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ABSTRACT

Discrete Curvature Theories and Applications

Xiang Sun

Discrete Differential Geometry (DDG) concerns discrete counterparts of notions

and methods in differential geometry. This thesis deals with a core subject in DDG,

discrete curvature theories on various types of polyhedral surfaces that are practically

important for free-form architecture, sunlight-redirecting shading systems, and face

recognition.

Modeled as polyhedral surfaces, the shapes of free-form structures may have to

satisfy different geometric or physical constraints. We study a combination of ge-

ometry and physics – the discrete surfaces that can stand on their own, as well as

having proper shapes for the manufacture. These proper shapes, known as circular

and conical meshes, are closely related to discrete principal curvatures. We study

curvature theories that make such surfaces possible.

Shading systems of freeform building skins are new types of energy-saving struc-

tures that can re-direct the sunlight. From these systems, discrete line congruences

across polyhedral surfaces can be abstracted. We develop a new curvature theory

for polyhedral surfaces equipped with normal congruences – a particular type of con-

gruences defined by linear interpolation of vertex normals. The main results are a

discussion of various definitions of normality, a detailed study of the geometry of

such congruences, and a concept of curvatures and shape operators associated with

the faces of a triangle mesh. These curvatures are compatible with both normal

congruences and the Steiner formula.

In addition to architecture, we consider the role of discrete curvatures in face

recognition. We use geometric measure theory to introduce the notion of asymptotic

cones associated with a singular subspace of a Riemannian manifold, which is an
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extension of the classical notion of asymptotic directions. We get a simple expression

of these cones for polyhedral surfaces, as well as convergence and approximation

theorems. We use the asymptotic cones as facial descriptors and demonstrate the

practicability and accuracy of their applications in face recognition.
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Chapter 1

Introduction

Geometry is perhaps one of the oldest subjects in mathematics. Its origin goes back

to approximately 3000 B.C. in ancient Egypt. At that time, the Egyptians studied

geometry and mainly used it in astronomy and architecture, building the famous

Egyptian temples and pyramids [1]. Ever since then, various topics of geometry have

been developed (see for example [2, 3]), and their applications range from the basic

length, area, volume measurements to the sophisticated physics theory like the general

relativity [4] and the string theory [5].

Today the connection of geometry with computer science brings in a new area

of research called discrete differential geometry (DDG) [6]. The rich contents of

applications in this area include many important topics such as geometric modeling

[7], computer graphics [8, 9] and architectural design [10]. In all these applications

mathematicians as well as the computer scientists have to deal with discrete surfaces

or meshes, geometric objects that are represented by collections of points, edges, and

faces. The reason is obvious as they are the suitable types of data that computers

can process [11].

In 2009, Bobenko and Suris wrote the first monograph [12] on DDG. In this

monograph they define the subject of discrete differential geometry as “aims at the

development of discrete equivalents of notions and methods of smooth surface the-

ory”. They also address that the key message of this new geometry topic would be

“discretize the whole theory, not just the equations”. In this point of view, DDG is
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more than some adoption of discretization schemes for partial differential equations

but an independent branch of geometry in parallel with differential geometry. Indeed

many research contributions as well as this thesis follow this insight, see for example

[13, 14, 15].

One of the most important discrete concepts are the curvatures. Discrete Cur-

vatures in DDG are analogies of curvatures in classic differential geometry. Whereas

the curvatures of smooth manifolds (surfaces) are uniquely defined, there have been

various kinds of definitions of discrete curvatures based on different applications and

mathematical tools, see for example [16, 17, 18, 19, 14, 20, 21, 22, 23, 24, 25]. Some

of them reach the same result, [14] and [23] obtain the same expression for the Gauss

curvature in 3D, namely the angular defect formula. However in most cases the re-

sults are different. As an example in [22], the authors discuss the pros and cons of

four Discrete Laplace operators and conclude that no one is better than the others in

all aspects.

This thesis studies discrete curvature theories that are motivated by applications.

We are interested in curvature theories that are useful in architectural design and

face recognition. In the former case curvatures guide the design of the shapes and

the later curvatures serve as features of the faces. In both instances, we elaborate

the use of the integral form of definitions of classic curvatures in developing the new

discrete curvatures.

1.1 Topics of the thesis

This thesis contributes to discrete curvature theories on triangle and planar quadri-

lateral meshes that are practically important for free-form architecture, sunlight-re-

directing shading systems, and face recognition.
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1.1.1 Principal meshes under static equilibrium

The free-form architectural design has two major considerations – the geometric shape

of the underlying surfaces and the mechanics laws that a building has to fulfill.

One of the interesting geometric shapes for architectural design are the principal

meshes. Principal meshes are meshes having vertex-offsets (circular meshes) or face-

offsets (conical meshes). Such meshes have exact offests and are natural models for

multi-layer free form structures [21]. They also have other advantages in manufac-

turing like the ‘nearly rectangular panels’ [26]. Principal meshes are also interesting

theoretically, as they are, as the name indicates, a discretization of principal curvature

lines [27, 28, 29].

For architectural applications, structural feasibility is of high importance. A

simplified way of achieving it is to require static equilibrium, sometimes with the

additional constraint of allowing compressive forces only and thus obtaining self-

supporting structures [30, 31, 32, 33]. A subclass of principal meshes in force equi-

librium are associated with structures that require a minimal amount of material to

be built [34].

Whereas both principal meshes and meshes under static equilibrium are closely

related to architecture, the combination of the two, however, has never been consid-

ered. We refer to such a mesh as principal mesh under static equilibrium or shortly

PMSE, and it is one of the topics of this thesis. In this thesis we first discuss two

basic approaches – a progating approach and a global optimization – that can both

partially solve the problem of constructing PMSEs. Then we discuss the combination

of the two that leads to a robust construction of PMSEs.

1.1.2 Vertex normals and face curvatures based on triangle meshes

The system of straight lines orthogonal to a surface (called the normal congruence of

that surface) has close relations to the surface’s curvatures and is a well-studied object
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of classical differential geometry, see e.g. [35]. It is quite surprising that this natural

correspondence has not been extensively exploited in discrete differential geometry:

most notions of discrete curvature are constructed in a way not involving normals,

or involving normals only implicitly. There are however applications such as support

structures and shading/lighting systems in architectural geometry where line congru-

ences, and in particular normal congruences, come into play [36]. We continue this

study, elaborate on discrete congruences in more depth and present a novel discrete

curvature theory for triangle meshes which is based on discrete line congruences.

1.1.3 Asymptotic Cones of Embedded Singular Spaces

We work in the framework of geometric measure theory, more specifically using the

normal cycle theory, and use the formalism introduced in [37],[38] and [23] to propose

an extension of the definition of the classical asymptotic directions to a large class

of singular spaces W . Instead of building a new “curvature measure” on any couple

(W ,M), we associate a map that assigns a cone (called an asymptotic cone) of vector

fields on M to each Borel subset of M . In particular, if M = EN , we can reduce the

target of this map to the set of quadratic cones of EN . Moreover, choosing a fixed

scalar r > 0, we associate a field of cones leaving the tangent bundle TEN with such

a couple (W ,EN).

1.2 Structure of the thesis

The remainder of the thesis is organized into five chapters. Chapter 2 reviews the

related work on architectural geometry, 3D face recognition, and theories of normal

cycles.

Chapter 3 deals with principal meshes under force equilibrium. We review the

TNA and discuss the static equilibrium in Section 3.1. Section 3.2 briefly reviews

the concept of mesh parallelism and two types of offset meshes. In Section 3.3 we
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introduce an equilibrium surface and study the way of generating meshes from a few

quads, which is a Cauchy-like problem. In Section 3.4 we introduce a robust approach

that combines a standard global optimization with the Cauchy problem.

Chapter 4 discusses a discrete face curvature theory built on the normal congru-

ences of discrete surfaces. Section 4.1 summarizes properties of smooth congruences

and elaborates on an example arising in the context of linear interpolation of surface

normals. Section 4.2 first recalls discrete congruences following the work of Wang et

al. [36] and then focuses on the interesting geometry of a new version of discrete nor-

mal congruences (defined over triangle meshes). We shed new light onto the behavior

of linearly interpolated surface normals and discuss the problem of choosing vertex

normals. In Section 4.3, discrete congruences lead to a curvature theory for triangle

meshes which has many analogies to the classical smooth setting. Unlike most other

concepts of discrete curvature, it assigns values of the curvatures (principal, mean,

Gaussian) to the faces of a triangle mesh. We discuss the internal consistency of

this theory and demonstrate by examples (Section 4.4) its suitability for curvature

estimation and other applications.

Chapter 5 studies the new concept of asymptotic directions of embedded singular

spaces and its applications. Section 5.1 begins with classical definitions asymptotic

curvatures of an (oriented C∞) Riemannian manifold M (of finite dimension). Sec-

tion 5.2 first reviews the geometry of the tangent bundle of M , and then introduces

the so-called asymptotic form defined in that tangent bundle. Section 5.3 uses the

theory of the normal cycle [39], [40] to introduce the notion of asymptotic measures

defined in the tangent bundle of M , associated with a large class of singular subsets

G (called geometric subsets in [39]). We describe them explicitly in classical situa-

tions (when G is smooth or a polyhedron). Then, we construct the asymptotic cones.

In particular, we show how this construction generalizes the asymptotic directions

defined on a smooth surface in E3. In particular, we give an explicit expression of
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the asymptotic cones associated with a 2-polyhedron in E3. Section 5.4 deals with a

general theorem of convergence of asymptotic cones. In particular, we give explicit

assumptions in terms of the fatness of the sequence of polyhedra, implying the conver-

gence of the sequence of cones for a suitable pseudo-metric. Section 5.5 presents two

applications. First, we give a method to build asymptotic lines on a triangulation.

Then, we give a method to approximate the asymptotic lines of a smooth surface

approximated by a polyhedron. We test our method on various smooth or discrete

surfaces. Section 5.6 briefly discuss the applications of the asymptotic cones in face

recognition.

Chapter 6 concludes the thesis, summarizes its main contributions and outlines

open problems and potential future work.
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Chapter 2

Related work

2.1 Architectural geometry

Ever since its invention, geometry has always been an important and powerful tool in

designing and constructing buildings [41, 42, 43, 44, 45, 46]. Pottmann was the first

to introduce the words architectural geometry in his monograph [10] and demonstrates

the importance of DDG in (free-form) architectural design. The Eiffel pavilion project

[47] and the envelope of Yas Marina Hotel [48] are concrete examples of applications

of architectural geometry.

A review of recent progress in architectural geometry can be found in the survey

paper [26] by Pottmann et al. Liu et al. introduced the planar quad meshes and

conical meshes in [27]. Pottmann et al. further developed the geometry of offset

meshes and introduced circular and conical meshes [21, 28]. Bobenko et al. studied

the curvature theory of these offset meshes in detail [25]. The method of thrust

network analysis was investigated in detail by Block and coworkers [30, 31]. It was

later combined with differential geometry by Vouga et al. in [32], thus stimulating

further work in this direction [49, 50]. Tang et al. [33] found an effective optimization

strategy which leads to an interactive design tool for meshes under static equilibrium

and other geometric constraints.
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2.2 Line congruences

Smooth line congruences represent a classical subject. An introduction may be found

in the monograph by Pottmann and Wallner [51]. Discrete congruences have appeared

both in discrete differential geometry and geometry processing. Let us first mention

contributions which study congruences based on triangle meshes: A computational

framework for normal congruences and for estimating focal surfaces of meshes with

known or estimated normals has been presented by Yu et al. [52]. The paper by Wang

et al. [36] is described in more detail below.

Congruences associated with quad meshes are discrete versions of parametrized

congruences associated with parametrized surfaces. In particular, the so-called torsal

parametrizations are discussed from the integrable systems perspective by Bobenko

and Suris [12]. An earlier contribution in this direction is due to Doliwa et al. [53].

These special parametrizations also occur as node axes in torsion-free support struc-

tures in architectural geometry [27, 21, 28].

Curvatures of triangle meshes are well studied subjects. One may distinguish

between numerical approximation schemes (such as the jet fitting approach [54] or

integral invariants [55]) on the one hand, and extensive studies from the discrete

differential geometry perspective on the other hand. Without going into any detail

we mention that these studies include discrete exterior calculus [14], the geometry of

offset-like sets and distance functions [23], or various ways of defining shape operators

[56, 57]. Naturally, also Yu et al. [52] address this topic when studying discrete normal

congruences and focal surfaces. We present here yet another definition of curvatures

for triangle meshes which is based on discrete normal congruences, and which is at

the same time motivated by the Steiner formula (which also plays an important role

in [23] and [21, 25]).
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2.3 Curvatures measures and geometric invariants

In the past decades, there has been a growing interest in defining geometric invariants

describing singular spaces [58, 59, 16, 60, 37, 38, 61, 62, 63, 64, 65, 66, 23, 67]. Such

invariants are generally subject to two assignments:

1. They must fit with the classical invariants when the underlying set is a smooth

manifold or submanifold.

2. They must satisfy some continuity conditions. For instance, if a sequence of

singular spaces tends (for a suitable topology) to a smooth space, then the

invariants defined on the singular spaces also tend to the smooth ones.

After the length, the area and the volume, the most popular smooth geometric

invariants are (sectional, Ricci, scalar, principal) curvatures, which are smooth func-

tions (or tensors) defined on a (smooth) (sub)manifold and its tangent space. A

classical approach to extending these curvatures to singular spaces W of a Rieman-

nian manifold M , is to replace functions by measures on M . These measures are

defined by integrating invariant differential forms over Borel subsets. As an example,

Lipschitz-Killing curvature measures for singular spaces of a Riemannian manifold

can be defined as follows:

• The first step is to generalize the unit normal bundle of a smooth submanifold

to singular spaces. This has been done for convex subsets and for subsets of

positive reach. More generally, the theory of the normal cycle [40] allows us to

define an integral current on a large class of singular subsets, called geometric

subsets of a Riemannian manifold, generalizing the unit normal bundle.

• The second step consists of defining standard differential forms on the tangent

bundle of the ambient space.
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• Finally, integrating these differential forms on the normal cycle, builds invariant

measures, satisfying the two assignments described above.

2.4 3D curvature based face recognition

In the last few decades, biometrics is extensively used in computer science as a form

of human identification and access control. With the development of 3D information

acquisition technology, it is convenient to collect 3D data and thus face recognition

(FR) has attracted increasing attention in recent years [68, 69].

Since 3D face sensors can accurately and sensitively capture the geometrical shape

of the underlying 3D facial surfaces, designing a discriminating facial geometric sur-

face feature is a critical issue in 3D face recognition. In general, the normal and

the curvatures (e.g., the principal curvatures, the mean curvature and the Gaussian

curvature) are the most commonly used geometric features to describe the facial lo-

cal surface. Maes et al. applied the mean curvature in DoG based scale space to

detect salient vertices and then adopted histogram of shape index (calculated with

maximal curvature and minimal curvature) in local regions to build the descriptor

[70]. Kakadiaris et al. analyzed the normal map and geometry image by using a

wavelet transform [71]. Szeptycki et al. adopted the mean curvature and the Gaus-

sian curvature to locate the most salient facial feature points (e.g., nose tip and two

eye inner corners) [72]. Li et al. proposed a facial shape descriptor called multi-

scale and multi-component local normal patterns that determines the orientation of

a surface at each point and contains informative local surface shape information [73].

Tonchev et al. processed the curvature analysis and range image representation on

the input point cloud [74]. Hwang et al. extended Gabor wavelet kernels by adding

a spatial curvature term and adjusted the width of the Gaussian at the kernel for a

low-resolution image [75].
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Chapter 3

Principal Meshes Under Static Equilibrium

3.1 Thrust network analysis and static equilibrium

The introduction of thrust network analysis (TNA) in this section follows the papers

by Block et al. [30, 31], Vouga et al. [32] and Tang et al. [33]. TNA was first applied

to the vaulted masonry structures which are modeled as self-supporting surfaces.

Self-supporting surfaces. A structure, considered as an arrangement of blocks (bricks,

stones), holds together by itself, with additional support present only during con-

struction [32]. Such structure is assumed to follow two classic assumptions [76]:

Assumption 1: Masonry has no tensile strength, but the individual building blocks

do not slip against each other (because of friction or mortar). On the other hand,

their compressive strength is sufficiently high so that failure of the structure is by a

sudden change in geometry and not by material failure.

Assumption 2 (The Safe Theorem): If a system of forces can be found which is in

equilibrium with the load on the structure and which is contained within the masonry

envelope then the structure will carry the loads, although the actual forces present

may not be those postulated by that system.

Under these assumptions, Block et al. [30, 31] introduced a fictitious thrust net-

work of discretized stresses contained in the masonry. This network is a system of

forces in equilibrium with the structure’s dead-load and turns out to be coherent with

the classical finite element analysis discussed in [77]. A structure is self-supporting if
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and only if it can carry a thrust network of only compressive forces.

Meshes under static equilibrium. In [32], Vouga et al. shown theoretically that TNA

also applies to the thrust networks that possess both compressive and tensile forces.

A structure that carries a thrust network under static equilibrium without requir-

ing all forces to be compressive is called a mesh under static equilibrium [33]. The

mathematical formulation is as follows:

A mesh M is represented by M = (V,E, F ). Following [30] and [33], we dis-

cretized them as force densities Wi associated with vertices vi. The load acting on

this vertex is then given by Wi = 1
2

∑
j∼i ρijLij, where Lij = ||vi − vj|| is the length

of an edge vivj ∈ E and ρij is the load density of that edge. In the following, we will

consider uniform load density ρ over all edges unless stated otherwise. We assume

that stresses are carried by the edges of the mesh: the force exerted on the vertex

vi by the edge connecting vi, vj is given by fij = wij(vi − vj). Tensile forces have

wij ≤ 0, while compressive forces have wij ≥ 0. The static equilibrium (SE) at each

vertex then reads as follows: With vi = (xi,yi, zi) we have

∑
j∼i

fij = [0, 0,Wi]
T . (3.1)

or,

∑
j∼i

wij(xi − xj) =
∑
j∼i

wij(yi − yj) = 0, (3.2)

∑
j∼i

wij(zi − zj) = Wi. (3.3)

A mesh under static equilibrium has the static equilibrium at all its vertices, see

of Figure 3.1. It can be seen that a mesh under static equilibrium can be represented

by the thrust network it carries.
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Figure 3.1: A mesh M (as well as the thrust network) under static equilibrium with
dangling edges indicating external forces. This network together with its forces which
balance vertical loads Wi projects onto a planar mesh M′ with equilibrium forces
wije

′
ij in its edges.Figure from [32].

3.2 Mesh parallelism and principal meshes

The introduction to the mesh parallelism and the principal meshes in this section

follows the papers by Pottmann et al.[21, 78, 28, 25]. The parallel meshes are partic-

ularly important in architectural geometry as they are very good models of multi-layer

freeform structures [21, 10, 26].

Mesh parallelism. If mesh M has N vertices, we denote its vertices by the list

(m1, ...,mN) ∈ R3N , see Figure 3.2. We use C(M) to denote the linear 3N -dimensional

space of meshes combinatorially equivalent to M . If M1, M2 have the same com-

binatorics, a linear combination λ1M1 + λ2M2 is defined vertex-wise; this operation

corresponds to the linear combination of vectors in R3N . MeshesM1,M2 with pla-

nar faces are parallel if they are combinatorially equivalent, and corresponding edges

are parallel.

Offset meshes and exact offset meshes. Meshes are offsets of each other if they are

parallel, and, in addition, their distance from each other is constant throughout the
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M1 M2

Figure 3.2: A pair of parallel meshes M1 and M2 . Figure from [21].

mesh. The distance d = dist(M1,M2) between two meshes M1, M2 can have

different precise definitions and lead to different kinds of offsets. The offsets which

are interesting in this thesis are the following two:

1. vertex offsets: The distance of corresponding vertices m1
i ,m

2
i equals a constant

d, which does not depend on the vertex.

2. face offsets: The distance of faces (actually, planes which carry faces) is inde-

pendent of the face and equals d.

Discrete Gauss images. If p is a point of a smooth surface and n is the unit normal

vector there, then p̄ = p + dn would be a point of an offset surface at distance d. If

p, p̄ are given, we can recover the unit normal vector by n = (p̄− p)/d. If M̄ is an

offset mesh of M we can mimic this construction and define a discrete Gauss image

mesh S := (M̄−M)/d, whose vertices si = (m̄i−mi)/d can be regarded as discrete

normal vectors.

Circular meshes and conical meshes. Consider a mesh M , its offset mesh M̄ at dis-

tance d, and define the Gauss image mesh S = (M̄ −M)/d. Then the following is

true:

1. M̄ is a vertex offset ofM⇔ the vertices of S are contained in the unit sphere

S2. If S is a quad mesh and no edges degenerate, thenM has a vertex offset if

and only if M is a circular mesh, i.e., each face has a circumcircle.
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2. M̄ is a face offset of M ⇔ the faces of the Gauss image mesh S are tangent

to S2. A mesh has a face offset if and only if it is a conical mesh, i.e., the faces

around a vertex are tangent to a cone of revolution.

Principal meshes. Circular meshes and conical meshes are together called principal

meshes (PMs).

Principal meshes under force equilibrium. Principal meshes that are further under

force equilibrium are called principal meshes under static equilibrium (PMSEs).

Isotropic principal meshes. Here we consider principal meshes in isotropic space, that

is the isotopic circular meshes and isotropic conical meshes. An isotropic circular

mesh is a mesh whose top-view is circular and isotropic conical mesh is its dual.

There is a natural force equilibrium of an isotropic circular mesh whose force

diagram is dual of its top-view. In this case, the load is, in general, not the actual

load.

3.3 Generating PMSEs from Cauchy data

In this section we discuss how to get PMSEs from a strip of quads with some additional

conditions on both geometry and forces, that is, solving a Cauchy problem from some

initial conditions on geometry and forces, and generate a PMSE layer by layer. See

Figure 3.3(a).

3.3.1 The equilibrium surface

We first consider only the static equilibrium at each vertex. Let us look at a local

situation depicted in Fig. 3.3(b): Given two quads ov1v12v2 and ov4v14v1, we would

like to find vertex v3 of the next layer.

We also assume that forces f1 along edges ov1 and ov2 are known. Therefore in

the static equilibrium condition 3.1, we have 5 unknowns: the force vector f3 along

edge ov3, the length L3 and the magnitude of force f4 along edge ov4. Meanwhile
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(a)
Propagating Transversal

v0

v+1
v−1

(b)

v2

v1

v4

v3

o
f2

f1

f4

f3 = w3L3
v23

v12

v14

Figure 3.3: (a) A strip of quads (in transversal direction) and a polyline (in propa-
gating direction) as a set of Cauchy data for finding PMSEs. (b) Finding v3 from
neighbouring data. Quantities in black are known and those in red are unknown.

we have three equations in 3.1. Since we have two degrees of freedom, the set of all

possible positions for v3 is generically a surface, which we call equilibrium surface.

For simplification we write fi = fidi and W =
∑4

i=1
1
2
ρLi = −(µ + λL3), where

dis are unit edge vectors of ovis, and

µ = −1

2
ρ(L1 + L2 + L4), (3.4)

λ = −1

2
ρ. (3.5)

d3 is spherically parameterized as

d3 = (cos θ cosφ, cos θ sinφ, sin θ)T , θ ∈ [−π/2, π/2], φ ∈ [0, 2π). (3.6)

The unknowns are L3, f3, f4 and d3. With the unit vector k = [0, 0, 1]T the static

equilibrium condition 3.1 can be re-written as:

f3d3 + f4d4 + L3λk = −f1d1 − f2d2 − µk =: r (3.7)
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It is easy to solve this linear system for f3, f4, L3, with d4 = [d4x, d4z, d4z]
T and

r = [rx, ry, rz]
T :

L3 =
(d4yrz − d4zry) cosφ+ (d4zrx − d4xrz) sinφ+ (d4xry − d4yrx) tan θ

λ(d4y cosφ− d4x sinφ)
. (3.8)

We are interested in the implicit equation F (x, y, z) = 0 of the equilibrium surface.

Using the relations

x2 + y2 + z2 = L2
3,

x = L3 cos θ cosφ,

y = L3 cos θ sinφ,

z = L3 sin θ,

(3.9)

we find that the equilibrium surface is in general an algebraic surface of order 4 and

has the form

F (x, y, z) = (x2+y2+z2)(ex+fy)2−(ax+by+cz)2 = 0, (ax+by+cz)·(ex+fy) ≥ 0.

(3.10)

Here, the coefficients are

a = d4yrz − ryd4z, b = −d4xrz + rxd4z, c = d4xry − rxd4y,

e = −ρd4y/2, f = ρd4x/2, r = −f1d1 − f2d2 + ρ(L1 + L2 + L4)k/2.

(3.11)

The surface always contains a straight line in the plane ex+ fy = 0,

x = t; y = −et/f ; z = (af − be)/cf · t. (3.12)

We discuss two special cases arose from the expression (3.10).

Vertical edge. e = f = 0, ⇒ d4x = d4y = 0, d4z = ±1; This means that edge ov4 is
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(a)

o

v2 v1

v4

(b)

o

v2 v1

v4v3

v23

Figure 3.4: (a) The equilibrium surface of v3. The green curves are its intersection
with different planes through edge ov2. (b) A circle through points o, v2 and v23 is
drawn in red. The green curve is the intersection of the equilibrium surface with the
plane through the circle

vertical. We also have a = −ryd4z, b = rxd4z, c = 0, and the equilibrium surface is

reduced to a vertical plane:

(f1d1y + f2d2y)x− (f1d1x + f2d2x)y = 0. (3.13)

This is a case where overhang [33] happens. If we further look at the static equilibrium

equation (3.7), the system is singular as det(A) = [d3,d4, λk] = [d3,±k, λk] = 0. We

have the following relations

f3 =

√
r2
x + r2

y

cos θ
=

√
(f1d1x + f2d2x)2 + (f1d1y + f2d2y)2

cos θ
(3.14)

±f4 = ρL3/2−
√
r2
x + r2

y tan θ + rz. (3.15)

If edge ov4 carries a force that exactly counter-balances its own weight, that is,
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±f4 = ρL4/2, we can remove this edge without affecting the whole thrust network

and then L3 is given by

L3 =
2

ρ
(
√
r2
x + r2

y tan θ − rz + L4)

=
2

ρ
(
√
r2
x + r2

y tan θ + f1d1z + f2d2z −
1

2
ρ(L1 + L2 + L4)) + L4

=
2

ρ
(
√

(f1d1x + f2d2x)2 + (f1d1y + f2d2y)2 tan θ + f1d1z + f2d2z)

− L1 − L2.

(3.16)

Degenerated edge. a = b = c = 0; This means that L3 = 0, and, for any y ∈ R3,

[y,d4, r] = ayx + byy + cyz = 0⇒ d4 ‖ r. (3.17)

We further check the value of f3:

f3 =
[r,d4, λk]

[d3,d4, λk]
= − λc

[d3,d4, λk]
= 0. (3.18)

This reduces to the case of a point o of valence 3. In this case if only the geometry

is given, i.e. di, Li (i = 1, 2, 4) are known, we can find, generically, a unique force

triple.

3.3.2 Circularity and identifying v3 on the equilibrium surface

Picking point v3 on the equilibrium surface ensures static equilibrium at vertex o. We

would like to enforce further conditions on the geometry of the mesh such as planar

faces or even faces with a circum-circle. To achieve planarity of the quad ov2v23v3,

we need to intersect its plane with the equilibrium surface. With n as unit normal
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vector of that plane, this leads to the following relation between φ and θ,

< n,d3 >= 0

⇒ tan θ = −nx cosφ+ ny sinφ

nz
.

(3.19)

This results in a parametric representation of the intersection curve, i.e. the locus of

possible vertices v3.

To identifying v3 that both ensures static equilibrium and circularity, we further

intersect this curve with the circle and get the point v3 see Figure 3.4(b).

3.3.3 A Cauchy problem

The discussion of equilibrium surfaces in Section 3.3.1 shows that in order to find

a unique v3, we need to prescribe an additional point v23. As illustrated in Figure

3.3(a), we define initial data for geometry and statics as follows.

Initial data. Initial geometry data consist of a polyline in the propagation direction s

and a strip of planar quads in the transversal direction t. Initial static data are the

forces along the propagating edges of the strip.

In order to compute the mesh layer by layer, we may begin with vertex v0 which

is the point where the polyline meets the strip, see Figure 3.3(a). At this point the

adjacent geometry is already given by the initial static data, one force is also given.

The forces along the other three edges can then be determined and are generically

unique.

Next we may deal with vertex v+1, which now plays the same role as point o in our

study of the equilibrium suface. We just need two more constraints to fix the position

of the free vertex. In this way we can propagate our computation in +t-direction

and then the same applies to the −t-direction. Once the current layer is determined

we can compute the next layer and generate the desired mesh. By picking different

constraints, the disscussion above can be summarized into the following three results.
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Proposition 3.1 A quad mesh under static equilibrium is in general determined by

the initial Cauchy data if and only if exactly two constraints are prescribed at every

vertex. See Figure 3.5.

(a) (b) 0

0.01

Figure 3.5: (A) A quad mesh under static equilibrium from the initial data (red
lines). At each equilibrium surface, the constraints are o′v′3 = −o′v′1 and L1 = L3,
see Figure 3.3(b) for notations; the primes indicate the projection onto a horizontal
plane. (b) The static equilibrium measurement (3.31) for this mesh.

Proposition 3.2 A planar quad mesh under static equilibrium is determined by the

initial Cauchy data if and only if the quads of the input strip are planar and exactly

one constraint is prescribed at each vertex. See Figure 3.6.

(a) (b)
0

0.01

Figure 3.6: (a) A planar quad mesh under static equilibrium from the initial data
(red lines). At each vertex, the constraint is o′v′3 = −o′v′1, see Figure 3.3(b) for
notations; the primes indicate the projection onto a horizontal plane. (b) The static
equilibrium measurement (3.31)for this mesh.
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This one constraint, in other words, one degree of freedom of determining each

vertex gives flexibility of computing planar quad meshes under static equilibrium

(PQSE). One could prescribe a uniform constraint, for example as in Figure 3.6.

More interestingly one can prescribe different constraints dynamically during the

computations and achieve different shapes of PQSEs. This flexibility also shows

reason why shape exploration of PQSES using method of guided projection in [33] is

very effective.

Proposition 3.3 A circular mesh under static equilibrium is determined by the initial

Cauchy data if and only if the quads of the input strip are circular. See Figure 3.7.

(a) (b)
0

0.01

Figure 3.7: (a) A circular mesh under static equilibrium from the initial data (red
lines). (b) The static equilibrium measurement (3.31)for this mesh.

3.3.4 Quality of the Cauchy data and fairness of a mesh

The point v3 found by the intersection of the circle and the equilibrium surface does

not even need to be real, needless to say being at a ‘good’ position that is satisfactory

for applications. In applications, especially for architecture, one uses various concepts

of mesh fairness [27, 26, 33] that can control the aesthetics of polylines in a mesh.

In order to get a simple formula, we make some reasonable simplification on our

data. We assume that all edges in the star of the central point o have the same length

and have a rather symmetric location with respect to the horizontal plane through o
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(see Fig. 3.8).

This allows us to choose a basis with d1 = [0, cos δ, sin δ]T , d3 = [0,− cos θ, sin θ]T

(that is, φ = −π
2
) and d2 = [α, 0, γ]T , d4 = [−α, 0, γ]T . Moreover, we have L1 = L2 =

L4 = L. Then, we have the expression for r

r = −f1d1 − f2d2 − µk = −f1


0

cos δ

sin δ

− f2


α

0

γ

+
3

2
ρL


0

0

1


=

[
−f2α,−f1 cos δ,−f1 sin δ − f2γ + 3ρL/2

]T
,

(3.20)

If we also require that L3 = L then,

L = L3 =
(d4yrz − d4zry) · 0 + (d4zrx − d4xrz) · (−1) + (d4xry − d4yrx) tan θ

λ(d4y · 0− d4x · (−1))

=
−α(−f1 sin δ − f2γ + 3ρL/2)− γ(−f2α) + (−α)(−f1 cos δ) tan θ

−ρ/2 · (−α)

=
f1(sin δ + cos δ tan θ) + 2f2γ − 3ρL/2

ρ/2
.

(3.21)

Finally, we arrive at the following fairness condition:

2ρL = f1(sin δ + cos δ tan θ) + 2f2γ. (3.22)

Special case. If di and the xy-plane form small angles, that is, sin δ ≈ tan δ = d1z,

cos δ ≈ 1. Since tan θ = d3z, γ = d2z = d4z and by assuming fi = f we obtain the

following simpler relation.

2ρL = f

4∑
i=1

diz. (3.23)

We define the ratio

f
∑4

i=1 diz
2ρL

, (3.24)

which in the ideal case should be equal to one. Deviation from this value may result in
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bad or even useless configurations, as illustrated in Fig. 3.8. shows how this condition

affects the result of v3.

(a) Ratio 1

o

v3

v2

v1v4

(b) Ratio 2

o

v3

v2

v1v4

(b) Ratio 1/2

o
v2

v1v4

Figure 3.8: Different intersections when the ratio
f
∑4

i=1 diz
2ρL

varies. (a) The ratio is

exactly 1 and the point v3 computed ensures a ‘good’ fairness located at o. (b) The
ratio is 2 and the point v3 locates at position which is not fair. (c). The ration is 1/2
and there is no real intersection point at a position other than o.

We remark that the fairness condition is local and as the computation proceeds,

it may no longer be satisfied. Such case, see Figure 3.9, leads to the discussion of a

more robust method in the next section.

(a) (b)
0

0.01

Figure 3.9: The computation of a circular mesh from initial data (red lines). The first
two layers from the bottom follows the fairness condition (3.22) but the computation
soon leads to an undesired shape, though the resulting mesh is still a PMSE.
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3.4 Global optimization

In this section, we introduce a global approach that can avoid the violation of the

fairness condition (3.22) and enables relatively complex shapes of PMSE. We first

review a standard nonlinear optimization which could, in some cases, get good results.

Then we combine it with the Cauchy problem discussed in the previous section so

that we can compute more PMSEs with good precision.

3.4.1 A direct optimization

The direct optimization we used is a standard nonlinear optimization, and we solve

it by the Levenberg-Marquardt algorithm[79]. In the formulation, we introduce aux-

iliary variables as in [33] to increase the sparsity of the linear system. The objective

function has form

E =
∑
i

αiEi (3.25)

where each energy function Ei is non-negative and will be discussed below and αi ≥ 0

are weights of the energy term.

As illustrated in Figigure 3.10(a), we introduce as auxiliary variables the face

normal n, face circum-circle center c and face circum-circle radius r. The circularity

energy is:

Ec =
∑
quads

((c− vi) · n)2 + ((c− vi)
2 − r2)2 (3.26)

In the computation, we assume that the material (line) density is normalized to

one, i.e. ρ = 1. The energy term for static equilibrium

Es =
∑

(
∑
j∼i

wij(xi − xj))2 + (
∑
j∼i

wij(yi − yj))2 + (
∑
j∼i

wij(zi − zj)−Wi)
2. (3.27)

As in [33], the load and the edge lengths are treated as auxiliary variables and we
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w04

Figure 3.10: (a) Variables and auxiliary variables in circularity optimization (b) Cir-
cularity measurement (c) Static equilibrium measurement.

further have extra energy terms:

Ew =
∑

(Wi −
1

2

∑
j∼i

Lij), (3.28)

Ee =
∑
e

(L2
ij − (vi − vj)

2). (3.29)

We also use soft energies such as the tangential fairness, proximity and gliding

boundary from [33].

Measurements

The circularity measurement Mc is the deviation in the angles from being circular,

see Figure 3.10(b). To be more explicit, it is defined as

Mc = max(|π − α− γ|, |π − β − δ|). (3.30)

The static equilibrium measurement Ms, see Figure 3.10(c), is defined as

Ms =

√
(
∑
j∼i

wij(xi − xj))2 + (
∑
j∼i

wij(yi − yj))2 + (
∑
j∼i

wij(zi − zj)−Wi)2. (3.31)

Initialization. Since our objective has two major targets: circularity and static equi-

librium, an initial input mesh in the optimization could be one of the following two:
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(a) Part of a sphere. (b) Enneper surface. (c) Inner court.

Circul-
arity

Static
Equi-
librium

Figure 3.11: Some symmetric meshes which can be directly optimized to be PMSE.
(a) The initial mesh is a circular mesh which is quadrangulated from the latitudes and
longitudes of a sphere. (b) The initial mesh is a circular mesh which is quadrangulated
from the principal curvature lines of an Enneper surface. (c) Th initial mesh is a mesh
under static equilibrium from [33]. See Table 3.1 for the statics of the circularity and
static equilibrium measurement.

1. A circular mesh with forces computed by a least square method, for instance,

as in [33].

2. A planar quad mesh under static equilibrium.

Some special meshes with symmetry can be optimized for PMSE with relatively

good quality, see Figure 3.11 whereas most cannot, see Figure 3.12 and Table 3.1.

The direct optimization, in general, struggles to obtain a PMSE with a satisfactory

precision.
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(a) (b) (c)

Circul-
arity

Static
Equi-
librium

Figure 3.12: Results of a direct optimization with a circular or static equilibrium
initial input. (a) and (b) The initial meshes are circular meshes from [80]. (b) The
initial mesh is a mesh under static equilibrium from [33]. See table 3.1 for the statistics
of the circularity and static equilibrium measurement.

Part of a sphere Enneper surface Inner court
Mc(

◦) Ms Mc(
◦) Ms Mc(

◦) Ms

max 3.82 · 10−3 2.25 · 10−3 0.211 3.35 · 10−3 0.631 2.02
min 0 7.28 · 10−8 0 1.70 · 10−4 1.25 · 10−4 0

mean 1.21 · 10−1 1.00 · 10−3 5.23 · 10−4 3.86 · 10−4 1.15 · 10−1 5.66 · 10−1

Figure 3.12(a) Figure 3.12(b) Figure 3.12(c)
Mc(

◦) Ms Mc(
◦) Ms Mc(

◦) Ms

max 9.07 11.3 2.36 11.1 7.02 · 101 3.74 · 10−2

min 2.73 · 10−4 9.00 · 10−2 3.81 · 10−5 2.40 · 10−2 6.37 · 10−2 3.16 · 10−4

mean 5.67 · 10−1 1.49 1.11 · 10−1 1.94 2.19 · 101 9.31 · 10−3

Table 3.1: Statistics of circularity measurements Mc and static equilibrium measure-
ments Ms correspond to the models in Figure 3.11 and 3.12. Value 0 means that the
value hits the machine precision.
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3.4.2 A combined approach

In order to get a PMSE by optimization, we would need a better initialization, a mesh

that is more “close” to PMSE than a circular mesh or a mesh under static equilibrium.

We, therefore, propose the following method which combines the computation of

PMSE from Cauchy data and the global optimization:

1. Start with a set of initial geometry and static data.

2. Compute the approximated PMSE for the next few layers.

3. Optimize the current existing layers.

4. Repeat from Step 2 until one obtains the full mesh.

Step 1. Initial data. The initial geometry data is a strip of circular quads. The initial

static data can be estimated from the fairness condition 3.22 or 3.23.

Step 2. Computation from Cauchy data. In this step, we compute the new layers of

the mesh largely the same as Section 3.3.3, see Figure 3.15(b,d,f). The only difference

is that we may need to alter the new point computed for each quad ( point v3 in

Section 3.3.2). In the computation, the mesh fairness could be bad, due to the error

accumulation that occurs inevitably in such a propagating computation, or violation

of the fairness condition. In this case, we compute the new layers “approximately”

with “acceptable” fairness. To be more precise, as illustrated in Figure. 3.13, at each

vertex we prescribe a feasible region of fairness F , which is the set of points that

ensures the fairness at o. We then compute the point v3 that is the exact intersection

of the equilibrium surface and the circle. Instead of using v3 as the mesh vertex, we

project it to the nearest point v̄3 within F and add the projection v̄3 to the mesh.
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o

v3

v̄3

v4

v1

v2

a
F

Figure 3.13: The feasible region of fairness is a right circular cone with apex o and
axis a = −ov1. The projection point v̄3 is the new mesh vertex.

Step 3. Optimization of the partial mesh. We optimize the current partial mesh for

PMSE as in Section 3.4.1 and redistribute the forces. The top layer together with

the forces are the new Cauchy data for the next step, see Figure 3.15(c,e,g).

Adapting the combined method, we can obtain a PMSE that is both precise in

circularity and static equilibrium, see Figure 3.14

(a) (b)

Figure 3.14: A PMSE computed by the combined method. (a) Circularity
Mc(

◦) max/min/mean: 1.2 · 101/1.6 · 10−3/3.2 · 10−1. (b) Static equilibrium Ms

max/min/mean: 3.0 · 10−3/3.1 · 10−5/4.7 · 10−4.
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(a) The input Cauchy data.

(b) Three-layer PMSE computed. (c) Three-layer PMSE optimized.

(d) Five-layer PMSE computed. (e) Five-layer PMSE optimized.

(f) Full PMSE computed. (g) Full PMSE optimized.

Figure 3.15: Steps of the combined method that computes a PMSE.
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Chapter 4

Vertex normals and face curvatures of triangle meshes

4.1 Smooth line congruences

The introduction into line congruences in this section follows the paper by Wang et

al. [36]. A line congruence L is a smooth 2D manifold of lines described locally by

lines L(u, v) which connect corresponding points a(u, v) and b(u, v) of two surfaces.

With e(u, v) = b(u, v) − a(u, v) indicating the direction of the line L(u, v) (see Fig.

4.1), we employ the volumetric parametrization

x(u, v, λ) = a(u, v) + λe(u, v) = (1− λ)a(u, v) + λb(u, v).

Any 1-parameter family R (t) = L(u(t), v(t)) of lines results in a ruled surface r(t, λ) =

x(u(t), v(t), λ) contained in the congruence. We are particularly interested in devel-

opable ruled surfaces: The developability condition reads

u2
t [eu,au,e] + utvt([eu,av,e] + [ev,au,e]) + v2

t [ev,av,e]

= (ut, vt)

 [eu,au,e] [eu,av,e] + [ev,au,e]

symm. [ev,av,e]


 vt

ut

 = 0, (4.1)

if we use subscripts to indicate differentiation and square brackets for the determinant.

Equation (4.1) tells us that for any (u, v) there are up to two so-called torsal directions

ut : vt which belong to developable surfaces. This behaviour is quite analogous to the
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a(u, v) = x(u, v, 0)

e(u, v)
R1

R2

F1

(a) (b)

Figure 4.1: (a) A line congruence L is described by a surface a(u, v), and direction
vectors e(u, v). (b) Developables R1, R2 contained in L . The set of all regression
curves ci of these developables makes up the focal sheets F1, F2 of the congruence
(here only F1 is shown). The tangent planes of R1, R2 along the common line are the
torsal planes or focal planes of that line. These images are taken from [36].

fact that for any point in a smooth surface there are two principal tangent directions

which belong to principal curvature lines. By integrating the torsal directions one

creates ruled surfaces which are developable, which is analogous to finding principal

curvature lines by integrating principal directions.

4.1.1 Normal Congruences

The normals of a surface constitute the normal congruence of that surface. For such

congruences the analogy between torsal directions and principal directions mentioned

above is actually an equality: The surface normals along a curve form a developable

surface if and only if that curve is a principal curvature line [35].

The reference surface a(u, v) might be the base surface the lines of L are orthogonal

to, but this does not have to be the case. The congruence does not change if the

reference surface is changed to a∗(u, v) = a(u, v) +λ(u, v)e(u, v), so deciding whether

or not L is a normal congruence depends on existence of an alternative reference

surface a∗ orthogonal to the lines of L , i.e., 〈e, a∗u〉 = 〈e, a∗v〉 = 0. Assuming without

loss of generality that ‖e(u, v)‖ = 1 and using 〈e, eu〉 = 〈e, ev〉 = 0 the orthogonality
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condition reduces to λu = −〈au, e〉, λv = −〈av, e〉. This PDE for the function λ has

a solution if and only if the integrability condition λuv = λvu holds. It is easy to see

that this is equivalent to

〈au, ev〉 = 〈av, eu〉. (4.2)

It is not difficult to see that (4.2) is equivalent to the condition that developables

contained in L intersect at right angles.

4.1.2 Focal surfaces and focal planes

Loosely speaking, an intersection point of a line in L with an infinitesimally neigh-

bouring line produces a focal point of the congruence L . The rigorous definition of

focal point is a point x(u, v, λ) where the derivatives of x are not linearely indepen-

dent: One gets the condition

[xu,xv,xλ] = [eu,ev,e]λ2 +
(
[au,ev,e] + [eu,av,e]

)
λ+ [au,av,e] = 0, (4.3)

i.e., up to two focal points per line. It is not difficult to see that such singularities

are exactly the singularities of developables contained in L , see Figure 4.1b. For this

reason, the tangent planes of developables contained in L are called focal planes as

well as torsal planes. Such a focal plane/torsal plane is spanned by a line L(u, v)

together with a torsal direction.

For normal congruences, the focal points are precisely the principal centers of

curvature; they exist always unless one of the principal curvatures is zero. In each

point of the surface, the focal plane (i.e., torsal plane) is spanned by the surface

normal and a principal tangent.
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4.1.3 Example: Congruences defined by linear interpolation

Congruences of the special form

x(u, v, λ) = (1− λ)
(
a0 + a10u+ a20v

)
+ λ
(
b0 + b10u+ b20v

)
(4.4)

=
(
a0 + a10u+ a20v

)
+ λ
(
e0 + e10u+ e20v

)
play an important role, both for us and in other places: for example, the set of lines

described by such a congruence is the one generated by Phong shading, when one

linearly interpolates vertex normals in a triangle.

We consider the planes “Pα” which are defined as the set of all points x(u, v, α),

and we study the affine mappings

φαβ : Pα → Pβ, x(u, v, α) 7→ x(u, v, β).

The lines L(u, v) of the congruence are precisely the lines which connect points

x(u, v, α) ∈ Pα and x(u, v, β) ∈ Pβ. These congruences are studied e.g. in [51, Ex.

7.1.2]. Let us summarize some of their properties, which are illustrated by Figure 4.2.

1. Each intersection line L = Pα ∩ Pβ of two planes in the family Pλ is contained

in the congruence L . This follows from the fact that L is spanned by the points

X = φ−1
αβ(L) ∩ L and φαβ(X) = L ∩ φαβ(L).

2. The lines Pα ∩ Pβ with α fixed, constitute a developable surface Rα ⊂ L which

is planar and contained in Pα (in general, it is the tangent surface of a parabola

rα).

3. For properties of the focal surface, see Figure 4.2.
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(a) x(1,0,0)

x(0,0,0)
x(0,1,0)

x(0,0,1)
x(1,0,1)

Pλ1(
1
3
,1
3
)

(b)

F

F

r

rλPλ

P0

Tλ

Figure 4.2: Congruences defined by a “linear” volumetric parametrization x(u, v, λ)
turn out to be useful for linear interpolation of triangle meshes, but they have counter-
intuitive properties. (a) Planes Pλ defined by λ = const. are visualized as triangles.
Interestingly, all of these triangles contain a planar developable Rλ ⊂ L with a
parabola rλ as curve of regression. In particular the red triangle Pλ1 represents a
torsal plane for the blue line L(1

3
, 1

3
) which connects the barycenters of triangles Pλ.

The image further shows many lines Pλ1 ∩ Pβ, of the planar developable Rλ1 . (b)
The focal surface F of L agrees with the envelope of the family of planes Pλ. It is in
general the tangent surface of a cubic polynomial curve r. We show in red and yellow
the two sheets of this tangent surface F which are separated by the regression curve
r. We also indicate the point of tangency Tλ where Pλ touches r. The hyperbolic
congruence lines (those which are contained in two focal planes) are bitangents of
the focal surface, i.e., they touch F in two points. The regression parabolas rλ are
contained in F and are obtained by intersecting F with one of its tangent planes Pλ.

4.2 Discrete Normal Congruences

Wang et al. [36] define discrete congruences by means of correspondences between

combinatorially equivalent triangle meshes A, B with vertices {ai} and {bi}. Each

pair of corresponding triangles aiajak and bibjbk defines, via linear interpolation, a
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(a)

B

A

R ∩B

R ∩ A

(b)

RRRRRRRRRRRRRRRRR

Figure 4.3: A piecewise-linear correspondence between meshes A and B defines a
piecewise-smooth congruence L . (a) Integrating torsal directions yields corresponding
polylines in meshes A and B. (b) Connecting corresponding points of those two
polylines yields a piecewise-flat developable R ⊂ L . These images are taken from
[36].

piece of a smooth line congruence of the kind described by Equation (4.4):

x(u, v, λ) = a(u, v) + λe(u, v), (4.5)

a(u, v) = ai + uaji + vaki, e(u, v) = ei + ueji + veki, where

ei = bi − ai, aij = ai − aj, eij = ei − ej.

If the domain is restricted to u ≥ 0, v ≥ 0, u + v ≤ 1, then the correspondence

x(u, v, 0) 7−→ x(u, v, 1) is precisely the affine mapping of triangle aiajak to triangle

bibjbk. Equations (4.1) and (4.3) serve to compute torsal directions and focal points

of this congruence, and also to trace the developables contained in this congruence

(see Fig. 4.3).

4.2.1 Discrete normal congruences – Version 1

It is not straightforward to define which correspondence between triangle meshes

defines a normal congruence. Firstly this is because congruences of the form (4.4) are

never normal except for degenerate cases. Secondly such a normal congruence would

automatically lead to a good definition of constant-distance offset mesh of a triangle
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mesh which is lacking so far.

We discuss two suitable definitions of “normal congruence” and start with a version

already published. Wang et al. [36] require normality to hold only in the barycenters of

faces (i.e., they require that Equation (4.2) holds for barycenters of faces), see Figure

4.4. Figure 4.5 shows an example demonstrating the efficiency of this definition.

Proposition 4.1 below gives an equivalent analytic condition.

a1

a2

a3

b1

b2

b3

ā1

ā3

b̄1

b̄2

b̄3

Figure 4.4: (a) Congruences defined by the piecewise-affine correspondence of meshes
A,B can be called discrete-normal, if the normality condition is fulfilled for barycen-
ters of faces. This figure also illustrates the auxiliary projection used by Equation
(4.7). This normality condition is called ‘version 1 normality’ here (image taken from
[36]).

Proposition 4.1 Consider two combinatorially equivalent triangle meshes and the line

congruence L defined by the piecewise-linear corresondence of faces. For each pair

a1a2a3, b1b2b3 of corresponding faces perform orthogonal projection in direction

of the line which connects their respective barycenters, yielding triangles ā1ā2ā3,

b̄1b̄2b̄3. Then L is normal in the barycenters of the two faces if and only if the

following analogue of (4.2) holds:

〈āj − āi, b̄k − b̄i〉 = 〈āk − āi, b̄j − b̄i〉, or equivalently, (4.6)

〈āj − āi, ēk − ēi〉 = 〈āk − āi, ēj − ēi〉, where ei = bi − ai. (4.7)

It is sufficient that these conditions hold for at least one choice of indices i, j, k ∈

{1, 2, 3}, i 6= j 6= k.
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aiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiai

a∗i

Figure 4.5: We demonstrate that Equation (4.7) is a working definition of normality:
Given a triangle mesh {ai} (white), we find unit vectors ei by optimizing for shading
effects according to Wang et al. [36] under the normality constraint (4.7). Subse-
quently we check if a triangle mesh {a∗i } orthogonal to the congruence can be found.
We let a∗i = ai +λiei and solve for λi such that the faces of the new mesh are orthog-
onal to the congruence in their barycenters. The result of this computation yields
a mesh {a∗i } (yellow) where face normals and congruence lines (in face barycenters)
differ by an angle β, which assumes a maximum of 4.1◦, a mean of 0.9◦, and a median
of 0.8◦. Instead of the mesh computed here, any constant-distance offset would have
been a solution as well. We chose one which lies at a small distance from the original
mesh.

4.2.2 Discrete normal congruences – Version 2

There is an obvious analogy between conditions (4.2) and (4.7): they express nor-

mality in the smooth and discrete cases respectively. However Equation (4.7) is not

entirely satisfying as a definition since it involves a projection operator. It is there-

fore natural to define discrete-normality by the following two equations which replace

Equations (4.6), (4.7):

〈aj − ai,bk − bi〉 = 〈ak − ai,bj − bi〉 or, equivalently, (4.6∗)

〈aj − ai, ek − ei〉 = 〈ak − ai, ej − ei〉. (4.7∗)

We will show that theses conditions are suitable to define normality of discrete congru-
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ences defined by a correspondence of triangle meshes. Besides numerical experiments

(see later), we show geometric properties of congruences which fulfill these condi-

tions. The first property is a discrete version of the following two facts (i) A normal

congruence L has a 1-parameter family of surfaces orthogonal to it, and (ii) for any

point in such a surface there are 3 mutually orthogonal planes spanned by the normal

and the two principal directions. We show that in the discrete-normal case, there are

analogous principal trihedra:

Proposition 4.2 Consider two combinatorially equivalent triangle meshes and the line

congruence L defined by the piecewise-affine corresondence of faces, and consider in

particular one such pair a1a2a3, b1b2b3 of corresponding faces. In the generic case,

the normality condition (4.6∗) implies the following property:

For each plane Pλ spanned by the vertices (1 − λ)ai + λbi there is a congruence

line Nλ = L(uλ, vλ) such that the two focal planes of that line together with Pλ form

a trihedron of mutually orthogonal planes.

The meaning of “generic” is discussed in the proof.

Proof. Generically, vectors ei = bi− ai are linearly independent, so we can express a

normal vector n of the triangle a1a2a3 (which spans P0) as a linear combination n =∑3
i=1 αiei. Generically,

∑
αi 6= 0, so by multiplying n with a factor we can achieve∑

αi = 1 and by relabeling the coefficients αi we get n = (1− u− v)e1 + ue2 + ve3.

Then Equation (4.5) shows that the line L(u, v) is orthogonal to P0.

Consider the affine correspondence of triangles a1a2a3 and b1b2b3 followed by

orthogonal projection onto P0. A vertex ai is mapped to b̄i = bi + λin. There is

a linear mapping α with α(ai − aj) = b̄i − b̄j. It is clear from Figure 4.3 that the

eigenvectors of α indicate the directions of torsal planes through the line L(u, v).
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Figure 4.6: The “principal” trihedra mentioned in Proposition 4.2, when moved to
the origin, lie tangent to a so-called Monge cone. Since these planes rotate about an
entire cone as the interpolation parameter λ varies, one cannot without restrictions
interpret these principal trihedra as tangent planes plus principal planes of an offset
family of surfaces. Such an interpretation is valid only for small λ.

Conditions (4.6∗), (4.7∗) imply

〈aj − ai, b̄k − b̄i〉 − 〈ak − ai, b̄j − b̄i〉

= 〈aj − ai,bk + λkn− bi − λin〉 − 〈ak − ai,bj + λjn− bi − λin〉

= 〈aj − ai,bk − bi〉 − 〈ak − ai,bj − bi〉 = 0,

i.e., symmetry of α and orthogonality of eigenvectors of α. This shows orthogonality

of torsal planes and verifies the statement for the case λ = 0. The case λ = 1 is

analogous, since condition (4.6∗) is invariant if we replace ai by bi and vice versa.

For all other values λ 6= 1 we note that replacing vertices bi by vertices ai + λei

inflicts the change ei → λei without changing ai, which does not affect the normality

condition (4.7∗).

As illustrated by Figure 4.2, congruences defined by the affine correspondence

of triangles have counter-intuitive properties: The planes Pλ generated by linear

interpolation of the defining triangles at the same time are the focal planes of L (and

vice versa) since any Pλ carries the developable surface generated by the lines {Pλ ∩

Pα}α∈R. The torsal planes Pλ are tangent to the focal surface F of L . It is known that
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F is the tangent surface of a cubic polynomial curve, cf. [51, Ex. 7.1.2]. Proposition

4.2 now tells us that this curve has infinitely many triples of mutually orthogonal

tangent planes. Translating these planes (the principal trihedra) through the origin,

they become tangent planes of the directing cone of F , which is a quadratic cone. This

cone is quadratic and must likewise have infinitely many orthogonal circumscribed

trihedra. It is therefore a so-called Monge cone, see Figure 4.6.

There is a phenomenon in geometry, called porism, cf. [81]. It refers to situa-

tions where existence of one object of a certain kind implies existence of an entire

1-parameter family of such objects. Monge cones are an instance of a porism: If a

quadratic cone has one circumscribed orthogonal trihedron, then one can move this

trihedron around the cone while it remains tangential. This fact is classical knowledge

in projective geometry, see e.e. [82, pp. 33-34].

The same porism is hidden in the proof of Proposition 4.2: The normality condi-

tion (4.6∗) was equivalent to existence of the principal trihedron associated with P0,

but it also implied existence of the trihedron for all Pλ.

4.2.3 Details on principal trihedra in discrete-normal congruences

We wish to interpret the three mutually orthogonal planes referred to by Proposition

4.2 as the tangent plane and principal planes of a surface. In particular the normal

vector nλ of Pλ shall be the normal vector, and the line Nλ shall be the surface

normal, while the torsal planes should represent the principal directions. In order

to understand better the behavior of the objects involved, we study the volumetric

parametrization according to Equation (4.4) in an adapted coordinate system: the

plane P0 is the xy plane, and the two torsal planes associated with it shall be the xz

and zy planes. Since the affine correspondence between planes P0, P1 may be defined

by any pair of corresponding triangles, we choose a1 = o, a2 = (1, 0, 0), a3 = (0, 1, 0).

We may still change the plane P1 without changing the congruence, so we choose
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b1 = (0, 0, 1) . The vertices b2,b3 must lie in the xy and xz planes because of our

assumption on the torsal planes. Thus we get

x(u, v, λ) =


u

v

0

+ λ


−κ1u

−κ2v

au+ bv + 1

 (4.8)

=⇒ nλ =
∂x

∂u
× ∂x

∂v
=


aλ(κ2λ− 1)

bλ(κ1λ− 1)

(κ1λ− 1)(κ2λ− 1)

 .

We will later interpret κ1, κ2 as principal curvatures and vectors (1, 0, 0) and (0, 1, 0)

as principal directions. Obviously, they are eigenvectors of the linear map α which

occurs in the proof of Proposition 4.2. The plane Pλ is given as

n1,λx1 + n2,λx2 + n3,λx3 − n0,λ = aλ(κ2λ− 1)x1 + bλ(κ1λ− 1)x2

+ (κ1λ− 1)(κ2λ− 1)x3 − λ(κ1λ− 1)(κ2λ− 1) = 0.

This is a cubic family of planes. Translating them through the origin yields the

planes n1,λx1 + n2,λx2 + n3,λx3 = 0, which are tangent planes of the tangent cone

illustrated in Figure 4.6. Since the plane coefficients satisfy the quadratic equation

(κ1 − κ2)n1n2 − an2n3 + bn1n3 = 0, it is indeed a quadratic cone.1

We now look for a line L(uλ, vλ) orthogonal to Pλ. The direction of L(u, v) can

1The vector of coefficients (n1, n2, n3) of the equation of a plane is a normal vector of that plane.
This shows that the orthogonal polar cone of the Monge cone fulfills the equation (κ1 − κ2)x1x2 −
ax2x3 + bx1x3 = 0. Since the Monge cone had many circumscribed orthogonal trihedra, its polar
cone has many inscribed orthogonal frames. These frames are generated by translating the frames
seen in Figure 4.7b through the origin.
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(a) (b)
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N0
Nλ

Nλ′

Nλ′′

Figure 4.7: Behaviour of the principal trihedron and the normal Nλ of planes Pλ in
a congruence defined by the affine correspondence between two triangles. (a) The
normals Nλ (green) intersect the plane P0 in the points c(uλ, vλ, 0) of a conic (red).
(b) As λ changes, the apex cλ = x(uλ, vλ, λ) of the principal trihedron (yellow) moves
along a straight line (blue). The ruled surfaces traced out by the edges of the trihedron
are shown; their union forms one algebraic ruled surface of degree four.

be read off (4.8), so the condition L(uλ, vλ) ‖ nλ reads

κ1uλ
κ2vλ

=
a(κ2λ− 1)

b(κ1λ− 1)
,

κ1uλ
auλ + bvλ + 1

=
aλ

1− κ1λ
(4.9)

=⇒ uλ =
aλκ2(1− κ2λ)

νλ
, vλ =

bλκ1(1− κ1λ)

νλ
,

where νλ = κ1κ2(κ1λ− 1)(κ2λ− 1) + a2κ2λ(κ2λ− 1) + b2κ1λ(κ1λ− 1).

In particular we see that the curve x(uλ, vλ, 0), consisting of all points Nλ ∩ P0, is a

conic. In fact, for every α, the curve {Nλ ∩ Pα}λ∈R is a conic it corresponds to the

curve Nλ ∩ P0 under the affine mapping φ0α : x(u, v, 0) 7→ (u, v, α), see Figure 4.7a.

The surface of all Nλ’s is then algebraic of degree four.

Let us now compute the “apex” cλ = Nλ ∩ Pλ = x(uλ, vλ, λ) of the principal

trihedron: From

cλ =
λ(1− κ1λ)(1− κ2λ)

νλ


κ2a

κ1b

κ1κ2

 (4.10)

we see that cλ moves on a straight line, but the parametrization of this line is cubic.
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Since the planes Pλ and the torsal planes stem from the same 1-parameter family

of planes, any torsal plane will play the role of Pλ′ for another value λ′; in total

each orthogonal trihedron will occur three times, and each of the three edges of the

trihedron will play the role of Nλ three times (see Figure 4.7b). We summarize:

Proposition 4.3 If a congruence is defined by the affine correspondence between two

triangles a1a2a3 and b1b2b3 and satisfies the normality condition (4.6∗), then its

focal surface has a 1-parameter family of circumscribed ‘principal’ orthogonal trihedra

whose apex moves on a straight line and whose edges form an algebraic surface of

degree 4 which contains that line as a triple line.

The complicated geometry of these congruences reflects the difficulties in defining

offset pairs of triangle meshes.

4.2.4 Discrete normal congruences – Version 3

The identity

〈aj − ai, ek − ei〉 − 〈ak − ai, ej − ei〉

=〈ai − aj, ei + ej〉+ 〈ak − ai, ek + ei〉+ 〈aj − ak, ej + ek〉,
(4.11)

shows that either of the two conditions (4.6∗), (4.7∗) is implied by the stronger con-

dition

〈aj − ai, ej + ei〉 = 0, (4.12)

when imposed on all three edges of a triangle. This third version of normality is a

more direct expression of the orthogonality between triangle mesh and congruence:

the edges aiaj of the mesh are required to be orthogonal to the arithmetic mean of

normal vectors ei, ej at either endpoint of the edge.
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normality
condition (4.6),
βmax = 4.1◦,
βavg = 0.8◦,
βmed = 0.7◦

normality
condition (4.6∗),
βmax = 2.8◦,
βavg = 0.8◦,
βmed = 0.7◦

normality
condition (4.12),
βmax = 3.4◦,
βavg = 0.8◦,
βmed = 0.7◦

Figure 4.8: Optimization of normal congruences. For a given mesh with vertices ai,
a discrete-normal congruence, defined by unit vectors ei, has been found by global
optimization such that one of the normality conditions considered here is fulfilled.
Each of these conditions is linear, so optimization was done by least squares. It turns
out that there is no substantial difference between Equations (4.6∗) and Equations
(4.12). Faces are colored according to the angle β enclosed between the congruence
line at the barycenter and the face’s normal there. We also give statistics on β for
each figure.

4.2.5 Comparison of definitions

The various definitions of discrete normal congruences have different advantages.

When one wants to design a normal congruence (as in Wang et al. [36]), version

1 may be better because it ensures orthogonality of focal planes in the part of the

line congruence which is actually realized. Using version 2, orthogonal focal planes

may occur outside the realized part. On the other hand, when using the normal

congruence of a given surface, version 2 has the advantage that one plane of a prin-

cipal frame contains the base mesh triangle; moreover discrete principal directions

are orthogonal and lie in the plane of the triangle. Version 3 normality is not used

here except for Figure 4.8 where we show that imposing version 3 normality leads to

results comparable to version 2. Since the weaker condition of version 2 is sufficient

to achieve the same results, it is not necessary to impose version 3 normality.
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4.3 Curvatures of faces of triangle meshes

Recall that a smooth normal congruence L possesses a surface A orthogonal to the

lines of L . Then automatically all offsets At also lie orthgonal to L . We assume

labeling of offsets such that surfaces At, As are at constant distance |t − s| from

each other. Then corresponding infinitesimal surface area elements “dAt(u, v)” obey

Steiner’s formula

dAt(u, v)

dA0(u, v)
= 1− 2tH(u, v) + t2K(u, v), (4.13)

where H and K denote mean and Gaussian curvature of the surface A0, respectively.

The sign of H depends on the unit normal vector field; in our case the unit normal

vector field points from A0 to the surfaces At with t > 0.

We now return to a discrete congruence L defined by the piecewise-linear corre-

spondence between triangle meshes A,B. Assuming A,B approximate an offset pair

of surfaces at distance 1, we consider corresponding faces a1a2a3 and b1b2b3. We

write bi = ai + ei, where the vectors ei approximate unit normal vectors of the mesh

A. An offset mesh at distance approximately t then has vertices and faces

ati = ai + tei ∆t = at1a
t
2a

t
3.

We further assume that the congruence L is a normal congruence (which we have

defined in two different ways).

• If L is normal in the sense of Equations (4.6) and (4.7), then we apply the

projection mentioned in Proposition 4.1, resulting in vertices ā1ā2ā3, b̄1b̄2b̄3.

The projection is in the direction of a certain unit vector n.

• As an alternative, the congruence may be normal in the sense of Equations

(4.6∗), (4.7∗). Here we consider orthogonal projection onto the plane P0 which
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H K H K

version 1

version 2

jet fit

Figure 4.9: Computing mean curvature H and Gaussian curvature K by means of
normal congruences: “version 1” and “version 2” refer to normality defined by Equa-
tions (4.6) and (4.6∗), respectively. Estimated normals are optimized so as to become
a normal congruence which allows us to compute curvatures in faces. For comparison,
curvatures computed by a 3rd order jet fit have been used, cf. [54]. The color scale
is the same for each kind of curvature and each model, throughout the 3 methods of
computation. One can hardly see any difference. For each mesh, normal congruences
have been computed in the way employed for Figure 4.8.

contains a1a2a3. This projection results in vertices āi = ai and b̄i. The projec-

tion is in direction of the unit normal vector n = n0 of the plane P0.

We now study the behaviour of the area of the face ∆t as t changes. We do not measure

the actual area, but apply the projection just mentioned. The area of projected

triangles is measured via a determinant in the plane:

p-area(x1x2x3) =
1

2
[x̄2 − x̄1, x̄3 − x̄1] =

1

2
[n, x̄2 − x̄1, x̄3 − x̄1] =

1

2
[n,x2 − x1,x3 − x1]
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With the notation āij = āi − āj, b̄ij = b̄i − b̄j, ēij = b̄ij − āij we get

p-area(4t)

p-area(40)
=

1
2
[ā12 + tē12, ā13 + tē13]

1
2
[ā12, ā13]

= 1 + t
[ā12, ē13] + [ē12, ā13]

[ā12, ā13]
+ t2

[ē12, ē13]

[ā12, ā13]
.

4.3.1 Discrete curvatures and shape operator

The obvious similarity of this relation with (4.13) immediately leads to a definition

of the mean curvature H and the Gauss curvature K of the face a1a2a3 under con-

sideration:

K =
[n,e12,e13]

[n,a12,a13]
, 2H = − [n,a12,e13] + [e12,a13]

[n,a12,a13]
. (4.14)

Principal curvatures κ1, κ2 are defined by the relations

κ1 + κ2 = 2H, κ1κ2 = K.

Completing the analogy with the smooth case, we define a shape operator Λ as the

linear mapping which maps

āi − āj
Λ7−→ −(ēi − ēj), for all i, j ∈ {1, 2, 3}.

Recall that the bar indicates projection (which in turn depends on which version of

“normality” we employ). In analogy to the smooth case, principal directions are given

by the focal planes of the congruence L . All these notions fit together:

Proposition 4.4 The eigenvalues of the shape operator Λ are the principal curva-

tures κ1, κ2, and its trace and determinant are given by 2H and K, respectively.

Eigenvectors of Λ indicate the principal directions.

Proof. Proof. We first show the statement for ‘version 2’ normality. Recall the linear
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mapping α in the proof of Proposition 4.2 which maps āi− āj
α7−→ (āi+ ēi)−(āj+ ēj).

Since by construction, Λ = id − α, Λ has the same eigenvectors as α, i.e., the torsal

directions. The statement about tr Λ and det Λ follows from the relations det Λ =

det(Λ(x),Λ(y))
det(x,y)

and tr Λ = det(Λ(x),y)+det(x,Λ(y))
det(x,y)

which generally hold for linear mappings

of R2. The statement about eigenvalues follows immediately.

For version 1 normality the proof is the same, only the bars have a different

meaning. The mapping α is also referred to in the proof of Proposition 4.1 in [36].

Since we have defined principal curvatures κ1, κ2 implicitly via mean curvature

H and Gauss curvature K, their relation to focal geometry is still unclear. In the

smooth case, points at distance 1/κi from the surface are focal points of the normal

congruence. This property holds in the discrete case too, if we use version 2 normality:

Proposition 4.5 Consider a congruence with parametric representation x(u, v, λ)

which is defined by the correspondence of two triangles a1a2a3 and b1b2b3. As-

sume that it is normal in the sense of Equation (4.6∗), and consider (in the notation

of Proposition 4.2) the plane P0 which contains a1a2a3 and the corresponding normal

L(u0, v0). Then the focal points of that line lie at distance 1/κ1, 1/κ2 from the plane

P0, with κi as the principal curvatures, i.e., the focal points are precisely the points

x(u0, v0, 1/κi).

Proof. We consider the parametrization (4.8) which is with respect to an adapted

coordinate system, so that u0 = 0 and v0 = 0. It is easy to see that the values

κ1, κ2 ocurring there are indeed the principal curvatures. A simple computation

shows that for the special case u = v = 0, the determinant of partial derivatives of

x(u, v, λ) specializes to [xu,xv,xλ] = (1− λκ1)(1− λκ2). Thus we have a singularity

if λ = 1/κi.
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4.3.2 Special cases

An umbilic point is characterized by equality of principal curvatures, i.e., κ1 = κ2 = κ.

In this case some of the geometric objects discussed above simplify. E.g. the above-

mentioned cubic family of planes becomes the set of tangent planes of a quadratic

cone with vertex (0, 0, 1/κ). Such an umbilic occurs every time two corresponding

triangles a1a2a3 and b1b2b3 are in homothetic position, but the converse is not true.

A parabolic point is characterized by one principal curvature, say κ1, being zero.

In this case, Equation (4.8) immediately shows that the congruence vectors e1, e2, e3

associated with vertices a1, a2, a3 are not linearly independent, so Proposition 4.2

does not apply. Along the x axis, the lines of the congruence are parallel to each

other, which is in accordance with the fact that the focal point (0, 0, 1/κ1) has moved

to infinity. The above-mentioned cubic family of planes is quadratic (in fact, it is the

family of tangent planes of a parabolic cylinder).

Remark 4.1 We should mention that the approach to curvatures presented here carries

over to relative differential geometry where the image of the Gauss map is not a sphere

but a general convex body [83]. Another straightforward extension is to curvatures at

vertices, which however does not lead to a shape operator in such a natural manner.

4.4 Results and discussion

4.4.1 Numerical examples

Vertex normals of a mesh can be estimated (e.g. as area-weighted averages of face

normals). Any such collection of sensible normals is not far away from being a “nor-

mal” congruence in our sense. By applying optimization, we can make it as normal

as possible, meaning that (4.6) is fulfilled in the least-squares sense. Numerical ex-

periments show that this improves the quality of the normal field (even if there are

not enough d.o.f. to satisfy (4.6) fully if the vertices of the mesh are kept fixed). Since
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jet fit normal cycle version 1 version 2

asymp-
totic
lines

prin-
cipal
curva-
ture
lines

Figure 4.10: We compute asymptotic lines and principal curvature lines of meshs by
various means. For the figures of the first column, we have used the 3rd order jet
fit method of [54]. For the second column, we used the method of normal cycles
(see [84] and next chapter). The 3rd and 4th column are computed using our the
shape operators, where version 1 and version 2 refer to normality w.r.t. Equation
(4.6) or Equation (4.6∗), respectively. In both cases the normal congruence needed
for defining the shape operator was obtained in the same way as for Figure 4.8. The
almost identical figures of the asymptotic lines and principal curvature lines according
to the four methods shows that all of these approaches are effective in computing
curvature directions. The jet fit method is an approximation, whereas the version 1
& 2 method, as well as the normal cycle method (which will be discussed in the next
chapter) are curvature theories.

curvatures and the distribution of normals are inseparable, it makes sense to study

curvatures not only as quantities derived from a mesh, but as quantities which arise

naturally from the the result of the optimization procedure just mentioned. In this

way the natural sensitivity of curvatures with respect to noise is moderated.

The basic task is, of course, the computation of a normal congruence for a given

mesh. This is done via a standard optimization procedure, which is initialized from

estimated vertex normals. We express the validity of the normality condition in terms

of least squares, and minimize subject to the constraints that (in the terminology

of previous sections), vectors ei are of unit length. Figure 4.8 shows an example.

In particular one can see that normality according to Equation (4.6) (“version 1”)

behaves differently from normality according to Equation (4.6∗) (“version 2”), while

there is hardly any difference between conditions (4.6∗) and (4.12).
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Degrees of freedom and topology. When optimizing a normal congruence of a mesh

with v vertices, e edges and f faces, we count 3v variables for the normals and f + v

constraints. If a number b of boundary vertices is present, we fix the normals at the

boundary, resulting in 3(v− b) variables and f + (v− b) constraints, i.e., 2v− f − 2b

d.o.f. Elementary manipulations show that

d.o.f. = 2χ− b,

with χ = f+v−e as the Euler characteristic. We see for meshes of sphere topology we

can expect a unique solution, but topological features diminish the available degrees

of freedom. If boundary normals are kept fixed, long boundaries diminish this freedom

even more. By allowing vertices to move during optimization, we can achieve zero

residual again, but of course a compromise has to be found between the quality of

the normal congruence and the deviation of the mesh from its previous shape. Table

4.1 shows some numerical experiments.

sphere torus disk w/ holes, see Fig. 4.10
fixed vertices fixed vertices moving vertices fixed vertices moving vertices

c n c n c n c n c n
v.1 7.8·10−3 0 7.7·10 0 0 − − 1.5·10 0 0 − −

v.2 9.7·10−5 0 9.6·10−1 0 6.9·10−5 8.1·10−7 1.9·10−2 0 4.0·10−5 2.2·10−9

v.3 9.0·10−2 0 1.3·10−1 0 6.9·10−4 6.3·10−4 2.4·10−1 0 9.6·10−5 9.5·10−10

Table 4.1: Comparison of residuals regarding normalcy of the congruence (“c”) and
unit vectors being normalized (“n”) when optimizing congruences. All meshes are
normalized for unit average edge length, and a zero means a zero up to machine
precision. The rows in this table correspond to versions 1, 2, 3 of the normalcy
condition for congruences. One can see that zero residual happens only for sphere
topology.

Computing Curvatures. Once a normal congruence is availabe, we can compute cur-

vatures (see Figure 4.9) and we can integrate the field of principal curvature directions

as well as the field of asymptotic directions (see Figure 4.10 for an example). It must

be said, however, that we do not want to compete with the many other methods for
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computing curvatures, and we do not regard the ability to compute curvatures a main

result of this study.

Robustness by using normals. Figure 4.11 demonstrates that considering a mesh and

its normal congruence together allows us to handle optimization/smoothing in a stable

way. After a mesh and its normals have been perturbed (Figure 4.11b), an optimiza-

tion procedure attempts to restore both. We use a target functional composed of

a sum of least squares expressing condition (4.6∗) and also the property of vectors

ei having length 1 (weight 1), proximity to the input data (weight 1/4), Laplacian

fairing for the mesh (weight 10−6), Laplacian fairing for the normal vectors (weight

10−4) and comptabibility between normal and mesh by penalizing deviation from

orthogonality between congruence lines in mesh barycenters and face (weight 10−4).

Figure 4.11c shows the repaired mesh.

(a) (b) (c)

Figure 4.11: Computing normals and principal curvature lines for noisy data. Subfig-
ure (a) shows a triangulated cylinder and some of its principal curvature lines. In (b)
the jet fit method has been used to obtain principal curves for data where noise has
been added to both vertex coordinates and normals. Subfigure (c) shows the result of
optimization applied to (b), which results in a smooth mesh equpped with a normal
congruence. For (c) we again show the principal curvature lines computed by our
method.

4.4.2 Relevance for discrete differential geometry.

The idea of employing the Steiner formula for defining curvatures has proved very

helpful in bringing together various different notions of curvature, and indeed, vari-

ous different notions of discrete surfaces (like discrete minimal surfaces and discrete

cmc surfaces) which were defined in a way not involving curvature directly but by
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other means like Christoffel duality. We refer to [25] and [12] for more details. The

theory presented in [25] is restricted to offset-like pairs of polyhedral surfaces where

corresponding edges and faces are parallel. There are ongoing efforts to extend this

theory to more general situations (we point to recent work on quad meshes [85] and on

isothermic triangle meshes of constant mean curvature [86]). It is therefore remark-

able that at least for the situation described here, triangle meshes allow an approach

to curvatures and even a shape operator which is likewise guided by the Steiner for-

mula, but without the rather restrictive property of parallelity (which for triangle

meshes would be even more restrictive).

4.5 Applications to the shading systems

10:00 12:00 14:00

Figure 4.12: Selective Shading: Moving patterns generated by shading system opti-
mized for blocking light at 12:00 except at designated areas. Figure from [36].

The applications of the line congruences to the shading systems are first demon-

strated in [36]. Here we briefly review the one of the examples there. See Figure 4.12.

This architectural design is to give shade except for a designated area where shading

fins are to be parallel to incoming rays. Such design is based on the so-called torsion-

free support structures [21, 36], which is a special case of the double-layer support

structures [21]. The base mesh is realized as the inner-layer of the support structure

and the line congruences across the edges are realized as its fins. The shading effects

is obtained by adding additional constraints to the reflection of the light wave. Detail

of the process can be found in [36].
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Chapter 5

Asymptotic Cones of Embedded Singular Spaces

Some notation For details on the theory of smooth Riemannian submanifolds, the

reader may consult for instance, [87] or [88]. We use the following notation. Let W n

be an n-dimensional closed (oriented) smooth submanifold embedded in a smooth

N -dimensional (oriented) Riemannian manifold (MN , < ., . >). The manifold W n

inherits a Riemannian structure by pulling back < ., . > by the embedding, which

we still denote by < ., . >. We denote by TW n πWn−→ W n (resp. TMN
π
MN−→ MN) the

tangent bundle of W n (resp. MN) and Ξ(W n) (resp. Ξ(MN)) the space of tangent

vector fields over W n (resp. MN). We denote by ∇̃ (resp. ∇) the Levi-Civita

connection on (MN , < ., . >) (resp. W n). We denote by T⊥W n πWn−→ W n the normal

bundle of the submanifold W n. The second fundamental form of the submanifold W n

is the symmetric vector-valued (2, 0)-tensor

h : TW n × TW n → T⊥W n

defined as follows:

∀x ∈ TW n,∀y ∈ TW n, h(x, y) = ∇̃xy −∇xy.

Let m be a point of W n. The isotropic cone

CWn

m = {x ∈ TmW n : hm(x, x) = 0} (5.1)
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of hm is classically called the asymptotic cone of W n at m. For any ξm ∈ T⊥mW
n,

the eigenvalues of < hm(., .), ξm > are the principal curvatures of W n at m in the

direction ξm.

5.1 The case of smooth surfaces in E3

We first restrict our attention to smooth closed (oriented) surfaces W 2 embedded

in the (oriented) Euclidean space (E3, < ., . >) bounding a domain D. Let ξ be the

normal vector field compatible with these orientations. The second fundamental form

of W 2 can now be identified with the tensor < h(., .), ξ > taking its values in C∞(W 2).

We denote by λ1m , λ2m the principal curvatures of W 2 at the point m, that is, the

eigenvalues of hm, by G the Gauss curvature of W 2, that is, the determinant of h and

by H its mean curvature, that is, its trace (in an orthonormal frame). In a frame of

principal vectors (e1m , e2m) at m (that is, eigenvectors of hm) the matrix of hm is

λ1m 0

0 λ2m

 .

At each point m ∈ W 2 with negative Gauss curvature, the asymptotic cone CW 2

m

is the union of two lines. Integrating the corresponding vector fields gives rise to

foliations of W 2 by the so-called asymptotic curves. By definition, at each point, the

principal normal directions of these curves (considered as curves in E3) are tangent

to W 2.

Using measure theory, the goal of this chapter is to define and study analogous

cones associated with a (regular or) singular subspace of a Riemannian manifold MN ,

lying above any Borel subset of MN .

Let us begin by explaining how we define such cones over any Borel subset of E3

in the regular case; that is, when the subset is a (compact) domain bounded by a



67

smooth surface W 2. Let TW 2E3 be the tangent bundle of E3 restricted to W 2. If x is

any vector field on TW 2E3, we build a signed measure Φx
W 2 as follows: For any Borel

subset B of E3, we write

Φx
D(B) =

∫
B∩W 2

hm(prTmW 2x, prTmW 2x)dm, (5.2)

where prTmW 2 denotes the orthogonal projection on TmW
2 and dm is the Lebesgue

measure on E3. Let us now fix B and consider the map

x 7→ Φx
D(B), (5.3)

where x runs over the (huge) space of vector fields Ξ(E3)|W 2 . This map is quadratic

in x. If we force x to be a constant vector field, then we get a quadratic form (that we

still denote by Φ•D(B)) on E3. This quadratic form has generically three eigenvalues,

λ1(B), λ2(B), λ3(B), that we call the principal curvatures of B. The corresponding

eigenvectors are called the principal vectors of B, and the matrix of Φ•W 2(B) in this

frame is 
λ1(B) 0 0

0 λ2(B) 0

0 0 λ3(B)

 .

From this construction, we also introduce the isotropic cone associated with Φ•D(B):

Cpar,D
B = {x ∈ E3; Φx

D(B) = 0}, (5.4)

(the notation coming from the fact that we restrict our isotropic cone to constant

- that is, parallel - vector fields in E3). We call it the asymptotic cone of B (with

respect to D).

To clarify that this construction is linked with the classical pointwise situation,
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suppose that B is reduced to a point {m} ∈ W 2. If y is a constant vector field such

that ym ∈ TmW 2, then

Φy
D({m}) = hm(ym, ym). (5.5)

If z is a constant vector field such that zm = ξm, then

Φz
D({m}) = 0. (5.6)

This implies that in the frame (e1m , e2m , ξm), the matrix of Φ•D({m}) is


λ1m 0 0

0 λ2m 0

0 0 0

 . (5.7)

Consequently, the asymptotic cone Cpar,D
m is nothing but the cone spanned by the

normal ξm and CW 2

m .

This construction has some advantages:

One can define the asymptotic cones at different scales by scaling the Borel sets

(for instance, by taking balls of radius 1
k

as Borel subsets).

Generically, we get three geometric invariants, λ1(B), λ2(B), λ3(B), instead of two,

and a two-dimensional cone instead of the union of two lines.

Moreover, another important advantage of replacing functions by measures, is that

this framework can be used for a large class of singular spaces (for instance, polyhe-

dra, algebraic subsets, subanalytic subsets) of any codimension in any Riemannian

manifold, as long as we can extend the notion of normal space. For instance, if one

replaces the smooth surface by a polyhedron P bounding a domain D, we will get

the following explicit simple expression approximating the cone Cpar,D
B (see Equation

(5.36), and also Equation (5.34) for the exact formulas) :
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Φx
D(B) ∼

∑
e∈E

l(e ∩B)∠(e) < x, e− >2,

and

Cpar,D
B ∼ {x ∈ E3 :

∑
e∈E

l(e ∩B)∠(e) < x, e− >2= 0},

(see Section 5.3 for the notation). This is why the theory of the normal cycle, exten-

sively studied over the last decades [39, 40], will be our framework. In the following

we describe the construction of asymptotic cones in such a large context.

5.2 Asymptotic forms

To be self contained, we begin with a summary of the geometry of the tangent bundle

of an (oriented) N -dimensional smooth Riemannian manifold (MN , < ., . >). The

reader may consult [89, 90, 38] for details. We denote by TTMN
π
TMN→ TMN the

tangent bundle of the manifold TMN . As usual, we consider the exact sequence of

vector bundles:

0 −→ TMN ×MN TMN i−→ TTMN j−→ TMN ×MN TMN −→ 0, (5.8)

where i denotes the natural injection defined by

i(u1, u2) =
d

dt
(u1 + tu2)

∣∣∣
t=0

(5.9)

and

j = (πTMN , dπMN ). (5.10)
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The vertical bundle of M is the subbundle V (MN) = ker j of TTMN . The morphism

i induces an isomorphism:

i : TMN ×MN TMN → V (MN). (5.11)

If m ∈ MN and x ∈ TmM
N , the vertical lift of z ∈ TmM

N at x is the vector

zv = i(x, z). The morphism J = i ◦ j is an almost tangent structure on MN (J2 = 0)

and V (MN) = ker J . Let

δ : TMN −→ TMN ×MN TMN (5.12)

be the canonical vector field defined by δ(x) = (x, x) and let C : TMN −→ V (MN)

be the vertical vector field associated with the (global) one-parameter group of ho-

motheties with positive ratio, acting on the fibers of TMN . We have C = i ◦ δ.

We write η = pr2 ◦ i
−1

, where pr2 denotes the projection on the second factor of

TMN ×MN TMN . Since MN is endowed with a Riemannian metric < ·, · > and its

Levi-Civita connection, we can build the corresponding right splitting

γ : TMN ×MN TMN −→ TTMN (5.13)

of the exact sequence (5.8), (satisfying j ◦ γ = IdTMN×
MN TMN ). Let m ∈ MN and

x ∈ TmM
N . The horizontal lift of z ∈ TmM

N at x is the vector zh = γ(x, z).

We denote Hx(M
N) = Im(γ(x, ·)), from which we construct the horizontal bundle

H(MN) such that, for all x ∈ TmMN

TxTM
N = Vx(M

N)⊕Hx(M
N). (5.14)
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We denote by V(MN) (resp. H(MN)) the space of vertical (resp. horizontal) vector

fields. We denote by h : TTMN −→ H(MN) the horizontal projection, and by

v : TTMN −→ V (MN) the vertical projection. We remark that h = γ ◦ j. The

morphism

K = η ◦ v : TTMN → TMN

is the connector associated with the Levi-Civita connection. At every point x ∈

TmM
N , the morphism

(dπM ×K)x : TxTM → TmM
N × TmMN

is an isomorphism that identifies Vx(M
N) with TmM

N and Hx(M
N) with TmM

N . The

bundle TTMN
π
TMN−→ TMN is canonically endowed with the Sasaki metric < ·, · >

defined by the following conditions:


V (MN) and H(MN) are orthogonal,

i is an isometry,

γ is an isometry.

(5.15)

If

α : MN →MN ×MN

is the diagonal map defined by α(m) = (m,m), then for every x ∈ TMN ,

(dπM ×K)−1 ◦ dα(x) = xv ⊕ xh.
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Finally, the bundle TTMN
π
TMN−→ TMN is also endowed with an almost complex

structure F (F 2 = −Id), defined by the following conditions


FJ = h

Fh = −J.
(5.16)

Therefore F |V : V (MN) −→ H(MN) and F |H : H(MN) −→ V (MN) are isometries.

In this Riemannian context, we give the following definition:

Definition 5.1

1. The vector valued (N − 1)-form on TMN defined for each X ∈ H(MN) by

hX = [∗Hodge(FC ∧X)] ∧ FX (5.17)

is called the asymptotic (N − 1)-form on TMN .

2. The vector valued (N − 1)-form on MN defined for each x ∈ Ξ(MN) by

hx = [∗Hodge(FC ∧ xh)] ∧ xv (5.18)

is called the asymptotic (N − 1)-form on MN .

In this definition, ∗Hodge denotes the Hodge duality on Hx(M
N) for each x ∈ TMN .

(The introduction of the Hodge operator in the definition of the generalized second

fundamental form can be found in [91] when the ambient space is Euclidean. We

adapt it here to the general Riemannian situation. It is equivalent to the initial

definition given in [38]). Using the identification of vector fields and 1-forms induced

by the Riemannian structure, ∗Hodge(FC ∧X) is a (N − 2)-form on H(MN). On the

other hand, FX is (identified with) a 1-form, null on H(MN) and acting on V (MN),

and ∗Hodge(FC ∧X) is (identified with) an (N − 2)-form null on V (MN) and acting

on H(MN).



73

5.3 Normal cycles, asymptotic measures, asymptotic cones

5.3.1 Currents and normal cycles of singular spaces

LetDl(TMN) be the space of l-currents of TMN (0 ≤ l ≤ 2N); that is, the topological

dual of the space Dl(TMN) of l-differential forms with compact support on TMN ,

endowed with the topology of uniform convergence on any compact subset, of all

partial derivatives of any order. The duality bracket will be still denoted by < ·, · >

if no confusion is possible. The space Dl(TMN) is naturally endowed with the weak

topology: if (Ck)k∈N is a sequence of l-currents of TMN and if C is a l-current of

TMN , then

lim
k→∞

Ck = C ⇐⇒ ∀ω ∈ Dl(TMN), lim
k→∞

< Ck, ω >=< C, ω > . (5.19)

An l-current is rectifiable if it is associated with a rectifiable subset (see [23] for

details). An l-current is integral if it is rectifiable and its boundary is rectifiable.

When it exists, the normal cycle of a (compact singular) subsetW of a Riemannian

manifold MN is a closed integral current N(W) ∈ DN−1(TMN), which is Legendrian

for the symplectic structure on TMN dual to the canonical one on T ∗MN in the

duality defined by the metric. The normal cycle is the direct generalization of the

unit normal bundle of a smooth submanifold. Its formal definition was given in [39].

Although the normal cycle cannot be defined on any compact subset of MN , it exists

for a large class of subsets, as convex subsets, polyhedra, subsets of positive reach,

subanalytic subsets for instance. Following [39], any compact subset G of MN such

that N(G) exists is said to be geometric, and N(G) is called its normal cycle. One of

the main properties of the normal cycle for our purpose is its additivity [39]:

Proposition 5.1 If G1 and G2 are geometric, then G1 ∪ G2 and G1 ∩ G2 are geometric
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and

N(G1 ∪ G2) = N(G1) + N(G2)−N(G1 ∩ G2). (5.20)

Here are some classical examples:

1. The normal cycle of a smooth submanifold of a Riemannian manifold is the

closed current associated with its unit normal bundle.

2. If D is a compact domain whose boundary is a smooth hypersurface, then its

normal cycle is the closed current associated with its outward unit normal vector

field.

3. If C is a convex body, then its normal cycle is the closed current associated

with the oriented set

{(m, ξ) : m ∈ ∂C, ξ ∈ E3, ||ξ|| = 1,∀z ∈ C,< ξ,−→mz >≤ 0}.

4. The normal cycle of a polyhedron of EN can be computed by applying Equation

(5.20) to a decomposition of the polyhedron into (convex) simplices and using

3.

5.3.2 Asymptotic measures, asymptotic cones

Let us now define an asymptotic (signed) Radon measure on MN (resp. TMN) asso-

ciated with a geometric subset. We denote by BMN (resp. BTMN ) the class of Borel

subsets of MN (resp. TMN) with compact closure.

Definition 5.2 Let G be a geometric subset of MN .

1. The asymptotic measure defined on TMN , associated with G and X ∈ H(M)

is the map

ΦX
G : BTMN −→ R (5.21)
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defined as follows:

∀B ∈ BTMN ,ΦX
G (B) =< N(G), χBhX > . (5.22)

2. The asymptotic measure defined on MN , associated with G and x ∈ Ξ(MN) is

the map Φx
G defined as follows:

∀B ∈ BMN ,Φx
G(B) =< N(G), χπ−1

M (B)h
x > . (5.23)

If G and B are fixed, the map

x→< N(G), χπ−1
M (B)h

x >

is quadratic, inducing its isotropic cone. This remark leads to the following definition:

Definition 5.3 Let G be a geometric subset of MN . With any Borel subset B ∈ BMN ,

we associate the cone

CGB = {x ∈ Ξ(MN) : Φx
G(B) = 0} (5.24)

and the cone

Cpar,G
B = {x ∈ Ξ(MN) : x parallel,Φx

G(B) = 0}, (5.25)

which we call the asymptotic cones associated with B.

In many applications, and for simplicity, it is easier to consider the cone of parallel

vector fields, identifying a parallel vector field with its value at any point m ∈ B.

Obviously, Cpar,G
B ⊂ CGB. We remark, however, that this new definition can be quite

restrictive depending on the geometry of MN . For instance, if MN has non-zero

constant sectional curvature, the only parallel vector field is the null vector field. In

contrast, if MN = EN , the space of parallel vector fields is the space of constant

vector fields, which can be identified with EN , which is much easier to manipulate.
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We deduce easily from (5.23) explicit expressions of these curvature measures in some

particular cases.

The case of smooth submanifolds. Let W n be a (compact smooth) submanifold (with

or without a boundary) embedded in MN and X ∈ H(TMN). Since the normal

cycle of a smooth submanifold is its unit normal bundle, we deduce from [38] or [23]

(Corollary 16 page 215) that for any B ∈ BTMN ,

ΦX
Wn(B) =

∫
ST⊥Wn∩B

hξ(prTWndπM(X), prTWndπM(X))dξdv, (5.26)

where hξ denotes the second fundamental form of W n in the direction of the unit

vector ξ, ST⊥W n denotes the unit normal bundle of W n and prTWn denotes the

orthogonal projection onto the tangent bundle TW n. In particular, let WN−1 be a

(smooth oriented) hypersurface of MN bounding a domain D. (This assumption is not

restrictive in our case, since our results are local. It allows to simplify some technical

points by considering “only one side” of the normal cycles (the one corresponding to

the outward unit normals). we have, for any B in BMN ,

ΦX
D(B) =

∫
WN−1∩B

h(prTWN−1dπM(X), prTWN−1dπM(X))dv, (5.27)

where ξ is the outward (with respect to D) unit normal vector field of WN−1, and h

is the second fundamental form of WN−1 in the direction ξ. We have then a correct

generalization of Equation (5.2). Consequently,

• If B is reduced to a point m,

CWn

m = {x ∈ TmMN : hm(prTWnx, prTWnx) = 0}. (5.28)

We deduce that CWn

m is the cone spanned by CWn

m and T⊥mW
n; that is, we have

the direct generalization of the corresponding cone defined for surfaces in E3 in
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Section 5.1.

• If WN−1 is a (smooth-oriented) hypersurface of EN bounding a domain D, then

CDB = {x ∈ TMN :

∫
WN−1∩B

h(prTWN−1x, prTWN−1x)dv = 0}, (5.29)

and

Cpar,D
B = {x ∈ EN :

∫
WN−1∩B

h(prTWN−1x, prTWN−1x)dv = 0}. (5.30)

The case of polyhedra. We will extend Equations (5.29) and (5.30) to polyhedra. Let

D be a domain in EN bounded by a (N − 1)-dimensional polyhedron PN−1. For

X ∈ H(PN), we can evaluate ΦX
D above each simplex. In particular, if σN−2 is a

(N − 2)-simplex, the support of N(D)|σN−2 is the product σN−2 × Cσ, where C is a

portion of circle. Let (e1, ..., eN−2) be an orthonormal frame field tangent to σN−2.

Any point of σN−2 × Cσ is a couple (m, eN−1), where m is a point of σN−2 and eN−1

is a unit vector orthogonal to σN−2. With these notations, we deduce from [38] or

[23] (Theorem 72 page 216) that for any B ∈ BMN ,

ΦX
D (B) =

∑
σN−2⊂∂PN

∫
(σN−2∩B)×C

< X, eh(N−1) >
2 . (5.31)

We also deduce that for any B ∈ BEN ,

Cpar,D
B = {x ∈ EN :

∫
(σN−2∩B)×C

< xh, eh(N−1) >
2= 0}. (5.32)

In particular, if D is a domain of E3 bounded by a polyhedron P 2, Equation (5.32)

can be reduced to an explicit simple expression: First of all, we identify the (vector)

plane e⊥ orthogonal to any (oriented) edge e of P with C, as follows : Let n1 ∈ e⊥

(resp. n2 ∈ e⊥) be the unit (oriented) normal to the faces f1, (resp. f2) incident to e.
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Let e+ (resp. e−) be the (oriented) normalized vectors spanning the bisectors of n1

and n2 (so that (e+, e−, e) is a direct frame of E3). Any vector ae+ + be− of e⊥ is now

identified with the complex number a+ ib. An explicit integration over each term of

type (σ1∩B)×C in Equation (5.32) gives the following expression of the asymptotic

measure and asymptotic cone:

Proposition 5.2

1. For any B ∈ BE3 and any constant vector field x of E3,

Φx
D(B) =

∑
e∈E

l(e ∩B)

2

[
(∠(e)||pre⊥x||2 − sin(∠(e))R

(
(pre⊥x)2

)]
, (5.33)

where E denotes the set of edges of P 2, ∠(e) the angle of the normal to the

faces incident to e (being positive if and only if e is convex), pre⊥ the orthogonal

projection on e⊥, and R(pre⊥x)2 the real part of the complex number (pre⊥x)2.

2. In particular,

Cpar,D
B = {x ∈ E3 :

∑
e∈E

l(e ∩B)

2

[
(∠(e)||pre⊥x||2− sin(∠(e))R

(
(pre⊥x)2

]
= 0}. (5.34)

We remark that if the ∠(e)’s are “small enough” (this can happen for instance

when P approximates “smoothly” a smooth surface), then sin(∠(e)) is “close to” ∠(e)

and

Φx
D(B) ∼

∑
e∈E

l(e ∩B)∠(e) < x, e− >2 . (5.35)

And then,

Cpar,D
B ∼ {x ∈ E3 :

∑
e∈E

l(e ∩B)∠(e) < x, e− >2= 0}. (5.36)

After choosing a scale r, we construct from the previous construction, a cone

subbundle of TMN associated with a geometric subset of MN . Let us denote by

B(m, r) the ball of radius r, centered at m ∈ MN . With each point m ∈ MN , and



79

for a fixed (small enough) real number r > 0, we associate the cone Cpar,G
B(m,r).

Definition 5.4 We call ∪
m∈ENCpar,G

B(m,r) the cone subbundle of TEN at scale r associated

with G.

(a) (b) (c)

Figure 5.1: Some asymptotic cones built on a smooth surface (here on a portion
of a catenoid) (a) An asymptotic cone in green whose vertex is at the center of its
corresponding Borel set (a transparent ball) (b) The center of the ball may be out
of the surface (c) When the Borel set is reduced to a single point on the surface, the
asymptotic cone degenerates to the union of two planes

(a) (b)

Figure 5.2: (a) Asymptotic cones built on a non-smooth surface, here a triangulation:
the top of the Lilium tower (designed by architect Zaha Hadid) in Warsaw, Poland.
(b) Asymptotic cones built on a non smooth-surface. Here another triangulation: the
Heydar Aliyev Center (designed by architect Zaha Hadid) in Baku, Azerbaijan

We remark that the dimension of each fiber may change with m. This bundle is

defined over the whole MN , even at the points m which are “far” from G. If B(m, r)

does not intersect the support of G, then Cpar,G
B(m,r) = TmM

N . This phenomenon is

visualized in Fig. 5.1 where the cone in Fig. 5.1(a) has its vertex (the black point)

on the catenoid, and the cone in Fig. 5.1(b) has its vertex out of the catenoid. More
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examples of asympotic cones are shown in Fig. 5.2.

5.4 Convergence and approximation results

In the previous paragraphs, we gave our first justification of the denomination of

asymptotic cones. For surfaces W 2 in E3, this cone reduces at each point m of W 2 to

(the product of the normal line by) the standard asymptotic directions of W 2 at m.

We give now a second justification in terms of the convergence of sequences of poly-

hedra of EN . For simplicity, we restrict our study to (oriented) smooth hypersurfaces

or polyhedra of EN bounding a (compact) domain. We will show, in particular, that,

if a sequence of domains Dk whose boundaries are polyhedra PN−1
k , converges to a

domain D whose boundary is a smooth hypersurface WN−1 (in a sense that will be

clarified later), then for a large class of Borel subsets B, the sequence of asymptotic

cones CDk
B (resp. Cpar,Dk

B ) converges to CDB (resp. Cpar,D
B ). We will use the following

terminology [23]:

• The fatness Θ(PN−1) of a polyhedron PN−1 is defined as follows: If σ is an

l-simplex, we begin to define the size ε(σ) of σ: It is the maximum over all

edges e of σ of the length of e. Then, the fatness of σ is the real number

Θ(σ) = min
µ l-simplex in σ

min
j∈{1,...,l}

volj(µ)

ε(σ)j
.

Finally, the fatness of P is the minimum of the fatness of its simplices. We

denote by Fθ the class of polyhedra in EN with fatness greater or equal to θ.

• An (N −1) dimensional polyhedron PN−1 in EN is closely inscribed in a smooth

hypersurface WN−1 if its vertices belong to WN−1 and if the orthogonal projec-

tion of PN−1 onto WN−1 is a bijection.

• Let PN−1 be an (N−1) dimensional polyhedron (bounding a domain D) closely
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inscribed in a smooth hypersurface WN−1 in EN . The angular deviation αm

between m ∈ PN−1 and prWN−1(m) is the maximal angle between the normal

ξpr
WN−1(m)

of WN−1 and (m,nm), where (m,nm) belongs to the support of N(D).

If B is any Borel subset of EN , we write

αB = sup
m∈B

αm.

One of the classical observations is that a “good” fatness of a polyhedron and a

“small” Hausdorff distance of this polyhedron to a smooth hypersurface in which it

is closely inscribed imply that the angular deviation is “small”.

5.4.1 A convergence result

Let us state now our convergence theorem. For any cone C, we denote by UC the

basis of C; that is, UC = C ∩ SN−1(0, 1), where SN−1(0, 1) is the unit sphere centered

at the origin. We also use the distance d̃ defined on the class of subsets of EN by

d̃(A,B) = inf
x∈A,y∈B

d(x, y). (5.37)

Theorem 5.1 Let D be a (compact) domain of EN bounded by a smooth hypersurface

WN−1. Let (Dk) be a sequence of domains of EN bounded by polyhedra (PN−1
k ) closely

inscribed in WN−1 such that:

1. The limit of (PN−1
k ) is WN−1 for the Hausdorff distance.

2. The fatness of (PN−1
k ) is uniformly bounded from below by a non-negative

constant: there exists θ > 0 such that for all k ∈ N, PN−1
k ∈ Fθ.

Let B ∈ BEN , such that for all x ∈ EN , |Φx
D|(∂B) = 0. Then, every sequence

(xk ∈ CDk
B ) of unit vectors admits a subsequence (still denoted by (xk ∈ CDk

B )) that



82

converges to a unit vector of CDB . In particular,

lim
k→∞

d̃(UCpar,Dk

B ,UCpar,D
B ) = 0. (5.38)

In the smooth case, the assumption on the boundary of B can be translated in

terms of the second fundamental form of WN−1. We say that the normal curvature

at a point p of a submanifold V of WN−1 is null if the second fundamental form hp

of WN−1 satisfies hp(u, u) = 0 for every u tangent to V at p. We get:

Corollary 5.1 Under assumptions 1 and 2 of Theorem 5.1, suppose that B is a Borel

set such that WN−1 ∩ ∂B is smooth and with null normal curvature. Then, the

conclusion of Theorem 5.1 holds.

To prove this corollary, we simply remark that under these assumptions,

Φx
D(∂B) =

∫
WN−1∩∂B

h(prTWN−1x, prTWN−1x) = 0. (5.39)

The rest of this section focuses on the proof of Theorem 5.1.

Convergence of sequences of normal cycles. We need to introduce the flat norm on

Dl(EN) as follows. The mass of an l-current T is the real number

M(T ) = sup{T (ω)}, (5.40)

where the supremum is taken over all l-differential forms with compact support such

that sup
m∈EN |ωm| ≤ 1. The flat norm of an l-current T is the real number

F(T ) = inf{M(A) + M(B)}, (5.41)

where the infimum is taken over all rectifiable l-currents A and (l+1)-currents B such

that T = A+∂B. Our main ingredient in our study of convergence and approximation
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of the asymptotic cones is the following result, which is a simple reformulation of

Theorem 67 of [23] (page 200) for polyhedra:

Theorem 5.2 If PN−1 is a closed (N −1) dimensional polyhedron bounding a domain

D and closely inscribed in a smooth closed hypersurface WN−1 of EN bounding a

domain D, then for any Borel subset B of PN−1,

F
(
N(D)|TBEN −N(D)|Tpr

WN−1BEN

)
≤K(δB + αB)M(N(D)|TBEN ),

(5.42)

where δB is the Hausdorff distance between B and prWN−1(B) and K is a constant

depending on the norm of the second fundamental form of WN−1.

The following proposition can be deduced from Theorem 5.2 in a slightly different

version, see also [65].

Proposition 5.3 Under the assumptions 1 and 2 of Theorem 5.1,

1. The masses M(
(
N(Dk))

)
are uniformly bounded from above;

2. The sequence (N(Dk)) converges to N(D) for the flat norm.

Convergence of sequences of asymptotic measures. Our framework is the space of (signed)

Radon measures on EN with finite total variation, endowed with the norm ||.||1 defined

for every µ (with finite total variation |µ|) by

||µ||1 =

∫
EN

d|µ|.

It is well known that this space is the (topological) dual to the space Cc(EN) of

continuous functions with compact support on EN , endowed with the norm ||.|| defined

by

||f || = sup
x∈EN

|f(x)|.
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The space of (signed) Radon measures (with finite total variation) can also be endowed

with the topology of weak convergence of measures: a sequence of Radon measures

(µk) on EN (weakly) converges to µ if, for every continuous function f with compact

support on EN (resp. TEN), µk(f) converges to µ(f).

Proposition 5.4 Under the assumptions 1 and 2 of Theorem 5.1,

1. For each vector x ∈ EN , the sequence of measures (Φx
Dk

) converges to Φx
D for

the weak convergence of measures on EN ;

2. For each unit vector x ∈ EN , the sequence of measures (Φx
Dk

) is ||.||1-bounded.

Proof. Item 1 is a direct consequence of Proposition 5.3, since the flat convergence of

the sequence of normal cycles (N(Dk)) implies the weak convergence of the measures

(Φx
Dk

). Item 2 is an application of the Theorem of Banach-Steinhaus: Since (Φx
Dk

)

converges to Φx
D for the weak convergence of measures on EN , for each f ∈ Cc(EN),

supk | < Φx
Dk
, f >< +∞. The Theorem of Banach-Steinhaus then implies that

||Φx
Dk
||1 is uniformly bounded with respect to k; that is, the sequence of measures

(|Φx
Dk
|) is ||.||1-bounded.

Let us now explain our assumption on the boundary of the Borel subset B in

Theorem 5.1. In general, the weak convergence of the sequence (Φx
Dk

) does not imply

the convergence of (Φx
Dk

(B)) to (Φx
D(B)) for every Borel subset. Indeed, generically,

characteristic functions are not continuous. That is why we restrict our study to a

class of Borel subsets with suitable boundaries with respect to D, such that we can

use the following general lemma (see [92] Chapter 4 for instance):

Lemma 5.1 Let (µk) be a sequence of (signed) Radon measures on EN such that

1. (µk) converges to µ for the weak topology,

2. the sequence (|µk|) of total variation of (µk) converges to a Radon measure ν,

for the weak topology.



85

If the boundary ∂B of B ∈ BEN satisfies ν(∂B) = 0, then

lim
k→∞

µk(B) = µ(B). (5.43)

Since the sequence (|Φx
Dk
|) is ||.||1-bounded, we can extract a subsequence that

converges. From Proposition 5.3 and Lemma 5.1, we deduce:

Proposition 5.5 Under assumptions 1 and 2 of Theorem 5.1, if x ∈ Ξ(EN) and

B ∈ BEN satisfy |Φx
D|(∂B) = 0, then

lim
k→∞

Φx
Dk

(B) = Φx
D(B). (5.44)

The last step of the proof of Theorem 5.1 is to relate the behavior of the sequence

(Φx
Dk

) for any x to the behavior of their associated quadratic cones. For a fixed

B ∈ BEN , we will study the quadratic forms x→ Φx
Dk

(B) and x→ Φx
D(B) introduced

in Section 5.3.2. We use the norm of uniform convergence on the space of quadratic

forms: A sequence of quadratic forms (qk) defined on EN converges to a quadratic

form q if sup||x||=1 |qk(x)− q(x)| tends to 0 when k tends to infinity.

Lemma 5.2 Let (qk) be a sequence of quadratic forms defined on EN , which converges

to a quadratic form q. Let (xk) be a sequence of unit vectors in EN , such that for each

k ∈ N, xk belongs to the isotropic cone Ck of qk (i.e. qk(xk) = 0). Then there exists a

subsequence of (xk) that converges to a unit vector x belonging to the isotropic cone

C of q.

Proof. We have

lim
k→∞

sup
||z||=1

|q(z)− qk(z)| = 0. (5.45)

Suppose that (xk) is a sequence of unit vectors such that for all k, xk ∈ Ck. Then, by

the compacity of the unit sphere, there exists a subsequence (that we still denote by
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(xk)), that converges to a unit vector x. From Equation (5.45), we deduce

lim
k→∞
|q(xk)− qk(xk)| = lim

k→∞
|q(xk)| = |q(x)| = 0, (5.46)

which means that x ∈ C.

We remark that under the assumption of Lemma 5.2, we cannot claim that the

sequence of Hausdorff distances between UCk and UC tends to 0 when k tends to

infinity, as shown in the following example. Consider the quadratic forms in E3

defined for every k ∈ N∗ by

qk(u, v, w) =
1

k
(u2 + v2 + w2). (5.47)

We have for every k ∈ N∗Ck = {0}, C = EN , UCk = ∅ and UC = SN−1(0, 1).

The proof of Theorem 5.1 follows from Proposition 5.3, Lemma 5.1, Proposition

5.5 and Lemma 5.2.

5.4.2 An approximation result

In this section, for simplicity, we restrict our study to surfaces in E3. We assume that

W 2 (bounding D) and P (bounding D) are fixed, with P being closely inscribed in

W 2. We suppose (without any restriction) that P is endowed with a triangulation,

denoting by t a generic triangle, and by r(t) its circum-radius. The following theorem

compares the asymptotic cone of D over a Borel set B composed of a union of triangles

of P and the asymptotic cone of D over the orthogonal projection prW 2(B) of B on

W 2. If C is the isotropic cone of a quadratic form q, we denote by Aε(UC) the set of

unit vectors x ε-close to C; that is, |q(x)| ≤ ε.

Theorem 5.3 Let D be a domain of E3 bounded by a smooth hypersurface W 2. Let

D be a domain of E3 bounded by a polyhedron P ∈ Fθ, θ > 0 closely inscribed in
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W 2. For any ε > 0, there exists η > 0 such that if max{r(t), t ∈ B} ≤ η, then

UCpar,D ⊂ Aε(UCpar,D
prW2 (B)). (5.48)

In other words, roughly speaking, under the assumptions of Theorem 5.3, the

asymptotic cones of D are close to the asymptotic cones of D. The proof uses the

results of Section 5-2 of [38]. We summarize them in the following proposition.

Proposition 5.6 Under the assumptions of Theorem 5.3, for every unit vector x,

|Φx
D(B)− Φx

D(prW 2(B))| = K max{r(t), t ∈ B}, (5.49)

where K is a constant depending on the area of B, the length of its boundary, the

geometry of W 2, and θ.

If x is a unit vector belonging to UCpar,D
B , then Equation (5.49) implies that

|Φx
D(B)| = K max{r(t), t ∈ B}. (5.50)

Consequently, if the triangles of P have a sufficiently small circumradius, then

|Φx
D(prW 2(B))| ≤ ε. (5.51)

The conclusion follows.

5.5 Some basic experiments

5.5.1 Construction of asymptotic directions of a triangulation

To mimic the smooth situation, it may be interesting to deduce asymptotic directions

and asymptotic lines from the asymptotic cones defined on a singular surface. This

construction may be achieved if one has a natural plane field on this surface. This is
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the case for triangulated surfaces, where each triangle spans a plane. Then, to build

asymptotic directions at a point of a triangulated surface P 2, associated to a Borel

set B, one can proceed as follows (see Fig. 5.3 and 5.4):

1. Consider a point m on P 2 (bounding D) and build a Borel set B around m; for

instance, a ball centered at m with a suitable radius.

2. Build the asymptotic cone Cpar,D
B whose vertex is m, associated with B.

3. Build the intersection of Cpar,D
B with the plane spanned by the face of the triangle

that contains m. The result is two directions, called the asymptotic directions

of P 2 at m.

4. When m runs over the surface, build a cross field (reduced to a point when the

cone is reduced to a point). By integrating the cross field, we have asymptotic

lines.

(a) (b)

Figure 5.3: (a) At each point where the asymptotic cone is not reduced to {0}, we
build two asymptotic directions on the top of the Lilium tower. (b) By integration
we have asymptotic lines.
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(a) (b)

Figure 5.4: (a) The cross field of asymptotic directions on the Heydar Aliyev Center
in Baku. (b) The asymptotic lines obtained by integrating the asymptotic directions

5.5.2 Approximation of the asymptotic lines of a smooth surface

Using the construction of asymptotic cones, we can approximate the asymptotic di-

rections (resp. lines) of a smooth surface W 2 in E3. We give an explicit example

here.

(a) (b) (c) (d)

Figure 5.5: (a) Step 1: A green asymptotic cone built at a point m of a triangu-
lated surface approximating a (smooth) catenoid. (b) Step 2: The blue plane is an
approximation of the tangent plane of the (smooth) catenoid at m. (c) Step 3: The
intersection of the green asymptotic cone and the blue plane gives two lines intersect-
ing at m. (d) Step 4: When m runs over the triangulation, we obtain a cross field
that approximates the field of asymptotic directions of the (smooth) catenoid.

First of all, let us consider a portion of a (smooth) catenoid W 2, and a triangula-

tion P 2 closely inscribed in W 2, with a sufficiently dense set of vertices. As shown in

Fig. 5.5, the intersection of the tangent plane of W 2 at a point m with the asymptotic

cone of a ball centered at m is reduced to two lines that are a discrete approximation

of the asymptotic directions of W 2 at m. If necessary, we can approximate the tan-
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gent plane itself by the plane spanned by a face of the triangulation. By integrating

the directions field, we obtain discrete asymptotic lines, as shown in Fig. 5.6. The

reader can compare the asymptotic lines directly built on the smooth catenoid (these

lines are orthogonal since the catenoid is a minimal surface) with the “discrete ones”

obtained by this procedure.

5.5.3 Comparison of asymptotic lines

We remark that the previous example gives (roughly speaking) “very good” results

because the triangulated polyhedron approximating the catenoid suits it correctly,

in the sense that the “good” fatness of the triangles implies that the normal of any

triangle t is close to the normals of the orthogonal projection of t on the catenoid. To

be more precise, we can estimate the error er as follows: Let W 2 be a smooth surface

approximated by a triangulated polyhedron P 2 closely inscribed on it. Let m be a

vertex of P 2, and let us denote by e1 and e2 the asymptotic directions of W 2 at m,

and by ε1, ε2 the approximated asymptotic directions at m. We define

erm = inf
(1

2
(∠(e1, ε1) + ∠(e2, ε2)),

1

2
(∠(e1, ε2) + ∠(e2, ε1))

)
, (5.52)

where all the angles belong to (0, π
2
).

For instance, let us consider the portion of the Enneper surface shown in Fig. 5.7,

and a triangulated polyhedron closely inscribed on it. The error er is always less than

or equal to 2.5 degrees.

In the following example, we show that, in accordance with the theory, the error

may be large even with a very thin triangulation closely inscribed in a smooth surface,

if the angle between the tangent plane at a point and the corresponding triangle is

too large (the same phenomenon appears when one compares the area of a cylinder

with the area of a Lantern of Schwarz inscribed on it, see [23] for instance). Here,

we consider a (smooth) surface W 2 in R3 obtained as the graph of a tensor product
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(a) (b)

Figure 5.6: (a) Integrating the cross field gives an approximation of the asymptotic
lines of the catenoid. (b) The cross field is an approximation of the field of asymptotic
directions on the (smooth) catenoid. They can be compared with the blue lines, which
are the asymptotic lines directly computed on the (smooth) catenoid.

B-spline function

f : G = [0, 1]× [0, 1]→ R,

of degree 3 in each variable, defined by 5 × 5 control points over a regular grid of

80 × 80 points. Each square of G is triangulated by taking both diagonals. We

build the corresponding (piecewise linear) triangulation P 2 inscribed on W 2. Then,

we compare, at each vertex m of the triangulation, the normal of W 2 at m and

the average of the normals of the triangles incident to m. The error varies between

0 and 0.5 degree (see Fig. 5.8(b)). On the other hand, we compute on the same

triangulation the asymptotic directions of W 2 and the asymptotic cones of P 2, from

which we deduce discrete asymptotic directions by intersecting the cones with the

tangent planes as before. Then, we compare at each point m the error erm given in

Fig. 5.8(a). The error at each vertex m varies between 0 and 5 degrees, according to

the behavior of the normal of the faces incident to m with respect to the normal of

W 2 at m.
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0

2.5

(a) (b)

Figure 5.7: (a) Comparison of discrete and smooth asymptotic lines on the Enneper
surface. This result shows that the difference between the approximated directions
and theoretic ones are small when the triangulation is closely inscribed on its approx-
imating smooth surface. (b) Some asymptotic lines computed on the polyhedron.

0

0.5

0

0.5

(a) 0

5.0

(b) (c)

Figure 5.8: (a) Comparison of the normals computed on a B-spline surface and
an approximating triangulation. (b) Comparison of the asymptotic directions by
computing erm at each vertex m (the black points are convex points, where the
asymptotic cone is reduced to {0}. (c) Some asymptotic lines computed on the
triangulation. Comparison with other existing methods of computing curvature lines
is shown in Figure 4.10 in the previous chapter.

5.5.4 Deformation of asymptotic lines of discrete surfaces

In the following example (Fig. 5.9), we produce a deformation of “discrete” asymp-

totic lines as follows: We build a triangulation closely inscribed on a smooth surface

W 2 (here a Chen’s surface). We then compute asymptotic lines by the previous pro-

cess using balls of radius R = 3 (the normalization is such that the average length of

the edges is 1). Then, we slightly modify the position of the vertices that can now

be out of W 2 (in other words, we create noisy data), without modifying the topology

of the triangulation. With this new triangulation, we compute new asymptotic lines
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using the same process and using balls of the same radius (R = 3) or a different radius

(R = 6).

(a) (b) (c)

Figure 5.9: By perturbing the positions of the vertices of the approximated Chen’s
surface, we get noisy data and corresponding noisy discrete asymptotic lines. (a) The
initial triangulation with asymptotic lines (R = 3). (b) Asymptotic lines with noisy
data and R = 3. (c) Asymptotic lines with noisy data and R = 6. With larger size
of the Borel subset, we can get more smooth asymptotic lines.

5.6 Application to face recognition

In this section we show how asymptotic cones are used as feature descriptors in face

recognition.

5.6.1 Overview of the recognition process

The proposed asymptotic cones based 3D face recognition (FR) method here could

be separated into the following parts (shown in Fig.5.10): face preprocessing, face

alignment, curvatures extracted with help of asymptotic cones, creating three auxil-

iary 2D images called curvature component faces, extracting LNP (local normal pat-

tern [73])-based facial descriptors from the curvature faces, W-SRC (weighted sparse

representation-based classifier [93, 73]) matching and fusion. As a result we test the

FR on FRGC v2.0 data base [69] with different fusions [94, 95] of the descriptors.

Details can be found in [96]. Here we focus on the role that asymptotic cones play in

this recognition process.
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Figure 5.10: Flow of the recongition process.

5.6.2 Asymptotic cones as feature descriptors

The estimated principal curvatures has been extensively used as feature descriptors

[97, 72, 74]. With the notion of asymptotic cone, we aim to use this new notion of

curvature as feature descriptors, replacing the estimated principal curvatures. For

the convenience in the computation (which is important in practice), we adapted a

rotated asymptotic cone defined in [84]. It follows the equation:

∑
e∈E

l(e ∩B)∠(e) < x, e >2= 0, (5.53)

where the notations are defined as Equation (5.33). The selected cones over the faces

are shown in Fig. 5.11. The left-hand-side of Equation (5.53) is quadratic in x and its

matrix H is
∑

e∈E l(e∩B)∠(e) e ·eT . The matrix H is exactly the discrete anisotropic

curvature measure defined in [37]. Two of the three eigenvalues of H are estimated

as principal curvatures [37, 98].

Our new descriptor is represented by all three eigenvalues λ1, λ2 and λ3 of H. In

the context of FR, we use the fusion of the three, formally λ1 + λ2 + λ3, to represent

this descriptor.
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Figure 5.11: Asymptotic cones found around feature points [72](cones are colored in
green and feature points are colored in red dots). Face data from FRGC v2.0 [69].

5.6.3 Experiment results

We test the discriminative power of each eigenvalue based LNP descriptor in each

scale and their combinations as displayed in Table 5.1. The rank-1 recognition rate

which uses the asymptotic cone (the fusion λ1 +λ2 +λ3) as descriptors is higher than

the one which uses the estimated principal curvatures (the fusion λ1 + λ2) at all the

different scales.

Scale of Borel Radius 3 Radius 5 Radius 7 Scale related
subset (%) (%) (%) Fusion (%)
λ1 85.82 85.87 85.70 90.30
λ2 85.87 85.48 85.33 89.99
λ3 83.06 85.39 84.46 89.70

λ1 + λ2 89.42 89.56 88.79 92.23
λ1 + λ2 + λ3 90.72 90.72 90.50 93.16

Table 5.1: Rank-1 identification rate of each eigenvalue related descriptor and the
fusion under balls (Borel subsets) of different radius. λ1 and λ2 are the estimated
discrete anisotropic curvatures. λ1 + λ2 is the fusion of the two, the same applies to
λ1 + λ2 + λ3.
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This result indicates that each of the three eigenvalues are meaningful in FR based

on a mesh model, and they can offer mutual complementary geometric information

to improve the recognition performance. For more results, one may read [96].
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Chapter 6

Concluding Remarks

The theory of discrete curvatures is a very broad topic that appears in various forms

in mathematics and applications. In this thesis, we both contributed to theory and

applications.

The first contribution is a combination of geometry and statics in form of the

PMSEs. We discussed two ways of generating PMSEs. One is a propagating com-

putation from Cauchy-like data. Here, we introduced the equilibrium surface and

studied fairness conditions. The other is that we combine the computation with a

global optimization to obtain more complex results without losing accuracy.

The second contribution addresses the discrete differential geometry of triangle

meshes in combination with a study of discrete line congruences associated with

such meshes. We discussed when a congruence defined by linear interpolation of

vertex normals deserves to be called a normal congruence. Our main results are a

discussion of various definitions of normality, a detailed study of the geometry of

such congruences, and a concept of curvatures and shape operators associated with

the faces of a triangle mesh. These curvatures are compatible with both normal

congruences and the Steiner formula.

The third contribution is a study of asymptotic cones. With any smooth subspace

or singular geometric subspaceW of a Riemannian manifoldM , we associated a family

of cones, defined over any Borel subset of M . These cones are the generalization of

the asymptotic directions defined at each point of a smooth surface of the Euclidean
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space. We obtained convergence and approximation theorems when a sequence of

polyhedra tends to a smooth subspace. We found good approximations of asymptotic

lines of a triangulated surface and used asymptotic cones to generate descriptors for

face recognition.

6.1 Future work

Topology editing in computing PMSEs It is practical to change the topology of a

mesh in the process of computing and optimizing the mesh layer by layer. The current

work will only generate PMSEs that are regular – all vertices are of valence four. More

interesting examples can only be generated by including irregular vertices.

Material usage of PMSEs Special types of PMSEs are known to be optimal in the

sense of minimal material usage [34]. It would be interesting to get more insight into

these material minimizing structures and their shape limitations. In fact, even the

shape restrictions on PMSEs are not yet fully understood.

Vanishing mean curvature in the triangle-based curvature theory It is still unclear how

known constructions of special discrete surfaces relate to the curvatures defined here:

For instance, we are lacking nice geometric properties from the condition of vanishing

mean curvature. Nevertheless, one of the known constructions of discrete minimal

surfaces might be equipped with a canonical normal congruence such that, when our

theory is applied, mean curvature vanishes.

Deeper understanding of normality condition 3 Equation (4.12) of defining a normal

congruence is stronger and applies the other two versions, but it is not precisely

applicable to compute normals for any input triangle mesh. Meshes which have the

ability to satisfy normality condition 3, their geometric properties and those of the

derived normal congruences are a subject of further research.

Applications of line congruences Architectural applications of line congruences have

been discussed by Wang et al. [36], but there might be other examples of geometry
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processing tasks where the notion of line congruence, or even normal congruence,

becomes relevant.

Principal cones It is natural to study if there are ‘principal cones’ that extend the

concept of principal directions of a smooth manifold.
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