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Abstract

Shiga toxin-producing Escherichia coli serogroups (026, 045, 0103, 0111, 0121,
0145, and 0O157; STEC-7) are recognized as major food-borne pathogens with outbreaks, human
infections, and occasional deaths associated with the consumption of contaminated foods. Cattle
are recognized as the primary reservoir for STEC-7 and shed these bacteria in their feces, which
are considered a principal source of contamination of cattle hides and carcasses at harvest. Pre-
harvest interventions that effectively reduce fecal shedding of STEC-7 have the potential to
reduce the public health concerns and economic impact of these bacteria and enhance food
safety. In the research presented in this dissertation, distinct study designs were used to evaluate
the impact of commercially available pre-harvest interventions and develop a better
understanding of the epidemiology of STEC-7 in commercial feedlot cattle. A randomized pen-
level trial indicated that a commercially available vaccine significantly reduced the fecal
prevalence of STEC 0157 and prevalence of high shedders compared to unvaccinated pens.
However, there was no evidence of a direct-fed microbial (DFM) effect on either measure of
STEC 0157 shedding. In a continuum of the efficacy study, the performance and carcass
characteristics associated with these pre-harvest interventions were quantified. Results indicated
that feeding the DFM to cattle improved performance, whereas the vaccine negatively impacted
performance during the intervention period, though most of these attributes were not reflected at
the time the animals were harvested. Later, a cross-sectional observational study was used to
determine the regional-, feedlot- and pen-level fecal prevalence of enterohemorrhagic
Escherichia coli (EHEC), a subset of STEC, in commercial feedlot cattle. Results indicated that
EHEC serogroup 0157 was detected more frequently than non-O157 serogroups of EHEC,;

however, all feedlots had at least one sample positive for both O157 and non-O157 EHEC.



Further, risk factors associated with non-O157 serogroups of EHEC were identified; further
evaluation of these factors as potential control points may enable the ability to positively impact
public health concerns and food safety by reducing the pathogen load prior to harvest. Overall,
the research described in this dissertation provides an assessment of pre-harvest interventions

and multi-level prevalence estimates of STEC-7 in commercial feedlot operations.
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Abstract

Shiga toxin-producing Escherichia coli serogroups (026, 045, 0103, 0111, 0121,
0145, and 0O157; STEC-7) are recognized as major food-borne pathogens with outbreaks, human
infections, and occasional deaths associated with the consumption of contaminated foods. Cattle
are recognized as the primary reservoir for STEC-7 and shed these bacteria in their feces, which
are considered a principal source of contamination of cattle hides and carcasses at harvest. Pre-
harvest interventions that effectively reduce fecal shedding of STEC-7 have the potential to
reduce the public health concerns and economic impact of these bacteria and enhance food
safety. In the research presented in this dissertation, distinct study designs were used to evaluate
the impact of commercially available pre-harvest interventions and develop a better
understanding of the epidemiology of STEC-7 in commercial feedlot cattle. A randomized pen-
level trial indicated that a commercially available vaccine significantly reduced the fecal
prevalence of STEC 0157 and prevalence of high shedders compared to unvaccinated pens.
However, there was no evidence of a direct-fed microbial (DFM) effect on either measure of
STEC 0157 shedding. In a continuum of the efficacy study, the performance and carcass
characteristics associated with these pre-harvest interventions were quantified. Results indicated
that feeding the DFM to cattle improved performance, whereas the vaccine negatively impacted
performance during the intervention period, though most of these attributes were not reflected at
the time the animals were harvested. Later, a cross-sectional observational study was used to
determine the regional-, feedlot- and pen-level fecal prevalence of enterohemorrhagic
Escherichia coli (EHEC), a subset of STEC, in commercial feedlot cattle. Results indicated that
EHEC serogroup 0157 was detected more frequently than non-O157 serogroups of EHEC,;

however, all feedlots had at least one sample positive for both O157 and non-O157 EHEC.



Further, risk factors associated with non-O157 serogroups of EHEC were identified; further
evaluation of these factors as potential control points may enable the ability to positively impact
public health concerns and food safety by reducing the pathogen load prior to harvest. Overall,
the research described in this dissertation provides an assessment of pre-harvest interventions

and multi-level prevalence estimates of STEC-7 in commercial feedlot operations.
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Preface

Although Shiga toxin-producing Escherichia coli serogroups (026, 045, 0103, 0111,
0121, 0145, and O157; STEC-7) are major threats to public health and food safety, there are
several pre-harvest interventions and epidemiologic aspects of STEC-7 in commercial feedlot
cattle that are still unclear. To evaluate the impact of commercially available pre-harvest
interventions and develop a better understanding of the epidemiology of STEC-7 in commercial
feedlot cattle we used distinct study designs. The studies describe in this dissertation provide an
assessment of pre-harvest interventions and multi-level prevalence estimates of STEC-7 in
commercial feedlot operations.

My first study, was published in Vaccine and evaluated the effects of a commercially
available STEC 0157 vaccine and direct-fed microbial in commercial feedlot cattle. My second
study published, in the Journal of Animal Science, quantified the performance and carcass
characteristics associated with these pre-harvest interventions. My final study, was a cross-
sectional observational study that determined the feedlot- and pen-level fecal prevalence of
enterohemorrhagic Escherichia coli (EHEC), a subset of STEC, in commercial feedlot cattle, as
well as identified potential risk factors associated with non-O157 serogroups of EHEC. Overall,
the research described in this dissertation indicates the complex interrelationship among risk
factors, targeted interventions, and microbial concentrations that must be considered in order to

mitigate the transmission associated with STEC-7 in commercial feedlot cattle.
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Chapter 1 - Literature Review on Shiga toxin-producing Escherichia

coli and Commercial Feedlot Production

Introduction

Seven Shiga toxin-producing Escherichia coli (STEC) serogroups (STEC 026, 045,
0103, 0111, 0121, 0145, and O157; STEC-7) are recognized as major foodborne pathogens
with outbreaks, human illnesses, and occasional deaths associated with the consumption of
contaminated foods (USDA-FSIS, 2014; CDC, 2014). Foodborne illnesses of STEC-7 have
been linked to a variety of foods commodities in the United States (Scallan et al., 2011; Luna-
Gierke et al., 2014). However, ruminants, particularly cattle, are recognized as the primary
reservoir of STEC, and intermittently shed these bacteria in their feces. Subsequently, fecal
contamination provides a unique opportunity for STEC-7 transfer with the potential for human
exposure and contamination of food products by direct- or indirect-contact during harvest
(Ferens and Hovde, 2011; Painter et al., 2013). In addition to the major public health concerns,
there has been a profound economic impact of STEC-7 on different food industries (NCBA,
2012). Pre-harvest interventions that effectively reduce fecal shedding of STEC-7 and cattle
hide contamination may have the potential to reduce the public health concerns and economic
impact of these bacteria and enhance food safety. However, further defining the effects of pre-
harvest interventions on cattle performance and carcass characteristics are warranted due to
potential financial implications for intervention adoption in the industry (Elam et al., 2004;
Thomson et al., 2007).

Although E. coli O157:H7 (STEC 0157) has been the primary serotype studied in human

and animal populations for the past three decades, there is a growing body of scientific literature



regarding the epidemiology of non-O157 STEC (STEC 026, 045, 0103, 0111, 0121, and
0145) in commercial feedlot operations (Callaway et al., 2009; Smith, 2014). Recent reports
have indicated several similarities in the epidemiologic approach of mitigating STEC 0157 and
non-0157 STEC,; however, several differences remain in prevalence frequency, efficacy of pre-
harvest interventions, and available data to guide future research along the beef production
system. This scientific review on STEC-7 is limited to published studies that were performed at
commercial feedlot operations in the United States. Although pertinent information on the
pathogenesis and epidemiology of STEC-7 will be discussed, specific biological information is
only briefly mentioned. Commercially available pre-harvest interventions will be discussed,
with an emphasis on intervention efficacy and economic impacts in commercial feedlot
operations. This review of the ecology and epidemiology of STEC-7 in feedlot operations
exposes critical data gaps, while providing an introduction for the studies described in

subsequent chapters.

STEC in Human Foodborne IlIness

Shiga toxin-producing E. coli 0157 and non-O157 STEC were first recognized as causes
of human foodborne illnesses in 1982 and 2007, when outbreaks of hemorrhagic colitis were
associated with the consumption of undercooked, contaminated ground beef in the United States
(Riley et al., 1983; Wells et al., 1983; USDA-FSIS, 2014). Data trends regarding the frequency
of STEC-7 foodborne illnesses, since this time, indicate the importance of these pathogens as
serious public health risks due to the frequency and severity of cases. Shiga toxin-producing E.
coli-7 are estimated to cause approximately 175,000 foodborne illnesses and 20 deaths each year

in the United States (Scallan et al., 2011), while less than 40% of the STEC-7 foodborne illness



cases were associated with the consumption of contaminated ground beef or non-intact beef
products (Withee et al., 2009). In 2013, there were approximately 1.7 cases of STEC-7 per
100,000 people (i.e. 1.15 cases of STEC 0157 per 100,000 people and 1.18 cases of non-O157
STEC per 100,000 people) in the United States (CDC, 2013), with the highest incidence
occurring in children less than five years of age (4.2 cases per 100,000 people). Further, the
annual incidence of STEC-7 has decreased by 30% compared to initial surveillance data from
1996 to 1998, yet there is no difference in incidence from 2006 to 2008 (CDC, 2013). Although
human STEC-7 illnesses are relatively uncommon compared to other foodborne pathogens (i.e.
Campylobacter, Listeria, Salmonella, Shigella), the severity of STEC-7 infections justifies their
classification as major foodborne pathogens (CDC, 2014).

Although the clinical presentation and severity of STEC-7 infections may vary between
human populations, life-threatening complications tend to occur in children (< 5 years old),
elderly, and immunocompromised individuals (Griffin and Tauxe, 1991; CDC, 2014). These
complications are typically associated with hemorrhagic colitis (i.e. bloody diarrhea) and
hemolytic-uremic syndrome (HUS), as 90% and 8% of all the STEC-7 infections in the United
States lead to hemorrhagic colitis and HUS (CDC, 2014). Hemolytic-uremic syndrome, a
dangerous complication of STEC-7, is the most common cause of acute renal failure in children
(Coiaetal., 1998). In 2012, the incidence of HUS in children less than 18 years of age was 0.56
cases per 100,000 people, with the highest incidence (1.27 cases per 100,000 people) in children
less than 5 years of age (Crim et al., 2014). Recently, the overall incidence of HUS from STEC-
7 infections has decreased by 30% compare to surveillance data from 2006 to 2008 (Crim et al.,
2014), while the overall estimated case fatality rate is un-changed at 3 to 5% (Coia et al., 1998;

CDC, 2010). Although premature death rarely occurs among STEC-7 infected individuals (1 per



1000 cases), the economic impact of these cases account for approximately 95% of the total

estimated human health-associated cost (i.e. $478 million) in the United States (Frenze et al.,
2005; USDA-ERS, 2011). As a result, there has been an increase in industry and regulatory
actions to improve pre- and post-harvest methods to prevent beef contamination, and other

foodborne risks, due to the public health concerns and severity of STEC-7 foodborne illnesses.

Epidemiology of STEC in Cattle

Although the body of scientific literature on STEC-7 pathogens was limited following the
first reported foodborne outbreaks, pathogenic and non-pathogenic E. coli have been studies for
decades. Escherichia coli are commonly differentiated based on three surface antigens: capsular
(K), flagellar (H), and somatic (O) (Gyles, 2007; Meng et al., 2007). Although numerous E. coli
serotypes are considered non-pathogenic (i.e. commensal bacteria in human and animal
gastrointestinal tracts), the pathogenicity of diarrheagenic E. coli are further categorized into six
major groups: enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive
E. coli (EIEC), diffuse-adhering E. coli (DAEC), enteroaggregative E. coli (EAEC), and
enterohemorrhagic E. coli (EHEC) (Kaper, 2004; Meng et al., 2007). Shiga toxin-producing E.
coli (STEC) belong to the diarrheagenic class known as EHEC; STEC are described by their
ability to produce Shiga toxins (Moxley, 2004; Meng et al., 2007). The potent cytotoxin, Shiga
toxin, plays a key role in inducing vascular lesions and virulence for more than 200 pathogenic
E. coli serotypes (Nataro and Kaper, 1998; Paton and Paton, 1998; Karmali et al., 2010; CDC,
2014). Of the pathogenic E. coli serotypes, STEC-7 foodborne pathogens have been linked to
beef and are associated with human illnesses in the United States and elsewhere in the world

(Bettelheim, 2007; Dambrosio et al., 2007; Cobbold et al., 2008; Ethelberg et al., 2009; CDC,



2014). Consequently, these pathogens were declared adulterants in ground beef and non-intact
beef products in the US (USDA-FSIS, 2014); this declaration provided the framework for
additional STEC-7 research in beef production systems and public health.

Shiga toxin-producing E. coli-7 have been discovered in many food commodities with
the first known produce associated outbreak occurring in the early 1990s (Rangel et al., 2005).
Human foodborne illness due to STEC-7 have been associated with a variety of produce,
including leafy greens, vegetables, and fruits or nuts (Besser et al., 1993; Bilborn et al., 1999;
Breuer et al., 2001; Rangel et al., 2005; Cobbold et al., 2008; Smith, 2014). While other
outbreaks have been associated with water sources, including drinking water, lake water, and
ponds (Licence et al., 2001; CDC, 2014; Smith, 2014). In addition, there are cattle-associated
products which have been linked to raw milk, cheese, ground beef, and non-intact beef (Rangel
et al., 2005; Cobbold et al., 2008; USDA-FSIS, 2014). Although the public health risk for
STEC-7 includes many food commodities and production systems, the pathway within
commercial feedlot operations is the primary purpose for this review.

The evidence to date suggests that ruminants, particularly cattle, are recognized as the
primary reservoir of STEC-7 (CDC, 2014; USDA-FSIS, 2014). Colonization of STEC occurs
primarily in the distal rectum of cattle. Cattle are colonized by these bacteria primarily in the
distal rectum (Nataro and Kaper, 1998; Kaper et al., 2004). Although cattle are asymptomatic
(i.e. does not result in clinical signs of illness) carriers of STEC-7, they intermediately shed these
pathogens in their feces for different periods of time and at different concentrations (Low et al.,
2005; Cobbold et al., 2007; Cernicchiaro et al., 2014; CDC, 2014). One study reported that
approximately 65% of individual cattle shed for less than 30 days (Besser et al., 1997), while

others indicated a potential relationship between the duration and concertation of fecal shedding



(Low et al., 2005; Cobbold et al., 2007; Chase-Topping et al., 2008). Further, fecal shedding of
STEC appears to vary based on O serogroup, with reports indicating a lower prevalence of non-
0157 STEC in non-intact beef products, raw ground beef, and cattle feces relative to STEC
0157 (Renter et al., 2005; Renter et al., 2007; Bosilevac et al., 2007; Bosilevac and Koohmaraie,
2011; Fratamico et al., 2011; Cernicchiaro et al., 2014). More specifically, these studies
indicated that STEC O157 was greater than 5 times more frequently detected than non-O157
STEC. However, the published literature has reported wide fecal prevalence estimates: ranging
from 0.0 to < 20.0% for non-0157 STEC (Cernicchiaro et al., 2013 and 2014; Baltasar et al.,
2014; EKkiri et al., 2014; Paddock et al., 2014; Dewsbury et al., 2015) and 0.0 to 100.0% for
STEC 0157 (Dargatz et al., 1997; Laegreid et al., 1999; Elder et al., 2000; Smith et al., 2001,
Reinstein et al., 2009).

Furthermore, seasonality and geographic location are thought to affect fecal prevalence of
STEC-7. Recent studies have reported an increase of STEC-7 shedding in cattle feces during the
summer months relative to the winter months (Chapman et al., 1997; Van Donkersgoed et al.,
2001; Renter et al., 2008; Dewsbury et al., 2015), while others have hypothesized potential
prevalence differences when comparing commercial feedlot operations in southern states to
northern states (Hancock et al., 1997; Callaway et al., 2009; Smith, 2014). Although the exact
reason for this phenomena is yet to be identified, a few studies have indicated that day length,
pen condition, and temperature may effect fecal prevalence of STEC-7 in cattle (Smith et al.,
2001; Sargeant et al., 2004; Edrington et al., 2006; Renter et al., 2007; Baltasar et al., 2014; EKiri
et al., 2014; Dewsbury et al., 2015). While the majority of these studies have focused on STEC
0157, additional prevalence estimates are required at different hierarchical levels to data gaps on

non-0157 STEC and enable the building quantitative risk assessment models of STEC-7 along



the beef chain. Further, the ability to correctly identify and managed other potential risk factors,
such as cattle source, management, biosecurity, diet and cattle handling, against STEC-7
shedding may enable positive impacts on food safety, as fecal shedding has been positively
associated with hide and beef carcass contamination at harvest (Elder et al., 2002; Fox et al.,
2008; Jacob et al., 2010; Stromberg et al., 2015). Some propose that cattle shedding higher
concentrations of STEC-7 may pose a greater risk of hide and carcass contamination (Arthur et
al., 2009; Smith, 2014; Stromberg et al., 2015). Hence, studies of the effects of pre-harvest
control strategies may need to be investigated for both prevalence and concentration of STEC-7
in commercial feedlot cattle.

High shedders (i.e. super shedders) have been identified as cattle shedding at greater than
10* CFU STEC-7/g of feces, while lower concentrations (<10* CFU STEC-7/g of feces) are
often simply defined as fecal shedding (Chase-Topping et al., 2008). Some reports propose that
mitigation efforts should target high-shedding cattle since these animals contribute the highest
potential fecal load for hide and carcass contaminations at harvest (Loneragan and Brashears,
2005; Matthews et al., 2006; Cobbold et al., 2007; Fox et al., 2008; Stephens et al., 2009). Asa
result, additional research is required to determine the ecology and epidemiology of high
shedders, as the proportion of high shedders within a cattle cohort may be important to reduce
the risk of STEC-7 transfer and contamination (Matthews et al., 2006). Regardless, high
prevalence of STEC-7 in cattle feces at either concentration (i.e. fecal shedding or high shedders)
is likely to contribute to the risk of contamination during slaughter (Loneragan and Brashears,
2005). Thus, epidemiologic studies properly designed to identify the prevalence and fecal
concertation of STEC-7 at different hierarchical levels in the beef production systems is

extremely important to help guide future control efforts.



Although there are multiple factors effecting the transmission of STEC-7 within cohorts
of cattle from the commercial feedlot operation to harvest, hides are the most likely imminent
source of carcass contamination due to STEC-7 (Loneragan and Brashears, 2005; Woerner et al.,
2006). Elder et al., (2002) indicated a significant correlations between hide prevalence and
carcass contamination, while another report indicated a difference in hide prevalence of STEC
0157 when comparing pens with greater than 20% fecal prevalence versus less than 20%
(Ransom et al., 2003). In addition, research indicates that the prevalence of STEC-7 from
sampling cattle upon entry into the plant to final product reduces at each step (e.g., hides, pre-
evisceration, post-evisceration, in-cooler samples); thus illustrating the effectiveness of post-
harvest intervention against STEC-7 (Elder et al., 2002; Stromberg et al., 2015). However,
additional animal- and pen-level data are required to accurately describe the entire relationship
for prevalence and concertation of STEC-7 among fecal, hide, and carcass samples. Yet, it is
reasonable to hypothesize that reducing the STEC-7 fecal load prior to harvest should in turn
reduce the likelihood of hide prevalence and subsequently carcass contamination at harvest

(Loneragan and Brashears, 2005).

Pre-harvest Interventions
Over the past three decades, the beef industry has focused a lot of time and resources on
mitigating STEC-7 contamination at harvest by incorporating specific trainings procedures,
programs (i.e. Hazard Analysis and Critical Control Points), interventions, and diagnostic tests
within packing plants. Although effective, researchers have proposed that reducing the STEC-7
fecal shedding load before harvest may increase the capabilities of post-harvest procedures

(Callaway et al., 2004; Loneragan and Brashears 2005; Callaway et al., 2009; Smith 2014). In



addition to reducing the fecal shedding of STEC-7 in cattle, pre-harvest interventions may have
the potential to reduce the economic impact and public health concerns of these bacteria and
enhance food safety (Hynes and Wachsmuth, 2000). As a result, this opportunity has led to the
development and research of many pre-harvest interventions (i.e. antibiotics, bacteriophages,
diets, prebiotics, probiotics, and vaccines). However, there are currently only two commercially
available pre-harvest products (i.e. a vaccine and a direct-fed microbial) approved for reducing
STEC 0157 fecal shedding in the United States (Callaway et al., 2009; Smith 2014; Wisener et
al., 2014).

The use of antibiotics to specifically control fecal shedding of STEC in cattle is
controversial. However, reports have indicated that the use of neomycin, an aminoglycoside
antibiotic, in the feed significantly reduces fecal shedding of STEC O157 in cattle (Elder et al.,
2002; Callaway et al., 2009). Despite these findings, the beef industry has not adopted antibiotic
treatment as a pre-harvest intervention strategy due to the potential concern of antimicrobial
resistance (Loneragan and Brashears, 2005; Callaway et al., 2009). In addition, a different class
of feed grade antibiotics (i.e. ionophores) was tested for its effectiveness to reduce STEC 0157
shedding, as ionophores are not used in human medicine. Although the issue of resistance may
not be as critical with ionophores as with other antibiotics, research has indicated a lack of
efficacy for ionophores against STEC 0157 shedding in cattle feces (Edrington et al., 2006;
Callaway et al., 2009). However, ionophores are still approved and used for growth performance
and coccidia control in commercial feedlot operations.

Bacteriophages or phages, viruses that have the ability to specifically target certain
organisms, use self-replication to adapt with bacteria and are reported to be harmless to animals

(Sheng 2006; Sillankorva et al., 2012). In vitro studies have indicated exceptional efficacy of



phages against STEC O157 (Tanji et al., 2005; Sheng et al., 2006), while initial in vivo studies
indicated a reduction of STEC 0157 when applying phages in drinking water or the recotanal
junction (Sheng et al., 2006; Rozema et al., 2009). However, other live animal studies have
indicated mixed results, seemingly due to incorrect uses, doses, or strains of phages (Raya et al.,
2006; Sheng et al., 2006; Niu et al., 2008; Standford et al., 2010). Still the unique ability to
incorporate phages in production systems is intriguing due to the ease of administration (i.e.
water, feed, spray), yet additional trials are required before incorporating phages in commercial
feedlot operations (Rozema et al., 2009; Sillankorva et al., 2012). However, phages are
approved for commercial uses as a spray application to hides at packing plants.

Scientists also have investigated sodium chlorate as a potential pre-harvest intervention
(Loneragan and Brashears, 2005; Callaway et al., 2014). Enterobacteriaceae (e.g. STEC -7) are
facultative anaerobes that have the ability to use oxygen for aerobic respiration as well as
anaerobic fermentation. More specifically, STEC have the nitrate reductase enzyme that allows
respiration and converts chlorate to a cytotoxic chlorite inside of STEC pathogens. Therefore,
the use of sodium chlorate may be considered a selective microbial product with the ability to
target STEC-7 due to occurrence of the nitrate reductase enzyme. Research has suggested that
oral administration of sodium chlorate reduced STEC 0157 shedding in cattle feces by more
than two logs (Callaway et al., 2002; Anderson et al., 2005). However, to date sodium chlorate
is not commercially available as a pre-harvest intervention in commercial feedlot cattle, as
additional data may need to be generated for approval.

Scientists also have proposed that diets may be an important contributing factor to the
gastrointestinal flora and pathogen populations of STEC in cattle (Fox et al., 2007; Jacob et al.,

2008; Reinstein et al., 2009). Feeding cattle a high energy diet has been shown to positively
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impact the STEC population in the lower gastrointestinal tract of cattle (Callaway et al., 2009).
There have been mixed results regarding the impact of forage levels on STEC population,
however, with some reports indicating a decrease (Diez-Gonzalez et al., 1998; Tkalcic et al.,
2000), no change (Zhang et al., 2010), or increase (Van Baale et al., 2004) in shedding of STEC
0157 in cattle feces when compared to grain based diets. Similarly, studies have indicated a
higher fecal prevalence of STEC O157 when cattle are fed greater than 25% distiller’s grains
compared to diets with less than 25% distiller’s grains (Jacob et al., 2008; Wells et al., 2009;
Jacob et al., 2010). In addition, the type of grain and processing methods may significantly
impact the STEC population within cattle’s gastrointestinal tract (Fox et al., 2007). Research has
indicated an increased fecal shedding of STEC 0157 in cattle fed a barley-based diet compared
to a corn-based diet (Dargatz et al., 1997; Buchko et al., 2000; Berg et al., 2004). Further,
studies on the differences in processing method of grains (i.e. corn and barley) have shown a
greater STEC O157 burden in cattle receiving a steam-rolled or steam-flaked grain compared to
dry-rolled grain diet (Fox et al., 2007; Depenbusch et al., 2008; Callaway et al., 2009). Although
researchers have proposed multiple hypotheses for increased STEC shedding due to specific diet
ingredients, additional data are required to determine the exact physiological factors that affect
shedding. Further, it seems unlikely that commercial feedlot operations are going to alter cattle
diets based on fecal shedding of STEC due to the potential financial implications (i.e. potential
loss in cattle performance and carcass characteristics) of adopting unique diets combinations.
Administration of prebiotics is currently being tested for the ability to alter STEC
shedding in cattle. Prebiotics are non-digestible organic compounds, such as oligosaccharides,
trisaccharide and dietary fiber, which cannot be directly utilized by animals, but have the ability

to be digested by specific populations of the microflora (Houdijk et al., 1998; Willard et al.,
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2000). Some researchers have hypothesized that beneficial bacteria are able to outperform the
pathogens by utilizing prebiotics (Schrezenmeir et al., 2001), while others believe that prebiotics
have the potential to target specific segments of the microbial population by competitive
exclusion (Zopf and Roth, 1996; Baines et al., 2011). To date, it is unlikely that commercial
feedlot operations are willing to implement prebiotics as a pre-harvest intervention due to their
expense, limited data, and the ability of ruminal microorganism to degrade a range of prebiotic
compounds.

Direct-fed microbials are another pre-harvest intervention that is being explored for their
ability to control STEC shedding. Traditionally, direct-fed microbials have been fed in cattle
diets to enhance performance (Elam et al., 2003; Callaway et al., 2014). Direct-fed microbials
utilize commensal microbial cultures to beneficially affect the microflora of the gastrointestinal
tract through either the potential upregulation of desirable microbial populations or by physically
attaching to the gastrointestinal epithelium to prevent harmful pathogens (e.g. STEC) from
thriving (Zhao et al., 1998; Kim et all., 2008; Wisener et al., 2014). By far the most studied
direct-fed microbial products include a Lactobacillus-based strain (Wisener et al., 2014). Studies
have reported significant reductions of STEC 0157 shedding in cattle fed a DFM comprising of
L. acidophilus (Brashears et al., 2003; Elam et al., 2003; Vasconcelos et al., 2008; Hanford et al.,
2011). Further studies have indicated efficacy of a modified direct-fed microbial culture, which
includes the L. acidophilus and Propionibacterium freudenreichii strains, with an overall STEC
0157 fecal shedding reduction between 20% to 75% (Younts-Dahl et al., 2004; Stephens et al.,
2007; Arthur et al., 2010; Cernicchiaro et al., 2010). However, the published literature has
indicated multiple dosing volumes (e.g., high versus low) for some of the DFM products due to

the potential differential efficacy and performance affects at either a high or low dose (Wisener
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et al., 2014). However, a recent study indicated no evidence for a difference in EHEC based on a
high versus low dose of a DFM product (i.e., Bovamine®) (Luedtke et al., 2016). To date, the
use of DFM has become a relatively common practice in commercial feedlot operations due to
their potential ability to improve cattle performance and reduce pathogens (NAHMS, 2013;
Callaway et al., 2014). However, additional large commercial feedlot trials are required to
quantify both the pre-harvest food-safety (i.e. STEC-7 shedding) and performance impacts
associated with the implementation of direct-fed microbial feeding, as the current literature
includes studies with key differences in study design, statistical power, and pen size (Wisener et
al., 2014).

Along with other pre-harvest interventions, vaccines have been tested for their ability to
reduce STEC 0157 shedding. Although most vaccines are utilized to stimulate the immune
system of animals to protect against disease, the Siderophore Receptor and Porin protein (SRP)
and the Type 111 secretory proteins (Type I11) vaccines are uniquely produced to target different
physiological aspect of STEC 0157 due to the natural exposure and commensal, asymptomatic
nature of the organism in cattle (Callaway et al., 2014; Smith, 2014). More specifically, the SRP
based vaccine disrupts iron uptake by the bacteria, effectively starving STEC of iron which leads
to cell lysis (Emery et al., 2000; Thornton et al., 2009), while the antibody production against the
Type 11 prevents villi adherence and colonization of STEC in the gastrointestinal tract of cattle
(Dziva et al., 2007; Moxley et al., 2009). Recently, there were two systematic reviews indicating
the efficacy of the SRP and Type Il vaccines against STEC O157 shedding in cattle feces
(Snedeker et al., 2012; Varela et al., 2012) with research indicating greater than 25% reduction
of STEC 0157 shedding in cattle administered the SRP vaccine (Thornton et al., 2009; Thomson

et al., 2009; Wileman et al., 2010) or the Type 11l vaccine (Potter et al., 2004; Peterson et al.,
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2007; Smith et al., 2009). Further, these studies reported no adverse cattle performance effects
for vaccinated versus non-vaccinated animals. However, in the reported studies, cattle in the
control groups were re-handled and administered a placebo, and research on other cattle vaccines
have indicated negative cattle performance effects due to immunization or handling effects of
cattle (Voisinet et al., 1997; Rodrigues et al., 2015). Currently, the three dose regimen of the
SRP vaccine is the only commercially available vaccine approved in the United States for
reducing STEC O157 shedding in cattle feces, and the three dose regimen of the Type I1l vaccine
is no longer being produce. However, the published literature has not reported a wide-spread
implementation of the SRP vaccine in commercial feedlot operations. Limited use of the SRP
vaccine in commercial feedlot operations may be due to the lack of economic incentives, lack of
data on the economic feasibility of these products, ease of product incorporation into existing
protocols, or the potential performance impacts for the implementation of pre-harvest

interventions (Snedeker et al., 2011; Callaway et al., 2014; Smith, 2014).

Conclusion
This review of the scientific literature regarding the epidemiology of STEC-7 in
commercial feedlot operations exposes critical knowledge gaps in pre-harvest intervention
efficacy and performance impacts, as well as a general lack of prevalence data for non-O157
STEC at different hierarchical levels in feedlot production systems. In order to identify and
validate pre-harvest interventions that may significantly reduce the fecal load prior to harvest and
subsequent risk of food contamination, additional research is required to determine the important

risk factors of STEC-7 shedding in cattle feces. Understanding the transfer of STEC-7 along the
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fecal to hide to carcass pathways likely depends on both prevalence and concentration along the
beef production systems. Previous research indicates that pre-harvest interventions for STEC
0157 may have the ability to compliment post-harvest interventions and decrease the risk of
STEC transfer to beef at harvest; however, there are limited data illustrating the impact of pre-
harvest interventions on STEC-7 prevalence at each step along the beef production system.
Although there is a growing body of literature for pre-harvest interventions, additional data are
required to determine the efficacy of these products in commercial feedlot operations from
different geographic locations with different management practices. In addition, there is a need
to determine the effects of using multiple pre-harvest interventions at different time points along
the beef production system. Data regarding the concentration, prevalence, and transmission of
STEC-7 within cohorts of cattle are necessary to improve the knowledge on the epidemiology of
STEC-7. Further, there is a need for a more comprehensive understanding of the economic

impacts of implementing pre-harvest interventions in commercial feedlot operations.
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