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SUMMARY 

The application of a theoretical framework for calculating the radial electric field 

in the DIII-D tokamak edge plasma is discussed. Changes in the radial electric field are 

correlated with changes in many important edge plasma phenomena, including rotation, 

the L-H transition, and ELM suppression. A self-consistent model for the radial electric 

field may therefore suggest a means of controlling other important parameters in the edge 

plasma. Implementing a methodology for calculating the radial electric field can be 

difficult due to its complex interrelationships with ion losses, rotation, radial ion fluxes, 

and momentum transport. The radial electric field enters the calculations for ion orbit 

loss. This ion orbit loss, in turn, affects the radial ion flux both directly and indirectly 

through return currents, which have been shown theoretically to torque the edge plasma 

causing rotation. The edge rotation generates a motional radial electric field, which can 

influence both the edge pedestal structure and additional ion orbit losses. 

 In conjunction with validating the analytical modified Ohm’s Law model for 

calculating the radial electric field, modeling efforts presented in this dissertation focus 

on improving calculations of ion orbit losses and x-loss into the divertor region, as well 

as the formulation of models for fast beam ion orbit losses and the fraction of lost 

particles that return to the confined plasma. After rigorous implementation of the ion 

orbit loss model and related mechanisms into fluid equations, efforts are shifted to 

calculate effects from rotation on the radial electric field calculation and compared to 

DIII-D experimental measurements and computationally simulated plasmas. This 

calculation of the radial electric field will provide a basis for future modeling of a fast, 

predictive calculation to characterize future tokamaks like ITER. 



 

1 

CHAPTER 1 

INTRODUCTION 

1.1 The Motivation for Fusion 

 In an electrified age using more power than ever, the global population projected 

to increase to over 9.5 billion people by 2050 [1], and an effort to increase the standard of 

living of the majority of the existing global population, there is an enormous demand for 

a clean, efficient, and abundant source of power. The recent Paris Agreement [2] was 

established to align international efforts to fight emissions that cause climate change, 

prompting governments around the world to invest in clean energy alternatives such as 

solar, wind, wave, geothermal, and nuclear technologies. While many of these options 

will be required to reach reduced emission goals, it is widely accepted that nuclear power 

is one of the only technologies available that can fully replace the baseload power 

generation dependence on green-house-gas emitting coal, natural gas, and oil institutions. 

Conventional nuclear fission is prevalent and relies on the use of mined uranium ore, 

which is generally abundant on earth. However, there remains an enduring debate 

regarding the treatment of long lasting radionuclides which are produced from fission 

reactions. Fusion is an alternative nuclear energy source, which produces roughly four 

times the amount of energy of a fission reaction with no associated spent fuel comprised 

of the radiotoxic transuranics in question. The fuel for nuclear fusion is readily found in 

sea water, providing a long term solution to the clean energy issues the world faces today. 

 Nuclear fusion for the purpose of power generation is accomplished by making a 

plasma out of hydrogen isotopes, and heating the reactor core to kilo-electron-volt 

temperatures in order to reach ignition conditions. However, there is currently no material 

on earth that is capable of contacting such a hot substance, so the plasma is confined 

inside of the reactor, or tokamak in this case, through spiraling magnetic fields. Once the 
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plasma is confined, energy can be injected to heat the plasma to fusion temperatures, and 

the majority of heat is removed via neutrons produced in from the fusion reaction. 

 Inside a tokamak, the plasma physics involved in creating the fusion reaction can 

be complex both to describe mathematically as well as to measure experimentally. The 

research in this dissertation focuses on understanding the physics that describes a 

tokamak plasma through modeling, simulation, and comparison with experimental data 

that was made available by the research team at the DIII-D tokamak, with the goal of 

contributing to the success of the primary international fusion effort, ITER. 

1.2 The Edge Pedestal 

 There are many indications that tokamak fusion plasma performance in the 

reactor core will be determined largely by the physics in the far edge region [3-8]. In 

High confinement mode (H-mode) plasmas, this region is called the “edge pedestal” due 

to the steep gradients in the radial density, temperature, current, and pressure profiles 

which influence the main plasma energy confinement and stability. These steep gradients 

observed in the H-mode edge result in higher plasma densities and temperatures in both 

the edge and plasma core, leading to overall improved plasma performance. Often 

referred to as a “transport barrier”, this steep gradient region is characterized by strong 

electromagnetic forces and kinetic particle losses. Usual fluid theory is not sufficient to 

represent the effect of these phenomena on particle transport, but must be extended to 

treat non-diffusive electromagnetic “pinch” forces [9] and ion orbit loss [10] of particles 

on orbits which cross the separatrix. There is also evidence of a strong reduction in 

turbulent transport suppressed by ExB shear [11-12] in this edge transport barrier. The 

plasma edge under consideration for this research encompasses roughly the last ten 
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percent of the plasma poloidal magnetic flux, which translates spatially to a few 

centimeters just inside the separatrix, or last closed flux surface as seen in Fig. (1). 

 

Figure 1: Edge pedestal region of the DIII-D tokamak for an H-mode 

discharge. (Shaded region represents contours of constant enclosed poloidal 

magnetic flux between normalized radii 0.85<ρ<1.0). 
 

Not only does the edge pedestal region set limits for core plasma operation like 

density and temperature, it also defines conditions at the separatrix, which acts as a 

boundary condition for the open field line region called the scrape off layer (SOL) just 

inside of the vessel wall. Physics in the SOL is important to understand because it 

dictates particle and heat removal requirements.  

1.3 Radial Electric Field 

 The transition from the Low-mode (L-mode) to the improved H-mode 

confinement regime is often associated with an increased radial electric field, Er, in the 

edge pedestal region [13-15]. While this transition has been extensively studied and 

understood relatively well qualitatively, there is still a need for predictive models that can 

Edge Pedestal 

Region 

Scrape-off 

Layer (SOL) 

Separatrix 
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characterize Er in current plasmas as well as in future devices. Along with the L-H 

transition, changes in the edge radial electric field are also correlated with changes in 

many edge phenomena such as rotation, transport, and the suppression of large 

magnetohydrodynamic (MHD) instabilities called ELMs (Edge Localized Modes) [16-

20]. While the critical gradients and values for these events to occur are set by other 

mechanisms, such as the peeling-ballooning MHD instability threshold and particle and 

energy sources and sinks for transport properties, all processes must be constrained by 

conservation equations.  

The equations determining the radial electric field are defined differently inside 

and outside of the separatrix due to differences in magnetic fields, neutral recycling, and 

turbulent transport - often leading to a discontinuity at the separatrix. Outside of the 

separatrix, the radial electric field can be calculated using a parallel Ohm’s Law, with 

charge conservation and assumed boundary conditions on the divertor plates [21]. It is the 

purpose of this project to define the physics determining the radial electric field inside the 

separatrix, with a few mechanisms, such as ion orbit loss and return currents, linking the 

edge plasma to the SOL plasma.  

The radial electric field is observable in the edge plasma in most circumstances - 

smaller in L-mode and ohmic discharges (usually positive), and larger (often negative) in 

H-mode and Resonant Magnetic Perturbation (RMP) ELM-suppressed discharges. The 

H-mode can even be triggered by externally inducing a radial electric field in the plasma 

[22]. This transition is thought to occur because the radial electric field shear suppresses 

turbulence, and in conjunction with a non-diffusive electromagnetic pinch [23], allows 

the pedestal to build up to typical H-mode values. When the radial electric field is large 
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in value and has a “well” shape in the far edge region, intrinsic rotation appears in 

conjunction with other external torque, which is stabilizing for MHD mode instabilities 

[24]. Therefore, the structure and presence of the radial electric field has not only been 

shown to be important, but also suggested as a means of controlling other important edge 

parameters. To this end, it is desirable to develop a predictive physical model for the 

radial electric field and its influence on the rest of the plasma that includes mechanisms 

like ion orbit loss and intrinsic rotation. However, this project first strives to define a self-

consistent physical model for the radial electric field calculation before transitioning 

towards a predictive model that can be used for future reactors like ITER.  

Since the radial electric field was identified as a parameter of interest, many 

transport mechanisms have been explored, such as non-ambipolar diffusive transport 

[25], curvature and magnetic field gradient drifts [26], increases in the temperature 

gradient [27], and ion orbit loss [28]. The ion orbit loss mechanism, first introduced by 

Miyamoto [29], and later extended by Stacey [10] for a computationally attractive 

formulation for inclusion in predictive or interpretive fluid codes such as GTEDGE [30-

32] (discussed later in this work), has been identified as a leading cause for large non-

diffusive particle losses in the edge region. There has been significant previous research 

on ion orbit loss [21,29,33-35], corresponding return currents [35], and their impact on 

intrinsic rotation [36-39]. Mach probe measurements of velocity peaking in DIII-D have 

spurred modeling by deGrassie [37] and Stacey [36] to characterize intrinsic rotation 

from thermal ion losses in the far edge region. Recent XGC0 simulations [40-41] have 

also supported the theory that ion orbit losses causing highly non-Maxwellian distribution 
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functions greatly impact the radial electric field, which is closely linked to both diffusive 

and electromagnetic edge transport processes. 

 There have been some computational efforts to model the edge plasma in more 

detail. Hamiltonian guiding center simulations show that a local radial electric field can 

be generated inside the separatrix due to ion orbit loss [42], and some Monte Carlo orbit 

following codes, such as the XGC suite and ASCOT can give predictions in agreement 

with experimental observation [43-45]. Full 2D fluid simulations for the SOL, such as 

UEDGE and SOLPS5.0, have been developed which can also yield reasonable agreement 

with experiment [46-48]. However, many simulations do not account for ion orbit loss, 

and if they do, the radial electric field does not enter the calculation. The most 

progressive code is the XGC suite, and includes ion orbit loss, the radial electric field, 

and even turbulence models. While exact models like this are required for future 

tokamaks like ITER, they can take weeks, or even months to run, suggesting that simpler 

models are needed for practical, predictive calculations that allow a starting point for the 

full calculations that the XGC suite can accommodate. Furthermore, most simulations do 

not account for non-Maxwellian velocity distributions which has been shown 

experimentally to be important [49]. Both the model presented in this dissertation and the 

XGC suite strive to account for this distribution change due to ion orbit lost particles, and 

will be compared in this research. 

The present research develops a theoretical framework for how the radial electric 

field interacts with other edge phenomena such as ion orbit loss, radial particle flux, and 

rotation velocities, as well as the models necessary to quantify the relationships in the 

proposed methodology. A modified Ohm’s Law is introduced for calculating the radial 
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electric field in the DIII-D edge pedestal plasma, and validated using the experimental 

data from three different operational regimes. The Modified Ohm’s Law is then extended 

towards a predictive calculation by employing theoretical neoclassical rotation models 

which depend on ion orbit loss. To further develop the predictive radial electric field 

calculation through improvement to rotation calculations, the model extends current ion 

orbit loss research to account for 1) poloidal dependence of thermal ion orbit loss [50] 2) 

prompt loss of fast neutral beam ions [51] 3) realistic flux surface geometry and magnetic 

fields [51] 4) return currents from the SOL [51] 5) incorporation of kinetic ion orbit loss 

in the fluid continuity and momentum balance equations [51-52] 6) outward streaming 

lost particles that return to the plasma [51] and 7) x-transport [53]. The improved edge 

pedestal model and radial electric field calculation is then compared to results from the 

leadership class XGC0 code housed at PPPL, and the comparative results are used to 

identify a clear path forward for model improvements in future studies. 
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CHAPTER 2 

BACKGROUND 

2.1 Calculational Framework 

The edge pedestal is a region of the plasma where many parameters are inter-

related. It is often difficult to determine which parameters are the cause for certain 

observations, and which are effects. While it is beyond the scope of this project to 

analyze the time dependence of physical occurrences, the complex inter-relationships 

among parameters are conserved. The general methodology developed for this 

calculational framework is described by the flow diagram shown in Fig. (2). 

 

Figure 2: Proposed methodology for calculating the radial electric field, and its 

qualitative relationship to key other edge parameters such as ion orbit loss, intrinsic 

rotation, radial particle flux, and rotation velocities. 
 

Five calculations are involved in the methodology of Fig. (2): 1) Ion orbit loss 

(IOL); 2) Radial particle flux; 3) Intrinsic rotation from IOL; 4) Fluid rotation from 

momentum balance and 5) Radial electric field from momentum balance. The iterative 
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calculation is initiated by calculating ion orbit loss using an estimated Er (e.g. the 

“experimental” radial electric field when analyzing an experiment). The “experimental” 

radial electric field is calculated by conserving momentum in the radial direction for the 

carbon impurity, and can be evaluated using parameters that are all directly measured. 

The fast and thermal ion orbit losses are then calculated and represented in the continuity 

equation used to calculate the radial particle flux. To maintain charge neutrality, a radial 

return current is required to replace the ion orbit lost particles, and this inward current 

also affects the radial particle flux. The net radial flow of particles constitutes a torque to 

the plasma that drives rotation in both the poloidal and toroidal directions. There is also 

an intrinsic rotation caused by ion orbit loss of angular momentum. This plasma rotation 

generates a motional radial electric field that can be calculated from a modified Ohm’s 

Law equation. This Ohm’s Law radial electric field then is used to iterate the above 

calculations. 

The usual method of calculating the “experimental” radial electric field is through 

the carbon radial momentum balance equation. However, this equation does not dictate 

the physics for why the radial electric field is present, but is a convenient method for 

obtaining the profile (which is necessary for the ion orbit loss calculation). The proposed 

methodology for calculating the radial electric field instead relies on the physical drivers 

for the field, which are plasma rotation and the ion pressure gradients for all species 

present in the plasma. In turn, predictive models for rotation and pressure gradient must 

rely on models for other edge physics processes like ion orbit loss and intrinsic rotation. 

This dissertation will discuss how ion orbit loss has been extended to fit into the proposed 
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methodology in Fig. (2) and therefore create a self-consistent framework for calculating 

the radial electric field. 

2.2 GTEDGE 

The foundation of this work is rooted in neoclassical plasma theory, which 

defines the transport physics for a quiescent tokamak plasma and neglects fluctuation 

driven processes like turbulence [54-55]. The primary computation tool utilized for this 

project is GTEDGE, which is an in-house Georgia Tech edge pedestal code developed by 

Stacey that employs fluid particle, momentum, and energy balance equations in 

conjunction with a two-dimensional neutral recycling model with kinetic corrections for 

both predictive and interpretive analysis of DIII-D plasmas.  

GTEDGE [30-32] takes in experimental radial profiles for densities, temperatures, 

and velocities, and performs calculations to determine the background plasma and 

boundary conditions for the edge pedestal. A pinch-diffusion edge pedestal model is used 

to interpret certain transport quantities like diffusion coefficients and heat diffusivities 

from the measured data [56]. A particle and energy balance is first applied to the core 

plasma; then a two-dimensional neutral particle calculation using integral neutron 

transport theory is used to determine the net ion flux across the separatrix into the SOL. 

After calculating the inward and outward particle fluxes, the ion densities at the 

separatrix midplane and divertor plate are calculated using a “two-point” divertor model 

[30]. With these necessary boundary conditions, the transport of neutrals refueling the 

plasma edge and the ion density profile are simultaneously calculated. Model parameters 

are then adjusted to predict the experimental plasma core line average density, energy 

confinement time, and the central and edge pedestal temperatures. 
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 With the core and edge plasma modeled, quantities of interest such as radial 

particle flux, rotation velocities, and heat conduction can be calculated for both the main 

and impurity ions, which are used to determine the radial electric field. These 

calculations are determined from first principles by conserving particles, momentum, and 

energy, and are the core of this project. Non-diffusive transport mechanisms such as 

electromagnetic particle pinch, ion orbit loss and x-transport are incorporated into fluid 

equations to calculate quantities like the radial particle flux and rotation velocities to 

interpret various theoretical predictions for the radial electric field.  

2.3 DIII-D Diagnostic Systems 

For comparative analysis between model and experiment, the plasma model is 

built using averaged data from representative time slices from DIII-D plasma discharges 

in various operational regimes. Carbon ion impurity fractions, temperature, and toroidal 

and poloidal velocity data are measured for each time slice using the Charge Exchange 

Recombination (CER) system [57]. Usually deuterium data is difficult to directly 

measure in tokamaks due to the small number of charge states, but for one discharge 

chosen to be analyzed in this research, the main ion toroidal rotation profiles were 

measured from the newly developed Main Ion Charge Exchange Recombination 

(MiCER) system [58-59]. Electron density is measured by Thomson scattering [60] and a 

multi-channel CO2 interferometer, and electron temperature is calculated by Thomson 

scattering. Data processing includes spline fitting the CER ion data, employing a 

hyperbolic tangent fit to the Thomson scattering electron data, and calculations of radial 

gradient scale lengths and estimated time derivatives for ion profiles, to provide 

experimental inputs for the GTEDGE background plasma model. 



 12

Plausible errors for the CER system are about 2% of the normalized toroidal flux, 

and around 3-4% of the normalized toroidal flux for the vertical chord of the Thomson 

system [61]. 

 

2.4 Experimental Data 

  Three DIII-D discharges described in Table 1 were chosen for validation and 

analysis of the model described for this project in the flow diagram in Fig. (2).  

Table 1: Description of selected DIII-D discharges. 

Shot # Mode a δ κ Ip Bφ Pbeam Divertor 

123302 H-mode 0.6m 0.37 1.8 1.5 MA -1.98 T 7.6 MW LSN 

123301 RMP 0.6m 0.27 1.8 1.5 MA -1.98 T 7.6 MW LSN 

149468 L-mode 0.57m 0.3 1.7 1.2 MA -2.0 T 5.5 MW USN 

 

The plasma shape is defined by minor radius (a), triangularity (δ), and elongation (κ). All 

shots have a significant amount of beam power (Pbeam) and similar toroidal magnetic 

fields (Bφ) and plasma currents (Ip). Sister shots #12330(1/2) are typical lower single null 

(LSN) RMP/H-mode discharges that have been used for many theoretical analyses of 

experiment [9,62-63].  These discharges have similar operating and background plasma 

properties, with the primary difference being that the RMP shot is ELM suppressed using 

3D magnetic fields produced from the I-coils. The upper single null (USN) L-mode shot 

#149468 was designed specifically for rotation physics analyses [58-59], and therefore 

has main ion rotation data available, which was the primary reason for its inclusion in this 

set. All three shots have edge region collisionalities [64], $∗~	0.03 − 0.052. 

The radial profiles of measured electron and ion temperatures, as well as electron 

densities are shown in Figs. (3)-(4) for the three shots.  
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Figure 3: a) Measured ion temperature profiles for H-mode shot #123302, RMP shot 

#123301, and L-mode shot #149468 b) Measured electron temperature profiles. 

 

Figure 4: Measured electron density profiles for H-mode shot #123302, RMP shot 

#123301, and L-mode shot #149468. 
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Other measured profiles include carbon velocities for shots #12330(1/2) and 

#149468, and deuterium velocities for #149468, which are shown in Fig. (5).  

 

Figure 5: a) Measured toroidal velocity profiles. Carbon profiles are measured for 

all shots and deuterium is measured for L-mode shot #149468 b) Measured poloidal 

velocity profiles. Carbon profiles are measured for all shots and deuterium is 

inferred directly from measurement for L-mode shot #149468. 
 

Measured carbon densities, temperatures, and velocities are used in the radial 

momentum balance equation for carbon to calculate the “experimental” radial electric 
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field shown in Fig. (6). This radial electric field profile will be the baseline for the 

modified Ohm’s Law calculation comparison with experiment, whose calculation is 

discussed in more detail in Chapter 4. 

 

Figure 6: Experimental radial electric fields for all shots calculated from the carbon 

radial momentum balance equation. 
 

By spanning a broad range of operating parameters, these chosen discharges 

provide a comprehensive benchmark for validating the modified Ohm’s Law calculation 

of the radial electric field. 
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CHAPTER 3 

ION ORBIT LOSS AND ITS INCLUSION IN PLASMA FLUID 

THEORY 

 The first three calculations in Fig. (2) for ion orbit loss, radial particle flux, and 

intrinsic rotation lay the foundation for the plasma rotation and Er calculations. The radial 

particle flux supplies torque to the edge plasma which is important for calculating the 

rotation velocities (and therefore the radial electric field), and is determined by fueling 

sources, standard diffusive transport, as well as non-diffusive ion orbit loss phenomena. 

Therefore to determine the radial electric field, it is first necessary to establish a well-

defined ion orbit loss theory, which will be used throughout the calculation described in 

Fig. (2). Ion orbit loss is a kinetic phenomenon, and its inclusion in fluid theory is 

nontrivial. The theory for quantifying ion orbit loss in the edge plasma and incorporating 

its effects into the continuity and momentum balance equations is developed through the 

models presented in this chapter. 

3.1 Standard Ion Orbit Loss Theory 

Ion orbit loss theory was first introduced by Miyamoto [29] and later extended by 

Stacey and Schumman [50] for computational use in GTEDGE. Basic conservation 

principles are employed to calculate a minimum energy required for ions in the edge 

plasma with a specific energy, direction, and location to access orbits that cross the 

separatrix, and are therefore removed from the plasma by collisions with neutrals in the 

SOL, charge exchange, or being swept into the divertor. This calculation does not track 

particle orbits, but determines the physical energy requirements for a particle to execute 
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an orbit with specific initial and final positions. The calculation is based on the 

conservation of canonical toroidal angular momentum, energy, and magnetic moment. 

 

 �3�
��,� 45�,�5� 6 + 8ψ: = constant = R'3�
��,' 45�,'5' 6 + 8C'																									(1) 123G�
��,�H + �
��
,�H I + 8J� = KLMNOPMO = 123G�
��,'H + �
��
,'H I + 8J'																	(2) 3�
��
,�H25� = KLMNOPMO = 	3�
��
,'H
25' 																																																				(3) 

 

R is the major radius, m is the mass, V is velocity, B is the magnetic field, ψ is the 

amount of enclosed poloidal magnetic flux, and φ is the electrostatic potential. The 

subscripts “perp” and “par” refer to directions perpendicular or parallel to the total 

magnetic field. The “0” subscripts indicate the values of the quantity on a reference 

internal flux surface, C', in the edge region. The second surface required to satisfy these 

conservation equations is the separatrix, C�, denoted by the subscript “s”. Combining 

these constraints then leads to a quadratic expression that defines the minimum speed, 

�' =	Q�
��,'H + �
��
,'H  , that an ion with a given direction and location on an internal flux 

surface must have in order to reach the last closed flux surface, C�. 
�'H RST5�5'T ��,'��,�U

H − 1 + (1 − &'H) T5�5'TV + �' W28(C' − C�) 3��,� ST5�5'T ��,'��,� &'UX
+ RS8(C' − C�) 3��,� UH − 28(J' − J�)3 V = 0																																											(4) 

 

fφ = |Bφ/B| and ξ0 is the cosine of the particle direction with respect to the toroidal 

magnetic field on the initial flux surface C'. This minimum velocity is numerically 

calculated for each flux surface at various poloidal locations, and for several ξ0 values, 

and is shown in Fig. (7) as a function of pitch angle. 
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Figure 7: Representative minimum energy curves for a particle to be ion 

orbit lost as a function of pitch angle. 
 

If Eq. (4) cannot be solved with local plasma parameters, it is assumed that no 

particles satisfy the requirements to be ion orbit lost in that situation. Even if a minimum 

escape energy exists physically, there must be particles on the flux surface with enough 

energy to execute the loss orbits for there to be an effect on the plasma. The shaded 

region in Fig. (7) illustrates energies that plasma ions may have given a local plasma 

distribution function whose loss have impact on the plasma edge region (i.e. not many 

particles in the co-current direction will have energies above 108 eV, but many counter 

current particles will have energies above 104 eV in this example).  

The minimum energy is seen to decrease for counter-current ions, demonstrating 

the directional dependence of ion orbit loss, and hence the capability of a momentum 

source or sink in the fluid equations. Considering this calculation as a function of radius, 

the minimum energy also monotonically decreases as the launch surface approaches the 
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separatrix. The distribution of particle velocities on each flux surface can then be 

compared to the minimum escape velocity, and integrating over the velocity space yields 

the total fraction of lost particles, which is directly used to calculate the radial particle 

flux described in the next section. 

��������� =	 Z�!��Z�!��� =	
 �!���!� [ [[ �'H�(�')]�']	]&'_̀

a,bcd
efe2 [ �'�(�')]�'_' =	 �!���!� [ Γ g32 , hijk(la)m ]&'efe 2Γ g32m 									(5) 

 �!���!�  is the fraction of particles that cross the separatrix on loss orbits and do not return to 

the plasma,	Γ is the gamma function, f(V0) is the Maxwellian distribution function over 

velocity space, and hijk(na) = 3�',��oH (&')/2qr�!o.  A similar cumulative fraction can be 

calculated for energy loss using the same expression as Eq. (5), but instead taking an 

energy moment, 
eH3�'H, of the integral. Figure (8) shows representative cumulative 

particle and energy loss fractions from the H-mode discharge. 

 

Figure 8: Cumulative particle and energy ion orbit loss fractions. 

When computationally employed, this calculation is fully differential in four 

dimensions [50]: 1) radial variable, ρ 2) initial poloidal location, θ0 3) final poloidal 

location on the separatrix, θs 4) pitch angle, ξ0, which allows the distribution function to 
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evolve due to the changing velocity loss cone structure in the outer flux surface regions 

close to the separatrix.  

A similar process can be followed for the momentum fraction, but with a moment 

of 3�'&' applied to the velocity integral [10]. 

s�������� = 	 s�!��s�!��� =	
 �!���!� [ [[ (3�'&')�'H�(�')]�']	]&'_̀

a,bcd
efe 2[ (3�')�'�(�')]�'_'

=	 �!���!� [ ΓG2, hijk(la)I]&'efe 2Γ(2) 						(6) 
Because the numerator of this fraction is the net ion orbit momentum loss, an IOL 

intrinsic rotation for ion species “j” in the toroidal and poloidal directions can be defined  

for use in calculating the rotation velocity profiles required for the radial electric field 

calculation [36] 

ΔVv,w,xyz{ = TBv,wB}~} T Δ�∥��� = 2� TBv,wB}~} T � ]&' � � (�'&')�'H�(�')]�'_
`a,���(�a)

�e
fe

	

= 	 2√�		T5�,�5�!� Ts�������� �2qr#3# 																																																																																								(7) 
The intrinsic velocity contribution from the loss of thermalized ions, Δ��#��� is usually in 

the co-current direction due to the preferential loss of counter-current ions [36]. The 

integral over the cosine of the direction of ions with respect to the magnetic field, &', 
accounts for the net momentum loss contribution, and the velocity integral spans the 

minimum energy required for ion orbit loss [10], V0,min, to infinity. A truncated 

Maxwellian distribution, f(V0), is assumed to calculate the differential variation in the 

loss fraction for the distribution function with radius [50]. Net intrinsic rotation for both 

carbon and deuterium, shown in Fig. (9), exhibits a peaked structure from this 
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preferential loss of counter current particles. When most or all of the counter current 

particles are lost, a sufficient minimum energy is reached for co-current ions to be ion 

orbit lost. The net momentum then starts to decrease due to the reversed directionality of 

the lost momentum. 

 

 

Figure 9: Intrinsic rotation profiles for carbon and deuterium due to ion orbit 

momentum loss. 
 

Note that this calculation is applicable for any lost ions such as impurities and 

alpha particles, where the latter are neglected here but will be important in the 

consideration of future reactors. It is assumed that the return current ions rejoining the 

plasma from the scrape off layer have negligible momentum, and are not considered in 

the intrinsic rotation calculation. Theoretically, fast ion losses could also be included in 

the intrinsic rotation calculation, and MAST experiments have shown that in low aspect 

ratio machines, there can be more momentum deposited in the plasma than originally 

injected by neutral beams [35]. In this research, however, a simplified model is used with 
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a multiplier on the co-current neutral beam injected momentum, which is considered to 

be 1.0. 

3.2 Radial Particle Flux 

The radial particle flux , Γ��#, is determined by the continuity equation, which is 

modified due to fast and thermal ion orbit lost particles instantaneously leaving the 

plasma.  

∇ ∙ Γ� = M$�!o + �o��G1 − 2�������� I − 2Γ��x ������������ 																																							(8P) 
∇ ∙ Γ� = M$�!o + ��o��(�) − 2Γ��x ������������ 																																							(8�) 

The ionization source due to recycling neutrals is calculated using steady state 

integral neutron transport theory [30]. The majority of the neutral beam source in the core 

is seen as a boundary condition, but there is also a deposition profile calculated from the 

neutral beam code NBeams [65] used to define the source as a function of radial 

coordinate in the edge region used in the model. Both the core and edge NBI sources are 

reduced by the fast ion orbit loss fraction, �������� 	(�), which represent mono-energetic (one 

of three energy components) and mono-pitch-angled particles that are promptly lost upon 

ionization in the plasma. Thermalized ions can also be lost by executing loss orbits, and 

these particles are removed through the derivative of the cumulative thermal loss fraction, 

��� ��������� (�), which represents the number of ion orbit lost particles from flux surface “r” 

inside the separatrix. The thermal ion orbit loss fraction is applied directly to the radial 

particle flux which is initially comprised of a Maxwellian distribution of particles, and 

through the edge region loses significant amounts of counter-current particles such that 

the distribution function at the separatrix is highly non-Maxwellian.  
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To maintain charge neutrality, there must be an inward compensating return 

current from the scrape off layer with divergence equal in magnitude to the lost charge 

from ion orbit loss in the differential interval dr at location r. The combined effects of 

instantaneous particle losses plus the inward return current results in twice the reduction 

of the radially outward particle flux due to ion orbit loss alone (and hence the multiplier 

of 2 in the ion orbit loss terms in the continuity equation).  The calculation of the fast ion 

orbit loss fractions will be discussed in more detail in Chapter 5. Solving Eq. (8) in 

cylindrical coordinates yields the integral expression for the radial particle flux. 

Γ�(�) = 	� �′� ��!�(��)8fH[�����b��� (�)f�����b��� (��)]]���
'

																																											(9P) 
��!�(��) = M(��)$�!o(��) + ��o��(��)																																																			(9�) 

The “carat” above the Gamma and NBI source symbols represent that the variable has 

been corrected for ion orbit loss. A similar equation can be written for the impurity 

species, which is assumed to be negligible because the plasma is in equilibrium. With no 

internal carbon source, the outward carbon flux balances the inward carbon flux from the 

scrape off layer. The radial particle flux both with and without thermal ion orbit loss is 

shown in Fig. (10). The model for including fast ion orbit losses and its impact on Eq. (9) 

will be developed and analyzed in Chapter 6. 
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Figure 10: Radial particle flux calculated from the continuity equation with and 

without ion orbit loss for DIII-D H-mode shot #123302. 
 

The radial particle flux without the correction of IOL monotonically increases 

towards the separatrix because the density of recycling neutrals, and hence the source of 

ionization, is constantly increasing towards the wall. This would be an expected profile 

for electrons, which are assumed not to be kinetically lost because they are sufficiently 

bound to the magnetic field lines. However, when the radial ion particle flux is corrected 

for IOL, the flux decreases in the far edge region both because outflowing ions are lost by 

IOL and because of the negative sign of the inflowing ion flux from the scrape off layer 

necessary to maintain charge neutrality. 

3.3 Relationship between Intrinsic Rotation and Net Momentum 

Like the particle balance equation, kinetic effects of ion orbit loss must also be 

accounted for in the momentum balance equations. However, this task is not as 

straightforward in the directionally dependent momentum balance equation as in the 

continuity equation.  
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The first velocity moment of the Boltzmann equation for a given plasma species 

“i” describes the vector momentum balance equation. 

3� �(oc¡¢)�� + ∇ ∙ £� − M�8�(¤ + ¡¢ × ¦) = §¢̈ + ©¢̈ 															(10)  
Where M is the (inertial plus momentum) stress tensor, E is the electric field, ¡ is 

the ion velocity, B the magnetic field, F1 the collisional friction term, and S1 the source 

first velocity moment. Components of Eq. (10) can now be considered in a similar 

manner to the above treatment of ion orbit loss in the radial particle flux in Eq. (8).  

An analogous implementation of ion orbit momentum loss into the toroidal 

momentum balance equation would require the retention of radial derivatives of the 

toroidal velocity in the stress tensor and inertial terms, along with radial integration of the 

resulting toroidal momentum equations. However, the usual treatment [66] of the toroidal 

viscous torque leads to a form which can be written as the sum of the “parallel”, 

“gyroviscous”, and “perpendicular” components, where the “parallel” component 

identically cancels in the flux surface average in an axi-symmetric tokamak [67]. The 

remaining components of the neoclassical viscous stress tensor in an axi-symmetric 

tokamak can be can be written in the form of “drag” terms [68-69], M3$ª��«�� and 

M3$�o�����, where $ª��« and  $�o��� are given in reference 69. This model subsumes the 

radial derivatives of the toroidal velocity into the drag frequency terms. Therefore, a 

toroidal momentum balance equation with ion orbit loss inherently included would 

require a new rotation model that retains the radial toroidal velocity derivatives explicitly 

in the primary balance equation. Since the derivation of a new rotation model is beyond 

the scope of this work, an ad hoc correction for ion orbit loss through the external 

momentum source in the toroidal momentum balance equations is introduced. Using 



 26

neoclassical viscosity models, the toroidal momentum balance equation is defined for a 

toroidally axi-symmetric tokamak [69-71]. 

5�8#Γ��# + M#8#¬� = M#3#$�#��# + M#3#$#%(��# − ��%) − s�#																(11) 
This formalism also describes impurities, which is represented by the “k” subscript and 

summing over multiple species “k” where appropriate, but the present analysis considers 

a two species plasma comprised of the main ion deuterium, “j”, and impurity carbon, “k”. 

For neoclassical theory , $ª��« = $­®�!, the gyroviscous drag [68]. More generally , $�# =
$ª��«,# + $�o�����,# + $��!��«,# + $�o!�,#, which multiplies the main ion toroidal angular 

momentum to represent the toroidal angular momentum exchange rate due to toroidal 

viscosity, toroidal inertia, atomic physics, and anomalous processes such as turbulence.  

The external momentum source, s�#, in Eq. (11) is comprised of neutral beams in 

these calculations, but can possibly include other external or effective internal momentum 

sources such ion orbit momentum loss. The kinetically derived momentum ion orbit loss 

can be expressed as either an external momentum source or an intrinsic rotation. In cases 

when an effective momentum source is the preferred method, the external momentum 

source is expanded to not only include neutral beam injection, but also ion orbit loss. 

Mvx/° = Mvx/°±²y +Mvx/°yz{ 																																																			(12)                                         
The external ion orbit loss momentum term can then be derived by solving the toroidal 

momentum balance equation, Eq. (11), both with and without Mvx/°yz{  for the difference in 

velocity defined by the intrinsic rotation in Eq. (7). The expressions for the net ion orbit 

loss momentum sources in the toroidal momentum balance equation for both species 

become 

Mvxyz{ = nxmx´Gνx° + ν¶xIΔVvxyz{ − νx°ΔVv°yz{·																																		(13a) 
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Mv°yz{ = n°m°´Gν°x + ν¶°IΔVv°yz{ − ν°xΔVvxyz{·																																(13b)                            
Solutions to the fluid toroidal momentum balance equation with the ion orbit loss 

included as an effective momentum source would be satisfied by the experimentally 

measured velocities. Alternatively, Eq. (11) can be solved with the external momentum 

source excluding ion orbit loss effects, Mvx/° = Mvx/°±²y . This yields solutions through the 

use of “fluid” velocities, Vvx¹º»j¶ = Vvx¼½¾ − ΔVvxyz{, which do not take into account the 

presence of intrinsic rotation, but does take into account the ion orbit particle losses in the 

radial particle flux, Γ��x/°. To verify this, the total momentum source from Eq. (12) is used 

in the toroidal momentum balance equations with the experimental velocities, and 

rearranged so that the velocity terms are aggregated. 

nxmx ¿νx° ÀgVvx¼½¾ − ΔVvxyz{m − gVv°¼½¾ − ΔVv°yz{mÁ + ν¶x gVvx¼½¾ − ΔVvxyz{mÂ 
= BwexΓ��x + nxexEvÄ +Mvx±²y																																																(14) 

A similar equation can be written with the “j” and “k” subscripts interchanged for the 

carbon toroidal momentum balance equation. The “fluid” velocities can then be 

substituted for the experiment minus intrinsic rotation terms in parentheses to yield an 

identical equation to Eq. (11), except with IOL effects accounted for in the velocities as 

an intrinsic rotation instead of the net momentum source. Therefore it follows that the 

correct inclusion of the ion orbit loss effects into the momentum balance equations can be 

accomplished either by 1) using the intrinsic rotation velocities to modify the fluid 

velocities and only neutral beams included as an external source or 2) using an effective 

ion orbit loss momentum source to calculate modified fluid velocities. 

 It is important to note that the treatment of ion orbit loss as an external 

momentum source relies on plasma properties like momentum drag frequencies to be 
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known, while the intrinsic rotation correction can be applied directly to measured 

velocities. For this reason, ion orbit loss will be included as an intrinsic rotation, not an 

external momentum source, for the theoretical analyses in this work. 

 Similar methodology can be used to define either an external momentum source 

or intrinsic rotation correction for the poloidal momentum balance equations. The 

external momentum source term for the poloidal momentum balance equations takes the 

form of Eqs. (15) and will be used more explicitly in the fluid rotation models in Chapter 

5. 

Mwxyz{ = nxmx´Gνx° + νÅj:Æ,xIΔVwxyz{ − νx°ΔVw°yz{·																												(15a) 
Mw°yz{ = n°m°´Gν°x + νÅj:Æ,°IΔVw°yz{ − ν°xΔVwxyz{·																									(15b)                           

While this follows naturally from the above analysis, an external momentum source due 

to ion orbit loss in the poloidal direction is not usually observed or predicted. 
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CHAPTER 4 

OHM’S LAW AND THE RADIAL ELECTRIC FIELD 

 

The conventional “experimental” radial electric field is constructed by using the 

measured carbon density, temperature and rotation velocities discussed in Chapter 2 in 

the carbon radial momentum balance equation. 

¬�«�	
 = eÇÈ�oÈ �
È�� − ��«5� + ��«5� 																																					(16)  
However, this equation does not determine the physics for why the radial electric field 

exists. This chapter develops an analytical expression for the modified Ohm’s Law based 

on fluid theory to determine the radial electric field in the edge plasma. The theory is 

validated for use with the three previously described DIII-D discharges by evaluating the 

expression with data either measured or constructed from measured data and 

conservation laws, and then comparing the predicted value of the radial electric field with 

the experimental profile calculated from Eq. (16). 

4.1 Derivation of Ohm’s Law 

Revisiting the vector momentum balance equation from Eq. (10), the total 

velocity can be decomposed. 

¡¢ = É¢ + Ê¢																																																																				(17) 
¡ is the kinetic ion velocity, u is the average velocity, and y is the random thermal   

motion (i.e. the relative motion of species “i” with respect to the common mass velocity). 

The momentum stress tensor can then be decomposed into the inertial and pressure tensor 

terms. Multiplying Eq. (10) by ei/mi , summing over all species, and assuming  1) me/mi 

<< 1 for “i” ≠ “e”, 2) the Lorentz friction model, ��,# = −M�3�$�,#G�� − �#I, 3) time 
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independence, 4) negligible inertia and viscosity, 5) charge neutrality, and 6) no external 

radial source [72],  Eq. (10) yields the fluid momentum balance equation  

1M�8� ∇ËÌ = ¤ + É × ¦ + 1M�8� Í × ¦ − (Í																												(17) 
and to lowest order the pressure is constant along flux surfaces. 

∇Ë = ∇GË� + Ë# + Ë%I 	= Í × ¦																																				(18) 
where species “j” is now defined to be deuterium, species “k” is the carbon impurity, and 

electrons are represented by the “e” subscript. With these assumptions as well as ee = -ej, 

the radial projection of Eq. (17) can be further simplified to be defined in terms of solely 

the two ion species while still maintaining the physics of the electron population, 

¬���� = ¬�Î + ¬�Ï	Ð + ¬�∇¾																																																					                                             
=	(),Ñ
��Ò��Ó� − (É × ¦)Ô + 18#GM# + Õ%M%I ∇�GË# + Ë%I					(19) 

The Spitzer perpendicular resistivity [73] is   

(),Ñ
��Ò�� = 1.03 × 10fÖ×��� ln(Ù)r�fÚÛ																																					(20)                     
The velocities and pressure gradients can be written explicitly to obtain the final version 

of the modified Ohm’s Law radial electric field which will be used in the subsequent 

sections. 

¬���� =	−(),Ñ
��Ò��j� − ��,#5� − ��,#5�1 + M%3% M#3#⁄ −	��,%5� − ��,%5�1 + M#3# M%3%⁄ − Ë#"
#fe + Ë%"
%fe8#GM# + Õ%M%I 			(21) 
�� is the toroidal velocity, �� the poloidal velocity, and the pressure gradient scale length 

for each species is defined as "
fe = − e
 �
��. The radial current is required by charge 

neutrality to compensate for ion orbit lost particles for both thermal and fast ions. 
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Assuming that the compensating current is comprised of the main ion species, the total 

inward current jr can be defined by  

Ó� = Ó�,���������� + Ó�,���o�� 																																														(22) 
The first term is the compensating current for the ion orbit loss of thermalized plasma 

ions, and the second term is the compensating current for the fast neutral beam ions that 

are ion orbit lost. The radial compensating return current must exactly replace the ion 

orbit lost particles to maintain charge neutrality by conserving ∇ ∙ Í = 0 as discussed in 

detail in Chapter 3.  

4.2 Estimated Experimental Velocities 

The purpose of this chapter is to develop and validate the modified Ohm’s Law 

expression for Er of Eq. (21) using the best available information about the rotation and 

pressure profiles to confirm its consistency with the usual carbon “experimental” electric 

field which can be calculated by using the radial carbon measurements of density, 

temperature, and velocities in the carbon radial momentum balance in Eq. (16). This is 

readily accomplished with the L-mode discharge because both the deuterium and carbon 

velocity profiles are directly measured. However, a method for determining the 

deuterium rotation profiles as close to experiment as possible is presented in this section 

for the H-mode and RMP discharges. 

4.2.1 Toroidal Velocity 

The radial particle flux due to ion orbit loss, Γ�#��� = Ó� 8Ý = 	Γ�#G�������� = 0,��������� =
0I − Γ�#G�������� , ��������� I, can be used to calculate the net radial current used in the modified 

Ohm’s Law expression. 
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¬�Î = (),Ñ
��Ò��Ó� = 1.03 × 10fÖ×��� ln(Ù)r�Þ H⁄ 8Γ�#��� 																							(23) 
To determine the motional component, ¬�ß×², toroidal and poloidal rotation 

velocities are required for both ion species. With no main ion measurements for the RMP 

and H-mode discharges, a method for estimating the deuterium rotation profiles is 

required. It is assumed that the experimental velocity is a superposition of the velocity 

obtained from the fluid equations and intrinsic rotation from ion orbit loss [52]. 

��#�	
 = ��#����� + Δ��#���																																											(24) 
The experimentally measured velocities, ��#�	
, are distinguished from the fluid 

velocities, ��#�����, which satisfy the momentum balance Eq. (11), by the inclusion of 

intrinsic rotation due to ion orbit loss for each species as discussed in section 3.3.  

First order perturbation theory is utilized to determine an “experimental” 

deuterium toroidal fluid velocity which satisfies the momentum balance equations, as 

well as drag frequencies, $�# and $�%, from the measured carbon velocity profile [61].  

��#����� = ��%����� + Δ��
���																																																			(25) 
Eq. (26) is then used to obtain the total deuterium velocity. 

��#�	
 = g��%�	
 − Δ��%��� + Δ��#���m + Δ��
��� 																																(26)                                    
The perturbation theory is developed first by summing the toroidal momentum balance 

Eq. (11) for both species, and defining a composite toroidal momentum transport 

frequency,$�'. 
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$�' ≡	M#3#$̂�# + M%3%$̂�%M#3# + M%3%
= (M#8#¬� + 8#5�Γ�# +s�#) + (M%8%¬� + 8%5�Γ�% +s�%) − M#3#$̂�#Δ��
���	GM#3# + M%3%I(��% − Δ��%���) 																(27) 
Initially setting the small parameter Δ��
���	in Eq. (27) to zero results in the zeroth order 

approximation of the composite drag frequency, $�'. This quantity can be used in Eq. (28) 

to obtain a toroidal perturbative quantity, Δ��
���, which depends on the measured carbon 

toroidal velocity along with other measured parameters.  

Δ��
��� =	 GM#8#¬� + 8#5�Γ�# +s�#I − M#3#$̂�#' ��%M#3#G$#% + $̂�#I 																									(28) 
Continuing the perturbation analysis, from Eq. (27) it is found that the main ion species 

drag is 

$̂�# ≅	$�e 		
= (M#8#¬� + 8#5�Γ�# +s�#) + (M%8%¬� + 8%5�Γ�% +s�%) − MÓ3Ó$ã]0Δ�JË8�O	GM#3# + M%3%I(��% − Δ��%���) (29) 
and the carbon impurity drag frequency is 

$̂�% ≅	 (M%8%¬� + 8%5�Γ�% +s�%) + M%3%$̂%#Δ��
��� 	M%3%(��% − Δ��%���) 																(30) 
It is important to note that the perturbation theory assumes that the difference in 

the deuterium and carbon fluid velocities is small. Iteration to find a simultaneous 

solution for the perturbation value and the drag frequency converges on a solution for 

which äΔ��/��%ä ≪ 1, which is consistent with the use of perturbation techniques for 

these discharges.  
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The L-mode discharge can be used as a check of the perturbation theory because 

both deuterium and carbon toroidal velocities are directly measured. The “fluid” velocity 

obtained for deuterium by subtracting the intrinsic rotation (��#����� = ��#�	
 − Δ��#���) in 

Fig. (11) is in good agreement with the perturbation theory calculation (��#����� =
��%����� + Δ��
���).  

Figure 11:  Comparison of perturbation theory to experimental and fluid (no IOL 

effects of intrinsic rotation) velocities for L-mode shot #149468. (Re-produced from 

Nucl. Fusion 54, 073021 (2011) with permission.) 

 

4.2.2 Poloidal Velocity 

Perturbation theory is not appropriate for estimates of poloidal velocity profiles 

because calculated deuterium poloidal rotation can be quite different than that of the 

carbon impurity, and there are no other techniques for inferring poloidal momentum 

transport frequencies from experiment.  
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For the purposes of evaluating Eq. (21) with velocities closest to experiment, the 

radial momentum balance equations for deuterium and carbon are used. The deuterium 

poloidal velocity is defined by the radial deuterium momentum balance, 

��# = 15� S5���# − ¬�«�	
 + 1M#8# �Ë#�� U 																																			(31) 
using the usual experimental radial electric field defined by the carbon radial momentum 

balance and evaluated with purely measured parameters from Eq. (16) and shown in Fig. 

(6). 

By combining Eqs. (16) and (31), an expression for the “experimental” deuterium 

velocity can be constructed from the radial momentum balance for the two species. 

��# = ��% − 15� S 18#M# �Ë#�� − 18%M% �Ë%�� U + 5�5� G��#�	
 − ��%����I											(32) 
Both measured and estimated rotation velocity profiles for carbon and deuterium are 

summarized in Fig. (12) for the three DIII-D discharges described in Table 1. 
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Figure 12: “Experimental” velocities for carbon and deuterium for a) H-mode shot 

#123302 b) L-mode shot #149468 c) RMP shot #123301. 
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To reiterate, the deuterium rotation velocities for the H-mode and L-mode discharges are 

estimated, but the L-mode discharge deuterium velocities are measured.  

4.3 Validation of Ohm’s Law 

Using the estimated deuterium velocities and measured data, the modified Ohm’s 

Law prediction in Eq. (21) can be compared to the experimental radial electric field 

derived from the carbon radial momentum balance equation, Eq. (16).  

 

Figure 13: The Ohm’s Law (Equation 21) expression for radial electric field agrees 

with the carbon experimental value (Equation 16) for the three DIII-D test shots. 
 

Figure (13) illustrates that the radial electric field in the edge pedestal region can 

be calculated using the modified Ohm’s Law for various operating regimes, provided that 

correct values for the rotation velocities are used. Calculations for all three discharges 

capture the correct structure of the electric field, while exhibiting only slight errors in 

magnitude. These small errors are thought to arise from small uncertainties in the velocity 
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profiles. This agreement over a range of operating regimes is considered a validation of 

the Ohm’s Law expression for Er given by Eq. (21). 

Figure (14) compares the contributions from the experimental toroidal velocity, 

poloidal velocity, and pressure gradient terms in Eq. (21) for the H-mode shot.  Note that 

each component accounts for the contribution from both the carbon and deuterium 

species. 

 

Figure 14: Pressure and motional components of radial electric field calculated by 

the modified Ohm’s Law equation. 
 

For this H-mode discharge, the deep “well” characteristic of typical RMP and H-

mode shots is correlated with the poloidal velocity profiles for both species used in the 

modified Ohm’s Law calculation of Eq. (21), while the pressure gradient contribution 

acts to shift the entire profile in the negative direction. While it is generally accepted [74] 

that the radial electric field component due to the pressure gradient is important, this 

result illustrates the importance of the radial electric field component produced by a 

rotating plasma, or the “motional” electric field, which emphasizes the requirement that 
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analytical models for the toroidal and poloidal velocities are required for both species. 

Similar results for the role of the motional radial electric field have also been 

characterized for B5+ and He2+ plasmas [74], and well as the RMP discharge discussed in 

this work. 
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CHAPTER 5 

PREDICTIVE ROTATION THEORY 

With the modified Ohm’s Law expression for Er successfully validated in Chapter 

4 by comparison with experiment when using experimentally determined velocity 

profiles, the development of a first principles calculation for Er requires a first principles 

model for toroidal and poloidal velocities in the edge plasma. Representative theoretical 

models, which are consistent with the momentum balance models used previously, are 

assembled from literature and compared with DIII-D measurements. The predictive 

analysis presented will focus on the H-mode shot #123302 due to emphasized kinetic 

effects as compared to the L-mode discharge, and decreased fluctuations from magnetic 

perturbations compared to the RMP discharge. 

5.1 Toroidal Velocity 

The toroidal momentum balance from Eq. (11) for both species can be 

simultaneously [52,66] solved for ��#/%�����
 . The experimental velocity predictions is then 

obtained from Eq. (24). 

��#�	
 = W8#5�Γ��# +s�# + M#8#¬�M#3#G$#% + $̂�#I X + $#%$#% + $̂�# W8%5�Γ��% +s�% + M%8%¬�M%3%G$%# + $̂�%I X	
1 − $#%$%#G$#% + $̂�#IG$%# + $̂�%I

+ Δ��#���				(33P) 
 

��%�	
 =	 W
8%5�Γ��% +s�% + M%8%¬�M%3%G$%# + $̂�%I X + $%#$%# + $̂�% W8#5�Γ��# +s�# + M#8#¬�M#3#G$#% + $̂�#I X	

1 − $#%$%#G$#% + $̂�#IG$%# + $̂�%I
+ Δ��%���				(33�) 

 

Equations (33) involve similar parameters to those described in Chapter 3 of this 

paper, with ion orbit loss accounted for in the radial particle flux, Γ��#, and the viscous 
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drag frequencies, $̂�#/%. The net carbon radial particle flux, Γ��%, is set to zero in this 

calculation based on the argument that the inward flux due to sputtering and recycling 

must be equal to the outward flux in equilibrium with no internal source.  

The structure of the toroidal velocity profiles is determined by the two drive terms 

for deuterium and carbon, which are proportional to momentum transfer frequencies, and 

comprised of radial particle flux, external momentum, and induced toroidal electric field 

terms. Ion orbit particle loss affects the radial particle flux in both the IOL1 and IOL2 

calculations shown in Fig. (15). Additionally in the IOL2 calculation, ion orbit 

momentum loss produces intrinsic rotation added to the fluid toroidal velocity. The 

viscous drag frequencies for the H-mode discharge is inferred from perturbation theory as 

described in Eqs (28-30). Figure (15) compares the calculated velocities of Eqs. (33) with 

the experimentally measured velocities for carbon and the calculated perturbation theory 

velocity profiles for deuterium, as well as the effects of intrinsic rotation on the 

calculation. 

 
Figure 15: Comparison of theoretical and experimental toroidal rotation 

velocities for H-mode discharge #123302. (IOL1 includes particle ion orbit loss and 

IOL2 includes both particle and momentum ion orbit loss.) 
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The predictive toroidal velocity results with ion orbit particle loss (IOL1) 

corrections in Fig. (15) show reasonable agreement with experiment. However, the 

toroidal velocities further corrected for ion orbit loss momentum loss by an intrinsic 

rotation correction (IOL2) show somewhat poorer agreement. This result is attributed to 

the ad hoc formalism for intrinsic rotation, used in conjunction with perturbation theory, 

to estimate the deuterium drag frequencies.  

5.2 Poloidal Velocity 

The poloidal momentum balance equation can be written for both species using 

the Stacey-Sigmar form for parallel viscosity [68,75] in an axi-symmetric plasma with an 

external momentum source due to ion orbit loss [52], using the definition for momentum 

source s�# due to IOL defined in Eq. (15). 

G$ª��«,# + $#% + $��!�,#I��# − $#%��% = −5� æ 8#M#3# Γ��# − $ª��«,# ç#r#"èéfe8#5H ê +s�#						(34) 
Where $ª��«,# = ë�#���,#/ 	,  �# = hfÚÛ$##∗ g1 + hfÚÛ$##∗ m G1 + $##∗ I,  $##∗ = $##ë ���,#ì , and the 

Hirshman-Sigmar coefficients [76-78] are used to define ç# = í'e# í''#ì . The two 

momentum balance equations can be solved simultaneously for ��#/% and with the 

momentum source written explicitly from Eq. (15) to yield the predictive model 

expressions which are dependent upon the poloidal ion orbit loss intrinsic rotation, Δ�����. 

��# = 	−5�/$�# W	S$ª��«,#
ç#r#8#5H "èéfe + 8#M#3# Γ��#U + $#%$�% 4$ª��«,% ç%r%8%5H "èîfe + 8%M%3% Γ��%6X

41 − $#%$%#$�#$�%6
+ Δ��#���	(35P) 

��% = 	−5�/$�% W	4$ª��«,%
ç%r%8%5H "èîfe + 8%M%3% Γ��%6 + $%#$�# S$ª��«,# ç#r#8#5H "èéfe + 8#M#3# Γ��#UX

41 − $%#$#%$�%$�#6
+ Δ��%���	(35�) 
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The poloidal composite momentum transfer frequency, $�# = $ª��«,# + $��!�,# + $#% +
$�o!��,#	, depends on poloidal viscosity, atomic physics, interspecies collisions and 

anomalous transport processes.  

 Comparing the theoretical poloidal velocity models with experiment for the H-

mode discharge, Fig. (16) again shows order of magnitude agreement in profile trends, 

but some difference in specific profile structure. Inclusion of intrinsic rotation improves 

the agreement of prediction with experiment in this case. 

 

Figure 16: Comparison of theoretical and experimental poloidal rotation 

velocities for H-mode discharge #123302. (IOL1 includes particle ion orbit loss and 

IOL2 includes both particle and momentum ion orbit loss.) 
 

Because of a preferential loss of particles in the counter current direction, it is 

seen in Fig. (15) that the toroidal velocity increases in magnitude because of intrinsic 

rotation. However, Fig. (16) shows the poloidal velocity decreases with intrinsic rotation 

due to the helicity of the magnetic field lines in a tokamak with the plasma current in the 

opposite direction to the toroidal magnetic field, which is the case for this H-mode 
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discharge (as well as the RMP and L-mode shots considered). The negative contribution 

of ion orbit loss to the poloidal velocity along with the negative pressure gradient term is 

what characterizes the negative “well” structure of the radial electric field. In contrast to 

the calculated toroidal velocity, the inclusion of ion orbit momentum loss (in the form of 

an intrinsic rotation correction, IOL2) yields enhanced agreement to experiment for the 

poloidal velocity calculation. 
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CHAPTER 6 

IMPROVEMENTS TO STANDARD ION ORBIT LOSS 

THEORY 

 The predictive neoclassical rotation models, and hence the radial electric field 

calculation, depend heavily on the ion orbit loss formalism and means of evaluation. 

Therefore, several steps are made to improve upon the “standard” theory for the 

minimum ion energy at which IOL occurs [10], overviewed in Chapter 3, to include 

losses of fast neutral beam ions and the use of experimental parameters to construct flux 

surfaces instead of assuming a flux conserved circular geometry.  

6.1 Fast Neutral Beam Ion Orbit Loss 

Fast ions are accelerated to roughly 80keV, converted into neutral molecules of 

D1, D2, or D3, and are then launched into the DIII-D plasma for heating, current drive, 

and rotational drive. Since there are several molecules of deuterium, the neutral beam 

takes three characteristic energies: full energy E for D1 molecules, half energy E/2 for D2 

molecules, and third energy E/3 for D3 molecules, where E is the acceleration energy. 

The fraction of the total beam in each energy component has been experimentally 

determined and can be calculated as a function of the total energy component [79]. For 

this analysis, the fraction of injected beam particles is approximately 76%, 13%, and 11% 

for the full, half, and third energy components, respectively.  

The neutral molecules are deposited on flux surfaces via processes like charge 

exchange and ionization. Fast ion deposition profiles, shown in Fig. (17a), can be 

calculated using various numerical codes such as NUBEAM [79] and NBeams [65]. 
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Figure 17: a) Neutral beam deposition profiles calculated from NBeams for each 

energy component b) Pitch angle comparisons for elliptical flux surfaces calculated 

by NBeams and circular flux surfaces. 

 
The DIII-D tokamak has four neutral beam injection ports, three of which are 

positioned for co-current injection. Since each beam follows a straight-line deposition 

trajectory defined by the unit vector ℓ�, there is a characteristic angle of the beam 

direction with respect to the toroidal magnetic field, called the pitch angle, ð' = ℓ� ∙ 5ñò/5. 

Figure (17b) shows the pitch angle calculated for circular flux surfaces compared to 

elongated elliptical flux surfaces generated from NBeams (ð' > 0 for ctr-I, ð' < 0 for co-I 

ions). The elliptical pitch angles were used for the ion orbit loss calculations in this 

dissertation. 

The ion orbit loss calculation for fast ions can be derived by treating the pitch 

angle and velocity distribution differently than was previously discussed for the thermal 

population. The minimum energy calculation from Eq. (4) takes the pitch angle in as a 

dependent variable. (For thermal ions, particle trajectories can have any angle with 

respect to the toroidal magnetic field, therefore all pitch angles were considered.) The fast 

ion calculation requires only one pitch angle for each surface as required by geometry. 

This simplification allows the minimum energy calculation to solely depend on the 

(b) 

(a) 
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poloidal angle, instead of both the poloidal angle and the toroidal angle as is the case for 

thermal ions. 

 Furthermore, the beam energy distribution function is assumed to be a delta 

function centered around three specific energies derived from the injection system, as 

opposed to a Maxwellian distribution as in the thermal ion case. The neutral beam 

injection (NBI) system can be seen as a mono-energetic external source of particles with 

a single pitch angle onto flux surfaces. If minimum energies for each flux surface are 

calculated, then the fast loss fraction simply depends on whether the NBI energy 

component exceeds the minimum energy requirement for the flux surface on which the 

beam is ionized for the ions to be ion orbit lost. Fast ions which are promptly lost due to 

IOL affect the continuity equation in the same way as thermal losses, except that they are 

applied to decrease the NBI source term instead of the particle flux as a whole. The 

deposition profile is used to modify the NBI source term for the continuity equation to 

look like Eq. (36). 

��o�� =	óô����¬����� ´1 − 2��������,�(õ)·	ö�(õ)Þ
�÷e 																																											(36) 

H is the neutral beam deposition profile calculated from NBeams and shown in Fig. 

(17a). The NBI source rate is summed over all the energy components, where the particle 

energy, loss fraction, and the deposition profile structure is dependent upon the energy 

component, i, representing E, E/2, and E/3.  The fast ion loss fraction is calculated by 

considering the number of poloidal loss directions for all energy components on each flux 

surface divided by the total number of poloidal directions. 

�������� (õ) =ó��������,�Þ
�÷e =	ó[ ø ∈ ¬��o� (õ, ø) < ¬o��� 	]øû' [ ø	]øû' 	Þ

�÷e 																																				(37) 



 48

The condition ø ∈ [¬��o� (õ, ø) < ¬üÐ�� ] requires fast neutral beam ions to have greater 

energy than the minimum needed for ion orbit loss to be included in the integral.  

The inward return current compensating the loss of fast ions is assumed to consist 

of thermalized ions from the scrape off layer, accounting for the factor of 2 in the thermal 

ion radial particle flux source of Eq. (9). While the thermal ion loss fraction of Eq. (5) is 

cumulative in radius, the fast beam ion loss fraction of Eq. (37) is differential at the local 

radius.  

 
 

Figure 18: Ion orbit loss fractions for fast neutral beam particles of different energy 

components and for thermal ions. 
 

Figure (18) shows the loss fractions for the various energy components of fast 

beam ions compared to the cumulative (in radius) thermalized ion loss fractions 

calculated from Eq. (37) and (5), respectively. The “stair-step” profile structure of the fast 

ion loss fractions is due to the small number of poloidal loss angles considered 

numerically, which can be readily extended in future analysis. The fast loss profiles 

extend farther into the plasma than the thermal loss profiles, suggesting the possibility 
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that for very high energy NBI systems or systems that focus on injecting particles in the 

edge where these large NBI loss fractions exist, may generate significant fast losses 

which would be coupled with large return currents. Substantial fast ion losses in the edge 

like this have the potential to generate significant intrinsic rotation, and are therefore of 

great interest for investigations of situations where direct NBI cannot drive rotation in the 

usual way such as is predicted for ITER [35].  

Fast loss fractions often extend farther into the plasma than the region considered 

for edge calculations in this research. The losses inside of the edge pedestal region shown 

in Fig. (1) are integrated and removed from the total core NBI source that determines the 

core boundary condition for the particle flux calculation in the edge region. The edge 

region fast losses are maintained as a radial function to be included in the edge continuity 

equation. 

6.2 Experimental Flux Surfaces and Magnetic Fields 

Previous ion orbit loss models [10] use a simplified circular geometry described 

in Eq. (22) to calculate flux surface values as well as parameters like magnetic fields and 

major radii. 

 (�, ø) = 	 ýℎ(�, ø)																																																															(38P) 5�,�(�, ø) = 	5ý�,�ℎ(�, ø)																																																									(38�) 
ℎ(�, ø) = 	1 + � ý 	cos(ø)																																																						(38K) 

Ampere’s Law has been used in previous calculations, assuming uniform current density, 

to define flux surface values. 

C =  �� = í'� ý�H4�PH 																																																											(39) 
where “I” is the plasma current and “a” is the minor radius.  
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The minor radius was assumed in previous calculations to be that of the effective 

circular geometry that preserves the surface area for an elongated elliptical plasma of 

horizontal dimension 2a and vertical dimension 2b, Pý = QeH 41 + g� PÝ mH6.  

Sensitivity of the calculations of Eqs. (4)-(6) to the flux surface geometry 

treatment can be explored by comparing the results of calculations using experimental 

flux surface geometry with calculations using the circular model. Experimental flux 

surfaces obtained from EFIT [80] are shown in Fig. (19a), and the experimental as well 

as circular model poloidal magnetic fields in Fig. (19b). 

 
Figure 19: a) Experimental flux surfaces in the edge region (shaded) with the 

separatrix shown by dotted line b) Experimental poloidal magnetic field (opaque 

surface) compared to circular model analytical fit (transparent surface). 
 

Experimental data were also used for the toroidal magnetic field, allowing the minimum 

energy calculation in Eq. (4) to be evaluated with purely experimental parameters. With 

these model improvements, Fig. (20) shows the influence of flux surface geometry 

modeling and realistic magnetic fields on the loss fraction calculations. 

 

(a) (b) 
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Figure 20: Cumulative ion orbit loss particle, momentum, and energy loss fractions 

calculated with experimental geometry (empty symbols) and with an effective 

circular model (solid symbols). 
 

Calculating loss fractions with the experimental flux surface geometry decreases 

the total cumulative IOL for particles (��������� ) and energy (¬�������� ), and changes the 

structure of the loss profile to show a sharper increase of lost particles in the far edge as 

opposed to the more gradual loss of particles with the approximate circular model 

calculation. Momentum losses (s�������� ) reflect similar results by shifting the larger and 

more pronounced peak towards the separatrix when using experimental flux surface 

values as compared to the circular model, which agrees with previous models and 

experimental observations [39,41,81]. 

 In order to make this improved model predictive, an analytical fit to flux surfaces 

must be used. Previous analysis [82] has shown that a modified Miller model is an 

accurate and computationally manageable means to model flux surfaces. The Miller 

model [83] is an analytical geometric model that can treat elongated plasma geometries 



 52

by representing Cartesian (R,Z) coordinates of plasma flux as functions of plasma 

elongation, κ, and triangularity, δ. 

 (�, ø) = 	 ' + �KLN&																																																										(40P) ×(�, ø) = ��N�Mø�																																																													(40�) 
Where &(�, ø) = ø� + ��(�)N�Mø�, �� = sinfe ø�, and ø� is slightly different from the 

true poloidal angle and is defined by the triangle with hypotenuse of κr, and height Z. 

This model was employed to generate a new mesh with more realistic flux surfaces in the 

outer plasma region for the ion orbit loss calculation (but not the general plasma balance 

calculation in GTEDGE). These modeled surfaces shown by the wire mesh in Fig. (21) 

represent the experimental (green) flux surfaces much more accurately than a circular 

model, and yield almost identical IOL results (<1% flux surface positional error [82]) as 

the experimental calculations. 

 
Figure 21: Mesh calculated using the analytical Miller model compared with 

experimental (green) flux surface geometry, which is used in the ion orbit loss 

calculation. 
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The improved flux surface model can be used for both thermal and fast ion loss 

calculations, then applied to the main GTEDGE calculation via loss fraction profiles so 

there are no geometric issues with merging the two models. 

  



 54

CHAPTER 7 

RETURNING PARTICLES FROM THE SCRAPE OFF LAYER 

Particles which satisfy the conservation requirements to be ion orbit lost may 

return to the plasma after executing those orbits that cross the separatrix into the scrape 

off layer. If the fraction of this number of returning particles to the total number of 

particles that satisfy IOL requirements is unity, then no particles are actually ion orbit 

lost; if it is zero, then all IOL particles are removed from the plasma. In reality, the 

fraction lies somewhere in between. To investigate this further, the particle following 

code ORBIT [84] was modified to perform a numerical study tracking particle 

trajectories outside of the separatrix. It is assumed that if the particle orbit intersects with 

the vessel wall, then those trajectories are considered absolutely lost, whereas other orbits 

have the possibility of returning the ions to the plasma. Further analysis is required to 

extend this simulation to account for processes that are occurring in the SOL such as 

charge exchange or collisions with neutrals, which would remove particles from the 

plasma even with trajectories that do not intersect the wall. 

 For the present study, particles orbits were traced for 104 trial trajectories from 

each of 90 boundary points along the separatrix, at 5 different energies (100 eV, 500 eV, 

1 keV, 3 keV, 5 keV). The 104 different trajectories are shown for one boundary point in 

Fig. (22), where the (red) trajectories to the left represent particles launched away from 

the plasma core, and the (blue) trajectories to the right are towards the plasma core. The 

direction of each trajectory was chosen to sweep all angles with respect to the local 

toroidal magnetic field. 
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Figure 22: Example of 104 initial velocity vector positions for a single boundary 

point on the separatrix. Particle trajectories based on these conditions were followed 

by a Lorentz solver to analyze the fraction of particles that hit the wall. Blue 

launches are towards the core and red are towards the scrape off layer. 
  

After calculating all the orbits, the fraction of ions that hit the wall was 

determined as a function of energy, shown in Fig. (23). It is interesting to note that very 

low energies have a large non-return fraction, then a threshold is reached where the non-

return fraction drastically decreases before increasing at a slower monotonic rate through 

the keV range. The lower energy particle loss with a higher non-return fraction mostly 

occurs in the upper inboard quadrant. A potential cause for this is due to high energy 

particles drifting inwardly due to magnetic field curvature from neoclassical drifts, while 

the lower energy particles do not, and simply strike the wall (which is very close to the 

plasma in this region). 

This analysis shows that roughly 40% of ions that can energetically make it to the 

separatrix will strike the wall and be removed from the plasma. This fraction will be 
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considered the “non-return” fraction. Of the other 60%, some may still be removed due to 

charge exchange or collisions with neutrals, but this must be explored further. 

 
Figure 23: Fraction of ions that hit the wall out of all trajectory trials as a function 

of energy. 
 

The non-return fractions can also be analyzed as a function of poloidal position, 

as shown in Fig. (24). There are spikes in fractions of particles striking the wall at the 

upper chamber wall located approximately at the top of the plasma (θ = π/2), outboard 

midplane (θ = 0), and the divertor (θ = 3π/2). Losing particles at the top of the plasma is 

consistent with the close proximity of the plasma to the chamber wall at this location in 

DIII-D (see Fig. (21)). Also consistent with losses at θ = 0 and θ = 3π/2, previous IOL 

analysis [50,85] has predicted peaking in lost particles at the outboard midplane and an 

importance of x-loss [42,53] in the divertor region due to the null in poloidal magnetic 

field at the x-point. 
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Figure 24: Ion loss fractions as a function of poloidal position for a) all energy 

outward trajectories b) 100 eV ions c) 1 keV ions. 

(a) 

(b) 

(c) 
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When analyzing the poloidal dependence of losses at different energies, it is seen 

that the 100 eV energy ions exhibit larger variations in the non-return fraction than the 1 

keV ions. The 1 keV ions have distinct loss peaks for the upper chamber wall and the 

divertor regions, but appear to have similar loss fractions for the inboard and outboard 

sides of the plasma. The peak in the low energy non-return fraction in Fig. (23) is 

explained by the large increase in lost particles shown in Fig. (24b) at the upper chamber 

wall of the vacuum vessel. These low energy ions do not have enough kinetic energy to 

neoclassically drift back into the plasma, and strike the wall which is very close to the 

last closed flux surface at this poloidal location.  

A similar analysis was performed for fast beam ions, but instead of launching 

particles from the separatrix, particle tracking was initiated along the outboard midplane, 

where the neutral beams are injected. Results showed that >90% of fast beam particles 

that are energetically allowed to execute IOL orbits will hit the wall; therefore the fast 

fraction remains essentially unchanged.  

An interesting outcome of this simulation was that fast ions began striking the 

wall (i.e. being ion orbit lost) in the ORBIT numerical Lorentz force simulation at the 

same launch radius (ρ ≈ 0.7) for which the modified circular model first calculated NBI 

fast ion losses in Fig. (4) from conservation principles, validating this part of the fast 

beam IOL calculation. 
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CHAPTER 8 

X-TRANSPORT AND X-LOSS 

Another non-diffusive transport mechanism considered is called X-transport 

[42,53]. There is a region near the divertor x-point where the poloidal magnetic field 

becomes very small, shown in Fig. (25). In this region, the particle transport is different 

than in the rest of the plasma because the only magnetic field is in the toroidal direction, 

constraining particles to travel only in the toroidal direction with negligible poloidal 

displacement. Because the ions are not rotating poloidally, there are no neoclassical 

cancellations of velocity drifts, which allow ions to possibly drift out of the plasma 

through the x-point before exiting this x-region. This was seen in the Lorentz force 

particle orbit simulation in the previous section by the spike in lost particles at θ=3π/2 in 

Fig. (24). 

  

 

Figure 25: Schematic of the x-region near the x-point showing drift 

directions. Colored background represents the poloidal magnetic field, with the 

small Bθ regions in dark blue. 

x 

z 
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The particle transport in this region is dominated by a) poloidal ErxBφ drift and b) 

vertically downwards curvature and grad-B drifts, which are described by Eq. (41)-(43).  

�	�×Ð = 	¬ñ	 × 5ñ	5H =	 ¬�5� Mã�																																																																		(41)	 
�	∇Ð =		

��
5ñ	 × ∇585Þ =	

��
85�H �5�� 	MãÒ																																																		(42) 
�	« = 	−

��5ñ	 × Mã	85H = 	2

��85� 	MãÒ																																																								(43) 

W is the ion energy in the parallel or perpendicular direction. During the time that the 

particle is inside the x-region, there is competition between these two drifts to transport 

the particle poloidally back into the plasma, x-transport to a different flux surface, or x-

loss out of the plasma entirely. If the poloidal drifts are sufficiently small, the ion will 

drift vertically downward across the separatrix through the x-point and be x-lost. In the 

far edge region where the radial electric field changes sign, the poloidal drift is reversed 

in direction, allowing longer time periods for particles to be x-transported or x-lost due to 

the grad-B and curvature drifts. If the poloidal ExB drift is dominant, then the ions will 

remain in the plasma but be x-transported to a flux surface closer to the separatrix.  

 Large scale Monte Carlo guiding center simulations have identified x-loss as a 

dominant source of non-ambipolar ion transport, and therefore an agent of a radial 

electric field generation in the edge region [42]. Previous models have developed x-

transport theory with averaged time scales over the entire x-region using a modified 

circular model [53]. This research aims to extend the modified circular model theory by 

incorporating realistic geometry and particle tracking to determine realistic minimum 

energy values required for particles to be x-transported from an inner flux surface to each 

outer flux surface. Similar to ion orbit loss theory, minimum energy matrices for ions to 
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be x-transported or x-lost can be used to develop a methodology for incorporating the 

non-diffusive transport mechanisms into edge fluid models. 

The previous modified circular model [53] can be used to calculate the minimum 

energy required to x-transport ions from an inner flux surface to an outer flux surface 

using Eq. (44) as a constraint and assuming that ions with greater energy than the 

minimum energy, 
��o	 (M → 3) can also be transported just as far across flux surfaces. 


��o	 (M → 3) = 	 ��d→b�
��d�d���	Ge�laÛI                                   (44) 

The x-region has poloidal arc width, rΔø	, and is divided into radial segments of 

width	Δ�o→�between flux surfaces n and m, traveling in direction &' = cos g `̀∥m with 

respect to the magnetic field. This simplified circular model, whose geometry is 

illustrated in Fig. (26), will be used as a comparison to a more in depth particle tracking 

method developed for this research. 

 

Figure 26: Schematic of simplified circular model geometry for x-transport 

calculation. (Reproduced from reference 53 with permission.) 

 
Extended x-transport methodology includes calculating the velocity field from the 

poloidal and vertically downward drifts, then tracking ion trajectories through the x-
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region due to the experimental magnetic field and radial electric field distributions. 

Particles that begin on flux surfaces on the left side of the x-region, as in Fig. (27), are 

moving in the co-current direction. Conversely ions are moving in the counter-current 

direction if they enter on the right side of the region. The poloidal ExB drift is dominant 

until the radial electric field approaches zero, then the downward grad-B and curvature 

drifts have a greater effect. These downward drifts are the primary mechanism for x-

transport to occur, however the radial electric field becomes larger in magnitude at a rate 

rapid enough to keep some x-transported particles in the plasma instead of being lost 

through the x-point. This process can be assumed to be cyclical in the sense that when no 

Er shear is present, ions are easily x-lost, which acts to construct an Er “well” whose shear 

constrains more x-transported ions to the plasma. In steady state, there will be a constant 

x-transport and x-loss associated with a particular Er whose losses will be determined by 

the time scale of processes determining Er and the compensating return currents. 

 
Figure 27: The x-region of the tokamak showing a representative particle 

trajectory through the region. The dark blue region represents the nulled poloidal 

magnetic field. 
 

Using this model, a minimum energy matrix similar the previous simplified 

geometry model in Table 1 of Reference 53 can be calculated describing how much 

energy is required for a particle on a given inner flux surface to be x-transported to a 
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given outer flux surface, or out of the plasma entirely. After analyzing x-transport for 

particles with pitch angle ξ0 = ±0.5, results showed that even with extremely high 

energies up to 20keV, particles were consistently x-transported, but not x-lost out of the 

H-mode DIII-D plasma, similar to the example trajectory in Fig. (27). Table 2 shows the 

corresponding minimum x-transport energy matrix for an ion to travel from one flux 

surface to another in the edge plasma for DIII-D H-mode shot #123302 and ξ0 = ±0.5.  

The format for data presentation in the table is: (modified circular model)/(particle 

tracking model). For example, according to Table 2, the minimum energy required for an 

ion to be x-transported from ρ=0.926 to ρ=0.932 is 0.5 keV for simplified circular model 

and 0.4 keV for the particle tracking model. 
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The minimum energy for the simplified geometry model is seen to monotonically 

increase for an ion to move farther out in the plasma and minimum energy values can be 

calculated for all combinations of flux surfaces leading to an upper triangular matrix. 

This assumes a constant radial electric field within the mesh of the calculation. The 

particle tracking calculation accounts for a varying radial electric field across the ion 

trajectory. With the inclusion of this physics, the minimum energy matrix takes a 

diagonal form, suggesting that ions can primarily be x-transported to the n+1 flux surface 

and results in larger minimum energies to be x-transported in general. This result is 

consistent with the findings that x-loss, or the particle crossing the separatrix from this 

mechanism, occurs less frequently than a particle being x-transported to a flux surface 

closer to the separatrix.  

The gray row in Table 2 represents the flux surface where the radial electric field 

changes from positive to negative. When Er=0, there is no poloidal transport possible in 

the particle transport model, so particles are not able to enter the x-region, which is why 

there are no minimum x-transport energies available on this flux surface for the particle 

tracking model. However, in reality, ions with some poloidal inertia will transport into 

the x-region on this flux surface and experience an uncontested vertically downwards 

grad-B drift, which will produce a large source of particles onto the flux surfaces 

outwardly adjacent to the flux surface where Er=0. The yellow diagonal line represents 

the most energetically favorable x-transport scenario for an ion to travel from flux surface 

n to n+1, and will subsequently be used in the fluid model. 

Since particles are only energetically allowed to be x-transported one flux surface 

at a time towards the separatrix like a cascade, when an ion exits the x-region after being 



 66

x-transported and re-renters the region of the tokamak with normal neoclassical transport 

occurring, it is swept around the flux surface and samples all possible locations and 

minimum energies for ion orbit loss. This process puts conventional ion orbit loss in 

direct competition with x-transport for each flux surface. The process that has the 

smallest energy allowing an ion to be transported either out of the plasma (IOL) or to the 

next flux surface (x-transport) will dictate the loss on that flux surface. To analyze which 

mechanism dominates, Fig. (28) shows a comparison of minimum energies for x-

transport calculated from the particle tracking model and thermal ion orbit loss for edge 

plasma flux surfaces. 

 
Figure 28: Comparison of minimum energy for co-current particles to be either x-

transported or thermally ion orbit lost for a pitch angle of ξ0 = -0.5. 
 

 The minimum energy for thermal IOL is seen to monotonically decrease towards 

the separtrix. The minimum energy for IOL drops below that of x-transport at ρ=0.943, 

making IOL more favorable in the outer edge region and x-transport more favorable in 

the inner edge region. This process of “x-transport pumping” causes lower energy 

particles in the inner edge region (that were previously not energetically available to be 
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IOL) to be pumped into a region where they are energetically allowed to be IOL. The 

unshaded bold row in Table 2 shows the flux surface where IOL becomes dominant. It 

can be seen that the minimum energies for x-transport become significantly larger for the 

particle tracking scheme at larger radii than this flux surface compared to the modified 

circular model. This suggests that any model considering both IOL and x-transport 

processes must consider them as coupled. 

To be incorporated into the fluid equations, the mechanism for making up the lost 

charge from x-transport and its relationship with conventional IOL must be analyzed. 

Both IOL and x-transport act on the same ion velocity distribution on a given flux 

surface. However, there will be an extra source and sink due to x-transport for particles 

on each flux surface, as indicated in the continuity balance equation. 

∇ ∙ Γi = M�$�!o,� + ��o��,� − 2Γ�x,i �������,����
�� +ó�	(M → 3)Γ�#,oo

−ó�	(3 → M�)Γ�#,�o� 																																																																										(45) 
Fx(n�m), which is applied to the radial particle flux on the initial flux surface n, is the 

loss fraction due to x-transport from flux surface n to flux surface m defined by taking the 

integral of velocity space similar to the IOL loss fraction from Eq. (5). When using the 

assumption that ions can only be x-transported across one surface, this sum will disappear 

and turn into a source from just the previous flux surface. The x-transport sink is 

similarly defined for the loss of particles on flux surface m due to x-transport to flux 

surface n’ closer to the separatrix. In this continuity equation, either the thermal IOL sink 

or the x-transport sink apply depending on which process has the most favorable 

minimum energy. 
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To simplify this equation for realistic implementation in GTEDGE, the “x-

transport pumping” process was utilized to model the x-transport directly into the thermal 

ion orbit loss fraction, allowing the continuity equation to remain unchanged, but 

utilizing different ���������  curves. Assuming particles can only be transported to the next 

flux surface, the cumulative particle fraction shifts radially outwards by the integral over 

the different minimum loss energies between the two processes of IOL and x-transport. 

Δ�o	 =	[ �'H	�(�')	]�'�bcd���
�bcd�

[ �'H	�(�')	]�'_' = �Γ g32 ,
��o	 m − Γ g32 , ¬��o��� m�
Γ g32m 																						(46) 

However, for both x-transport model analyses, only two directions were taken into 

account, &' = ±0.5.  To expand the calculations for all directions would require a 

significant computational effort to include in GTEDGE.   

Results from comparing the two models were used to develop assumptions for a 

simplified implementation into the fluid equations. It is assumed that all x-transported 

particles will cascade down to the flux surface where ion orbit loss becomes the dominant 

process, so there is a large source of relatively lower energy, counter-current particles 

that become newly available to be ion orbit lost. However, the majority of these ions will 

be immediately lost when this condition is met because low energy, counter-current 

particles are preferentially lost in the IOL process. Therefore, it is assumed that all of the 

“x-transport pumped” particles are lost to the plasma just like in conventional ion orbit 

loss, but this happens on a flux surface closer to the separatrix (ρ=0.943 in this case) than 

where they were originally displaced. Because these x-transported ions are actually lost 

via the IOL mechanism, they can be removed from the plasma by modifying the total loss 

fraction profile, instead of the particle source and sink terms in the continuity equation.  
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��!���!� = ��������� + ∑ Δ�o	�o÷e1 + Z�!�	 /Z�!���� 																																																				(47) 
K is the flux surface where ion orbit loss becomes dominant, and the sum accounts for 

the total loss fraction, ��!���!� , to be treated as a cumulative profile. The denominator 

accounts for the presence of more particles on each outer flux surface than originally due 

to the x-transport, constraining the ratio of x-transported particles, Z�!�	 , to total number 

of particles modifies this cumulative fraction to a maximum value of 1. 

The x-transport modified cumulative loss profile compared to the conventional 

thermal ion orbit loss profile is shown in Fig. (29) for the DIII-D H-mode shot #123302. 

 

Figure 29: X-transport corrected particle loss fractions. 

  This restructuring of the cumulative loss fraction curves due to the competing 

processes of IOL and x-transport increases the particle loss fraction through the steep 

gradient region of the pedestal as expected. The effect would be amplified with the 
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inclusion of all pitch angles (not just &' =	±0.5) in the analysis, and this will be 

considered in future work. 
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CHAPTER 9 

 

PREDICTIVE RADIAL ELECTRIC FIELD AND SENSITIVITY TO 

ION ORBIT LOSS MODEL IMPROVEMENTS 

Ion orbit loss model improvements can be propagated through the fluid equations 

to calculate the 1) radial particle flux 2) toroidal and poloidal velocities and 3) radial 

electric field using the overall methodology outlined in Fig. (2). The term “model 

improvements” refers to the three extensions to ion orbit loss theory previously 

discussed, which are 1) the inclusion of fast ion orbit loss, 2) the use of experimental flux 

surfaces and magnetic fields instead of a modified circular geometric model, and 3) the 

reduction of the amount of ion orbit loss calculated by 40% due to some ions returning 

into the plasma after executing orbits that cross the separatrix. 

The radial particle flux calculated from Eq. (9) and shown in Fig. (30) compares the 

results with and without improvements to the IOL model as well as to the calculation 

with no ion orbit loss. 

 

Figure 30: Radial particle flux with and without ion orbit loss model improvements 

compared to the case without ion orbit loss. 
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Relative to the calculation without the model improvements, inclusion of fast ion 

losses appears to dominate by further reducing the radial particle flux profile due to a 

decrease in ion source. Equations (33) and (35) describe how a change in radial particle 

flux will drive a change in rotation.   

Model improvements to the IOL calculation affect the intrinsic rotation 

calculation of Eq. (7) as shown in Fig. (31). The use of experimental flux surfaces and 

magnetic fields appear to dominate the ion orbit momentum loss calculation, causing the 

prediction of the intrinsic rotation peak to be larger and located closer to the separatrix 

relative to the prediction of a circular model, which exemplifies the results from the 

effects of experimental geometry on the cumulative momentum loss fraction. This result 

concurs with available intrinsic rotation probe measurements [36,86] and CER 

measurements [39,87] that show peaking at locations at or near the separatrix. (It should 

be noted that there is uncertainty in the determination of the separatrix location.) 

 

Figure 31: Effect of ion orbit loss model improvements on intrinsic rotation 

for both deuterium and carbon.  
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Intrinsic rotation profiles have a profound effect on the poloidal rotation profiles. 

The total poloidal velocity profiles with and without IOL model improvements are shown 

in Fig. (32) for both carbon and deuterium. The “experimental” deuterium velocity is 

determined from the radial deuterium momentum balance equation. 

 

Figure 32: Comparison of theoretical poloidal velocity models with and without ion 

orbit loss model improvements for a) deuterium and b) carbon. 
 

(a) 

(b) 
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Predictive poloidal velocity models agree only qualitatively with experimental 

curves, with the improved IOL model yielding a sharper “well” to the profile that is 

shifted closer to the separatrix.  

The predictive toroidal velocity results with IOL but without momentum loss 

(IOL1) corrections in Fig. (33) show excellent agreement with experiment, as they should 

since the momentum transport frequencies ($�,#/%) were fit to do so. Varied results in the 

toroidal velocity model with the inclusion of the ad hoc intrinsic rotation correction 

suggest the requirement for the more rigorous implementation of ion orbit loss into the 

momentum balance equations as discussed in the previous section. The agreement of the 

general neoclassical fluid model without superposition of intrinsic rotation suggest that 

the inference of the drag frequencies with the intrinsic rotation correction may be 

sufficient to account for IOL, but a comprehensive rotational model will be required to 

prove this preliminary result. 

 

Figure 33: Comparison of theoretical toroidal velocity model with IOL but 

without intrinsic rotation for both deuterium and carbon. (DIII-D H-mode 

discharge #123302). 
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The sensitivity of the radial electric field due to IOL model improvements is seen 

in Fig. (34). This calculation employs the methodology outlined in Fig. (2) and the 

toroidal velocity profiles from Fig. (33), which do not have the explicit intrinsic rotation 

correction but do include the intrinsic rotation in the drag frequency calculation. 

 

 

Figure 34: Theoretical radial electric field with and without ion orbit loss model 

improvements compared to experiment. Theoretical toroidal velocity from Fig. (33) 

is used in the modified Ohm’s Law. (DIII-D H-mode discharge #123302). 
 

With the IOL model improvements, the radial electric field “well” is shifted 

downwards and outwards. While the predictive Er “well” still does not align directly with 

experiment, this is an excellent estimate given the limitations of the fluid model 

employed. 

In order to analyze where the model breaks down, the theoretical model is 

decomposed into the separate velocity and pressure components to compare with 

experiment in Fig. (35). It is seen that the differences in primarily the theoretical poloidal 
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velocity but also the toroidal velocity profiles from experiment contribute to the 

difference in structure of the radial electric field “well”. Similar results are found with the 

RMP and L-mode discharges, the rotation profiles cause the radial electric field well to 

be under-predicted (or offset in the L-mode case) using the theoretical model when 

compared to experiment. 

 

 

Figure 35: Comparison of the theoretical radial electric field components of toroidal 

velocity, poloidal velocity, and pressure gradient to experimental components. 
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CHAPTER 10 

GTEDGE COMPARISON TO XGC0 

 Collaborative research with the Princeton Plasma Physics Laboratory (PPPL) was 

performed with the primary objective to compare predictions and assumptions of the 

rapid semi-analytical plasma edge pedestal physics model presented in this dissertation to 

the state-of-the-art, full-f (but computationally expensive) calculations made by the 

XGC0 code. Previous simulations using XGC0 interpretively have shown good 

agreement of measured edge pedestal profiles with DIII-D H-mode discharges [44], 

especially when including kinetic effects like ion orbit loss to calculate a self-consistent 

radial electric field. Non-measured quantities such as ion distribution functions and 

deuterium rotation velocities are also calculated by XGC0, and are of great interest to 

compare to GTEDGE calculations to inform improvements for future studies. 

10.1 XGC0 Methodology 

The kinetic neoclassical transport code XGC0 [43] was used to complete goals of 

the 2011 Fusion Energy Sciences Joint Research Target for understanding the physics 

mechanisms responsible for the edge pedestal structure with validation of predictive 

models against experimental data from Alcator C-Mod at MIT, DIII-D at General 

Atomics, and NSTX at PPPL. XGC0 is a five dimensional (3D in space and 2D in time) 

code that solves the Hamiltonian guiding center equations developed by Littlejohn, 

Boozer, and White [88-90], and is designed for use with massively parallel processing 

systems. The code tracks millions of test particles that undergo Monte Carlo collisions 

with a background Maxwellian plasma and neutral fluid. This calculation is full-f in that 

the distribution function of the background plasma is allowed to evolve (or is updated 

between various stages of the calculation), which will change the calculated energy, 
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momentum, and position of the test particles after collisions with respect to a calculation 

where the background plasma is required to be Maxwellian in nature.  

Several model parameters, such as the anomalous diffusion coefficient profile, are 

adjusted as inputs and affect the outcome of the simulated profiles. XGC0 calculates 

quantities through typical neoclassical transport models [43], and then adjusts the 

transport profile based on what the user specifies to be anomalous transport. The purpose 

of adjusting the model parameters is to match certain profiles to experiment. In this case, 

the electron density, electron temperature, impurity density, impurity temperature, 

toroidal and poloidal carbon velocities, and the radial electric field are matched to the 

CER and Thomson scattering system measurements from DIII-D.  

Synthetic diagnostics to obtain specific 2-dimensional information about the main 

ions, carbon impurities, and electrons were constructed by D.J. Battaglia. The outputs 

from these diagnostics collect information about the three plasma particle populations for 

1) parallel energy 2) perpendicular energy 3) weighting distribution function 4) toroidal 

momentum 5) poloidal momentum 6) radial momentum 7) parallel momentum and 8) 

particles/dt within each cell at each time at various points between XGC0 modules. 

Similar to the GTEDGE analysis (and other profile fitting routines in general), XGC0 

analyzes a specific time slice for a given shot. In this case, DIII-D QH-mode shot 

#106999 at 3700ms was selected for analysis. The profiles that are simulated by XGC0 

are then compared to the measured CER profiles for this shot and timeslice to determine 

if agreement between all quantities is possible. One of the major implications of XGC0 

H-mode studies in the past few years [44] has been to yield simulated profiles that can be 
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matched to experiment for all quantities (i.e. a correct radial electric field profile structure 

corresponds to the predicted pedestal height and width seen in measurements). 

The flux-driven guiding center XGC0 code computes the self-consistent electron, 

ion, and neutral transport for both open and closed field line regions in an axi-symmetric 

diverted magnetic geometry, including the consideration of recycling of neutrals from the 

wall. The simulation is divided into 60 radial zones whose thickness correspond to 

roughly 1mm in DIII-D. The calculation is represented in terms of toroidal transit time, τ, 

which represents the time it takes for a 200eV passing ion whose velocity vector is 

parallel to the magnetic field vector along the magnetic axis of a tokamak of major radius 

R=1m to travel once around the torus. A sufficiently relaxed solution in steady state with 

appropriate resolution in four dimensions (2D in space, 2D in time) typically requires 

greater than 50τ time steps and several days of parallel calculations on thousands of 

processors. This equates to at least one month to turn around a solution when including 

queue times on large clusters.  

For substantiation of the GTEDGE calculations and aid in improving the model 

presented in this dissertation, a DIII-D QH-mode (non-ELMing) discharge #106999 was 

simulated with both XGC0 and GTEDGE. The DIII-D QH-mode discharge selected 

exhibits steady state conditions and high temperatures, leading to increased kinetic effects 

from the loss of high energy particles, which are desirable for meaningful comparisons 

between XGC0 and GTEDGE calculations. 

To interpret the DIII-D QH-mode discharge with XGC0, profiles for ion 

diffusion, and ion and electron heat diffusivities were estimated to be of hyberbolic 

tangent form, as seen in Fig. (36).   
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Figure 36: Transport coefficient profiles used in the XGC0 simulation of DIII-D 

QH-mode discharge #106999. 
 

Particle, heat, and momentum fluxes from the core plasma to the edge plasma 

were applied as a core boundary condition, and other model parameters such as neutral 

recycling coefficients were adjusted to the values shown in Table 3 in order to match 

simulated profiles of electron and ion temperatures and densities to measured 

experimental profiles. 

Table 3: Assumed inputs for XGC0 simulation of DIII-D QH-mode shot #106999. 

Simulation 

Limits, ψ 

Neutral Recycling 

Fraction 

Ion Heating 

Power 

Electron 

Heating Power 

Particle 

Source 

Torque 

Input 

[0.8,1.05] 0.95 9.5 MW 1.0 MW 9.0E20 [#/s] 4.0 Nm 

 

With properly adjusted inputs, XGC0 accurately simulates the experimentally 

measured profiles, as seen in Fig. (37), in conjunction with interpreted (non-measured) 

quantities like ion distribution functions, deuterium velocities, and radial particle fluxes, 
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which can readily be compared to similarly calculated GTEDGE quantities.

 

Figure 37: Simulated XGC0 temperatures and densities compared to experiment. 

10.2 Comparison of GTEDGE and XGC0 Simulations  

 With XGC0 simulations predicting correct profiles when compared to the 

available measured quantities, it is assumed that the non-measured quantities calculated 

by the code can lend some insight to the GTEDGE model, specifically with regard to the 

ion orbit loss calculation, radial particle fluxes, rotation velocities, and radial electric 

field components. 

 Minimum energy curves constructed from solving Eq. (4) in GTEDGE are 

compared to the velocity distribution functions simulated from XGC0. The two 
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dimensional velocity distribution function in parallel versus perpendicular velocity space 

for deuterium at approximately ρ=0.97 at the outboard midplane is shown in Fig. (38). 

 

Figure 38: Deuterium velocity distribution simulated from XGC0 compared to 

calculated minimum energy curves for ion orbit loss from GTEDGE. 

 
The “particle weights” shown by the XGC0 calculation represent the level contours of the 

particle distribution function �(õ, ø, �), �∥) at a specific radial and poloidal location. A 

typical Maxwellian curve would be represented by a symmetric arc centered around zero. 

The GTEDGE minimum energy curve, ¬��o(õ, ø', ø� , &') represents the boundary above 

which ion orbit loss causes particles to be removed from the assumed Maxwellian 

distribution function. In this case, the radial and poloidal angle variables are fixed, and 

the minimum energy is expressed in terms of a minimum speed as a function of pitch 

angle. 
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 The deuterium velocity distribution calculated from XGC0 is seen to be 

asymmetric around �∥ = 0, presumably due to ion orbit loss primarily of counter-current 

ions, �∥ < 0. The region above the minimum energy curve represents the part of a 

Maxwellian distribution function that would be removed by the truncated Maxwellian 

representation of the GTEDGE model, or the lower limit of the integral in Eq. (5). The 

GTEDGE model for the particle distribution function is seen to align quite well with the 

simulated distribution function from XGC0, especially for highly counter-current 

particles. There is some over-prediction of ion orbit loss in the upper left quadrant 

represented by counter-current ions with (�∥/	���, �)/	���)~(−1,2.5) remaining above 

the predicted minimum energy loss curve from GTEDGE. This can be explained, at least 

in part, by the inclusion in the XGC0 calculation of ions in the process of being ion-orbit 

lost, as well as including particles that return to the plasma from the scrape off layer. The 

radially emanating lines represent constant pitch angle, and the minimum energy curve 

calculated from GTEDGE terminates at &' =	±0.99. 

 If the XGC0 distribution function, �(õ, ø, �), �∥), is integrated over the 

perpendicular velocity, a 1-dimensional (in velocity) distribution function can be 

computed, �(õ, ø, �∥). The loss hole describing the difference between the deuterium ion 

velocity 1D distribution function including ion orbit loss compared to a symmetric 

distribution function assumed to not include ion orbit loss is shown in Fig. (39) by the 

shaded regions. Since the GTEDGE distribution function is not a function of the pitch 

angle, but instead is integrated with limits that are functions of the pitch angle, a similar 

curve cannot be computed for comparison in this case. 
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Figure 39: Simulated one dimensional distribution function from XGC0 showing 

skewed profiles for deuterium species shown in (a) and (b), but not as significantly 

for carbon shown in (c) and (d). 
 

Figure (39) shows the simulated deuterium velocity distribution function as highly 

skewed towards high energy co-current ions, with a loss of IOL particles in the shaded 

counter current regions. The carbon impurity distribution functions are seen to be 

simulated as much closer to Maxwellian in nature, with only a slight asymmetry 

attributable to ion orbit loss.  

 Assuming the asymmetry in the ion distribution functions is solely due to ion 

orbit loss, the difference between the simulated XGC0 distribution function and a 

symmetric distribution with no IOL will yield the fraction of lost particles. By integrating 

the shaded region of the XGC0 1D distribution function and dividing by the integral over 

the full distribution function, a loss fraction profile can be constructed. This cumulative 

integral for the XGC0 simulated distribution function can be directly compared to the 

(a) 

(b) 

(c) 

(d) 
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truncated Maxwellian integral used by GTEDGE, which describes the cumulative particle 

loss fractions for the plasma as a function of normalized radius. 

 

Figure 40: Edge pedestal cumulative loss fractions calculated from XGC0 and 

GTEDGE. 
 

 The total cumulative loss fractions calculated from XGC0 are seen to be less than 

GTEDGE, which is consistent with the velocity distribution function visualization in Fig. 

(38), but predict more ion losses throughout the entire profile in the edge region. This 

result is consistent with the decreased total IOL predicted by using experimental flux 

surfaces (relative to the circular approximation) and magnetic fields in section 6.2, and 

the increase in loss fraction in the inner pedestal region through the x-transport pumping 

mechanism described in chapter 8. 

 The GTEDE model uses the ion orbit loss fractions as a loss term in the fluid 

continuity equation determining the radial particle flux of the thermalized ions. The 
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GTEDGE calculation is based on a radial particle flux boundary condition at ρ=0.86, 

which includes all thermalized ion sources for �′ ≤ 0.86, Γ(õ = 0.86) =
	[ ��'.�� [M(��)$�!o(��) + ��o��(��)]]�′'.��' . The XGC0 radial particle flux is determined by 

the difference in radial currents calculated between cells for each particle for collisional 

diffusion processes as well as collisionless neoclassical transport. The two particle fluxes 

are compared in Fig. (41).  

 

Figure 41: Comparison of radial particle fluxes for both carbon and deuterium 

calculated from GTEDGE and XGC0. 
 

The disparity in fluxes from GTEDGE and XGC0 could be due to different return 

currents associated with ions in the XGC0 calculation than those that are included in the 

GTEDGE calculation, a specific assumption in the neutral recycling model, or the 

different methodologies used in calculating the radial particle fluxes (kinetic versus 

fluid), but this is not yet fully understood. The carbon radial particle flux simulated by 
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XGC0 is roughly 20% as large as the main ion radial particle flux, suggesting that the 

assumption of a negligible carbon flux in GTEDGE is a reasonable initial assumption. 

Neither XGC0 nor the GTEDGE model include different charge states of carbon, which 

is a reasonable assumption for high energy and low collisionality edge pedestal regions 

like this particular QH-mode; however, will need to be considered for more accurate 

treatment of varied modes of operation.  

 One distinction between XGC0 and GTEDGE is the ability for XGC0 to simulate 

local velocities, whereas GTEDGE calculates flux surface averaged (FSA) velocity 

profiles. The toroidal velocities calculated from XGC0 are constructed from a tally of the 

toroidal momentum for each particle species in each cell, normalized by the mass and 

weighting function for each species and location. Toroidal velocities calculated by the 

two codes are compared in Fig. (42), including both the outboard midplane (OBM) and 

FSA profiles for both carbon and deuterium. The GTEDGE predicted velocities are 

calculated from Eq. (33). 
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Figure 42: Carbon and deuterium toroidal velocities from XGC0 (FSA and OBM) 

compared to GTEDGE (FSA) and the CER experimental measurement for carbon. 
 

 When comparing the GTEDGE calculation with the CER experimental 

measurements, it is seen that the predictive carbon FSA toroidal velocities match 

extremely well with experiment. The predictive toroidal velocity formalism is determined 

from the theory presented in section 5.1 which calculates rotation for thermalized ions 

that are not ion orbit lost using a viscosity coefficient that was chosen to match 

experiment. The deuterium toroidal velocity calculation predicts larger rotation for the 

main ion than the impurity species, but with a similar structure profile.  

 XGC0 inputs were adjusted to match experimental OBM carbon data, therefore 

the OBM carbon velocities align very well with measurements from the CER system. The 

flux surface average carbon profiles take on a slightly different structure than those 
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measured at the outboard midplane, but are still very similar to the OBM profiles. The 

XGC0 simulated FSA deuterium rotation profiles are starkly different than experimental 

carbon measurements, with roughly a four times reduction in magnitude as well as a 

change in sign in the profile around the transport barrier at roughly ρ~0.98. The XGC0 

simulated deuterium OBM velocity is drastically different than the flux surface average 

and even exhibits a sign reversal for the majority of the profile. There may be inherent 

assumptions in XGC0 regarding how the torque input is divided between carbon and 

deuterium species, and in the low collisionality regime of this shot, there is not much 

momentum transfer between species. 

 The predicted FSA carbon rotation profiles agree well between XGC0 and 

GTEDGE as well as with experimental data. The deuterium velocity profiles differ 

significantly in both structure and magnitude. An interesting observation from reference 

[50] is that the majority of ion orbit loss is calculated to cross the separatrix at the 

outboard midplane, and can sometimes even be larger than the calculated fluid velocity. 

Assuming the XGC0 deuterium rotation profiles are reliable for this argument, the result 

from [50] in conjunction with the OBM profiles shown in Fig. (42) and the significantly 

larger IOL predicted for deuterium than for carbon, suggest that the concentration of ion 

orbit loss at the outboard midplane could be the cause of the considerably different OBM 

rotation profiles for deuterium.  

 The shaded region in Fig. (42) shows the region spanned by the XGC0 deuterium 

toroidal velocity profiles as they vary poloidally along the flux surface. The OBM 

toroidal velocity profiles are preferentially in the counter-current direction, and the 

inboard midplane (IBM) profiles are largely in the co-current direction. This result is 
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consistent with the XGC0 simulation containing a significant number of IOL particles in 

the OBM, which would be preferentially in the counter-current direction. The FSA minus 

the localized OBM intrinsic rotation in Fig. (42) shows order of magnitude agreement 

with the difference between the FSA and the OBM toroidal velocity boundary at the far 

edge near the separatrix, suggesting this could be the mechanism for the significantly 

different deuterium profiles than those of carbon, which will affect the radial electric field 

calculation as discussed previously. Taking into account the flatter loss fraction structure 

predicted in XGC0 in comparison to GTEDGE, the effects of intrinsic rotation may 

extend much farther into the edge than predicted by GTEDGE if a similar calculation 

could be performed with XGC0. 

 The fraction of lost particles as a function of poloidal angle calculated from 

GTEGE shows that IOL particles are preferentially lost to the OBM in this QH-mode 

discharge, supporting the above argument for ion orbit loss as the driver for the large 

poloidal variation between the IBM and OBM deuterium toroidal velocity profiles. 

 

Figure 43: Poloidal distribution of exit location of ion orbit loss particles. 

 Similar comparisons are made for poloidal velocity profiles in Fig. (44). 



 91

 

Figure 44: Carbon and deuterium poloidal velocities from XGC0 (FSA and OBM) 

compared to GTEDGE (FSA) and the CER experimental measurement for carbon. 
  

 Flux surface averaged poloidal velocity profiles calculated from GTEDGE predict 

a smaller “well” for carbon than for deuterium, with both shifted closer to the separatrix 

with respect to the experimental carbon CER measurements.   

 The XGC0 outboard midplane carbon poloidal velocity profile predicts the 

experimental value quite well; however, the FSA poloidal velocity profiles for both 

carbon and deuterium show a smaller magnitude “well” structure than the OBM CER 

measurements. The OBM deuterium poloidal velocity profile is larger in magnitude in 

the negative direction, exemplifying similarities to the Er profile structure. 

 Both XGC0 and GTEDGE predict a deeper poloidal velocity “well” for deuterium 

than for carbon, which provides a greater contribution to the Ohm’s Law radial electric 

field calculation “well” than for the carbon ion. However, the GTEDGE FSA poloidal 
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velocity profiles calculate “well” depths between the FSA and OBM “wells” simulated 

from XGC0. 

 The radial electric field is determined differently in XGC0 than the Ohm’s Law 

expression developed in this dissertation, ¬���� = (Ó� + � × 5 − ∇Ë. In the XGC0 

simulation, the electrostatic potential is assumed to be constant along flux surfaces, and 

the radial electric field is evaluated according to the radial Ampere’s law averaged over a 

flux surface [43].  

4�〈� ∙ ∇C〉+ � �OÝ 〈¤ ∙ ∇C〉 = K〈∇ ∙ (¦ × ∇C)〉 = 0																									(48) 
The brackets represent the flux surface average and J is the sum of all the current in the 

plasma, including the classical polarization currents included in Poisson’s equation. This 

calculation is not valid in the open field line region for XGC0, and is appropriately 

compared to the GTEDGE radial electric field inside the separatrix in Fig. (45).  

 

Figure 45: Comparison of radial electric field profiles calculated from XGC0, 

GTEDGE, and the carbon radial momentum balance equation. 
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 All radial electric field profiles predict similar structure and “well” depth relative 

to experiment (carbon force balance). The GTEDGE “well” using predictive velocities is 

closer to the separatrix than the XGC0 and experimental profiles, which can be seen to 

arise from the predictive poloidal velocity profiles in Fig. (44). As previously discussed, 

the GTEDGE prediction of the radial electric field using experimental rotation profiles is 

in good agreement with experiment. The XGC0 simulation is within the same error 

(~20%) to experiment as the GTEDGE Ohm’s Law calculation using experimental 

velocities, illustrating that if better velocity models can be constructed, the proposed 

Ohm’s Law calculation can be just as an effective tool for calculating the radial electric 

field, but with significantly less computational effort.  
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CHAPTER 11 

DISCUSSION AND CONCLUSIONS 

A modified Ohm’s Law is presented with the goal of developing a 

computationally efficient predictive model for the calculation of the radial electric field in 

the plasma edge. The Ohm’s Law formalism is based on a multi-fluid momentum balance 

model that employs a Lorentz friction model for two plasma species. The Ohm’s Law Er 

prediction is validated by demonstrating its consistency with the usual carbon radial 

momentum balance evaluation of Er in three DIII-D discharges of representative H-mode, 

RMP, and L-mode plasmas when experimental rotation profiles are used to evaluate the 

motional electric field. The Ohm’s Law Er calculation is rapid, and can readily be 

extended to a first principles predictive calculation by using predictive edge velocity 

models which include effects of ion orbit loss, intrinsic rotation, and return currents. 

In order to leverage the modified Ohm’s Law as a predictive calculation, a semi-

analytical model for the edge plasma is developed to quantitatively describe the 

relationship between edge parameters that determine the radial electric field. Ion orbit 

loss and corresponding return currents generate a radial particle flux and intrinsic rotation 

in both the toroidal and poloidal directions. The radial particle flux and intrinsic rotation 

torque the plasma and determine the plasma rotation profiles. The plasma rotation then 

generates a motional radial electric field, which affects the amount of ion orbit loss. 

Previous ion orbit loss models are extended to account for fast neutral beam ion losses, 

realistic geometrical representations for flux surfaces and magnetic fields, the effects of 

ions returning from the scrape off layer, and the x-transport of ions in the low-B region 

near the x-point.  
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Relative to the previous ion orbit loss model, inclusion of prompt fast neutral 

beam ion orbit lost particles decreases the radial particle flux profile due to a reduced 

source term in the continuity equation. Using realistic magnetic fields and flux surface 

geometry in the ion orbit loss model decreases the total amount of particle and energy 

losses relative to predictions using simpler magnetic field representations, while 

increasing the amount of momentum loss and shifting the intrinsic rotation peak closer to 

the separatrix, in better agreement with experimental observations.  

A numerical study of orbit tracking predicts that roughly half of the particles that 

satisfy the momentum and energy balance requirements to be ion orbit lost across the 

separatrix will directly strike the wall. The other half may re-enter the plasma or may be 

removed from the plasma via a secondary mechanism such as charge exchange in the 

scrape off layer.  

In-depth particle tracking in the x-region to analyze x-transport reveals a new 

mechanism, “x-transport pumping”, which transports (via grad-B and curvature drifts) 

lower energy ions on internal flux surfaces to outer flux surfaces where they are 

energetically able to be ion orbit lost. This effect can be included in the cumulative 

thermal ion orbit loss fraction for incorporation into the fluid equations, but future 

research is required for actual implementation into the GTEDGE fluid equations. 

Momentum balance rotation models for toroidal and poloidal velocities (which 

depend on ion orbit loss and intrinsic rotation) are leveraged for calculating the motional 

component of the radial electric field in the predictive Er calculation. When the improved 

ion orbit loss model is used in the completely predictive edge pedestal model, the 

predicted poloidal rotation profile agrees in order of magnitude and general profile with 
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experiment, and the effects of intrinsic rotation improve the agreement. The theoretical 

toroidal velocity profile with particle IOL corrections (but without the explicit inclusion 

of intrinsic rotation) predicts profiles in very good agreement with experiment. When the 

experimental velocity profiles were used in the modified Ohm’s Law, the theoretical 

radial electric field calculation predicts a profile quite close to experiment. The 

improvements introduced in this work to the ion orbit loss calculation act to decrease the 

radial electric field “well” slightly and shift it towards the separatrix. 

To compare the proposed methodology with another approach, results from DIII-

D QH-mode shot #106999 calculated by GTEDGE were compared to an XGC0 

simulation. Comparisons of ion orbit loss cones reveal that the truncated Maxwellian 

model used in GTEDGE is a good approximation for the non-Maxwellian velocity 

distribution in the far edge region. XGC0 calculates little carbon ion orbit loss, 

suggesting the need to include it in future GTEDGE analysis should be further analyzed. 

Radial particle flux comparisons show very similar profile structures for the kinetic 

XGC0 and the fluid GTEDGE calculation based on the continuity equation; however, the 

GTEDGE core boundary condition based on core particle balance is an order of 

magnitude higher than that of XGC0, and this difference is not yet understood. The 

assumption of negligible carbon radial particle flux made in GTEDGE is affirmed as 

reasonable by the small radial carbon flux profiles predicted by XGC0.  

Simulated deuterium velocities from XGC0 predict starkly different profiles to 

those of the carbon impurity due to the low edge collisionality in the QH-mode discharge. 

Intrinsic rotation due to ion orbit loss at the outboard midplane can be used to explain the 

poloidal variation of the deuterium velocity profiles. Calculated intrinsic rotation from 
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GTEDGE give order of magnitude estimates for the difference between the flux surface 

average deuterium toroidal velocity predicted by XGC0 and that localized to the outboard 

midplane.  

The radial electric field comparisons show that the Ohm’s Law calculation in 

GTEDGE using experimental velocities predicts the radial electric field in similar 

agreement with experiments as the XGC0 simulation, demonstrating that the GTEDGE 

radial electric field calculation with IOL has the potential to be just as an effective tool 

with much less computational expense. 

Since the Modified Ohm’s Law was seen to predict the radial electric field within 

10% of experiment when experimental rotation velocity profiles were used, future work 

will focus on improving the toroidal and poloidal rotation models. One possible 

mechanism for improving both velocity models is to account for toroidal non-

axisymmetry in the fluid viscosity models [91]. This would change the inherent structure 

of the viscous stress tensor [69,70], and hence the momentum balance equations, by 

nonlinearly coupling the poloidal and toroidal components.  

An interesting possibility conceived but not developed in this research is the idea 

of using the preferential loss of counter current ions that drive intrinsic rotation to an 

advantage. It is projected that ITER will be sufficiently large so that NBI will not provide 

significant torque to the plasma core to drive rotation, which is stabilizing for the plasma. 

There is the possibility of driving additional rotation if ion orbit loss cone structures can 

be accurately modeled with correctly correlated intrinsic rotation from the lost ions. It 

would be possible to inject neutral beam ions in the counter current direction in the edge 

pedestal region directly into the loss cone with the intention of driving tailored intrinsic 
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rotation profiles. This research sets the foundation for the basic physics models that 

would be needed for this calculation, and could be improved to analyze the possibility of 

generating greater rotation scenarios for large reactors like ITER. 
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