
UNIVERSITY OF OULU P .O. Box 8000 F I -90014 UNIVERSITY OF OULU FINLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

University Lecturer Anu Soikkeli

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-1407-8 (Paperback)
ISBN 978-952-62-1408-5 (PDF)
ISSN 0355-3191 (Print)
ISSN 1796-220X (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

OULU 2016

A 682

Muhammad Ovais Ahmad

EXPLORING KANBAN IN
SOFTWARE ENGINEERING

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

A
 682

AC
TA

M
uham

m
ad O

vais A
hm

ad

A C T A U N I V E R S I T A T I S O U L U E N S I S
A S c i e n t i a e R e r u m N a t u r a l i u m 6 8 2

MUHAMMAD OVAIS AHMAD

EXPLORING KANBAN IN
SOFTWARE ENGINEERING

Academic dissertation to be presented, with the assent of
the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu, for public
defence in the Wetteri auditorium (IT115), Linnanmaa, on
25 November 2016, at 12 noon

UNIVERSITY OF OULU, OULU 2016

Copyright © 2016
Acta Univ. Oul. A 682, 2016

Supervised by
Professor Markku Oivo
Doctor Jouni Markkula

Reviewed by
Professor Ivan Porres
Professor Kenichi Matsumoto

ISBN 978-952-62-1407-8 (Paperback)
ISBN 978-952-62-1408-5 (PDF)

ISSN 0355-3191 (Printed)
ISSN 1796-220X (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2016

Opponent
Professor Pasi Tyrväinen

Ahmad, Muhammad Ovais, Exploring Kanban in software engineering.
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering
Acta Univ. Oul. A 682, 2016
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

To gain competitive advantage and thrive in the market, companies have introduced Kanban in
software development. Kanban has been used in the manufacturing industry for over six decades.
In the software engineering domain, Kanban was introduced in 2004 to increase flexibility in
coping with dynamic requirements, bring visibility to workflow and related tasks, improve
communication, and promote the pull system. However, the existing scientific literature lacks
empirical evidence of the use of Kanban in software companies.

This doctoral thesis aims to improve the understanding of the use of Kanban in software
engineering. The research was performed in two phases: 1) analysis of scientific literature on
Kanban in software engineering and industrial engineering and 2) investigation of Kanban
implementation trends in software companies. The data was collected through systematic
literature reviews, survey and semi-structured interviews. The results were synthesized to draw
conclusions and outline implications for research and practice.

The results indicate growing interest in the use of Kanban in software companies. The findings
suggest that Kanban is applicable to software development, software maintenance, and portfolio
management in software companies. Kanban brings visibility to task and offering status, limits
work in progress at any given time gives people greater control over their work and limit task
switching. Although Kanban offers several benefits, as reported in this dissertation, the findings
show that software companies find it challenging to implement Kanban incrementally.

Keywords: Agile, exploratory research, Kanban, Lean, mixed methods, portfolio
management, software development, software maintenance

Ahmad, Muhammad Ovais, Kanban ohjelmistotuotannossa.
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta
Acta Univ. Oul. A 682, 2016
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Ohjelmistoteollisuudessa Kanbanin käyttö on yleistynyt vuodesta 2004 alkaen. Sillä pyritään
tuomaan joustavuutta muuttuvien vaatimusten hallintaan, tuomaan näkyvyyttä työnkulkuun ja
toisiinsa liittyviin tehtäviin, parantamaan kommunikaatiota sekä edistämään imuohjauksen hyö-
dyntämistä. Kanbania on käytetty valmistavassa teollisuudessa jo yli kuuden vuosikymmenen
ajan. Olemassa olevassa tieteellisessä kirjallisuudessa on kuitenkin esitetty hyvin vähän empiiri-
siä tutkimustuloksia Kanbanin käytöstä ohjelmistoyrityksissä.

Väitöskirjan tavoitteena on parantaa ymmärrystä Kanbanin käytöstä ohjelmistotuotannossa.
Tutkimus toteutettiin kahdessa vaiheessa: 1) Kirjallisuusanalyysi Kanbanin käytöstä ohjelmisto-
tuotannossa ja tuotantotekniikassa ja 2) Empiirinen tutkimus Kanbanin käyttöönoton trendeistä
ohjelmistoyrityksissä. Tutkimusaineisto kerättiin systemaattisten kirjallisuuskatsausten, kysely-
tutkimuksen ja puolistrukturoitujen teemahaastattelujen kautta. Tutkimustulosten synteesin poh-
jalta tehtiin johtopäätöksiä Kanbanin käytöstä ohjelmistotuotannossa sekä niiden merkityksestä
alan tutkimukselle ja Kanbanin käytölle yrityksissä.

Tutkimuksen tulokset osoittavat kasvavaa kiinnostusta Kanbanin käyttöä kohtaan ohjelmisto-
yrityksissä. Tulosten perusteella Kanban soveltuu käytettäväksi ohjelmistokehityksessä, ohjel-
mistojen ylläpidossa sekä tuoteportfolion hallinnassa. Kanban tuo näkyvyyttä ohjelmistokehityk-
seen, niin meneillään olevien tehtävien kuin portfoliotarjoaman osalta. Se myös auttaa rajoitta-
maan työtehtävien ruuhkautumista ja antaa kehittäjille paremman tavan hallita työtään rajoitta-
malla työtehtävien vaihtoa. Vaikka Kanbanin käytöllä on mahdollista saavuttaa väitöskirjatutki-
muksessa esitettyjä hyötyjä, tulokset osoittavat, että ohjelmistoyrityksillä on haasteita Kanbanin
inkrementaalisessa käyttöönotossa.

Asiasanat: Agile, eksploratiivinen tutkimus, Kanban, Lean, monimentelmäinen
tutkimus, ohjelmistokehitys, tuoteportfolion hallinta

This thesis is dedicated to my late sister, Nida Maryam

8

9

Acknowledgements

“Know that victory comes with patience, relief comes with affliction, and with

hardship comes ease.” Back in 2010, I started my Master’s degree program in

Software, Systems and Services Development in the Global Environment (GS3D)

at the Department of Information Processing Science (former TOL), University of

Oulu, Finland. I completed my master’s degree in 2011, with an award for being

the first fast graduate of GS3D master program. The most valuable aspect of TOL

was the easy-to-approach staff members and extra-ordinary people in building

student motivation. I really appreciate and thankful to Kari Pankkonen (late) for

sincere advices, friendly discussions about research and cultural. Special thanks to

Dr. Jouni Markkula who was my master thesis supervisor and later become co-

supervisor for my doctoral dissertation.

Later in autumn 2012, roughly four years ago, my journey to PhD degree

started which has been a great experience mostly with ups but also some downs to

grow me intellectually and personally. The list of people that I acknowledge here

is by no way complete; but I would like to thank all of the people who were there

during this journey.

First of all, cordial thanks to Prof. Markku Oivo as main supervisor and Dr.

Jouni Markkula as co-supervisor, who assisted, motivated and pointed directions

through their sheer guidance throughout my research. Professor Markku Oivo is

the most professional, supportive, humble and nice person; who always have

solution for every bump in this journey. I am deeply thankful to my co-supervisor

Dr. Jouni Markkula for patiently supporting my crises, helping to strengthen my

research methods approaches, long constructive discussions and supporting me

throughout PhD. Their support, encouragement and trust enabled me to carve out,

fulfill my tasks and pursue the challenging paths of research. Without their wise

counsel and able guidance, it would have been impossible to complete this

dissertation.

I would like to extend thanks to members of my follow-up group: Prof. Samuli

Saukkonen, Prof. Harri Haapasalo and Dr. Kari Liukkunen. Your feedback steered

my research in the right direction. I truly appreciate the support of Dr. Kari

Liukkunen, whom I got a chance to work with on research papers outside the scope

of my dissertation and learn so many things from you related to research. I would

also like to thank Prof. Ivan Porres (Åbo Akademi, Turku, Finland) and Prof.

Kenichi Matsumoto (Nara Institute of Science and Technology, Japan), for taking

the time and efforts to review my dissertation. Their useful comments and valuable

10

suggestions helped me to improve quality of my dissertation. I am also very grateful

to Prof. Pasi Tyrväinen for his kind acceptance to act as an opponent at my doctoral

defense.

I truly appreciate M-Group / M3S research group offers first class environment

and it has indeed helped me grow as a better researcher. I express my gratitude to

Prof. Pasi Kuvaja for providing opportunity to work in his research projects and

making this thesis possible. Pasi always offer special support and friendly attitude

throughout this journey. I wish to extend my hearty gratitude to Prof. Burak Turhan,

Prof. Petri Pulli, Prof. Seppo Pahnila, Prof. Raija Halonen and Dr. Veikko Halonen

for friendly discussions about research, international master’s degree programmes,

students’ supervision and many more topics.

Thanks Anna, Ali, Adrian, Amine, Davide, Elina, Faheem, Harri, Itir, Iflaah,

Lucy, Markus, Mirella, Nebojsa, Pilar, Rahul, Sandun, Teemu, Tanja, Valentina and

Woub (Alphabetical order) for all the academic discussions, coffees, joint lunches

in university and outside work social activities. I would also like to thank vibrant

Pakistani community in Oulu, all of my other colleagues from the M-Group / M3S

research group, TOL teaching and administrative staff. All of you people were like

my family in Oulu. I would like to thanks Davide Anderson and Janice Linden-

Reed from LeanKanban, Incorporated for their kindness and support during my

stay in USA.

I would not have been able to conduct this research without financial support.

I would like to acknowledge DIMECC research projects Cloud Software and Need

for Speed, partially funded by Tekes (Finnish Funding Agency for Innovation) as well

as participating companies. Moreover, I would like to acknowledge the financial

support that I received from University of Oulu Graduate School, Nokia

Foundation and Ella and Georg Ehrnrooth foundation grant. Their financial support

helps me immensely.

Finally, I would like to give infinite piles of reverence, regards and gratitude to

my parents, siblings and Shagul for motivating and pointing me ways to complete

my research work efficiently. Despite the immense geographical distance that

separate us, they have offered loving encouragement and support throughout my

academic years. I am immensely grateful to my parents who provided me

immeasurable moral, spiritual and financial support.

Thank you all for contributing to making all this possible. I feel ready to take

the next step forward!

Monday, October 13, 2016 Muhammad Ovais Ahmad

11

Original publications

This doctoral dissertation is based on the following publications, which are referred

throughout the text by their Roman numerals:

I Ahmad MO, Markkula J, & Oivo M (2013) Kanban in software development: A
systematic literature review. IEEE 39th Euromicro Conference on Software
Engineering and Advanced Application: 9–16.

II Ahmad MO, Markkula J, & Oivo M & Adeyemi B (2015) Kanban in Industrial
Engineering and Software Engineering: A systematic literature review. 10th
International Conference on Software Engineering Advances: 234–241.

III Ahmad MO, Markkula J, Oivo M, & Kuvaja P (2014) Usage of Kanban in Software
Companies - An empirical study on motivation, benefits and challenges. 9th
International Conference on Software Engineering Advances: 150–155.

IV Ahmad MO, Kuvaja P, Markkula J, & Oivo M (2016) Transition of software
maintenance teams from Scrum to Kanban. IEEE 49th Hawaii International Conference
on System Sciences: 5427–5436.

V Ahmad MO, Lwakatare LE, Oivo M, Kuvaja P, & Markkula J (2016) Portfolio
management and Kanban: An empirical investigation with Agile and Lean software
companies. Journal of Software: Evolution and Process (Wiley) (In press)

12

13

Contents

Abstract

Tiivistelmä

Acknowledgements 9

Original publications 11

Contents 13

1 Introduction 15

1.1 Research Motivation ... 17

1.2 Research Questions ... 18

1.3 Overview of Research Design ... 19

1.4 Structure of Dissertation ... 20

2 Background and Related Work 23

2.1 Lean in Manufacturing .. 23

2.2 Kanban in Manufacturing ... 26

2.3 Lean in Software Engineering ... 28

2.4 Kanban in Software Engineering .. 31

2.4.1 Visualise Workflow .. 33

2.4.2 Limit Work in Progress ... 33

2.4.3 Measure and Manage Flow .. 33

2.4.4 Make Process Policies Explicit .. 34

2.4.5 Implement Feedback Loops and Identify Improvement

Opportunities .. 34

2.5 Studies on Lean and Kanban in Software Engineering 34

2.5.1 Lean and Kanban Transformation .. 35

2.5.2 Simulation Studies about Kanban in Software

Development and Software Maintenance 36

2.5.3 Lean and Kanban in Software Development 37

2.5.4 Lean and Kanban for Software Maintenance 39

2.5.5 Lean and Kanban for Management .. 39

3 Research Design 43

3.1 Phase 1: Systematic Literature Review ... 45

3.1.1 Data Collection ... 45

3.1.2 Data Analysis and Reporting .. 47

3.2 Phase 2: Empirical Studies .. 48

3.2.1 Survey ... 49

3.2.2 Interviews ... 50

14

4 Original Research Papers 53

4.1 Paper I: Kanban in Software Development: A Systematic

Literature Review .. 56

4.2 Paper II: Kanban in Industrial Engineering and Software

Engineering: A Systematic Literature Review .. 57

4.3 Paper III: Usage of Kanban in Software Companies—An

Empirical Study on Motivation, Benefits and Challenges 58

4.4 Paper IV: Transition of Software Maintenance Teams from

Scrum to Kanban ... 59

4.5 Paper V: Portfolio Management and Kanban: An Empirical

Investigation with Agile and Lean Software Companies 60

5 Discussion and Conclusion 63

5.1 Answer to RQ1: What is the understanding of Kanban in

software engineering based on literature? ... 63

5.2 Answer to RQ2: How is Kanban used in software companies? 65

5.3 Threats to Validity .. 68

5.4 Summary of Contributions .. 69

5.4.1 Implications for Practice... 71

5.4.2 Implications for Research ... 71

5.5 Recommendations for Further Research ... 72

References 75

Appendices 85

Original publications 89

15

1 Introduction

In the current fast-paced software business, companies are constantly under

pressure to adapt to frequently changing market conditions. Companies are

continuously adapting their structures, strategies, and policies in response to new

demands. For software companies, the increasingly important questions are how to

develop better and cheaper software and how to deliver it faster to fulfil

continuously changing customer requirements and market trends. To achieve

success in global markets, software companies must account for changing customer

requirements during product and service development, while maintaining quality

and resisting the urge to solve productivity issues. Until the mid-1990s, plan-driven

software development paradigms such as the waterfall and the spiral model

dominated the software development landscape (Williams 2012). These paradigms

allowed for a disciplined and structured process that met most internal policies and

rules of companies.

In the last decade, Agile and Lean became popular in the software industry.

The use of the term ‘Agile’ in software development can be traced back to 2001,

when Agile Alliance1 formulated ‘Manifesto for Agile Software Development’ 2 .

The manifesto relied on a set of four values and twelve principles (Agile Manifesto,

2001). The four values driving the Agile Manifesto are ‘Individuals and interactions

over processes and tools’, ‘Working software over comprehensive documentation’,

‘Customer collaboration over contract negotiation’, and ‘Responding to change

over following a plan’ (Agile Manifesto 2001, Larman 2003). In the context of

software engineering, Agile methods include Extreme Programming, Scrum,

Dynamic Systems Development Method, Crystal Methods, Feature Driven

Development, and Adaptive Software Development (Abrahamsson et al. 2003,

Gregory et al. 2016, Laanti et al. 2013, Wang et al. 2011). Among them, Scrum is

the most popular and widely adopted method (Dingsøyr et al. 2008, Rodríguez et

al. 2012). The use of Agile methods benefits companies in several ways, for

example, the ability to respond to dynamic market changes, increased quality,

reduced waste, and better predictability (Abrahamsson et al. 2009, Abrahamsson et

al. 2002, Dybå & Dingsøyr 2008, Nurdiani et al. 2016, Rodríguez 2013). Despite

such benefits, Agile methods have certain limitations and desires. For example,

Anderson (2010) explained that technology teams continue to suffer from

1 https://www.agilealliance.org/
2 http://www.agilemanifesto.org/

16

unreliability, businesses have not achieved the expected agility and continue to

remain too unresponsive, and costs remain out of control. Agile methods may

breakdown in the presence of one or more scaling factor(s) such as distributed Agile

development and organisation-wide Agile adoption (Ambler 2009, Maples 2009,

Petersen & Wohlin 2009, Wang et al. 2011). According to Poppendieck (2007),

Agile methods can be applied successfully to software development by

understanding Lean.

The origins of Lean can be traced back to the 1940s in Toyota’s car

manufacturing, which is rooted in the Toyota Production System (TPS) (Womack

et al. 1990). In manufacturing, Lean focuses on maximizing value and minimizing

waste with the purpose of doing more with less (Agarwal et al. 2006, Radnor &

Boaden 2004, Ziskovsky & Ziskovsky, 2007). Kanban is one of the several Lean

tools, and it facilitates smooth operation of TPS (Becker & Szczerbicka 1998, Chai

2008, Gross & McInnis 2003, Ikonen et al. 2010, Liker 2004).

In the last decade, the software industry and the research community have

considered the application of Lean to software development (Wang et al. 2012).

Lean in software development received increased attention after Poppendieck and

Poppendieck (2003) proposed a set of Lean principles, namely, build in quality,

create knowledge, defer commitment, deliver fast, respect people, and optimise the

whole. Kanban in software development was inspired by Kanban in manufacturing.

Kanban implementation facilitates the application of Lean principles to software

development (Shinkle 2009). Kanban helps software development teams to work

at a sustainable pace, eliminate waste, deliver value frequently, and foster a culture

of continuous improvement (Anderson 2010, Shinkle 2009). In 2004, Anderson

introduced Kanban to a software development team at Microsoft (Anderson 2010).

He described Kanban as follows:

Kanban (capital K) is an evolutionary change method that utilizes a kanban

(small k) pull system, visualization, and other tools to catalyse the introduction

of Lean ideas into technology development and IT operations. The process is

evolutionary and incremental.

In software engineering, Anderson’s (2010) definition of the Kanban method is

currently well recognised, and the use of Kanban has gained strong practitioner-

driven support in the industry (Al-Baik & Miller 2014, Anderson 2010, Cutter 2011,

Hiranabe 2008, Hurtado 2013, Shalloway 2011, Shalloway 2010, Shalloway et al.

2009, Shinkle 2009). This support is based on Kanban’s adaptability (welcomes

changes in requirements), visualisation (eases management by visualising

17

progress), balancing demand against throughput, and minimising work-in-progress

to deliver frequently (Anderson, 2010, Hurtado, 2013, Ikonen, 2011, Kniberg &

Skarin 2010, Shalloway, 2011). Kanban consultants, promoters, and practitioners

have claimed that the use of Kanban brings visibility to work and improves work

efficiency, throughput, communication, and collaboration among teams, resulting

in rapid software development and continuous delivery to customers (Anderson

2010, Concas et al. 2013, Cutter 2011, Hurtado 2013, Ikonen et al. 2011, Kniberg

& Skarin 2010, Shalloway 2011, Shalloway 2010, Sjøberg et al. 2012, Wang et al.

2012). However, these claims have not yet been confirmed by empirical studies.

1.1 Research Motivation

In the relevant literature, studies have not drawn distinction between Anderson’s

definitions of small ‘k’ kanban and capital ‘K’ Kanban (Anderson 2010, Al-Baik &

Miller 2014, Nikitina & Kajko-Mattsson 2011, Norrmalm 2011, Shinkle 2009,

Terlecka 2012). For instance, studies have reported kanban as a pull system to

realize continuous production flow; conversely, some findings were more related

to the Kanban method (Al-Baik & Miller 2014, Terlecka 2012, Wang et al. 2012).

A reason for this discrepancy is that in recent years, the move towards Kanban in the

software industry has been driven primarily by pioneering practitioners who are

familiar with Lean in software engineering. Kanban is fundamentally based on Lean,

an older and more mature concept. However, Lean, too, has no common definition

in the literature. Womack and Jones (1996) mentioned five principles, while Liker

(2004) suggested 14 principles. Moreover, a few researchers have considered Lean

as yet another method under the umbrella of Agile (Dybå & Dingsøyr 2009,

Highsmith 2002), while others have distinguished Lean as a separate method (Hibbs

et al. 2009, Wang et al. 2012).

Knowledge about methods and processes from other disciplines (such as

manufacturing) has limited applicability to software engineering (Münch et al. 2012,

Mandic et al. 2011, Rodríguez 2013). Limited knowledge and understanding of other

domains’ tools and methods (such as Kanban) and superficial adoption probably do not

yield the expected outcomes, resulting in frustration and disillusionment (Ebert et al.

2012, Rodríguez 2013).

Kanban practitioners and consultants have been working to establish a

comprehensive Kanban methodology for software engineering, but their individual

perceptions about the method remain different. The underlying logic is not well

understood, and theoretical rationale for labelling Kanban as a Lean tool in software

18

engineering has not been established (Al-Baik & Miller 2014). As a result, Kanban in

software engineering is open to interpretation. For instance, at Microsoft, Anderson

(2010) experimented with and developed his own interpretation of Kanban in

software development. The small number of available Kanban studies and the

dominance of a few authors make it difficult to draw reliable conclusions about the

feasibility and adaptability of Kanban in software development. Furthermore,

claims about the benefits of Kanban in software engineering have not been

validated by empirical studies in software engineering.

1.2 Research Questions

As mentioned above, most current knowledge on Kanban in software engineering

comes from practitioners’ books, and authors have interpreted Kanban in software

engineering in their own ways (Anderson 2010, Burrows 2014, Kniberg & Skarin

2010, Hurtado 2013, Shalloway 2011, Shalloway 2010). Additionally, there is little

empirical evidence of the use of Kanban in software development as well as on

how Kanban in software engineering is adapted from industrial engineering. To

better understand Kanban, this doctoral dissertation analyses a) Kanban in software

engineering, b) industrial engineering from where it has emerged, c) Kanban

implementation in software companies, and d) practitioners’ perceptions of the

benefits of and challenges associated with the use of Kanban. Accordingly, the

following research questions are formulated (RQs).

RQ1. What is the understanding of Kanban in software engineering based

on literature?

RQ.1.1. How is Kanban interpreted in software engineering?

RQ.1.2. How is Kanban interpreted in industrial engineering?

RQ1 focuses on systematic literature analyses of Kanban in software engineering

and industrial engineering, the domain in which it originated. No systematic review

of Kanban in software engineering research has previously been published. This

means that practitioners and researchers have to rely on practitioner books to get

an overview. To fill this gap, RQ1.1 investigates the current understanding,

knowledge, and state of practice of Kanban in software engineering literature as

well as its benefits and challenges. RQ1.1 identifies the needs and opportunities for

future research in this area.

19

As Kanban originated in the manufacturing industry, RQ1.2 analyses Kanban

in the industrial engineering context and compares it with Kanban in the software

engineering context. This will help to understand Kanban features from industrial

engineering field literature and learn how its basic idea can be adapted to the field

of software engineering. RQ1 is motivated by the need to understand the

differences between the two, which, to the best of our knowledge, has not been

done systematically.

RQ2. How is Kanban used in software companies?

RQ2.1 How is Kanban used in software development?

RQ2.2 How is Kanban used for software maintenance?

RQ2.3 How is Kanban used for portfolio management?

There is limited empirical evidence of Kanban use in software companies. In this

regard, RQ2 is formulated to provide first-hand industrial insight into how Kanban

is being used in software companies. RQ2.1 has three main goals: (1) to seek up-

to-date knowledge of the current state, trends, and motivation factors of Kanban

use in software companies; (2) to identify the obtained benefits and challenges

faced with Kanban use; and (3) to investigate how the identified challenges in

Kanban use can be addressed. Additionally, RQ2.1 compares the claimed benefits

and challenges of Kanban in software development with the findings of RQ1.

RQ2.2 and RQ2.3 provide an in-depth understanding of the use of Kanban in

software maintenance and portfolio management in software companies.

1.3 Overview of Research Design

The research approach presented in this dissertation is exploratory in nature

(Wohlin & Aurum 2014). This dissertation used multiple research methods to

address the research problem from different perspectives in order to strengthen the

overall contribution. The research was carried out in the following two phases:

– Phase 1: Literature analysis. A systematic literature review method was

adopted for analysing the literature on Kanban in software engineering and

industrial engineering. The outcome of Phase 1 answers RQ1.

– Phase 2: Empirical studies. In Phase 2, three empirical studies were conducted

with Finnish software companies that participated in the Cloud Software

20

Program3 and Need for Speed (N4S) Program4 . The outcome of Phase 2

provided answers to RQ2. First, an online survey was administered to explore

the Kanban-related trends and the use of Kanban in software development. The

survey verified the benefits of Kanban and the challenges faced by software

companies, which were found in Phase 1. The outcome of the online survey

provided answers to RQ2.1. Further, two qualitative studies were performed to

explore Kanban in practice in software maintenance and portfolio management

in software companies. These two studies resulted in two papers that answer

RQ2.2 and RQ2.3. Finally, the results obtained in Phases 1 and 2 were

synthesised to draw conclusions and examine their implications for research

and practice.

1.4 Structure of Dissertation

This doctoral dissertation is based on five original research papers (cited as Papers

I, II, III, IV, and V). Each paper contributes towards improving our understanding

of Kanban in software engineering.

Papers I and II contain literature analyses of Kanban in software development

and industrial engineering. Among other findings, Paper I provides understanding

of Kanban in software engineering and the implications of its use. It motivated the

rest of the studies in this dissertation. Paper II analyses literature pertaining to

Kanban in industrial engineering, the domain from which it originated, and

highlights similarities with Kanban in software engineering. Among other findings,

Paper II highlights other variations of Kanban that can be used in software

engineering.

Papers III, IV, and V focus on studying Kanban empirically in software

companies. Paper III reports Kanban practitioners’ experiences and confirms the

findings of Paper I. Paper IV explains how software maintenance teams benefit

from Kanban in their work, and Paper V sheds light on the use of Kanban for

portfolio management in software companies. The findings of these studies

3 The Cloud Software Program (2010–2013, http://www.cloudsoftwareprogram.org/) is a Finnish
industry-driven research program that includes 22 industrial and eight research participants. The Cloud
Software Program has the largest volume in terms of budget and companies’ involvement in the history
of information technology research in Finland.
4 Need for Speed (2014–2017, http://www.n4s.fi) aims to create a foundation for Finnish software-
intensive businesses in the new digital economy. N4S consists of 13 large industrial organisations, 16
small and medium-sized enterprises, and 11 research institutes and universities.

21

describe how software companies implement Kanban in practice. Each study

reports the benefits of and the challenges associated with the use of Kanban, along

with possible ways to overcome the identified challenges.

As shown in figure 1, this dissertation consists of five chapters: introduction,

background & related work, research design, original research papers, and

discussion and conclusion.

Fig. 1. Dissertation layout.

The remainder of this dissertation is organized as follows. Chapter 2 reviews the

backgrounds of Lean and Kanban from their origins, as well as their use in software

companies. Chapter 3 presents the research design, including a detailed description

of the research methods applied in data collection, data analysis, and reporting.

Chapter 4 summarises the contributions of the five original publications included in

this dissertation according to research questions that have guided this work. Chapter 5,

discussion and conclusion, provides an overview of validity aspects, answers the

research questions, and discusses implications for research and practice.

22

23

2 Background and Related Work

This chapter discusses Lean and Kanban from the manufacturing and the software

engineering perspectives. Sections 2.1 and 2.2 present overviews of Lean and

kanban from the manufacturing viewpoint, because the concepts originated from

the manufacturing domain. Sections 2.3 and 2.4 explain Lean and Kanban in the

context of software engineering. Finally, section 2.5 discusses studies on Lean and

Kanban in software engineering and summarises the research gap in the literature.

2.1 Lean in Manufacturing

The Lean concept can be traced back to the 1940s. Lean was first devised as TPS

in Toyota’s car manufacturing division (Womack et al. 1990). Japanese researchers

Sugimori, Kusunoki, Cho, and Uchikawa (1977) described TPS as being based on

two concepts: ‘automation with a human touch’ and ‘Just-In-Time’ (JIT) production

(Ohno 1988)5. ‘Automation with a human touch’ means when a problem occurs on

a production line, the production line is stopped immediately to prevent the

production of defective items. JIT aims to have each process in a production line

produce only those items that are needed by the next process in a continuous flow.

JIT is driven by a pull system, in which a process withdraws the quantities it

requires from the preceding process (Ohno 1988). To implement JIT manufacturing

at Toyota, Taiichi Ohno developed kanban 6 to control production between

processes and to limit stock at hand to the minimum. Additionally, kanban provides

opportunity for active participation, so organisations can uncover the full potential

of workers and promote respect for individuals. TPS eliminates waste from the

production process, such as overproduction, waiting, transportation, over-

processing, excess inventory, movement, and defects.

The term ‘Lean’ was first used by Krafcik (1988) and, subsequently, by

Womack et al. (1990) in their book The Machine That Changed the World. This

book documented the Japanese automobile manufacturing processes that comprise

TPS. Most researchers consider TPS to be the most successful application of Lean.

Lean is widely used, and there are several interpretations (Liker 2004, Morgan &

Liker 2006, Ohno 1988, Womack & Jones 1996, Womack et al. 1990), as

summarized in Table 1.

5 The original, Japanese edition Toyota seisan hoshiki by Taiichi Ohno was published in 1978.
6 i.e., index cards (Poppendieck & Poppendieck 2007: 10).

24

Table 1. Interpretations of Lean in the production context.

Source Description

Ohno (1988) TPS is based on two concepts: ‘automation with a human touch’ and ‘Just-In-Time’.

The idea is to eliminate waste such as waiting, transportation, over-processing,

inventory, movement, and defects. Waste, or ‘muda’ in Japanese, is everything

that consumes resources but does not yield value.

Womack and

Jones (1996)

Specify value, value stream, flow, pull, and perfection are the principles of Lean.

Liker (2004) To guide TPS, Liker proposed 14 principles across four categories.

1. Long-term philosophy

− Base management decisions on a long-term philosophy, even at the

expense of short-term financial goals.

2. The right process will produce the right results.

− Create a continuous process flow to bring problems to the surface.

− Redesign work processes to eliminate waste (muda) through the

process of continuous improvement—kaizen.

− Use ‘pull’ system to avoid overproduction.

− Level the workload (heijunka).

− Build a culture of stopping to fix problems to get quality right the first

time. Quality should take precedence (Jidoka).

− Standardize tasks and process to facilitate continuous improvement

and employee empowerment.

− Use visual control, so no problems remain hidden.

− Use only reliable, thoroughly tested technologies that serve your people

and processes.

3. Add value to the organisation by developing your people

− Grow leaders who thoroughly understand the work, live the philosophy,

and teach it to others.

− Respect your extended network of partners and suppliers by

challenging them and helping them improve.

− Develop exceptional people and teams who follow your company's

philosophy.

 4. Continuously solving root problems drives organisational learning

− Go and observe first-hand to thoroughly understand a situation (Genchi

Genbutsu).

− Make decisions slowly by consensus, considering all options

thoroughly; implement decisions rapidly (nemawashi). 0

− Become a learning organisation through relentless reflection (hansei)

and continuous improvement (kaizen).

25

Source Description

Morgan and

Liker (2006)

Morgan and Liker describe how Toyota applies Lean and established 13 principles

structured into three categories:

1. Process

− Establish customer-defined value to separate value-addition from

waste.

− Front-load product development to thoroughly explore alternative

solutions while there is maximum design space.

− Create a levelled product development process flow.

− Use rigorous standardisation to reduce variation, and create flexibility

and predictable outcomes.
2. Skilled people

− Develop a chief engineer system to integrate development from start

to finish.

− Organise to balance functional expertise and achieve cross-functional

integration.

− Develop towering technical competence in all engineers.

− Fully integrate suppliers into the product development system.

− Build in learning and continuous improvement.

− Build a culture to support excellence and relentless improvement.
3. Tools and technology

− Adapt technology to fit your people and processes.

− Align your organisation through simple, visual communication.

− Use powerful tools for standardization and organisational learning.

Rother & Shook (1999) described Lean as continuous identification and

elimination of waste from an organisation’s processes, leaving only value-adding

activities in the value stream. Waste (‘muda’ in Japanese) has seven sources:

overproduction, waiting, transportation, over-processing, inventories, moving, and

defective parts and products (Shingo 1989, Ohno 1988). The focus is on reducing

waste in human effort and inventory, reaching the market on time, managing stocks,

and producing quality products in the most efficient and economical manner (Bhim

et al., 2010, Rahman et al. 2013). Other terms commonly associated with Lean are

continuous improvement, total quality management, world class manufacturing,

theory of constraints, and Six Sigma (Stone 2012). Hallam (2003) suggested:

…the proper delineation of the terminology should actually contain three terms,

one to describe the end state, one to describe the process that achieves the end

state, and one to describe the tools used to execute the process.

In this way, Lean emphasises actions that deliver value to customers through

continuous process improvement while considering the organisation’s long-term

26

perspectives. An important point is that Lean alone is not sufficient; the

organisation needs a culture that understands it. According to Womack and Jones

(1996), Lean is a way of thinking that must be adopted throughout the enterprise.

Furthermore, Morgan and Liker (2006) pointed out that Lean requires the

integration of design, manufacturing, finance, human resource management, and

purchasing for a product.

2.2 Kanban in Manufacturing

Kanban is one way of executing Lean principles. ‘kanban’ is a Japanese word

meaning ‘card’ or ‘signboard’. It was developed by Ohno in the early 1940s to help

Toyota Company fulfil its need of working effectively under specific production

and market conditions. In manufacturing, kanban hints what, when, and how much

to produce. In Toyota, kanban is applied as one part of TPS to achieve or promote

improvement (Hiranabe 2008, Shingo 1989).

According to Sugimori et al. (1977), there are three main reasons for using

kanban: reduction in information processing cost, rapid and precise acquisition of

facts (such as production capacity), optimized operating rate to promote activities

for spontaneous improvements and limiting the surplus capacity of preceding shops

or stages. Table 2 presents Toyota’s description of kanban.

Table 2. Toyota kanban description (Hiranabe, 2008).

TPS Kanban Description

Physical It is a physical card.

Limit work in progress (WIP)

Prevents overproduction.

Continuous Flow Provides information about production needs before a line runs out of

stock.

Pull Downstream processes pull items from upstream processes.

Self-Directing Contains all information on what to do and makes production

autonomous in a non-centralised manner and without micro-

management. In this way, people can see the status of work at a glance

and detect bottlenecks.

Visual Stacked or posted to visually show task status and progress.

Signal Visual status signals the next withdrawal or production action.

Kaizen Visual process flow informs and stimulates Kaizen.

27

In manufacturing, kanban signals are physical such as cards and flashing lights.

The objective is to deliver material JIT to manufacturing workstations and pass

information about what and how much to produce to the preceding stage. The

production in a given stage depends on the demand from the subsequent stage; in

other words, any given stage must produce only the exact quantity required by the

subsequent manufacturing stage (Huang & Kusiak 1996, Bell et al. 2016).

According to Ohno (1988), kanban should be used with caution, and the rules listed

in table 3 need to be considered in kanban implementation.

Table 3. Functions of kanban.

Functions of kanban Rules for use

Provide pick-up or transport information Subsequent process picks up the number of items

indicated by kanban in the preceding stage.

Provides production information Preceding process produces items in the quantity and

sequence indicate by kanban.

Prevents overproduction No items are made or transported without a kanban.

Serves as a work order attached to goods Always attach a kanban to goods.

Prevents production of defective products by

identifying the process producing defectives

Defective products are not sent on to subsequent

processes. The result is defect-free goods.

Reveals existing problems and maintains

inventory control

Reducing the number of index cards increases their

sensitivity.

According to Liker (2004), kanban represents the ideal state of JIT manufacturing

because it provides customers what they want, at the time they choose, and in the

desired quantity (Thun et al. 2010). It provides real-time information for limiting

work in progress (WIP), and monitoring and controlling production process (Ohno

1988, Zhang et al. 2011). Other benefits of kanban in manufacturing and industrial

engineering are as follows: it creates visual scheduling, improves flow and

responsiveness to changes in demand, facilitates high production, prevents

overproduction, improves capacity utilisation, and reduces production time and

WIP (Gross & McInnis 2003, Gravel and Price 1988, Kumar & Panneerselvam

2007, Zhang 2011).

In summary, Lean and Kanban have penetrated many industries but were first

used in the manufacturing domain with the clear goals of empowering teams,

reducing waste, optimising work streams, and, above all, keeping markets and

customer needs as the primary decision drivers (Ebert et al. 2012, Conboy 2009,

Leffingwell & Reinertsen 2011, Rodríguez 2013, Womack & Roos 1990). Such

penetration has significantly affected the software industry (Leffingwell &

28

Reinertsen 2011). In a 2010 survey by Forrester, 35% of the organisations polled

stated that their primary development methods are based on Agile and Lean (West

& Hammond 2010). VersionOne’s annual report (2016) showed that during the last

decade, the number of companies that scaled and embraced Lean as part of the

larger vision to deliver software in faster, easier, and smarter ways, increased. From

2014 to 2015, the percentage of respondents who practiced Kanban jumped from

31% to 39%, which indicates that software companies are increasingly using

Kanban.

Lean has a major impact on the competitiveness of organisations through

improvements in process efficiency and reduction in operational waste (Al-Baik &

Miller 2014, Liker & Hoseus 2008, Magee 2008). Lean in both manufacturing and

software engineering focuses on flow and value creation for customers, along with

the systematic analyses of processes to identify and remove waste. Successful

stories of Lean and Kanban from the manufacturing industry convinced other

industries to use kanban, such as aeronautics (Venables 2005), healthcare (Kim et

al. 2009), retail clothing (Tokatli 2008), and software development (Anderson 2010,

Rodríguez, 2014).

2.3 Lean in Software Engineering

In the early 2000s, Lean received considerable interest from the software

engineering domain. Lean in software engineering was adapted from

manufacturing. According to Mandic et al. (2010) and Münch et al. (2012),

transforming and adopting concepts from one domain to another domain results in

limited applicability. For instance, a manufacturing process yields the same

tangible product over and over again. In contrast, software development activities

are different in that developers typically create something new in each development

cycle. Similarly, in manufacturing, waste refers to tangible products, distinguishing

this aspect from software development. In manufacturing waste-related elements

can be identified: non-value-adding activities, variations (in process quality, cost,

delivery), and unreasonableness (overburden) (Ikonen et al. 2010a, Poppendieck &

Poppendieck 2003, Poppendieck & Poppendieck 2007, Shingo 1989, Ohno 1988).

In software development such elements can be interpreted as: partially, extra

processes, extra features, task switching, waiting, motion and defects are

considered as waste (Ikonen et al. 2010a, Nurdiani et al. 2016, Poppendieck &

Poppendieck 2003, Poppendieck & Poppendieck 2007). Therefore, the direct

29

mapping of Lean and Kanban from manufacturing to software development could

be dangerous (Hiranabe 2008).

Similar to manufacturing, in software development, there is no common

understanding of Lean, resulting in different interpretations and implementations. As a

result, software companies use customised interpretations of Lean (Mehta et al.

2008). Many popular books have been written by Lean and Kanban software

industry experts (Anderson 2010, Larman & Vodde 2008, Middleton & Sutton 2005,

Poppendieck & Poppendieck 2003, Poppendieck & Poppendieck 2007, Reinertsen

2009). Poppendieck and Poppendieck (2003) did prominent work on the

transformation of Lean in manufacturing to the software engineering domain. Table

4 summarises various interpretations of Lean in the context of software

development.

30

Table 4. Interpretations of Lean in software development.

Author Lean interpretation

Poppendieck and

Poppendieck

(2003, 2007, 2009)

Seven principles that guide Lean in software development

− Eliminate waste by first understanding value.

− Build in quality by testing as soon as possible using automation

and refactoring.

− Create knowledge through rapid feedback and continuous

improvement.

− Defer commitment by maintaining options and make irreversible

decisions in the last responsible moment when the most

information is available.

− Deliver fast in small batches and limit WIP.

− Respect the people doing the work.

− Optimise the whole by implementing Lean across an entire value

stream.

Seven sources of waste in software development are: partially done work,

extra features, relearning, handoffs, task switching, delays, and defects.

Middleton and

Sutton (2005)

Interpretation based on Womack and Jones’s (1996) Lean principles: Specify

value, value stream, flow, pull, and perfection.

Larman and Vodde

(2008)

Lean is based on two pillars 1) respect for people and 2) continuous

improvement, and 14 principles: management decisions based on long-term

philosophy, flow, pull system, Level the work—decreased variability and

overburden to remove unevenness, Build a culture of stopping and fixing

problems, master norms (practices) to enable kaizen and employee

empowerment, simple visual management, Use only well-tested technology,

leader-teachers from within, development of exceptional people, help partners

become Lean, Go-See, Make decisions slowly by consensus, Become and

sustain a learning organization through relentless reflection and kaizen.

Anderson

(2010)

Kanban is one way to execute Lean in software companies. It has five

principles: visualise workflow, limit WIP, make policies explicit, measure and

manage flow, and use models to recognise improvement opportunities.

Reinertsen (2009) Set of principles of product development flow, including managing queues,

reducing batch size, and applying WIP constraints.

Boehm et al. (2014) The proposed Incremental Commitment Spiral Model has four principles

based on Lean: Stakeholder value-based Guidance, Incremental commitment

and accountability, Concurrent multidisciplinary engineering, and Evidence

and risk-driven decisions.

According to Ebert et al. (2012), Lean in software development focuses on creating

value for customers, eliminating waste, optimising value streams, empowering

people, and improving continuously. Lean begins with the simple premise: ‘identify

31

the 20 percent of the code that provide 80 percent of the value and deliver it just-in-

time’ (Bell et al. 2016). All of those things that do not produce value for customers

are considered ‘waste’ (Poppendieck & Poppendieck 2003).

From all interpretations, it is clear that Lean focuses on end-to-end value flow

through development, that is, from very early concepts and ideas to the delivery of

software features. In this regard, researchers have proposed various tools and

techniques to analyse and improve value flow, such as value stream mapping, inventory

management, and pull systems (Anderson 2003, Gross & McKinnis 2003, Mujtaba et

al. 2010). According to Poppendieck and Cusumano (2012):

If Lean is thought of as a set of principles rather than practices, then applying

Lean to product development and software engineering makes more sense and

can lead to process and quality improvements.

2.4 Kanban in Software Engineering

Kanban enables all aspects of Lean and provides the tools to optimise an outcome

for value through focus on flow management as well as waste reduction (Anderson

2010). According to Shalloway et al. (2009), Kanban in software engineering is

based on the following three beliefs:

– Software development is about managing and creating knowledge.

– Software development processes can be managed and described in terms of

queues and control loops.

– Some representation of information that flows through the system is required.

To put these beliefs in practice, Anderson (2010) explained that Kanban in software

development has the following philosophy:

– Start with what you do now.

– Agree to pursue incremental, evolutionary change.

– Respect the current process, roles, responsibilities, and titles.

Kanban suggests starting with the actual state of a company’s processes and

proceeding incrementally on the basis of explicit policies and data to eliminate

bottlenecks in the entire value stream. Such incremental changes enable an

organisation to experience recurrent improvement (Kaizen culture) with the

passage of time and to solve identified problems individually. Kanban creates a

visual task management flow that allows for transparency and process monitoring,

32

where the focus is on commitment to optimising workflow across the entire value

stream (from idea initiation until product consumption by customers).

Kanban aims to improve workflow by removing bottlenecks. Such a business-

driven approach creates a broader value stream that warrants participation of all

stakeholders and an understanding of WIP. Therefore, Kanban maintains that to be

efficient, teams must not be overloaded with work. Overloading teams creates

waste, lowers quality, and causes delays in task completion. Kanban highlights

inefficiencies and challenges teams to focus on resolving issues in order to maintain

a steady workflow (Anderson 2010). To visualise workflow, a Kanban board is used

as a tool. A typical Kanban board is shown in figure 2.

Fig. 2. Kanban board.

From the viewpoint of Kanban implementation, Anderson (2010) identified five

key properties, which Boeg (2012) called principles: visualise workflow, limit WIP,

measure and manage flow, make policies explicit, and implement feedback loops

and identify improvement opportunities.

33

2.4.1 Visualise Workflow

Kanban is implemented with a visual board and sticky notes, with each card

representing a task or story. According to Anderson (2010):

Kanban enables visualisation of wasteful activities and can be used to enable

a full Lean initiative within a software, system, product development, or

information technology organisation.

The idea is to visualise workflow and focus on minimal marketable features. A

Kanban board is divided into various columns that visualise activity flows in

different stages. Cards are used for each task on the Kanban board to show possible

statuses. Thus, teams can see the bigger picture of what has been done so far and

what needs to be done (Ikonen et al. 2011). Additionally, Kanban enforces a steady

work sequence according to the pull system. In the case of software development,

teams can pull tasks at any time, triggered by available team capacity (Williams

2012). In this way, the development team has greater control of the workload,

which can help them deliver in a more continuous manner.

2.4.2 Limit Work in Progress

As a general rule, the greater the amount of WIP, the less is the amount of work

that can flow and the slower is the pace of work completion, further increasing the

risk of rework and cost increase (Bell et al. 2016). Workflow can be optimised by

limiting the WIP in each activity column to the maximum number of tasks that can

be pulled into the column. This enables software development teams to stay focused

and reduce the amount of multitasking.

According to Bell et al. (2016), smooth flow produces the transparency and

visibility need to coordinate efficient flow of work. By visualising workflow and

enforcing WIP limits, bottlenecks in the process become visible, which ensures

optimal resource usage. Anderson (2010) pointed out that unilateral declaration of

WIP should be avoided; it should be agreed upon by consensus among up- and

down- stream stakeholders and management.

2.4.3 Measure and Manage Flow

Kanban focuses on maintaining continuous and smooth flow of work to quickly

deliver value to customers. The shorter the lead time, the greater is the value

34

delivered to customers. In this regard, the Lean concept offers a myriad of tools to

analyse and improve value flow, such as value stream mapping, inventory

management, and cumulative flow diagrams (Anderson 2003, Anderson 2010,

Petersen & Wohlin 2011, Mujtaba et al. 2010, Gross & McInnis 2003). A

cumulative flow diagram shows the collective number of tasks in each phase of

software development. Value stream mapping visualizes the development life-cycle

by showing processing times and waiting times. Measurement and models are used

to facilitate process-change decisions and optimise processes to decrease lead time.

2.4.4 Make Process Policies Explicit

Explicit process polices and workflow visualisation help organisations to

understand and make the right adjustments to processes. Kanban mandates making

work policies explicit so that both development teams and management can apply

them consistently and see cause and effect whenever they make a change (Cutter

2011). For example, consider the policy that whenever a team member is free, the

member should pull a high-priority ticket from the Kanban board. As a result, teams

self-organise and manage task flow by themselves. Another example of policy is

production stability takes priority over quality assurance bug fixing; both take

priority over new development. Anderson (2010) explained that such policies

should be discussed openly and revised according to circumstances.

2.4.5 Implement Feedback Loops and Identify Improvement

Opportunities

Kanban promotes regular feedback, direct communication, and experiment-based

evolution. A lower WIP limit helps teams shorten feedback loops within the process,

which causes them to check what has been built and helps streamline workflows.

Continuous improvement opportunities can be identified via value stream mapping

(Zang 2011).

2.5 Studies on Lean and Kanban in Software Engineering

Lean and Kanban are used in various types of works in software companies. Section

2.5.1 summarises the studies related to Lean and Kanban transformation in

software companies and its effects. Section 2.5.2 reports on studies that attempted

to analyse the applicability and effectiveness of Kanban by using simulation.

35

Sections 2.5.3 and 2.5.4 review Kanban implementation studies in software

development and software maintenance teams. Finally, section 2.5.5 discusses

studies on Kanban implementation in management-related activities such as

portfolio management.

2.5.1 Lean and Kanban Transformation

Peter Middleton conducted three studies on Lean transformation and

implementation in software engineering. The first study involved two industrial

case studies, and the action research method was used (Middleton 2001). Two

different teams were formed in the company, one comprising experienced

developers (case X) and one comprising developers with relatively less experience

(case Y). The results revealed that errors became visible and developers fixed them

right away. However, in the long run, the number of errors dropped dramatically.

Nevertheless, the teams were unable to sustain their use of Lean owing to

organisational hierarchy, traditional promotion patterns, and the fear of forcing

errors into the open.

In the second study, Middleton & Sutton (2005) reported on the journey of an

American software company (Timberline, Inc.) that had been practicing Lean in

their daily work for two years. Before the Lean initiative, the company was facing

a number of challenges in traditional software development, such as project

resource allocation and tracking, lack of predictability in terms of project

completion timeframes, high development costs, and excessive review meetings.

The Lean initiative helped the company tackle these challenges. The majority of

the company’s people supported the Lean ideas and thought they could be applied

to software engineering; however, 10% of them were not convinced of the benefits

of Lean in software development.

In the third study, Middleton and Joyce examined how the Lean concept could

be applied to a software project management team at BBC Worldwide (Middleton

& Joyce 2012). With Kanban boards and strict WIP limits, which ensured

transparency in detecting bottlenecks in the flow, the team was able to estimate

individual and team work efficiently. Over a one-year period, consistency of

delivery increased by 47%, and defects reported by customers decreased by 24%

(Middleton & Joyce 2012).

Ericsson R&D Finland undertook a comprehensive transition to Lean in 2010.

Rodríguez et al. (2013) conducted a case study at Ericsson R&D Finland to explore

the implementation of how Lean principles in software development. Their results

36

revealed that the company improved considerably in term of product quality,

customer satisfaction, and transparency within the organisation. However, the

authors also found that attaining smooth flow, transparency, and creating a learning

culture were challenging tasks.

Nikitina & Kajko-Mattsson (2011) reported on a software process

improvement effort in a company, realized by transitioning from Scrum to Kanban.

After the transition to Kanban, the company solved various problems, for instance,

low motivation among developers, confusion with respect to the definition of

‘done’, insufficient communication of requirements, and low prioritization of

technical backlog items. However, a few new problems were introduced by the

transition, for example, less control over releases, and extensive feature list

requiring long development time. Additionally, Sjøberg et al. (2012) conducted a

case study to demonstrate to compare the effects of Scrum with those of Kanban

by analysing the data of more than 12,000 work items collected over the years

2009–2011 from a medium-sized software company. The results showed that

switching from Scrum to Kanban halved the company’s lead time, reduced the

number of weighted bugs by 10%, improved productivity for project backlog items

by 21%, and reduced the number of bugs by 11%.

2.5.2 Simulation Studies about Kanban in Software Development and

Software Maintenance

Cocco et al. (2011) conducted a simulation study to analyse the dynamic behaviour

of Kanban and Scrum adoption in comparison to that of a traditional software

development process such as the waterfall approach. The simulation results

illustrated that Kanban helped control and manage workflow effectively while

minimising lead time. Similarly, Anderson et al. (2011) assessed the effectiveness

of WIP limits and visualized the flow and organisation of work. Their simulation

results validated the WIP limit and yielded insights on what really happens under

different development settings. For instance, a WIP limit results in a constant flow

of features, whereas the lack of a WIP limit results in a more irregular flow of

features.

Concas et al. (2013) developed a process simulator to simulate software

maintenance processes that 1) use WIP limits and 2) do not use WIP limits. In both

scenarios, the authors collected real maintenance data from a Microsoft project and

from a Chinese software firm. The results revealed that Kanban helped reduce the

37

average time needed to complete maintenance requests and that WIP limits can

increase the efficiency of software maintenance.

Turner et al. (2013) described an example of the implementation of Kanban in

a large healthcare system. In large operational systems, where schedules are rarely

stable, it is challenging to comprehend the status of capability development. A

number of factors are involved, such as the size and complexity of capabilities,

unexpected changes in priorities, depth of supplier chains, variety and availability

of special engineering resources, contract structure, and the inherently complex

nature of such operations. The authors elaborated that under certain circumstances,

concepts such as WIP and capacity to maximise flow through a process can be

applied to systems engineering and development processes. The findings of a

simulation highlighted that Kanban and the pull-system enhance visibility and flow

in such complex systems.

2.5.3 Lean and Kanban in Software Development

Ikonen et al. (2010a) studied waste in a Kanban-driven software development

project in an experimental setting called the Software Factory. ‘The Software

Factory is an experimental laboratory that provides an environment for research

and education in software engineering’ (Fagerholm et al. 2013). Software Factory

provides students with a realistic environment where they can improve their

learning experience by gaining insights into the conduct of real-life software

projects, which are characterised by close customer involvement, intensive

teamwork, and the use of modern software development tools and processes

(Ahmad et al. 2014a, Fagerholm et al. 2013, Ikonen et al. 2010a).

The results showed that Kanban implementation helped in the identification of

waste, as defined by Poppendieck and Poppendieck (2003). However, the results

also showed that finding waste did not contribute significantly to explaining project

success. Eliminating waste is only part of a project’s operational efficiency which

is supported by Kanban. As a visual aid, Kanban helps control software project

activities, determine the most important tasks, reveal waste (such as partially done

work, non-value-adding work, and task switching), save resources, and adapt to

continuously changing situations. Further, Ikonen et al. (2011) investigated how

Kanban influences software development project work. Their results showed that

visualisation helps teams control project activities in a coherently flexible way by

relying on team members’ intuition. Visualisation was even found to motivate team

members. However, the study claimed that Kanban is insufficient for managing all

38

dimensions of software projects. For instance, Kanban helps identify bottlenecks

and detect potential problems as they emerge. Moreover, it is difficult to visualise

large and complex system projects in their entirety with a simple Kanban board

alone.

Andrezak and Schiffer (2010) reported on the successful use of Kanban in a

Europe’s largest online automotive market. The company first implemented

Kanban in product maintenance, and then throughout the company, rapidly. Kanban

enabled the company to release products daily, ensure smooth running of

development tasks, and create an effective value chain on the technical level.

Furthermore, the company is managing their product portfolio with Kanban, and

all product development activities are steered through the enterprise Kanban board,

which balances needs and features.

Large-scale distributed software development projects face many challenges

such as hierarchical requirements, large team size, and workflow management

(Tripathi et al. 2015). A few studies have shown that Kanban helps address such

challenges by using WIP limits to manage flow and establish visibility of

requirements by using a visual signalling system (Anderson 2010, Kniberg 2011,

Tripathi et al. 2015). In this regard, Tripathi et al. (2015) conducted a case study to

explore the challenges associated with the scaling of Kanban in large, multisite

organisations. The results show that in a multisite environment, an electronic

Kanban board helps smoothly plan and execute software development activities. It

is recommended to set WIP limits for product backlog and development teams by

mutual agreement.

An experience report from Rally Software described their transition journey to

continuous delivery with Kanban (Neely & Stolt 2013). The results show that Rally

Software achieved greater control and flexibility over feature releases, fewer

defects, easier on-boarding of new developers, less off-hours work, and a

considerable uptick in confidence.

Ahmad et al. (2016 b) conducted a study with Kanban practitioners to

investigate the factors that users perceive to be important for Kanban use. Their

study contained 146 responses from 27 different organisations, with all respondents

being experienced in using Kanban. The results show that practitioners consider

organisational support and social influence to be important determinants for

Kanban use. Additionally, the perceived reported benefits of using Kanban are

bringing visibility to work, helping to reduce WIP, and improving development

flow.

39

2.5.4 Lean and Kanban for Software Maintenance

Research on software maintenance has focused on traditional software engineering

techniques such as modelling, estimation, risk management, statistical process

control, quality, metrics, post mortem, and testing (Heeager & Rose 2015).

Researchers have paid scant attention to the optimisation of standard software

maintenance work processes by using Lean and Kanban. In one study, Ericsson

implemented Kanban in telecom product maintenance (Seikola et al. 2011). The

authors used Kanban to implement Lean principles. They strictly followed the pull

system, empowered teams, and introduced WIP limits. The results showed that

Kanban increased the visibility of work, drastically increased the level of teamwork,

encouraged engineers to be more willing to perform tasks beyond their comfort

zone, and contributed to the emergence of a continuous improvement mindset.

ASR Insurance is a large insurance company in the Netherlands. The company

transitioned IT maintenance and operations from a more traditional approach to

Kanban (Maassen & Sonnevelt 2010). It adopted the underlying principles — make

work visible, limit WIP, and help the work to flow. The results showed that Kanban

helped in enhancing understanding and cooperation between developers working

on different technologies, as well as between the developers and the testers.

Similarly, Fundamo, a mobile financial services and products provider, adopted

Kanban to control their customer support issues (Greaves, 2011). To measure cycle

time and make predictions, the teams used cumulative flow diagrams from day one

and recorded the number of issues in each column at the same time on each day

after their daily meeting. Kanban helped the teams to quantify both their demand

and throughput, and ensured these remained balanced by changing explicit policies.

2.5.5 Lean and Kanban for Management

Ikonen (2010b) conducted an experiment with two directive leadership settings to

find the differences between the waste produced, its causes, and effects. The results

showed that Kanban allowed for working without a formal project manager from

the viewpoint of avoiding waste, but also that insufficient directive leadership

created waste (Ikonen 2010, Ikonen 2011). Furthermore, Ikonen (2010b) claimed

that the amount and significance of waste can be reduced with the right leadership

in self-organized teams of Kanban software development projects.

Software companies use various portfolio management approaches such as

Lean portfolio management, Agile portfolio management, program portfolio

40

management, and the scale Agile framework (Kalliney 2009, Kettunen & Laanti

2008, Laanti 2008, Leffingwell 2010, Rautiainen et al. 2011). However, software

companies continue to face various problems in portfolio management, such as the

lack of visibility of offerings about to enter the development pipeline and their

prioritisation (Rautiainen et al. 2011).

Leading Lean and Kanban practitioners (e.g., Anderson & Roock 2011,

Leffingwell 2010, Shalloway 2011) have claimed that Kanban is the easiest tool to

use for portfolio management. According to Shalloway (2011), Kanban provides

visibility and helps management make appropriate decisions about tasks based on

business value. Laanti and Kangas (2015) reported on the benefits of Kanban in

YLE, Finland’s national broadcaster. Specifically, the authors noted that Kanban

brings visibility and awareness in all ongoing development activities, facilitating

easy management of project dependencies and the pipeline. Additionally,

Wijewardena (2011) experimented with Kanban in the human resource department

of a mid-sized, offshore software development company (Exilesoft). Before

Kanban implementation, the human resource department was unable to respond on

time to the demands of various projects, which created negative stress and

frustration throughout the company. The results showed that Kanban supported the

everyday planning required for human resources department functions, brought

visibility to their work, and prevented them from over-committing. However, the

existing scientific literature lacks empirical evidence of Kanban use for portfolio

management.

All the above studies have a number of limitations such as generalizability

issues owing to the low number of participants and the lack of description of how

various techniques were applied in practice, which makes the findings difficult to

interpret. These studies have reported various challenges in Lean transformation,

such as making relevant changes to organisational roles, metrics, incentive

programs, and deep changes in the way an organisation is managed, including long-

term commitment from upper management.

Pernstål et al. (2013) conducted a systematic mapping study on Lean in

software development by examining the literature published between 1999 and

2010. The study concluded that research on Lean software development is in its

nascent state, and ‘there is very little support available for practitioners who want

to apply Lean for improving large-scale software development’ (Pernstål et al.

2013). Furthermore, Al-Baik and Miller (2014) reported that there is growing

interest and wider application of Kanban in software companies. The study reported

a number of challenges in the use of Kanban, such as the absence of guidelines.

41

There is a lack of empirical studies pertaining to software companies, which makes

it difficult to validate or refute the claims associated with Kanban in software

engineering. These challenges create difficulties for individuals who plan Kanban

implementation. Overall, the results showed that Kanban may be beneficial in the

software engineering context. Thus, further exploration of Kanban is needed to

better understand and observe its effects in software companies.

42

43

3 Research Design

The research conducted in this dissertation falls under the umbrella of exploratory

empirical research aiming to obtain a better understanding of a given phenomenon.

According to Shull et al. (2008), empirical research is investigation of a phenomenon

through direct or indirect observation or experience (Creswell 2009). According to

Wohlin & Aurum (2014), deductive and inductive are two common ways of

reasoning in empirical software engineering. The research in this dissertation is

inductive. Inductive research induces generalisations from real-life observations,

while deductive research attempts to verify a constructed theory or hypothesis

through observation in order to gain a higher level of insight (Basili 1993). In

inductive software engineering research, the investigator attempts to understand

software processes, products, people, and environments (Basili 1993).

 An exploratory research approach is applied when little information is

available on a given topic and the investigator aims to gather insights about the

problem (Collis & Hussey 2009, Wohlin & Aurum 2014). Exploratory studies are

essential to obtain a better understanding of a less clear phenomenon and establish

guiding principles for further research. In this regard, Kanban is a new phenomenon

under the Lean umbrella in the field of software engineering. Exploratory research

can be both qualitative and quantitative in nature (Runeson & Höst 2009, Wohlin

& Aurum 2014). However, each research method has its own weaknesses. As such,

a viable approach is to use multiple methods to compensate for the inherent

weaknesses of the individual methods (Brewer & Hunter 2006, Creswell 2009,

Mandić et al. 2009, Wohlin & Aurum 2014, Wood et al. 1999). This method

triangulation helps achieve more credible results by using different methods. Mixed

methods is an emergent research methodology that involves collecting, analysing,

and integrating quantitative (e.g., experiments, surveys) and qualitative (e.g., focus

groups, interviews) research. Mixed methods combine the strengths of both

qualitative and quantitative research methods to overcome the weaknesses and

limitations of the individual methods (Creswell 2009, Runeson & Höst 2009).

Typically, the results of qualitative study are used to support the findings of

quantitative study (Easterbrook et al. 2008).Easterbrook et al. (2008) wrote that:

While mixed method research is a powerful approach to inquiry, the researcher

is challenged with the need for extensive data collection, the time-intensive

nature of analysing multiple sources of data, as well as the requirement to be

familiar with both quantitative and qualitative forms of research.

44

In this dissertation, data was collected using a systematic literature review,

qualitative methods (i.e., semi-structured interviews), and quantitative methods

(i.e., online survey). Research design was divided into two phases. In Phase 1, we

conducted a systematic literature review, while in Phase 2, we used the mixed

methods approach. Figure 3 shows the two research phases.

Fig. 3. Two phases of this research.

45

In the following section, Phases 1 and 2 are described in detail. Each phase is

driven by a main research question and a set of sub-questions. Each sub-question

is addressed by a separate paper.

3.1 Phase 1: Systematic Literature Review

Systematic Literature Review (SLR), also called systematic review, is considered

one of the most important research methodologies in evidence-based software

engineering. It is a means of evaluating and interpreting all available research

relevant to a particular research question, topic area, or phenomenon of interest

(Dybå et al. 2005, Kitchenham 2004). According to Babar and Zhang (2009), the

majority of reported SLRs in software engineering have been carried out according

to the following guidelines put forth by Kitchenham and Charters (2007) for the

following primary reasons:

– To summarise existing evidence concerning a treatment, technology, or

phenomenon;

– To identify gaps in current research and provide suggestions for further

investigation;

– To minimise the level of bias that may be prevalent in ad-hoc literature surveys;

and

– To appropriately position new research activities.

3.1.1 Data Collection

In Phase 1, we performed SLRs based on the guidelines of Kitchenham and Charters

(2007). The review processes consisted of several phases, including planning,

conducting, and reporting. The SLRs were carried out by a team of three

researchers. Figure 4 shows a pictorial representation of the SLR process.

46

Fig. 4. Steps in SLR.

Table 5 lists the research questions related to Phase 1, and data collection technique

used in each study.

Table 5. Research questions, papers, and methods used in Phase 1.

Research

question

Paper

No.

Title Data collection

technique and

participants

Number of

primary

studies

Studies identified

based on search

strategy

RQ1.1 I Kanban in software

development: a systematic

literature review

Systematic literature

review

19 1828

RQ1.2 II Kanban in industrial

engineering and software

engineering: a systematic

literature review

Systematic literature

review

52 1552

The first SLR analysed Kanban in software engineering to provide an overview of

the trends in the use of Kanban in software development and future research needs.

Additionally, the first SLR summarised practices for smooth implementation of

Kanban in software development.

47

The initial search yielded 1828 papers. The papers were examined against the

defined criteria. For example, the search strategy included the term ‘Kanban’,

which resulted in the inclusion of several papers about Kanban in manufacturing.

These papers were excluded because they were outside the focus of the SLR,

leaving 492 papers, which were further assessed with regard to quality and

relevance to this literature review. This narrowed down the set to 79 papers, which

were evaluated based on the following criteria: objective of study, context

description, research design, data collection and analysis, justification of findings,

result applicability, passing the minimum quality threshold, and use of references.

Of the 79 studies evaluated, 19 were finally accepted and included as primary

studies in the first SLR.

The second SLR was conducted to explore Kanban in industrial engineering,

the domain in which it originated, and compare it with the Kanban in software

engineering. The study discussed differences and similarities between Kanban in

software engineering and Kanban in industrial engineering.

The search strategy yielded 1552 papers. These papers were analysed to

remove duplicates, leaving behind 1366 papers. These papers were further analysed

by two researchers to determine their relevance. Only studies published in English

were included. Editorials, prefaces, correspondence, discussions, lessons learned,

and expert opinion papers were excluded. This resulted in 257 papers, which were

reviewed independently by two researchers. These papers were assessed with

regard to quality and relevance to the second SLR. The assessment was based on

the following criteria: objective of study, context description, research design, data

collection and analysis, and justification of findings. All disagreements were

resolved by discussion between the two researchers. Of the evaluated 257 studies,

52 were finally accepted and included as primary studies in the second SLR.

3.1.2 Data Analysis and Reporting

Data synthesis involves combining and summarising the results obtained from the

primary studies by using qualitative synthesis. The data was analysed thematically,

and themes recurring across the primary studies were found. The analysis of first

SLR, presented in Paper I, inspired subsequent studies, along with the baseline for

interviews. The analysis of the second SLR is presented in Paper II.

48

3.2 Phase 2: Empirical Studies

In Phase 2, empirical studies were conducted to explore the use of Kanban in

software companies. Data was collected from major Finnish software companies that

were actively using and researching Lean and Kanban. This setting allowed for the

collection of rich data, while maintaining the flexibility necessary for an

exploratory study. Table 6 summarises the following in relation to Phase 2: data

collection technique used, number of participants, and number of companies that

participated in each study.

Table 6. Phase 2 research questions, papers, and research methods.

Research question Paper

No.

Title Data collection

technique and

participants

Number of

companies

RQ2.1 III Usage of Kanban in

software companies—

an empirical study on

motivation, benefits and

challenges

21 Questionnaires,

8 Interviews

10

RQ2.2 IV Transition of software

maintenance teams from

Scrum to Kanban

Qualitative study,

17 Interviews

2

RQ2.3 V Portfolio management

and Kanban: an empirical

investigation with Agile and

Lean software companies

Qualitative study,

8 interviews

7

In Phase 2, trends in the use of Kanban were studied quantitatively in companies

participating in the Cloud Software and the N4S programs. These are large, four-year

DIMECC programs funded partly by Tekes 7 (the Finnish Funding Agency for

Innovation). In these programs, the industrial partners took the initiative to start using

Agile, Lean, Kanban, and related approaches and were interested in knowing and

learning more about said approaches.

The quantitative study was followed by qualitative studies exploring the

implementation of Kanban in software development, software maintenance, and

potential use of Kanban for portfolio management in software companies. In this

7 Tekes is the most important publicly funded expert organisation for financing research, development,
and innovation in Finland. https://www.tekes.fi/en/tekes/

49

regard, semi-structured interviews were conducted with Kanban practitioners from

Finnish software companies. The results helped answer RQ2 and its sub research

questions (RQ’s 2.1–2.3).

3.2.1 Survey

As part of an empirical study, a survey provides a quantitative or numeric

description of some fraction of the population — the sample — through the data

collection process of asking questions of people (Creswell, 1993, Fowler, 2013).

Survey, as quantitative research method, is used commonly in both empirical

software engineering research and information systems research to elicit data from

a variety of sources including individuals, groups, and organisations (Wohlin &

Aurum, 2014). To identify the trends in and the current state of the use of Kanban,

an Internet survey was conducted in software companies. The results of this survey

provided an overview as well as in-depth understanding of the breadth of Kanban.

Data Collection

The questionnaire was administered online using the Webropol tool8, and it mostly

comprised close-ended questions, using both multiple choices and Likert scales for

answers. The survey aimed to rate the importance of motivations for using Kanban,

and the benefits of and challenges associated with Kanban adoption. In the

introduction to the questionnaire, it was clearly mentioned that the target

respondents were industrial practitioners with experience of using Kanban in their

work.

The data was collected from companies that participated in the Cloud Software

and the N4S programs. The survey was piloted with select representatives from the

participant companies and researchers for checking the consistency of the

questionnaire. Then the survey was emailed to software companies, and it was kept

open for two weeks. A reminder was sent during the second week of the survey.

8 https://www.webropolsurveys.com/ (accessed June23, 2016).

50

Data Analysis and Reporting

IBM SPSS Statistics software9 was used for data analysis. The data analysis was

performed using descriptive statistics (only Mean and Median) and organised

according to the sections of the survey, alongside a comparison of the results with

those of earlier studies on the topic. Additionally, the survey results were

complemented with semi-structured interviews with the participants who

completed the online survey. Such data triangulation helped minimise ambiguity

about the underlying concepts and questions, in addition to helping obtain

meaningful answers. The results were reported in paper III.

3.2.2 Interviews

Qualitative research methods originated from sociology and anthropology (Hove

& Anda 2005, Seaman 1999, Taylor & Bogdan 1984). In qualitative research, data

is frequently collected through interviews to gain insight into the interviewees’

worlds, their opinions, experiences, thoughts, and feelings. The interviewer

encourages interviewees to freely present their viewpoints, opinions, and

experiences. Qualitative research methods help provide a rich picture of the

interviewees’ viewpoints and deeper insights into the phenomenon under study

(Denzin & Lincoln 2005). Typically, qualitative data is collected directly through

individual interviews, focus groups, observations, and action research.

In Phase 2, qualitative data was collected through interviews. Interviews can

be structured (have close-ended questions), unstructured (have open-ended

questions) or semi-structured (have a mix of close- and open-ended questions). To

investigate the use of Kanban in software companies, semi-structured interviews were

conducted according to the guidelines prescribed by Patton (1990): identification,

themes, design, interview, transcription, analysis, and reporting. The interview themes

were based on the results of Phase 1 studies and influenced by the partner software

companies’ inputs.

Selection of Interviewees

The key informant technique was adopted for selecting interviewees (Kumar et al.

1993). The technique is good for identifying key experts who can provide rich and

9 http://www-01.ibm.com/software/analytics/spss/ (accessed June23, 2016).

51

high-quality data. This technique allowed us to focus on highly knowledgeable

individuals and interview the optimum number of people (Kumar et al. 1993, Patton

1990). Data was collected from the key informants, who were selected based on the

following criteria:

– Interviewees must have experience with participation in projects conducted

through Kanban, and

– Interviewees must represent different roles.

The key informants in Paper III were eight managerial-level company

representatives. In Paper IV, 17 interviewees from two large Finnish software

companies were interviewed. These interviewees had been using Kanban for more

than one year for software maintenance work. The key informants in Paper IV were

from various positions: product owners, project managers, coaches, Scrum masters,

team leaders, developers, testers, and trouble reporters. In paper V, senior

executives were considered the most suitable informants because they have

knowledge and experience of Agile, Lean, and Kanban, and they participate in their

respective companies’ portfolio management-related activities.

Interview Technique

Before the actual interviews, each study interview protocol was piloted with one

expert from the software industry and three researchers. At least two researchers

participated in all interview sessions. At the start of each interview session, the

study objectives and the definitions of key terminologies were presented to the

interviewees.

Data Analysis and Reporting

All interviews were audio recorded and notes were made. The audio recordings

were transcribed and sent back to all interviewees for review and response

validation. The interview transcripts were analysed using NVivo 10 software10 with

thematic analysis for detecting themes and patterns in the collected information

(King, 1998).

Template analysis is a systematic technique for categorising qualitative data

thematically. Template analysis was selected because it allows for the use of a

10 http://www.qsrinternational.com/what-is-nvivo(accessed June23, 2016).

52

priori themes to help develop an initial version of the coding template. An initial

interview template was constructed based on the existing Kanban literature.

Interview data was then mapped onto the initial template, modifying it further until

all the relevant data was coded. The process was concluded by applying the final

version of the template to the data as a whole, and a priori themes were redefined

or discarded if they did not prove helpful in capturing key details from the data.

53

4 Original Research Papers

In this section, we present the publications included in the dissertation. The dissertation

consists of the following five papers published in peer-reviewed international

conferences and journal in the fields of software engineering and information systems:

– IEEE 39th Euromicro Conference on Software Engineering and Advanced

Application,

– 9th and 10th International Conferences on Software Engineering Advance,

– IEEE 49th Hawaii International Conference on System Sciences, and

– Journal of Software: Evolution and Process (Wiley).

All publications are ranked in Julkaisufoorumi (JUFO)11, a rating and classification

system created by the Finnish scientific community for quality assessment of

academic research.

Table 7 summarises the contributions of each paper to the various research

questions. In the following subsections, we elaborate each paper. The author of this

dissertation had major involvement in every research phase. The author of this

dissertation was the main author of publications I, III, V, VI, and V. The co-authors

contributed significantly in each study in terms of data collection, literature review,

questionnaire formulation, data analysis, and qualitative data coding. The main author

took the lead in writing the manuscript, and the co-authors provided support in

structuring it logically and contributed in writing all the papers. Finally, the main author

formally presented the results in the abovementioned conferences.

11 http://www.julkaisufoorumi.fi/

54

Table 7. Summary of publications in this dissertation.

Publication RQ Purpose Main findings Author’s contribution

I RQ1.1 To understand Kanban

and analyse the trend of

its use in software

development, along with

benefits obtained and

challenges faced.

There is growing interest

regarding the use of Kanban

in software companies.

Research on Kanban in

software engineering is in the

early stages. In the existing

studies, Kanban use is

described on an abstract level

and mainly reported in terms

of the use of two Kanban

principles: workflow

visualisation and WIP limit.

The findings show that 84% of

the studies on Kanban were

related to co-located projects.

No study has reported

Kanban use in distributed

software development

projects.

Major involvement in all

research phases.

Main author of the

paper.

II RQ1.2 To analyse industrial

engineering Kanban and

compare it with Kanban

in software engineering

Kanban in software

engineering shares four

characteristics with Toyota’s

Kanban: pulled production,

decentralized control, limited

WIP, and two types of signals

(production and transportation

signals). Five other variations

of industrial engineering

Kanban were identified. The

results suggest electronic

Kanban for distributed

software development.

Major involvement in all

research phases.

Main author of the

paper.

55

Publication RQ Purpose Main findings Author’s contribution

III RQ2.1 To investigate the status

and trends of Kanban in

software companies

Use of Kanban in Finnish

software companies is

growing. The key motivation

factors for adopting Kanban

were to improve team

communication and

development flow, reduce

time to market, and create

transparency in the company.

The results show that Kanban

helps improve work visibility,

team communication, and

workflow control. The

common challenge in

adopting Kanban is a lack of

understanding of the

principles of Kanban. Results

suggest that Kanban training

is important to understand its

principles. Furthermore,

existing working practices

should be respected and

Kanban needs to be

implemented incrementally in

companies.

Major involvement in all

research phases.

Main author of the

paper.

IV RQ2.2 To investigate the

drivers of Kanban use in

software maintenance

work.

Kanban is more appropriate

for work in which there is a

high degree of variability in

priority. It brings visibility to

maintenance tasks and helps

in task prioritisation and

synchronisation of work with

other teams and

management.

Major involvement in all

research phases.

Main author of the

paper.

V RQ2.3 To investigate possible

use of Kanban for

portfolio management in

software companies

There is interest in the use of

Kanban for portfolio

management. It brings

visibility to the workflow and

clarity with respect to high-

priority activities measured

against resources.

Major involvement in all

research phases.

Main author of the

paper.

56

4.1 Paper I: Kanban in Software Development: A Systematic

Literature Review

This paper analysed the trend of Kanban use in software development and

identified potential areas for research, as well as knowledge gaps that demand further

investigation. Through literature analysis, the study highlighted the use of Kanban,

along with its benefits and the challenges in its implementation, as well as its

maturity level in software engineering. To the best of the author’s knowledge, this

study was the first SLR on Kanban in software engineering. Paper I answered RQ1.1.

The search strategy yielded 1828 papers, of which 19 were finally selected as

the primary studies. The rest of the papers were excluded because they were not

aligned with the main goals of paper I or did not pass the defined minimum quality

threshold. Paper I identified a growing number of studies on Kanban in software

development, revealing that its use is gaining momentum in the field. The results

showed that the Kanban principles of workflow visualisation and WIP limit have

been used extensively in software companies. Workflow visualisation helps

developers understand the overall direction of work, thereby helping improve team

motivation and communication. Kanban helps software development teams in

setting WIP limits, which helps with task prioritisation and efficient execution,

minimising context switching, and guiding developers to focus on one task at a

given time.

The major challenges in using Kanban are people’s mindset, lack of

understanding of Kanban principles, and difficulty in changing organisational

culture. To avoid these challenges, a number of measures were suggested in Paper

I, for example, providing Kanban training and implementing it incrementally or

using Kanban as a plug-in with the existing way of working.

The study revealed that research on Kanban is currently in the early stages.

Since 2008, studies on Kanban in software engineering have been increasing each

year. The majority (53%) of the primary studies on Kanban in software

development were published in 2011. However, the SLR highlighted that the major

portion of published research consists of experience reports; and most of the studies

on Kanban involved pilot or small-scale software development projects.

Additionally, no study has reported the use of Kanban in distributed software

development projects. The use of Kanban in various industrial settings or different

types of software projects could also be an interesting area for future research.

57

4.2 Paper II: Kanban in Industrial Engineering and Software

Engineering: A Systematic Literature Review

In the 1940s, kanban was first used by Toyota for manufacturing, and in last decade,

it was adapted for software engineering. No scientific study discusses Kanban in

software engineering in the light of industrial engineering, the domain of origin of

Kanban. To the best of our knowledge, Paper II was the first study to investigate

Kanban in both industrial engineering and software engineering literature and

report on their differences and similarities. Paper II answered RQ1.2.

The search strategy yielded 1552 papers, of which 52 studies12 were finally

selected as the primary studies. The rest of the papers were excluded because they

were not aligned with main goals of paper II or did not pass the defined minimum

quality threshold. The SLR on Kanban in industrial engineering provides insights

about Toyota Kanban and five other variations of Kanban in the literature. In 1977,

Sugimori et al. published the first academic paper describing kanban, entitled

‘Toyota Production System and Kanban System: Materialization of Just-In-Time

and Respect-For-Human System’.

The four basic characteristics of Toyota Kanban are pulled production,

decentralised control, limited WIP, and two types of signals (i.e., production signals

and transportation signals). These characteristics are similar to Kanban in software

engineering. Kanban in software engineering and kanban in industrial engineering

use the pull system. Based on the mentioned characteristics, there are no conceptual

differences between Kanban in software engineering and industrial engineering.

However, there are practical differences. For instance, Kanban in industrial

engineering easily manages physical items with one-piece flow owing to low

variation in production lines. Additionally, in manufacturing, Kanban applies to

repetitive work—building the same item again and again (Liker, 2004). By contrast,

in software development Kanban manages non-physical items, which vary in size

and complexity, and repetitive building of the same item is very rare.

The other five variations of Kanban in industrial engineering are Generic

Kanban, Generalised Kanban Control System, Extended Kanban Control System,

Flexible Kanban System, and Electronic Kanban. These variations of Kanban have

similar characteristics because they are fundamentally concerned with signals:

production signal (authorises a process to produce a fixed amount of product) and

12 In the original publication there is a typo, the actual primary studies are 52. A complete list of primary
studies can be found in Appendix A.

58

transportation signal (authorises the transport of a fixed amount of product to the

next workstation). The differences lie in these signals, for instance, electronic

Kanban has one modification—the use of electronic signals in place of physical

signals. The results suggest the use of Electronic Kanban for distributed software

development because it provides the possibility to visualise workflow for remote

teams and obtain up-to-date work status instantaneously. Furthermore, the use of

Generic Kanban is suggested for software maintenance because it is effective in

environments with unstable demand, as well as in environments with large

variability in processing time.

The application of Kanban in industrial engineering and software engineering

provides similar benefits. Specifically, Kanban creates a smoother development

flow, reduces cycle time, and improves quality. For future research, Paper II called

for studies that consider the identified variations of Kanban in practice and evaluate

their effectiveness in software companies.

4.3 Paper III: Usage of Kanban in Software Companies—An

Empirical Study on Motivation, Benefits and Challenges

Paper III extended the work conducted in Paper I and provided valuable descriptive

information about the contemporary state of Kanban use in software companies.

This study makes three main contributions. First, it provides up-to-date knowledge

on the state of Kanban use in software companies and identifies motivation factors

for using Kanban. Second, it identifies the benefits of and challenges faced with

the adoption and use of Kanban. Third, it elaborates possible solutions to the

identified challenges. Paper III answered RQ2.1.

The participating companies were selected from the Cloud software and the

N4S programs. Data was collected through an online questionnaire and semi-

structured thematic interviews with representatives of the selected software

companies. The survey was open for two weeks, and 21 responses were received

during this time. These respondents represented 10 different large software

companies. To complement the survey findings, eight managerial-level company

representatives were interviewed. The duration of the interviews varied between 60

and 90 minutes (average 70 minutes).

The survey respondents were mostly from mid-level management (project

managers, program managers, agile coaches, and analysts), and 76% had more than

10 years of software development experience. All the respondents had been using

Kanban for more than one year, and they rated themselves as being competent in

59

their knowledge of Kanban. 57% of the survey respondents reported that most of

their software development teams are experienced users of Kanban in the company.

The findings highlighted that the main motivation factors for adopting Kanban

were improving team communication and development flow, reducing time to

reach the market, and creating transparency in the organisation. The findings show

that along with software development, the software companies successfully

implemented Kanban in testing teams.

The most common benefits of using Kanban were improved transparency of

work and communication. The interviewees explained that the use of Kanban helps

to make work visible inside and outside the team and better addresses customer

needs. As a result, the team members can see the bigger picture of work and select

high-priority tasks easily. Furthermore, the findings showed that with Kanban

usage, teams work more collaboratively, thus helping getting things done quickly

and successfully.

The biggest challenges in using Kanban were lack of experience, lack of

Kanban training, and unfavourable organisational culture. These findings

highlighted that the lack of experience in using Kanban leads to other challenges,

e.g., difficulty managing the WIP limit and selecting tasks according to priority.

Further, owing to the lack of training and coaching, the teams misunderstood the

purpose and theory behind Kanban. Such misunderstandings become the reasons

for teams reverting to their previous way of work.

To tackle such challenges, it is recommended that software companies provide

proper Kanban training and coaching and allow teams to experiment in their work.

Awareness about Kanban is required from top-level management down through the

company. The message of what problem the company is trying to solve with

Kanban needs to be communicated. Sudden changes in the way of working should

be avoided in a company. Companies should introduce and implement Kanban

incrementally without disrupting existing work practices. The results obtained in

Paper III were largely in line with the findings of Phase 1.

4.4 Paper IV: Transition of Software Maintenance Teams from

Scrum to Kanban

Paper IV investigated how software companies benefit from Kanban in software

maintenance work. Software maintenance is closely related to software

development because it includes activities such as responding to changes, meeting

new requirements, and fixing errors in existing software. To the best of the authors’

60

knowledge, this was the first peer-reviewed study to investigate the use of Kanban

in software maintenance work. Paper IV answered RQ2.2.

Kanban implementation was explored in two software maintenance teams from

two large Finnish software companies. In this study, 17 interviews (nine face-to-

face interviews and eight via Skype) were conducted, each lasting 1–2 hours. From

each team, product owners, project managers, coaches, Scrum masters, team

leaders, developers, testers, and trouble reporters were interviewed. Thematic

analysis was applied to identify the most common challenges in the previous way

of working (i.e., Scrum) and their solutions in Kanban.

Before applying Kanban, these teams were facing challenges in software

maintenance work, including lack of work visibility, task prioritisation,

communication, and collaboration, in addition to problems with work

synchronisation and moving people or domain experts from one team to another.

The teams and their change management departments realised that their current

working practices needed attention to address these challenges. The management

and the teams decided to introduce Kanban in software maintenance work. Both

teams received one week of Kanban training. The teams used Kanban on an

experimental basis. After the trial period, both teams decided to continue with

Kanban in their work.

The results showed that by providing proper training and allowing the teams

to experiment with Kanban in their own work contexts, the challenges encountered

by them were mitigated efficiently. Additionally, the findings highlighted that

Kanban can be optimised to work situations where task flow changes unpredictably,

as is the case in software maintenance work. The benefits accrued by the software

maintenance teams from using Kanban were increase in individual task visibility,

improvement of team morale, and increased knowledge sharing. The obtained

results were in line with the findings of Phase 1. For future research, it is

recommended that this study be augmented by performing additional studies with

other teams using Kanban in software development and maintenance.

4.5 Paper V: Portfolio Management and Kanban: An Empirical

Investigation with Agile and Lean Software Companies

Kanban practitioners and educators promoting Kanban argue that it can be used as

a tool for managing software projects, products, services, and other offerings in

companies’ portfolios. However, the literature lacks empirical evidence to back this

61

suggestion. In this regard, Paper V explored the role of Kanban in portfolio

management in software companies. Paper V answered RQ2.3.

Data was collected through face-to-face, semi-structured interviews with key

informants from seven software companies participating in the N4S program. In

total, seven interviews were conducted, with one interviewee from each company,

except for one company that had two key informants. The eight interviews resulted

in a total of 582 minutes of recorded material and 50 pages of interview transcripts.

The interviews were analysed against four goals of portfolio management: 1) tools

and methods for maximising portfolio value, 2) tools and methods for ensuring

balance in the portfolio, 3) tools and methods for ensuring that the portfolio reflects

business strategy, and 4) tools and methods for ensuring a proper number of

projects against organisational capacity.

These software companies use Kanban for portfolio management, but the

practice is in its early stages. Similar to software development and software

maintenance, Kanban in portfolio management brought visibility to the company’s

portfolio and helped identify the most important offerings and high-priority

activities, as well as improve resource allocation. This visibility helped the software

companies to obtain immediate feedback regarding their offerings from various

stakeholders, which was useful from the viewpoint of portfolio value maximisation.

Furthermore, software companies gained from implementing Kanban by limiting

the number of ongoing offerings in the portfolio and working to align the offerings

with company strategies. The results showed that the applicability of Kanban is not

limited to software development or maintenance; instead, it can also be applied to

portfolio management in software companies. The results would be helpful for

companies planning to implement Kanban for portfolio management. For future

research, Paper V suggested comprehensive studies on the use of Kanban for

portfolio management in both large and small software companies.

62

63

5 Discussion and Conclusion

The introduction of Kanban in software engineering has proved to be quite

successful. The body of knowledge on Kanban in software engineering is

dominated by consultants’ interpretations and claims in the context of software

companies. Undoubtedly, consultants make valuable contributions, but the

scientific body of knowledge on Kanban in software engineering is lacking. To

obtain better understanding of Kanban, this dissertation explored Kanban in

software engineering and industrial engineering.

5.1 Answer to RQ1: What is the understanding of Kanban in

software engineering based on literature?

Kanban in software engineering is similar to Toyota’s Kanban. It inherits four basic

characteristics: pulled production, decentralised control, limited WIP, and two

types of signals (i.e., production signals and transportation signals) (see Paper II).

Kanban in both software engineering and industrial engineering uses a card to

visualise each work item and signal the current work. WIP limits control the work,

and do not allow individuals to exceed system or team capacity. In software

development, WIP limits, continuous flow, and the pull system can be achieved by

using Kanban. Kanban focuses more on enabling task visualisation and self-

direction, so as to help team members become autonomous and improve their own

processes. Kanban in both industrial engineering and software engineering yields

benefits such as smoothing development flow, bringing visibility to the task status,

reducing cycle time, and improving quality.

In software engineering, the majority of the studies on Kanban have been

published since the year 2011 (see Paper I). The existing studies have used two

main principles of Kanban: workflow visualisation and WIP limit. Value stream

mapping is a popular method for visualising workflow. Task visualisation makes it

easier for the software development team to understand the overall workflow.

Kanban adoption in software companies and the accompanying research are

still in the early stages. Before 2013, no study elaborated how Kanban is used or

could be used in software development. The growing interest in using Kanban in

software companies has resulted from the focus of Kanban on development flow,

improving teams’ internal and external communication, and promotion of the pull

system. This growing interest is continuance and in recent years more studies are

reporting wider application of Kanban in software companies (Al-Baik & Miller

64

2016, Concas et al. 2013, Kerzazi & Robillard 2013, Laanti & Kangas 2015, Neely

& Stolt 2013, Sjøberg et al. 2012, Tripathi et al. 2015, Turner et al. 2013, Turner

2014). Further, some universities started to include Kanban introduction in software

engineering degree programmes curriculum (Ahmad et al. 2014a, Ahmad et al.

2014b, Heikkilä et al. 2016, Liskin et al. 2014, Scharlau 2013, Oza et al. 2013).

It is important to emphasize the understanding and visualisation of current

works, development processes, and related activities. Collective understanding of

workflow motivates the entire team to work collaboratively and control bottlenecks

in their work. For instance, when a task is blocking the workflow, software

development team members help each other to complete the task and move forward.

Workflow visualisation helps developers prioritise tasks efficiently and improves

communication inside and outside of software development teams. Furthermore,

transparency empowers development teams to interact openly with the

management, and once an issue emerges in the process of software development, it

can be resolved collectively. This aspect is important for achieving continuous

improvement (Kaizen).

Following visualisation and understanding of the current workflow, Kanban

ensures the minimisation of WIP in each development stage. The WIP limits help

software development team members to minimise context switching and focus on

a single task at a given time. Once a task is assigned to a team member, the member

should focus on completing it as soon as possible. Thus, individual team members

handle and control their own tasks better, which leads to improved quality of work

and avoidance of blockage in the workflow. In addition, WIP limits enable

development teams and other stakeholders to keep track of and distinguish

completed and WIP tasks.

It is recommended that the WIP limit should be implemented with consensus

between the development team and other related stakeholders. It is important to

limit WIP tasks based on team capacity, as opposed to some arbitrary schedules.

Once a team sets a WIP limit for its work, it will automatically find a way to use

the pull system—start pulling high-priority tasks from the backlog. In this way,

WIP limits and the pull system help ensure smooth flow of development work. It

is recommended for the teams when using Kanban to constantly Plan-Do-Check-

Act in order to enable Kaizen. Furthermore, pay attention to the work that is

flowing from backlog till completion. In software engineering, the use of various

instruments to measure flow has been reported, for example, cumulative flow

diagrams, lead time/cycle time, and defect rate.

65

Despite the benefits of using Kanban, software companies face a number of

challenges such as lack of experience in using Kanban, misunderstanding the

Kanban process, resisting change, and failing to adapt to changes in organisational

culture. Another hidden challenge is that software companies violate the

incremental change rule in the adoption of Kanban. For example, a software

company claimed that their process transition from Scrum to Kanban was made

overnight (Nikitina & Kajko-Mattsson 2011).

When introducing Kanban, it is recommended to not change the existing team

working practices or processes. To efficiently implement and adopt Kanban, it is

important to visualise the flow of value in the organisation while respecting the

existing process, roles, responsibilities, and titles. Kanban adoption requires

organisational support and time to become effective. Incremental change along

with organisational support will help diminish the resistance to the use of Kanban.

5.2 Answer to RQ2: How is Kanban used in software companies?

Kanban’s situational adaptation makes it a useful process management tool for all

types of work in software companies, including software development, software

maintenance, and portfolio management. The highest motivation factors in Kanban

adoption are to improve team communication, reduce time-to-market, improve

development flow and create transparency within the companies. Kanban acts as a

change method with a feedback mechanism catalysed by a pull system. Software

companies have used Kanban in software development, as elaborated by Anderson

(2010), and have achieved various benefits such as improved visibility and

transparency of work, improved communication, and better control of workflow

and WIP (see Paper III). These benefits are aligned and confirmed with the findings

of the literature review (see Paper I) and consultants claims.

The major challenges faced by software companies in the use of Kanban in

software development were lack of experience, misunderstanding the process,

resisting change, and failing to adapt to changes in organisational culture. Paper III

and IV suggested that, adopting Kanban requires organisational support and time

to become effective. In this regard, software companies should focus on double-

loop learning instead of single-loop learning. Argyris & Schön (1996)

distinguished between single- and double-loop learning in organisations. Single-

loop learning involves changing practice as problems arise to avoid the same

problem in the future. By contrast, double-loop learning involves challenging and

ultimately changing the underlying organisational culture (Argyris & Schön 1996,

66

Al-Baik & Miller 2016). Single-loop learning is about asking are we doing things

right? Double-loop learning is about asking are we doing the right things (Moe

2013). Software companies must create an environment in which people can

explore their underlying assumptions and compare the results of change actions

with the actual outcomes.

Software companies should provide freedom to individuals to control their

tasks and encourage collaborative work. In this way, not only the individuals but

also the entire company will become more skilled. It is recommended to provide

Kanban training and allow teams to experiment or pilot Kanban in their work. By

providing training, coaching, and allowing reasonable time for teams to pilot or

experiment with Kanban in their work, software companies can greatly increase the

speed and success of Kanban adoption.

Software companies are also taking advantage of using Kanban in software

maintenance (see Paper IV). Kanban can be used in situations where tasks change

frequently and unpredictably, for example, software maintenance. Software

maintenance work includes dealing with customers’ requests, related mainly to

improvements in the existing product or the incorporation of new features. The

participating companies provided Kanban training to software maintenance teams

and gave them sufficient time to experiment with it in their work. The establishment

of such a supportive environment helped individuals share their problems and

openly debate how to solve them. In addition, it promoted a learning culture in the

company. Such a culture helps people evolve gradually based on their experiences

by encouraging learning from failure.

With Kanban implementation, software maintenance teams mitigated

challenges such as the lack of work visibility, task prioritisation, communication

and collaboration, work synchronisation, and over-commitment. Furthermore, the

companies themselves experienced benefits such as increased visibility of tasks,

improvement of team morale, and better communication and knowledge sharing.

Dealing with legacy code required the movement of experts from one area to

another. Using Kanban made it easier to move experts or resources from one team

to another. By using Kanban in software maintenance, the teams’ actions in

response to urgent work were more spontaneous, and work could be pulled

according to priority. WIP limits improved software maintenance teams’

throughput and efficiency. The results suggest that Kanban is an evolutionary

method that can be optimised to a working situation in which tasks change

frequently, for instance, software maintenance.

67

Kanban implementation in software maintenance teams is an example of how

an organisation can apply the double-loop learning theory in practice (see Paper

IV). The companies provided an environment (e.g., Kanban board) where

information was shared openly and was available readily. The visualisation of tasks

allowed teams to explore the underlying assumptions openly. During the trial or

experimental period of Kanban use in their work, the team members jointly

protected each other in learning and risk taking. The teams were looking to

understand the system. The team members were involved in prioritisation of tasks,

defining policies, and moving tasks on the board upon completion. The teams

adopted Kanban in practice and enjoyed the freedom of individual pull, controlling

their own tasks, and focusing on collaboration when needed. Such an environment

helped ensure that the attempted improvements were achieved and sustained.

The growing interest in the use of Kanban in software companies is not limited

to software development and software maintenance. Various consultants have

claimed that Kanban is a good tool for higher management from the viewpoint of

managing software projects and services in their company portfolios. Paper V

confirmed and discusses that software companies have taken interest in the use of

Kanban for portfolio management. The participating companies claimed Kanban

helped provide visibility to software projects and services in the company’s

portfolio. Paper V provided a deeper understanding of Kanban implementation for

portfolio management in software companies. The software companies were using

Kanban in a similar fashion to that explained by Leffingwell (2010). The companies

experimented with a popular Kanban tool (i.e., the JIRA13 Kanban board) and

created a separate board for each of the following:

– Business-line Kanban, containing the releases of all products and services.

Here, business goals were linked using Kanban, which made visible the

investment in each product or service line. This helped the portfolio managers

to visualize the company’s activities holistically.

– Program-level Kanban, containing the features of a specific product or service.

This level served as a bridge between business lines and lower teams.

– Team-level Kanban, containing user stories related to a specific product or

service. Here, the actual development of the product and services took place.

The companies’ portfolio Kanban board visualised offerings across all business

units and teams. The portfolio Kanban boards helped users view and understand

13 https://www.atlassian.com/software/jira

68

the progress of their respective companies’ offerings, which were in various stages

(e.g., development, testing, in market). Additionally, the companies emphasised the

importance of getting immediate feedback from customers and the managers of the

various product and services in terms of the immediate delivery of offerings from

the viewpoint of portfolio value maximisation. In such situations, Kanban triggers

the need for communication and coordination within teams or business units.

Kanban helped the management representatives to identify high-priority projects

and services, and it brought their attention to the allocation of resources where

needed. In other words, Kanban helped the management representatives to balance

demand against capacity. Kanban did not balance the portfolio, but it provided

signals (for example, that the working pipeline is full) and, in turn, helped the

management to evaluate suitable available options at a given time and take

necessary actions.

5.3 Threats to Validity

Validity represents the trustworthiness of research results. It is important to

consider threats to validity during study design to increase the validity of the

findings. In this dissertation, threats to validity were considered throughout the

research process by following the guidelines outlined by Runeson & Höst (2009)

and Yin (2009). The four aspects of validity are: construct validity, internal validity,

external validity, and reliability.

 Construct validity reflects the extent to which the studied operational measures

really represent what the researcher had in mind and what is investigated according

to the research questions (Runeson & Höst 2009). For example, there is a risk that

questions can be misunderstood or not interpreted in the same way by the researcher

and the respondents. Therefore, the survey (Paper III) and interviews (Papers III,

IV and V) were pre-tested and piloted internally with researchers and collaborating

experts from the selected software companies. At the beginning of each interview

session, the interviewees were introduced to key concepts and terminologies used

in the study in order to avoid misinterpretation. An additional potential threat is the

selection of interviewees with a view to obtaining appropriate data in order to

answer the research questions. Therefore, the key informant technique was applied

for selecting the pool of interviewees.

Reliability is concerned with the extent to which data collection and analysis

are dependent on specific researchers (Runeson & Höst 2009). The risk is that

researcher’s preconceptions in data collection and analysis may affect the reliability

69

of a study. To improve reliability and reduce the risk of researcher’s bias,

investigator triangulation was applied in data collection and analysis. The key

informants’ statements minimised researcher’s bias in the data collection process;

however, the data collected from key informants may be affected by their own

subjective opinions and knowledge.

Internal validity is a concern when examining causal relations (Runeson &

Höst 2009). According to Yin (2009), internal validity is primarily related to

explanatory studies ‘when an investigator is trying to explain how and why event x

led to event y’. In exploratory research, as conducted in this dissertation, internal

validity is concerned with the inferences made when establishing findings and

drawing conclusions from empirical evidence. Therefore, data triangulation was

performed to ensure internal validity; different types of studies were conducted,

both qualitative and quantitative data was collected, and participants had different

profiles in the studies. In paper IV, data is only collected through single source

‘interviews’. However, to mitigate this threat data was collected from two different

companies in which different roles of the participants were taken into consideration.

External validity is concerned with the extent to which findings are

generalizable and are of interest to other people outside the investigated case

(Runeson & Höst 2009). Often, external validity depends on the nature of sampling

used in a study. The studies reported in this dissertation were conducted in the Finnish

software companies selected from the Cloud Software and the N4S programs. These

companies have branches in European countries, the United States, and Asia, and they

are active users of the Lean and Kanban. The participating companies differed in terms

of size and nature of business, which might have affected the results, as might have

other factors such as company culture and application area. Finnish software

companies cannot be assumed to represent Kanban software companies in general.

Although Finnish software companies are well-known for their efficient use of Agile

and Lean (Bilbao-Osorio et al. 2013, Rodríguez 2013), further study is required to help

generalise the results.

5.4 Summary of Contributions

The synthesis of the studies conducted in this dissertation are summarised in the

following four main contribution points.

1. There is a growing trend of Kanban use in software companies. Based on the

studies and latest literature, it can be seen that in software engineering, the use

70

of Kanban was started in software development, and its implementation is

being extended to software maintenance and portfolio management. Software

companies are extensively using two principles of Kanban, (1) visualisation of

work and (2) limited WIP, to achieve constant flow and quick delivery to end

users. The results of the studies confirm that visualising and sharing work

progress openly across all levels enhances transparency and that teams obtain

the bigger picture of their work and make collective decisions easily. For

instance, the WIP limit number is selected through a consensus between the

development team and related stakeholders.

2. Kanban training and experimentation help to enable double-loop learning.

The results of the studies show that the successful adoption of Kanban requires

proper Kanban training and management support along with a combination of

internal and external change agents, mentors, and coaches. The studies

confirmed that when people are educated and the expected benefits of Kanban

are communicated, they will more likely be convinced to adopt Kanban in their

work. The study results also show that it is important for management to

understand that the adoption of Kanban in various teams requires

experimentation with the help of internal and external change agents or coaches.

The results also show that such experimentation creates an environment of

continuous learning.Avoid big bang Kanban transition and blend Kanban with

other agile methods. All the studies conducted in this dissertation

recommended that when introducing Kanban, no drastic changes should be

made in the workplace. The focus is to evolve work processes incrementally to

eliminate the initial fear of Kanban use and avoid resistance from inside the

teams or from the organisational culture. The results of the studies conducted

in this dissertation show that Kanban was typically used in combination with

Scrum in software companies.

3. The proactive role of team leaders and higher management is essential in

Kanban use. For instance, the study results show that the team leader should

help team members to prioritise work based on its severity or urgency and

encourage a pull system. This practice enables team members to autonomously

pull a task from the Kanban board as their capacity frees up and removes the

option of managers pushing tasks to individuals.

71

5.4.1 Implications for Practice

This dissertation provides insight into Kanban implementation in software

companies. A strong practitioner-driven movement and the results of this

dissertation support the idea of using Kanban in software engineering. Kanban is a

good way to execute the Lean principle and obtain results in software companies

that are similar to those produced in industrial engineering. The results of this

doctoral dissertation will be useful for software companies from the viewpoint of

understanding how peers are using Kanban in software development, software

maintenance, and portfolio management.

The dissertation shows that visualisation and transparency are important in

software product or services development, where many tasks run in parallel. In this

regard, Kanban provides visibility to tasks and workflow, stresses the importance

of changing from a push to a pull system, and limits the number of simultaneous

WIP tasks, which helps in waste prevention.

The simplicity of Kanban facilitates quick situational adaptation, but many

people in software companies require Kanban training to become familiar with the

concept. For example, Paper IV showed that providing basic Kanban training

facilitated fast adoption and the achievement of target outcomes. Individuals in an

organisation must understand that Kanban is a continuous process improvement

journey, and each company needs to explore what works best in its specific context.

Kanban adoption implies deep changes in company culture and people’s

mindsets. An abrupt transition to a new way of working often leads to failure. It is

recommended that software companies use the double-loop learning theory

(Argyris & Schön 1996) when introducing a new way of working such as Kanban.

Kanban encourages teams to constantly Plan-Do-Check-Act in repeated cycles, so

that they can learn from their mistakes and move towards continuous improvement.

Such learning results in organisational behaviour that enhances the underlying

learning. Additionally, the double-loop learning theory helps with parallel

optimisation of current practices and experimentation with new ones. To optimise

the advantages of Kanban use, software companies should view it as an ongoing

and continuous process of improvement.

5.4.2 Implications for Research

Kanban has received considerable attention in the software industry. However, the

body of research on Kanban is still in its infancy, and interpreting Kanban in

72

software engineering is an emerging topic. This research shows a clear need for

more empirical studies of Kanban in software engineering. Kanban has five

different variations in industrial engineering, while in software engineering, Toyota

Kanban is adapted. This dissertation has contributed to improving the

understanding of the use of Kanban, as well as the associated benefits and

challenges, in various contexts in software companies, namely, software

development, software maintenance, and portfolio management. This is a new

research area where significant insights can be gained.

Kanban is easy to understand, but the concept is broad. Owing to domain-

specific differences, different interpretations are necessary in software engineering

more than in industrial engineering. For instance, in software development,

different intangible products are created each time, whereas in manufacturing, the

same tangible products are made repeatedly.

5.5 Recommendations for Further Research

Despite the growing popularity of Kanban use in software companies, the existing

research on Kanban is very limited. Limited scientific support is available to

software companies interested in adopting Kanban. Replicating or conducting more

extensive studies similar to those conducted in this dissertation will be helpful to

confirm or refute the findings reported herein. Using various research methods such

as direct observation and experimentation with Kanban practitioners will help deepen

understanding of this concept.

This dissertation identified various challenges in Kanban implementation, each of

which is a candidate to be studied in greater detail. It would be interesting to conduct

experiments on Kanban use in software development in multicultural distributed

environments. Large-scale software development is difficult owing to a number of

dependencies faced by software development teams. Technical dependencies

among software components create social dependencies among the collaborative

teams, which result in continuous efforts in terms of communication. It would be

useful to investigate how Kanban supports collaborative software development by

visualising socio-technical dependencies in software companies. Additionally, it

would be worthy to explore the human aspects of the Kanban transformation

process, such as participants’ perceptions of the change process, impediments to

change, and acceleration of change.

The existing limited literature has explored the dynamics of Kanban, albeit with a

tendency to focus on the obtained benefits or, to a lesser extent, the pitfalls of Kanban

73

implementation in brownfield software development projects. Brownfield development

could be one developing and deploying new software feature or systems in the existing

legacy software applications or systems (Boehm 2009).Furthermore, no study has been

reported on the use of Kanban in greenfield software development projects (Ahmad et

al. 2016 a). A Greenfield project could be one developing a system for a totally new

environment, without legacy systems (Boehm 2009). The researchers of this study plan

to investigate the hidden pitfalls of Kanban in greenfield and brownfield software

development projects to discover the reasons underlying the failure of Kanban. An

additional goal is to shed light on the phenomenon by discussing similar experiences

among industry experts and uncovering topics that are the most challenging for

software companies.

74

75

References

Abrahamsson P, Conboy K & Wang X (2009) ‘Lots done, more to do’: the current state of
Agile systems development research. European Journal of Information Systems 18(4):
281–284.

Abrahamsson P, Salo O, Ronkainen J & Warsta J (2002) Agile software development
methods: review and analysis. VTT Publications 478.

Abrahamsson P, Warsta J, Siponen MT & Ronkainen J (2003) New directions on Agile
methods: a comparative analysis. IEEE Proceedings of 25th International Conference
on Software Engineering: 244–254.

Agarwal A, Shankar R, Tiwari MK (2006) Modeling the metrics of lean, agile and leagile
supply chain: An ANP-based approach. European Journal of Operational Research
173(1):211–225.

Al-Baik O & Miller J (2014) The Kanban approach, between agility and leanness: a
systematic review. International Journal of Empirical Software Engineering: 1–37.

Al-Baik O & Miller J (2016). Kaizen Cookbook: The Success Recipe for Continuous
Learning and Improvements. IEEE 49th Hawaii International Conference on System
Sciences: 5388–5397.

Ambler SW (2009) Scaling Agile software development through Lean governance.
Proceedings of IEEE Computer Society ICSE Workshop on Software Development
Governance: 1–2.

Anders, D. (2004) Agile management for software engineering: Applying the theory of
constraints for business results. Upper Saddle River, New Jersey, Prentice Hall.

Anderson D (2003) Agile management for software engineering: applying the theory of
constraints for business results. Upper Saddle River, New Jersey, Prentice Hall.

Anderson D (2010) Kanban: Successful Evolutionary Change for Your Technology
Business. Sequim, Washington Blue Hole Press.

Anderson D & Roock A (2011) An Agile evolution: why Kanban is catching on in Germany
and around the world. Cutter IT Journal. 24: 6–17.

Anderson D, Concas G, Lunesu MI, & Marchesi M (2011) Studying lean-kanban approach
using software process simulation. International Conference on Agile Software
Development, Springer Berlin Heidelberg: 12–26.

Andrezak, M., & Schiffer, B. (2010). Kanban and Technical Excellence or: Why Daily
Releases Are a Great Objective to Meet. Proceedings of Lean Enterprise Software and
Systems. Springer Berlin Heidelberg: 115–117.

Agile Manifesto (2001) Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningha, W,
Fowler M, Grenning J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin RC,
Mellor S, Schwaber K, Sutherland J & Thomas D Manifesto for Agile Software
Development. URI: http://www.agilemanifesto.org/. Cited 2016/06/06.

Ahmad, MO, Liukkunen K, & Markkula J (2014a) Student perceptions and attitudes towards
the software factory as a learning environment. Proceedings of IEEE Global
Engineering Education Conference: 422–428.

76

Ahmad MO, Markkula J, & Oivo M (2016a) Pitfalls of Kanban in Brownfield and Greenfield
Software Development Projects. International Conference on Agile Software
Development: 296–299.

Ahmad MO, Markkula J, & Oivo M (2016b). Insights into the perceived benefits of Kanban
in software companies: Practitioners’ views. International Conference on Agile
Software Development: 156–168.

Ahmad MO, Markkula J, & Oivo M (2014b) Kanban for software engineering teaching in
Software Factory learning environment. World Transactions on Engineering and
Technology Education (WIETE) 12(3): 338–343.

Argyris, C., Schön, D.A (1996) On Organizational Learning II: Theory, Method and Practise.
Reading, Mass, Indianapolis IN, Addison Wesley.

Babar MA & Zhang H (2009) Systematic literature reviews in software engineering:
preliminary results from interviews with researchers. Proceedings of the 3rd IEEE
International Symposium on Empirical Software Engineering and Measurement.
Computer Society: 346–355.

Basili VR (1993) The experimental paradigm in software engineering. Proceedings of the
International Workshop on Experimental Software Engineering Issues: Critical
Assessment and Future Directions: 3–12.

Becker M, & Szczerbicka H (1998) Modeling and optimization of Kanban controlled
manufacturing systems with GSPN including QN. IEEE International Conference on
Systems, Man, and Cybernetics.1: 570-575.

Bilbao-Osorio B, Dutta S & Lanvin B (2013) The global information technology report 2013.
Growth and jobs in a hyper-connected world. Wold economic forum. URI:
http://www.weforum.org/reports/global-information-technology-report-2013. Cited
2016/06/29.

Bhim S, Garg SK, Sharma SK, Grewal C (2010) Lean implementation and its benefits to
production industry, International Journal of Lean Six Sigma. 1(2): 157-168.

Burrows M, & Hohmann L (2014) Kanban from the Inside: Understand the Kanban Method,
connect it to what you already know, introduce it with impact. Chicago, Blue Hole Press.

Boeg J (2012) Priming Kanban: A 10 step guide to optimizing flow in your software delivery
system. 2nd edition. Aarhus Trifork, Chronografisk Margrethepladsen A/S Copenhagen.

Boehm B, Lane J, Koolmanojwong S & Turner R (2014) The incremental commitment spiral
model: principles and practices for successful systems and software. Crawfordsville, IN,
Addison-Wesley Professional.

Boehm, B. (2009). Applying the Incremental Commitment Model to Brownfield Systems
Development. Proceedings of 7th Annual Conference on Systems Engineering Research.

Brewer J & Hunter A (2006) Foundations of multimethod research: synthesizing styles.
California, Sage Publications, Inc.

Cawley O, Wang X & Richardson I (2013) Lean software development–what exactly are we
talking about? In: Lean enterprise software and systems. Berlin Heidelberg, Springer:
16–31.

77

Chai L (2008) E-based inter-enterprise supply chain Kanban for demand and order fulfilment
management. IEEE International Conference on Emerging Technologies and Factory
Automation: 33–35.

Cloud Software Program (2010) URI: http://www.cloudsoftwareprogram.org/. Cited
2016/06/ 25.

Cocco L, Mannaro K, Concas G & Marchesi M (2011) Simulating Kanban and Scrum vs.
Waterfall with system dynamics. IEEE proceedings of Agile processes in software
engineering and extreme programming: 117–131.

Collis J & Hussey R (2009) Business research: A Practical Guide for Undergraduate and
Postgraduate Students 3rd Edition. New York, Palgrave MacMillan.

Conboy K (2009) Agility from first principles: reconstructing the concept of agility in
information systems development. Information Systems Research 20(3): 329–354.

Concas G, Lunesu MI, Marchesi M & Zhang H (2013) Simulation of software maintenance
process, with and without a work-in-process limit. Journal of Software: Evolution and
Process 25(12): 1225–1248.

Creswell JW (2009) Research design: Qualitative, quantitative, and mixed methods
approaches. 3rd ed. California, SAGE Publications, Incorporated.

Creswell (1993) Research Design – Qualitative and quantitative approaches. Thousand Oaks,
Sage Publications.

Cutter (2011) The Viral Growth of Kanban in the Enterprise, The journal of information
technology management. 3-29. URI: https://leankit.com/blog/wp-content/uploads/
2011/12/Cutter_on_Kanban_from_LeanKit_Kanban.pdf. Cited 2016/07/03.

Dingsøyr T, Dybå T & Abrahamsson P (2008) A preliminary roadmap for empirical research
on agile software development. IEEE proceedings of Agile Conference: 83–94.

Dingsøyr T, Nerur S, Balijepally V & Moe NB (2012) A decade of agile methodologies:
towards explaining agile software development. Journal of Systems and Software 85(6):
1213–1221.

Dybå T & Dingsøyr T (2008) Empirical studies of agile software development: a systematic
review. Information and Software Technology 50(9): 833–859.

Dyba T & Dingsoyr T (2009) What do we know about Agile software development? IEEE
Software, 6–9.

Dybå T, Kitchenham BA & Jorgensen M (2005) Evidence-based software engineering for
practitioners. IEEE Software, 22(1): 58–65.

Denzin NK & Lincoln YS (2005) Handbook of qualitative research. 3rd Edition. Thousands
Oaks, Sage Publications.

Easterbrook S, Singer J, Storey MA & Damian D (2008) Selecting empirical methods for
software engineering research. In: Shull F, Singer J & Sjøberg DIK (eds) Guide to
advanced empirical software engineering. London, Springer: 285–311.

Ebert C, Abrahamsson P & Oza N (2012) Lean software development. IEEE Software 5:
22–25.

78

Fagerholm F, Oza N, & Münch J (2013) A platform for teaching applied distributed software
development: The ongoing journey of the Helsinki software factory. IEEE 3rd
International Workshop Collaborative Teaching of Globally Distributed Software
Development: 1-5.

Fowler Jr, FJ (2013). Survey research methods. Fifth Edition. California Sage publications.
 Gregory P, Barroca L, Sharp H, Deshpande A & Taylor K (2016) The challenges that

challenge: engaging with Agile practitioners’ concerns. Journal of Information and
Software Technology 77: 92–104.

Gross JM & McInnis KR (2003) Kanban made simple: demystifying and applying Toyota’s
legendary manufacturing process. New York, AMACOM.

Gravel M, & Price WL (1988) Using the Kanban in a job shop environment. The
International Journal of Production Research, 26(6): 1105–1118.

Greaves K (2011). Taming the Customer Support Queue. IEEE proceedings of Agile
Conference: 54–160.

Hallam CR (2003) Lean enterprise self-assessment as a leading indicator for accelerating
transformation in the aerospace industry, Doctoral dissertation, Massachusetts Institute
of Technology, Cambridge, MA. URI: http://dspace.mit.edu/handle/1721.1/29216 .
Cited 2016/07/06.

Heeager LT & Rose J (2015) Optimising Agile development practices for the maintenance
operation: nine heuristics. International Journal of Empirical Software Engineering
20(6): 1762–1784.

Heikkilä VT, Paasivaara M, & Lassenius C (2016) Teaching university students Kanban
with a collaborative board game. In Proceedings of the 38th International Conference
on Software Engineering Companion: 471–480.

Hibbs C, Jewett S & Sullivan M (2009) The art of Lean software development: a practical
and incremental approach. 1st ed. Sebastopol, CA, O’Reilly Media, Inc.

Highsmith J (2002) Agile software development ecosystems. The agile software
development series. Boston MA, Addison-Wesley.

Hiranabe K (2008) Kanban applied to software development: from Agile to Lean. URL:
http://www.infoq.com/articles/hiranabe-lean-agile-Kanban. Cited 2016/04/08.

Hove SE & Anda B (2005) Experiences from conducting semi-structured interviews in
empirical software engineering research. Proceeding of 11th IEEE International
Software Metrics Symposium: 10–23.

Höst M, Regnell B, och Dag JN, Nedstam J, Nyberg C (2001) Exploring bottlenecks in
market-driven requirements management processes with discrete event simulation.
Journal of Systems and Software 59(3): 323–332.

Huang CC & Kusiak A (1996) Overview of Kanban systems. International Journal of
Computer Integrated Manufacturing 9(3): 169–189.

Hurtado J (2013) Open Kanban - an open source, ultra-light, Agile and Lean method. URI:
http://www.agilelion.com/agile-kanban-cafe/open-kanban. Cited 2016/06/26.

79

Ikonen M, Pirinen E, Fagerholm F, Kettunen P & Abrahamsson P (2011) On the impact of
Kanban on software project work: an empirical case study investigation. Proceedings
of 16th IEEE International Conference on Engineering of Complex Computer Systems:
305–314.

Ikonen M (2011) Lean thinking in software development: Impacts of kanban on projects.
PhD Thesis, https://helda.helsinki.fi/handle/10138/28453. Cited 2016/04/04.

Ikonen M, Kettunen P, Oza N, & Abrahamsson P (2010 a) Exploring the sources of waste
in kanban software development projects. Proceedings of IEEE 36th EUROMICRO
Conference on Software Engineering and Advanced Applications: 376–381.

Ikonen M (2010 b) Leadership in Kanban software development projects: A quasi-controlled
experiment. Lean Enterprise Software and Systems. Berlin Heidelberg, Springer: 85–
98.

Kalliney M (2009) Transitioning from Agile development to enterprise product management
agility. Proceedings of IEEE International Agile conference: 209–213.

Kettunen P & Laanti M (2008) Combining agile software projects and large-scale
organizational agility. Journal of Software Process: Improvement and Practice -
Special Issue on Systems Interoperability 13(2): 183–193.

Kerzazi N, & Robillard PN (2013) Kanbanize the release engineering process. Proceedings
of the IEEE 1st International Workshop on Release Engineering: 9–12.

King N (1998) Template analysis. In: Symon G & Cassell C. (ed.) Qualitative methods and
analysis in organizational research: a practical guide. Thousand Oaks CA, Sage
Publications Ltd.

Kitchenham B (2004) Procedures for undertaking systematic reviews. Technical report,
Keele University and National ICT Australia. URI:
http://csnotes.upm.edu.my/kelasmaya/pgkm20910.nsf/0/715071a8011d4c2f482577a7
00386d3a/$FILE/10.1.1.122.3308[1].pdf Cited 2016/06/04.

Kitchenham B & Charters S (2007) Guidelines for performing systematic literature reviews
in software engineering. EBSE Technical Report, EBSE-2007-01. URI:
http://s3.amazonaws.com/academia.edu.documents/35830450/2_14346538958874215
1.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1467614023&Sig
nature=tBZk0gvVA%2FUPpBLwqVoQtycCtGQ%3D&response-content-
disposition=inline%3B%20filename%3DSystematic_Literature_Reviews_SLR.pdf
Cited 2016/06/04.

Kim CS, Spahlinger DA, Kin JM, Coffey RJ, & Billi JE (2009) Implementation of lean
thinking: one health system's journey. The Joint Commission Journal on Quality and
Patient Safety 35(8): 406–413.

Kniberg H & Skarinm M (2010) Kanban and Scrum-making the most of both. Enterprise
software development series C4Media, Publisher of InfoQ.com.

Kniberg H (2011) Lean from the trenches: Managing large-scale projects with Kanban
Raleigh, NC, Pragmatic Bookshelf.

Krafcik JF (1988) The triumph of the Lean production system. MIT Sloan Management
Review 30(1): 41–52.

Kumar CS & Panneerselvam R (2007) Literature review of JIT-KANBAN system.
International Journal of Advanced Manufacturing Technology 32(3-4): 393–408.

80

Kumar N, Stern LW & Anderson JC (1993) Conducting interorganizational research using
key informants. Academy of Management Journal 36 (6): 1633–1651.

Laanti M (2008) Implementing program model with Agile principles in a large software
development organization. 32nd Annual IEEE International Computer Software and
Applications Conference: 1383–1391.

Laanti M & Kangas M (2015) Is Agile portfolio management following the principles of
large-scale Agile? Case study in Finnish Broadcasting Company Yle. Proceeding of
IEEE Agile conference: 92–96.

Laanti M, Similä J & Abrahamsson P (2013) Definitions of Agile software development and
agility. European Conference on Software Process Improvement. Berlin Heidelberg,
Springer: 247–258.

Larman C (2003) Agile and iterative development: a manager’s guide. Boston, MA
Addison-Wesley Professional.

Larman C & Vodde B (2008) Scaling Lean & Agile development: thinking and
organisational tools for large-scale Scrum. Boston, MA Addison-Wesley Professional.

Leffingwell D (2010) Agile software requirements: Lean requirements practices for teams,
programs, and the enterprise. Boston, MA Addison-Wesley Professional.

Leffingwell D & Reinertsen D (2011) Agile software requirements. Upper Saddle River,
Boston, MA Addison-Wesley.

Liker JK (2004) The Toyota way: 14 Management Principles from the World's Greatest
Manufacturer. New York McGraw-Hill Education.

Liker JK & Hoseus M (2008) Toyota culture: the heart and soul of the Toyota way. New
York, McGraw-Hill.

Liskin O, Schneider K, Fagerholm F, & Münch J (2014) Understanding the role of
requirements artifacts in kanban. Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering: 56–63.

Maples C (2009) Enterprise agile transformation: the two-year wall. Proceedings of IEEE
Agile Conference: 90–95.

Maassen O, & Sonnevelt J (2010) Kanban at an Insurance Company (Are You Sure?).
Proceedings of international Conference on Agile Software Development. Berlin
Heidelberg, Springer: 297–306

Magee D (2008) How Toyota became #1: Leadership Lessons from the World's Greatest
Car Company New York, Penguin Group.

Mandic V, Oivo M, Rodriguez P, Kuvaja P, Kaikkonen H & Turhan B (2010) What is
flowing in Lean Software Development? Proceedings of the 1st International
Conference on Lean Enterprise Software and Systems: 72–84.

Mandić V, Markkula J & Oivo M (2009) Towards multi-method research approach in
empirical software engineering. Proceedings of Product-Focused Software Process
Improvement. Berlin Heidelberg, Springer: 96–110.

Mehta M, Anderson D & Raffo D (2008) Providing value to customers in software
development through lean principles. Software Process: Improvement and Practice
13(1): 101–109.

81

Middleton P (2001) Lean software development: two case studies. Software Quality Journal
9(4): 241–252.

Middleton P & Joyce D (2012) Lean software management: BBC Worldwide case study.
IEEE Transactions on Engineering Management 59(1): 20–32.

Middleton P & Sutton J (2005) Lean software strategies: proven techniques for managers
and developers. productivity. New York CRC Productivity Press, a division of Kraus
Productivity organisation, Ltd.

Mujtaba S, Feldt R & Petersen K (2010) Waste and lead time reduction in a software product
customization process with value stream maps. Proceedings of IEEE 21st Australia
Software Engineering Conference: 139–148.

Münch J, Armbrust O, Kowalczyk M & Soto M (2012) Software process definition and
management. The Fraunhofer IESE Series on Software and Systems Engineering Berlin
Heidelberg, Springer-Verlag.

Moe NB (2013) Key Challenges of Improving Agile Teamwork. Proceedings of
International Conference on Agile Software Development: 76–90.

Neely S, & Stolt S (2013) Continuous delivery? easy! just change everything (well, maybe
it is not that easy). Proceedings of IEEE Agile Conference: 121-128.

N4S (2014) URI: http://www.n4s.fi/en/. Cited 2016/05/27.
Nikitina N, & Kajko-Mattsson M (2011) Developer-driven big-bang process transition from

Scrum to Kanban. Proceedings of the International Conference on Software and
Systems Process ACM: 159–168.

Norrmalm T (2011) Achieving lean software development: implementation of agile and lean
practices in a manufacturing-oriented organization URI http://www.diva-
portal.org/smash/get/diva2:400627/FULLTEXT01.pdf Cited 2016/06/28.

Nurdiani I, Börstler J, & Fricker SA (2016). The Impacts of Agile and Lean Practices on
Project Constraints: A Tertiary Study. Journal of Systems and Software 119(C): 162–
183.

Ohno T (1988) Toyota production system: Beyond Large-Scale Production New York, CRC
Press.

Oza N, Fagerholm F, & Münch J (2013) How does Kanban impact communication and
collaboration in software engineering teams?. Proceedings of IEEE 6th International
Workshop on Cooperative and Human Aspects of Software Engineering: 125–128.

 Patton MQ (1990) Qualitative evaluation and research methods. SAGE Publications, Inc.
Pernstål J, Feldt R & Gorschek T (2013) The Lean Gap: a review of Lean approaches to

large-scale software systems development. Journal of Systems and Software 86(11):
2797–2821.

Petersen K, & Wohlin C (2009) A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. Journal of
systems and software 82(9): 1479–1490.

Petersen K, & Wohlin C (2011) Measuring the flow in lean software development. Journal
of Software: Practice and Experience 41(9): 975–996.

Poppendieck M & Cusumano M (2012) Lean software development: a tutorial. IEEE
Software 29(5): 26–32.

82

Poppendieck M & Poppendieck T (2003) Lean software development: an Agile toolkit.
Boston MA, Addison Wesley.

Poppendieck M & Poppendieck T (2007) Implementing Lean software development: from
concept to cash. Boston MA, Addison-Wesley.

Poppendieck M & Poppendieck T (2009) Leading Lean software development: results are
not the point. Boston MA, Pearson Education.

Rahman, N. A. A., Sharif, S. M., & Esa, M. M. (2013). Lean manufacturing case study with
Kanban system implementation. International Conference on Economics and Business
Research, Elsevier Procedia Economics and Finance 7:174–180.

Radnor ZJ, & Boaden R (2004) Developing an understanding of corporate anorexia.
International Journal of Operations & Production Management 24(4): 424–440.

Reinertsen DG (2009) The principles of product development flow: second generation Lean
product development. Redondo Beach CA Celeritas Publishing.

Rodríguez P (2013) Combining Lean thinking and Agile software development: how do
software-intensive companies use them in practice? PhD thesis URI:
http://herkules.oulu.fi/isbn978952620332. Cited 2016/02/18.

Rother M, & Shook J (1999) Learning to see: value stream mapping to add value and
eliminate MUDA. Cambridge MA, Lean Enterprise Institute.

Rodríguez P, Mikkonen K, Kuvaja P, Oivo M & Garbajosa J (2013) Building Lean thinking
in a telecom software development organization: strengths and challenges. Proceedings
of International Conference on Software and System Process: 98–107.

Runeson P & Höst M (2009) Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering an International Journal 14(2):
131–164.

Rodríguez P, Partanen J, Kuvaja P, & Oivo M (2014) Combining lean thinking and agile
methods for software development: A case study of a Finnish provider of wireless
embedded systems detailed. IEEE proceedings of 47th Hawaii International Conference
on System Sciences: 4770–4779.

Rodríguez P, Mikkonen K, Kuvaja P, Oivo M, & Garbajosa J (2013) Building lean thinking
in a telecom software development organization: strengths and challenges. Proceedings
of International Conference on Software and System Process: 98–107.

Rodríguez P, Markkula J, Oivo M, & Turula K (2012) Survey on agile and lean usage in
Finnish software industry. Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement: 139–148.

Rautiainen K, von Schantz J, Va J (2011) Supporting Scaling Agile with Portfolio
Management: Case Paf.com. 44th IEEE Hawaii International Conference on System
Sciences: 1–10.

Seaman CB (1999) Qualitative methods in empirical studies of software engineering.
Software Engineering, IEEE Transactions on software engineering 25(4): 557–572.

Seikola M, Loisa H & Jagos A (2011) Kanban implementation in a telecom product
maintenance. Software Engineering and Advanced Applications. Proceedings of IEEE
37th EUROMICRO Conference: 321–329.

Shalloway A (2010) The real differences between Kanban and Scrum. URI:

83

http://www.netobjectives.com/blogs/real-differences-between-kanban-and-scrum.
Cited 2016/02/10.

Shalloway A, Beaver G & Trott JR (2009) Lean-Agile software development: achieving
enterprise agility. Boston MA, Pearson Education, Addison-Wesley.

Shalloway A (2011) Demystifying Kanban. Cutter IT Journal. URI:
http://www.netobjectives.com/files/resources/articles/Demystifying-Kanban.pdf Cited
2016/05/08.

Scharlau, B. A. (2013) Games for teaching software development. Proceedings of the 18th
ACM conference on Innovation and technology in computer science education: 303–
308.

Shinkle CM (2009) Applying the Dreyfus Model of Skill Acquisition to the adoption of
Kanban Systems at Software Engineering Professionals (SEP), IEEE proceedings of
Agile international conference: 186–191.

Shingo S. (1989) A study of the Toyota Production System: From an Industrial Engineering
Viewpoint. New York, Productivity Press.

Shinkle CM & Shihkle CM (2009) Applying the Dreyfus Model of Skill Acquisition to the
adoption of Kanban systems at Software Engineering Professionals (SEP). IEEE Agile
Conference: 186–191.

Shull F, Singer J & Sjøberg DI (2008) Guide to advanced empirical software engineering.
London Springer-Verlag.

Sjøberg DI, Johnsen A & Solberg J (2012) Quantifying the effect of using Kanban versus
Scrum: a case study. IEEE Software 29(5): 47–53.

Stone, K. B. (2012). Four decades of lean: a systematic literature review. International
Journal of Lean Six Sigma 3(2): 112–132.

Sugimori Y, Kusunoki K, Cho F & Uchikawa S (1977) Toyota production system and
Kanban system materialization of just-in-time and respect-for-human system.
International Journal of Production Research 15(6): 553–564.

Taylor S & Bogdan R (1984) Introduction to qualitative research methods: the search for
meanings, New York Wiley-Interscience publication John Wiley & Sons.

Thun, J. H., Drüke, M., & Grübner, A. (2010) Empowering Kanban through TPS-principles–
an empirical analysis of the Toyota Production System. International Journal of
Production Research 48(23):7089–7106.

Turner R, Lane J, Ingold D & Madachy R (2013) A Lean approach to improving SE visibility
in large operational systems evolution. Monterey CA, Naval Postgraduate School.

Turner R (2014) Value-based scheduling in system of systems evolution. Proceedings of 9th
IEEE International Conference on System of Systems Engineering: 301–306.

Tokatli, N. (2008) Global sourcing: insights from the global clothing industry—the case of
Zara, a fast fashion retailer. Oxford Journals: Journal of Economic Geography 8(1): 21–
38.

Terlecka, K. (2012) Combining Kanban and Scrum - Lessons from a Team of Sysadmins.
Proceedings of international agile conference: 99–102.

84

Tripathi N, Rodríguez P, Ahmad MO, & Oivo M (2015) Scaling Kanban for Software
Development in a Multisite Organization: Challenges and Potential Solutions.
Proceedings of international conference on agile software development: 178–190.

Venables, M. (2005) Boeing: going for lean [lean manufacturing]. The Institution of
Engineering and Technology, IEE Manufacturing Engineer 84(4): 26–31.

Versionone (2016) The 10th Annual State of Agile Survey. Annual State of Agile Survey.
URI: http://stateofagile.versionone.com/ Cited 2016/06/05.

Wang X, Conboy K & Cawley O (2012) Leagile software development: an experience report
analysis of the application of Lean approaches in Agile software development. Journal
of System and Software 85(6): 1287–1299.

Wang X, Lane M & Conboy K (2011) From Agile to Lean: the perspectives of the two Agile
online communities of interest. 19th European Conference on Information Systems.
paper 209.

West D & Hammond JS (2010) The Forrester wave: Agile development management tools.
Q2 2010. Cambridge MA Forrester Research.

Wijewardena T (2011) Do you dare to ask your HR manager to practice Kanban? The
experience report of an offshore software company in Sri Lanka introducing Agile
practices into its human resource (HR) department. Proceedings of Agile conference:
161–167.

Williams L (2012) What Agile teams think of Agile principles. ACM Magazine of
Communications 55(4): 71–76.

Wohlin C & Aurum A (2014) Towards a decision-making structure for selecting a research
design in empirical software engineering. Empirical Software Engineering an
International Journal: 1–29.

Womack JP & Jones DT (1996) Lean thinking: Banish waste and create wealth in your
organisation. New York, Rawson Associates.

Womack JP, Jones DT & Roos D (1990) The Machine That Changed the World: The Story
of Lean Production: How Japan’s Secret Weapon in the Global Auto Wars Will
Revolutionize Western Industry. New York, Rawson Associates.

Wood M, Daly J, Miller J & Roper M (1999) Multi-method research: an empirical
investigation of object-oriented technology. Journal of Systems and Software, Elsevier
48(1): 13–26.

Yin RK (2009) Case study research: design and methods. Thousand Oaks California, Sage
Publications.

Ziskovsky B, & Ziskovsky J (2007) Doing more with less–Going Lean in education. A
White Paper on Process Improvement in Education, Lean Education Enterprises Inc.
Shoreview, Minnesota: 1–19.

Zhang Y, Qu T, Ho O, & Huang GQ (2011) Real-time work-in-progress management for
smart object-enabled ubiquitous shop-floor environment. International Journal of
Computer Integrated Manufacturing 24(5): 431–445.

Zang JJ (2011) A Never Ending Battle for Continuous Improvement. In proceedings of
international conference on agile software development, Springer Berlin Heidelberg.
282–289.

85

Appendix 1 PAPER II PRIMARY STUDIES

Akturk, M., & Erhun, F. (1999). An overview of design and operational issues of kanban
systems. International Journal of Production Research, 37(17), 3859-3881.

Ardalan, A. (1997). Analysis of local decision rules in a Dual Kanban flow shop. Decision
Sciences, 28(1), 195-211.

Bonvik, A. M., Couch, C., & Gershwin, S. B. (1997). A comparison of production-line
control mechanisms. International Journal of Production Research, 35(3), 789-804.

Bitran, G. R., & Chang, L. (1987). A mathematical programming approach to a deterministic
kanban system. Management Science, 33(4), 427-441.

Bollon, J., Di Mascolo, M., & Frein, Y. (2004). Unified framework for describing and
comparing the dynamics of pull control policies. Annals of Operations Research, 125(1-
4), 21-45.

Bonvik, A. M., & Gershwin, S. B. (1996). Beyond kanban: Creating and analyzing lean shop
floor control policies. Proceeding of the Manufacturing and Service Operations
Management Conference, 46-51.

Baynat, B., Buzacott, J. A., & Dallery, Y. (2002). Multiproduct kanban-like control systems.
International Journal of Production Research, 40(16), 4225-4255.

Chang, T., & Yih, Y. (1994). Generic kanban systems for dynamic environments. The
International Journal of Production Research, 32(4), 889-902.

Chang, T., & Yih, Y. (1994). Determining the number of kanbans and lotsizes in a generic
kanban system: A simulated annealing approach. The International Journal of
Production Research, 32(8), 1991-2004.

Dyck, H., Johnson, R. A., & Varzandeh, J. (1988). Transforming a traditional manufacturing
system into a just-in-time system with kanban. Proceedings of the 20th Conference on
Winter Simulation, 616-623.

Duri, C., Frein, Y., & Di Mascolo, M. (2000). Comparison among three pull control policies:
Kanban, base stock, and generalized kanban. Annals of Operations Research, 93(1-4),
41-69.

Dallery, Y., & Liberopoulos, G. (2000). Extended kanban control system: Combining
kanban and base stock. IIE Transactions, 32(4), 369-386.

Esparrago Jr, R. A. (1988). Kanban. Production and Inventory Management Journal, 29(1),
6-10.

Fearon, P. A. (1993). Inventory controlled environment (I.C.E.) just-in-time at national
semiconductor. Proceedings of the Advanced Semiconductor Manufacturing
Conference and Workshop (ASMC), IEEE/SEMI, 34-38.

Farahmand, K., & Heemsbergen, B. L. (1994). Floor inventory tracking of a kanban
production system. Proceedings of the Simulation Conference, Winter, 1027-1034.

Frein, Y., Di Mascolo, M., & Dallery, Y. (1995). On the design of generalized kanban
control systems. International Journal of Operations & Production Management, 15(9),
158-184.

86

Framinan, J. M., González, P. L., & Ruiz-Usano, R. (2003). The CONWIP production
control system: Review and research issues. Production Planning & Control, 14(3), 255-
265.

Gravel, M., & Price, W. L. (1988). Using the kanban in a job shop environment. The
International Journal of Production Research, 26(6), 1105-1118.

Golhar, D. Y., & Stamm, C. L. (1991). The just-in-time philosophy: A literature review. The
International Journal of Production Research, 29(4), 657-676.

Gupta, Y. P., & Gupta, M. C. (1989). A system dynamics model for a multi-stage multi-line
dual-card JIT-kanban system. The International Journal of Production Research, 27(2),
309-352.

Gstettner, S., & KUHN, H. (1996). Analysis of production control systems kanban and
CONWIP. International Journal of Production Research, 34(11), 3253-3273.

Geraghty, J., & Heavey, C. (2005). A review and comparison of hybrid and pull-type
production control strategies. OR Spectrum, 27(2-3), 435-457.

Gupta, S., & Al-Turki, Y. (1998). The effect of sudden material handling system breakdown
on the performance of a JIT system. International Journal of Production Research, 36(7),
1935-1960.

Gupta, S. M., Al-Turki, Y. A., & Perry, R. F. (1999). Flexible kanban system. International
Journal of Operations & Production Management, 19(10), 1065-1093.

González-R, P. L., Framinan, J. M., & Pierreval, H. (2012). Token-based pull production
control systems: An introductory overview. Journal of Intelligent Manufacturing, 23(1),
5-22.

Huang, C., & Kusiak, A. (1996). Overview of kanban systems. International journal of
computer integrated manufacturing, 9(3), 169-189.

Huang, M., Wang, D., & Ip, W. (1998). A simulation and comparative study of the CONWIP,
kanban and MRP production control systems in a cold rolling plant. Production
Planning & Control, 9(8), 803-812.

Im, J. H., & Schonberger, R. J. (1988). The pull of kanban. Production and Inventory
Management Journal, 29(4), 54-58.

Im, J. H. (1989). How does kanban work in American companies. Production and Inventory
Management Journal, 30(4), 22-24.

Kimura, O., & Terada, H. (1981). Design and analysis of pull system, a method of multi-
stage production control. The International Journal of Production Research, 19(3), 241-
253.

Kotani, S. (2007). Optimal method for changing the number of kanbans in the e-kanban
system and its applications. International Journal of Production Research, 45(24), 5789-
5809.

Kouri, I., Salmimaa, T., & Vilpola, I. (2008). The principles and planning process of an
electronic kanban system. Novel algorithms and techniques in telecommunications,
automation and industrial electronics, 99-104.

Kumar, C. S., & Panneerselvam, R. (2007). Literature review of JIT-KANBAN system. The
International Journal of Advanced Manufacturing Technology, 32(3-4), 393-408.

87

Kizilkaya, E., & Gupta, S. M. (1998). Material flow control and scheduling in a disassembly
environment. Computers & Industrial Engineering, 35(1), 93-96.

Khojasteh-Ghamari, Y. (2009). A performance comparison between kanban and CONWIP
controlled assembly systems. Journal of Intelligent Manufacturing, 20(6), 751-760.

LEE, L. (1987). Parametric appraisal of the JIT system. International Journal of Production
Research, 25(10), 1415-1429.

Lambrecht, M., & Decaluwe, L. (1988). JIT and constraint theory: The issue of bottleneck
management. Production and Inventory Management Third Quarter, 29(3), 61-66.

Lavoie, P., Gharbi, A., & Kenne, J. (2010). A comparative study of pull control mechanisms
for unreliable homogenous transfer lines. International Journal of Production
Economics, 124(1), 241-251.

Liberopoulos, G., & Dallery, Y. (2000). A unified framework for pull control mechanisms
in multi-stage manufacturing systems. Annals of Operations Research, 93(1-4), 325-
355.

Marek, R. P., Elkins, D. A., & Smith, D. R. (2001). Manufacturing controls: Understanding
the fundamentals of kanban and CONWIP pull systems using simulation. Proceedings
of the 33nd Conference on Winter Simulation, 921-929

Miltenburg, J., & Wijngaard, J. (1991). Designing and phasing in just-in-time production
systems. The International Journal of Production Research, 29(1), 115-131.

Moeeni, F., Sanchez, S., & Vakha Ria, A. (1997). A robust design methodology for kanban
system design. International Journal of Production Research, 35(10), 2821-2838.

Sugimori, Y., Kusunoki, K., Cho, F., & Uchikawa, S. (1977). Toyota production system and
kanban system materialization of just-in-time and respect-for-human system. The
International Journal of Production Research, 15(6), 553-564.

Spearman, M. L., Woodruff, D. L., & Hopp, W. J. (1990). CONWIP: A pull alternative to
kanban. The International Journal of Production Research, 28(5), 879-894.

Savsar, M. (1996). Effects of kanban withdrawal policies and other factors on the
performance of JIT systems—a simulation study. International Journal of Production
Research, 34(10), 2879-2899.

Sriparavastu, L., & Gupta, T. (1997). An empirical study of just-in-time and total quality
management principles implementation in manufacturing firms in the USA.
International Journal of Operations & Production Management, 17(12), 1215-1232.

Spencer, M. S., & Larsen, D. (1998). Kanban implementation between a heavy
manufacturing department and foundry suppliers. Production Planning & Control, 9(3),
311-316.

Takahashi, K., & Nakamura, N. (1998). Ordering alternatives in JIT production systems.
Production Planning & Control, 9(8), 784-794.

Takahashi, K., & Nakamura, N. (2002). Comparing reactive kanban and reactive CONWIP.
Production Planning & Control, 13(8), 702-714.

Takahashi, K., & Nakamura, N. (2002). Decentralized reactive kanban system. European
Journal of Operational Research, 139(2), 262-276.

88

Widyadana, G. A., Wee, H., & Chang, J. (2010). Determining the optimal number of kanban
in multi-products supply chain system. International Journal of Systems Science, 41(2),
189-201.

Yang, K. K. (2000). Managing a flow line with single-kanban, dual-kanban or conwip.
Production and Operations Management, 9(4), 349-366.

89

Original publications

I Ahmad MO, Markkula J, & Oivo M (2013) Kanban in software development: A
systematic literature review. IEEE 39th Euromicro Conference on Software
Engineering and Advanced Application: 9–16.

II Ahmad MO, Markkula J, & Oivo M & Adeyemi B (2015) Kanban in Industrial
Engineering and Software Engineering: A systematic literature review. 10th
International Conference on Software Engineering Advances: 234–241.

III Ahmad MO, Markkula J, Oivo M, & Kuvaja P (2014) Usage of Kanban in Software
Companies - An empirical study on motivation, benefits and challenges. 9th
International Conference on Software Engineering Advances: 150–155.

IV Ahmad MO, Kuvaja P, Markkula J, & Oivo M (2016). Transition of software
maintenance teams from Scrum to Kanban. IEEE 49th Hawaii International Conference
on System Sciences: 5427–5436.

V Ahmad MO, Lwakatare LE, Oivo M, Kuvaja P, & Markkula J (2016) Portfolio
management and Kanban: An empirical investigation with Agile and Lean software
companies. Journal of Software: Evolution and Process (Wiley) (In press)

Reprinted with permission from IEEE (I and IV), International Academy, Research

and Industry (IARIA) (II and III) and Wiley (V).

Original publications are not included in the electronic version of the dissertation.

90

A C T A U N I V E R S I T A T I S O U L U E N S I S

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

S E R I E S A S C I E N T I A E R E R U M N A T U R A L I U M

667. Tolkkinen, Mari (2016) Multi-stressor effects in boreal streams : disentangling the
roles of natural and land use disturbance to stream communities

668. Kaakinen, Juhani (2016) Öljyllä ja raskasmetalleilla pilaantuneita maita koskevan
ympäristölainsäädännön ja lupamenettelyn edistäminen kemiallisella tutkimuksella

669. Huttunen, Kaisa-Leena (2016) Biodiversity through time : coherence, stability and
species turnover in boreal stream communities

670. Rönkä, Nelli (2016) Phylogeography and conservation genetics of waders

671. Fucci, Davide (2016) The role of process conformance and developers' skills in
the context of test-driven development

672. Manninen, Outi (2016) The resilience of understorey vegetation and soil to
increasing nitrogen and disturbances in boreal forests and the subarctic
ecosystem

673. Pentinsaari, Mikko (2016) Utility of DNA barcodes in identification and
delimitation of beetle species, with insights into COI protein structure across the
animal kingdom

674. Lassila, Toni (2016) In vitro methods in the study of reactive drug metabolites
with liquid chromatography / mass spectrometry

675. Koskimäki, Janne (2016) The interaction between the intracellular endophytic
bacterium, Methylobacterium extorquens DSM13060, and Scots pine (Pinus
sylvestris L.)

676. Ronkainen, Katri (2016) Polyandry, multiple mating and sexual conflict in a water
strider, Aquarius paludum

677. Pulkkinen, Elina (2016) Chemical modification of single-walled carbon nanotubes
via alkali metal reduction

678. Runtti, Hanna (2016) Utilisation of industrial by-products in water treatment :
carbon-and silicate-based materials as adsorbents for metals and sulphate removal

679. Suoranta, Terhi (2016) Advanced analytical methods for platinum group elements :
applications in the research of catalyst materials, recycling and environmental issues

680. Pesonen, Janne (2016) Physicochemical studies regarding the utilization of wood-
and peat-based fly ash

681. Kelanti, Markus (2016) Stakeholder analysis in software-intensive systems
development

UNIVERSITY OF OULU P .O. Box 8000 F I -90014 UNIVERSITY OF OULU FINLAND

A C T A U N I V E R S I T A T I S O U L U E N S I S

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

University Lecturer Anu Soikkeli

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-1407-8 (Paperback)
ISBN 978-952-62-1408-5 (PDF)
ISSN 0355-3191 (Print)
ISSN 1796-220X (Online)

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

U N I V E R S I TAT I S O U L U E N S I SACTA
A

SCIENTIAE RERUM
NATURALIUM

OULU 2016

A 682

Muhammad Ovais Ahmad

EXPLORING KANBAN IN
SOFTWARE ENGINEERING

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

A
 682

AC
TA

M
uham

m
ad O

vais A
hm

ad

	Abstract
	Tiivistelmä
	Acknowledgements
	Original publications
	Contents
	1 Introduction
	1.1 Research Motivation
	1.2 Research Questions
	1.3 Overview of Research Design
	1.4 Structure of Dissertation

	2 Background and Related Work
	2.1 Lean in Manufacturing
	2.2 Kanban in Manufacturing
	2.3 Lean in Software Engineering
	2.4 Kanban in Software Engineering
	2.4.1 Visualise Workflow
	2.4.2 Limit Work in Progress
	2.4.3 Measure and Manage Flow
	2.4.4 Make Process Policies Explicit
	2.4.5 Implement Feedback Loops and Identify Improvement Opportunities

	2.5 Studies on Lean and Kanban in Software Engineering
	2.5.1 Lean and Kanban Transformation
	2.5.2 Simulation Studies about Kanban in Software Development and Software Maintenance
	2.5.3 Lean and Kanban in Software Development
	2.5.4 Lean and Kanban for Software Maintenance
	2.5.5 Lean and Kanban for Management

	3 Research Design
	3.1 Phase 1: Systematic Literature Review
	3.1.1 Data Collection
	3.1.2 Data Analysis and Reporting

	3.2 Phase 2: Empirical Studies
	3.2.1 Survey
	3.2.2 Interviews

	4 Original Research Papers
	4.1 Paper I: Kanban in Software Development: A Systematic Literature Review
	4.2 Paper II: Kanban in Industrial Engineering and Software Engineering: A Systematic Literature Review
	4.3 Paper III: Usage of Kanban in Software Companies—An Empirical Study on Motivation, Benefits and Challenges
	4.4 Paper IV: Transition of Software Maintenance Teams from Scrum to Kanba
	4.5 Paper V: Portfolio Management and Kanban: An Empirical Investigation with Agile and Lean Software Companies

	5 Discussion and Conclusion
	5.1 Answer to RQ1: What is the understanding of Kanban in software engineering based on literature?
	5.2 Answer to RQ2: How is Kanban used in software companies?
	5.3 Threats to Validity
	5.4 Summary of Contributions
	5.4.1 Implications for Practice
	5.4.2 Implications for Research

	5.5 Recommendations for Further Research

	References
	Appendix
	Appendix 1 PAPER II PRIMARY STUDIES

	Original publications

