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ABSTRACT

Wave-equation Q tomography and least-squares migration

Gaurav Dutta

This thesis designs new methods for Q tomography and Q-compensated prestack

depth migration when the recorded seismic data suffer from strong attenuation. A

motivation of this work is that the presence of gas clouds or mud channels in over-

burden structures leads to the distortion of amplitudes and phases in seismic waves

propagating inside the earth. If the attenuation parameter Q is very strong, i.e.,

Q<30, ignoring the anelastic effects in imaging can lead to dimming of migration am-

plitudes and loss of resolution. This, in turn, adversely affects the ability to accurately

predict reservoir properties below such layers.

To mitigate this problem, I first develop an anelastic least-squares reverse time mi-

gration (Q-LSRTM) technique. I reformulate the conventional acoustic least-squares

migration problem as a viscoacoustic linearized inversion problem. Using linearized

viscoacoustic modeling and adjoint operators during the least-squares iterations, I

show with numerical tests that Q-LSRTM can compensate for the amplitude loss and

produce images with better balanced amplitudes than conventional migration.

To estimate the background Q model that can be used for any Q-compensating

migration algorithm, I then develop a wave-equation based optimization method that

inverts for the subsurface Q distribution by minimizing a skeletonized misfit function

ε. Here, ε is the sum of the squared differences between the observed and the pre-
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dicted peak/centroid-frequency shifts of the early-arrivals. Through numerical tests

on synthetic and field data, I show that noticeable improvements in the migration

image quality can be obtained from Q models inverted using wave-equation Q to-

mography. A key feature of skeletonized inversion is that it is much less likely to get

stuck in a local minimum than a standard waveform inversion method.

Finally, I develop a preconditioning technique for least-squares migration using a

directional Gabor-based preconditioning approach for isotropic, anisotropic or anelas-

tic least-squares migration. During the least-squares iterations, I impose sparsity

constraints on the inverted reflectivity model in the local Radon domain. The for-

ward and the inverse mapping of the reflectivity to the local Radon domain is done

through 3D Fourier-based discrete Radon transform operators. Using numerical tests

on synthetic and 3D field data, I demonstrate that the proposed preconditioning

approach can discriminate against artifacts in the image resulting from irregular or

insufficient acquisition and can produce images with improved signal-to-noise ratio

when compared with standard migration.
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Chapter 1

Introduction

1.1 Linear viscoelasticity

Materials exhibit both viscous and elastic characteristics when undergoing deforma-

tion ([Christensen, 1982]). When a purely elastic material is subjected to an external

stress, 100% of the mechanical energy is stored in the deformation. Once the stress

is removed, an elastic material returns quickly to its original state. The stress-strain

relation for a linear elastic medium is given by

σ = Meε, (1.1)

where σ and ε denote the instantaneous stress and the instantaneous strain of the

material, respectively, and Me is the elastic modulus. In such a material, an instan-

taneous stress σ produces an instantaneous strain ε scaled by the elastic modulus

Me.

However, a viscoelastic material resists the build up of strain when an external

stress is applied. When an external load is applied to a viscous material, some of the

mechanical energy is dissipated by friction and heating. The dissipation of energy or

the hysteresis loss for such a material is shown in Figure 1.1(a). Under a fixed strain,

a viscoelastic material relaxes to its internal stress state over a period of time when
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Figure 1.1: (a) Hysteresis loss, (b) stress relaxation, and (c) creep for a viscoelastic
solid.

the external load is removed. Similary, under a fixed stress, the material creeps and

reaches an asymptotic strain value. The stress relaxation and the creep behaviour

are shown in Figures 1.1(b) and 1.1(c), respectively, while the stress-strain relation is

given by

σ = G
∂ε

∂t
. (1.2)

Here, G is the viscosity variable or the relaxation function of the medium and ∂ε
∂t

is

the strain rate.

1.2 Viscoelasticity and wave propagation

The real earth is anelastic and it distorts the amplitudes and the phases of the prop-

agating seismic waves ([Aki and Richards, 1980]). Attenuation of P-waves can be

quantified by a quality factor, Q, which accounts for the phase shift as a function of

the frequency content of the propagating waves and the distance traveled. The quality

factor, Q, quantifies dissipation and is defined as twice the time-averaged strain-energy

density divided by the time-averaged dissipated energy-density ([Carcione, 2007]).

Lower values of Q imply more energy loss of the wave per cycle or high attenuation.
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Figure 1.2: Mechanical models used to characterize viscoelasticity: (a) Maxwell model
where a spring is connected in series with a dashpot, (b) Kelvin-Voigt model where a
spring is connected in parallel with a dashpot, and (c) a Zener or standard linear solid
model where a spring is connected in series with a parallel combination of another
spring and a dashpot ([Carcione, 2007]).

The anelastic behavior of wave propagation can be described by viscoelastic/vis-

coacoustic wave equations based on mechanical models. An elastic solid can be de-

scribed by only weightless springs that have no inertial effects. On the other hand, a

viscoelastic material needs additional inertial elements, namely dashpots, that con-

sist of loosely fitting pistons in cylinders filled with a viscous fluid. There are three

different kinds of mechanical models that can be used to describe viscoelastic wave

propagation. These models, shown in Figure 1.2, have different combinations of

springs and dashpots in series or in parallel.

Using the standard linear solid (SLS) model in Figure 1.2(c), the effect of attenua-

tion on the amplitude and phase of a propagating seismic wave is shown in Figure 1.3

for a homogeneous medium with a background velocity of 3000 m/s and for different

values of Q. A Ricker wavelet with 20 Hz peak frequency is used as the source wavelet.

The source is excited at the center of the model and the snapshots are taken at dif-

ferent intervals of time. Figure 1.4 compares the depth slices at different instances of

time. It is evident from these figures that as the wave starts propagating, the ampli-

tudes in the three cases are very similar. However, as the propagation time increases

and the wave travels a greater distance, the wave amplitude in the case of Q= 20 is

attenuated the most. The high-frequency components are distorted more compared
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Figure 1.3: Snapshots showing an expanding wavefront at different instances of time
for a medium with no attenuation (left panels), moderate attenuation (middle panels)
and high attenuation (right panels).

to the low frequencies. For moderate-attenuation values (Q ≈ 40), as shown by the

red curves in Figure 1.4, the attenuation effect at different times is still significant

compared to the blue curves which represent the case where there is no attenuation.

1.3 Motivation for attenuation compensation in seis-

mic imaging

Gas clouds form in an overburden region when there is leakage of gas from deeper

reservoirs. The gas migrates upwards through faults and fractures and get trapped
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Figure 1.4: Depth slices from Figure 1.3 showing the effect of attenuation on the
amplitude and phase of a propagating seismic wave.
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in thin layered sediments. The presence of gas accumulations in the near-surface

sediments is a good indicator of the presence of hydrocarbon reservoirs. If there is

an interbedding of thin attenuative layers, it can lead to frequency-dependent seismic

wave attenuation with direction or attenuation anisotropy ([Mavko and Nur, 1979,

Zhu and Tsvankin, 2006, Zhu et al., 2007, Zhu and Tsvankin, 2007, Behura and Tsvankin, 2009]).

Attenuation anisotropy contains useful information about pore-fluid content and

properties and can distinguish between different fracturing and crystal orientation

mechanisms that can lead to velocity anisotropy ([Carter and Kendall, 2006]).

However, the presence of gas anomalies in overburden structures possesses a sig-

nificant challenge in seismic data processsing. The values of Q for unconsolidated

gas-sandstones, gas clouds and shales are typically very low (Q ≈ 15-30). Fluids or

mud channels in overburden structures cause wave dissipation and attenuation that

severely affect the amplitude and phase of a propagating seismic wave. As a result,

the imaging of the target oil and gas reservoirs below such formations is affected.

In places like the North Sea, the presence of gas anomalies leads to serious is-

sues in imaging . The problems with conventional seismic processing based on the

acoustic approximation can be seen in Figure 1.5(a). There is a dimming of the

reflector amplitudes and loss of resolution in certain areas of the image because of

the presence of shallow gas clouds. This is because conventional depth migration

and tomography do not take into account the anelastic nature of wave propagation.

Similar problems during migration can also be seen in the images from the Gulf of

Mexico (Figure 1.6) offshore Brazil (Figure 1.7), offshore Brunei (Figure 1.8) and

also in many other parts of the world ([Gherasim et al., 2010, Cavalca et al., 2011,

Valenciano et al., 2011, Zhou et al., 2011, Valenciano et al., 2012, Teng et al., 2013,

Valenciano and Chemingui, 2013, Bai et al., 2013, Gamar et al., 2015]) . Thus, imag-

ing from data that suffers from strong attenuation requires migration and tomography

techniques that take into account the physics of anelasticity in the forward modeling
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Figure 1.5: One-way wave-equation migration images from North Sea: (a) before Q
compensation, and (b) after Q compensation ([Valenciano et al., 2012]).

and in the adjoint equations.

1.4 Previous works on Q compensation

From a data acquisition perspective, any effort to see through gas formations require

using very expensive data acquisition techniques such as ocean-bottom recordings.

However, deployment of ocean-bottom seismometers or ocean-bottom cables for 3D

exploration purposes become prohibitively expensive. It is more feasible to compen-

sate for the attenuation loss during the conventional seismic data processing workflow.

The earliest efforts to compensate for the attenuation loss were made in the data-

domain using inverse Q-filtering based methods. [Bickel and Natarajan, 1985] used

plane-wave Q deconvolution to compensate for the amplitude and high-frequency

loss in prestack seismic data. They deconvolved the effects of the propagation path

between a source and a receiver within the seismic band by using time-varying filters

and doing a time reversal with Q replaced by −Q in the complex wavenumber domain.

This changed absorption to gain in the wavenumber domain and each frequency
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Figure 1.6: Comparison between reverse time migration (RTM) images from the
Alaminos Canyon in the Gulf of Mexico: (a) standard RTM image, and (b) Q-RTM
image ([Zhang et al., 2010]).

Figure 1.7: Comparison between TTI prestack depth migration (PSDM) images from
the Campos Basin in offshore Brazil: (a) standard TTI PSDM image, and (b) TTI
PSDM image after Q compensation ([Zhou et al., 2011]).
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Figure 1.8: Kirchhoff migration images from offshore Brunei: (a) before Q compen-
sation, and (b) after Q prestack depth-migration ([Gamar et al., 2015]).

component is restored to its original amplitude and phase. A similar data-domain

approach was also used by [Hargreaves and Calvert, 1991] who performed inverse Q

filtering for prestack data in the Fourier domain. They adopted a Stolt migration-

type approach where they backpropagated the recorded data at the surface, removed

the interval effect of Q at each depth step and retrieved the Q-filtered wavefield at

time t = 0 by taking the inverse Fourier transform. Such data-domain approaches

assume that the velocity is laterally constant.

However, in complex geological media where there are strong lateral and ver-

tical variations in the subsurface properties, such data-domain filtering techniques

were proved inadequate. Since attenuation loss occurs during wave propagation, Q

compensation was gradually incorporated in the model building and depth migration

workflows. Including Q during depth migration requires a migration Q model whereas

Q estimation requires an accurate velocity model and a migration image. Such a de-

pendency necessitates the development of accurate Q tomography and Q-compensated

migration techniques that would enable interpreters to study the presence of fluids in

oil and gas reservoirs with both low-intermediate wavenumber and high-wavenumber
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resolution using Q tomography and migration, respectively.

In the context of prestack depth migration (PSDM), Kirchhoff and one-way wave-

equation based migration techniques were earlier used to perform attenuation com-

pensation ([Dai and West, 1994, Yu et al., 2002, Xie et al., 2009]). These approaches

compensate for the attenuation loss during wavefield extrapolation by using anti-

dissipation or amplitude amplification filters based on the interval Q model. How-

ever, the use of amplitude or high frequency amplification filters leads to numerical

instabilities during wavefield extrapolation. The problem is excarberated in field data

applications where there is noise in the recorded data.

With the substantial increase in computing power and resources over the last

decade, Q migration gained prominence with the more accurate two-way viscoacous-

tic wave-equation or viscoacoustic reverse time migration (RTM) ([Zhang et al., 2010,

Suh et al., 2012, Fletcher et al., 2012, Bai et al., 2013, Zhu et al., 2014, Zhu and Harris, 2015]).

Different viscoacoustic wave-equations were proposed with separate controls over

phase and amplitude to compensate for the attenuation loss. Most of these approaches

also relied on using high-cut filters to stabilize the propagation of the high-frequency

components during wavefield extrapolation. Also, there were no efforts made to con-

sider Q compensation during migration as part of an anelastic least-squares migration

workflow since standard migration can be regarded as the first iteration of a least-

squares migration algorithm ([Lailly, 1984, Nemeth et al., 1999]).

To estimate the background Q model required by these Q-based migration tech-

niques, there are two categories of methods available:

� Data-domain methods: The data-domain techniques for Q tomography are

mostly ray-based or full waveform inversion (FWI) based. In ray-based meth-

ods, the frequency-shifts between the predicted and the observed traces are

smeared along raypaths ([Quan and Harris, 1997, He et al., 2013]). Such ray-

based tomography methods are based on the high-frequency assumption where
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it is assumed that the scale of variation in Q in the medium is much larger

than the seismic wavelength. On the other hand, the FWI-based Q inversion

approaches rely on minimizing the amplitude and the phase differences between

the predicted and the observed traces to obtain the Q model ([Bai et al., 2013,

Wang and Zhang, 2014]). Such approaches are susceptible to cycle-skipping

problems that are typically associated with any FWI-like algorithm. However,

the use of a robust skeletonized inversion approach where a skeletonized rep-

resentation of the data is inverted using wave-equation operators has not been

studied so far.

� Image-domain methods: The image-domain techniques for Q tomography rely

on minimizing a residual image that is the difference between the image com-

puted by a background Q model and an attenuation-free target image ([Zhou et al., 2011,

Shen et al., 2014, Shen and Zhu, 2015, Shen et al., 2015]). The images can be

picked horizons along which amplitude ratio maps or common image gathers are

generated. The spectral difference between the observed and the target images

are then minimized using ray-based or wave-equation-based migration veloc-

ity analysis operators. These approaches are computationally very expensive,

especially for 3D problems.

In this dissertation, I develop novel time-domain Q-migration and Q-tomography

techniques using the isotropic viscoacoustic wave-equation. The major original con-

tributions of this dissertation are summarized below.

1.5 Technical contributions

I developed three novel imaging methods for migration and inversion of viscoacoustic

data.
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1. An anelastic least-squares reverse time migration (Q-LSRTM) technique to com-

pensate for the attenuation loss during migration.

2. A wave-equation Q tomography approach using the frequency-shifts between

the predicted and the observed traces. This is a skeletonized representation of

the data that largely avoids getting stuck in local minima..

3. A directional Gabor-based preconditioning approach for least-squares reverse

time migration (LSRTM) which can be used for acoustic, anisotropic and anelas-

tic LSRTM.

1.6 Thesis overview

The dissertation is organized according to the following chapters:

1.6.1 Chapter 2: Q-LSRTM

In chapter 2, I propose an anelastic least-squares migration method, denoted as Q

least-squares reverse time migration (Q-LSRTM), to compensate for the distortion of

amplitudes and phases of seismic waves propagating inside the earth during migration.

During the least-squares iterations, I use a linearized viscoacoustic modeling operator

for forward modeling and use the corresponding adjoint equations, derived using

the adjoint-state method, for backpropagating the residual data. The merit of this

approach compared to conventional RTM and LSRTM is that Q-LSRTM compensates

for the amplitude loss due to attenuation and can produce images with better balanced

amplitudes below highly attenuative layers. Through numerical tests on synthetic and

field data, I illustrate the advantages of Q-LSRTM over RTM and LSRTM when the

recorded data have strong attenuation effects.
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1.6.2 Chapter 3: Wave-equation Q tomography

In chapter 3, I present a wave-equation gradient optimization method that inverts for

the subsurface Q distribution by minimizing a skeletonized misfit function which is the

sum of the squared differences between the observed and the predicted peak/centroid-

frequency shifts of the early arrivals. The gradient is computed by migrating the

observed traces weighted by the frequency-shift residuals. The background Q model is

perturbed until the predicted and the observed traces have the same peak frequencies

or the same centroid frequencies. Using numerical tests on synthetic and field data,

I show that an improved accuracy of the Q model by wave-equation Q tomography

(WQ) leads to a noticeable improvement in the migration image quality.

1.6.3 Chapter 4: LSRTM with directional Gabor-based pre-

conditioning

In chapter 4, I present a LSRTM method using directional Gabor-based precondition-

ing to overcome the low signal-to-noise (SNR) problem of noisy or severely undersam-

pled data. I use a high-resolution local-Radon transform of the reflectivity and impose

sparseness constraints on the inverted reflectivity in the local Radon domain during

the least-squares iterations. The sparseness constraint is that the inverted reflectivity

is sparse in the Radon domain and each location of the subsurface is represented by

a limited number of geological dips. The forward and the inverse mapping of the re-

flectivity to the local Radon domain and vice versa is done through 3D Fourier-based

discrete Radon transform operators. The weights for the preconditioning are chosen

to be varying locally based on the amplitudes of the local dips or assigned using

quantile measures. Using numerical tests on synthetic and 2D land and 3D marine

field data, I validate the effectiveness of the proposed approach in producing images

with good SNR and fewer aliasing artifacts when compared with standard RTM or
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standard LSRTM.

1.6.4 Chapter 5: Conclusions

In chapter 5, I complete the dissertation with a summary of my results and a discus-

sion of the advantages and limitations of the proposed methods. I also suggest some

future research topics that can be built on my dissertation.
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Chapter 2

Attenuation compensation for

least-squares reverse time

migration using the viscoacoustic

wave-equation

2.1 Summary

Strong subsurface attenuation leads to distortion of amplitudes and phases of seismic

waves propagating inside the earth. Conventional acoustic reverse time migration

(RTM) and least-squares reverse time migration (LSRTM) do not account for this

distortion which can lead to defocusing of migration images in highly attenuative

geological environments. To correct for this distortion, I use a linearized inversion

method, denoted as Q least-squares reverse time migration (Q-LSRTM). During the

least-squares iterations, a linearized viscoacoustic modeling operator is used for for-

ward modeling. The adjoint equations are derived using the adjoint-state method

for backpropagating the residual wavefields. The merit of this approach compared to

conventional RTM and LSRTM is that Q-LSRTM compensates for the amplitude loss
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due to attenuation and can produce images with better balanced amplitudes below

highly attenuative layers. Numerical tests on synthetic and field data illustrate the

advantages of Q-LSRTM over RTM and LSRTM when the recorded data have strong

attenuation effects. Similar to standard LSRTM, the sensitivity tests for background

velocity and Q errors show that the liability of this method is the requirement for

smooth and accurate migration velocity and attenuation models.

2.2 Introduction

Fluids trapped in overburden structures cause strong attenuation of P-waves that

can decrease the resolution of migration images. This can be attributed to the fact

that the real earth is anelastic and therefore distorts the amplitudes and phases of

the propagating seismic waves ([Aki and Richards, 1980]). If the subsurface attenu-

ation is very strong, ignoring it during migration can lead to blurring of migration

amplitudes below these layers.

Attenuation of P-waves can be quantified by a quality factor, Q, which accounts

for the phase shift as a function of the frequency content of the propagating waves and

the distance traveled. Lower values of Q imply more energy loss of the wave per cycle

or high attenuation. For example, the values of Q for unconsolidated gas-sandstones

and shales are typically very low (Q ≈ 15−30) which necessitates the need to account

for Q during imaging. Another example is the presence of gas pockets in North Sea

sediments that distort the migrated amplitudes of the underlying reflectors.

The earliest efforts to compensate for attenuation loss in seismic data were per-

formed in the data domain using an inverse Q-filtering method ([Bickel and Natarajan, 1985];

[Hargreaves and Calvert, 1991]). These data domain methods partially correct for the

attenuation loss because attenuation loss occurs during wave propagation and there-

fore Q compensation is required during migration.
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For pre-stack depth migration, [Xin et al., 2008] and [Xie et al., 2009] performed

attenuation compensation using ray-tracing methods. [Dai and West, 1994], [Yu et al., 2002],

[Wang, 2008] and [Valenciano et al., 2011] used one-way wave-equation migration meth-

ods in the frequency domain for attenuation compensation. These approaches com-

pensate for the attenuation loss during wavefield extrapolation by using anti-dissipation

or amplitude amplification filters based on the interval Q model. The more accurate

two-way wave-equation migration or reverse time migration (RTM) ([Baysal et al., 1983];

[McMechan, 1983]; [Whitmore, 1983]) does not take into account attenuation because

the lossless acoustic wave-equation is used for wavefield extrapolation. Similarly, for

least-squares RTM (LSRTM) ([Plessix and Mulder, 2004]; [Dai and Schuster, 2010a];

[Dai et al., 2011]; [Wong et al., 2011]), if the gradient computation at each iteration

is done by RTM of the data residuals, then the reflector image below the attenuation

zone will be degraded in quality.

In the context of RTM, [Zhang et al., 2010] used the dispersion relation for a vis-

coacoustic medium ([Kjartansson, 1979]) and derived a pseudo-differential equation

with separate controls over phase and amplitude to model and migrate viscoacous-

tic waves. They required a regularization process to stabilize the back-propagating

wavefield since the high frequency amplitudes increase with time and can lead to

numerical instability. [Suh et al., 2012] extended the work of [Zhang et al., 2010] for

a VTI medium where they ignored the phase effects due to attenuation and only

compensated for the amplitude loss. Their approach suffered from the same instabil-

ity problem during back-propagating the receiver wavefield as in [Zhang et al., 2010].

They applied a high-cut filter to the receiver wavefield to stabilize the amplifica-

tion of high frequency components. [Bai et al., 2013] derived a new viscoacoustic

wave-equation without any memory variable. They accounted for attenuation by in-

corporating a pseudo-differential operator in the time and space domains. Similar

to [Zhang et al., 2010] and [Suh et al., 2012], they applied a high-cut filter to sta-
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bilize the wavefield propagation. [Fletcher et al., 2012] proposed a stable approach

where they applied separate phase and amplitude filters to the source and receiver

wavefields to compensate for amplitude and phase effects. These filters were applied

prior to imaging and were estimated based upon running acoustic and viscoacoustic

propagators twice to estimate attenuated amplitudes along wavepaths.

In this work, I use the standard time-domain viscoacoustic wave-equation for wave-

field extrapolation and use the linearized least-squares inversion method to compen-

sate for the attenuation loss. For least-squares migration, a linearized viscoacoustic

wave-equation modeling operator based on the perturbation of the bulk modulus is

derived, and then the appropriate adjoint equations and imaging condition are used

for the least-squares iterations. The advantage of this approach over other existing

methods is that one does not need to modify and regularize the adjoint wave-equations

during the receiver-side wavefield extrapolation to compensate for the attenuation loss

and hence, it is always stable. Accounting for Q in the modeling and adjoint opera-

tions coupled with the least-squares iterations compensates for the amplitude loss due

to attenuation. Numerical tests on synthetic and field data show that the amplitudes

below highly attenuative layers are better balanced in the inverted images from Q-

LSRTM compared to standard RTM and LSRTM, and the reflectors are focused at the

right locations. The disadvantage is that this method is expensive (computational cost

per iteration is more than six times that of standard RTM) and the computational

cost is proportional to the number of least-squares iterations. However, similar to

standard LSRTM, the cost of Q-LSRTM can be significantly reduced by using a mul-

tisource encoded strategy ([Dai and Schuster, 2009]; [Tang, 2009]; [Dai et al., 2010];

[Huang and Schuster, 2012]). Another liability of this method is that besides the in-

put requirement of a smooth and accurate migration velocity model, a good estimate

of the background Q model is also needed.

This chapter is organized into five sections. After the introduction, the second
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section describes the theory of standard LSRTM and then the time-domain implemen-

taton of Q-LSRTM is presented in the third section. Numerical results on synthetic

and field data are presented in the fourth section. Dicussions based on the numerical

simulations are in the fifth section and the conclusions are in the last section.

2.3 Theory of acoustic LSRTM

Conventional least-squares migration seeks to reconstruct the earth’s reflectivity im-

age from the recorded waveform data under the Born approximation ([Tarantola, 1984];

[Lailly, 1984]; [Nemeth et al., 1999]; [Duquet et al., 2000]; [Plessix and Mulder, 2004];

[Wong et al., 2011]; [Dai et al., 2012]). In this section, we will briefly review the the-

ory of acoustic LSRTM in the time-domain.

For a given background velocity model, v0(x), the pressure wavefield, p0(x, t),

satisfies the acoustic wave-equation with constant density,

1

v0(x)2

∂2p0(x, t)

∂t2
−∇2p0(x, t) = S(xs, t), (2.1)

where S(xs, t) represents a bandlimited point source function at x = xs.

For LSRTM, we seek to find the perturbation in the wavefield, δp(x, t), related to

the perturbation in the velocity, δv(x). Under the Born approximation, the perturbed

wavefield can be calculated as ([Stolt and Benson, 1986]; [Plessix and Mulder, 2004];

[Dai et al., 2012])

1

v0(x)2

∂2δp(x, t)

∂t2
−∇2δp(x, t) =

m(x)

v0(x)2

∂2p0(x, t)

∂t2
, (2.2)

where the reflectivity image m(x) is defined as m(x) = 2δv(x)
v0(x)

. To find the perturbed

wavefield numerically, two finite-difference simulations are required, one for the back-

ground wavefield p0(x, t) given by equation 2.1, and the other for the perturbed
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wavefield δp(x, t) given by equation 2.2. In the context of least-squares migration, the

solution to equation 2.2 can be represented as the matrix-vector operation d = Lm,

where d is the data, L is a linear modeling operator and m represents the migration

image which in this case is related to the perturbation in velocity.

The receiver side residual wavefield r(x, t) can be computed by reverse time prop-

agation ([McMechan, 1983, Whitmore, 1983]) of the residual data ∆d(xg, t; xs) and

is equivalent to the adjoint state solution defined by [Lailly, 1984] and [Plessix, 2006].

The backprojected field, r(x, t) is the solution to

1

v0(x)2

∂2r(x, t)

∂t2
−∇2r(x, t) = ∆d(xg, t; xs), (2.3)

where the data residual at a geophone location, x = xg and a source at x = xs is

given by ∆d(xg, t; xs) = pobs(xg, t; xs) − δp(xg, t; xs). pobs(xg, t; xs) is the recorded

data for the same source-geophone pair. The gradient, g(x), can be computed by

taking a zero-lag cross-correlation of the source and residual wavefields as

g(x) =
∑
t

1

v0(x)2

∂2p0(x, t)

∂t2
r(x, t). (2.4)

In matrix-vector notation, the solutions to equations 2.3 and 2.4 is equivalent to

the operation g = LT∆d. The reflectivity distribution, m(x), can be iteratively

estimated using any gradient based method such as the steepest descent method

([Nemeth et al., 1999])

g(i) = LT
[
Lm(i) − dobs

]
,

α =

(
g(i)
)T

g(i)(
Lg(i)

)T (
Lg(i)

) ,
m(i+1) = mi + αg(i), (2.5)
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where i represents the iteration index for the least-squares inversion and g(i) and α

represent the gradient and the step-length, respectively. The gradient at each iteration

is computed by RTM of the data residuals, Lm(i) − dobs . In acoustic LSRTM, the

operators L and LT depend on the background velocity model, v0(x), which remains

fixed at every iteration.

The theory of time-domain Q-LSRTM in now formulated in the next section.

2.4 LSRTM using the viscoacoustic wave-equation

For an isotropic viscoelastic solid, the current value of the stress tensor σij depends

upon the complete past history of the components of the strain tensor εij. The

relation between the stress-strain tensors can be represented in the following integral

form ([Christensen, 1982]):

σij(t) =

∫ t

0

Gijkl(t− τ)
dεkl(τ)

dτ
dτ, (2.6)

where the indices i, j have the range 1,2,3 and repeated indices imply the summation

convention. Gijkl is a fourth order relaxation tensor such that Gijkl = 0 for −∞ <

t < 0. For a pressure field P acting on the medium, the stress tensor can also be

written as

σij(t) = −P (t)δij, (2.7)
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where δij is the Kronecker delta. Substituting equation 2.7 into equation 2.6, an

explicit expression for the pressure field can be written as

P (t) = −
∫ t

0

G(t− τ)
de(τ)

dτ
dτ,

P (t) = −MR

∫ t

0

ė(τ)

[
1−

L∑
l=1

(
1− τεl

τσl

)
exp

(
−t− τ

τσl

)]
dτ, (2.8)

where e denotes the trace of the strain tensor matrix εij or the dilatation, τσl and τεl

denote material relaxation times for the l-th mechanism, L is the number of relaxation

mechanisms for a standard linear solid model and MR is the relaxed modulus of the

medium. For a standard linear solid (SLS) model, the relaxation function G is derived

in Appendix A.

The equation of motion can be written as

−1

ρ
∇P =

∂v

∂t
(2.9)

where ρ represents the density, P represents the pressure wavefield and v represents

the particle velocity vector. Equations (2.8) and (2.9) together describe the deforma-

tion in a viscoacoustic medium.

Equation 2.8 is expensive to solve by numerical modeling because of the associated

convolution operation. [Robertsson et al., 1994] simplified the convolution term by

introducing a memory variable term, rp. [Blanch et al., 1995] and [Zhu et al., 2013]

later showed that only one relaxation mechanism (L = 1) is sufficient for practi-

cal purposes. Thus, for practical numerical modeling applications, the equations

of motion for a 2D viscoacoustic medium can be written as ([Christensen, 1982,
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Carcione et al., 1988, Blanch and Symes, 1995])

∂P

∂t
+K

τε
τσ

(∇ · v) + rp = S(xs, t),

∂v

∂t
+

1

ρ
∇P = 0,

∂rp
∂t

+
1

τσ

(
rp +K

(
τε
τσ
− 1

)
(∇ · v)

)
= 0. (2.10)

Here, v = {vx, vy, vz} represents the particle velocity vector, K represents the bulk

modulus of the medium and S(xs, t) represents a bandlimited point source function

at x = xs. A detailed derivation of these equations is shown in Appendix B.

The stress and strain relaxation parameters, τσ and τε, are related to the quality

factor, Q, and the reference angular frequency, ω, usually chosen to be the central

frequency of the source wavelet, as (see Appendix C)

τσ =

√
1 + 1

Q2 − 1
Q

ω
,

τε =
1

ω2τσ
=

√
1 + 1

Q2 + 1
Q

ω
. (2.11)

Similar to standard acoustic LSRTM, for Q-LSRTM, we seek to find the perturbed

wavefield, δp(x, t), related to the perturbation in the medium parameters K, ρ, τ, τσ.

For algebraic simplicity, the following substitution is made in equation 2.10,

τ =
τε
τσ
− 1 =

2

Q

(
1

Q
+

√
1 +

1

Q2

)
,
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so that equation 2.10 becomes

∂P

∂t
+K(τ + 1) (∇ · v) + rp = S(xs, t),

∂v

∂t
+

1

ρ
∇P = 0,

∂rp
∂t

+
1

τσ
(rp + τK (∇ · v)) = 0. (2.12)

Let ρ0, K0, τσ0 and τ0 be the background medium parameters. Perturbing them by

an amount δρ, δK, δτσ and δτ , respectively, gives the new medium parameters as

ρ = ρ0 + δρ,

K = K0 + δK,

τσ = τσ0 + δτσ,

τ = τ0 + δτ. (2.13)

The perturbed wavefields can thus be written as

∂δP

∂t
+K(τ + 1) (∇ · δv) + δrp = −δK(τ + 1) (∇ · v)−Kδτ (∇ · v) ,

∂δv

∂t
+

1

ρ
∇δP =

δρ

ρ2
∇P,

∂δrp
∂t

+
1

τσ
(δrp + τK (∇ · δv)) = − 1

τσ
(Kδτ + τδK) (∇ · v) +

δτσ
τ 2
σ

(rp + τK (∇ · v)) .

(2.14)

To invert only for the perturbations in the bulk modulus δK, we make the following

assumptions in equation 2.14:

� The density is constant, i.e., δρ = 0.

� The material relaxation parameters are constant, i.e., δτ = 0 and δτσ = 0.
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Equation 2.14 thus simplifies to

∂δP

∂t
+K(τ + 1) (∇ · δv) + δrp = −δK(τ + 1) (∇ · v) ,

∂δv

∂t
+

1

ρ
∇δP = 0,

∂δrp
∂t

+
1

τσ
(δrp + τK (∇ · δv)) = − τ

τσ
δK (∇ · v) . (2.15)

In the context of Q-LSRTM, equation 2.15 is equivalent to the matrix-vector operation

d = Lm. Here d represents the Born-modeled data with attenuation and is given

by the solution of the linearized equations in equation 2.15, L is a linear modeling

operator and m is related to the bulk modulus of the medium.

The adjoint equations for equation 2.12 can be derived using the adjoint-state

method (shown in Appendix D) and is given by

∂q

∂t
+∇ ·

(
1

ρ
u

)
= −∆d(xg, t; xs),

∂u

∂t
+

[
∇ (K(1 + τ)q) +∇

(
1

τσ
Kτs

)]
= 0,

∂s

∂t
− s

τσ
− q = 0. (2.16)

Here (q,u, s) are the adjoint-state variables of the state variables (P,v, rp) and ∆d(xg, t; xs)

represents the residual pressure seismogram. For Q-LSRTM, ∆d(xg, t; xs) represents

the data residual between the predicted and the observed pressure data at every

iteration.

The perturbation in the image, δm, is related to the perturbation in the bulk

modulus, δK, which in turn can be obtained by zero-lag cross-correlation of the

adjoint fields from equation 2.16 with the background wavefields from equation 2.12
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as

δm ≈ δK =

∫ T

0

(1 + τ)(∇ · v)q +
τ

τσ
(∇ · v)s dt. (2.17)

The solution to equation 2.17 is equivalent to the g = LT∆d step in Q-LSRTM. A

detailed derivation of the adjoint equations and the gradient is shown in Appendix D.

The next sub-section describes the algorithm for numerical implementation of

Q-LSRTM.

2.4.1 Q-LSRTM algorithm

The following steps are carried out for numerically implementing Q-LSRTM by a

preconditioned conjugate gradient method ([Nocedal and Wright, 1999]), where a di-

agonal preconditioning matrix C is assumed. In this work, source-side illumination

([Plessix and Mulder, 2004]) is used as the diagonal preconditioner.

� Form the misfit function, ε as

ε =
1

2
||Lm(i+1) − dobs||2,

where L represents a linear modeling operator and Lm(i+1) is the predicted data

given by the solution to equation 2.15, dobs represents the recorded pressure

seismogram, m represents the reflectivity image and i represents the iteration

index.

� Compute the gradient given by

g(i+1) = LT
[
Lm(i+1) − dobs

]
= LT∆d(i+1),

where ∆d represents the data residual between the predicted and the observed
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data, which is backpropagated by using the adjoint equations in 2.16. The ad-

joint wavefields are cross-correlated with the background fields, given in equa-

tion 2.12, to give the perturbation in bulk modulus in equation 2.17 at each

iteration. This perturbation can then be suitably scaled to give the perturba-

tion in the reflectivity image, δm as

K = ρv2 ⇒ δK = 2ρvδv (∵ δρ = 0)

∴ δm =
δv

v
=

δK

2ρv2
=
δK

2K
.

� Update the gradient using the conjugate gradient formula as

dk(i+1) = Cg(i+1) + βdk(i),

where β is given by

β =

(
g(i+1)

)T
Cg(i+1)

(g(i))
T

Cg(i)
.

� Compute the step length α,

α =

(
dk(i+1)

)T
g(i+1)(

Ldk(i+1)
)T (

Ldk(i+1)
) .

� Iteratively update the reflectivity image,

m(i+2) = m(i+1) + αdk(i+1),

until the length of the residual vector falls below a specified threshold.
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2.5 Numerical results

The effectiveness of Q-LSRTM is now demonstrated with both synthetic and field data

records from a crosswell experiment in Friendswood, Texas. The synthetic examples

are for two models with strong attenuation: 1) a layered model with a shallow velocity

and Q anomaly, and 2) the Marmousi model with embedded Q anomalies.

In the synthetic examples, the observed data are generated by a O(2,8) time-space

domain staggered grid solution of the viscoacoustic wave-equation in equation 2.10.

A Ricker wavelet with a peak frequency of 20 Hz is chosen as the source wavelet.

The data are then migrated by using RTM, LSRTM, Q-RTM and Q-LSRTM. Here,

RTM and Q-RTM refer to the first iteration of LSRTM and Q-LSRTM, respectively.

Source-side illumination is used as the pre-conditioning factor during the least-squares

iterations for LSRTM and Q-LSRTM. The standard RTM and Q-RTM images are

also illumination compensated.

2.5.1 Layered velocity model

We first demonstrate the effect of strong subsurface attenuation on migrated images

using a simple example of a flat layered model. Figure 2.1 shows a layered velocity

model with a shallow Q anomaly. The Q value in the anomaly is 20, implying very

strong attenuation for a wave propagating through this layer. To generate the syn-

thetic data, equation 2.10 is solved for 100 shots evenly spaced at 40 m on the surface.

200 receivers, evenly distributed at 20 m on the surface, recorded the data.

Figures 2.2(a) and 2.2(b) compare the RTM and LSRTM images when the data

having strong attenuation are migrated under the acoustic approximation. The

LSRTM image has fewer artifacts and better balanced amplitudes in the shallow

layers compared to the RTM image. However, the deeper layers below the anomaly

(shown by the black arrows in Figure 2.2) have very weak amplitudes in both the
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Figure 2.1: A layered model: (a) true velocity model, (b) true Q model, (c) migration
velocity model, (d) Q model used for Q-RTM and Q-LSRTM.
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RTM and the LSRTM images. There is also a slight mispositioning in their locations.

This is because strong attenuation affects both the amplitudes and the phases of the

propagating waves.

The Q-RTM and Q-LSRTM images after 20 iterations are shown in Figures 2.2(c)

and 2.2(d), respectively. The shallow Q-LSRTM image is similar to that for standard

LSRTM in terms of artifact mitigation and better balancing of reflector amplitudes.

However, improvements with Q-LSRTM are evident at the base of the anomaly and

the reflectors directly beneath it (shown by the black arrows in Figure 2.2 and in the

zoom views in Figure 2.3). The reflectors are imaged at the correct locations and

the migration amplitudes of these layers are more accurate than those obtained by

standard LSRTM. As shown in Figure 2.3, Q-LSRTM has corrected for the amplitude

loss and the phase distortion in the deeper layers due to the overlying Q anomaly.

2.5.2 Marmousi model

The Q-LSRTM method is now tested on the more complex Marmousi model. Fig-

ures 2.4(a) and 2.4(b) show the true velocity and Q models, respectively, used for

generating the observed data. The migration velocity and Q models are shown in

Figures 2.4(c) and 2.4(d), respectively, and the Q model is chosen such that the at-

tenuation layers are overlying the targeted deeper anticlines. The observed synthetic

data are generated with a fixed spread geometry where 200 shots are excited with a

40 m shot interval at a depth of 10 m. Each shot is recorded with 400 receivers and

a 20 m receiver interval with a recording time of around 8 seconds.

Conventional acoustic RTM and LSRTM images are displayed in Figures 2.5(a)

and 2.5(b), respectively. Similar to the previous example, the LSRTM image shows

better resolution and fewer artifacts in the shallow layers compared to the standard

RTM image. However, in the deeper layers, the amplitudes of the images from these

two imaging methods are very weak. The reflectors and the anticlines cannot be
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Figure 2.2: Comparison between images from (a) acoustic RTM, (b) acoustic LSRTM,
(c), Q-RTM, and (d) Q-LSRTM. The black arrows point to the reflectors below the
strong attenuation layer where improvements from Q-LSRTM can be seen.
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Figure 2.3: Magnified views of Figure 2.2 where all the images have been normalized
such that the short reflector at the top of the Q anomaly have the same magnitude.
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Figure 2.4: The modified Marmousi model: (a) true velocity model, (b) true Q model,
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properly delineated in spite of using a very accurate velocity model for migration.

This distortion can be attributed to the strong attenuation above these layers.

The Q-RTM image, shown in Figure 2.5(c), shows no improvements in the deeper

layers compared to the standard RTM image in Figure 2.5(a). However, significant

improvements can be seen in the Q-LSRTM image shown in Figure 2.5(d). In the

shallow layers, the acoustic LSRTM and Q-LSRTM images are very similar in terms of

the image quality. However, the amplitudes of the deeper reflectors and the anticlines

are significantly better balanced in the Q-LSRTM image than in the standard RTM

and LSRTM images. The zoomed views of the black and blue boxes in Figures 2.5(b)

and 2.5(d) are shown in Figure 2.6. The black arrows point to the areas where

noticeable improvements in the image quality can be seen with Q-LSRTM.

The residual as a function of iteration number for acoustic and Q-LSRTM is

plotted in Figure 2.7. The convergence rate for Q-LSRTM is better than that for

acoustic LSRTM because the correct physics of attenuation is accounted for in the

forward and adjoint operators.

2.5.3 Sensitivity of Q-LSRTM to errors in the velocity model

The sensitivity of Q-LSRTM to errors in the migration velocity model are now tested.

For these numerical simulations, we assume that an accurate estimate of Q is avail-

able. The errors are introduced into the migration velocity model by applying a

triangle smoothing filter with increasing window lengths to the true velocity model

in Figure 2.4(a). The Q-LSRTM images for the different velocity models are shown

in Figure 2.8(b). It becomes evident from these figures that the blurring in the Q-

LSRTM image increases with depth for velocity errors exceeding around 8%. The

convergence curves, shown in Figure 2.9, show that the convergence of Q-LSRTM

decreases with increasing errors in the velocity model.
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Figure 2.5: Comparison between images from (a) acoustic RTM, (b) acoustic LSRTM,
(c), Q-RTM, and (d) Q-LSRTM. The black and blue boxes point to the areas for zoom
views.
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Figure 2.6: Magnified views of the black (left) and blue (right) boxes in Figure 2.5.
(a), (d) True reflectivity models used only for comparison. (b), (e) acoustic LSRTM
images. (c), (f) Q-LSRTM images.
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Figure 2.7: Convergence curves for acoustic and Q-LSRTM for the Marmousi model.

2.5.4 Sensitivity of Q-LSRTM to errors in the Q model

To quantify the sensitivity of Q-LSRTM to errors in the Q migration model, the Q-

LSRTM images for different attenuation models are shown in Figures 2.10(b). It is

evident from these figures that Q-LSRTM shows improvements over standard LSRTM

when the error in the migration Q model is around 50%. For attenuation errors ex-

ceeding 50%, the amplitude loss is not compensated for by Q-LSRTM and the in-

verted images are very similar to the acoustic LSRTM image shown in Figure 2.5(b).

The convergence curves for the different cases, shown in Figure 2.11, suggest that

Q-LSRTM converges quickly even when there are significant errors in the migration

Q model. This is contrary to the convergence curves shown in Figure 2.9 where the

convergence of Q-LSRTM becomes slower with increasing errors in the migration ve-

locity model. These curves suggest that the convergence rate of Q-LSRTM is more

sensitive to errors in the velocity model than to errors in the Q model. However,

with increasing errors in the migration Q model, the amplitude loss due to atten-
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Figure 2.8: Sensitivity of Q-LSRTM to errors in the migration velocity model. The
figures in the left panel show the different velocity models used for Q-LSRTM. On
the right are the corresponding Q-LSRTM images after 20 iterations.
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percentage errors in the migration velocity model.

uation is not corrected for by Q-LSRTM. Thus, a fairly accurate estimation of the

Q distribution is required to see noticeable improvements in the image quality with

Q-LSRTM.

2.5.5 Friendswood Crosswell Field Data

As a final example, Q-LSRTM is applied to the Friendswood crosswell data ([Chen et al., 1990]).

Two 305 m deep cased wells separated by 183 m were used as the source and receiver

wells. Downhole explosive sources of 10 g charges were fired at intervals of 3 m from

305 m to 9 m in the source well and the receiver well had 96 receivers placed at depths

ranging from 293 m to 3 m. The data were recorded with a sampling interval of 0.25

ms for a total recording time of 0.375 s. The following processing steps were first

applied to the data:

� The recorded data are corrected from 3D to 2D format by scaling the amplitudes
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Figure 2.10: Sensitivity of Q-LSRTM to errors in the migration Q model. The figures
in the left panel show the different Q models used for Q-LSRTM. The true model had
a background Q value of 0.05. On the right are the corresponding Q-LSRTM images
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by
√
t to approximate geometrical spreading. A phase correction is applied

by multiplying the spectrum of the observed seismogram with the filter
√
i/ω

([Zhou et al., 1995]).

� A directional 9-point median filter is used to eliminate the tube waves which are

seen as linear events in the common shot gather (CSG) shown in Figure 2.12(a).

To implement this filter, a linear moveout correction is applied to the CSG to

flatten the tube wave arrivals so that they arrive at the same time. For every

time sample, a 9-trace median filter is applied to the traces so that the output

traces have highly amplified tube waves and diminished reflection events around

the onset of the tube waves. These predicted tube waves are then subtracted

from the original data.

� A bandpass filter of 80-600 Hz is applied to the data to remove any extreme

noise from the data. The final processed CSG after applying all these processing
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Figure 2.12: (a) A raw CSG from the Friendswood crosswell data. (b) The same CSG
after applying all the data processing steps.

steps is shown in Figure 2.12(b).

� Since the bandwidth of 80-600 Hz is too broad for waveform tomography and

Q-LSRTM, the data are Wiener filtered to transform the original wavelet to a

Ricker wavelet with a 200 Hz peak frequency. This bandwidth is chosen based

on the frequency content of the data where most of the signal is concentrated

between 150-250 Hz.

� The first-arrival traveltimes are then picked from all the CSGs and inverted to

get a starting velocity model for early-arrival waveform inversion. The early-

arrival waveform tomogram, shown in Figure 2.13(a), is used as the migration

velocity model. The wave-equation Q tomography method, discussed in the

next chapter, is used to get a reference Q model for Q-RTM and Q-LSRTM.

The estimated Q tomogram is shown in Figure 2.13(b).

The images from acoustic LSRTM and Q-LSRTM after 10 iterations are shown

in Figures 2.14(b) and 2.14(d), respectively. The decrease in residual was around
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Figure 2.13: Background models used for Q-LSRTM: (a) Velocity tomogram esti-
mated for the crosswell data using early-arrival waveform inversion. (b) Q tomogram
estimated using wave-equation Q tomography.

25-30% for both the inversions. In the shallow part of the image between 25-120 m,

the amplitudes of the reflectors have improved in the Q-LSRTM image compared to

the acoustic LSRTM image. In the deeper part between 170-200 m, the layers have

been better delineated in the Q-LSRTM image. The lateral continuity of the imaged

reflectors have also improved in this area. Magnified views of the blue and black

boxes in Figure 2.14, shown in Figures 2.15 and 2.16 respectively, further emphasize

the improvement in the image quality from Q-LSRTM.

2.6 Discussion

The adjoint propagators used for Q-LSRTM are also attenuative and they damp the

high frequency components of the residual wavefield at every iteration. The effect

of this extra damping during the residual wavefield extrapolation can be seen in the

magnified views of the Q-LSRTM images in Figures 2.15 and 2.16. Even though the

Q-LSRTM image has better balanced amplitudes than the acoustic RTM and LSRTM
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Figure 2.14: Comparison between images from (a) acoustic RTM, (b) acoustic
LSRTM, (c) Q-RTM, and (d) Q-LSRTM after 10 iterations. The blue and black
boxes point to the areas for zoom views.
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Figure 2.15: Magnified views of the blue boxes in Figure 2.14. The black arrows point
to the areas where improvements in amplitude balancing can be seen with Q-LSRTM.
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images in areas where there is strong attenuation, the acoustic LSRTM image is richer

in high wavenumber content and has better resolution than the Q-LSRTM image. To

compensate for this loss in resolution, a deblurring filter ([Aoki and Schuster, 2009,

Dai et al., 2011]) can be used as a preconditioner during the Q-LSRTM iterations.

Throughout the numerical tests, a single relaxation mechanism is assumed which

is valid if the bandwidth of the data is narrow. For a wide bandwidth of the data, as in

the case of the Friendswood crosswell data, a single relaxation mechanism may not be

sufficient to accurately model the effect of Q. However, using more than one relaxation

mechanism will significantly increase the computational cost of Q-LSRTM. For typ-

ical exploration problems for RTM where the bandwidth of the data used is around

5-30 Hz, use of a single relaxation mechanism should suffice ([Blanch et al., 1995];

[Zhu et al., 2013]). Also, in the numerical simulations, it is assumed that the recorded

data are free from shear waves. Similar to standard LSRTM, if there are shear waves

present in the data, Q-LSRTM will produce images with strong shear wave arti-

facts. Also, the Q-LSRTM formulation in this chapter uses the isotropic viscoacous-

tic wave-equation. However, the real earth is anisotropic and interbedding of thin

thin attenuative layers can lead fo attenuation anisotropy ([Mavko and Nur, 1979,

Carter and Kendall, 2006, Zhu and Tsvankin, 2006, Zhu et al., 2007, Zhu and Tsvankin, 2007,

Behura and Tsvankin, 2009]). Studying the effect of anisotropy on Q-LSRTM will be

a topic of future research.

A disadvantage of Q-LSRTM is that the computational cost per iteration is

more than six times that of standard RTM. The cost increases linearly with the

number of least-squares iterations. As in the case of standard least-squares migra-

tion, Q-LSRTM can be made more efficient using multisource encoded migration

([Dai and Schuster, 2009]; [Tang, 2009]; [Dai et al., 2010]; [Huang and Schuster, 2012])

where several shot gathers are randomly shifted in time to form a phase-encoded su-

pergather.
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2.7 Conclusions

A time-domain least-squares reverse time migration method is presented that uses

the viscoacoustic wave-equation to compensate for the distortion in amplitudes and

phases of seismic waves propagating in highly attenuative layers. Numerical results

on synthetic and field data validate that if the recorded data have strong attenuation,

then conventional acoustic RTM and LSRTM cannot correct for the attenuation loss.

However, if the linearized viscoacoustic wave-equation and its adjoint equations are

used for LSRTM, the attenuation loss can be compensated during the iterations. Re-

sults with synthetic and field data for strongly attenuative media show that LSRTM

with Q compensation produces images with better balanced amplitudes and accu-

rately positioned reflectors compared to acoustic RTM and LSRTM. Similar to stan-

dard LSRTM, Q-LSRTM is also sensitive to errors in the migration velocity model.

Another input requirement for this method is an accurate estimate of the smoothly

varying Q distribution in the subsurface. Accurate estimation of Q and the linearized

Q-LSRTM method proposed in this chapter have the potential for accurate imaging

in highly attenuative geological environments such as gas-sandstones and shales.
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Chapter 3

Wave-equation Q tomography

3.1 Summary

A wave-equation gradient optimization method is presented that inverts for the sub-

surface Q distribution that minimizes a skeletonized misfit function ε. Here, ε is the

sum of the squared differences between the observed and the predicted peak/centroid-

frequency shifts of the early arrivals. The gradient is computed by migrating the ob-

served traces weighted by the frequency-shift residuals. The background Q model is

perturbed until the predicted and the observed traces have the same peak frequencies

or the same centroid frequencies. Numerical tests show that an improved accuracy of

the Q model by wave-equation Q inversion (WQ) leads to a noticeable improvement

in the migration-image quality.

3.2 Introduction

The real earth is anelastic and distorts the amplitude and the phase of a propagating

seismic wave ([Aki and Richards, 1980]). Attenuation of P-waves can be quantified

by a quality factor Q which accounts for the phase shift as a function of the frequency

content of the propagating waves and the distance traveled. Lower values of Q imply

more energy loss of the wave per cycle or higher attenuation.
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The amplitude loss due to attenuation is often compensated for during prestack

depth migration (PSDM). For example, [Xin et al., 2008] and [Xie et al., 2009] com-

pensated for the attenuation loss by ray-tracing methods. [Dai and West, 1994],

[Yu et al., 2002], [Wang, 2008] and [Valenciano et al., 2011] used one-way wave-equation

migration in the frequency domain for attenuation compensation. For reverse time mi-

gration, [Zhang et al., 2010], [Suh et al., 2012], [Fletcher et al., 2012], [Bai et al., 2013],

[Zhu et al., 2014] and [Zhu and Harris, 2015] proposed different visco-acoustic wave

equations with separate controls over phase and amplitude to compensate for the

attenuation loss. [Dutta and Schuster, 2014] and [Sun et al., 2015a] used anelastic

least-squares RTM schemes to successfully compensate for the amplitude loss and

phase distortion because of Q during imaging.

Besides velocity, an additional input requirement for these Q-based migration

algorithms is a reliable estimate of the background Q model. A Q model can be either

estimated using data-domain or image-domain based tomographic techniques. In the

data-domain, [Brzostowski and McMechan, 1992] used the attenuation of amplitudes

as the input data for Q tomography. In contrast, [Quan and Harris, 1997] used the

frequency-shifts between the predicted and the observed traces and smeared the shifts

along raypaths to update the Q model. A similar adaptive centroid frequency-shift

approach was also used by [He et al., 2013]. These frequency-shift methods rely on the

high-frequency assumption made in classical ray-based tomography. Alternative data-

domain approaches include using a FWI-like algorithm where an objective function is

set up to invert for a Q model that minimizes the L2 norm of the residual between the

observed and the predicted data ([Bai and Yingst, 2013]; [Wang and Zhang, 2014]).

For the image-domain techniques, a residual image is usually minimized, which

is the difference between the image computed by the background Q model and a

target image, which is attenuation-free ([Shen et al., 2014]; [Shen and Zhu, 2015];

[Shen et al., 2015]). The image perturbation is then related to the perturbation in Q
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using wave-equation based tomography operators. An interpretative image-domain

based Q tomography technique was developed by [Zhou et al., 2011] where they gen-

erated amplitude ratio maps by comparing the reflection amplitudes associated with

a lossy layer with that of a reference horizon that remains unaffected. Through ray-

tracing, they accumulate the attenuation effects along raypaths and a Q volume is

then estimated from tomographic inversion.

In this chapter, I present a new skeletonized wave-equation Q inversion method

that is based on minimizing the difference between the peak frequencies of the ob-

served and the predicted transmission arrivals. The peak frequencies are obtained

from the amplitude spectra of the traces, which are a skeletonized representation of

the data. The Fréchet derivative is derived using the implicit function theorem and

the gradient is numerically obtained by a zero-lag cross-correlation between the for-

ward propagated source wavefield and the backpropagated residual traces. A residual

trace is obtained by weighting the observed trace by the frequency shift between the

trace and its corresponding predicted trace. Unlike conventional ray-based Q tomog-

raphy, the residuals in wave-equation Q tomography are smeared along transmission

wavepaths ([Woodward, 1992]) computed from finite-difference solutions to the time-

domain visco-acoustic wave equation characterized by the standard linear solid (SLS)

mechanism ([Christensen, 1982]; [Carcione et al., 1988]; [Blanch et al., 1995]). The

proposed approach has no high-frequency assumptions about the data unlike ray-

based tomography methods. It is also less susceptible to cycle-skipping problems

associated with any FWI-like algorithm where the amplitude and the phase differ-

ences between the predicted and the observed traces are minimized to obtain the Q

model.

This chapter is organized into five sections. After the introduction, the second

section describes the theory of wave-equation Q tomography. Numerical results on

synthetic and field data are then presented in the third section. The limitations of
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the proposed method are discussed in the fourth section and the conclusions are in

the last section.

3.3 Theory of wave-equation Q inversion

The key steps in wave-equation Q inversion are similar to the wave-equation traveltime

inversion algorithm proposed in [Luo and Schuster, 1991a] and [Luo and Schuster, 1991b].

These steps can be generalized for any type of skeletonized data and are the following:

(1) define a connective function that connects the frequency-shift residual with the

pressure seismogram, (2) define a phase-misfit function, and (3) derive the perturba-

tion of the misfit function with respect to Q using the connective function and the

visco-acoustic wave equation.

In my analysis, I use the 2D time-domain visco-acoustic wave-equation in chapter

2 given by

∂P

∂t
+K(τ + 1) (∇ · v) + rp = S(xs, t),

∂v

∂t
+

1

ρ
∇P = 0,

∂rp
∂t

+
1

τσ
(rp + τK (∇ · v)) = 0. (3.1)

Here, the variables have the same definition as in the previous chapter and the relation

between τ and Q is given by

τ =
2

Q

(
1

Q
+

√
1 +

1

Q2

)
. (3.2)

Figures 3.1(a)-3.1(c) show the variation of the relaxation parameters τσ, τε and τ with

Q. It can be seen from these figures that high values of τ imply strong attenuation

while low values indicate weak attenuation. Also, for realistic geological models, Q

varies from 20-200. In this range, τ has a wider variation in its values than τσ and τε.
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Thus, for the parameterization, τ is used since it is quite sensitive to small changes

in Q.

In the next sub-section, we define a connective function that connects the change

in peak frequency of an arrival with the observed and the predicted pressure seismo-

grams.

3.3.1 Connective function

Let P̃f (xr, t; xs) denote a predicted event for a given background Q model recorded

at the receiver location xr due to a source excited at time t = 0 and at location xs. f

is the peak frequency of this event that can be obtained from its amplitude spectrum

(shown by the red curve in Figure 3.2). Similarly, let Pf−∆f (xr, t; xs) denote the same

event in the observed data (the spectrum of this event is shown by the blue curve in

Figure 3.2). ∆f is the shift between the peak-frequencies of the predicted and the

observed traces because of Q.

For the right background velocity model, the similarity between the amplitude-

normalized observed and predicted traces in Figure 3.3 can be written as

Ff (xr, t; xs) =

∫
dt

Pf−∆f (xr, t; xs)

A1(xr; xs)

P̃f (xr, t; xs)

A2(xr; xs)
,

=

∫
dt

Pf−∆f (xr, t; xs)

A(xr; xs)
P̃f (xr, t; xs). (3.3)

Here A1(xr; xs) and A2(xr; xs) are the amplitude normalization factors for the ob-

served and the predicted events, respectively, and A(xr; xs) = A1(xr; xs)A2(xr; xs).

These factors normalize the events to a maximum amplitude of 1 such that only the

phase mismatch or the shift in peak-frequency is emphasized during the inversion.
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Figure 3.1: Variation of the parameters (a) τε, (b) τσ, and (c) τ for different values
of Q. The central frequency of the source wavelet is taken to be 20 Hz.
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Figure 3.2: Comparison between the amplitude spectra of a single transmission arrival
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Figure 3.3: Comparison between a predicted and an observed trace for a single trans-
mission arrival.

In WQ, the peak-frequency shift between an observed and a predicted trace is

minimized. For the right background Q model, the predicted and the observed arrivals

will have the same peak frequency, i.e. ∆f = 0, and the normalized cross-correlation
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function in equation 3.3 is maximized. The derivative of Ff (xr, t; xs) with respect to

f should then be zero at f = ∆f . Thus,

Ḟ∆f =

[
∂Ff (xr, t; xs)

∂f

]
f=∆f

=

∫
dt

Ṗf−∆f (xr, t; xs)

A(xr; xs)
P̃f (xr, t; xs) = 0, (3.4)

where Ṗf (xr, t; xs) = ∂Pf (xr, t; xs)/∂f . The derivatives over the amplitude normal-

ization terms have been ignored here and will be ignored in all subsequent steps

since only the peak-frequency shifts are used to update the background Q model.

Equation 3.4 is the connective function which will be later used to derive the Fréchet

derivative of τ .

3.3.2 Misfit function

The WQ method attempts to invert for a Q model or an equivalent τ model which

predicts pressure seismograms P̃f (xr, t; xs) that minimize the misfit function

ε =
1

2

∑
s

∑
r

∆f(xr,xs)
2, (3.5)

where ∆f is defined in the previous section and the summation in equation 3.5 is

over all sources and receivers. The gradient γ(x) is given by

γ(x) = − ∂ε

∂τ(x)
= −

∑
s

∑
r

∂∆f

∂τ(x)
∆f(xr,xs). (3.6)

From equation 3.4 we can get the following 3 equations,
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i)

Ḟ∆f (∆f, τ(x)) = 0,

⇒∂Ḟ∆f

∂∆f

∂∆f

∂τ(x)
+
∂Ḟ∆f

∂τ(x)
= 0,

⇒ ∂∆f

∂τ(x)
= −

∂Ḟ∆f

∂τ(x)

∂Ḟ∆f

∂∆f

, (3.7)

ii)

∂Ḟ∆f

∂∆f
=

∫
dt
P̈f−∆f (xr, t; xs)

A(xr; xs)
P̃f (xr, t; xs), (3.8)

iii)

∂Ḟ∆f

∂τ(x)
=

∫
dt
Ṗf−∆f (xr, t; xs)

A(xr; xs)

∂P̃f (xr, t; xs)

∂τ(x)
. (3.9)

Using equation 3.7, the gradient in equation 3.6 can be written as

γ(x) =
∑
s

∑
r

∂Ḟ∆f

∂τ(x)

∂Ḟ∆f

∂∆f

∆f(xr,xs). (3.10)

The Fréchet derivative
∂P̃f (xr,t;xs)

∂τ(x)
is now derived in the next subsection.

3.3.3 Fréchet derivative

To obtain the Fréchet derivative of the pressure field with respect to the perturbation

in τ(x), I linearize the visco-acoustic wave equation in equation 3.1. A perturbation

of τ → τ + δτ will produce perturbed wavefields δP̃f , δv and δrp which satisfy the
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linearized visco-acoustic wave equation given by ([Dutta and Schuster, 2014])

∂δP̃f
∂t

+K(τ + 1) (∇ · δv) + δrp = −Kδτ (∇ · v) ,

∂δv

∂t
+

1

ρ
∇δP̃f = 0,

∂δrp
∂t

+
1

τσ
(δrp + τK (∇ · δv)) = −K

τσ
δτ (∇ · v) . (3.11)

Using the Green’s functions gP (xr, t; x, 0) and grp(xr, t; x, 0), equation 3.11 can also

be expressed as

δP̃f (xr, t; xs) = −
(
K (x)(gP (xr, t; x, 0) ∗ ∇ · v(x, t; xs)) +

K(x)

τσ(x)

(
grp(xr, t; x, 0) ∗ ∇ · v(x, t; xs)

))
δτ(x),

(3.12)

where ∗ denotes convolution in time. Dividing by δτ(x) on both sides we get,

∂P̃f (xr, t; xs)

∂τ(x)
= −

(
K(x)(gP (xr, t; x, 0) ∗ ∇ · v(x, t; xs)) +

K(x)

τσ(x)
(grp(xr, t; x, 0) ∗ ∇ · v(x, t; xs))

)
.

(3.13)

Here, gp(x, t; xs) and grp(x, t; xs) are the pressure and the memory variable Green’s

functions, respectively, and v satisfies the system of equations Sw = F in equation 3.1.

Equation 3.9 can now be written as

∂Ḟ∆f

∂τ(x)
=

∫
dt

Ṗf−∆f (xr, t; xs)

A(xr; xs)

∂P̃f (xr, t; xs)

∂τ(x)

= −
∫
dt K(x)

(
gP (xr, t; x, 0) ∗ ∇ · v(x, t; xs) +

1

τσ(x)
grp(xr, t; x, 0) ∗ ∇ · v(x, t; xs)

)
Ṗf−∆f (xr, t; xs)

A(xr; xs)
.

(3.14)
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Substituting equations 3.8 and 3.14 into equation 3.10, the gradient γ(x) can be

expressed as

γ(x) =
∑
s

∑
r

∂Ḟ∆f

∂τ(x)

∂Ḟ∆f

∂∆f

∆f(xr,xs)

= −
∑
s

∑
r

∫
dt K(x)

(
gP (xr, t; x, 0) ∗ ∇ · v(x, t; xs) + 1

τσ(x)
grp(xr, t; x, 0) ∗ ∇ · v(x, t; xs)

)
∫
dt

P̈f−∆f (xr,t;xs)

A(xr;xs)
P̃f (xr, t; xs)

Ṗf−∆f (xr, t; xs)

A(xr; xs)
∆f(xr,xs)

= −K(x)

E

∑
s

∑
r

∫
dt

(
gP (xr, t; x, 0) ∗ ∇ · v(x, t; xs) +

1

τσ(x)
grp(xr, t; x, 0) ∗ ∇ · v(x, t; xs)

)
Ṗf−∆f (xr, t; xs)∆f(xr,xs),

(3.15)

where,

E =

∫
dt P̈f−∆f (xr, t; xs)P̃f (xr, t; xs). (3.16)

Let ∆Pf (xr, t; xs) = Ṗf−∆f (xr, t; xs)∆f(xr,xs) denote the data residual obtained by

weighting the observed traces with the residual frequency-shifts. In my present imple-

mentation, the frequency derivative over Pf−∆f (xr, t; xs) is ignored while calculating

the data residual. Equation 3.15 now becomes

∂ε

∂τ(x)
= −K(x)

E

∑
s

∑
r

∫
dt

(
gP (xr, t; x, 0) ∗ ∇ · v(x, t; xs) +

1

τσ(x)
grp(xr, t; x, 0) ∗ ∇ · v(x, t; xs)

)
∆Pf (xr, t; xs).

(3.17)



74

Using the identity,

∫
dt [f(t) ∗ g(t)]h(t) =

∫
dt g(t) [f(−t) ∗ h(t)] , (3.18)

equation 3.17 can be re-written as

∂ε

∂τ(x)
= −K(x)

E

∑
s

∑
r

∫
dt (

source︷ ︸︸ ︷
∇ · v(x, t; xs)

backpropagated residual︷ ︸︸ ︷
(gP (xr,−t; x, 0) ∗∆Pf (xr, t; xs))

+
1

τσ(x)

source︷ ︸︸ ︷
∇ · v(x, t; xs)

backpropagated residual︷ ︸︸ ︷(
grp(xr,−t; x, 0) ∗∆Pf (xr, t; xs)

)
)

= −K(x)

E

∑
s

∫
dt (

source︷ ︸︸ ︷
∇ · v(x, t; xs)

∑
r

backpropagated residual︷ ︸︸ ︷
(gP (xr,−t; x, 0) ∗∆Pf (xr, t; xs))

+
1

τσ(x)

source︷ ︸︸ ︷
∇ · v(x, t; xs)

∑
r

backpropagated residual︷ ︸︸ ︷(
grp(xr,−t; x, 0) ∗∆Pf (xr, t; xs)

)
)

= −K(x)

E

∑
s

∫
dt

(
∇ · v(x, t; xs)q(x, t; xs) +

1

τσ(x)
∇ · v(x, t; xs)s(x, t; xs)

)
= −K(x)

E

∑
s

∫
dt ∇ · v(x, t; xs)

(
q(x, t; xs) +

s(x, t; xs)

τσ(x)

)
. (3.19)

Here, q and s are the adjoint-state variables of P and rp, respectively. The gradient

in equation 3.19 can be numerically computed by a zero-lag cross-correlation of a

forward propagated source wavefield term ∇ · v(x, t; xs) and backpropagated resid-

ual wavefield terms q and s. The residual wavefield is computed by weighting the

observed traces with their corresponding frequency shifts with the predicted traces.

These weighted traces can be used as an adjoint source from the receiver side. An

alternative derivation of the gradient for WQ using the adjoint-state method is shown

in Appendix E.

For diving waves, where there are more than one event present, the frequency

spectra for an observed trace and a predicted trace are shown in Figure 3.4. It is

evident that in such cases, the peak-frequency for the arrivals cannot be accurately
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estimated since each arrival has its own peak frequency. In such cases, the objective

function in equation 3.5 can be modified to minimize the centroid frequency shifts

between the predicted and the observed traces as

ε =
1

2

∑
s

∑
r

∆fcentroid(xr,xs)
2,

=
1

2

∑
s

∑
r

(∫ f
0
fpA(fp)∫ f

0
A(fp)

−
∫ f

0
foA(fo)∫ f

0
A(fo)

)2

. (3.20)

The subscripts o and p stand for observed and predicted, respectively, and A(f) is

the amplitude for a frequency f . The connective function, the Fréchet derivative and

the gradient can be similarly derived as shown in the previous sub-sections.
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Figure 3.4: Comparison between the amplitude spectra of predicted and observed
traces for diving waves.

3.3.4 WQ algorithm

The following steps are carried out for numerically implementing WQ using a pre-

conditioned gradient-based method, where the preconditioner is a source-side illumi-

nation factor.
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� Form the misfit function ε as

ε =
1

2

∑
s

∑
r

∆f(xr,xs)
2. (3.21)

� Compute the gradient by

∂ε

∂τ(x)
= −K(x)

E

∑
s

∫
dt (

source︷ ︸︸ ︷
∇ · v(x, t; xs)

∑
r

backpropagated residual︷ ︸︸ ︷
(gP (xr,−t; x, 0) ∗ ∇ · v(x, t; xs))

+
1

τσ(x)

source︷ ︸︸ ︷
∇ · v(x, t; xs)

∑
r

backpropagated residual︷ ︸︸ ︷(
grp(xr,−t; x, 0) ∗ ∇ · v(x, t; xs)

)
).

(3.22)

� Estimate the step-length α by any backtracking line-search method ([Nocedal and Wright, 1999]).

� Update the tau model τ(x) using the iterative steepest descent formula:

τ(x)(k+1) = τ(x)(k) − αP (x)
∂ε

∂τ(x)
, (3.23)

where k represents the iteration index and P (x) is the preconditioning factor.

At every iteration, the background τ(x) is updated and the update in τ(x) is

then mapped to Q(x) using equation 3.2.

3.4 Numerical Results

The effectiveness of WQ is now demonstrated with synthetic and field data records

from a crosswell experiment in Friendswood, Texas. The synthetic examples are for

two models with strong attenuation: (1) a crosswell example with a Gaussian Q

anomaly, and (2) a surface-seismic example where there are shallow Q anomalies that
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hinder the imaging of the reflectors below the anomaly.

In the synthetic examples, the observed data are generated by an O(2, 8) time-

space-domain staggered-grid solution of the viscoacoustic-wave equation in equa-

tion 3.1. A Ricker wavelet with a peak frequency of 15 Hz is used as the source

wavelet.

3.4.1 Crosswell Gaussian Q model

Figure 3.5(a) shows a homogeneous model with a velocity of 2 km/s. A Gaussian Q

anomaly is embedded at the center of the model. The maximum Q at the center of

the anomaly is 40 and the source and the receiver wells are offset by 4 km. There

are 60 evenly spaced sources in the source well and 200 evenly spaced receivers in

the receiver well. For WQ, the starting Q model is taken to be homogeneous with

Q = 1000. Figure 3.5(b) shows the final Q tomogram obtained from WQ. It is evident

that the Gaussian Q anomaly is successfully reconstructed by WQ.

3.4.2 Surface-seismic model

The WQ method is now tested on a more complex 2D section of the 3D SEG/EAGE

overthrust model. Figures 3.6(a) and 3.6(b) show the true velocity and Q models,

respectively, used for generating the observed data. A smooth version of the true

velocity model, shown in Figure 3.6(c), is used as the background velocity model for

WQ. The observed data are generated by 200 shots evenly distributed on the surface.

400 receivers at an offset of 30 m on the surface recorded the data for 6 seconds.

For WQ, the diving waves in the predicted and the observed traces are separated

using the water velocity. The objective function in equation 3.20 is used to update

the background Q model. The inverted Q tomogram after 35 iterations is shown in

Figure 3.6(d). It is evident that WQ can successfully recover the low-intermediate

wavenumber details of the background Q model. Comparison between the peak-
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Figure 3.5: (a) True Q model, and (b) inverted Q model using WQ.
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frequencies for different source-receiver pairs in the observed and the predicted traces

after WQ, shown in Figure 3.7, also validate the accuracy of the inverted Q tomogram.

Q-LSRTM ([Dutta and Schuster, 2014]) is now used to check the fidelity of the

inverted Q tomogram. The acoustic RTM and LSRTM images are shown in Fig-

ures 3.8(a) and 3.8(b), respectively. The black boxes in these figures indicate the

areas that have been affected by the shallow Q anomalies. The amplitudes as well as

the phases of the events in these areas have been distorted because of attenuation.

The Q-RTM and Q-LSRTM images are shown in Figures 3.8(c) and 3.8(d), respec-

tively. The amplitude and the phase distortions are corrected in the Q-LSRTM image.

This example demonstrates that the inverted Q tomogram from WQ can be used as

the background Q model for any Q-PSDM algorithm to obtain images with better

resolution and better balanced amplitudes than standard migration techniques.

3.4.3 Friendswood crosswell field data

As a final example, WQ is applied to the Friendswood crosswell data ([Chen et al., 1990]).

Two 305 m deep cased wells separated by 183 m were used as the source and receiver

wells. Downhole explosive sources of 10 g charges were fired at intervals of 3 m from

305 m to 9 m in the source well and the receiver well had 96 receivers placed at depths

ranging from 293 m to 3 m. The data were recorded with a sampling interval of 0.25

ms for a total recording time of 0.375 s. The same processing steps as described

in Chapter 2 are used to process the data for WQ. The picked first-arrival travel-

times from the recorded data are shown in Figure 3.9(a). The early-arrival waveform

tomogram, shown in Figure 3.10(a), is used as the background velocity model for

WQ.

Figures 3.9(a)-3.9(b) show the traveltime picks and the peak frequency picks for

the raw field data set. It can be seen that the low peak frequencies along the diago-

nal elements in this figure correlate with the high traveltime/low velocity regions in
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Figure 3.6: (a) True velocity, and (b) Q models used for generating the observed data,
(c) velocity model used for WQ, and (d) inverted Q tomogram from WQ.
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(a) Peak Frequencies in the Observed Data Hz
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(b) Peak Frequencies after WQ Hz
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Figure 3.7: The peak-frequencies for different source-receiver pairs in (a) the observed
data, and (b) the predicted data from WQ.

the model. This suggests that the low velocity formations in this model have high

attenuation or low Q values.

For WQ, the starting Q model is taken to be homogeneous with Q=1000. The

Q tomogram obtained after 30 iterations is shown in Figure 3.10(b). There is a

good agreement geologically between the velocity and the Q tomograms. The high

attenuation regions in the Q tomogram correspond to the low velocity regions in

the FWI tomogram. This is also consistent with the traveltime picks and the peak-

frequency picks shown in Figures 3.9(a) and 3.9(b), respectively. There is also a

reasonable agreement between the peak-frequencies of the observed and the predicted

traces, as can be seen from Figures 3.9(b) and 3.11(b).

The Q-LSRTM image, shown in Figure 3.12(d), is obtained by using the veloc-

ity and the WQ tomograms in Figure 3.10. Similar to the synthetic example, the

Q-LSRTM image using the WQ tomogram has events with better balanced ampli-

tudes than the standard RTM and LSRTM images in Figures 3.12(a) and 3.12(b),

respectively.
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(a) Acoustic RTM
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Figure 3.8: Acoustic (a) RTM, and (b) LSRTM images obtained from the visco-
acoustic data. (c) Q-RTM, and (d) Q-LSRTM images for the same data using the
tomogram obtained from WQ as the background Q model. The black boxes delineate
the areas where improvements in imaging can be seen with WQ and Q-LSRTM.
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Figure 3.9: (a) The first-arrival traveltime picks for the Friendswood data, and (b)
the peak-frequencies for different source-receiver pairs.
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(a) Velocity Model used for WQ
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Figure 3.10: (a) Velocity model used for WQ, (b) Q tomogram obtained from WQ.
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(a) Peak Frequencies before WQ
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Figure 3.11: The peak-frequencies for different source-receiver pairs for the predicted
data (a) before WQ, and (b) after WQ.
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(a) Acoustic RTM
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Figure 3.12: Images from (a) acoustic RTM, (b) acoustic LSRTM, (c) Q-RTM, and
(d) Q-LSRTM using the tomogram obtained from WQ as the background Q model.
The black boxes delineate the areas where improvements in imaging can be seen with
WQ and Q-LSRTM.
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3.5 Discussion

Synthetic and field data examples demonstrate that WQ can be used to invert for

Q tomograms, which can be used as the background Q model for any Q-PSDM

algorithm. The background velocity model is needed as an input to compute the visco-

acoustic Green’s functions for forward propagating the source and for backprojecting

the weighted data residuals. For the synthetic example in Figure 3.6, the velocity

model for WQ was obtained by smoothing the true slowness model whereas, for the

field data example, full waveform inversion was used to obtain the velocity model.

Thus, in all the examples, it is ensured that a sufficiently accurate background velocity

model is used during WQ. If the background velocity has significant errors, it is likely

to lead to significant inaccuracies in the inverted Q tomogram.

To illustrate this point, the synthetic example in Figure 3.6 is repeated again.

However, errors are now introduced in the background velocity by applying a triangu-

lar smoothing filter with increasing window lengths to the true model in Figure 3.6(a).

The WQ tomograms for the different velocity models are shown in the right panel in

Figure 3.13. It is evident from these tomograms that as the errors in the background

velocity model increase, the Q anomalies are not delineated at the right locations.

For field data applications, if the recorded data are contaminated by noise, the

spectra can be quite rough, as seen in Figure 3.9(b). Accurate picking of the peak-

frequencies is not trivial in such cases. To mitigate this problem, the amplitude

spectra can be smoothed before the peak-frequencies for different source-receiver pairs

are estimated. The inverted Q tomogram is then expected to be more accurate.

In all the examples, the SLS-based time-domain visco-acoustic wave equation was

used for computing the Green’s functions. The visco-acoustic wave equation with-

out memory variables proposed by [Bai et al., 2013] or the decoupled Q equations

involving fractional Laplacians and its low-rank formulation ([Zhu and Harris, 2014,

Sun et al., 2015b]) can also be used to compute the Green’s functions. The WQ
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Figure 3.13: Q tomograms obtained from using different background velocity models.
The panel on the left shows the velocity models used while the one on the right shows
the corresponding Q tomograms obtained from WQ.

method proposed in this paper is generic and can be used to obtain reliable Q tomo-

grams, as long as the modeling equations satisfy a constant Q behavior within the

same frequency band ([Kjartansson, 1979]).

3.6 Conclusions

A novel wave-equation Q inversion method is presented where a skeletonized repre-

sentation of the data, i.e., the difference between the peak frequencies or the cen-

troid frequencies of the observed and the predicted arrivals are inverted to estimate
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the background Q model. The gradient for WQ is derived using the implicit func-

tion theorem and is numerically obtained by a zero-lag cross-correlation between the

forward propagated source wavefield and the backprojected observed pressure seis-

mograms that are weighted by the frequency shifts. Numerical results on synthetic

and a crosswell field dataset demonstrate that if the recorded data suffer from strong

attenuation, the WQ method can be used to estimate the background Q model. The

inverted Q model can be used with any Q-PSDM algorithm to obtain images with

balanced amplitudes and high resolution in areas where there is strong attenuation.

An input requirement for WQ is an accurate estimate of the background velocity

model, which can be obtained by conventional velocity model building algorithms.
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Chapter 4

Least-squares reverse time

migration with directional

Gabor-based preconditioning

4.1 Summary

In this chapter, I present a least-squares reverse time migration (LSRTM) method

using directional Gabor-based preconditioning to overcome the low signal-to-noise

(SNR) problem of noisy or severely undersampled data. A high resolution local

Radon transform of the reflectivity is used and sparseness constraints are imposed

on the inverted reflectivity in the local Radon domain. The sparseness constraint is

that the inverted reflectivity is sparse in the Radon domain and each location of the

subsurface is represented by limited number of geological dips. The forward and the

inverse mapping of the reflectivity to the local Radon domain and vice versa is done

through 3D Fourier-based discrete Radon transform operators. The weights for the

preconditioning are chosen to be varying locally based on the relative amplitudes of

the local dips or assigned using quantile measures. Numerical tests on synthetic and

field data validate the effectiveness of the proposed approach in producing images
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with good SNR and fewer aliasing artifacts when compared with standard RTM or

standard LSRTM.

4.2 Introduction

Least-squares migration (LSM) or linearized inversion ([Lailly, 1984]) has been shown

to produce images with balanced amplitudes, better resolution and fewer artifacts

than standard migration ([Schuster, 1993]; [Nemeth et al., 1999]; [Duquet et al., 2000];

[Plessix and Mulder, 2004]; [Tang, 2009]; [Dai and Schuster, 2010b]; [Wong et al., 2011]).

Besides a migration of the data residual, every iteration of LSM involves Born mod-

eling to estimate the step-length and to update the data residual. The potential

of LSM, especially LSRTM, to produce images of superior quality than any other

conventional migration technique has been well studied in recent years.

The problems associated with LSRTM can be broadly grouped into three major

categories: 1) inadequate physics taken into account by the modeling and the adjoint

equations, and 2) errors in the migration velocity model, and 3) the computational

cost. For reducing the computational cost, phase-encoded migration ([Morton and Ober, 1998];

[Romero et al., 2000]) was proposed that was later extended to multisource LSRTM

by [Dai et al., 2010], [Schuster et al., 2011], [Dai et al., 2012] and several other au-

thors. They showed that by an iterative migration of supergathers, multisource

LSRTM can produce more accurate reflectivity images than standard RTM and

at a fraction of the cost of standard LSRTM. A similar approach was adopted by

[Boonyasiriwat and Schuster, 2010] and [Herrmann and Li, 2012] as they used a com-

bination of randomized dimensionality-reduction and divide-and-conquer-techniques

to decimate the LSM problem as a series of smaller sub-problems where each sub-

problem involved iterating on a small randomized subset of the data. [Herrmann and Li, 2012]

also combined their approach with compressive sensing ([Candes et al., 2006b]) and
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curvelet-domain sparse recovery ([Candes et al., 2006a]) to mitigate the crosstalk

noise.

Besides the computational cost and errors in the migration velocity model, the

other major problem related to LSM is insufficient physics taken into account by the

modeling and the adjoint equations. This is because the real earth is anisotropic

and anelastic and estimation of all the subsurface parameters that have significant

effect on wave propagation is not trivial. Limitations in our acquisition capabilities,

especially related to data sampling and illumination also remain an issue. Thus, for

field-data applications of LSM, it becomes important to incorporate some form of

regularization or preconditioning into the least-squares inversion that would allow

for a more accurate representation of the subsurface model parameters and mitigate

some of these problems. The inverted image should also be consistent with any prior

information that is available for them.

However, in the absence of well logs, getting reliable prior information that can

be used as constraints to guide the inversion is not straightforward. A more popular

choice is to impose constraints on the property of a image that is desired. For example,

[Wang and Sacchi, 2007] use a cost function for one way wave-equation based LSM

with regularization constraints for smoothness along offset-domain common image

gathers (CIGs) and reflectivity sparseness in depth. [Cabrales-Vargas and Marfurt, 2013]

also formulated a regularized least-squares Kirchhoff migration problem where they

used a penalty function that controls the amount of roughness in common reflection

point gathers (CRPGs). They used a three-point mean filter in every CRPG to re-

move the aliasing artifacts. [Aldawood et al., 2014] used a compressed sensing based

approach for Kirchhoff migration and imposed sparsity constraints on the inverted

reflectivity image by solving a Lasso problem. Total variation regularization based

approaches ([Anagaw and Sacchi, 2012]; [Lin and Lianjie, 2015]) have also been used

with LSM to obtain images with sharp interfaces and discontinuities.
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Another approach is to use a change of basis for the reflectivity using linear sparse

transforms or some form of model reparameterization ([Harlan, 1995]; [Fomel and Guitton, 2006]).

Sparseness constraints can then be imposed on the image in the new domain since

the true reflectivity is never sparse in the depth domain. The choice of a suit-

able transform is dependent on 1) perfect reconstruction of the parameters after

forward and inverse transforms, 2) suitability for use with the conjugate gradient

method, 3) efficient computation, and 4) minimal redundancy ([Kingsbury, 2001]).

[Miller et al., 2005] used the Dual Tree Complex Wavelet Transform as a basis for

the reflectivity and demonstrated that such a change of basis leads to a better reduc-

tion of noise and migration artifacts while, at the same time, the discontinuities are

preserved better than standard LSM for very sparse data. [Herrmann et al., 2009]

and [Herrmann and Li, 2012] used curvelets and [Dutta, 2015] used seislets as ba-

sis functions for the reflectivity and showed that with sparsity promoting imaging

techniques, it is possible to recover high-quality images from undersampled or noisy

data.

In this chapter, we use a directional Gabor-based preconditioning approach for

LSRTM to overcome some of the problems associated with LSRTM when the recorded

data are noisy and the background velocity model is inaccurate. We use the prior

information that the inverted reflectivity is sparse in the local Radon domain and is

represented by limited number of dips. The LSRTM problem is then posed as an

optimization problem that minimizes the L1-norm of the local Radon transform of

the image subject to the condition that the data misfit is minimized to an acceptable

tolerance level. The forward mapping to the local Radon domain and its inverse is

done through 3D discrete Radon transform operators in the Fourier domain. Using

model reparameterization and re-weighting, the problem is solved as a preconditioning

problem where the weights are chosen based on the amplitudes of the events in the

dip domain. Numerical tests on synthetic and on 2D land and 3D marine data show
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that Radon-based preconditioning can produce images with fewer migration artifacts

and better SNR than standard RTM or LSRTM in a few iterations. Even at greater

depths where migration velocity errors accumulate, the preconditioning approach is

shown to produce images with better focusing and fewer artifacts than standard RTM

and LSRTM.

This chapter is organized into five sections. After the introduction, the second

section describes the theory of LSRTM using directional Gabor-based preconditioning.

Numerical results with synthetic and field data are then presented in the third section.

The limitations of the proposed method are discussed in the fourth section and the

conclusions are in the last section.

4.3 Theory

For a regularized L2-norm inverse problem, we seek to find a solution that best

explains the observed data and is consistent with the prior knowledge that is available

before any observations are made. This can be obtained by minimizing the misfit

function over the image space M given by

min
m∈M

[
φ(m) =

1

2
||d− Lm||22 + λ<(m)

]
. (4.1)

Here, d represents the observed data, m represents the reflectivity model and <(m)

is a discrete regularizer/prior that imposes constraints on the solution m. These

constraints can be such that <(m) should be sparse or the reflectors in m should

be sharp. L represents a linear modeling operator and λ > 0 controls the strength

of the regularization term. If λ = 0, equation 4.1 is equivalent to solving an un-

constrained optimization problem where the emphasis is purely on minimizing the

misfit between the predicted and the observed data. For incomplete, undersampled

or noisy data, emphasizing only the data misfit can lead to images that are degraded
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in quality with iterations because of over-fitting the noise. In the case of LSM, errors

in the migration velocity model can also lead to defocussing of images with iterations

([Dutta et al., 2014]). Thus, for real data applications, it is important to incorporate

some sort of regularization term into the inversion that allows for a more accurate

representation of the subsurface model parameters.

If λ 6= 0, equation 4.1 solves a constrained optimization problem where the tradeoff

between the data fit and the regularization term is controlled by the damping factor

λ. This damping parameter can be estimated by trial-and-error, or a more rigorous

procedure is to obtain it from L-shaped curves constructed by a log-log plot of the

length of the model vector vs the length of the residual vector for different choices of λ

([Calvetti et al., 2000]). Such an approach, however, is not feasible for industrial-scale

3D seismic inversion problems.

An alternative approach is to reformulate the problem in equation 4.1 as

min
m∈M
||Rm||1 subject to ||d− Lm||2 < ε, (4.2)

where Rm can be any linear transform of the model vector m that minimizes the

L1-norm of the model in the transformed domain and ε is the tolerance level to which

the L2-norm data misfit is minimized. In this case, R is taken to be the directional

Gabor transform or the local Radon transform of the image which is computed using

a 3D Fourier-based discrete Radon transform algorithm (See Appendix F). Using a

weighting matrix W, equation 4.2 can be written as

min
m∈M
||WRm||2 subject to ||d− Lm||2 < φ. (4.3)

Here, WRm is a weighted linear radon transform operation that makes the model

vector m sparse in the transformed domain after the weighting. In our work, we have

chosen the weights as a function of the amplitudes of the local dip events. This can be
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done by weighting the dips based on the strength of their amplitudes. The diagonal

elements of the weighting matrix W are given by diag(W) = |Rm|−1. Alternatively,

some quantile-based measure can be used to select a threshold level beyond which

the weaker dips or the noise are down-weighted.

The normal equations corresponding to the misfit function in equation 4.3 are

given by

(
λRTWTWR + LTL

)
m = LTd, (4.4)

which can be solved using any conjugate-gradient based algorithm ([Nocedal and Wright, 1999]).

The solution m for the normal equations in 4.4 spans over the Krylov subspace

κL
TL+λRTWTWR = span{LTd, (LTL + λRTWTWR)LTd, . . . ,

(LTL + λRTWTWR)imax−1LTd} ⊂M, (4.5)

where imax is the limit of the Krylov subspace or the number of iterations carried

out. The solutions in equation 4.5 are controlled by the damping parameter λ and

imax. Since the optimum estimation of λ is not trivial, a model reparameterization

approach is required for the reflectivity m. If W and R are invertible, we can write

p = WRm, m = R−1W−1p (4.6)

such that equation 4.3 gives

min
p∈WRM

||p||2 subject to ||d− LR−1W−1p||2 < φ. (4.7)

The normal equations corresponding to the misfit function in equation 4.7 are given
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by

(
λI + W−TR−TLTLR−1W−1)p = W−TR−TLTd. (4.8)

Setting λ = 0 in equation 4.8 we get the new normal equations

(
W−TR−TLTLR−1W−1)p = W−TR−TLTd. (4.9)

The solution p for the normal equations in equation 4.9 spans over the Krylov sub-

space

κW
−TR−TLTLR−1W−1

= span{W−TR−TLTd, (W−TR−TLTLR−1W−1)W−TR−TLTd,

. . . (W−TR−TLTLR−1W−1)imax−1W−TR−TLTd} ⊂WRM.

(4.10)

On comparing the Krylov spaces in equations 4.5 and 4.10 it can be seen that sparse-

ness constraints are imposed on the solutions in equation 4.10 by the action of the

Radon transform and the weighting operators. In contrast, the constraints in equa-

tion 4.5 are controlled by the parameter λ. Thus, we can set λ = 0 in equation 4.8

and let the number of internal iterations in the conjugate gradient algorithm play the

role of the regularizer. Even though the system of equations is partially solved at

every external iteration because the conjugate gradient algorithm is stopped before

the solution is complete, the total matrix operator resulting from the preconditioning

is diagonalized enough so that one can avoid using a damping factor for the smaller

eigenvalues ([Trad et al., 2003]). Also, for different values of λ, equation 4.10 re-

mains invariant whereas equation 4.5 needs to be recomputed from the beginning for

different values of λ.

Such a preconditioning approach is useful because it provides a way of incorporat-
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ing the prior information (that the inverted reflectivity should be sparse in the local

Radon domain) directly into the forward operator. Otherwise, the solution would

require a large number of iterations in the counterpart regularized problem. A large

number of iterations will be required before the small eigenvalues become dominant

and the corresponding features start showing up in the space κL
TL+λRTWTWR. On

the other hand, the vectors in the Krylov space κW
−TR−TLTLR−1W−1

are directly in-

fluenced by the transformation and the weighting operators acting on the gradients

at every iteration. Thus, the images from the very first iteration are expected to be

sparser in the local Radon domain and cleaner with good SNR and fewer migration

artifacts in the image domain for the preconditioned problem in equation 4.7.

4.4 Numerical results

The effectiveness of LSRTM using Gabor-based preconditioning is now demonstrated

with synthetic and field data examples. The synthetic example is the 3D SEG/EAGE

salt model whereas the field data examples are 1) 2D land, and 2) 3D marine datasets.

In the synthetic example, the observed data are generated by an O(2,8) time-

space-domain solution of the constant-density second-order acoustic wave equation

without a free-surface. A Ricker wavelet with a 15-Hz peak frequency is chosen as

the source wavelet. The data are then migrated using RTM, LSRTM, preconditioned

RTM and preconditioned LSRTM. Here, RTM and preconditioned RTM refer to

the first iteration of standard LSRTM and the proposed preconditioned LSRTM,

respectively. Source-side illumination compensation ([Plessix and Mulder, 2004]) is

used as an additional preconditioner for both standard and preconditioned LSRTM .

All the images have also been filtered using a classical bandpass filter using the same

low-cut and high-cut frequencies. 20 iterations are ran for the 2D example whereas

only 5 iterations are carried out for the 3D cases.
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4.4.1 Synthetic example

I first demonstrate the effect of using Gabor-based preconditioned LSRTM on the

3D SEG/EAGE salt model. There are only 45 shots recorded on a 5× 9 source grid

with a 960 m shot and shot-line separation. Each shot is recorded by receivers on

a 201 × 201 receiver grid with a 50 m spacing between the receivers. The observed

data are recorded using the true velocity model (a 2D slice is shown in Figure 4.1)

for around 8 seconds with a 4 ms sampling rate. For migration, the true slowness

model is smoothed using a triangle smoothing filter with a smoothing radius of 50 m

in each of the 3 directions.

Figures 4.2(a)-4.2(d) compare 2D slices of the images from standard RTM, stan-

dard LSRTM, preconditioned RTM and preconditioned LSRTM, respectively. The

RTM image in Figure 4.2(a) suffers from very strong backscattering noise because

of the presence of the salt body. The slices show strong acquisition footprints be-

cause of the sparse acquisition geometry and the reflector amplitudes are also very

weak. The image contains significant high-frequency noise because of using severely

undersampled data. The LSRTM image in Figure 4.2(b) shows some improvements

over the standard RTM image. The reflector amplitudes are better balanced and the

acquisition footprints are mitigated. However, the aliasing noise is still prominent

and is severe below the salt body. The preconditioned LSRTM image, shown in Fig-

ure 4.2(d), is free from aliasing noise and the subsalt images are much cleaner when

compared to the standard RTM and LSRTM images. The preconditioned images also

have a much better SNR than the standard RTM and LSRTM images.

4.4.2 2D land data example

The preconditioning approach is now tested on a 2D land dataset. There are 251 shots

buried at a depth of 3 m and a shot interval of 60 m. Each shot is recorded by 1000

receivers at a spacing of 15 m on the surface for a total recording time of 8 seconds.
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Figure 4.1: A 2D slice of the 3D SEG/EAGE salt model.

During data processing, refraction statics, residual statics and F-X noise attenuation

are applied in both the shot and the receiver domains. The velocity model, shown in

Figure 4.3, is obtained by ray-based refraction tomography and interpretative model

building.

Figures 4.4(a) and 4.4(b) compare the standard RTM and the standard LSRTM

images, respectively. The images are quite noisy and it is hard to delineate the

truncation of the high-velocity feature. This can be seen from the magnified views

of these images in Figures 4.5(a) and 4.5(b). The preconditioned RTM and the

preconditioned LSRTM images, shown in Figures 4.4(c) and 4.4(d), respectively, have

a better SNR than the standard images at both shallow and deeper depths. The

truncation of the high velocity build up and the base of it can be clearly delineated

in the magnified views of these images in Figures 4.5(c) and 4.5(d).
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Figure 4.2: Comparison between images from (a) standard isotropic RTM, (b) stan-
dard isotropic LSRTM after 5 iterations, (c) preconditioned isotropic RTM, and (d)
preconditioned isotropic LSRTM after 5 iterations.
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Figure 4.3: Migration velocity model estimated using ray-based tomography for the
2D land dataset.

4.4.3 3D marine data example

As a final example, preconditioned LSRTM is applied to a 3D marine dataset from

offshore West Africa. The acquisition is broadband with a shot interval of 18.75 m

(flip-flop) and a source centre separation of 25 m. The receiver spread has 12 cables

with an active length of 6 km. There are 480 receiver groups with a group interval

of 12.5 m. The sampling interval is 2 ms with a total recording time of 8 s. Before

tomography and migration, standard processing steps like swell noise attenuation,

linear noise attenuation and receiver deghosting are carried out. 3D SRME and

Radon de-multiple are also used to remove the free-surface multiples.

The background velocity, epsilon, delta, inline dip and crossline dip models are

shown in Figures 4.6(a)-4.6(e), respectively. The velocity model is obtained using

ray-based tomography and full waveform inversion, whereas ray-based tomography is

used to obtain the epsilon model. The delta and dip models are constructed using
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Figure 4.4: Comparison between images from (a) standard isotropic RTM, (b) stan-
dard isotropic LSRTM after 20 iterations, (c) preconditioned isotropic RTM, and (d)
preconditioned isotropic LSRTM after 20 iterations.
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Figure 4.5: Comparison between magnified views of the images from (a) standard
isotropic RTM, (b) standard isotropic LSRTM, (c) preconditioned isotropic RTM,
and (d) preconditioned isotropic LSRTM. The arrows indicate the areas where im-
provements in imaging can be seen from the Radon-based preconditioning.
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information from wells in the study area.

For migration, there are 10,241 shots used and a bandpass filter of 3-5-25-30

Hz is applied to the traces. The standard TTI RTM and TTI LSRTM images are

shown in Figures 4.7(a) and 4.8(a), respectively. It is evident from these images

that standard LSRTM improves the image quality (in terms of improved resolution

and balanced amplitudes) in the shallow parts. However, the image quality of the

carbonate turtlebacks at depths of 3-5 kms, shown in Figures 4.9(a) and 4.9(b), are

degraded in both the standard RTM and the standard LSRTM images. We suspect

that inaccuracies in the background models or presence of noise in the data might lead

to such degradation. The crossline sections of these images, shown in Figures 4.10(a)

and 4.10(b), also suffer from strong aliasing artifacts and migration smiles due to

large aperture.

The preconditioned TTI RTM and TTI LSRTM images are shown in Figures 4.7(b)

and 4.8(b), respectively. Magnified views of these images in the inline and crossline

directions are shown in Figures 4.9(c)-4.9(d) and Figures 4.10(c)-4.10(d), respectively.

It is evident from these images that the turtle backs are imaged with an improved

SNR and they can be clearly delineated. The aliasing noise has also been significantly

mitigated in the crossline images.

4.5 Discussion

The Gabor-based preconditioning approach provides significant uplift in the quality

of the inverted images when the desired features are planar and the data used for mi-

gration have been carefully pre-processed such that free-surface multiples or internal

multiples are eliminated. However, the presence of free-surface or internal multiples

in the data will lead to false reflection events in the image which are not discrimi-

nated against by the present approach. Unless a very large number of iterations of
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Figure 4.6: Background (a) velocity, (b) epsilon, (c) delta, (d) inline dip, and (e)
crossline dip models used for migration.



107

Figure 4.7: Comparison between images from (a) standard TTI RTM, and (b) pre-
conditioned TTI RTM.
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Figure 4.8: Comparison between images from (a) standard TTI LSRTM, and (b)
preconditioned TTI LSRTM.
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Figure 4.9: Comparison between magnified views of the images in the inline direction
from (a) standard RTM, (b) standard LSRTM, (c) preconditioned RTM, and (d)
preconditioned LSRTM. The black boxes indicate the areas where improvements in
imaging can be seen from the Radon-based preconditioning.
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Figure 4.10: Comparison between magnified views of the images in the crossline
direction from (a) standard RTM, (b) standard LSRTM, (c) preconditioned RTM,
and (d) preconditioned LSRTM.
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least-squares is carried out, these events will still be quite strong in the image and

they will have strong amplitude signatures in the local Radon domain. Filtering out

these events in the extended domain is not trivial.

To illustrate our point, the synthetic example shown earlier is repeated again.

However, the observed data is now modeled with a free-surface. The standard RTM

and LSRTM images are shown in Figures 4.11(a) and 4.11(b), respectively. The effect

of free-surface multiples and internal multiples is evident specially below the sub-

salt areas. The preconditioned RTM and LSRTM images, shown in Figures 4.11(c)-

4.11(d), are cleaner above the salt but they have many false events below the salt. This

can be verified by comparing these images with the true velocity model is Figure 4.1.

Another disadvantage of this method is the additional computational cost incurred

during the preconditioning. Solving the normal equations in equation 4.9 involves

storing an extended model to memory at every iteration. For a 2D image m(x, z),

a local Radon transform of it will lead to an extended image m̂(x, z, px) whereas for

a 3D image m(x, y, z), the transfomation will lead to a 5D volume m̂(x, y, z, px, py).

The extended models require the computational nodes to have sufficient local mem-

ory to avoid using I/O from the disk. Also, there is an additional computational

overhead because of the forward and inverse Radon transforms. This cost will vary

depending on the size of the model. For the 3D field data example, each iteration of

preconditioned LSRTM took roughly 3-4 times as long as standard LSRTM.

4.6 Conclusions

A directional Gabor-based preconditioning approach is presented for LSRTM that

mitigates the problems of low SNR data and aliasing. Sparseness constraints are

imposed on the reflectivity in the local Radon domain and the forward and the inverse

mapping of the reflectivity to the local Radon domain is done using 3D Fourier-
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Figure 4.11: Comparison between images from (a) standard isotropic RTM, (b) stan-
dard isotropic LSRTM after 5 iterations, (c) preconditioned isotropic RTM, and (d)
preconditioned isotropic LSRTM after 5 iterations. The recorded data in this case
had free-surface multiples.
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based Radon operators. Numerical tests on synthetic, 2D land and 3D marine data

show that if the recorded data are noisy or undersampled, the standard RTM and

LSRTM images suffer from poor SNR and strong aliasing artifacts. The Gabor-

based preconditioning approach is shown to produce reliable images with good SNR

and fewer artifacts than standard RTM or standard LSRTM both at shallow and

at deeper depths. A disadvantage of this method is that it is quite sensitive to the

presence of free-surface multiples or internal multiples in the data. This is because

the false reflection events from these multiples have strong local dip amplitudes and

as such, they are difficult to filter out. For field data applications, it is important to

eliminate these multiples from the data before the proposed preconditioned LSRTM

algorithm is applied. Investigating the selection of an appropriate weighting strategy

to take into account the effect of multiples is a topic of future research.
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Chapter 5

Conclusions and Future Work

5.1 Main Results

In this thesis, I developed novel migration and tomography methods for compen-

sation of attenuation during imaging and estimation of the subsurface attenuation

parameter, Q. The main results of my thesis are summarized below.

5.1.1 Q-LSRTM

In chapter 2, I proposed to use the time-domain visco-acoustic wave-equation in the

context of LSRTM to compensate for the distortion in amplitudes and phases of

seismic waves propagating in highly attenuative layers. The linear modeling opera-

tor, L, used to compute the perturbed wavefields during Q-LSRTM is obtained by

linearizing the visco-acoustic wave-equation w.r.t perturbations in the bulk modu-

lus or the reflectivity. The adjoint equations, LT , used to back-propagate the data

residual at every iteration and the gradient for Q-LSRTM are then derived using the

adjoint-state method. Using numerical tests on synthetic and field data, I showed

that Q-LSRTM can produce images with better balanced amplitudes and accurately

positioned reflectors compared to acoustic RTM and LSRTM.
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5.1.2 Wave-equation Q tomography

In chapter 3, I developed a novel wave-equation Q tomography method that can be

used to estimate the background Q model, which can be used with any Q-PSDM

algorithm to obtain images with balanced amplitudes and high resolution in areas

where there is strong attenuation. I used a skeletonized misfit function which is the

sum of the squared differences between the observed and the predicted peak/centroid

frequency-shifts of the early-arrivals in the observed and in the predicted traces.

Using a connective function, which is the normalized zero-lag cross-correlation

between an observed and a predicted trace, and the implicit function theorem, I

then showed that the gradient for WQ is obtained by a zero-lag cross-correlation

between the forward propagated source wavefield and the backpropagated residual

traces, obtained by weighting the observed traces by the frequency-shifts between

them and the corresponding predicted traces. Unlike conventional ray-based Q to-

mography which has high-frequency assumptions about the data, the residuals in WQ

are smeared along transmission wavepaths computed from finite-difference solutions

to the time-domain visco-acoustic wave equation characterized by the standard linear

solid (SLS) mechanism. Through numerical tests on synthetic and a crosswell field

dataset, I demonstrated that an improved accuracy of the Q model by wave-equation

Q tomography led to a noticeable improvement in the migration image quality.

5.1.3 LSRTM using Radon-based preconditioning

In chapter 4, I investigated the use of a directional Gabor-based preconditioning

approach for LSRTM. I formulated the LSRTM problem as a sparse optimization

problem that minimizes the L-1 norm of the local Radon transform of the image sub-

ject to the condition that the data residual is minimized to an acceptable tolerance

level. Using a model re-parameterization and re-weighting approach, I reformulated

the sparse optimization problem as a preconditioning problem, where the weights used
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to sparsify the image in the local Radon domain are chosen based on the amplitudes

of the events in the dip domain. I use 3D discrete Radon transform operators in the

Fourier domain for forward mapping of the reflectivity to the local Radon domain

and back. Through numerical tests on synthetic and on 2D land and 3D marine data,

I showed that the Radon-based preconditioning approach can produce images with

fewer migration artifacts and better SNR than standard RTM or LSRTM in a few iter-

ations. The proposed approach is also shown to produce images with better focusing

and fewer artifacts at greater depths where migration velocity errors accumulate.

5.2 Future Research Work

I list below some potential research directions from my thesis that can be looked into

for future work.

5.2.1 Q-LSRTM and WQ using alternative time-domain Q

formulations

In Chapters 2 and 3, I used the time-domain visco-acoustic wave-equation character-

ized by the standard linear solid mechanism with one relaxation function to compute

the visco-acoustic Green’s functions. For typical exploration problems, where the

bandwidth of the data used for migration and tomography is approximately 3-30 Hz,

the use of a single relaxation mechanism has been shown to be sufficient to accu-

rately model the effect of Q ([Blanch et al., 1995]; [Zhu et al., 2013]). Using more

than one relaxation mechanism will significantly increase the cost of Q-LSRTM and

WQ. The use of alternative time-domain formulations of the visco-acoustic wave-

equation without memory variables ([Bai et al., 2013]) or the decoupled Q equations

involving fractional Laplacians and its low-rank formulation ([Zhu and Harris, 2014])

can be looked into to compute the visco-acoustic Green’s functions in the context of
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Q-LSRTM or WQ.

5.2.2 Wave-equation Q tomography in the frequency domain

A correct modeling scheme for Q in the time-domain should yield a constant Q be-

havior over the range of frequencies being investigated. Ensuring such a constant

Q behavior can be difficult in the time-domain when the bandwidth of the observed

data is very large. However, the formulation is slightly easier in the frequency do-

main, where Q can be taken to be bandwidth dependent, depending on the range of

frequencies/bandwidths being inverted. For a given frequency, ω, Q(ω) is defined as

the ratio of the real part of the complex bulk modulus to the imaginary part of the

bulk modulus (see equation C.10 in Appendix C). Thus, the WQ method proposed in

Chaper 3, can be extended to the frequency-domain where the background Q model

can be estimated for a given frequency bandwidth.

5.2.3 Wave-equation reflection Q tomography

In Chapter 3, wave-equation Q tomography is formulated for transmission arrivals

where the peak-frequency shifts between observed and predicted traces are smeared

along transmission wavepaths. Unlike diving waves, reflection waves provide impor-

tant information about the deeper parts of the subsurface. To invert for deeper Q

anomalies in the subsurface which are beyond the reach of diving waves, the pro-

posed WQ method can be extended to reflection-based wave-equation Q tomography

where the centroid frequency shifts between predicted and observed traces are smeared

along reflection wavepaths, computed by time-domain finite-difference solutions of the

visco-acoustic wave-equation. Since reflection events are not generally isolated in the

data, the reflection events can be windowed in the time-domain. The length of the

time-window can be chosen based on the dominant period of the arrivals.
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5.2.4 LSRTM using Radon-based preconditioning in the pres-

ence of free-surface or internal multiples

In Chapter 4, I showed that the local Gabor-based preconditioning approach can

provide significant uplifts in the quality of the inverted images when the recorded

data are free from free-surface or internal multiples. In the present implementation,

the weights for the preconditioning are chosen locally based on the amplitudes of

the events in the dip-domain. However, if the recorded data are contaminated by

multiples, the false reflection events generated by these multiples will have strong

amplitude signatures in the dip domain. To mitigate the effect of multiples, alterna-

tive strategies for choosing the weights could be investigated.
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6 Papers published and

submitted

Chapters 2-4 of the thesis have been published or submitted to Geophysics:

� Dutta, G. and G. T. Schuster, 2014, Attenuation compensation for least-

squares reverse time migration using the viscoacoustic-wave equation: Geo-

physics, 79, S251-S262 (Chapter 2).

� Dutta, G. and G. T. Schuster, 2016, Wave-equation Q tomography: submitted

to Geophysics (Chapter 3).

� Dutta, G., M. Giboli, C. Agut, P. Williamson, and G. T. Schuster, Least-

squares reverse time migration with directional Gabor-based preconditioning:

submitted to Geophysics (Chapter 4).

In addition to the publications listed above, the following publications in journals

and conferences have also been a part of my PhD work:

� Dutta, G., A. AlTheyab, A. Tarhini, S. Hanafy, and G. T. Schuster, 2016, Ex-

tracting 220 Hz information from 55 Hz field data by near-field superresolution

imaging: Geophysical Journal International (accepted subject to revision).

� Dutta, G., 2015, Sparse least-squares reverse time migration using seislets:

SEG Technical Program Expanded Abstracts, 810, 4232-4237.
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� Dutta, G., M. Sinha, and G. T. Schuster, 2014, A cross-correlation objective

function for least-squares migration and visco-acoustic imaging: SEG Technical

Program Expanded Abstracts, 761, 3985-3990.

� Dutta, G., Y. Huang, W. Dai, X. Wang, and G.T. Schuster, 2014, Making the

most out of the least (squares migration): SEG Technical Program Expanded

Abstracts, 840, 4405-4410.

� Dutta, G. and G. T. Schuster, 2013, Multisource early-arrival waveform in-

version of crosswell data: SEG Workshop on Full Waveform Inversion: From

Near Surface to Deep, Oman.
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APPENDICES

A Relaxation function for a SLS

model

In this appendix, I derive the relation between the relaxation function G for a visco-

acoustic medium represented by a standard linear solid (SLS) mechanical model.

For the SLS model shown in Figure A.1, the stress-strain relation for the individual

elements can be written as,

σ = k1ε1,

σ1 = η
∂ε2
∂t
,

σ2 = k2ε2, (A.1)

and for the whole model as,

σ = σ1 + σ2,

ε = ε1 + ε2. (A.2)
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Figure A.1: Zener model or a standard linear solid (SLS) model ([Carcione, 2007]).

From equations A.1 and A.2, we get the stress-strain relation as,

σ + τσ
∂σ

∂t
= MR(ε+ τε

∂ε

∂t
). (A.3)

Here MR is the relaxed modulus, τσ and τε are the relaxation times given by

MR =
k1k2

k1 + k2

,

τσ =
η

k1 + k2

,

τε =
η

k2

. (A.4)

The relaxation function G(t) for any medium can be obtained by measuring the stress

after imposing a rapidly constant unit strain in a relaxed sample of the medium. If
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the strain is given by ε(t) = H(t), where H(t) is a Heaviside function, then

σ(t) =
∂G(t)

∂t
∗ ε(t),

σ(t) = G(t) ∗ ∂ε
∂t
,

σ(t) = G(t) ∗ δ(t),

σ(t) = G(t). (A.5)

Thus, from equation A.3 we get,

G(t) + τσ
∂G(t)

∂t
= MR (H(t) + τεδ(t)) ,

G(t) = MR

(
1−

(
1− τε

τσ

)
e−t/τσ

)
H(t). (A.6)

For a series of L standard linear solids connected in parallel, as shown in Figure A.2,

equation A.6 has the general form,

G(t) = MR

(
1−

L∑
l=1

(
1− τεl

τσl

)
e−t/τσl

)
H(t). (A.7)
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Figure A.2: Generalized Zener model with L standard linear solid models connected
in parallel ([Carcione, 2007]).



134

B Equations of motion for a

visco-acoustic medium

For an anelastic medium, the current value of the stress tensor depends upon the his-

tory of the strain tensor. The stress-strain relation in such a medium can be expressed

as ([Liu et al., 1976]; [Christensen, 1982]; [Carcione et al., 1988]; [Robertsson et al., 1994])

σ = G ∗ ε̇ = Ġ ∗ ε (B.1)

Here ∗ denotes convolution in time, G(t) is the relaxation function, that transforms a

strain history, ε(t), into the corresponding stress history, σ(t). The relaxation function

determines the behavior of a material. For a lossless medium, equation B.1 becomes

σ = Meε, (B.2)

where Me is the elastic modulus. To construct a mechanical model to model visco-

elasticity, two basic elements are required: weightless springs (where no inertial effects

are present) to represent a elastic solid and dashpots (consisting of loosely fitting

pistons in cylinders) to represent a visco-elastic fluid. The simplest cases are the

Maxwell, Kelvin-Voigt and the Zener of standard linear solid (SLS) models. G(t) in

equation B.1 varies depending on the type of model used. For a SLS model with L

standard linear solids connected in parallel, G has the general form ([Liu et al., 1976];
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[Carcione et al., 1988]; [Robertsson et al., 1994]),

G(t) = K

(
1−

L∑
l=1

(
1− τεl

τσl

)
e−t/τσl

)
H(t). (B.3)

Here, K is the relaxed modulus of the medium and H(t) is the heaviside function. τσl

and τεl are the stress and strain relaxation times for the l-th mechanism, respectively.

From the definition of pressure and strain we know that for a 1-D medium,

σ = −p, (B.4)

and,

vx =
∂v

∂x
= ε̇, (B.5)

where vx is the particle velocity in the X-direction. From equations B.1, B.3, B.4 and

B.5 we have

− ṗ = Ġ ∗ vx

− ṗ = K

(
1−

L∑
l=1

(
1− τεl

τσl

))
vx +K

(
L∑
l=1

1

τσl

(
1− τεl

τσl

)
e−t/τσl

)
H(t) ∗ vx.

(B.6)

[Carcione et al., 1988] simplified the convolution term in equation B.6 by introducing

a memory variable term rl. Equation B.6 then becomes

− ṗ = K

(
1−

L∑
l=1

(
1− τεl

τσl

))
vx +

L∑
l=1

rl. (B.7)
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Here,

rl = K

(
1

τσl

(
1− τεl

τσl

)
e−t/τσl

)
H(t) ∗ vx, 1 ≤ l ≤ L. (B.8)

Taking the time derivative of equation B.8, we get

ṙl = − 1

τσl
K

(
1

τσl

(
1− τεl

τσl

)
e−t/τσl

)
H(t) ∗ vx +K

(
1

τσl

(
1− τεl

τσl

)
e−t/τσl

)
δ(t) ∗ vx,

ṙl = − 1

τσl
rl +K

1

τσl

(
1− τεl

τσl

)
vx, 1 ≤ l ≤ L. (B.9)

From Newton’s second law,

v̇x = −1

ρ
P. (B.10)

Equations B.9 and B.10 together describe the wave propagation in a 1D visco-acoustic

medium represented by L sets of SLS’s connected in parallel. In a more general form,

equations B.9 and B.10 can be written as

∂v

∂t
= −1

ρ
∇P,

∂P

∂t
= −K

(
1−

L∑
l=1

(
1− τεl

τσl

))
(∇ · v)−

L∑
l=1

rl,

∂rl
∂t

= − 1

τσl
rl +K

1

τσl

(
1− τεl

τσl

)
(∇ · v) , 1 ≤ l ≤ L, (B.11)

where v is the particle velocity vector given by v =

[
vx vy vz

]T
. [Blanch et al., 1995]

and [Zhu et al., 2013] showed that only one relaxation mechanism is sufficient for

practical exploration purposes and Q can be assumed to be constant over a limited

frequency bandwitdh of 5-30 Hz. Thus, for a single relaxation mechanism, i.e. l = 1,
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equation B.11 becomes

∂v

∂t
= −1

ρ
∇P,

∂P

∂t
= −K τε

τσ
(∇.v)− r,

∂r

∂t
= − 1

τσ

(
r +K

(
τε
τσ
− 1

)
(∇.v)

)
. (B.12)

Equation B.12 represents the time-domain visco-acoustic wave-equations based on

the SLS model with a single relaxation mechanism.
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C Relation between Q and the τ ’s

Hooke’s law in a lossless medium is given by

σ = Meε, (C.1)

where Me is the elastic modulus. For a lossy medium, the stress-strain relation

becomes,

σ = G ∗ ε̇ = Ġ ∗ ε (C.2)

Here ∗ denotes convolution in time, G(t) is the relaxation function, that transforms a

strain history, ε(t), into the corresponding stress history, σ(t). The Fourier transform

of C.2 gives

F (σ(ω)) = M(ω)F (ε(ω)), (C.3)

where F is the Fourier transform operator and M(ω) = F (Ġ(ω)). M(ω) is also known

as the complex modulus and can be represented as

M(ω) = M1(ω) + iM2(ω). (C.4)

The time-averaged strain-energy density can be written as

〈V 〉 =
1

2
〈Re(ε)Re(M)Re(ε)〉 =

1

4
Re(εMε∗) =

1

4
M1|ε|2. (C.5)
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Similarly, the time-averaged dissipated energy density is given by

〈D〉 =
1

2
M2|ε|2. (C.6)

The quality factor, Q, quantifies dissipation and is defined as twice the time-

averaged strain-energy density divided by the time-averaged dissipated energy-density,

i.e.,

Q =
2 〈V 〉
〈D〉

=
M1

M2

=
Re(M)

Im(M)
. (C.7)

For a SLS model with a single relaxation mechanism, the stress-strain relation is

given by

σ + τσ
∂σ

∂t
= MR(ε+ τε

∂ε

∂t
), (C.8)

where σ = Mε. Taking the Fourier transform of C.8, we get

M(ω) =
MR(1 + iωτε)

1 + iωτσ
. (C.9)

Thus, from equation C.7, Q can be written as

Q(ω) =
Re(M)

Im(M)
=

1 + ω2τστε
ω(τε − τσ)

. (C.10)

The model has a relaxation peak at

ω0 =
1
√
τστε

, (C.11)

which can be verified by setting dQ
dω

= 0 in equation C.10. ω0 here is also defined as

the center frequency of the source.
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For practical exploration purposes, constant Q models are used to parameterize

attenuation in rocks since it is usually hard to quantify the frequency dependence of

Q. Also Q has been shown to be constant in many frequency bands. Thus, a more

physical parameterization of τσ and τε can be obtained at the center frequency ω0.

From equation C.10, at ω = ω0 we get,

Q0 =
2

ω0(τε − τσ)
. (C.12)

τσ and τε can be obtained from equations C.11 and C.12 as

τσ =

√
1 + 1

Q2
0
− 1

Q0

ω0

,

τε =
1

ω2
0τσ

. (C.13)
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D Adjoint equations and gradient

for Q-LSRTM

In matrix-vector notation, equation 2.12 can be rewritten as


∂
∂t

K(1 + τ)∇· 1

1
ρ
∇ ∂

∂t
0

0 τ
τσ
K∇· ∂

∂t
+ 1

τσ



P

v

rp

 =


f

0

0

 , (D.1)

or in a more compact form,

Sw = F. (D.2)

where

S =


∂
∂t

K(1 + τ)∇· 1

1
ρ
∇ ∂

∂t
0

0 τ
τσ
K∇· ∂

∂t
+ 1

τσ

 ,w =


P

v

rp

 , and

F =


f

0

0

 . (D.3)
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Here, w represents the state variables and S represents the forward modeling operator.

The adjoint operator, S∗, of S in this particular case is given by

S∗ =


− ∂
∂t

−∇ · 1
ρ

0

−∇K(1 + τ) − ∂
∂t

−∇ τ
τσ
K

1 0 − ∂
∂t

+ 1
τσ

 . (D.4)

The least-squares misfit functional, J(m) for a model parameter m can be written

as

J(m) =
1

2
||w(m)− d||2 =

1

2
〈w(m)− d,w(m)− d〉 , (D.5)

where w(m) and d represent the modeled and recorded data vectors, respectively.

For a visco-acoustic medium, the model parameter m can be K, ρ, τσ or τ . The

gradient of J is given by

∂J(m)

∂m
=

〈
∂w(m)

∂m
,w(m)− d

〉
. (D.6)

Now, for the system of equations,

S(m)w(m) = F

⇒∂S(m)

∂m
w(m) + S(m)

∂w(m)

∂m
= 0

⇒∂w(m)

∂m
= −S−1(m)

∂S(m)

∂m
w(m). (D.7)
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Inserting equation D.7 into equation D.6 we get

∂J(m)

∂m
= −

〈
S−1(m)

∂S(m)

∂m
w(m),w(m)− d

〉
= −

〈
∂S(m)

∂m
w(m),

(
S(m)−1

)∗
(w(m)− d)

〉
= −

〈
∂S(m)

∂m
w(m),

(
S(m)−1

)∗
∆d

〉
= −

〈
∂S(m)

∂m
w(m),w∗(m)

〉
, (D.8)

where ∗ denotes the adjoint, ∆d denotes the residual data vector and w∗ denotes the

adjoint or the residual wavefield, which is obtained by solving the adjoint equations,

S∗(m)w∗(m) = ∆d. (D.9)

w∗ is also known as the adjoint state variable of w. Let w∗ be denoted as

w∗ =

[
q u s

]T
, (D.10)

where q is the adjoint state variable of the pressure wavefield P , u is the adjoint of the

particle velocity vector v and s is the adjoint of the memory variable rp. Assuming

that we only record pressure seismograms, the residual vector ∆d will have only one

component, i.e.,

∆d =

[
∆d 0 0

]T
. (D.11)

Using equations D.4, D.9, D.10 and D.11, we get the adjoint-state equations for a
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visco-acoustic medium as
− ∂
∂t

−∇ · 1
ρ

0

−∇K(1 + τ) − ∂
∂t

−∇ τ
τσ
K

1 0 − ∂
∂t

+ 1
τσ



q

u

s

 =


∆d

0

0


∂q

∂t
+∇ ·

(
1

ρ
u

)
= −∆d(xg, t; xs),

∂u

∂t
+

[
∇K(1 + τ)q +∇

(
1

τσ
Kτs

)]
= 0,

∂s

∂t
− s

τσ
− q = 0. (D.12)

For m = K, the gradient in equation D.8 can be written as

∂J

∂K
= −

〈
∂S

∂K
w,w∗

〉

= −

〈
0 (1 + τ)∇· 0

0 0 0

0 τ
τσ
∇· 0



P

v

rp

 ,

q

u

s


〉

= −
∫ T

0

(1 + τ)(∇ · v)q +
τ

τσ
(∇ · v)s dt . (D.13)
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E Adjoint-state method for

wave-equation Q tomography

In matrix vector notation, equation 3.1 can be written as


∂
∂t

K(1 + τ)∇· 1

1
ρ
∇ ∂

∂t
0

0 τ
τσ
K∇· ∂

∂t
+ 1

τσ



P

v

rp

 =


f

0

0

 , (E.1)

or in a more compact form,

S(m)w(m) = F. (E.2)

where,

S =


∂
∂t

K(1 + τ)∇· 1

1
ρ
∇ ∂

∂t
0

0 τ
τσ
K∇· ∂

∂t
+ 1

τσ

 , w =


P

v

rp

 ,

F =


f

0

0

 , m =

[
K ρ τ τσ

]T
. (E.3)

The perturbation of the state variable w w.r.t to the model variable m is given
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by ∂w(m)
∂m

and can be obtained from

S(m)w(m) = F

⇒∂S(m)

∂m
w(m) + S(m)

∂w(m)

∂m
= 0

⇒∂w(m)

∂m
= −S−1(m)

∂S(m)

∂m
w(m). (E.4)

Ignoring the amplitude normalization factor in equation 3.4, the connective function

for WQ can also be written as

ḟ∆f = 〈Srw̃f (x, t; xs), ẇf−∆f (xr, t; xs)〉 . (E.5)

Here, Sr is a restriction operator onto the receiver position and it depends on the

spatial coordinates. The restriction operator samples the wavefield at the receiver

locations while the adjoint of it, Sr
∗, sprays the recorded data from the receiver

coordinates to the model coordinates. w̃f denotes the predicted event for a given

background Q model recorded at the receiver location xr due to a source excited at

time t = 0 and at location xs. wf−∆f denotes the same event in the observed data.

From equation 3.5, the misfit function for WQ is given by

J =
1

2

∑
s

∑
r

∆f(xr,xs)
2. (E.6)
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The gradient of J is given by

∂J

∂τ(x)
= −

∑
s

∑
r

∂∆f(xr,xs)

∂τ(x)
∆f(xr,xs),

=
1

E

∑
s

∑
r

∂ḟ∆f

∂τ(x)
∆f(xr,xs), (Using equation 3.7)

=
1

E

∑
s

∑
r

∂

∂τ(x)
〈Srw̃f (x, t; xs), ẇf−∆f (xr, t; xs)〉∆f(xr,xs), (Using equation E.5)

=
1

E

∑
s

∑
r

〈
Sr
∂w̃f (x, t; xs)

∂τ(x)
, ẇf−∆f (xr, t; xs)∆f(xr,xs)

〉
,

= − 1

E

∑
s

∑
r

〈
SrS

−1 ∂S

∂τ(x)
w̃f (x, t; xs), ẇf−∆f (xr, t; xs)∆f(xr,xs)

〉
, (Using equation E.4)

= − 1

E

∑
s

〈
∂S

∂τ(x)
w̃f (x, t; xs),

(
S−1
)∗∑

r

(Sr
∗ẇf−∆f (xr, t; xs)∆f(xr,xs))

〉
,

= − 1

E

∑
s

〈
∂S

∂τ(x)
w̃f (x, t; xs),w

∗(x, t; xs)

〉
. (E.7)

Here, w∗ =

[
q u s

]T
is the adjoint-state variable of w =

[
P v rp

]T
and is

numerically obtained by a finite-difference solution of the adjoint-state equation in

D.12,

∂q

∂t
+∇ ·

(
1

ρ
u

)
= −

∑
r

Sr
∗ (P (xr, t; xs)obs∆f(xr,xs)) ,

∂u

∂t
+

[
∇K(1 + τ)q +∇

(
1

τσ
Kτs

)]
= −

∑
r

Sr
∗ (v(xr, t; xs)obs∆f(xr,xs)) ,

∂s

∂t
− s

τσ
− q = −

∑
r

Sr
∗ (rp(xr, t; xs)obs∆f(xr,xs)) . (E.8)
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From equation E.3, we have

S =


∂
∂t

K(1 + τ)∇· 1

1
ρ
∇ ∂

∂t
0

0 τ
τσ
K∇· ∂

∂t
+ 1

τσ

 ,

∂S

∂τ
=


0 K∇· 0

0 0 0

0 K∇·
τσ

0

 . (E.9)

Using equations E.3 and E.9 we can get,

∂J

∂τ(x)
= − 1

E

∑
s

〈
∂S

∂τ(x)
w̃f (x, t; xs),w

∗(x, t; xs)

〉
,

= − 1

E

∑
s

〈
0 K∇· 0

0 0 0

0 K∇·
τσ

0



P

v

rp

 ,

q

u

s


〉
,

= − 1

E

∫
s

dt K(x)(∇ · v(x, t; xs))

(
q(x, t; xs) +

s(x, t; xs)

τσ(x)

)
. (E.10)
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F 3D Fourier based discrete

Radon transform

For a discrete image, I, of size n× n× n, the Radon transform, R, for the x-plane is

given by ([Averbuch and Shkolnisky, 2003])

R(I, {x = s1y + s2z + t}) =

n/2−1∑
v=−n/2

n/2−1∑
w=−n/2

Ĩ1(s1v + s2w + t, v, w), (F.1)

where

Ĩ(x, v, w) =

n/2−1∑
u=−n/2

I(u, v, w)Dm(x− u), v, w ∈
{
−n

2
, . . . ,

n

2
− 1
}
. (F.2)

Here s1 and s2 are the slopes along the x-plane and t is the intercept. Dm is the

Dirichlet kernel given by

Dm =
sin(πt)

m sin(πt/m)
, m = 3n+ 1, (F.3)

where m is the length of the Dirichlet kernel.

Similarly for the y- and z-planes, the Radon transform is given by

R(I, {y = s1x+ s2z + t}) =

n/2−1∑
u=−n/2

n/2−1∑
w=−n/2

Ĩ2(u, s1u+ s2w + t, w),

R(I, {z = s1x+ s2y + t}) =

n/2−1∑
u=−n/2

n/2−1∑
v=−n/2

Ĩ3(u, v, s1u+ s2v + t), (F.4)
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where

Ĩ2(u, y, w) =

n/2−1∑
v=−n/2

I(u, v, w)Dm(y − v), u, w ∈
{
−n

2
, . . . ,

n

2
− 1
}
,

Ĩ3(u, v, z) =

n/2−1∑
w=−n/2

I(u, v, w)Dm(z − w), u, v ∈
{
−n

2
, . . . ,

n

2
− 1
}
. (F.5)

Using the Fourier slice theorem, the slopes (s1, s2) of an x-plane can be obtained by

R̂Ix(s1, s2, k) =

n/2−1∑
v,w=−n/2

n/2−1∑
u=−n/2

I(u, v, w)e(−2πik/m)(u−s1v−s2w), (F.6)

where k =
{
−3n

2
, . . . , 3n

2

}
. Similarly, the slopes (s1, s2) of a y-plane and a z-plane can

be obtained by

R̂Iy =

n/2−1∑
u,w=−n/2

n/2−1∑
v=−n/2

I(u, v, w)e(−2πik/m)(v−s1u−s2w),

R̂Iz =

n/2−1∑
u,v=−n/2

n/2−1∑
w=−n/2

I(u, v, w)e(−2πik/m)(w−s1u−s2v). (F.7)

The adjoint of the forward transform used during the preconditioning is the nu-

merical adjoint of the forward transform steps described above.


	Examination Committee Approval
	Copyright
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Linear viscoelasticity
	Viscoelasticity and wave propagation
	Motivation for attenuation compensation in seismic imaging
	Previous works on Q compensation
	Technical contributions
	Thesis overview
	Chapter 2: Q-LSRTM
	Chapter 3: Wave-equation Q tomography
	Chapter 4: LSRTM with directional Gabor-based preconditioning
	Chapter 5: Conclusions


	Attenuation compensation for least-squares reverse time migration using the viscoacoustic wave-equation
	Summary
	Introduction
	Theory of acoustic LSRTM
	LSRTM using the viscoacoustic wave-equation
	Q-LSRTM algorithm

	Numerical results
	Layered velocity model
	Marmousi model
	Sensitivity of Q-LSRTM to errors in the velocity model
	Sensitivity of Q-LSRTM to errors in the Q model
	Friendswood Crosswell Field Data

	Discussion
	Conclusions

	Wave-equation Q tomography
	Summary
	Introduction
	Theory of wave-equation Q inversion
	Connective function
	Misfit function
	Fréchet derivative
	WQ algorithm

	Numerical Results
	Crosswell Gaussian Q model
	Surface-seismic model
	Friendswood crosswell field data

	Discussion
	Conclusions

	Least-squares reverse time migration with directional Gabor-based preconditioning
	Summary
	Introduction
	Theory
	Numerical results
	Synthetic example
	2D land data example
	3D marine data example

	Discussion
	Conclusions

	Conclusions and Future Work
	Main Results
	Q-LSRTM
	Wave-equation Q tomography
	LSRTM using Radon-based preconditioning

	Future Research Work
	Q-LSRTM and WQ using alternative time-domain Q formulations
	Wave-equation Q tomography in the frequency domain
	Wave-equation reflection Q tomography
	LSRTM using Radon-based preconditioning in the presence of free-surface or internal multiples


	References
	Appendices

