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SUMMARY 

The next-generation sequencing technology has generated enormous amount of 

DNA and RNA sequences that potentially contain volumes of important genetic 

information, e.g. information on protein-coding genes. The goal of research described in 

this thesis was to improve prediction of protein-coding genes in newly sequenced 

genomes by the algorithms and software tools of the GeneMark line. The thesis is divided 

into three main parts describing i) GeneMarkS-2, ii) GeneMarkS-T, and iii) 

MetaGeneTack. 

In prokaryotic genomes, ab initio gene finders can predict genes with high 

accuracy. However, the error rate is not negligible and largely species-specific. Most 

errors in gene prediction are made in genes located in genomic regions with atypical GC 

composition, e.g. genes in pathogenicity islands. We describe a new algorithm 

GeneMarkS-2 that uses local GC-specific heuristic models for scoring individual ORFs 

in the first step of analysis. Predicted atypical genes are retained and serve as ‘external’ 

evidence in subsequent runs of self-training. GeneMarkS-2 also controls the quality of 

training process by effectively selecting optimal orders of the Markov chain models as 

well as duration parameters in the hidden semi-Markov model. GeneMarkS-2 has shown 

significantly improved accuracy compared with other state-of-the-art gene prediction 

tools.  

Massive parallel sequencing of RNA transcripts by the next generation 

technology (RNA-Seq) provides large amount of RNA reads that can be assembled to full 

transcriptome. We have developed a new tool, GeneMarkS-T, for ab initio identification 



 xiii 

of protein-coding regions in RNA transcripts. Unsupervised estimation of parameters of 

the algorithm makes unnecessary several steps in the conventional gene prediction 

protocols, most importantly the manually curated preparation of training sets. We have 

demonstrated that the GeneMarkS-T self-training is robust with respect to the presence of 

errors in assembled transcripts and the accuracy of GeneMarkS-T in identifying protein-

coding regions and, particularly, in predicting gene starts compares favorably to other 

existing methods.  

Frameshift prediction (FS) is important for analysis and biological interpretation 

of metagenomic sequences. Reads in metagenomic samples are prone to sequencing 

errors. Insertion and deletion errors that change the coding frame impair the accurate 

identification of protein coding genes. Accurate frameshift prediction requires sufficient 

amount of data to estimate parameters of species-specific statistical models of protein-

coding and non-coding regions. However, this data is not available; all we have is 

metagenomic sequences of unknown origin. The challenge of ab initio FS detection is, 

therefore, twofold: (i) to find a way to infer necessary model parameters and (ii) to 

identify positions of frameshifts (if any). We describe a new tool, MetaGeneTack, which 

uses a heuristic method to estimate parameters of sequence models used in the FS 

detection algorithm. It was shown on several test sets that the performance of 

MetaGeneTack FS detection is comparable or better than the one of earlier developed 

program FragGeneScan. 

The work presented in this dissertation contributed to the following publications: 
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CHAPTER 1  
INTRODUCTION 

 The ever accelerating accumulation of DNA and RNA sequences is due to 

revolutionary changes in sequencing technology. As depicted in Figure 1.1, the number 

of sequenced genomes in the National Center for Biotechnology Information (NCBI) 

genome database is growing exponentially over the last 20 years. These data demand 

highly automated tools for accurate genome annotation. As a key component of genome 

annotation, gene finding aims at locating the endpoints (the start and stop) of all protein 

coding genes for which two major approaches have been developed: homology-based 

methods and ab initio methods. One of the focuses of this work is describing a new ab 

initio gene finder GeneMarkS-2, developed upon a line of GeneMark tools, which aims at 

closing the open endings of gene prediction in prokaryotic genomes. 

 

Figure 1.1 The growth of sequenced genomes curated by NCBI 
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Massive parallel sequencing of RNA transcripts by next-generation technology 

(RNA-Seq) (Wang, et al., 2009) also generates critically important data for gene 

discovery. Many computational tools are able to reconstruct the full-length representation 

of cellular RNAs from the vast amount of RNA-Seq reads (Grabherr, et al., 2011; 

Guttman, et al., 2010; Haas, et al., 2013; Li, et al., 2011; Mezlini, et al., 2013; Roberts, et 

al., 2011; Robertson, et al., 2010; Schulz, et al., 2012; Slater and Birney, 2005). The 

accuracy of transcript reconstruction by a large array of assembly tools is evaluated by 

the international RNA-Seq Genome Annotation Assessment Project (RGASP) 

consortium (Steijger, et al., 2013).  

Eukaryotic transcripts in the spliced form share the same characteristics as 

prokaryotic genomic sequences: both sequences contain intron-less genes. Therefore the 

development of gene-finding algorithms for prokaryotic genomes has laid a solid 

foundation for gene finding of transcriptomic data. Similarly, in the emerging field of 

meta-transcriptomics (microbiome-wide gene expression profiling through RNA-Seq) 

short meta-transcriptomic reads can be assembled into transcripts encoding one or more 

genes, which provide valuable information for gene prediction. It has been shown that 

reconstruction of meta-transcriptome datasets significantly improves the functional 

annotation of sequence reads (Sekhar, et al., 2011).  

Although a steady progress has been made on transcript reconstruction, very few 

tools are dedicated to identifying the protein coding-regions in the sequences, with little 

assessment of the overall performance on error-prone transcripts. In this work, we present 

a self-training algorithm called GeneMarkS-T (‘S’ stands for Self-training and ‘T’ stands 

for Transcripts) that is suitable for ab intio gene prediction in transcripts.  
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 The last part of the work is on frameshift prediction in metagenomic sequences. A 

frameshifts is caused by insertion or deletion of nucleotides in a coding sequence. The 

number of inserted or deleted nucleotides is not divisible by three, causing a shift in the 

reading frame (the grouping of the codons). Frameshifts could be a result of sequencing 

error, indel (insertion or deletion) mutation inside protein-coding regions, or a recoding 

event (Baranov, et al., 2005; Decatur and Fournier, 2003; Maas, 2012; Sharma, et al., 

2011; Wernegreen, et al., 2010). Frameshifts greatly affect gene prediction as they disrupt 

the open reading frame (ORF) of the gene and subsequently change the protein product 

from the ORF.  

 Sequencing-error-induced frameshifts are more prominent in metagenomic 

sequences. Since the short reads of sequences come from a microbial community, they 

are less homogeneous, more difficult to assemble, and more difficult for error correcting 

than the genomic sequences.  Error rates in metagenomic sequences depend on various 

factors including species complexity in the metagenomic sample, genome abundance, the 

sequencing method, and assembly strategies (Luo, Tsementzi, Kyrpides and 

Konstantinidis, 2012). Therefore it is desirable to predict and correct frameshift error in 

metagenomic sequences before gene annotation. We describe a tool ‘MetaGeneTack’ that 

can effectively predict frameshifts in metagenomic sequences. 

1.1  Gene finding in prokaryotic genomes 

 Similarity-based methods and ab initio methods are two main streams of 

approaches for gene prediction in prokaryotic genomes. In similarity-based methods the 

sequence of interest, a DNA sequence or its translated version, is searched against 

databases of known genes using BLAST-type (Altschul, et al., 1997) mapping 

techniques. If a homolog with significant similarity is found, the sequence of interest is 

characterized as a gene. This method can give high sensitivity and specificity if close 

relatives exist in the database (to reach high sensitivity) and no errors are present in the 
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database (to reach high specificity). However, the method would fail to identify a novel 

gene with no homologs in the database. If the database contain hypothetical or 

uncharacterized genes that are in nature non-coding sequences, such errors would 

propagate during annotation of a new gene. In addition, similarity-based approach cannot 

predict gene start and short genes precisely.  

 Unlike similarity-based methods, ab initio gene prediction approaches, also 

referred to as “intrinsic methods”, do not depend on the existence or the quality of gene 

databases. These methods use intrinsic features of the given sequence for gene 

identification. Statistical models such as Markov models, hidden Markov models 

(HMM), and hidden semi-Markov models (HSMM, also called “hidden Markov model 

with duration” or “generalized hidden Markov model (GHMM)”) proved to be very 

useful for modeling statistical patterns of nucleotide ordering in protein-coding and non-

coding regions.  

 This section reviews the widely used gene prediction tools and algorithms, with a 

focus on ab initio approaches. We only discuss gene finding in prokaryotic sequences, as 

eukaryotic sequences contain introns and the gene prediction in eukaryotes is out of the 

scope of this thesis. 

1.1.1 The GeneMark-line of gene finders 

A serial of ab initio gene-finders and related algorithms for training model 

parameters required for the gene finders have been developed in the group lead by Mark 

Borodovsky. All of the algorithms described here can be accessed through the website 

http://exon.gatech.edu/GeneMark/. The GeneMark-line of algorithms forms the basis of 

the development of GeneMarkS-2, GeneMarkS-T, and MetaGeneTack.  

http://exon.gatech.edu/GeneMark/
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1.1.1.1 GeneMark 

Before the publication of GeneMark, a pioneer work in 1986 (Borodovsky, et al., 

1986) has shown that nucleotide frequencies are different in coding and non-coding 

DNA. This work analyzed fragments of coding and non-coding sequences of Escherichia 

coli and introduced three-periodic (frame-dependent) Markov chain models for 

characterizing coding DNA. Based on those findings, in 1993 GeneMark was introduced 

(Borodovsky and Mcininch, 1993). It employed the nonhomogeneous three-periodic 

Markov model and the Bayes’ formalism for classification of sequences. GeneMark was 

able to recognize genes in both strands (all six frames) simultaneously, which was the 

first method of this kind. 

In GeneMark, the three-periodic first-order (or higher order) Markov chain model 

of a coding region is defined by the three vectors of initial probabilities P10, P20, P30 and 

the three transition matrices P1, P2, P3 with the numbers 1, 2, 3 corresponding to the 

three codon positions. Each initial state vector contains the probabilities of A, C, G, T. 

Each transition matrix contains the probabilities of X given Y, with , { , , , }X Y A C G T . 

The parameters are derived from a set of training sequences of coding regions based on 

the maximum likelihood principle. Particularly they are frequencies calculated from the 

counts of mono- and di-nucleotides in each codon position of the training sequences. 

Similarly, the parameters for the non-homogeneous Markov chain model of the shadow 

of the coding region can be designated as P40, P50, P60 and P4, P5, P6. The first-order 

Markov chain model of a non-coding region is homogeneous; it is also defined by a 

vector of initial probabilities and a transition matrix. Parameters are trained from known 

non-coding sequences. 
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The probability of a stretch of nucleotides “f1, f2… fn” denoted as F observed in a given 

model can be calculated. For example, the probability of F appearing in a non-coding 

region can be calculated from the equation 1. The probability of F appearing in a coding 

region in frame one (with the first nucleotide appearing in the first codon position) can be 

calculated using equation 2. Finally, a set of a posteriori probabilities are defined using 

Bayes’ theorem (equation 3 and 4). P(NON) and P(CODi) stand for the a priori 

probability of the event and P(NON)=0.5 and P(CODi)=1/12. 

0 1 2 1 1( | ) ( )* ( | )*...* ( | )n nP F NON PN f PN f f PN f f   (1) 

1 0 1 2 1 3 2 4 3 1( | ) 1 ( )* 1( | )* 2( | )* 3( | )...* 2( | )n nP F COD P f P f f P f f P f f P f f   (2) 

( | )* ( )
( | )

( | )* ( ) ( | )* ( )

i i
i

j j

j

P F COD P COD
P COD F

P F COD P COD P F NON P NON



 

(3) 

( | )* ( )
( | )

( | )* ( ) ( | )* ( )j j

j

P F NON P NON
P NON F

P F COD P COD P F NON P NON



 

(4) 

The GeneMark web interface implements a graphical output of the posterior 

probability in each coding frame along a sequence (Besemer and Borodovsky, 2005) (see 

Figure 2.11 as an example of a GeneMark graph). The graph shows six panels, each 

representing a coding frame. In each panel, the vertical axis denotes the value of the a 

posteriori probability of a sequence being in the coding frame. The horizontal axis 

represents nucleotide positions along the sequence. The a posteriori probability of each 

position is calculated for the sequence fragment in a sliding window with this position 
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situated in the middle. Open reading frames are marked by solid lines. The GeneMark 

graph is a useful tool for visualizing coding potential along a sequence. 

GeneMark was a pioneering gene finder used to annotate the first completely 

sequenced genomes (Blattner, et al., 1997; Bult, et al., 1996; Fraser, et al., 1995; 

Himmelreich, et al., 1996; Klenk, et al., 1997; Kunst, et al., 1997; Smith, et al., 1995). 

1.1.1.2 GeneMark.hmm 

The GeneMark program assumes the stretch of a given sequence to be complete 

coding or non-coding. GeneMark is able to identify the open reading frame where a gene 

resides, but it poses uncertainty of the 5’ boundary of the gene. GeneMark.hmm 

(Lukashin and Borodovsky, 1998) was designed to solve this problem by incorporating 

the GeneMark approach into a hidden Markov model (HMM) framework. 

In an HMM, for an observed DNA sequence 1 2{ , ,..., }LS s s s  where si stands for 

a nucleotide A, C, G, or T and L is the length of the sequence, we can define a sequence 

of hidden states of the nucleotides as 1 2{ , ,..., }LA a a a . GeneMark.hmm describes 9 

hidden states: 1) the non-coding state, 2) the direct start codon, 3) the direct stop codon, 

4) the direct typical coding state, 5) the direct atypical coding state, 6) the reverse start 

codon, 7) the reverse stop codon, 8) the reverse typical coding state, and 9) the reverse 

atypical coding state. Each {1,2,...,9}ia   denotes the hidden state that emits the 

nucleotide is . In GeneMark.hmm the coding and non-coding states are allowed to 

generate a stretch of nucleotides instead of one. The length of the stretch of sequence is 

called ‘duration’. Under this framework, the hidden states of the sequence S can be 
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represented as 1 1 2 2{( ),( ),..., ( )}m mA a d a d a d , in which id  is the duration of ia  and

id L . The optimal trajectory of the hidden states *A  is defined as the trajectory of A 

that gives the maximal conditional probability ( | )P A S . *A can be found using the 

standard Viterbi algorithm (Rabiner, 1989). 

Parameters of the HMM are derived from annotated E. coli sequences. As 

described in the GeneMark paper, the three-periodic inhomogeneous Markov chain 

model was built from the known gene sequences in E. coli. The Markov chain model for 

the non-coding states was calculated from known non-coding sequences. The start codon 

probabilities equal the frequencies of ATG, GTG, and TTG observed in the genome. The 

duration parameters are calculated from the analytical frequency distribution of the 

lengths of coding and non-coding regions in E. coli. Genes were cluster into typical and 

atypical genes (Hayes and Borodovsky, 1998). Atypical genes refer to genes horizontally 

transferred into the genome from foreign sequences. 

As the framework of HMM in GeneMark.hmm prevents the prediction of 

overlapping genes, a post-processing step was added to refine start prediction. The post-

processing algorithm searches the -19 to -4 nt upstream sequences of the start of each 

predicted gene for a putative ribosomal binding site (RBS). The RBS model was in the 

form of a positional nucleotide frequency matrix (PFM), denoting the probability of 

observing A, C, G, or T in each position of the 5nt motif. Parameters of the PFM are 

derived through multiple sequence alignment of the upstream sequences of E.coli genes 

(Lukashin, et al., 1992). The final output of GeneMark.hmm shifts the predicted gene 
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start if the probability of the RBS in an alternative start upstream of the predicted one is 

larger than some threshold. 

1.1.1.3 GeneMarkS 

Developed in 2001, GeneMarkS (Besemer, et al., 2001) is a self-training 

algorithm that runs the GeneMark.hmm program iteratively to build model parameters for 

the HMM and finds the maximum likelihood parse of the hidden states of a given 

sequence. GeneMarkS achieved two major improvements. First, it derives genome-

specific model parameters required for gene prediction in an unsupervised fashion, which 

can be applied on anonymous or novel genomic sequences without known proteins or any 

external training data. This improvement is a very important innovation for ab initio gene 

prediction, because as an increasing number of new species are being sequenced each 

year, waiting for curated training sequences would make an ab initio gene finder much 

less practical. Second, a new program GeneMark.hmm 2.0 is implemented in 

GeneMarkS. This new version integrates the RBS model into the HMM framework 

instead of using it as a post-processing step, which improves the accuracy of predicting 

gene start. In addition, GeneMark.hmm 2.0 allows the prediction of overlapping genes. 

As a result, the full length of a sequence can be parsed into coding and non-coding 

regions in one run without further adjustment. 

The self-training algorithm works as follows. GeneMark.hmm 2.0 starts the first 

run of gene prediction with a set of heuristic model parameters (see 1.1.1.4). The initial 

set of predicted genes serve as a training set to build and update the coding, non-coding, 

start codon, and RBS model. Then the new set of model parameters is used to predict 

genes again on the sequence. The program runs iteratively between the prediction step 
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and training step until convergence, which means the change of prediction from two 

subsequent iterations is less than a small value. Predicted genes along with the model 

parameters in the last iteration are delivered as output. There is another option to add 

atypical genes predicted by the heuristic model to the final prediction. 

A two-component RBS model is part of the training process. The model includes 

a position frequency matrix describing the RBS motif, and a spacer distribution 

describing the length between the start codon and the RBS motif. In each iteration, the 

upstream sequences of predicted genes are collected, and multiple sequence alignment is 

performed by a Gibbs sampling procedure (Lawrence, et al., 1993; Neuwald, et al., 1995) 

to find a conserved motif without gaps. The distance between the motifs found in the 

upstream sequences and the predicted gene starts is used to build the spacer length 

distribution.  

A special version of GeneMarkS called GeneMarkS-plus has served as the core 

element of the National Center for Biotechnology Information prokaryotic genome 

annotation pipeline (PGAP)
1
; in August 2015 PGAP annotated and re-annotated more 

than 48,000 prokaryotic genomes. GeneMarkS-plus can incorporate external protein 

evidence into the ab initio prediction.  

Chapter 2 discusses the new development of GeneMarkS called GeneMarkS-2. 

Chapter 3 discusses the modified GeneMarkS training algorithm that can be applied to 

gene prediction in RNA transcripts. 

                                                 

 

 
1
 http://www.ncbi.nlm.nih.gov/genome/annotation_prok/process/ 
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1.1.1.4 Heuristic models and MetaGeneMark 

The heuristic approach to derive model parameters for ab initio gene prediction 

was first introduced in 1999 (Besemer and Borodovsky, 1999). As discussed above, the 

HMMs employed in gene finders require accurate model parameters, especially 

parameters for the high-order non-homogeneous coding model. These parameters are 

species or genome specific. They can be derived from experimentally validated training 

sequences or a large enough set of anonymous sequences of the same species/genome. 

For a short sequence with unknown origin, neither of these training sequences exists. The 

proposed heuristic approach solves this problem innovatively by leveraging the 

relationship between nucleotide frequencies in the three codon positions and the global 

nucleotide frequencies as well as relationship between the amino acid frequencies and the 

genome GC content. Interestingly, the heuristic approach turns out to be extremely useful 

in the field of metagenomics that had not emerged until several years later. 

Here I summarize the procedure of building the heuristic model described in 

(Besemer and Borodovsky, 1999). The first 17 genomes and their annotated genes 

available back then were used to build two linear relationships. The first one is between 

the global nucleotide frequency in the genome and the nucleotide frequency in each of 

the codon position in genes. For example, the global frequency of Thymine (T) and the 

frequency of T in the first position of all codons have the following linear relationship in 

the 17 genomes: 1( ) 0.185 0.521( ( ) 0.228)pos globalf T f T   . The second relationship is 

between the genome GC content and the amino acid frequency in the genome. For 

example, the frequency of amino acid alanine and the genome GC% has the following 

relationship: ( %) 0.0749 0.0019*( % 42.53)alaninef GC GC   . 
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From a given genomic sequence with certain nucleotide composition, the 

nucleotide frequency in each codon position is determined from the first linear 

relationship. Note that the global nucleotide composition can be represented by the global 

GC content as stated by the second Chargaff rule. The initial values of frequency of 61 

codons 1( )f XYZ are calculated as a product of frequency of the three nucleotides in 

corresponding codon positions. For example: 1 1 2 3( ) ( ) * ( ) * ( )pos pos psof GCT f G f C f T . 

The calculated initial codon frequencies are refined using amino acid frequencies 

determined by global GC%. As an example, the refined frequency of codon GCT that 

encodes alanine is shown in equation 5. Once all codon frequencies are determined, it is 

straightforward to calculate the parameters of zero-order three-periodic Markov model. 

For higher order Markov models, the transition probability matrix is built using di-codons 

assuming that the occurrence of adjacent codons is independent. 

 

1

1 1 1 1

( )
( ) ( %)*

( ) ( ) ( ) ( )
R alanine

f GCT
f GCT f GC

f GCA f GCC f GCG f GCT


  
 

(5) 

 

The heuristic model parameters have since been used for gene finding in short 

sequences such as genomes of viruses and plasmids and for initializing self-training as 

described in section 1.1.1.3. In the early to middle 2000’s, with the advent of shotgun 

metagenomics and then high-throughput sequencing, a new application of heuristic 

model has emerged in the field of metagenomics. A metagenomic sample consists of a 

mixture of genetic materials from microbial communities taken from the environment. 

The majority of species in metagenomic samples has never been documented and cannot 

be cultivated in a laboratory. Therefore, many proteins encoded from genes in a new 
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metagenomic sample have no known homologs in existing protein databases. Ab initio 

gene prediction enabled by the heuristic model parameters becomes essential for 

identifying those new genes.  

In 2010, a new set of heuristic models was introduced with the application for 

gene prediction in metagenomic sequences (Zhu, et al., 2010). Several improvements 

were made in the new heuristic approach. First, the number of training genomes was 

largely expanded. Compared with only 17 genomes used in the 1999 approach, 582 

complete genomes and their annotated genes were used to build the new heuristic 

parameters. Second, since much more genomes including a set of archaea were available, 

Zhu, et al. was able to build two sets of heuristic models, one for bacteria and one for 

archaea. Similarly, they also divided genomes to be mesophilic or thermophilic and built 

two corresponding models. Third, they described and compared several new ways of 

predicting codon frequencies from the genome GC content. One of the new methods that 

produced good accuracy in gene prediction was through direct third-order polynomial 

regression of codon frequencies over genome GC content.  

The 2010 paper also introduced MetaGeneMark, a program that combines the 

new heuristic model with the GeneMark.hmm algorithm to predict genes in metagenomic 

sequences. MetaGeneMark gives high (>90%) sensitivity and specificity in finding genes 

in short sequences (of several hundred nucleotides in length) of unknown origin and has 

since been used in many metagenomic projects (Forsberg, et al., 2014; Karlsson, et al., 

2013; Nielsen, et al., 2014; Tyakht, et al., 2013). 
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1.1.2 Other ab initio gene-finders for prokaryotic genomes 

Besides the GeneMark-line of gene finders, another popular ab initio gene finder 

is Glimmer (Delcher, et al., 2007; Delcher, et al., 1999; Dyer, et al., 2011; Kelley, et al., 

2012). It uses interpolated Markov models (IMM), a linear combination of probabilities 

of various orders, giving higher weights to oligomers with more sufficient content. There 

are three generations of Glimmer. Glimmer1 (Salzberg, et al., 1998) built IMMs from 

annotated training sequences to score individual ORFs in all six frames. ORFs that score 

higher than a threshold in the correct frame are then resolved for overlaps. Glimmer2 

(Delcher, et al., 1999) introduced an improved IMM called the interpolated context 

model (ICM), which can build dependencies from nucleotides not immediately adjacent 

to each other. As Glimmer1 produced many false negatives because of long overlaps and 

wrong start prediction, Glimmer2 also introduced other rules to resolve overlap such as 

an RBSfinder for post-processing gene start locations. In Glimmer3 (Delcher, et al., 

2007), the RBS model is presented in the form of a position weight matrix, and was built 

by ELPH
2
, a Gibbs sampling approach from multiple alignment of upstream regions of 

predicted genes. A big improvement of Glimmer3 compared with previous versions of 

Glimmer is that for the first time it integrates all gene predictions across an entire 

genome. All start positions are scored using the IMM and the RBS model and a global 

dynamic programming algorithm is used to select ORF starts that give maximum total 

score along the whole genome. Short overlaps are allowed as the dynamic programming 

                                                 

 

 
2
 http://www.cbcb.umd.edu/software/ELPH/ 
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algorithm can backtrack within the maximum allowed overlap distance and update the 

total score of the path.   

Accurate ab initio gene finding in isolated genomes requires ample sequence data 

for the estimation of algorithm parameters (model training). Glimmer1 uses very long 

ORFs of the given genome as a training set for coding model parameters. Later versions 

of Glimmer improve training by more cautiously selecting and filtering the training set. 

For example, Glimmer3 filter the initial set of long ORFs based on amino-acid 

composition. 

EasyGene (Larsen and Krogh, 2003; Nielsen and Krogh, 2005) is another HMM-

based gene finder. It also estimates the statistical significance of a predicted gene. To find 

training sequences, EasyGene translates all ORFs longer than a threshold in the given 

genomic sequence, and uses BLASTP (Altschul, et al., 1990) to search against the Swiss-

Prot (Boeckmann, et al., 2003) database. This approach is dependent on the existence and 

the quality of protein databases, and the protein search may also increase run time.  

A more recently developed ab initio gene finder, Prodigal (Hyatt, et al., 2010), 

does not follow a standard Markov model framework. It scores individual ORFs using 

various features and scoring rules and then performs dynamic programming on all pairs 

of start-and-stop triplets to find the maximum scoring path. Adopted features in Prodigal 

include GC bias in the first, second, and third positions of each codon, the frequency of 

hexamers, the ORF length, upstream letters resembling the RBS, etc. The training rules 

and parameters are fine-tuned on a set of curated genomes and are validated with a larger 

set of over 100 genomes from the GenBank annotation. 
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Another tool called GISMO (Gene Identification using Support vector Machine 

for ORF classification) is based on a support vector machine (SVM) with a Gaussian 

kernel to classify ORFs (Krause, et al., 2007). The SVM’s features are 64-dimensional 

vectors of relative codon frequencies, as they yield the best classification performance. 

To train the SVM, GISMO searched all ORFs in the given genome against the PFAM 

protein database (Bateman, et al., 2004). The set of ORFs with good protein domain 

match forms the positive training set. ORFs overlapping the positive set comprise the 

negative training set. Note that all ORFs supported by strong protein domain evidence (e-

value <0.1) are kept in the final prediction. ORFs with high SVM score but weak 

evidence are subject to removal as a result of long (>50bp) overlaps. Similar to 

EasyGene, GISMO also relies on the existence and quality of protein databases, which 

makes it a mixture of similarity-based and intrinsic approach rather than a pure ab initio gene 

finder. 

1.1.3 Gene finding based on external evidence 

Two examples of gene finders based on external evidence are ORPHEUS 

(Frishman, et al., 1998) and CRITICA (Badger and Olsen, 1999).  ORPHEUS is one of 

the earliest extrinsic tools. It uses DPS program (Huang, 1996) to map known proteins to 

the query genomic sequence. Regions with high-scoring match are considered the “seed 

ORFs”. Codon frequencies of the seed ORFs are used to compute coding quality 

parameters to evaluate the coding quality of other putative genes in the sequence. A 

putative gene is accepted if it is longer than 300bp and its coding quality is sufficiently 

high. ORPHEUS also uses an RBS model to refine start prediction, which is derived from 

the upstream sequences of seed ORFs with no alternative candidate starts. 
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Different from ORPHEUS, CRITICA uses BLASTN (Altschul, et al., 1990) to 

detect conserved stretches on the DNA level. Then it computes the di-codon statistics 

from the aligned high score regions. It also computes a score for the start site based on 

the quality of match to the Shine-Dalgarno sequence (the RBS) (Shine and Dalgarno, 

1974). CRITICA shows high sensitivity but high false negative rate.  

1.2  Gene prediction in EST sequences and transcripts 

An mRNA transcript mirrors the DNA sequence from which it is transcribed. 

Studying of mRNAs provides valuable information about protein-coding genes in two 

aspects. Fist, constructing the full length of (coding) mRNAs and then looking for the 

coding ORF in the sequences is the most direct and reliable way for identifying protein-

coding genes, especially in eukaryotes. Unlike genes in prokaryotes, genes in eukaryotes 

contain introns spliced out from the mature mRNA and thus excluded from translation. 

As a result, looking for the complete intron-exon structure for a final protein product on 

the DNA level is a challenging task. Adding to the complexity is the prevalence of 

alternative splicing, in which a single gene codes for multiple proteins through altering 

the intron-exon structure. Second, studying the full collection of mRNA transcripts can 

also tell us when and where each gene is turned on or off – the pattern of gene expression 

– which is essential in understanding disease and development. 

An ideal method to obtain transcript sequences is to sequence the full mRNA 

molecule, or in practice sequence the full cDNA molecule created from mRNA through 

reverse transcription. However, this approach is extremely laborious and expensive, 

resulting in very limited coverage of all genes even for model organisms to date. Another 

method is through expressed sequence tags (ESTs). ESTs are short reads (200-800bp in 
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length (Nagaraj, et al., 2007)) derived from cDNA libraries (typically from the 5’ and 3’ 

ends of the cDNA molecule). ESTs can be generated through Sanger sequencing and later 

through next generation sequencing (NGS) with relatively low cost. This process was 

proposed and used to identify genes in the human genome before the full genome 

assembly was available. (Adams, et al., 1991; Boguski, 1995).  

Unlike the low-throughput single-read sequencing of cDNA and ESTs, high-

throughput RNA sequencing (RNA-seq) has promised tremendous opportunities towards 

mapping the comprehensive transcriptome (Wang, et al., 2009). Short RNA-Seq reads are 

obtained from fragmented mRNAs or cDNA and sequenced using NGS (high-throughput 

parallel sequencing) technologies. Reads generated by RNA-Seq can cover the full 

transcriptome with deep coverage and low cost. These advantages have made it a 

transformational tool for guiding gene prediction (Hoff, et al., 2015; Reid, et al., 2014), 

discovering novel transcripts (Roberts, et al., 2011; Trapnell, et al., 2010), and 

characterizing gene expression (Mortazavi, et al., 2008; Trapnell, et al., 2013; Trapnell, et 

al., 2012).  

As RNA-Seq data become ubiquitous, many assembly algorithms have been 

developed to assemble RNA-Seq reads into longer transcripts  (Grabherr, et al., 2011; 

Guttman, et al., 2010; Haas, et al., 2013; Li, et al., 2011; Mezlini, et al., 2013; Roberts, et 

al., 2011; Robertson, et al., 2010; Schulz, et al., 2012; Slater and Birney, 2005). Some 

studies have also used RNA-Seq to improve gene prediction and splice-junction 

characterization in genomes (Hoff, et al., 2015; Lomsadze, et al., 2014; Trapnell, et al., 

2009; Wang, et al., 2010). However, there are few tools that allow direct gene calling on 

assembled transcripts. 



 19 

A straightforward strategy of gene finding in transcript is to map translated 

transcripts to known proteins. Several such tools were developed earlier for EST and 

cDNA sequences. For example, OrfPredictor (Min, et al., 2005) uses BLASTX to map 

six-frame translation of the EST to protein databases. For ESTs with no significant hit, 

intrinsic features are used to predict coding regions. Similar to the case of prokaryotic 

gene finding, the alignment-based strategy will be successful only if the protein products 

have known homologs in protein databases.  

ESTScan (Iseli, et al., 1999) is an HMM-based ab initio gene finder designed for 

low-quality ESTs. The HMM has hidden states for deletion and insertion errors to model 

frameshifts. ESTScan requires species-specific model parameters derived from curated 

training sequences which could undermine its usefulness for novel transcriptomes. 

Another tool DECODER (Fukunishi and Hayashizaki, 2001) uses intrinsic features such 

as the Kozak motif, codon usage, and position of the initiation codon to score coding 

regions. It also inserts or deletes a nucleotide in all frames to correct for frameshifts. 

Several SVM-based methods (Kong, et al., 2007; Liu, et al., 2006) were developed to 

identify transcripts that contain protein-coding genes and discriminate them from non-

translatable transcripts. However, those methods do not parse a transcript into coding and 

non-coding regions.  

A recent ab initio tool, TransDecoder
3
, a companion of the de novo transcriptome 

assembler Trinity (Haas, et al., 2013) identifies putative coding ORFs in reconstructed 

                                                 

 

 
3
 https://transdecoder.github.io/ 
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transcripts. It uses intrinsic features such as ORF length and log-likelihood score of a 

Markov model. It generates the training set for the Markov model by a simple automatic 

procedure that identifies long open reading frames in the assembled transcripts. Another 

ab initio tool, TransGeneScan (Ismail, et al., 2014), is designed specifically for gene 

prediction in meta-transcriptomic sequences. It uses the HMM and incorporated hidden 

states to account for indels that cause frameshifts. 

Eukaryotic transcripts in the spliced form share the same characteristics as 

prokaryotic genomic sequences: both sequences contain intron-less genes. Gene 

prediction methods of prokaryotic genomic sequences can be applied to eukaryotic 

transcript. Large volume of transcriptomic data also enables unsupervised training of 

species-specific parameters for high-order non-homogeneous coding model. The HMM 

combined with unique Kozak pattern for translation initiation site in eukaryotes can 

greatly improve the accuracy of identify the precise boundary of coding regions in a 

transcript. In Chapter 3 we describe the new self-training algorithm for gene prediction in 

RNA transcripts. 

1.3  Prediction of frameshifts in genomic and metagenomic sequences 

Frameshifts change the reading frame of protein-coding genes and affect correct 

gene calling. Similar to gene prediction approaches, methods to predict frameshifts are 

also classified as two types: similarity-based or ab initio.  

In similarity-based approaches, the DNA sequence are translated into three frames 

and searched against protein databases using sequence-alignment methods such as 

BLASTP. Getting more than one hit mapping to different frames of the sequence 
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indicates a frameshift or a fusion gene (Claverie, 1993; Posfai and Roberts, 1992).  

Dynamic alignment algorithms that compare the three translation frames of a DNA 

against a protein profile accounting for indels can also identify frameshifts (Birney, et al., 

1996; Guan and Uberbacher, 1996). Again these methods rely on the existence and 

quality of the protein databases as well as the quality of alignment. 

Ab intio methods leverage intrinsic statistical features of the sequence to identify 

frameshifts. Again Markov models and hidden Markov models are shown to be very 

useful. The posterior probabilities of coding potential in all reading frames determined by 

GeneMark were used to determine the change of frame (Kislyuk, et al., 2009; Medigue, 

et al., 1999). Several HMM-based approaches explicitly model transitions between 

coding frames in the hidden states to predict frameshifts (Antonov and Borodovsky, 

2010; Schiex, et al., 2003). Among them are tools specifically designed for error-prone 

sequences such as ESTs (Iseli, et al., 1999) and metagenomic sequences (Rho, et al., 

2010). Note that ab initio approaches require genome-specific training sequences. 

Therefore for novel sequences of unknown origin, unsupervised training methods or 

heuristic models are especially useful. In Chapter 4 we describe a frameshift detection 

tool that combines HMMs and the heuristic approach to predict genes with or without 

frameshifts in short metagenomic sequences. 
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CHAPTER 2  
IMPROVED AB INITIO GENE PREDICTION THROUGH LOCAL-

GC ADAPTATION AND ADAPTIVE TRAINING 

 

Abstract 

Although computational prediction of prokaryotic genes is sometimes considered a 

solved problem, the rate of prediction errors of even the state-of-the-art tools is not 

negligible. Short genes and gene starts are often cited as difficult to predict; the 

prediction of genes located in genomic regions with atypical GC composition, e.g. 

pathogenicity islands, are prone to errors as well. Here we describe a new algorithm and 

software tool GeneMarkS-2 that improves over previously developed GeneMarkS. At the 

first step of analysis, the new algorithm employs heuristic models with parameters 

adjusted to local GC content. In the subsequent iterative self-parameterization 

GeneMarkS-2 attempts to determine the features of transcription and translation 

mechanism and makes adaptation of the model structure to the class of genomes defined 

by these features. The algorithm controls the balance of sensitivity and specificity by 

selection of the orders of the Markov chain models as well as duration parameters of the 

generalized hidden Markov model. Genes with ‘atypical’ codon usage located in 

compositionally biased regions, such as pathogenicity islands, are particular targets of the 

new algorithm. The accuracy of GeneMarkS-2 assessed on several test sets was shown to 

be favorably compared with other state-of-the-art gene prediction tools.  
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2.1  Introduction 

With the exponential growth of the volume of sequence data in genome databases 

the power of the homology-based methods for gene identification is constantly 

increasing. Still the whole universe of microorganisms may not be fully described any 

time soon. New microbial genomes with more than 50% of genes not showing 

similarities to known protein families continue to appear in sequencing projects. 

Moreover even in genomes with highest percentage of genes detected by the homology-

based methods accurate ab initio gene finding is required to complete the annotation 

process. 

In comparison with the task of finding eukaryotic genes with introns and 

alternative splicing the prokaryotic task looks simpler. The focus in prokaryotes is on 

prediction of gene overlaps, gene starts, short genes, and genes with atypical 

composition. Earlier developed tools for gene finding in prokaryotic genomes, 

GeneMarkS, Glimmer, and Prodigal are sufficiently precise (Besemer, et al., 2001; 

Delcher, et al., 2007; Hyatt, et al., 2010; Lukashin and Borodovsky, 1998; Salzberg, et 

al., 1998). The accuracy of predicting the gene location with correct strand, reading 

frame, and the gene 3’ end gets as high as 97-99%, thus with 1-3% of false negative rate;  

over-prediction, the false positive rate, is harder to assess due to presence of 

pseudogenes. A more challenging task is to correctly pinpoint a translation start site; the 

estimated accuracy currently is in the range of 80-90%. 

We describe here GeneMarkS-2, a substantially re-designed version of the ab 

initio gene finder GeneMarkS that has been constantly updated since 2001. GeneMarkS-2 

has the following new features: (i) The HMM architecture was expanded to account for 
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possible atypical genes with GC content from 30% to 70%. Emission probabilities for the 

atypical states were derived by the approach analogous to one used in MetaGeneMark 

(Zhu, et al., 2010);  (ii) We developed and implemented a log-odd score based dynamic 

programming algorithm that approximates the Viterbi algorithm but is more flexible for 

adding new features; (iii) We introduced a new adaptive training approach for iterative 

parameterization of GeneMarkS-2 to improve control of convergence to biologically 

relevant point in the parameter space; (iv) We developed a modified Gibbs-sampling 

approach incorporating in the objective function for motif search the distribution of 

length of the sequence between the conserved motif in the gene upstream region and the 

translation initiation site; (v) We introduced the classification of genomes into the three 

types depending on the organization of the gene upstream regulatory regions and 

developed the three types of models for sequences upstream of gene starts.  

The new software tool is favorably compared with the earlier GeneMarkS as well 

as with other state-of-the-art gene finders in identifying true genes, especially atypical 

genes, and predicting correct gene starts. GeneMarkS-2 produces the least number of 

false positive predictions in both real genomic sequences and simulated non-coding 

sequences. 
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2.2 Methods and materials 

2.2.1 Test sets preparation 

2.2.1.1 Test sets of COG genes and non-coding sequences 

 Genomes of 115 bacteria and 30 archaea were downloaded from the NCBI
4
 (the 

list of species names and RefSeq ID is provided in Supplementary Table 1). This set was 

spanning 22 bacterial and archaeal phyla, with genomes varied in genome size, type of 

genetic code, and GC content  (Figure 2.1A). To minimize the effects of possible 

annotation errors, we selected genes whose protein products show evolutionary 

conservation and as such belong to COGs (clusters of orthologous groups (Galperin, et 

al., 2015; Tatusov, et al., 2003; Tatusov, et al., 1997), see Figure 2.1B). A ‘COG gene’ 

missed in prediction was counted as false negative (FN). The false negative rate was 

calculated with respect to the number of ‘COG genes’ in the genome. To assess false 

positive (FP) rate we counted predictions in artificial random sequences. Construction of 

species-specific models of non-coding regions was done as follows. We masked the 

genomic regions annotated as protein-coding genes, RNA genes, or pesudogenes. The 

remaining sequences were used to estimate parameters of the second-order Markov chain 

model. For each species the model generated ten artifical non-coding sequences with 

length 1Mb each. Notably, the density of random ORFs depended on the GC content 

(Figure 2.1C).  

                                                 

 

 
4 ftp://ftp.ncbi.nlm.nih.gov/genomes/ 

ftp://ftp.ncbi.nlm.nih.gov/genomes/
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Figure 2.1 Test sets of 115 bacterial and 30 archaeal genomes. 

(A) The genome GC content vs. the length of the genomic sequence in each genome. (B) 

The genome GC content vs. the number of COG-supported genes in each genome. (C) 

The genome GC content of the original genomic sequence vs. the average number of 

random ORFs longer than 90nt in non-coding sequences with length 1Mb simulated with 

genome specific parameters. The standard deviations are shown as upper and lower bars 

around each dot. Archaeal genomes are depicted in red. Species with genetic code 4 are 

indicated by green circles. Genetic code of all other species is code 11. 
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2.2.1.2 Test sets of genes with annotation supported by proteomic data 

 Data on mass-spectrometry-determined peptides mapped to genomes of 63 

prokaryotic species (Venter, et al., 2011) were downloaded from the Pacific Northwest 

National Laboratory (PNNL). The quality control described in (Venter, et al., 2011)  

included i/ requirement that peptide/spectrum match to the six-frame translation of the 

genome with the MS-GF+ software tool
5
 would have score with P-value better than 1e-

10; ii/ removal of low-complexity peptides; iii/ removal of ORFs lacking a uniquely 

mapped or fully tryptic peptide, iv/ requirement that a proteomics-confirmed ORF would 

have at least two matching peptides separated by less than 750nt distance
6
. Peptide data 

related to five species were not accepted to the tests for the reasons of either too few 

peptides (<10) or because of the presence of in-frame stop codons in the mapped 

sequences (Supplementary Table 2). We used the peptide coordinates to find the minimal 

length ORF that spans the mapped region. There were 1,209,658 peptides mapped to 

87,417 ORFs. The selected peptide-supported ORFs (psORFs) made another test set for 

assessment of accuracy of gene prediction. 

2.2.1.3 Test sets of genes annotated in known pathogenicity islands 

 Sequences of 222 pathogencity islands (PAIs) annotated in 89 genomes were 

downloaded from the PAIDB database (Yoon, et al., 2015). All 222 islands were 

previously described in publications. The PAIs were given by coordinates in RefSeq 

genomic sequences and contained in total 6,748 genes. 

                                                 

 

 
5
 http://omics.pnl.gov/software/ms-gf 

6
 http://omics.pnl.gov/project-data/prokaryotic-proteogenomics 
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2.2.1.4 Test sets of genes with experimentally verified starts 

The N-terminal protein sequencing is a standard but not frequently used technique 

to validate sites of translation initiation (protein N-terminals and gene starts). Relatively 

large sets of genes with validated starts are known for the genomes of bacteria 

Escherichia coli
7
 (Rudd, 2000; Zhou and Rudd, 2013), Mycobacterium tuberculosis 

(Lew, et al., 2011), Natronomonas pharaonis, and Aeropyrum pernix (Aivaliotis, et al., 

2007; Yamazaki, et al., 2006) (Table 2.1). 

 
Table 2.1 Number of gene starts predicted correctly by the four gene finders in N-

terminal verified genes from the six genomes.  

The genomes are classified as class one (strong RBS), class two (weak or no RBS), and 

class three (leaderless transcription with both promoter and RBS signals). 

Species No. of 
verified 
genes 

Genome 
class 

No. of verified genes predicted correctly 

GeneMarkS Glimmer Prodigal GeneMarkS-2 

A. pernix* 130 1 126 119 127 127 
E. coli 769 1 722 714 751 743 
H. salinarum* 530 3 501 457 514 515 
M. tuberculosis 701 1 575 572 620 633 
N. pharaonis* 315 3 310 293 309 307 
Synechocystis  96 2 82 79 92 91 

Total 2,541  2,316 2,234 2,413 2,416 

*Archaeal genomes 

  

                                                 

 

 
7
 http://www.ecogene.org/?q=verified_set 

http://www.ecogene.org/?q=verified_set


 29 

2.2.2 Algorithm design 

2.2.2.1 Genome modeling in GeneMarkS-2 

 The GeneMarkS-2 algorithm uses genome representation as a generalized hidden 

Markov model (GHMM, also known as HMM with duration or hidden semi-Markov 

model). The structure of some elements of the GHMM architecture, particularly the order 

of the Markov chains involved in modeling of protein-coding regions as well as the states 

for the upstream regulatory regions are selected automatically in the course of adaptive 

training. The GHMM parameters are derived by iterative unsupervised training. 

 The GHMM of GeneMarkS-2 (Figure 2.2) expands the GHMM model of 

GeneMarkS (Besemer, et al., 2001; Lukashin and Borodovsky, 1998). A protein-coding 

gene is modeled by a group of states including the protein-coding state and the states 

representing sequences around the gene start (upstream and downstream). We make 

distinction between the three types of upstream signals: a ribosomal binding site (RBS), a 

promoter box (in leaderless transcription), or an upstream ‘signature’ (in case the self-

training does not identify strong RBS or promoter signal). The RBS and promoter states 

emit fixed length ‘signal’ sequences (e.g. 6nt) described by the positional Markov model 

followed by a variable length spacer (distance between the gene start and the identified 

signal); parameters of the signal model and spacer length distribution are determined in 

self-training. The upstream signature state (introduced for the case of weak or no RBS 

signal) emits fixed length sequence adjacent to the start codon (e.g. 20nt) generated by a 

positional Markov chain model. We observed the three types of genomes: i/ with all 

genes preceded by an RBS, ii/ with a subset of genes preceded by an RBS, iii/ with first 

genes in operons or stand-alone genes preceded by promoter boxes (in genomes with 
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leaderless transcription) and the other genes with an RBS. In addition to the upstream 

signals, the gene start model includes the state emitting three nucleotides of the start 

codon as well as the follow up state emitting the downstream signature, a fixed length 

sequence (e.g. 12nt) generated by a positional Markov chain model.  

 The protein-coding state has several types, one typical and forty-one atypical. The 

sequence emitted from the typical or atypical state has variable length described by the 

gene length distribution fully determined by the gamma function with two parameters. 

The sequence emitted from a typical state is generated by a three-periodic fourth-order 

Markov model. The order four does not change during iterations in the main cycle 

(Figure 2.3), but can be reduced in subsequent adaptive training cycle (see below). 

Sequences emitted from the atypical state are generated by a heuristic three-periodic 

fifth-order Markov model (Zhu, et al., 2010). These parameters do not change in 

iterations. 
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Figure 2.2 State diagram of the GHMM of a prokaryotic genomic sequence as used 

in GeneMarkS-2. 

The arrows designate allowed transitions between the states. Only states for the direct 

strand are shown. The reverse strand is modeled by an identical set of states with 

directions of arrows reversed. The reverse strand states are connected to the direct strand 

states through the intergenic region state and states for opposite strand genes overlaps.   
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Figure 2.3 Workflow of the GeneMarkS-2 unsupervised training. 
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2.2.2.2 The self-training algorithm 

The GeneMarkS-2 self-training algorithm includes three major steps: initiation, 

iterative training (the main cycle), and adaptive training (Figure 2.3). In the initiation 

step, the algorithm uses pre-defined heuristic parameters (Zhu, et al., 2010) to create a 

parse of the input genomic sequence into protein-coding and non-coding (intergenic) 

regions. The heuristic models of protein-coding regions defined for each ‘1% GC content 

bin’ from 30% to 70% GC includes the following parameters: 1) transition probabilities 

of the three-periodic fifth-order Markov model of the protein-coding sequence, 2) 

transition probabilities of the second-order homogeneous Markov model for the 

intergenic sequence, 3) the length distributions of protein-coding and non-coding regions, 

and 4) the frequencies of start and stop codons. Notably, the heuristic parameters are used 

in MetaGeneMark for gene prediction in anonymous short metagenomic sequences when 

the genome-specific parameters are not available (Forsberg, et al., 2014; Karlsson, et al., 

2013; Nielsen, et al., 2014; Tyakht, et al., 2013). Initial genomic parse done with the 

heuristic models creates a robust initial training set that demonstrates some advantages 

over initiations made by Glimmer and Prodigal (Figure 2.4).   

After the initial parse of the genomic sequence is determined, the upstream 

sequences (40nt long fragments adjacent to the predicted gene starts) are selected for the 

first round of motif search performed by the Gibbs sampling. The results of the motif 

search are used to classify a given genome into one of the three categories mentioned 

above. 
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Figure 2.4 Sensitivity (Sn) and specificity (Sp) computed for the initial set of ORFs 

used in parameter estimation of the three gene finding tools in the ten genomes with 

whole genome annotation taken as a reference.  

The initial sets were obtained as stated above. The ten genomes were from the following 

species A. pernix, B. subtilis, E. coli, H. influenzae, H. salinarum, M. tuberculosis, M. 

genitalium, N. meningitidis, N. solfataricus and Synechocystis. 
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 The classification criteria are as follows: The discovered motif is considered 

“strong” if it is localized, i.e., more than 10% of genes have the same most frequent 

motif-to-start (spacer) length. If the distance from the start to the mode of the spacer 

length distribution is shorter than 15nt, the motif is classified as a ‘strong RBS’ (class 

one); otherwise it is classified as a ‘promoter box’ that appears due to absence of RBS at 

the first genes of operons and stand-alone genes (class three). Genomes without a strong 

localized motif are classified as class two. Representative species of class one, two, or 

three are E. coli, Synechocystis, and H. salinarum, respectively.  

 With the classification step finished, the motif finder runs the second time as 

follows. For a class one genome, motif search is limited to the 20nt upstream sequence to 

build the final RBS model. For a class two genome, the motif finder first scans the 20nt 

upstream sequences of all predicted genes to look for a putative ‘RBS word’ in the form 

of hexamer AGGAGG allowing two mismatches. For all genes that contain this ‘RBS 

word’ the motif finder builds an RBS model using 20nt upstream sequences. All the other 

upstream sequences are aligned at the start codon and a positional Markov chain model 

(upstream signature) of length 20nt is built. For a class three genome, the motif finder 

first determines if a gene is i/ the first in operon or a stand-alone gene that is supposed to 

be preceded by a promoter or ii/ a gene located inside an operon that is supposed to have 

an RBS. The rational is that in the class three genomes such as the archaeon H. 

salinarum, the first genes in operon and stand-alone genes were observed to have 

leaderless transcription (Slupska, et al., 2001). Therefore, those genes have a promoter 

signal close to the gene start (Torarinsson, et al., 2005). Each gene predicted in self-

training iterations is classified as first gene in operon or stand-alone gene if the upstream 
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gene is located in an opposite strand or is located on a distance >22nt; otherwise, it is 

classified as an internal gene. For the first-in-operon and stand-alone genes the motif 

finder builds a promoter model using 20nt sequence fragments located between positions 

-41 to -21 from the gene start. For internal genes, the motif finder builds an RBS model 

with 20nt long upstream sequences (from -20 to -1 position). 

 At the gene prediction step instead of the probabilistic Viterbi algorithm to decode 

the GHMM model, we use a mathematically equivalent dynamic programming approach 

in the log-odd space, with the log-odd scores computed for each ORF. The score of an 

ORF is defined as the sum of the start score and the CDS score. For an ORF sequence 

𝑥1𝑥2 … 𝑥𝑛 with the start codon 𝑥1𝑥2𝑥3, stop codon 𝑥𝑛−2𝑥𝑛−1𝑥𝑛,  GC content ϕ, and 

length n, the start score is defined in equation 6 and the CDS score is defined in Equation 

7, in which 𝑥−20𝑥−19 … 𝑥−1 denotes the upstream sequence, 𝑦1𝑦2 … 𝑦𝑘  denotes the RBS 

or promoter motif, k denotes the motif length, and Ma denotes the model for state a. The 

last term in equation 7 is the log-odd scores of the durations defined as described in 

(Lukashin and Borodovsky, 1998); here C is a constant depending on parameters Dc and 

Dn, the characteristic lengths in the gamma (protein-coding) and exponential (intergenic) 

length distributions, respectively.   

 For two overlapping genes a and b with lengths La and Lb, respectively, and the 

length of overlap m, a penalty Sovlp (equation 8) is added to the score. Then the dynamic 

programming finds the sequence of ORFs and intergenic regions that maximizes the total 

score in a given iteration.  
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 The main cycle of iterations of gene finding and parameter re-estimation runs 

until convergence. Given the first parse of the genome sequence made with heuristic 

models in the initiation step, all the predicted genes (with exception of the ones shorter 

than 300nt) are used as a training set to derive the parameters of the ‘native’ model and to 

make the second sequence parse (Figure 2.3). Next, with the second parse of the 

sequence defined, for each predicted ORF the score S of ORFs computed by the ‘native’ 

model is compared with the score S’ computed for the same ORF in the prediction by the 

locally adjusted heuristic model (only positive S’ are considered). If S is greater than S’ 

the ORF is included into the further training of the ‘native’ model; if S is smaller than S’, 

the ORF is retained as a potential ‘atypical’ gene and is excluded from training of either 
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‘native’ protein-coding model or a model for intergenic region. With all the predicted 

ORFs thus classified we proceed with a new iteration of estimation of the parameters of 

the ‘native’ protein-coding and the non-coding models. The main cycle stops when less 

than 1% of predicted ORFs change in comparison with the previous iteration.   

 After reaching the convergence, the algorithm proceeds with the additional 

‘adaptive training’ step in which the model structure is validated. First, the homogeneous 

second-order intergenic model derived from the main cycle is used to generate a 

simulated non-coding sequence of 1Mb in length. Then gene prediction with parameters 

defined in the main cycle is carried out for the artificial sequence. The percentage of 

ORFs predicted as genes is compared with a threshold empirically chosen to be 1.6%, 

which means 1.6% of the total number of ORFs (longer than 90nt) is predicted as genes. 

An error rate higher than the threshold would indicate some issues with the quality of the 

model training. This issue may result from insufficient sequence volume to estimate 

parameters of the fourth-order Markov model, weak start signal, or low relative entropy 

between models of protein-coding and non-coding regions. Thus, the order of the model 

of the protein-coding region is reduced by one and a new training cycle starts with the 

reduced order model, etc. If after two adaptive training steps the model order is reduced 

to two, yet the error rate is still higher than the threshold, the duration parameter of the 

atypical (heuristic) models is adjusted. Finally, all the ORFs predicted by the ‘native’ and 

‘atypical’ (heuristic) models are included into the output list of predicted genes. 



 39 

2.3 Results 

2.3.1 Assessment of gene prediction accuracy on the test sets of COG genes 

and artificial non-coding sequences 

To assess gene prediction performance of GeneMarkS, Glimmer3, Prodigal, and 

GeneMarkS-2 we used 115 bacterial and 30 archaeal genomes (Supplementary Table 1 

and Figure 2.1). We run the four gene finders on each genome with default options 

(except for the minimal gene length which was set to 90bp for all tools) and recorded the 

number of the unpredicted COG genes. The percent of missed COG genes of each 

genome was plotted against the genome GC content (Figure 2.5). The overall false 

negative rate for predicting COG genes is low for all the gene finders tested, with less 

than 2% missed COG genes for majority of genomes. GeneMarkS-2 displays the lowest 

average false negative rate and its prediction performance has least dependence on the 

GC content (Figure 2.5AB). To assess the differential gene finding accuracy for genes 

with different lengths, we selected groups of the COG genes with lengths between 90-

150nt, 150-300nt, 300-600nt, 600-900nt, or longer than 900nt, respectively, and showed 

number of missed COG genes in each bin (Figure 2.6A). Glimmer has significant lower 

false negatives for genes in the length range of 90nt-150nt compared to all the other tools. 

However, this comes at a cost of a significant increase in numbers of false predictions 

(Figure 2.6B). For the COG genes in all the other bins, GeneMarkS-2 shows better 

performance than the other three tools. The overall false negative rate of GeneMarkS-2 in 

prediction of the COG genes is only 0.3%. Note that in Figure 2.5BD we have shown 

‘zoomed in’ graphs of the error rates for only two gene finding tools, GeneMarkS-2 and 

Prodigal.  
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Figure 2.5 Measures of gene prediction accuracy for 115 bacterial and 30 archaeal 

genomes: % of missed COG genes – panels A and B; and % of random ORFs 

predicted as genes (panels C and B).  

Panels A and C show results for the four gene finders. Panels B and D show results for 

GeneMarkS-2 and Prodigal in zoomed-in scale in the Y axis. 
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Figure 2.6 Gene prediction accuracy assessed for the four gene finders for 115 

bacterial and 30 archaeal genomes.  

(A) Number of missed COG genes is shown for five length bins. The total number of 

COG genes in each bin is indicated above the bars. (B) The average number of random 

ORFs predicted as genes in 1Mb simulated non-coding sequence in the five length bins. 

(C) The percentage of random ORFs in simulated non-coding sequence predicted as 

genes is shown for sets with the minimal length cutoffs.  
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To assess false positive rates we used sets of species-specific artificial non-coding 

sequences generated as described in the section 2.2.1.1. Each gene finder was used with 

parameters estimated for the genome of the corresponding species. The rate of false 

positive predictions was defined as the ratio of random ORFs predicted as genes to the 

total number of random ORFs. The numbers of random ORFs longer than 90nt, averaged 

over 10 simulations of the species-specific non-coding sequence with length 1Mb, are 

shown in Figure 2.1C. The numbers depend on GC content and are lower for low and 

high GC genomes while reaching maximum at about 58-65% GC. GeneMarkS-2 was 

observed to have a significantly lower error rate, e.g. about 50% lower on average than 

the second best tool, Prodigal (Figure 2.5CD). The increased false positive rate of 

Prodigal in high GC genomes (Figure 2.5D) may be related to the observed tendency for 

predicting longer ORFs as genes (see below). A simulated non-coding sequence with 

high GC (up to 65%) contains more long ORFs than random sequences with lower GC. 

To assess the dependence of prediction performance on the ORF length, we 

grouped ORFs predicted in artificial non-coding sequences into GC bins (Figure 2.6B). 

Computing the fraction of non-coding ORFs predicted as genes was not quite 

straightforwad in this case since a predicted ORF might be shorter than the longest ORF 

in the same location. Therefore, we used a minimal length cutoff and calculated false 

positive rate as the number of predicted ORFs longer than the cutoff divided by the 

number of ORFs present in the sequence and longer than the cutoff (Figure 2.6C). 

GeneMarkS-2 demonstrated consistantly lower error rate than other tools for all the 

length thresholds. Glimmer perfomed well with the threshold of 300nt, while a large 

number of shorter ORFs was predicted as genes in the range 90-300nt (Figure 2.6B). 
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Prodigal, in contrast, has shown an increase in error rate in identification of ORFs longer 

than 300nt (Figure 2.6C). 

2.3.2 Assessment of gene prediction accuracy on the test sets of genes 

supported by proteomics 

Proteomics-supported gene sets (psORFs) were available for 58 species (see 

2.2.1.2). We identified the three types of errors: 1) a “missed” or false negative, if the 

psORF was not predicted; 2) a “wrong” prediction or false positive if the predicted gene 

overlapped for more than 20nt with a psORF situated in a different strand or frame; 3) a 

“shorter” gene prediction if the 3’ end of a psORF was predicted correctly but the gene 

start was predicted inside the psORF. 

Rather rarely, in 0.41% of cases, we could not locate a start-to-stop psORF with a 

valid start codon within a stop-to-stop psORF. These observations could occur for the 

following reasons: i) errors in the mass spectrum generation; ii) errors in the 

spectrum/peptide mapping inference; iii) mapping of the peptides to pseudogenes; iv) 

non-canonical features of a gene, e.g. stop-codon read-through or non-canonical start 

codon. We have estimated the fraction of cases that were due to reasons i) and ii) as 

0.16%. Since the single leftmost peptides mapped to an ORF could be erroneous, for the 

accuracy assessment we also selected sets of psORFs whose start locations were 

supported by at least 2 or 3 peptides (Figure 2.7). 

As the result of the assessment we have observed that GeneMarkS-2 sets of 

predictions had the least number of “missed” genes and the least number of “wrong” 

genes (Figure 2.7). In terms of gene start predictions, GeneMarkS-2 and Prodigal made 

significantly less numbers of “shorter” predictions compared with Glimmer and 
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GeneMarkS-1. Prodigal produced a slightly lower number of “shorter” predictions; 

however, the difference in the error rates (0.16%) turned out to be comparable to the 

estimated error rate of the evaluation method.  

 

Figure 2.7 Gene prediction accuracy assessed for the four gene finders on peptide-

supported ORFs. 

Each psORF had to have at least two supporting peptides to be included in the 

comparison. We recorded 1) psORFs “missed” in predictions; 2) predicted genes 

incompatible with observed psORFs if a predicted gene overlapped by more than 20nt 

with a psORF situated in a different strand or frame; 3) genes predicted “shorter” than a 

psORFs if the 3’ end of a psORF was predicted correctly but the gene start was predicted 

inside the psORF. We show the results for the sets of psORFs whose leftmost starts were 

supported by at least one, two, or three mapped peptides. 
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2.3.3 Assessment of accuracy of gene start prediction on the test sets of genes 

with experimentally verified starts 

The gene start prediction accuracy was further evaluated on the sets of genes with 

verified starts available for the six species (see 2.2.1.4). We observed that the new gene 

start model of GeneMarkS-2 improved gene start prediction significantly from 

GeneMarkS. For class one genomes such as E. coli, the RBS motif became more 

localized (Figure 2.8AA’). A dramatic change in the outcome of the motif search was 

observed in the class one genome of M. tuberculosis; the Gibbs3 method failed to find 

the RBS motif while MFinder in GeneMarkS-2 detected a very strong RBS (Figure 2.9). 

For Synechocystis, a class two genome, GeneMarkS-2 identified 26% of predicted genes 

as containing RBS. For these genes MFinder detected a strong and well-localized RBS 

motif (Figure 2.8B’); in contrast, Gibbs3 converged to an apparently random hexamer 

with a uniform spacer length distribution (Figure 2.8B). In H. salinarum, a class three 

genome, GeneMarkS-2 identified 78% of the predicted genes as ones with promoters 

initiating leaderless transcription. A well-localized model of the promoter motif was built 

for these genes (Figure 2.8C’). The remaining 22% of predicted genes were identified as 

having upstream RBS sites (Figure 2.8C’’). Overall, GeneMarkS-2 predicted 95% of 

gene starts correctly, the best performance among the four tools (Table 2.1). 
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Figure 2.8 Sequence logo and spacer (length between gene start and the identified 

motif) distribution of motifs detected by GeneMarkS-2 in E. coli, a genome of class 

one (A graphs), Synechocystis, a genome of class two (B graphs) and H. salinarum, a 

genome of class three (C graphs). 

For the H. salinarum genome, the motif finder first divides genes to the first in operons or 

stand-alone (with a promoter signal) or genes inside operon (with an RBS signal). For 

first in operons or stand-alone genes the motif finder builds a promoter model (C’) using 

20nt fragments (located in positions -41 to -21). For all internal genes, the motif finder 

builds an RBS model (C’’) using 20nt sequences located upstream to predicted starts. 
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Figure 2.9 Sequence logo of RBS motif model and spacer distribution determined by 

GeneMarkS (A) and GeneMarkS-2 (B) for the genome of M. tuberculosis. 
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2.3.4 Assessment of accuracy of gene prediction in pathogenic islands 

Four gene finders were run on 89 prokaryotic genomes that contain annotated 

pathogenicity islands (PAIs) with a total of 6,745 genes (see 2.2.1.3). The function was 

annotated for 3,768 of these genes. These genes are frequently characterized as genes 

with atypical composition that arguably were horizontally transferred from other species. 

The number of annotated genes missed in prediction was of interest. GeneMarkS-2 was 

more sensitive than other tools in predicting genes in the PAIs (Table 2.2). 

 

Table 2.2 Results of the assessment of gene prediction accuracy of the four gene 

finders in 222 pathogenicity islands (PAIs). 

The PAIs contained 6,745 genes with 3,768 functionally annotated. 

 No. of missed genes No. of missed genes with 
annotated function 

GeneMarkS 395 68 
Glimmer 424 123 
Prodigal 464 72 
GeneMarkS-2 399 61 

 

2.4 Discussion 

 While state-of-the-art ab initio gene finders show on average high accuracy in 

prokaryotic genomes, variability of the prokaryotic genomes still presents a challenge; 

errors in prediction of atypical genes, short genes, and gene starts are higher than it would 

be acceptable. GeneMarkS-2 was developed to improve gene prediction in prokaryotes. 

As shown in the Results section GeneMarkS-2 is the most sensitive among the four tested 

gene finders i.e. predicts larger numbers of the annotated genes with COG support 

(Figure 2.5 and Figure 2.6), genes with proteomic support (Figure 2.7), and genes in 
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pathogenicity islands (Table 2.2). The fraction of missed genes by GeneMarkS-2 is as 

low as 0.3% for COG genes and 0.2% for genes with proteomic support. 

 Although GeneMarkS-2 shows high sensitivity in predicting true genes, is does 

not sacrifice specificity. In fact, GeneMarkS-2 produces lower false positive rates than 

the other three tested gene finders. In simulated non-coding sequences only 0.6% random 

ORFs were predicted by GeneMarkS-2 as genes, while the corresponding values for 

Prodigal and Glimmer were 1.6% and 5%, respectively. Note that the false positive rate 

of GeneMarkS-2 is uniformly low across the whole range of GC content (Figure 2.5C) 

and ORFs length (Figure 2.6BC). Correct discrimination of short non-coding ORFs from 

short genes is a statistically challenging task. However, correct prediction of short non-

coding ORFs is important due to their abundance in genomes (Skovgaard, et al., 2001). 

 An elevated false positive rate in prediction of short ORFs would translate into a 

large number of erroneous predictions e.g. the case of Glimmer (Figure 2.6B). On the 

other hand, Prodigal assigns a large weight to the ORFs length; this leads to making 35% 

and 58% of mis-identification of random ORFs as genes when the ORFs are longer than 

600nt or 900nt, respectively (Figure 2.6C). Importantly, the complementary assessment 

of the gene prediction false positive rate in real genomic sequences in terms of ‘numbers 

of predicted genes incompatible with psORFs’ also shows better performance of 

GeneMarkS-2 in comparison with the other three gene finders (Figure 2.7).  

The new locally adjusted heuristic model used in GeneMarkS-2 contributes to the 

improvement of gene prediction sensitivity. Genes missed by the original GeneMarkS 

(Figure 2.10A) could be grouped into the three categories: 1) short genes (circled in 
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blue), 2) long genes with deviated GC content, mostly lower than the genomic one 

(circled in green) and 3) long genes with the same GC content as the genome (circled in 

purple). Almost all missed genes in group 2 were recovered by GeneMarkS-2 using the 

locally adjusted model (Figure 2.10B). These genes indeed are difficult to predict by the 

native model trained on the genome. Notably, the better prediction of long atypical genes 

improves overall self-training, as those long genes are removed from the training set of 

the non-coding model. As a result, prediction of genes in groups 1 and 3 also improved.   

GeneMarkS-2 misses only 0.04% of long COG genes (>600nt). Unlike the 

atypical genes missed by GeneMarkS, most long genes missed by GeneMarkS-2 have 

GC content similar to the one of the genome (Figure 2.10B); majority of the missed genes 

are from high GC genomes (Figure 2.10C). A closer examination of those genes revealed 

that many of them have frameshifts that disrupt the coding frame (Figure 2.10BC). We 

provide a graph of the protein coding potential for sequence containing for a gene 

‘GAU_2889’ (Figure 2.11) in the Gemmatimonas aurantiaca genome (GC% = 64%). In 

the graph generated by GeneMark (Borodovsky and McIninch, 1993)  the high coding 

potential abruptly moves from frame 1 to frame 3 near sequence position 600, thus 

exhibiting the pattern typical for the presence of a frameshift. The gene was annotated to 

have two coding fragments with 3’ ends at positions 1000 and 1750 respectively. 

Annotation of the first fragment includes significant section that would be translated out 

of frame (between positions 600 and 1000).  
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Figure 2.10 Depiction of COG genes (with length >90nt) missed by GeneMarkS (A) 

and by GeneMarkS-2 (B, C) in 115 bacterial and 30 archaeal genomes.  

The X axis in A and B shows the difference in GC content between the genes and the 

genomic sequence. In A panel genes in the green circle are rather long genes missed by 

GeneMarkS (with length > 500nt); their composition significantly deviates from the 

average genome GC content. Genes in the violet circle are rather long missed genes with 

the GC composition close to average GC content of a corresponding genome. Genes in 

the blue circle are rather short missed genes. Genes missed by GeneMarkS-2 are shown 

in panel B in the same X and Y co-ordinates. In panel C the X axis shows the GC content 

of the corresponding genomes. Dots depicting missed genes where frameshifts were 

identified are circled in red. Data in panel B shows that GeneMarkS-2 is able to predict 

long atypical genes missed by GeneMarkS (A). Panels B and C show that missing a long 

gene is frequently related to frameshifts, which lead to artefacts in prediction (missing 

gene fragments) with higher frequency in the GC-rich genomes.  
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Figure 2.11 The posterior protein-coding probabilities in all six frames are shown 

along the sequence. 

The gene GAU_2889 as annotated has two coding fragments with 3’ ends at positions 

1000 and 1750 respectively. Annotation of the first fragment includes significant section 

that will be translated out of frame. The black triangle in frame three indicates a 

frameshift. Horizontal black bars depict genes predicted by GeneMarkS-2. Genes with 

frameshifts present a challenge in terms of necessity of annotation of all the fragments 

with some of them not ending at a standard stop codon. The first fragment was not 

predicted, while the second fragment was. The figure was generated by the GeneMark 

graphics (Borodovsky and McIninch, 1993) 
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Genes with frameshifts present a challenge in terms of necessity of annotation of 

all their fragments with some of them not ending at a standard stop codon. While the 

second fragment was predicted, the first fragment was not and was counted as a “missed” 

COG gene. To continue this analysis further, we used an ab initio frameshift prediction 

tool MetaGeneTack (Tang, et al., 2013) to analyze all the missed COG genes. We found 

that 51% of genes longer than 500nt and 62% of genes longer than 1000nt missed by 

GeneMarkS-2 were likely to contain frameshifts (Figure 2.11BC). Allover, GeneMarkS-2 

almost always predicts long genes correctly; a miss or a partial miss of a long gene is 

likely to indicate a non-canonical feature such as a frameshift.  

Out of the 115 bacterial and 30 archaeal genomes in this study, 25 genomes had 

an estimated error rate higher than the threshold (1.6%) when using the 4
th

 order protein-

coding model during the stage of adaptive training. Nine out of the 25 genomes had a 

non-standard start model: they were either class two genomes (with weak RBS motif) or 

class three genomes (with promoter motifs and leaderless transcription). This observation 

indicated that a better gene start model not only could improve the prediction of gene 

starts but also could help better predict short genes and eliminate false positives. The 

RBS scores of the ORFs have significant impact on whether the ORFs would be 

predicted as genes (Figure 2.12). The correctly defined RBS score moves the total score 

of a large number of non-coding ORFs into a negative zone, thus eliminating them as 

gene candidates. At the same time, the RBS score increases the total score of true genes 

from negative to positive (with only one exception in Figure 2.12).  
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Figure 2.12 ORFs in E.coli whose total score has an inversed sign when using RBS. 

ORFs in the first quadrant have a positive total score with the RBS model but a negative 

score without it. ORFs in the third quadrant have a negative total score with the RBS but 

a positive score without it. ORFs with a negative total score will not be predicted while 

ORFs with a positive score are input to dynamic programming for gene prediction. ORFs 

that are predicted as genes through dynamic programming are marked in purple. 

 

  

  

-10

-8

-6

-4

-2

0

2

4

-8 -6 -4 -2 0 2 4

R
B

S 
sc

o
re

 

Total score 

starts in non-coding ORFs

starts of true genes

predicted



 55 

 As demonstrated in Results, GeneMarkS-2 significantly outperformed 

GeneMarkS in gene start prediction accuracy on the test sets of N-terminal-verified genes 

from the six genomes (Table 2.1) as well as on the test set of genes confirmed by 

proteomic data (Figure 2.7). This result is due to better genome-specific characterization 

of the translation initiation sequence as well as to the improved motif searching 

algorithm. The new motif finder (MFinder) incorporates length distribution in the object 

function and thus into the optimization of the motifs alignment.  

 Classification of the start model into the three categories not only improves gene 

prediction but also reveals the mechanism of translation initiation at the gene level. For 

example, our algorithm found 26% of predicted genes in Synechocystis to have an RBS 

and we were able to build a strong and well-localized motif (Figure 2.8B’). Interestingly, 

the motif consensus sequence is consistent with the previously described ‘core’ sequence 

that provided high translation efficiency in Synechocystis (Heidorn, et al., 2011). For H. 

salinarum with most genes lacking RBS sites due to leaderless transcription, 

GeneMarkS-2 was able to detect the promoter box motif (for the first genes in operon) as 

well as the RBS model (for internal genes) to improve start prediction (Figure 2.8C’ and 

Table 2.1). Thus, our approach is not only able to generate gene predictions, but also able 

to provide an insight into translation initiation mechanisms of novel genomes.  

For initial parameterization of GeneMarkS-2 we used a model with the heuristic 

parameters (Zhu, et al., 2010). The predicted ORFs served as the “initialization” training 

set for estimation of the parameters of the “native” model. For the three gene finders, 

GeneMarkS-2, Glimmer, and Prodigal we compared the initial training sets determined in 

the ten prokaryotic genomes. For Glimmer’s initial training a set of long ORFs is 



 56 

selected. Although a large percentage of them are true genes, many other true genes are 

excluded from training which is equivalent to rather low sensitivity in comparison with 

the whole genome annotation (Figure 2.4). The Prodigal strategy is to use a simple 

statistics to predict a large set of ORFs as the training set, and then to proceed with the 

discrimination of some ORFs based on the hexamer statistics and the RBS scores. This 

strategy of selection of the initial set produces ORFs with high sensitivity but with rather 

low specificity (Figure 2.4). The ORFs selected by heuristic models (with parameters that 

do not use any prior knowledge of the given genome other than GC content) immediately 

provide GeneMarkS-2 with the training set that has high sensitivity and specificity in 

comparison with the whole genome annotation (Figure 2.4). This analysis shows that the 

heuristic model is a robust tool for training initialization and for gene prediction per se. 

Notably, it has been successfully used for gene prediction in short metagenomic 

sequences. 

During adaptive training in GeneMarkS-2 artificial non-coding sequences were 

used to evaluate the false positive error rate. Note that these sequences are different from 

those used in the training set: they are simulated from models self-trained by 

GeneMarkS-2 without information from annotation. We compared the error rate in 

simulated sequences during training and the actual error rate observed in the test 

sequences for 115 bacterial and 30 archaeal genomes (Figure 2.13). There is a strong 

correlation between the estimated error rate and observed error rate (R2 = 0.811). 

However, the residuals (difference in error rates) get larger as the error rate moves from 

small to large.  
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Figure 2.13 Comparison of the false positive (FP) rate during training and testing. 

During adaptive training, the homogeneous second-order intergenic model derived from 

the main cycle is used to emit a random non-coding sequence of 1Mb in length. Then 

gene prediction is carried out on this sequence using dynamic programming. The false 

positive rate (the percentage of non-coding ORFs in the sequence predicted as genes) is 

compared with the threshold of 1.6% to determine if reducing the order of the coding 

state is necessary. To evaluate final gene prediction accuracy, we collected all non-coding 

sequences from RefSeq annotation to train a second-order Markov model for each 

genome. This model was used to generate ten artificial random non-coding sequences, 

each with length 1Mb as a test set. The false positive rate on the training sequence and 

the average false positive rate in the 10 testing sequences for each genome are shown. 
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2.5 Software availability 

The GeneMarkS-2 software is freely available for academic research and can be 

downloaded from topaz.gatech.edu/GeneMark/license_download.cgi. 

http://topaz.gatech.edu/GeneMark/license_download.cgi
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CHAPTER 3  
AB INITIO GENE PREDICTION IN RNA TRANSCRIPTS 

 

Abstract  

Massive parallel sequencing of RNA transcripts by the next generation technology 

(RNA-Seq) is a powerful method of generating critically important data for discovery of 

structure and function of eukaryotic genes. The transcripts may or may not carry protein-

coding regions. If protein coding region is present, it should be a continuous (spliced) 

open reading frame. Gene finding in transcripts can be done by statistical as well as by 

alignment-based methods. We describe a new tool, GeneMarkS-T, for ab initio 

identification of protein-coding regions in RNA transcripts assembled from RNA-Seq 

reads. Unsupervised estimation of parameters of the algorithm is an important feature of 

GeneMarkS-T. It makes unnecessary several steps in the conventional gene prediction 

protocols, most importantly the manually curated preparation of training sets. We 

demonstrate that i/ the GeneMarkS-T self-training is robust with respect to the presence 

of errors in assembled transcripts and ii/ accuracy of GeneMarkS-T in identifying 

protein-coding regions and, particularly, in predicting gene starts compares favorably to 

other existing methods. 
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3.1  Introduction 

Prior to the advent of next generation sequencing (NGS), transcriptome data were 

scarce and limited to full mRNA and EST libraries covering at best a few hundred genes 

of a given species (Garber, et al., 2011). The RNA-Seq technology (Wang, et al., 2009) 

generates a vast number of short reads that demanded procedures for assembly of single 

reads into complete transcripts. Many methods were developed to reconstruct full length 

transcripts. The reconstruction quality by a number of assembly tools was evaluation by 

the international RNA-seq Genome Annotation Assessment Project (RGASP) consortium 

(Steijger, et al., 2013). The important next step in transcript downstream analysis is the 

transcript annotation, particularly identification of protein-coding regions. 

Finding genes in transcripts by mapping known proteins can be successfully 

implemented only if the protein products of encoded genes have homologs in existing 

protein databases.  Discovery of novel genes requires methods that are alignment-free.  

Earlier developed ab initio gene prediction methods for EST and cDNA sequences, such 

as ESTscan (Iseli, et al., 1999), used HMMs and required curated training sequences for 

estimation of model parameters. The supervised training protocol adds downtime that 

makes application of such tools less practical. The SVM-based method CONC (Liu, et 

al., 2006) was developed to identify transcripts that contain protein-coding genes and 

discriminate them from non-translatable transcripts. Since CONC does not parse 

transcripts into coding and non-coding regions we were not able to use this method in 

comparisons of gene prediction tools where we have to compare predicted gene borders. 

A recent ab initio tool, TransDecoder, a companion of the de novo transcriptome 
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assembler Trinity (Haas, et al., 2013), generates the training set by a simple automatic 

procedure that identifies long open reading frames (ORFs) in the assembled transcripts.  

Self-training has already been used in algorithms for ab initio gene finding in 

prokaryotic genomes, particularly in the frequently used GeneMarkS (Besemer, et al., 

2001), Prodigal (Delcher, et al., 2007; Hyatt, et al., 2010), and Glimmer3 (Delcher, et al., 

2007; Hyatt, et al., 2010). Those tools were developed for prokaryotic genomes, but they 

can be used to predict intronless genes in eukaryotic transcripts. 

Here we present a new algorithm, GeneMarkS-T that extends the ability of 

GeneMarkS to predict prokaryotic genes to identification of continuous (intronless) 

protein-coding regions in eukaryotic transcripts assembled from RNA-Seq reads or 

generated by  Sanger technology (EST or cDNA sequences). For both biological (e.g. 

presence of alternative isoforms) as well as technological reasons (e.g. erroneous 

assembly) several protein-coding genes could be predicted in a single transcript. 

However, we assume that a correctly spliced and reconstructed eukaryotic transcript 

should carry a single functional protein-coding gene. Two or more genes in a single 

transcript would make an operon structure typical for bacteria. With few exceptions 

eukaryotes possess no operon organization. When two or more protein-coding regions are 

predicted, GeneMarkS-T assigns a log-odds score to each prediction. We show that the 

gene with the max log-odds score in a given correctly assembled transcript has a high 

likelihood to be the true gene. 

Transcriptomes of large eukaryotic genomes may exhibit significant variation in 

nucleotide composition. This inhomogeneity complicates algorithm training and affects 
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the accuracy of gene prediction. This difficulty can be addressed by clustering the whole 

set of transcripts based on GC content and deriving several cluster-specific models of the 

protein-coding regions. 

Accurate identification of the translation initiation site (TIS) is not a simple task. 

Although it is often assumed that the 5’-most AUG codon in a protein coding ORF serves 

as the true TIS, this is not always the case. True TIS sites were shown to appear in the 

sequence context known as the Kozak pattern (Kozak, 1987) with relatively weak 

positional preference for certain nucleotides around the AUG codon. Assessment of 

accuracy of TIS predictions requires a sufficient number of genes with experimentally 

verified TIS positions. The recently introduced ribosome profiling, the Ribo-seq 

technique (Ingolia, et al., 2009) makes it possible to generate large sets of genes with 

verified TIS positions. This technique uses deep sequencing of mRNA fragments 

protected by initiating ribosomes (Lee, et al., 2012) to generate a profile of TIS positions. 

Such dataset can be used as test sets to determine accuracy of TIS predictions. 

3.2  Methods 

3.2.1 The GeneMarkS-T algorithm design 

The GeneMarkS-T and GeneMarkS (Besemer, et al., 2001) algorithms share several 

parts: i/ the heuristic method of initialization of the hidden semi-Markov model (HSMM) 

parameters (Besemer and Borodovsky, 1999), ii/ the Viterbi algorithm that finds 

maximum likelihood parse of transcript sequence into coding and non-coding regions, 

and iii/ the concept and the method of  iterative self-training (Besemer, et al., 2001).  
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Figure 3.1 Flowchart diagram of the training and prediction steps in GeneMarkS-T. 
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Important differences between GeneMarkS-T and GeneMarkS are as follows. 

Contrary to rather short prokaryotic genomes with rather homogeneous GC content 

across genome, variation in local GC content across much longer eukaryotic genomes 

may reach 30-40%. Several groups have shown that genomic sequence GC content is one 

of the major factors driving the genome-wide pattern of codon usage (Besemer and 

Borodovsky, 1999; Chen, et al., 2004). Therefore, the first step of GeneMarkS-T is 

clustering transcripts by GC content (Figure 3.1). The number of clusters is determined 

with respect to the width of the GC composition distribution in the whole set of 

transcripts. The precise GC borders of clusters are adjusted automatically to place the 

same volume of sequence in each cluster. The iterative self-training in each cluster runs 

similarly to that described for GeneMarkS (Besemer, et al., 2001). The procedure starts 

with initialization of the cluster-specific heuristic model (Besemer and Borodovsky, 

1999). Then rounds of predictions of protein-coding regions, selecting new set of 

sequences of predicted genes for training and re-estimation of parameters follow until 

convergence, i.e. the set of predicted genes in the current (final) iteration is the same as in 

the previous iteration. If the total length of transcript data is not large enough for self-

training, the heuristic parameters serve as the final parameters and predictions made with 

heuristic parameters are accepted as final (Figure 3.1). The rationale is the earlier 

demonstration that heuristic parameters give sufficiently accurate predictions of 

continuous protein-coding regions in short prokaryotic sequences, e.g. in metagenomic 

sequences (Besemer and Borodovsky, 1999; Zhu, et al., 2010).  
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GeneMarkS-T uses an iteratively derived positional frequency model of the 

sequence around eukaryotic TIS known as the Kozak pattern (Kozak, 1987). The matrix 

of frequencies is determined from the multiple sequence alignment of 12nt-long 

fragments surrounding predicted gene starts with nucleotide A situated in position seven.  

Recently introduced strand-specific RNA-Seq technology (Vivancos, et al., 2010) 

carries information on the DNA strand that served as a template for transcription. If this 

information is available GeneMarkS-T changes the hidden semi-Markov model 

architecture to reduce the rate of false positive predictions. The hidden states of HSMM 

standing for the protein coding regions situated in the non-transcribed DNA strand are 

effectively eliminated. In what follows GeneMarkS-T with the strand-specific HSMM 

modification is designated as GeneMarkS-T(S). 

In each analyzed transcript GeneMarkS-T scores all predicted, complete or 

incomplete, continuous protein-coding regions and selects the one with the highest score. 

This score is calculated as the log-odd ratio of the probability of the sequence goes 

through the coding or non-coding hidden state. For computing the log-odd scores we used 

the trained models of protein-coding and non-coding sequences as well as their length 

distributions. The distribution of lengths of protein coding region is modeled as the 

gamma distribution while the distribution of length of non-coding sequences is modeled 

by the exponential distribution (Lukashin and Borodovsky, 1998).  
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3.2.2 Test set preparation 

We have prepared the set of ‘complete’ reference transcripts from protein-coding 

mRNA sequences of A. thaliana. D. melanogaster, M. musculus, and S. pombe. We 

downloaded from the RefSeq database mRNA sequences with accession numbers that 

begin with the prefix “NM_” indicating curated RefSeq records. We removed records 

with no annotation for start or stop codon, with frameshifts in annotated protein coding 

regions, or with stop codon read-through. We also removed records with no annotated 

untranslated regions (UTRs), which is a strong sign that the record was generated from 

computational gene prediction rather than from experimentally observed RNA transcript. 

We removed mouse and fly transcripts representing alternative isoforms with the same 

annotated function; only one isoform, selected at random, was kept per gene. The 

numbers of downloaded RefSeq sequences and the numbers of sequences in the final set 

of ‘complete’ reference transcripts are shown in Table 3.1. 

 

Table 3.1 Composition of the test sets of ‘complete’ reference transcripts. 

 

Species No. of mRNAs 
in RefSeq 
database* 

No. of records 
with “NM_” 

prefix 

No. of transcripts 
after filtering (see 

methods) 

S. pombe 5,123 4,841 4,655 

M. musculus 77,925 28,887 18,937 

D. melanogaster 30,264 30,264 13,241 

A. thaliana 35,173 35,173 28,805 

* Data were downloaded in October 2014. 
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For computational experiments with assembled transcripts we generated five sets 

of assembled transcripts of D. melanogaster using the following approach. The authors 

of  the latest comprehensive study of the accuracy of transcript reconstruction from RNA-

Seq reads (Steijger, et al., 2013) used several tools including Cufflinks (Roberts, et al., 

2011), Augustus (Stanke, et al., 2006), Velvet (Zerbino and Birney, 2008), Oases 

(Schulz, et al., 2012), and Exonerate (Slater and Birney, 2005). The authors of (Steijger, 

et al., 2013) made available to us the genomic co-ordinates of the exons of assembled 

transcripts which we used to “splice” together the sequences of transcripts assembled by 

the five tools mentioned above and analyzed in the course of previous research work 

(Steijger, et al., 2013).  Additionally we constructed a set of 24,804 reference transcripts 

of D. melanogaster from co-ordinates provided by the authors of (Steijger, et al., 2013) 

who used the FlyBase genome annotation (FB2013_01). We removed from this set 350 

transcripts with annotation indicating incomplete genes or some non-canonical features 

(frameshifts or stop codon read-through), 70 pseudo genes, and 786 non-protein-coding 

RNAs (ncRNA, tRNA, snoRNA, etc.). The final set contained 23,598 reference 

transcripts that were used for comparison with assembled transcripts to assess the 

accuracy of both sequence assembly and gene prediction. 

We also prepared a set of ‘partial’ reference transcripts to simulate incomplete 

transcripts reconstructed from RNA-Seq reads. To come up with a realistic dataset we 

have analyzed the structure of transcripts observed in sequencing experiments. First, we 

aligned the transcripts of D. melanogaster assembled by the five assembly programs 

mentioned above to the D. melanogaster reference transcripts used in (Steijger, et al., 

2013). Next, we determined the relative frequency of presence of reference fragment 
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parts in the assembled transcripts (Figure 3.2). This analysis indicated that it is common 

to observe partial transcripts depleted on both ends. Therefore, we simulated partial 

transcripts by taking complete transcripts with 10% of sequence trimmed in each end. 

For accuracy assessment of translation initiation site prediction, we used 

information of the TISs of protein coding regions in the mouse transcripts verified by the 

Ribo-seq experiments (Lee, et al., 2012). We used a conservative approach and selected 

1,455 transcripts that had only one Ribo-seq identified TIS which matched the annotated 

TIS; in this set genes longer than 300bp were observed in 1,392 transcripts.  
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Figure 3.2 Length distribution of reference and reconstructed transcripts.  

(A) Length distributions of reference D. melanogaster transcripts (RefSeq transcripts) as 

well as transcripts reconstructed from RNA-Seq reads by Cufflinks, Augustus, Exonerate, 

Velvet and Oases; (B) Frequency of observing particular transcript section being present 

in assembled transcripts (shown in relative transcript coordinates). Here top values of the 

relative frequency are close to 1.0. Note that this graph should not have an integral under 

the curve equal to one as the transcript sections are arguments for separate random 

variables (present or not-present). 
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3.2.3 Aligning Assembled and Reference Transcripts 

We used BLASTn to align the D. melanogaster transcripts reconstructed by the 

five methods (Cufflinks, Augustus, Velvet, Oases, and Exonerate) to the reference 

transcripts. The alignment threshold E-value was set to 0.001. Note that both the 

assembled transcripts and the reference transcripts were given in the form of exon co-

ordinates (annotation) on the genomic sequences. To get reference and assembled 

transcripts the exons were spliced from genomic sequences in Flybase (FB2013_01). 

Therefore, in the alignments we required 100% nucleotide identity.  

An assembled transcript was classified as ‘concordant’ if it had a section that 

could be aligned without gaps to the whole coding region (or to its continuous part) in the 

reference transcript (Figure 3.3, a-c). The alignment was not attempted to be made in the 

UTR sections of reference transcripts. Still the requirement was that the ‘UTR section’ of 

assembled transcript (situated upstream or downstream of the ‘coding’ section aligned to 

the reference transcript coding region) would not be longer that the reference UTR by 

300bp (Figure 3.3c). If an assembled transcript did not have a section that could be 

aligned without gaps to annotated coding regions of reference transcripts (Figure 3.3, d-

f), or the ‘UTR section(s)’ of assembled transcripts was longer than the reference UTR(s) 

by 300bp (Figure 3.3g), the assembled transcript was classified as ‘conflicting’. 

Assembled transcripts that could not be aligned to references with E-values better than 

0.001 were classified as ‘not-aligned’.   
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Figure 3.3 Examples of concordant (green) and conflicting (red) transcript 

assemblies. 

‘Concordant’ transcripts have ungapped BLASTn alignments to reference CDS (dark 

blue) (a-c); extension beyond the limit of reference UTR is not longer than 300bp (c). 

‘Conflicting’ transcripts are those that contain gaps in alignment to reference CDS (d-f) 

or/and have a long extension (> 300bp) beyond reference UTR (g). 
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3.2.4 Assessment of Gene Prediction Accuracy 

Along with GeneMarkS-T we assessed performance of ESTscan 2.1 (Iseli, et al., 

1999) and TransDecoder (http://transdecoder.sourceforge.net),  specialized tools for gene 

prediction in transcripts, as well as Prodigal (Hyatt, et al., 2010) version 2.60 used in the 

model of prediction “intronless genes”.  

The accuracy of gene prediction in the test sets was determined by comparison 

with annotation. A prediction that correctly identified the reading frame was treated as a 

true positive prediction (TP); a correctly predicted reading frame would entail an exact 

match between predicted and annotated stop codons (for genes complete on the 3’ end). 

Sensitivity (Sn) and specificity (Sp) of a set of predictions was computed as 

Sn=#TP/(#TP+#FN) and Sp=#TP/(#TP+#FP), respectively, where #FN stands for the 

number of false negative and #FP stands for the number of false positive predictions.  

We classify a prediction as “false positive” if it does not match the annotation (in 

terms of match between the predicted and annotated stop codons). Notably, 

computational science operates with true sets and false sets to evaluate classification 

algorithms. This approach is difficult to implement in full in genome analysis and, 

particularly, in gene prediction. We do use the true set, the set of annotated genes. 

However, we do not have a verified set of “non-genes”. It is difficult to prove 

experimentally that a particular segment of a nucleotide sequence is not expressed as a 

part of a protein coding gene. Therefore, what we use essentially as a surrogate “non-

genes” are the sequences of open reading frames that are not annotated as genes.  



 73 

In the test runs, all the parameters of each program were set to default values 

except for the threshold defining the shortest length of predicted gene. The threshold 

influences the balance between Sn and Sp; the shortest length of predicted gene was 

varied to generate ROC-like dependencies. If the minimum gene length was not among 

adjustable program settings, as in Prodigal, predicted genes shorter than the selected 

threshold were filtered out in post-processing. GeneMarkS-T and TransDecoder have 

standard “strand specific” options for analyzing transcripts generated by assembly of 

stranded RNA-Seq reads. To emulate such an option for Prodigal we filtered out protein-

coding regions predicted in the designated complementary strand. 

3.3  Results 

3.3.1 Accuracy of Gene Prediction in RNA Transcripts 

GeneMarkS-T, Prodigal, TransDecoder, and ESTscan were used to make gene 

predictions in the sets of ‘complete’ as well as ‘partial’ reference transcripts from A. 

thaliana, D. melanogaster, M. musculus, and S. pombe. The total numbers of genes 

predicted in a given set of transcripts could vary depending on the allowed minimum 

length of predicted gene. We have changed this threshold parameter from 90bp to 480bp 

with 30bp steps. For each set of predicted genes we computed Sn and Sp values based on 

the reference transcript annotation. The dependence of Sn value on 1-Sp for each gene 

prediction tool can be plotted as a chart similar to the receiver operating characteristic 

(ROC) curve (Figure 3.4 and Figure 3.5). The upper right point of each curve is obtained 

when all predicted genes longer than 90bp are included into consideration. We did not 

make graphs for ESTscan since we were not able to achieve high enough performance 

(i.e. for mouse, ESTscan produced Sn=0.53 and Sp=0.54). We believe that the results 
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could be improved if ESTscan used self-training. However, without such an option we 

had to select one among available models, e.g. human model for analysis of mouse 

transcripts. 

For the ‘complete’ reference transcripts, both strand-blind GeneMarkS-T and 

strand-specific GeneMarkS-T(S) demonstrated significantly better performance, 

especially in Sp, than the two other tools (Figure 3.4). In experiments with ‘partial’ 

reference transcripts (Figure 3.5) the Prodigal and TransDecoder were closer in 

performance to GeneMarkS-T in terms of Sn. The values of minimal gene length that 

delivered the best values of prediction accuracy ((Sn+Sp)/2) for GeneMarkS-T, Prodigal, 

and TransDecoder, were 150bp, 210bp, and 270bp respectively. As expected, we did 

observe that adding strand-specific information, transition to the gene finders (S) 

versions, increased the Sp value for each of the three gene finders (Figure 3.4 and Figure 

3.5).  

In the sets of M. musculus and D. melanogaster transcripts GeneMarkS-T 

automatically identified inhomogeneity of the transcript GC composition and grouped the 

transcripts into three GC content bins. The GC ranges were 31%-46%, 46%-52%, and 

52%-76% for the mouse transcripts, and 27%-48%, 48%-51%, and 51%-63% for the fly 

transcripts. The subsequent self-training done separately in each of the three clusters 

produced better Sn value than in the absence of clustering (Figure 3.1).  
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Figure 3.4 The values of gene prediction sensitivity (Sn) as functions of gene 

prediction specificity (1-Sp) for TransDecoder, Prodigal, and GeneMarkS-T on the 

test sets of ‘complete’ reference transcripts of A. thaliana, D. melanogaster, M. 

musculus, and S. pombe.  

The three gene prediction methods were applied in both strand blind and strand specific 

(S) modes. To make the ROC-like curves we generated sets of predicted genes with size 

controlled by the shortest allowed predicted gene length. This parameter was changing 

from 90bp to 480bp (with 30bp step); as the minimal allowed length of predicted genes 

increases the point in the graph moves from higher Sn to lower Sn.  
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Figure 3.5 Same as in Figure 3.4 for gene prediction in the ‘partial’ reference 

transcripts of A. thaliana, D. melanogaster, M. musculus, and S. pombe.  

The ‘partial’ transcripts were made by trimming 10% of sequences on both 5’ and 3’ end 

of the complete transcripts (see a justification of this method in the text). The three gene 

prediction tools were used in both strand blind and strand specific (S) modes.    
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Table 3.2 Characteristics of GeneMarkS-T accuracy of gene predictions in reference 

transcripts of M. musculus and D. melanogaster. 

GeneMarkS-T was self-trained with or without dividing transcripts into more G+C 

homogeneous sets (clusters). The borders of the three clusters were set as 0.31, 0.46, 0.52 

and 0.76 for M. musculus and 0.27, 0.48, 0.51 and 0.63 for D. melanogaster. The mgl 

(minimal gene length) value was 300bp. 

Species # of clusters TP FP Sn Sp 

D. melanogaster 
1 12,007 370 90.7 97.0 

3 12,236 374 92.4 97.0 

M. musculus 
1 18,346 303 96.9 98.4 

3 18,380 269 97.1 98.6 
 

More than one coding region (longer than 300bp) was initially predicted by 

GeneMarkS-T in some transcripts (2.5% of A. thaliana, 9.4% of S. pombe, 6.0% of D. 

melanogaster, and 20.4% of M. musculus). Such an outcome is possible if a transcript 

comes from a genomic locus where splicing mechanism generates alternative isoforms. 

For instance, protein-coding exons related to one isoform could appear outside the 

protein coding region related to another isoform (Figure 3.6A). Interestingly, frequent 

predictions of multiple coding regions were observed in transcripts of S. pombe, a species 

not known for ubiquitous alternative splicing. This observation is likely to be typical for 

genomes that have short intergenic regions and long UTRs. The long UTRs of S. pombe 

transcripts may overlap adjacent genes situated in the complementary strand (Figure 

3.6B). Not surprisingly, a significant gain of accuracy was observed for S. pombe after 

switching to the strand-specific versions of the gene finders (Figure 3.4 and Figure 3.5).  

When GeneMarkS-T predicted several coding regions in a single transcript, the 

prediction with maximum log-odd score was retained. This approach produced 93% 
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success rate in selecting the ‘true’ coding region for A. thaliana, 74% for D. 

melanogaster, 98% for M. musculus, and 62% for S. pombe. In S. pombe, reduction of the 

success rate was caused by overlaps between the gene UTRs and genuine coding regions 

of adjacent genes located in complementary strand (e.g. Figure 3.6B). As mentioned 

above, use of the strand-specific version of the program was able to eliminate much of 

the noise.  

Further on, we have also studied how gene prediction accuracy depends on the 

volume of transcripts used in training. We sampled randomly several sets of reference 

transcripts different in volume to perform self-training and prediction. We observed that 

if the volume is larger than 600Kb, GeneMarkS-T and Prodigal reached a plateau where 

the performance is steady and the (Sn+Sp)/2 value is close to 96% for GeneMarkS-T and 

94% for Prodigal (Figure 3.7). TransDecoder accuracy had a similar pattern of change 

with the plateau at 91% reached at the volume of 1Mbp. At 100Kb volume the 

performance is still high: 90% for GeneMarkS-T and Prodigal, and 80% for 

TransDecoder. The minimum sequence volume needed for self-training for Prodigal was 

20Kb while for GeneMarkS-T the limit is even lower. The reason is that below 50Kb 

sequence volume, GeneMarkS-T automatically switches to use of heuristic models whose 

parameters could be determined for a sequence fragment as short as 400bp (Besemer and 

Borodovsky, 1999). 
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Figure 3.6 Examples of more than one coding regions predicted in a transcript.  

We show pre-spliced transcripts, with exons defined by annotation shown as wider bars 

(green color – UTR, dark green - CDS), protein-coding exons predicted by GeneMarkS-T 

are shown as red bars; genomic sequences are shown as gray bars. (A) Two transcripts 

were annotated in the same genomic location of the D. melanogaster genome 

(NM_001275246.1 and NM_206418.3). The FP prediction (the downstream gene in the 

complementary strand) is a part of the coding region in an alternative isoform of the 

CapaR gene. (B) The 5’ UTR of the S. pombe transcript NM_001020436.2 overlaps with 

another transcript NM_001020437.2. GeneMarkS-T made two predictions in 

NM_001020436.2, in the direct strand (FP) as well as in the complementary strand (TP). 

The figure was made with the NCBI RefSeq sequence viewer. 
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Figure 3.7 Dependence of average Sn and Sp of the three gene prediction tools 

trained on the sets of D. melanogaster transcripts having different total size (the X 

axis shows the total length, log scale).  

The sets of transcripts were sampled randomly from the reference transcripts. A set of 

transcripts of given size was sampled 50 times to generate the average Sn and Sp values. 

Minimal length parameter that achieves best overall average Sn and Sp was selected for 

each program (150bp for GeneMarkS-T, 210bp for Prodigal, and 270bp for 

TransDecoder). 
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3.3.2 Model Training and Gene Predictions in Reconstructed Transcripts 

A comprehensive assessment of the accuracy of several tools of transcript 

reconstruction from RNA-Seq reads was conducted in RGASP competition (Steijger, et 

al., 2013). It was shown that assembled transcripts frequently contain errors and only a 

subset of all transcripts could be fully recovered. The observed average length of 

assembled transcripts was shorter than that of reference transcripts, particularly the 

average lengths of de novo assemblies made by Oases and Velvet (Figure 3.2A). Would 

the errors present in transcript assemblies affect the self-training of GeneMarkS-T? To 

address this question we trained GeneMarkS-T on the sets of D. melanogaster transcripts 

assembled by Cufflinks, Augustus, Velvet, Oases, and Exonerate (Roberts, et al., 2011; 

Schulz, et al., 2012; Slater and Birney, 2005; Stanke, et al., 2006; Zerbino and Birney, 

2008). The model parameters estimated on the five training sets of assembled transcripts 

were used in GeneMarkS-T to predict protein-coding regions in the reference set of D. 

melanogaster transcripts. The results visualized as graphs of the dependencies of 

observed Sn on the 1-Sp values (Figure 3.8) showed almost no difference with the graph 

depicting Sn dependence over 1-Sp obtained for the case of the parameter training on the 

reference transcripts. Thus, the GeneMarkS-T training procedure was shown to be robust 

with respect to transition from “ideal” transcripts to real transcripts.  
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Figure 3.8 Dependence of GeneMarkS-T prediction accuracy on the training set 

type.  

The GeneMarkS-T models were trained either on the sets of D. melanogaster transcripts 

assembled by the five transcript reconstruction tools or on the set of reference transcripts. 

The predictions were compared with annotations of coding regions in the reference 

transcripts. 
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Figure 3.9 Numbers of the three types of assembled transcripts (concordant, 

conflicting, and not-aligned) as observed in sets of D. melanogaster transcripts 

assembled by the five methods (depicted in bars A).  

Numbers of the three types of events: GeneMarkS-T predicting i/ more than one, ii/ 

single and iii/ none coding regions, in D. melanogaster reference transcripts (depicted in 

bars B). Predicted coding regions with length less than 300bp were discarded. 
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Significant fractions of the assembled D. melanogaster transcripts were 

characterized as ‘conflicting’ (from 17% to 47%, depending on the transcript 

reconstruction tool, see Figure 3.9, bars labeled ‘A’); Cufflinks, Exonerate and Oases 

produced larger numbers of ‘conflicting’ transcripts than Augustus and Velvet. Multiple 

coding regions were predicted more frequently in the ‘conflicting’ transcripts (Figure 

3.10) than in the ‘concordant’ transcripts (in transcripts assembled by Cufflinks, 

Exonerate, and Oases the frequency of multiple predictions was higher than in transcripts 

assembled by Augustus and Velvet).  

Reciprocally, in the whole set of assembled transcripts where GeneMarkS-T 

predicted multiple coding regions, the fraction of ‘conflicting’ transcripts was high (e.g. 

90% for the set of transcripts assembled by Cufflinks). Thus, prediction of multiple 

coding regions in a transcript indicated a higher chance for the transcript to be in the 

‘conflicting’ category and to carry some discrepancies in the transcript assembly in 

comparison with the reference transcript. Still, prediction of multiple coding regions in a 

transcript could indicate that the genomic locus encodes alternative isoforms (as 

illustrated in Figure 3.6). 

Very short coding regions are rare and are rarely predicted. Therefore, if an 

assembled transcript (complete or incomplete) is short it is very likely that no gene will 

be predicted. Indeed, the gene finding tools used in this study did not predict genes in 

many transcripts assembled by the de novo methods (Velvet and Oases, Figure 3.9), 

notably, many of these transcripts were too short (Figure 3.2A). 
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We observed significantly larger frequencies of prediction of single coding 

regions in the ‘concordant’ assemblies than in ‘conflicting’ assemblies (see Figure 3.10 

made for GeneMarkS-T predictions). The distribution of numbers of predictions of single 

coding regions for the two other gene prediction tools shows similar distribution patterns 

(Table 3.3). Thus, we can argue that all the three tools predict single coding regions in 

‘concordant’ assemblies with much higher frequencies than in ‘conflicting’ ones. 

 

Table 3.3 Numbers of the three types of events: 

Predicting i/ more than one, ii/ single and iii/ none coding regions by GeneMarkS-T, 

Prodigal, and TransDecoder in D. melanogaster transcripts of concordant type 

reconstructed from RNA-Seq reads by Cufflinks, Augustu, Exonerate, Velvet, and Oases. 

The mgl value was 300bp. 

 

Assembly 
method 

# of 
concordant 
transcripts 

Prediction 
tool 

# of predicted coding regions 

>1 1 0 

Cufflinks 7,886 

GeneMarkS-T 236 7,220 430 

Prodigal 184 7,188 514 

TransDecoder 483 6,828 575 

Augustus 9,834 

GeneMarkS-T 191 9,446 197 

Prodigal 139 9,431 264 

TransDecoder 502 9,017 315 

Exonerate 7,375 

GeneMarkS-T 231 6,971 173 

Prodigal 189 6,985 201 

TransDecoder 537 6,612 226 

Velvet 11,032 

GeneMarkS-T 135 7,320 3,577 

Prodigal 109 7,244 3,679 

TransDecoder 324 6,967 3,741 

Oases 21,409 

GeneMarkS-T 306 13,830 7,273 

Prodigal 297 13,653 7,459 

TransDecoder 696 13,221 7,492 
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Figure 3.10 Numbers of the three types of events: GeneMarkS-T predicting i/ more 

than one, ii/ single and iii/ none coding regions, in D. melanogaster concordant (bars 

A) and conflicting transcripts (bars B).  

The minimal gene length (mgl) value was 300bp. Events of prediction of multiple coding 

regions were registered prior to selecting ‘reported’ predictions with highest log-odd 

score. 
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From the sets of ‘concordant’ assemblies generated by the five tools we removed 

those transcripts where GeneMarkS-T predicted multiple protein-coding regions. 

Annotation of protein-coding regions in the assemblies selected for this test was done by 

transfer of the reference transcript annotation. Next, the three gene finding tools were run 

to produce gene predictions that were compared with annotations. In all the five test sets, 

GeneMarkS-T generated the largest number of TPs and the fewest number of FPs (Table 

3.4). 

 

Table 3.4 Numbers of protein-coding regions predicted correctly (TP) and 

incorrectly (FP) by GeneMarkS-T, Prodigal, and TransDecoder in a set of D. 

melanogaster ‘concordant’ assembled transcripts.  

Predictions shorter than the tool-specific minimum length (150bp for GeneMarkS-T, 

210bp for Prodigal, and 270bp for TransDecoder) were filtered out. 

 

Transcript 
built by  No. of transcripts 

GeneMarkS-T Prodigal TransDecoder 

TP FP TP FP TP FP 

Cufflinks 7,222 7,162 60 7,098 232 7,046 432 

Augustus 9,444 9,423 21 9,383 246 9,332 480 

Exonerate 6,971 6,953 18 6,940 190 6,915 454 

Velvet 7,344 7,146 198 7,096 312 7,030 429 

Oases 13,869 13,769 100 13,659 347 13,598 582 

 

 

 

3.3.3 Translation Initiation Site Prediction 

To assess the accuracy of GeneMarkS-T, Prodigal, and TransDecoder in TIS 

prediction we used 1,392 reference transcripts of M. musculus (with annotated coding 

regions longer than 300bp). The TIS annotation in these transcripts was validated by 

Ribo-seq experiments (see section 3.2.2). GeneMarkS-T was run in three modes: i/ with 

default settings; ii/ with search for the Kozak motif switched off; and iii/ with making 
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predictions of complete CDSs only (translation initiation start and translation stop within 

the transcript).  

GeneMarkS-T demonstrated better performance in TIS identification than two 

other tools (Table 3.5). All three programs revealed a tendency to extend the 5’ end of the 

coding region beyond the 5’ end of the transcript. Notably, TransDecoder adopts the 

“longest-ORF” rule and selects the 5’-most AUG as the translation initiation site. In 

comparison, GeneMarkS-T had the largest fraction of TIS predictions located 

downstream from the 5’-most AUGs. Although prohibiting predictions of incomplete 

coding regions would boost the TIS identification accuracy to 95%, use of this option is 

limited to transcripts that are known to be 5’ end complete. Use of the Kozak motif 

improved Sn of predicting TIS by about 10% (Table 3.5). Nonetheless, even the highest 

Sn value achieved by GeneMarkS-T was smaller than 70%.  

Several ribosome profiling studies (Fritsch, et al., 2012; Ingolia, et al., 2011; Lee, 

et al., 2012) raised concerns about frequent presence of alternative TIS’s both upstream 

and downstream of annotated TIS’s confirmed by Ribo-seq experiments. However, recent 

publication (Gerashchenko and Gladyshev, 2015) indicated that findings of alternative 

TIS in many cases are likely to be artifacts; therefore, the confidence in the Ribo-seq 

experimental validation of annotated TISs remains high. 
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Table 3.5 Results of assessment of gene prediction accuracy of GeneMarkS-T, 

Prodigal, and TransDecoder on the set of 1,392 mouse transcripts with 

experimentally verified translation initiation sites (coding regions length >300bp). 

The columns show (from left to right) the number of genes i/ with 3’ ends correctly 

identified and its fraction (%) in the whole set of transcripts; ii/ exactly predicted (both 5’ 

and 3’ ends correctly identified) and its fraction (%)  among genes with correctly 

predicted 3’ ends; iii/ not matching annotation in 3’ end (false positives); iv/ predicted 

shorter than annotated; v/ predicted longer than annotated, with number of predicted 

genes with 5’ end beyond the 5’ border of actual transcript sequence (incomplete 

predictions) shown in parentheses. The results are also shown for GeneMarkS-T runs 1/ 

without model for the Kozak motif; 2/ with requirement to predict 5’ complete genes; 3/ 

analyzing each transcript independently with use of only one iteration; parameters of 

heuristic models for each transcript were selected as functions of the given transcript 

G+C content (simulation of a run on meta-transcriptome). 

 

 
Exact 3’ end Exact 5’ 

and 3’ ends #FP #Shorter #Longer 

Prodigal 1,193 (85.7%) 612 (51.3%) 351 9 572 (571) 

TransDecoder 1,193 (85.7%) 623 (52.2%) 428 0 570 (568) 

GeneMarkS-T 1,197 (86.0%) 821 (68.6%) 195 43 333 (333) 

GeneMarkS-T1 1,196 (85.9%) 694 (58.0%) 196 51 451 (450) 

GeneMarkS-T2 1,194 (85.8%) 1,134 (95.0%) 197 59 1 (0) 

GeneMarkS-T3 1,147 (82.4%) 630 (54.9%) 321 259 258 (204) 

 
 

3.4 Discussion 

Here we summarize our observations on the performance of GeneMarkS-T, 

Prodigal, and TransDecoder. As we saw in the Results section, comparison of the three 

tools runs on the sets of complete and partial reference transcripts have demonstrated 

higher performance of GeneMarkS-T in comparison with the other two gene finders 

(Figure 3.4 and Figure 3.5). Notably, the GeneMarkS-T “minimal gene length” threshold 

of 150bp was the lowest among the three. This setting indicated that GeneMarkS-T works 

more accurately in the short gene range. Prodigal (TransDecoder) had to filter out 
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predictions shorter that 210bp (270bp) that contained more false positives than true 

positives, thus decreasing the (Sn+Sp)/2 value.   

To model ‘partial’ transcripts we used statistics on the types of ‘partial’ structures  

(Figure 3.2A) observed in experiments on transcript reconstruction (Steijger, et al., 2013). 

We observed that the Sn value of GeneMarkS-T predictions in partial transcripts dropped 

slightly (<1%), however, the performance was still better in comparison with the two 

other tools (Figure 3.5).   

Use of the strand-specific versions of the three tools increased prediction accuracy 

in the test sets for all the four species (Figure 3.4 and Figure 3.5). The largest gain was 

observed in tests on S. pombe, which, among the four species, has the highest density of 

coding regions and, therefore, more frequent occurrences of events when a UTR overlaps 

a part of adjacent gene in complementary strand causing additional gene prediction in a 

single transcript (Figure 3.3b). The strand-specific versions of the tools have to be used 

for transcripts assembled from reads generated by the strand-specific RNA-Seq 

technique. 

We observed that the GeneMarkS-T gene prediction accuracy in mouse and fly 

reference transcripts was improved by clustering transcripts with similar GC content 

(Table 3.2). We have also shown that accuracy of GeneMarkS was not affected by a 

decrease of the size of the transcript set used for self-training, even down to 100Kb 

(Figure 3.7). 

We have shown that training of GeneMarkS-T was robust with respect to 

transition from training on reference transcripts to training on transcripts assembled from 



 91 

RNA-Seq reads (Figure 3.8). Notably, the training quality was not affected by large 

numbers of short incomplete transcripts generated by Velvet and Oases (Figure 3.2A, 

Figure 3.9). The short fragments were effectively removed from training, since genes 

were not predicted in the short sequences.   

We also observed that multiple gene predictions in a single transcript were much 

more frequent in assembled than in reference transcripts (Table 3.3). Notably, the 

frequency of multiple predictions was lower in transcripts reconstructed by Augustus 

which attempted to preserve continuous coding potential upon assembling RNA-Seq 

reads. 

Assessment of accuracy of gene prediction in assembled transcripts was 

challenging due to the presence of assembly errors. Study of the assembly errors that 

occur upon application of existing transcript reconstruction tools is a special topic. A 

comprehensive comparative assessment of the methods of transcript reconstruction from 

RNA-Seq reads was made in the RGASP competition (Steijger, et al., 2013) that used 

sets of RNA-Seq reads generated for Homo sapiens, Caenorhabditis elegans, and 

Drosophila melanogaster. The average accuracy of transcript reconstruction was shown 

to be genome-specific, e.g. the C. elegans transcripts were reconstructed most accurately 

on average. Nonetheless, only 48% of the C. elegans transcripts were assembled 

correctly. 

Assessment of accuracy of gene prediction was made for D. melanogaster 

transcripts assembled from RNA-Seq reads by the five tools, Cufflinks (Roberts, et al., 

2011), Augustus (Stanke, et al., 2006), Velvet (Zerbino and Birney, 2008), Oases 
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(Schulz, et al., 2012), and Exonerate (Slater and Birney, 2005)  that were taking part in 

the RGASP competition (Steijger, et al., 2013). Each of the five sets of transcripts was 

divided into ‘concordant’, ‘conflicting’, or ‘not-aligned’ subsets (Figure 3.3). 

We observed that multiple genes were predicted in ‘conflicting’ transcripts much 

more frequently than in ‘concordant’ transcripts. On the other hand a question could be 

asked, what is the chance that a transcript where multiple genes were predicted belongs to 

‘conflicting’ or ‘not-aligned’ category? The answer to the question is species and tool 

specific, e.g. for Cufflinks it is 93% (Figure 3.10). Arguably, prediction of multiple genes 

in a single transcript is an indicator of erroneous assembly.  

Erroneous assembly could produce a gap or insertion in the transcript, a chimeric 

fusion with another transcript, etc. A frequent consequence of an incorrect assembly is a 

frameshift in a protein-coding region. Earlier we developed computational tools for 

finding frameshifts in continuous protein coding regions such as GeneTack (Antonov, 

Baranov, et al., 2013; Antonov and Borodovsky, 2010; Antonov, Coakley, et al., 2013). 

Integration of GeneMarkS-T with a GeneTack type tool would make a new tool able to 

provide deeper insight into organization of coding regions in assembled transcripts. 

However, besides this extension being beyond a scope of the current work, the usefulness 

of such approach may be limited since a presence of several gene predictions in a 

transcript (presumably caused by a frameshift) is already a good indicator of incorrect 

assembly. The best way to deal with this problem is to check and fix the assembly 

error(s) rather than to proceed with conceptual translation based on predicted frameshift 

location(s).  
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Assessment of gene prediction accuracy in assembled transcripts should be 

therefore limited to the transcripts where protein coding regions were not disrupted, i.e. 

the ‘concordant’ transcripts. Runs of GeneMarkS-T, Prodigal, and TransDecoder on the 

five sets of ‘concordant’ transcripts of D. melanogaster demonstrated that GeneMarkS-T 

delivered more accurate predictions (Table 3.4). 

We used mouse transcripts with the translation initiation site annotation validated 

by Ribo-seq experiments to assess accuracy of the TIS prediction. Even though 

GeneMarkS-T demonstrated better accuracy in comparison with the other two tools 

(Table 3.5), the accurate TIS prediction remains a challenge as the accuracy achieved by 

GeneMarkS-T is still below 70%. Efforts aiming to further improvement of the TIS 

prediction accuracy will benefit from availability of a larger set of validated TIS. The 

novel Ribo-seq technique is likely to be instrumental in generating such a larger set.  

Finally, what could explain better accuracy of GeneMarkS-T in gene prediction in 

eukaryotic transcripts in comparison with the other two gene finders? Notably, Prodigal 

is using the iterative training approach similar to GeneMarkS and GeneMarkS-T. 

TransDecoder is using oligomer statistics to identify protein coding region similarly to 

Prodigal and GeneMarkS-T. First, we assume that the higher accuracy manifests the 

ability of the algorithm to scale up to new types of genomic sequences, e.g. eukaryotic 

transcripts or short sequences of metagenomes. The use of hidden semi-Markov model 

provides a necessary degree of flexibility to adjust to the new types of organization of 

coding regions that are different from organization of genes in complete genomes. 

Perhaps, the structure of the Prodigal, the algorithm that is using multiple smart 

heuristics, is more difficult to scale up to another type of application. On the other hand, 
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the structure of the TransDecoder algorithm is relatively simple and rather crude to take 

into account features of gene organization in complete and incomplete eukaryotic 

transcripts. Second, GeneMarkS-T has the built-in option to cluster a full set of transcript 

sequences into more homogeneous sets; selection of cluster-specific model for a given 

transcript increases prediction accuracy. 

GeneMarkS-T can also be applied to meta-transcriptomic sequences for gene 

discovery. Like in eukaryotes, many studies have adopted transcriptome sequencing to 

reveal expressed genes and active pathways in both individual microbes (Martin, et al., 

2010; Passalacqua, et al., 2009; Sharma, et al., 2010; Wurtzel, et al., 2010) and complex 

microbial communities (Booijink, et al., 2010; Frias-Lopez, et al., 2008; Turnbaugh, et 

al., 2010; Turner, et al., 2013). In typical RNA-Seq applications, sequencing reads can be 

assembled into longer stretches by reference-based methods or by de novo assembly 

methods (evaluated in (Sekhar, et al., 2011)). Correctly assembled transcripts from 

individual microorganisms resemble fragmented genomic sequences, thus can be 

analyzed using tools and algorithms ready for microbiome genomes. Meta-transcriptomic 

sequences, in contrast, have more complex sequence content with anonymous origin, 

similar to metagenomic sequences. Therefore, special ways of parameter estimation 

should be used for meta-transcriptomic sequence analysis.  

Methods that have been established for metagenomic gene prediction can be 

applied to meta-transcriptomic sequence analysis. These algorithms include heuristic 

method for parameter estimation (Zhu, et al., 2010), frameshift identification in reads 

containing sequencing errors (Tang, et al., 2013), motif-finding approaches, and partial 

gene identification. Additional features unique to meta-transcriptomic data can also be 
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leveraged. One assembled sequence represents a full or partial stretch of a transcript; it 

can contain zero, one, or more than one coding gene (transcribed together in a 

functioning unit known as an “operons”). Genes in an operon are on the same strand, and 

often overlap with each other or have short intergenic regions. The strand information 

and length distribution of the intergenic regions of genes in an operon can be modeled 

accordingly in the HSMM. In addition, since genes encoded in mRNAs are in the positive 

strand, strand-specific RNA-Seq protocol (evaluated in (Levin, et al., 2010))  preserves 

the strand information of the sequence reads. Therefore, eliminating gene prediction in 

the wrong strand would facilitate gene prediction as well as anti-sense transcript 

identification. A special option of GeneMarkS-T allows the prediction of more than one 

protein coding genes in one transcript with the use of heuristic models. This option also 

searches for the RBS in the upstream sequences instead of the Kozak motif, which can 

improve the prediction of the gene boundary in prokaryotic transcripts. 

While the above strategies are intuitive and straight-forward to implement, the 

self-training method used in eukaryotic transcripts may also be applicable to meta-

transcriptomic data. For transcripts from an inhomogeneous genome, sequences are 

clustered into GC bins before training of the native model. Meta-transcripts are also 

inhomogeneous as they may have different taxonomic assignments. Clustering Meta-

transcripts of the same GC or similar sequence signatures may find homogenous 

sequences in terms of their functional assignments. Models trained on the clusters could 

predict genes additional to heuristic models, adding genes that are “native” to a certain 

function of the whole transcriptome. However, the composition and relative abundance of 
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different organisms in the microbial community should be studied carefully to determine 

the level of homogeneity thus the usefulness of self-training. 

3.5 Software Availability 

The GeneMarkS-T software is freely available for academic research and can be 

downloaded from http://topaz.gatech.edu/GeneMark/license_download.cgi.  
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CHAPTER 4   
FRAMESHIFT PREDICTION IN METAGENOMIC SEQUENCES 

 

Abstract 

Frameshift (FS) prediction is important for analysis and biological interpretation of 

metagenomic sequences. Since a genomic context of a short metagenomic sequence is 

rarely known, there is not enough data available to estimate parameters of species-

specific statistical models of protein-coding and non-coding regions. The challenge of ab 

initio FS detection is, therefore, twofold: (i) to find a way to infer necessary model 

parameters and (ii) to identify positions of frameshifts (if any). Here we describe a new 

tool, MetaGeneTack, which uses a heuristic method to estimate parameters of sequence 

models used in the FS detection algorithm. It is shown on multiple test sets that the 

MetaGeneTack FS detection performance is comparable or better than the one of earlier 

developed program FragGeneScan.  
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4.1 Introduction 

Metagenomic sequences are obtained from environmental microbial communities. 

The short reads sequenced using next-generation sequencing technology are then 

processed and assembled to sequence contigs. Depending on the metagenomic sequence 

data structure, gene prediction is performed on sequence contigs, unassembled reads, or a 

mixture of them (Kunin, et al., 2008). The performance of conventional tools of gene 

prediction and annotation are impaired due to insertions and deletions in coding regions 

of the short sequences (Hoff, 2009). Error rates depend on various factors including 

species complexity, genome abundance, the sequencing method and assembly strategies 

(Luo, Tsementzi, Kyrpides and Konstantinidis, 2012). Since an average metagenomic 

contig length is of the order of several hundred to several thousand nucleotides, there is 

not enough sequence contexts to estimate parameters of statistical models for protein-

coding and non-coding regions. On the other hand, comparative genomics based tools 

(looking for FSs interrupting evolutionary conserved regions) rely entirely on existing 

databases; those tools would miss novel genes and genes that have low similarity with 

known genes. 

Previously we have developed an algorithm and software program GeneTack 

(Antonov and Borodovsky, 2010), an ab initio tool for finding frameshifts (FSs) in 

prokaryotic genomes. Since GeneTack requires a species-specific statistical model, it 

cannot work with sequences shorter than several hundred kilobases, the length necessary 

for self-training of GeneMarkS (Besemer, et al., 2001), gene finder used together with 

GeneTack. Here we introduce a new ab initio FS finder designed for metagenomic 
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sequences, MetaGeneTack, which uses heuristic models (Besemer and Borodovsky, 

1999) to infer model parameters suitable for analysis of a short sequence (e.g., 400nt). A 

recently developed ab initio gene finder, FragGeneScan (Rho, et al., 2010) is also able to 

detect positions of FSs in short sequences by adding insertion/deletion states in the 

architecture of the hidden Markov model. In test on sequences from 18 prokaryotic 

species we have shown that MetaGeneTack reaches higher accuracy in FS detection than 

FragGeneScan.  

4.2  Materials and Methods 

The idea of the heuristic method for building models of protein-coding regions is 

that frequencies of oligonucleotides, if cannot be derived directly due to insufficient 

sequence length, can be inferred as functions of the sequence GC content. Thus, we could 

reconstruct the oligonucleotide frequencies as soon as we have an estimate of the GC 

content of genome the short sequence originated from. MetaGeneTack uses the fifth-

order polynomial approximations of dependences of hexamer frequencies on genome GC 

content derived from data on 582 annotated prokaryotic genomes (the details for the 

model parameter derivation can be found in (Zhu, et al., 2010).  

MetaGeneMark (Zhu, et al., 2010), a tool designed for ab initio gene prediction in 

metagenomic sequences is used for initial prediction of protein-coding genes. The 

GeneTack algorithm works with coding regions located in the positive strand; thus the 

input sequences are split into fragments with predicted genes located in the same strand, 

grouped by GC content. The grouped fragments are then used as input for GeneTack with 

the corresponding heuristic model (of bacterial or archaeal type of the same GC content). 

The type of the model for a given fragment is defined by MetaGeneMark which labels 
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the predicted genes as archaeal or bacterial. FS predictions are combined with gene 

prediction result from MetaGeneMark output to indicate genes with or without FSs. 

To reduce the number of false positives, MetaGeneTack contains three post-

processing filters applied to the initial FS predictions. A frameshift would cause two 

overlapping ORFs with high coding potential. The downstream ORF predicted as a gene 

should not possess a functional RBS site. Therefore, if a gene predicted in the 

downstream ORF has high RBS score, the prediction is filtered out (Filter I). In high-GC 

genomes, true FS would be separated by a long distance from a stop codon terminating 

the upstream overlapping ORF. A predicted FS situated on a short distance from the stop 

codon terminating the upstream ORF (D(θ) < 0.8θ − 40), with θ designating GC 

content in percentage scale is filtered out (Filter II). A FS predicted too close (<50nt) 

from a border of a putative frame-shifted gene or from 3’ or 5’ end of the sequence 

fragment is discarded (Filter III). Filter II and III are applied only to fragments with high 

GC content (θ > 50) or low GC content (θ ≤ 50), respectively. As a training set for 

assignment of the filters' parameters we used genomic sequences of E. coli. 

Metagenomic sequences are usually sequenced using next generation sequencing 

platforms such as Roche 454 and Illumina or traditional Sanger sequencing. 454 

sequencing platforms produce reads of ~450bp; errors are usually indels in homopolymer 

regions. Illumina platforms generate sequences of length ~100bp with almost no FS 

errors. Sanger sequencing produces reads that may contain both types of errors and the 

read length is ~900bp. Before gene calling is performed, metagenomic pipelines usually 

consist of quality control methods to reduce errors on raw reads (e.g. trimming the error-

prone 3’ends). In sequence contigs, the per-base error rate can be reduced from 0.5% in 



 101 

raw reads to as low as 0.005% and errors affect ~3% to 4.5% of genes (Luo, Tsementzi, 

Kyrpides, Read, et al., 2012). To evaluate the accuracy of FS detection, we used 18 

prokaryotic genomes with GC content ranging from 28% to 75% (Table 4.1). These 

genomic sequences were cut into 400nt, 600nt and 800nt fragments. Selection of the 

400nt as the minimum fragment length is in agreement with the conventional practice 

where fragments shorter than 400nt are used for detecting nucleotide polymorphisms and 

short functional motifs (Wooley, et al., 2010). We selected 2,000 fragments of each 

length from every genome and 5%, 10%, and 20% of all fragments were simulate with a 

FS (dividing by the corresponding fragment length would provide the per-base error rate, 

ranging from 0.0065% to 0.05%). In the simulation, it was made sure that the selected 

fragments contained a long stretch of coding regions (>200nt) and one nucleotide was 

inserted at a random location in the coding region at a distance of at least 50nt from its 

boundary. If a FS was predicted in the 20nt vicinity of the true FS position, it was 

reported as a true positive, otherwise as a false positive. The same test for each genome 

was done when deletion FSs were simulated. 
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Table 4.1 Frameshift prediction accuracy for 400nt fragments from 18 prokaryotic 

genomes (with 20% containing FSs).  

“Avg” denotes the average of sensitivity (Sn) and specificity (Sp). In general, 

MetaGeneTack reaches higher accuracy for bacteria than archaea (indicated by stars in 

the table). Interestingly, greater sensitivity of MetaGeneTack in frameshift detection is 

observed in high GC and low GC genomes than middle GC genomes. Archaeal genomes 

are marked with a star. 

   FragGeneScan MetaGeneTack 

 
ID GC% Sn Sp Avg Sn Sp Avg 

Methanosphaera stadtmanae * NC_007681 28 87.3 62 74.6 74.9 83.8 79.3 

Campylobacter jejuni NC_002163 31 88.6 50.6 69.6 84.3 67.3 75.8 

Staphylococcus aureus Mu50 NC_002758 33 88.6 51.9 70.2 76.6 83.1 79.8 

Picrophilus torridus DSM 9790 * NC_005877 36 52 24.5 38.3 74.4 70.8 72.6 

Streptococcus pyogenes M1 GAS NC_002737 39 87.6 47.6 67.6 70.3 76.9 73.6 

Pasteurella multocida NC_002663 40 85.3 57 71.1 70.8 75.5 73.1 

Bacillus subtilis NC_000964 44 78.3 39.6 58.9 64.3 71.9 68.1 

Thermotoga maritima NC_000853 46 60.8 28.7 44.7 66.8 61.5 64.1 

Archaeoglobus fulgidus * NC_000917 49 63.9 24.9 44.4 80.4 58.8 69.6 

Escherichia coli K12 NC_000913 51 83.6 42.6 63.1 76.8 71.1 73.9 

Pyrobaculum aerophilum * NC_003364 51 65 27.8 46.4 60.1 55.1 57.6 

Salmonella typhimurium LT2 NC_003197 52 85.6 43.9 64.8 75.4 70.7 73 

Thermococcus kodakaraensis  NC_006624 52 69.1 27.8 48.5 79.4 59.7 69.5 

Methanopyrus kandleri * NC_003551 61 81.3 36.1 58.7 68.3 60.4 64.3 

Caulobacter crescentus NC_002696 67 94.6 59.7 77.2 83.8 73.3 78.5 

Ralstonia solanacearum NC_003296 67 94.3 48.8 71.5 86.6 70.7 78.7 

Clavibacter michiganensis NC_010407 73 95 47.3 71.2 83.9 70.9 77.4 

Anaeromyxobacter dehalogenans NC_007760 75 96.4 57.5 76.9 87.1 82.4 84.8 

Average 
  

81 43.2 62.1 75.8 70.2 73 
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4.3  Results 

Using A to denote the number of all FS predictions, T to denote the number of 

predicted true positives, and S to denote the number of simulated FSs, we calculated 

sensitivity, Sn=T/S and specificity Sp=T/A. Accuracy of MetaGeneTack was compared 

with accuracy of FragGeneScan
8
. FragGeneScan requires users to select a sequencing 

method presumably used for obtaining the input sequence along with indication of 

approximate sequencing error rate. We chose Sanger sequencing with 0.5% as the error 

rate matched the one cited in (Luo, Tsementzi, Kyrpides, Read, et al., 2012), and it 

yielded the best results of FragGeneScan among all available options. The average Sn and 

Sp values are shown in Table 4.2. To give an example of genome-specific values of Sn 

and Sp, we provide Table 4.1 for the set of 400nt fragments with 20% containing FSs. 

Results are averaged between sets of fragments with insertions and deletions (see also 

Figure 4.1).  

In terms of (Sn+Sp)/2, MetaGeneTack performed better than FragGeneScan by 

7% to 12%. For FragGeneScan, the values of Sn and Sp differed by 55 percentage points 

while for MetaGeneTack this gap was much smaller. The differences were likely due to 

different methods of derivation of sequence models and differences in HMM 

architectures. 

  

                                                 

 

 
8
 version 1.15, downloaded from http://omics.informatics.indiana.edu/FragGeneScan/ 
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Table 4.2 FS detection accuracy of FragGeneScan and MetaGeneTack for short 

fragments from 18 prokaryotic genomes.  

Values are averaged among genomes and then averaged between insertion and deletion 

FS sets (see Table 4.1 for details). 

  
FragGeneScan MetaGeneTack 

Fragment 
length 

Fragments 
with FSs 

Sn Sp Avg Sn Sp Avg 

400nt 

5% 79.6 15.8 47.7 74.4 38.3 56.4 

10% 80.5 27.3 53.9 75.3 54.5 64.9 

20% 81 43.2 62.1 75.8 70.2 73 

600nt 

5% 81.2 11.7 46.4 79.9 27.7 53.8 

10% 81.8 21.2 51.5 79.9 43.1 61.5 

20% 81.9 35.1 58.5 80.1 61.7 70.9 

800nt 

5% 81.9 9.1 45.5 81.7 21.7 51.7 

10% 82.6 16.9 49.7 81.2 35 58.1 

20% 82.8 29.4 56.1 81.5 51.9 66.7 
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Figure 4.1 Performance of MetaGeneTack with different combinations of filters as 

well as performance of FragGeneScan (the leftmost columns) using the 600 nt 

sequences with 20% having simulated FSs as the test set. 

The predicted frameshift is reported as true positive if it is located within 20nt from the 

true simulated frameshift position, (A) for fragments with insertions, (B) for fragments 

with deletions. Values are averaged among 18 genomes 
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To assess how effective the filters were we evaluated MetaGeneTack’s 

performance produced with various combinations of filters and compared with 

performance of FragGeneScan on insertion FS (Figure 4.1A) and deletion FS (Figure 

4.1B). Here we used 600nt-long sequences with 20% fragments containing FSs as a test 

set. Without filters, the Sn of MetaGeneTack was close to FragGeneScan while the Sp 

was more than 10% higher in both cases. With the filters, the average Sn and Sp of 

MetaGeneTack increased by ~5 percentage points. Similar results were observed when a 

prediction was reported as a true positive if located within 10nt from the simulated FS. 

The distribution of the difference between the predicted FS position and the real FS 

position is shown in Figure 4.2. The standard deviation is 10.3 and 12.6 for 

MetaGeneTack and FragGeneScan, respectively. 

The performance of both programs on error-free sequences was also analyzed on 

fragments of various lengths. In each genome we used 1000 fragments without simulated 

FSs. On average, FragGeneScan produced twice as much false positive prediction as 

MetaGeneTack (Table 4.3).  

 

Table 4.3 Frameshift predictions in 18,000 “frameshift-free" sequences (1,000 for 

each genome). 

 
FragGeneScan MetaGeneTack 

Fragment 
Length  

No. of predicted FSs  Error per nt  
No. of 

predicted FSs  
Error per 

nt 

400nt 4,309 0.06% 1,942 0.03% 
600nt 6,459 0.09% 3,433 0.05% 
800nt 8,696 0.12% 4,978 0.07% 
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Figure 4.2 Distributions of the distance between predicted FS positions and true FS 

positions for 400nt, 600nt, and 800nt fragments with simulated FSs. 

Deviation longer than 50nt is not shown. The standard deviation is 10.3 and 12.6 for 

MetaGeneTack and FragGeneScan, respectively. 
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4.4  Conclusion 

The new software program, MetaGeneTack, addresses the challenging question of 

how to predict FSs in metagenomic sequences without any extrinsic knowledge. An 

advantage of ab initio approach is the ability to detect FSs in genes of orphan proteins 

that do not have known homologs. We have shown that the accuracy of MetaGeneTack is 

higher than the accuracy of the ab initio gene prediction tool FragGeneScan. Most of the 

FSs predicted by MetaGeneTack are supposed to result from sequencing or assembly 

errors; like GeneTack, the program is also able to detect programmed FSs and FSs 

because of mutations. MetaGeneTack could be integrated into pipelines of metagenomic 

sequence annotation. 
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APPENDIX 

SUPPLEMENTARY DATA 

 

Supplementary Table 1 The test set of 115 bacterial and 30 archaeal RefSeq 

genomes.  

The number of false negative predictions (FNs) of COG-supported genes, and the 

average number of false positive predictions (FPs) in 10 simulated 1Mbp non-coding 

random sequences by GeneMarkS, Glimmer, Prodigal, and GeneMarkS-2 are shown for 

each genome. 
   GeneMarkS Glimmer Prodigal GeneMarkS-2 

Species RefSeq ID 
start  
class 

FN FP FN FP FN FP FN FP 

A. fermentans NC_013740 1 6 275 18 168 5 39 1 124 

A. pernix NC_000854 1 6 130 9 416 9 61 3 19 

A. colombiense NC_014011 1 3 644 10 1351 3 120 3 66 

A. variabilis NC_007413 1 7 178 7 416 8 153 7 56 

A. phagocytophilum NC_007797 1 9 366 13 1151 8 337 11 141 

A. aeolicus NC_000918 1 3 613 13 641 4 68 1 161 

A. FB24 NC_008541 1 10 52 21 277 5 152 4 19 

B. anthracis NC_007530 1 3 126 4 223 5 39 4 21 

B. anthracis NC_005945 1 2 135 2 228 5 44 3 21 

B. cereus NC_003909 1 8 159 10 240 12 43 7 21 

B. cereus NC_004722 1 6 119 13 223 15 39 9 17 

B. halodurans NC_002570 1 6 287 12 612 13 104 6 60 

B. subtilis NC_014976 1 5 440 10 794 8 126 2 122 

B. thetaiotaomicron NC_004663 1 6 323 14 291 9 357 4 28 

B. longum NC_004307 1 8 168 6 202 8 176 3 37 

B. faecium NC_013172 1 2 24 10 221 4 324 1 1 

C. maquilingensis NC_009954 3 3 514 4 360 1 83 1 81 

C. Nitrospira NC_014355 1 18 249 23 766 16 328 11 64 

C. Protochlamydia NC_005861 1 2 306 5 731 12 63 3 53 

C. crescentus NC_002696 1 15 56 19 78 17 101 15 30 

C. flavigena NC_014151 1 6 47 23 634 1 359 1 10 

C. limicola NC_010803 2 7 700 10 1045 10 444 8 154 

C. tepidum NC_002932 2 11 488 14 330 15 158 14 230 

C. aurantiacus NC_010175 1 17 187 26 375 6 385 8 39 

C. acetobutylicum NC_003030 1 2 52 2 261 4 15 3 17 

C. thermocellum NC_009012 1 3 266 9 582 2 56 0 85 

C. burnetii NC_002971 1 4 437 11 1213 8 174 7 82 

C. curtum NC_013170 1 3 282 12 516 5 176 3 57 

C. ATCC NC_010546 1 5 105 3 234 10 59 4 22 

D. desulfuricans NC_013939 1 2 150 0 422 1 24 0 53 

D. deserti NC_012526 1 14 167 12 420 10 199 6 75 

D. radiodurans NC_001263 1 24 43 26 68 13 103 6 9 

D. alaskensis NC_007519 1 10 772 35 1454 5 391 2 315 

D. vulgaris NC_002937 1 21 107 21 257 11 365 11 33 

E. faecalis NC_004668 1 0 188 2 253 1 30 0 37 

E. tasmaniensis NC_010694 1 8 334 10 580 5 222 5 138 

E. coli NC_004431 1 21 258 27 354 27 175 16 91 

E. coli NC_002655 1 26 297 32 464 31 194 14 115 
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F. nucleatum NC_003454 1 1 99 2 172 5 2 3 16 

G. aurantiaca NC_012489 1 8 152 12 435 5 391 6 48 

G. sulfurreducens NC_002939 1 22 100 7 271 3 121 7 38 

G. uraniireducens NC_009483 1 17 284 24 546 20 177 8 108 

H. ducreyi NC_002940 1 2 140 5 272 3 38 1 32 

H. influenzae NC_000907 1 2 168 7 188 3 26 5 37 

H. somnus NC_010519 1 2 158 1 220 2 46 2 27 

H. salinarum NC_010364 3 17 23 10 174 8 109 2 4 

H. borinquense NC_014729 3 3 161 6 345 7 195 1 32 

H. utahensis NC_013158 3 20 104 2 494 5 201 3 31 

H. hepaticus NC_004917 1 0 527 0 546 2 42 0 90 

H. pylori NC_000915 1 1 1047 4 614 5 54 2 106 

H. pylori NC_000921 1 4 967 6 633 8 52 5 86 

H. butylicus NC_008818 1 1 228 2 670 1 189 1 71 

K. radiotolerans NC_009664 1 6 45 38 447 4 349 2 7 

L. johnsonii NC_005362 1 3 89 4 161 0 27 2 14 

L. lactis NC_002662 1 7 147 5 211 8 20 4 28 

L. pneumophila NC_002942 1 4 379 8 951 6 134 5 92 

L. interrogans NC_005823 1 2 544 8 846 4 88 2 63 

L. monocytogenes NC_002973 1 2 160 1 250 2 39 1 30 

M. florum NC_006055 1 1 68 3 60 1 11 1 8 

M. loti NC_002678 1 40 229 49 528 44 216 24 159 

M. jannaschii NC_000909 1 3 82 2 150 3 24 4 14 

M. burtonii NC_007955 1 8 178 11 434 10 97 3 35 

M. acetivorans NC_003552 1 18 467 39 885 21 133 26 104 

M. barkeri NC_007355 1 15 267 17 693 16 96 11 75 

M. mazei NC_003901 1 6 454 17 852 20 98 6 99 

M. capsulatus NC_002977 2 12 176 14 500 9 304 6 124 

M. avium NC_002944 1 33 36 36 255 27 164 15 33 

M. bovis NC_002945 1 34 219 45 789 37 255 32 86 

M. leprae NC_002677 1 6 314 22 3080 10 740 7 222 

M. smegmatis NC_008596 1 17 72 32 204 16 143 8 43 

M. tuberculosis NC_002755 1 33 188 38 719 34 259 27 68 

M. tuberculosis NC_000962 1 19 217 38 805 20 298 20 70 

M. agalactiae NC_013948 1 1 131 0 395 1 29 2 16 

M. genitalium NC_000908 2 3 772 4 1465 1 147 3 245 

M. mobile NC_006908 1 0 338 2 291 1 21 1 31 

N. multipartita NC_013235 1 32 55 31 394 9 212 8 44 

N. magadii NC_013922 3 8 83 2 432 3 236 2 17 

N. pharaonis NC_007426 3 4 99 10 260 4 181 3 20 

N. meningitidis NC_010120 1 17 604 19 590 17 196 13 216 

N. meningitidis NC_003112 1 8 680 14 595 8 207 8 238 

N. dassonvillei NC_014210 1 5 16 8 186 2 343 4 3 

N. PCC NC_003272 1 11 179 13 380 11 160 7 51 

N. punctiforme NC_010628 1 10 228 13 514 8 187 7 70 

P. multocida NC_002663 1 1 246 3 243 1 47 2 34 

P. marina NC_012440 1 0 254 0 309 1 8 0 81 

P. staleyi NC_013720 1 8 435 15 831 5 401 8 145 

P. marinus NC_005042 2 4 343 9 892 3 207 4 81 

P. marinus NC_005072 2 2 196 5 446 4 109 5 54 

P. aeruginosa NC_002516 1 22 44 22 78 6 159 1 39 

P. putida NC_002947 1 30 106 41 223 15 131 14 50 

P. syringae NC_004578 1 34 205 44 335 30 200 8 121 

P. aerophilum NC_003364 3 6 784 8 891 3 275 5 82 

P. neutrophilum NC_010525 3 11 217 10 268 0 91 1 33 

P. abyssi NC_000868 1 1 301 11 421 4 60 1 91 
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P. furiosus NC_003413 1 8 374 9 746 12 80 6 92 

P. horikoshii NC_000961 1 4 297 7 642 6 54 3 101 

P. yayanosii NC_015680 1 2 265 0 506 3 59 2 86 

R. capsulatus NC_014034 1 10 44 10 144 6 257 4 34 

R. sphaeroides NC_007493 1 12 26 17 120 9 311 3 3 

R. conorii NC_003103 2 14 120 9 462 14 118 17 43 

R. typhi NC_006142 1 2 61 1 216 0 78 1 9 

R. castenholzii NC_009767 1 22 303 30 443 8 606 4 56 

S. viridis NC_013159 1 7 104 9 452 2 309 3 29 

S. enterica NC_006905 1 15 265 22 439 25 203 7 87 

S. enterica NC_010102 1 16 234 12 413 11 202 4 82 

S. keddieii NC_013521 1 8 69 20 835 2 250 3 10 

S. flexneri NC_004337 1 14 313 119 321 96 161 3 104 

S. meliloti NC_015590 1 11 221 23 376 8 217 9 121 

S. heliotrinireducens NC_013165 1 3 168 8 294 1 169 0 71 

S. nassauensis NC_013947 1 30 44 38 133 13 115 6 14 

S. aureus NC_013450 1 2 52 2 124 7 32 4 9 

S. epidermidis NC_004461 1 5 42 2 128 8 27 8 7 

S. pneumoniae NC_003098 1 4 223 6 300 4 40 3 33 

S. pneumoniae NC_003028 1 6 193 11 274 10 44 7 30 

S. pyogenes NC_002737 1 4 202 4 370 5 51 2 31 

S. pyogenes NC_004070 1 2 204 5 351 5 50 3 29 

S. coelicolor NC_003888 1 28 17 43 300 22 254 16 2 

S. acidocaldarius NC_007181 3 11 197 15 372 9 165 9 45 

S. solfataricus NC_002754 3 24 207 26 503 14 163 11 45 

S. tokodaii NC_003106 3 6 169 15 437 1 104 4 42 

S. CC9311 NC_008319 2 16 737 19 1740 10 649 5 199 

S. PCC NC_010475 2 6 707 8 555 2 170 2 150 

S. PCC NC_000911 2 24 754 28 869 16 190 16 138 

S. fumaroxidans NC_008554 1 13 549 12 1369 7 354 5 145 

T. bispora NC_014165 1 11 33 16 496 2 260 6 19 

T. gammatolerans NC_012804 1 2 224 7 301 4 19 1 80 

T. kodakarensis NC_006624 1 1 245 9 271 4 28 1 86 

T. onnurineus NC_011529 1 3 242 8 280 4 56 2 62 

T. sibiricus NC_012883 1 2 416 1 915 12 92 1 52 

T. indicus NC_015681 1 6 731 10 1289 3 87 3 98 

T. pendens NC_008698 3 12 250 8 239 5 36 2 62 

T. acidophilum NC_002578 3 8 500 14 451 8 134 7 79 

T. uzoniensis NC_015315 3 6 261 0 327 2 48 2 42 

T. maritima NC_000853 1 2 575 10 894 4 98 7 145 

T. denticola NC_002967 1 4 509 9 817 8 53 4 102 

T. pallidum NC_000919 1 10 1319 7 2136 7 612 16 46 

T. radiovictrix NC_014221 1 19 37 13 185 11 39 5 9 

V. cholerae NC_002505 1 4 277 9 383 4 141 4 75 

V. fischeri NC_006840 1 1 126 2 132 2 48 3 19 

V. distributa NC_014537 3 3 303 3 195 1 185 1 42 

X. campestris NC_003902 1 28 119 23 467 16 268 10 76 

X. oryzae NC_006834 1 74 292 23 655 39 317 23 179 

X. cellulosilytica NC_013530 1 3 39 16 445 1 265 2 6 

X. fastidiosa NC_002488 1 22 324 17 835 19 468 12 110 

Y. pestis NC_004088 1 15 216 17 424 18 152 10 56 
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Supplementary Table 2 The test set of genomes with peptide data. We downloaded 

data of peptides from 63 species generated by the Pacific Northwest National 

Laboratory (PNNL) (Venter, et al., 2011).  

The results of peptides/spectrum mapping to genomes were provided as GFF format files 

with start and end coordinates of peptides. From this set we removed data related to five 

species (marked in red). We used the peptide coordinates to find the minimal length ORF 

that spans the mapped region (from the nearest in-frame upstream start codon to the 

nearest in-frame downstream stop codon).  

 

Species 
RefSeq 

Accession 
GC% of 
genome 

No. of 
peptide 

No. of 
peptide-

supported 
ORFs 

No. of 
peptides 
with no 

upstream 
start 

No. of 
peptide-

supported 
ORFs with 

no 
valid start 

Acidiphilium cryptum NC_009484 68 7,693 1,138 0 0 

Actinosynnema mirum NC_013093 73.7 12,705 1,444 2 2 

Anabaena variabilis NC_007413 41.4 27,450 2,381 18 10 

Anaplasma phagocytophilum NC_007797 41.6 2,112 292 8 1 

Arthrobacter FB24 NC_008541 65.5 43,365 2,678 23 18 

Bacillus anthracis NC_005945 35.4 23,557 2,026 6 6 

Borrelia burgdorferi NC_001318 28.6 14,435 640 13 6 

Brachybacterium faecium NC_013172 72 23,820 1,689 16 4 

Bradyrhizobium japonicum NC_004463 64.1 8,955 1,533 0 0 

Burkholderia mallei NC_008785 68.1 21,786 1,250 23 6 

Candidatus Pelagibacter NC_007205 29.7 16,796 1,028 6 2 

Caulobacter crescentus NC_011916 67.2 53,906 2,603 21 19 

Cellulomonas flavigena NC_014151 74.3 44,654 2,110 5 4 

Chlorobium tepidum NC_002932 56.5 23,192 1,473 9 7 

Chloroflexus aurantiacus NC_010175 56.7 39,336 2,357 7 7 

Clostridium thermocellum NC_009012 39 2,186 232 7 1 

Cryptobacterium curtum NC_013170 50.9 13,530 990 8 7 

Cyanothece ATCC NC_010546 37.9 30,917 2,100 22 11 

Cyanothece PCC NC_011884 50.8 14,517 1,302 0 0 

Cyanothece PCC NC_014501 40.2 3,774 330 0 0 

Cyanothece PCC NC_013161 39.8 1,925 220 2 2 

Deinococcus radiodurans NC_001263 67 29,639 1,639 63 29 

Desulfovibrio alaskensis NC_007519 57.8 41,089 2,246 15 12 

Desulfovibrio vulgaris NC_002937 63.1 29,459 2,051 18 16 

Ehrlichia chaffeensis NC_007799 30.1 2,786 370 1 1 

Escherichia coli NC_002655 50.4 17,294 1,673 6 4 

Geobacter metallireducens NC_007517 59.5 25,970 2,121 7 7 

Geobacter uraniireducens NC_009483 54.2 35,911 2,259 12 8 

Halogeometricum borinquense NC_014729 61.1 11,134 1,345 1 1 

Halorhabdus utahensis NC_013158 62.9 12,034 1,362 6 4 

Heliobacterium modesticaldum NC_010337 57 20,304 1,348 10 6 

Kineococcus radiotolerans NC_009664 74.4 38,314 2,340 19 14 

Leptospira interrogans NC_005823 35 15,079 1,687 16 6 

Methanosarcina barkeri NC_007355 39.3 21,358 1,513 50 27 

Methanospirillum hungatei NC_007796 45.1 24,444 1,306 10 6 

Mycobacterium tuberculosis NC_000962 65.6 22,933 2,192 6 6 

Nakamurella multipartita NC_013235 70.9 22,073 1,610 2 2 

Nocardiopsis dassonvillei NC_014210 72.8 12,563 1,212 2 1 

Novosphingobium aromaticivorans NC_007794 65.2 9,712 1,033 0 0 

Pelobacter carbinolicus NC_007498 55.1 4,156 572 0 0 

Prochlorococcus marinus NC_005072 30.8 16,438 1,106 14 7 

Rhodobacter capsulatus NC_014034 66.6 50,614 2,413 24 16 

Rhodopseudomonas palustris NC_005296 65 23,376 2,059 5 4 

Roseiflexus castenholzii NC_009767 60.7 28,131 2,075 3 2 

Saccharomonospora viridis NC_013159 67.3 12,860 1,418 3 3 
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Salmonella enterica NC_004631 52.1 22,444 1,931 5 5 

Salmonella enterica NC_003197 52.2 21,356 1,955 13 12 

Sanguibacter keddieii NC_013521 71.9 18,292 1,773 6 4 

Slackia heliotrinireducens NC_013165 60.2 17,454 1,260 2 1 

Stackebrandtia nassauensis NC_013947 68.1 19,901 1,631 4 3 

Streptococcus pyogenes NC_002737 38.5 5,879 651 0 0 

Synechococcus PCC NC_010475 49.6 27,140 1,957 20 14 

Synechocystis PCC NC_000911 47.7 20,806 1,685 6 5 

Syntrophobacter fumaroxidans NC_008554 59.9 19,677 1,395 3 3 

Thermobispora bispora NC_014165 72.4 7,216 968 0 0 

Thermosynechococcus elongatus NC_004113 53.9 278 40 0 0 

Xylanimonas cellulosilytica NC_013530 72.5 40,245 2,134 22 11 

Yersinia pestis NC_004088 47.6 30,688 1,271 7 5 

       

Removed genomes: 
RefSeq 

Accession 
GC% of 
genome 

No. of 
peptide 

No. of 
peptides 

containing 
stop 

codon 
  Escherichia coli NC_000913 50.8 38485 10829 
  Geobacter sulfurreducens NC_002939 60.9 27613 7196 
  Rhodobacter sphaeroides NC_007493 69 41707 6104 
  Magnetospirillum magneticum NC_007626 65.1 0 0 
  Cenarchaeum symbiosum NC_014820 57.4 2 0 
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