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ABSTRACT

Linearized Inversion Frameworks toward High-resolution

Seismic Imaging

Ali Aldawood

Seismic exploration utilizes controlled sources, which emit seismic waves that prop-

agate through the earth subsurface and get reflected off subsurface interfaces and scat-

terers. The reflected and scattered waves are recorded by recording stations installed

along the earth surface or down boreholes. Seismic imaging is a powerful tool to map

these reflected and scattered energy back to their subsurface scattering or reflection

points. Seismic imaging is conventionally based on the single-scattering assumption,

where only energy that bounces once off a subsurface scatterer and recorded by a re-

ceiver is projected back to its subsurface position. The internally multiply scattered

seismic energy is considered as unwanted noise and is usually suppressed or removed

from the recorded data. Conventional seismic imaging techniques yield subsurface

images that suffer from low spatial resolution, migration artifacts, and acquisition

fingerprint due to the limited acquisition aperture, number of sources and receivers,

and bandwidth of the source wavelet. Hydrocarbon traps are becoming more chal-

lenging and considerable reserves are trapped in stratigraphic and pinch-out traps,

which require highly resolved seismic images to delineate them.

This thesis focuses on developing and implementing new advanced cost-effective seis-

mic imaging techniques aiming at enhancing the resolution of the migrated images by
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exploiting the sparseness of the subsurface reflectivity distribution and utilizing the

multiples that are usually neglected when imaging seismic data. I first formulate the

seismic imaging problem as a Basis pursuit denoise problem, which I solve using an

L1-minimization algorithm to obtain the sparsest migrated image corresponding to

the recorded data. Imaging multiples may illuminate subsurface zones, which are not

easily illuminated by conventional seismic imaging using primary reflections only. I

then develop an L2-norm (i.e. least-squares) inversion technique to image internally

multiply scattered seismic waves to obtain highly resolved images delineating vertical

faults that are otherwise not easily imaged by primaries.

Seismic interferometry is conventionally based on the cross-correlation and convo-

lution of seismic traces to transform seismic data from one acquisition geometry to

another. The conventional interferometric transformation yields virtual data that

suffers from low temporal resolution, wavelet distortion, and correlation/convolution

artifacts. I therefore incorporate a least-squares datuming technique to interferomet-

rically transform vertical-seismic-profile surface-related multiples to surface-seismic-

profile primaries. This yields redatumed data with high temporal resolution and less

artifacts, which are subsequently imaged to obtain highly resolved subsurface images.

Tests on synthetic examples demonstrate the efficiency of the proposed techniques,

yielding highly resolved migrated sections compared with images obtained by imaging

conventionally redatumed data.

I further advance the recently developed cost-effective Generalized Interferometric

Multiple Imaging procedure, which aims to not only image first but also higher-order

multiples as well. I formulate this procedure as a linearized inversion framework

and solve it as a least-squares problem. Tests of the least-squares Generalized Inter-

ferometric Multiple imaging framework on synthetic datasets and demonstrat that

it could provide highly resolved migrated images and delineate vertical fault planes

compared with the standard procedure. The results support the assertion that this
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linearized inversion framework can illuminate subsurface zones that are mainly illu-

minated by internally scattered energy.
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Chapter 1

Introduction

1.1 Background

Finding hydrocarbon traps is increasingly becoming a more challenging problem. Ex-

plorationists, nowadays, are targeting small scale structural and pinch out traps.

Locating small scale faults and stratigraphic traps requires highly resolved migrated

seismic images for interpretation purposes. These migrated images are obtained by

placing the recorded reflected seismic energy along the recording surface in its true

subsurface position. Conventional imaging algorithms utilize primary reflections that

are reflected only once from a subsurface scatterer before it is recorded by a receiver

along the recording surface. These single-bounce recorded events are imaged to ob-

tain an estimate of the subsurface reflectivity distributions (i.e., subsurface struc-

tures). However, the surface records often contain multiple-scattered energy that

is considered as undesired noise and is usually suppressed by one or more seismic

processing algorithms prior to imaging. The reason is that conventional migration

algorithms are only designed to take single-scattering (i.e., primary) reflections into

account (Wapenaar et al., 2015). Therefore, applying conventional single-scattering

migration in the presence of seismic multiples would deteriorate the quality of the final

image as the multiple events are placed in wrong subsurface positions by the imaging

algorithm. Conventional imaging techniques yield migrated sections that suffer from
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migration artifacts, cross-talk noise, and low spatial resolutions. They are also based

on the single-scattering assumption; therefore, they may not illuminate subsurface

features that are illuminated by internal multiples. Therefore, the motivation of this

work is to develop and test new cost-efficient migration and inversion technologies

exploiting the sparsity nature of the subsurface reflectivity distribution or utilizing

the surface-related and/or internal multiple energy, which could potentially provide

highly resolved migrated sections.

The goal of seismic migration is to map, using a migration velocity model, ob-

served seismic data at recording stations along the earth surface or down boreholes

into representative subsurface structures (Claerbout, 1971). Mathematically, the seis-

mic imaging problem can be posed as an inversion problem to find the best subsurface

reflectivity model that explains the recorded data. The forward problem yields seis-

mic data given a velocity and a reflectivity model. Direct solvers are prohibitively

expensive to use in solving the seismic inversion problem (Dai, 2012). Therefore, the

seismic inversion problem is conventionally solved iteratively by applying a pair of

forward and adjoint operators that are based on the wave-equation. While the for-

ward operator is used to compute the seismic data to be compared with the observed

data, the adjoint operator is used to back-project the residual in order to update

the seismic image through iterations. LeBras and Clayton (1988) and Nemeth et al.

(1999) proposed a linearized inversion or Least-squares Migration (LSM), which is

an iterative scheme to invert seismic data to representative subsurface reflectivity

distribution. LSM is a special form of Full Waveform Inversion (FWI) which only

inverts for a high wavenumber reflectivity model (i.e., the migrated image) whereas

FWI tries to update both the reflectivity model and the background velocity model

that describes the wave propagation in the subsurface (Luo et al., 2013). Thus, least-

squares migration can be considered as a cost-effective linearized waveform inversion

as it does not require the extrapolation of the new wavefields, but only the update
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of the migrated images at each iteration. LSM requires an accurate migration veloc-

ity estimate to accurately predict the kinematics of of the wave propagation in the

subsurface (Luo et al., 2013; Dutta et al., 2014).

LSM can improve the seismic image quality by suppressing the migration arti-

facts, enhance the spatial resolution of the migrated section, and compensate for the

acquisition footprint and amplitude loss (LeBras and Clayton, 1988; Nemeth et al.,

1999; Khl and Sacchi, 2003; Dai, 2012; Luo et al., 2013). The fact that the LSM

method minimizes the sum of the squares of the residuals to find the least-squares

solution, makes it intrinsically yield smooth solutions (Abubakar et al., 2005; Tang,

2006; Liu et al., 2011a; Borsic and Adler, 2012). Although adding a regularizing term

to the objective function may further suppress migration artifacts and sharpens the

least-squares image, most regularization terms assume that the inverted model pa-

rameters are smooth and continuous, further smoothing the final inverted migrated

section (Aster et al., 2005). Therefore, imposing a regularization term that does not

further smooth the reflectivity distribution but rather promotes its sparseness, such

as the L1-norm constraint, can help enhance the spatial resolution of the migrated

subsurface structures. In this dissertation, I develop and implement different methods

to extend the idea of least-squares migration in attempts to obtain highly resolved

images. I first recast the classical least-squares migration problem as a compres-

sive sensing (i.e. sparse reconstruction) problem known as the Basis Pursuit denoise

(BPDN) problem (Chen et al., 1998). Given that the seismic reflection events from

the subsurface are sparse, the solution of this problem yields a highly resolved sparse

image that could explain the recorded seismic data.

However, imaging primaries intrinsically illuminates horizontal reflectors but hardly

illuminates vertical reflectors such as vertical and nearly vertical faults, or salt flanks

(Verschuur and Berkhout, 2015; Berkhout and Verschuur, 2016). Thus, utilizing inter-

nal multiples could potentially illuminate vertically lying subsurface reflectors. FWI
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is known to provide highly resolved images but the computation of the FWI gradient

is based on the single-scattering assumption. The gradient of FWI is computed using

a similar procedure as the standard pre-stack migration image of primary reflections

(Pratt, 1999; Nemeth et al., 1999). Thus, although the modeling step in FWI can

generate both surface-related and internal multiples in the modeling step, its conven-

tional adjoint is based on the single-scattering assumption (i.e., the Born approxi-

mation) and this limits its ability to delineate reflectors that are mainly illuminated

by internally multiplied waves. In conventional migration, primaries are enhanced

by several seismic processing steps as the migration is based on the single-scattering

assumption (i.e. imaging primaries only) while multiples are normally suppressed or

removed since they are not accounted for by conventional imaging algorithms. Ex-

ploiting multiples will be proven to be a key tool to obtain highly resolved seismic

images and to widen the subsurface illumination (Hanafy et al., 2015). Both inter-

nal and surface-related multiples can provide wider subsurface illumination (Sheng,

2001; Guitton, 2002; Muijs et al., 2005; Zuberi and Alkhalifah, 2014a; Yang et al.,

2015; Guo et al., 2015). Recently, Wong et al. (2014); Tu and Herrmann (2015) ap-

plied least-square migration algorithms to image the subsurface with surface-related

multiples and obtained subsurface images with enhanced illumination. Inverting for

internal multiples, however, can be quite challenging as the internally scattered waves

are weaker and can be obscured by the stronger primaries and surface-related mul-

tiples (Verschuur and Berkhout, 2015). Verschuur and Berkhout (2015) showed that

whereas surface-related multiples can be separated and imaged using linearized in-

version (closed-loop) frameworks, isolating internal multiples is quite challenging as

they are an integral part of the total wavefield. In this dissertation, I propose a

linearized inversion or least-squares migration framework to image internal multiples

in an attempt to locate vertical fault planes that are not easily illuminated by pri-

maries. However, the modeling of internal multiple data in a linearized framework
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setting can be quite expensive as it requires a nested summation over the model space

in the proposed framework. It also requires an accurate estimate of the subsurface

reflectivity distribution obtained by inverting primaries. Therefore, I resort to the

recently developed Generalized Interferometric Multiple Imaging (GIMI) procedure

which has a computational cost similar to that of imaging primaries (Zuberi and

Alkhalifah, 2014b). The GIMI procedure is an imaging technique, which means that

an adjoint operation is applied to migrate first-order, or even higher order internal

multiples, to obtain an approximate reflectivity distribution of the subsurface. The

power of this method lies in its ability to image the internal multiples selectively and

automatically without the requirement for multiple separation. However, its major

drawback is that it is an imaging procedure (i.e. adjoint operation) and is not an

inversion-based framework, which requires the derivation of a forward modeling op-

erator to predict the internal multiples. In this dissertation, I propose to improve

this procedure by formulating it as a linearized inversion problem, which requires the

derivation of a modeling operator (i.e., adjoint of the GIMI adjoint) to predict the

first-order, or higher order multiple data along the recording surface. To formulate

this adjoint, I first investigate the idea of least-squares interferometric datuming in

Chapter 4 since the modeling and datuming operators of interferometric datuming

will be the building blocks to the least-squares GIMI procedure in Chapter 5.

Seismic interferometry, also known as the virtual source method, is widely used

to transform seismic data from one acquisition geometry to another by creating vir-

tual sources or receivers where there are no recording stations or shot points in the

actual acquisition geometry (Curtis et al., 2006; Broggini et al., 2011; Boullenger*

and Draganov, 2015). The engines of this method are the reciprocity equations of the

convolution and correlation type where the recorded traces are used as natural wave-

field extrapolators (Wapenaar and Fokkema, 2006; Schuster, 2009). The limitation

of the conventional cross-correlation or convolution based interferometric datuming
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is that they yeild redatumed data that suffers from low temporal resolution and is

contaminated by the redatuming artifacts. In Chapter 4 of this dissertation, I apply a

Least-squares Datuming (LSD) framework to convert surface-related Vertical-Seismic-

Profiling (VSP) multiples into virtual Surface-Seismic-Profiling (SSP) primaries. The

correlation and convolution based datuming operators are used as a pair of an ad-

joint and forward modeling operators in this linearized inversion framework. The

least-squares datumed data are subsequently imaged to extend the subsurface imag-

ing aperture and enhance the resolution of the final migrated section. Based on the

LSD framework, I then extend the GIMI methodology and formulate it as a linearized

inversion framework in order to obtain highly resolved images and localize a vertical

fault plane when imaging first-order internal multiples. The GIMI procedure consists

of a series of extrapolation-based and correlation-based datuming steps followed by

an imaging step. Thus, the modeling and adjoint operators utilized for least-squares

datuming are shown to be the building blocks to find a corresponding adjoint (i.e.,

modeling operator) of the GIMI procedure as each of its datuming steps can be re-

garded as a least-squares datuming subproblem.

1.2 Thesis Objectives and Contributions

The main objective of this dissertation is to exploit the sparsity nature of the subsur-

face reflectivity distribution when inverting the primary reflections to obtain highly

resolved migrated images, and to utilize both surface-related and internal multiples

in linearized inversion frameworks to widen the subsurface illumination for improved

imaging of subsurface reflectors, which are not easily illuminated by primary reflected

energy. I intend to tackle these problems in this dissertation in the following chapters:

• In Chapter 2, I apply a compressed sensing algorithm to solve the seismic imaging

of primary reflections problem as an L1-norm minimization problem instead of the
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conventional L2-norm minimization (i.e., least-squares) problem. I formulate the

objective function such that I impose a constraint that promotes the sparseness of

the model parameters (i.e., reflectivity distributions) by minimizing the L1 norm of

the reflectivity model at each iteration of the linearized inversion framework. The

goal is to test on synthetic data the ability of the compressed sensing migration in

obtaining highly resolved migration images when imaging primaries.

• Although compressive sensing migration can provide highly resolved images of

the subsurface as demonstrated in Chapter 2, it fails to accurately delineate vertical

and nearly vertical reflectors as they are not well illuminated by primaries. In Chapter

3, I develop a linearized inversion algorithm to invert internal multiples and obtain

subsurface images with wider subsurface illumination. I thus apply a linearized in-

version, or least-squares migration, framework to image internally-multiplied seismic

energy. The objective is to localize vertical fault planes that are not easily illumi-

nated by primaries, but could be well-illuminated by doubly-scattered seismic energy.

Modeling first-order internal multiples is a non-linear operation and requires a nested

summation in which the reflectivity functions are multiplied at two different points in-

side the model. I first linearize this modeling process by setting one of the multiplied

terms to be the fixed image obtained by the least-squares migration of primaries. I

then derive the corresponding adjoint linear operator that maps first-order multiples

into subsurface reflectors, which are mainly illuminated by doubly-scattered waves.

Nevertheless, the linearized modeling step is still computationally expensive as it re-

quires a nested summation over the model space. Thus, I propose to extend the more

computationally-efficient GIMI procedure to image first-order or higher order internal

multiples, which does not require the double summation over the model space. The

engines of the GIMI procedure are cross-correlation, or extrapolation, based datuming

steps. I thus utilize in Chapter 3 the least-squares datuming in a VSP geometry when

imaging surface-related multiples as it will be the building framework to formulate a
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linearized inversion version of the GIMI procedure.

• In Chapter 4, I propose and test a least-squares datuming framework to convert

VSP surface-related multiples into SSP primaries by utilizing seismic interferometry,

also known as the virtual source method. I use the cross-correlation based datuming

to remove the propagation path from a source point along the Earth surface and

recorded by VSP station. In other words, I use the interferometric transformation to

transform a VSP surface-related multiple into a virtual surface seismic primary. The

corresponding adjoint is of convolution type in which I convolve the virtual primary

with the direct wave from the Earth surface to the VSP recording station in order

to predict the VSP surface-related multiples. The correlation based datuming and

the corresponding convolution based datuming steps are formulated as a linearized

inversion problem to obtain the optimal virtual SSP data that explains the synthetic

recorded VSP data.

• In Chapter 5, I apply a least-squares GIMI frameworks to synthetic data ex-

amples to image subsurface scatterers and a vertical fault plane. The first two steps

of the GIMI procedure is an extrapolation-based datuming and a correlation-based

datuming. I utilize the derived operators in Chapter 4 and turn these datuming steps

into least-squares datuming subproblems, which can be used to enhance the quality

of the redatumed data prior to imaging first-order internal multiples by the third

GIMI step. The goal is to enhance the spatial resolution of the migrated GIMI im-

ages and suppress the artifacts that arise from the extrapolation and cross-correlation

datuming steps in the GIMI procedure.

• In Chapter 6, I summarize the main results of this dissertation and propose a

road map for future work that would improve the proposed cost-effective linearized

inversion frameworks in this dissertation. I also list the major scientific contributions

of this dissertation including conference papers and peer-reviewed journal papers.
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Chapter 2

The Possibilities of

Compressed-sensing based

Kirchhoff pre-stack Migration

An approximate subsurface reflectivity distribution of the Earth is usually obtained

through the migration process. However, conventional migration algorithms, includ-

ing those based on the least-square approach, yield structure descriptions that are

slightly smeared and of low resolution caused by the common migration artifacts due

to limited aperture, coarse sampling, band limited source, and low subsurface illumi-

nation. To alleviate this problem, I utilize the fact that minimizing the L1-norm of

a signal promotes its sparsity. Thus, I formulate the Kirchhoff migration problem as

a compressed-sensing Basis Pursuit denoise problem to solve for highly focused mi-

grated images compared with those obtained by standard and least-square migration

algorithms. The results of various subsurface reflectivity models show that solutions,

which are computed using the compressed-sensing based migration, provide more

accurate subsurface reflectivity location and amplitude. I applied the compressed-

sensing algorithm to image synthetic data from a fault model using dense and sparse

acquisition geometries. The results suggest that the proposed approach may still pro-
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vide highly resolved images with a relatively small number of measurements. I, also,

demonstrate the robustness of the Basis Pursuit denoise algorithm in the presence of

Gaussian random observational noise and in the case of imaging the recorded data

with inaccurate migration velocities.

2.1 Introduction

Seismic imaging using Kirchhoff-type integrals, which is based on high frequency

asymptotic solutions to the wave-equation, is a powerful tool to map the data recorded

on the surface of the Earth into representative subsurface structures. However, a

major drawback of standard Kirchhoff migration is that it suffers from migration

artifacts, which results in a blurred depiction of the true subsurface reflectivity dis-

tributions. This effect is primarily caused by the limited acquisition aperture, coarse

source-receiver sampling, band-limited source wavelet, and low subsurface illumina-

tion (Nemeth et al., 1999; Tang, 2009).

Least square migration has the potential to retrieve the subsurface reflectivity

series more accurately than standard migration. LSM is used to reduce the migra-

tion artifacts and enhance the spatial resolution of the migrated image (LeBras and

Clayton, 1988; Nemeth et al., 1999). It provides an approximate solution for the

subsurface reflectivity as demonstrated by the linearized waveform inversion (Landa

et al., 1989; Crase et al., 1990; Snieder et al.; Roth and Tarantola)

Adding a regularization term in the objective function may suppress the migra-

tion artifacts and sharpen the subsurface reflectivity distribution (Fomel and Guitton,

2006). Most regularization techniques assume that the inverted model parameters are

smooth and continuous (Aster et al., 2005). However, since the reflectivity distribu-

tion (i.e. the model parameter) is sparse and discontinuous, I could formulate the

Kirchhoff migration problem as a compressed-sensing problem, which could be solved
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using L1-minimization algorithms.

Compressed Sensing (CS), or sparse recovery, is an emerging field that is widely

used to solve linear systems when the desired signal is sparse (Donoho, 2006; Eldar

and Kutyniok, 2012). It relies on the fact that many signals or images can be well-

approximated by a linear combination of suitable basis or dictionaries (e.g. Fourier,

or wavelets) with only a small number of non-zero coefficients (Donoho, 2006). JPEG,

MP3 are typical examples of these lossy compressions where only large basis coeffi-

cients are stored and the rest are set to zero (Pennebaker and Mitchell, 1992; Taubman

and Marcellin, 2002).

The power of compressed sensing lies in its ability to reconstruct a compressed

version of the original signal while requiring only a small number of measurements.

Clearly, this could lead to a very important saving in both data collection and compu-

tational time. For example, the implementation of the compressed-sensing technology

resulted in a speedup factor of seven times in obtaining pediatric MRI while preserv-

ing the diagnostic quality (Lustig et al., 2005, 2006; Trzasko and Manduca, 2009).

In this chapter, I first present the theory of least-square migration. I next formu-

late the migration problem as a Basis Pursuit denoise problem (i.e. L1-minimization

problem) and solve it to try to retrieve the sparsest reflectivity distribution that ex-

plains the recorded data. The objective of this work is to spatially focus the migrated

image, and reduce the smearing effect caused by the least-square minimization. I also

study whether I can accurately recover a highly resolved subsurface image using a

smaller number of measurements while deploying fewer sources and receivers. I finally

study the robustness of the compressed-sensing approach focusing on the retrieval of

spatially focused migrated images with reduced migration artifacts in the presence of

white Gaussian random noise and in the case of migrating the data using erroneous

migration velocity.
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2.2 Least-square migration

The Kirchhoff forward modeling operator L maps the subsurface reflectivity distri-

bution to scattered seismic data. Generating synthetic seismic data by Kirchhoff

modeling can be represented by a matrix-vector multiplication as:

d = Lm, (2.1)

where d is the modeled scattered seismic data and m is the true subsurface reflec-

tivity distribution. A standard migrated image is obtained by applying the adjoint

of the forward modeling operator (Claerbout, 1992):

mmig = LTd, (2.2)

where mmig is the migrated image. Substituting the expression of d in equation

(3.1) into equation (3.3) yields:

mmig = LTLm, (2.3)

where LTL is known as the model resolution matrix and reflects the amount of

smearing in the seismic image resulting from many factors, including limited recording

aperture. The physical interpretation of the model resolution matrix is that the

standard migrated image is a linear combination of the true reflectivity model. The

Kirchhoff forward operator and its corresponding adjoint operator in their explicit

discrete form are given as:

d(s, g, t) = [Lm]s,g,t = β
∑
x

w(t− τsx − τxg)m(x), (2.4)
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m(x) = [LTd]x =
∑
s

∑
g

∑
t

w(t− τsx − τxg)d(s, g, t), (2.5)

where s, g, x, and t are the source position, receiver position, trial image point,

and time sample, respectively. τsx is the travel time from the source position s to the

trial image point x. Similarly, τxg is the travel time from the trial image point x to the

receiver position g. β is an amplitude factor that describes the geometrical spreading

of the wave. As one may note, the summation is over the model space x for modeling

seismic data whereas it is over the data space s, g, and t for migrating recorded data.

The migration operators are adjoint operators of the forward modeling ones as they

undo the time and phase shifts of the modeling operators but do not divide the color

(i.e. account for the amplitude) (Claerbout and Fomel, 2008).

Least-square migration yields an approximate reflectivity image that minimizes

the sum of the squares of the residual vector. Mathematically, the unconstrained

objective function is defined as:

J = ‖Lm− d‖2 = mTLTLm− 2mTLTd + dTd. (2.6)

The minimizer of this objective function is found by taking the gradient with

respect to m and setting it to zero:

∇mJ = LTLm− LTd = 0. (2.7)

Hence, a more accurate solution to the migration problem is obtained by solving

equation (3.7) which is the so-called normal equation:

LTLmmig = LTd. (2.8)

Gradient-based algorithms are generally used to solve this equation iteratively
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where data residuals are imaged to obtain model updates. By re-arranging the terms

in equation (3.7), the gradient at every iteration is given by:

∇mJ = LT(Lm− d) = LTr, (2.9)

where r is the data residual vector. The pseudo code for the gradient-descent

algorithm is as follows:

while(
∥∥gk

∥∥ is large)
gk+1 = LT(Lmk − d)

mk+1 = mk − αgk+1

k = k + 1 (2.10)

end.

The gradient gk is obtained by back-projecting the data residual vector using

the adjoint of the Kirchhoff forward modeling operator. At each iteration k, the

reflectivity vector m is updated by moving along the negative gradient direction

(i.e. the steepest descent direction) and the scalar quantity α is the step length that

determines how much one can move along that direction. The step length is calculated

using the following formula (Claerbout and Fomel, 2008):

α =
rT∆r

∆rT∆r
, (2.11)

where r = Lm− d and ∆r = L∆m.

Although least-square migration suppresses the migration artifacts and helps focus

the migrated image, this L2-norm minimization tends to produce a smeared version of

the true reflectivity distribution (Avron et al., 2010; Yu et al., 2011). Thus, a major



30

limitation of least-square migration is that it tends to produce images with limited

bandwidth partially due to the band-limited nature of the source wavelet (Ribodetti

et al., 2011).

2.3 Compressed sensing

Since the subsurface reflectivity distribution is known to be sparse and discontinuous,

compressed sensing can be utilized to produce highly resolved migrated images from

the given data where the migration artifacts are significantly compressed. The spars-

est reflectivity distribution is found by solving the following L0-optimization problem

(Donoho, 2006):

min ‖m‖0 subject to Lm = d, (2.12)

where ||m||0 counts the number of non-zero elements in the vector m. This opti-

mization problem has a non-convex objective function, and is NP-hard and intractable

as it requires an exhaustive combinatorial search to find the solution. Nevertheless,

the L0-norm can be relaxed to the L1-norm leading to a convex optimization problem

that is computationally tractable (Chen et al., 2001):

min ‖m‖1 subject to Lm = d. (2.13)

This L1-minimization problem is known as the Basis Pursuit approach, which is

used to reconstruct sparse signals. Chen et al. (2001) showed that this L1-optimization

problem can be cast as a linear program. However, in the presence of noise, this

constraint cannot be exactly satisfied. In other words, there is no feasible m that

perfectly maps to the recorded scattered data d. Hence, I reformulate the Basis Pur-

suit problem as a BPDN problem which is defined as (van den Berg and Friedlander,
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2008):

min ‖m‖1 subject to ‖Lm− d‖2 < σ, (2.14)

where the tolerance σ is a non-negative small scalar. van den Berg and Friedlander

(2007) presented an algorithm that solves this problem for any tolerance value. They

showed that there is a trade-off curve between the two objectives: minimizing the

least-square data fitting and minimizing the L1-norm of the solution that promotes

sparsity. Therefore, giving more weight to the data fitting is only feasible at the

expense of getting a less sparse solution and vice versa. This curve is known as the

Pareto optimal curve and van den Berg and Friedlander (2008) showed that this curve

is convex and continuously differentiable over all points of interest. They claim that

their root-finding algorithm can find arbitrary point on the Pareto optimal curve.

van den Berg and Friedlander (2007) basically cast the BPDN problem as a prob-

lem of finding the root of a single-variable nonlinear equation φ(τ) = σ parameterizing

the Pareto curve. At each iteration, an estimate of τ is used to define a convex opti-

mization problem (i.e. LASSO problem) whose solution yields function and derivative

information that are next used by a Newton-based root-finding algorithm to probe

the Pareto curve. The goal is to find the optimal trade-off between the two compet-

ing objectives. van den Berg and Friedlander (2007) proposed a spectral projected

gradient algorithm (SPGL1) that iteratively solves a sequence of LASSO problems of

the form:

min ‖Lm− d‖2 subject to ‖m‖1 < τ. (2.15)

SPGL1 is a free Matlab package which implements van den Berg and Friedlander

(2007) algorithm and I utilized it to solve the Kirchhoff imaging problem. At each

iteration, the algorithm uses the forward modeling operator in equation (2.4) to model
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the scattered data. Then, the adjoint operator in equation (2.5) is used to back-

project the residual vector to compute the gradient direction as in equation (3.9),

and consequently a gradient-based model update. The new iterate is then projected

orthogonally onto the L1-norm unit ball of size τ in order to promote the sparsity of

the solution.

2.4 Single scatterer example

In this example, the grid spacings of this 75 by 75 grid are ∆x = ∆z = 7 meters, and

the time sampling is 2 ms. A point scatterer of unit amplitude is placed at the center

of the model shown in Figure 3.2(a) and the background velocity model is constant

and equals to 1000 m/s. I generated 75 noise-free shots located at the surface by

Kirchhoff forward modeling operator using a Ricker wavelet with a peak frequency

of 20 Hz. The acquisition geometry and parameters for this example and the other

examples are quite similar. The first shot is at the top-left corner and the last shot

is at the top-right corner. The remaining equally spaced shots are placed at the grid

points along the Earth surface. Similarly, there are 75 equally spaced receivers placed

at the grid points along the Earth surface.

The standard migrated image is obtained by applying the adjoint of the forward

modeling operator to the shot gathers and it is shown in Figure 3.2(b). Clearly,

the standard migrated image is a blurred version of the true subsurface reflectivity

model. Even though the standard migrated image roughly indicates the position

of the scatterer, the amplitude of the scatterer is very far from the true one. The

migration artifacts (i.e. smiles) deteriorate the quality of the image.

On the other hand, the least-square migration result in Figure 3.4(a) shows a con-

siderable enhancement of the image quality and mitigation of the migration artifacts

after 30 gradient descent iterations. Also, this linearized inversion yielded a scatterer
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amplitude of about 0.25 compared with the true amplitude of 1. The least-square

solution is still a smooth version of the true subsurface reflectivity model and that

explains the smearing effect in Figure 3.4(a).

Therefore, I try to retrieve a sparse representation of the reflectivity image using

compressed sensing. The compressed-sensing solution, obtained by solving the Basis

Pursuit denoise problem, promotes the sparsity of the subsurface reflectivity distribu-

tion as shown in Figure 2.1(d). With a value of σ = 1×10−4, the compressed-sensing

solution shows dramatic removal of the migration artifacts and the scatterer is lo-

calized at its true position after 8 iterations. Also, the amplitude of the scatterer is

closer to the true one and it is found to be around 0.87.

2.5 Horizontal layers example

In this example, the grid spacing ∆x = ∆z = 7 meters, and the time sampling is 2

ms. Also, the velocity model of this example is shown in Figure 2.2(a). The problem

is to recover a subsurface Earth model that consists of three horizontal interfaces

with three different reflectivity values (0.5, 0.25, and 0.1) as shown in Figure 3.3(a).

I generated 75 shots using the Kirchhoff forward modeling operator along the surface

using a Ricker wavelet of a dominant frequency of 60 Hz.

The standard migration image resulted in a blurred version of the true subsurface

image as shown in Figure 3.3(b). This is caused by smearing the recorded data

over the corresponding migration operator in the image domain (i.e. smearing the

recorded event over all possible reflection points). Since I only deployed 75 shots and

75 receivers along the surface, this image is heavily smeared and dominated by the

migration smiles leading to this fuzzy depiction of the true reflectivity model. Also,

the quality of the migrated image deteriorates considerably near the edges of the

model due to the limited acquisition coverage; hence, these regions are dominated by
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migration artifacts.

To alleviate these problems, least-square migration is applied to migrate the data

and the result in Figure 3.4(b) shows the mitigation of the migration artifacts, and

the enhancement of both image quality and the resolution of the reflectors after

30 gradient descent iterations. Furthermore, least-square solution partially resolves

the reflectors close to the edges of the model and partially compensates for the low

illumination near these areas. Nevertheless, least-square migration still provides a

smooth solution whereas the true reflectivity distribution is sparse and discontinuous.

Note that there exist some spurious artifacts (i.e. events) in the vicinity of each

reflector. Also, the amplitude of each reflector is weaker than the true one because

the energy is still spread over several depth samples close to the reflector.

The compressed-sensing solution is obtained by iteratively solving the Basis Pur-

suit denoise problem and is shown in Figure 2.2(e). After 30 iterations and using a

value of σ = 1 × 10−4, this sparse solution shows that the migration artifacts, espe-

cially at the edges, are significantly reduced. Also, the amplitude of each reflector is

better recovered than the smooth least-square solution, especially away from the low

coverage areas close to the edges of the model.

2.6 Fault model example

In this example, the grid spacing ∆x = ∆z = 10 meters, and the time sampling is

2 ms. I computed the standard, unconstrained least-square, and compressed-sensing

solutions for a fault model of the Earth. Both the velocity model and the true reflec-

tivity model are shown in Figure 2.3(a) and Figure 2.3(b), respectively. I generated

75 noise-free shots using the Kirchhoff forward modeling operator along the surface

using a Ricker wavelet of a dominant frequency of 20 Hz.

The standard migration imaging computed a heavily blurred depiction of the true
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subsurface image as shown in Figure 2.3(c). In fact, it is quite hard to interpret and

estimate an accurate position of the fault plane from this image. Moreover, the poor

illumination and the limited acquisition aperture worsen the migrated image quality

near the edges of the model.

Applying unconstrained least-square migration to the synthetic data enhances

the image quality. One could now delineate the position of the fault plane after

30 gradient descent iterations as clearly seen in Figure 2.3(d). However, I managed

to preserve the sparsity nature of the migrated image by solving the Basis Pursuit

denoise problem and the solution after 30 iterations is shown in Figure 2.4(a). By

choosing σ = 4×102, this sparse solution resolves the events spatially more accurately

with more precise amplitude information than the smooth least-square solution.

An interesting challenge is to find out if one can reconstruct an accurate repre-

sentation of the subsurface reflectivity model using a fewer number of measurements.

For this matter, I significantly reduced the number of sources and receivers by a factor

of 5 compared with the previous case (i.e. utilizing only 4% of the available data). In

this case, there are only 15 shots and 15 receivers equally spaced along the surface.

The first shot is placed at the top left corner grid point of the model and the last one

is located at top right corner. The spacing interval between sources and also receivers

is now 50 meters instead of 10 meters in the dense geometry.

While the common-depth-point (CDP) sampling is 5 meters in the dense geometry,

it is 25 meters in this sparse acquisition geometry. In the fault model, the velocity

ranges from 2000 m/s to 3500 m/s. With a dominant frequency of 20 Hz, the dominant

wavelength ranges from 100 m to 175 m. Using the dense geometry, I sampled the

image point at 20 to 30 points per wavelength, which is quite dense. On the other

hand, with the sparse acquisition geometry, the imaging point is sampled at only 4

to 7 points per wavelength.

The compressed-sensing solution using the new geometry is shown in Figure 2.4(b)
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and it is remarkably better than the standard migrated image and the least-square

image using the dense geometry shown in Figure 2.3(c) and Figure 2.3(d), respec-

tively. The compressed-sensing solution using the sparse geometry is quite compara-

ble with the compressed-sensing one using the dense acquisition geometry shown in

Figure 2.4(a) even though the image is slightly blurred and the amplitude information

of the reflectors becomes less accurate. Hence, with only 4% of the available data and

resources, compressed sensing managed to retrieve a highly focused migrated image.

The computational time is reduced significantly compared to computing solutions

with the dense acquisition geometry.

I also tested the compressed-sensing based imaging using a more sparse acquisition

geometry. In this test, there are only 5 shots and 5 receivers equally spaced along

the earth surface. Similarly, the first shot is placed at the top left corner grid point

of the model and the last one is located at top right corner. Also, the spacing

interval between shots and between receivers is now 150 meters; hence, the CDP

sampling is 75 meters. Therefore, the imaging point is sampled only at around 1 to 2

points per wavelength. The capability of compressed-sensing migration deteriorates

heavily in this very sparse acquisition geometry as shown in Figure 2.4(c). Thus, the

compressed-sensing imaging requires sufficient CDP sampling of the imaging point to

be able to focus the scatterers in their accurate positions.

2.7 Robustness to Observation Noise

Another question of interest is to study whether sparse reconstruction is robust in the

presence of white Gaussian random observation noise. In other words, what would

be the effect of observational noise on the image quality?

To answer these questions, I added white Gaussian random noise to the synthetic

noise-free scattered data used in the fault model example with the dense acquisition
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geometry. The white Gaussian random noise distribution has a zero mean and a

variance of γ2 and about 68% of the noise lies within one standard deviation (STDV

= 1γ) away from the mean.

I used the compressed-sensing algorithm to image different datasets with standard

deviations γ equals to 5, 10, and 40. Given that the signal-to-noise ratio (SNR) is the

average power of the signal divided by the average power of the noise, these datasets

have signal-to-noise ratios of 9, 2.27, and 0.142, respectively. The migrated images

for these different variances are shown in Figure 3.6.

In the case of the smallest standard deviation, the compressed-sensing solution

in Figure 2.5(a) is quite similar to the compressed-sensing solution in the noise-free

case shown in Figure 2.4(a). However, when the standard deviation is equal to 10,

the solution plotted in Figure 2.5(b) tends to be smoother but it is not as heavily

blurred as the noise-free least-square solution in Figure 2.3(d) and has more accurate

amplitude information. The robustness of the compressed-sensing algorithm deterio-

rates dramatically as shown in Figure 2.5(c) when the average noise power is larger

than the average power of the signal (SNR ≈ 0.142). This represents an extreme

case where the forward modeling operator fails to explain the considerable amount of

noise living in its null space.

2.8 Robustness to Velocity Error

Building an accurate velocity model and estimating the right velocity for migration

is what makes the seismic imaging problem quite difficult. For this reason, I need

to assess the robustness of the sparsely recovered solution in the presence of velocity

error.

Therefore, I applied the compressed sensing migration to the recorded data using

the dense acquisition geometry with velocity models that are 3% and 5% faster than
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the exact velocity model. The results are plotted in Figure 2.6(a) and Figure 2.6(b),

respectively. The reflectors are fairly spatially focused in Figure 2.6(a) compared

with the defocused events in Figure 2.6(b). Also, the two figures show that the fault

plane is mispositioned and the reflectors, especially the deeper ones, are pushed down.

As expected, the reflectors, especially the deeper ones, are pulled up when using

a 3% and 5% slower migration velocity to apply the compressed sensing migration as

shown in Figure 2.6(c) and Figure 2.6(d), respectively.

Henceforth, compressed sensing based migration still retrieve fairly sparse mi-

grated images even though the seismic events get defocused and mispositioned when

the velocity error increases. Similarly, I obtain the least-square solutions using the

erroneous velocities and these are shown in Figure 3.7 for comparison. Clearly, these

solutions are strongly obscured by the migration smiles and the reflectors are consid-

erably defocused compared with the CS solution.

2.9 Conclusions

Standard migration suffers from migration artifacts and low spatial resolution due

to the limited aperture, coarse source-receiver sampling, band-limited nature of the

source wavelet, and low subsurface illumination. These standard images obtained by

applying the adjoint operator managed to retrieve a blurred depiction of the true

subsurface reflectivity distribution.

Least-square migration algorithm helps suppress migration artifacts and enhance

the spatial resolution of the migrated section by iteratively finding a subsurface re-

flectivity model that explains the observed data in a least-square sense. However,

its solution might still be smooth whereas the subsurface reflectivity distribution is

inherently sparse.

Formulating the Kirchhoff modeling-migration problem as a Basis Pursuit denoise
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problem is proven to be quite useful. Solving the Basis Pursuit denoise problem

managed to recover a sparse subsurface reflectivity model that explains the data with

more accurate amplitude information.

The compressed-sensing algorithm was tested on different subsurface models and it

showed that compressed-sensing solutions significantly reduce the migration artifacts,

enhance the spatial resolution, and recover more accurate amplitudes of the reflectors

and scatterers than the smooth least-square solutions. The compressed-sensing algo-

rithm dramatically compresses the smearing artifact caused by the adjoint operator

and places much of the energy at corresponding subsurface point scatterer.

Also, by deploying only 20% of the available sources and receivers, compressed

sensing migration retrieves a fairly focused and accurate subsurface reflectivity model

using a smaller number of measurements. This could potentially lead to huge sav-

ings in resources and computational time. I also demonstrated the robustness of

compressed sensing in the presence of white Gaussian random noise. Overall, the

compressed-sensing algorithm still retrieves a sparse reflectivity model if the noise

variance is small. The quality of the image deteriorates and becomes smoothed and

less sparse as I increase the noise variance resulting in migrated images that are

comparable to the noise-free least-square solutions.

I also demonstrated that the compressed sensing migration is quite robust when

using inaccurate migration velocities. Using compressed sensing migration, I was able

to recover fairly sparse migrated images even though the seismic events become more

defocused and mispositioned as I used more erroneous migration velocities.

I finally conclude that compressed sensing based migration provides an efficient

algorithm to recover sparse representations of subsurface reflectivity distributions.

Although one of its major limitations is the sensitivity to errors in migration velocity,

it tends to promote sparsity in the solution. So, I would expect the CS solution to be

more relevant than standard migration or LSM solutions if the true signal is sparse.
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In future work, I will consider applying the CS based imaging to a real data example

and also to a complex salt synthetic model using a reverse time migration (RTM)

framework instead of Kirchhoff migration.
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Figure 2.1: Single scatterer example. a) True reflectivity model. b) Heavily blurred
standard migrated image. c) Least-square migrated image suppresses the migration
smiles but it results in a smooth depiction of the true reflectivity model. d) The
compressed-sensing solution dramatically suppresses the migration smiles and give
more accurate amplitude information of the scatterer.
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Figure 2.2: Horizontal layers example. a) Velocity Model. b) True subsurface re-
flectivity distribution with three reflectors. c) Blurred standard migrated image.
The reflectors are poorly resolved especially near the edges of the model. d) Least-
square migration enhances the spatial resolution and suppresses the smearing artifacts
but the energy of each reflector is smeared over neighboring depth samples. e) The
compressed- sensing solution focuses the reflectors, suppresses the migration artifacts,
and gives accurate amplitude information especially close to the higher coverage area.
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Figure 2.3: Fault model example. a) Smooth velocity model. b) True subsurface
reflectivity distribution. c) Blurred standard migrated image. It is hard to delineate
the fault plane accurately. d) Least-square migration enhances the spatial resolution
and suppresses the smearing artifacts but still gives a smooth and dispersed version
of the true reflectivity model.
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Figure 2.4: Fault model example. a) The compressed-sensing solution utilizing all 75
sources and receivers provides a highly focused migrated image with more accurate
amplitude information. b) The compressed-sensing solution utilizing only 4% of the
available sources and receivers gives a reasonably compressed and focused migrated
image. c) The compressed-sensing solution with only 5 sources and 5 receivers shows
the deterioration of the capability of the compressed-sensing migration to resolve the
image.
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Figure 2.5: The compressed-sensing solutions obtained from the noisy data after the
addition of white Gaussian random noise with different standard deviations (STDV):
a) γ = 5 , b) γ = 10 , and c) γ = 40.
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Figure 2.6: The compressed-sensing images using inaccurate migration velocities :
a) 3% faster velocity, b) 5% faster velocity, c) 3% slower velocity, and d) 5% slower
velocity.
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model

Figure 2.7: The least-square migrated images using inaccurate migration velocities :
a) 3% faster velocity, b) 5% faster velocity, c) 3% slower velocity, and d) 5% slower
velocity.
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Chapter 3

The Possibilities of Least-squares

Migration of Internally Scattered

Seismic Energy

Approximate images of the Earth subsurface structures are usually obtained by mi-

grating surface seismic data. Least-squares migration, under the single-scattering

assumption, is utilized as an iterative linearized inversion scheme to suppress the

migration artifacts, deconvolve the source signature, mitigate the acquisition finger-

print, and enhance the spatial resolution of migrated images. The problem with the

least-squares migration of primaries, however, is that it may not be able to enhance

events that are mainly illuminated by internal multiples, such as vertical and nearly

vertical faults, or salt flanks. To alleviate this problem, I propose a linearized in-

version framework to migrate internally scattered energy. I apply the least-squares

migration of first-order internal multiples to image subsurface vertical fault planes.

Tests on synthetic data demonstrate the ability of the proposed method to resolve

vertical fault planes, which are poorly illuminated by the least-squares migration of

primaries only. I, also, demonstrate the robustness of the proposed scheme in the

presence of white Gaussian observational noise and in the case of imaging the fault
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planes using inaccurate migration velocities. The results suggest that the proposed

least-squares imaging, under the double-scattering assumption, still retrieves the ver-

tical fault planes when imaging the scattered data despite a slight defocusing of these

events due to the presence of noise or velocity errors.

3.1 Introduction

Seismic imaging using Kirchhoff-type integrals, based on the high frequency asymp-

totic solution to the wave-equation, is a powerful tool to map the data recorded on

the surface of the Earth into representative subsurface structures (Claerbout, 1992).

However, a major drawback of standard Kirchhoff migration is that it mainly images

reflectors that are primarily illuminated by single-scattering energy. In other words,

it focuses the seismic energy that travels from a source point and bounces only once

off a subsurface scattering point before it is received at a surface receiver. The reason

is that the recording surface in seismic acquisition surveys does not typically enclose

the medium containing the scattering points. Therefore, in the case of a complex

velocity structure, some seismic energy may bounce once off a subsurface scattering

point without ending up at the recording surface (Zuberi and Alkhalifah, 2014a).

Figure 1a shows schematically a reflected ray that does not reach a recording station

after a single reflection, pointing away from the recording surface.

Imaging internal multiples has the potential to retrieve seismic events that are

poorly illuminated by single-scattering energy, such as vertical and nearly vertical

fault planes, or salt flanks (Aldawood et al., 2014b). Internally scattered seismic

energy may have a path that could end up on the recording surface allowing the

illumination of such reflectors. Figure 1b shows schematically a doubly-reflected ray

with a raypath that ends up on the recording surface. Malcolm et al. (2009) pro-

posed a methodology to image internal multiples, in which they image prismatic
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waves and other higher order internal multiples. Behura et al. (2012) proposed an

iterative imaging procedure to image internal scattering along with single scattering

energy. Their methodology is based on virtual source creation using inverse scattering

(Wapenaar et al., 2012). Zuberi and Alkhalifah (2013) proposed a three-step interfer-

ometric imaging procedure to image first-order internal scattering energy. Recently,

Zuberi and Alkhalifah (2014a) generalized their interferometric technique to include

higher order internal multiples. Their generalized interferometric multiple imaging

procedure simultaneously creates and images internal multiples given that they are

kinematically allowed to be in the recorded data.

Standard Kirchhoff-based, or RTM-based imaging is performed by applying the

corresponding adjoint of the forward modeling operators to the single-scattered sur-

face seismic data and correlating it with the forward modeled source wavefield to

predict the location of the single scattering energy. Standard migration suffers from

migration artifacts, which results in a blurred depiction of the true subsurface reflec-

tivity distributions. This effect is primarily caused by the limited acquisition aperture,

coarse source-receiver sampling, band-limited nature of the source wavelet, and low

subsurface illumination (Nemeth et al., 1999; Tang, 2009). To remedy this problem,

least-squares migration can be utilized to enhance the quality of migrated images and

suppress the migration artifacts when imaging primaries, and to properly deconvolve

the source wavelet and acquisition fingerprint (LeBras and Clayton, 1988; Nemeth

et al., 1999). LSM provides an approximate solution for the subsurface reflectivity as

demonstrated by the linearized waveform inversion (Snieder et al.; Landa et al., 1989;

Crase et al., 1990; Roth and Tarantola). Dai et al. (2012) adapted the least-squares

migration to image blended data in a multi-source RTM framework. Wang and Sacchi

(2007), Herrmann and Li (2012), and Aldawood et al. (2014a) improved the least-

squares imaging by imposing sparseness constraints on the least-squares solution to

enhance the spatial resolution of the seismic events.
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In this chapter, I extend the theory of least-squares migration to include the

imaging of multiply-scattered seismic energy. I, first, describe how I linearize the

problem of imaging internal multiples. Then, I apply the proposed linearized inversion

to delineate synthetic vertical fault planes that are generally poorly illuminated by

primaries. I, finally, demonstrate the robustness of the proposed linearized inversion

framework to image these fault planes in the presence of white Gaussian observational

noise and in the case of imaging the subsurface using erroneous migration velocities.

3.2 Single-scattering modeling and inversion

The Kirchhoff forward modeling operator L is a linear operator that maps the subsur-

face reflectivity distribution to single-scattered seismic data. Mathematically, gener-

ating synthetic seismic data corresponding to a reflectivity model of the Earth, m(x),

is obtained using the following forward modeling operator in the frequency domain:

d(s, g, ω) =

∫
V

m(x)W (ω)eiω(τsx+τxg)dx, (3.1)

where d(s, g, ω) is the modeled single-scattered seismic data recorded at a surface

receiver g due to a surface source located at s for a particular frequency ω. A point

in the subsurface volume V is given by x, and W (ω) denotes the source wavelet. In

addition, τsx is the travel time from the source point s to the subsurface scattering

point x and τxg is the travel time from the subsurface scattering point x to the

receiver point g. In a matrix form, the modeling can be represented by the following

matrix-vector multiplication:

d = Lm, (3.2)

where d is the recorded single-scattered data vector, and m is the subsurface reflec-

tivity vector. A standard migrated image is obtained by applying the adjoint of the
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forward modeling operator LT to the single-scattered seismic data (Claerbout, 1992).

The adjoint operator linearly maps the single-scattered seismic data to subsurface

structures of the Earth as follows:

mmig(x) =

∫
s

∫
g

∫
ω

d(s, g, ω)W ∗(ω)e−iω(τsx+τxg)ds dg dω, (3.3)

where mmig(x) is the standard migrated image and W ∗(ω) is the complex conjugate

of the source wavelet. While the integration is over the model space x for modeling

seismic data, it is over the data space s, g, and ω for imaging recorded data. Phys-

ically, the single-scattered data d(s, g, ω) is back propagated from the receiver point

g to the trial imaging point at x and the source function is forward propagated from

the source point s to the trial imaging point at x. Then, the image value at the trial

imaging point x is given by the zero-lag cross correlation between the forward and

backward propagated wavefields, which is obtained by the summation over frequen-

cies in equation (3.3). In a matrix representation, the Kirchhoff migration is given by

a matrix-vector multiplication as follows:

mmig = LTd. (3.4)

The migration operators are adjoint operators of the forward modeling ones as

they undo the time and phase shifts of the modeling operators but do not account

for the amplitude (Claerbout and Fomel, 2008). Substituting the expression of d in

equation (3.2) into equation (3.4) yields:

mmig = LTLm, (3.5)

where LTL is known as the Hessian matrix and reflects the amount of smearing

in the seismic image resulting from many factors, including the limited recording
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aperture, the coarse source-receiver samplings, and the band-limited nature of the

source wavelet. The standard migrated image is, therefore, a linear combination of

the columns of the Hessian matrix weighted by the true reflectivity model (Aster

et al., 2005), providing a physical interpretation of the model resolution.

Least-squares migration yields an approximate reflectivity image that minimizes

the sum of the squares of the residual vector. Mathematically, the unconstrained

objective function is defined as:

J =
1

2
‖Lm− d‖22 =

1

2
mTLTLm−mTLTd +

1

2
dTd. (3.6)

The minimizer of this objective function is found by computing the gradient with

respect to m and setting it to zero:

∇mJ = LTLm− LTd = 0. (3.7)

A more accurate solution to the migration problem is the least-squares migrated

image mls, which obtained by solving equation (3.7), the so-called normal equation:

LTLmls = LTd. (3.8)

Gradient-based algorithms are generally used to solve this equation iteratively

where data residuals are imaged at every iteration to obtain model updates. By

re-arranging the terms in equation (3.7), the gradient at every iteration is given by:

∇mJ = LT(Lm− d) = LTr, (3.9)

where r is the data residual vector. An initial guess is usually given by the image

resulting from the standard Kirchhoff migration in equation (3.3). At each iteration,
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the forward modeling operator in equation (3.1) is used to synthesize single-scattered

seismic data to be compared with the recorded data. Then, the data residual is back-

projected using the adjoint operator in equation (3.3) to determine the subsurface

reflectivity model updates.

The least-squares migration, under the single-scattering assumption, suppresses

the migration artifacts and enhances the seismic reflectors, which are mainly illumi-

nated by primaries (Nemeth et al., 1999). However, it hardly delineates reflectors

that are mainly illuminated by internally-scattered energy (Aldawood et al., 2014b).

Consequently, imaging internal multiples potentially helps illuminate subsurface ar-

eas that are poorly illuminated by primaries, such as vertical and nearly vertical fault

planes (Zuberi and Alkhalifah, 2013).

3.3 Double-scattering modeling and inversion

The following forward modeling operator maps the reflectivity model to doubly-

scattered seismic data as:

dd(s, g, ω) =

∫
V

∫
V

v(x)v(x′)W (ω)eiω(τsx+τxx′+τx′g)dx dx′, (3.10)

where dd(s, g, ω) is the recorded doubly-scattered seismic data. v(x) and v(x′) are

the subsurface reflectivity functions at subsurface points x and x′, respectively. In

addition, τsx is the travel time from the source point s to the first scattering point x.

τxx′ is the travel time from the first scattering point x to the second scattering point

x′. Similarly, τx′g is the travel time from the second scattering point x′ to the receiver

point g.

Clearly, equation (3.10) shows that generating first-order internal multiples is not

simply obtained by a linear mapping of the subsurface reflectivity model because of

the multiplication of two reflectivity functions inside this double-summation modeling
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step. To linearize this operator, I propose replacing v(x′) by the fixed least-squares

migration solution p(x′) under the single-scattering assumption, obtained by itera-

tively solving the normal equation (5.6). Equation (3.10) then becomes:

dd(s, g, ω) =

∫
V

∫
V

v(x)p(x′)W (ω)eiω(τsx+τxx′+τx′g)dx dx′. (3.11)

Physically, the scattering points in the least-squares image p(x) under the single-

scattering assumption act as secondary sources to predict the doubly-scattered inter-

nal multiples. To predict a first-order internal multiple, the seismic energy is forward

propagated from the source point s to the known scattering point x′ and scaled by its

reflectivity value p(x′). Then, the energy is emitted from this secondary source at x′

and forward propagated to the second scattering point x and scaled by its reflectivity

value v(x). Lastly, the energy is further propagated from the second scattering point

to the receiver point g to predict the internally scattered first-order multiple. In a

similar approach, Zhang and Duan (2012) used the RTM reflectivity image as a sec-

ondary source in the subsurface to predict both interbed and surface-related multiples

in their reverse time demigration (RTDM) framework.

The proposed prediction step of first-order multiples can then be represented by

the following matrix-vector multiplication:

dd = Gv, (3.12)

where G is the forward modeling operator that linearly maps the subsurface reflec-

tivity distribution, which is mainly illuminated by the doubly-scattered energy v, to

first-order internal multiples dd. The corresponding adjoint of this forward modeling

operator can be applied to image the doubly-scattered data as follows:

vmig(x) =

∫
s

∫
g

∫
ω

∫
V

dd(s, g, ω)p(x′)W (ω)e−iω(τsx+τxx′+τx′g)ds dg dω dx′. (3.13)
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The physical interpretation of this equation is that the subsurface reflectivity

image, under the double-scattering assumption, can be obtained by applying the

following steps:

1. The doubly-scattered seismic data is back propagated from the receiver point g

to the known scattering point x′ and the seismic energy is scaled by the known

reflectivity value p(x′) at this subsurface scattering point.

2. The scaled redatumed data at the known scattering point x′ is further back

propagated to the trial imaging point x.

3. The source wavefield is forward propagated from the source point s to the trial

imaging point x.

4. I obtain the final image at the trial subsurface scattering point x by applying

the zero-lag imaging condition of both the forward and backward propagated

wavefields.

In a matrix form, the subsurface image, under the double-scattering assumption,

vmig, is obtained by applying the adjoint operator GT to the first-order internal

multiples dd:

vmig = GTdd. (3.14)

Similarly to the single-scattering case, computing the doubly-scattered migrated

image is determined by a linear mapping of the doubly-scattered seismic data. One

can also solve a corresponding normal equation iteratively in order to obtain a least-

squares migrated image vls under the double-scattering assumption as follows:

GTGvls = GTdd. (3.15)

The least-squares migration of both the single-scattering and double-scattering

energy helps suppress the migration artifacts, remove the acquisition footprint, and
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deconvolve the source wavelet. It further enhances the spatial resolution of both

horizontal reflectors and vertical fault planes. Equations (5.6) and (3.15) are usually

solved iteratively using a gradient-based optimization algorithm. Here, I use the

limited memeory BFGS (L-BFGS) optimization algorithm to obtain the least-squares

solutions. See Appendix A for a more detailed description of the algorithm.

3.4 Imaging vertical fault planes

In the following two examples, the grid spacings of the 100 by 50 grids are ∆x =

∆z = 30 meters, and the time sampling is 4 ms. I computed 100 noise-free common

shot gathers along the surface using the forward modeling operators to generate the

primaries and first-order internal multiples. A Ricker wavelet with a peak frequency

of 20 Hz was used to model the seismic data. The first shot is at the top-left corner

and the last shot is at the top-right corner. The remaining equally spaced shots are

placed at the grid points along the Earth surface. Similarly, there are 100 equally

spaced receivers placed at the grid points along the Earth surface.

The first velocity and reflectivity models are shown in Figure 2a and Figure 2b,

respectively. In this example, the two-layer velocity is given by 2500 m/s and 3000

m/s from top to bottom and the CDP sampling is 15 m. The dominant frequency

of 20 Hz results in a dominant wavelength of 125 to 150 meters. Thus, the image

point is sufficiently sampled at about 8-10 points per wavelength. On the other hand,

the second velocity and reflectivity models are shown in Figure 3a and Figure 3b,

respectively. In this case, the velocity ranges between 1500 m/s and 3900 m/s and the

CDP sampling is 15 meters. Using the same Ricker wavelet, the dominant wavelength

ranges from 75 to 195 meters. Hence, the image point is sampled sufficiently at 5-13

point per wavelength. The goal is to apply the proposed least-squares migration of

first-order internal multiples to properly image the vertical fault planes in these two
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different models.

The images obtained using the standard migration of the noise-free data, under

the single-scattering assumption, are shown in Figure 4a and Figure 4b, respectively.

The figures show blurry depictions of the true subsurface reflectivity distributions

due to the migration artifacts, the acquisition fingerprint, and the limited bandwidth

of the source wavelet. To alleviate these problems, the least-squares migration, un-

der the single-scattering assumption, is applied to suppress the migration artifacts

and sharpen the reflectors as shown in Figure 5a and Figure 5b, respectively. Af-

ter 30 quasi-Newton L-BFGS iterations, this linearized inversion mainly enhances

the horizontal reflectors, which are mostly illuminated by primaries. The vertical

fault planes, however, are not well delineated since they are mainly illuminated by

internally scattered seismic energy.

The least-squares solutions in Figure 5a and Figure 5b, under the single-scattering

assumption, are then used in equations (3.11) and (3.13) to linearize the inversion of

the first-order internal multiples using the proposed framework. These solutions are

further used as an initial guess to start the proposed linearized inversion. After 11

quasi-Newton L-BFGS iterations, the least-squares migration results, based on the

double-scattering assumption, are shown in Figure 6a and Figure 6b, respectively.

Clearly, inverting the first-order internal multiples delineates the fault planes and

localizes them in their true subsurface positions.

3.5 Robustness to Observation Noise

A challenging question is to assess whether one can accurately delineate the vertical

fault plane in the presence of white observational noise. To answer this question, I

added white Gaussian random noise to the two synthetic noise-free datasets. I then

used the proposed least-squares migration framework to image the first-order internal
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multiples in order to assess the robustness of this linearized inversion.

The least-squares images, under the double-scattering assumption, of the two noisy

datasets with a signal-to-noise ratio of -15 dB and -10 dB are shown in Figure 7a and

Figure 7b, respectively. These solutions, obtained after 10 quasi-Newton L-BFGS

iterations, still show a clear delineation of the fault planes despite the defocusing of the

seismic events. However, as the data becomes noisy, the quality of the LSM images,

under the double-scattering assumption, deteriorates compared with the noise-free

images shown in Figure 5a and Figure 5b.

3.6 Robustness to Velocity Error

Velocity model building to estimate accurate migration velocities is one of the major

challenges in seismic imaging. Hence, another question of interest is to study whether

the proposed linearized inversion of doubly-scattered data is robust in the case of

imaging with inaccurate migration velocities. In other words, what is the effect of

velocity errors on the final image quality, and on the ability of the proposed framework

to resolve the vertical fault planes?

To answer these questions, I applied the linearized framework to image first-order

internal multiples using slower and faster migration velocities. I first compute the

least-squares solutions, under the single-scattering assumption, to image the recorded

data with velocity models that are 1% faster and slower than the exact velocity

model. The LSM solutions of the first and second examples, imaged using the slower

and faster velocities, are plotted in Figures 8a and 8b, and in Figures 8c and 8d,

respectively. One can see that these least-squares images become more defocused and

mispositioned as the velocity becomes erroneous. Whereas the horizontal reflectors

are pulled up when migrating the data using slower migration velocities, they are

pushed down when the recorded data is imaged with faster migration velocities.
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These images are then used as constraints and initial guesses in the linearized

inversion framework under the double-scattering assumption. The least-squares solu-

tions, obtained by imaging first-order internal multiples using the slower and faster

velocities, are plotted in Figure 9a and 9b for the first example, and in Figure 9c and

9d for the second example. The vertical fault planes are fairly spatially focused in

case the migration velocity error is ± 1% as demonstrated in these figures.

The results suggest that the proposed least-squares imaging, under the double-

scattering assumption, can be sensitive to the accuracy of the migration velocity

model and the accuracy of the scatterers’ locations obtained by inverting the pri-

maries. As a result, these two factors could cause more defocusing and mis-positioning

of the vertical fault planes compared with the horizontal reflectors, which are mainly

delineated by the least-squares migration of primaries.

3.7 Discussion

Standard migration suffers from migration artifacts and low spatial resolution due

to the limited acquisition aperture, coarse source-receiver sampling, limited band-

width of the source wavelet, and low subsurface illumination as shown in Figure 4.

Least-squares migration helps suppress migration artifacts, remove the acquisition

fingerprint, and enhance the spatial resolution of the migrated section by iteratively

finding a subsurface reflectivity model that better explains the observed data in a

least-squares sense.

However, both standard and iterative least-squares migration algorithms, under

the single-scattering assumption, yield migrated sections that focus seismic events,

which are mainly illuminated by primaries, such as horizontal reflectors as seen in

Figures 4 and 5, respectively. I demonstrated that modeling doubly-scattered data

is mathematically not represented by a linear mapping of the subsurface reflectivity
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distribution. Thus, I proposed a linearization step where I use the least-squares image,

under the single-scattering assumption, as a constraint in the forward modeling and

adjoint operators, which models and images first-order multiples, respectively. I,

then, demonstrated the effectiveness of the proposed linearized inversion scheme of

doubly-scattered energy and its ability to localize vertical fault planes in Figure 6.

I, also, demonstrated the robustness of this inversion framework in the presence of

white Gaussian random observational noise. Overall, the proposed least-squares imag-

ing, under the double-scattering assumption, still retrieves the vertical fault planes

when imaging the noisy datasets despite the slight defocusing of these events due to

the presence of noise as illustrated in Figure 7.

I finally studied the robustness of the proposed linearized inversion when imag-

ing the data with inaccurate migration velocities. In Figure 9, I showed how the

least-squares migration of the doubly-scattered data could delineate the vertical fault

planes although they become mispositioned and unfocused in the presence of velocity

errors. I conclude that the linearized inversion of first-order internal multiples can be

sensitive to the migration velocity models and the constraining least-squares images

of primaries.

3.8 Conclusions

I proposed a linearized inversion framework to invert first-order internal multiples in

the seismic records. The least-square image, based on the single-scattering assump-

tion, was used as a constraint to linearize the forward modeling and adjoint operators

of doubly-scattered energy. The results on synthetic data revealed the effectiveness of

the proposed linearized inversion in delineating vertical fault planes, which are mainly

illuminated by doubly-scattered seismic energy. I further demonstrated the robust-

ness of the least-squares migration of first-order multiples in the presence of noise
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and in case of imaging using inaccurate velocities. In conclusion, I would expect the

proposed least-squares migration, under the double-scattering assumption, to work

best in case the data quality is high, and both the single-scattered least-squares image

and the migration velocity model are quite accurate.

Future work will consider employing a sparsity-promoting imaging framework to

obtain highly focused images with the proposed linearized inversion. It will also

include the application of this least-squares imaging technique to real data examples

and 3D synthetic models in an efficient RTM framework instead of the currently used

Kirchhoff-based framework.
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(a) Singly-reflected ray

(b) Doubly-reflected ray

Figure 3.1: Ray diagrams: a) A singly-scattered ray is reflected off the vertical fault
plane away from the recording surface. b) A doubly-reflected ray ends up at the
recording surface illuminating the vertical fault plane.
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Figure 3.2: A vertical fault plane: a) True velocity model. b) True reflectivity model.
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Figure 3.3: Buried vertical faults: a) True velocity model. b) True reflectivity model.
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(a) Example 1: Kirchhoff migration
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(b) Example 2: Kirchhoff migration

Figure 3.4: Standard Kirchhoff migration: a) Example 1: Kirchhoff migration of the
two-layer model. b) Example 2: Kirchhoff migration of the buried vertical faults
model. The standard Kirchhoff imaging of primaries only yields a blurry representa-
tion of the subsurface structures.



67

Distance (m)

D
e

p
th

 (
m

)

Least−squares single−scattering migration

 

 

500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

(a) Example 1: Single-scattering least-squares
migration

Distance (m)

D
e

p
th

 (
m

)

Least−squares single−scattering migration

 

 

500 1000 1500 2000 2500 3000

200

400

600

800

1000

1200

1400

(b) Example 2: Single-scattering least-squares
migration

Figure 3.5: Imaging vertical faults: a) Example 1: Single-scattering least-squares
migrated image. b) Example 2: Single-scattering least-squares migrated image. The
LSM of primaries only better emphasizes the horizontal reflectors.
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(b) Example 2: Double-scattering least-squares
migration

Figure 3.6: Imaging vertical faults: a) Example 1: Double-scattering least-squares
migrated image. b) Example 2: Double-scattering least-squares migrated image. The
LSM of first-order internal multiples better delineates the vertical fault plane.
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(a) Example 1: The LSM solution under the
double-scattering assumption with SNR = -15 dB
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(b) Example 2: The LSM solution under the
double-scattering assumption with SNR = -10 dB

Figure 3.7: Double-scattering least-squares migration of noisy datasets: a) Example
1: double-scattering LSM with SNR = -15 dB. b) Example 2: double-scattering LSM
with SNR = -10 dB. As the data becomes noisy, the ability of the least-squares imag-
ing of first-order internal multiples to delineate the vertical fault planes deteriorates.
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(b) Example 1: Single-scattering LSM using 1%
faster velocity model
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(c) Example 2: Single-scattering LSM using 1%
slower velocity model
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(d) Example 2: Single-scattering LSM using 1%
faster velocity model

Figure 3.8: The LSM of primaries using the slower and faster migration velocities.
Example 1: Least-squares migration using: a) 1% slower velocity model. b) 1% faster
velocity model. Example 2: Least-squares migration using: c) 1% slower velocity. d)
1% faster velocity.
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(b) Example 1: Double-scattering LSM using 1%
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(d) Example 2: Double-scattering LSM using 1%
faster velocity model

Figure 3.9: The LSM of first-order multiples using the slower and faster migration
velocities. Example 1: Least-squares migration using: a) 1% slower velocity model.
b) 1% faster velocity model. Example 2: Least-squares migration using: c) 1% slower
velocity. d) 1% faster velocity.
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Chapter 4

Least-squares Datuming of VSP

Multiples

An approximate redatumed data is usually obtained by interferometric transforma-

tions, which can create virtual source or receiver positions. The conventional inter-

ferometric transformations are based on the cross-correlation or convolution of the

recorded seismic traces. This redatuming of seismic data, however, suffers from low

temporal resolution, wavelet distortion, and correlation artifacts due to the band-

limited nature of the source wavelet, small number of sources and/or receivers in the

acquisition geometry, limited recording aperture, and cross-correlation of the seismic

traces. To alleviate these problems, I resort to the theory of least-squares datuming,

which I apply to transform synthetic vertical-seismic-profile surface-related multi-

ples into surface-seismic primaries. These primaries are subsequently imaged using a

diffraction-stack migration formula to obtain subsurface structures. Numerical exam-

ples from a synthetic subsurface model demonstrates the effectiveness of the proposed

least-squares datuming, showing clear enhancement in the quality and the frequency

bandwidth of both the virtual surface-seismic gathers and the resolution of the final

migrated section. I further modify both the datuming and modeling operators in

the linearized inversion framework to include the transformation of vertical-seismic-

profile internal multiples into surface-seismic primaries. The synthetic results show
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that the proposed operators help enhance the least-squares datumed events in both

the virtual gathers and the migrated image.

4.1 Introduction

Seismic interferometry, also known as virtual source method, is widely used to trans-

form recorded seismic data from one acquisition geometry to another. The power of

interferometric transformations lies in their ability to redatum seismic data without

knowing the underlying velocity model. Seismic interferometry basically requires the

cross-correlations, or convolutions of the recorded seismic traces, which act as natu-

ral wavefield extrapolators (Wapenaar and Fokkema, 2006; Schuster, 2009). One may

also use this approach to extract the impulse response between receivers by mak-

ing suitable combinations of the wavefields recorded at these receivers from different

sources (Snieder et al., 2006).

Vertical seismic profiling data are conventionally processed to enhance the upgo-

ing primaries that are subsequently imaged to obtain subsurface structures whereas

the downgoing multiples are suppressed or removed. Jiang and Hornby (2007) pro-

posed a 3D data-driven method to predict VSP multiples using a convolution-type

transformation. They convolved surface-seismic profile data with VSP direct energy

to predict VSP multiples. Ma et al. (2011) used the SRME technique by combining

surface-seismic and VSP data in their prediction-subtraction approach to attenuate

VSP surface-related multiples. He et al. (2006) transformed the VSP multiples to sur-

face seismic primaries by a VSP-SSP cross-correlation transform and imaged them

using a 3D wave-equation migration. Wang et al. (2010) proposed a joint interfer-

ometric imaging workflow in which they use both primary and ghost reflections to

image subsurface structures. Lu et al. (2006) used seismic interferometry to reda-

tum surface sources into virtual sources in a vertical well to obtain a virtual dataset
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that mimics the response of down-hole sources and down-hole receivers. Then, they

imaged these virtual traces using a targeted RTM step to delineate upward dipping

salt-flank sedimentary layers.

However, interferometric transformation of seismic data, based on the cross-correlations

of seismic traces, deteriorates the quality of the final migrated image. In other words,

the image suffers from low spatial resolution due to the coarse source-receiver sam-

plings, the limited acquisition aperture, and the distortion of the source wavelet, and

the cross talk noise caused by the cross-correlation step. To alleviate these problems,

Xue and Schuster (2008) proposed a least-squares datuming framework to suppress

the datuming artifacts and enhance the quality of the redatumed gathers. In their

Least-squares datuming, they proposed an iterative combined correlation-convolution

workflow in which the cross-correlation of the traces acts as a linear datuming (ad-

joint) operator and the convolution of the traces acts as a linear de-datuming (forward

modeling) linear operator to transform seismic data from one acquisition geometry

to another. At every iteration, the adjoint (datuming) operator is applied to the for-

ward modeled data residual in order to obtain the gradient, which could be used to

the desired datumed dataset. In refraction seismology, Bharadwaj et al. (2012) and

Alshuhail et al. (2012) used a cross-correlation datuming step followed by a convo-

lution de-datuming step to enhance the first arrivals in their super-virtual refraction

interferometry method. Recently, Al-Hagan et al. (2014) expanded the super-virtual

refraction method and applied it using an iterative procedure to further enhance the

first breaks by a combined correlation-convolution framework. Aldawood et al. (2015)

compared and analyzed the different effects of applying least-squares migration and

least-squares datuming when imaging VSP multiples.

In this chapter, I study the possibility of applying least-squares datuming to trans-

form VSP surface-related multiples into virtual SSP data prior to imaging the virtual

SSP primaries using Kirchhoff migration. I start by presenting both the forward
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modeling de-datuming operator and the adjoint datuming operator, which are used

to transform VSP surface-related multiples into SSP primaries. I then migrate the

LSD virtual SSP primaries using Kirchhoff-based imaging algorithm in order to obtain

an approximate reflectivity image of the subsurface. I compare this image with the

one obtained using the Kirchhoff migration of conventionally datumed SSP primaries

based on cross-correlation interferometric transformation. I finally modify both the

forward and adjoint operators to enable the datuming of internal VSP multiple in

order to compute more accurate virtual SSP primaries in a least-squares sense and

then migrate them to obtain an enhanced final image.

4.2 Least-squares datuming

The reciprocity equation of the correlation type can be used to linearly map the

recorded VSP surface-related multiples to virtual SSP primaries. Mathematically,

generating virtual datumed SSP primaries can be computed in the frequency domain

using the following reciprocity equation (Wapenaar and Fokkema, 2006):

Im[G(B|A)] = k

∫
S0

Gd(r|B)∗G(r|A)d2r, (4.1)

where G(B|A) represents a virtual SSP trace recorded at B due to a source at A.

G(r|A) is the recorded trace of VSP multiples at r due to a source at A. Gd(r|B)∗ is

the complex conjugate of the recorded trace at r of the direct VSP energy due to a

source at B. S0 is the integration surface along the vertical well in the VSP acquisition

geometry, and k is the wavenumber. A schematic ray diagram in Figure 4.1(a) shows

that the cross-correlation of a VSP surface-related multiple with a VSP direct wave

yields a virtual SSP primary, as the traveltime associated with the common ray

path subtracts. Therefore, cross-correlating the VSP surface-related multiple event

recorded at r due to a source at point A with the direct wavefield recorded at point
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r due to a source at shot point B shifts the multiple event backward in time. This

step yields a seismic event that represents the impulse response of a primary event

recorded by a virtual receiver at point B due to a source at shot point A. In a

matrix form, the above system in equation (4.1) can be represented by the following

matrix-vector multiplication:

dvirtual
SSP = J†dVSP, (4.2)

where J† is the conventional cross-correlation adjoint operator (i.e. datuming op-

erator), which linearly maps VSP surface-related multiples dVSP into virtual SSP

primaries dvirtual
SSP . The virtual SSP data dvirtual

SSP may suffer from wavelet distortion

and low temporal resolution. It could also contain spurious seismic events known as

correlation artifacts. These effects are caused by the imperfect summation in equa-

tion (4.1) due to the limited recording aperture along the vertical borehole, sparse

sampling of the receivers in the well, and the cross-correlation of the seismic traces.

Least-squares datuming can be utilized to mitigate the cross-correlation artifacts,

deconvolve the source wavelet, and enhance the resolution of the virtual SSP events

(Xue and Schuster, 2008). LSD requires a forward modeling operator, which linearly

transforms virtual SSP primaries into VSP surface-related multiples. In the frequency

domain, the reciprocity equation of the convolution type can be implemented as a

modeling operator as follows (Wapenaar and Fokkema, 2006):

G(r|A) = 2ik

∫
S1

Gd(r|B)G(B|A)d2B, (4.3)

where the summation surface S1 is now along the Earth surface over all “virtual”

receiver positions B’s. The reciprocity equation of the convolution type (4.3) undoes

the phase and time shifts, which were applied to the VSP surface-related multiples

by the reciprocity equation of the correlation type (4.1). The ray diagram in Figure
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4.1(a) shows schematically that the convolution of a surface-seismic primary with a

VSP direct wave yields a VSP surface-related multiple since the traveltimes add up.

Therefore, convolving the virtual SSP primary event recorded at the virtual receiver

at point B due to a source at point A with the direct wavefield recorded at r due

to a source at point B shifts the primary event forward in time. This step yields a

seismic event that represents the impulse response of a a VSP surface-related multiple

event recorded by a receiver at point r due to a source at shot point A. In a matrix

representation, equation (4.3) is given by the following matrix-vector multiplication:

dVSP = Jdvirtual
SSP , (4.4)

where the convolution type forward modeling operator J is applied to the virtual SSP

primaries dvirtual
SSP to predict the VSP surface-related multiples dVSP. Therefore, the

least-squares datumed SSP primaries dvirtual
SSPls

are obtained by solving the following

normal equation:

J†Jdvirtual
SSPls

= J†dVSP. (4.5)

The linear system in equation (4.5) is solved iteratively using a gradient-based

optimization algorithm. I used a quasi-Newton L-BFGS gradient-based method to

invert the system in order to obtain the least-squares datumed SSP data after 30

iterations. See Appendix A for a more detailed description of the algorithm.

I also propose modified datuming and de-datuming operators that would convert

VSP interbed multiples to SSP primaries. This can be achieved by replacing the

trace containing the direct wavefield Gd(r|B) by the full trace containing both the

direct field and multiples G(r|B) in the reciprocity equation of the correlation type

(4.1) and the convolution type (4.3). The idea behind this modification is that the

cross-correlation of a VSP internal multiple, which reflects off the free surface, with

a lower order VSP internal multiple could create a virtual SSP primary.
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Figure 5.1(b) shows schematically the capability of the modified datuming oper-

ator to transform a higher order VSP interbed multiple into an SSP primary by the

cross-correlation of this higher order multiple with a lower order VSP interbed multi-

ple. Therefore, cross-correlating the high-order VSP interbed multiple event recorded

at r due to a source at shot point A with the lower-order VSP interbed multiple event

recorded at point r due to a source at shot point B shifts the multiple event backward

in time. This step yields a seismic event that represents the impulse response of a

primary event recorded by a virtual receiver at B due to a source at shot point A.

Similarly, Figure 5.1(b) demonstrates schematically the ability of the modified

forward modeling operator to predict a higher order VSP interbed multiple by con-

volving a lower order VSP interbed multiple with a virtual SSP primary. Hence,

convolving the virtual SSP primary event recorded at the virtual receiver at point

B due to a source at point A with a lower-order VSP interbed multiple recorded at

r due to a source at B shifts the primary event forward in time. This step yields a

seismic event that represents the impulse response of a a higher-order VSP interbed

multiple event recorded by a receiver at point r due to a source at shot point A.

I then migrate the conventional cross-correlation datumed data dvirtual
SSP and the

least-squares datumed data dvirtual
SSPls

using Kirchhoff-type migration. The diffraction-

stack migrated image is obtained by applying the following multidimensional sum-

mation in the frequency domain (Claerbout, 1992; Yilmaz, 2001)

mmig(x) = −
∑
s

∑
g

∑
ω

(iω)2d(s,g, ω)e−iω(τsx+τxg), (4.6)

where mmig(x) is the diffraction stack migrated section, ω is the angular frequency,

and i =
√
−1. τsx is the traveltime from the surface source point s to the subsurface

trial image point x. Similarly, τxg is the traveltime from the subsurface trial image

point x to the surface receiver point g. In this study, the surface-seismic data d(s,g, ω)
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is the virtual SSP data obtained by the conventional cross-correlation datuming or

least-squares datuming.

4.3 Numerical Example

The true velocity model used to generate the synthetic VSP data is shown in Figure

4.3(a). In this 100 by 120 grid point model, the grid spacing is ∆x = ∆z = 10 m

and the wavefield time sampling is 0.5 ms. The acquisition geometry consists of 100

shots equally spaced along the Earth surface and 16 receivers equally spaced from the

depth range of 490 m to 790 m at the left side wall of the model. The source function

is a Ricker wavelet with a dominant frequency of 25 Hz. I generated the VSP data

using a finite-difference solution to the acoustic wave-equation. A typical common

receiver gather is plotted in Figure 4.3(b).

I used the conventional correlation-type interferometric transformation in equa-

tion (4.1) to linearly transform VSP surface-related multiples into surface-seismic

primaries. A datumed virtual SSP shot gather is plotted in Figure 4.4(a) and shows

low temporal resolution, correlation artifacts, and wavelet distortion. These effects

are due to the limited number of 16 receivers placed along a small aperture in the

borehole resulting in an imperfect summation in equation (4.1). They are also caused

by the cross-correlation process that does not properly deconvolve the source signa-

ture.

To remedy these problem, I iteratively solve the linear system in equation (4.5) to

obtain the least-squared datumed virtual SSP gathers. The same virtual shot gather

is plotted in Figure 4.4(b) after LSD for comparison. The figure shows that this

linearized inversion yields a remarkable enhancement of the temporal resolution of

the seismic events, the suppression of the correlation artifacts, and the deconvolution

of the source wavelet. For comparison, Figures 4.5(a) and 4.5(b) plot the amplitude
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spectrum of a typical trace in the conventionally datumed virtual SSP gather and

the least-squares datumed SSP gather, respectively. The spectrum shows that LSD

enhances the frequency content of the trace at both the low and high ends as this

linearized inversion scheme acts as a deconvolution operator.

I further obtain the least-squares datumed virtual SSP gathers, in which I use the

modified forward and adjoint datuming operators to include the datuming of VSP

internal multiples. In Figure 4.4(c), the least-squares virtual SSP gather, obtained

using the modified operators, shows a notable enhancement of the reflection events,

especially the forth reflection event in the vicinity of the borehole. Figure 4.5(c)

outlines the amplitude spectrum of a typical trace in this gather and suggests an

enhancement of the frequency content and the deconvolution of the spectrum. In

Figure 4.6, I show the convergence curve that plots the normalized data residual

against the number of iterations. Using the proposed LSD framework, the normalized

data residual curves before and after applying the modification of the operators to

include the internal multiples decreased to about 1×10−2 after about 30 quasi-Newton

iterations.

I then migrate both the conventional cross-correlation based datumed primaries

and the LSD virtual SSP primaries. Figure 4.7(a) shows a diffraction-stack migrated

image using the conventionally datumed SSP primaries. Clearly, the reflectors in this

migrated section exhibit low-spatial resolution and the source wavelet is not properly

deconvolved. Figure 4.7(b) is obtained by the diffraction-stack migration of the least-

squares datumed virtual SSP primaries and shows a pronounced improvement of

the quality of the migrated image. In other words, the reflectors look sharper and

the source signature is well deconvolved as a result of LSD. I also migrated the least-

squares datumed SSP gathers, which are obtained by the modified forward and adjoint

datuming operators to include the datuming of the VSP internal multiples.

Figure 4.7(c) plots the diffraction-stack migrated image of the least-squares da-
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tumed primaries, obtained using the modified operators. It suggests a slight enhance-

ment of the spatial resolution of the reflectors, especially the forth reflector near the

borehole location. The results therefore demonstrates that LSD helps remarkably en-

hance the quality of the virtual SSP gathers, and the spatial resolution of the migrated

images. The final images obtained by the diffraction-stack migration of the different

least-squares datumed virtual SSP datasets in Figures 4.7(b) and 4.7(c) support this

conclusion.

4.4 Conclusions

I proposed a linearized inversion framework, based on the reciprocity equation of

the correlation and convolution types, in order to interferometrically transform VSP

multiples to SSP primaries. I demonstrated how least-squares interferometric datum-

ing can help deconvolve the source wavelet and acquisition fingerprints, suppress the

datuming artifacts, and enhance the temporal resolution of the seismic reflectors in

the virtual SSP gathers. I further imaged the virtual SSP primaries using Kirchhoff

and the synthetic results show that imaging the highly-resolved least-squares da-

tumed SSP primaries yields highly resolved migrated images compared with imaging

the conventionally datumed virtual SSP primaries using cross-correlation. I further

modified the forward modeling and adjoint datuming operators to include the trans-

formation of interbed VSP multiples into SSP primaries in the linearized inversion

scheme. The synthetic results shows the enhancement of the seismic events in both

the least-squares datumed gather and the migrated image. I conclude that least-

squares datuming can be an essential step to apply to the VSP data prior to imaging

to obtain highly resolved virtual primaries, which can be subsequently imaged to ob-

tain representative subsurface structures. I would expect this framework to work best

should the VSP data contains significant amount of surface-related multiples.
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Future work will consider incorporating deconvolution-type datuming operators

such as cross-coherence in the linearized inversion framework. This is expected to

yield more accurate virtual gathers obtained at a faster convergence rate than the

ones obtained using the conventional reciprocity equations as forward modeling and

adjoint datuming operators.
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Figure 4.1: Schematic ray diagrams: a) Cross-correlating a VSP surface-related multi-
ple with a VSP direct wavefield yields a virtual surface-seismic primary. b) Convolving
a surface-seismic primary with a VSP direct wavefield yields a VSP surface-related
multiple.
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Figure 4.2: Schematic ray diagrams for the modified operators: a) Cross-correlating
a high-order interbed VSP multiple with a lower-order VSP multiples yields a virtual
surface-seismic primary. b) Convolving a surface-seismic primary with a low-order
VSP multiple yields a higher-order interbed VSP multiple.
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(b) A VSP common receiver gather

Figure 4.3: Synthetic finite-difference modeling: a) The true velocity model. b) A
typical VSP common receiver gather.
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(a) Conventionally datumed SSP gather
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(b) Least-squares datumed SSP gather
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(c) Least-squares datumed SSP gather (modified
operators)

Figure 4.4: Virtual SSP gathers: a) A conventional cross-correlation based datumed
SSP gather. b) A least-squares datumed SSP gather. c) A least-squares datumed
SSP gather obtained using the modified operators.
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(a) Conventionally datumed trace amplitude spec-
trum
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(b) Least-squares datumed trace amplitude spec-
trum
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(c) Least-squares datumed trace amplitude spec-
trum (modified operators)

Figure 4.5: Amplitude spectrum: a) Amplitude spectrum of a conventionally datumed
trace based on cross-correlation. b) Amplitude spectrum of a least-squares datumed
trace. c) Amplitude spectrum of a least-squares datumed trace obtained using the
modified operators.
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Figure 4.6: Convergence curves. The normalized data residual of the least-squares
datumed data (blue) and the least-squares datumed data using the modified operators
(red). After 30 quasi-Newton L-BFGS iterations, the normalized residual drops to
about 1% in both cases.
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(a) Diffraction-stack image of conventionally da-
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(b) Diffraction-stack image of least-squares da-
tumed primaries
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(c) Diffraction-stack image of least-squares datumed
primaries (modified operators)

Figure 4.7: Migrated sections: a) Diffraction-stack migrated image of cross-correlation
datumed virtual SSP primaries. b) Diffraction-stack migrated image of least-squares
datumed virtual SSP primaries. c) Diffraction-stack migrated image of least-squares
datumed virtual SSP primaries obtained using the modified operators.
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Chapter 5

Least-squares generalized

interferometric multiple imaging

The Generalized Interferometric Multiple Imaging procedure can be used to image

duplex waves and other higher order internal multiples. Imaging duplex waves could

help illuminate subsurface zones that are not easily illuminated by primary reflec-

tions such as vertical and nearly vertical fault planes, and salt flanks. To image first-

order internal multiple, the Generalized Interferometric Multiple Imaging procedure

consists of three datuming steps, followed by the application of the zero-lag cross-

correlation imaging condition. However, the standard Generalized Interferometric

Multiple Imaging procedure yields migrated images that suffer from low spatial reso-

lution and migration artifacts caused by the acquisition geometry footprint, cross-talk

noise between primaries and multiples, and limited bandwidth of the source wavelet.

To alleviate these problems, I apply a least-squares Generalized Interferometric Mul-

tiple Imaging framework in which I formulate the first two steps of the standard

Generalized Interferometric Multiple Imaging procedure for imaging duplex waves as

a linearized inversion problem when imaging first-order internal multiples. Tests on

synthetic datasets demonstrate the ability to localize subsurface scatterers in their

actual subsurface positions, and delineate a vertical fault plane using the proposed

method. I, also, demonstrate the robustness of the proposed framework when imaging
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the scatterers and the vertical fault plane with inaccurate migration velocities.

5.1 Introduction

Imaging internally scattered energy has the potential to reconstruct subsurface seis-

mic reflectors that are poorly illuminated by single scattering seismic energy, such

as vertical and nearly vertical fault planes, and salt flanks. Figure 5.1(a) illustrates

schematically that a primary reflection has the tendency to illuminate a horizontally

lying reflector. However, the single scattered specular ray is reflected away from the

recording surface when it encounters a vertically lying reflector, as shown schemat-

ically in Figure 5.1(b). The vertical reflector is in fact illuminated by a doubly-

scattered specular ray as schematically shown in Figure 5.1(c). Therefore, imaging

this duplex energy would delineate the vertical reflector.

Youn and Zhou (2001) used a model-based estimate of internal multiples in their

pre-stack depth imaging method. Malcolm et al. (2009) proposed a method to image

internal multiple energy in which they migrate prismatic waves and other higher order

multiples. Behura et al. (2012) imaged both single-scattered and internally multiple-

scattered energy using an iterative procedure. Brown and Guitton (2005) proposed

linearized inversion frameworks to migrate internal multiples. Other methods to

image internally scattered waves include full wavefield migration (FWM) (Berkhout,

2012), reverse time migration for internal multiples (Liu et al., 2011b; Fleury, 2013),

and auto-focusing imaging (da Costa Filho et al., 2015).

Seismic interferometry, also known as the virtual source method, is widely used

to transform recorded seismic data from one acquisition geometry to another. The

power of interferometric transformations lies in their ability to redatum seismic data

without requiring the knowledge of the underlying velocity model. Seismic interferom-

etry basically requires the cross-correlations, or convolutions of the recorded seismic
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traces, which act as natural wavefield extrapolators (Wapenaar and Fokkema, 2006;

Schuster, 2009). One may also use this approach to extract the impulse response be-

tween receivers by making suitable combinations of the wavefields recorded at these

receivers from different sources (Snieder et al., 2006). Recently, Zuberi and Alkhalifah

(2014b) proposed the Generalized Interferometric Multiple Imaging procedure (GIMI)

to image first-order and other higher order internal multiples. The GIMI framework,

however, yields migrated images that suffer from low spatial resolution, migration

artifacts, and cross-talk noise. These effects are caused by the limited recording aper-

ture, the limited number of sources and/or receivers, the limited bandwidth of the

source wavelet, and the interference between the primaries and multiples. Imaging

first-order internal multiples using the GIMI framework consists of the following three

datuming steps followed by applying the zero-lag cross-correlation imaging condition:

• An extrapolation-based datuming to redatum the surface points (i.e. sources/re-

ceivers) from the recording surface to the subsurface.

• A cross-correlation based datuming in which the extrapolated data is cross-

correlated with the recorded surface seismic data.

• A forward extrapolation-based datuming to redatum the surface points (i.e.

sources/receivers) from the recording surface to the subsurface trial image points.

Interferometric transformations or datuming of seismic data, based on the cross-

correlations or extrapolation of seismic traces, deteriorates the quality of the final

migrated image. The resulting images suffer from low spatial resolution due to the

coarse source-receiver samplings, the limited acquisition aperture, and the distortion

of the source wavelet, and the correlation artifacts caused by the cross-correlation or

extrapolation steps. To alleviate these problems, I applied the least-squares datum-

ing (LSD) framework in which I treated the wavefield extrapolation as an inversion
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problem to suppress the datuming artifacts and enhance the quality of the redatumed

gathers (Ji, 1997; Ferguson, 2006; Xue and Schuster, 2008).

In this chapter, I propose a linearized inversion framework in which I formulate

the first two datuming steps as a single least-squares problem. The aim is to en-

hance the spatial resolution, and suppress the cross-talk noise and migration artifacts

when imaging prismatic waves. I apply both the conventional and the proposed-least-

squares GIMI frameworks to two synthetic datasets. I, also, compare the resulting

images with the least-squares migrated images based on single-scattering imaging. I

lastly demonstrate the robustness of the proposed linearized inversion GIMI frame-

work to reconstruct the synthetic models in the case of imaging the data with inac-

curate migration velocities.

5.2 Method

Imaging first-order internal multiples using the standard generalized interferometric

multiple imaging procedure consists of three datuming steps followed by the applica-

tion of the zero-lag cross-correlation imaging condition to the datumed data (Zuberi

and Alkhalifah, 2014b). The first datuming step is an extrapolation-based datuming

to redatum the surface points (sources/receivers) from the recording surface to the

subsurface. Mathematically, the first datuming step, presented here in the frequency

domain under the high-frequency asymptotic approximation for simplicity, is defined

as follows:

d1(s, x, ω) =
∑
g

d(s, g, ω)e−iωτgx , (5.1)

where d1(s, x, ω) is the first datumed data to the subsurface x for a particular source s

and a particular frequency ω. d(s, g, ω) is the recorded surface data at receiver point

g due to a source placed at point s for a particular frequency ω. The operation in

equation (5.1) redatum the recorded trace from receiver points g’s to the subsurface
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points x’s. τgx is the traveltime from the receiver point g to the subsurface point g.

Here, I am focusing on the kinematics of the redatumed wakefield.

The second datuming step in the generalized interferometric imaging procedure

is a cross-correlation based-datuming in which the datumed data in the first step

d1(s, x, ω) is cross-correlated with the recorded data d(s, g, ω). Mathematically, the

cross-correlation datuming step is given as follows:

d2(g, x, ω) =
∑
s

d1(s, x, ω)d∗(s, g, ω), (5.2)

where d∗(s, g, ω) denotes the complex conjugate of the recorded trace in the frequency

domain. d2(g, x, ω) is the cross-correlated extrapolated data.

The last step in the GIMI procedure is a forward extrapolation datuming of

d2(g, x, ω) followed by the application of the zero-lag cross-correlation imaging con-

dition. Mathematically, the datuming and imaging operations are defined as:

m(x) =
∑
ω

∑
g

d2(g, x, ω)e+iωτgx , (5.3)

where m(x) is the GIMI migrated image, which is illuminated by first-order internal

multiples. The zero-lag cross-correlation imaging condition is obtained by summing

over all frequencies.

Note that the first GIMI extrapolation step 5.1 is a backward propagation datum-

ing while the third GIMI step is a forward extrapolation datuming 5.3. Therefore,

the opposing signs of the traveltimes in these operators yield to the subtracting imag-

ing condition in which the migration kernal traveltime contours traces out saddle-like

surfaces as shown in Figure 5.2(a) (Schuster et al., 2004). The resulting contours tend

to enhance the spatial resolution laterally; thus, it have more potential to image and

delineate vertically lying reflectors than horizontal ones. In contrast, Figure 5.2(b)

shows the migration kernals traveltime contours for the conventional summation imag-
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ing condition of primary reflections, which trace out elliptical surfaces (Schuster et al.,

2004). These impulse response contours mainly delineates horizontally lying reflectors

and are less sensitive to delineating vertical faults.

I propose a linearized inversion framework of the generalized interferometric mul-

tiple imaging procedure in which the first two datuming steps are formulated as a

least-squares problem. The first two datuming steps are defined as follows:

d2(g, x, ω) =
∑
s

∑
g′

[dinput(s, g
′, ω)e−iωτg′x ]d∗(s, g, ω), (5.4)

where dinput(s, g
′, ω) is the input data to these operators, which is the recorded data

d(s, g, ω) in the standard GIMI procedure. The adjoint operation of the datuming

steps in equation (5.4) is given by:

da(s, g, ω) =
∑
x

∑
g′

[d2(g
′, x, ω)d(s, g′, ω)]e+iωτgx . (5.5)

Therefore, this forward modeling operation to predict the recorded data is obtained

by the forward extrapolation from the subsurface points x’s to the receiver points

g’s of the resulting dataset from the convolution of the cross-correlated extrapolated

data d2(g
′, x, ω) with the recorded data d(s, g′, ω).

Using the datuming and forward modeling operators in equation (5.4) and (5.5),

the first two datuming steps in the GIMI procedure can be formulate as a least-

squares datuming problem in which I treat the wavefield extrapolation as a linearized

inversion problem (Ji, 1997; Ferguson, 2006; Xue and Schuster, 2008). The least-

squares cross-correlated extrapolated data dls
2 can be obtained by solving iteratively

the corresponding normal equation:

L†Ldls
2 = L†d, (5.6)
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where L† denotes the datuming operator in equation (5.4), which linearly maps the

recorded seismic data d to the cross-correlated extrapolated data. Similarly, L denotes

the forward (i.e. adjoint L†) operator in equation (5.5), which linearly maps the

cross-correlated extrapolated data to the predicted recorded data. I use a conjugate

gradient (CG) algorithm to solve the linear system in equation (5.6) and obtain the

solution after 30 iterations. In the proposed least-squares GIMI framework, I use

the least-squares solution of equation (5.6) as an input to the third GIMI step in

equation (5.3). A notable liability of the proposed methodology is that it is memory

intensive as it requires inverting wavefields rather than images in conventional least-

squares migration of primary reflections. The computation of the datumed data,

however, could easily be parallelized and split on different machines as a remedy to

this memory-requirement problem.

5.3 Numerical Examples

I applied the proposed least-squares generalized interferometric multiple imaging pro-

cedure to two synthetic datasets and compared the results with the standard GIMI

procedure results, and the least-squares migration results using only primary reflec-

tions. I also tested the robustness of the proposed methodology in the case of imaging

the first-order multiples using inaccurate migration velocities. The two 50 by 100 grid

size synthetic models shares the following acquisition parameters: 4 ms time sam-

pling rate, ∆z = ∆x = 30m, 100 shot points and 100 receiver points along the earth

surface, and a Ricker wavelet source function with a dominant frequency of 15 Hz.

The first example consists of two buried subsurface scatterers in a constant back-

ground velocity of 2000 m/s. The true reflectivity distribution is shown in Figure

5.3(a). I applied the standard three-step GIMI procedure to image the first-order

internal multiples and plotted the result in Figure 5.3(b). The resulting image suf-
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fers from low spatial resolution, migration artifacts, and cross-talk noise, which are

caused by the limited number of sources and/or receivers, the band-limited nature of

the source wavelet, and the cross-talk between the recorded primaries and multiples.

Therefore, the resulting image of the subsurface scatterers is heavily blurred and not

well localized at their accurate subsurface positions. To alleviate these problems, I

applied the proposed least-squared GIMI framework to image the first-order internal

multiples and plotted the result in Figure 5.3(c). This migrated GIMI image shows

a significant enhancement of the spatial resolution of the scatterers. In fact, the

proposed linearized inversion GIMI framework helps suppress the migration artifacts

and cross-talk noise, and deconvolve the source wavelet and acquisition footprint. For

comparison, I also obtained the least-squares migrated image using primary reflections

only and plotted the result in Figure 5.3(d).

To assess the robustness of the proposed methodology, I obtained the least-squares

GIMI migrated images using 5% faster and slower migration velocities, respectively.

I presented the results in Figure 5.4. Whereas imaging the scatterers with the faster

velocity causes the scatterers to get blurred and shallower, imaging them with the

slower velocity causes the defocused scatterers to be shifted deeper as shown in Figure

5.4(a) and 5.4(b), respectively.

The second synthetic model example consists of two layers with a separating ver-

tical fault plane with a separating vertical fault plane as shown in Figure 5.5(a).

The first layer has a velocity of 2900 m/s and the second layer has a velocity of

3000 m/s. I imaged the first-order internal multiple using the standard generalized

interferometric multiple imaging procedure and plotted the result in Figure 5.5(b).

The resulting migrated image is a smeared depiction of the true reflectivity distribu-

tion causing the vertical fault plane to be heavily blurred and poorly resolved. The

smearing effect of the GIMI migrated section is caused mainly by the cross-talk noise

between primaries and multiples, the limited bandwidth of the source wavelet, and
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the acquisition fingerprint.

To remedy these problems, I imaged the duplex waves using the proposed least-

squares GIMI procedure and presented the result in Figure 5.5(c). The image shows

the suppression of the cross-talk noise and the enhancement of the spatial resolu-

tion of the migrated GIMI image. Clearly, the vertical fault plane is highly resolved

and more accurately delineated in its true subsurface position. The subtraction-type

imaging condition used in the proposed GIMI framework tends to enhance the lateral

resolution of the migrated image. For comparison, I plotted the least-squares mi-

grated image using primary reflections only in Figure 5.5(d). The result demonstrate

that imaging seismic data, under the single-scattering assumption, could mainly de-

lineate horizontally-lying reflectors, which are mainly illuminated by primaries. In

fact, the summation imaging condition used to image primaries enhances the vertical

resolution of the migrated image. On the other hand, imaging prismatic waves could

delineate vertically-lying fault planes, which are mainly illuminated by first-order

internal multiples.

I then tested the robustness of the proposed linearized inversion GIMI framework

in the case of imaging the recorded seismic data with inaccurate migration velocities.

I migrated the first-order internal multiples using the proposed least-squares GIMI

procedure with 5% faster and 5% slower migration velocities and plotted the result

in Figure 5.6(a) and Figure 5.6(b), respectively. The resulting fault plane become

slightly misplaced and defocused when imaging the first-order internal multiples with

erroneous migration velocities. Whereas the fault plane is placed slightly shallower

than its accurate position when imaging with the faster velocities, the fault plane is

placed deeper when imaging with the slower ones. Therefore, the proposed method

can yield robust migrated images using inaccurate migration velocities.
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5.4 Conclusions

I demonstrated that imaging first-order internal multiples can help delineate verti-

cally aligned seismic reflectors. I applied the standard three-step GIMI framework to

selectively image scatterers, which are illuminated by first order internal multiples. I

showed that the resulting images suffer from low spatial resolution due to cross-talk

noise between primaries and multiples, migration artifacts, and acquisition finger-

print. Therefore, I proposed the least-squares GIMI framework to alleviate these

problems. I formulated the first extrapolation-based datuming and cross-correlation

based datuming steps in the standard GIMI procedure as a linearized inversion prob-

lem. I then obtained the least-squares GIMI images, which demonstrated the sup-

pression of the cross-talk noise and migration artifacts, and the deconvolution of the

source wavelet and acquisition fingerprint. They also show the enhancement of the

spatial resolution of the final migrated GIMI images. The proposed method illustrated

the capability of the linearized inversion to localize and resolve with high resolution

subsurface scatterers, and a vertical fault plane. I also compared the result with the

least-squares image using primary reflections. Whereas the least-squares migration

of primaries enhances mainly horizontally aligned reflectors, the least-squares GIMI

framework enhances and delineates vertically aligned reflectors. I lastly demonstrated

the robustness of the proposed least-squares GIMI framework in the case of imaging

the scatterers and the fault plane with erroneous migration velocities.
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(a) Primary reflection from a horizontal reflector

  

(b) Primary reflection from a vertical reflector

  

(c) Doubly-scattered reflection illuminates the ver-
tical reflector

Figure 5.1: Schematic ray diagrams: a) A single-scattering reflected specular ray could
potentially illuminate a horizontally lying reflector. b) A single-scattering specular
reflected ray from a vertical reflector is diverted away from the recording surface. c) A
doubly-scattered specular ray could potentially illuminate a vertically lying reflector.
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(a) Interferometric imaging impulse response traveltime contours

(b) Prestack imaging impulse response traveltime contours

Figure 5.2: Imaging conditions: a) The subtraction imaging condition in which the
impulse response traveltime contours traces out saddle-like surfaces that are more
sensitive to lateral variations. b) The summation imaging condition in which the
impulse response traveltime contours traces out elliptical surfaces that are more sen-
sitive to vertical variations. The subtraction imaging condition delineates vertically
lying reflectors whereas the summation imaging condition enhances the resolution of
horizontally lying reflectors. The circle denotes the source and the rectangle denotes
the receiver and the velocity model has a constant velocity of 2000 m/s.
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(a) True model (b) Standard GIMI migrated section

(c) Least-squares GIMI migrated section (d) Least-squares migrated of primaries

Figure 5.3: Example 1: a) The true reflectivity model consists of two scatterers in
a homogeneous background of 2000 m/s. b) The standard GIMI migrated section
shows a heavily smeared depiction of the true reflectivity model. c) The least-squares
GIMI migrated section shows the suppression of the artifacts, deconvolution of the
acquisition fingerprint, and enhancement of the spatial resolution of the scatterers.
d) The least-squares migration of primary reflections only.
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(a) Least-squares GIMI migrated image (faster velocity)

(b) Least-squares GIMI migrated image (slower velocity)

Figure 5.4: Example 1: Imaging the scatterers using the least-squares GIMI frame-
work with: a) 5% faster migration velocity and b) 5% slower migration velocity
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(a) True model (b) Standard GIMI migrated section

(c) Least-squares GIMI migrated section (d) Least-squares migrated of primaries

Figure 5.5: Example 2: a) The true reflectivity model consists of two layers with
a separating vertical fault plane. b) The standard GIMI migrated section shows a
heavily blurred depiction of the true reflectivity model. c) The least-squares GIMI
migrated section shows the suppression of the artifacts, deconvolution of the acquisi-
tion footprint, and delineation of the vertical reflector. d) The least-squares migration
of primary reflections only enhances mainly the horizontally lying reflector.
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(a) Least-squares GIMI migrated image (faster velocity)

(b) Least-squares GIMI migrated image (slower velocity)

Figure 5.6: Example 2: Imaging the vertical fault plane using the least-squares GIMI
framework with: a) 5% faster migration velocity and b) 5% slower migration velocity.
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Chapter 6

Concluding Remarks and Future

Work

6.1 Summary

The main focus of this dissertation was to propose and implement various cost-

effective mathematical algorithms and methodologies to obtain highly resolved seismic

migrated images. I first exploited the sparse nature of the subsurface reflectivity dis-

tribution and the fact that imaging multiples could potentially widen the illumination

of the subsurface. Since subsurface reflectors and scatterers are sparse events in the

subsurface, I could impose a constraint when inverting primaries that promotes the

sparsity of the migrated images. I then developed algorithms to image multiples that

would illuminate subsurface zones that are hardly illuminated by primaries when

inverting primary reflection data only.

I focused on exploiting primary reflection seismic energy and formulated the seis-

mic imaging of primaries problem as a sparse reconstruction problem, which could

be solved by an L1-minimization algorithm. The synthetic results demonstrates that

L1-minimization provides more focused images than the standard or least-squares mi-

grated images in the case the noise level is relatively low and the migration velocity

model is fairly accurate.
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I also developed a new method to image internally multiply-scattered seismic

waves, which have the potential to widen the illumination of the migrated images. I

formulated this imaging problem as a least-squares problem. The results showed that

the linearized inversion of internal multiples could delineate seismic reflectors, which

cannot easily be delineated by primaries. The liability of this method is the need to

perform a nested summation over the model space in the modeling step and to obtain

an accurate estimation of the leas-squares migrated image of primaries.

I further studied the effect of least-squares interferometric datuming on imaging

surface-related VSP multiples. The results demonstrated that the conventional cross-

correlation based datuming method yields redatumed data that suffers from wavelet

distortion, and correlation artifacts resulting in poorly migrated images. In contrast,

the linearized interferometric inversion helps enhance the resolution of the redatumed

data, and deconvolve the source wavelet, which in turn enhance the spatial resolution

of the migrated sections.

I then extended the generalized interferometric multiple imaging procedure to

image first-order internal multiples. I proposed a least-squares GIMI framework in

which the first two datuming steps of the standard GIMI procedure are formulated as

linearized inversion datuming steps. I constructed the optimal pairs of forward and

adjoint operators to perform the least-squares GIMI more robustly and efficiently by

formulating the first two datuming steps in the GIMI procedure as a least-squares

datuming problem. The resulting images demonstrated the ability of the proposed

least-squares GIMI framework to delineate a vertical fault plane with a higher res-

olution compared with the standard GIMI procedure. The results of the proposed

least-squares GIMI framework were demonstrated to be robust in case of imaging the

internal multiples with inaccurate migration velocities.

The proposed methods and algorithms could potentially be utilized to obtain

seismic images with higher resolution. Also, the utilization of both internal and
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surface related multiples should be the next big step in the realm of seismic imaging

as they provide the extra illumination that potentially could lead to new hydrocarbon

discoveries.

6.2 Future work

The proposed methods were proven efficient and cost-effective when applied to syn-

thetic data sets. It would be therefore important to first demonstrate the relevance

of these methods and techniques for obtaining highly resolved images when applied

to real data. Various realistic test cases need to be tested to assess the relevance and

robustness of these methods. For instance, imaging a salt flank using the standard

primary imaging migration or waveform inversion requires a wide acquisition cover-

age to capture the single reflection of that salt flank. The proposed method could

allow the delineation of the salt flank with a shorter survey line using the proposed

techniques of imaging of internal multiples.

On the technical side, one may consider combining the applied methodologies with

data compression techniques using curvlets, seislets, or wavelets in order to compress

the memory intensive wavefields that are used in the inversions. Also, one could

take this study a step further and try to obtain velocity model updates by utilizing

the GIMI framework in a full waveform inversion context. Obtaining velocity model

updates from internal multiples could potentially help enhance the resolution of full

waveform inversion and improve its convergence rate as one does not only rely on up-

dates under the Born approximation assumption. Moreover, finding a corresponding

GIMI kernel to update the velocity model to use it in a migration velocity analysis

(MVA) framework is an essential step to make imaging multiples more robust and

focus the smeared scatterers illuminated by seismic multiples in their true positions

in case of imaging with inaccurate migration velocities. Another direction would be
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to combine the sparse reconstruction technology with the least-squares GIMI method

in order to further enhance the spatial resolution of the GIMI migrated images and

suppress the undesired artifacts. Another direction of improvement would be to lin-

earize the third GIMI step and formulate it as a least-squares problem, which could

further enhance the resolution of the final GIMI migrated section. Lastly, scaling the

seismic imaging of multiples to 3D acquisition surveys and solving the problems using

high performance computing (HPC) technologies would promote these technologies

and make them applicable to comparable-size field datasets.

The work in this dissertation has been published or submitted to peer-reviewed

journals, and presented as oral or poster presentations at international conferences.

These are all listed in Appendix B in the appendices section.
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APPENDICES

A Gradient-based Optimization

The L2-norm least-squares misfit objective function has the form:

J =
1

2

∥∥Ψm− dobs
∥∥2
2
, (A.1)

where Ψ is a linear operator, which maps the observed data vector dobs to the vector of

model parameters m. This objective function is minimized and the model parameters

are updated after each iteration by moving along the negative gradient direction (i.e.

the direction of maximum descent) to obtain the next iterate using a steepest descent

algorithm. The gradient is obtained by back-projecting the data residual vector

onto the model space using the adjoint operator. However, the steepest descent

algorithm suffers from slow convergence since it only utilizes the gradient direction

at every iteration (Aster et al., 2005). A better search direction is the quasi-Newton

direction, which utilizes both the gradient direction and the curvature information of

the objective function characterized by the Hessian matrix. An approximate Hessian

can be deduced by monitoring how the gradient changes with respect to the model

update after each iteration.

The BFGS quasi-Newton algorithm, named after its discoverers Broyden, Fletcher,

Goldfarb, and Shanno, uses an approximate Hessian Bk in finding the new search
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direction at the kth iteration given by the projection of the gradient vector onto the

column space of the inverse Hessian approximation (i.e. -B−1k ∇mJk) (Nocedal and

Wright, 2006). Bk is a symmetric positive definite matrix that is updated after each

iteration and ∇Jk is the gradient direction evaluated at the current iterate. In the

steepest descent algorithm, the search direction is the negative gradient direction with

B = I. The BFGS formula for updating the approximate Hessian is given by:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
, (A.2)

where sk = mk+1−mk and yk = ∇mJk+1−∇mJk. Notice that the difference between

Bk+1 and Bk is a rank-two matrix. The major advantage of the quasi-Newton BFGS

algorithm is that it does not require the calculation of second derivatives, utilizing the

gradient changes to obtain curvature information (Nocedal and Wright, 2006). The

reflectivity model is updated by moving along this quasi-Newton direction as follows:

mk+1 = mk − αB−1∇mJk, (A.3)

where α is a scalar value that determines how much one should move along the quasi-

Newton direction and it could be obtained by a numerical line search scheme (Nocedal

and Wright, 2006).

“fmincon” is a MATLAB function, included in the MATLAB’s optimization tool-

box, to compute the minimum of a scalar objective function of several variables. It

implements a limited-memory L-BFGS optimization algorithm, which is based on the

BFGS optimization algorithm. L-BFGS is used to solve large-scale problems, whose

approximate Hessian matrices of size n×n where n is the number of knowns, cannot

be computed and/or stored (Nocedal and Wright, 2006). Instead, they store just

few vectors of length n that represents the Hessian approximation implicitly. I uti-

lized it here to solve the single-scattering and the double-scattering imaging problem.
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The stopping criteria of the optimization is when the number of function evaluations

reaches a maximum of 50 evaluations.
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