/N2 selectivities, as

the bulk phase pressure is increased. This is expected, because the performance of

IAST has been shown to degenerate for mixtures of molecules of differing sizes and

polarities [120, 121]. As a consequence of the significant disparity in the interaction

strengths between molecules in a mixture of adsorbates of differing polarities, the

average deviations between IAST and GCMC results ranged from 30 to 67% [121].

The selectivity of CO2/N2 in the clay system, obtained using IAST, showed the high-

est deviation among the three cases that we tested, underestimating the simulation

results by factors as high as ≈ 2.2, at the highest studied pressure (see Fig. 3.9e).

The CO2/CH4 selectivity increases as the bulk phase pressure is increased at a basal

d-spacing of 30 Å (Fig. 3.9d). This behavior is similar to the above case (Fig. 3.8d),

and indeed of potentially great practical importance for CO2 utilization and storage,

such as, in shale gas reservoirs [122]. A comparison between the single-component

(Fig. 3.2h) and corresponding mixture isotherm data of CO2 molecules (Figs. 3.9a-c)

indicates that, the multilayer adsorption behavior of CO2 is almost unaffected by

the presence of CH4, N2 or H2S, over the entire range of conditions we considered.

Overall, water does not affect the pore-filling mechanisms of various binary mixtures
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we studied, by comparison with the corresponding pure ones (compare, e.g., Fig. 3.2

with Figs. 3.8 and 3.9). This is because, as in the case of pure CH4, CO2, N2, and H2S

adsorption in the presence of water (Fig. 3.2), the coadsorption isotherms (Figs. 3.8

and 3.9) are either type I or type IV according to the IUPAC classification.

3.1.3 Conclusions

We have completed extensive grand canonical Monte Carlo simulations to better

assess the adsorption behavior of CH4, CO2, and their mixtures in Na-, Cs-, and

Ca-montmorillonite clays in the presence of water. We have shown that CO2 uptake

and its selectivity over CH4 in the clays can also be significantly increased with

the increase of water content in the interlayer which is attributed to the multilayer

adsorption of CO2 molecules in the clay. This result could open new potentials for

tuning the adsorption behavior of clays for CO2 storage and other applications.

In general, the presence of increasing water molecules in the clay reduced ad-

sorption amounts of pure CH4 and CO2, possibly because preadsorbed water render

many sorption sites inaccessible to sorbate by occupying the sorption sites or fill-

ing interlayer space. The Ca-montmorillonite clay displayed the highest adsorption

capacity and the Cs-montmorillonite the lowest, for all single component isotherms

studied, consistent with the order of increasing cation hydration energies. The Na-

montmorillonite clay preferentially adsorbs CO2 over CH4 during both pure compo-

nent and mixture adsorption, and the CO2/CH4 selectivity is observed to increase as

the bulk phase pressure is increased. Further, GCMC simulations were performed to

estimate the effect of water on the adsorption of N2/CH4, H2S/CH4, CO2/N2, and

CO2/H2S binary mixtures in Na-montmorillonite clay. We found that water does

not seem to affect the pore-filling mechanisms in all investigated binary mixtures, by

comparison with the corresponding pure cases.

On the basis of the single-component CH4, CO2, N2, and H2S isotherms, that
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showed the order of adsorption capacities following the order of their polarizabilities,

binary mixture adsorption and selectivity were predicted using the IAST. Reasonably

good agreement with IAST is obtained for the observed adsorption capacities and

selectivities of binary mixtures in the clay.

3.2 MD Study of CH4, CO2 and Water Diffusion

in Montmorillonite

Molecular dynamics simulations were carried out to study the structural and trans-

port properties of carbon dioxide, methane, and their mixture at 298.15 K in Na-

montmorillonite clay in the presence of water. The simulations show that, the

self-diffusion coefficients of pure CO2 and CH4 molecules in the interlayers of Na-

montmorillonite decrease as their loading increases, possibly because of steric hin-

drance. The diffusion of CO2 in the interlayers of Na-montmorillonite, at constant

loading of CO2, is not significantly affected by CH4 for the investigated CO2/CH4

mixture compositions. We attribute this to the preferential adsorption of CO2 over

CH4 in Na-montmorillonite. While the presence of adsorbed CO2 molecules, at con-

stant loading of CH4, very significantly reduces the self-diffusion coefficients of CH4,

and relatively larger decrease in those diffusion coefficients are obtained at higher

loadings. The preferential adsorption of CO2 molecules to the clay surface screens

those possible attractive surface sites for CH4. The competition between screening

and steric effects leads to a very slight decrease in the diffusion coefficients of CH4

molecules at low CO2 loadings. The steric hindrance effect, however, becomes much

more significant at higher CO2 loadings and the diffusion coefficients of methane

molecules significantly decrease. Our simulations also indicate that, similar effects of

water on both carbon dioxide and methane, increase with increasing water concentra-

tion, at constant loadings of CO2 and CH4 in the interlayers of Na-montmorillonite.
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Our results could be useful, because of the significance of shale gas exploitation and

carbon dioxide storage.2

3.2.1 Simulation Details

The final configurations obtained from the previous GCMC simulations (details in

Section 3.1) were used as the initial configurations in our MD simulations. Equilibra-

tion runs of 1 ns were carried out in the NV T ensemble at T = 298.15 K, followed by

2 ns production runs in the NV E ensemble. The use of the NV E ensemble ensures

that dynamical properties, such as self-diffusion coefficients, are not biased by the

extended system algorithms used to produce constant-temperature ensemble [8, 84].

Three independent trajectories each of length 3 ns per simulation were computed to

achieve good statistical averages. The equations of motion were integrated using the

velocity Verlet algorithm with a time step of 1 fs. Temperature was controlled by a

Nośe-Hoover thermostat [8] with a relaxation time of 0.1 ps and a drag value of 1.0.

The nonbond terms were handled with a cutoff at 9.5 Å. The extra skin distance for

building neighbor lists was set to 2 Å. The long-range van der Waals interactions were

included via tail corrections. The long-range part of the electrostatic interactions was

treated using the particle-particle particle-mesh (PPPM) method with a precision

value of 10−5 and a grid order value of 5. The differences of system temperatures

from the preset value during NV E production runs were mostly negligible (typically

< 1%). To estimate the self-diffusion coefficients of the interlayer species, the Einstein

relation was employed:

Dxy = lim
t→∞

1

4Nmt

〈
Nm∑
j=1

[rj(t)− rj(0)]2

〉
, (3.9)

where Nm is the number of a selected species, and rj(t) is the center-of-mass

2The following content corresponding to this part appears in our publication in The Journal of
Physical Chemistry C [147].
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position of the jth species at time t. The self-diffusion coefficients were thus obtained

from the linear slope of the mean square displacements (MSDs) as a function of the

simulation time. The MSDs of the molecules and ions were evaluated using the 2

ns equilibrated atomic trajectories from the NV E ensemble simulations with 0.8 ps

sampling. Different restart points in the analysis were taken to check the convergence.

Note that, Dxy values in clay interlayer nanopores were insensitive to the size of the

simulation cell [148].

3.2.2 Water/CO2 and Water/CH4 Binary Mixtures Results

3.2.2.1 Atomic density profiles

In order to explore the distribution of the various species in the interlayer space of the

clay, number density profiles were estimated for carbon dioxide and methane in vari-

ably hydrated Na-montmorillonite at 298.15 K. The final configurations reported from

the GCMC simulation study of adsorption of CO2 and CH4 by Na-montmorillonite

in the presence of preadsorbed water [128], were used as the initial configurations in

our NV T simulations. Fig. 3.10 displays the average density profiles of carbon diox-

ide (carbon atoms) and methane molecules computed along the z-axis (perpendicular

to the Na-montmorillonite surface) at compositions obtained for a bulk pressure of

20 bar each. Figs. 3.10a and c report the profiles of different species adsorbed at a

preadsorbed water content of 0.2 g/cm3, while Figs. 3.10b and d represent a pread-

sorbed water content of 0.4 g/cm3. In the Supporting Material of our paper [147],

the corresponding distributions of water oxygens and sodium ions in the interlayers of

the Na-montmorillonite-water-CO2 and the Na-montmorillonite-water-CH4 systems

are given.

The profiles of carbon dioxide molecules (Figs. 3.10a and b) exhibit quite similar

qualitative agreement to those reported at nonsaturation or fully saturation [103,106,

108]. GCMC and MD simulations by Botan et al. showed that, CO2 molecules in
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Figure 3.10: Equilibrium distributions of CO2 (top panels) and CH4 (bottom pan-
els) molecules in the interlayers of Na-montmorillonite at T = 298.15 K and a bulk
pressure of 20 bar each. The origin corresponds to the clay surface oxygen. The
preadsorbed water contents are 0.2 (left panels) and 0.4 g/cm3 (right panels).

the interlayers of hydrated Na-montmorillonite hardly influence the distribution of

other atoms [106]. This observation is consistent with our simulation results over

the investigated basal d-spacings and pressure/loading range. Gibbs ensemble Monte

Carlo and NPT simulations, both of which take into account the effects of interlayer

volume change, have shown that the incorporation of CO2 molecules into the interlayer

region modified the water and Na+ profiles, however, mostly due to swelling [108,141].

Fig. 3.10c reports the profiles of methane adsorbed at a preadsorbed water content of

0.2 g/cm3, which, upon addition of more preadsorbed water molecules, start to form

relatively low peaks (Fig. 3.10d). A high peak is obtained for the first-layer adsorption
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in almost all cases, which indicates that the strong methane-solid interaction causes

the molecules to pack much closer to the clay surface. This behavior is consistent with

previous studies on clays under near-surface geological conditions [103,113] and that

observed at basin conditions [101]. Our simulations show that methane molecules in

the interlayer region of hydrated Na-montmorillonite hardly affect the distribution of

other atoms. It is evident from the simulated profiles that CO2 molecule essentially

by virtue of its, e.g., quadrupole moment, has much more affinity to the hydrophilic

montmorillonite framework than the methane molecule. Under identical conditions,

therefore, carbon dioxide molecules exhibit a higher adsorbed amount and lie closer

to the clay surface than molecules of methane. We find that the adsorption amounts

of CH4 and CO2 in the clay interlayers, generally increase with an increase in basal

spacing or bulk pressure. At low-pressure range (typically, . 20 bar), however, the

adsorption amounts of carbon dioxide and methane in the small pores is higher than

that of the corresponding larger ones [125, 128]. This phenomenon is due to the

relatively stronger fluid-clay interaction in the small pores, and becomes negligible for

high water contents. The presence of increasing water molecules in the clay, in general,

reduces adsorption amounts of pure CO2 (Figs. 3.10a and b) and CH4 (Figs. 3.10c

and d), possibly because preadsorbed water render many sorption sites inaccessible to

sorbate by occupying the sorption sites or filling interlayer space. In contrast, with a

relatively large basal spacing (d = 30 Å), our results (see, e.g., Figs. 3.10a and b) show

the favorability of adsorption of CO2 by montmorillonite at relatively low pressures

and intermediate water contents [103, 128]. This enhancement is attributed to the

multilayer adsorption of CO2 molecules in the clay interlayers [103,128]. In addition,

the clay-CO2 interaction was shown to be more favorable in sub- to single-hydrated

montmorillonite systems, when compared to > 2W hydration states [123,141,143]. As

an aside, we note that an increase of CO2 adsorption capacity in the presence of water

has been previously reported in adsorbents, such as metal-organic frameworks [149],
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Figure 3.11: Equilibrium distributions (in-plane) of CO2 (top panels) and CH4 (bot-
tom panels) molecules at basal d−spacings of 12 and 15 Å, respectively, in the inter-
layers of Na-montmorillonite at T = 298.15 K and a bulk pressure of 20 bar each.
The preadsorbed water contents are 0.2 (left panels) and 0.4 g/cm3 (right panels).
Bright regions correspond to high density. The positions of Al substitutions in the
adjacent tetrahedral layers are indicated by small circles (cyan), while that of Mg in
the inner octahedral layer are given by large circles (green).

single-walled carbon nanotubes [150], and mesoporous carbons [151]. At the same

time, the increase of water content results in a very slight enhancement of CH4 intake

at low pressures and d = 30 Å (Figs. 3.10c and d). The main characteristic of the

enhanced intake is an increase in CO2 or methane density with water, also away in

z− direction from the first closest adsorption layer near to the clay surface.
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3.2.2.2 Preferential adsorption sites

The main factors affecting the distribution of sorbate molecules in the interlayer in-

clude the size and charge of the interlayer cations [152, 153], the positions of the

isomorphic substitution in the clay sheets [113, 141, 154], and the ditrigonal ring lo-

cations of the basal surfaces [135,141,155]. To understand the molecular structure of

adsorbed layers of the different species in the interlayers and to identify the prefer-

ential adsorption sites on the montmorillonite substrate, we calculated in-plane (xy)

density distributions. All these calculations were performed for each molecule found

within either the first closest adsorption layer (monolayer) near to the clay surface or

away from it (see, e.g., Fig. 3.10). The computed distributions of carbon dioxide (car-

bon atoms) at a basal d−spacing of 12 Å and methane at a basal d−spacing of 15 Å,

each with compositions obtained for a bulk pressure of 20 bar are shown in Fig. 3.11.

In the Supporting Information of our paper [147] we provide the corresponding dis-

tributions of water oxygens and sodium ions, and additionally, the distributions of

different species in the interlayer of the Na-montmorillonite-water-CO2 and the Na-

montmorillonite-water-CH4 systems, respectively, at identical conditions and for the

other investigated basal spacings.

In good agreement with a most recent simulation study [141], CO2 molecules

clearly tend to locate in the areas away from the charge originating due to the iso-

morphic tetrahedral substitutions (Figs. 3.11a-b). As the water content increases

from 0.2 (Fig. 3.11a) to 0.4 g/cm3 (Fig. 3.11b), water displaces more CO2 molecules

from near the sites of the substitutions in the clay sheets. The spatial distribution

of CO2 molecules in Na-montmorillonite is also correlated with the positions of the

substitutions in the octahedral sheets. However, any correlation of CO2, water or

sodium ions with the octahedral substitutions is expected to disappear [141], e.g.,

upon reaching the saturated RH. We observe a similar distribution behavior of CO2

molecules close to the clay surfaces as above at basal d−spacings of 15, 18, and 30
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Å, while such a behavior persists, albeit to a much lesser extent, also away from the

clay surfaces at basal d−spacings of 18 and 30 Å. To improve the statistics, the hori-

zontal positions of an atom closer to the clay surface than a fixed cutoff distance are

registered and brought back to the unit cell of the sheet (data not shown). Indeed,

carbon atom in a CO2 molecule near the clay surface has a tendency to occupy the

ditrigonal cavities. Note that, the specific patterns of sorbate distribution on the clay

surface depend on properties such as turbostratic stacking and registry motion of clay

sheets [84, 110,152], which were not considered in our study.

Consistent with previous simulation work [113], methane molecules (Figs. 3.11c-

d) and Na+ ions in the interlayers are positioned in mutually exclusive regions on

the clay surfaces, and, as mentioned above, distribution of water coincides with the

sodium region. This result can be explained by considering that sodium ion has larger

hydration energy than methane, and methane is hydrophobic in nature [113]. As with

CO2, an increase in the water content from 0.2 (Fig. 3.11c) to 0.4 g/cm3 (Fig. 3.11d),

favors displacement of CH4 molecules by water from near the sites of the substitutions

in the clay sheets. We find a similar distribution behavior of CH4 molecules close to

the clay surfaces at basal d−spacings of 18 and 30 Å, while such a behavior persists,

albeit diminished, also away from the clay surfaces at a basal d−spacing of 30 Å.

Methane molecule near the clay surface also has a tendency to occupy the ditrigonal

cavities. Inspection of the in-plane density maps reveals that while CO2 molecules

occupy more than one of the identified cavity patches of a ditrigonal ring, hydrophobic

CH4 molecules occupy only the larger region.

Monte Carlo simulations by Park and Sposito found methane molecule surmounted

by a clathrate-like water structure, while below it was a hexagonal ring of clay surface

oxygens [99]. The locations of the isomorphic substitution in the clay sheets, thus tend

to inhibit the active involvement of the clay mineral surface in promoting methane

clathrate formation (Figs. 3.11c-d). As the tetrahedral negative charge site is closer
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Figure 3.12: Normalized diffusion coefficients of (a) sodium ions and (b) water oxygen
atoms in the interlayers of Na-montmorillonite at T = 298.15 K and a bulk pressure
of 1 bar. Open and filled symbols are for Dxyz and Dxy, respectively.

to the outer surface and is more effective in confining water, therefore, the final stable

state of the mixture hydrate depends on the interplay between those two effects, in

addition to the associated swelling [102, 156]. For example, simulation studies re-

ported that the type of clay influence the stability of the smectite-hydrate complexes,

being more feasible to form those complexes on octahedrally charged smectites like

montmorillonite than in tetrahedrally charged like beidellite [156].
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3.2.2.3 Dynamical properties

The diffusion coefficients of ions and water computed at RH of 100% in Na-montmorillonite

are provided in Fig. 3.12. In this study, all the reported diffusion coefficients of the dif-

ferent species, unless otherwise stated, are normalized by the corresponding bulk diffu-

sion coefficients at about 298.15 K. The bulk diffusion coefficients of Na+, H2O, CO2,

and CH4, are 1.34, 2.30, 2.00, and 1.49×10−9 m2/s, respectively [99,148,157]. Also, all

the diffusion coefficients are compared at constant water content and basal d-spacing,

unless otherwise mentioned. The diffusion coefficients of sodium ions are in agree-

ment with those reported using a similar Wyoming type montmorillonite [84,148,155].

The diffusion coefficients of water are also in close agreement with previous simulation

results [84, 95, 155, 158] and experimental values obtained using QENS spectroscopy

for interlayer water in montmorillonite [158]. These results show that the diffusion

coefficient values of water and Na+ in smectites increase with basal spacing, as ex-

pected. The trend is similar to that observed for water diffusion in planar nanopores

between silica surfaces [159] and mica surfaces [160]. These simulations showed that

the diffusion coefficient values of different species under sub-nanometer confinement

decrease by about one to three orders of magnitude under the extreme confinement,

as compared to its bulk value.

Fig. 3.13 reports the resulting in-plane diffusion coefficients of CO2 (carbon atoms)

and CH4 molecules in the interlayers of Na-montmorillonite for the different water/CO2

and water/CH4 binary mixture compositions in the pore, respectively, outputted by

the GCMC simulations [128]. Tables in the Supporting Information in our paper [147]

report the corresponding diffusion coefficients of water oxygens and sodium ions, in

addition to the diffusion coefficients of these different adsorbates in each simulation.

The diffusion coefficients of sodium ions and water in mixtures are also smaller than

their corresponding bulk values typically due to the confinement effect of clay sur-

faces. Similar to previous studies [106,108,113], at a relatively low constant loading of
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Figure 3.13: Normalized diffusion coefficients of CO2 (squares) and CH4 (circles)
molecules in the interlayers of Na-montmorillonite at T = 298.15 K and for different
water/CO2 and water/CH4 binary mixture compositions in the pore, respectively.
The basal d−spacings are (a) 12, (b) 15, (c) 18, and (d) 30 Å, and the preadsorbed
water contents are 0.2 (black-filled), 0.4 (open), and 0.6 g/cm3 (gray-filled).

CO2 or CH4 in the clay interlayers, the diffusion coefficients of sodium ions and water

decrease due to the less hydrated environment. This is because water molecules ef-

fectively screen the surface charges and this effect increases with water. The increase

in loading of CO2 or CH4 in the clay interlayers, even further reduced those diffusion

coefficients. The deviation of the diffusion coefficients of water at d = 30 Å from this

general behavior is due to, e.g., its multilayer adsorption.

The diffusion coefficients for CO2 decrease as its loading increases (Fig. 3.13), pos-

sibly because of steric hindrance. Similarly, at constant loading of CO2, the diffusion

coefficients for CO2 decrease as water concentration increases. While, under identical
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conditions, the diffusion coefficients for CO2 increase with the increase in the inter-

layer space. A similar behavior is observed for methane, in the case of water/CH4

mixture (Fig. 3.13). The self-diffusion results of CO2 and CH4 match the type I be-

havior as classified by Kärger and Pfeifer [161]. The transport of CO2 and CH4 across

nanoporous materials showed that steric hindrance causes a decrease in self-diffusion

coefficient as loading increases for each substance [161–163]. The self-diffusion coef-

ficient of very strongly adsorbed CO2 molecules near the surface -OH groups of the

solid silica substrate and in zeolite imidazolate frameworks (ZIFs) displayed, however,

a maximum at intermediate loadings, while that of pure hydrocarbons in nanopores

typically decreased with increasing loading [74,161–165]. It is seen that in most cases

the diffusion coefficients of CO2 and CH4 under our employed different conditions are

larger than their corresponding bulk values. As in previous simulations [74, 113], we

attribute this very high mobility of CO2 and CH4 molecules to the less hydrated en-

vironment in the clay interlayer. The diffusion coefficients of CO2 and CH4 molecules

are below their corresponding bulk values due to factors such as the confinement effect

of clay surfaces and increase of loading. Previous simulations reported Dxy/Dbulk of

CO2 from ≈ 0.03 to 0.3, for the different water/CO2 compositions, basal d-spacings

in the range ≈ 12 (1W) to 15 Å (2W), and basin conditions [106, 108]. Incidentally,

we also find that Dxy/Dbulk values of CO2 are ≈ 0.03 and 0.4 for d = 12 and 15 Å,

respectively, at their highest considered water contents and loadings (see Figs. 3.13a-

b). Additionally, the lateral diffusion coefficient for CO2 at d ≈ 18 Å attained a

value (4.23 × 10−9 m2/s) comparable to that measured for diffusion of CO2 in bulk

water [108], which is again consistent to our work (see our results for a water content

of 0.6 g/cm3, in Fig. 3.13c). Note that the diffusion coefficients of both water and

CO2 increased with increasing loading of CO2, due to the associated expansion of the

interlayer space, which is not explicitly included in our simulations [108].

The diffusion coefficients of CH4 molecules and, to a very lesser extent, CO2
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molecules at constant loadings of CH4 and CO2 molecules in the clay interlayers,

respectively, are mostly much higher than those of corresponding water molecules,

which is in good accordance with the observed fluid-clay interaction energies [125,128]

and preferential adsorption to the pore walls (see Fig. 3.10) [103, 106, 108, 113, 125,

128, 141]. Previous simulations reported the ratios of diffusion coefficients of CO2

to water for states ≤ 3W, in the range ≈ 0.5 to 4.0 [106, 108], which are close to

our corresponding results at the highest considered water contents (e.g., 0.4 and 0.6

g/cm3). Likewise, high diffusion coefficients of methane in the clay interlayer are in

agreement with those reported by Rao and Leng [113]. For example, they obtained

the ratios of diffusion coefficients of CH4 to water for states from ≈ 2W to 3W, in

the range ≈ 0.5 to 16.0, consistent with our results, e.g., at the highest considered

water contents (0.4 and 0.6 g/cm3). Such high values of the diffusion coefficient of

methane in dry clay samples have also been reported [66,74]. Cha et al. reported the

dissociation of methane hydrate at about ambient temperature and lower pressure

(< 50 bar) in the presence of bentonite, which is mainly Na-montmorillonite, than

observed for the same process in water alone [104]. The diffusion coefficients of

methane we obtained are lower than its bulk value and that of water, e.g., at d = 18

Å and the highest studied water content (0.6 g/cm3). This suggests that only that

system contains a stable methane clathrate [99, 104]. At the same conditions, the

diffusion coefficients of CO2 are, however, of the same order of magnitude as its bulk

value and that of water, making the montmorillonite-CO2 hydrate a relatively less

stable system. Furthermore, MSDs and adsorption energies supported that smectite-

methane hydrate complexes are more stable than smectite-CO2 complexes [156].
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    0

0.001

0.002

C
H

4
d
en
si
ty

(Å
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Figure 3.14: Equilibrium distributions of CO2 (top panels) and CH4 (bottom panels)
molecules in the interlayers of Na-montmorillonite at T = 298.15 K and in contact
with equimolar CO2/CH4 mixture at a bulk pressure of 20 bar. The origin corresponds
to the clay surface oxygen. The preadsorbed water contents are 0.2 (left panels) and
0.4 g/cm3 (right panels).

3.2.3 Water/CO2/CH4 Ternary Mixture Results

3.2.3.1 Atomic density profiles

We also carried out MD simulations of ternary water/CO2/CH4 mixture in Na-

montmorillonite clay at 298.15 K. The final configurations obtained from the GCMC

simulation study of adsorption of, e.g., equimolar CO2/CH4 binary mixture by Na-

montmorillonite in the presence of preadsorbed water [128], were used as the initial

configurations in our NV T simulations. In order to examine the distributions of

the different species in the interlayer space of the clay, number density profiles were
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calculated for carbon dioxide and methane in variably hydrated Na-montmorillonite.

Fig. 3.14 shows the average density profiles of carbon dioxide (carbon atoms) and

methane molecules in the ternary mixture computed along the z-axis at compositions

obtained for a bulk pressure of 20 bar (equimolar CO2/CH4). Figs. 3.14a and c rep-

resent the profiles of the various species adsorbed at a preadsorbed water content of

0.2 g/cm3, while Figs. 3.14b and d report a preadsorbed water content of 0.4 g/cm3.

The distributions confirm that carbon dioxide and methane molecules here form well-

defined layered structures, similar to the behavior of pure hydration states or binary

mixture (water/CO2 and water/CH4) profiles described in the previous section.

The density profiles of carbon dioxide and methane molecules in the ternary mix-

ture demonstrate that the clay material has high adsorption selectivity for carbon

dioxide over methane (Fig. 3.14). This observation is consistent with our simula-

tion results over the studied basal d-spacings and pressure/loading range. A recent

study also reported that, CO2 molecules with enhanced adsorption strength are able

to competitively replace CH4 molecules within the clay samples in their dehydrated

states [125]. The features of the profiles of the binary mixtures are mostly conserved

for the ternary mixture, over the studied conditions. For example, the presence of

increasing water molecules in the clay, in general, reduces adsorption amounts of

both CO2 (see Figs. 3.14a and b) and CH4 (see Figs. 3.14c and d) molecules. The

density profiles show that the favorability of adsorption of CO2 and, to a very lesser

extent, CH4 by montmorillonite observed in the binary mixture case (see Fig. 3.10),

at relatively low pressures, intermediate water contents, and large basal d-spacings is

retained during the ternary mixture adsorption. Similarly, the density peak of CO2

is closer to the clay surface, as compared with CH4. A notable exception is that,

methane molecules now have lower densities near to the clay surface relative to the

bulk at d = 30 Å. This result is expected due to the stronger affinity of water and

CO2 towards the surface than methane [125].
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Figure 3.15: Equilibrium distributions (in-plane) of CO2 (top panels) and CH4

(bottom panels) molecules at a basal d−spacing of 15 Å in the interlayers of Na-
montmorillonite at T = 298.15 K and in contact with equimolar CO2/CH4 mixture
at a bulk pressure of 20 bar. The preadsorbed water contents are 0.2 (left panels)
and 0.4 g/cm3 (right panels). Bright regions correspond to high density. The po-
sitions of Al substitutions in the adjacent tetrahedral layers are indicated by small
circles (cyan), while that of Mg in the inner octahedral layer are given by large circles
(green).

3.2.3.2 Preferential adsorption sites

To identify the preferential adsorption sites on the montmorillonite substrate of the

different species of the ternary mixture, we calculated in-plane (xy) density distri-

butions. All these calculations were performed again for each molecule found within

either the first closest adsorption layer (monolayer) near to the clay surface or away

from it (see, e.g., Fig. 3.14). The computed distributions of carbon dioxide (carbon

atoms) and methane molecules in the ternary mixture at a basal d−spacing of 15 Å
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and compositions obtained for a bulk pressure of 20 bar (equimolar CO2/CH4) are

shown in Fig. 3.15. Again the Supporting Information in our paper [147] provides

the corresponding distributions of water oxygens and sodium ions, and additionally,

the distributions of different species in the interlayer of the Na-montmorillonite-water-

CO2-CH4 system at identical conditions and for the other investigated basal spacings.

The in-plane distributions of water and sodium ions in the ternary mixture are

hardly different from the corresponding binary mixture cases (see previous section).

The distribution of methane coincides with the CO2 region showing that these molecules

can coexist near the clay plane. Besides that, methane and carbon atom in a CO2

molecule near the clay surface again have a tendency to occupy the ditrigonal cavities.

An increase in the water content from 0.2 (Figs. 3.15a and c) to 0.4 g/cm3 (Figs. 3.15b

and d), favors displacement of both CO2 and CH4 molecules by water from near the

sites of the substitutions in the clay sheets. We observe a similar distribution behav-

ior of CO2 and CH4 molecules close to the clay surfaces at basal d−spacings of 18

and 30 Å, while such a behavior persists, albeit diminished, also away from the clay

surfaces at a basal d−spacing of 30 Å for CH4, and at basal d−spacings of 18 and 30

Å for CO2 molecules.
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3.2.3.3 Dynamical properties
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Figure 3.16: Normalized diffusion coefficients of CO2 (left panels) and CH4 (right
panels) molecules in the interlayers of Na-montmorillonite at T = 298.15 K and
for different water/CO2/CH4 ternary mixture compositions in the pore. The mole
fractions of methane in bulk phase are 0.2 (squares), 0.5 (circles) and 0.8 (triangles).
The basal d−spacings are 15 (top panels), 18 (middle panels), and 30 Å (bottom
panels), and the preadsorbed water contents are 0.2 (filled) and 0.4 g/cm3 (open).
The solid (water content of 0.2 g/cm3) and dashed (water content of 0.4 g/cm3) lines
represent the diffusion coefficients of CO2 and CH4 molecules in the interlayers of Na-
montmorillonite for the corresponding water/CO2 and water/CH4 binary mixtures,
respectively (see Fig. 3.13).
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The main factors affecting the self diffusion coefficients of sorbate molecules in a

confined mixture include such as steric hindrance of the motion of a tagged particle

by neighboring particles as the loading increases, momentum transfer correlations,

wherein the faster diffusing species diffuses slower in the mixture relative to the

pure component and the slower diffusing species diffuses faster in the mixture than

in the pure state, and preferential adsorption [162, 164–166]. Fig. 3.16 reports the

in-plane diffusion coefficients of CO2 and CH4 molecules in the interlayers of Na-

montmorillonite for the different water/CO2/CH4 ternary mixture compositions in

the pore outputted by the GCMC simulations [128]. The most important observation

from our results is that the diffusion of CO2, at constant loading of CO2, is not

much affected by CH4 for the investigated mixture compositions (Figs. 3.16a-c). The

response of CH4 to CO2, at constant loading of CH4 is, however, quite different

from the effect of CH4 on CO2, because the presence of adsorbed CO2 reduces very

significantly the diffusion coefficients of CH4 (Figs. 3.16d-f), and relatively larger

decrease in those diffusion coefficients are seen at higher loadings.

In montmorillonite, CO2 is very strongly preferred over CH4 at all loadings, as is

evident from the above described density profiles. Therefore, the adsorbed mixture is

very CO2 dominant relative to CH4 and the distribution of CO2 in the mixture is not

dramatically perturbed from that of the pure fluid due to loading of methane. For

this reason, the diffusion coefficients of CO2 in the pore is largely independent of the

fraction of CH4 in the bulk mixture, at all investigated conditions (see Figs. 3.16a-

c). As demonstrated above, CO2 molecules introduced in the interlayer space of the

Na-montmorillonite preferentially adsorb to the surface and in this way screen these

possible attractive sites for CH4. Such a microscopic behavior should lead to an en-

hancement of the diffusion coefficient of methane molecules. However, CO2 molecules

simultaneously occupy and/or crowd the interlayer space and consequently reduce the

effective diffusing space for CH4 molecules. At low loadings of CO2, the combination



128

of both effects leads to a very slight decrease in the self-diffusion coefficients of CH4

molecules, while at higher loadings of CO2, the steric hindrance effect becomes much

more important and the self-diffusion coefficients of CH4 molecules significantly de-

crease (see Figs. 3.16d-f). Water preferentially binds to the clay surface and therefore,

similar effects of water on both carbon dioxide and methane, increase with increasing

water content at constant loadings of CO2 and CH4. Because of this, the diffusion co-

efficients of CO2 and CH4 decrease with an increase in water content (see Fig. 3.16). A

similar observation was reported for the self-diffusion properties of CH4 in CO2/CH4

binary mixtures within NaY zeolite [167]. In contrast, ZIFs showed that the diffusiv-

ity of CH4 is essentially independent of the loading of CO2 in the CO2/CH4 mixture,

while CO2 diffusivity significantly decreased with an increase in loading of CH4 due

to differences in adsorption site preferences [165]. Also, carbon dioxide enhanced the

self-diffusion coefficients of hydrocarbons such as methane and butane possibly by

decreasing their diffusion activation energies due to the competitive adsorption of

carbon dioxide on the pore surfaces [164,168].

3.2.4 Conclusions

We have completed extensive molecular dynamics simulations to better assess the

diffusion behavior of CO2, CH4, and their mixture in Na-montmorillonite clay in the

presence of water at 298.15 K. The simulations show that the self-diffusion data of

CO2 and CH4 match the type I behavior as classified by Kärger and Pfeifer [161]. The

diffusion coefficients of CO2 in the interlayers of Na-montmorillonite decrease as its

loading increases, possibly because of steric hindrance. Similarly, at constant loading

of CO2, the diffusion coefficients for CO2 decrease as water content increases. While,

under same conditions, the diffusion coefficients for CO2 increase with increasing

basal d-spacing. Similar behavior is seen with the diffusion behavior of methane in

Na-montmorillonite in the presence of water. The self-diffusion coefficients of water
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and sodium ions, at a relatively low constant loading of CO2 or CH4 in the clay

interlayers, decrease due to the less hydrated environment where water molecules

less effectively screen the surface charges. The increase in loading of CO2 or CH4 in

the clay interlayers, even further reduced those diffusion coefficients. The diffusion

coefficients of CH4 molecules and, to a very lesser extent, CO2 molecules are mostly

much higher than those of water molecules, which is in good accordance with the

observed fluid-clay interaction energies [125,128] and preferential adsorption close to

the pore walls [103,106,108,113,125,128,141].

An important finding is that the diffusion coefficients of CO2 in the interlayers of

Na-montmorillonite, at constant loading of CO2, are not much affected by CH4 for the

investigated CO2/CH4 mixture compositions. Through careful analysis of the atomic

density profiles of the different species in the interlayers, we attribute this to the

preferential adsorption of CO2 over CH4 in Na-montmorillonite. While the presence

of adsorbed CO2 molecules, at constant loading of CH4, very significantly reduces

the self-diffusion coefficients of methane, and relatively larger decrease in those diffu-

sion coefficients are observed at higher loadings. The preferential adsorption of CO2

molecules to the clay surface screens those possible attractive surface sites for CH4

which may lead to an enhancement of the diffusion coefficient of methane molecules.

However, CO2 molecules simultaneously occupy the interlayer region and, therefore,

decrease the effective diffusing space for CH4 molecules. The interplay of both effects

leads to a very slight decrease in the self-diffusion coefficients of CH4 molecules at low

loadings of CO2. The steric hindrance effect becomes much more significant at higher

loadings of CO2 and the self-diffusion coefficients of methane molecules significantly

decrease. The simulations show that similar effects of water on both carbon dioxide

and methane, increase with increasing water content, at constant loadings of CO2

and CH4 in the interlayers of Na-montmorillonite.
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Chapter 4

Concluding Remarks

4.1 Summary

To sum up, the main theme of the conducted research was to benefit from the advance-

ments in molecular simulation tools to build efficient and representative subsurface

reservoirs models. The dissertation started with an overview about the principles

of Monte Carlo (MC) and Molecular Dynamics (MD) methods in addition to the

motivations behind this work.

The first part of the conducted research deals with the fundamentals of MC molec-

ular simulation by looking for smart strategies in order to overcome the time scale

challenge in coupling with flow simulators. For the quest towards coupling, a set of

early rejection schemes capable of accelerating MC simulations to speeds that can

reach the double was successfully demonstrated. Moreover, a novel reconstruction

and reweighting extrapolation scheme was introduced which allows the usage of of-

fline Markov chains table to efficiently obtain relevant thermophysical properties in a

way that a single simulation can replace multiple ones in few seconds. Furthermore,

polynomial chaos expansions were used to replace long MC simulations and helped in

optimizing single-site Lennard-Jones (LJ) parameters for many molecules of interest.

In the second part, adsorption isotherms for pure methane, carbon dioxide, and

their mixtures for bulk pressures up to 50 bar were reported in the presence of various
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preadsorbed water quantities for different basal sizes at room temperature. Moreover,

the self-diffusion coefficients of the various molecules in these systems were determined

via MD simulations using the final configurations from the equilibrium studies.

4.2 Future Directions

In terms of accelerating MC molecular simulations, despite the effort invested in de-

veloping the techniques presented in the previous parts a vast room of improvement

is still ahead. For instance, all the proposed methodologies are so far only designed

to simulate systems of structureless LJ particles of the same type. Therefore, it is

indispensable to extend these methods to be able to account for more complicated

scenarios such as: structured molecules, molecules with partial charges, and systems

with multi-components. For example, we are currently working on these methods to

simulate LJ model plus quadrupolar term [169, 170]. This model is capable of accu-

rately representing more complex molecules such as carbon dioxide, water, and many

others. In addition, there exist other strategies that can enhance the performance of

the offline table technique that were not discussed in this dissertation, such as the

sparse table method [171,172].

As for shale gas studies, the possibilities and areas of investigation are tremendous.

For instance, the work is in progress to study the effect of the solid charge on the

adsorption quantities and dynamics of these adsorbed molecules [173]. Furthermore,

in this work the inorganic constituent of shale is only studied while looking into the

contribution of the missing organic part (kerogen) [174–176] is equally important.
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data during the Tōhoku tsunami. Ocean Model., 83:82–97, 2014.

[28] A. Alexanderian, J. Winokur, I. Sraj, A. Srinivasan, M. Iskandarani, W. C.

Thacker, and O. M. Knio. Global sensitivity analysis in an ocean general

circulation model: A sparse spectral projection approach. Comput. Geosci.,

16(3):757–778, 2012.

[29] R. G. Ghanem and P. Spanos. Stochastic Finite Elements: A Spectral Approach.

Springer, New York, 1991.

[30] O. P. Le Maitre and O. M. Knio. Spectral Methods for Uncertainty Quantifica-

tion. Springer, New York, 2010.

[31] O. P. Le Maitre, O. Knio, H Najm, and R. G. Ghanem. A stochastic projection

method for fluid flow. I. Basic formulation. J. Comput. Phys., 173:481–511,

2001.

[32] O. P. Le Maitre, H. N. Najm, P. P. Pebay, R. G. Ghanem, and O. M. Knio.

Multi-resolution-analysis scheme for uncertainty quantification in chemical sys-

tems. SIAM J. Sci. Comput., 29(2):864–889, 2007.

[33] H. N. Najm, B. Debusschere, Y. Marzouk, S. Widmer, and O. P. Le Maitre.

Uncertainty quantification in chemical systems. Int. J. Numer. Meth. Eng.,

80(6):789–814, 2009.



135

[34] B. D. Phenix, J. L. Dinaro, M. A. Tatang, J. W. Tester, J. B. Howard, and

G. J. McRae. Incorporation of parametric uncertainty into complex kinetic

mechanisms: Application to hydrogen oxidation in supercritical water. Com-

bust. Flame, 112:132–146, 1998.

[35] M. T. Reagan, H. N. Najm, P. P. Pbay, O. M. Knio, and R. G. Ghanem.

Quantifying uncertainty in chemical systems modeling. Int. J. Chem. Kinet.,

37(6):368–382, 2005.

[36] F. Rizzi, H. N. Najm, B. J. Debusschere, K. Sargsyan, M. Salloum, H. Adal-

steinsson, and O. M. Knio. Uncertainty quantification in MD simulations. Part

I: Forward propagation. Multiscale Model. Simul., 10(4):1428–1459, 2012.

[37] F. Rizzi, H. N. Najm, B. J. Debusschere, K. Sargsyan, M. Salloum, H. Adal-

steinsson, and O. M. Knio. Uncertainty quantification in MD simulations.

Part II: Bayesian inference of force-field parameters. Multiscale Model. Simul.,

10(4):1460–1492, 2012.

[38] F. Rizzi, R. Jones, B. J. Debusschere, and O. M. Knio. Uncertainty quantifi-

cation in MD simulations of concentration driven ionic flow through a silica

nanopore. Part I: Sensitivity to physical parameters of the pore. J. Chem.

Phys., 138:194104, 2013.

[39] F. Rizzi, R. Jones, B. J. Debusschere, and O. M. Knio. Uncertainty quan-

tification in MD simulations of concentration driven ionic flow through a silica

nanopore. Part II: Uncertain potential parameters. J. Chem. Phys., 138:194105,

2013.

[40] P. Angelikopoulos, C. Papadimitriou, and P. Koumoutsakos. Data driven pre-

dictive molecular dynamics for nanoscale flow simulations under uncertainty. J.

Phys. Chem. B, 117(47):14808–14816, 2013.

[41] M. Salloum, K. Sargsyan, R. Jones, H. N. Najm, and B. Debusschere. Quan-

tifying sampling noise and parametric uncertainty in atomistic-to-continuum

simulations using surrogate models. Multiscale Model. Simul., 13(3):953–976,

2015.

[42] A. Kadoura, A. Siripatana, S. Sun, O. M. Knio, and I. Hoteit. Single-site

Lennard-Jones models via polynomial chaos surrogates of Monte Carlo molec-

ular simulation. J. Chem. Phys., 144:214301, 2016.



136

[43] N. Wiener. The homogeneous chaos. Amer. J. Math., 60(4):897–936, 1938.

[44] E. Lemmon, M. McLinden, and D. Friend. NIST Chemistry Webbook, NIST

Standard Reference Database 69, 2005. http://webbook.nist.gov.

[45] S. I. Sandler. An Introduction to Applied Statistical Thermodynamics. Wiley,

USA, 2010.

[46] A. M. Ferrenberg and R. H. Swendsen. New Monte Carlo technique for studying

phase transitions. Phys. Rev. Lett., 61(23):2635–2638, 1988.

[47] A. M. Ferrenberg and R. H. Swendsen. New Monte Carlo technique for studying

phase transitions. Phys. Rev. Lett., 63:1658, 1989.

[48] J. R. Errington and A. Z. Panagiotopoulos. Phase equilibria of the modified

Buckingham exponential-6 potential from Hamiltonian scaling grand canonical

Monte Carlo. J. Chem. Phys., 109(3):1093–1100, 1998.

[49] G. M. Torrie and J. P. Valleau. Monte Carlo study of a phase-separating liquid

mixture by umbrella sampling. J. Chem. Phys., 66(4):1402–1408, 1977.

[50] G. M. Torrie and J. P. Valleau. Nonphysical sampling distributions in Monte

Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys., 23(2):187–

199, 1977.

[51] J. P. Valleau. The Coulombic phase transition: Density-scaling Monte Carlo.

J. Chem. Phys., 95(1):584–589, 1991.

[52] J. P. Valleau. Density-scaling: A new Monte Carlo technique in statistical

mechanics. J. Comput. Phys., 96(1):193–216, 1991.

[53] J. P. Valleau. Density-scaling Monte Carlo study of subcritical Lennard-

Jonesium. J. Chem. Phys., 99(6):4718–4728, 1993.

[54] J. P. Valleau. Temperature-and-density-scaling Monte Carlo: Methodology and

the canonical thermodynamics of Lennard- Jonesium. Mol. Simulat., 31(4):223–

253, 2005.

[55] J. P. Valleau. Temperature-and-density-scaling Monte Carlo: Isothermal-

isobaric thermodynamics of Lennard-Jonesium. Mol. Simulat., 31(4):255–275,

2005.



137

[56] K. Kiyohara. Thermodynamic scaling Gibbs ensemble Monte Carlo: A new

method for determination of phase coexistence properties of fluids. Mol. Phys.,

89(4):965–974, 1996.

[57] A. Kadoura, S. Sun, and A. Salama. Accelerating Monte Carlo molecular sim-

ulations by reweighting and reconstructing Markov chains: Extrapolation of

canonical ensemble averages and second derivatives to different temperature

and density conditions. J. Comput. Phys., 270(4):70–85, 2014.

[58] S. Sun, A. Kadoura, and A. Salama. An efficient method of reweighting and re-

constructing Monte Carlo molecular simulation data for extrapolation to differ-

ent temperature and density conditions. Procedia Computer Science, 18:2147–

2156, 2013.

[59] A. Kadoura, A. Salama, and S. Sun. Switching between the NVT and NpT

ensembles using the reweighting and reconstruction scheme. Procedia Computer

Science, 51:1259–1268, 2015.

[60] A. Saad, A. Kadoura, and S. Sun. Multi-scale coupling between Monte Carlo

molecular simulation and Darcy-scale flow in porous media. Procedia Computer

Science, 80:1354–1363, 2016.

[61] D. W. Peaceman. Interpretation of well-block pressures in numerical reservoir

simulation. SPE Journal, 18(3):183–194, 1978.

[62] A. L. Lee, M. H. Gonzalez, and B. E. Eakin. The viscosity of natural gases. J.

Petrol. Technol., 18(8):997–1000, 1966.

[63] C. E. Neuzil. How permeable are clays and shales? Water Resour. Res.,

30(2):145–150, 1994.

[64] D. J. K. Ross and R. M. Bustin. The importance of shale composition and pore

structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol.,

26(6):916–927, 2009.

[65] D. Liu, P. Yuan, H. Liu, T. Li, D. Tan, W. Yuan, and H. He. High-pressure

adsorption of methane on montmorillonite, kaolinite and illite. Appl. Clay Sci.,

85:25–30, 2013.

[66] Z. Zhai, X. Wang, X. Jin, L. Sun, J. Li, and D. Cao. Adsorption and diffusion

of shale gas reservoirs in modeled clay minerals at different geological depths.

Energ. Fuel., 28(12):7467–7473, 2014.



138

[67] A. Busch, S. Alles, Y. Gensterblum, D. Prinz, D. N. Dewhurst, M. D. Raven,

H. Stanjek, and B. M. Krooss. Carbon dioxide storage potential of shales. Int.

J. Greenh. Gas Con., 2:297–308, 2008.

[68] R. T. Cygan, V. N. Romanov, Myshakin, and E. M. Molecular simulation of

carbon dioxide capture by montmorillonite using an accurate and flexible force

field. J. Phys. Chem. C, 116(24):13079–13091, 2012.

[69] V. N. Romanov. Evidence of irreversible CO2 intercalation in montmorillonite.

Int. J. Greenh. Gas Con., 81:220–226, 2013.

[70] P. R. Jeon, J. Choi, T. S. Yun, and C. H. Lee. Sorption equilibrium and

kinetics of CO2 on clay minerals from subcritical to supercritical conditions:

CO2 sequestration at nanoscale interfaces. Chem. Eng. J., 225:705–715, 2014.

[71] B. Sawhiney. Selective sorption and fixation of cations by clay minerals: A

review. Clay. Clay Miner., 20:93–100, 1972.

[72] C. Volzone, J. G. Thompson, A. Melnitchenko, J. Ortiga, and S. R. Palethorpe.

Selective gas adsorption by amorphous clay-mineral derivatives. Clay. Clay

Miner., 47(5):647–657, 1999.

[73] A. L. Cheng and W. L. Huang. Selective adsorption of hydrocarbon gases on

clays and organic matter. Org. Geochem., 35(4):413–423, 2004.

[74] A. Sharma, S. Namsani, and J. K. Singh. Molecular simulation of shale gas

adsorption and diffusion in inorganic nanopores. Mol. Simulat., 41(5):414–422,

2015.

[75] M. Josh, L. Esteban, C. Delle Piane, J. Sarout, D. N. Dewhurst, and M. B.

Clennell. Laboratory characterisation of shale properties. J. Pet. Sci. Eng.,

88:107–124, 2012.

[76] W. Yuan, Z. Pan, X. Li, Y. Yang, C. Zhao, L. D. Connell, S. Li, and J. He.

Experimental study and modeling of methane adsorption and diffusion in shale.

Fuel, 117:509–519, 2014.

[77] F. Javadpour. Nanopores and apparent permeability of gas flow in mudrocks

(shales and siltstone). J. Can. Pet. Technol., 48(8):16–21, 2009.



139

[78] U. S. Energy Information Administration. Technically Recoverable Shale Oil and

Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries

Outside the United States. U. S. Energy Information Administration, Washing-

ton, DC, USA, 2013.

[79] Q. Rao, Y. Xiang, and Y. Leng. Molecular simulations on the structure and

dynamics of water-methane fluids between Na-montmorillonite clay surfaces at

elevated temperature and pressure. J. Phys. Chem. C, 117(27):14061–14069,

2013.

[80] M. Firouzi, K. Alnoaimi, A. Kovscek, and J. Wilcox. Klinkenberg effect on

predicting and measuring helium permeability in gas shales. Int. J. Coal Geol.,

123:62–68, 2014.

[81] N. T. Skipper, F. R. C. Chang, and G. Sposito. Monte Carlo simulation of

interlayer molecular structure in swelling clay minerals. I: Methodology. Clay.

Clay Miner., 43(3):285–293, 1995.

[82] B. J. Teppen, K. Rasmussen, P. M. Bertsch, D. M. Miller, and L. Schaefer.

Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyl-

lite, and beidellite. J. Phys. Chem. B, 101(9):1579–1587, 1997.
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APPENDIX A

Configurational Quantities Derivations

Derivations in reference [177] were used as a starting point to obtain all the quantities

derived below:

System’s Total Energy (E)

Starting from the definition of the partitioning function (Q) of N identical gas parti-

cles

Q =
Z

N !λ3N
, (A.1)

where Z(N, V, T ) is configurational partitioning function and λ is the plank’s constant,

the system’s total energy can be expressed as:

E = −
(
∂ lnQ

∂β

)
N,V

=
3N

2β
− 1

Z

(
∂Z

∂β

)
N,V

. (A.2)

Noting that,

∂λ

∂β
=

λ

2β
, (A.3)

and

Z(N, V, T ) =

∫
D(V )

dr1dr2...drN exp [−βu(r1, r2, ..., rN)] . (A.4)

In the equation above, D(V ) stands for the spatial domain defined by the physical

container, while ri and u represent the particle i coordinates vector and the system’s
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potential energy, respectively. Proceeding with derivation of E:

(
∂Z

∂β

)
N,V

= −
∫

dr1dr2...drNu exp (−βu) . (A.5)

By definition, the canonical average of a quantity X is:

〈X〉can =
1

Z

∫
dr1dr2...drNX exp (−βu) . (A.6)

Therefore, the total energy of the system can be expressed as:

E =
3N

2β
+ 〈u〉can , (A.7)

where

〈u〉can = − 1

Z

(
∂Z

∂β

)
N,V

. (A.8)

Heat Capacity (Cv)

By definition:

Cv =

(
∂E

∂T

)
N,V

= −kBβ
2

(
∂E

∂β

)
N,V

. (A.9)

By substituting E expression in the equation above we get:

Cv =
3NkB

2
− kBβ

2

[
1

Z2

(
∂Z

∂β

)2

N,V

− 1

Z

(
∂2Z

∂β2

)
N,V

]
. (A.10)

where (
∂2Z

∂β2

)
N,V

=

∫
dr1dr2...drNu

2 exp (−βu) . (A.11)

Therefore the heat capacity becomes,

Cv =
3NkB

2
+ kBβ

2
(〈
u2
〉

can
− 〈u〉2can

)
, (A.12)
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such that 〈
u2
〉

can
=

1

Z

(
∂2Z

∂β2

)
N,V

and 〈u〉2can =
1

Z2

(
∂Z

∂β

)2

N,V

. (A.13)

Pressure (p)

Based on classical thermodynamics p can be related to the Helmholtz free energy (A):

p = −
(
∂A

∂V

)
N,T

=
1

Zβ

(
∂Z

∂V

)
N,T

, (A.14)

where

A = − 1

β
lnQ. (A.15)

In order to be able to differentiate the p equation above, the dependence of the

integration limits in (A.4) on V needs to be moved into the integrand. In fact, such

transformation is possible using the scalability property of the particles coordinates

with respect to the simulation box length (L). Assuming that the simulation box is

cubic, the following new set of coordinates can be introduced:

si =
1

L
ri =

1

V 1/3
ri, i = 1, 2, ..., N. (A.16)

As a result, Z can be rewritten as,

Z(N, V, T ) = V N

∫
ds1ds2...dsN exp

[
−βu

(
V 1/3s1, V

1/3s2, ..., V
1/3sN

)]
, (A.17)

while its derivative with respect to volume is:

(
∂Z

∂V

)
N,T

=
NZ

V

− βV N

∫
ds1ds2...dsN

(
∂u

∂V

)
N,T

exp
[
−βu

(
V 1/3s1, V

1/3s2, ..., V
1/3sN

)]
. (A.18)
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Now let us evaluate the (∂u/∂V )N,T term, starting from the total differential of

u:

du =

(
∂u

∂ (V 1/3s1)

)
.d(V 1/3s1) + ...+

(
∂u

∂ (V 1/3sN)

)
.d(V 1/3sN), (A.19)

differentiating with respect to V :

(
∂u

∂V

)
N,T

=

(
∂u

∂ (V 1/3s1)

)
.

(
∂
(
V 1/3s1

)
∂V

)
N,T

+ ...+

(
∂u

∂ (V 1/3sN)

)
.

(
∂
(
V 1/3sN

)
∂V

)
N,T

, (A.20)

with further rearrangements:

(
∂u

∂V

)
N,T

=
dV 1/3

dV

∂u

∂r1

. s1 + ...+
dV 1/3

dV

∂u

∂rN
. sN

=
1

3V 2/3

N∑
i=1

si .
∂u

∂ri
=

1

3V

N∑
i=1

ri .
∂u

∂ri
.

(A.21)

Plugging it back in equation (A.18), while writing it in terms of r

(
∂Z

∂V

)
N,T

=
NZ

V
− β

3V

∫
dr1dr2...drN

 N∑
i=1

ri .
∂u

∂ri

 exp [−βu (r1, r2, ..., rN)] .

(A.22)

So the pressure equation becomes:

p =
ρ

β
+

1

3V

〈 N∑
i=1

ri . Fi

〉
, (A.23)

such that Fi = −∂u/∂ri is the sum of forces on particle i, and 〈X〉 stands for the

ensemble average of quantity X. For a given pair-wise additive potential (uij), it is

convenient to define the vector fij, which is the force on particle i due to particle j,
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such that:

Fi =

N∑
i=1,j 6=i

fij, and fij = −fji. (A.24)

Consequently, the virial term can be rewritten as:

N∑
i=1

ri . Fi =

N∑
i=1

N∑
j=1,i 6=j

ri . fij. (A.25)

By interchanging the summation index it is possible to reformulate the virial term

as:
N∑
i=1

ri . Fi =
1

2

 N∑
i=1

N∑
j=1,i 6=j

ri . fij +

N∑
i=1

N∑
j=1,i 6=j

rj . fji

 , (A.26)

but fij = - fji, then:

N∑
i=1

ri . Fi =
1

2

 N∑
i=1

N∑
j=1,i 6=j

ri . fij −
N∑
i=1

N∑
j=1,i 6=j

rj . fij


=

1

2

N∑
i=1

N∑
j=1,i 6=j

(ri − rj) . fij ≡
1

2

N∑
i=1

N∑
j=1,i 6=j

rij . fij =

N−1∑
i=1

N∑
j=i+1

rij . fij.

(A.27)

The final equation to compute the ensemble average pressure (p) can be reached

by substituting the above relation in equation (A.23)

p =
ρ

β
+

1

3V

〈N−1∑
i=1

N∑
j=i+1

rij . fij

〉
can

. (A.28)

In fact, it is possible, by introducing a configurational quantity v, to show that:

p =
ρ

β
+

1

V
〈v〉can , (A.29)
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such that:

v = −V
(
∂u

∂V

)
N,T

= −1

3

N∑
i=1

ri .

(
∂u

∂ri

)
N,T

=
1

3

N∑
i=1

ri . Fi

=
1

3

N−1∑
i=1

N∑
j=i+1

rij . fij = −1

3

N−1∑
i=1

N∑
j=i+1

rij .

(
∂uij
∂rij

)
N,T

.

(A.30)

Inverse of Isothermal Compressibility (c−1T )

By definition:

c−1
T = −V

(
∂p

∂V

)
N,T

. (A.31)

By substituting p expression in the equation above we get:

c−1
T = −V

β

[
− 1

Z2

(
∂Z

∂V

)2

N,T

+
1

Z

(
∂2Z

∂V 2

)
N,T

]
. (A.32)

Starting with the first term using Equ. (A.18)

(
∂Z

∂V

)2

N,T

= ρ2Z2 + β2

[
V N

∫
ds1ds2...dsN

(
∂u

∂V

)
N,T

exp (−βu)

]2

− 2ρβZV N

∫
ds1ds2...dsN

(
∂u

∂V

)
N,T

exp (−βu) , (A.33)

the complete first term becomes:

− 1

Z2

(
∂Z

∂V

)2

N,T

= −ρ2 − β2

V 2
〈v〉2can −

2ρβ

V
〈v〉can . (A.34)
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On the other hand, the second term can be evaluated as follows:

(
∂2Z

∂V 2

)
N,T

= N

[
− Z

V 2
+

1

V

(
∂Z

∂V

)
N,T

]
−βρV N

∫
ds1ds2...dsN

(
∂u

∂V

)
N,T

exp (−βu)

− βV N

∫
ds1ds2...dsN

[(
∂2u

∂V 2

)
N,T

− β
(
∂u

∂V

)2

N,T

]
exp (−βu) , (A.35)

leading to:

(
∂2Z

∂V 2

)
N,T

= −ρZ
V

+ ρ2Z − 2βρV N

∫
ds1ds2...dsN

(
∂u

∂V

)
N,T

exp (−βu)

− βV N

∫
ds1ds2...dsN

(
∂2u

∂V 2

)
N,T

exp (−βu)

+ β2V N

∫
ds1ds2...dsN

(
∂u

∂V

)2

N,T

exp (−βu) , (A.36)

and then the final form of the second term becomes:

1

Z

(
∂2Z

∂V 2

)
N,T

= − ρ
V

+ ρ2 +
2βρ

V
〈v〉can −

β

V 2
〈w〉can +

β2

V 2

〈
v2
〉

can
, (A.37)

such that:

w = V 2

(
∂2u

∂V 2

)
N,T

= −V 2 ∂

∂V

(
1

V
v

)
. (A.38)

The final relation to compute inverse of isothermal compressibility is obtained by

summing the two terms above:

c−1
T =

ρ

β
+

1

V
〈w〉can −

β

V

(〈
v2
〉

can
− 〈v〉2can

)
. (A.39)
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Lennard-Jones Potential Model

For the Lennard-Jones model the quantities discussed above take the following forms:

u = 4ε

N−1∑
i=1

N∑
j=i+1

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (A.40)

v = −V
(
∂u

∂V

)
N,T

= 8ε

N−1∑
i=1

N∑
j=i+1

[
2

(
σ

rij

)12

−
(
σ

rij

)6
]
. (A.41)

w = −V 2 ∂

∂V

(
1

V
v

)
N,T

= 8ε

N−1∑
i=1

N∑
j=i+1

[
10

(
σ

rij

)12

− 3

(
σ

rij

)6
]
. (A.42)

Etail =
1

2
N

∫ ∞
rc

4πρr2udr =
8

3
εσ3Nπρ

[
1

3

(
σ

rc

)9

−
(
σ

rc

)3
]
. (A.43)

ptail =
1

2
N

∫ ∞
rc

4πρr2

(
1

V
v

)
dr =

16

3
εσ3πρ2

[
2

3

(
σ

rc

)9

−
(
σ

rc

)3
]
. (A.44)

ctail =
1

2
N

∫ ∞
rc

4πρr2

(
1

V
w

)
dr =

16

3
εσ3πρ2

[
10

3

(
σ

rc

)9

− 3

(
σ

rc

)3
]
. (A.45)
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APPENDIX B

Table B.1: Examples of commonly used statistical ensembles.

Statistical ensemble Imposed variables Application

Canonical ensemble N ,V ,T Phase properties

Isothermal-Isobaric ensemble N ,p,T Phase properties

Grand Canonical ensemble µ,V ,T Adsorption

Gibbs ensemble Ntot,Vtot,T Phase equilibrium
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Table B.2: Comparing the canonical average normalized pressure (p∗) out of the
bond formation and non-conservative early rejection methods against the pressures
obtained by the conventional algorithm. Results from the conservative scheme are not
reported as it produces exactly the same values as the conventional one. Statistical
uncertainties were computed using bootstrap method (Efron, 1979; Newman and
Barkema, 1999).

p∗

β∗ ρ∗ Conventional Bond formation Non-conservative

0.10 1.1102 ± 0.0002 1.1099 ± 0.0002 1.1102 ± 0.0002

0.30 4.3109 ± 0.0009 4.3109 ± 0.0009 4.3109 ± 0.0010

0.10 0.50 9.9329 ± 0.0021 9.9305 ± 0.0023 9.9301 ± 0.0021

0.70 20.269 ± 0.0035 20.279 ± 0.0038 20.254 ± 0.0040

0.90 39.419 ± 0.0064 39.401 ± 0.0058 39.331 ± 0.0058

0.10 0.2381 ± 0.0001 0.2382 ± 0.0001 0.2381 ± 0.0001

0.30 0.7451 ± 0.0003 0.7451 ± 0.0003 0.7447 ± 0.0003

0.40 0.50 1.7079 ± 0.0008 1.7124 ± 0.0007 1.7109 ± 0.0008

0.70 4.3793 ± 0.0016 4.3528 ± 0.0012 4.3635 ± 0.0012

0.90 11.529 ± 0.0022 11.531 ± 0.0017 11.588 ± 0.0020

0.10 0.1072 ± 0.0001 0.1072 ± 0.0001 0.1073 ± 0.0001

0.30 0.1876 ± 0.0002 0.1868 ± 0.0003 0.1880 ± 0.0003

0.70 0.50 0.3177 ± 0.0006 0.3169 ± 0.0006 0.3145 ± 0.0005

0.70 1.3563 ± 0.0009 1.3707 ± 0.0009 1.3741 ± 0.0008

0.90 5.9638 ± 0.0013 5.9960 ± 0.0027 5.9149 ± 0.0013



159

Table B.3: Comparing the computed normalized liquid and vapor number densities
(ρ∗l and ρ∗v) out of the hybrid and non-conservative early rejection schemes against
the conventional algorithm. Statistical uncertainties were computed using bootstrap
method (Efron, 1979; Newman and Barkema, 1999).

Conventional Hybrid Non-conservative

T ∗ ρ∗l ρ∗v ρ∗l ρ∗v ρ∗l ρ∗v

0.80 0.7975 ±3e−5 0.0062 ±1e−5 0.8008 ±3e−5 0.0067 ±1e−5 0.7968 ±2e−5 0.0057 ±1e−5

0.85 0.7771 ±3e−5 0.0095 ±1e−5 0.7781 ±3e−5 0.0093 ±1e−5 0.7764 ±3e−5 0.0093 ±1e−5

0.90 0.7547 ±3e−5 0.0150 ±2e−5 0.7547 ±3e−5 0.0144 ±1e−5 0.7538 ±3e−5 0.0146 ±2e−5

0.95 0.7274 ±3e−5 0.0211 ±2e−5 0.7270 ±3e−5 0.0212 ±2e−5 0.7250 ±4e−5 0.0201 ±2e−5

1.00 0.7035 ±4e−5 0.0308 ±2e−5 0.7030 ±3e−5 0.0303 ±2e−5 0.7019 ±4e−5 0.0296 ±2e−5

1.05 0.6709 ±4e−5 0.0397 ±2e−5 0.6727 ±4e−5 0.0406 ±2e−5 0.6728 ±4e−5 0.0406 ±2e−5

1.10 0.6435 ±5e−5 0.0558 ±3e−5 0.6408 ±5e−5 0.0553 ±3e−5 0.6425 ±5e−5 0.0558 ±3e−5

1.15 0.6061 ±5e−5 0.0738 ±4e−5 0.6063 ±5e−5 0.0740 ±4e−5 0.6061 ±5e−5 0.0737 ±4e−5

1.20 0.5626 ±6e−5 0.0984 ±5e−5 0.5622 ±6e−5 0.0973 ±5e−5 0.5652 ±6e−5 0.1006 ±5e−5

Table B.4: Theoretical (Sandler, 2010) and recommended single-site LJ model pa-
rameters.

Molecules ε0/kB (K) εrec/kB (K) σ0 (Å) σrec (Å)

Ar 111.6200 116.4030 3.5128 3.3911

Kr 155.1704 162.2714 3.7696 3.6264

Xe 214.6170 224.6165 4.1089 3.9484

CH4 141.1585 147.7146 3.8555 3.7309

CO 98.4148 91.6006 3.7696 3.5876

N2 93.4756 98.3203 3.7317 3.6272
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Table B.5: Charges q and LJ parameters σ and ε of water, clay, sorbates and ions.

Force or charge site σ (Å) ε/kB (K) q (e)

Water (SPC/E model) [129]

O 3.1656 78.20 −0.8476

H 0.0 0.0 0.4238

Montmorillonite (CLAYFF) [93]

Hydroxyl H 0.0 0.0 0.4250

Hydroxyl O 3.1656 78.20 −0.9500

Hydroxyl O with substitution 3.1656 78.20 −1.0808

Bridging O 3.1656 78.20 −1.0500

Bridging O with octahedral substitution 3.1656 78.20 −1.1808

Bridging O with tetrahedral substitution 3.1656 78.20 −1.1688

Tetrahedral Si 3.3020 9.2618 × 10−4 2.1000

Octahedral Al 4.2712 6.6918 × 10−4 1.5750

Tetrahedral Al 3.3020 9.2618 × 10−4 1.5750

Octahedral Mg 5.2643 4.5440 × 10−4 1.3600

Methane (TraPPE model) [131]

C 3.73 148 0.0

Carbon dioxide (flexible EPM2 model) [134]

C 2.757 28.129 0.6512

O 3.033 80.507 −0.3256

Nitrogen (three-site model) [132]

N 3.3 36 −0.5075

q1 0.0 0.0 1.0150

Hydrogen sulfide (four-site model) [133]

S 3.73 250 0.4000

H 0.0 0.0 0.2500

q1 0.0 0.0 −0.9000

Ions [92, 130]

Na 2.350 65.47 1.0000

Cs 3.831 50.32 1.0000

Ca 2.872 50.32 2.0000


