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ABSTRACT

Spin Orbit Torque in Ferromagnetic

Semiconductors

Hang Li

Electrons not only have charges but also have spin. By utilizing the electron spin,

the energy consumption of electronic devices can be reduced, their size can be scaled

down and the efficiency of ‘read’ and ‘write’ in memory devices can be significantly

improved. Hence, the manipulation of electron spin in electronic devices becomes

more and more appealing for the advancement of microelectronics. In spin-based

devices, the manipulation of ferromagnetic order parameter using electrical currents

is a very useful means for current-driven operation. Nowadays, most of magnetic

memory devices are based on the so-called spin transfer torque, which stems from

the spin angular momentum transfer between a spin-polarized current and the mag-

netic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit

coupling in non-centrosymmetric magnets, has attracted a massive amount of atten-

tion. This thesis addresses the nature of spin-orbit coupled transport and torques in

non-centrosymmetric magnetic semiconductors.

We start with the theoretical study of spin orbit torque in three dimensional

ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-

driven field-like torque and anti-damping-like torque. We compare the numerical

results with the analytical expressions in the model case of a magnetic Rashba two-
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dimensional electron gas. Parametric dependencies of the different torque components

and similarities to the analytical results of the Rashba two-dimensional electron gas

in the weak disorder limit are described.

Subsequently we study spin-orbit torques in two dimensional hexagonal crystals

such as graphene, silicene, germanene and stanene. In the presence of staggered

potential and exchange field, the valley degeneracy can be lifted and we obtain a

valley-dependent Berry curvature, leading to a tunable antidamping torque by con-

trolling the valley degree of freedom.

This thesis then addresses the influence of the quantum spin Hall effect on spin

orbit torque in nanoribbons with a hexagonal lattice. We find a dramatic modification

of the nature of the torque (field-like and damping-like component) when crossing the

topological phase transition. The relative magnitude of the two torque components

can be significantly modifies by changing the magnetization direction.

Finally, motivated by recent experimental results, we conclude by investigating the

features of spin-orbit torque in magnetic transition metal dichalcogenides. We find

the torque is associated with the valley polarization. By changing the magnetization

direction, the torque can be changed from a finite value to zero when the valley

polarization decreases from a finite value to zero.
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Chapter 1

Introduction

1.1 Spintronics

1.1.1 Overview

In the past century, the progress of technology has been largely relying on the de-

velopment of electronic devices. These devices offer the ability to control the charge

flows on microscopic scales, thereby enabling functions essential to practical applica-

tions in the storage of information [1]. Up till now, most electronic devices rely on

the electrical manipulation of the charge of the carriers (electrons or holes). However,

apart from their charges, electrons also possess an intrinsic spin angular momentum.

Recently, intensive efforts have been devoted to explore the possibility of controlling

electrons via their spins. Many achievements have been made along this line and have

resulted in the opening of a new field, i.e., spin based electronics or spintronics [2].

A significant achievement in the field of spintronics was the discovery of giant

magnetoresistance (GMR) effect by Fert and Grünberg as seen in Fig. 1.1 (a) and

(b) [3, 4]. They reported that the electrical resistance of a (Fe/Cr) magnetic multi-

layer depends on the relative orientation of the magnetizations of the Fe layers. The

overall resistance of the stack is low (high) when the magnetizations of the adjacent

ferromagnetic layers are parallel (antiparallel) to each other as seen in Fig. 1.1 (c)
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and (d). This is referred to as GMR effect. On the basis of GMR effect, commercially

available field sensors appeared as early as 1995, and IBM produced a hard-drive read

head in 1997 [5, 6]. These applications are estimated to impact a multibillion dollar

industry. Due to its practical applications, the manipulation of the electron spin in a

system composed of metallic materials has attracted considerable attention.

Figure 1.1: GMR-based (a) spin valve and (b) magnetic tunnel junction [6]. Schematic
representations of GMR principle for antialigned (high resistance) and aligned (low
resistance) [7].

1.1.2 Diluted magnetic semiconductor for spintronics

In the early 90’s, study of the manipulation of the electron spin was generalized to

the semiconducting materials. Compared with the metallic materials, semiconductors

possess a longer spin-coherence time at room-temperature and the ability for opti-

cal detection of spin orientation using circularly polarized light, the maturity of the

fabrication processes as well as their compatibility with traditional semiconductor mi-
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croelectronics [8]. To achieve this goal, the spintronics community has been intended

to develop materials displaying both semiconducting and magnetic properties. One

approach is to incorporate a few percents of transition metal elements into semicon-

ductors. As a result, some of them display magnetism while preserving their semi-

conducting nature. These semiconducting systems are referred to as diluted magnetic

semiconductors (DMS). They include oxide-based (such as (Zn,Mn)O) II-V I (such

as (Zn, Mn)Se), IV (such as (Ge,Mn)) and III-V groups (such as (Ga,Mn)As) [9].

We limit our description to the most archetypal and widest used DMS, (Ga,Mn)As.

Ferromagnetic (Ga,Mn)As thin films were first prepared successfully at low temper-

ature by using molecular beam epitaxy in 1996 [10]. In the GaAs lattice structure

Mn substitutes into a Ga site and acts as an acceptor as shown in Fig. 1.2, while

also providing a localized spin of S=5/2. This local spin couples with the itinerant

holes, leading to the so-called hole-mediated ferromagnetism of (Ga,Mn)As [9]. Due

to the ZnSe crystal structure of GaAs, (Ga,Mn)As displays cubic magnetocrystalline

anisotropy that depends on the carrier concentration. There are three crystal direc-

tions [(100) or equivalent] as the preferred axes of magnetization (easy axes). The

easy axis is rotated by tuning the hole concentration, i.e., the equilibrium magneti-

zation direction changes upon hole concentration modulation. Figure 1.3 shows the

anisotropic magnetic field Hcu /M as a function of hole concentration p for various

spin-splitting BG [11]. The easy axis changes dramatically with hole concentration

p. Hence, it is possible to control the magnetization direction in (Ga,Mn)As by an

external field [12, 13, 14]. In addition, upon Mn doping, the GaAs lattice is distorted

which results in strains when deposited on the substrate. The type of strain (tensile

or compressive) depends on the lattice constant of the substrate. The strain leads to

enhanced bulk inversion symmetry breaking resulting in odd-in-k spin-orbit coupling

[9]. This odd-in-k spin-orbit coupling (of either Dresselhaus or Rashba type) can

be used to manipulation the magnetization direction by a current, using spin-orbit
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torques (see section 1.1.3).

Figure 1.2: (a) Crystal structure (zinc-blende) of GaAs with substitutional Mn im-
purity [15] and its band structures for 3D [16](b) and 1D (c).

1.1.3 Spin injection in semiconductors

Besides the development of magnetic semiconductors, major efforts have been paid

towards the achievement of efficient spin injection from a ferromagnetic metal into a

non-magnetic semiconductor [2]. This injection leads to a non-equilibrium population

of spin polarized electrons in a nonmagnetic semiconductor. These non-equilibrium

spins spread by diffusion and thus can result in a small spin current in the nonmag-

netic semiconductor. In the early stage, the measurement of non-equilibrium spin

accumulation was focused on systems where both the magnetic and non magnetic

layers were metallic. The efficiency of spin injection was estimated to be about 7.5%

in Ni0.8Fe0.2/Al [17]. Nevertheless, an important limitation of spin transport through

metals is their short spin lifetime and related spin diffusion length. The spin lifetime

in metal is short (less than 10ps) and spin diffusion length (about 100 nm) is small.

In contrast, the spin lifetime and diffusion length in semiconductor such as GaAs is

more than 100 ns and 10 µ m at 4.2K due to the weak spin orbit coupling, respec-

tively [18]. Then, spin injection was soon extended to non magnetic semiconductors.
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Figure 1.3: Computed minimum magnetic field Hcu (divided by M) necessary to align
magnetization M along the hard axis for cubic (unstrained) Ga1−xMnxAs film. As a
function of the hole concentration and the spin-splitting parameter BG , the easy and
hard axes fluctuate alternately between [110] and [100] (or equivalent) directions in
the plane of the film. The symbol [110] → [100] means that the easy axis is rotated
from [110] to [100] with the increasing hole concentration (BG=-30 meV corresponds
to the saturation magnetization of M for Ga0.95Mn0.05As ) [11].

The efficiency of spin injection in Fe/GaAs ranges from 2% to 8% below room tem-

perature [19]. When using the diluted magnetic semiconductor Cd0.98Mn0.02Te as a

spin injector, the efficiency reaches about to 50% [20], while it is estimated as high as

85% in BexMnyZn1−x−ySe/GaAs at 10K [21]. Spin injection efficiency of about 25%

has been recently reported in graphene at room temperature, using an MgO barrier

[22]. Beside the electrical injection, an alternative way to inject spins in non-magnetic

materials is photoexcitation. Si is an indirect band-gap semiconductor and expected

to have a low efficiency of optical spin injection. Nevertheless, recent work reported

a significant progress in achieving robust electrical spin injection into pure Si in a

Al/Al2O3/CoFe/Si/NiFe/n-Si multilayered structure. The ferromagnetic layer NiFe

and CoFe act as a spin filter, leading to the evident enhancement of spin injection

efficiency (about 30%) [23].
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1.1.4 Graphene for spintronics

Graphene is a promising material for spintronic devices because of its high carrier mo-

bility, weak spin-orbit coupling (SOC), and long spin coherence time [24]. Graphene

is a one-atom-thick planar sheet of sp2 bonded carbon atoms that are densely packed

in a honeycomb crystal lattice as shown in Fig. 1.4 (a) [25]. Each unit cell in the

graphene lattice contains two carbon atoms and each carbon atom contributes a free

electron. Interestingly, in the band structure of graphene the valence and the conduc-

tion bands meet at the six corners of the Brillouin zone as shown in Fig. 1.4 (b). In

the vicinity of the crossing points (so-called Dirac points), the electron energy presents

a linear dependence on the wave vector. Hence, the itinerant electrons behave as a

massless chiral (Dirac) fermions. This is in sharp contrast with electrons in metals

that are massive particles with parabolic energy dispersion. As a result, compared

with the two dimensional electron gas obtained in semiconductor heterostructures,

carriers in graphene present spectacular properties, such as a constant carrier veloc-

ity, independent of energy, a minimal conductivity, and very low resistive loss due to

scattering [26, 27, 28]. The last property makes graphene an excellent candidate for

device applications.

Unit cell  

a1 a2 

(a) 

Figure 1.4: (a)Two dimensional graphene and its band structure (b) and (c) from
[29] and [30].
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By cutting the graphene along a certain direction, graphene nanoribbon (GNR) is

obtained. There are two types of graphene nanoribbons according to their terminated

edges: armchair and zigzag GNRs as shown in Fig. 1.5. Compared with quantum

wires, the electrical properties of the GNRs are more sensitive to the structural geom-

etry and size. For an armchair edged GNR, the band gap depends on the width of the

nanowire. When the width NA satifies NA = 3n+2 (n is the number of carbon atoms),

the armchair edged GNR is metallic. Otherwise, it is a semiconductor [31]. As for

the zigzag edged GNR, ferromagnetic ground states with the opposite spin directions

appear symmetrically at the zigzag edges, leading to its semiconducting behavior [32].

This supplies a new approach to control electron transport by structural design [33].

Figure 1.5: Graphene nanoribbons with different edges (a) zigzag and (b) armchair.

The first experiment on spin injection and spin detection in a single-layered

graphene was conducted by van Wees et al. [34]. They built a nonlocal spin-valve

device with four ferromagnetic Co electrodes and injected a current from electrode 3

through the Al2O3 barrier into graphene as shown in Fig. 1.6. Figure 1.6 displays

a typical measurement of the non-local spin valve device at low temperature 4.2 K.

Several resistance values are found which are due to the particular configuration of

magnetization directions of four ferromagnetic electrodes demonstrating that carrier
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transport between the central electrodes (∼330nm) and the outer electrodes (∼1µm)

is spin conserving. Spin coherent transport in a single-layered graphene can be tuned

by voltage at the low temperature and can be also found in a spin valve device made

of a multilayer graphene [35].

Figure 1.6: Nonlocal spin transport in single layer graphene spin valve done by van
Wees et al. , from [34]

Recently, a series of new single-layered materials has also been fabricated such

as silicene, gemanium and stanene. These materials have a similar hexagonal lattice

compared with graphene [36]. Nevertheless, they exhibit more interesting features

such as a low buckled structure, which results in a larger intrinsic spin-orbit coupling

results in a more evident intrinsic spin orbit coupling. The intrinsic spin orbit cou-

pling may open up a band gap and induce quantum spin Hall effect [37]. In addition,

the band gap can be tuned easily by the coupling between substrate and silicene,

gemanium or stanene due to a larger intrinsic spin orbit coupling. As a result, it

is possible to obtain valley polarization, i.e., currents predominantly carried by one

valley. The monolayered silicene sheets have been synthesized on different substrates

including Ir(111) and Ag(111). These experiments have triggered many efforts to

study the intrinsic properties such as quantum anomalous Hall effect and quantum
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valley Hall effect. The study of single-layered materials has also been extended to

transition metal dichalcogenides (MoS2 etc.). For the single-layered MoS2, the val-

ley polarization is much easier to generate due to the lack of inversion symmetry.

Experimental results suggest the MoS2 is excellent candidate for both valleytronic

and optotronic devices [38]. Although several of experiments have been done, the

underlying physical mechanisms are still to be explored.

1.1.5 Spin-based devices

With the progress of spintronics, a series of spin-based devices such as spin transistors,

magnetic racetrack memory and non-volatile magnetic memories (e.g. MRAM) have

been proposed. Compared to the traditional semiconductor devices, the spintronics

devices are nonvolatile in nature, and exhibit higher data processing speed, lower

electric power consumption and larger integration density. For example, the principle

of spin transistor is shown in Fig. 1.7(a), where a normal conducting with strong

Rashba spin-orbit coupling is sandwiched by two ferromagnetic layers. A gate voltage

is applied on the conducting channel in order to modulate the magnitude of Rashba

spin-orbit coupling. When the voltage is absent, the electrons are polarized in the first

layer and then pass through the second layer and the drain layer with the same spin

directions. While the voltage is present, the electrons precess due to the Rashba spin

orbit coupling and pass through the other terminal with the different spin directions.

In Fig. 1.7(b), we display a U-shaped spin device, named racetrack memory. In a

magnetic nanowire, trains of alternating magnetic domains encode the information.

If the spin current is injected to the nanowire, the whole magnetic pattern moves

toward the read heads. Then the data can be detected or rewritten. In Fig. 1.7(c),

the principle of MRAM is shown. For the binary information ’0’ the magnetization of

the free layer is aligned with the magnetization of the fixed layer and the resistance

of the MRAM cell is low. Otherwise, when the magnetization of the free layer is
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anti aligned with the magnetization of the fixed layer, the resistance of the MRAM

cell is high and record the binary information ’1’. By measuring or modifying the

resistance of the memory cell, the stored information can be read or written. Finally,

the MRAM based on spin orbit torque is shown in Fig. 1.7(d). The readout of

the free layer is achieved through a magnetic tunnel junction, but the spin injector

is replaced by a non-magnetic heavy metal. When the current is injected into the

nonmagnetic heavy metal layer, a large spin torque induced by the spin orbit coupling

will exert a force on the free ferromagnetic layer. The magnetic state of this layer is

simply detected through a standard magnetic tunnel junction. Compared with the

spin transfer torque MRAMs, the energy consumption is lower due to a lower critical

current and voltage and write speed is faster. Moreover, the write and read current

loops are decoupled and thus separated optimization for read or write is allowed.

(a) 

(d) 

(c) 

(b) 

Figure 1.7: (a)Datta-Das spin transistor [39].(b) MRAM [40]. (c) Race track memory
[41].(d) Spin orbit torque-MRAMS [42].
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1.2 Spin transfer torque

1.2.1 Principle of spin transfer torque

For memory applications, the magnetization of the free layer needs to be manipulated

using an external force. It might be switched either by an external magnetic field or by

an electrical current flowing through the memory cell [43]. This latter effect, predicted

in 1996 and called the spin transfer torque, has attracted significant attention for the

past two decades and enables the development of electrically controlled magnetic

random access memories [44]. A typical magnetic structure, used to study the effect

of spin transfer torque, is the spin valve (Figure 1.8). In this particular system, the two

ferromagnets (Co) possess two different thicknesses so that one is more rigid against

magnetic field than the other. The rigid layer is used as a reference (named after the

fixed layer) while the other layer, that can be easily manipulated with an external

magnetic field, is called the free layer [45]. In general, two ferromagnetic layers are

non-collinear and separated by a thin nonmagnetic layer (either a metal with long spin

diffusion length such as Cu or Al, or a tunnel barrier, such as MgO or AlOx). Indeed,

when spin-polarized electrons pass through a spin valve, the electrons become spin-

polarized in the reference magnetic layer: the reference ferromagnetic layer exerts a

torque on the itinerant spin that align these spin on the local magnetization. Inversely,

these itinerant electrons exert a torque back on the adjacent ferromagnetic layer due

to the transfer of spin angular momentum. This is the principle of spin transfer torque

in magnetic spin-valves [46]. With a current exceeding a certain critical value, the

magnetization of the free layer can be rotated, leading to a current-induced torque.

The torque possesses two components, T = m × (p × m) + m × p, the first is

antidamping component and the latter is field-like component. The antidamping

torque compensates the damping and can induce switching and precession. The

critical current is therefore jc = Hk/aα, where a is the torque efficiency, Hk is the
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magnetic anisotropy field and α is the damping factor.

(a) 
(b) 

Figure 1.8: (a) Schematic picture of a magnetic multilayered structure in which spin
transfer torque is studied experimentally. (b) Principle of spin transfer torque [45].

A typical magnetic multilayered structure used for spin transfer torque studies

is shown in Fig. 1.9. The small size of the cross section of the structure (about

60 × 130nm2) is expected to reduce the influence of Oersted field induced by the

flowing charge current. The resistance of the structure is plotted as a function of the

injected current in Fig. 1.9. As mentioned above, the resistance is high (low) when

the magnetizations of the ferromagnetic layers are parallel (anti-parallel) because of

the GMR effect. Sudden jumps of the magnetization induced by spin transfer torque

can be found in Fig. 1.9, which form a hysteresis loop [47].

1.2.2 Spin transfer torque in diluted magnetic semiconductor

Spin transfer torque can be generated not only in metallic systems (such as transition

metals Co, Fe and their compounds) but also in semiconductors. Recently, current-

driven magnetization reversal has been studied experimentally in a (Ga,Mn)As/GaAs/

(Ga,Mn)As tunneling junction as shown in the upper panel in Fig. 1.10 [48]. In the

lower panel, we display the current dependence of the resistance difference between the

parallel and the antiparallel magnetization configuration at 30K. The two ferromag-

netic layers are parallel in initial configuration, which corresponds to a low resistance
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Figure 1.9: The hysteresis curve of differential resistance in a spin valve [47].

(closed circles). The sharp magnetization jump indicates current-driven magneti-

zation switching by the spin transfer torque. However, the critical current density

(105A cm2) for magnetization switching is two to three orders of magnitude less than

in metallic systems due to the weaker saturation magnetization in (Ga,Mn)As. When

replacing the nonmagnetic GaAs layer with an InGaAs layer, the minimum resistance

of this structure decreases dramatically because the band gap of InGaAs is smaller

than that of GaAs [49].

In a (Ga,Mn)As multilayered structure, the intrinsic spin orbit coupling has been

emphasized. Due to the presence of spin orbit coupling, the total spin is not con-

served and degenerate bands are further split. When the current flows from the first

ferromagnetic layer to the other one, the persistent spin transfer torque arises because

the spin-orbit field misalign the incoming spin further away from the local magnetiza-

tion, which provides a bulk contribution to the torque. Furthermore, the spin transfer

torque oscillates when increasing the thickness of the polarizing ferromagnetic layer

due to the variations of transmission channels related to the total angular momentum

and wave vectors caused by the intrinsic spin orbit coupling [50].
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GaMnAs 

80nm 

GaAs 
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Figure 1.10: The hysteresis curve of differential resistance in a semiconducting tun-
neling magnetoresistance device [49].

1.2.3 Spin transfer torque in graphene

Recently, spin transfer torque was also reported experimentally in a graphene-based

spin valve structure as shown in Fig. 1.11(a) and (b) [51]. The current was injected

from Py electrode through the Al2O3 barrier into graphene. The effect of magneti-

zation reversal induced by spin transfer torque is shown in Fig. 9(c) in the presence

of an external magnetic field along the easy axis. When a current pulse with dura-

tion of 5 s is applied to the region between contact 1 and 2, the electrons are spin

polarized in the ferromagnetic injector, antiparallel to the magnetization of detector.

Then the electrons transfer the angular momentum to the detector and switch its

magnetization to the opposite direction as seen in Fig. 1.11(c) and (d) [52].

In addition, a large magnetoresistance effect was observed experimentally in a

single graphene layer connected to two Ti electrodes as shown in Fig. 1.12(a) [35]. In

Fig. 1.12(b), the current is plotted as a function of voltage near the charge neutrality

point at different magnetic fields. The I−V curves possess nonlinear behavior near
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Figure 1.11: (a) Schematic of a lateral nonlocal spin valve structures based on
graphene. (b) scanning electron micrograph of a graphene spin valve device (c) the
measurement of spin transfer torque in the parallel magnetization configuration (d)
Reversible magnetization switching as a function of the injected current [51].

to the zero source−drain bias. There is a semiconductor−like nonlinearly variable

gap and the source−drain gap decreases from 25 meV at 0 T to 4.3 meV at 8 T

(Fig. 1.12c, inset). Furthermore, the source−drain conduction gap decreases further

at a weak gate voltage. A similar magnetoresistance effect has been also studied

theoretically in a few graphene layers sandwiched two semi−infinite Ni(111) electrodes

[53]. The current−induced spin transfer torque can be generated in a structure with

two ferromagnetic leads connected to a normal graphene nanoribbon. The torque

dependence on the relative angle between the magnetic moments of the two leads is

tuned by a bias voltage [54]. Nevertheless, there is a large conductance mismatch

between the ferromagnetic leads and the graphene sheet. The spin transfer torque
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Figure 1.12: (a) Schematic preparation of the graphene nanoribbon-based Field effect
transistor. Nanowire is used to as a physical etching mask. Impact of (b) temperature
and (c) magnetic field on currentvoltage characteristics when the device is gated at
V=3 V [35].

has also been proposed theoretically using a graphene sheet that is connected to two

ferromagnetic graphene leads [55]. A ferromagnetic graphene lead can be achieved

by depositing a ferromagnetic insulator layer, such as EuO, on the top of graphene.

Then the spin-up and spin-down electrons experience different potentials when they

travel around the Eu ion, and the difference leads to a spin splitting. The magnitude

of tunneling magnetoresistance decreases with the increase of the exchange splitting

in graphene. The torque depends on the angle between the magnetic moments of the

two leads and can be tuned by the bias voltage.
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1.3 Spin orbit torques

In this section, we introduce an alternative mechanism that allows to electrically ma-

nipulate the magnetization direction of single ferromagnetic layers without the need

for a spin-polarized. This effect, called spin-orbit torque, arises in materials possessing

strong spin-orbit coupling and either bulk or structural inversion asymmetry.

1.3.1 Spin orbit coupling

Spin orbit coupling is a relativistic effect: When an electron moves in an electric field,

this electric field generates a magnetic field in the rest frame of the electron. The

magnetic field couples to the spin of the moving electron, resulting in the interplay

between electron spin and electric field. The general form of the spin-orbit coupling

reads

Ĥso =
~

4m2
0c

2
p̂ · (σ̂ ×∇V ), (1.1)

where m0 is the mass of electron, c is the light velocity, σ̂ is the vector of Pauli spin

matrices, and V is the electrical potential. The magnitudes and the directions of the

effective magnetic field rely on the velocity and travel direction of the electron in a

material, i.e., spin orbit coupling gives rise to a k-dependent effective magnetic field,

where k is the wave vector of the electron [36]. In systems lacking inversion symmetry

and preserving time-reversal symmetry, the spin-orbit field becomes odd in k due to

Kramers degeneracy. Two important examples of such odd-in-k spin-orbit coupling

are the so-called Rashba and Dresselhaus spin-orbit coupling [56, 57, 58]. The former

exists in bulk wurtzite crystals or multilayer structures without interfacial inversion

symmetry [56] while the latter arises from strain in Zinc-Blende crystals such as GaAs

[59]. This requires that the conduction or valence band edge of the crystals possess

an inversion asymmetry. Spin-orbit coupling in low dimensional systems with broken
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inversion symmetry was first studied by E.I. Rashba in 1984 and then is named after

him as Rashba spin orbit coupling [56]. In a quantum well structure, the quantum

average electric field is nonzero in the z direction perpendicular to the two dimensional

electron gas systems. Therefore, ∇V ≈ −Ez and the spin-orbit coupling reads:

Ĥso =
α

~
(p̂× σ̂)z, (1.2)

An external bias voltage can tune the band profile and modulate the strength of spin

orbit coupling. Rashba spin-orbit coupling acts as a k-dependent field about which

flowing spins precess. The signature of this effect has been observed in numerous

experiments such as Shubnikov-de Haas oscillations in quantum wells [60].

Another type of spin orbit coupling may occur due to bulk inversion asymmetry.

Materials with Zinc-Blende structure lack a center of inversion, the spin polarization

is also generated similar to Rashba spin coupling. The problem was first proposed by

G. Dresselhaus in 1955 [57, 58]. He found that energy states of electrons with the same

wavevectors but with different spins are non-degenerate so that there is a odd−in−k

spin orbit coupling stemming from bulk inversion asymmetry. The Hamiltonian for

cubic Dresselhaus spin orbit coupling is expressed as:

ĤDSOC = γ(σ̂x(k2y − k2z)kx + σ̂y(k
2
z − k2x)ky + σ̂z(k

2
x − k2y)kz), (1.3)

In addition, if stress is applied to the system, e.g. along the (001) direction, <

k2x >=< k2y > ̸=< k2z >, and the cubic Dresselhaus adopts a simpler form known as

the linear Dresselhaus spin-orbit coupling:

ĤDSOC = β(σ̂xkx − σ̂yky), (1.4)
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1.3.2 Principle of spin orbit torque

Since the spin-orbit coupling in inversion asymmetric structures is odd in k, it means

that it is possible to generate a nonequilibrium spin-orbit field when current flows

through the system (i.e., when < k > ̸= 0) [61]. This provides an alternative means

to manipulate the magnetization of single ferromagnets without the need for a spin

polarizer [62]. Consider a ferromagnet accommodating such a spin-orbit coupling. In

the absence of current, the spin-orbit coupling only acts on the magnetization at the

second order giving rise to the magneto crystalline anisotropy [63]. When current

passes through the system, the inversion asymmetric spin-orbit coupling builds up a

spin accumulation in a direction defined by the crystalline structure that may not be

aligned with the magnetization direction [64]. In other words, an angular momentum

transfer occurs between the orbital angular momentum of the itinerant electrons

and their spin angular momentum, resulting in a non-equilibrium spin accumulation.

This non-equilibrium spin current competes with the local magnetization, leading to

a torque. This is the essence of the spin-orbit torque [61, 65, 66].

In the presence of linear Rashba and Dresselhaus spin orbit coupling, the spin

orbit torque in a two dimensional electron gas system has an analytic expression as

follows:

T = Jexm× Ω̂ = 2σE
Jsdm

Efe~2
[α cos(θ − θ0) + β sin(θ + θ0)], (1.5)

where σ is the conductivity in the absence of spin orbit coupling, Jex is the exchange

coupling constant, Ef is the Fermi energy, θ0 is the angle between the electrical field

and x-axis and θ is the angle between the magnetization and x-axis. Notice that

both the magnetization and the electric field remain in the plane in this expression.

They are rotated in-plane direction. α is the Rashba coupling constant and β is the

Dresselhaus coupling constant. Recent theories on the model Rashba system have
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shown that the spin-orbit torque adopts the general form [61]

T = T∥M × y + T⊥M × (y ×M ), (1.6)

. By using a semiclassical method to treat spin torque, the magnetization in a

ferromagnetic system is described phenomenologically through the Landau-Lifshitz-

Gilbert equation:

dM

dt
= −γM × (Heff + Hcd) − α

Ms

M × dM

dt
(1.7)

where α is the Gilbert damping constant, γ represents the gyromagnetic ratio, M is

the magnetization of ferromagnet and the spin torque via T = −γM×Hcd. The first

term is called the field-like torque and acts like a magnetic field along y (direction

transverse to both the plane normal and the flowing current direction) and the second

one is called the damping like torque since it directly competes with the magnetic

damping.

1.3.3 Spin orbit torque in diluted magnetic semiconductor

This spin orbit torque was observed in a strained ferromagnetic (Ga,Mn)As thin film

and interpreted as arising from Dresselhaus [59, 67, 68]. In Fig.1.13, the resistance

Rxy is plotted as a function of magnetization switching angle ϕH near to [010] → [100]

[59]. It is clearly seen from Fig. 1.13 that there is a hysteresis loop formed by Rxy.

This implies that there is an interaction between the magnetization and spin polarized

current, i.e., there exists a spin torque. Furthermore, the torque only requires a single

ferromagnetic layer. The spin torque can be driven by a small current as low as 0.5

mA. Apart from the Dresselhaus spin orbit torque, a weaker Rashba spin orbit torque

was also observed in a ferromagnetic (Ga,Mn)As thin film [68]. The spin torque can

be further enhanced by doping with phosphorus. Previous experimental results first
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observed the field-like spin orbit torques (in-plane components).

Recently, a damping-like (M×(z×M )) spin orbit torque, comparable to field-like

torque in magnitudes, has been observed in a single ferromagnetic (Ga,Mn)As film

with a broken inversion symmetry due to the strain. The origin of this torque is at-

tributed to interband transitions, as will be discussed further in this thesis. When the

system lacks Rashba spin orbit coupling, the nonequilibrium spin density is directed

along the magnetization direction. When Rashba spin orbit coupling is present, the

system acquires an additional noncollinear nonequilibrium spin density due to the

Rashba spin orbit coupling. According to the Bloch equation, the interplay of the

in-plane effective magnetic field and magnetization leads to small rotations of all

spins toward out-of-plane direction, i.e., produces an out-of-plane spin density. This

is because the nonequilibrium spin density modifies the eigenenergies of carriers and

results in an interband scattering between the states. In other word, the spin den-

sity does not rely upon impurity scattering as mentioned above. In the absence of

impurities, the spin density can be estimated by [65]

δSint =
~
V

∑
k,a ̸=b

Im[⟨ψak|ŝ|ψbk⟩⟨ψbk|eEx · v̂|ψak⟩]
(Ek,a − Ek,b)2

× (fka − fkb). (1.8)

The integral is over the Fermi sea. This term is associated with the Berry curvature in

mixed spin-momentum space. Its contribution to nonequilibrium spin density is still

present even without impurity scattering. As a result, it is the intrinsic contribution

to the spin density [59, 67, 68].

1.3.4 Search for Spin orbit torque in graphene

Since graphene possesses very large mobility and weak spin relaxation rate, this sys-

tem - as well as other similar Dirac 2D materials - presents an interesting platform

for the realization of spin orbit torque. However, graphene possess weak intrinsic
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Figure 1.13: (a) Eight leads contact with the island-shaped GaMnAs (b) Resistance
of device as a function of magnetization in a (Ga,Mn)As thin film [59].

spin-orbit coupling, as opposed to germanene, silicene and transition metal dichalco-

genides. It is therefore important to enhance spin-orbit coupling in graphene to

generate spin torque. Recent experiments reported that large Rashba spin splitting

in graphene can be induced by Au intercalation at the graphene−Ni interface as

shown in Fig. 1.14 [69, 53]. The spin splitting is attributed to the hybridization of

Au 5d states. Without the external field, the spin polarization is zero due to the

time-reversal symmetry while at a finite electric field a non-equilibrium spin density

is generated [32, 70]. As mentioned in section (1.3.3), it is also possible to induce

exchange interaction in graphene by depositing a magnetic insulator on the top of it.

Therefore, one can foresee that a smart interfacial design of graphene−based devices

may render this material suitable for spin-orbit torque experiments. Interestingly, to

the best of our knowledge, the impact of DMS and graphene materials on spin-orbit

torque has not been addressed in the existing literature.

1.4 Objectives and Contributions

The contributions of this thesis fall in the following streams:



31

Figure 1.14: The spin orbit splitting (70meV) (a) due to Au atoms moved to the
graphene hollow sites (b). (c) Angle−resolved photoemission in the vicinity of the K
point of graphene. (d) Rashba spin splitting of graphene in spin and angleresolved
photo−emission spectra [69].

• Objective 1: Providing an accurate description of the spin-orbit torque in

(Ga,Mn)As, using quantum transport formalism. We are particularly interested in

evaluating its connection with the simple Rashba model.

• Objective 2: Exploring the characteristics of spin-orbit torque in graphene−like

two dimensional electron gases. The role of intrinsic spin-orbit torque and the impact

of valleytronics will be addressed principally.

• Objective 3: Understanding the role of topological chiral edge states on the spin-

orbit torque in the quantum spin Hall regime. We will be investigating the electrical

efficiency of the torque arising from the bulk and from the edges.
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Chapter 2

Theoretical Background

k · p theory is a perturbation theory commonly used in semiconductors to describe

the band structure with high precision. It was first proposed by Bardeen and Seitz,

and then developed by Kohn and Luttinger. By utilizing the known experimental

parameters, such as band gap, split-off energy, carrier effective masses, one can de-

termine extrema of energy at the high symmetry points in the Brillouin zone (for

example, Γ point k = 0) and then extrapolate the band structure in the vicinity of k

value in terms of perturbation theory. k · p theory can be used to fix the band struc-

ture of different types of semiconductors such as diamond, zinc-blende, or wurtzite

structures, as well as their nanostructures including quantum wells and nanowires.

2.1 k · p theory for bulk GaAs

We start from the single electron Schrödinger equation in a semiconductor

(
p2

2me

+ V0

)
ψnk(r) = Enψnk(r), (2.1)

where V0 denotes the periodic crystal potential because of ions and core electrons

or exchange interaction, impurities, etc. Assuming the potential V0 is periodic, the
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wavefunctions are subject to the Bloch theorem,

ψnk(r) = eik·runk(r);unk(r) = unk(r + R).

Substituting the Eq.2.2 into the Eq.2.1, we have

(
p2

2me

+ V0 +
~2k2

2me

+
~
me

k · p
)
unk(r) = Enunk(r). (2.2)

This is so-called k · p Hamiltonian. Once En and unk(r) are known, it is easy to treat

the k-dependent terms as perturbations in Eq. 2.2.

The Kohn-Luttinger Hamiltonian is an effective Hamiltonian that describes va-

lence bands of the semiconductors with zinc-blende structure such as GaAs. By the

degenerate second-order pertubation theory, we can construct the k · p Hamiltonian

matrices based on the eigenstates of angular momentum |X⟩, |Y ⟩ and |Z⟩ as:

Ĥij =
~2k2

2me

δij +
∑
n

|⟨i| Ĥ1 |j⟩|
2

E1 − En

, (2.3)

where i,j denotes X,Y or Z and Ĥ1 represents the k · p terms in Eq. 2.2. |X⟩, |Y ⟩

and |Z⟩ can be written by the orbital angular momentum eigenstates |ml⟩ with l=1:

|X⟩ =
1√
2

(|ml = −1⟩ − |ml = 1⟩)

|Y ⟩ =
1√
2

(|ml = −1⟩ + |ml = 1⟩)

|Z⟩ =(|ml = 0⟩). (2.4)
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where we have in the coordinate representation:

⟨r|ml = 1⟩ = − 1√
2
f(r)(x+ iy)

⟨r|ml = −1⟩ =
1√
2
f(r)(x− iy)

⟨r|ml = −0⟩ =f(r)z. (2.5)

In the absence of spin orbit coupling, we use the relation:

m2
e

~
|⟨X| Ĥ1 |m⟩|

2
= |⟨X| p̂x |m⟩|2k2x + |⟨X| p̂y |m⟩|2k2y + |⟨X| p̂z |m⟩|2k2z . (2.6)

Finally, the Eq. 2.6 can be rewritten as:

ĤKL =


E1 + Ak2x +B(k2y + k2z) Ckxky Ckxkz

Ckxky E1 + Ak2y +B(k2x + k2z) Ckykz

Ckxkz Ckykz E1 + Ak2z +B(k2x + k2y)

 .

(2.7)

The spin orbit coupling splits the degenerate six states (2(spin) × 3 (X,Y,Z)) into

|J = 3/2 > and |J = 1/2 >. The six-band Kohn-Luttinger Hamiltonian reads,

ĤKL =



Hhh −c −b 0 b√
2

c
√

2

−c∗ Hlh 0 b − b∗
√
3√
2

−d

−b∗ 0 Hlh −c d − b
√
3√
2

0 b∗ −c∗ Hhh −c∗
√

2 b∗√
2

b∗√
2

− b
√
3√
2

d∗ −c
√

2 Hso 0

c∗
√

2 −d∗ − b∗
√
3√
2

b√
2

0 Hso


. (2.8)

The Hamiltonian in Eq. (2.8) comprises subspaces of heavy holes (hh), light holes
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(lh), and spin-orbit split bands (so), which are defined as

Hhh =
~2

2m

[
(γ1 + γ2)(k

2
x + k2y) + (γ1 − 2γ2)k

2
z

]
,

Hlh =
~2

2m

[
(γ1 − γ2)(k

2
x + k2y) + (γ1 + 2γ2)k

2
z

]
,

Hso =
~2

2m
γ1(k

2
x + k2y + k2z) + ∆so. (2.9)

The other parameters appearing in Eq.(2.8) are defined as

b =

√
3~2

m
γ3kz(kx − iky),

c =

√
3~2

2m

[
γ2(k

2
x − k2y) − 2iγ3kxky

]
,

d = −
√

2~2

2m
γ2

[
2k2z − (k2x + k2y)

]
, (2.10)

where the phenomenological Luttinger parameters γ1,2,3 determine the band struc-

tures and the effective masses of valence-band holes. Particularly, γ3 is associated

with the anisotropy of energy band structure around the Γ point at γ2 ̸= γ3. Setting

γ1 = 1.0 while γ2 = γ3 = 0, the six-band Hamiltonian reduces to a simple free-electron

model. If γ2 = γ3 ̸= 0, the Fermi surfaces of both minority and majority hole bands

become spherical.

2.2 The tight-binding Hamiltonian for 2D graphene

in the momentum space

We define the unit lattice vectors of the hexagonal Bravais lattice as

a1 =
a

2
(1,

√
3), a2 =

a

2
(1,−

√
3), (2.11)
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According to the definition of relation between unit lattice vectors and reciprocal

lattice vectors a1b1 = a2b2 = 2π and a1b2 = a2b1 = 0, their reciprocal lattice

vectors are:

b1 =
2π

a
(1,

1√
3

),b2 =
2π

a
(1,− 1√

3
). (2.12)

For two-dimensional hexagonal crystals, each unit cell contains two carbon atoms.

The Hamiltonian is a 2 × 2 matrix without the particle spin:

Ĥsys =

 HAA HAB

HBA HBB

 , (2.13)

where HAA (HBB) describes the intrinsic effect at the sublattice A (B) site in the

unit cell and HAB (HBA) represents the coupling between two sublattices. In the

presence of particle spin the Hamiltonian is a 4 × 4 matrix. We employ the Bloch

wave functions to describe the electron/spin transport among the different unit cells.

It can be written as :

ψj(k, r) =
1√
N

N∑
i=1

eik·Rj,iϕj(r −Rj,i), (2.14)

where the sum is over N different unit cells with the index i=1...N, and Rj,i denotes

the position of the j-th orbital in the i-th unit cell. Once we have the Bloch wave
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function, the matrix element in Eq.2.13 may be found as

HAA =
1

N

N∑
i=1

N∑
j=1

eik·(Rj,A−Ri,A)⟨ϕA(r −Ri,A)| H |ϕA(r −Rj,A)⟩

≈ 1

N

N∑
i=1

⟨ϕA(r −Ri,A)| H |ϕA(r −Ri,A)⟩

≈ 1

N

N∑
i=1

ϵ2p

= ϵ2p. (2.15)

Note that we assume that the dominant contribution in the first line arises from the

same site j=i for each unit cell. Each term in the second line is independent of the

site index i. Following a similar way, the B sublattice can be obtained:

HBB = HAA = ϵ2p. (2.16)

For the off-diagonal parts, each atom has three nearest-neighbor atoms with the index

l (l=1,2,3). We only consider the A atom and then have

HAB =
1

N

N∑
i=1

3∑
r=1

eik·(Rr,B−Ri,A)⟨ϕA(r −Ri,A)| H |ϕB(r −Rr,B)⟩

≈ 1

N

N∑
i=1

3∑
r=1

eik·(Rr,B−Ri,A)γ

=
γ

N

N∑
i=1

eik·δl

= γf(k), (2.17)

where the matrix element between neighboring atoms, γ = ⟨ϕA(r−Ri,A)| H |ϕB(r−

Rj,B)⟩ is independent of indices i and l. We assume f(k) =
∑3

r=1 eik·(Rr,B−Ri,A) =∑3
r=1 eik·δl . For A sublattice, three nearest-neighbor vectors in the coordinate system



38

are respectively given as:

δ1 = a(0, 1/
√

3), δ2 = a(1/2,−1/2
√

3), δ3 = (−1/2,−1/2
√

3). (2.18)

Then f(k) can be read as:

f(k) =
3∑

r=1

eik·δl

= eikya/
√
3 + eikxa/2e−ikya/2

√
3 + eikxa/2e−ikya/2

√
3

= eikya/
√
3 + 2 cos(kxa/2)e−ikya/2

√
3. (2.19)

HBA is the complex conjugate of HAB:

HBA = HAB = γf ∗(k). (2.20)

With the help of reciprocal lattice vectors b1 and b2, the coordinates of two conjugate

K points in the reciprocal space can be found as:

K± = ±(4π/3a, 0). (2.21)

We introduce a momentum p that is measured from the center of the K point,

p = ~k − ~K. (2.22)

Then, the coupling between the A and B subblattice is equal to

f(k) = eikya/
√
3 + 2 cos(±2πK/3 + kxa/2)e−ikya/2

√
3

≈ (1 + ikxa/
√

3) + 2(1 − ikya/2
√

3)(−1/2 − ±
√

3kxa

2
)

≈
√

3a/2(±kx − iky). (2.23)
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Table 2.1: Low-energy Hamiltonian

h0 hR hso hz

C v(τkxσ̂x − kyσ̂y) ⊗ Î tR
2

(τ ŝy ⊗ σ̂x − ŝx ⊗ σ̂y) 0 Mŝz ⊗ Î

Si v(τkxσ̂x − kyσ̂y) ⊗ Î tR
2

(τ ŝy ⊗ σ̂x − ŝx ⊗ σ̂y) τtsoŝz ⊗ σ̂z Mŝz ⊗ Î

Ge v(τkxσ̂x − kyσ̂y) ⊗ Î tR
2

(τ ŝy ⊗ σ̂x − ŝx ⊗ σ̂y) τtsoŝz ⊗ σ̂z Mŝz ⊗ Î

Similarly, we can get the other terms in Table 2.1 within the low energy regime on

the basis of {ϕA,↑, ϕB,↓, ϕB,↑, ϕA,↓}. where σ denotes the pseudospin degree of freedom

and s is the real spin of particles. v =
√

3t/2, τ = ±1 stands for the valley of freedom,

Î is a 2× 2 unity matrix, tso = 3
√

3λso, tR = 3λR/2.

The 4 × 4 spin operators are written as:

Ŝx,y,z = ŝx,y,z ⊗ Î (2.24)

2.3 Tight-binding model for graphene nanoribbons

in a super-unit cell

Let us start from the time independent Schrödinger’s equation:

Ĥopψ(k, r) = E(k)ψ(k, r), (2.25)

where Ĥop is the Hamiltonian operator, E(k) and ψ(k, r) are eigenvalues and eigen-

wave-vectors in graphene lattice. k and r denotes the wave-vector and position,

respectively. The j-th eigenvalue Ej(k) as a function of k is given by

Ej(k) =
⟨ψj|Ĥop|ψj⟩
⟨ψj|ψj⟩

=

∫
ψ∗
j Ĥopψjdr∫
ψ∗
jψjdr

. (2.26)
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Because of the translational symmetry of the carbon atoms in a graphene lattice, the

eigenfunctions, ψj(k, r)(j = 1, .., n) , where n is the number of Bloch wavefunctions

can be written as a linear combination of Bloch orbital basis functions um(r).

ψj(k, r) =
n∑

j′=1

ϕjj′(k)uj′(k, r), (2.27)

where ϕjj′(k) are coefficients to be determined, and uj′(k, r) satisfies

uj′(k, r + a) = uj′(k, r)(i = 1, 2). (2.28)

Substituting Eq. (2.27) into Eq. (2.26) and changing subscripts we obtain

Ej(k) =

∑n
j,j′ ϕ

∗
jjϕjj′⟨uj|Ĥop|uj′⟩∑n

j,j′ ϕ
∗
jjϕjj′⟨uj|uj′⟩

=

∑n
j,j′ Hjj′(k)ϕ∗

jjϕjj′∑n
j,j′ Sjj′(k)ϕ∗

jjϕjj′
. (2.29)

Here the integrals over the Bloch orbitals, Hjj′(k) and Sjj′(k) are called the transfer

integral matrix and overlap integral matrix, respectively, which are defined by:

Hjj′(k) = ⟨uj|Ĥop|uj′⟩;Sjj′(k) = ⟨uj|uj′⟩(j, j′ = 1, ..., n). (2.30)

Hjj′(k) and Sjj′(k) have fixed values, for given value of k, and the coefficient ϕ∗
jj is

optimized so as to the minimize Ei(k).

2.3.1 Armchair nanoribbons

Consider an armchair graphene nanoribbon with the width N=11 as shown in Fig.

2.1. The wavefunctions can be written as a linear combinations of 2N π orbital

functions contributed by the carbon atoms in the unit cell.

ψj(kx, r) =
2N∑
j′=1

ϕj(kx)uj(kx, r) (2.31)
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Figure 2.1: Armchair nanoribbon with the width N=11.

uj(kx, r) =
1√
N

∑
rj

eikx·rj(k)υj(r − rj)(j = 1, 2, ....., 2N), (2.32)

where N is the number of unit cells in the crystal, υj is 2pz atomic orbitals and it is

assumed to be normalized. Using Eq.(2.30), Eq.(2.31) and Eq.(2.32) the 2N × 2N

elements in the matrix integral H and overlap matrix integral S can be calculated.

Here we derive the non-zero elements in the first row H1,1, H1,2, H1,3, H1,6, H1,7, and

H1,8, all other non-zero elements can be derived in the same manner.

H1,1 =
1

N

∑
r1

⟨υ1(r − r1)|Hop|υ1(r − r1)⟩ = Esp. (2.33)

H1,2 =
1

N

∑
r1

eikx·(r2−r1)⟨υ1(r − r1)|Hop|υ1(r − r2)⟩

= e−ikx
a0
2 γ0 = aγ0. (2.34)
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H1,3 =
1

N

∑
r1

eikx·(r3−r1)⟨υ1(r − r1)|Hop|υ1(r − r3)⟩ = γ1. (2.35)

H1,13 =
1

N

∑
r1

[eikx·(r7−r1)⟨υ1(r − r1)|Hop|υ1(r − r7)⟩ + eikx·(r7′−r1)⟨υ1(r − r1)|Hop|υ1(r − r7′)⟩]

= (e−ikx
3a0
2 + eikx

3a0
2 )γ1 = 2 cos(

3kxa0
2

) = dγ1. (2.36)

H1,12 =
1

N

∑
r1

[eikx·(r6−r1)⟨υ1(r − r1)|Hop|υ1(r − r6)⟩ + eikx·(r6′−r1)⟨υ1(r − r1)|Hop|υ1(r − r6′)⟩]

= eikxa0γ0 + e−ikx2a0γ2 = bγ0 + cγ2. (2.37)

We simplify the model and assume that the unit cell contains 10 atoms. The

non-zero elements of the 10 × 10 integral matrix H can be written as

Ĥ =



Esp aγ0 γ1 0 0 bγ0+c∗γ2 dγ1 0 0 0
a∗γ0 Esp a∗γ0 γ1 0 dγ1 b∗γ0+cγ2 dγ1 0 0
γ1 aγ0 Esp aγ0 γ1 0 dγ1 bγ0+c∗γ2 dγ1 0
0 γ1 a∗γ0 Esp a∗γ0 0 0 dγ1 b∗γ0+cγ2 dγ1
0 0 γ1 aγ0 Esp 0 0 0 dγ1 bγ0+c∗γ2

b∗γ0+cγ2 dγ1 0 0 0 Esp a∗γ0 γ1 0 0
dγ1 bγ0+c∗γ2 dγ1 0 0 aγ0 Esp aγ0 γ1 0
0 dγ1 b∗γ0+cγ2 dγ1 0 γ1 a∗γ0 Esp a∗γ0 γ1
0 0 dγ1 bγ0+c∗γ2 dγ1 0 γ1 aγ0 Esp aγ0
0 0 0 dγ1 b∗γ0+cγ2 0 0 γ1 a∗γ0 Esp


.

(2.38)

The Hamiltonian of Rashba spin orbit coupling in the tight-binding model reads:

ĤR = itR
∑
<i,j>

C+
iσẑ · (Sσσ′ × dij)Cjσ′ . (2.39)

When electron spin is considered, each matrix element becomes a 2×2 matrix.
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Three types of hopping between the atoms in the unit cell are summarize as:

a) From site 2 to site 1:

dij = (1/2,
√

3/2), i(S × dij)= i(Sx

√
3/2 − 1/2Sy) In k-space, the corresponding

element should read:

H2,1 = tRe
ikx

a
2

 0 −1
2

+ i
√
3
2

1
2

+ i
√
3
2

0

 . (2.40)

b) From site 12 to site 1:

dij = (−1, 0), i(S × dij)= i(0 ×Sx − (−1)Sy) In k-space, the corresponding element

should read:

H12,1 = tRe
ikx(−a)

 0 1

−1 0

 . (2.41)

c) From site 3 to site 2:

dij = (−1/2,
√

3/2), i(S×dij)= i(Sx

√
3/2−(−1/2)Sy) In k-space, the corresponding

element should read:

H3,2 = tRe
ikx(−a)

 0 1
2

+ i
√
3
2

−1
2

+ i
√
3
2

0

 . (2.42)

2.3.2 zigzag nanoribbons

For the zigzag graphene nanoribon with index N shown in Fig. 2.2, H can be obtained

using the same method. Here we show the derivation of the non-zero elements in the
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Figure 2.2: Zigzag nanoribbon with the width N=12.

first row H1,1,H1,2 and H1,3.

H1,1 =
1

N

∑
r1

[⟨υ1(r − r1)|Hop|υ1(r − r1)⟩ + eikx·(r1′−r1)⟨υ1(r − r1)|Hop|υ1(r − r1′)⟩

+ eikx·(r1′′−r1)⟨υ1(r − r1)|Hop|υ1(r − r1′′)⟩] = Esp + e−ikx
√
3a0γ1 + eikx

√
3a0γ1

= Esp + 2 cos(
√

3kxa0)γ1 = Esp + pγ1. (2.43)

H1,2 =
1

N

∑
r1

[eikx·(r2′−r1)⟨υ1(r − r1)|Hop|υ1(r − r2′)⟩

+ eikx·(r2−r1)⟨υ1(r − r1)|Hop|υ1(r − r2)⟩] = e−ikx
√

3
2
a0γ0 + eikx

√
3
2
a0γ0

= 2 cos(

√
3

2
kxa0)γ0 = qγ0. (2.44)
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H1,3 =
1

N

∑
r1

[eikx·(r3′−r1)⟨υ1(r − r1)|Hop|υ1(r − r3′)⟩

+ eikx·(r3−r1)⟨υ1(r − r1)|Hop|υ1(r − r3)⟩] = e−ikx
√

3
2
a0γ1 + eikx

√
3
2
a0γ1

= 2 cos(

√
3

2
kxa0)γ1 = qγ1. (2.45)

The 8×8 matrix H is written as

Ĥ =


Esp+pγ1 qγ0 qγ1 0 0 0 0 0

qγ0 Esp+pγ1 γ0 qγ1 0 0 0 0
qγ1 γ0 Esp+pγ1 qγ0 qγ1 0 0 0
0 qγ1 qγ0 Esp+pγ1 γ0 qγ1 0 0
0 0 qγ1 γ0 Esp+pγ1 qγ0 qγ1 0
0 0 0 qγ1 qγ0 Esp+pγ1 γ0 qγ1
0 0 0 0 qγ1 γ0 Esp+pγ1 qγ0
0 0 0 0 0 qγ1 qγ0 Esp+pγ1

 . (2.46)

The Hamiltonian for Rashba spin orbit coupling in the tight-binding model reads:

ĤR = itR
∑
<i,j>

C+
iσẑ · (Sσσ′ × dij)Cjσ′ . (2.47)

It is noted that unlike the armchair nanoribbon, the hopping in zigzag nanoribbon

in the unit cell should include the hopping from the neighbor unit cell. For example,

The hopping from atomic site 12 to site 11 should include the hopping between 12′′

to site 11. In zigzag nanoribbon, there are only two different hopping.

a) From site 12 to site 11 and 12′′ to site 11:

dij = (
√

3/2, 1/2), i(S × dij) × e(ikx
√
3/2a)= i(Sx1/2 −

√
3/2Sy) × e(ikx

√
3/2a) dij =

(−
√

3/2, 1/2), i(S × dij) × e(−ikx
√
3/2a)= i(Sx1/2 +

√
3/2Sy) × e(−ikx

√
3/2a).

In k-space, the corresponding element should read:

H12,11 = tR

 0 i cos(
√
3kxa
2

) − i
√

3 sin(
√
3kxa
2

)

i cos(
√
3kxa
2

) + i
√

3 sin(
√
3kxa
2

) 0

 .

(2.48)
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b) From site 3 to site 2:

dij = (0, 1), i(S × dij)= i(1 × Sx − 0 × Sy) In k-space, the corresponding element

should read:

H2,3 = tR

 0 i

i 0

 . (2.49)

2.4 Kubo formula

In order to calculate the spin response to the electric field, we evaluate the current-

induced spin density within the framework of linear response theory,

δ < Sα > (q, ω) = − i

Ω
xα,β(q, ω)Eβ(q, ω), (2.50)

where δ < Sα > is the current-induced spin density, E is the applied electric field,

and xα,β the spin-current response function. The spin density is along the axis α and

the index β sums over the x,y,z axis. We follow the standard procedure to find the

spin-current response function. Suppose that at some time, an external perturbation

is applied to the system. The Hamiltonian for the holes in electromagnetic field

contains two parts: Ĥ is the Hamiltonian of the system. The second term stems from

the external electromagnetic field, which is given by the coupling of the electrons to

the vector potential.

Ĥ = Ĥ0 −
∫
drJ(r)A(r, t), (2.51)

where E = ∂A/∂t is an external field. According to the Kubo formula, we can rewrite

the spin density as:

δ < Sα(r, t) >=

∫
dr′

∫
dt′xα,β(r − r′; t− t′)Aβ(r′, t′), (2.52)
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and

xα,β(r − r′; t− t′) = −iθ(t− t′) < [SI
α(r, t), jIβ(r′, t′)] >, (2.53)

<> is the thermal average of an operator P̂ , i.e., < P̂ >= Tr[e
−Ĥel
kBt P̂ ] and the

symbol I stands for the interaction picture. We use the imaginary time τ to replace

i
~t. P̂I = eĤτ P̂ e−Ĥτ .

Using the Fourier transform, we can find the formula in momentum space

xα,β(q, iΩ) =

∫
dr

∫
dτBe

−i(qr−ΩnτB)xα,β(r, τB), (2.54)

where Ω = 2πnkBT is Matsubara frequency in the external field. We expand Eq.2.51

and then get:

xα,β(q, iΩn) =< Sα(q,Ωn)jβ(−q,−Ωn) > . (2.55)

The spin and current density operator in momentum space can be written as

Sα(q, iΩ) =
1

βB

∑
k,a,b,m

ψ+
ka(iωm)(Sα)abψk+q,b(iωm + iΩn), (2.56)

Jα(q, iΩ) =
1

βB

∑
k,a,b,m

ψ+
ka(iωm)(Jα)abψk+q,b(iωm + iΩn), (2.57)

where ωn = (2n+1)πnkBT is the fermionic Matsubara frequency, and the ψ+
ka is field

operator. We define (Sα)a,b = e
~⟨ψka|Ŝα|ψkb⟩ and (jα)a,b = e

~⟨ψka| ∂Ĥ∂ka |ψkb⟩. Here we

ignore the diamagnetic contribution to the current. By using the Green’s function
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method, we can find the response function

xα,β(q, iΩn) = − 1

βB

∑
m

∑
k,a,b

(Sα)a,b(jβ)b,aĜk,a(iωm)Ĝk+q,b(iωm + iΩn), (2.58)

where Ĝk,a(iωm) = (i~ωm − (Eka − Ef ) + i/(2 τsign(ωm))−1. In Eq. 2.58, we ignore

the vertex corrections. We transform the Matsubara sum into contour integration.

According to the residue theorem,

2πi

βB

∑
m

F (iωm) =

∫
C

dzf(z)F (z), (2.59)

then we can find

1

βB

∑
m

F (iωm) =
1

2πi

∫
C

dzf(z)F (z), (2.60)

There are poles along the axis Imz = 0 and Imz = −iΩn. For q=0, the function

F (z) is

F (z) = −
∑
k,a,b

(Sα)a,b(jβ)b,aĜk,a(z)Ĝk+q,b(z + iΩn). (2.61)

By using the partial integration and choose the correct integration contour, we can

get the final expression to calculate the spin density

xα,β = − iΩ
2π

∑
k,a,b

Re[(Sα)a,b(jβ)b,a(Ĝ
A
k,aĜ

R
k,b − ĜR

k,aĜ
R
k,b)], (2.62)

where j = qv.Substituting the Eq. 2.62 into the Eq. 2.50, one has

δ < Sα > (q = 0, ω) =
~
2π

∑
k,a,b

Re[(Sα)a,b(ev ·E(q = 0, ω))b,a(Ĝ
A
k,aĜ

R
k,b − ĜR

k,aĜ
R
k,b)],

(2.63)
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In the limit of q → 0, and then fixing to Ω → 0, we have

δ < Sα >=
~

2πV

∑
k,a,b

Re[(Sα)a,b(ev ·E)b,a(Ĝ
A
k,aĜ

R
k,b − ĜR

k,aĜ
R
k,b)], (2.64)

When band index (k,a) is not equal to (k,b), the calculated result is the interband

spin density that we want.

2.5 Lattice Green’s function method in graphene

nanoribbons

We first define the time-dependent Heisenberg field operator

Ĉ(x, t) = e
i
~HtĈe−

i
~Ht. (2.65)

Based on the field operator, we can define the time-ordered single particle Green’s

function at zero temperature

Ĝ(x, x′; t, t′) = − i

~
⟨ψx′t′ |T̂ Ĉ(x, t)Ĉ+(x′, t′)|ψxt⟩

⟨ψx′t′ |ψxt⟩
. (2.66)

Here, T̂ is the time-order operator and it satifies T̂A(t)B(t′) = Θ(t− t′)A(t)B(t′) −

Θ(t′−t)A(t′)B(t). |ψnk⟩ is the ground states of the Hamiltonian. Θ(t−t′) is Heaviside

step function. At finite temperature, the Green’s function is expressed as

Ĝ(x, x′; t, t′) = − i

~
Tr{ρT̂ Ĉ(x, t)Ĉ+(x′, t′)}

= − i

~
< T̂ Ĉ(x, t)Ĉ+(x′, t′) > . (2.67)

The brackets < ... > denotes the thermal average and ρ = eĤ/kT is a statistical

operator. Following a standard way indicated in many textbooks, we also define the
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retarded, advanced, greater, and lesser Green’s function.

Ĝr(x, x′; t, t′) = − i

~
Θ(t− t′) < {Ĉ(x, t), Ĉ+(x′, t′)} >, (2.68)

Ĝa(x, x′; t, t′) =
i

~
Θ(t′ − t) < {Ĉ(x, t), Ĉ+(x′, t′)} >, (2.69)

Ĝ>(x, x′; t, t′) = − i

~
< Ĉ(x, t)Ĉ+(x′, t′) >, (2.70)

Ĝ<(x, x′; t, t′) =
i

~
< Ĉ+(x′, t′)Ĉ(x, t) > . (2.71)

Consider a non-interaction system and the retarded Green’s function as the deriva-

tive with respect to the time argument in Eq. 2.65

i~
∂Ĝr

0(x, x
′; t, t′)

∂t
=

(i~)(− i

~
∂Θ(t− t′)

∂t
) < {Ĉ(x, t), Ĉ+(x′, t′)} >

− (i~)
i

~
Θ(t− t′)

∂

∂t
< {Ĉ(x, t), Ĉ+(x′, t′)} >

= δ(t− t′)δ(r − r′) + Ĥ0Ĝ
r
0(x, x

′; t, t′). (2.72)

By using the Fourier transform, we can work in the energy domain

Ĝr(x, x′;E) =

∫
d(t− t′)e

i
~E(t−t′)Ĝr(x, x′; t− t′). (2.73)

Similarly, we can transform the Eq. 2.68 from the time domain to the energy domain

and then we have

i~
∫
d(t− t′)e

i
~E(t−t′)∂Ĝ

r
0(x, x

′; t, t′)

∂t
=∫

d(t− t′)e
i
~E(t−t′)[δ(t− t′)δ(x− x′) + ĤĜr

0(x, x
′; t, t′)]. (2.74)
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If one integrates by parts, we can find

EĜr
0(x, x

′;E) = δ(x− x′) + ĤĜr
0(x, x

′;E). (2.75)

(2.76)

Finally, we induce a infinitesimal positive imaginary part to the energy for convergence

and get the Green’s function operator

Ĝr
0(x, x

′;E) =
1

E − Ĥ + iϵ
. (2.77)

The Green’s function operator is also named as ”propagator”. The retarded Green’s

function operator corresponds to the outgoing wave and is related to the transmission

probability in a discrete Hamiltonian. Unfortunately, the dimension of the Hamilto-

nian matrix in the above equation is infinite. In general, one can divide a system into

three parts: two leads and a scattering region in a matrix representation. There is

no effective interaction and external fields in the leads.

Ĥ =


ĤL ĤLC 0

ĤLC ĤC ĤCR

0 ĤRC ĤR

 .

In terms of the definition of Green’s function in Eq. 2.54, one can find


ĜR

L ĜR
LC ĜR

LR

ĜR
CL ĜR

C ĜR
CR

ĜR
RL ĜR

RC ĜR
R

 =


E ′ − ĤL −ĤLC 0

−ĤCL E ′ − ĤC −ĤCR

0 −ĤRC E ′ − ĤR


−1

.
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It is easy to find a group of equations according to the above matrix equation.

ĤCLĜLC + E − ĤCĜC + ĤCRĜRC = I, (2.78)

ĤCLĜL + E − ĤCĜCL = 0, (2.79)

E − ĤCĜCR + ĤCRĜR = 0. (2.80)

Substituting Eq. 2.79 and Eq. 2.80 into Eq. 2.78, then the Green’s function in

scattering region is obtained

Ĝr
C(x, x′;E) =

1

E ′ − ĤC − ĤCLĝLĤLC − ĤCRĝRĤRC

=
1

E − ĤC + iϵ− ΣL − ΣR

, (2.81)

where E ′ = E + iϵ, gL = (E ′ − ĤL)−1 and gR = (E ′ − ĤR)−1 are surface Green’s

function of left and right lead. HLC and HRC are the coupling matrices between the

central region and the left and right leads, respectively. The surface Green’s function

of left or right lead can be obtained by using Dyson equation recursively. The Dyson

equation can be defined as :

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ (2.82)

where Ĝ0 is the Green’s function calculated by the definition of Green’s function for

the unit cell of systems (the column for 2D or the surface for 3D), V̂ is the hopping

matrix and G is the Green’s function that we need.
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2.5.1 Spin denstiy in graphene nanoribbons

The particle density is related to the expectation value of the number operator in Eq.

2.53 at t = t′ and r = r′.

Ĝ<(x, x; t, t) =
i

~
< Ĉ+(x, t)Ĉ(x, t) >=

i

~
n(x, t). (2.83)

The lesser Green’s function can be obtained by transforming the Green’s function in

energy domain.

Ĝ<(x, x′; t− t′) =

∫
dE

2π
e

i
~E(t−t′)Ĝ<(x, x′;E). (2.84)

We consider a time-independent particle number, therefore one finds

n(x) = n(x)eq + n(x)non−eq, (2.85)

n(x)eq =
1

π

∫ Ef−eV/2

−∞
ImĜr

x,x(E)dE. (2.86)

n(x)non−eq = = − i

2π

∫ Ef+eV/2

Ef−eV/2

Ĝ<(x, x′;E)dE

= − i

2π

∫ Ef+eV/2

Ef−eV/2

[AL(E)fL(E) + AR(E)fR(E)]dE

= − i

2π

∫ Ef+eV/2

Ef−eV/2

[ĜR(E)ΓLĜA(E)fL(E) + ĜR(E)ΓRĜA(E)fR(E)]dE.

(2.87)
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The first term corresponds to the equilibrium part, while the second term is the non-

equilibrium part. In equilibrium, all the scattering states are filled up to the Fermi

level. The degeneracy of spin states induced by the Rashba SOC is not broken due

to the time-inversion-symmetry. The desired spin torque is not related to this part.

In contrast, the non-equilibrium charge density should be obtained in energy regime

from E-eV/2 to E+eV/2. We take the diagonal part of extended spectral function

n(x)non−eq = = − i

2π

∫ Ef+eV/2

Ef−eV/2

Ĝ<(x, x′;E)dE

= − i

2π

∫ Ef+eV/2

Ef−eV/2

[AL(E)fL(E) + AR(E)fR(E)]dE

= − i

2π

∫ Ef+eV/2

Ef−eV/2

[ĜR(E)ΓLĜA(E)fL(E) + ĜR(E)ΓRĜA(E)fR(E)]dE.

(2.88)

The spin density can be found

Sne
i = − i

2π

∫ Ef+eV/2

Ef−eV/2

Tr{Σ̂i · [ĜR(E)ΓLĜA(E)fL(E) + ĜR(E)ΓRĜA(E)fR(E)]}dE.

(2.89)

In terms of the spin density the torque normalized to the plane spanned by M and

spin density can be written as

Tn = M × Sne
i . (2.90)
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Chapter 3

Microscopic Description of Spin

Orbit Torque in Diluted Magnetic

Semiconductors

The electrical manipulation of magnetization is central to spintronic devices such

as high density magnetic random access memory [71], for which the spin transfer

torque provides an efficient magnetization switching mechanism [72, 73]. Beside the

conventional spin-transfer torque, the concept of spin-orbit torque in both metallic

systems and diluted magnetic semiconductors (DMS) has been studied theoretically

and experimentally [74, 75, 76, 77, 78, 79]. In the presence of a charge current,

the spin-orbit coupling produces an effective magnetic field that generates a non-

equilibrium spin density that in turn exerts a torque on the magnetization [74, 75, 76].

Several experiments on magnetization switching in strained (Ga,Mn)As have provided

strong indications that such a torque can be induced by a Dresselhaus-type spin-

orbit coupling, achieving critical switching currents as low as 106 A/cm2 [77, 78, 79].

However, up to date very few efforts have been devoted to the nature of the spin-orbit

torque in such a complex system and its magnitude and angular dependence remain

unaddressed.
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(Ga,Mn)As is a test bed for understanding the underlying physical mechanism

behind diluted magnetic semiconductor and it is the best-understood diluted magnetic

semiconductors up till now. The Curie temperature of (Ga,Mn)As is below the room

temperature, and there are other diluted magnetic semiconductors such as (Ga,Mn)N

with a Curie temperature above room temperature. However, (Ga,Mn)N grows in a

wurtzite structure and usually presents a significant Jahn-Teller distortion that is

large enough to suppress the spin-orbit coupling [80]. Furthermore, the formalism

developed here applies to systems possessing delocalized holes and long range Mn-

Mn interactions and is not adapted to the localized holes controlling the magnetism

in (Ga,Mn)N.

We first study the spin-orbit torque in a diluted magnetic semiconductor submit-

ted to a linear Dresselhaus spin-orbit coupling. We highlight two effects that have not

been discussed before. First, a strong correlation exists between the angular depen-

dence of the torque and the anisotropy of the Fermi surface. Second, the spin torque

depends nonlinearly on the exchange coupling. To illustrate the flexibility offered

by DMS in tailoring the spin-orbit torque, we compare the torques obtained in two

stereotypical materials, (Ga,Mn)As and (In,Mn)As.

3.1 Extrinsic spin orbit torque

The system under investigation is a uniformly magnetized single domain DMS film

made of, for example, (Ga,Mn)As or (In,Mn)As. We assume the system is well below

its critical temperature. An electric field is applied along the x̂ direction. It is worth

pointing out that we consider here a large-enough system allowing us to disregard

any effects arising from boundaries and confinement.

We use the six-band Kohn-Luttinger Hamiltonian to describe the band structure
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of the DMS in Eq. (2.8) [79], If γ2 = γ3 ̸= 0, the degeneracy between heavy holes

and light holes is lifted but the two Fermi surfaces remain spherical. By setting

γ2 ̸= γ3, the Fermi surface around the Γ point becomes anisotropic, Ĵ is the total

angular momentum and k is the wave vector. The bulk inversion asymmetry allows us

to augment the Kohn-Luttinger Hamiltonian by a strain-induced spin-orbit coupling

of the Dresselhaus type [77, 75]. We assume the growth direction of (Ga,Mn)As is

directed along the z-axis, two easy axes are pointed at x and y, respectively [81]. In

this case, the components of the strain tensor ϵxx and ϵyy are identical. Consequently,

we may have a linear Dresselhaus spin-orbit coupling [77]

ĤDSOC = β(σ̂xkx − σ̂yky), (3.1)

given β the coupling constant that is a function of the axial strain [77, 82]. σ̂x(y) is

the 6 × 6 spin matrix of holes and kx(y) is the wave vector.

In the DMS systems discussed here, we incorporate a mean-field like exchange

coupling to enable the spin angular momentum transfer between the hole spin (ŝ =

~σ̂/2) and the localized (d-electron) magnetic moment Ω̂ of ionized Mn2+ acceptors

[83, 84],

Ĥex = 2JpdNMnSaΩ̂ · ŝ/~ (3.2)

where Jpd is the antiferromagnetic coupling constant [83, 85]. Here Sa = 5/2 is the

spin of the acceptors. The hole spin operator, in the present six-band model, is a 6×6

matrix [83]. The concentration of the ordered local Mn2+ moments NMn = 4x/a3 is

given as a function of x that defines the doping concentration of Mn ion. a is the
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lattice constant. Therefore, the entire system is described by the total Hamiltonian

Ĥsys = ĤKL + Ĥex + ĤDSOC. (3.3)

In order to calculate the spin torque, we determine the nonequilibrium spin densities

S (of holes) as a linear response to an external electric field [75],

S = eEx
1

V

∑
n,k

1

~Γn,k

⟨v̂⟩⟨ŝ⟩δ(En,k − EF ). (3.4)

where v̂ is the velocity operator. In Eq.(3.4), the scattering rate of hole carriers by

Mn ions is obtained by Fermi’s golden rule [84],

ΓMn2+

n,k =
2π

~
NMn

∑
n′

∫
dk′

(2π)3

∣∣∣Mk,k′

n,n′

∣∣∣2
× δ(En,k − En′,k′)(1 − cosϕk,k′), (3.5)

where ϕk,k′ is the angle between two wave vectors k and k′. The matrix element

Mk,k′

n,n′ between two eigenstates (k, n) and (k′, n′) is

Mkk′

n,n′ =JpdSa⟨ψnk|Ω̂ · ŝ|ψn′k′⟩

− e2

ϵ(|k − k′|2 + p2)
⟨ψnk|ψn′k′⟩. (3.6)

Here ϵ is the dielectric constant of the host semiconductors and p =
√
e2g/ϵ is the

Thomas-Fermi screening wave vector, where g is the density of states at Fermi level.

Finally, we calculate the field like spin-orbit torque using [74]

T = JexS × Ω̂, (3.7)

where Jex ≡ JpdNMnSa. Throughout this Letter, the results are given in terms of
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the torque efficiency T /eE. The interband transitions, arising from distortions in the

distribution function induced by the applied electric field, are neglected in our cal-

culation. This implies that the torque extracted from the present model is expected

to accommodate only a field-like component. The above protocols based on linear

response formalism allow us to investigate the spin-orbit torque for a wide range of

DMS material parameters. We plot in Fig.3.1(a) the spin torque as a function of the

magnetization angle for different values of the band structure anisotropy parameter

γ3. The topology of the Fermi surface can be modified by a linear combination of γ2

and γ3: if γ2 = γ3 ̸= 0, the Fermi surface around the Γ point is spherical, as shown

in Fig.3.1(c). In this special case, the angular dependence of the torque is simply

proportional to cos θ [red curve in Fig.3.1(a)], as expected from the symmetry of the

k-linear Dresselhaus Hamiltonian, Eq. (3.1) [74]. When γ3 ̸= γ2, the Fermi surface

deviates from a sphere [Fig.3.1(b) and (d)] and, correspondingly, the angular depen-

dence of the torque deviates from a simple cos θ function [i.e., curves corresponding

to γ3 = 1.0 and γ3 = 2.93 in Fig.3.1(a)]. In a comparison to the spherical case, the

maximal value of the torque at θ = 0 is lower for γ3 ̸= γ2. As Eq.(3.4) indicates, in

the linear response treatment formulated here, the magnitude of the spin torque is

determined by the transport scattering time and the expectation values of spin and

velocity operators of holes. Qualitatively, as the Fermi surface deviates from a sphere,

the expectation value ⟨ŝx⟩ of the heavy hole band, contributing the most to the spin

torque, is lowered at θ = 0.

More specifically, as the Fermi surface warps, the angular dependence of the spin

torque develops, in addition to the cos θ envelop function, an oscillation with a period

that is shorter than π. The period of these additional oscillations increases as the

Fermi surface becomes more anisotropic in k-space, see Fig. 3.1(b) and (d). To further

reveal the effect of band warping on spin torque, we plot Ty/ cos θ as a function of the

magnetization angle in inset of Fig.3.1(a). When γ3 = 2.0 (spherical Fermi sphere),
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Ty/ cos θ is a constant, for T ∝ cos θ. When γ3 = 2.93 or 1.0, the transport scattering

time of the hole carriers starts to develop an oscillating behavior in θ [86], which

eventually contributes to additional angular dependencies in the spin torque. The

angular dependencies in spin-orbit torque shall be detectable by techniques such as

spin-FMR [79].
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Figure 3.1: (Color online) (a)The y-component of the spin torque as a function of
magnetization direction. Fermi surface intersection in the kz = 0 plane for (b)γ3 =
1.0, (c)γ3 = 2.0 and (c)γ3 = 2.93. The red, black, orange and blue contours stands
for majority heavy hole, minority heavy hole, majority light hole and minority light
hole band, respectively. Inset (a) depicts Ty/ cos θ as a function of magnetization
direction. The others parameters are (γ1, γ2) = (6.98, 2.0), Jpd = 55 meV nm3 and
p = 0.2 nm−3.

In Fig.3.2, we compare the angular dependence of spin torque (Ty) for both

(Ga,Mn)As and (In,Mn)As which are popular materials in experiments and device

fabrication [87, 88, 89]. Although (In,Mn)As is, in terms of exchange coupling and
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general magnetic properties, rather similar to (Ga,Mn)As, the difference in band

structures, lattice constants, and Fermi energies between these two materials gives

rise to different density of states, strains, and transport scattering rates. For both

materials, the spin torque decrease monotonically as the angle θ increases from 0

to π/2. Throughout the entire angle range [0, π], the amplitude of the torque in

(In,Mn)As is twice larger than that in (Ga,Mn)As. We mainly attribute this to two

effects. First of all, the spin-orbit coupling constant β in (In,Mn)As is about twice as

larger than that in (Ga,Mn)As. Second, for the same hole concentration, the Fermi

energy of (In,Mn)As is higher than that of (Ga,Mn)As.
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Figure 3.2: (Color online) Torque Ty as a function of the magnetization direction for
(Ga,Mn)As (black square) and (In,Mn)As (red dots). For (Ga,Mn)As, (γ1, γ2, γ3) =
(6.98, 2.0, 2.93); for (In,Mn)As, (γ1, γ2, γ3) = (20.0, 8.5, 9.2). The strength of the
spin-orbit coupling constant is: for (Ga,Mn)As, β = 1.6 meV nm; for (In,Mn)As,
β = 3.3 meV nm [90]. The exchange coupling constant Jpd = 55 meV nm3 for
(Ga,Mn)As [91] and 39 meV nm3 for (In,Mn)As [92].

In the following, we further demonstrate a counter-intuitive feature that, in the

DMS system considered in this Letter, the spin orbit torque depends nonlinearly on

the exchange splitting. In Fig. 3.3(a), Ty component of the spin torque is plotted

as a function of the exchange coupling Jpd, for different values of β. In the weak

exchange coupling regime, the electric generation of non equilibrium spin density
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dominates, then the leading role of exchange coupling is defined by its contribution

to the transport scattering rate. We provide a simple qualitative explanation on

such a peculiar Jpd dependence. Using a Born approximation, the scattering rate

due to the p − d interaction is proportional to 1/τJ = bJ2
pd, where parameter b is

Jpd- independent. When the nonmagnetic scattering rate 1/τ0 is taken into account,

i.e., the Coulomb interaction part in Eq.(3.6), the total scattering time in Eq.(3.4)

can be estimated as

1

~Γ
∝ 1

bJ2
pd + 1

τ0

, (3.8)

which contributes to the torque by T ∝ Jpd/(~Γ). This explains the transition behav-

ior, i.e., increases linearly then decreases, in the moderate Jpd regime in Fig.3.3. As

the exchange coupling further increases, Eq.(3.8) is dominated by the spin-dependent

scattering, therefore the scattering time 1/~Γ ∝ 1/J2
pd. Meanwhile, the energy split-

ting due to the exchange coupling becomes significant, thus ⟨ŝ⟩ ∝ Jpd. In total, the

spin torque is insensitive to Jpd, explaining the flat curve in the large exchange cou-

pling regime. In Fig. 3.3(b), we plot the influence of the exchange coupling on the

spin torque for two materials. In (In,Mn)As, mainly due to a larger Fermi energy in

a comparison to (Ga,Mn)As, the peak of the spin torque shifts towards a larger Jpd.

The dependence of the torque as a function of the exchange in (In,Mn)As is more

pronounced than in (Ga,Mn)As, due to a stronger spin-orbit coupling.

The possibility to engineer electronic properties by doping is one of the defining

features that make DMS promising for applications. Here, we focus on the doping

effect which allows the spin torque to vary as a function of hole carrier concentration.

In Fig. 3.4(a), the torque is plotted as a function of the hole concentration for different

β parameters. With the increase of the hole concentration, the torque increases due

to an enhanced Fermi energy. In the weak spin-orbit coupling regime (small β), the
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Figure 3.3: (Color online) The Ty component of the spin torque as a function of
exchange coupling Jpd. (a) Ty versus Jpd at various values of β, for (Ga,Mn)As. (b)
Ty versus Jpd, for both (Ga,Mn)As and (In,Mn)As. The magnetization is directed
along the z-axis (θ = 0). The other parameters are the same as those in Fig.3.2.

torque as a function of the hole concentration (p) follows roughly the p1/3 curve as

shown in the inset in Fig. 3.4(a). The spherical Fermi sphere approximation and

a simple parabolic dispersion relation allow for an analytical expression of the spin

torque, i.e., in the leading order in β and Jex,

T =
m∗

~
βJex
EF

σD (3.9)

where m∗ is the effective mass. The Fermi energy EF and the Drude conductivity are

given by

EF =
~2

2m∗ (3π2p)2/3, σD =
e2τ

m∗ p, (3.10)

where τ is the transport time. The last two relations immediately give rise to T ∝ p1/3.
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In the six-band model, the Fermi surface deviates from a sphere and, as the value of β

increases, the spin-orbit coupling starts to modify the density of states. Both effects

render the torque-versus-hole concentration curve away from the p1/3 dependence.

This effect is illustrated in Fig. 3.4(b). The former (strong spin-orbit coupling)

clearly deviates from p1/3, whereas the latter (weak spin-orbit coupling) follows the

expected p1/3 trend.
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Figure 3.4: (Color online) The y-component of the spin torque as a function of hole
concentration. (a) The y-component of the spin torque versus hole concentration at
different β. (b) spin torque versus hole concentration in (Ga,Mn)As and (In,Mn)As.
For (Ga,Mn)As, Jpd = 55 meV nm3; for (In,Mn)As, Jpd = 39 meV nm3. The other
parameters are the same as in Fig.3.3.
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3.2 Interband versus intraband transitions

Two main mechanisms have been invoked to explain the origin of the current-driven

torques in non-centrosymmetric ferromagnets. In the first scenario, the lack of inver-

sion symmetry enables the generation of an inverse spin galvanic effect (ISGE), i.e. the

flowing current directly produces a nonequilibrium spin density δS locally, whose di-

rection is determined by the symmetry of the spin-orbit coupling. This effect was orig-

inally predicted by Edelstein in non-magnetic, asymmetrically grown two-dimensional

electron gases. Recently, it has been proposed that in non-centrosymmetric magnetic

materials this nonequilibrium spin density may exert a torque on the magnetization

[74, 75] T = (2Jex/~γNm)m × δS, where γ is the gyromagnetic ratio, Nm the den-

sity of magnetic moments and Jex the exchange coupling (having the dimension of

energy) between the itinerant electron spins and the local magnetization M = Msm

which is assumed to arise from localized magnetic moments µ only so that the sat-

urated magnetization Ms = µNm. This is the essence of SOTs. Alternatively, in

ferromagnets adjacent to a heavy metal, it has also been proposed that the spin Hall

effect (SHE) present in the heavy metal may inject a spin-polarized current into the

adjacent ferromagnet, exerting a torque of the form T = m× (Jint ×m), where Jint

is the interfacial spin current arising from the SHE. By symmetry, the spin current

flowing across the interface is polarized in the direction z × je, where z is normal to

the interface and je is the charge current [93, 94]. Whereas both effects are present

in metallic bilayers, only ISGE takes place in bulk strained DMS.

A current debate aims at identifying the interplay between these different mech-

anisms and their impact in terms of current-driven spin torque. In the simplest

physical picture, SHE induces a anti-damping-like torque, while the SOT reduces to

a field-like torque generated by ISGE [94]. However, it has been recently proposed
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that the incomplete absorption of the SHE-induced spin current by the ferromag-

net (or, equivalently, the non-vanishing imaginary part of the interfacial spin mixing

conductance) may result in a field-like component [94]. Similarly, in the context of

ISGE-induced SOT, recent theories have suggested that spin relaxation and dephasing

may also lead to a correction in the SOT in the form of a anti-damping-like compo-

nent [95, 96, 97, 98]. In Refs. [96] and [97], the anti-damping-like SOT term arises

from the electron scattering-induced spin relaxation. In Ref. [94], the semiclassical

diffusion formalism was used, whereas in Refs. [95] and [98], the anti-damping-like

SOT is obtained within a quantum kinetic formalism and ascribed to spin-dependent

carrier lifetimes [95] or to a term arising from the weak-diffusion limit, which in the

leading order is proportional to a constant carrier lifetime [98]. Intriguing material-

dependence of the SOTs has been unravelled in various experiments keeping the

debate on the origin of these components open [99, 100, 101, 102, 103]. The diffi-

culty in determining the physical origin of the torques partly lies in the complexity of

the ultrathin bilayer considered, involving both bulk and interfacial transport in the

current-in-plane configuration. First principle calculations have indeed pointed out

the significant sensitivity of the torques to the nature of the interfaces [104].

In a recent publication, Kurebayashi et al. [105] investigated the SOT in a bulk

DMS. They observed a large anti-damping-like torque that cannot be ascribed to the

SHE since no adjacent heavy metal is present. It was then proposed that such a

torque is scattering-independent and originates from the Berry curvature of the band

structure, in a similar spirit as the intrinsic SHE was introduced about ten years ago

[106].

Here we present an extended theoretical study of the extrinsic and intrinsic current-

driven SOTs in a magnetic system lacking inversion symmetry. We focus our atten-

tion on the current-driven spin-orbit field (called the SOT field), hso, producing the

spin-orbit torque T = M × hso. In particular, in addition to the in-plane SOT field
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of the ISGE origin hso
∥ = τFLuso [i.e. lying in the (m,uso) plane and producing an

out-of-plane torque], we show that the intrinsic contribution arising from interband

transitions produces an out-of-plane field of the form hso
⊥ = τDLuso × m [i.e. ly-

ing perpendicular to the (m,uso) plane]. Analytical expressions are obtained in the

prototypical case of a magnetic Rashba two-dimensional electron gas (2DEG), while

numerical calculations are performed on DMSs modeled by 4 × 4 Luttinger Hamilto-

nian. Parametric dependences of the different torque components and similarities to

the analytical results of the Rashba two-dimensional electron gas in the weak disorder

limit are described.

3.2.1 Intraband and Interband Contributions in Kubo for-

mula

In the present study, we consider a general single-particle Hamiltonian

Ĥsys = Ĥ0 + ĤSOC + Ĥex + Vimp(r) − eE · r̂, (3.11)

where the first term includes the spin-independent kinetic and potential energies

of the particle, the second term denotes the coupling between the carrier spin and

its orbital angular momentum and the third one represents the interaction between

the spin of the carrier and the magnetization of the ferromagnetic system. Below,

we refer to these first three terms as to the unperturbed part of the Hamiltonian.

The fourth term is the impurity potential and the fifth term is the electric field

applied through the system. Impurities are treated within the constant relaxation

time approximation while the electric field is treated within the framework of the

linear response theory. As discussed below, this electric field has two distinct effects

on the electronic system: (i) it modifies the carrier distribution function from its

equilibrium Fermi-Dirac form and (ii) it distorts the carrier wave functions. The
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former leads to intraband ISGE contributions, while the latter is responsible for the

interband (Berry curvature) contribution. To calculate the SOT field, we evaluate

first the nonequilibrium spin density δS using the Kubo formula in Eq. 2.64, where

GR
ka = (GA

ka)
∗ = 1/(EF − Eka + iΓ), EF is the Fermi energy, Eka is the energy

dispersion of band a, V is the system volume and Γ is the spectral broadening due to

the finite lifetime of the particle in the presence of impurities. The Bloch state |ψka⟩

in band a can be found by diagonalizing the unperturbed part of the Hamiltonian in

Eq. (3.11). This expression contains both intraband (a = b) and interband (a ̸= b)

contributions to the nonequilibrium spin density. Numerical results in Section 3.2.4

are calculated with the above equation.

In order to understand the numerical results, Eq. (2.64) can be rewritten as

δS = δSintra + δSinter
1 + δSinter

2 when weak impurity scattering (namely, small spectral

broadening, Γ → 0) is assumed. The three contributions are

δSintra =
1

V

e~
2Γ

∑
k,a

⟨ψka|ŝ|ψka⟩⟨ψka|E · v̂| ψka⟩

× δ(Eka − EF ), (3.12)

δSinter
1 = − e~

V

∑
k,a̸=b

2Re[⟨ψak|ŝ|ψbk⟩⟨ψbk|E · v̂|ψak⟩]

× Γ(Eka − Ekb)

[(Eka − Ekb)2 + Γ2]2
(fka − fkb). (3.13)

δSinter
2 = − e~

V

∑
k,a̸=b

Im[⟨ψka|ŝ|ψkb⟩⟨ψkb|E · v̂|ψka⟩]

× Γ2 − (Eka − Ekb)
2

[(Eka − Ekb)2 + Γ2]2
(fka − fkb). (3.14)

The first term, Eq. (3.12), is the intraband (a = b) contribution arising from

the perturbation of the carrier distribution function by the electric field. It is pro-

portional to the momentum scattering time (τ = ~/2Γ) and is therefore an extrinsic

contribution to the nonequilibrium spin density (i.e. it is impurity-dependent). The
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second and third terms are interband (a ̸= b) contributions arising from the pertur-

bation of the carrier wave functions by the electric field. The second term, Eq. (3.13),

is inversely proportional to the scattering time, while the third term, Eq. (3.14), is

independent of the scattering in the weak scattering limit (Eka − Ekb ≫ Γ). The

former is therefore another extrinsic contribution whereas the latter is an intrinsic

contribution to the nonequilibrium spin density. The formalism described above is the

established linear response theory of a translationally invariant system and has been

exploited, for instance, in the context of the spin Hall and anomalous Hall effect [107].

Nevertheless, the distinction between these different contributions is particularly im-

portant in the case of the SOT since these terms give rise to different symmetries of

the torque.

The concept of intrinsic SOT is illustrated in Fig. 3.5 (see also the discussion in

Ref. [105]). Figure 3.5(a) represents the Fermi surface of a non-magnetic Rashba

2DEG under the application of an external electric field E. At equilibrium (E = 0)

the spin direction (pink arrows) is tangential to the Fermi surface (grey circle) at all

k-points, and the total spin density vanishes. Applying the electric field accelerates

the electrons on the Fermi surface and they feel a modified spin-orbit field δB ∝

z × ṗ ≡ z × E (thick blue arrow) around which the spin momenta (red arrows)

start to precess. In the limit of a non-magnetic 2DEG, the resulting spin density

vanishes. Now, let us consider the case of a magnetic Rashba 2DEG in the strong

ferromagnetic limit [Fig. 3.5(b)]. At equilibrium, the spin momenta (pink arrows)

are mostly aligned along the magnetization direction m (thin black arrow) for all k-

points of the Fermi surface (grey circle). Under the application of an external electric

field, the spin momenta (red arrows) precess around δB (thick blue arrow) resulting

in a non-vanishing spin density. Following the convention adopted in Fig. 3.5(b),

the electric field is applied along y, the displacement of the Fermi surface produces

a spin density along x and the spin precession around δB produces a spin density
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aligned along z. The latter results in an additional torque that does not depend on

the disorder [105]. This simple picture can be extended to more complex spin-orbit

coupling situation and only requires inversion symmetry breaking in the system.

Figure 3.5: (Color online) (a) Fermi surface of a non-magnetic Rashba 2DEG: under
the application of an external electric field (thick cyan arrow), a non-equilibrium
field δB is produced (thick blue arrow) that distorts the spin direction out of the
plane (red arrows). After averaging, the spin density vanishes. (b) Fermi surface of
a magnetic Rashba 2DEG in the strong ferromagnetic regime: in this case, since the
spin directions (pink arrows) are initially mostly aligned along the magnetization m
(black arrow), the resulting non-equilibrium spin density (red arrows) does not vanish
and is aligned along z.

We remark that Eqs. (2.64) and (3.14) are also the basis of semiclassical Boltz-

mann and quantum mechanical Kubo formula calculations of current-driven SOTs

in uniform (Ga,Mn)As performed by Garate and MacDonald [75]. We use this com-

putational approach in our detailed analysis of the SOT which we present in the

following sections. Here we point out, however, that the notion of the SOT as a con-

sequence of a unidirectional current-induced magnetocrystalline anisotropy energy,

introduced in Ref. [75] (but not used for the calculations), is misleading. This is
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particularly apparent in the semiclassical Boltzmann transport theory in which the

entire intraband SOT stems from the non-equilibrium redistribution of carriers on

the Fermi surface of the system. Since the Fermi surface is an equal-energy surface,

the total energy (sum of energies of all occupied states) is unchanged by the Fermi

surface redistribution. The magnetocrystalline anisotropy energy is the difference be-

tween total energies for different magnetization orientations. Therefore, if the total

energy is unchanged by the current, there is also no current-induced change of the

magnetocrystalline anisotropy.

3.2.2 Two-dimensional Rashba ferromagnet

We first apply this formalism to a ferromagnetic 2DEG in the presence of Rashba

spin-orbit coupling. This system is the prototypical free-electron model for SOTs in

ultra thin ferromagnets embedded between two asymmetric interfaces [74, 108, 75].

Although the actual band structure of magnetic bilayers such as Pt/Co is complex,

recent first principle calculations indicate that this simple Rashba model qualitatively

captures most of the relevant physics at these interfaces [104]. This section is therefore

developed mostly for pedagogical purposes in order to make the dependence on various

parameters explicit. The unperturbed Hamiltonian in Eq. (3.11) can be rewritten as:

Ĥ2DEG =
~2k2

2m∗ − ασ̂ · (z× k) + Jexm · σ̂. (3.15)

where k = (kx, ky, 0) = k(cosφk, sinφk, 0), α is the Rashba parameter and the mag-

netization direction is m = (cosφ sin θ, sinφ sin θ, cos θ). By diagonalizing Eq. (3.15),



72

the eigenvalues and eigenvectors of itinerant electrons are

Ek± =
~2k2

2m∗ ± ∆k, (3.16)

∆k =
√
J2
ex + α2k2 + 2αkJex sin(φ− φk) sin θ, (3.17)

|k,+⟩ =

 eiγk cos χk

2

sin χk

2

 ; |k,−⟩ =

 −eiγk sin χk

2

cos χk

2

 (3.18)

where we have cosχk = Jex cos θ/∆k and tan γk = αk cosφk+Jex sinφ sin θ
αk sinφk−Jex cosφ sin θ

. The velocity

operator is given by v̂ = ~
m∗k + α

~z × σ̂. Exploiting Eqs. (3.12)-(3.14) in the weak

exchange limit (αkF ≫ Jex ≫ Γ), the nonequilibrium spin density reads

δSintra =
1

4π

αm∗

~2Γ
(z× eE) (3.19)

δSinter
1 = − 1

8π

Γ

αEF

(z× eE) (3.20)

δSinter
2 =

1

4π

Jex
αEF

(m · z)eE (3.21)

and in the strong exchange limit (Jex ≫ αkF ≫ Γ),

δSintra =
1

2π

αm∗

~2Γ
m× [(z× eE) ×m] (3.22)

δSinter
1 = − 1

2π

αm∗Γ

~2J2
ex

m× [(z× eE) ×m] (3.23)

δSinter
2 = − 1

2π

αm∗

~2Jex
m× (z× eE) (3.24)
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In summary, the SOT field defined as h = JexδS/γ~Nm, takes on the following form

in the two limits:

Jex ≪ αkF : h =
Jexαm

∗

4πγNm~3Γ

(
1 − Γ2

α2k2F

)
(z× eE)

+
J2
ex

4πγNm~αEF

(m · z)eE, (3.25)

Jex ≫ αkF : h =
Jexαm

∗

2πγNm~3Γ

(
1 − Γ2

J2
ex

)
m× [(z× eE) ×m]

+
αm∗

2πγNm~3
m× (z× eE) (3.26)

Three important facts ought to be pointed out. First, the extrinsic contributions (ei-

ther intra- or interband) both give rise to an in-plane SOT field [even in magnetization,

lying in the (m, z×E) plane]. The resulting extrinsic torque is then out-of-plane and

odd in magnetization. Second, the intrinsic contribution [second term in Eqs. (3.25)

and (3.26)] only produces a SOT field odd in magnetization. It lies perpendicular

to the (m, z × E) plane in the strong exchange limit, see Eq. (3.26). This term is

independent of the exchange Jex, in sharp contrast with the ISGE-induced SOT field,

while in the weak exchange limit, Eq. (3.25), it is second order in exchange and

proportional to mzeE. The resulting intrinsic torque is in-plane and even in magne-

tization. As will be seen in the next section, the parameters dependence displayed in

Eqs. (3.25) and (3.26) is not restricted to the simple case of the Rashba model. Third,

notice that in the strong exchange limit the ratio of the anti-damping-like to the field

like torque is ≈ Γ/Jex. This dependence is the inverse of what was found in Refs. [95]

and [98] in the diffusive limit and ignoring the interband scattering, where the ratio

between the two torques is governed by Jex/Γ. A corrective anti-damping-like torque

proportional to Γsf/Jex is also obtained when considering a finite spin-flip relaxation

time τsf = ~/Γsf [98, 95].

In the case of the anomalous Hall effect, the intrinsic contribution dominates over
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the extrinsic contributions in the strong scattering limit [109, 107]. As a consequence,

one is tempted to anticipate that the intrinsic contribution to the SOT discussed

presently becomes important when strong momentum scattering is present (such as

in disordered Pt/Co interfaces for example) and dominates over the corrections found

in Refs. [98, 95] in this limit. Nevertheless, these different contributions have been

derived in different limits — i.e. strong [98, 95] versus weak scattering (this work)

— and should to be treated on equal footing for a rigorous comparison (e.g., see Ref.

[109]). Such a comprehensive model is beyond the scope of the present work.

3.2.3 Dilute Magnetic Semiconductors

Method

We now extend the previous results beyond the simple ferromagnetic 2DEG model

with Rashba spin-orbit coupling. We consider a bulk three-dimensional DMS, such

as (Ga,Mn)As, with a homogeneous magnetization. In order to model the SOT field

of (Ga,Mn)As, we adopt a Hamiltonian including a mean-field exchange coupling

between the hole spin (Ĵ) and the localized (d-electron) magnetic moment µSam of

ionized Mn2+ acceptors [83, 84] and a four-band strained Luttinger Hamiltonian. The

total Hamiltonian of the DMS reads

ĤDMS = ĤL + Ĥstrain + JpdNMnSam · Ĵ (3.27)

where Jpd = 55 meV · nm3 is the antiferromagnetic coupling constant for (Ga,Mn)As

and Sa = 5/2 is the localized Mn spin. The hole spin operator is a 4 × 4 matrix [83].

The concentration of the ordered local Mn2+ moments NMn = 4x/a3 is the product

of x that defines the doping by Mn2+ ions and inverse volume per Ga atom (a is

the GaAs lattice constant). The Luttinger Hamiltonian in Eq. (3.27) is expressed as
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[110]

ĤL =
~2

2m

[
γ1k

2Î − 4γ3[kxky{Ĵx, Ĵy} + c.p.]

−2γ2[(Ĵ
2
x −

1

3
Ĵ2)k2x + c.p.]

]
. (3.28)

This Hamiltonian applies close to the Γ point to centro-symmetric crystals with a

diamond structure and strong spin-orbit coupling in the valence bands. The Luttinger

parameters for GaAs are (γ1, γ2, γ3) = (6.98, 2.06, 2.93), Î is the 4×4 unity matrix, Ĵx,

Ĵy, and Ĵz, are the angular momentum matrices for spin 3
2
. They follow the relation

{Ĵx, Ĵy} = (ĴxĴy +ĴyĴx)/2, and c.p. denotes cyclic permutation of the preceding term.

The first term denotes the kinetic energy of the holes. The second and third terms are

associated with the spin-orbit coupling of the diamond crystal. In zinc-blende crystals,

such as GaAs, bulk inversion asymmetry gives rise to the so-called cubic Dresselhaus

spin-orbit coupling [111]. We neglect this term in the present study since there is no

experimental indication that it contributes significantly to the SOT in (Ga,Mn)As.

ĤDMS should be understood as an effective model attempting to describe the current-

driven SOT in (Ga,Mn)As rather than the complete description of the electronic

structure in this material. In a cubic diamond crystal, γ2 ̸= γ3. When γ2 = γ3,

dispersions following from Eq. (3.28) become spherically symmetric and when the

spin-orbit coupling is removed completely (γ1 = 2.0, γ2 = γ3 = 0), Eq. (3.28) reduces

to a parabolic model. The impact of these three degrees of approximation (parabolic

model, spherical approximation and diamond crystal) on the SOT will be addressed

in Section 3.2.4.

At this level of approximation the effective Hamiltonian, Eq. (3.28), does not

break bulk inversion symmetry even though the actual crystal of the host GaAs does.

Indeed, although the full model of GaAs contains additional terms that are odd in k,

it is experimentally established that the SOT in (Ga,Mn)As is sensitive to the strain.
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We therefore assume, in line with experiments [79], that the key inversion-breaking

term is proportional to the strain. The strain Hamiltonian is given by

Ĥstrain = C4[Ĵxkx(ϵyy − ϵzz) + c.p.]

+ C5[(Ĵxky − Ĵykx)ϵxy + c.p.] (3.29)

where ϵii and ϵij (i ̸= j) are the diagonal and non-diagonal elements of the strain

tensor, respectively. We assume ϵxx ≡ ϵyy and ϵxy ≡ ϵyx.

In Eq. (3.29), the first term (∝ C4) originates from the lattice mismatch between

the crystal structure of the substrate and the one of the ferromagnet, and produces a

spin-orbit coupling with Dresselhaus symmetry (∝ ϵzz). The second term (∝ C5) is

the shear strain and possesses the symmetry of Rashba spin-orbit coupling (∝ ϵxy).

Among the different terms linear in k and resulting from the inversion symmetry

breaking, Ĥstrain is the only one that acts in the manifold of heavy and light-hole

states. It is worth pointing out that we consider here a large-enough system that

allows us to disregard any effects arising from boundaries and confinement. In the

following, we assume C4 = C5 = 0.5 eV·nm [79, 77] and mostly consider, however,

only the lattice mismatch strain (with ϵzz ̸= ϵyy = ϵxx = 0 and ϵxy = 0). Physical

presence of the shear strain (ϵxy ̸= 0) in unpatterned (Ga,Mn)As samples is below

the detection limit [112], yet it has been introduced in previous studies to model

the in-plane uniaxial anisotropy [113]. Calculations with nonzero ϵxy are explicitly

pointed out in the following.

The SOT field h = JpdδS/γ~ is evaluated once the energies Eka and eigenfunctions

|ψka⟩ implied by the Hamiltonian in Eq. (3.27) are numerically calculated and the

current-driven spin density δS is determined using Eq. (2.64). In general, the SOT
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field can be decomposed as

h = hmm + h∥ê∥ + h⊥ê⊥ (3.30)

where vectors ê∥, ê⊥ have unit length, ê⊥||m × u, ê∥ = ê⊥ × m, the subscript ”so”

has been removed for simplicity, and the direction of u (whose length is also set equal

to one) should be chosen depending on the system. For example, we find u||z × E

for the Rashba 2DEG. On the other hand, u = x in (Ga,Mn)As with growth strain

(∝ ϵzz) as described by Eq. (3.27) and current flowing along the [100] crystallographic

direction. Our results presented below always assume ê⊥ pointing in the positive z

direction.

In the following, we disregard the component of the SOT field which is parallel to

the magnetization (hm) since it does not exert any torque on it. The two remaining

components in Eq. (3.30) turn out to produce, in (Ga,Mn)As, the anti-damping-

like SOT in the case of h⊥ which is due to intrinsic interband mixing (of impurity-

independent origin) and a combination of anti-damping-like and field-like extrinsic

SOT in the case of h∥ which depends through Γ on the disorder strength. The angular

dependence of the two components, h∥,⊥, reflects the details of the band structure as

discussed in Sec. 3.2.4.

3.2.4 Numerical Results

For all the calculations presented in this section, the electric field E = 0.02 V/nm is

assumed to be applied along the x-axis and we varied the hole concentration between

0.3 nm−3 and 1 nm−3. This corresponds, respectively, to a Fermi energy of about

200 and 450 meV. Except for Sec. 3.2.4, magnetization always lies along the y-axis

(φ = 90◦).
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Intrinsic Versus Extrinsic Spin-Orbit Torques

We first investigate the impact of impurity scattering on the intraband and interband

contributions to the SOT fields. Figure 3.6 displays the SOT field as a function of

the energy broadening Γ for different values of hole concentrations. Although Γ is of

the order of hundreds of meV in realistic (Ga,Mn)As, we choose Γ < 10 meV so as

to be able to compare these results with the analytical ones obtained in Sec. 3.2.2 for

the ferromagnetic Rashba 2DEG which are valid in the small Γ limit.

The intraband contribution to the SOT field, hintra∥ , is inversely proportional to Γ

for all hole densities as it is seen in Fig. 3.6(a). This agrees with Eq. (3.12) and also

Eqs. (3.19,3.22) which ensue for the ferromagnetic Rashba 2DEG. No hintra⊥ component

exists. On the other hand, the interband part (a ̸= b) of Eq. (2.64) contributes both

to h∥ and h⊥ which is shown in Fig. 3.6(b,c). The former is a correction to the

intraband SOT field and it scales hinter∥ ∝ Γ in the weak scattering limit. It tends to

counteract the intraband contribution, as it is the case in the ferromagnetic Rashba

2DEG described by Eqs. (3.25,3.26). The out-of-plane component hinter⊥ converges

to a finite value when Γ vanishes, indicating the intrinsic character of this part of

the SOT field. These results are consistent with the analytical solutions obtained in

Eqs. (3.22)-(3.24) in the ferromagnetic Rashba 2DEG and weak scattering limit. It is

worth noticing that this dependence on spectral broadening holds over a wide range

of Γ in the case of intraband contribution [see inset in Fig. 3.6(a)], while it breaks

down already for Γ equal to few meV for the interband contributions.

Ferromagnetic splitting

The band structure of (Ga,Mn)As changes with the Mn doping that would, in the ab-

sence of the SOI, lead to a rigid mutual shift of the majority- and minority-spin bands.

Such ferromagnetic splitting would be proportional to Jex = JpdNMn and we can dis-

tinguish two limiting situations in a system where the SOI is present: ESO ≪ Jex
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Figure 3.6: (Color online) (a) Intraband and (b)-(c) interband contributions to the
SOT field as a function of spectral broadening Γ for otherwise typical (Ga,Mn)As
sample (doping concentration x = 5%, lattice-mismatch strain ϵzz = −0.3%). Inset
of panel (a) shows that hintra∥ ∝ 1/Γ holds over a broad range of Γ. Only lattice-

mismatch strain is considered, so that ϵxy = 0 in Eq. (3.29).

and ESO ≫ Jex. In view of the analytical results presented in Sec. 3.2.2, it is mean-

ingful to take ESO = αkF in the Rashba 2D system. For each component of the

non-equilibrium spin-density δSintra, δSinter
1 , δSinter

2 , there is a transition between dif-

ferent types of behaviour in the two limits. For example, the out-of-plane component

of the SOT field h changes from the ∝ J2
ex behaviour in the αkF ≫ Jex limit im-

plied by Eq. (3.21) into a Jex-independent behaviour in the opposite αkF ≪ Jex limit

implied by Eq. (3.24). We checked that this transition occurs also in the numerical

calculations across the whole range of Jex.

Contrary to the Rashba 2D system, the situation is more complicated in (Ga,Mn)As

because of the additional SOI terms in Eq. (3.28). Due to their mutual competition,
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Figure 3.7: (Color online) (a) Intraband and (b)-(c) interband SOT field as a function
of exchange interaction Jex = JpdNMn. Varied values of Jex can be understood as a
proxy to different Mn doping concentrations, e.g. x = 5% corresponds to Jex =
0.06 eV, the spectral broadening is set to 50 meV and other parameters are the same
as in Fig. 3.6.

it is not obvious what ESO should be. Looking at the Jex-dependence of the indi-

vidual SOT field components in Fig. 3.7, we nevertheless recognize similarities to

the ESO ≫ Jex limit behaviour of the Rashba 2D system. To some extent, this is

a surprising finding since the disorder broadening used for calculations in Fig. 3.7 is

quite large (Γ = 50 meV), better corresponding to realistic (Ga,Mn)As samples but

further away from the assumptions used to derive the analytical results presented in

Sec. 3.2.2. When Jex is small, both hintra∥ and hinter∥ are proportional to Jex as seen in

Eqs. (3.19) and (3.20), respectively. On the other hand, hinter⊥ ∝ J2
ex in the bottom

panel of Fig. 3.7 which is reminiscent of Eq. (3.21). No similarities to the Rashba 2D

system behaviour of the opposite limit (ESO ≪ Jex) are found in our calculations for
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(Ga,Mn)As.

Hole concentration

We display in Fig. 3.8 the SOT field as a function of the hole density for different

magnitudes of the lattice-mismatch strain ϵzz. First of all, we notice that the SOT

field components increase linearly with the strain. Second, increase of the hole concen-

tration results in an increase in the in-plane SOT field h∥ approximatively following

a p1/3 law, as shown in Fig. 3.8(a,b). This is consistent with Eq. (17) in Ref. [114] in

case of the intraband component. Interestingly, the in-plane interband SOT field hinter∥

shows a similar tendency [Fig. 3.8(b)], while the out-of-plane interband SOT field

hinter⊥ has a different dependence on p. This anti-damping-like SOT field in Fig. 3.8(c)

first increases with the hole concentration in the low hole density regime and later

decreases towards a saturated value. This could be because of the competition of the

different SOI types in (Ga,Mn)As as noticed by Kurebayashi et al. [105]. Indeed,

when the diamond-lattice spin-orbit coupling is absent (γ2 = γ3 = 0), the out-of-plane

interband SOT field hinter⊥ increases with the hole concentration following the same

p1/3 law as for the in-plane field [see inset of Fig. 3.8(c)]. For a four-band Luttinger

model that includes band warping (γ2 ̸= γ3), the competition between the diamond

spin-orbit coupling and the strain-induced spin-orbit coupling results in a reduction

of hinter⊥ , as shown in Fig. 4 of Ref. [105]. The reason why the competition between

the diamond spin-orbit coupling and the strain-induced spin-orbit coupling leads to

the deviation from the analytical formula only in the case of the hinter⊥ and not for

hintra,inter∥ remains to be explored in detail.

At this point, we remark that shear strain in Eq. (3.29) leads to hintra∥ compara-

ble to values shown in Fig. 3.8(a) when the value of ϵxy is comparable to ϵzz used

in Fig. 3.8. However, since the relevant values of ϵxy in unpatterned epilayers are

typically order-of-magnitude lower [113] than those of ϵzz, we can typically expect
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an order-of-magnitude smaller hintra∥ originating from the C5-term in Eq. (3.29) as

compared to the C4-term.
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Figure 3.8: (Color online) (a) Intraband and (b)-(c) interband SOT field as a function
of hole concentration for different lattice-mismatch strain ϵzz. Inset in (c): interband
SOT field in the parabolic model. The dashed lines in panel (a) are calculated using
Eq. (17) in Ref. [114] and follow a p1/3-law. Parameters are the same as in Fig. 3.7
except for JpdNMn fixed to a value corresponding to Mn doping x = 5%.

Impact of the Band Structure

The total DMS Hamiltonian given in Eq. (3.27) has both centro-symmetric and non-

centro-symmetric components given by Eqs. (3.28) and (3.29), respectively. As dis-

cussed in the previous section, the spin-orbit coupling of the centro-symmetric com-

ponent of the Hamiltonian [i.e., the terms in Eq. (3.28) proportional to γ2 and γ3]

affects also the SOT field, notably their dependence on the magnetization direction

[recall the definition of φ and θ below Eq. (3.15)]. Apart from the findings of Ref. [105]
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discussed above, it was shown in Ref. [115] that the shape of the Fermi surface has a

strong impact on the angular dependence of the intraband SOT field hintra∥ .

We now systematically explore the influence of the spin-orbit coupling of the

diamond crystal on the different components of the SOT field, i.e. hintra∥ , hinter∥ and

hinter⊥ . The centro-symmetric component of the total DMS Hamiltonian, Eq. (3.28),

accounts for the spin-orbit coupling through a set of the Luttinger parameters, γ1,2,3.

By tuning these three parameters, one can modify the form of the centro-symmetric

spin-orbit coupling. We model three distinct cases: (i) the parabolic approximation

where no centro-symmetric spin-orbit coupling is present (γ1 = 2.0, γ2 = γ3 = 0), (ii)

the spherical approximation where the centro-symmetric spin-orbit coupling is turned

on but spherical symmetry is retained (γ2 = γ3 = 2.5) and (iii) the diamond crystal

where both cubic symmetry and centro-symmetric spin-orbit coupling are accounted

for (γ2 ̸= γ3). This approach allows us to identify the role of the last two terms of

Eq. (3.28) on the SOT fields. In Fig. 3.9, we show the angular dependence of the

different contributions to the SOT field for the spin-orbit coupling induced by the

lattice-mismatch strain in the context of models (i)–(iii). The magnetization lies in

the (x, y) plane (θ = π/2) and its direction is given by the azimuthal angle φ.

As expected from the symmetry of the C4 term in Eq. (3.29), the three components

of the SOT field have a dependence of the form sinφ in the parabolic model (�

symbols in Fig. 3.9). When diamond-lattice spin-orbit coupling is switched on but

the spherical approximation is assumed, the interband SOT fields [△ symbols in

Figs. 3.9(b) and (c)] deviate from this dependence, while the angular dependence

of the intraband term remains unaffected [△ symbols in Figs. 3.9(a)]. Furthermore,

the magnitudes of interband and intraband SOT fields strongly decrease. This is a

manifestation of the competition between the strain-induced terms in Eq. (3.29) with

the centro-symmetric Luttinger spin-orbit terms in Eq. (3.28) [105].

When the spherical approximation is lifted (γ2 ̸= γ3) electronic bands become
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Figure 3.9: (Color online) Intraband and interband SOT field as a function of the
magnetization direction for different models labelled (i), (ii) and (iii) in the text. The
red (⃝), blue (△) and black (�) data stand for the full four-band Luttinger model,
its spherical approximation and the parabolic model, respectively. The parameters
are the same as in Fig. 3.8 except for fixed p = 1.0 nm−3 and ϵzz = −0.3%.

warped, especially those of the heavy holes. This results into an increase of the

interband SOT fields and an additional angular dependence shown by ⃝ symbols in

Fig. 3.9. Microscopically, the latter effect is caused by the distorted spin textures on

the Fermi surface. The influence of the centro-symmetric spin-orbit field on the spin

torque in GaMnAs has also been identified by Haney et al. [116] in DMS spin-valves.
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Chapter 4

Valley-Dependent Spin-Orbit

Torques in Two Dimensional

Graphene-Like Materials

4.1 Introduction

The inverse spin galvanic effect (ISGE), referring to the electrical or optical genera-

tion of a nonequilibrium spin density in non-centrosymmetric materials, has attracted

much attention over the last years [117, 118, 119, 120, 121, 62]. It originates from the

momentum relaxation of carriers in an electrical field and their asymmetric redistri-

bution in subbands that are spin-split by spin-orbit coupling [118]. ISGE was first

observed in bulk tellurium and soon generalized to low-dimensional structures such

as GaAs quantum wells [119, 120].

From an applied perspective, in ferromagnets lacking inversion symmetry ISGE

enables the electrical control of the local magnetization through angular momen-

tum transfer, a mechanism called spin-orbit torque (SOT) [120, 121, 62]. This ef-

fect has been scrutinized in dilute magnetic semiconductors such as ferromagnetic

bulk (Ga,Mn)As [64, 122, 123] and metallic multilayers comprising heavy metals and
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ferromagnets [124, 125]. These observations have been recently extended to bilayers

involving topological insulators displaying extremely large SOT efficiencies [126, 127].

We note that in metallic multilayers, spin Hall effect in the adjacent heavy metal also

leads to a torque [128, 129], which complicates the interpretation of the underlying

physics.

From a theoretical perspective, the torque stemming from ISGE on the magneti-

zation M has the general form

T = TDLM× (u×M) + TFLM× u, (4.1)

where the first term is called the antidamping-like torque and the second term is

referred to as the field-like torque [95, 96, 115, 130, 131, 132]. The antidamping-like

torque is even in magnetization direction and competes with the damping, while the

field-like torque is odd in magnetization direction and acts like a magnetic field. The

vector u depends on the current direction j and the symmetries of the spin-orbit

coupling. For instance, in a ferromagnetic two-dimensional electron gas (normal to

z) with Rashba spin-orbit coupling, u = z × j [74]. An interesting aspect of the

formula given above is that the antidamping-like torque arises from the distortion

of the wavefunction induced by the electric field, a mechanism closely related to the

material′s Berry curvature [133, 130, 134].

In parallel to the development of SOT in ferromagnetic structures, the study of

spin-orbit coupled transport has also been extended to low-dimensional hexagonal

crystals such as graphene. Experimentally, a spin-splitting induced by Rashba spin-

orbit coupling has been observed in graphene grown on heavy metals or surface alloys

[135, 136]. Furthermore, a ferromagnetic insulator EuO was successfully deposited on

graphene and spin-polarized states were detected [137, 138, 139]. The recent fabri-

cation of low-dimensional hexagonal crystals with strong intrinsic spin-orbit coupling
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such as silicene [140, 141], germanene [142] and possibly stanene [143], has enriched

the graphene physics. These materials offer a rich platform for the investigation of

spin, orbital and valley-dependent phenomena [144, 36]. The wide tunability of their

model band structure presents an interesting opportunity to study the impact of the

band geometry (e.g. their Berry curvature) on nonequilibrium mechanisms such as

SOTs.

In this chapter, we theoretically investigate the nature of SOT in two-dimensional

hexagonal IV group elements crystals such as graphene, silicene, germanene and

stanene. Using Kubo formula, we investigate the impact of the band structure on the

different components of SOT. We find that intrinsic spin-orbit coupling affects the

antidamping-like and field-like components differently. The former is sensitive to the

presence of a staggered potential while the latter is not. We understand these results

in terms of Berry curvature origin of the antidamping torque. The presence of both

magnetization and staggered potential enables the emergence of a valley-dependent

antidamping torque, providing an additional degree of freedom to the system.

4.2 Model and Method

A possible structure to realize valley-dependent SOT is a single-layered hexagonal

lattice (such as graphene, silicene, germanene or stanene) sandwiched by a ferromag-

netic layer and a non-magnetic substrate (see Fig. 4.1(a)). The ferromagnetic layer

may be chosen as EuO [145], or YIG [146], which induces a weak exchange coupling

on the spin-polarized carriers. The underlying non-magnetic provides Rashba spin-

orbit coupling [147, 148, 149, 150]. Note that in principle, a magnetic insulator could

supply for both exchange field and Rashba spin-orbit coupling [101, 151, 152].

The concept of valley-dependent SOT is illustrated in Fig. 4.1(a). In the absence

of a magnet, the interaction between the substrate and graphene-like layer breaks
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Figure 4.1: (Color online) Schematics of the device based on graphene-like materials
with field-like and antidamping-like SOT. (b)-(d) Energy dispersion of graphene-like
materials with (b) U = 0.03 eV (c) M = 0.03 eV (d) U = 0.03 eV and M = 0.03 eV .
The current flows from left to right. Magnetization is assumed to be directed along
the z-axis.

the inversion symmetry and leads to a Rashba spin-orbit coupling. As a results, a

transverse nonequilibrium spin density builds up when a current is injected along

the horizontal direction. Both Rashba and intrinsic spin-orbit coupling are valley

dependent as shown in Eq. (4.2) and thus they can not break the valley degeneracy.

In the presence of a magnet, a field-like spin density and an antidamping-like spin

density are generated as shown in Fig. 4.1(a) [153, 93]. The exchange field only

breaks the time-reversal-symmetry while the sublattice symmetry (two-fold rotational

symmetry in the plane) is preserved as shown in Fig. 4.1(c). The interaction between

the substrate and graphene-like layer can also induce a staggered potential, which

enlarges the band gap without affecting the valley degeneracy, as shown in Fig. 4.1(b).

However, in the presence of both staggered potential and ferromagnetic exchange

field, the valley degeneracy is lifted since both the time-reversal and sublattice symme-
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tries are broken as shown in Fig. 4.1(d). As a result, SOT becomes valley dependent.

Furthermore, as discussed in the next section, the band structure distortion displayed

in Figs. 4.1(b)-(d) affects the magnitude of the SOT components.

We adopt a low-energy continuum model Hamiltonian which describes Dirac elec-

trons near to the Fermi energy and captures the physics behind the formation of the

valley-dependent SOT in the vicinity of K and K′ points. The total Hamiltonian at

K or K′ valley in the basis of {ψA,↑, ψB,↓, ψB,↑, ψA,↓} reads [154]

Ĥsys = v(τkxσ̂x − kyσ̂y) ⊗ Î +
λR
2

(τ σ̂x ⊗ ŝy − σ̂y ⊗ ŝx)

+ τλsoσ̂z ⊗ ŝz + JexÎ ⊗M · ŝ + Uσ̂z ⊗ Î, (4.2)

where v =
√

3at/2 with t being a nearest-neighbor hopping parameter, τ = +1(−1)

stands for the K or (K′) valley, Î is a 2× 2 unity matrix, a is the lattice constant

and Jex is the ferromagnetic coupling constant. σ̂ and ŝ are Pauli matrices denoting

the AB-sublattice and spin degrees of freedom, respectively. M is the magnetization

direction. The first term includes the spin-independent kinetic energy of the particle,

the second term denotes the Rashba coupling and the third one represents the intrinsic

spin-orbit coupling. The fourth term is the interaction between the spin of the carrier

and the local moment of the ferromagnetic system. The last term is the staggered

potential (induced by, for instance, an electrical field or a substrate [155, 156, 157]),

where U = 1 (−1) for A (B) site.

To compute the current-induced effective magnetic field, we first evaluate the

nonequilibrium spin density δS at K (K′) valley using Kubo formula in Eq. (2.64)

[105], where E is the electric field, v̂ = 1
~
∂H
∂k

is the velocity operator, ĜR
ka = (ĜA

ka)
∗ =

1/(EF − Eka + iΓ). Γ = ~/2τ is the disorder-induced energy spectral broadening

due to the finite life time of the particle in the presence of impurities and τ is the

momentum scattering time. EF is the Fermi energy, Eka is the energy of electrons in
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band a. The eigenvector |ψk,a⟩ in band a can be found by diagonalizing Eq. (4.2).

Equation (4.2) contains both intraband (a = b) and interband (a ̸= b) contributions

to the nonequilibrium spin density. The former stems from the perturbation of the

carrier distribution function by the electric field and it is inversely proportional to Γ.

The latter arises from the perturbation of the carrier wave functions by the electric

field. The interband contribution also depends on Γ but survives when Γ → 0.

In order to evaluate the current-driven SOT in different materials, we define the

electrical efficiency of the torque as [74]

η =
2JexδS

~σxxE
(4.3)

where σij is conductivity tensor component defined [158]

σij = e2~Re
∑
k,a,b

[⟨ψka|v̂i| ψkb⟩⟨ψkb|v̂j| ψka⟩] × [ĜR
kbĜ

A
ka − ĜR

kbĜ
R
ka]. (4.4)

At this stage, we wish to point out the limits of the approach outlined above.

First, in the presentwork we consider short-range (δ-like) nonmagnetic impurities.

We disregard other types of defects such as ripples, magnetic defects, or topological

dislocations, which may have a significant impact on transport in graphene. Second,

we limit our calculations to the first Born approximation without calculating the ver-

tex corrections. It is well known that vertex corrections are crucial to model spin-orbit

coupled transport in systems with high symmetry such as Rashba two-dimensional

electron gas. However, while these corrections have been found to exactly cancel the

intrinsic spin Hall effect and antidamping torque in the presence of spin-independent

impurities, it seems that they are much less dramatic in graphene, only resulting is

a renormalization factor of the order of unity. Nonetheless, we also notice that re-

cent calculations by Ado et al. indicate that extending the vertex correction beyond

the usual noncrossing diagrams (i.e., including χ and ψ crossing diagrams) produces
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non-negligible impurity-independent contributions. Such contributions could indeed

be important for the quantities of interest in this work but are left to further studies.

4.3 Inverse spin Galvanic effect

The characteristics of the SOT in two-dimensional hexagonal honeycomb lattices

are expected to be different from the well studied case of bulk GaMnAs [74, 75,

95, 96, 115, 130]. Unlike the three-dimensional ferromagnetic GaMnAs in the weak

limit (λR << Jex, Jex ∼ 1eV and λR ∼ 0.1eV), the graphene-like materials often

fall into the strong limit (λR >> Jex), leading to a nonzero interband contribution.

The nontrivial Dirac kinetic term (first term in Eq. (4.2)) gives rise to nonlinear

transitions of spin density when tuning the Fermi energy. Furthermore, the spin

density is more sensitive to band topology tunable by intrinsic spin-orbit coupling or

staggered potential. More importantly, the Dirac kinetic term and spin-orbit coupling

terms are valley-dependent. In order to better understand the valley-dependent SOT,

we first examine spin torque with and without valley degeneracy in section 4.3 and

4.4 respectively.

4.3.1 Non-magnetic honeycomb lattice

We first compute the spin density induced by ISGE in non-magnetic graphene. In

this material, we choose the following parameters: Ef in [0, 0.3] eV [159], λR in

[10, 130] meV [147, 148], and Jex in [5, 30] meV [160, 161]. For all the calculations

shown in this section, the electrical field is assumed to be along the x-axis and the

energy broadening is Γ =0.01 eV. To understand the physical origin of the SOT and

establish connections with previous works [130], we parse the SOT into intraband and

interband contributions.

Figure 4.2 presents the intraband (a,c) and interband contributions (b,d) to the
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Figure 4.2: (Color online) (a) Intraband and (b) interband contributions to spin
density as a function of Fermi energy Ef for various Rashba spin-orbit coupling in
the absence of intrinsic spin-orbit coupling λso. (c) Intraband and (d) interband spin
density as a function of Fermi energy Ef for various intrinsic spin-orbit coupling at
λR=0.03 eV. Inset (b): Band structure of graphene-like materials with λR=0.03 eV
and λso=0 eV. Inset (c): Band structure with λR=0 eV and λso=0.03 eV Inset (d):
Same as inset (b) but with λso=0.03 eV. The current is injected along the x axis.

ISGE-driven spin density for various strengths of λR (a,b) and λso (c,d). In non-

magnetic graphene, intraband contribution produces a spin density aligned toward

the y-direction, which is expected from the geometry of our system and consistent

with the well known ISGE in two-dimensional electron gases [162, 74]. There is also

interband contribution in the strong limit (λR >> Jex), smaller than the intraband

contribution and opposite to it, in agreement with our previous analytical solutions in

the case of Rashba two-dimensional electron gas [130]. When increasing the absolute

value of Fermi energy, the spin density first experiences a sharp enhancement at small

values of Ef and quickly saturates. This result is consistent with previous results [163]

and can be readily understood by considering the band structure in the inset of Fig.

4.2(b). When the Fermi energy lies in the energy gap of two spin-split subbands, only
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one spin species contributes to ISGE and the intraband spin density increases with

the Fermi energy. As the Fermi energy lies above the subband gap, the two subbands

compensate each other and the spin density saturates. The peaks in Fig. 4.2(a)

correspond to the minimum (E > 0) or maximum (E < 0) of the spin-up subband

(see inset of Fig. 4.2(b)) which is of the order of λR.

Another interesting feature is the spin density as a function of the Rashba spin-

orbit coupling. The intraband contribution increases linearly with λR (see Fig.

4.2(a)), while the interband contribution first increases and then decreases (see Fig.

4.2(b)). The interband contribution depends on the energy difference between the

subbands, which itself is of the order of λR. Indeed, one can show that in the weak im-

purity limit, the interband contribution is proportional to 1/(Eka-Ekb) [105, 130, 132].

This results in the non-linear dependence as a function of λR observed in Fig. 4.2(b)

as well as in Fig. 4.3(c).

Rashba spin-orbit coupling is not the only spin-orbit coupling that affects the spin

density. In graphene-like systems Rashba spin-orbit coupling is always accompanied

by an intrinsic spin-orbit coupling, ∼ τλsoσ̂z⊗ ŝz, which originates from the substrate

or a low buckled structure [155, 164]. In Figs. 4.2(c) and (d), we display the Fermi

energy dependence of the intraband and interband contributions to spin density for

various intrinsic spin-orbit coupling. As expected, the intrinsic spin-orbit coupling

opens up a band gap and distorts the topology of the band structure as seen in

the inset of Fig. 4.2(c) and (d). For a given K or K′ Valley (ignore τ), this term

plays the same role as the ferromagnetic exchange field along the z axis in unit cell

when the two sublattices contribute to spin density equivalently (σz replaced by Î ).

When the two sublattices contribute to spin density inversely, this term acts as an

anti-ferromagnetic exchange field and the symmetry of profiles of the spin density is

broken and it shifts to the left. Furthermore, the asymmetry of the profiles of the spin

density becomes more evident with the increase of λso. The energy at which the spin
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density is maximum equals λso + λR when Ef < 0. Note that the intrinsic spin-orbit

coupling does not drive ISGE by itself, but it affects the ISGE-induced spin density

driven by Rashba spin-orbit coupling through the modulation of the topology of the

bands.

4.3.2 Magnetic honeycomb lattice

Let us now turn to the case of magnetic two-dimensional honeycomb lattices. To

understand the role of spin-orbit coupling, we plot the intraband and interband spin

density as a function of Rashba spin-orbit coupling for different intrinsic spin-orbit

coupling in the presence of magnetization in Fig. 4.3. Due to the presence of mag-

netism, the interband contribution also produces an antidamping component (see

Figs. 4.3(c)), i.e. a spin density contribution oriented towards ∼ M×y [105, 130, 132]

and with a magnitude comparable to the one of the field-like component (see Figs.

4.3(c)). As seen in Figs. 4.3(a)-(c) the interband field-like and antidamping contri-

butions first increase and then decrease. This can be understood as a competition

between the spin density driven by Rashba spin-orbit coupling and the suppression

of interband scattering due to the distance between the subbands that increases with

λR.

The intraband contribution decreases with the increasing intrinsic spin-orbit cou-

pling while the interband contribution behaves the opposite way. By opening a band

gap, the intrinsic spin-orbit coupling alters the band filling, resulting in a reduced

intraband contribution to spin density. An analytical solution of energy depending

on intrinsic spin-orbit coupling can be found in previous study [165]. On the other

hand, the intrinsic spin-orbit coupling reduces the splitting between the subbands for

Ef > 0 (see inset in Fig. 4.2(d)), which results in an enhancement of the interband

contributions. This result is valuable to current-driven magnetic excitations since

the antidamping torque is responsible for magnetization switching and excitations
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[153, 93, 166].

0.00 0.03 0.06 0.09 0.12 0.15
0.00

-0.01

-0.02

-0.03

0.00

-0.08

-0.16

-0.24

0.00

0.01

0.02

0.03

 

sin
te

r
D

L
(

 e
V

-1
nm

-1
)

(c)

(a)

 so=0.00
 so=0.01
 so=0.03
 so=0.05

sin
tra

FL
(

 e
V

-1
nm

-1
)

(b)

sin
te

r
FL

(
 e

V
-1
nm

-1
)

R
(eV)

Figure 4.3: (Color online)(a) Intraband and (b)-(c) interband spin density as a func-
tion of Rashba spin-orbit coupling for different intrinsic spin-orbit coupling with
Jex = 0.01 eV and Ef = 0.1 eV . The magnetization is directed along the z axis.

4.4 Valley-Dependent Spin-Orbit Torque

The valley degree of freedom can be used as a tool to enhance the functionality of

two-dimensional honeycomb lattices [167]. Recently, a valley-dependent anomalous

quantum hall state has been predicted in silicene and silicene nanoribbons owing to

the topological phase transition [155, 168]. A charge-neutral Hall effect has been

measured in graphene devices [169, 170]. These suggest the emergence of valley Hall
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effect. It is thus natural to expect a valley-modulated SOT in our settings.

4.4.1 Staggered Potential

The sublattice degeneracy can be removed by depositing graphene-like materials on

hexagonal boron-nitride [169, 171, 172] or silicon carbide [157], or by applying an

electrical field in a low buckled structure [155]. When the staggered potential and ex-

change field are present and the valley degeneracy is broken, the spin density becomes

valley-dependent as shown in Figs. 4.4.

In Figs. 4.4(a)-(c), we display the intraband and interband contributions to spin

density as a function of Fermi energy in the presence of staggered potential with and

without the intrinsic spin-orbit coupling. The imbalance between the contribution of

the two valleys to the spin density, i.e., valley polarization, defined as P =
δSK−δSK′
δSK+δSK′

,

is reported on Figs.4.4(d)-(f). The largest imbalance occurs mainly around the neu-

trality point EF = 0. The valley imbalance of the antidamping-like component can

reach 100% as shown in Figs.4.4(f), i.e., that for certain energies, this component is

dominated by only one valley. When the intrinsic spin-orbit coupling is present, the

magnitudes of the valley imbalance can be switched from -100% to 100% by simply

tuning the Fermi energy.

4.4.2 Angular dependence

A noticeable effect of lifting the valley degeneracy is its impact on the angular depen-

dence of SOT components. Figure 4.5 displays the angular dependence of the different

components of the spin density when the magnetization is rotated in the (x,z) plane.

In a ferromagnetic two-dimensional electrons gas with Rashba spin-orbit coupling, the

spin density has the general form δS = δS∥ cos θx+ δSym× y− sin θδS∥z, where θ is

the angle between the magnetization and z. More complex angular dependence may

appear in the strong Rashba limit (λR >> Jex) due to D′yakonov-Perel relaxation or
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Figure 4.4: (Color online) (a) Intraband and (b)-(c) interband spin density of two
valleys as a function of Fermi energy for different intrinsic spin-orbit coupling with
U = 0.01 eV and Jex = 0.01 eV . Valley spin polarization for intraband (d) and
interband (e)-(f) components for different intrinsic spin-orbit coupling.

in the intermediate regime (λR ∼ Jex) due to a ”breathing” Fermi circle [132].

Similarly, in the case of magnetic honeycomb lattices, different components of

the spin density display a clear deviation from the simple ∼ cos θ dependence of

the ferromagnetic Rashba gas (see dotted lines in Fig. 4.5). This is attributed to the

”breathing” Fermi circle, i.e., the distortion of the Fermi circle, and the modification of

the band filling as a function of the direction of the magnetization when the exchange

is comparable to the Rashba parameters.

In the absence of valley degeneracy, the angular dependence at K and K’ points
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Figure 4.5: (Color online) Intraband and interband spin density as a function of
the magnetization direction with (solid lines) and without (dashed lines)staggered
potential for the different valleys when U = 0.03 eV. Inset (b) Valley spin polarization
of interband spin density for x-component.

differ significantly from each other (red and blue lines in Fig. 4.5, respectively). As a

consequence, by tuning the magnetization angle the valley imbalance varies strongly

(from -100% to 100% for the x-component, as shown in inset of in Fig. 4.5(b)).

We also notice that additional structures are visible in the angular dependence of the

field-like component, related to interband transitions (see Fig. 4.5(c)). These features

are unique to the case of honeycomb lattices and absent in standard two dimensional

free electron gases.

4.5 Connection Between Spin-Orbit Torque and

Berry curvature

Berry’s phase plays a crucial role in the transport properties of semiconductors es-

pecially for graphene-like materials. Due to the inequivalent contribution from two

valleys, Berry curvature induces valley hall effect in graphene with broken inversion
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Figure 4.6: (Color online) Intraband and interband spin density as a function of
intrinsic spin-orbit coupling for different staggered potential for the K valley (a)-(c)
and K′ valley (d)-(f). The parameters are: Ef = −0.16 eV , and Jex = 0.01 eV and
λR = 0.03 eV .

symmetry [169]. Recently, the link between SOT and Berry curvature was estab-

lished in bulk ferromagnetic GaMnAs [105]. The intrinsic spin-orbit coupling distorts

the Fermi circle and gives rise to the oscillations in torque magnitudes, as already

observed in (Ga,Mn)As [105].

In order to show the connection between the SOT and the band structure dis-

tortion, let us analyze the influence of intrinsic spin-orbit coupling on SOT in the

presence of a staggered potential. The intraband and interband contributions to spin

density as a function of intrinsic spin-orbit coupling for various staggered potential
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Figure 4.7: (Color online) Contour of valley-polarized Berry curvature distribution
for different intrinsic spin-orbit coupling in kx − ky plane with U = 0.03 eV. (a) and
(d) λso = 0.005 eV. (b) and (e) λso = 0.01 eV. (c) and (f) λso = 0.015 eV. Others
parameters are the same as in Fig.4.6.

both at K and K′ valley are displayed in Fig. 4.6. We find that both the field-like

intraband and interband contributions to the spin density, δSintra
FL and δSinter

FL . They

increase with the intrinsic spin-orbit coupling and are only weakly affected by the

staggered potential (see Figs. 4.6 (a,b) and (d,e)). In contrast, the antidamping-like

component of the spin density, δSinter
DL , displays a non-linear dependence as a function

of the intrinsic spin-orbit coupling that is very different for the two valleys and highly

sensitive to the staggered potential (see Figs. 4.6 (c) and (f)).

To understand this difference, we plot the contour of Berry curvature for different

intrinsic spin-orbit coupling at K and K′ valleys in kx − ky plane in Fig. 4.7. A large

Berry curvature mainly concentrates around the Dirac point and decays away from

it, in agreement with previous results [173, 154]. For the K valley, Berry curvature
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decreases with the increase of intrinsic spin-orbit coupling. Yet for the K′ valley,

Berry curvature increases. This trend is in accordance with the variations of δSinter
DL

displayed in Figs. 4.7 (c) and (f) and not in accordance with the variations of δSinter
FL

displayed in Figs. 4.7 (b) and (e). It illustrates the fact that while δSinter
FL and δSinter

DL

both originate from interband transitions, only the latter is related to Berry curvature,

i.e., the field-like SOT is purely due to ISGE instead of the superposition of Berry

curvature and ISGE in ferromagnetic GaMnAs as pointed out by Kurebayashi et al.

[105].

4.6 Discussion

To complete the present study, we computed the magnitude of antidamping-like and

field-like components of the spin density and corresponding electrical efficiencies for

various graphene-like honeycomb lattices, assuming λR = 0.1 eV and Jex = 0.03 eV .

The results are reported in Table 1, showing that the largest SOT is obtained for

stanene (∼ 100 × 1010 eV A−1m−1). As a comparison, the corresponding efficien-

cies of field-like SOT in (Ga,Mn)As [130], two-dimensional Rashba systems [74]

and topological insulators [174] are of the order of ∼ 1 × 1010, ∼ 10 × 1010 and

∼ 100 × 1010 eV A−1m−1, respectively, in agreement with the orders of experimental

results [77, 79, 153, 175]. Therefore, for moderate Rashba and exchange param-

eters, honeycomb lattices seem to display large field-like torques. Interestingly, the

antidamping-like torque remains about one order of magnitude smaller than the field-

like torque, as already observed in two-dimensional Rashba gases and (Ga,Mn)As

[130].

Finally, we propose a device to detect the valley-dependent SOT. We consider a

multi-terminal device as shown in Fig. 4.8. This is a typical device used to detect

charge neutral-currents [169, 170]. The device consists of a graphene-like material
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Table 4.1: Efficiency of spin torque for various two dimensional hexagonal lattices
σxx(e

2/~) sDL sFL ηDL ηFL

C 23.3809 × 10−3 0.0083 0.1193 21.3 306
Si 9.0068 × 10−3 0.0137 0.1975 91.3 1316
Ge 8.4004 × 10−3 0.0141 0.2019 100.7 1442
Sn 6.5818 × 10−3 0.0155 0.220 14.13 2006

sDL (sFL) is in unit of ~(eV · nm)−1 while ηDL (ηFL) is in unit of eV (A · nm)−1.

sandwiched between a magnetic insulator and a non-magnetic substrate such as a

topological insulator [149]. The substrate [176] can induce a staggered potential that

breaks the valley degeneracy. The voltage is applied to the sidearms and the current

flows from the lower sidearm to the upper one. In the absence of magnetization,

a valley Hall effect may be detected in the two horizontal terminals [169]. In the

presence of magnetization, the torque exerted on the magnetization of the magnetic

insulator deposited on top of the left or right terminal will be different.

+ V 

-V 

M M 

Graphene-like 

Substrate 

(a) (b) 

K+ K- 

C
u

rren
t 

Figure 4.8: Schematics of the realization of valley-dependent antidamping-like SOT:
(a) Top view and (b) Side view. The current is injected into the vertical arm. The
presence of both magnetization and staggered potential results in a nonequivalent spin
density for the valleys. This leads to a different valleys on the horizontal sidearms.
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4.7 Conclusion

In summary, we have investigated the nature of SOTs in two dimensional hexagonal

crystals and qualitatively recovered most of the results obtained on different systems

such as (Ga,Mn)As and two-dimensional Rashba gases [130]. We showed that the

staggered potential and intrinsic spin-orbit coupling can strongly affect the magnitude

of the torque components as well as their angular dependence. In the presence of

staggered potential and exchange field, the valley degeneracy can be lifted and we

obtain a valley-dependent antidamping SOT, while the field-like component remains

mostly unaffected. This feature is understood in terms of Berry curvature and we

show that the valley imbalance can be as high as 100% by tuning the bias voltage or

magnetization angle.
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Chapter 5

Spin Orbit Torque in

One-Dimensional Graphene

Nanoribbons

5.1 Introduction

Topological insulators, a new phase of matter, have attracted intense research interest

due to their nontrivial physical properties and potential applications in spintronics

[177]. Similarly to a conventional or band insulator, it possesses a band gap in the

bulk. Yet, differently from a conventional insulator, it has time-reversal-symmetry-

protected spin-polarized surface states or edge states in the bulk band gap. These

states may experience a transition from a topological insulator to a band insulator

(i.e., a topological phase transition) by reasonable structural design and manipu-

lations such as doping with impurities [178, 179], applying to a strain or pressure

[180, 181], or interacting with nonmagnetic substrates [182], due to the variations

of band topology caused by lattice distortions or spin-orbit coupling. Interestingly,

even without the structural manipulations, topological phase transitions can also be
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driven by the coupling between topological insulators and magnetic substrates. For

example, a transition from a band insulator to a quantum spin Hall insulator can be

induced by tuning the exchange coupling between proximity magnetic layers and sil-

icene, which is associated with variations of Berry curvature [183, 168]. Among these

studies, the influence of topological phase transitions on Hall conductivities and spin

textures in momentum space has been confirmed theoretically and experimentally

[184, 179]. From a topological standpoint, a charge or spin current in a topologi-

cal insulator is also a topological current. Hence, unlike semiconductors and metals,

charge conductivities and spin polarized edge states in topological insulators can be

controlled not only by an electric field but also by topological phase transitions.

Besides topological phase transitions, charges flowing at the surface or edge of

topological insulators are accompanied by a non-equilibrium spin polarization due

to the large spin-momentum of surface states [185]. This magneto-electric effect can

be used to excite and switch the magnetization of a ferromagnet deposited on the

surface, as studied theoretically [186, 187] and demonstrated experimentally [175,

188, 126]. This spin-orbit torque displays a larger electrical efficiency [175, 188, 126]

compared with spin torque in bilayers involving heavy metals [153, 93]. Alternatively,

the spin-to-charge conversion present at the surface of topological insulators can be

probed through charge pumping, i.e. the Onsager reciprocal of spin-orbit torques

[189, 190]. In fact, while a charge current creates a torque on the magnetization, a

precessing magnetization induces a charge current along the interface. This effect

was originally observed in magnetic bilayers involving heavy metals and attributed

to the inverse spin Hall effect present in the bulk of the heavy metal [191]. This

observation has been recently extended to two dimensional systems such as hexagonal

lattices [192], heavy metals [193] and more recently to the surface of topological

insulators [194, 195, 193]. In these systems, the spin-charge conversion is attributed

to the spin-momentum locking induced by interfacial (Rashba or Dirac) spin-orbit
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coupling. While magneto-electric effects have been studied in topological insulators

in the metallic regime [186, 187], the influence of topological phase transitions on these

mechanisms has been essentially overlooked. In particular, besides the emergence of

quantized magneto-electric effect [185], it is not clear how the topologically non-trivial

edge states contribute to spin-orbit torque and charge pumping.

In this paper, we theoretically investigate both charge pumping and spin-orbit

torque in quasi-one-dimensional zigzag silicene-like nanoribbons with a hexagonal

lattice in the presence of intrinsic spin-orbit coupling. Depending on the strength

of the spin-orbit coupling this system displays topological phase transitions between

trivial (metallic) and non-trivial (quantum spin Hall) phases [156, 183]. Here, we

demonstrate that spin-charge conversion efficiency is dramatically enhanced at the

topological transition, resulting in large damping-like spin-orbit torque and dc charge

pumping.

5.2 Spin-orbit torque and charge pumping

Let us first formulate the reciprocity relationship between spin-orbit torques and

charge pumping (see also Ref. [189, 190]). We start from the definition of magneti-

zation dynamics and charge current

∂tm =γm× ∂mF + χ̂ · E,

Jc =σ̂ · E + ξ̂ · ∂mF, (5.1)

where −∂mF = −∂mΩ/Ms is the effective field that drives the dynamics of the mag-

netization in the absence of charge flow. Ω is the magnetic energy density and Ms

being the saturation magnetization. E is the electric field that drives the charge
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current through the conductivity tensor σ̂ is the absence of magnetization dynamics.

χ̂ and ξ̂ are the tensors accounting for current-driven torques and charge pumping,

respectively. We can rewrite these two equations in a more compact form

 ∂tni

∂tmi

 =

 Lni,f
j
e

Lni,f
j
m

Lmi,f
j
e

Lmi,f
j
m


 f j

e

f j
m

 (5.2)

where we define the particle current ∂tni = SJc,i/e , the electric and magnetic forces

f j
e = deEj, f

j
m = µB∂mj

F . Onsager coefficients are then

 Lni,f
j
e

Lni,f
j
m

Lmi,f
j
e

Lmi,f
j
m

 =

 Wσij/e
2 ξij/µB

χij/d −(γ/µB)(ei × ej) ·m

 . (5.3)

Here, we consider a magnetic volume of width W , thickness d and section normal to

the current flow S = Wd. Applying Onsager reciprocity principle [189, 196]

Lni,f
j
m

(m) = −Lmj ,f i
e
(−m), (5.4)

and we obtain ξij(m)/µB = −χji(−m)/d. In two-dimensional magnets with inter-

facial inversion asymmetry, the spin-orbit torque T = χ̂ · E can be parsed into two

components (see e.g. Refs. [187, 130])

T = τDLm× ((z× E) ×m) + τFLm× (z× E), (5.5)

referred to as the damping-like (τDL) and field-like torque (τFL). Hence, by definition

χij(m) =τDL[m× ((z× ej) ×m)] · ei

+ τFL[m× (z× ej)] · ei. (5.6)
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Then, applying Onsager reciprocity, we obtain the charge pumping coefficient

ξij(m) = − (µB/d)τDL(−m)[m× ((z× ei) ×m)] · ej

+ (µB/d)τFL(−m)[m× (z× ei)] · ej. (5.7)

And finally, the charge current induced by the magnetization dynamics reads

Jc = − µB

dγ
τDL(−m)z× (m× ∂tm)

+
µB

dγ
τFL(−m)z× ∂tm. (5.8)

This equation establishes the correspondance between the current-driven spin-orbit

torque and the charge current pumped by a time-varying magnetization. In the

following, we will compute the current-driven spin density δS from Kubo formula

[Eq. (2.64)]. The torque is simply T = (2Jex/~)m× δS, so that that the conclusions

drawn for spin-orbit torques equally apply to charge pumping.

5.3 Model and method

Let us now consider a single-layered zigzag nanoribbon with a hexagonal lattice (e.g.

silicene, germanene, stanene etc.) deposited on top of a ferromagnetic layer. The

ferromagnetic layer may be chosen as EuO [145] or YIG [192, 146], and induces a

weak exchange coupling on the spin-polarized carriers as well as Rashba spin-orbit

coupling.

In a tight-binding representation, Hamiltonian for silicene-like material can be

described by [154]
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Figure 5.1: (Color online) (a) Top view of zigzag silicene-like nanoribbons switched
by a nonmagnetic topological insulator and a magnetic topological insulator. The
super unit cell as indicated by the red rectangle. (b) Band structure for different
magnetization direction m. (c) Phase diagram for various Rashba and magnetization.
(d) Density of states for different magnetization direction. The current is directed
along the x axis. The parameters are tso= 36 meV and Jex= 10 meV.

Ĥ0 =
∑
⟨i,j⟩α

tĉ+i,αĉj,α + i
tso

3
√

3

∑
⟨⟨i,j⟩⟩αβ

c+i,αvij ŝ
z
αβcj,β

+i
2tR
3

∑
⟨i,j⟩αβ

c+i,αẑ · (̂sαβ × dij)cj,β + Jex
∑
i,α

c+i,αŝ · M̂ci,α. (5.9)

where ĉ+i,α (ĉi,α) creates (annihilates) an electron with spin α on site i. ⟨i, j⟩ (⟨⟨i, j⟩⟩)

runs over all the possible nearest-neighbor (next-nearest-neighbor) hopping sites. tR

(tso) is the Rashba (intrinsic) spin-orbit coupling constant. vij = ±1 when the trajec-

tory of electron hopping from the site j to the site i is anti-clockwise (clockwise). Jex
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is the ferromagnetic coupling constant. The first term denotes the nearest-neighbor

hopping, the second term denotes the intrinsic spin-orbit coupling and the third one

represents the extrinsic Rashba spin-orbit coupling. The fourth term is the exchange

interaction between the spin of the carrier and the local moment of the ferromagnet.

We assume that the nanoribbon is uniform and periodic along the transport di-

rection. A super unit cell is chosen as shown in the red rectangle in Fig. 5.1(a). To

compute the spin torques and charge pumping, we first evaluate the nonequilibrium

spin density δS using Kubo formula [105] in Eq. (2.64), where E is the electric field,

v̂ = 1
~
∂H
∂k

is the velocity operator, ĜR
ka = (ĜA

ka)
∗ = 1/(EF − Eka + iΓ). Γ is the

energy spectral broadening, and V is the unit cell area. EF is the Fermi energy, Eka

is the energy of electrons in band a. The eigenvector |ψk,a⟩ in band a can be found

by diagonalizing Eq. (5.9). Equation (2.64) contains both intraband (a = b) and

interband (a ̸= b) contributions to the nonequilibrium spin density (see the discus-

sion in Ref. [130]). The former is related to impurity scattering and the latter only

includes intrinsic contributions related to Berry curvature at Γ = 0. We ignore the

vertex corrections as they only result in a renormalization factor of the order of unity

in two dimensional hexagonal lattices [163].

For a nanoribbon in the absence of spin-orbit couping, the eigenvalues and eigen-

vectors around the Dirac point are independent on the magnetization direction. How-

ever, when intrinsic spin-orbit couping is present, it acts as a valley-dependent anti-

ferromagnetic effective field along the z direction. In the low energy limit, it reads

∼ τλsoσ̂z ⊗ ŝz. When the magnetization is directed along the x axis, the cooperation

of magnetic exchange and Rashba spin-orbit coupling can open up a band gap turning

the system into a (trivial) band insulator, as shown in the left panel of Fig. 5.1(b)

(see also Ref. [165]). The corresponding density of states in the left panel of Fig.

5.1(d) displays an evident gap. In contrast, when the magnetization is directed along

the z axis, the system evolves towards the quantum spin Hall regime (insulating bulk
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and conducting spin polarized edges) as shown in the right panel of Fig. 5.1(b). It is

related to the fact that the magnetic field couples with the intrinsic spin-orbit cou-

pling and leads to the redistribution of ground states [156]. Unlike the band insulator,

the corresponding density of states show a parabolic dependence on energy as shown

in the right panel of Fig. 5.1(d). For silicene-like materials, the exchange coupling

is about 30 meV [161]. In this parametric range, there are only two different topo-

logical phases: trivial band insulator and quantum spin Hall insulator as shown in

Fig. 5.1(c). The others topological phases such as quantum anomalous Hall insulator

stand beyond this parametric range.
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Figure 5.2: (Color online) Intraband and interband components of spin density as
a function of Fermi energy in a non-magnetic nanoribbon without (a)-(b) and with
intrinsic spin-orbit coupling (c)-(d). The electric field is directed along the x axis.
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5.4 Spin-orbit torques

In order to understand the influence of topological phase transition on spin-orbit

torque, we first investigate the influence of intrinsic spin-orbit coupling on the nonequi-

librium spin density in a non magnetic nanoribbon. In this system, Rashba spin-orbit

coupling enables the electrical generation of a non-equilibrium spin density, δSy, an

effect known as the inverse spin galvanic effect and studied in details in bulk two

dimensional hexagonal crystals [163]. In Fig. 5.2 we present the intraband (a,c) and

interband contributions (b,d) to the non-equilibrium spin density in a nanoribbon

as a function of Fermi energy without (a,b) and with (c,d) intrinsic spin-orbit cou-

pling. When the intrinsic spin-orbit coupling is absent [Fig. 5.2(a,b)], the system

is metallic and the intraband component dominates the spin density, indicating that

carriers at the Fermi surface dominate the transport. The intraband component [Fig.

5.2(a)] is one order of magnitude larger than the interband component [Fig. 5.2(b)],

in agreement with the results obtained for two-dimensional graphene-like materials,

or two-dimensional electron gases [115, 130]. When the intrinsic spin-orbit coupling

is turned on [Fig. 5.2(c,d)], it opens up a bulk band gap and induces spin polarized

edge states. In the quantum spin Hall regime (small Fermi energy, no bulk trans-

port), the intraband and interband contributions are of the same order of magnitude,

while beyond the quantum spin Hall regime (large Fermi energy, both edge and bulk

transport coexist), the intraband contribution dominates the spin density.

Let us now turn our attention towards the case of a magnetic nanoribbon. In our

configuration, E = Ex, and the non-equilibrium spin density can be parsed into two

components,

δS = δSDLy ×m + δSFLy, (5.10)
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Figure 5.3: (Color online)(a) Intraband, (b)-(c) interband spin density and (d) con-
ductance as a function of Fermi energy without and with intrinsic spin-orbit coupling.
The magnetization is directed along the z axis.

referred to as damping-like (δSDL) and field-like (δSFL). We plot the field-like and

the damping-like spin densities with and without intrinsic spin-orbit coupling in Fig.

5.3. When the intrinsic spin-orbit coupling is absent and the exchange interaction is

present, the intraband component dominates the field-like spin density in Fig. 5.3(a)

and (b) similar to the case without exchange interaction displayed in Fig. 5.2(a,b).

Moreover, the damping-like spin density [Fig. 5.3(b)] is smaller than the field-like spin

density [Fig. 5.3(a)] because the former is a correction arising from the precession

of non-equilibrium spin density around the magnetization caused by the acceleration

of carriers in the electric field [106, 105, 130]. When the intrinsic spin-orbit coupling

is turned on, the nanoribbon enters the quantum spin Hall regime: transport only

occurs through spin-polarized edge states, resulting in quantized conductance [Fig.

5.3(d)]. The interband and interband field-like spin densities [Fig. 5.3(a,c)] becomes

of comparable magnitude but with opposite sign, while the damping-like spin density
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is significantly enhanced [Fig. 5.3(b)]. As a result, the damping-like spin density

dominates over the field-like spin density. Furthermore, since the conductance is only

due to edge states, the overall electrical efficiency of the torque (= torque magnitude

/ conductance) is dramatically enhanced in the quantum spin Hall regime.
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Figure 5.4: (Color online) Intraband and interband spin density as a function of
magnetization angle for different Fermi energy. (a)-(c) without intrinsic spin-orbit
coupling and (d)-(f) with intrinsic spin-orbit coupling.

The topological phase transition can be induced not only by tuning the intrinsic

spin-orbit coupling but also by rotating the magnetization as shown in Fig. 5.1(b,c).

In Fig. 5.4, we plot the intraband and interband contributions to spin density as a

function of the magnetization angle for different Fermi energies in the absence (a,b,c)

or presence (d,e,f) of intrinsic spin-orbit coupling. Dramatic features can be observed

depending on whether the nanoribbon experiences a phase transition or not.

When intrinsic spin-orbit coupling is absent [Fig. 5.4(a,b,c)], or when intrinsic
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spin-orbit coupling is present and the Fermi energy large enough [> 10 meV in Fig.

5.4(d,e,f)], the nanoribbon remains metallic independently on the magnetization di-

rection. The spin density adopts the form given in Eq. (5.10) and commonly observed

in two dimensional Rashba gases [74]. Minor angular dependence is observable due

to the small distortion of the Fermi surface (see also Ref. [132]). In contrast, when

intrinsic spin-orbit coupling is turned on and the Fermi energy is small enough [< 10

meV in Fig. 5.4(d,e,f)], the nanoribbon experiences a topological phase transition

from the metallic (θ ≈ 0, π) to the quantum spin Hall regime (θ ≈ π/2). This

transition is clearly seen in Fig. 5.4(d), where the intraband field-like spin density

decreases dramatically (but does not vanish) upon setting the magnetization away

from θ ≈ 0, π. Correspondingly, the interband damping-like and field-like contribu-

tions display an abrupt and dramatic enhancement when the magnetization angle is

varied through the topological phase transition.

5.5 Charge pumping

By the virtue of Onsager reciprocity, the results obtained above for the current-

driven spin densities apply straightforwardly to the charge pumping. Indeed, from

the definition of the torque, we get τDL = 2JexδSDL/E, and τFL = 2JexδSFL/E. And

henceforth the charge current pumped by a precessing magnetization reads

Jc = − 2JexµB

dγ

δSDL

E
z× (m× ∂tm)

+
2JexµB

dγ

δSFL

E
z× ∂tm. (5.11)
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The first component gives both AC and DC signals [197], while the second term is

purely AC. The study of non-equilibrium spin density reported above indicates that

the second component ∼ z × ∂tm dominates in the metallic regime (since δSFL >

δSDL), while the first component ∼ z× (m× ∂tm) can be dramatically enhanced in

the quantum spin Hall regime (δSDL > δSFL). Furthermore, because changing the

magnetization direction can induce topological phase transitions, one can expects that

charge pumping with the magnetization lying perpendicular to the two dimensional

nanoribbon is much more efficient than with an in-plane magnetization. A large

charge pumping efficiency is expected at the topological phase transition.

5.6 Discussion and conclusion

In summary, we have investigated the impact of topological phase transition on the

nature of spin-orbit torque and charge pumping in quasi-one dimensional hexagonal

nanoribbons. By tuning the magnetization angle or the intrinsic spin-orbit coupling,

the system can change from a band insulator to a quantum spin Hall insulator. We

find that spin-charge conversion efficiencies (i.e. damping torque and charge pumping)

are significantly enhanced in the quantum spin Hall regime.

Recently, a gigantic damping torque has been reported at the surface of topolog-

ical insulators, with electrical efficiencies about two orders of magnitude larger than

in transition metal bilayers [175]. To the best of our knowledge, no theory is cur-

rently able to explain such an observation (see discussion in Ref. [187]). Although the

present model does not precisely apply to the experimental case, it emphasizes that

close or in the quantum spin Hall regime, (i) the electrical efficiency of the spin-orbit

torque is dramatically enhanced due to the reduction of the conductance and, most re-

markably, (ii) the competition between interband and intraband contributions reduce
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the field-like torque, resulting in a dominating damping-like torque. Such an effect,

properly adapted to the case of topological insulators, could open interesting perspec-

tives for the smart design of efficient spin-orbit interfaces through the manipulation

of topological phase transition.
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Chapter 6

Spin Orbit Torque in

Two-Dimensional MoS2

Recent experimental development on spin-charge conversion in two-dimensional tran-

sition metal dichalcogenides (TMDs) has motivated us to explore the nature of spin-

orbit torque and charge pumping in these materials. In a nutshell, TMDs have a large

gap induced by orbital symmetry breaking rather than spin orbit coupling. We also

included vertex corrections in this chapter.

6.1 introduction

Recent breakthroughs in nanomaterials synthesis have shed a new light on the physics

of intriguing two dimensional materials beyond graphene. These fascinating systems

cover materials such as M-Xene [198, 199], black phosphorus [200] or transition metal

dichalcogenides [201]. The electronic properties of these materials are now thoroughly

investigated in the context of emerging microelectronics [202]. In this short chapter,

we turn our attention towards TMDs, as very recent experiments have suggested large

spin-charge conversion efficiency in these systems [203]. Recently, a single atom thin

MoS2 have been also prepared successfully [201]. Unlike the graphene, it possesses

a direct band gap, and it is more stable than silicene and germanene in air. More
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importantly, the monolayer MoS2 has inversion asymmetry, leading to the potential

application of degree of freedom of valley. For each valley, the valence and conduction

bands are spin polarized due to the large spin-orbit coupling [204]. Spin polarization

in the two valleys are equal in magnitude but opposite in sign due to time-reversal

symmetry. In order to exploit MoS2 and its siblings in valleytronic devices, the

key is to generate a non-equilibrium charge carrier imbalance between valleys. An

alternative approach is to utilize circularly polarized optical excitation, in which the

interband transitions in the vicinity of the K (K
′
) point couple exclusively to right

(left)-handed circularly polarized light [205]. Although a more direct way to lift

valley degeneracy would be to simply break time-reversal symmetry using an external

magnetic field, this effect remains unpractical as a field of 65T would only result in less

than 1 meV valley splitting [206]. On the other hand, the exchange coupling between

the ferromagnetic layer and the TMD layer, as achieved in Ref [203]. The bilayered

structure may induce a Rashba spin orbit coupling and lead to a non-equilibrium

spin polarization interacting with the ferromagnetic layer. Their competitive effect,

i.e., spin orbit torque, makes it possible to observe valley dependent spin polarization

by electric method such as charge pumping or second harmonic Hall voltage. Up till

now, the influences of valley polarization on spin torque effects have been scarcely

reported.

6.2 Model and Method

We use the low-energy continuum model Hamiltonian that can describe carriers near

the Fermi energy in the system. The total Hamiltonian of system at K or K′ valley
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on the basis of {ψHOMO,↑, ψLUMO,↓, ψLUMO,↑, ψHOMO,↓} reads

Ĥsys = at(τkxσ̂x + kyσ̂y) ⊗ Î +
U

2
σ̂z ⊗ Î + tsoτ

σ̂z − 1

2
⊗ ŝz +

tR
2

(τ σ̂x ⊗ ŝy

− σ̂y ⊗ ŝx) + JexÎ ⊗M · ŝ, (6.1)

where t is a nearest-neighbor hopping parameter, τ = +1(−1) stands for the K (K′)

valley , Î is a 2× 2 unity matrix, a is the lattice constant and Jex is the ferromag-

netic coupling constant. σ̂ and ŝ are Pauli matrices denoting the molecular orbitals

(HOMO/LUMO) and spin degrees of freedom, respectively. M denotes the magneti-

zation direction. U is the staggered potential. tso is the intrinsic spin orbit coupling.

tR is the Rashba spin orbit coupling. The first term includes the spin-independent

kinetic energies of the particle, the second term is the energy gap between valence

and conduction orbitals (HOMO/LUMO) of Molybdenum. The third one represents

the intrinsic spin-orbit coupling stemming from the d orbitals of Molybdenum and sz

is related to the fact that only the in-plane components of the momentum contribute

to transport in the two-dimensional materials. The fourth term denotes the Rashba

coupling induced by interfacial symmetry breaking. The last term is the interaction

between the spin of the carrier and the local moment of the ferromagnetic system.

We calculate the non-equilibrium spin density δS using Kubo formula in Eq.

(2.64). Notice that the subbands are based on general spinors in which the HO-

MO/LUMO and real spin degrees of freedom are included. Γ = ~/2τ is the ho-

mogeneous energy spectral broadening due to the finite lifetime of the particle in

the presence of impurities and τ is a relaxation time. The Bloch state |ψka⟩ in the

subband a can be found by diagonalizing Eq. (6.1). This expression contains both

intraband (a = b) and interband (a ̸= b) contributions to the nonequilibrium spin

density. We further consider the influences of impurity-scattering on the spin density.

Assume that the scattering potential is dominated by a point-like random potential
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with the Gaussian correlations ⟨V (r)V (r′)⟩ = niV
2
0 δ(r−r′). Correspondingly, Green’s

function should include the influence of impurity-scattering for the correct evaluation

of the contribution to spin density. The self-energy of a single electron reads:

Σ̂R
i (E) = niV

2
0

∫
d2k

(2π)2
ĜR

ka(E). (6.2)

In the self-consistent Born approximation, only those contributions from non-crossed-

disorder-line parts in Feynman diagram are important in the weak scattering limit.

Hence, the retarded Green’s function is written as:

ĝR = 1/(1/ĜR
ka − Σ̂R

i (E)). (6.3)

The summation over the ladder diagrams can be written as the vertex corrections to

the non-equilibrium spin density [207]. The renormalized vertex function related to

the spin should satisfy:

Ŝi = ŝi ⊗ Î + niV
2
0

∫
d2k

(2π)2
ĝAŜiĝ

R, (6.4)

where i = 0, x, y, z. Assuming that Ŝi = aiŝx ⊗ Î + biŝy ⊗ Î + ciŝz ⊗ Î + diŝ0 ⊗ Î,

we can find the coefficients ai,bi,ci and di. Finally, the spin operators in Eq. (2)

should be replaced by new spin-vertex operators. In our calculations, we use the

same parameters as in Ref. [173]: t = 1.1 eV , tso = 0.075 eV , a = 0.319 nm constant

and U = 1.66 eV .

6.3 Results

In Fig. 6.1, we first plot the influence of each term in Eq. (1) on the band structure.

In these calculation, we progressively turn on and off the various parameters in order
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Figure 6.1: Band structure (a) U = 1.5 eV (b) tso = 0.072 eV (c) Jex = 0.1 eV, tso =
0.072 eV and U = 1.5 eV (d) Jex = 0.1 eV, tso = 0.072 eV, U = 1.5 eV and tR = 0.1 eV .

to clarify their impact on the band structure. Fig. 6.1(a) displays the band structure

in the presence of a staggered potential only (tso = Jex = tR = 0) while Fig. 6.1(b)

displays the band structure in the presence of intrinsic spin-orbit coupling only (U =

Jex = tR = 0). The staggered potential opens a large orbital gap, while spin-orbit

coupling polarizes the bands. Note that this polarization is opposite on the two

valleys. In Fig. 6.1(c), staggered potential and intrinsic spin-orbit coupling as well as

exchange coupling are all present, but Rashba spin-orbit coupling is turned off. The

competition between intrinsic spin-orbit coupling and exchange results in a valley-

dependent polarization. Finally, Rashba spin-orbit coupling is turned on in Fig.

6.1(d) and one can observe an additional band splitting that is very clear on K valley

but almost undetectable in K’ valley. This is due to the fact that the magnetic

exchange induces a stronger splitting on the K’ valley and therefore dominates over

Rashba spin-orbit coupling in this valley.

To further understand the role of intrinsic spin orbit coupling term, we plot the
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Magnetization is directed along x direction.

band structure for different magnetization directions in the presence of magnetic ex-

change and Rashba spin orbit coupling. The system has two degrees of freedom: spin

angular momentum (controlled by magnetization) and molecular orbitals (associated

with the intrinsic spin orbit coupling and staggered potential). Along the z direc-

tion, these degrees of freedom couple with the valley degrees of freedom. Once the

degeneracy of these two degrees of freedom is removed, the valley degeneracy is also

broken. For the z direction, the molecular orbitals degeneracy is removed by intrinsic

spin orbit coupling. When the magnetization is pointing at the z axis, the spin de-

generacy is absent. Hence, there is a large difference in band structure of the valleys.

However, the valley does not couple with spin polarization when the magnetization

lies along the x direction and the two valleys contribute to same magnitudes band

structure but with an opposite spin polarization. As a consequence, there should be

a large difference in band structure when the magnetization is directed along z and
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the x axis, respectively, as seen in Fig. 6.2. Staggered potential plays the same role

as intrinsic spin orbit coupling. Nevertheless, the magnitudes of staggered potential

is much larger than intrinsic spin orbit coupling. Hence, the magnetic anisotropy of

the system is dominated by the staggered potential.
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(d) when m//z. The dashed lines in (c) and (d) are the different Fermi energies guide
for eyes.

In Fig. 6.3(a) and (b), we plot the spin density of field-like and damping-like

components as a function of magnetization for different Fermi energy. We chose two

energies close to the gap (Ef = 0.73 eV for electron transport and Ef = −0.67 eV

for hole transport as indicated by dashed lines in Fig. 6.3(c) and (d)), as well as two

energies away from the gap Ef = 1.4 eV for electron transport and Ef = −1.4 eV for

hole transport). As seen in Fig. 6.3(a) and (b), both the field-like and damping-like

components decrease evidently with the increasing magnetization angle at Ef = 0.73

or −0.67 eV . Both the magnitudes of field-like and damping-like components are sen-
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sitive to the Fermi energy. This is attributed to the variations of valley polarization.

As discussed already, the band structures of the two valleys are the same at θ = 90

and different at θ = 0. However, when the Fermi energy lies in the metallic regime

(Ef = 1.4 or −1.4 eV ), the valley asymmetries is not evident as shown in Fig. 6.3(c)

and (d). Hence, unlike the case of lower Fermi energy, the field-like and damping like

components remain almost a constant.
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Chapter 7

Concluding Remarks

In the race of low power operation of electrically driven microelectronic devices, spin-

based solutions have attracted increasing interest due to their intrinsic non-volatility.

The potential of spintronics for microelectronic applications has been recently illus-

trated by the release of spin torque magnetic random access memories. In this context,

the ability to electrically control magnetic degrees of freedom via spin-orbit coupling

offers appealing opportunities in terms of system design. Although the technology is

still at its infancy and the eventual exploitation of spin-orbit materials for real-life

applications remained to be proven, this thesis intends to contribution to this fasci-

nating field by investigating the nature of spin-orbit torque in various semiconductors

using robust quantum transport theory.

We first studied the intraband and interband SOT fields using the Kubo formula,

in the prototypical case of a ferromagnetic 2DEG with Rashba spin-orbit coupling, as

well as in a three-dimensional DMS modeled by a kinetic-exchange Kohn-Luttinger

Hamiltonian. For the latter, parameters pertaining to (Ga,Mn)As were used. In

the limit of low doping concentration and weak exchange coupling, we find similari-

ties between the two systems, demonstrating that the general trends of the intrinsic

and extrinsic SOT fields can be, in some respect, understood analytically using the

Rashba 2DEG in the weak scattering limit. Nevertheless, the numerical analysis of

the three-dimensional DMS system also unravels the complex interplay between the
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different types of spin-orbit coupling (centrosymmetric and noncentro-symmetric) in-

volved in realistic systems resulting in complex dependencies of the SOT fields on

the magnetization direction as well as significant differences from the Rashba 2DEG

model. The contribution of interband mixing to the SOT presents an outstanding

opportunity to explain the emergence of large anti-damping-like torques that cannot

be readily attributed to spin Hall effect, offering an interesting platform to interpret

recent puzzling results. The large differences in Hall angle have been detected from

metallic system to topological insulator. All these Hall angles are gigantic compared

to standard heavy metals, which suggests that additional mechanisms such as the

ones discussed in the present work might dominate over the spin Hall effect in these

structures.

Second, we have investigated the nature of SOTs in two dimensional hexagonal

crystals and qualitatively recovered most of the results obtained on different systems

such as (Ga,Mn)As and two-dimensional Rashba gases. We showed that the staggered

potential and intrinsic spin-orbit coupling can strongly affect the magnitude of the

torque components as well as their angular dependence. In the presence of staggered

potential and exchange field, the valley degeneracy can be lifted and we obtain a

valley-dependent antidamping SOT, while the field-like component remains mostly

unaffected. This feature is understood in terms of Berry curvature and we show

that the valley imbalance can be as high as 100% by tuning the bias voltage or

magnetization angle.

Third, we study the influence of topological phase transition on spin orbit torque.

In quantum spin hall regime, the spin torque component are dominated by quantum

spin hall effect instead of inverse galvanic effect. It has a similar character, i.e., the

antidamping-like components are larger than the field-like components. The spin

torque is sensitive to magnetization switching and lowered evidently when the mag-

netization is pointed to the in-plane direction. Similar transitions can be found by
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tuning the Fermi energy.

We concluded this thesis by investigating the nature of spin-orbit torque in two

dimensional transition metal dichalcogenides. These materials resemble graphene

in many aspects but present both a very large orbital gap and sizable spin-orbit

coupling. Recent experimental data have suggested that the spin-charge conversion

efficiency in these materials can be quite large and this motivated us to explore this

mechanism from a theoretical perspective. It turns out that the angular dependence

of the spin-orbit torque (and therefore the spin-charge conversion) is very sensitive to

the Fermi energy of the material. We have been recenlty contacted by experimental

collaborators to expand this study and confront our results with their experiments.
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J. Wunderlich, A. Irvine, P. Vašek, V. Novák et al., “Anisotropic magnetore-

sistance components in (ga, mn) as,” Physical review letters, vol. 99, no. 14, p.

147207, 2007.



138

[87] H. Ohno, H. Munekata, T. Penney, S. Von Molnar, and L. Chang, “Magneto-

transport properties of p-type (in, mn) as diluted magnetic iii-v semiconduc-

tors,” Physical Review Letters, vol. 68, no. 17, p. 2664, 1992.

[88] S. Koshihara, A. Oiwa, M. Hirasawa, S. Katsumoto, Y. Iye, C. Urano, H. Takagi,

and H. Munekata, “Ferromagnetic order induced by photogenerated carriers in

magnetic iii-v semiconductor heterostructures of (in, mn) as/gasb,” Physical

Review Letters, vol. 78, no. 24, p. 4617, 1997.

[89] T. Jungwirth, Q. Niu, and A. MacDonald, “Anomalous hall effect in ferro-

magnetic semiconductors,” Physical review letters, vol. 88, no. 20, p. 207208,

2002.

[90] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, “Semiconductor

spintronics,” Acta Phys. Slov., vol. 57, p. 565907, 2007.

[91] H. Ohno, “Properties of ferromagnetic iii–v semiconductors,” Journal of Mag-

netism and Magnetic Materials, vol. 200, no. 1, pp. 110–129, 1999.

[92] W. J, “Masters thesis,” 202.

[93] L. Liu, C.-F. Pai, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, “Spin-torque

switching with the giant spin hall effect of tantalum,” Science, vol. 336, no.

6081, pp. 555–558, 2012.

[94] P. M. Haney, H.-W. Lee, K.-J. Lee, A. Manchon, and M. Stiles, “Current

induced torques and interfacial spin-orbit coupling: Semiclassical modeling,”

Physical Review B, vol. 87, no. 17, p. 174411, 2013.

[95] D. Pesin and A. MacDonald, “Quantum kinetic theory of current-induced

torques in rashba ferromagnets,” Physical Review B, vol. 86, no. 1, p. 014416,

2012.

[96] E. Van der Bijl and R. Duine, “Current-induced torques in textured rashba

ferromagnets,” Physical Review B, vol. 86, no. 9, p. 094406, 2012.



139

[97] K.-W. Kim, S.-M. Seo, J. Ryu, K.-J. Lee, and H.-W. Lee, “Magnetization

dynamics induced by in-plane currents in ultrathin magnetic nanostructures

with rashba spin-orbit coupling,” Physical Review B, vol. 85, no. 18, p. 180404,

2012.

[98] X. Wang and A. Manchon, “Diffusive spin dynamics in ferromagnetic thin films

with a rashba interaction,” Physical review letters, vol. 108, no. 11, p. 117201,

2012.

[99] J. Kim, J. Sinha, M. Hayashi, M. Yamanouchi, S. Fukami, T. Suzuki, S. Mitani,

and H. Ohno, “Layer thickness dependence of the current-induced effective field

vector in ta— cofeb— mgo,” Nature materials, vol. 12, no. 3, pp. 240–245, 2013.

[100] K. Garello, I. M. Miron, C. O. Avci, F. Freimuth, Y. Mokrousov, S. Blügel,
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