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SUMMARY 

 

Given that achieving nominal (all dimensions are theoretically perfect) geometry 

is challenging during building construction, understanding and anticipating sources of 

geometric variation through tolerances modeling and allocation is critical. However, 

existing building modeling environments lack the ability to support coordinated, 

incremental and systematic specification of manufacturing and construction 

requirements. This issue becomes evident when adding multi-material systems produced 

off site by different vendors during building erection. Current practices to improve this 

situation include costly and time-consuming operations that challenge the relationship 

among the stakeholders of a project. As one means to overcome this issue, this research 

proposes the development of a knowledge-aided modeling framework that integrates a 

parametric CAD tool with a system modeling application to assess variability in building 

construction. The CAD tool provides robust geometric modeling capabilities, while 

System Modeling allows for the specification of feature-based manufacturing 

requirements aligned with construction standards and construction processes know-how. 

The system facilitates the identification of conflicting interactions between tolerances and 

manufacturing specifications of building material systems. The expected contributions of 

this project are the representation of manufacturing knowledge and tolerances interaction 

across off-site building subsystems to identify conflicting manufacturing requirements 

and minimize costly construction errors. The proposed approach will store and allocate 

manufacturing knowledge as Model-Based Systems Engineering (MBSE) design 

specifications for both single and multiple material systems. Also, as new techniques in 
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building design and construction are beginning to overlap with engineering methods and 

standards (e.g. in-factory prefabrication), this project seeks to create collaborative 

scenarios between MBSE and Building Information Modeling (BIM) based on 

parametric, simultaneous, software integration to reduce human-to-data translation errors, 

improving model consistency among domains. 

Important sub-stages of this project include the comprehensive review of 

modeling and allocation of tolerances and geometric deviations in design, construction 

and engineering; an approach for model integration among System Engineering models, 

mathematical engines and BIM (CAD) models; and finally, a demonstration 

computational implementation of a System-level tolerances modeling and allocation 

approach.  
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CHAPTER 1:  Introduction 

The following extract from ACI 117R-90, “Commentary on Standard 

Specifications for Tolerances for Concrete Construction and Materials” condenses the 

need for construction tolerances, and some principles that should be applied in selecting 

proper tolerances [1]:  

“No structure is exactly level, plumb, straight, and true. Fortunately, such 

perfection is not necessary. Tolerances are a means to establish permissible variations in 

dimensions and location, giving both the designer and the contractor parameters within 

which the work is to be performed. They are the means by which the designer conveys to 

the contractor the performance expectations upon which the design is based or the use of 

the project requires. Such specified tolerances should reflect design assumptions and 

project needs, being neither overly restrictive nor lenient. Necessity rather than 

desirability should be the basis of selecting tolerances.” [2] 

In building construction, it is common that after the execution of a project, certain 

stakeholders will not be pleased with the manufacturing accuracy or overall quality of the 

final product [3]. For Instance design and construction failures in the Frank Gehry’s MIT 

$300 million Stata Center resulted in pervasive leaks, cracks and drainage problems that 

have required costly repairs [4]. In some cases the contractor finds that some components 

will not come together during building erection [5] which requires repairs to the 

assemblies, or it could be that the architect or the owner have concerns that the walls are 

not straight or the slabs are not flat enough [5]. This often occurs because the 

construction process was not precise enough, specifications were not properly 

communicated [6], or, as is often the case, because the suggested requirements of 
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tolerances were unachievable or unrealistic. One important issue that continues to spread 

in construction projects and contributes to cost and schedule growth is design changes 

and errors [7] [8] [9]. The genesis of these situations are hard to trace during the building 

lifecycle, but in the end they require extra project time and costly repairs. Chapter 1 of 

this dissertation starts by describing this problem, introducing important concepts such as 

nominal geometry, tolerances, and geometric variability; and concludes by proposing a 

high-level modeling framework to overcome the weaknesses of the current approach.  

During the design stages of a building, it may be assumed to be that the geometric 

CAD models are dimensionally perfect – that is to say, that the features and parts in the 

model contain exactly the geometry that is desired in the final building1.  This 

representation is known as nominal geometry. However, nominal geometry is not 

achievable during the stages of construction. On the contrary, there are a number of 

factors leading to a resulting building that differs geometrically from the nominal model: 

 Complex building assemblies made by human labor;  

 Unpredicted deviations from manufacturing processes;  

 Incomplete manufacturing documentation and knowledge;  

 Improper assumptions about materials and processes during design stages; 

                                                 

 

 

1 This dissertation assumes that CAD models are able to completely and accurately describe the 

geometry of the parts and assemblies. This dissertation does not address modeling mistakes, which are 

inaccuracies made in the nominal geometry which lead to geometrically or functionally inadmissible 

models. 
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 Addition of different material systems with different levels of variability; 

 Reaction of materials to forces and temperature changes, and building 

behavior; 

 These factors produce significant geometric deviations that must be considered, 

accommodated, and mitigated as part of the construction requirements and specifications 

development. The main formal modeling element used to prescribe these kinds of 

geometric deviations is known as a tolerance. Tolerance has many different meanings 

based in the field that it applies. For this dissertation a tolerance is defined as the 

permissible limit or limits of variation in a physical dimension [10]. Although the concept 

of tolerance is broadly understood, applicability of construction specifications and 

tolerances allocation have not been adequately established due to the lack of knowledge 

integration during design stages, and the lack of multidisciplinary coordination among 

different stakeholders of a building project. Furthermore, many of the construction 

requirements or specifications cannot be assured from the beginning because they evolve 

and transform during the course of a project. Early decisions about tolerances and 

clearances are usually made based on improper assumptions, or without an understanding 

of the “big picture” with respect to system implications. Decisions made late in a design 

or construction stage are often taken without knowledge or consideration of earlier 

decisions, or without understanding of the effects that these changes will produce in other 

material systems. In any of these cases, as-built geometric deviations obtained in 

construction are much larger than commonly expected [11]. While early multidisciplinary 

integration and constant coordination efforts under a BIM-augmented workflow are 

certainly important means to reduce geometric variability problems [12] [13], they are 
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not sufficient.  Current tools and methodologies lack the ability to support coordinated, 

incremental, and systematic specification of tolerances requirements and the set of 

interactions that emerge across them during building lifecycle. Also, for the most 

common design-bid-build project delivery system, the team includes design 

professionals, a construction manager or general contractor, and many subcontractors 

[14]. In the early part of the project, the design team is primary – but in the later stages 

the general contractor assumes primacy. And so in this case, the responsibility for 

addressing tolerance incompatibility issues is often not clearly defined. In managed 

contractual systems in which the construction manager does not self-perform the work, 

field personnel may not be familiar with the manufacturing specifications of the project, 

and they are also less likely to anticipate tolerance requirements and incompatibility 

problems [1]. 

During the development of a building project the state of knowledge about construction 

tolerances is diffuse, and no stakeholder has access to the entire knowledge base about 

material-specific manufacturing, or what dimensional tolerances are realistic to prescribe. 

A common example of a geometric variability, which is the deviation range of the 

nominal geometry of a part or assembly, occurs when designers make late changes to 

reduce construction costs associated with some building component (e.g. to replace 

welding in steel connections of a roof structure with bolted connections). While a 

modification may satisfy the specific construction requirement goal (e.g., reduce 

installation time), the systems-level implications and long-term side effects are usually 

not well understood (e.g. bolted connections may allow more movement at the joints, 

increasing deflection, leading to poor rain drainage, leakage, corrosion, and air 
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infiltrations) and even if the problem is identified qualitatively, there exists no modeling 

framework in which to assess the implications of the problem quantitatively. The 

following list of typical tolerances compatibility problems in modeling and among 

different material systems [1] has been presented by an inter-industry working group. 

These problems have been subdivided into four main areas: (1) Tolerance Modeling and 

Simulation, (2) Building Behavioral Modeling, (3) Manufacturing Knowledge 

Documentation and Coordination, and (4) Process Standards; and was hosted by the 

American Society of Concrete Contractors (ASCC) and co-sponsored by several other 

important construction organizations such as the American Concrete Institute, American 

Institute of Steel Construction, American Society of Civil Engineers Construction 

Institute, among others. 

Tolerances Modeling and Simulation: 

 A modeling approach to determining conformance with stated tolerances is 

needed. 

 Steel connections may require three-dimensional adjustability when steel and 

concrete dimensions are at their tolerance extremes.  

 Anchor bolts embedded in concrete for steel connections may be incorrectly 

positioned—laterally or vertically—or may be bent after being correctly placed. 

Field solutions are often available, but increase cost significantly (Figure 1).  

 Tolerances at the interface between precast cladding panels and the structural 

frame are critical. Cladding must be capable of field adjustability.  

 Out-of-square or out-of-plane racking interferes with operation of windows and 

doors, mars appearance, and decreases resistance to water and air infiltration.  
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 Installation costs for windows, doors, and curtain walls increase when openings 

are too large or too small, embeds are improperly located, or floor edges or 

columns are not properly aligned.  

 
Figure 1: Example of tolerances incompatibility of cast-in-place concrete with prefabricated 

steel frame. 

Building Behavioral Modeling: 

 Windows, doors, and curtain walls in concrete openings must be designed to 

accommodate construction tolerances and building movement after construction. 

 Three-way adjustment is needed to allow for alignment changes. Field fixes to 

accommodate out-of-tolerance openings may not be structurally sound or allow 

the needed movement after construction. 

 Doors and windows that open and close require especially tight tolerances to 

operate properly.  

Manufacturing Knowledge Documentation and Coordination: 
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 Manufacturing requirements are not always clearly written and are thus subject to 

differing interpretations by members of the construction team. 

 Geometry does not comply with material-specific manufacturing rules. 

 When tolerances have been allocated, every material system complies 

independently with its own manufacturing rules, without considering any 

heterogeneous materials assembly or mating conditions. This situation leads to 

tolerances incompatibility. 

 Multiple tolerances allocated by different contractors for the same building 

component create disputes about which tolerance should be used.  

 Project documents should clearly indicate how tolerance measurements will be 

made, who will make them, what corrective actions are needed when tolerances 

are exceeded, and who is responsible for taking the corrective actions.  

 For precast cladding operations, the structural engineer does the slab drawings 

and the architect does the cladding details. The concrete contractor who builds to 

the structural drawings often does not see the cladding details. But if the detail 

allows little or no tolerance, and the slab is built to common ACI 117 tolerances, 

panels may not fit and the concrete contractor is blamed.  

Processes Standards:  

 Because there are no measurement protocols for many tolerances, disputes about 

conformance with tolerances sometimes result.  

From all the groups of tolerances compatibility problems presented above, the main focus 

of this dissertation is the Manufacturing Knowledge Documentation and Coordination 

category.  
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1.1 Impact of Geometric Variability in the Building Industry 

Failure to predict geometric variability during design stages and failure in the 

appropriate application of construction tolerances may contribute to the following issues: 

cracks in walls, cladding, and tiles; buckling; building condensation; leaky facades; 

structural collapse; poor visual results; poor energy performance; window and door 

defects; curtain wall defects; mechanical equipment installation defects; and unexpected 

clashes, among others. These problems result in redundant work on the construction site, 

demolition of defective work, lost time, failure to meet construction specifications, 

disputes among stakeholders, and, potentially, a financial burden on the occupier or 

owner [15].  

With regard to cost impact, the average cost of design-attributable errors is about 

14 percent of contract value [16], which is approximately the total budget dedicated to 

design fees. Also, as can be seen in Figure 3, design errors and omissions (D1) have the 

maximum impact and maximum likelihood of all the different risk categories of 

construction [17], followed by construction cost overruns (C1), which are also commonly 

related to geometric variability and re-work problems [18]. In order to reduce these 

issues, BIM tools need to be able to represent a building at a whole-system level, 

capturing the functional and behavioral relationships that span across different domains, 

material systems, and lifecycle stages. It is in modeling these relationships that the 

identification of conflicts among tolerances requirements and manufacturing 
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specifications can be facilitated. 

 

Figure 2: Construction Risk Matrix: adapted from: http://dx.doi.org/10.5772/51460 (Intech). 

Construction Risk Categories: Design Risk (D): External Risk (E): Environmental Risk (En): 

Organizational Risk (O): Project Management Risk (PM): Right of Way Risk(R): Construction Risk 

(C).   

1.2. General Comparison between Aerospace and Construction Modeling 

Methods 

During the past decades, aerospace engineering have improved their approach to 

managing geometric variability and manufacturing knowledge [19]. The aerospace 

industry has taken advantage of modern computer-aided manufacturing technology to 

integrate CAD tools with manufacturing processes. For example, the Active Workspace 

tool was created at Siemens and used for the development of the Curiosity Mars Rover at 

the Jet Propulsion Laboratory [20]. This tools supports a systems engineering driven 

product development process. It is systems engineering that allows linking together all 

the disparate elements of a product design into an intelligent product model, which can be 

continuously validated over its lifecycle. It is the key to enabling true model-based 

development [20]. Hence, the aerospace realm has dramatically reduced the need for 

human translation or interpretation of project data. However, an aerospace approach 

http://dx.doi.org/10.5772/51460
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cannot be directly applied to construction due to critical differences among current 

practices in these two domains. 

In building design and construction, drawings are mostly interpreted by human 

labor and, there is a high risk of ambiguity and the chance for accumulated measurement 

error. For example, in the way most construction measurements are expressed, the 

dimension or size may or may not indicate the accuracy of the measurement. These 

tolerances may be specified in a national standard which is included as a project 

requirement by reference, but it is likely that neither the designer nor the general 

contractor is aware of the implications of the tolerance requirements. The tolerance 

information is, at least potentially, available, but it is not part of the modeling or 

fabrication process. It is an unmet requirement. Also, the level of accuracy while 

translating measurements from drawings to real parts and assemblies usually varies from 

worker to worker or even from measuring system to measuring system [21]. As a result, 

construction processes executed by human labor are highly stochastic in their outcomes. 

In contrast, in the aerospace engineering domain, automated methods of manufacturing 

promote tight levels of accuracy in their measurements that result in high quality 

products. Similarly, because most of the aerospace manufacturing processes are mostly 

repetitive, production of mechanical parts relies on high cost tooling and dies instead of 

the one-at-the-time approaches often used in building construction.  

Despite all these differences, building construction and aerospace engineering 

share numerous guidelines concerning geometric deviations taxonomy, manufacturing 

requirements, and process standardization [22]. Furthermore, based on the normalization 
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of cross-field CAD platforms2, such as BIM, together with the development of highly 

engineered building products, the construction industry is undertaking an exponential 

modernization [23]. As an illustration, modern building construction processes are 

shifting from on-site centered to in-factory centered. By taking advantage of better supply 

chain, specialized factories, and controlled production environment, modern building 

products companies are ensuring higher quality control and better working environment 

while reducing overall time to market of projects. 

Another important engineering advancement, which constitutes a critical focus of 

this dissertation, has occurred in the intersection of information technology and industrial 

engineering. The expansion of Systems Engineering3 (SE) has enabled the development 

of model-centric architectures, and the ability to integrate numerous domain-specific 

tools in a single computer application and modeling language. This dissertation 

demonstrates how the tools promulgated by SE can generate new collaborative 

environments that allow geographically and functionally distributed groups of 

stakeholders to facilitate the process of tolerances and knowledge allocation in 

                                                 

 

 

2 This dissertation uses the term CAD for the generic 3D model, and the terms BIM and solid 

modeling when some of the specific features of these modeling paradigms are referenced. 

3 Systems Engineering is an interdisciplinary approach and means to enable the realization of 

successful systems. It focuses on defining customer needs and required functionality early in the 

development cycle, documenting requirements, then proceeding with design synthesis and system 

validation while considering the complete problem 
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construction models. The following section introduces a general description of how SE 

could support a knowledge-aided modeling environment for construction.  

1.3. Towards an Integrated Modeling Approach for Building Design 

In the SE field, the development of a mature Model Based System Engineering 

(MBSE) approach allows the management of multiple domains and applications in a 

progressively complex Information Technology (IT) environment [24] [25] [26]. MBSE 

is defined as a practice of applying modeling and simulation for implementing the 

processes and practices of SE [27]. The main characteristic of a MBSE methodology is to 

link different modeling requirements and views, from different domains, in a central 

model that allows interoperability and consistency between domains. Use of MBSE has 

led to the development of a general-purpose system-level architecture that allows multi-

disciplinary modeling with proper levels of abstraction. One of these knowledge-

modeling environment is the System Modeling Language (SysML). SysML is a general-

purpose modeling language for systems engineering applications. It supports the 

specification, analysis, design, verification and validation of a broad range of systems and 

systems-of-systems [24].  As Delligatti states “MBSE and its associated language SysML 

promise increased modeling quality and affordability for one simple reason: The cheapest 

defect to fix is the one you prevented. And at the heart of this approach is this new kind 

of engineering artifact called the system model” [27]. Based on these characteristics and 

considering that current BIM tools cannot fully model tolerances requirements among 

different material systems, this research proposes the development of a tolerances 

modeling framework that integrates a parametric CAD tool with a MBSE modeling 

application. The CAD tool provides robust geometric modeling capabilities, while MBSE 
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allows the modeling of tolerances requirements from a system-level standpoint. Thus, the 

identification of system interactions between manufacturing requirements and 

specifications of building material systems is based on this CAD-MBSE integration. This 

framework provides high-level descriptions of manufacturing specifications on the 

MBSE (SysML) side, which becomes a low level description of feature-based 

(geometric) tolerances allocation on the CAD side. Tolerances calculations are performed 

by a mathematical engine, and tolerances are allocated in the CAD model.  

With the aim of describing and implementing this approach, this document 

identifies several parallel tracks: 

 Review of tolerances and geometric deviations in construction and engineering, 

 Study of the likelihood of using a MBSE approach to model and store reusable 

manufacturing knowledge and design specifications for construction, 

 Proposal of a model integration and model consistency approach among system 

engineering models, mathematical engines and BIM (CAD) models, and 

 Development and computational implementation of a system-level tolerances 

modeling and allocation based on a MBSE approach. 

The expected general contributions of this dissertation are the representations of 

manufacturing knowledge and tolerances interaction across building sub-systems to 

identify conflicting manufacturing requirements and minimize costly construction errors. 

The proposed approach stores and allocates manufacturing knowledge as MBSE design 

specifications of single and multiple material systems. In addition, as new techniques in 

building construction are beginning to overlap with mechanical engineering methods and 

standards (e.g. in-factory pre-fabrication), this dissertation provides examples of 
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integration scenarios between MBSE and BIM to reduce human data translation errors, 

improving model consistency among domains. In this regard, other specific expected 

contributions for the work presented in this dissertation are:  

 Model-to-Model Transformation: Development of a structural, feature-based 

decomposition method of parametric CAD models into System Models; 

 Model Integration Approach: Development of a parametric, simultaneous, 

seamless software integration for knowledge allocation, analysis, and verification 

to reduce human data translation; 

 One Truth, multiple Model Views: Foundation of a model-centric architecture to 

manage manufacturing knowledge, project requirements, geometry, and design 

specifications in an interoperable modeling environment; 

 Domain Expert Advice: Development of an automated allocation of material-

specific knowledge for components and assemblies based of geometric features 

and material systems; 

 Machine Readable/ Executable: Development of a programmatic integration of 

CAD geometry with manufacturing know-how through knowledge-based 

mathematical and logical constraints; and 

 Model Consistency Approach:  On-demand model-to-model and tool-to-tool 

consistency assessment and model data update.  

1.4. Boundaries of the approach 

Due to the heterogeneity of the domain knowledge and tools that have been 

incorporated for the development of this dissertation, it is important to establish a set of 

limitations and assumptions for the created framework. 



15 

 

Assumptions about the field of study: The field of study for this dissertation is 

architecture and construction. Although, this dissertation may have also contributed to 

other areas of engineering such as MBSE and computer science, it should be evaluated 

only by its contribution in its main areas of study.  

Assumptions about interoperability and model integration: This dissertation 

does not deal with interoperability in the sense of creating standard neutral files to 

exchange model information among proprietary CAD or BIM tools. This dissertation 

proposes a model integration approach that does not require an exchange file. Rather, all 

commands performed in application A can be simultaneously executed in application B.  

 Assumption about modeling mistakes: Inaccuracies made in the nominal 

geometry which lead to geometrically and functionally inadmissible models, or 

documented design that does not reflect the designer’s intent will not be considered as 

relevant for this dissertation.  For example a bolt will not fit through a hole because the 

two parts do not line up due to a modeling mistake in applying mating conditions to an 

assembly. Rather, it is assumed that all models are nominally perfect, and compliant with 

the rules of solid modeling.    

Assumptions about design errors: It is the focus of this dissertation to deal with 

errors discovered as part of the model integration methodology proposed for the present 

computational implementation. Design errors emerge when design, as documented, does 

reflect the designer’s intent, but that intent is flawed [28]. By applying design and 

construction specifications, along with material-specific knowledge, to the nominal 

geometry, the application will determine if the proposed design will either result as 

intended or not from the nominal geometry model. 
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Assumptions about mathematical models: It is not the focus of this dissertation 

to propose, assess, or improve any of the mathematical or statistical models used to 

describe geometric variability in construction. For this dissertation such models and 

equations will be assumed as valid and incorporated as they are described in the literature 

into constraints modeling elements of the implementation.  

Assumptions about material-specific knowledge: It will be assumed that all the 

material-specific knowledge, from standards and other sources of know-how has been 

properly validated in each material system field. This dissertation does not focus on 

creation of new material-specific manufacturing knowledge. Rather, this dissertation 

focuses on the development of a modeling framework that allows the seamless 

integration of knowledge and geometry to perform simultaneous analysis for 

manufacturing compliance.  

1.5. Organization of this Dissertation 

The remainder of this dissertation is organized as follows: 

Chapter 2 Hypothesis, introduces the research questions and hypothesis and then 

presents the expected impact and possible generalizations of this dissertation; 

Chapter 3 Background, presents the overall background of this dissertation that 

has been divided in Geometric Dimensioning and Tolerancing; geometric variation and 

GD&T evolution; Model Based Systems Engineering and its associated language SysML. 

This section also introduces a discussion about the differences between document-centric 

approach and a model-centric approach for engineering. Furthermore, this section also 

presents the diagrams of the System Modeling Language (SysML), a section that deals 
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with Requirements Management in Systems Engineering; and finally a review of SysML 

modeling integrations and consistency management in MBSE. 

Chapter 4 Tolerances in building construction, presents the challenges of 

modeling construction tolerances; introduces a tolerances taxonomy created for the 

implementation; and finally presents the main outcomes of this taxonomy: Single 

Domain Construction Tolerances (SDCT), and Heterogeneous Construction Tolerances 

(HCT). 

Chapter 5 Knowledge and Tolerances Representation in Construction, 

discusses drawings and specifications for construction; the representation of construction 

tolerances, a mathematical approach to represent construction tolerances; Statistical 

tolerances analysis through Monte Carlo methods; and model simplification and 

allocation of manufacturing knowledge and tolerances on solid models.  

Chapter 6 Methodology,  Goes from domain issues to functionalities proposed 

for the modeling framework; presents a general SysML-CAD integration approach; 

presents an approach to SysML-CAD semantic integration through Domain Specific 

Languages (DSL); introduces the representation of CAD data structures in SysML; offers 

a general description of the present project and explain the modeling framework though a 

first case study : Cylindrical fit.  

Chapter 7 System Evaluation, presents a second and third case study in a SDCT 

and a HCT domains: A multi-feature, 4 components, single-material (sheet metal) critical 

assembly of an architectural PV racking structure, QuadPod; and a light gauge wall 

assembly with eleven components and four concurrent material systems (Cast-in-place 

concrete, precast concrete, light gauge framing, and PVC windows); 

file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
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Chapter 8 System Validation, restates the case studies developed during Chapter 

7, presents 4 complementary evaluation methods for the implementation; delivers the 

positive aspects of the implementation, presents the found and resolved issues faced 

during the implementation, and finally suggests the items of the present dissertation that 

require further improvement. 

Chapter 9 Conclusions, summarizes the motivations and approach for this 

dissertation, answers the research questions and assess the hypothesis, presents and 

develop a list of contributions of the present dissertation, and finally delivers some 

concluding remarks.  
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CHAPTER 2: Research Questions and Hypothesis  

2.1. Research Questions 

Based on the problem statement and motivations offered in the introduction 

section and further supported by a comprehensive background review (see Chapter 3), the 

research questions of the present dissertation are: 

1. Is it possible to represent and store machine-readable manufacturing knowledge 

to parametrically assess manufacturability and tolerances of CAD geometry in 

the early stages of building design?  

2. Is it possible to develop a computationally-integrated modeling framework among 

Model Based Systems Engineering models, mathematical engines, and CAD 

models? 

3. Given that questions 1 and 2 above can be answered affirmatively, can use the 

systems as postulated to predict conflicting tolerances interactions among 

different material systems from different vendors before creating building 

assemblies on the site? 

These research questions are integrated below in the dissertation’s hypothesis 

which is further decomposed in detailed explanations of its core concepts. Key elements 

of the hypothesis are numbered (a) through (e)  and are discussed in detail in the 

following sections.     

2.2. Hypothesis  

The seamless integration of parametric CAD geometry with a system-level 

modeling environment (a) allows the feature-based allocation of manufacturing 
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specifications (b), based on material-specific knowledge and processes constraints (c), 

and also identifies complex conflicting interactions of tolerances (d) across multi-

material building assemblies(e). 

The details of each aspect of the hypothesis are explained in what follows and 

also describes the first intent to enumerate the contributions of the present dissertation: 

(a) Seamless integration of parametric CAD geometry with a system-level modeling 

environment, SysML 

 A seamless CAD-SysML integration fills the gap between geometry-focused CAD 

and analysis and simulation-focused SysML through an simultaneous modeling tool. 

The proposed approach programmatically integrates two different data structures by 

recreating the meta-model4 of the CAD application through a graph-based 

representation in SysML (see Section 6.7). The set of elements and rules to perform 

such a transformation will be called a SysML Profile or Domain Specific Language 

(DSL). Thus, this profile or DSL defines the elements, languages and processes from 

which to form a model, and will be based on the assembly> part> feature> 

parameter> value paradigm to describe geometry as used in most solid modeling 

applications. 

                                                 

 

 

4 A meta-model is a detailed classification of the constructs and rules required for creating 

semantic models, which means the implementation of specific independent descriptions of the underlying 

algorithmic ideas [117]. 
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 Integration of specific features of geometric data with a system modeling tool will 

allow rule-based design and solve operations that otherwise require manual data 

translation, which is error prone and time consuming. One of the main difficulties of 

tolerances allocation in the construction industry is that rules and values of tolerances 

specifications are not based in a geometric-specific context. For example, when 

applying tolerances to a specific building component, designers usually follow tables 

and standards that do not consider mating conditions between components that belong 

to different material systems. Also, tolerance specifications based on tables [29] are 

usually described in ranges instead of instance-based approaches, which reduces 

tolerances accuracy. This implementation proposes tolerances allocation as a factor of 

the critical dimension to be specified (case-based tolerances allocation). 

 A CAD-SysML integration will provide geometric data to numerous domain-specific 

tools. For example, it will populate tolerance model equations by linking CAD critical 

dimensions with construction knowledge and standards, which are instantiated from 

SysML profiles. Although the implementation presented in this dissertation 

implements the integration of a single CAD application with a single system-level 

tool, one the of the contributions of the approach is to demonstrate that such 

integration could be achieved with any design or engineering tool in the building 

lifecycle that has an API and a data structure that can be represented as a SysML 

profile. In addition, this implementation is integrated with a mathematical solver that 

can perform calculations transferring metrics from any of the integrated tools.  

 An automated CAD-SysML integration will ensure data consistency among models. 

As it has been explained previously, one of the main sources of geometric deviations 
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during construction is the lack of numeric consistency among different model views 

and tools. Reasons for this lack of consistency range from simple isolated data 

transcription mistakes to consistency issues that arise from the document-oriented 

nature of construction. An encoded consistency approach is one of the bases of the 

present implementation, and it will promote a truly model-based approach for 

construction.  

(b) Feature-based automated allocation of manufacturing specifications  

 This dissertation focuses on the integration of manufacturing specifications and 

geometry, as tolerances analysis and allocation processes that require geometry 

handling are intrinsically interconnected and codependent. This implementation, 

through the creation of material specific profiles in SysML, produces reusable blocks 

of manufacturing knowledge to assess geometric variability and tolerances allocation. 

Each block of manufacturing knowledge, described as a <<Design Specification>> or 

<<Manufacturing Specification>> in the proposed SysML profile, contains the 

rationale of a specific tolerances or manufacturing rule and is automatically enforced 

via connection to specific CAD features through mathematical expressions as 

<<Constraints>> (see Section 6.8). As Bernal and Haymaker [30] suggested, 

constraint-based methods capture design knowledge in the form of constraints and 

requirements that must be satisfied by the design.  

 An automated integration between manufacturing knowledge and geometry is 

required due to the highly heterogeneous environment of domain-specific 

applications and languages that affect tolerances modeling and allocation. Parametric 

geometry tools like that used for this implementation have modest domain-specific 
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knowledge capabilities in a few well-understood domains. For example, sheet metal 

bends or flanges can be easily created because placeholders for all necessary domain-

specific parameters are included in the user interface. Yet, this modeling environment 

does not contain proper tools to calculate and allocate a correct value for each of 

those domain-specific parameters. For instance, a bending radius is automatically 

applied when a flange is created. However, if the material thickness changes, the 

bending radius, which is highly dependent on material thickness, will not be updated. 

The required information to update these parameters is mainly contained in 

manufacturing specifications, managed by different stakeholders, is largely human 

readable, and stored in different documents. Therefore, one of the important 

contributions of this integration is the knowledge-based allocation of metrics for 

CAD feature parameters.  

 A systematic approach for tolerances specification starts from high-level descriptions 

of manufacturing specifications on the SysML side and progress into low-level 

descriptions of feature-carried geometric tolerances on the CAD side. A tolerances 

lifecycle5 must be embedded as part of the entire project lifecycle. The lifecycle 

includes building requirements that inform design specifications, and these are then 

                                                 

 

 

5 For this dissertation, tolerances lifecycle represents the different stages of tolerances modeling 

and allocation. It starts with requirements modeling, then tolerances are converted in SDCT specifications 

applied to individual components; and then the SDCT evolve to HCT where multiple-material assemblies 

are analyzed to provide case-based tolerances and clearances allowances. 
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instantiated as geometric features to fulfill those original requirements. However, 

challenges arise due to different semantic nature and non-interoperable modeling 

environments of the building industry. An important aspect of this implementation is 

to ensure data continuity by allowing text-based requirements to be automatically 

traced from a geometric feature and vice versa.    

 Two or more engineering views6 can read from and write to a shared attribute of the 

geometric design. For this reason, the associated manufacturing knowledge, model 

elements and their possible parallel changes and updates have to be consistent. For 

instance, two component-specific geometric features that belong to two different 

material systems could share a mating relationship. This mating relationship will 

create an HCT assembly specification (e.g. clearance). However, the two same 

features will most likely also have manufacturing specifications that only apply 

within their material system (SDCT). In this case, the automated allocation of 

manufacturing knowledge must consider an appropriate process hierarchy to ensure 

that both parts of the process are complementary and not conflicting. Consequently, 

SysML rules correct both for internal material logics (SDCT) as well as external 

                                                 

 

 

6 A view is a representation of a whole system or subsystem from the specific well-defined 

perspective. A viewpoint is a specification of the conventions and rules for constructing and using a view 

for the purpose of addressing a set of stakeholder concerns [24]. 
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tolerance logics (HCT) , and it is important that these corrections take place in the 

proper sequence.    

(c) Material-specific knowledge and processes constraints  

 Most of the tolerances parameters of a building product depend on non-geometric 

rules and process modeling. Although most solid modeling applications have robust 

parametric capabilities that allow the creation of associations among parameters (e.g. 

“the length is the double of the width” or x= 2y), the rationale behind such an 

expression is not present in those models. Thus, there is a need for an integrated 

functionality that keeps a text-based specification or requirement tied to a 

mathematical expression to enforce its applicability.  

 An automated system for tolerances allocation should identify and verify critical 

dimensions against current construction specifications and/or user-defined, domain-

specific knowledge. This is because not all of the knowledge necessary to design 

building assemblies with proper understanding of its geometric variability is captured 

in the specification. It is important that the design methodology is extended to permit 

the instantiation of rules from experts. This functionality will be guaranteed by 

creating an encoded relation among four different model elements in SysML an 

element of the meta-class <<NXFeature>>  that contains metrics linked from the 

CAD geometry and typed as <<NXValueProperty>>; an element typed as <<Design 

Specification>> or <<Manufacturing Specification>> that contains the rationale of a 

manufacturing or assembly rule; and an element of the meta-class <<Knowledge-

Based Constraint>> or <<Critical Dimension>> that contains the mathematical 

representation of the manufacturing or assembly rule. This last element, by using 
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binding connections, will verify that all metrics are compliant with the rationale 

expressed in the <<Design Specification>>.  

 Modeling material processes as special arrangements of metrics and constraints7 will 

allow the formal specification of tolerances that are behavior-dependent (for instance, 

geometric deviations due to kinematics or temperature changes). This reusable 

system will be based on the element <<Analysis Context>>. The <<Analysis 

Context>> stereotypes are specializations of SysML blocks that are used to create 

system boundaries defining where to execute a domain-specific evaluation, in similar 

fashion of a scenario. As Gane and Haymaker [31] state, an scenario is a specific 

group of constraints, which restricts the context of design decisions 

(d) Complex conflicting interactions of tolerances  

 Representing the building as a whole system will capture the functional and 

behavioral interactions that occur across different domains and material systems. This 

will be achieved by integrating geometry, processes, and design specifications in a 

single modeling platform that enables the calculation of tolerances and clearances of 

combined tools and multiple material systems. This capability will replace the current 

industry approach that specifies tolerances allocation as a separate task for each 

material system and vendor.  

                                                 

 

 

7 For this dissertation, metrics are numerical values assigned to model parameters, and constraints 

are domain-specific mathematical expressions that condition those numerical values.   
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 Reinforcing a system-level semantic layer on the CAD environment will facilitate the 

representation of geometric and non-geometric interactions of a building project.   

(e) Multi-material building assemblies  

 The multi-party nature of the building construction lifecycle and the uncertain 

outcomes from construction processes are some of the main causes of geometric 

variability in construction [1]. The generality of the implementation, which allows 

modeling new knowledge through SysML profiles and meta-classes, enables the 

creation of model elements that represent material-system boundaries, for example 

joints and clearances, and other relationships within heterogeneous assemblies.   

 System-based modeling of multi-material building assemblies will result in not just 

tolerances attributable to fabrication accuracy but also behavioral considerations that 

affect their variation. Examples include the addition of materials with different 

mechanical properties and the addition of components fabricated by different 

subcontractors with dissimilar processes and standards. 

2.3. Impact of Proposed Dissertation and Possible Generalizations 

As it was explained in Chapter 1, design errors arise when design, as documented, 

reflects the designer’s intent, but that intent is flawed due to a lack of information or due 

to wrong design assumptions [28]. A survey research by Lopez and Love [32] estimated 

design error costs obtained from 139 building construction projects. The mean direct and 

indirect costs for design errors were estimated to be 6.85 percent and 7.36 percent of 

contract value, respectively. This totals more than 14 percent of the project contract in 

design attributable errors alone. Also, as Li [16] presents, “The proportion of money and 

time spent on rework in the design phase is usually higher than that of the construction 
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phase, as design is an iterative process during which engineers try to solve coupled 

problems with complex relationships.” In the same regard, as it can be seen in the 

MacLeamy Curve (Figure 3), costs and time associated with errors or conflict correction 

increase substantially if the error is identified after construction documentation is 

complete.  Although the promise of completely eliminating design errors seems 

impractical, this project will help reduce the time and cost associated with tolerances-

related design issues including on-site re-work, demolition of defective work, and 

disputes among stakeholders.  

 
Figure 3: Impact of design changes during building lifecycle (adapted from Patrick 

MacLeamy) 

This project supports the early identification of conflicting manufacturing and 

performance requirements and minimize costly construction errors by representing 

tolerances interaction across different building sub-systems. This objective is achieved by 

integrating a BIM tool (Siemens NX) with a system engineering tool (SysML), and a 
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mathematical simulation engine for analysis calculations (Maple 17-18). This integration 

is intended to support the collaborative modeling of a building project as a “system-of-

systems,” and to provide the computational infrastructure and knowledge necessary to fix 

conflicts when they are detected.  

Another important contribution of this dissertation, which can be generalized in 

different aspects of building design, is to formulate and execute more consistent analysis 

and simulations by incorporating parametric CAD data into a system modeling 

environment. In a highly specialized and heterogeneous modeling environment as 

described by Haymaker [33], a parametric software integration will reduce human data 

translation errors, improving model consistency among domains. Furthermore, an 

integrated multi-system view of structure and behavior will enable the comparison of 

alternatives based on trade-offs and risks. Also, this implementation can integrate 

different modeling requirements tools, from different engineering fields, in a central 

model that enhances interoperability and consistency among domains. 
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CHAPTER 3: Background Review 

The background section will be divided in several critical areas related to this 

project: Geometric Dimensioning and Tolerancing (GD&T), geometric variation and 

GD&T Evolution, Model Based System Engineering (MBSE), System Modeling 

Language (SysML) and BIM, document-centric versus model-centric approaches, 

diagrams of the SysML language, requirements management, SysML modeling 

integration, and consistency management in MBSE.  

3.1. Geometric Dimensioning and Tolerancing (GD&T) 

Geometric Dimensioning and Tolerancing (GD&T) is an engineering approach to 

describe a nominal – or theoretically perfect – geometry of parts and assemblies and to 

subsequently describe the allowable difference in form and size of individual features and 

the allowable variation between features from this theoretically perfect geometry [15]. 

Tolerances specifications are a set of rules that are applied to different types of relations 

among geometric features. Figure 4 presents a geometric tolerances taxonomy common 

to most of the engineering domains. This taxonomy, although not specific to building 

construction, refers to the general geometric representations of deviations of parts and 

processes. Accordingly, the level of abstraction of this taxonomy is appropriate to 

represent tolerances of the construction industry. 
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Figure 4: Geometric Tolerances Taxonomy (adapted from [30]) 

According to Juster [35], Kandikjan, Shah, and Davidson [36], the manufacturing 

industry employs two types of Geometric Dimensioning and Tolerancing (GD&T) 

approaches that are supported by the current standards: conventional tolerancing and 

geometric tolerancing (Figure 5). Conventional tolerancing represents the long-

established practice of using plus-minus tolerances. In conventional dimensioning and 

tolerancing, tolerances applied to dimensions depict the allowed deviation of the shape in 

the direction of a given dimension. In contrast, geometric tolerancing provides a complete 

set of controls for every specific characteristic of the geometry (form, orientation, 

location, etc.) to the degree required to satisfy the function or interchangeability 

requirements of the mechanical part. For example, for specifications of geometric 

tolerances it is significant to provide material and theoretical dimensions. Theoretical 

dimensions exist between theoretical entities [37]. A theoretical entity is a datum or a 

resolved object of a feature. For example, the center of a circle is a theoretical entity 

because it is a virtual element that is not really there, that is, it only exists as a concept. 

However, the edge of a face is real as it represents and object of the physical 

environment. Theoretical dimensions can become the basis for the specification of 
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geometric tolerances [37]. Furthermore, because of its ability to manage a large amount 

of inter-related feature-based geometric variation, geometric tolerancing emerges as more 

suitable for representing the complexity of the construction domain [15]. As information 

technology becomes more powerful to manipulate large parametric models, the potential 

grows to build increasingly sophisticated functional systems for designing, modeling and 

fabricating buildings [38]. This dissertation focuses specifically on how the formal 

description of design requirements, manufacturing specifications, and a subsequent 

feature-based integration with CAD geometry can describe a more accurate tolerance 

specification. Geometric tolerancing is more closely related to the conceptual framework 

used in feature-based solid modelers. In this context, explicit interactions between the 

entities that control the geometry of a part (parametric model) can be joined to the 

geometric tolerancing specification through the SysML profile. This is in contrast to the 

conventional tolerancing (plus/minus) where the tolerance rule is applied locally but is 

not really relatable to the overall behavior of the part (from the material logic 

perspective) or the tolerance stack. 

Since 1970, research in GD&T has been widely developed from several points of 

view such as geometry representation, variation of geometry representation, tolerances 

allocation, and manufacturing processes. One of the first steps to incorporate GD&T into 

CAD models was defining description languages for parts and assemblies [39]. 

Additionally, the development of Constructive Solid Geometry (CSG) of Requicha and 

Tilove [40], was also relevant to create geometric representations that are able to carry 

information of variation and tolerances. Later, Virtual Boundary Requirements (VBRs) 

and offsetting operations in solid models were successfully implemented by Srinivasan 
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and Jayaraman [41].  Furthermore, tolerance allocation for manufacturing processes has 

been also proposed For example, Zhang and Wang [42] have investigated the tolerances 

and variation that come from machine selection, which extends the scope for geometric 

variation to identify conflicting manufacturing interactions. In addition, Sodeberg [43] 

has focused on the association between critical dimensions and product life cycle to 

identify conflicting correlations among these categories. This design approach is 

demonstrated through a case study that considers the tolerance specifications for an 

automotive body panel, where specified tolerances influence a critical dimension that 

affects the product’s assembled functionality. The potential for loss of functionality and 

the impact of selecting alternative manufacturing sequences on tolerances has been also 

covered by Fathi, Mittal, and Cline [44]. In the same regard, from the manufacturing 

prospective, Fraticelli, Lehtihet, and Cavalier [45] investigated the alternative processes 

definition. They described how tool wear influences the geometric variation of 

manufactured parts. 

GD&T has also been studied from the optimization point of view through 

experimental design [46], and by means of Monte Carlo simulations [47]. GD&T 

research has also covered issues regarding quality loss under the restraints of process 

capability limits, functionality of design, and production quality requirements. These 

issues have been analyzed by using tolerance chart optimization procedures [48].  

Tolerance allocation is another important topic covered by GD&T research. In this 

regard, a feature-based tolerance charting methodology was developed by Tseng and 

Terng [49], and Tseng and Kung [50]. This important work proposed a feature-based 
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tolerance charting methodology to automatically allocate the working dimensions and 

tolerances for 3D prismatic parts represented in boundary representation data. 

Although various GD&T conceptual models are described in the literature, among 

scientists, classifying them is still a matter of discussion. For this research, GD&T 

models are classified using the Kandikjan, Shah, and Davidson [36] schema. This 

classification includes: documentation-oriented models, analysis-oriented models, 

production-oriented models, and control-oriented models. The documentation-oriented 

models aimed to include dimension and tolerancing information in CAD models and their 

documentation. In practice, these tolerances were introduced in the 2D drawings as notes 

only – and are not machine readable and thus rely on human transcription and 

interpretation The second GD&T model is the analysis-oriented model. This model is 

based on the concept of variational geometry and represents the tolerances through the 

variation of the position of some specific control points within the Euclidian space.  The 

system-oriented tolerances model centers on creating the boundaries of the tolerance zone 

and conformance to tolerance. The production-oriented tolerances model employs graph-

based tolerance representation for fabrication as well as machining setup and texture 

planning. Control-oriented models, based on graph representations, allows the 

specification of tolerances according to manufacturing standards.  

Since the creation of the production-oriented modeling, most of the CAD/CAM 

systems that include tolerances follow the widely accepted ISO 10303 Standard for The 

Exchange of Product model data (STEP) to encapsulate tolerance data. STEP describes 

geometric tolerances information via EXPRESS language. [51]. This STEP 

implementation is important to assure quality throughout the process of transferring data 
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among different actors in the manufacturing industry.  Today many manufacturing (but 

few construction) industries require process planners to generate manufacturing 

specifications based on functional requirements of the ISO standard [52].  

The majority of the efforts presented above have been introduced by the 

mechanical engineering domain and implemented in the aerospace and automotive 

industries. However, they are rarely deployed in construction. Therefore, an important 

goal of this research is to adapt these accomplishments made in the mechanical world 

into a model for the construction domain.  

3.2. Geometric Variation and GD&T Evolution 

Since the 1980s, the representation of GD&T in aerospace and mechanical 

engineering have vastly improved. New devices to capture and assess geometric 

deviations, such as electronic scanners, and new GD&T computational approaches have 

allowed a robust interoperability among different CAD systems. During the early days of 

CAD implementation, texts and symbols were written into exchange files. A receiving 

system could display them on the screen or print them, but only a human could interpret 

them (Figure 5 left). This approach is called conventional tolerancing. The conventional 

tolerancing method is still used in many construction activities. Then, with the purpose of 

improving the readability of the tolerances information, variational data was introduced 

by means callouts referring to specific features of the model, for instance, a datum feature 

callout and a datum reference frame. This advanced approach was later known as GD&T. 

As it can be seen in Figure 5 (right), the advancement of human-readable tolerances 

representation included several new fields of information, which mostly refer to the 

feature-based context of the variational data. Besides numeric values and the variational 
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limits of the dimension, these new descriptions depicted tolerances types and datum 

frames to further define the expected variation. Also, the development of user-driven 

GD&T representation specified which element of the geometry of a product model has 

GD&T capabilities. For example, a system supporting GD&T representation may display 

the GD&T information in a tree or other dialog that allows the user to directly select and 

highlight specific features of the product in 2D and 3D. With the purpose of having better 

interoperability within a  GD&T representation systems, the next level of evolution 

incorporated all the previous capabilities in an exchange file, for instance a STEP 

exchange. More specifically, a receiving system that allows a user to select a GD&T 

callout and view the corresponding feature highlighted on the shape of the product [53]. 

 
Figure 5. Conventional +/- Tolerancing and GD&T specification 
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Another critical improvement of the GD&T method was the development of a 

formal language to describe its functionality. This language, supported by the ISO 

organization, has built-in rules and restrictions for proper GD&T usage. This capability 

led to another important advancement in the representation of tolerances:  the GD&T 

validation approach. Using the variational data as well as the GD&T representation and a 

supportive geometric format (e.g. boundary representation), it is possible to validate the 

completeness and consistency of the GD&T information. For instance, the newer 

approach classifies syntactic errors in a GD&T specification by converting ASME 

standards into grammar rules to check for ambiguities in datum referencing for a CAD 

model. Also, the ASME standard Y14.5 defines a set rule for GD&T to specify 

permissible variation in manufacturing [54].  

Further development of the approach proposed in this dissertation will use 

geometric variation data at a system level to improve complex manufacturing and 

assembly processes, energy simulations, realistic visualization, and geometric assurance 

within the construction domain. In order to achieve these goals, the semantic layer 

created by the MBSE platform needs to be integrated with the current CAD environment 

to allow the representation of system-level manufacturing specifications interaction. The 

next section will present a review of the state of the art in MBSE, its integration with 

other modeling and simulation tools, and will further explain the importance of model 

consistency within MBSE to ensure successful integration in the construction realm.  
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3.3. Model Based System Engineering (MBSE), System Modeling 

Language (SysML), and Building Information Modeling (BIM) 

MBSE is the formalized application of modeling to support system requirements, 

design, analysis, verification, and validation activities beginning in the conceptual design 

phase and continuing throughout development and later life cycle phases [27]. MBSE 

tools and the associated visual architectural8 modeling language, which has been 

established by the Object Management Group (OMG) based on the Unified Modeling 

Language (UML) is the System Modeling Language (SysML).  It both extends UML to 

the domain of physical objects (UML is focused primarily on software and data) and 

limits UML by identifying the subset of UML that is useful for modeling objects and 

processes in the physical world. SysML is a general purpose modeling language for 

systems engineering applications and its scope goes through a wide range of systems, or 

systems of systems, including hardware, software, processes, and facilities [27]. Some of 

the general issues of using SysML for MBSE have been identified in [55] is that while 

SysML creators indicates that it is a "smaller, simpler" language for systems engineers, 

SysML suffers from language bloat because it adds two new diagrams (Requirements and 

Parametrics) and substantially increases the number of stereotypes with imprecise 

                                                 

 

 

8 Here, the word “architectural” is used to describe system architecture, that is, how parts and 

assemblies relate to one another in terms of geometry, requirements, production process, supplier, etc. A 

synonym used for architectural used in this context might be organizational.  
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semantics. Also, another issue identified that has close relation with this dissertation is 

that Instance Specifications are ambiguously defined and poorly integrated with the rest 

of SysML [55]. An <<Instance Specification>> defines an occurrence (real-world 

examples) of a <<Block>> element. For this dissertation, instead of using <<Instance 

Specification>> elements to capture numeric values from CAD geometry, the approach 

uses simple <<Block>> elements (classes) as they are better integrated with the rest of 

the SysML language. This section of the document will introduce the motivations for the 

development of systems engineering; it will explain how systems engineering transitions 

from a document-centric approach to a model-centric methodology; and it will explain 

the development of System Modeling Language with its motivations and main 

components. A brief background about the state of the art in SysML model integration, 

requirements engineering, and model consistency will complete this chapter. 

In current practices of architectural design, building engineering and construction, 

products and systems are expected to perform at predicted levels. As Friedenthal et al. 

[56] states: “Competitive pressures demand that these systems leverage technological 

advances to provide continuously increasing capability at reduced costs and within 

shorter delivery cycles.” In the building industry, this increasing capability usually refers 

to a highly detailed set of functional requirements that challenge current modes of design, 

delivery, and operation of buildings. In order to successfully produce better buildings, the 

design and construction industry has integrated computational tools to shift away from 

the traditional approach of independent development of material systems and 

stakeholders requirements towards Building Information Modeling (BIM). BIM can be 

defined as a centralized modeling environment that allows connectivity of multiple 
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vectors, including project information, assembly specifications, building operation, and 

building users [57]. However, the development of BIM, although crucial at the geometry 

level, has not been equally successful in developing well-defined transactional 

construction process models to eliminate data interoperability issues [58]. 

A building, as any other complex system, is not a static entity. Rather, it changes 

over time as sub-systems or other building components are incorporated or detached 

during the building lifecycle. These changes result in requirements and behaviors of 

constituent systems that may not have been anticipated when the system was developed 

[56]. Furthermore, in building design, multi-functional components are highly common. 

For example, a building roof covers and encloses the space of a building; it protects the 

inner space from weather events such as rain and snow. it adds thermal protection to the 

interior; it enables the installation of other systems such as windows or solar panels. Any 

of these functions has to comply with a very precise set of functional, structural, 

aesthetic, and economical constraints during the building lifecycle. If no proper 

knowledge and project data integration platform is implemented, presumably any change 

of the roof design, meant to improve one aspect, will result in the detriment or at least 

some change of some other functionality. As one proposed solution to this larger 

problem, the systems engineering approach, through its modeling language SysML, has 

been extensively recognized in the aerospace and mechanical engineering industry to 

provide system solutions to technologically challenging and mission-critical problems 

[56] [27] [59]. The next section of the dissertation will explain how systems engineering 

is applied to develop a model-centric approach in engineering, and how this approach can 

be used as a platform for dealing with the data heterogeneity in the building domain.  
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3.3.1. From a Document-centric approach to a Model-centric approach: 

One of the important contributions of MBSE has been the development of model-

based architectures that have enhanced the ability to share and exchange project data. 

This approach, although significant, requires improved knowledge and skills of users to 

facilitate the adoption of model-based practices. This need has led to the increasing 

significance of the system architect as a managing entity for the integrated platform. In 

the following section, we will contrast the distinctions of the document-based approach 

and the model-based approach for systems engineering applications. In the AEC world, 

the skill of modelers has been challenged by the implementation of BIM, which is 

inherently 3D and requires a higher level of modeling skill. Most BIM authoring tools 

require that modelers assert the relationships between building objects as part of building 

BIM models, which is an additional challenge, but which makes the building model 

richer and more useful. The system model includes everything in BIM and adds sub-

models for requirements and processes. Thus the modeling complexity is increased even 

further, leading to the identification of the “systems architect” as a managing entity. 

Even with the development of BIM and system engineering, the current practice 

of architectural design and construction still relies on the conventional document-centric 

approach to deliver and manage building lifecycle data. This method usually emphasizes 

the generation of individual design documents, in hard copy or electronic file format with 

restrictive interoperable capabilities, which are exchanged among the project 

stakeholders.  

If systems models are deployed using a document-based approach, the following 

modeling objects are generated to assert the relationship between documents [27]: 
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concept of operations (ConOps), requirements specifications, requirement traceability 

and verification matrices (RTVMs), interface definition documents (IDDs), N2 charts 

(also known as N-squared charts—matrices of structural interfaces), architecture 

description documents (ADDs), system design specifications, test case specifications, and 

specialty engineering analyses (e.g., analyses of reliability, availability, schedulability, 

throughput, response time). 

Considering that in this increasingly complex IT environment [38] a building 

project creates endless amounts of project data from different people and tools, the 

document-centric approach requires a significant amount of time to ensure that 

documentation is valid, complete and consistent. The classic document-centric approach 

specifications are depicted in specifications trees. Then, a systems engineering 

management plan (SEMP) defines how the systems engineering procedure fits in the 

project, and how all the concurring disciplines come together to develop the 

documentation necessary to satisfy the requirements in the specification tree [56]. In the 

document-based approach, functional decomposition is executed to explain how 

functional requirements are to be fulfilled by the components of the system or building. 

Usually, these kind of relationships will be depicted in design documentation such as 

flow diagrams. However, flow diagrams of a document-centric approach lack 

interoperable functionality. In addition, requirements management is performed to parse 

requirements of the design specifications with design embodiments, to capture those 

requirements in requirements databases, and to trace requirements by identifying the 

systems or sub-systems that the specifications are referring to [27]. Current requirements 
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management tools have capabilities to verify requirements satisfaction and to reflect the 

traceability in the requirements database.  

 
Figure 6: Document-Centric Approach 

To summarize: though a document-centric approach may be quite rigorous, it has 

a critical limitation when assessing the consistency and completeness of project data. For 

this approach to be successful, the systems architecture must be clear and the stakeholder 

in charge of the document mapping must be consistent and constant in order to maintain a 

complete systems model. As [56] points out, The comprehensiveness, consistency, and 

relationships between requirements, design, engineering analysis, and test data are hard to 

evaluate due to the fact that information is spread across several documents. 

Understanding a particular view of the system and executing the necessary traceability 

and design-change impact assessments is clearly challenging. Applying this scenario to 

the AEC domain may lead to a deficient coordination of design requirements, which 
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could subsequently lead to poor knowledge integration regarding material systems and 

manufacturing processes, and finally to quality issues when the final product is delivered. 

As it has been described above, the document-centric approach for systems 

engineering –although having many advantages, suffers from an important disadvantage: 

model inconsistencies. This situation was one of the main motivations for the 

development of the MBSE approach With the MBSE approach, many of the intermediate 

deliverables of the modeling activities seen in the document-centric approach can be 

generated automatically. However, as [27] explains, in the model-centric approach, the 

main product of those activities is an integrated, coherent, and consistent system model, 

produced using a dedicated systems modeling tool: the System Modeling Language 

(SysML). All other artifacts are secondary—automatically generated from the system 

model using the same modeling tool.  

 
Figure 7: Model-Centric Approach 

One of the important characteristics of a comprehensive model is that it enables 

stakeholders to take informed decisions. Decisions made within an MBSE framework 
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take place within a central repository, where each design decision is captured by a model 

element or a relationship among model elements. With the model-centric method, all 

diagrams and self-generated text objects are simply views of the underlying system 

model, they are not the model itself. And that difference is the core of the return on 

investment (ROI) that MBSE offers over the document-centric approach [27]. In the 

system model, as all modeling elements are programmatically and systemically 

integrated, any change that is produced will be automatically propagated to the rest of the 

model. This capability is possible because of the programmatic characterization of 

underlying dependencies of the model elements. It does not matter if the elements are 

depicted in a diagram that is user-defined or automatically created, or if the model is too 

large or complex. After all, the diagrams of the system models are just views of the real 

model, which keeps its internal consistency based on its seamlessly integrated approach.  

3.3.2. Diagrams of the System Modeling Language (SysML) 

This section introduces the different diagrams available in current the version of 

SysML as it is explained by the Object Management Group (OMG, 

http://www.omgsysml.org/). Also, an introduction for the use of SysML diagrams in the 

building domain is provided in a study of CAD-SysML integration for natural ventilation 

assessment [60]. This project starts by modeling generic natural-ventilated buildings in 

SysML, and examines the model through some scenarios produced from parametric 

geometric iterations. The aim of those parametric iterations is to model the natural 

ventilation system to survey different options of a building in a short period of time in 

early stages of design. The building is a five-story, open plan, office building located in 

Atlanta with stack-assisted cross ventilation.  

http://www.omgsysml.org/
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Figure 8: Building instance used as case study for the natural ventilation example 

One of the main goals of the project is to visualize the geometric impact of 

decisions taken in the building energy performance analysis domain. The size of rooms 

and windows, height of stories, and building orientation will influence the results of 

ventilation performance and also affect the appearance of the building. For the geometric 

design of this development a parametric identification of the building was created in 

Grasshopper, a parametric modeling tool that works within the Rhinoceros 3D modeler 

environment. This Grasshopper definition contains all the basic elements of the office 

building: basic structure, floors, exterior walls, interior walls, openings, roofs.  The 

Grasshopper definition also contains all the topological relationships among the elements. 

 Figure 9 shows the hierarchy of SysML diagrams. Then, the rest of the section 

provides examples of instances of these diagrams offered through the natural ventilation 

example [60].  
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Figure 9: Hierarchy of SysML diagrams 

SysML has an intuitive interface of multi-functional diagrams where the 

<<block>> is the basic unit of a structure. Every system structure can be represented by 

block definition diagrams (bdd) and internal block diagrams (ibd) [24] [25]. A block 

definition diagram defines the system hierarchy and system/component taxonomies and 

the internal block diagram describes the inner structure of a system in terms of its parts, 

ports, and associations – in other words, the bdd describes how assemblies and parts are 

related and nested semantically and the ibd depicts how the properties of elements 

(already defined in bdds) are related [55]. The bdd is the most common of the SysML 

modeling elements and is intended to depict the structure of a system. For example, if the 

diameter of a hole in a plate and the diameter of a bolt are related, then this relationship is 

declared in an ibd, but the definition of the plate and the bolt take place in a bdd [55]. 

One of the characteristics of the bdd is the level of granularity or detail that users can 

obtain, depending on the target stakeholder for whom the diagram is intended. Bdd has to 
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be created based on the level of detail that is needed in the creation of subsequent system 

modeling diagrams. For example, if an activity diagram refers to the drilling and 

subsequent measuring of a hole in a part, then the bdd must define the part, and the hole 

that is in the part, and must provide the dimensions of the part and the hole so that these 

can be referenced in the  activity diagram. The model elements that are displayed on 

bdds—blocks, actors, value types, constraint blocks, flow specifications, and interfaces—

work as stereotypes for the other model elements shown on the other kinds of SysML 

diagrams. These elements that appear on bdds are known as elements of definition. These 

elements of definition are the foundation for everything else in a system model [27]. The 

main elements of a <<block>>, which are shown in Figure 10, are the parts and values. 

The parts represent subcomponents that are typed as “children” of the <<block>> and the 

values represent model parameters that are depicted in the model to drive mathematical 

analyses and simulations. There are three central kinds of relationships that can be 

created between blocks: associations, generalizations, and dependencies. In Figure 10, 

blocks are connected by using a “black diamond” association. This means the blocks are 

physically connected to the parent block by using a “has a” relationship. If a block was 

part of the parent block but did not physically connect to it, this association would be of 

the reference kind and it would be represented by an open diamond, which indicates a 

simple aggregation.  
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Figure 10: Block Definition Diagram (bdd) showing the structural decomposition of a 

building assembly, Valdes, Sun (2012) 

The internal block diagram (ibd) depicts the internal view of a system block, and 

is usually instantiated from the block definition diagram, to represent the integration of 

all blocks within the main system block [24]. As an example, the bdd in Figure 11 

represents a room network in a building story. The story contains four rooms and a 

central common space for all the stories depicted as “stack.” It is important to note that, 

even though the bdd contains only one block called “Sub-Space”, it is actually 

representing four different rooms because of its four composite associations to the parent 

block “Floor 1”.  
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Figure 11: bdd of the space distribution of a building story with 4 rooms and a central 

common stack, Valdes, Sun (2012) 

Figure 12 represents the same building story shown in the bdd, but it is 

characterized as an ibd.  In this ibd, the internal structure of the air transference network 

is depicted using the same elements of the bdd. The main difference is that in the ibd the 

associations are showing an item flow instead of a hierarchical relationship among the 

parts. In an ibd, item flows are required to match the ports that they are binding together. 

It is important to note that all item flows and ports of the example in Figure 12 are typed 

as “air” as they represent parts of a natural ventilation model. It should also be noted that 

item flows between two ports are required to specify the direction of the flow.  
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Figure 12: ibd of the same building story shown as bdd in the previous picture, Valdes, Sun 

(2012) 

 In order to integrate specifications and design models with engineering analysis 

models, parametric diagrams (par) represent constraints on attribute values which can be 

derived from material, performance, and reliability properties. As can be seen in Figure 

13, a parametric diagram contains four basic elements: an instance block that represents 

the occurrence of a <<block>> element, and contains numerical values to perform 

mathematical or logical calculations; a constraint block that contains a mathematical or 

logical expression to be calculated during the parametric execution; a port that defines the 

type (e.g. real) of the specific value of the element; and a binding connector that links 

<<block>> data with the inputs of the expression in the constraint block through their 

port elements. Parametric diagrams enable a value property that might be deeply nested 
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in a containing hierarchy to be referenced at the outer containing level [25]. Also, 

parametric diagrams explicitly show the item exchange and the interdependencies 

between parameters and attribute values that drive the different components of a system. 

This facilitates the identification of sources of performance and the composition of a 

system with good performance.  For example, the Aspect System defined by Augenbroe 

[61] represents a subset of a building model that is important from a functional 

perspective. This functional view is achieved by functional decomposition, as in ibds, and 

needs to be agreed upon with all design stakeholders. Then, the Aspect System will be 

formulated as a measurable expression of performance. 

 
Figure 13: Parametric Diagram (par) example, Valdes, Sun (2012) 
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Behavior diagrams comprise the use case diagram (uc) and activity diagram (act) 

shown in Figure 14 and the sequence diagram (seq) and state machine diagram (sm) 

shown in Figure 15. A use case diagram provides a high-level description of functionality 

that is achieved through interaction among systems or system parts. The activity diagram 

denotes the flow of data and control among activities. A sequence diagram represents the 

interaction between collaborating parts of a system. The state machine diagram describes 

the state transitions and actions that a system or its parts perform in response to events. 

Activity diagrams can represent specific construction processes by means of the 

description of process phases and associated metrics. All these metrics can be traced step-

by-step through sequence and state machine diagrams, and can be compared to formal 

specification of design standards through requirements diagrams (Figure 16).  

The activity diagram in Figure 14 illustrates space cooling through natural 

ventilation. The control logic is when indoor air temperature is higher than the indoor set 

point temperature of 22 degrees Celsius and outdoor air has cooling potential (i.e. 

outdoor air is cooler than 22 C), the natural cooling system will control window opening 

areas. After the window area is adjusted, wind pressure drives outdoor air flow through 

open windows. Finally, the status of fresh air and air temperature in the room will be 

updated. This activity needs to repeat periodically, so the indoor environment will be 

monitored. 
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Figure 14: Activity Diagram, SysML, Valdes, Sun (2012) 

The state machine diagrams represent several states that an object may be in and 

the transitions between behaviors and states. Actually, as it is understood in other 

modeling languages, it is common for this type of diagram to be named a state-transition 

diagram or a state diagram. A state characterizes a phase in the behavior of an element, 

and as in SysML activity diagrams, they will have initial states and final states [62]. The 

following example in Figure 15 represents a state machine diagram of a room used in the 

natural ventilation project. The sm diagram comprehends all elements that are activated 

when the room is being occupied. State machine diagrams are clear examples of 

behavioral modeling in SysML and its applicability in building simulations.  
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Figure 15: State Machine Diagram, SysML, Valdes, Sun (2012) 

SysML contains a graphical methodology to represent text-based requirements 

and relate them to other model elements as critical dimensions obtained from the CAD 

model. The requirements diagram captures requirements hierarchies and requirements 

derivation, which then satisfy and verify those relationships. The requirement diagram 

will associate manufacturing knowledge, included in construction standards and material 
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systems know-how, with the model element that satisfies or verifies the requirements of 

the system model.                 

 
Figure 16: Requirements Diagram, SysML, Valdes, Cavieres DBL Symposium: GaTech 

(2013)                

One of the most important functions of MBSE is to allow a formalized body of 

knowledge to support rule-based design, hence relieving designers of the monotonous 

activities affecting the engineering design process [63] [64]. One central aspect of this 

approach is the generation and management of complex product configurations that 

provide data to several discipline-specific tools involving geometry inputs or geometry 

manipulation. Knowledge-based geometry and tolerances modeling and allocation are 

examples of such configurations. Also, all the sub-processes and analysis that include 

geometry manipulation are highly interconnected and rely on each other to advance the 

product through its lifecycle. For example, most of the geometric design parameters of a 

building product depend on non-geometric rules and requirements modeling, and must be 
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verified against construction standards. However, the geometric data necessary to 

elaborate systems models within SysML still relies on manually-entered and updated 

procedures. This situation leads to several drawbacks of model integration such as invalid 

data, lack of consistency among models, and excessive design review procedures. In 

order to implement a SysML method in a highly geometry-based field like BIM, a proper 

artifact to automate BIM-SysML data translation in a product development lifecycle is 

required. With this enhancement, BIM could potentially ensure data consistency among 

models, leading to an increased building quality and a reduction in time and cost. 

However, as it is found in the construction realm, the multi-disciplinary nature of BIM 

results in vast amounts of project data, managed in different tools, corresponding to 

different domains but which can be coordinated through SysML. Although SysML has 

been successfully applied to several areas of the engineering design, such as 

implementation for analysis (CAA) and communication and collaboration with several 

stakeholders and external applications, the integration of SysML with geometry intensive 

platforms as BIM is still an ongoing research area.  

3.3.3. Requirements Management in Systems Engineering 

Software development is highly dependent upon the Requirements Engineering 

domain. Furthermore, within the requirements engineering process, the elicitation of 

customer’s requirements is a crucial stage. Saiedian et al. [65] focuses directly on the 

factors that shape requirements elicitation. In this regard, the elicitation stage addresses 

requests and needs of consumers and presents a solution for their specific system. 

Additionally, Chituc [66] takes Requirements Engineering research into another context: 

long term digital preservation. There is limited research on Requirements Engineering 
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along the lines of long-term digital preservation. Chituc introduces the challenges and 

advantages that could be present if digital preservation research was done in depth. In 

relation to Requirements Engineering research, elicitation is also a common phase in the 

context of digital preservation, but it takes the form of questions, surveys, and interviews. 

However, due to the lack of integrated tools for gathering information about the 

consumer’s and practitioner’s needs, the elicitation process usually results in poor 

communication, resistance, and lack of perspective. Through an industrial study, Sikora 

et al. [67] propose methods to understand practitioners’ needs concerning Requirements 

Engineering research and development. This study included qualitative interviews as well 

as qualitative data collected via questionnaires that reported five aspects of Requirements 

Engineering approaches. The interview and questionnaire results concluded that the use 

of natural language was prevalent in all industries, but many of the stakeholders felt that 

including models would be a more comprehensive approach. In that regard, graphical 

representations and prototypes have been found to be a technique that could reduce the 

amount of ambiguity between the consumer and the modeled system. Graphical 

representations extend from blueprints to hierarchies of problems, while prototypes 

enhance the understanding of problems to identify solutions. In addition, Dos Santos 

Soares et al. [68] offers new ideas about user requirements, mainly for software-intensive 

systems, focusing on diagrammatically documenting them. System Modeling Language 

(SysML), diagrams and tables, could effectively represent most of the meta-requirements 

for complex system. SysML requirements diagram display requirement relationships, 

while SysML tables show traceability and decomposition for software-intensive systems.  
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Holt et al. [69] debates how the application of Model-based Systems Engineering 

is becoming well understood at the systems level, yet there is a lack of research and 

subsequent application at the system of systems (SoS) level. This research proposes a 

Model-based Systems Engineering approach called COMPASS (Comprehensive 

Modeling for Advanced Systems of Systems), for requirements engineering, that could be 

applied to both the system of systems (SoS) level and its constituent system (CS) level. 

The four basic types of SoS requirements presented in this research include virtual, 

collaborative, acknowledged, and directed, which are essential in the application of 

MBSE. Winkler and Pilgrim focus on the current traceability research and practice in 

requirements engineering and model-driven development (MDD) to bring stakeholders 

together by identifying commonalities and differences in the two areas and finding 

unsolved challenges that affect both. Traceability is found in requirements engineering 

and MDD, because it is important in the verification and validation process. Also in 

traceability, Cuddleback et al. [70] investigated what factors influence a human analyst’s 

performance when vetting a candidate requirements traceability matrix (RTM). RTM is a 

mapping process between elements of one artifact to another and is one of the most 

revered processes in construction. Since RTM is highly revered, there may have been 

some bias among the analysts in the study from a golden standard already established.  

The study found that the analysts move their RTMs towards the line that represents recall 

precision, meaning RTMs with low recall and low precision were improved drastically. 

In a study by Ingmar [71], the main focus is discussing how a system is built with 

operational descriptions of the missions the system is to complete through a central 

model. A central model is essentially a means for developers to eliminate problems with 
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concurrency and incrementalism, basically as a control for engineering. Once the central 

model is established, the model is extended into a Common Project Model. The Common 

Model Project is the breakdown of a system’s structure and behavior, shown in a way that 

manages problems.  

Mancin [72] explains how to implement Model-Based Systems Engineering 

(MBSE) as systems become more complex in their design. Through the use of 

UML/SysML as independent modeling language, support analysis, design, development, 

verification, and validation phases, an executable model will be created for proper 

implementation. SysML is the main focus of his article, more specifically the analysis 

stems from the implementation of the SysML language and the use of the SysML 

diagram. 

Capilla et al. [73] consolidated the findings of three other articles, creating a 

summary solution to research challenges as it relates to requirements and architecture. 

The first challenge was developing a strategy that allows requirements to transition to 

architecture models. A Strategy for Transition between Requirements and Architectural 

Models for Adaptive Systems (STREAM-A) was proposed to solve this challenge. This 

approach uses goal models based on the i-star framework to design and evolve systems. 

This system allows software engineers to perform the smooth transition from 

requirements to architecture models. Transitioning is not the only problem for systems, 

quality performance is also a concern when architecting with quality requirements. The 

proposed model to resolve this is called QUality PERformance (QUPER), which uses 

qualitative reasoning to make estimating quality targets easier and reasonable for quality 

requirements. QUPER has already been applied in the industry, so further application will 
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increase upgradability, performance requirements, and improve the decision making 

process. Finally, improving and understanding software quality requirements will 

continue to evolve and will always present a challenge. To limit the number of challenges 

in the industry, web applications (WebApp) can be used to indicate internal/external 

usability problems [73]. Usability problems will be assessed through the WebApp, which 

will provide recommendations for improvement. With diversity on the rise in technology, 

it becomes more complex to balance relevant quality attributes and support different 

levels of quality.  

Goal-oriented requirements have received an increasing amount of attention 

because they are used to elicit, elaborate, structure, specify, analyze, negotiate, document, 

and modify requirements. Essentially, Van Lamsweerde [74] presents the various efforts, 

arguments in favor of goal orientation, and a case study that shows how the goal-oriented 

method works. Specifically, the Knowledge Acquisition in Automated Specification 

(KAOS) method is advanced, because the four sub-models it creates can be applied to 

any size project. The four sub-models essentially assist in analysis in developing the 

goals and their application. Identifying the consumer’s goals in the early stages of the 

Requirements Engineering process is a benefit of the KAOS method. Goals allow for the 

consumer to see explicitly what they what the system to do. Goal-oriented Requirements 

Engineering is specific to goals, verifying the requirements to ensure the goals are 

identified and satisfied by the requirements. Goals are essential in goal-oriented 

requirements, hence the name, especially because of their ability to support goal 

modeling via qualitative or formal reasoning.  
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Sutcliffe [75], defines the role of scenarios in Requirements Engineering and the 

Scenario Requirements Analysis Method (SCRAM) that allows for proper prototyping of 

scenarios. Scenarios have been found to be helpful in counteracting human reasoning by 

testing hypothesis and assumptions in models. In relation to models, scenarios 

complement them by including all the goals of the stakeholder and making them clearer 

to show how the system might work. Ultimately, scenarios present real world 

applications leading to prototyping for models. Along with modeling requirements 

through scenarios, the SCRAM method is one of the most successful techniques when 

applied. This method consists of four phases, initial requirements capture and domain 

familiarity, storyboarding and design visioning, requirements exploration, and 

prototyping and requirements validation, which allows for the safe guiding process in 

organizing the requirements analysis. The requirements analysis is essential so that all the 

needs are included in the scenarios for the consumer to see what the system does 

explicitly. In the end scenario-based requirements engineering has provided numerous 

avenues to fulfill requirements for consumers.  

3.3.4. System Modeling Language Integration Background  

Model integration between SysML and other domain-specific applications has 

been a matter of long development. These integrations have dealt with several 

programming languages and data structures. However, the integration with CAD data 

structures has not been successful so far. This section introduces the most relevant 

integration project of SysML and other design and simulation tools. 

One of the first approaches to create model integration within MBSE was 

GeneralStore of Reichmann [64]. This approach proposed a common execution language 
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to deal with models already developed. GeneralStore has been considered as a limited 

approach because it does not work during changing design stages. Hooman et al. [76] 

introduced a co-simulation approach to exchange information between models during 

runtime stages.  

 
Figure 17: SysML Integration Status 

Tolk [77] presented research that surveyed several issues about meta-modeling 

and mapping among different modeling languages. Also, Vanderperren and Dehaene 

[78], developed an integration between Matlab and UML. In addition, Brisolara et al. 

[79] also developed an approach to integrate SysML with Simulink. In 2007, Pop et al. 

[80] developed a SysML profile to integrate SysML with Modelica. Also in 2007, 

Nytsch-Geusen [81] introduced a profile to graphically describe Modelica models in 

SysML. Johnson et al. [59] [82] also worked on a SysML Modelica integration. Brucker 



64 

 

and Doser [83] developed a Meta-model-Based UML Notations for Domain-Specific 

Languages to explain how to create domain-specific formal semantics. 

Huang et al. [84] developed an approach to apply simulation activities within 

SysML by means of mapping simulation models from Tecnomatrix plant simulation. Van 

der Velden et al. [85] introduced an adaptable methodology for automation application 

development. In 2008, Jobe et al. [86] proposed multi-domain integration in SysML 

through a Multi-Aspect component model called MAsCOM. Giese et al. [87] introduced 

an approach to produce low-level models in an automatic manner. This approach 

formally described the meta-models to automate the process. In 2010 Shah et al. [88] 

developed an approach to create multi-view modeling by means of SysML profiles and 

model transformations. Schamai et al. [89] similarly introduced integration approaches 

between SysML and Modelica by means of ModelicaML. Several other efforts have tried 

to improve the integration of SysML and Modelica. For example, OMG developed an 

approach to standardize a SysML – Modelica integration [90]. Furthermore, in the 

Modelica environment, efforts to generate code from abstract models have been produced 

by Dassault Systems (2011) and OpenModelica Consortium (2011). Additional 

integration methods either provide execution capability for executing SysML models, 

such as ParaMagic (InterCAX, 2011), which aids in executing SysML parametric 

diagrams based on composable objects [26], or they focus on integrating SysML with 

other modeling and simulation languages. Marchenko el al. [91] developed a new method 

of visualization and documentation of parametric information of 3D CAD models. In 

2012, Rocca [92] presented research to explain the concept of Knowledge Based 

Engineering (KBE) through the integration of AI and CAD. Also in 2012, Mosier [93] 
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presented an overview of the NASA-integrated model-centric architecture. Valdes and 

Sun [60] developed an approach to parametrically assess natural ventilation performance 

in early stages of building design. This approach integrates metrics from a parametric 

model into a SysML model to perform critical analysis with Model Center. Figure 18 

shows the integration environment of this approach. 

 
Figure 18: Integration Environment of NatVent Project: Valdes: Sun: (2012) 

3.3.5. Consistency Management in MBSE Background 

The MBSE realm integrates numerous embedded systems and applications that 

need to be properly coordinated and consistent. As we have seen, every embedded system 

will carry domain specific data that will be represented through domain-specific 

languages (DSL). In this multi-disciplinary environment, two consistency categories 

arise: internal consistency and external consistency. The first category deals with 

consistency within a model itself and the second deals with inconsistencies among multi-

domains models created through different modeling languages [94]. As this project deals 

with the integration of CAD models and SysML models, the second category is our main 

interest. There have been more than a few projects related to consistency and consistency 
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checking in the MBSE literature. In 2007, Adourian et al. [95] proposed a methodology 

to check consistency between geometric and dynamic views of a mechanical system. 

Hehenberg at al. [96] developed an approach to analyze consistency issues in 

mechatronic design models. In 2009, Gausemeier et al. [97] developed a project of 

management of cross-domain model consistency during the development of advanced 

mechatronic systems. The UML language has been identified as an important ground for 

consistency issues by several authors. Chanda et al. (2010) developed a framework for 

semantic verification of UML diagrams, Simmonds et al. [98] proposed a method to 

maintain consistency between UML models using description logic, and Mens et al. [99] 

worked on another framework for managing consistency in evolving UML models. Also, 

the OMG has developed approaches to deal with semantics in UML. 
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CHAPTER 4: Tolerances in Building Construction 

4.1. The Challenge of Modeling Construction Tolerances  

Design errors and omissions, such as failure to predict and control geometric 

variability in construction, have enormous effects on cost and efficiency of today’s 

building industry [32] [16]. Hence, in order to produce high quality, cost-effective 

buildings; planning and execution of processes of construction must consistently consider 

the option of geometric deviations during the design stages. However, to achieve this 

goal there are numerous challenges that have introduced in this dissertation:   

 Multiple material systems with different bodies of manufacturing knowledge [2]; 

 Geometry does not necessarily comply with manufacturability while being 

designed and later updates to remedy inconsistencies will increase the likelihood 

of mismatches with other components [15]; 

 Lack of knowledge representation and allocation methods for each material 

system [57] [2];  

 Lack of integrated manufacturing knowledge traceability from specifications to 

geometry [52]; 

 Lack of manufacturing and tolerances verification methods [52]; and 

 Lack of consistency across different tools and models [94]. 

This dissertation, will consider five stages of the construction process: early stage; 

design validation; construction preparation, which include detail design of fabricated 

components; building erection and production of off-site components; and building 

management. Every stage of the construction process also contains sub-stages that are 

located horizontally on the graph in Figure 19. All the sub-stages, or tasks, are connected 
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with two basic kinds of dependency elements: single-direction arrows and double-

direction arrows. While the first indicates that information will flow from task A to task 

B, the double-direction arrow indicates a mutual dependency between two tasks. Also, 

when a single arrow goes against the time line, this will mean that the specific 

dependency is part of a multiple-task loop. In order to introduce the level of influence of 

geometric variation at different sub-stages of the construction process, a simple color 

code is offered in the diagram. This color code introduces the following logic: the darker 

the color, the higher the geometric variation influence of the task. This research does not 

consider the demolition stage because its relationship with geometric variation has not 

been considered relevant.  

 
Figure 19: The Construction Process (author) 

Besides understanding the multi-party nature of the construction process with 

regard to stakeholders and software environments, it is important to recognize how the 

geometric complexity of building assemblies leads to construction inaccuracies. A 
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building is a highly complex assembly that often has millions of different components. 

All components are interconnected in relationships that depend not just on levels of 

accuracy of the manufacturing and assembly strategies, but also behavioral 

considerations during building operation. Furthermore, every material system has its own 

set of manufacturing rules, behaviors, processes, and standards, which, when put together 

with other materials systems, creates unpredicted interactions that may reduce the 

expected performance of the building. This issue leads to new and increased demands on 

the ability to break down manufacturing and tolerances requirements to subparts and 

subsystems, and to be able to sum up the expected variation from subparts to a system 

level.  

In addition, planning and production methods of construction have changed over 

time. The foundation for such changes has been the virtual product development through 

computational modeling and simulation using BIM tools [23] [57]. This advance enables 

scenarios of reliable analysis and complex calculations of the entire life cycle of the 

building.  As a result of this computational development, many physical mock-ups have 

vanished and are now replaced by digital simulations [100]. To take real advantage of 

this technology, deviations produced during construction practice must be adequately 

represented in BIM models. So far, however, BIM tools do not provide enough 

computational support to consider all the geometric variation and tolerances of 

construction [57]. Rather, today’s processes of construction are entirely driven by 

nominal CAD models and geometry with unassessed manufacturability, without 

considering the multi-level interaction of building components and processes. To address 
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this issue, it is essential to understand how different levels of interaction of building 

components affect the likelihood of a nominal outcome. 

The following section will assess this inquiry by creating a construction 

tolerances taxonomy, which will be the basis for a further representation of different 

types of construction variability during the implementation stage. 

4.2. Towards a Construction Tolerances Taxonomy 

In building construction, causes of inaccuracies can be traced from a design and 

manufacturing perspective or directly from materials, parts, and assemblies during 

construction. This project proposes four categories that are accountable for geometric 

construction inaccuracies: materials knowledge, geometry knowledge, assemblies’ 

knowledge, and processes knowledge. The first category, materials knowledge, considers 

physical, chemical, and mechanical properties and deformations based on material 

properties or surface roughness. For instance, in construction, there is an important 

phenomenon called hysteresis that is a permanent altering of an object’s physical 

properties due to a certain repeated external influence over time. The most common 

causes of hysteresis are the influence of gravity, thermal expansion or contraction, and 

changes due to moisture exposure. When thermal influence occurs, deformation may be 

magnified by the fact that two assembly components experience different temperature 

gradients. Besides the effect in the appearance, this can negatively affect the material’s 

strength. The second category, geometry knowledge, considers geometric variation levels 

of a single building component that belongs to a specific material system (for instance, a 

brick, a precast beam, or a sheet metal component). This category is probably the most 

important for the development of this dissertation. Often, single components do not fit 
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during aggregation because their defining geometry has not been evaluated by specific 

rules of manufacturability for the precise material system. Although designing with “non-

nominal” or “as-built” geometry is not the aim of this dissertation, prior to 

manufacturing, the intended nominal geometry must be as close as possible to an ideal 

instantiation of the intended form and function. Furthermore, this geometry must be 

evaluated by using the manufacturing constraints that comes from the project 

requirements and specifications. In this category, geometric variability is to be addressed 

by defining a set of “critical dimensions” usually revised during quality control 

procedures, before building erection. The third category, assemblies’ knowledge, 

includes assembly sequences, number of parts for assembly, prefabricated assemblies 

versus on-site assemblies, and automated assembly versus manual assembly. Considering 

that assembly procedures are often produced substantially by human labor on-site, this 

category is highly dependent on accumulated geometric variation known as tolerances 

stack. Tolerances stack is critical in construction and will be covered in the 

implementation section of this document. The last category, processes knowledge, 

considers values of machines and tools, process capabilities of the selected fabricators 

and contractors, skill levels of the human labor teams, and the percentage of on-site 

construction that the project will include. Although anticipating every aspect of geometric 

deviation is almost an endless task (for example, simulating the texture of a concrete 

brick), a proper approximation of model construction inaccuracies requires understanding 

the composite nature of buildings. This includes geometric variability of a single material 

system (parts, components) and geometric variability of a heterogeneous material system 

(assemblies). The following section will address this matter and will offer a simple 
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tolerances taxonomy by dividing the sources of inaccuracies between single domain 

construction tolerances and heterogeneous construction tolerances.  

 
Figure 20: Representation of the different bodies of knowledge that define the accuracy of an 

assembly in building design 

4.2.1. Single Domain Construction Tolerances (SDCT) and Off-site Sub-

Assemblies 

The construction industry contains numerous material systems that can be divided 

into two main categories:  a distinctive material together with its associated 

manufacturing processes or at a certain stage during the building life cycle. An example 

of the first kind of sub-construction domain is the “structural steel domain.” As its name 

implies, the structural steel domain comprehends all the processes of manufacturing and 

assembly that are related with this specific material. On the other hand, a material system 

stage is the group of processes related to a single or multi-material assembly that belongs 

to a specific moment of the building life cycle. For example, finishes are a sub 

construction domain that fits in this category. Both kinds of sub-domains will be 

associated to the Single Domain Construction Tolerances type (SDCT). One of the main 
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issues of the SDCT group is that they have their own internal tolerances, which are 

addressed separately, usually within different manufacturing-specific workflows and 

subcontractors. As can be seen in Figure 20, frequently building products that belong to a 

SDCT will have a very specific set of manufacturing rules and tolerances standards. That 

is, concerns such as the composition of the material or if the component is made on-site 

or in a factory will affect the expected deviation from nominal. Differences in expected 

variability are also increased when dissimilar material systems come together in some 

assembly condition that overlaps some of their three-dimensional features. As an 

example, in construction it is very common to have assemblies that combine on-site 

concrete casting with off-site manufactured steel structure. While a steel assembly could 

target geometric deviations within 1/32 of an inch [2], the cast-in-place component will 

be probably around one quarter to even one half inch of variability, according to SDCT 

rules. If we also add the natural geometric complexity of building products and their 

behavior, and the number of SDCT-SDCT interactions, the addition of all those 

variabilities will produce significant sources of building inaccuracies. All in all, 

variability assessment in SDCT will frequently fall within specification. The real problem 

of SDCT is in their aggregation. Assemblies of dissimilar material systems have led to 

the creation of a new variability category that will be introduced in the next section: 

Heterogeneous Construction Tolerances (HCT). Considering this and the increasing 

interest of the BIM community in pre-fabrication, this research focuses on variability 

interactions of multi-SDCT assemblies that combine knowledge-dissimilar off-site 

components (or sub-assemblies). The following sections will give a brief description of 
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the most important material systems used in current construction and their most typical 

sources of variability.  

 
Figure 21: Tolerances incompatibility among different SDCT systems  

Building Layout 

The first SDCT of the building life cycle is the building layout. This SDCT 

mainly comprehends the variational location of the building within a construction site and 

the regulations about general paving and right-of-way laws. The most important 

geometric deviations that can be accommodated by using tolerances are right angle 

layouts of sides and site. A suitable approach to measure deviations of the building layout 

is to create a tridimensional survey grid from which all the tolerances are allocated. For 

the vertical layout, a critical dimension to consider is the accuracy of plumbness that can 

be represented as a percentage of the length. Building layout allowances are described in 

several guides and handbooks like: Handbook of Construction Tolerances [29], NIST 

handbook [101], Construction Science Research Foundation (1989); and ISO 2263-1, 

Measurement Methods for Buildings, (1989).  

Concrete 
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Concrete SDCT contain numerous sub-sections related to cast-in-place concrete 

and precast concrete. A sub section of precast concrete describes all the pre- and post-

stressed details of this SDCT. Important variation aspects that have to be prescribed 

include levelness of concrete and asphalt paving and variations in the slope and thickness 

of the sections. Another important tolerances aspect of concrete is geometric variation 

produced by inaccuracies of reinforcement placement in walls and columns, precast 

panels and beams, precast insulated panels, and reinforcement placement of prestressing 

steel. These kinds of inaccuracies, as in most of the material systems, are frequently 

caused by design errors due to the lack of material-specific knowledge during design 

stages. In addition, elevated and on-grade slabs will produce two types of variation. First 

there will be a tolerance of elevation and second a tolerance of flatness and levelness. 

Cast in place needs to be toleranced especially in its plumb and also in its sectional 

variations due to deformations of the framework. In addition, special attention is required 

for changes in height and right of way construction details. Some sources of variability 

that are difficult to include in GD&T are related to inaccuracies in the concrete mix 

preparation. The principle sources of describing allowances of concrete SDCT are the 

American Concrete Institute [102] [2], the American Society for Testing Materials [103].  

Structural Steel  

The steel SDCT contains mill tolerances for different steel shapes and numerous 

allowances for connections. Mill manufacturing tolerances should define values for 

camber and sweep in S and M shapes profiles, and the same for structural angles and tees. 

Special attention is required to specify tolerances of architecturally exposed structural 

steel, location of connections and welding threads, and elevator shaft tolerances. Besides 
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tolerances allocation, Steel structures must consider proper clearances to allow 

connections. The main sources of guides and allowances are suggested by the American 

Institute of the Steel Construction [104] and the American Society for Testing Materials 

[105] (2003, 2004, and 2005).  

Unit Masonry 

The unit masonry SDCT describes allowances of brick manufacturing, 

reinforcement, and assembly tolerances shows the diverse levels of variability from an 

inherited structure. Although there are some differences among construction material 

systems, this model applies to most of them. In the case of masonry, the first level of 

inaccuracies is the masonry unit itself. Differences in the sizes and surface evenness are 

the most significant issues. In this material system, the most important source of variation 

that needs to be addressed by tolerances allocation is the unit placement. Here, the 

thickness of the mortar and the overall plumbness of the wall are critical. In the graph, 

arrows indicate variation inheritance among levels that describes a summed tolerance or 

tolerances stack. Other issues related to unit masonry construction are relative alignment 

of rows, bearing wall level alignment and changes in the height due to variation of the 

mortar layer among rows. Also, prefabricated masonry panels need to allocate tolerances 

for out-of-square and out-of-plane recurrent issues. Most of the standards for unit 

masonry have been created by the American Society for Testing Materials (ASTM) [29] 
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Figure 22: Example of SDCT Masonry with its levels of tolerances 

Stone 

The stone SCDT contains standards for different kind of stone construction as 

granite, marble, and limestone. The most important deviations related to this material that 

are easily described through tolerances allocation are the assurance of thickness and 

squareness of every block. The second most important issue that is very recurrent in 

cladding is the lack of flatness due to variations in material temperature. During granite 

and marble installation, relative alignment and plumbing must be toleranced to create 

adequate joints.  Stone SDCTs have been proposed by the Marble Institute of America 

[106], and the Indiana Limestone Handbook [107]. 

Structural lumber 

The structural lumber SDCT covers topics such as glued laminated timber 

fabrication and plywood in general, fiber board manufacturing, rough lumber framing, 

and wood floors.  In laminated members we have to define dimensional tolerances, 

camber or straightness tolerances, squareness tolerances, rough lumber, and end trimming 

tolerances. In addition, in plywood, fiberboard and particleboard manufacturing, we find 

variational sources that describe size tolerances, squareness and straightness tolerances, 

and thickness tolerances. For structural timber that is assembled mainly through human 
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labor, special awareness must be considered for bows and twists of rough lumber framing 

and wood floor framing and subflooring.  The main organizations that have defined 

standards for allowances of inaccuracies in this category are the American Institute of 

Timber Construction [108], the American National Standard Institute [109], and the 

National Institute of Building Science [110] 

Finish Carpentry and Architectural Woodwork 

The finish carpentry and architectural woodwork SDCT, defined in the 

Tolerances Handbook of Ballast [86] is also presented as a sub construction domain. This 

section contains several site-built wooden applications as well as frames, jambs, and 

window variational allowances. Manufacturing tolerances must be applied independently 

for rough lumber and dressed board lumber. This section is very sensitive to site-built 

cabinets, countertops, and stairs and trim. Tolerances described for joints that do not 

produce gaps are critical. Special awareness must be considered for continuity of doors 

and window frames, where allocation of clearances and joints are not allowed, and which 

require mitered joints. The codes and allowances for this category are basically the same 

as prescribed for the structural lumber SDCT with some specific additions as the Kitchen 

Cabinet Manufacturers (ANSI/KCMA) standards [111]. 

Curtain Walls  

The curtain wall SDCT is also suggested for this tolerances category. The 

aluminum curtain wall fabrication and installation are the main sub sections of this 

segment. The PVC curtain wall standard has to be included as well. Both materials have 

similar sources of variation of their glassing framing. The main issues found in the 

curtain wall assemblies are height and width tolerances, maximum alignment of vertical 
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members, and control of diagonals of the glazing framing to ensure squareness of the 

structure. Also, curtain walls installation is very sensitive to the exterior alignment of 

different stories of the building and to the clearances given for embedded windows and 

doors. The main sources of this standard are the American Architectural Manufacturers 

Associations [112], and the ANSI Dimensional Tolerances for Aluminum Mill Products 

[113].  

Finishes  

The finishes SDCT, for being a “stage” sub-construction domain is quite diverse 

in its specifications. The scope goes from framing for gypsum wallboard, wallboard 

partitions, and acoustical ceiling, to stone and wood flooring and rods and bars. Being a 

very thin material, the main sources of inaccuracies of the light-gauge framing, which 

produce several other inaccuracies with other material installations, are plumbness and 

straightness. Also, for floor and wall tiles, wedging and thickness variation is critical. In 

this kind of material, the proper allocation of joint tolerances will allow a better finish. 

The same rules apply for the specification of wood flooring, which also generates 

variation due to moisture content changes. The principal sources of finishes allowances 

are ANSI [114], and ASTM [115].  

Doors, Windows, and Glassing 

The final SCDT is doors, windows, and glassing. This SCDT shares basically all 

the sources of geometric variation with curtain walls and finishes. The allowances of this 

SCDT comprise all the frame work tolerances for windows and doors, as well as all the 

standards of insulation of glassing. The sources of these standards come from several 
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guides including ASTM, ANSI, the Windows and Door Manufacturing Association 

WDMA [116], and the Steel Door Institute [117].  

In general, every process of building construction will generate deviations from 

nominal geometry. These deviations are statistically studied, and annotated in 

construction standards, or informal know-how documents through minimum, maximum, 

and average values. These construction standards are guides where observations of past 

experiences about geometric deviations are consolidated and also where a cushion to 

allocate that variation is prescribed as a tolerance. As a synthesis, every expected, 

unintentional, geometrical deviation from nominal values that is estimated in advance 

should be prescribed as construction tolerances. However, the current methods for 

tolerances modeling still relies on off-feature, table-based allocation procedures. To 

overcome this old-fashioned approach, and considering that the problem is not the lack of 

manufacturing knowledge but its applicability, this dissertation aims for an integrated 

modeling framework where features and knowledge can programmatically coexist. This 

section has presented the main issues about geometric variation and tolerances for each of 

the most relevant construction sub-domains. The next section will discuss the knowledge 

and materials aggregation of multiple SDCTs that led to the development of 

heterogeneous construction tolerances. 

4.2.2. Heterogeneous Construction Tolerances (HCT).  

The previous section provided a summary of geometric deviations that apply to 

single material systems and construction components. Allowances regarding tolerances of 

these material systems are included in standards or informal know-how guidelines that 

will be used in this project as base knowledge for a software demonstration of an 
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integrated modeling environment. These single materials usually belong to a sub-group of 

domain tolerances and geometric variations. However, at some part of the building 

erection, assemblies will be built by merging different materials systems with off-site 

components (SDCT) and processes. These kind of heterogeneous assemblies produce 

geometric deviations due to the addition of materials with different mechanical properties 

or due to the addition of components fabricated by different subcontractors with different 

workflows, processes, and standards. These types of material-boundary geometric 

deviations must be represented by Heterogeneous Construction Tolerances (HCT). A 

central characteristic of HCT assemblies is that they can be easily field-adjusted [29]. 

This field adjustment process may well produce deviations in other parts of the building 

and in the tolerances stack. This situation might involve the specification of looser 

tolerances or clearances, but the excessive prescription of variability will also increase 

uncertainty in the assembly. A better method may be to allocate tolerances at a system 

level that, by means of simulations based on manufacturing knowledge, are capable of 

coordinating several SDCT at once.  Another critical aspect of an HCT assembly, besides 

tolerances allocation and field adjustment, is the specification of clearances.  In the 

Tolerances Handbook [29] a clearance is defined as the space between two components 

that is provided to allocate tolerances and movements. However, in HCT specifications, 

clearances are also required to allow human labor (for example, tightening a bolt in a 

curtain wall assembly). In a building, usually clearance offsets define the boundaries of a 

material system assembly and therefore define the interface between assemblies of 

different building material systems. 
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Besides clearances, the physical artifact of interfaces between material system 

assemblies in the construction environment is the joint. A joint is the material connection 

between elements of an assembly or sub-assembly.  In addition to their functions of 

building continuity inside a building assembly and adding a clearance offset to allow 

deformations, the significance of a joint comes from its capability to make construction 

irregularities less noticeable [29]. Real assemblies need to create their connection using 

an interface that negotiates between edges or faces of different parts. There are numerous 

approaches to create joints among parts in a building assembly. Some of them will create 

a structural assembly and some will create continuity among layers (for example, the 

layers of the building skin).  Many architects consider only movement due to thermal 

expansion and contraction, if they size joints at all. However, there are several other 

factors that influence correct sizing and placement of joints. Any change of plane or 

materials requires a joint. Wind loading affects joint placement not only for structural 

glazing applications but also for parapet walls. Moisture-related movement of materials 

also plays a part, concrete shrinks as it dries, brick grows as it absorbs water, and wood 

alternately shrinks and swells. Differential thermal movement between adjacent materials 

systems must also be accommodated with joints. All these aspects of joint design, if 

checked one at the time, do not assure a successful outcome because they depend on each 

other. Rather, specification of joints must be addressed in a coordinated fashion by 

integrating them in a system level. As it has been explained in section 3.3.2, the SysML 

environment enables the formal representation of these kinds of building behaviors by 

means of activity diagrams and state machine diagrams. Then, these diagrams can use 

linked CAD data to evaluate how behavior affects geometry, in context.  
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Figure 23: Hierarchical diagram of construction tolerances 

Figure 23 offers a hierarchy of the different kinds of geometric tolerances within 

the construction industry. In the first column, from bottom to top, the chart presents 

several levels of geometric deviations that are nested during the construction process, 

starting from the minimal feature-based deviation and adding variation until the building 

project level, these levels are connected to their domains as suggested in this research, 

which are SDCT and HCT, respectively. Accordingly, features, parts, and sub-assemblies 

are mainly described as SDCT and assembly and building project level are described by 

HCT. Each SDCT and HCT defines different tolerances types. SDCT primarily generates 

positional tolerances and feature based tolerances. HCT generates flexible joints and 

ergonomic clearances. Furthermore, these tolerance types are associated with specific 

geometric variations sources or necessities. In this regard, the sources of feature based 

tolerances type is associated to manufacturing deviations, positional and flexible 

tolerances are associated to manufacturing or assembly deviations, and clearances are 

associated to operational and accessibility conditions. 
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CHAPTER 5: Knowledge and Tolerances Representation in 

Construction 

5.1. Current Approach for Drawings and Specifications 

Design drawings and specifications are based upon consideration of the design, 

assembly, and loads and forces to be resisted by the all materials involved in the building 

project. These design drawings and specifications clearly show the work that is to be 

performed and give the following information with sufficient dimensions to accurately 

convey the quantity and nature of components to be fabricated and assembled [118]. This 

list, created by the American Institute of Steel Construction (AISC), offers a 

comprehensive approach that can be used for any material system in construction. The 

list of items includes: 

 The size, section, material specification, and location of all members 

 All geometry and working points necessary for layout and assembly 

 Floor elevations, top views, context drawings 

 Column centers and offsets 

 The camber requirements for structural and pre-stressed members 

 Tolerances for each member and assembly [118] 

Design drawings and specifications include any special requirements for the 

fabrication and erection of the all the components. Specially, structural design drawings, 

specifications, and addenda have to be numbered and dated for the purposes of further 

identification [118]. One important issue in construction is that contract documentation 

usually differs in complexity and completeness. Nonetheless, the fabricator and the 
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constructor must be capable of relying on the precision and completeness of the contract 

documents. This allows the fabricator and the constructor to provide the owner with bids 

that are adequate and complete. It also enables the preparation of the shop and erection 

drawings, the ordering of materials and the timely fabrication and erection of shipping 

pieces. 

In some cases, the owner can benefit when reasonable latitude is allowed in the 

contract documents for alternatives that can reduce cost without compromising quality. 

However, critical requirements that are necessary to protect the owner’s interest, that 

affect the integrity of the structure or that are necessary for the fabricator and the erector 

to proceed with their work must be included in the contract documents [118]. Some 

examples of critical information include: 

 Standard specifications and codes that govern design and construction, 

including bolting and welding 

 Material specifications 

 Special material requirements to be reported 

 Welded-joint configuration 

 Special requirements for work of other material systems 

 Connections or data for Connection selection and/or completion 

 Restrictions on Connection types 

 Openings for other trades 

 Surface preparation and shop painting requirements 

 Shop and field inspection requirements 

 Non-destructive testing requirements, including acceptance criteria 
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 Special requirements on delivery 

 Special erection limitations 

 Column differential shortening information 

 Special fabrication and erection tolerances [118] 

5.2. Representation of construction tolerances 

During specification of manufacturing processes, a tolerances modeler could 

create a target tolerance, based on standards, obtained from statistical procedures that 

every construction system creates within its domain. Tolerances can also be embedded in 

a building model considering maximum and minimum statistic values and could be 

represented as a callout on shop drawings.  These approaches neither estimate specific 

tolerances for every situation nor coordinately integrate industry standards or domain 

specific know-how into BIM platforms. Rather, they require an individual with the proper 

expertise to estimate and allocate the allowances. Furthermore, current tolerances 

approaches do not generate pre-visualization of the outcomes to understand the real 

impact of decisions taken in the design stages. It is very common, for example, to 

consider tolerances as attributes of individual features or groups of features, which bear 

no relation to other features or tolerances. This condition allows allocation of tolerances 

to one feature at the time but it does not allocate tolerances of complex assemblies with 

several levels of nested datum frames, as it is the common scenario in construction. As a 

result, actual tolerance applications do not meet the requirements about flexibility and 

complexity management that building construction requires. This is part of the motivation 

for creating a system-level approach to model tolerances in construction. This section 
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will cover the evolution of the most relevant standpoints about tolerances representation 

and their considerations for being used in the construction industry. 

5.3. Mathematical approach to represent tolerances  

This section summarizes the basics of mathematical and geometric representation 

approaches that have been considered as critical for single domain construction 

tolerances (SDCT) and heterogeneous construction tolerances (HCT). It is important to 

emphasize that this project will not create a new mathematical method of tolerance 

calculation or a statistical treatment of tolerances. Rather, this dissertation proposes a 

novel modeling framework by which a mathematical method for representing 

manufacturing knowledge can be embedded in a system model and tied to a geometrical 

(CAD/BIM) representation of building components to assess manufacturability and 

calculate feature-based tolerances. 

The mathematical models for calculating and representing geometric variation 

and tolerances have been developed using the tolerance zone approach (statistical), the 

variational geometry approach, or other variational models. With the aim of creating 

mathematical formulations for geometric variation and tolerancing, all the variational 

models appear to be suitable for implementing in current solid modeling tools as the ones 

encountered in BIM tools. The variational model of an object is constructed from its 

nominal boundary model by allowing each of the bounding surfaces to be varied within 

some specified tolerance zones [119].  According to Hoffman [120], any tolerance 

specification corresponds to a set of inequalities, which are of the following type: 

Equation 1: Hoffman’s tolerances formula 

𝐿 ≤ 𝑓(𝑥) ≤ 𝑈 
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Where: 

x = parameter vector of a part (critical dimension) 

𝑓 = tolerance function 

L, U = lower and upper bounds of the tolerance zone  

Numerous authors defined mathematical approaches for describing this tolerance 

function and its proper representation. Hillyard and Braid [121] created the concept of 

variational geometry that is a dimension-driven, constraint-based technique. They used 

this concept to analyze inconsistencies in the specification of dimensions and tolerances 

in CAD models.  Lin et al. [122] promoted the variational geometry approach from the 

viewpoint of the user interface and computational efficiency. Requicha [37] introduced 

the variational class notion for representing tolerances in solid models. Turner and 

Wozny [123] developed a model based on the variational approach where specified 

tolerances are used to directly define the valid regions covered by the model variables. 

Gupta and Turner [124] expanded the previous model to a surface-based variational 

model in which the model variables are linked to the coefficients of the equations of each 

surface and the vertex coordinates are computed from the intersection of surface 

equations. Liu and Dong [125] presented a solid boundary-based tolerance representation 

model that is comparable to Turner and Wozny [123] model. Whitney and Gilbert [126] 

presented a tolerance representation method using matrix transformations to propagate 

tolerance data that is suitable for tolerance analysis of assemblies. Efforts have also been 

made to reproduce functional requirements in tolerance representations. Rivest, et al 

[127] proposed to represent tolerance from a manufacturing point of view while 

Jayaraman and Srinivasan [128] did so from an assembly point of view. The possibility 
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of using statistics and probability methods for allocation of tolerances has also been 

explored with the intent of developing tools for tolerance synthesis.  

Besides the general purpose variational models mentioned above, there are other 

important mathematical considerations, specially related to HCT, which will be addressed 

during this research (for instance, the joint design formula and the accumulated tolerance 

equation, both introduced by Ballast [29]). For the joint design formula, the size of the 

joint depends on several factors such as movement-expected tolerances of the assembly, 

and the flexibility of the sealant (if any). All these factors will vary from case to case due 

to numerous other issues such as thermal expansion or contraction, gravity, and 

deflection. From these factors it is possible to derive equations such as the following to 

size a specific joint: 

Equation 2: Joint design equation 

𝐽 =
100(𝑒∆𝑡𝐿 + 𝑆)

𝑀
+ 𝑇 

Where: 

𝐽 = Joint Width, in 

e= Coefficient of thermal expansion in/in/F 

∆𝑡 = Expected temperature change 

L= length of the material joined      

M= movement capability of the sealant in inches (if any) 

T= nominal tolerance of the material (offset inches) 

S= Other expected movement caused by seismic forces or other non-thermal 

causes  
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The second example approach for HCT that must be considered in any 

computational implementation of geometric variation and tolerancing is the accumulated 

tolerances factor or tolerances stack. Dimensional variation during manufacturing 

accumulate or stack-up statistically and propagate through an assembly in a kinematic 

fashion, causing critical features of the products to have degrees of variation. The 

tolerance stacking problem arises in the context of assemblies from interchangeable parts 

because of the inability to produce or join parts exactly according to nominal. Either the 

relevant part dimension varies around some nominal value from part to part or it is the act 

of assembly that leads to variation. To calculate this factor it is necessary to consider 

variations of all the components of an assembly, which can be in different directions with 

different magnitudes. As an important note, tolerances calculations need a specific 

theoretical datum from where they are measured. This means, from a theoretical datum 

plane, the calculation applies only to the direction described as normal to the datum 

plane. Thus, they are unidirectional. Also, where tolerances of individual components are 

different in “+” and “-”, in order to get independent calculations, two different equations 

will be necessary. The basic accumulated tolerances equation, based in the Root Sum 

Square (RSS) technique is represented as follows: 

Equation 3: RSS basic formula 

𝑻 = √𝒕𝟏𝟐 + 𝒕𝟐𝟐 +  𝒕𝟑𝟐 + 𝒕𝟒𝟐 + 𝒕𝒏𝟐 

Where: 

T= Total tolerance 

𝑡𝑛2 are the single tolerances of each element that participates of the specific 

assembly in inches.  

The following stack-up analysis process has been adapted from [99]: 
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1. Identify the measurements that in sequence control a critical dimension or feature 

parameter. This critical task must be achieved by applying material systems-specific 

conditions to the calculated assembly. In this section, allocation of tolerances must be 

designed. This is not automatically allocated because identifying critical dimensions 

through assembly analysis is not trivial and requires artificial intelligence capabilities.  

2. The mean assembly measurement is attained by summing the mean of the dimensions 

in the chain as it has been explained in the previous paragraph. 

3. The total variability will be projected by the accumulation of variations of each 

component in the stack-up process. 

4. Variation of the assembly is ideally compared to the engineering limits (lower limit 

and upper limit) to assess the amount of rejects or non-conforming assemblies. One 

significant attention about tolerances is categorizing the proper data to compare the 

analysis results. In this task, comparison to actual measured data is preferred.  

However, in the absence of measured data, comparisons must be performed against 

data from similar parts or processes [129]. This later statement is what led to the 

development of know-how data, or domain-specific knowledge that comes from 

experience rather than from formal documented standards. For this dissertation, and 

because the author has been successfully exposed to this informal (yet proven) know-

how data, an important focus is to create a knowledge modeling environment to 

organize and formalize these insights.  

5. Design changes in parts and assemblies may be made after evaluating the analysis 

outcomes. 
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Tolerances analysis is a quantitative tool for predicting the accumulation of 

variation in an assembly by performing a stack-up analysis. The weakness of the previous 

model is the assumption that all distributions are perfectly nominal-centered and perfectly 

Gaussian, or normal.  Because these two assumptions allow for a simple calculation of 

compound probability, they do not represent the vast majority of manufacturing processes 

and quality control systems which exist in the real world production environment.  

The following table shows the most common tolerances stack-up models of this 

project.  For example, the Worst Case (WC) delivers the extreme limits of the sum of 

absolute values of tolerances to obtain the worst combination of tolerances stack. Also, as 

was seen in the previous paragraph, the RSS adds the variation by means of a Root Sum 

Square approach. This approach provides preliminary insights about statistical 

distribution of the tolerances problem. In the following equations, the total variation of 

the RSS model is divided by three to fit within three standard deviations range.  

Table 1: Tolerances stack modeling equationsadapted from [129] 

Model Stack Formula Key Use Application 

Kind 

Worst Case 

(WC) 
𝜎𝐴𝑆𝑀= ∑|𝑇𝑖| 

Not Statistical 

Extreme 

limits of variation 

Critical 

Systems. 

Most costly 

model 

Statistical 

(RSS) 
𝜎𝐴𝑆𝑀

= √∑(
𝑇𝑖
3

)
2 Probable 

variation  

 

Reasonable 

estimate. 

Some 

rejects allowed 

Six Sigma 

(6𝜎) 

𝜎𝐴𝑆𝑀

= √∑(
𝑇𝑖

3𝐶𝑝(1−𝑘))

2 

Cp= Process 

capability index. 

k=  Drift factor 

Long Term 

Variation 

 

Drift in 

mean over time 

expected. 

For high 

quality 

Measured 

Data (Meas) 
𝜎𝐴𝑆𝑀

= √∑ 𝜎𝑖
2
 Variation 

using existing part 

measurements  

After parts 

are made. 

What if? 

study 
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In the previous table, the Six Sigma equation accounts for high quality by altering 

the stack-up equation to include the process capability index (Cp) and the drift factor (k). 

Cp represents the ability of a process to produce output within specification limits. As Cp 

increases, the contribution of that dimension decreases, causing the total variation to 

decrease. The drift factor (k) measures how much the mean of a distribution has been 

observed to drift during production. This drift factor ranges between 0 and 1. During 

simulation, where there is no data about drift factor, it usually values 0.25. 

From the previous Table 1, Worst Case (WC) will compute extreme limits by 

summing absolute values of the tolerances to obtain the worst combination of wrong 

dimensions.  

The statistical model will add variations by root-sum-squares (RSS). As this 

approach considers statistical probabilities of possible dimensions combinations, the 

predicted values using this approach are more reasonable. RSS predicts the statistical 

distribution of the assembly feature, from where percentage of rejects can be obtained 

[99]. 

The following example shows an assembly of nine components containing the 

same precision of T = 0.01. 

Equation 4: WC scenario example 

𝑊𝐶: 𝑇𝐴𝑆𝑀 =  ∑|𝑇𝑖| = 9 × 0.01 = ±0.09 

Equation 5: RSS scenario example 

𝑅𝑆𝑆: 𝑇𝐴𝑆𝑀 =  √∑ 𝑇𝑖
2 = √9 × 0.012 = ±0.03 

It can be seen that WC predicts more variation than RSS and that difference will 

increase as the number of components of the chain increase as well.  
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In the reverse case, if we had a 𝑇𝐴𝑆𝑀 = 0.09 and we want to calculate the 

reversed stack analysis, the component tolerance can be determined from the assembly 

tolerance: 

Equation 6: reversed WS analysis example 

𝑊𝐶: 𝑇𝑖 =
𝑇𝐴𝑆𝑀

9
=  

0.09

9
=  ±0.01 

Equation 7: reversed RSS analysis example 

𝑅𝑆𝑆: 𝑇𝑖 =
𝑇𝐴𝑆𝑀

√9
=  

0.09

3
=  ±0.03 

It can be seen that WC requires much tighter tolerances than RSS to meet the 

assembly requirement. 

Also demonstrated by [129], two other important examples of mathematical 

models to assess variability in mechanical or construction assemblies are: 

 Prediction of rejects during manufacturing 

 Calculation of the percentage of contribution of a possible geometric deviation in a 

part or assembly 

Usually, most of produced parts will be grouped close to the mean value, causing 

the charts to increase in the middle. As you go further from the center, fewer parts will 

fall there, causing the frequency chart to decrease to zero at the extremes. In the 

following equations, UL and LL give the upper and lower limits of dimensional variation, 

as they have been obtained from design requirements. Any normal distribution may be 

converted in a standard normal curve distribution, where the mean will be 0 and the 

standard deviation will be 1. In this case, instead of plotting the frequency versus size, the 

number of standard deviations from the mean are plotted. Thus, it is possible to determine 

the fraction of assemblies that will fall out of the engineering limits [129].  



95 

 

This process is carried out as follows: 

1. Run a tolerance stack-up analysis to get the mean and standard deviation of the 

assembly dimension X, which has design requirements 𝑋𝑈𝐿 and 𝑋𝐿𝐿. 

2. Obtain the number of standard deviations from the mean to each limit 

Equation 8: standard deviation from mean at upper limit 

𝑍𝑈𝐿 =
𝑋𝑈𝐿−𝑋̅

𝜎𝑋
      

Equation 9: standard deviation from mean at lower limit 

𝑍𝐿𝐿 =
𝑋𝐿𝐿−𝑋̅

𝜎𝑋
      

3. Were 𝑋̅ and 𝜎𝑋 are the mean and standard deviation of the assembly dimension X, 

and 𝑍̅= 0 and 𝜎𝑍 = 1.0 are the mean and standard deviation of the transformed 

distribution curve.  

4. Using standard normal tables, look up the fraction of assemblies lying between 

𝑍𝑈𝐿 and 𝑍𝐿𝐿 (under the curve). As explained in [129], this is the predicted fraction of 

assemblies that will meet the requirements. What is outside the limits is 1.0 – yield. 

These are predicted rejects that are expressed as parts per million (ppm). 

Percent contribution gives the designer the ability of calculate how every feature 

variation contributes to the resultant assembly variation. With this tool, it is possible to 

decide where to concentrate efforts for reducing construction variability. The percent 

contribution factor is simply calculated as the ratio of a component feature dimensional 

standard deviation to the total assembly standard deviation.  

Equation 10: percentage of contribution formula WC 

𝑊𝐶: %𝐶𝑜𝑛𝑡 = 100
𝑇𝑖

𝑇𝐴𝑆𝑀
 

%𝐶𝑜𝑛𝑡: Percent contribution 
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𝑇𝑖: component feature dimensional deviation 

𝑇𝐴𝑆𝑀: Assembly dimensional deviation 

Equation 11: percentage of contribution formula RSS 

𝑅𝑆𝑆: %𝐶𝑜𝑛𝑡 = 100
𝜎2

𝑖

𝜎2
𝐴𝑆𝑀

 

%𝐶𝑜𝑛𝑡: Percent contribution 

𝜎2
𝑖: component feature dimensional standard deviation 

𝜎2
𝐴𝑆𝑀: Assembly dimensional standard deviation 

Although this dissertation does not propose new mathematical models for 

tolerances assessment, or any other kind of contribution to the mathematical domain, the 

previously explained equations, mostly developed by [129], will be converted in 

<<constraint>> blocks and seamlessly applied to specific CAD features to assess 

tolerances of manufacturing and assembly activities. In this dissertation, these equations 

are assumed to be the most suitable models for being implemented in a construction-

oriented tolerances model. The following section will briefly introduce the Monte Carlo 

method to calculate variations and tolerances for construction. 

5.4. Statistical tolerances analysis through Monte Carlo method 

The Monte Carlo approach has been standardized by the Guide to the Expression 

of Uncertainty and Measurement (GUM) [130]. To determine the quality level for 

assemblies before actual construction, an exploration of variation using an uncertainty 

approach is required. This strategy allows complex parts of buildings to be analyzed and 

improved before the first physical structure is built. A reliable way to apply a 

mathematical model to this approach is by means of Monte Carlo simulations. This 
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method can be applied to situations where it is possible to create formal equivalence 

between the preferred result and the anticipated behavior of a stochastic system. Through 

the Monte Carlo method, it is possible to obtain better results in less time than using 

deterministic techniques [131]. In many cases, the calculations of tolerance deviations of 

very complex assemblies cannot be realized using deterministic approaches. Having 

simulated and calculated the tolerances of a given part of assembly, the next step will be 

the allocation of tolerances analysis results in the CAD model. The next section 

introduces the fundamentals of this matter.  

5.5. Model Simplification to represent tolerances 

Currently, there is a misinterpretation about tolerances capabilities of current 

CAD packages. Some of these tools are believed to have automatic tolerances 

capabilities. Yet, what they actually do is create a callout as a placeholder from a part or 

feature, indicating the plus/minus allowance. In contrast, what is really important is to 

know how those callout values were calculated, and where to access the material system 

knowledge that led to those calculations. A better approach is to divide the efforts for 

representing tolerances into two main groups: system dependent and system independent. 

Accordingly, the first category focuses on representation of tolerances information within 

a specific geometric modeling system, and the second category focuses on geometric 

modeling and tolerances allocation as separate tasks. In this dissertation, based on 

assumptions of understanding geometric variability and geometry as parts of the same 

entity, this study focuses on the system dependent option. Furthermore, an improved 

approach of representing geometric variability in a solid model is to embed 

manufacturing knowledge as calculated values of the nominal geometry of the object. In 
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order to accurately assess manufacturing compliance and tolerances in a timely manner, 

one must utilize simplified model views that retain the important details and eliminate the 

irrelevant ones. Here is where a Systems Engineering approach, based on the SysML 

language, performs most properly. SysML enables a model simplification process that 

does not disrupt the integrity of the solid model. Furthermore, based on domain specifics 

profiles, this process can filter the geometric information, thus creating model views with 

a sub-set of the instantiated meta-classes, which are geometric features of the original 

model.  

The minimal element that can represent geometric variation and carry tolerances 

is the feature. Features cannot be understood as independent from each other just as 

variational information cannot be independent from nominal geometry. There are several 

sub-categories of features based on their relationships. These are: lower-level features 

(e.g. the basic topological entities, faces, edges, and vertices) and higher-level features, 

which are the combination of the lower-level features (or the combination of other 

higher-level features) having certain functional relationships among themselves. This 

separation between higher and lower features is crucial to achieve model simplification 

without producing inaccurate results. For the implementation of a knowledge-based tool 

to assess manufacturing compliance, this dissertation will use higher-level features as its 

basic modeling meta-class, and lower-level features will only be instantiated as value 

holders.  

Existing model simplification techniques that are useful from a physics-based 

simulation point of view are broadly classified in four categories, based on the type of 

simplification operators used in their respective techniques. The first simplification 
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category is surface entity developed by Sheffer [132] and Lee [133] [134]. The second 

category is volumetric entity developed by Andújar, Brunet, and Ayala [135]. The third 

category is explicit feature and dimensional reduction created by Joshi and Dutta [136] 

and Zhu and Menq [137]. The last category is dimension reduction based operations 

developed by Rezayat [138]; Donaghy, Armstrong, and Price [139]; and Thakur and 

Banerjee [140]. There are also some recent experiences of simulating variational 

geometry in the automotive domain. Wickman et al. [141] joined a commercial virtual 

reality tool with a variation simulation software to visualize non-nominal variation in a 

photo realistic atmosphere. Another method for visualization of non-nominal variation 

was offered by Maxfield, Zhao, Juster, and Fitchie [142]. This method was meant to meet 

the demands concerning packaging and visualization that can be used for faster 

investigation of the variation in complex assemblies.  Lo, Lindkvist, and Soderberg [143]  

introduced a general procedure to compute and visualize the total volume in space a part 

or assembly creates when it is affected by displacement or motion. 

5.6. Allocating Manufacturing Knowledge and Tolerances on Solid 

Models 

A representation of a solid is defined as a mapping from a mathematical model of 

a solid onto a set of symbolic structures or representations. If a computer representation is 

to be used to calculate geometric properties, it must possess certain formal properties.  

These characteristics are: well-formedness, generality, completeness, and efficiency of 

storage data [144]. The development of solid modeling has been a matter of significant 

research and growth.  Many approaches have attempted to represent solids in a truthful 

way, the most significant being spatial occupancy enumeration, Constructive Solid 
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Geometry (CSG), and Boundary Representation (B-Rep).  Among these three 

approaches, B-Rep has been the most advanced, and also the most common found in 3D 

modeling applications. B-Rep is built from two main sources of information. One is 

dimensional and locational (geometry), and the other is about relations and rules among 

its elements (topology); both structures depend on each other to achieve well-formedness 

and unambiguity of the shape. Solid modeling systems, found in computationally 

complete representations of 3D solid objects, are used to represent nominal geometry. 

Technically, these systems permit any well-defined geometric property of a solid to be 

calculated automatically. This allows solid modeling systems to provide the geometric 

data necessary for conducting design and construction activities such as finite-element 

analysis or digital manufacturing. Even though the representation of the nominal shape of 

mechanical parts with computers is successfully performed with solid models, 

representation of geometric variation and tolerances, or representation of manufacturing 

rules to ensure a smooth fabrication and assembly processes in construction, have not 

been equally advanced.  

A simple solution of representing manufacturing knowledge in a solid model is to 

hold tolerances as attributes of geometry of the object as it is modeled. In order to 

accurately represent geometric tolerances in a timely manner, simplified models that 

retain the important details and eliminate the irrelevant ones are most desirable. In this 

scenario, the implementation that is proposed in this dissertation specifically deals with 

this issue. Fully represented solid modeling data is converted into system data by 

decomposing the features tree of the CAD into a sub-set of <<block>> instances that 

carry only what is necessary to perform a tolerances calculation. These filtered yet 
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consistent data are assessed by formally represented pieces of manufacturing knowledge 

called <<constraint>> blocks.  

When linking manufacturing knowledge and tolerances allocation with Solid 

Modeling, there are two important aspects that need to be addressed: (1) how to create a 

variational model based in object parameterization and (2) how to assess 

manufacturability and allocate tolerances on a solid model based on construction 

knowledge: 

1. In Solid Modeling, the set of features that is involved in any tolerance specification or 

geometric variation is a sub-group of connected elements. This sub-group contains 

several parameters that can be managed using the object parameterization capability 

of any parametric package available in the market. This approach of object 

parameterization is a starting point to describe a variational model in Solid Modeling. 

The object parameterization of Solid Modeling has two main approaches: direct 

parameterization and indirect parameterization. In the first case, the user will directly 

assign all the parameters of the model as object dimensions to produce geometric 

variations or instances. By using indirect parameterization, the user defines the 

model, and then attaches dimensions. This has the effect of defining the dimensions 

in terms of the model parameters [145]. 

2. The second aspect is manufacturability and tolerances allocation based on 

manufacturing knowledge. Computer-based tolerances representation in commercial 

solid modelers is application-oriented and usually different from ISO/ANSI/ASME 

standards to describe GD&T [36]. Most common systems are variational geometry 

constraint-based systems in which tolerances are specified on sketches. Tolerances 
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are specified as the variation of dimensional constraints (for example, distance 

between two points) and geometric constraints (for example, parallel lines). 

Tolerances are represented as the variation of the position of control points, for 

example, at an intersection of lines or center of a circle. Although these approaches 

are useful to allocate tolerances values, as it has been previously explained, they lack 

methods to compare such numbers with domain-specific knowledge within a feature-

based geometric context. Therefore, having the ability to describe tolerances values is 

not the problem. The challenge is to understand how such values are constructed and 

how these values affect and are affected by other features of the assembly.  

Besides the implementation of geometric approaches to describe tolerances in 

solid models, their integration into a system model through SysML is another important 

challenge. The following section will address this matter by introducing the main issues 

and the keys for such an integration.  
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CHAPTER 6: Methodology  

Complexity of product models for construction happens both at the high 

abstraction level, where requirements have to be modeled and maintained, and at the low 

abstraction level, where detailed design is performed by means of specific design 

parameters from different domains and stakeholders.  This complex scenario, based on a 

highly heterogeneous body of information, makes it difficult for average BIM operators 

and building designers to integrate knowledge and tools among construction domains. 

These skills are more typical of software developers and computer scientists. For this 

reason, it is critical to develop software that seamlessly integrates different domain-

specific applications to eliminate the need for hard coded, ad hoc solutions every time 

that integration is required.  

A proper methodology for modeling and representation of construction tolerances 

needs to satisfy two basic set of requirements: compatibility requirements and 

computability requirements [146]. The first set is required to generate consistency with 

construction practice. This set basically digests the representation of all types of 

dimensions, representation of material systems, SDCT and HCT, tolerances stack, 

material conditions, and manufacturing processes. The second set, computability 

requirements, adds support for model-to-model transformation, feature-based integration 

among applications, extraction of critical dimensions from CAD features, model 

consistency assurance, and inspection of feature types to allocate tolerances. All told, 

compatibility requirements are tied to the acquiring and representation of manufacturing 

know-how and standards for construction and computability requirements are tied to the 

unambiguous, consistent representation of this knowledge in a SysML-CAD 
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environment. Besides the application developed in this project, additional software 

required to create the integrated environment includes: 

 MagicDraw (Version 17.03 used for this project) provides the System Modeling 

environment; 

 SysML plugin for MagicDraw provides the SysML profile that works on the 

UML9 environment; 

 Siemens NX (Version 8.5 used for this project) is the CAD package used for the 

implementation; 

 Maple (Version 17 and 18 –beta-- used for this project) is the mathematical 

engine that calculates tolerances analysis and allocation for this project; 

The following diagram shows the software environment for the present 

implementation. From left to right, the CAD application will be queried by a set of pre-

established routines (NX client10) created in Maple. On the right side, the developed tool 

will be allocated in Magic Draw by means of a JAVA implementation. Here, other 

domain-specific tools can be also integrated through SysML profiles. For example, a cost 

analysis tool could be coordinated with a tolerances analysis tool to evaluate the cost 

impact of manufacturing decisions.  

                                                 

 

 

9 The Unified Modeling Language (UML) is a general-purpose modeling language in the field of software 

engineering, which is designed to provide a standard way to visualize the design of a system 

10 NX client created by the author has been released in the beta version of Maple 18, commercially available 
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Figure 24: Software environment of the implementation. Solid red lines define new pieces of 

software developed for this dissertation and dashed lines represent specific integration between 

different tools. 

6.1. From domain issues to functionalities proposed for the modeling 

framework 

Figure 25 shows the general hierarchy of construction variability issues identified 

from the literature and from interaction with manufacturers. The dark colored boxes, 

depicted under “rule- or knowledge-based” sources of variability are the main focus of 

this dissertation, and that have been listed in Section 4.1. of this dissertation. 
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Figure 25: General hierarchy of construction variability issues adapted from [12] 

The following figures show the current modeling methodology with and without 

the proposed framework. In Figure 26 the depicted diagram represents the current 

approach to inform design in building construction. In this case, material-specific 

knowledge is never formally integrated with the assembly geometry. Assumptions about 

material interactions and components design, rather than formal feature-based 

assessments, create room for inconsistencies between design specifications and 

manufacturing-compliant geometry. In this dissertation, a formal connection between 

material-specific knowledge and geometric features is the proposed way to assure the full 

validation of the building requirements. Also, a proposed tolerances assessment will 

ensure that components and assembly are compliant with manufacturing rules and know-

how. In order to implement this approach, the interactions diagram needs to incorporate a 

new element that will open several other kinds of relations in the process. 

A geometric constraint is proposed as the negotiating point between material-

specific knowledge and design geometry. Furthermore, a geometric constraint can be the 
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formalization of a piece of manufacturing knowledge. For example, a basic formula to 

calculate the minimum bending radius of sheet metal is r = t, where r is the radius of the 

bending and t is the thickness of the sheet metal part. Then, the mathematical expression 

r = t represents a portion of domain-specific (sheet metal) manufacturing knowledge. 

This basic piece of manufacturing knowledge can be automatically evaluated in a 

geometric feature if CAD parameters and knowledge are linked together. In order to 

make this geometric constraint operational, most of the exchanges depicted in Figure 27 

must be programmatically formalized. In this dissertation, the material system-specific 

knowledge will be formalized as a specialization of Systems Engineering requirements, 

which will be programmatically linked to their formalizations as constraints. Also, 

another internal loop of the process, which involves design specifications, geometric 

constraints, and geometric features, must be automated. As it can be seen in Figure 27, 

design specifications will inform geometric features, as previously depicted in Figure 26. 

However, parameters of geometric features will populate the domain-specific constraint, 

which will verify that the design specification is in compliance.   
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Figure 26: Modeling approach without the proposed implementation 

 
Figure 27: Modeling approach with the proposed implementation 

In order to implement the proposed general modeling framework presented above, 

the following list of general functionalities will be developed in this dissertation:   

 Model-to-Model Transformation: structural, feature-based decomposition of 

parametric CAD models into system models. 
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 Model Integration Approach: parametric, real time, seamless software 

integration for knowledge allocation, analysis, and verification to reduce human 

data translation. 

 One Truth, multiple model views: centralized project requirements, geometry, 

and design specifications in an interoperable modeling environment. 

 Domain Expert Advice: automated allocation of material-specific knowledge for 

components and assemblies based on geometric features and material systems.  

 Machine Readable/ Executable: CAD geometry programmatically integrated to 

manufacturing know-how through knowledge-based mathematical and logical 

constraints. 

 Model Consistency Approach: On-demand model-to-model and tool-to-tool 

consistency assessment and model data update.  

In the previous sections, this paper has described the nature of construction 

tolerances, created a taxonomy of the domain problem, and has explained the 

implications of a system-level computational implementation. The next sections will 

convert the previous set of system requirements into specific activities that have been 

programmatically implemented during the development of this dissertation.  

6.2. SysML-CAD integration 

In order to create a knowledge-based modeling environment that assesses 

manufacturing compliance of geometric data, a SysML-CAD integration is proposed. 

Many efforts have attempted to integrate domain-specific engineering views into the 

SysML environment. However, most of these approaches do not integrate with 

geometric-based applications. Recently, there have been several initiatives in Model 
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Based Systems Engineering (MBSE) and Knowledge-Based Engineering (KBE) to face 

this integration disadvantage. However, the majority have proposed ad hoc solutions that 

are only useful within a short term development. According to Rocca [92], these 

integrations lack defined guidelines and standard procedures. Integration and consistency 

issues between MBSE and CAD can be analyzed from a general high level perspective 

regarding Systems Engineering (SE) and also by taking a closer look at the low level 

integration of tools and programming languages. In this dissertation, we will understand 

high level as general objectives of a specific computational method and low level as the 

detailed executable computer implementation.  

From the most general judgment about SE, one of the obvious and most important 

challenges is dealing with multiple views of a complex system (in this case a building).  

Each view represents a specific set of information that will interact with other views of 

the same system. For example, a building component can be diagrammatically described 

at a general level in SysML by decomposing its features tree (Figure 28) and will also 

have a geometric low level description within a CAD representation (Figure 29).  
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Figure 28: Features tree view of the building component “InnerLowerChord” 

 
Figure 29: CAD representation view of the building component "InnerLowerChord" 

Because this multi-view approach will create dependencies between models from 

different domains, a consistency issue among the corresponding design models arises. 

Specifically, this happens because two or more views can affect a shared attribute of the 

design and for that reason, the association between models’ elements and the parallel 

changes must be consistent. As Shah et al. [88] stated, maintaining consistency between 

multiple data sets and tool-specific models becomes an issue when analyzing different 

system architectures during the design process. Additionally, due to the fact that models 
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are created within different domains and languages, defining the general rules to manage 

consistency across domains is a significant challenge. Specific problems that arise from 

consistency issues are the inability to share models in a collaborative environment and 

the inability to identify model consistency issues until late in the design process. 

Apart from the issues regarding the multi-model approach of SE, there are also 

several challenges that need to be addressed related to the implementation in SysML 

language. First, because SysML is a general purpose modeling language, it lacks the 

detailed, formal semantics needed for formal domain-specific analysis and automated 

tool support [83]. For the same condition of generality, any model can be represented 

through SysML language. This situation makes it difficult for domain experts to describe 

models in SysML, thereby reducing the acceptance of SysML for specific domains [88]. 

This situation is especially common in the AEC domain, where the semantics of system 

modeling are not readily apparent to the professionals in this area. As it turns out, to 

ensure the success of this project, it is necessary to address the low integration of the 

SysML language with direct geometry and geometry-based data management. The next 

section will review the necessary elements for the functional integration of CAD and 

SysML.  

6.3. SysML-CAD semantic integration through Domain Specific 

Languages (DSL) 

One of the most significant characteristics of Systems Engineering is its ability to 

deal with embedded systems from different domains. As Shah et al. [88] explain, these 

multiple domains cover different information maintained in numerous views for each of 

the various subsystems. Considering this heterogeneous condition, model consistency is 
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difficult to achieve because different views require different or transformed data. For 

example, to run a finite element analysis of a building, geometric details such as 

components’ shape and their relative positioning in the space are critical. On the contrary, 

for a material quantity take off, specific component dimension metrics such as weight or 

length may be required. However, specific positioning in the Euclidian space is 

irrelevant. In this quantity take off case, geometric representation is transformed to a set 

of independent metrics that operate in a non-geometric modeling environment. Therefore, 

this contradicts the principles of interoperability, where data remain the same throughout 

different applications. As Mosier [93] stated, a significant gap is observed because of the 

lack of integration across domains of design tools through domain-specific development 

activities. For this project, a CAD representation of a building assembly must be 

consistent with its SysML representation. However, these two modeling approaches 

differ in their programming and semantic languages. As a proposed solution, one 

important aspect of the SysML approach is the ability to create domain-specific 

semantics through Domain Specific Languages (DSL). DSLs make simpler commonly 

used features of a domain and decrease the need for lower level constructs. Also, DSLs 

enhance computer interpretability since the information in a valid model is encoded at the 

meta-level instead of the model level [88]. In this project, a SysML profile that represents 

the CAD data structure at the meta-level will be created as an NXProfile within the CAD 

model in Siemens NX. This SysML profile will help the CAD-SysML integration to 

automate low level and highly manual tasks, the integration of applications and datasets, 

documentation and report generation, and the simplification and standardization of more 

complex processes such as system-level tolerances allocation.  
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6.4. Representation of CAD data structures in SysML 

Manufacturing compliance analysis can potentially reduce cost and time 

generated by construction errors or design omissions. In order to obtain reliable results 

from this methodology, an automated, seamless integration between geometry (CAD) and 

a system modeling tool (SysML) is critical. Yet, there are several issues related to the 

different nature of both architectures (CAD-SysML) that need to be elucidated. Two 

fundamental considerations of knowledge-based models such as SysML are the lack of 

geometry handling rules and the highly general modeling environment where these rules 

operate. First, geometry handling rules do not generally exist in any traditional system-

based application because their evaluation involves excessive information about space, 

solids, and relative positioning of assembly, parts, and features. This is why data 

structures of CAD systems are extremely complex and resource consuming. However, 

integrating specific portions of geometric data with performance-based parameters can 

accomplish operations that otherwise require manual input, which are time consuming 

and error prone. Second, the design process of building products requires the interaction 

of multidisciplinary teams and vast amounts of mixed project data. Every part of the 

design process is carried out through domain-specific models, tools, and knowledge that 

create a heterogeneous complexity. Because of its generality, SysML is able to represent 

and integrate many of these domain-specific bodies of knowledge by using interfaces 

called profiles. For an integration of SysML with a CAD tool, a profile must represent 

key aspects of the data structure of that specific CAD package. This data structure is also 

called meta-model, and for a CAD package as Siemens NX, the basic meta-model is 
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centered on the traditional assembly/part/feature paradigm, as is shown in the next 

section.  

6.5. General description of the present project: 

The present dissertation proposes the development of a Knowledge-Aided 

Modeling Framework that integrates a parametric CAD tool with a System Modeling 

application to assess manufacturability and tolerances in construction. The CAD tool 

provides robust geometric modeling capabilities, while System Modeling allows the 

specification of feature-based manufacturing requirements aligned with construction 

standards and construction processes know-how. With this approach, manufacturability 

assessment and the identification of conflicting interactions between tolerances 

requirements of building material systems are performed.  

The methodology for the implementation of the proposed modeling framework is 

composed of the following six activities, which will be developed in detail further in this 

document. 

1. Structural Decomposition: This includes the creation of a feature-based 

representation of the CAD model in the SysML environment. It follows the 

project>assembly>part>feature>parameter approach to describe geometry. Also, 

it creates a data graph based on CAD meta-model, which defines the languages 

and processes from which to form a model. 

2. Knowledge Acquisition: This corresponds to the domain-specific knowledge, 

and its formalization, necessary for a manufacturing compliance analysis or 

optimization/verification processes of an assembly or section of a building. The 

knowledge acquisition process will be carried away manually by adding specific 
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rules as <<requirements>> in SysML, which will be further specified as 

<<Design Specification>> or <<Manufacturing Specification>>. However, all 

knowledge created will be stored and be ready for use by searching within the 

domain-specific knowledge folder in the SysML Model. This folder will have 

manufacturing requirements that lead to manufacturing specifications represented 

as mathematical expressions such as <<constraint>> blocks. 

3. Knowledge Allocation: CAD features decomposed in numeric parameters from 

CAD data will be connected to <<constraint>> blocks that carry domain-specific 

knowledge about materials or processes for the imported CAD file. The allocation 

process will be executed automatically. The created application will query the 

imported CAD model by looking at its features <<stereotype>> and will offer the 

user options to link <<requirement>> blocks and <<constraint>> blocks that 

match the feature types.  

4. Parametric Execution: The application created in this dissertation will execute 

all the domain specific <<constraint>> blocks using numerical data obtained from 

the CAD models. This geometric information will be stored in <<instance 

specification>> blocks in a specific, user-defined folder within the SysML model. 

The <<instance specification>> blocks store results of parametric executions so 

that the user can compare them and pick the best analysis scenario for a given 

analysis context.  

5. Specifications Verification: Routines coded for this implementation in SysML 

and Maple will evaluate and verify the consistency between CAD metrics and the 

formal definition of manufacturing requirements about tolerances. This 
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verification will be evaluated by defining two customizations of the NX value 

property stereotypes: <<Validation Value Property>> and <<Performance Value 

Property>>. The main difference between both stereotypes is that the 

<<Validation Value Property>> is typed as Boolean, and the <<Performance 

Value Property>> actually carries a real value derived from the geometric data. 

Although not present in the CAD geometry, these indicators will be critical to 

assess the consistency and manufacturing compliance of the CAD model.  

6. Knowledge Compliant Geometry Update: This stage defines a series of 

functions that will consolidate changes produced in the model on either the CAD 

or the SysML side. In an integrated framework, changes might be produced in 

different domain-specific applications. For this implementation, if changes that 

were positively evaluated by the application were produced on the CAD side, 

there will be an “update SysML model from NX” command in the SysML menu. 

Conversely, if changes were made in the SysML side, there will be an “update 

NX model from SysML” command. Both commands will use the consistency 

checking engine that is presented in section 7.13 of this document. 

6.6. Explanation of the Modeling Framework Through a Case study: 

Cylindrical Fit 

The aim of this first case study is to navigate through all the different components 

of the implementation by using a simple example of manufacturing integration between 

dissimilar material systems. The detailed explanation of the methodology will be divided 

according to the implementation activities presented in the previous section. This 
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classification of stages will also integrate pertinent references to previous works and will 

show real screen captures of the proposed software interface and constructs. 

This case study presents a double cylindrical fit with two different materials: 

concrete and steel. Radial clearance between two telescopic tubes is very important and, 

for a great number of applications in construction, a high degree of precision is needed 

when two tubes are expected to slide one within the other. Without a high degree of 

precision, the wrong clearance within the fit of the two tubes can cause the telescopic 

action between the two tubes to lock up. In an effort to prevent this, a quality sliding 

motion is needed.  

Evidently, the allowable clearance between the two mating tubes is a function of 

the length of engagement. Thus the longer the engagement, the more radial clearance can 

be tolerated. This is true for two tubes that are expected to slide freely relative to one 

another (telescopic tubing) as it is for a metal bushing sliding up and down a precision 

shaft.  

 
Figure 30: Case Study1: Double cylindrical fit of a multi-material assembly 

For this simple example, there are two types of variations that must be addressed 

during the study. The two variations are the manufacturing tolerances of the three mating 
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components, specified independently, and a radial clearance among the three components 

to allow the sliding effect that the functional requirements specify for the assembly. In 

both cases, the tolerance specifications refer to Single Domain Construction Tolerances 

(SDCT) as described in a previous section of this document. In the current practice of 

building construction, these kinds of specifications are generally overlooked or only 

prescribed as feature-independent rules via a general callout in the construction 

documentation. In contrast, this research proposes these kinds of specifications as 

parametrically constrained by the specific instance of a feature within its assembly 

conditions .  

Table 2: Manufacturing data available previous to the tolerances analysis 

 
Considering that all the fields shown in previous table are critical for anticipating 

the manufacturing performance of the assembly, it is evident that having only nominal 

values from the CAD domain will not create enough context for the tolerance and 

clearance analysis. Rather, this sole exercise will require the integration of different 

pieces of knowledge as shown in the following  
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Table 3. Besides the CAD data, at least three other stages with their own specific 

knowledge will be developed (Material-specific manufacturing knowledge, 

tolerances/clearances assessment, and tolerances/clearances validation). The material-

specific manufacturing section of the table will define Lower Limit Tolerances (LL) and 

Upper Limit Tolerances (UL). Usually, the common practice for construction uses the 

same value for both limits. This approach is called +/- (plus/minus) tolerances. However, 

in modern engineering, these values are independently calculated based on estimations 

that consider geometric and material characteristics, which define the material-specific 

manufacturing knowledge. In this case study, for example, the proper specification of a 

bushing condition will most likely define UL and LL, both at negative values from the 

nominal parameter. Then, the following basic stage for manufacturing compliance will be 

the assessment of the values obtained from the integration between the CAD feature 

parameters and the material-specific manufacturing knowledge that define their upper 

and lower limits. In this stage, besides calculations of centered dimensions and +/- 

tolerances, the specification of assembly clearances will be performed. An important note 

at this point is to establish the fundamental difference that exists between tolerances and 

clearance. Tolerances refers to the limit of unintentional deviation of a dimension from its 

nominal value and clearance is the amount of intentional deviation between two mating 

dimensions in a fit. Finally, the tolerances validation stage will confirm, by using 

performance indicators established from the combination of different material systems 

knowledge, if the manufacturing allowances will be optimal for the assembly. 
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Table 3: Integration of different analysis stages to finally validate a clearance prescription 

 
The following sub-sections will restate and develop all activities required to 

transform the overall approach exposed in this section into a system-level computational 

implementation. All the introduced commands and functionality have been developed 

exclusively for this dissertation.  

6.7. Structural Decomposition: Meta-modeling CAD geometry into SysML 

A meta-model is a detailed classification of the constructs and rules required for 

creating semantic models, which means the implementation of specific independent 

descriptions of the underlying algorithmic ideas [147]. A SysML profile can represent a 

meta-model as an ontological structure. The profile will specify a vocabulary of concepts 

of the original specific domain as stereotypes.  It will also order them in relation to each 
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other by means of formal rules and add specific properties to the concepts (e.g. metrics) 

so that users can perform meaningful analysis and calculations. As Shah et al. [88] 

explained, these graph representations are called meta because they are themselves 

models that define the languages in which the models of the views are described. There 

are a few approaches to describe meta-models, with the most general based on the UML 

language. OMG has also defined more specialized representations such as the Meta-

Object Facility (MOF), which, according to OMG (2006), specifies an approach to 

define, manipulate, and integrate metadata and data in a platform-independent way. In the 

same sense, the Common Warehouse M?(CWM) and the Information Resource 

Dictionary Systems (IRDS) are examples of meta-modeling languages.  

Although Siemens NX is not a traditional BIM tool, it is a well-known parametric 

solid modeler for aerospace and mechanical engineering. Siemens NX has very robust 

feature recognition and feature learning capabilities. These capabilities are important for 

automating tool setup and process allocation, which is one of the objectives of the 

implementation.  

Because of the highly complex and heterogeneous body of knowledge that can be 

represented, Siemens NX has an extremely fine grained meta-model. Consequently, an 

approach that automatically converts the meta-model of Siemens NX into a SysML 

profile through a model-to-model transformation does not seem appropriate without an 

important meta-model simplification. This is one of the bases of this project – model 

integration between SysML and Siemens NX simply transforms what is reflected in the 

profile. However, the meta-model simplification leaves room for full extensibility 

through more wide-ranging or domain-specific profiles. For example, a Siemens NX 
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profile for FEA would be different than a Siemens NX profile for manufacturing 

processes optimization.  As Marchenko [91] proposed, models help to understand the 

nature of a design method by ignoring some of the not-so-important details. Thus, when 

modeling a design process, determining the proper level of abstraction is fundamental for 

the model to be beneficial to its users. For this project, the SysML profile created to 

accomplish the model integration is a simplification of the meta-model of Siemens NX. 

Although extensive, the NXProfile contains only the basic elements of the feature-based 

CAD representation. In a very general view, these elements are assemblies, parts, 

features, and parameters (Figure 31). 

 
Figure 31. Basic hierarchy of modeling elements of a conventional solid modeler. 

As previously stated, Siemens NX is a multi-task CAD package that manages 

more than just geometric data. Rather, Siemens NX can perform several other tasks 

during the life cycle of a product model. For example, it can perform feature-based 

design (e.g. sheet metal), stress and finite element analysis, kinematics simulations, 
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Computational Fluid Dynamics (CFD), and Numerical Control (NC) manufacturing 

iterations. For each one of these activities, it is possible to create specific meta-models 

that can be converted into SysML profiles. One key SysML profile stereotype created 

during this project to embed this Siemens NX information into a SysML model is the 

<<NXPartFeature>>. In the context of this dissertation, a feature is the minimal 

information required to represent geometric variation and tolerances. There are several 

sub-categories of features based on feature-to-feature relationships. These are  lower-

level features (e.g. the basic topological entities, faces, edges, and vertices) and higher-

level features which are the combination of the lower-level features (or the combination 

of other higher-level features) having certain relationships among them (e.g., a hole is 

different than a cutout). In construction, this separation between higher and lower 

features is crucial to achieve model simplification (filtering) without creating inaccurate 

results. 

Several specializations of the <<NXPartFeature>> stereotype have been created 

to successfully integrate datum coordinate systems, extrusions, geometric Boolean 

operations, NX sketches, and numerous other CAD elements as SysML entities. The 

following graph shows a reduced example of the basic elements of the NXProfile created 

for this project, which will be further explained in more detail. The white triangle 

associations represent hierarchical generalizations where the highest-level element within 

SysML correspond to the block class.  Every node of the profile represents a specific 

stereotype. A stereotype is a kind of extensibility instrument of SysML.  Stereotypes can 

be understood as object-oriented classes, which are used to extend the language of 
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SysML with the aim of creating new model elements from existing ones, with detailed 

attributes suitable for domain-specific applications.  

Even considering that parameters could exist in any kind of element in a system 

model, for this implementation the imported CAD parameters will be assumed to be 

dimensional value properties of parts or assemblies. NX has just one file type (.prt) to 

describe parts and assemblies. For that reason, it is important to find an approach to 

represent parts and assemblies independently. To do so, special information has been 

added to the different stereotypes of the NXProfile. The most important additions were 

created in the specification of <<NXPart>>, <<NXPartProperty>>, and 

<<NXAssembly>> stereotypes. They are: currentPartPath, directory, and uniqueID. 

CurrentPartPath and directory show the location of the last updated file, and uniqueID 

contains the global unique identifier of the file generated within NX. This data is crucial 

to keep SysML and NX elements synchronized, even if the file names change.  

 
Figure 32: High level meta-model of the CAD data structure 
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Figure 32 shows the high-level description of the basic elements of the CAD 

package Siemens NX data structure as explained in Figure 31. However, in order to apply 

material-specific manufacturing knowledge, we need to further specialize these elements 

with detailed information about specific features of the manufacturing field that we are 

trying to represent. Figure 33 shows an extension of the Siemens NX meta-model to 

describe specific features of the sheet metal domain, which corresponds to one of the 

material systems used as a case study for the implementation developed in this 

dissertation. As depicted in the picture, the top level of the DSL corresponds to the 

<<stereotype>> element, which is a meta-model element before being instantiated. This 

element is called NXPartFeature and represents any CAD feature that is imported from 

Siemens NX. The problem of how to automatically apply a domain-specific knowledge 

to a feature with this high level of generality then arises. To address this issue, new 

subtype elements have been produced, called specializations, on which we can create 

custom fields of information that will generate the proper context to automatically apply 

the required knowledge for a meaningful manufacturing analysis. In Figure 33 a family of 

features are created under the <<NXSheetMetalFeatures>> element. These elements 

inherit all properties, visible and invisible, of their super-type, as also include other 

properties that define the specifics of every feature. For example, a basic feature of the 

sheet metal domain is flange, which is represented in the NX Sheet Metal Features 

diagram as NX SM Flange. This element, which is a specialization of the 

NXSheetMetalFeatures, contains all the parameters that define a flange: BendRadius, 

NeutralFactor, BendAngle, BendReliefWidth, BendReliefDepth, and others.Any time 

that a feature is typed as flange in a NX model that is being imported into a system 
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model, this stereotype will obtain the values of such a feature and populate its fields to 

create a flange instance.  

 
Figure 33: Extended NXSheetMetal meta-classes using stereotypes that carry domain 

specific properties and constraints 

Figure 34 shows an imported sheet metal element in the system model 

environment (SysML). As can be seen in the diagram, all elements have been 

automatically allocated stereotypes from the sheet metal domain, and their parameter 

fields have been instantiated with numeric values. Also, custom icons were created for all 

new elements of the developed NXProfile (Figure 35). The black diamond association 

between components is called composition association and it defines a structural 

relationship between parents and children. This capability of creating a topological 

hierarchy of features from a CAD component is not naturally present in the NX 
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package11, and is an added functionality of this implementation to replicate the real 

structural topology of a material system. For example, as depicted in the diagram, the .prt 

level inner lower chord (file level) is a the top of the hierarchical structure.  This chord 

has a child typed as base flange, which is the basic element for constructing a sheet metal 

component. This base flange has two children typed as <<NXSMFlange>> named Side 1 

and Side 2. In a fourth level of hierarchy, Flange 1 has a child feature typed as 

<<NXSMNormalCutout>> named SideNestedHoles. Using this example, we can 

establish a basic domain-specific hierarchy for sheet metal fabrication that is compliant 

with the real processes of the field. That is, it cannot be a flange without a base flange, or 

it cannot be a hole without a base flange or a flange. In this manner it is ensured that the 

structural decomposition does not defy the basic rules of solid modeling with respect to 

consistency with the built environment.  

                                                 

 

 

11 As it is shown in Figure 35 the expressions list in NX does not introduce any kind of indentation 

or other structure that describes the hierarchy of features. 
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Figure 34: Elements hierarchy of a sheet metal component imported into a system model 

 
Figure 35: Custom Icons legend of the implementation 

The following section presents the main commands and functionalities developed 

for this implementation. 
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Import CAD Model: 

This command creates a SysML model from a CAD model. When importing a 

single file, it creates a folder with the name of the NX file. This folder contains two 

elements, which are a block structure of the NX file and an empty folder to store 

instances from further parametric executions. However, when importing an assembly, the 

process is a little different because blocks (classes) cannot contain any packages as 

children. Then, in the assembly importing procedure, we have added just one folder at the 

top of the structure tree. All sub components (Also of <<NXPart>> stereotype) will be 

incorporated inside the same package. 

The following steps detail the procedure to import the CAD model into the 

SysML model: 

1. Right click on the folder where the CAD model will be imported; 

2. Go to the command “Import CAD Model”12 as shown in Figure 37; 

3. Select a CAD file to be imported on the SysML model; and 

4. Repeat for all different CAD files that will be part of the parametric execution13.  

At this point, all CAD components will be decomposed as feature trees in the 

SysML environment. The outcome of the import command will be a SysML instance of 

                                                 

 

 

12 As an alternative, the command “Import CAD Model with Feature Type Filter” performs the 

same action. However, the model will be filtered before imported.  

13 Upon completion of a multiple System Integration with several domain specific tools, these files 

could come from different CAD packages 
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the CAD model that will include all the geometric data based on the data structure of the 

NXProfile SysML DSL. Figure 36 shows the outcome of a successful import in the 

containment tree of the MagicDraw environment. The highlighted CAD component has 

been automatically created in the MagicDraw modeling environment as a SysML model, 

which can be later dragged into SysML diagrams to graphically access specific design 

parameters or for reporting activities.  

 
Figure 36: Containment tree with imported CAD geometry 
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Figure 37: The two importing commands of the created application are highlighted in the 

red square  

Import CAD Model with Feature Type Filter: 

A specific subset of CAD data that is required to run a domain-specific analysis is 

called “View.” In order to create Views, we need to filter the data that we obtain from the 

CAD model. To do so, we have created the stereotypes filter. The stereotype filter creates 

a SysML model from CAD the same way that importing a full model would, creating a 

folder with the name of the NX file, which contains a block structure of the NX file. 

However, it offers a check box window to specify what feature types need to be 

imported and what feature types will not be included in the view. In the case that we are 

importing NX assemblies, the import operation will create just one folder at the top level 

(assembly level). Considering that the complexity of building models is very high, this is 
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a critical capability of the system. For example, in Figure 38, the datum planes have been 

deselected, as they are not required at this time for manufacturing compliance analysis. 

 
Figure 38: Stereotype Filter to manage Model Granularity 

The following is the procedure to import the CAD model with the stereotype filter 

into the SysML model: 

1. Right click on a SysML folder (stereotype <<package>>); 

2. Click on “Import CAD model with Feature Type Filter; 

3. The Feature Filter will show up in the screen as shown in Figure 38; 

4. Uncheck the boxes in front of the features you are not importing and click 

“Import;” and, 

5. The model will be imported into the SysML environment. This model will have a 

hierarchy indentation, and if some feature was “filtered,” the remaining block will 

be attached to the element in the next level up in the hierarchy.  
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Figure 39: Filtered versus full model hierarchy structure 

A feature filter will offer the option of controlling the level of granularity of the 

model (Figure 39). The filter will automatically and dynamically14 create a list of all the 

stereotypes present in the NXProfile and will offer the user a checkbox for each of them. 

Thus, the user can check just the stereotypes needed for the specific modeling task. This 

capability is meant to control levels of granularity of data-rich building models. However, 

no matter how “coarse” the SysML representation of the CAD model is, after filtering, 

the CAD and SysML models will always be consistent. Figure 40 illustrates a model 

where only the file level hierarchy (<<NXPart>> or <<NXAssembly>>) have been 

imported, and all the features itemization has been filtered. Figure 41 shows the same 

                                                 

 

 

14 Every time that the features filter is requested, it will query the NXProfile to see if new 

stereotypes have been added or deleted. 
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fully unfiltered model where all CAD data has been imported into the system model 

environment. 

 
Figure 40: Ballast assembly: CAD representation (left) and component level SysML 

representation (right) after model-to-model transformation. 

 
Figure 41: Model-to-model transformation output: full CAD structure 
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Link CAD Model to Existing SysML Model: 

The application developed in this dissertation allows users to link existing SysML 

elements to NX files by using the “Link NX file” command. The linked elements could 

be single components or even assemblies. To perform this task, the user must right click 

the SysML element that will be linked and choose the proper command as shown in 

Figure 42.  This command has been created because usually building projects start from a 

description of requirements prior to a geometric instantiation.  

 
Figure 42: Link NX file command 
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When linking an existing NX file with an existing SysML modeling element (a 

<<NXPart>> or a <<NXAssembly>>), it is likely the two elements will differ in name. In 

this case the application will prompt the user with a window to pick the name that the 

user wants to keep as the name of the file and the SysML element as shown in Figure 43. 

 
Figure 43: Name disambiguation while linking a NX file with a SysML element 

Also, if the user tries to link an NX file within an <<NXProject>> or a 

<<NXPart>> element, and the NX file to import already exists in the project context, the 

implementation will prompt the user with an error as shown in Figure 44.  

 
Figure 44: File already linked error 

6.8. Knowledge Acquisition 

This important stage of the manufacturing compliance method includes the 

acquisition and formalization of domain-specific knowledge necessary to execute 

parametric analysis on imported CAD models in the SysML environment. This stage is 

one of the only processes of this implementation that is not developed in an automated 

fashion. The reason is that this stage requires the user to build pieces of knowledge, 
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encapsulated in SysML requirements and specification, directly from construction 

standards, material systems reports, books, or other kinds of written manufacturing know-

how, which are not machine-readable. The acquired knowledge will be stored in 

specifications and constraints. It will be available for reuse by searching within the 

domain-specific knowledge folder in the SysML Model or by automatically allocating it 

during the knowledge allocation stage. This folder will have manufacturing requirements 

that lead to manufacturing specifications represented as mathematical expressions in 

<<constraintBlock>> elements. 

For this implementation the SysML stereotype <<requirement>> has been used 

and specialized as a text-based knowledge container, and the SysML stereotype 

<<constraintBlock>> has been used and specialized as a mechanism that ensures that the 

knowledge is being applied and the CAD geometry is in compliance. Figure 45 shows the 

portion of the NXProfile and the meta-classes that deal with the knowledge acquisition, 

knowledge allocation, and parametric execution stages. There are three different kinds of 

stereotypes necessary for this analysis task: a specification, a constraint, and a repository. 

These elements respectively come from the meta-classes <<Requirement>>, 

<<ConstraintBlock>>, and <<ElementsLibrary>>.  For this implementation the 

<<Requirement>> class has been specialized into two stereotypes: <<Design 

Specification>> and <<Manufacturing Specification>>. Both elements are represented by 

custom icons for easy readability, and are verified by two different kinds of 

<<ConstraintBlock>> stereotypes. The design specification will be verified by a 

<<Knowledge-Based Constraint>> and the manufacturing specification will be verified 

by a <<Critical Dimension>>. Both verification procedures require an association 
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element between the requirement and its associated constraint to automatically evaluate 

whether the CAD geometry is in compliance with the domain rule. With this double 

stereotype approach, analysis for SDCT and HCT will be kept separated, as they belong 

to different stages of the overall analysis. Then, an element typed as <<Manufacturing 

Knowledge>>, which inherits all the properties of an <<ElementsLibrary>> will act as 

permanent storage for the created knowledge. As explained later in this dissertation, other 

critical elements such as <<Analysis Context>> will be stored in the same kind of 

libraries for easy access and allocation.  

 
Figure 45: Meta-classes of material-specific knowledge 

In the previous example of the cylindrical fit, the following equations represent 

the Domain-Specific Knowledge (DSK) that the designer needs to be aware of when 

prescribing clearances for any kind of cylindrical fit based on steel components.  
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Bushing/Shaft tolerances calculation: 

Milling tolerances for SDCT steel components require the specification of Upper 

Level tolerances (UL) and Lower Level tolerances (LL), which are described in different 

manufacturing standards [104]. These DSK will be described in SysML as a construction 

specification by means of <<Requirement>> elements type.  

Plus/Minus (PM) tolerance from LL and UL tolerances specification: 

Equation 12: plus/minus formula from UL and LL 

𝑃𝑀𝑡 =
(𝐿𝐿 − 𝑈𝐿)

2
 

Where:  

PM = Plus/minus tolerances value 

LL = Lower level tolerance specification 

UL = Upper level tolerance specification 

Centered dimension calculation from LL and UL tolerance specification: 

Equation 13: centered dimension formula from UL and LL 

𝑐𝑇 = 𝑋 +
(𝐿𝐿 + 𝑈𝐿)

2
 

Where:  

cT = Centered tolerance dimension 

X = Nominal dimension 

LL = Lower level tolerance specification 

UL = Upper level tolerance specification 

Integrating DSK of tolerances and clearances calculations into the 

implementation: 
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In the SysML Language, as previously explained, constraints blocks are used to 

define equations or other logical expressions. As a block, a constraint block is an element 

of definition—one that defines a Boolean constraint expression (an expression that must 

evaluate to either true or false) [27]. Most often, the constraint expression defined in a 

constraint block is an equation or an inequality (a mathematical relationship that is used 

to constrain value properties of blocks). This is done mainly for two reasons: 

 To specify assertions about valid system values in an operational system, and 

 To perform engineering analyses during the design stage of the life cycle. 

The variables in a constraint expression are called constraint parameters. 

Generally, they represent quantities, and so they are stereotyped most often by value 

types. For example, the following figures shows a constraint block (left) 

named Bushing_Metals_Tolerances, which contains four constraint expressions that will 

assess a design specification or a design requirement about tolerances for a bushing 

component. In this case the constraints are grouped in a single constraint block. The 

notation for a constraint block on a block definition diagram (bdd) is a rectangle with the 

stereotype <<constraint>> preceding the name. However, as most of the modeling 

elements in this implementation have been customized to be applied in construction, 

these constraints blocks will be specialized as <<Critical Dimension>> or <<Knowledge-

Based Constraint>> (Figure 46, Figure 47). The constraint expression always appears 

between curly brackets ({}) in the constraints compartment. The constraint parameters in 

the constraint expression are listed individually in the parameters compartment [27]. 
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Figure 46: Constraint block of bushing and shaft tolerances specification for steel milling 

component 

 

 
Figure 47: Constraint block that delivers clearance assessments for WC and RSS of a 

bushing assembly. 



143 

 

 
Figure 48: Constraint blocks from design and manufacturing specifications must be 

allocated to their targeted features 

The capability of the constraint block to carry several equations in a single unit 

allows designers to apply several related calculations and analyses at the same time. For 

general equations, such as centered dimension equations, the parameters are real 

numbers. Since this research deals mostly with dimensional values, all of the value types 

for this implementation are also real. Thus, all values can be connected to parameter ports 

that are specified as real numbers. However, different value types can be created when 

the user intent is to simulate or assess the model from a behavioral standpoint.  
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Figure 49: Material-Specific Knowledge: Reusable manufacturing specifications: diagram 

In addition to sub-types of constraints such as critical dimensions or knowledge-

based constraints, Figure 49 depicts the main elements defined for the material-specific 

knowledge representation. The manufacturing and design specifications, which are text-

based, are intended to convey the rationale of a specific piece of knowledge. In addition 

to this information, these knowledge modeling elements contain an identification number 

to be sorted or organized in domain-specific libraries within the system model (Figure 

50). Another important element for the topological description of domain-specific 

knowledge is the association. As shown in Figure 49, for this dissertation, the description 

of relationships between constraints and specifications has two distinctive kinds of 

associations: the containment association and the dependency association. The former 

kind refers to the ability of organizing manufacturing and design specifications 
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hierarchically. This means there are main specification elements that can have children 

specification elements. For example, in Figure 49 the specification Bushing-Shaft 

Clearance assessment has a derived relation to the Telescopic Fit_SteelPipe. Furthermore, 

this Telescopic Fit_SteelPipe has two containment relationships to the elements Shaft 

Tolerances and Bushing tolerances. The same indentation approach can be seen in 

Requirements and Specifications of Figure 50 and in the reusable manufacturing 

specification in the table presented in Figure 51.   

 
Figure 50: Examples of constraints and specification libraries as they appear in the 

containment tree of the MagicDraw user interface 
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Figure 51: Reusable manufacturing specifications: table version 

6.9. Knowledge Allocation 

As explained in the previous section of this document, manufacturing 

specifications and design specifications are cumulative, verifiable, reusable, and they are 

stored in domain-specific knowledge libraries within the SysML modeling environment. 

As shown in Figure 52, the knowledge allocation within parametric diagrams will allow 

the user to link the formal representation of manufacturing knowledge (geometric 

constraints as equations) with numeric values obtained from the imported CAD model. 

The expressions created for such an association will be solved by the mathematical 
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engine. Then, the newly calculated numeric values will be reallocated in the geometric 

features parameters to create a manufacturing knowledge-compliant geometry update.  

 
Figure 52: General description of the integration between processes standards and CAD 

features through a mathematical engine 

Based on the features stereotypes held by the imported CAD geometry, the 

application will recommend, through a dependency matrix, the manufacturing 

specifications or design specifications that the user should include to assess the 

manufacturability of the intended part or building assembly. This activity is performed by 

looking at the material or feature type of the imported CAD component. However, 

critical parameters of each feature must be identified by the user. For instance, in a sheet 

metal component like the one shown in Figure 53, a manufacturing specification that 

assesses a Flange Length Limit has been automatically suggested by the developed 

application. However, this allocation matrix did not specify which of the flange Side 1 

parameters must be linked with the manufacturing constraint that verifies the 

manufacturing specification. As stated in most of the literature related to Systems 

Engineering (SE) and Geometric Dimensioning & Tolerancing (GD&T), tolerances must 
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be designed, and that takes time. The value of applying a modeling approach as the one 

proposed in this dissertation comes when parametric iterations are desired, when 

conflicting system interactions need to be identified, or when an analysis context for 

repetitive procedures has been stored for reusability. The first step will be the 

identification, based on features stereotypes of the profile, of the critical dimensions that 

must be analyzed for tolerances allocation and manufacturability. Critical dimensions are 

at the <<NXValueProperty>> level of the <<NXProfile>> and these dimensions carry 

parametric information seamlessly coordinated with the CAD model. The following 

dependency matrix depicts the result of a knowledge allocation procedure. In Figure 53, 

the small arrow dependency icon refers to a “verified by” relationship. For example “Side 

1” is verified by a bending radius design specification (hammer icon). 

 
Figure 53: Dependency matrix for knowledge allocation 

When allocated, manufacturing specifications or design specifications are 

displayed in-context in the feature level diagram of a block definition diagram (bdd). 

These specifications require an <<Allocation>> type of association for traceability and 

verification. This capability offers the option of visually assessing all modeling features 
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to confirm that a requirement is fulfilled, or to verify that a design or manufacturing 

specification is met. Figure 55 shows a block definition diagram where the light grey 

elements are manufacturing or design specifications and the light brown elements are the 

feature-based decomposition of the green element “LowerChordStiffener.prt.” In this 

knowledge allocation diagram, all specifications have been reduced to four fields of 

information, and other elements such as text-based rationale or constraints have been 

hidden. Figure 55 depicts the manufacturing specification from top to bottom, including a 

stereotype <<Manufacturing specification>> with the associated icon, a specification 

named “Hole to Bend Distance,” an identification field for the specification (Id), and the 

material system where the specification has been taken from.  

 
Figure 54: In-context manufacturing specifications allocation through a dependency 

association 



150 

 

 
Figure 55: In-context manufacturing and design specifications 

When domain-specific knowledge has been properly allocated to a feature-based 

decomposition of a CAD component or assembly, the model is ready to be executed in a 
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parametric diagram by means of an <<Analysis Context>> element, which will be 

explained in the following section.  

6.10. Parametric Execution 

Parametric models limit the properties of a system. The parametric engine of 

SysML, which for this dissertation is powered by Maple 18, enables the mathematical 

evaluation of a system model and uses profiles as a base meta-language to instantiate all 

required elements. Also, constraints are conveyed as equations or logical expressions, and 

the parameters of the equations are linked to the properties of the system being evaluated 

[27]. Furthermore, all parametric models capture the description of one or more 

engineering views of a design. As explained in [27], a parametric model which captures 

multiple engineering views such as the ones created in this implementation — 

performance, validation, or target values—can be used to calculate several design 

alternatives, to support trade-off analysis, or optimize a design based on multiple criteria. 

Accordingly, for the present dissertation, the main use of parametric diagrams will be the 

development of analysis contexts where domain-specific knowledge will assess the 

manufacturability of parts and assemblies.  
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Figure 56: Main stereotypes developed for parametric execution of manufacturing 

knowledge and tolerances evaluation in a SysML model profile 

The parametric execution of this implementation is only possible when started 

from a parametric diagram (par) (Figure 57), which contains SysML blocks <<block>> 

that carry information from the CAD model, and SysML constraint blocks 

<<constraint>> that carry domain knowledge represented as mathematical or logical 

expressions. Both element types will be contained in properties of a third kind of element, 

the <<CAD-SysML Analysis Context>> or <<CAD-SysML Validation Context>>. The 

analysis context stereotypes are specializations of SysML blocks that are used to create 

system boundaries defining where to execute a domain-specific evaluation. Both kinds 

(the <<CAD-SysML AnalysisContext>> and the <<CAD-SysML ValidationContext>>) 

can represent any of the custom values stereotypes as depicted in Figure 56. These 

custom values stereotypes are: 

NXValueProperty: Original value property developed in this implementation to 

represent any numeric parameter of an imported CAD feature.  
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Target Value Property: Sub-type of the NXValueProperty, used as a stereotype 

of an outcome for a parametric calculation. Target value properties will update the value 

of its custom property “Original Classifier,” which is a parameter directly imported 

during the structural decomposition stages. Target value properties are critical for this 

implementation, as they will finally upgrade the CAD geometry for manufacturing 

compliance. Target values will be covered in more detail in the specifications verification 

stage.  

Validation Value Property: Elements typed as Boolean will verify that the CAD 

geometry has met the manufacturing and tolerances specifications. This stereotype has 

been specifically created to assist in decision making and system evaluation during the 

specification verification stage.   

Performance Value Property: These elements are numerical outcomes of 

parametric calculations that do not come from a specific CAD parameter. Rather, these 

elements represent the instantiation of domain-specific knowledge required to assess 

manufacturability. For example, in Figure 57, the three green elements at the right, which 

are parameters of the analysis context, are metrics used to verify the status of a bushing-

shaft clearance. These elements do not directly belong to any imported feature, but they 

assess a mating condition (clearance) between two different CAD components.  

Reusability of Analysis Contexts  

Figure 57 presents an example of a <<CAD-SysML Analysis Context>> template 

for a bushing-shaft evaluation in a SDCT environment. The element to the right, a 

<<Knowledge-Based Constraint>> called Bushing-Shaft Clearance, calculates several 

performance value properties of the required assembly clearance, such as minimum and 
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maximum conditions, mean values, and also RSS and WC tolerances assessment. This 

knowledge-based constraint derives its input values from two <<Critical Dimension>> 

elements that calculate LL and UL tolerances for the individual features, as well as 

centered and plus minus (+/-) tolerances values. As can be seen in the diagram, the 

dashed box “Linked CAD Data” is still empty, which means it can be populated with 

different CAD embodiments that match the described context. Also, as the analysis 

context can be represented as a single element, as depicted at the left side of Figure 60, it 

is possible to copy, paste, or store it in libraries for reusability. This capability is intended 

for industries that execute repetitive analysis of similar topologies or tasks that involve 

trade-off evaluation of specific assembly conditions. 

 
Figure 57: Parametric diagram used as analysis context template before geometric data 

allocation 

Analysis Context Execution  

In t Figure 58 the “Linked CAD Data” has been already populated with features 

and values that were previously imported from a features decomposition of a CAD 

model. As seen in Figure 57, the analysis context, with its critical value properties and 
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constraints, was already created as a template. Therefore, for a parametric execution, the 

user only has to connect the required CAD metrics into the “Domain-Specific Knowledge 

from Requirements Specification” dashed box of the parametric diagram. In the same 

way that all elements of the analysis context are connected together, the linked CAD data 

will use binding connectors typed as real numbers. A binding connector specifies an 

equal (“=”) relationship between the connected elements, and also ensures that units on 

both sides of the association are compatible. 

 
Figure 58: Analysis context in a parametric diagram that is ready for execution 

After the components have been properly connected in an analysis context 

diagram, the system is ready to execute the model. When the model it is executed, the 

math console procedurally shows each performed calculation by following the analysis 

context internal organization (Figure 59).  
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Figure 59: Math console of MagicDraw during parametric execution 

Figure 60 shows the two stages of a parametric execution. At the left, the depicted 

block represents the same analysis context shown in Figure 57 and Figure 58. However, 

in this representation, the inner structure of the analysis context has been hidden. Despite 

this condition, all inner components of the analysis context are still visible and accessible 

in the block. Furthermore, as the <<CAD-SysML AnalysisContext>> is a sub-type of the 

<<block>> stereotype, it inherits the latter internal elements such as constraints, parts, 

and values, which are the required elements to perform the parametric evaluation. At the 

right side of Figure 60, the variables window shows the results of the parametric 

execution. In this window, constraints, parts, and values are also shown. However, the 

values placeholders of the analysis context have been instantiated with numeric values. 
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These values, which follow the NXProfile DSL shown in Figure 56, are target values and 

performance values. These values will be then stored in instances specification blocks 

that carry the stereotype of the specific analysis context (Figure 61);they will then be 

evaluated during the specification verification stage.  

 
Figure 60: Execution and results of an analysis context 

One of the main functionalities of this modeling framework is to perform quick 

trade-off analyses by parametrically changing the values that have been incorporated into 

the domain-specific evaluation. By doing so, designers can immediately prevent possible 

undesired tolerances interactions. For example, in Figure 61, when looking at important 

performance values such as Clearance Max and Clearance Min, we can quickly state that 

in Analysis 2 those parameters have negative values. This means, when both clearance 

limits have negative results, most likely there will be a conflicting assembly interaction in 

the form of a collision.  
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Figure 61: Instances specifications results 

The following section of this document will take the results of the parametric 

execution and it will confirm that all manufacturing and tolerances specifications have 

been met during the specifications verification stage. 

6.11. Specifications Verification 

Figure  provides a general description of the implementation regarding 

verification and validation. In this diagram, three different verification and validation 

stages are depicted at both SDCT and HCT hierarchical levels. These verification and 

validation stages are: manufacturing specification assessment, design specification 

assessment, and assembly design specifications verification.  
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Figure 62: Overall process diagram for multi-material system assembly knowledge 

verification and validation 

During the first stage, manufacturing specification assessment, each CAD single 

component (as NX Part) incorporated in the system model will be independently 

evaluated based on domain-specific knowledge of the material or process being identified 

for that component. This assessment, which comes from a manufacturing specification, 

will be documented by connecting linked CAD data to a mathematical constraint typed as 

<<Critical Dimension>>. This <<Critical Dimension>> element will then enforce that 

what is written in the <<Manufacturing Specification>> element is consistent with the 

embodiment (CAD values) of the feature that it is evaluating. For example, in Figure  a 

simple element of the type <<Manufacturing Specification>> and an element typed as 

<<Critical Dimension>> are depicted. The <<Manufacturing Specification>> element 

has a very simple, but meaningful, written statement about the minimum distance 
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between a cutout and a bending feature in a SDCT sheet metal component. A failure to 

incorporate this piece on manufacturing know-how will most likely result in geometric 

deviations of the cutout feature due to the distortion that the bending operation will 

produce on the cutout feature. However, as this human readable statement cannot be 

understood for a machine15, for this dissertation another machine readable stereotype has 

been created: <<Critical Dimension>>. As can be seen in Figure , both elements are 

connected by a verification type dependency (dashed line pointing from the critical 

dimension to the manufacturing specification). The dependency association has two 

meanings: first, it states that the <<Critical Dimension>> verifies the <<Manufacturing 

Specification>>; it also creates a link that defines a supplier/client relationship that can be 

queried at any time and from any part of the system model. For this implementation, 

custom icons have been established for all created stereotypes at the upper right corner of 

the element: manufacturing specifications are identified by a hammer and critical 

dimensions are identified by a 45-degree square.  

                                                 

 

 

15 Although it could be a research area in the artificial intelligence domain, in this dissertation, 

text-based requirements and specifications will be considered as non-machine readable.  
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Figure 63: Text-based <<Manufacturing Specification>> that is enforced by a constraint 

typed as <<Critical Dimension>> 

The second part of the specification verification state is called design 

specification assessment. This stage works in similar fashion to the manufacturing 

specification assessment procedure. One difference, as opposed to the previous 

procedure, is that in this stage the evaluation refers to the integration of multiple design 

features together. This procedure can be applied either to a single component or to an 

assembly within the same material system. However, this stage will not evaluate 

manufacturing variability but rather design decisions. For example,  Figure  shows a 

<<Design Specification>> called Bushing-Shaft Clearance Assessment. This 

specification is linked, by using a dependency association, to a <<Knowledge-Based 

Constraint>> named Bushing-Shaft_Clearance. In this case, the design specification is 

not assessing a possible geometric deviation that could occur during the manufacturing of 

either the bushing or shaft components. Instead, what the knowledge-based constraint 

does is to assess if the clearance between these two theoretically perfect components will 
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meet the requirements for a telescopic assembly. Thus, the specification change required 

for either the bushing or shaft diameter to be compliant with the telescopic requirement is 

a design decision and not a manufacturing consideration.  

 
Figure 64: Text-based <<Design Specification>> that is enforced by a constraint typed as 

<<Knowledge-Based Constraint>> 

The third verification procedure shown in Figure  operates in the same way as the 

design specification assessment. The only difference in this stage is that  the design 

knowledge required to execute the evaluation comes from different material systems. 

Therefore, this stage will operate in the HCT domain. The critical stage identified in this 

dissertation as HCT involves a system integration of dissimilar manufacturing know-how 

and material properties, which has been identified as the main source of assemblies 

mismatches and geometric variability during building erection. 
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Validation Context Execution: 

The CAD-SysML Validation Context is executed in the same way as a CAD-

SysML Analysis Context, as they both are specializations of the same SysML modeling 

element (<<block>>). Validation contexts are also created in block definition diagrams 

(bdd), which can be stored for reusability, and will be executed in parametric diagrams 

(par). Although validation and analysis contexts are at the same hierarchical level in the 

NXProfile, usually a validation context will contain one or more analysis contexts, and 

will confirm their numeric results by means of Boolean statements. The reason for this 

condition is that analysis contexts will apply the domain-specific knowledge of design 

and manufacturing, and their execution will create a set of target and performance values. 

However, an analysis context will not verify that those values actually meet the overall 

manufacturing specifications of the assembly. For this task, an artifact that performs 

knowledge validation has been created. Figure  shows a validation context for the 

bushing-shaft example.  
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Figure 65: Validation context example 

The validation context diagram, which is a specialization of a parametric diagram 

(par) contains five different types of elements: the validation constraint, typed as 

<<constraint>>; the analysis context being validated, typed as <<CAD-SysML Analysis 

Context>>; any complementary CAD feature required for validation, typed as 

<<NXPartFeature>>; any performance value, typed as <<Performance Value 

Property>>; any validation value, typed as <<Validation Value Property>>; and several 

binding connectors required to allocate values to and from the validation constraint. 

Functionally, the constraint block, based on domain-specific knowledge, will assess the 

values coming from the analysis context and will deliver a Boolean result (true or false) 

to notify the designer whether the manufacturing or design specifications have been met. 

The rationale of this custom validation procedure is to give quick and evident 

assessments without the need to refer to the instance value after calculations. This 

approach is intended to minimize the human interpretation of results in a complex 
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modeling environment such as BIM. However, performance values will be also provided 

for a deeper assessment. Figure  represents a validation context (left) and the results of its 

evaluation (right). Parametric iterations based on knowledge allocation or direct value 

changes can be stored for trade-off analysis as shown in Figure .  

 
Figure 66: Execution and results of a validation context 

 
Figure 67: Trade-off analysis of different scenarios of a validation context using instances 

specifications 
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Figure 68: Overall specifications validation 

Analysis and validation contexts can be nested parametrically in order to use 

results of previous parametric executions as inputs for new ones.  In the diagram above 

(Figure ), the analysis stage contains two analysis contexts for the two mating conditions 

being analyzed (metal to metal and concrete to metal). These analysis contexts are then 

fed into two validation contexts and finally, an overall validation context will evaluate the 

full manufacturing compliance of the CAD model. This feature greatly reduces the 

immediate complexity of the model by using the nested analysis contexts approach. 

Figure  shows the interactive variables window of the parametric execution of the 

“OverallVALIDATIONContext” described in Figure . Here, the original unknown values 

seen in Table 2 have been calculated based on manufacturing knowledge, have been 

allocated directly to geometric features parameters, and have been validated through 

design specifications. At a high level, Figure  summarizes the general approach of the 

implementation offered in this dissertation.   
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Figure 69: Overall validation context of an imported CAD model 

The table shown in Figure  contains the overall manufacturing and design 

specifications validation of an imported CAD model. Therefore, it contains all 

calculations and runtime values defined within the boundaries of the analysis. For each 

plus (+) sign in the table, a set of parts, constraints, and values will be expanded, making 

the model highly granulated and, sometimes, hard to navigate. In order to improve this 

issue, for the present implementation, a custom instances results report was created 

(Figure 62). This report summarizes the values properties that have been evaluated during 

the analysis. Also, using the same approach of the stereotypes filter (Figure 38), the 

instances results report offers the option of filtering the stereotypes shown in the table. 
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For example, in Figure 62, the validation values have been filtered to allow only numeric 

values to be displayed given that these values require a Boolean expression. 

 
Figure 620: Instances results report 

The <<Target Value Property>> Stereotype 

One of the issues that have been addressed in this implementation is the 

calculation of many runtime values for the same <<value property>> during the 

execution of nested <<CAD-SysML Analysis Context>> elements. We will consider the 

following situation shown in Figure: 

 
Figure71: Understanding the use of target value properties 
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In the capture, there is a <<NXPart>> called “Part” that contains a 

<<NXPartFeature>> called “Feature,” which contains a single parameter called “Value” 

with a default value of “10.” In the picture above there is also an Analysis Context 

“Analysis” that contains three parameters differentiated  with a number (1,2,3). These 

numbers stand for different stages of analysis as seen in Figure: 

 
Figure 72: Target value property rationale 

The picture above shows that “Value” is fed into “A” and becomes “Value1,” 

then “Value 1” is fed into “B” and becomes “Value2.” Finally, after going through the 

last <<Critical Dimension>> “C” (<<constraint>>), it becomes “Value3.” All of these 

runtime values (blue parameters) are required to maintain links to their initial classifier 

(“Value”) and to keep the internal consistency of the model. However, as the <<slot>> 

elements of instances specifications carry a link to their last classifier (called “defining 

feature” in Figure ), after two constraints calculations, the link of parameters to their 

original classifier (Value) will be lost. To overcome this situation, in the present 

implementation a <<Target Value Property>> stereotype has been created. This element 

stereotype has a custom property called “Original Classifier” (shown in Figure 56) that 

carries the original <<value property>> object from where <<Target Value Properties>> 
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were made. Then, the slot of the runtime value has a “defining feature.” The application 

will query the defining feature, and request its “Original Classifier” object as shown in 

Figure.  

 
Figure 73: Specification of a slot that has a <<Target Value Property>> as its defining 

feature. 
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Figure 74: Target Value Property with custom property "Original Classifier" 

CAD-SysML Consistency Approach: 

This is a complex matter because both representations (SysML and CAD) are not 

mapped one-to-one on each side. On the one hand, the CAD representation is compliant 

with all the fundaments and rules of solid modeling, which ensure the correct depiction of 

three-dimensional objects in the Euclidian space. That is, faces, vertices, and features are 

geometrically and unequivocally specified. On the other hand, the system model 

representation of the CAD component could be a sub-set of the CAD entities. For 

example, if, while importing, the stereotype filter is used and we uncheck the << NX 

Coordinate System>> stereotype, the SysML representation will not include such CAD 

entities. This is one of the characteristics of this integration – a SysML representation 

helps to synthetize only what is important for a specific user in a specific context. This is 

what we call a “view” of the model. Thus, the consistency analysis must be unidirectional 
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–  obtain the first element on the SysML side, then determine if the element is available 

on the CAD side. If not, it is a missing element and the mismatch must be added to the 

consistency report. If it is, the user must compare parameters and values (names, values). 

When differences are found, it is necessary to add those values to the consistency report. 

In this approach, from each CAD part file we extract a list of components (if this part is 

an assembly) and a list of features.  Within the NX format, there is a directed relationship 

between features –  any given feature may have any number of feature parents and any 

number of feature children. This structure is known as a Directed Acyclic Graph or 

DAG.  When extracting the list of features from a CAD part, this graph structure is 

simplified into a tree as follows: perform a depth-first traversal of the feature graph 

marking each visited node and add a node to our tree if it has not been visited previously. 

A generic traversal routine has been implemented, which performs a simultaneous 

traversal of a (possibly empty) MagicDraw tree and an extracted CAD tree.  At each step, 

the traversal routine maintains a pointer to a node in the MagicDraw tree and in the CAD 

tree; it then examines the list of child nodes for each, and from these invokes first a 

custom handler and then invokes itself recursively. The custom handler routine permits 

an action specific to a given task to be performed at each node in the tree.  For example, 

during import the handler routine creates a new node and adds child nodes, while during 

a consistency check the handler routine simply compares the information between the 

nodes in the NX and MagicDraw trees and reports on inconsistencies. This routine will 

have a dialog box allowing the user to pick the correct information while scrolling 

through the inconsistency list (Figure). For each inconsistency, the user will have to 
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choose either the Siemens NX value, the SysML value, or do nothing (leave the 

difference unresolved until later on the process). 

These are the steps implemented for such a capability. Some are User Actions 

(UA), some are Internal Actions (IA), and some are outcomes (O)): 

1. UA: Right click on a SysML element with the stereotypes <<NXPart>> or 

<<NXAssembly>> 

2. UA: Click on “Execute CAD-SysML Consistency Analysis”  

3. O: Show the message box “Checking Consistency” 

4. IA: Execute analysis following the use cases shown in Figure 

o If there is a SysML element and a CAD element, the system looks at the 

SysML element and compares its values to the CAD element. If values 

(names or numbers) are different, they are added to the consistency report.  

o If there is not a SysML element, but there is a CAD element, the system 

does nothing 

o If there is a SysML element, but there is not a CAD element, the system 

warns the user about the missing element by adding the inconsistency to 

the report.  

5. O: The report is presented on the screen (Figure ). 
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Figure 75: Use cases for (NX- SysML) external consistency analysis 

 
Figure 76: Consistency report example 

Resolve CAD-SysML inconsistencies: 

After inconsistencies are found by using the “Execute CAD - SysML Consistency 

Analysis,” users can resolve inconsistences choosing between SysML and CAD data by 

means of a custom “Resolve Model” tool created in this implementation. There are two 

approaches built into the command: resolve all by selecting SysML or CAD, and resolve 
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one at a time by selecting SysML or CAD for each mismatch. This capability allows the 

user to recover a broken SysML model by restoring consistency with its CAD 

counterpart.  

 
Figure 77: Resolve NX-SysML inconsistencies 

6.12. Knowledge-Compliant Geometry Update 

After the analysis and validations have been completed, the user will be able to 

commit those changes in the CAD model. This action will generate a manufacturing 

knowledge-compliant model that will include a complete assessment of manufacturing 

specification, design specifications, and tolerances calculations of a building assembly. 

Figure  shows the main steps towards the knowledge-compliant geometry update from 

the instances specification perspective. 
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Figure 78: Knowledge-compliant geometry update 

1.The features parameters of the imported CAD geometry will inform the 

calculation of knowledge-based material system-specific values. These values can be 

<<Target Value Property>>, to be re-allocated into the CAD parameters; or 

<<Performance Value Property>>, to be used as simultaneous feedback of specific 

feature-independent metrics such as tolerances or clearances values. The results of these 

calculations will be stored in <<Instances Specifications>> like the one showed in Figure 

. 
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Figure 79: Instance specification element example 

An instance specification is the manifestation of a <<block>> element. As seen in 

Figure , an instance specification will be created from a “classifier” element. Also, the 

instance specification will carry a value property for each parameter of its classifier. 

Value properties applied to instances specifications are of the type <<slot>>, and can be 

found in the “Owned Elements” field of the specifications box (Figure ).  

 
Figure 80: Details of instance specifications properties 
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2 and 3.<<Target Value Property>> and <<Performance Value Property>> 

elements will be fed into Analysis 3 <<CAD-SysML Validation Context>> to verify that 

the numeric values actually fulfill the intended requirements described in the 

manufacturing and design specifications. 

4. After being verified, the <<Target Value Properties>> parameters (revised 

values from the CAD model) will be pushed out to <<Instances Specification>> elements 

for storage, trade-off analysis, and geometry updating. These instances specifications are 

storable copies of the original imported <<NXPartFeature>> elements. The only 

difference is that <<Instances Specification>> blocks have a composite naming 

convention, where the original feature name will be combined with the given name of the 

instance separated by a colon (:) symbol as shown in Figure . 

5. The revised parameter values of the instances specification will update their 

<<block>> counterpart, which is the original imported <<NXPartFeature>>. This action 

will push the value of each <<slot>> of the instance specification to upgrade the default 

value of the original CAD feature. For example, in Figure  the “PocketDia” feature value 

of the imported CAD feature (7) will be replaced by the calculated “PocketDia” slot 

value of the instance specification (7.0256). This action will be performed by using the 

custom artifact “Updated Block Value Property from Instance” (Figure ).  

6. All new default values of the <<NXPartFeature>> parameters will be pushed 

back to the NX CAD model for final geometry update.  

Update Block Value Properties from Instances Results: 

As previously explained in this section, the Update Block Value Properties from 

Instance capability offers the option of populating the block structure of the model with 
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the values obtained from parametric calculations. Possibly, there will be several instances 

that contain results from different parametric calculations. Those instances will be stored 

in a folder with the name of the target block of the parametric execution (or other name), 

under a folder “Executions Results.” Once the instances are stored, the user will be able 

to right click that PartName.prt instance and apply the command “Update Block Value 

Properties from Instance.” Then the application will traverse all instances blocks inside 

the folder, return their block classifier (root block), look up value properties, and populate 

the instance value property in the default value property of the blocks. As the instance 

folder will contain only a subset of the elements of the block structure, the application 

will not flag a missing component during this stage. The application will simply scan the 

instance folder, look for the root, and update the root value. To commit new value 

properties to the <<NXFeature>> parameters, the user will use the “Update Block Value 

Properties from Instance” command shown in Figure .  

 
Figure 81: Update block value properties from instance table 
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Update CAD model from SysML model: 

This action will populate the CAD model with new value properties of features 

(and potentially new names) from the SysML Model. Usually, this will happen after 

executing parametric calculations on the SysML side. All parameters typed as target 

values are sent back to the feature based SysML representation of the CAD model.  

Finally, the command “Update CAD from SysML Model” will create the “Knowledge 

Compliant Geometry.” 

 
Figure 82: Update geometry procedure 

Update SysML model from CAD model: 

This action will populate a SysML model with new value properties of features 

(and potentially new names) from the CAD Model.  

Although this dissertation only addresses knowledge-based matters, there is great 

potential for extensibility in several other areas of the building lifecycle. The next section 

will introduce a SDCT sheet metal case study based on a real project where the proposed 

approach has been tested for manufacturing.  
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CHAPTER 7: System Evaluation  

7.1. Case study 2: Lower Chord Assembly, a QuadPod Solar Canopy 

System 

QuadPod is a three-dimensional truss racking and mounting system for largescale 

photovoltaic (PV) power generation infrastructures. The system was developed as part of 

the Georgia Tech Research Institute’s (GTRI) work as part of the United States 

Department of Energy’s Sunshot program. In the third quarter of 2011, GTRI was 

awarded a BOS-X award, as part of Sunshot’s broad initiative to revolutionize the solar 

industry. GTRI researchers developed radical new products that would allow solar to 

compete with other conventional energy sources by reducing projected labor costs and 

boosting installation efficiencies [148].  

The QuadPod system is universal and is predicated on the principles of large-scale 

pre-assemblies and material reduction through the use of deep three-dimensional trusses. 

PV modules are aggregated into a structural mega-array in a pre-assembly facility or 

work area near the installation site, loaded onto lifting equipment, and deployed to the 

site as a complete prefabricated system, thus moving the vast majority of assembly 

activities into a central, controlled environment. The QuadPod system, as an architectural 

product, enables multi-functional spaces, including covered work spaces, shaded parking 

areas, and remote field hangars. The main premise is to be easily assembled on the 

ground by nonspecialized local technicians. It yields 80 to 90 percent more kilowatts per 

acre compared to conventional canopy systems, commanding the highest canopy-to-

ground coverage ratio [148].  



182 

 

 
Figure 83: QuadPod Canopy system V1 

A Version 1 QuadPod system has been successfully designed using galvanized 

sheet metal components and custom tooling and has been deployed in the field as a pilot 

project. However, the excessive use of hardware, some structural issues, and the lack of a 

scale manufacturing approach led to the development of QuadPod Version 2, where most 

of the components were optimized for lean manufacturing and easier field installation. 

The author of this dissertation has been appointed as lead designer for the optimization of 

all the components of the system. The main challenges of this endeavor have been the 

calculation of tolerances and clearances and the material reduction optimization through 

engineering design. The general scope of the optimization process was defined as 

follows: 

 Standardization of lengths with respect to panel dimensions 

 Ability to vary lengths of systems  

 Reduction in part count and complexity 

 Reduction of bolts and splices 

This case study will test how applying the proper domain-specific knowledge to a 

set of different parts of a sheet metal assembly can reduce the likelihood of tolerances 
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and clearances mismatches. To set a realistic scenario, all the components of the studied 

assembly will be imported independently into the SysML environment. Despite the fact 

that the present case study includes Single Domain Construction Tolerances (SDCT), the 

simple restriction of importing the components independently emulates the circumstance 

where all assembly parts come from different sources, different vendors, or different 

applications, which was the case for the QuadPod project. Another restriction of the 

exercise is the need to design every part at its nominal value, and to follow the default 

settings of the feature-based capabilities of the CAD software. For example, bending radii 

of formed parts have been left as suggested by the CAD application. Thus, all 

components will perfectly fit in the CAD environment. In the end, after running design 

and manufacturing specifications for each independent, dimensionally-nominal 

component of the assembly, all components will be collected together in a non-linked 

assembly to assess the results of the analysis.   

Restrictions of the exercise: 

 Components will be modeled as nominal, which means clearances will be zero 

and fastener holes will be modeled as the nominal value of the bolt, among other 

nominal conditions. 

 Components will be independently imported to the SysML platform. Mating 

conditions, fastening features, and their clearances will be calculated independent 

of geometry, based on design and manufacturing specifications stored in the 

SysML environment.  

Parts to be tested: 

 Inner lower chord  
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 Outer lower chord  

 Lower chord stiffener 

 Upper chord hat stiffener 

 Upper chord splice 

 Transversal welded plate 

These six components will be assessed from a manufacturing standpoint and four 

will be also evaluated from a design specifications standpoint (assembly clearances). The 

four components to be evaluated for assembly clearances belong to a critical and 

repetitive node of the structure that showed tolerances issues in the previous design. 

Figure  shows the general geometric situation of the assembly clearances exercise. Figure 

, Figure , and Figure  show the three different kinds of construction knowledge addressed 

in this dissertation, which will be further decomposed in an additional analysis.  

 
Figure 84: Different knowledge for a critical assembly design 

The nominal depiction of the studied assembly is shown in Figure  and Figure . It 

should be noted, especially from Figure , that the CAD assembly has been modeled with 

nominal fit, as assembly clearances cannot be identified among the components.  
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Figure 85: Knowledge integration for a critical assembly design 

 
Figure 86: Nominal geometry for the studied assembly 
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7.1.1. Structural decomposition of the studied components 

Structural decomposition of the six QuadPod components chosen for this case 

study are shown in Figures 87-92. 

 
Figure 87: Diagonal Hat Stiffener: feature-based decomposition 
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Figure 88: Lower Chord Stiffener: feature-based decomposition 
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Figure 89: Inner Lower Chord: : feature-based decomposition 
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Figure 90: Outer Lower Chord: feature-based decomposition 
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Figure 91: Transversal Welded Plate: feature-based decomposition 
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Figure 92: Upper Chord Splice: feature-based decomposition. 

7.1.2. Knowledge Allocation of the Four Components of the Studied 

Assembly 

The following pictures show the results of the knowledge allocation stage. In this 

section a picture with a Knowledge Allocation Matrix and a picture with the 

representation in context of the feature-linked manufacturing specifications and design 

specifications will be given for each of the four components of the assembly. 
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Figure 93: Inner Lower Chord Knowledge Allocation Matrix 

 
Figure 94: In-context Knowledge Allocation: Inner Lower Chord 



193 

 

 
Figure 95: Lower Chord Stiffener Knowledge Allocation Matrix 

 
Figure 96: Lower Chord Stiffener with allocated manufacturing and design specifications 
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Figure 97: Outer Lower Chord Knowledge Allocation Matrix 

 
Figure 98: In-context Knowledge Allocation Outer Lower Chord 
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Figure 99: Transversal Welded Plate Knowledge Allocation 

 
Figure 100: Transversal Welded Plate: with allocated manufacturing and design 

specifications 
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7.1.3. Parametric Executions of SDCT: Manufacturing and Design 

Specifications 

The following figures show the specific analysis context of each of the four 

components of the QuadPod assembly being studied. For each component, the results of 

the parametric executions of the SDCT are also presented. For easy visual access to the 

components of the parametric diagram a simple color code is used. At the left, in a light 

yellow-brown color, are the imported CAD values and features needed for the parametric 

calculations. At the center, in a bright yellow color, the knowledge-based constraints and 

critical dimensions are connected to the CAD parameters through binding connectors 

specified as “real.” At the right, in a dark brown color, are the <<Target Value 

Property>> elements and in a blue color, the <<Validation Value Property>> elements. 

These components are also connected to the knowledge-based constraints by means of 

binding connectors, which are typed as real for numeric values and Boolean for 

validation values.  
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Figure 101: Parametric execution analysis context for SDCT Inner Lower Chord 

For all the parametric execution results tables, custom icons have been created for 

easy visual access during results evaluation. Target values will later replace the default 

values imported from the CAD model for a final knowledge-based geometry update. At 

this point of the analysis, target values have been evaluated for knowledge and 

manufacturing compliance.  
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Figure 102: SDCT parametric execution results for Inner Lower Chord 
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Figure 103: Parametric execution analysis context for SDCT Lower Chord Stiffener 

 
Figure 104: SDCT parametric execution results for Lower Chord Stiffener (failed) 
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Figure shows a parametric execution where some validation values have not been 

met. In this case, the user will check the names of the validation values that did not pass 

specification verifications (e.g. HoleDisToEdge) and search for the constraint with a 

similar name to verify what values are not in compliance with the specification.  

 
Figure 105: SDCT parametric execution results for Lower Chord Stiffener (passed) 

These situations must be verified by the user, as some specifications changes 

could potentially create a conflict in the CAD model. For instance, a hole feature that is 

too close to the edge will not pass the HoleDisToEdge verification. However, if the 
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feature were moved to comply with that rule, it would potentially create an alignment 

mismatch with a feature that belongs to a different component of the assembly. In the 

Figure , the values have been reviewed and the part is now in compliance with all 

manufacturing rules.  

 
Figure 106: Parametric execution analysis context for SDCT Outer Lower Chord 
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Figure 107: SDCT parametric execution results for Outer Lower Chord 

 
Figure 108: Parametric execution analysis context for SDCT Transversal Welded Plate 
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Figure 109: SDCT parametric execution results for Transversal Welded Plate (passed) 

7.1.4. QuadPod Node Assembly HCT evaluation 

Figure  depicts a general description of the QuadPodNode_Assembly being 

studied. After the SDCT analyses have taken place, all components (NXPart) will be 

brought together to analyze clearances and assembly tolerances by means of an HCT 

evaluation.   

 
Figure 110: Feature-based decomposition: QuadPod: assembly level 
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As depicted at the far left in Figure , features and parameters from all four 

components of the assembly are included in this clearances and tolerances assessment of 

multi-nested parts. As seen at the far left side of the diagram, some parameters shown in a 

dark brown color are also inputs. These elements are the products of previous SDCT 

calculations.  

 
Figure 111: Parametric execution analysis context for assembly clearances: HCT for 

QuadPod assembly 

This scenario exemplifies how the presented approach can accommodate nested 

analyses. It should also be noted that the “outer-inner chord: 

Nested_Fit_Clearance_AnalysisContext_TEMPLATE” has been framed as a single 

element with all its internal structure shown as a white box. This approach facilitates the 
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allocation of repetitive analyses and also enables an easy binding procedure by showing 

all internal ports of nested knowledge-based constraints.  

 Figure  depicts the results of clearances and tolerances allocations for the entire 

assembly, although no target or validation values are visible. This situation occurs when 

all analyses contained in the parametric diagram are actually nested from other analyses 

or pasted as independent white boxes. However, in the red box in Figure , three nested 

analyses are shown. Accessing the useful data of these analyses is not a mandatory step. 

Alternatively, if the user follows the suggested process and applies the custom commands 

to commit the analyses results back to the CAD file, no human inspection will be 

required. Yet, if the user needs to inspect the evaluated parameters, double clicking in 

any of these nested analyses will display the hidden data.  

 
Figure 112: Lower Chord Node_AssemblyClearances_HCT general analysis results 
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Figure 113: Expanded Inner Chord - Lower Chord Stiffener analysis results 
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Figure 114: Expanded Inner Chord - Outer Chord analysis results 

7.1.5. QuadPod Node Assembly: Feature-Based Components Update 

Based on Analyses Results 

The following tables show the comparison of CAD parameters values before and 

after the knowledge-based manufacturing and design specifications analyses.  
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Table 4: Outer Lower Chord CAD update results 

 
 

 

 

 

 

 

N Expression Name

Expression Original 

Definition

Expression 

Original Value

Expression Knowledge-

Allocated Value

1 Base_Width 200 200 193.75+7 = 200.75

2 Flange1_BendRadius 1 1 3.51

3 HoleCenterEndDis 6*25.4 152.4

4 HoleDia1 Hole_Dia 15.875 16.51

5 HoleDia2 Hole_Dia 15.875 16.51

6 HoleDia3 Hole_Dia 15.875 16.51

7 HoleDisSmalFl2 HoleDisSmallFl 94.6

8 HoleDisSmallFl 94.6 94.6

9 HoleDisToEdge Hole_X_Offset 50.8

10 HoleToHoleDis 263.2 263.2

11 Hole_Dia 15.875 15.875 16.51

12 Hole_X_Offset 50.8 50.8

13 Length 3317.638+101.6-4.3383414.85

14 MaterialThickness 3.51 3.51

15 SM_Validation_MIN_Punch_Tool_Clearance5 5

16 SM_Validation_MIN_WEB_LENGTH 5 5

17 Sheet_Metal_Bend_Radius 3 3 3.51

18 Sheet_Metal_Flat_In_Corner_Value 0.1 0.1

19 Sheet_Metal_Flat_Out_Corner_Value 0.1 0.1

20 Sheet_Metal_Material_Thickness 3 3

21 Sheet_Metal_Neutral_Factor 0.33 0.33

22 Sheet_Metal_Relief_Depth 3 3

23 Sheet_Metal_Relief_Width 3 3

24 [degrees]Side1_Angle 90 90

25 Side1_Offset 0 0

26 Side1_length 196.18 196.18

27 [degrees]Side2_Angle 90 90

28 Side2_BendRadius 1 1 3.51

29 Side2_Length 196.18 196.18

30 Side2_Offset 0 0

31 [degrees]SmallFl2_Angle 90 90

32 SmallFl2_Length 19.05 19.05

33 SmallFl2_BendRadius 1 1 3.51

34 [degrees]SmallFl_Angle 90 90

35 SmallFl_Length 19.05 19.05

36 SmallFl_Radius 1 1 3.51
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Table 5: Lower Chord Stiffener CAD update results 

 
 

 

 

 

 

 

 

 

N Expression Name

Expression Original 

Definition

Expression 

Original Value

Expression Knowledge-

Allocated Value

1 BaseWidth 185.96 185.96 185.2905

2 BoltDia5_8 (CenterBolt_Dia) 15.875 15.875 16.718

3 CentHoleDisToEnd 165.25 165.25

4 CenterHoleDia2 25.4 25.4 26.624

5 CenterHole_Dia 25.4 25.4 26.624

6 CornerRadius 10 10

7 CutLength 90 90

8 CutWidth 70 70

9 DisToBend 34.28 34.28

10 DisToEdge 130.25 130.25

11 HoleDisToBend 49.5 49.5

12 HoleToCenter_Dis 95 95

13 HoleToEdgeDis BaseWidth/2 92.98

14 MaterialThickness 12.7 12.7

15 PattDisDir_1 85 85

16 PattDisDir_2 -85 -85

17 PattNumInsDir_1 2 2

18 PattNumInsDir_2 2 2

19 Radius 10 10

20 SIdeFl_Offset 0.0 // Used By ... 0

21 SM_Validation_MIN_Punch_Tool_Clearance5 5

22 SM_Validation_MIN_WEB_LENGTH5 5

23 SdeFl_BendRadius 1 // Used By ... 1 12.7

24 Sheet_Metal_Bend_Radius 3 3

25 Sheet_Metal_Flat_In_Corner_Value 0.1 0.1

26 Sheet_Metal_Flat_Out_Corner_Value 0.1 0.1

27 Sheet_Metal_Material_Thickness 3 3

28 Sheet_Metal_Neutral_Factor 0.33 0.33

29 Sheet_Metal_Relief_Depth 3 3

30 Sheet_Metal_Relief_Width 3 3

31 [degrees]SideFl_Angle 90.0 // Used By ... 90

32 SideFl_Length 142 142

33 SideFl_Neutral Sheet_Metal_Neutral_Factor // Used By ...
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Table 6: Inner Lower Chord CAD results update 

 
 

 

 

 

 

 

 

 

N Expression Name

Expression Original 

Definition

Expression 

Original Value

Expression Knowledge-

Allocated Value

1 Base_Width 192.98 192.98 186.7037 + 7 = 193.7037

2 Flange1Length 193 193

3 HoleCenterEndDis 6*25.4 152.4

4 HoleDia1 Hole_Dia 15.875 16.51

5 HoleDia2 Hole_Dia 15.875 16.51

6 HoleDia3 Hole_Dia 15.875 16.51

7 HoleDisEnd Hole_X_Offset 50.8

8 HoleDisSmallFl2 HoleDisSmallFlange 98.5

9 HoleDisSmallFlange 98.5 98.5

10 HoleToHoleDis 263.2 263.2

11 Hole_Dia 15.875 15.875 16.51

12 Hole_X_Offset 50.8 50.8

13 MaterialThickness 3.51 3.51

14 [degrees]SIdeFlange1BendAngle 90 90

15 SIdeFlange1BendRadius 1 1 3.51

16 SIdeFlange1Offset 0 0

17 Sheet_Metal_Bend_Radius 3 3

18 Sheet_Metal_Flat_In_Corner_Value 0.1 0.1

19 Sheet_Metal_Flat_Out_Corner_Value 0.1 0.1

20 Sheet_Metal_Material_Thickness 3 3

21 Sheet_Metal_Neutral_Factor 0.33 0.33

22 Sheet_Metal_Relief_Depth 3 3

23 Sheet_Metal_Relief_Width 3 3

24 [degrees]SideFlangeAngle 90 90

25 SideFlangeLength 193 193

26 SideFlangeOffset 0 0

27 SideFlangeRadius 1 1 3.51

28 [degrees]SmallFlAngle 90 90

29 SmallFlLength 23.5 23.5

30 SmallFlOffset 1 1

31 SmallFlBendingRadius 1 1 3.51

32 SmallFl_Length 23.5 23.5

33 SmallFl_Radius 1 1 3.51

34 TotalLength 3317.638+101.6-4.338 3414.85
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Table 7: Transversal Welded Plate CAD update results 

 
Figure  shows the before and after knowledge-based manufacturing and design 

specifications allocations. Before analyses, all geometry is modeled with nominal 

dimensions such as sizes for bolts and thicknesses and nominal fits for assemblies. The 

following list offers a summary of the material-specific design and manufacturing 

constraints automatically applied to the CAD geometry for this case study: 

 SDCT hole clearances for all bolts sizes were applied 

 SDCT coating hole clearances for all hot-dip galvanized components were applied 

 SDCT bending radii were calculated based on material thickness and geometry 

context 

 SDCT contours of nested shapes were calculated to avoid clashes  

 SDCT cut-to-edge distances for cutout features were validated 

 SDCT cut-to-bend distances for cutout features were validated 

 HCT clearances were calculated and applied for all nested components 

 HCT tolerances of clearances based on RSS, WC, were calculated  

N Expression Name

Expression Original 

Definition

Expression 

Original Value

Expression Knowledge-

Allocated Value

1 CenterBolt_DisToSide 80.3 80.3

2 CornerRadius 1 1 16.7

3 CutOutCornerRadii 10 10

4 CutOut_Height 25.4*1.5 38.1

5 CutOut_Width 90 90

6 MaterialThickness 12.7 12.7

7 Sheet_Metal_Bend_Radius 3 3

8 Sheet_Metal_Flat_In_Corner_Value 0.1 0.1

9 Sheet_Metal_Flat_Out_Corner_Value 0.1 0.1

10 Sheet_Metal_Neutral_Factor 0.33 0.33

11 Sheet_Metal_Relief_Depth 3 3

12 Sheet_Metal_Relief_Width 3 3

13 TotalHeight 140 140 131.5333

14 TotalWidth 160.6 160.6 152.1333

15 CenterBolt_Dia 25.4 25.4 27.248
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 HCT plus/minus, mean, and centered tolerances were calculated for all assembly 

clearances 

 
Figure 115: Before and after design and manufacturing knowledge analysis and allocation 

  

 
Figure 116: Studied QuadPod assembly after fabrication and erection 
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Figure 117: Final result of QuadPod structure that includes the studied parts and assembly 

7.2. Case study 3:  Multi-material Assembly: Steel frame, Pre-Cast, Cast-

in Place, PVC Window  

This case study is intended to demonstrate the manufacturing compliance 

functionality of the developed application in a multi-material assembly. The same case 

study was previously conducted through a different tolerances analysis method developed 

by the author. In that study, the main objective of the analysis was to create “virtual, as-

built” geometry of assemblies to assess possible scenarios of dimensional variability. To 

reach that outcome, the previous approach used SolidWorks design tables to specify 

ranges of variability of critical dimensions based on information about tolerances and 

clearances. The design-table-based system (Figure ) produced five areas of possible 

variation – nominal dimensions, worst case and best case scenarios based on tolerances 

specification, and the RSS max and RSS procedures). In addition, for each of the 

assembly dimensions identified as “critical,” an independent random case (n) was 

applied. 
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Figure 118: Possible scenarios of variability based on standard tolerances calculations 

In the “virtual, as-built” experiment, when CAD geometry was modified by 

applying tolerances directly as dimensional constraints, some parts kept the “coincidental 

mate” condition, but parts that changed at least one dimensional attribute did not keep the 

same level of assembly consistency. This situation generated breaks in the assembly tree 

definition and, as a result, the entire topology of the assembly failed. In this case, 

simulations broke the model because certain parametric as-built-like modifications 

created unfixable topological inconsistencies in the solid model. For example, conflicting 

mating conditions for the same components or paradoxical operations  broke sketches of 

some features. Another issue with this past experiment was the complexity of the 

assembly. Most tools and methods for tolerances allocation work very well on single 

components. However, when numerous groups of object and features are analyzed, the 

number and complexity of parameters and geometric constraints grows exponentially. 

Furthermore, the numbers of parameters that a simple assembly can reach and keep 

consistent is a persistent challenge of the solid modeling domain. [38] explains how a 

very small detail of precast concrete can yield numerous different parameters and 

relations (Figure ). To keep consistency in this kind of assembly, those parameters and 

their internal relations must be defined by domain experts. Overlooking this restriction 
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generates constant failures of the assemblies when one parameter is updated without 

considering all the domain-specific implications. The semantic validity of a model can 

only be judged by a domain expert. Incorrect (or “absurd”) design situations are obvious 

to a human viewer, but are amorphous and thus very difficult to identify algorithmically 

[38]. To overcome the issues learned from the previous approach, for the new 

methodology, we have created manufacturing-compliant nominal geometry, of 

heterogeneous material assemblies, based on material-specific knowledge. This approach 

is expected to provide domain-specific semantics that will keep the unambiguous CAD 

representation in compliance with manufacturing rules and design specifications.  

 
Figure 119: It's critical that sketches are fully constrained to maintain the integrity of the 

model when applying parametric modifications within SysML 

A proper balance among constraints is necessary in order to get a fully-defined 

object. If the constraints of a solid model are not enough to define an object, we call it 

under defined, and if the object has more constraints that it needs, the object is over 

defined. Both under and over defined objects can lead to semantic contradictions and 

modeling inconsistencies. The present implementation aims to control the constraints 
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balance by only evaluating rules coming from material-specific knowledge into well-

defined, fully-constrained, solid models. This means, there will not be topological 

modifications started outside a fully-defined CAD model.  

Parametric model of the assembly 

The first activity of this exercise was the development of a parametric model for 

the assembly. For each element of the system, all geometric features that must be 

described for a complete model will be created in the CAD application and then imported 

into the SysML environment for analysis.  

Restrictions and assumptions for the exercise: 

 Components will be modeled as nominal, which means clearances will be zero 

and lengths will be at their ideal value, for all material systems. 

 Only manufacturing, tolerances, and clearances will be assessed. Although other 

parameters or behaviors such as gravity can be incorporated in this approach, they 

will not be part of the scope of this exercise.  

 Off-the-shelf standard dimensions for all components will not be considered. 

Rather, all components will be understood as custom made for the specific 

assembly. This condition will ensure total geometric freedom for features updates 

for each material system to their ideal.   

 Components will be independently imported to the SysML platform. Mating 

conditions, fastening features, and their clearances will be calculated independent 

of geometry, based on design and manufacturing specifications stored in the 

SysML environment.  
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 Based on the current practice of light-gauge steel framing, which allows a case-

by-case field fastening, this exercise will not consider hole locations. 

Parts to be tested and their material domain: 

 BottomTrack: Sheet metal SDCT 

 TopTrack: Sheet metal SDCT 

 Headers : Sheet metal SDCT 

 Planks: Pre-cast concrete SDCT 

 ShortStudBottom: Sheet metal SDCT 

 ShortStudTop: Sheet metal SDCT 

 ConcreteSlab: Cast in place SDCT 

 Stud: Sheet metal SDCT 

 StudJamb: Sheet metal SDCT 

 StudShortHeader: Sheet metal SDCT 

 Window: PVC windows SDCT 
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Figure 120: Wall Assembly with context-specific issues about material systems: tolerances: 

and clearances to be identified during the case study 

7.2.1. Material Systems 

Light-gauge framing: 

The recommended tolerances from several standard and know-how sources state 

that plumbness and the level of studs must be within 1/960 of the span, or 1/8 inch (3mm) 

per 10 feet. ASTM C840 [115] requires that the attachment surface of any member shall 

not vary more than 1/8 inch from the plane of the faces or adjacent framing members. 

The Gypsum Association also states that adjacent fastening surfaces of framing or furring 

should not vary more than 1/8 inch. Previous specification guides from the Metal 

Lath/Steel Framing Association (ML/SFA) also recommended the same tolerances as 
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ASTM C1007. The 1/8 inch (3mm) per 10 feet tolerance is consistent with the substrate 

requirements for other finish materials, such as some types of ceramic. ASTM C754 

requires that spacing of studs and other framing members vary no more than 1/8 inch 

from the required spacing and that the cumulative error does not exceed 1/8 inch (3mm). 

This is to ensure that the edge of a piece of gypsum board has sufficient bearing on half 

of a stud for fastening. 

Concrete slab tolerances: 

SDCT for concrete are applied to physical dimensions such as thickness, length, 

width, squareness, and location and size of openings. They are determined by economical 

and practical production considerations, and functional and appearance requirements. For 

this classification we identify two main kinds of concrete surfaces.  First, formed surface 

is a surface requiring formwork to provide shape and texture/finish to the concrete. 

Second, unformed surface is a surface that does not require formwork to provide either 

shape or finish to the surface, for example, the top surface of slabs or pavements. These 

surfaces generally have to meet two independent tolerances the “flatness” of the surface 

and variation from the designed elevation called “levelness”. Flatness is the deviation of 

the surface from a straight line joining two points on the surface. Levelness (height 

tolerance) is the permitted vertical variation of the surface from a fixed external reference 

point or datum.  Level alignment tolerances of the top surface of the slab are important 

because it is in this surface where the bottom track profile that will support the metal 

structure will be assembled. From Standards, over the entire surface of the slab, all points 

must fall within an envelope of ¾ inch (19mm) above or below the ideal (nominal) plane. 

Flatness is also relevant to ensure the correct fix of the bottom track of the metal framing. 
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From Standards, fatness of a slab that will require a proper level of flatness to fix a track 

profile without creating gaps must fall within ¼ inch (6mm) and ½ inch (13mm). 

Hollow‐core concrete plank: 

Allowable dimensional tolerance for the hollow-core concrete blocks based on 

ASTM standards is a general 1/8 inch (3mm) from the actual dimension . This includes 

width, height, and length. However, in practice the units are manufactured to a 1/16 inch 

(1.6 mm) tolerance. For non-load-bearing concrete blocks, the face shell thickness cannot 

be less than ½ inch (13mm). For concrete building bricks, the face shell thickness 

tolerance is 1/8 inch (3mm). In addition, the total variation in finished face dimensions of 

prefaced unit cannot exceed 1/16 inch between the largest and the smallest unit in any lot 

of each size. The distortion of the plane and edges of the face or prefaced unit from the 

corresponding plane and edges of the concrete unit cannot exceed 1/16 inch (1.6mm). 

PVC Windows: 

This section includes the standards and dimensions for PVC windows that are 

manufactured according to the Windows Institute. It is very often seen that windows and 

doors present issues with installations and operations due to tolerances problems. Some 

of the specifications for tolerances are the results of tests using mechanical equipment 

such as ventilators to check gaps between framing parts. For residential units it should 

not be possible to insert a feeler gauge 0.031 inch thick between the inside contacts or 

freely insert a 0.020 inch feeler gauge between more than 40 percent of the contacts. For 

the framing sections, these must be constructed so that the glass in each window will lie 

in the same plane within a tolerance of ¼ inch. For the frame members I applied a 

deflection tolerance that is not bigger than 1/175 of the span of the member. Outside 
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frame members must be designed to lap masonry at least ½ inch. This last condition has 

not been applied to the actual model. 

For this experiment, the critical matter is to know how the assembly analysis 

determines if all the parts will fit together. In particular, we are concerned with 

determining if an assembly is an interchangeable assembly. An assembly is an 

interchangeable assembly if none of the constituent parts interfere with each other in their 

assembled positions for any possible set of parts that are manufactured to within specified 

tolerances (Figure ). For instance, Figure  shows that before the analyses, several 

components are interfering with each other, which means it is not an interchangeable 

assembly due to assembly tolerances and clearances that have not been well specified. 

From the interferences presented in Figure , we are interested in those labeled as “(Hard)” 

as they refer to physical clashes. The interferences labeled as “(Touching)” are not 

critical as they could exist based on components aggregation strategies during assembly.  
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Figure 121: Interference check before analyses  

7.2.2. Features Decomposition 

This section presents the feature-based structural decomposition of the eleven 

wall components chosen for this case study. In SysML, diagrams are built from imported 

CAD models stored in the containment tree of MagicDraw. Figure  shows a fully 

imported CAD model in the MagicDraw containment tree (browser). Thus, the creation 

of diagrams based on models imported in the browser offers another option for filtering 
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the features tree without interfering with the underlying topological structure of the 

model (Figure ).    

 
Figure 122: Full import of a sheet metal component 
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Figure 123: TopTrack: feature-based decomposition 

 

 
Figure 124: Bottom Track: feature-based decomposition 
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Figure 125: Headers: feature-based decomposition 

 
Figure 126: Pre-cast Plank: feature-based decomposition 



226 

 

 
Figure 127: ShortStudBottom: feature-based decomposition 

 
Figure 128: ShortStudTop: feature-based decomposition 



227 

 

 
Figure 129: SlabConcrete: feature-based decomposition 

 
Figure 130: Stud: feature-based decomposition 
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Figure 131: StudJamb: feature-based decomposition 

 
Figure 132: StudShortHeader: feature-based decomposition 
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Figure 133: Window: simplified feature-based decomposition 

7.2.3. Knowledge Allocation of the Four Components of the Studied 

Assembly 

The following pictures show the results of the knowledge allocation stage. In this 

section a diagram with a Knowledge Allocation Matrix and a diagram with the 

representation in context of the feature-linked manufacturing specifications and design 

specifications will be given for each of the eleven components of the wall assembly. 
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Figure 134: BottomTrack: Knowledge Allocation Matrix 

 
Figure 135: BottomTrack: with allocated Manufacturing and Design Specifications 
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Figure 136: Headers: Knowledge Allocation Matrix 

 
Figure 137: Headers with allocated Manufacturing and Design Specifications 
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Figure 138: Precast Plank: Knowledge Allocation Matrix 

 
Figure 139: Precast Plank with allocated Manufacturing and Design Specifications 
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Figure 140: ShortStudBottom: Knowledge Allocation Matrix 

 
Figure 141: ShortStudBottom with allocated Manufacturing and Design Specifications 
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Figure 142: ShortStudTop: Knowledge Allocation Matrix 

 
Figure 143.: ShortStud with allocated Manufacturing and Design Specifications 
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Figure 144: SlabConcrete: Knowledge Allocation Matrix 

 
Figure 145: SlabConcrete with allocated Manufacturing and Design Specifications 
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Figure 146: Stud: Knowledge Allocation Matrix 

 
Figure 147: Stud with allocated Manufacturing and Design Specifications 
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Figure 148: StudJamb: Knowledge Allocation Matrix 

 
Figure 149: StudJamb with allocated Manufacturing and Design Specifications 
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Figure 150: Stud_ShortHeader: Knowledge Allocation Matrix 

 

Figure 151: Stud_ShortHeader with allocated Manufacturing and Design Specifications 
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Figure 152: TopTrack: Knowledge Allocation Matrix 

 
Figure 153: TopTrack with allocated Manufacturing and Design Specifications 
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Figure 154: Window: simplified Knowledge Allocation Matrix 

 
Figure 155: Window with allocated Manufacturing and Design Specifications 
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7.2.4. Parametric Executions of SDCT: Manufacturing and Design 

Specifications 

The following figures show the specific analysis context diagrams of each of the 

eleven components of the wall assembly being studied. For each component, the results 

of the parametric executions of the SDCT are also offered. As in previous examples, it is 

important to pay attention to the performance values (gauge icon) and target values 

(target icon) in the parametric executions results pane. Performance values will serve as 

tolerances and clearances specifications for shop drawings, and target values will update 

their CAD classifier parameters as “new nominal” information. Furthermore, as a 

convention, target values can hold the same name of their original classifier, or can be 

called as “CentDim,” which stands for “centered dimension.” 

 
Figure 156: Parametric Execution Analysis Context for SDCT Bottom Track 
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Figure 157: SDCT Parametric Execution results for Bottom Track 

 

 
Figure 158: Parametric Execution Analysis Context for SDCT Headers 
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Figure 159: SDCT Parametric Execution results for Headers 

 
Figure 160: Parametric Execution Analysis Context for SDCT ShortStudBottom 
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Figure 161: SDCT Parametric Execution results for Short Stud Bottom 

 
Figure 162: Parametric Execution Analysis Context for SDCT ShortStudTop 
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Figure 163: SDCT Parametric Execution results for ShortStudTop 

 
Figure 164: Parametric Execution Analysis Context for SDCT Stud 
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Figure 165: SDCT Parametric Execution results for Stud 

 
Figure 166: Parametric Execution Analysis Context for SDCT StudJamb 
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Figure 167: SDCT Parametric Execution results for Stud Jamb 

 

 
Figure 168: Parametric Execution Analysis Context for SDCT StudShortHeader 
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Figure 169: SDCT Parametric Execution results for Stud Short Headers 

 
Figure 170: Parametric Execution Analysis Context for SDCT TopTrack 
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Figure 171: SDCT Parametric Execution results for Top Track 

 
Figure 172: Parametric Execution Analysis Context for SDCT Precast Plank 
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Figure 173: SDCT Parametric Execution results for Precast Plank 

 
Figure 174: Parametric Execution Analysis Context for SDCT Concrete Slab 
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Figure 175: SDCT Parametric Execution results for Concrete Slab 

 
Figure 176: Parametric Execution Analysis Context for SDCT PVC Window 
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Figure 177: SDCT Parametric Execution results for PVC Window 

7.2.5. Wall Assembly HCT evaluation 

Figure  shows a general description of the wall assembly being considered in this 

third case study. After all the SDCT analysis have been executed, it is time to get all 

components (NXPart) together to evaluate clearances and assembly tolerances by means 

of a HCT procedures of all the involved material systems.   

 
Figure 178: Wall Assembly: case study 3 
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Figure 179: Wall Assembly clearances evaluation HCT Analysis Context 1: for the first 

group of nested components: Bottom Track: Stud: and StudJamb 
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Figure 180: Wall Assembly Analysis Context 1 results: for the first group of nested 

components: Bottom Track: Stud: and StudJamb 
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Figure 181:Wall Assembly clearances evaluation HCT Analysis Context 2: for the second 

group of nested components: Top Track: Stud: and Stud_ShortHeader 
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Figure 182: Wall Assembly Analysis Context 2 results: for the second group of nested 

components: Top Track: Stud: and Stud_ShortHeader 
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Figure 183: Wall Assembly clearances evaluation HCT Analysis Context 3 for the second 

group of nested components: StudShortHearders: Headers: and Window 

 
Figure 184: Wall Assembly Analysis Context three results: for the third group of nested 

components: StudShortHearders: Headers: and Window 
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7.2.6. Wall Assembly: Feature-Based Components Update based on 

Analyses Results 

The following tables show the comparison of CAD parameters values before and 

after the knowledge-based manufacturing and design specifications analyses. The new 

values (green) have been sent to the CAD application for geometry update. 

Table 8: Bottom Track CAD results update 

 
Table 9: Stud CAD results update 
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Table 10: Window CAD results update 

 
Table 11: Top Track CAD results update 

 
Table 12: StudShortHearders CAD results update 
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Table 13: Concrete Slab CAD results update 

 
Table 14: Headers CAD results update 

 
Table 15: Short Stud Bottom CAD results update 
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Table 16: Short Stud Top CAD results update 

 
Table 17: Precast Plank CAD results update 
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Table 18: Stud Jamb CAD results update 

 
The following list offers a summary of the material-specific design and 

manufacturing constraints automatically applied to the CAD geometry of the present wall 

assembly case study: 

 SDCT Precast joint clearances were specified 

 SDCT Precast groove features were applied 

 SDCT bending radii were calculated based on material thickness and geometry 

context 

 SDCT contours of nested shapes were calculated to avoid clashes  

 SDCT Cast-in-place dimensional variability was applied 

 SDCT Window clearances were calculated 

 HCT clearances were calculated and applied for all nested components 

 HCT tolerances of clearances based on RSS, WC, were calculated  
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 HCT plus/minus, mean, and centered tolerances were calculated for all assembly 

clearances 

 
Figure 185: Wall assembly interference check after geometry update 

After the analyses have been performed and the updated values have been sent 

back to the CAD application, a new interference check analysis will be executed (Figure 

). It’s important to mention that no CAD value was modified within the NX environment. 

All modification come directly from the SysML model and has been executed by the 

developed application. Figure  shows the evident difference in the number of 

interferences found before and after manufacturing analysis. Twenty-six hard clashes 

were identified before the analyses and only four after analyses. Also, the number of 

touching conditions was dramatically reduced. The focus of this dissertation was not 

CAD clashes, as they can be produced by many factors (bad design, for instance). 

However, the identification of clashes and further automatic correction based on applied 

knowledge of clearances and tolerances is not trivial. The hard interferences reduction 

happened because manufacturing knowledge was prescribed for each component. This 

knowledge was represented as manufacturing specifications, corrected bending radii, 

components lengths, and angles of flanges, among others. Also, touching conditions were 
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reduced because assembly knowledge, as with design specifications, was applied to 

several critical mating conditions of the assembly. This knowledge prescribed proper 

clearances for nested elements, installation of windows, and clearances for material 

system boundaries. Some examples of these improvements can be seen in Figure .  

 
Figure 186: Interference check comparison: before and after manufacturing analysis 
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Figure 187: detail examples of some geometric updated after manufacturing and tolerances 

analyses 
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CHAPTER 8: Evaluation of the Proposed Implementation  

Chapter 8 presents the evaluation of the application developed in this dissertation. 

the first subsection restates the three case studies included in the evaluation. Then, the 

four evaluation methods are introduced. For each of these methods, a brief explanation 

about the specific evaluation goal is offered. Further in the chapter, the positive aspects of 

the developed application are enumerated. At the end, unanticipated issues and 

resolutions of compliance analysis implementation and the  potential for future 

advancement of the implementation are discussed 

8.1. General 

This dissertation has developed a framework for the integration of construction 

tolerance data into CAD models and three case studies to demonstrate and evaluate the 

main functionalities of the proposed implementation: 

1. A cylindrical fit study among three telescopic components with two different 

material systems (cast-in-place concrete and steel); 

2. A multi-feature, four-component, single-material (sheet metal) assembly of an 

architectural photovoltaic racking structure called QuadPod; 

3. A light-gauge wall assembly with eleven components and four concurrent 

material systems (cast-in-place concrete, precast concrete, light-gauge framing, 

and PVC windows); 

The main focus of each test has been the execution of five critical stages of the 

proposed framework: (1) feature-based structural decomposition, (2) knowledge 
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acquisition/allocation, (3) parametric execution, (4) knowledge validation, and (5) CAD 

geometry update. The goal for these case studies has been to assess the functionality of 

the automated geometric modifications implemented to demonstrate the integration of 

geometric and process knowledge to CAD through SysML. The set of elements and rules 

to perform this analysis have been created as a SysML profile or Domain Specific 

Language (DSL). This profile or DSL defines the elements, languages and processes 

from which to form and evaluate the studied models. The approach is based on the 

assembly> part> feature> parameter> value standard to describe geometry as seen in 

most solid modeling applications [40]. Although the definitive validation of the proposed 

modeling framework will require a more comprehensive analysis, including several 

comparisons between CAD and built geometry, for this dissertation, four complementary 

evaluation methods were applied: 

1. Evaluation with manufactured parts: A large set of press-broken and stamped 

manufactured steel parts for the QuadPod were fabricated using the methodology 

of the proposed approach, then sent directly to the site without a preliminary fit-

up in the factory.  Some components, which were thought to be well-designed 

were inadvertently left out of the case-study, that is, they were designed using 

conventional expert judgement but not treated to the system-based allocation of 

GD&T. These components of the structure, which were not included in the 

analysis, created minor installation conflicts. on site – but these were able to be 

accommodated due to appropriate tolerances in the other parts . The assembly was 

determined to be “easily buildable” by the installation crew. Also, the assembly 
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crew stated that the specified clearances were such that there was no need to use 

mallets or other typical field-adjusting techniques.  

2. Evaluation with validation values built to assess the compliance of the 

geometry with domain-specific manufacturing, tolerances, and clearances: In 

addition to verification of dimensional (numerical) constraints, the validation 

value stereotypes created for this implementation acted as a critical component of 

the knowledge verification stage. By means of nested Booleans (true/false), these 

value properties were able to traverse an entire integrated CAD-SysML model 

and verify that performance and target values met the intended specification.   

3. Evaluation comparing parameters before and after parametric executions: 

The before and after value properties obtained from the CAD model were 

compared in design tables included in in Chapter 7. Using the updated values, and 

after CAD modifications were committed to the model, interference analyses 

were completed (see particularly the Wall Assembly case study in Chapter 7). 

Although, an interference analysis might produce incidental benefits that improve 

several issues due to modeling mistakes, this is not the focus of this dissertation. 

However, it was obvious after the exercise that by combining geometry and 

knowledge, several conflicting tolerances and clearances issues can be avoided. 

Identifying the clash is not helpful enough. We also need to understand why it 

was produced, and how to fix it. Furthermore, in the Wall Assembly case study, 

most of the interferences were automatically fixed after the manufacturing 

compliance analysis.  
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4. Evaluation by comparing the proposed methodology with another approach 

of modeling geometric variability for construction: The wall assembly case 

study had been previously developed using a “virtual as-built” modeling 

approach. This previous approach randomly selected a parameter value from five 

different values coming from typical tolerances calculations (RSS, WC, LLt, ULt, 

nominal)16. The previous approach failed to meet several of the assembly 

constraints due to a lack of topological consistency among the randomly selected 

values, for each critical dimension, after the parameters were altered. The new 

approach has proven to keep the same internal CAD topological consistency 

before and after modifications have been done on the critical dimensions. 

After all these complementary systems evaluations have been performed the 

following sections address the results in three relevant categories: 

1. Positive aspects of the implementation, 

2. Manufacturing data obtained from the case study analyses, 

3. Unanticipated issues and resolutions of Compliance Analysis implementation, 

and 

4. Potential for Future Advancement of the Implementation.  

                                                 

 

 

16 RSS: Root Square Sum. WC: Worst Case scenario. LLt: Lower Limit of tolerance. ULt: Upper 

Limit of tolerance. Nominal: Nominal geometry.  
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8.2. Positive Aspects of the Implementation  

As discussed in this dissertation, one of the central problems of a tolerances 

modeling and allocation framework for the building industry is that rules and values of 

tolerances specifications are not provided in a geometric-specific context. Hence, for this 

implementation, tolerances allocation is performed as a factor of the critical dimension to 

be evaluated (case-based tolerances allocation). Another important matter of a 

multidisciplinary domain such as building construction is that tolerances and clearances 

data are either missing or fragmented during the design process. Therefore, for this 

implementation, it has been necessary to create data continuity by defining special 

modeling elements that can be programmatically concatenated in a single set of 

procedures that requires little user input, In other words, the parametric model of the 

nominal geometry are created with the a priori knowledge that the manufacturing 

compliance analysis would update the geometry, and the model had to be built with this 

in mind. This approach is meant to ensure that text-based requirements can be 

automatically mapped onto geometric features. And so at a general level, the main 

practical functionalities of the proposed application are: 

 Adding knowledge-compliant, feature-oriented, case-based tolerances and 

clearances to the CAD model; 

 Automatically assessing manufacturability of parts and assemblies to identify 

possible fabrication conflicts;   

 Upgrading “nominal geometry” by adding feature-oriented considerations based 

on material-system-specific engineering and manufacturing knowledge; and 
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 Evaluating and validating tolerances and clearances specified for parts and 

assemblies.   

In the evaluation stage in Chapter 7, numerous SysML diagrams have been 

created for each case study. They represent knowledge, structure, and behavior. These 

diagrams are not only graphic representations of an underlying object-oriented 

programming language, but also an intuitive way to combine geometric and non-

geometric information in a unified language. This is one of the strengths of this 

implementation. Because knowledge is stored in encapsulated elements or blocks, they 

are easy to apply and combine with other elements stereotypes through SysML 

associations. Furthermore, this evaluation demonstrates the application of these reusable 

blocks of manufacturing knowledge to assess geometric variability and tolerances 

allocation. These blocks, described as <<Design Specification>> or <<Manufacturing 

Specification>> in the NXProfile, contain the rationale of specific tolerances or 

manufacturing rules and are automatically enforced through binding associations to 

specific CAD features. The results of design and manufacturing specifications analysis 

have been successfully converted in one of the following value types: 

 Target values that are calculated values taken from the CAD structure and come 

back to the CAD structure as updated values; 

 Validation values that are Booleans that verify that a specific rule has been met 

with a “true” or “false” statement; and 

 Performance values that are computed real values that do not belong to a any 

specific CAD feature, but are used to verify some dimensional constraint or to 
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inform some part of the process or create shop drawings (for example, RSS or 

WC values).  

8.3. Manufacturing data obtained from the case study analyses 

The following list describes the data available to the user after performing the 

manufacturing compliance evaluation proposed in this framework: 

 Tolerances and clearances specifications for each evaluated 

feature/component/assembly; 

 Rationale regarding tolerances, clearances, and manufacturability through text-

based requirements and specifications, which can be easily accesses from the 

system model; 

 Mathematical expressions that assess geometry through manufacturing 

knowledge; 

 Performance assessments that verify in real-time the quality of clearances of an 

assembly; and 

 Automatically suggested manufacturing specifications based on assigned 

materials of the CAD model (this information is displayed in specifications 

allocation matrices). 

8.4. Unanticipated issues and resolutions of Compliance Analysis 

implementation 

A Siemens NX assembly has the same .prt file extension of a single part. 

However, in an assembly, the files (.prt) contains other files (.prt) as children, which are 

the components of the assembly. Based on the original approach of creating an empty 
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folder for each <<NXPart>> element to store updated instances from parametric 

execution, an error was identified. The reason for this error was that adding SysML 

packages17 to blocks defies the topological internal structure of the SysML language. 

This problem was fixed by creating instances folders at the top level of any CAD import 

execution. 

Also, during early versions of the implementation, the application understood 

intentional filtering of stereotypes as “inconsistencies.” Rather, filtering stereotypes is 

intended to reduce the complexity of the model to keep only what is relevant for a 

specific “view,” but still maintaining the topological structure of the model.  

Furthermore, when a feature name was changed in SysML and the consistency analysis 

was executed, the application loses its mapping ability. This means, the one-to-one 

comparison breaks at the renamed feature and for this reason, everything after the break 

is understood as an inconsistency. This problem was also fixed by using underlying 

references to the elements without considering their current name. Rather, for this we 

updated the process by assigning a GUID that belongs to every CAD element imported in 

SysML.  

                                                 

 

 

17 A package is the model element that correspond to a “folder,” which is used to store any kind of 

model elements and diagrams in SysML.  
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8.5. Current Challenges of the Implementation 

Parametric modeling is largely used in the design and manufacture of parts and 

assemblies for engineering and construction. However, the development of highly 

complex models of parts and assemblies can lead to failures in the automation of 

processes or in the implementation of constraints. This procedure requires from the 

designer/modeler a deep understanding about how to specify fully constrained models to 

make meaningful analyses using the proposed tool. When multiple sets of parts and 

object-behaviors are considered, the complexity of parameters can lead to performance 

degradation or the propagation of mistakes. 

The tolerances evaluation on assemblies is not a typical practice in parametric 

modeling – and the literature contains not enough guidelines on how to implement 

GD&T within a parametric modeling environment. Certain common features within 

parametric solids models do not work well with compliance analysis developed here. For 

example, features are often generated as patterns. The location of these patterned features 

cannot be applied separately for each instance of the pattern as a single parameter 

manages all of the instances. Although, it is possible to create pattern tolerances relations 

within the SysML model, bringing variability of pattern parameters back to the CAD 

model remains a challenge. For the purpose of this dissertation, every component has 

been modeled as separate entity.  

Another important consideration to improve the proposed framework is naming 

semantics. At this point of the implementation, obtaining meaningful analyses requires 

designers to be consistent in the way they name features and parameters. This situation 

occurs because the user is responsible for accurately connecting constraints parameters to 
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CAD parameters by means of binding connectors. A more intuitive (or automated) way to 

make such connection would enhance the robustness of the system, while reducing 

modeling time.  

8.6. The Role of the System Architect  

Similar to the functions of a BIM manager, which deal specifically with IT 

interoperability, the proposed framework requires an actor that assumes all the 

responsibilities for the creation of SysML integration profiles, and proper knowledge 

allocation during coordination of trades and stakeholders. Also, besides modeling 

integration, another important functions of the systems architect is knowledge integration. 

This task involves the creation and maintenance of design specifications and standards 

based on data collected from the different stakeholders of the project. With this domain-

specific knowledge, another important task arises: automation of all routines that will 

ensure that the required knowledge is properly applied during design and analysis. This 

task includes knowledge allocation to the imported models, and the creations of reusable 

analysis contexts (model views) that will assess the compliance of the building geometry. 

For the systems architect, a proper coordination with all stakeholders is critical, 

especially at the beginning of the project when all data needs to be collected and properly 

conveyed from every actor and material system. After all models have been 

imported/linked the systems architect will guarantee that knowledge verification (e.g. 

SDCT and HCT analyses) is executed right on time to meet project schedule of to discuss 

corrective actions with the trade-specific design teams. The following SysML activity 

Diagram depicts an example of project coordination centralized in the system architect 

roles to explain how this new actor fits with current activities of the BIM workflow. 
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CHAPTER 9: Conclusions 

This dissertation has developed a feature-based, knowledge-aided modeling 

framework that integrates a parametric CAD tool with a system modeling platform to 

assess geometric variability and manufacturability in building construction. Furthermore, 

the work facilitates the representation of material-specific knowledge across different 

material systems to help designers identify conflicting manufacturing requirements and 

specifications This framework provides high-level descriptions of tolerances 

requirements and manufacturing specifications on the system model side, which becomes 

a low-level description of feature-based (geometric) tolerances allocation on the CAD 

side. Complex tolerances calculations are performed by a mathematical engine and then 

automatically allocated in the CAD model. In addition to the computational 

implementation that demonstrates the proposed compliance analysis framework, this 

dissertation provides a comprehensive review of tolerances for building design, 

engineering and construction that clarifies the methods of GD&T, and identifies those 

methods that best suited for model-based integration. The dissertation also provides a 

review of model-based systems engineering and its associated modeling language, 

SysML.  

This project was motivated by the obvious fact that nominal geometry is not 

achievable during construction stages, a fact that is exacerbated by the fact that designers  

using CAD/BIM tools have few tools by which to virtually assess the build-ability of 

their designs. This condition leads to drawbacks affecting cost, schedule, and quality of 

buildings. This situation occurs due to the multi-party nature of the construction lifecycle, 

the highly stochastic outcomes from construction processes, and the heterogeneousness 
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and complexity of building assemblies. From a computational perspective, the lack of 

common ground between design and construction stages when developing design 

specifications, the lack of manufacturing-specific knowledge available for designers in 

the early stages of design, the lack of manufacturing compliance and verification methods 

for BIM models, and the lack of multidisciplinary consistency among tools and 

stakeholders are also identified as main causes of inaccuracies in construction. This 

dissertations argues that the aforementioned problems can best be addressed in the 

context of an integrated knowledge-modeling platform. The thesis was demonstrated 

through the development a model-centric architecture that enabled the integration of 

dissimilar domain-specific tools in a single platform and modeling language, SysML. The 

developed implementation focused on model integration and model consistency among 

System Engineering models, mathematical engines, and BIM (CAD) models.  

9.1. Research Questions and Hypothesis  

 RQ1: It is possible to represent and store machine-readable manufacturing 

knowledge to parametrically assess manufacturability and tolerances of CAD 

geometry in the early stages of building design?  

Yes. Most of the technical knowledge about material systems, such as tolerances 

and clearances, material standards, building codes, and other documents that contain 

manufacturing know-how describe manufacturing and design rules as a mathematical 

expression, logical expression, or simple numeric values (dimensions). This condition is 

critical to establish machine-readable protocols for three reasons:  
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1. Mathematical and logical expressions are highly interoperable, which means they 

are easily transferred between geometric and non-geometric tools through 

standard programming protocols. 

2. The storing of mathematical or logical expressions, which can be adapted to 

formally represent a piece of manufacturing knowledge, is the central 

characteristic of the <<constraints>> SysML modeling element. The 

<<constraints>> stereotype also allows straightforward connectivity with text-

based requirements and specification by means of dependency associations. This 

condition enables the coexistence of a text-based rationale (Requirements or 

specifications) and its mathematically-described assessment tool (Constraint 

blocks).  

3. The depiction of a point set, as a CAD shape,  by a single real-valued function of 

point coordinates is a traditional problem of analytical geometry that is based on 

mathematical, logical,  and topological expressions [149]. Furthermore, in 

parametric solid modeling, mathematics allows the independent handling of each 

CAD feature parameter. Through the feature-based structural decomposition 

approach developed in this dissertation, CAD geometry has been successfully 

translated from a geometry-based environment (in Siemens NX) to a non-

geometry based environment. In the latter, the combination of the numeric 

depiction of parametric CAD geometry with the <<constraints>> elements has 

allowed the integration of knowledge-based and geometric features, which has 

been the main focus of this project. 
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 RQ2: It is possible to develop a computationally integrated modeling framework 

among Model Based Systems Engineering models, mathematical engines, and 

BIM (CAD) models? 

Yes, the high level of generality of the SysML language, which enables the 

formal representation of the data structure of almost any engineering tool by means of 

SysML profiles or Domain Specific Languages (DSL) has allowed the computational 

integration of MagicDraw SysML, Siemens NX, and Maplesoft Maple. This integration 

has been developed through a JAVA application that accesses the API modules of each of 

the integrated tools. Although the integration of MagicDraw SysML with Maple has 

recently been included in Maple 18 by18 Maplesoft, at the start of this dissertation, there 

was very little work done on the integration of SysML with NX or any other CAD 

package. Thus, the proposed SysML-CAD integration framework is an important 

contribution to the engineering domain as it allows better geometric-centered analysis 

and optimization.  

 RQ3: Can we predict conflicting tolerances interactions among different material 

systems from different vendors before creating building assemblies on the site? 

Although the results described here are positive, to fully answer this question, 

more testing must be done. So far, four different evaluation procedures have been 

                                                 

 

 

18 Part of the Maple-Siemens NX integration work developed by the author of this dissertation has 

been included in the version 18 of Maple, which is commercially available. 
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executed (see Table 19, below). The results of each evaluations supports the conclusion 

that the framework is an effective tool to predict conflicting tolerances interaction. 

Definitive case studies that tracked fabrication of similar (or identical) building systems, 

composite of several multi-material building assemblies, and the validated against their 

built instances, would be the ultimate proof.  

From the case studies presented here, it is clear that the developed implementation 

has identified and automatically corrected several manufacturing knowledge-related 

interferences of the multi-material, nominally-designed wall assembly. In addition, the 

QuadPod case study considered several processes of the structural steel and sheet metal 

domains such as metal forming, metal cutting, assembly clearances and fastening, 

galvanizing, and others. Although steel sheet metal and structural steel are both of the 

same underlying material they are use fabrication  procedures, which adds a level of 

heterogeneity to the case study.   

Table 19: Validation procedures 

 
Then, restating and separating this dissertation hypothesis on its constituting parts 

we can confirm: 

The seamless integration of parametric CAD geometry with a system-level 

modeling environment (a) allows the feature-based allocation of manufacturing 

specifications (b), based on material-specific knowledge and processes constraints (c), 
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and also identifies complex conflicting interactions of tolerances (d) across multi-

material building assemblies(e). 

9.2. Contributions 

This dissertation contributed to the BIM and architectural design fields by 

developing and implementing a knowledge-based modeling framework to assess 

manufacturability and identify/prevent negative tolerances interaction in the 

manufacturing and assembly of building components. In addition, the dissertation 

contributed to the systems engineering and computer science fields by demonstrating a 

system modeling platform, integrated into a CAD application, through a novel model-to-

model transformation approach.  

9.2.1. Expected research contributions of the present dissertation  

Innovative model-to-model transformation methodology:  

This general contribution for construction and engineering aims for the 

development of a structural, feature-based decomposition approach of parametric CAD 

models into System Models. This method programmatically integrates two different data 

structures (but could be any number) by recreating the meta-model of the CAD 

application through a graph-based representation in SysML. This machine 

readable/executable framework links feature-based geometry to manufacturing know-

how through knowledge-based mathematical and logical constraints. Although many 

project have been completed to integrate engineering analysis with SysML, none of them 

has successfully integrated feature-based parametric CAD geometry.  

Domain expert advice about manufacturing and assembly processes:  
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This contribution to the construction field enables the programmed allocation of 

material-specific knowledge for components and assemblies based on geometric context 

and material type. The integration of specific features of geometric data with a system 

modeling tool allows rule-based design and solve operations that otherwise require 

extensive manual data interpretation and translation. Furthermore, linking features 

(geometry and function) and manufacturing knowledge in the same interface allows 

designers to develop a better understanding of the impact of their design actions. This 

platform encourages the designer to link CAD features to <<requirements>>, <<design 

specifications>>, and <<manufacturing specifications>> to verify different levels of 

project compliance. The methodology is clearly extensible to domains beyond that of 

geometric tolerancing and compliance analysis. 

One truth, multiple model views:  

This contribution to the engineering and construction domains centralizes project 

requirements, geometry, evaluation, and design specifications in a single integrated 

modeling environment. Much work in the development of BIM tools that support 

architectural design, including much of the work at Georgia Tech, has focused on the 

development of workflows that involve multiple translations of data. But these 

translations, even when tightly scripted, often suffer from the loss of sematic clarity. The 

model integration developed in this dissertation  provides geometric data to numerous 

domain-specific tools – in a bi-directional manner.  

Finally, it is argued that reinforcing a system-level semantic layer on the BIM 

environment will facilitate the representation of geometric and non-geometric 

interactions of a building project. For example, this methodology, based on a central 
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model (system model), enables the integration of several model views and tolerances 

analysis from different vendors. This approach can potentially replace the current 

industry standard that specifies tolerances allocation as a separate task for each material 

system.  

Model consistency method:  

The implementation of an on-demand model-to-model and tool-to-tool 

consistency assessment and model data update will hopefully lead to better model 

consistency, and at least the automated identification of inconsistencies between different 

abstractions of the model. This feature in the present framework has been established due 

to the fact that many of the negative interactions among building components are caused 

by data fragmentation and inconsistencies among different model views and tools.  

9.3. Recommendations for Future Research and Development  

Although, important contributions of this dissertation can be recognized from the 

previous section 9.2.1., there is still a long way to go to achieve a fully automated 

integration of knowledge and geometry.  

Automatic allocation of variational data on shop drawings is an opportunity for 

further development. In this dissertation, all manufacturing-compliant parameters that 

belong to the CAD geometry are seamlessly updated from SysML. This is, the outcome 

of the evaluation is a “manufacturing-compliant, design-compliant nominal geometry.” 

However, the complete variational data of tolerances and clearances values such as WC, 

RSS, centered dimensions, LL, UL, plus/minus, are stored in the SysML tables obtained 

from the analyses results. Although this approach greatly helps to convey variational data 

more efficiently than the current state of the art, the ability to automatically add 
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variational data within shop drawings would produce a greater level of automation and 

model consistency.  

Also, this dissertation has seamlessly integrated one CAD (BIM) application into 

a system model environment. Furthermore, this dissertation has proven that this kind of 

integrations is possible by translating the meta-model (data structure) of the CAD 

application into a DSL (profile) in SysML. However, if more BIM tools need to be 

integrated, it will require a specific DSL and implementation code for each of them. 

Although, this approach is feasible and replicable, it would be more effective to create a 

single application/DSL that can translate any CAD package into a system model 

environment. Likewise, this project did not deal with interoperability in the sense of 

creating neutral files to go from one CAD package to another. Rather, what this project 

proposes is the simultaneous integration of disparate modeling environments without the 

need of an exchange file. Still, I envision an nonproprietary integration approach that can 

incorporate any CAD by means of a “standard integration method,” which would 

probably use the IFC19 or STEP descriptive methods as foundation for this translation.  

Finally, domain-specific feature-based modeling environments, as sheet metal of 

Siemens NX, are critical for a knowledge-based integration. It is unlikely that 

                                                 

 

 

19 The Industry Foundation Classes (IFC) data model describe building and construction industry 

data. It is a platform neutral, open file format specification that is not controlled by a single vendor or group 

of vendors. 
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manufacturing knowledge will refer to a virtual geometric entity (a point or a line) as 

they are representational, but not existent in the real world. Rather, manufacturing 

knowledge refers to features, which are a set of virtual modeling elements that create 

design intent on their topological aggregation. Unfortunately, feature-based design tools 

have only created domain-specific modeling environment for few material systems, 

mostly for aerospace or automotive engineering. Then, an important research area would 

be the integration of several other construction-specific feature based modeling 

environments in current parametric modeling tools.  

9.4. Concluding Remarks  

This dissertation has covered several aspects of the building construction domain. 

The understanding and prevention of construction variability is a complex matter that 

involves not just geometry, but also a deep familiarity with each of the building 

component manufacturing and assembly processes. For each material system, there are 

people that develop and advance this knowledge throughout their entire lives – and the 

expert knowledge of these actors are embodied, but not completely nor consistently, in 

design and construction specifications. This fact makes the design of building parts and 

the assembly of these parts scenario even more complex. We can highlight this 

complexity by imagining the lifecycle of a specific feature on a specific part – and ask a 

series of questions.  

 How is a single feature created?  

 What are the processes from which this feature can be built?  

 Based on different manufacturing processes available, how different will be our 

feature when finally built?  



287 

 

 Which are other features will the feature be linked to?  

 How do we know if our feature is meeting a design requirement or a specification 

requirement?  

 How do we know what will happen to an assembly if our feature is changed? 

Ultimately, how do we know if our feature will be what we want our feature to 

be?  

To answer these questions requires an immense amount of knowledge in 

countless fields, and yet, based on the unsolvable modeling uncertainty that motivated 

this research, we will never get an absolute answer. And so, considering this scenario, the 

goal of this dissertation has not been to gather all construction knowledge and make it 

automatically available, as this would be an endless endeavor. Rather, the goal of this 

dissertation has been to create a platform for this knowledge to be gathered, stored and 

applied by means of innovative computational workflows, which are both coordinated 

and consistent.  

The cheapest construction inaccuracy to fix is the one that you prevented. The 

sole success of this goal has required advancements in different aspects of BIM and the 

systems engineering domain. The specific focus of this project, manufacturing 

compliance and construction tolerances, have been surveyed from different perspectives 

so that the meta-requirements for modeling the knowledge are understood. There are, 

however, still many aspects of building semantics, behaviors, and workflows that have 

not been considered in this work. In the future, a complete representation of the building 

as a whole system will capture all functional and behavioral interactions that occur across 

different domains and stages of the building lifecycle. This ideal scenario will result in 
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not just tolerances attributable to fabrication accuracy but also behavioral considerations 

that affect their variation. With proper development, the framework proposed by this 

dissertation could create a new kind of building design paradigm: A modeling 

environment that virtually and simultaneously brings to the table all domain experts, 

anytime that building feature is created.  
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APPENDIX 1: Implementation Code: 

Controller: 

ContaintmentTreeContextPopConfigurator: 

package gov.nasa.jpl.imce.sysmlnxsync.controller; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.ImportNXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.ImportNXPartWithFilte

r; 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.InternalUpdate; 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.InternalValidate; 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.LinkNXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.ResolveNXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.UpdateFromNXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.UpdateToNXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.actions.ValidateAgainstNXPart

; 

 

import java.util.Collection; 

 

import com.nomagic.actions.ActionsManager; 

import 

com.nomagic.magicdraw.actions.BrowserContextAMConfigurator; 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import com.nomagic.magicdraw.ui.browser.Tree; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.InstanceSpe

cification; 
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import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

 

/** 

 * Configuration of the pop up menu that appears when 

right clicking in the containment browser 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

public class ContainmentTreeContextPopConfigurator 

implements BrowserContextAMConfigurator { 

  

 private static final boolean 

isPackageWithInstanceChildren(Object object) { 

  if (!(object instanceof Package)) { 

   return false; 

  } 

  Package userPackage = (Package)object; 

   

  // Check if it has any children which are 

properties 

  Collection<Element> children = 

userPackage.getOwnedElement(); 

  for (Element child : children) { 

   if (child instanceof 

InstanceSpecification) { 

    return true; 

   } 

  } 

  return false; 

 } 

  

 /** 

  * Configure the containment browser context menu 

- you can extend this by adding more classes that 

  * extend class MDAction 

  */ 

 @Override 

 public void configure(ActionsManager 

actionsManager, Tree tree) { 

  // You may want to do some checks here to 

see which element is currently selected 

  // E.g. if you want to check whether a 

package was selected, you can write something like 
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  // if(tree.getSelectedElement() instance of 

Package) { ...  

  Object userObject = 

tree.getSelectedNode().getUserObject(); 

   

 

 Application.getInstance().getGUILog().log("userObject 

" + userObject ); 

   

  Project project = 

Application.getInstance().getProject(); 

  if (userObject instanceof Package) { 

  

 actionsManager.getLastActionsCategory().addAction(new 

ImportNXPart()); 

  

 actionsManager.getLastActionsCategory().addAction(new 

ImportNXPartWithFilter()); 

   if 

(isPackageWithInstanceChildren(userObject)) { 

   

 actionsManager.getLastActionsCategory().addAction(new 

InternalUpdate()); 

   

 actionsManager.getLastActionsCategory().addAction(new 

InternalValidate()); 

   } 

    

  } else if (userObject instanceof Class) { 

   Class userClass = (Class)userObject; 

   Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype( project, "NXPart" ); 

    

   if 

(StereotypesHelper.hasStereotype(userClass, 

nxPartStereotype)) { 

   

 actionsManager.getLastActionsCategory().addAction(new 

UpdateToNXPart()); 

   

 actionsManager.getLastActionsCategory().addAction(new 

UpdateFromNXPart()); 

   

 actionsManager.getLastActionsCategory().addAction(new 

LinkNXPart()); 
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 actionsManager.getLastActionsCategory().addAction(new 

ValidateAgainstNXPart()); 

   

 actionsManager.getLastActionsCategory().addAction(new 

ResolveNXPart()); 

   } 

  } 

 } 

  

 @Override 

 public int getPriority() { 

  return 0; 

 } 

 

} 
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PluginMain: 
package gov.nasa.jpl.imce.sysmlnxsync.controller; 

 

import 

com.nomagic.magicdraw.actions.ActionsConfiguratorsManager; 

import com.nomagic.magicdraw.core.Project; 

import com.nomagic.magicdraw.plugins.Plugin; 

import 

com.nomagic.magicdraw.plugins.ResourceDependentPlugin; 

 

/** 

 * Main entry point into the plugin 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

public class PluginMain extends Plugin implements 

ResourceDependentPlugin { 

 public static final boolean DEBUG = true; 

   

 /** 

  * Perform any potentially necessary cleanup when 

the plugin is unloaded 

  */ 

 @Override 

 public boolean close() { 

  return true; 

 } 

 

 @Override 

 public String getPluginName() { 

  return "SysMLNXSync"; 

 } 

 

 @Override 

 public String getPluginVersion() { 

  return "1.0"; 

 } 

 

 /** 

  * This function is called after isSupported() 

has been called. Any initialization 

  * should be done at this point 

  */ 

 @Override 

 public void init() { 

  // Smoke test: show a message dialog 
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 ActionsConfiguratorsManager.getInstance().addContainme

ntBrowserContextConfigurator( 

   new 

ContainmentTreeContextPopConfigurator() 

  ); 

 } 

 

 @Override 

 public boolean isPluginRequired(Project p) { 

  return false; 

 } 

 

 /** 

  * isSupported allows for pre-loading checks to 

be performed, i.e. one could check at 

  * this point whether NX is installed and return 

false if that is not the case 

  */ 

 @Override 

 public boolean isSupported() { 

  return true; 

 } 

  

} 
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NXConnection: 

MapleNXEngine: 

package gov.nasa.jpl.imce.sysmlnxsync.nxconnection; 

 

import java.io.File; 

import java.io.IOException; 

import java.util.ArrayList; 

import java.util.Collection; 

 

import javax.xml.parsers.DocumentBuilder; 

import javax.xml.parsers.DocumentBuilderFactory; 

import javax.xml.parsers.ParserConfigurationException; 

 

import org.w3c.dom.Document; 

import org.w3c.dom.NodeList; 

import org.xml.sax.SAXException; 

 

import com.maplesoft.externalcall.MapleException; 

import com.maplesoft.openmaple.Algebraic; 

import com.maplesoft.openmaple.Engine; 

import com.maplesoft.openmaple.EngineCallBacksDefault; 

import com.maplesoft.openmaple.MString; 

import com.sun.xml.bind.StringInputStream; 

 

/** 

 * Implementation of NX connection using open maple 

interface 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

 

public class MapleNXEngine implements NXEngine { 

 private static Engine engine; 

  

 private static void initializeMaple() { 

   

  // Create a new Maple Engine object 

  try { 

   if (engine == null) { 

    String[] mapleEngineArgs = new 

String[0]; 

    //mapleEngineArgs[0] = "java"; 

    engine = new 

Engine(mapleEngineArgs, new EngineCallBacksDefault(), null, 

null); 
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   } 

  } 

  catch (MapleException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } 

 } 

 

  

 public MapleNXEngine() throws 

NXConnectionException { 

  try { 

   initializeMaple(); 

   engine.restart(); 

   String cmd = "CAD:-NX:-

OpenConnection():"; 

   engine.evaluate( cmd ); 

   engine.evaluate( "[foo], [bar];" ); 

  } catch (MapleException me) { 

   throw new NXConnectionException(); 

  } 

 } 

  

 @Override 

 public void closeConnection() { 

  try { 

   engine.evaluate("CAD:-NX:-

CloseConnection();"); 

   engine.evaluate( "[foo], [bar];" ); 

 

  } catch (MapleException me) { 

   me.printStackTrace(); 

  } 

 } 

  

 @Override 

 public boolean closePart(NXPart part) { 

  // TODO Auto-generated method stub 

  return false; 

 } 

 

 @Override 

 public Collection<String> getComponentList(NXPart 

part) { 

  // TODO Auto-generated method stub 

  return null; 

 } 
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 @Override 

 public Collection<NXExpression> 

getExpressions(NXPart part) { 

  // TODO Auto-generated method stub 

  return null; 

 } 

  

 @Override 

 public Collection<NXFeature> getFeatures(NXPart 

part) { 

  // TODO Auto-generated method stub 

  return null; 

 } 

  

 @Override 

 public Collection<NXExpression> 

getParameterInfo(NXPart part) { 

  String filename = part.getPath(); 

  try { 

   String mathml = 

((MString)engine.evaluate("MathML:-

ExportPresentation([seq([x,CAD:-NX:-

GetParameterValue(x,form=\"NX\")], x in CAD:-NX:-

GetParameterNames(\"" + filename.replace("\\", "\\\\") + 

"\")) ]);")).stringValue(); 

   Collection<NXExpression> params = 

parseMathML( mathml ); 

   return params; 

  } catch (MapleException me) { 

   me.printStackTrace(); 

  } 

  return null; 

 } 

   

 @Override 

 public String getUniqueIdentifier(NXPart part) { 

  Algebraic result; 

  String filename = part.getPath(); 

  try { 

   result = 

engine.evaluate("GetPartUID(\"" + filename.replace("\\", 

"\\\\") + "\");"); 

   return result.toString(); 

  } catch (MapleException me) { 

   me.printStackTrace(); 
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  } 

  return null; 

 } 

 

 @Override 

 public boolean isConnected() { 

  // TODO Auto-generated method stub 

  return false; 

 } 

 

 @Override 

 public NXPart openPart(File file) { 

  return openPart(file, false); 

 } 

 

 @Override 

 public NXPart openPart(File file, boolean 

recurse) { 

  NXPart result = null; 

  System.out.println("opening part " + file); 

  String filename = file.getAbsolutePath(); 

  try { 

   engine.evaluate("CAD:-NX:-OpenPart(\"" 

+ filename.replace("\\", "\\\\") + "\"):"); 

   result = new NXPart( filename, filename 

); 

  } catch (MapleException me) { 

   me.printStackTrace(); 

  } 

  return result; 

 } 

 

 private Collection<NXExpression> parseMathML( 

String mathml ) { 

  DocumentBuilderFactory dbf = 

DocumentBuilderFactory.newInstance(); 

  DocumentBuilder db = null; 

  try { 

   db = dbf.newDocumentBuilder(); 

  } catch (ParserConfigurationException e1) { 

   // TODO Auto-generated catch block 

   e1.printStackTrace(); 

  } 

  Document dom = null; 

  try { 

   dom = db.parse( new StringInputStream( 

mathml ) ); 
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  } catch (SAXException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } catch (IOException e) { 

   // TODO Auto-generated catch block 

   e.printStackTrace(); 

  } 

   

  org.w3c.dom.Element docElement = 

dom.getDocumentElement(); 

  org.w3c.dom.Node rootNode = 

docElement.getFirstChild(); 

  NodeList nl = rootNode.getChildNodes(); 

  if (nl == null) { 

   return new ArrayList<NXExpression>(); 

  } 

  int parLen = 0; 

   

  org.w3c.dom.Node  child; 

  

  parLen = nl.getLength(); 

  String key, val; 

   

  Collection<NXExpression> params = new 

ArrayList<NXExpression>(); 

  for (int i=0; i < parLen; i++) { 

   org.w3c.dom.Node pair = nl.item(i); 

   child = pair.getFirstChild(); 

   key = child.getTextContent(); 

   val = 

child.getNextSibling().getTextContent(); 

   params.add( new NXExpression(key, val, 

null) ); 

  } 

  return params; 

 } 

 

 @Override 

 public boolean renameFeature(NXPart part, String 

oldName, String newName) { 

  // TODO Auto-generated method stub 

  return false; 

 } 

 

 @Override 

 public boolean renameParameter(NXPart part, 

String oldName, String newName) { 
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  // TODO Auto-generated method stub 

  return false; 

 } 

  

 @Override 

 public boolean savePart(NXPart file) { 

  // TODO Auto-generated method stub 

  return false; 

 } 

 

 @Override 

 public boolean setParameterInfo(NXPart part, 

Collection<NXExpression> params) { 

  String name; 

  try { 

   Algebraic result = null; 

   for (NXExpression param : params) { 

    name = param.getName(); 

    result = engine.evaluate("CAD:-

NX:-SetParameterValue(\"" + name + "\", \"" + 

param.getValue() + "\"):" ); 

    //engine.evaluate( "[foo], [bar];" 

); 

    //System.out.println("CAD:-NX:-

SetParameterValue(\"" + paramNames.get(i) + "\", \"" 

+paramValues.get(i) + "\"):" ); 

   } 

   return true; 

  } catch (MapleException me) { 

   me.printStackTrace(); 

  } 

  return false; 

 } 

 

 @Override 

 public boolean setParameterValue(NXPart part, 

String param, String value) { 

  // TODO Auto-generated method stub 

  return false; 

 } 

 

 @Override 

 public boolean setWorkPart(NXPart part) { 

  // TODO Auto-generated method stub 

  return false; 

 } 

} 
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NXClientEngine: 

package gov.nasa.jpl.imce.sysmlnxsync.nxconnection;  

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.IOException; 

import java.io.InputStreamReader; 

import java.io.StringReader; 

import java.util.ArrayList; 

import java.util.Collection; 

 

import javax.xml.parsers.DocumentBuilder; 

import javax.xml.parsers.DocumentBuilderFactory; 

import javax.xml.parsers.ParserConfigurationException; 

 

import org.w3c.dom.Document; 

import org.w3c.dom.Element; 

import org.w3c.dom.Node; 

import org.w3c.dom.NodeList; 

import org.xml.sax.InputSource; 

import org.xml.sax.SAXException; 

 

import com.maplesoft.externalcall.MapleException; 

import com.maplesoft.openmaple.Algebraic; 

import com.maplesoft.openmaple.Engine; 

import com.maplesoft.openmaple.EngineCallBacksDefault; 

import com.maplesoft.openmaple.MString; 

import com.nomagic.magicdraw.core.Application; 

 

/**  

 *Implementation of NX connection using NX client 

binary  

 *   

 * @author francisco.valdes@jpl.nasa.gov,    

 */ 

   

public class NXClientEngine implements NXEngine { 

  

    private static String mapleDir;  

    private static Engine mapleEngine;  

    protected final static boolean TESTINPUT = false;  

    static {  
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     initializeMaple();  

    }  

     

    private static String[] buildCommandArray(String 

cmd, String args) { 

     String[] cmdArray = new String[4]; 

        cmdArray[0] = 

String.format("%s\\run_managed.exe", 

System.getenv("UGII_ROOT_DIR")); 

        cmdArray[1] = 

String.format("%s\\nxclient.exe", mapleDir); 

        cmdArray[2] = cmd; 

        cmdArray[3] = args; 

        return cmdArray; 

    } 

       

    private static void initializeMaple() { 

     if (TESTINPUT) return;  

        String[] mapleEngineArgs ={"java"};  

        Algebraic result;  

           

        // Create a new Maple Engine object  

        try {  

            if (mapleEngine == null) {  

                mapleEngine = new 

Engine(mapleEngineArgs, new EngineCallBacksDefault(), null, 

null);  

                mapleEngine.restart();  

                result = 

mapleEngine.evaluate("kernelopts(bindir);");  

                if (result instanceof MString) {  

                    mapleDir = 

((MString)result).stringValue();  

                }  

            }  

        }  

        catch (MapleException e) {  

            // TODO Auto-generated catch block  

            e.printStackTrace();  

        }  

    }  

   

    private static final boolean isOkay( String result 

) {  

        return "okay".equals(result);  

    }  
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    private static final String quote(String s) { 

     return "\"" + s + "\""; 

    }  

     

    private boolean _isConnected = false;  

     

    public NXClientEngine() throws 

NXConnectionException {  

      String result = runNXClient("ping", "");  

      boolean connected = result.equals("NX 

Okay"); 

      if (!connected) { 

         throw new NXConnectionException(); 

     } 

 } 

       

    private String buildExpression(Element element) {  

        if 

("expression".equalsIgnoreCase(element.getTagName())) {  

            return 

element.getAttribute("description");  

        } else {  

            return null;  

        }  

    }  

     

    private NXFeature buildFeature(Element element) {  

        if 

("feature".equalsIgnoreCase(element.getTagName())) {  

            String name = 

element.getAttribute("name");  

            String type = 

element.getAttribute("type"); 

            String customName; 

            if (element.hasAttribute("customname")) { 

             customName = 

element.getAttribute("customname"); 

                if (customName == "") customName = 

null; 

            } else { 

             customName = null; 

            } 

            NXFeature feature = new NXFeature(name, 

type, customName);  

               

            NodeList nodeList = 

element.getChildNodes();  
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            for (int i = 0; i < nodeList.getLength(); 

i++) {  

                Node node = nodeList.item(i);  

                if (node.getNodeType() == 

Node.ELEMENT_NODE) {  

                    Element child = (Element)node;  

                    String childName = 

child.getTagName();  

                    if 

("feature".equalsIgnoreCase(childName)) {  

                        NXFeature childFeature = 

buildFeature(child);  

                        

feature.addChild(childFeature);  

                    } else if 

("expression".equalsIgnoreCase(childName)) {  

                        name = 

child.getAttribute("name");  

                        String val = 

child.getAttribute("value");  

                        feature.addExpression(name, 

val);  

                    }  

                }  

            }  

            return feature;  

        }  

        return null;  

    } 

   

    @Override 

    public void closeConnection() {  

        _isConnected = false;  

    }  

       

    @Override 

    public boolean closePart(NXPart part) {  

        return isOkay( runNXClient("closepart", 

quote(part.getPath())) );  

    }  

   

    @Override 

    public Collection<String> getComponentList(NXPart 

part) {  

        String result = 

runNXClient("get_component_list", quote(part.getPath()));  

        String[] components = result.split(";");  
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        ArrayList<String> arr = new 

ArrayList<String>();  

        String strim;  

        for (String s : components) {  

            strim = s.trim();  

            if (strim.length() > 0) {  

                arr.add(strim);  

            }  

        }  

        return arr;  

    }  

   

    @Override 

    public Collection<NXExpression> 

getExpressions(NXPart part) {  

     return getParameterInfo(part); 

    }  

       

    @Override 

    public Collection<NXFeature> getFeatures(NXPart 

part) {  

     String result; 

     if (TESTINPUT) { 

      result = returnTestInput(); 

     } else { 

      result = runNXClient("get_features", 

quote(part.getPath())); 

     } 

 

        if (PluginMain.DEBUG) { 

        

 Application.getInstance().getGUILog().log("getFeatures 

" + part.getPath() ); 

          

        

 Application.getInstance().getGUILog().log("[COMPONENTS

: input " + part.getName());  

           

 Application.getInstance().getGUILog().log("[COMPONENTS

: output " + result);  

        } 

   

      

        Document doc = (result != null ? parseXML( 

result ) : null);  

        if (doc == null) {  

            return null;  
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        }  

        if (PluginMain.DEBUG) { 

        

 Application.getInstance().getGUILog().log("DOCUMENT 

OK");  

        } 

        NodeList nodeList = doc.getChildNodes();  

        if (nodeList.getLength() == 0) {  

            return null;  

        }  

        // The first node will be the part node  

        Node partNode = nodeList.item(0);  

        if (partNode.getNodeType() != 

Node.ELEMENT_NODE || 

!("part".equalsIgnoreCase(((Element)partNode).getTagName())

)) {  

            return null;  

        }  

        // nodeList is the list of children of the 

part node  

        nodeList = partNode.getChildNodes();  

        ArrayList<NXFeature> features = new 

ArrayList<NXFeature>();  

        for (int i = 0; i < nodeList.getLength(); i++) 

{  

            Node node = nodeList.item(i);  

            if (node.getNodeType() == 

Node.ELEMENT_NODE) {  

                NXFeature feature = buildFeature( 

(Element)node );  

                if (feature != null) {  

                    features.add( feature );  

                }     

            }  

        }  

        return features;  

    }  

   

    @Override 

    public Collection<NXExpression> 

getParameterInfo(NXPart part) {  

        String result = runNXClient("expressions", 

quote(part.getPath()));  

        String[] lines = result.split(";");  

   

        Collection<NXExpression> params = new 

ArrayList<NXExpression>();  
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        String[] parampairs;  

        String res, name, val, paramName, paramValue;  

        int n;  

   

        for (String line : lines) {  

            line = line.replaceFirst("^[\\s]*Record.", 

"").replaceFirst(".;[\\s]*$", "");  

            if (line.trim().length() > 0) {   

                parampairs = line.split(", ");  

                paramName = paramValue = null;  

                for (String pair : parampairs) {  

                    res = pair.replaceFirst(" *([A-Za-

z0-9]*) *= *\"([^\"]*)\"", "$1|$2");  

                    //System.out.println( "pair: " + 

pair );  

                    //System.out.println( "relt: " + 

res );  

                    n = res.indexOf('|');  

                    name = res.substring(0, 

res.indexOf('|'));  

                    val = res.substring(n+1);  

                    if (name.equals("name")) {  

                        paramName = val;  

                    } else if (name.equals("value")) {  

                        paramValue = val;  

                    }  

                }  

                params.add( new NXExpression( 

paramName, paramValue, null)  );  

            }  

        }  

           

        return params;  

    }  

   

    @Override 

    public String getUniqueIdentifier(NXPart part) {  

        String result = 

runNXClient("get_unique_identifier", 

quote(part.getPath()));  

        return result;  

    }  

   

    @Override 

    public boolean isConnected() {  

        return _isConnected;  
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    }  

       

    private boolean isPartOpen(File file) {  

        String result = runNXClient("isopen", quote( 

file.getAbsolutePath() ) );  

        return result.equals("yes");  

    }  

   

    @Override 

    public NXPart openPart(File file) {  

        return openPart(file, false);  

    }  

   

    @Override 

    public NXPart openPart(File file, boolean recurse) 

{ 

     NXPart part;  

     if (TESTINPUT) { 

      part = new NXPart( "testpart.prt", 

"testpart.prt" ); 

            part._features    = getFeatures(part);  

            return part; 

     } 

        boolean result;  

        String filename = file.getAbsolutePath();  

         

        if (isPartOpen(file)) {  

            part = new NXPart( filename, filename );  

            result = setWorkPart(part);  

        } else {  

            result = isOkay( runNXClient("openpart", 

quote(filename)) );  

            part = (result ? new NXPart( filename, 

filename ) : null);  

        }  

         

        if (PluginMain.DEBUG) { 

        

 Application.getInstance().getGUILog().log("open NX 

part status: " + part ); 

        } 

         

        if (part != null) {  

            part._components  = 

getComponentList(part);  

            part._features    = getFeatures(part);  

            part._expressions = getExpressions(part);  
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            part._uid         = 

getUniqueIdentifier(part); 

            if (PluginMain.DEBUG) { 

            

 Application.getInstance().getGUILog().log("open NX 

part status2: " + part ); 

            } 

            if (recurse) {  

                part._openComponents = new 

ArrayList<NXPart>();  

                NXPart compPart;  

                for (String comp : part._components) {  

                    compPart = openPart( new File( 

comp ), true );  

                    

part._openComponents.add(compPart);  

                }  

            }  

        }  

        return part;  

           

    }  

   

    private Document parseXML(String xml) {  

        DocumentBuilderFactory dbf = 

DocumentBuilderFactory.newInstance();  

        DocumentBuilder db = null;  

        try {  

            db = dbf.newDocumentBuilder();  

        } catch (ParserConfigurationException pce) {  

            return null;  

        }  

        InputSource inStream = new InputSource();  

        inStream.setCharacterStream(new 

StringReader(xml));  

        Document doc = null;  

        try {  

            doc = db.parse( inStream );  

        } catch (SAXException se) {  

        } catch (IOException io) {  

        }  

        return doc;  

    }  

   

    @Override 

    public boolean renameFeature(NXPart part, String 

oldName, String newName) {  
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        setWorkPart(part);  

        return isOkay( runNXClient("rename_feature", 

quote(oldName) + " " + quote(newName)) );  

    }  

       

    @Override 

    public boolean renameParameter(NXPart part, String 

oldName, String newName) {  

        setWorkPart(part);  

        return isOkay( runNXClient("rename_parameter", 

quote(oldName) + " " + quote(newName)) );  

    }  

   

    private String returnTestInput() { 

     return "<part><feature name=\"Extrude(0)\" 

type=\"EXTRUDE\" tag=\"35850\">" + 

      "<expression name=\"p8\" value=\"0\" 

units=\"MilliMeter\" type=\"Number\" equation=\"p8=0\" 

description=\"(Extrude(0) Start Limit)\"/>" + 

      "<expression name=\"p9\" value=\"1.5\" 

units=\"MilliMeter\" type=\"Number\" equation=\"p9=1.5\" 

description=\"(Extrude(0) End Limit)\"/>" + 

      "<feature name=\"SB Convert To Sheet 

Metal(1)\" type=\"Convert To Sheetmetal\" 

tag=\"45866\"></feature>" + 

      "<feature name=\"Datum Coordinate 

System(2)\" type=\"DATUM_CSYS\" tag=\"45865\"><feature 

name=\"SKETCH_000:Sketch(2)\" type=\"SKETCH\" 

tag=\"45863\">" + 

      "<feature name=\"SB Bend(2)\" type=\"BEND\" 

tag=\"45864\">" + 

      "<expression name=\"p12\" value=\"3\" 

units=\"MilliMeter\" type=\"Number\" 

equation=\"p12=Sheet_Metal_Bend_Radius\" description=\"(SB 

Bend(2) Bend Radius)\"/>" + 

      "<expression name=\"p13\" value=\"3\" 

units=\"MilliMeter\" type=\"Number\" 

equation=\"p13=Sheet_Metal_Relief_Depth\" description=\"(SB 

Bend(2) Bend Relief Depth)\"/>" + 

      "<expression name=\"p14\" value=\"3\" 

units=\"MilliMeter\" type=\"Number\" 

equation=\"p14=Sheet_Metal_Relief_Width\" description=\"(SB 

Bend(2) Bend Relief Width)\"/>" + 

      "<expression name=\"p15\" value=\"0.33\" 

type=\"Number\" equation=\"p15=Sheet_Metal_Neutral_Factor\" 

description=\"(SB Bend(2) Neutral Factor)\"/>" + 
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      "<expression name=\"p16\" value=\"90\" 

units=\"Degrees\" type=\"Number\" equation=\"p16=90\" 

description=\"(SB Bend(2) Bend 

Angle)\"/></feature></feature></feature>" + 

      "<feature name=\"Datum Coordinate 

System(3)\" type=\"DATUM_CSYS\" tag=\"35849\"><feature 

name=\"SKETCH_001:Sketch(3)\" type=\"SKETCH\" 

tag=\"45862\"><feature name=\"SB Bend(3)\" type=\"BEND\" 

tag=\"35853\">" + 

      "<expression name=\"p17\" value=\"3\" 

units=\"MilliMeter\" type=\"Number\" 

equation=\"p17=Sheet_Metal_Bend_Radius\" description=\"(SB 

Bend(3) Bend Radius)\"/>" + 

      "<expression name=\"p18\" value=\"3\" 

units=\"MilliMeter\" type=\"Number\" 

equation=\"p18=Sheet_Metal_Relief_Depth\" description=\"(SB 

Bend(3) Bend Relief Depth)\"/>" + 

      "<expression name=\"p19\" value=\"3\" 

units=\"MilliMeter\" type=\"Number\" 

equation=\"p19=Sheet_Metal_Relief_Width\" description=\"(SB 

Bend(3) Bend Relief Width)\"/>" + 

      "<expression name=\"p20\" value=\"0.33\" 

type=\"Number\" equation=\"p20=Sheet_Metal_Neutral_Factor\" 

description=\"(SB Bend(3) Neutral Factor)\"/>" + 

      "<expression name=\"p21\" value=\"90\" 

units=\"Degrees\" type=\"Number\" equation=\"p21=90\" 

description=\"(SB Bend(3) Bend Angle)\"/>" + 

      "<feature name=\"Datum Coordinate 

System(4)\" type=\"DATUM_CSYS\" tag=\"35851\"><feature 

name=\"SKETCH_002:Sketch(4)\" type=\"SKETCH\" 

tag=\"45860\"><feature name=\"SB Bend(4)\" type=\"BEND\" 

tag=\"45861\"><expression name=\"p22\" value=\"3\" 

units=\"MilliMeter\" type=\"Number\" 

equation=\"p22=Sheet_Metal_Bend_Radius\" description=\"(SB 

Bend(4) Bend Radius)\"/><expression name=\"p23\" 

value=\"3\" units=\"MilliMeter\" type=\"Number\" 

equation=\"p23=Sheet_Metal_Relief_Depth\" description=\"(SB 

Bend(4) Bend Relief Depth)\"/><expression name=\"p24\" 

value=\"3\" units=\"MilliMeter\" type=\"Number\" 

equation=\"p24=Sheet_Metal_Relief_Width\" description=\"(SB 

Bend(4) Bend Relief Width)\"/><expression name=\"p25\" 

value=\"0.33\" type=\"Number\" 

equation=\"p25=Sheet_Metal_Neutral_Factor\" 

description=\"(SB Bend(4) Neutral Factor)\"/><expression 

name=\"p26\" value=\"15\" units=\"Degrees\" type=\"Number\" 

equation=\"p26=15\" description=\"(SB Bend(4) Bend 

Angle)\"/></feature></feature></feature><feature 
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name=\"Datum Coordinate System(5)\" type=\"DATUM_CSYS\" 

tag=\"35852\"><feature name=\"SKETCH_003:Sketch(5)\" 

type=\"SKETCH\" tag=\"35854\"><feature name=\"Split 

Body(6)\" type=\"SPLIT BODY\" 

tag=\"45859\"></feature></feature></feature></feature></fea

ture></feature></feature></part>"; 

    } 

     

    private String runNXClient(String cmd, String 

args) {  

        Runtime r = Runtime.getRuntime();  

        Process p = null;  

        String[] cmdArray = buildCommandArray(cmd, 

args); 

         

        if (PluginMain.DEBUG) { 

         Application.getInstance().getGUILog().log( 

"PluginMain.DEBUG: " + cmdArray ); 

        } 

        if (TESTINPUT) { 

         return "okay"; 

        } 

        try {  

            p = r.exec(cmdArray);  

        } catch (IOException e) {  

            // TODO Auto-generated catch block  

            e.printStackTrace();  

        }  

        StringBuilder sb = new StringBuilder();  

           

        BufferedReader br = new BufferedReader( new 

InputStreamReader (  p.getInputStream() ) );  

           

        String line;  

        try {  

            while (((line = br.readLine()) != null)) {  

                //System.out.println( line );  

                sb.append(line);  

            }  

        } catch (IOException e) {  

            // TODO Auto-generated catch block  

            e.printStackTrace();  

        }  

           

           

        try {     

            if (p.waitFor() != 0) {  
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                System.out.println("problem");  

            }  

        } catch (InterruptedException ie) {  

            // TODO Auto-generated catch block  

            ie.printStackTrace();  

        } 

        if (PluginMain.DEBUG) { 

         Application.getInstance().getGUILog().log( 

"PluginMain.DEBUG: " + sb.toString() ); 

        } 

        return sb.toString();            

    } 

       

    @Override 

    public boolean savePart(NXPart part) {  

        String result = runNXClient("save", 

quote(part.getPath()));  

        System.out.println("Result of saving " + 

part.getName() + ": " + result);  

        return isOkay( result );  

    }  

       

    @Override 

    public boolean setParameterInfo(NXPart part, 

Collection<NXExpression> params) {  

        String value;  

        String result = null;  

        String name;  

        boolean overallSuccess = true;  

        for (NXExpression expr : params) {  

            name = expr.getName();  

            value = expr.getValue();  

            //currentName = 

SysMLParameters.getSynchronizedParameterName(params, name);  

            //if (!name.equals(currentName)) {  

            //  boolean success = renameParameter( 

part, currentName, name );  

            //  overallSuccess = overallSuccess && 

success;  

            //  if (success) {  

            //      

SysMLParameters.setSynchronizedParameterName(params, name);  

            //  }  

            //}  

            result = runNXClient(  

                "set_parameter_value",  
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                String.format("%s %s", quote(name), 

quote(value))  

            );  

            overallSuccess = overallSuccess && (result 

!= null && isOkay( result ));  

        }  

        return overallSuccess;  

    }  

       

    @Override 

    public boolean setParameterValue(NXPart part, 

String param, String value) {  

        setWorkPart(part);  

        return isOkay( 

runNXClient("set_parameter_value", quote(param) + " " + 

quote(value)) );  

    }  

           

    @Override 

    public boolean setWorkPart(NXPart part) {  

        return isOkay( runNXClient("setwork", quote( 

part.getPath() ) ) );  

    } 

   

} 
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NXConnectionException: 
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection; 

 

public class NXConnectionException extends Exception { 

 

} 

 

NXEngine: 
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection; 

 

import java.io.File; 

import java.util.Collection; 

 

/** 

 * NX connection interface 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

 

public interface NXEngine { 

 

 public void closeConnection(); 

  

 public boolean closePart(NXPart part); 

  

 public Collection<String> getComponentList(NXPart 

part); 

 public Collection<NXExpression> 

getExpressions(NXPart part); 

 public Collection<NXFeature> getFeatures(NXPart 

part); 

 public Collection<NXExpression> 

getParameterInfo(NXPart part); 

  

 public String getUniqueIdentifier(NXPart part); 

  

 boolean isConnected(); 

 public NXPart openPart(File file); 

 public NXPart openPart(File file, boolean 

recursive); 

  

 public boolean renameFeature(NXPart part, String 

oldName, String newName); 

  

 public boolean renameParameter(NXPart part, 

String oldName, String newName); 

 public boolean savePart(NXPart file); 
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 public boolean setParameterInfo(NXPart part, 

Collection<NXExpression> params); 

 public boolean setParameterValue(NXPart part, 

String param, String value); 

 

 public boolean setWorkPart(NXPart part); 

  

} 

 

NXExpression: 
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection; 

 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

 

public class NXExpression { 

 private String _name; 

 private Property _prop; 

 private String _value; 

  

 public NXExpression(String name, String value, 

Property prop) { 

  _name = name; 

  _value = value; 

  _prop = prop; 

 } 

  

 public String getName() { return _name; } 

  

 public Property getProperty() { return _prop; } 

  

 public String getValue() { return _value; } 

} 
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NXFeature: 
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection; 

 

import java.util.ArrayList; 

import java.util.Collection; 

 

public class NXFeature { 

 private ArrayList<NXFeature> _children; 

 private ArrayList<NXExpression> _expressions; 

 private String _name; 

 private String _type; 

 private String _customName; 

  

 public NXFeature(String name, String type, String 

customName) { 

  _name = name; 

  _type = type; 

  _customName = customName; 

  _children = new ArrayList<NXFeature>(); 

  _expressions = new 

ArrayList<NXExpression>(); 

 } 

  

 public void addChild(NXFeature feature) { 

  _children.add(feature); 

 } 

  

 public void addExpression(String name, String 

value) { 

  _expressions.add( new NXExpression(name, 

value, null) ); 

 } 

  

 public Collection<NXFeature> getChildren() { 

  return _children; 

 } 

  

 public String getCustomName() { 

  return _customName; 

 } 

  

 public Collection<NXExpression> getExpressions() 

{ 

  return _expressions; 

 } 

  

 public String getName() { 
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  return _name; 

 } 

  

 public String getType() { 

  return _type; 

 } 

} 

  



319 

 

NXPart: 
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection; 

 

import java.io.File; 

import java.util.ArrayList; 

import java.util.Collection; 

 

public class NXPart { 

 protected Collection<String> _components; 

 protected Collection<NXExpression> _expressions; 

 protected Collection<NXFeature> _features; 

 private File _file; 

 protected Collection<NXPart> _openComponents; 

 protected String _uid; 

  

 protected NXPart(File file) { 

  _file = file; 

  _components = new ArrayList<String>(); 

  _openComponents = new ArrayList<NXPart>(); 

  _features = new ArrayList<NXFeature>(); 

  _expressions = new 

ArrayList<NXExpression>(); 

 } 

  

 protected NXPart(String path, String name) { 

  _file = new File( path ); 

 } 

  

 public Collection<String> getComponents() { 

  return _components; 

 } 

  

 public Collection<NXExpression> getExpressions() 

{ 

  return _expressions; 

 } 

  

 public Collection<NXFeature> getFeatures() { 

  return _features; 

 } 

  

 public String getName() { 

  return _file.getName(); 

 } 

 

 public File getFile() { 

  return _file; 
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 } 

 

 public Collection<NXPart> getOpenComponents() { 

  return _openComponents; 

 } 

 

 public String getPath() { 

  return _file.getAbsolutePath(); 

 } 

  

 public String getUniqueIdentifier() { 

  return _uid; 

 } 

  

 public boolean isAssembly() { 

  return (_components.size() > 0); 

 } 

  

 @Override 

 public String toString() { 

  String c = (_components != null ? 

Integer.toString(_components.size()) : "null"); 

  String f = (_features != null ? 

Integer.toString(_features.size()) : "null"); 

  return String.format( 

"NXPart[%s][c=%s][f=%s]", _file, c, f ); 

 } 

} 
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Actions: 

Import NXPart: 

package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.PartFileFilter; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver; 

 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.io.File; 

import java.util.Collection; 

 

import javax.swing.JFileChooser; 

import javax.swing.JOptionPane; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ModelElementsManager; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.magicdraw.openapi.uml.SessionManager; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 
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import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

 

/** 

 * Simple action that allows for a file to be selected 

using a file dialog - the file is then loaded 

 * using the Maple API and a corresponding SysML block 

with properties is created. Note that for reasons 

 * of making this more readable, the logic should be 

split into several classes, but, to get started, 

 * let's keep everything in one file 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

public class ImportNXPart extends DefaultBrowserAction 

{ 

 private File _file; 

 private Package _package; 

  

 /**  * Constructor - configures the action, in 

this case our menu item 

  */ 

 public ImportNXPart() { 

  // In the containment browser context pop 

the text that will be displayed in the menu item 

  // is what we specify as the second 

argument. The first argument is an ID 

  super("Import_NX_Part", "Import CAD Model", 

null, null); 

 } 

 

 /** 

  * This function (or action) will be fired 

whenever a user clicks on the menu item that we are 

  * describing in this class. I.e. whenever 

someone right clicks in the containment browser and 

  * selects our action, in this case "Import CAD 

Part ...", this function will be called 

  */ 

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 
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  Object userObject = getSelectedObject(); 

   

  if (!(userObject instanceof Package)) { 

   return; 

  } 

  Project project = 

Application.getInstance().getProject(); 

  _package = (Package)userObject; 

  

  // Create a new file chooser object 

  JFileChooser fc = new JFileChooser(); 

  fc.setFileFilter( new PartFileFilter() ); 

    

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

  // Show an "Open" dialog and check whether 

the user has chosen to select a file (and has not 

  // pressed "Cancel") 

  if (fc.showOpenDialog(parentFrame) != 

JFileChooser.APPROVE_OPTION) return; 

   

  // Get the file that was selected 

  _file = fc.getSelectedFile(); 

  boolean check = confirmUpdate( parentFrame, 

project, _file ); 

  if (!check) return; 

   

  importNX( project ); 

 } 

  

 private boolean confirmUpdate(Frame parentFrame, 

Project project, File filePart) { 

  Collection<Class> parts = 

SysMLUtility.getAllParts(project, _package); 

  Class res = 

SysMLUtility.findPartByFilePath(project, parts, filePart); 

  if (res != null) { 

   int response = 

JOptionPane.showConfirmDialog( parentFrame, 

    "Model element file already exists 

in SysML.\nOverride existing part model?", 

    "Model element already exists", 

    JOptionPane.OK_CANCEL_OPTION, 

    JOptionPane.WARNING_MESSAGE 

   ); 

   return (response == 

JOptionPane.YES_OPTION); 
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  } else { 

   return true; 

  } 

 } 

  

 public void importNX( Project project ) { 

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

   

  NXPart part = 

SysMLUtility.openPart(parentFrame, _file); 

  if (part == null) return; 

   

  WaitDialog waitDialog = new 

WaitDialog(parentFrame, "Importing data from NX...", 

"System is working"); 

  waitDialog.setVisible(true);   

   

  String fileName = _file.getName(); 

  ElementsFactory elementsFactory = 

project.getElementsFactory(); 

   

  ElementsFactory factory = elementsFactory; 

 

  //Interaction interaction = (Interaction) 

ModelHelper.findInParent(project.getModel(), 

"Interaction1", Interaction.class, true); 

 

  //Lifeline lifeline1 = 

factory.createLifelineInstance(); 

  //Lifeline lifeline2 = 

factory.createLifelineInstance(); 

   

  //Connector connector = 

factory.createConnectorInstance(); 

  //connector.setOwner(interaction); 

 

  //ModelHelper.setClientElement(connector, 

lifeline1.getRepresents()); 

  //ModelHelper.setSupplierElement(connector, 

lifeline2.getRepresents()); 

 

  //PresentationElementsManager manager = 

PresentationElementsManager.getInstance(); 

  //DiagramPresentationElement diagramView = 

getDiagramPresentationElement(); 
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  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Class sysmlPart = 

elementsFactory.createClassInstance(); 

  sysmlPart.setName( fileName );  

  StereotypesHelper.addStereotype(sysmlPart, 

nxPartStereotype); 

   

 

 SessionManager.getInstance().createSession(project, 

"CAD Plugin: add subtree"); 

  try { 

  

 ModelElementsManager.getInstance().addElement(sysmlPar

t, _package); 

  } catch (ReadOnlyElementException roee) { 

   throw new IllegalStateException("ROEE: 

Cannot add package to subpackage"); 

  } 

 

 SessionManager.getInstance().closeSession(project); 

   

  SysMLModelTraverser traverser = 

SysMLModelTraverser.launch( project, sysmlPart, part, new 

UpdateFromNXResolver(null) ); 

  Class resolvedClass = 

traverser.getResolvedClass(); 

 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log( "Resolved 

class : " + resolvedClass ); 

  } 

  //traverser = SysMLModelTraverser.launch( 

project, _package, resolvedClass, part, null ); 

  waitDialog.setVisible(false);    

 } 

} 
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ImportNXPartWithFilter: 
package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.ui.StereotypeFilterDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.PartFileFilter; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.StereotypeFilterHandl

er; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver; 

 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.io.File; 

import java.util.Collection; 

 

import javax.swing.JFileChooser; 

import javax.swing.JOptionPane; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ModelElementsManager; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.magicdraw.openapi.uml.SessionManager; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 
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import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

 

public class ImportNXPartWithFilter extends 

DefaultBrowserAction { 

 private File _file; 

  

 private Package _package; 

 

 /**  * Constructor - configures the action, in 

this case our menu item 

  */ 

 public ImportNXPartWithFilter() { 

  // In the containment browser context pop 

the text that will be displayed in the menu item 

  // is what we specify as the second 

argument. The first argument is an ID 

  super("Import_NX_Part_Filtered", "Import CAD 

Model with Feature Type Filter", null, null); 

 } 

  

 /** 

  * This function (or action) will be fired 

whenever a user clicks on the menu item that we are 

  * describing in this class. I.e. whenever 

someone right clicks in the containment browser and 

  * selects our action, in this case "Import CAD 

Part ...", this function will be called 

  */ 

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 

   

  Object userObject = getSelectedObject(); 

   

  if (!(userObject instanceof Package)) { 

   return; 

  } 
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  Project project = 

Application.getInstance().getProject(); 

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

   

  // Create a new file chooser object 

  JFileChooser fc = new JFileChooser(); 

  fc.setFileFilter( new PartFileFilter() ); 

 

  // Show an "Open" dialog and check whether 

the user has chosen to select a file (and has not 

  // pressed "Cancel") 

  if (fc.showOpenDialog(parentFrame) != 

JFileChooser.APPROVE_OPTION) return; 

   

  // Get the file that was selected 

  File file = fc.getSelectedFile(); 

 

  Collection<Stereotype> st = 

SysMLUtility.getProfileStereotypes( project ); 

  Package pkg = (Package)userObject;  

 

  boolean check = confirmUpdate( parentFrame, 

project, pkg, file ); 

  if (!check) return; 

   

  if (st == null) { 

   throw new IllegalStateException(); 

  } 

  _package = pkg; 

  _file = file; 

   

  final StereotypeFilterDialog stFilter = new 

StereotypeFilterDialog(parentFrame, st); 

  stFilter.setVisible(true); 

   

  Collection<Stereotype> filter = 

stFilter.getFilter(); 

  if (filter != null) { 

  

 Application.getInstance().getGUILog().log( "Showing 

filtered stereotypes: " + filter.size() ); 

   for (Stereotype s : filter) { 

   

 Application.getInstance().getGUILog().log( "ST: " + s 

); 

   } 
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 Application.getInstance().getGUILog().log( "End 

Showing filtered stereotypes: " + filter.size() ); 

   importWithFilter( project, filter ); 

  } 

 } 

  

 private boolean confirmUpdate(Frame parentFrame, 

Project project, Package pkg, File filePart) { 

  Collection<Class> parts = 

SysMLUtility.getAllParts(project, pkg); 

  Class res = 

SysMLUtility.findPartByFilePath(project, parts, filePart); 

  if (res != null) { 

   int response = 

JOptionPane.showConfirmDialog( parentFrame, 

    "Model element file already exists 

in SysML.\nOverride existing part model?", 

    "Model element already exists", 

    JOptionPane.OK_CANCEL_OPTION, 

    JOptionPane.WARNING_MESSAGE 

   ); 

   return (response == 

JOptionPane.YES_OPTION); 

  } else { 

   return true; 

  } 

 } 

  

 public Property enterExpression( Project project, 

Class parent, Property sysmlExpression, NXExpression 

nxExpression) throws ReadOnlyElementException { 

  return sysmlExpression; 

 } 

   

 public void importWithFilter( Project project, 

Collection<Stereotype> filter ) { 

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

   

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log( "Size of 

filtered set" + filter.size() ); 

  } 

  NXPart part = 

SysMLUtility.openPart(parentFrame, _file); 
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  if (part == null) return; 

   

  String fileName = _file.getName(); 

  ElementsFactory elementsFactory = 

project.getElementsFactory(); 

 

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Class sysmlPart = 

elementsFactory.createClassInstance(); 

  sysmlPart.setName( fileName ); 

  StereotypesHelper.addStereotype(sysmlPart, 

nxPartStereotype); 

 

 

 SessionManager.getInstance().createSession(project, 

"CAD Plugin: add subtree"); 

  try { 

  

 ModelElementsManager.getInstance().addElement(sysmlPar

t, _package); 

  } catch (ReadOnlyElementException roee) { 

   throw new IllegalStateException("ROEE: 

Cannot add package to subpackage"); 

  } 

 

 SessionManager.getInstance().closeSession(project); 

     

  SysMLModelTraverser traverser = 

SysMLModelTraverser.launch( project, sysmlPart, part, new 

UpdateFromNXResolver(null) ); 

  Class resolvedClass = 

traverser.getResolvedClass(); 

 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log( "Resolved 

class : " + resolvedClass ); 

  } 

  StereotypeFilterHandler handler = new 

StereotypeFilterHandler(filter); 

  Application.getInstance().getGUILog().log( 

"Resolved class : " + handler ); 

  traverser = SysMLModelTraverser.launch( 

project, resolvedClass, null, handler ); 

 } 

} 
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InternalUpdate: 
package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.ui.StereotypeFilterDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.PartFileFilter; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.StereotypeFilterHandl

er; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver; 

 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.io.File; 

import java.util.Collection; 

 

import javax.swing.JFileChooser; 

import javax.swing.JOptionPane; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ModelElementsManager; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.magicdraw.openapi.uml.SessionManager; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 
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import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

 

public class ImportNXPartWithFilter extends 

DefaultBrowserAction { 

 private File _file; 

  

 private Package _package; 

 

 /**  * Constructor - configures the action, in 

this case our menu item 

  */ 

 public ImportNXPartWithFilter() { 

  // In the containment browser context pop 

the text that will be displayed in the menu item 

  // is what we specify as the second 

argument. The first argument is an ID 

  super("Import_NX_Part_Filtered", "Import CAD 

Model with Feature Type Filter", null, null); 

 } 

  

 /** 

  * This function (or action) will be fired 

whenever a user clicks on the menu item that we are 

  * describing in this class. I.e. whenever 

someone right clicks in the containment browser and 

  * selects our action, in this case "Import CAD 

Part ...", this function will be called 

  */ 

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 

   

  Object userObject = getSelectedObject(); 

   

  if (!(userObject instanceof Package)) { 

   return; 

  } 
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  Project project = 

Application.getInstance().getProject(); 

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

   

  // Create a new file chooser object 

  JFileChooser fc = new JFileChooser(); 

  fc.setFileFilter( new PartFileFilter() ); 

 

  // Show an "Open" dialog and check whether 

the user has chosen to select a file (and has not 

  // pressed "Cancel") 

  if (fc.showOpenDialog(parentFrame) != 

JFileChooser.APPROVE_OPTION) return; 

   

  // Get the file that was selected 

  File file = fc.getSelectedFile(); 

 

  Collection<Stereotype> st = 

SysMLUtility.getProfileStereotypes( project ); 

  Package pkg = (Package)userObject;  

 

  boolean check = confirmUpdate( parentFrame, 

project, pkg, file ); 

  if (!check) return; 

   

  if (st == null) { 

   throw new IllegalStateException(); 

  } 

  _package = pkg; 

  _file = file; 

   

  final StereotypeFilterDialog stFilter = new 

StereotypeFilterDialog(parentFrame, st); 

  stFilter.setVisible(true); 

   

  Collection<Stereotype> filter = 

stFilter.getFilter(); 

  if (filter != null) { 

  

 Application.getInstance().getGUILog().log( "Showing 

filtered stereotypes: " + filter.size() ); 

   for (Stereotype s : filter) { 

   

 Application.getInstance().getGUILog().log( "ST: " + s 

); 

   } 
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 Application.getInstance().getGUILog().log( "End 

Showing filtered stereotypes: " + filter.size() ); 

   importWithFilter( project, filter ); 

  } 

 } 

  

 private boolean confirmUpdate(Frame parentFrame, 

Project project, Package pkg, File filePart) { 

  Collection<Class> parts = 

SysMLUtility.getAllParts(project, pkg); 

  Class res = 

SysMLUtility.findPartByFilePath(project, parts, filePart); 

  if (res != null) { 

   int response = 

JOptionPane.showConfirmDialog( parentFrame, 

    "Model element file already exists 

in SysML.\nOverride existing part model?", 

    "Model element already exists", 

    JOptionPane.OK_CANCEL_OPTION, 

    JOptionPane.WARNING_MESSAGE 

   ); 

   return (response == 

JOptionPane.YES_OPTION); 

  } else { 

   return true; 

  } 

 } 

  

 public Property enterExpression( Project project, 

Class parent, Property sysmlExpression, NXExpression 

nxExpression) throws ReadOnlyElementException { 

  return sysmlExpression; 

 } 

   

 public void importWithFilter( Project project, 

Collection<Stereotype> filter ) { 

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

   

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log( "Size of 

filtered set" + filter.size() ); 

  } 

  NXPart part = 

SysMLUtility.openPart(parentFrame, _file); 
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  if (part == null) return; 

   

  String fileName = _file.getName(); 

  ElementsFactory elementsFactory = 

project.getElementsFactory(); 

 

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Class sysmlPart = 

elementsFactory.createClassInstance(); 

  sysmlPart.setName( fileName ); 

  StereotypesHelper.addStereotype(sysmlPart, 

nxPartStereotype); 

 

 

 SessionManager.getInstance().createSession(project, 

"CAD Plugin: add subtree"); 

  try { 

  

 ModelElementsManager.getInstance().addElement(sysmlPar

t, _package); 

  } catch (ReadOnlyElementException roee) { 

   throw new IllegalStateException("ROEE: 

Cannot add package to subpackage"); 

  } 

 

 SessionManager.getInstance().closeSession(project); 

     

  SysMLModelTraverser traverser = 

SysMLModelTraverser.launch( project, sysmlPart, part, new 

UpdateFromNXResolver(null) ); 

  Class resolvedClass = 

traverser.getResolvedClass(); 

 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log( "Resolved 

class : " + resolvedClass ); 

  } 

  StereotypeFilterHandler handler = new 

StereotypeFilterHandler(filter); 

  Application.getInstance().getGUILog().log( 

"Resolved class : " + handler ); 

  traverser = SysMLModelTraverser.launch( 

project, resolvedClass, null, handler ); 

 } 

} 
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InternalValidate: 
package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.ui.InstanceReportDialog; 

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.InstanceReportResult; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.io.File; 

import java.util.Collection; 

import java.util.HashMap; 

import java.util.HashSet; 

import java.util.List; 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ModelElementsManager; 

import 

com.nomagic.magicdraw.openapi.uml.PresentationElementsManag

er; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.magicdraw.uml.symbols.DiagramPresentationElemen

t; 

import 

com.nomagic.magicdraw.uml.symbols.shapes.ShapeElement; 
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import com.nomagic.uml2.ext.jmi.helpers.ModelHelper; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Association

; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Classifier; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.InstanceSpe

cification; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

 

/** 

 * Simple action that allows for a file to be selected 

using a file dialog - the file is then loaded 

 * using the Maple API and a corresponding SysML block 

with properties is created. Note that for reasons 

 * of making this more readable, the logic should be 

split into several classes, but, to get started, 

 * let's keep everything in one file 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

public class InternalValidate extends 

DefaultBrowserAction { 
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 public static class UpdateResolver extends 

DefaultNodeHandler { 

  private InstanceSpecification 

_featureInstance; 

  private Collection<Stereotype> _filter; 

  private HashMap<Class,ShapeElement> _hm = 

new HashMap<Class,ShapeElement>(); 

  private Package _package; 

   

  public UpdateResolver(Package pkg, 

Collection<Stereotype> filter) { 

   _package = pkg; 

   _filter = filter; 

  } 

   

  private void addChildClass(Project project, 

Class classB, Class classA) { 

   if (classA == null || classB == null) { 

    return; 

   } 

   Element model = project.getModel(); 

   ElementsFactory f = 

project.getElementsFactory(); 

   ModelElementsManager 

modelElementsManager = ModelElementsManager.getInstance(); 

    

   try { 

    Association link = 

f.createAssociationInstance(); 

    //Dependency dependency = 

f.createDependencyInstance(); 

   

 modelElementsManager.addElement(link, model); 

    ModelHelper.setClientElement(link, 

classA); 

   

 ModelHelper.setSupplierElement(link, classB); 

   

    DiagramPresentationElement 

activeDiagram = project.getActiveDiagram(); 

    PresentationElementsManager 

presentationElementsManager = 

PresentationElementsManager.getInstance(); 

     

    if (activeDiagram != null) { 

     ShapeElement clientShape; 
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     if (!_hm.containsKey(classA)) 

{ 

      clientShape = 

presentationElementsManager.createShapeElement(classA, 

activeDiagram); 

      _hm.put(classA, 

clientShape); 

     } else { 

      clientShape = 

_hm.get(classA); 

     } 

     ShapeElement supplierShape; 

     if (!_hm.containsKey(classB)) 

{ 

      supplierShape = 

presentationElementsManager.createShapeElement(classB, 

activeDiagram); 

      _hm.put(classB, 

supplierShape); 

     } else { 

      supplierShape = 

_hm.get(classB); 

     } 

    

 presentationElementsManager.createPathElement(link, 

clientShape, supplierShape); 

    } else { 

    

 Application.getInstance().getGUILog().log("activeDiagr

am is NULL "); 

    } 

   } catch (ReadOnlyElementException roee) 

{ 

   } 

  } 

   

  @Override 

  public Property enterExpression(Project 

project, Class parent, 

     Property sysmlExpression, 

NXExpression nxExpression) throws ReadOnlyElementException 

{ 

   if (nxExpression != null) { 

    String nxName = 

nxExpression.getName(); 

    ElementsFactory elementsFactory = 

project.getElementsFactory(); 
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    Stereotype 

sysmlNXValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

    Stereotype 

sysmlValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, "ValueProperty"); 

     

    if (PluginMain.DEBUG) { 

    

 Application.getInstance().getGUILog().log( 

       "Visiting Feature: 

SysML: " + (sysmlExpression != null ? 

sysmlExpression.getName() : "[NULL] ") 

           + " NX : " + 

(nxExpression != null ? nxExpression.getName() : "[NULL] ")  

     ); 

    } 

     

    Property resolvedExpression; 

    LiteralString blockSpec; 

    LiteralString instanceSpec; 

    Slot slot; 

         

    // So we have the parameter, now 

set the value 

    instanceSpec = 

elementsFactory.createLiteralStringInstance(); 

   

 instanceSpec.setValue(nxExpression.getValue()); 

     

    if (sysmlExpression != null) { 

     resolvedExpression = 

sysmlExpression; 

     blockSpec = 

(LiteralString)resolvedExpression.getDefaultValue(); 

     // So we have the parameter, 

now set the value 

    

 blockSpec.setValue(nxExpression.getValue()); 

     slot = 

resolvedExpression.get_slotOfDefiningFeature().iterator().n

ext(); 

    } else { 

     resolvedExpression = 

elementsFactory.createPropertyInstance(); 
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     blockSpec = 

elementsFactory.createLiteralStringInstance(); 

     // So we have the parameter, 

now set the value 

    

 blockSpec.setValue(nxExpression.getValue()); 

      

    

 resolvedExpression.setName(nxName); 

    

 StereotypesHelper.addStereotype(resolvedExpression, 

sysmlNXValuePropertyStereotype); 

    

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName", 

nxName); 

    

 StereotypesHelper.addStereotype(resolvedExpression, 

sysmlValuePropertyStereotype);      

    //

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "Type", "Real"); 

    

 resolvedExpression.setDefaultValue(blockSpec); 

     slot = 

elementsFactory.createSlotInstance(); 

    

 slot.setDefiningFeature(resolvedExpression); 

    

 slot.setOwningInstance(_featureInstance); 

 

    

 ModelElementsManager.getInstance().addElement(resolved

Expression, parent); 

    } 

     

    slot.getValue().add(instanceSpec); 

    

    // LiteralReal realSpec = 

elementsFactory.createLiteralRealInstance(); 

    // realSpec.setValue( 

Double.parseDouble( nxExpression.getValue() ) ); 

     

    // Set instance relationships 

     

    if (PluginMain.DEBUG) { 
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 Application.getInstance().getGUILog().log("Updated 

expression: " + resolvedExpression.getName() + " child of " 

+ parent.getName() ); 

    } 

    return resolvedExpression; 

   } else if (sysmlExpression != null) { 

   

 ModelElementsManager.getInstance().removeElement(sysml

Expression); 

   } 

   return null; 

  } 

 

  @Override 

  public Class enterFeature(Project project, 

Class parent, Class sysmlFeature, NXFeature nxFeature) 

throws ReadOnlyElementException { 

   if (nxFeature != null) { 

    ElementsFactory elementsFactory = 

project.getElementsFactory(); 

    Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

  

    Stereotype additionalStereotype = 

null; 

    Class resolvedFeature; 

    if (sysmlFeature != null) { 

     resolvedFeature = 

sysmlFeature; 

    } else { 

     String nxName = 

nxFeature.getName(); 

     resolvedFeature = 

elementsFactory.createClassInstance(); 

    

 resolvedFeature.setName(nxName);  

    

 StereotypesHelper.addStereotype(resolvedFeature, 

nxFeatureStereotype); 

      

     if (PluginMain.DEBUG) { 

     

 Application.getInstance().getGUILog().log("NX Feature 

Type: " + nxFeature.getType() ); 

     } 
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     // Set instance relationships 

     _featureInstance = 

elementsFactory.createInstanceSpecificationInstance(); 

    

 _featureInstance.setName(nxName + " instance"); 

      

    

 _featureInstance.getClassifier().add( resolvedFeature 

); 

    

 //resolvedFeature.setAppliedStereotypeInstance(_featur

eInstance); 

      

//    

 StereotypesHelper.addStereotype(_featureInstance, 

nxFeatureStereotype); 

      

     String type = 

nxFeature.getType(); 

     if (type != null) { 

      additionalStereotype = 

SysMLUtility.featureTypeToStereotype(project, type); 

     } 

     if (additionalStereotype != 

null) { 

     

 StereotypesHelper.addStereotype(resolvedFeature, 

additionalStereotype); 

     //

 StereotypesHelper.addStereotype(_featureInstance, 

additionalStereotype); 

     }      

      

    } 

     

    if (_filter != null && 

additionalStereotype != null && 

_filter.contains(additionalStereotype)) { 

     // skip this feature and 

absorb any children into its parent 

     return null; 

    } else { 

     // Set stereotype property 

values 

    

 StereotypesHelper.setStereotypePropertyValue(resolvedF
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eature, nxFeatureStereotype, "currentFeatureName", 

nxFeature.getName() ); 

    

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "featureType", 

nxFeature.getType() ); 

   

    

 ModelElementsManager.getInstance().addElement(resolved

Feature, parent); 

 //   

 Application.getInstance().getGUILog().log("Updated 

feature: " + resolvedFeature.getName() + " child of " + 

parent.getName() ); 

     //addChildClass(project, 

resolvedFeature, parent); 

 

     return resolvedFeature; 

    } 

   } else if (sysmlFeature != null) { 

   

 ModelElementsManager.getInstance().removeElement(sysml

Feature); 

   } 

   return null; 

  } 

 

  @Override 

  public Class enterPart(Project project, 

Class parent, Class sysmlPart, NXPart nxPart) throws 

ReadOnlyElementException { 

   if (nxPart != null) { 

    ElementsFactory elementsFactory = 

project.getElementsFactory(); 

    Stereotype nxPartStereotype     = 

StereotypesHelper.getStereotype(project, "NXPart"); 

    Stereotype nxAssemblyStereotype = 

StereotypesHelper.getStereotype(project, "NXAssembly"); 

  

    if (PluginMain.DEBUG) { 

    

 Application.getInstance().getGUILog().log( 

       "Visiting Part: 

SysML: " + (sysmlPart != null ? sysmlPart.getName() : 

"[NULL] ") 

       + " NX : " + 

(nxPart != null ? nxPart.getName() : "[NULL] ") 
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       ); 

    } 

     

    Class resolvedPart; 

    if (sysmlPart != null) { 

     resolvedPart = sysmlPart; 

    } else { 

     resolvedPart = 

elementsFactory.createClassInstance(); 

    

 resolvedPart.setName(nxPart.getName());  

    

 StereotypesHelper.addStereotype(resolvedPart, 

nxPartStereotype); 

    } 

     

    // Now set the appropriate 

stereotypes 

    // Set some special stereotype 

properties, in this case the filename and unique ID 

    File file = new File( 

nxPart.getPath() ); 

    String uid = 

nxPart.getUniqueIdentifier(); 

   

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "directory", file.getParent()); 

   

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "currentPartPath", 

file.getAbsolutePath()); 

   

 StereotypesHelper.setStereotypePropertyValue(sysmlPart

, nxPartStereotype, "uniqueID", uid); 

  

    if (nxPart.isAssembly()) { 

    

 StereotypesHelper.addStereotype(resolvedPart, 

nxAssemblyStereotype); 

    } 

    if (parent != null) { 

    

 ModelElementsManager.getInstance().addElement(resolved

Part, parent); 

    } 

    //addChildClass(project, 

resolvedPart, parent); 
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    return resolvedPart; 

   } else if (sysmlPart != null) { 

   

 ModelElementsManager.getInstance().removeElement(sysml

Part); 

   } 

   return null; 

  } 

 

 } 

 private static Class 

getBlock(InstanceSpecification is) { 

  List<Classifier> classifierList = 

is.getClassifier(); 

  for (Classifier classifier : classifierList) 

{ 

   if (classifier instanceof Class) { 

    return (Class)classifier; 

   } 

  } 

  return null; 

 } 

  

 private static final boolean 

isPackageWithInstanceChildren(Object object) { 

  if (!(object instanceof Package)) { 

   return false; 

  } 

  Package userPackage = (Package)object; 

   

  // Check if it has any children which are 

properties 

  Collection<Element> children = 

userPackage.getOwnedElement(); 

  for (Element child : children) { 

   if (child instanceof 

InstanceSpecification) { 

    return true; 

   } 

  } 

  return false; 

 } 

  

 private List<InstanceReportResult> _report; 

 

 private HashSet<String> _uniqueID; 
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 private boolean _result; 

  

 /** 

  * Constructor - configures the action, in this 

case our menu item 

  */ 

 public InternalValidate() { 

  // In the containment browser context pop 

the text that will be displayed in the menu item 

  // is what we specify as the second 

argument. The first argument is an ID 

  super("Validate_Internal", "Instance Results 

Report", null, null); 

 } 

 

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 

   

  Object userObject = getSelectedObject(); 

  if 

(isPackageWithInstanceChildren(userObject) == false) { 

   return; 

  } 

  //ValidateResolver resolver = new 

ValidateResolver(); 

   

   

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

  WaitDialog waitDialog = new 

WaitDialog(parentFrame, "Performing internal consistency 

check...", "System is working"); 

  waitDialog.setVisible(true);  

  _report = 

InstanceReportResult.generateList(Application.getInstance()

.getProject(),(Package)userObject); 

  waitDialog.setVisible(false); 

    

  //for (StructuralFeature  key : hm.keySet()) 

{ 

 // 

 Application.getInstance().getGUILog().log( 

 //    "Slot name: " + key.getName() 

+ " type: " + key +  
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 //     " size: " + 

hm.get(key).size()  

 //  ); 

 //   

 //  updateBlockFromSlot( hm.get(key).get(0) 

); 

 // } 

   

  InstanceReportDialog instanceReport = new 

InstanceReportDialog(parentFrame, _report); 

  instanceReport.setVisible(true); 

 } 

 

 private void fail(String name, String fname, 

String pname, String type, String report) { 

  String s = String.format("%s||%s||%s||%s", 

fname, pname, type, report); 

  if (!_uniqueID.contains(s)) { 

   _report.add( new 

InstanceReportResult(name, fname, pname, type, report ) ); 

   _uniqueID.add(s); 

  } 

  _result = false; 

 } 

  

 private void updateBlockFromSlot(Slot slot) { 

  ElementsFactory elementsFactory = 

Application.getInstance().getProject().getElementsFactory()

; 

  StructuralFeature sfeature = 

slot.getDefiningFeature(); 

  if (sfeature instanceof Property) { 

   List<ValueSpecification> lit = 

slot.getValue(); 

   if (lit.isEmpty()) { return; } 

   ValueSpecification val = lit.get(0); 

   ValueSpecification defaultValue; 

   if (val instanceof LiteralString) { 

    String sysmlValue = 

((LiteralString)val).getValue(); 

    LiteralString instanceSpec = 

elementsFactory.createLiteralStringInstance(); 

    instanceSpec.setValue(sysmlValue); 

    defaultValue = instanceSpec; 

   } else { 

    defaultValue = val; 

   } 
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   // Propagate default value 

   Property prop = (Property)sfeature; 

   if (defaultValue != null) { 

   

 prop.setDefaultValue(defaultValue); 

   } 

  } 

 } 

} 
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LinkNXPart: 
package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.PartFileFilter; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver; 

 

import java.awt.Dimension; 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.io.File; 

import java.util.Collection; 

 

import javax.swing.Box; 

import javax.swing.JButton; 

import javax.swing.JComboBox; 

import javax.swing.JDialog; 

import javax.swing.JFileChooser; 

import javax.swing.JLabel; 

import javax.swing.JOptionPane; 

import javax.swing.WindowConstants; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.NamedElemen

t; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 
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/** 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

public class LinkNXPart extends DefaultBrowserAction { 

  

 class NameChooserDialog extends JDialog 

implements ActionListener { 

  private JButton _cancelButton; 

  private JComboBox _combo; 

  private JButton _confirmButton; 

  private String _result; 

   

  public NameChooserDialog(Frame parent, 

String sysmlPartName, String nxPartName) { 

   super(parent, "Select part name", 

true); 

    

   Box vbox = Box.createVerticalBox(); 

   Box box = Box.createHorizontalBox(); 

    

   vbox.add( Box.createVerticalStrut(20)); 

 

    

   JLabel label = new JLabel( "Select part 

name:"); 

   _combo = new JComboBox(); 

   _combo.setEditable(true); 

    

   box.add(label); 

   box.add(_combo); 

   if (sysmlPartName != null && 

sysmlPartName.trim().length() > 0) { 

    _combo.addItem( sysmlPartName ); 

   } 

   if (nxPartName != null && 

nxPartName.trim().length() > 0) { 

    _combo.addItem( nxPartName ); 

   } 

   vbox.add(box); 

    

   vbox.add( Box.createVerticalStrut(20)); 

 

   box = Box.createHorizontalBox(); 

   _cancelButton = new JButton("Cancel"); 
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   _confirmButton = new 

JButton("Confirm"); 

   box.add(_cancelButton); 

   box.add(_confirmButton); 

   vbox.add(box); 

    

   vbox.add( Box.createVerticalStrut(20)); 

    

   add( vbox ); 

   setPreferredSize( new Dimension(300, 

150)); 

   setLocationRelativeTo( parent ); 

   pack(); 

   setDefaultCloseOperation( 

WindowConstants.HIDE_ON_CLOSE); 

    

   _cancelButton.addActionListener(this); 

   _confirmButton.addActionListener(this); 

  } 

 

  @Override 

  public void actionPerformed(ActionEvent ae) 

{ 

   Object target = ae.getSource(); 

   if (target == _cancelButton) { 

    setVisible(false); 

   } else if (target == _confirmButton) { 

    _result = 

_combo.getSelectedItem().toString(); 

    setVisible(false); 

   } 

  } 

   

  public String getResult() { 

   return _result; 

  } 

  

 } 

  

 /** 

  * Constructor - configures the action, in this 

case our menu item 

  */ 

 public LinkNXPart() { 

  // In the containment browser context pop 

the text that will be displayed in the menu item 
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  // is what we specify as the second 

argument. The first argument is an ID 

  super("Link_NX_Part", "Link CAD Model to 

Existing SysML Model", null, null); 

   

  // Configure the maple engine arguments - 

must be a list of strings with the first element being 

"java" 

   

 } 

  

 /** 

  * This function (or action) will be fired 

whenever a user clicks on the menu item that we are 

  * describing in this class. I.e. whenever 

someone right clicks in the containment browser and 

  * selects our action, in this case "Link NX Part 

...", this function will be called 

  */ 

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 

   

  Object userObject = getSelectedObject(); 

  if (!(userObject instanceof Class)) { 

   return; 

  } 

  Class userClass = (Class)userObject; 

  Project project = 

Application.getInstance().getProject(); 

  ElementsFactory elementsFactory = 

project.getElementsFactory(); 

 

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  if 

(!(StereotypesHelper.hasStereotype(userClass, 

nxPartStereotype))) { 

   return; 

  } 

     

  JFileChooser fc = new JFileChooser(); 

  fc.setFileFilter( new PartFileFilter() ); 

  

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 
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  // Show an "Open" dialog and check whether 

the user has chosen to select a file (and has not pressed 

"Cancel") 

  if(fc.showOpenDialog(parentFrame) == 

JFileChooser.APPROVE_OPTION) { 

   // Get the file that was selected 

   File file = fc.getSelectedFile(); 

    

   Collection<Class> parts = 

SysMLUtility.getPartChildren(project, userClass); 

   Class search = 

SysMLUtility.findPartByFilePath( project, parts, file ); 

 

   if (search != null) { 

     

   

 JOptionPane.showMessageDialog(parentFrame, "File 

already linked", "Selected file already exists in SysML", 

JOptionPane.ERROR_MESSAGE); 

    return; 

   } 

    

   String partName = choosePartName( file, 

userClass ); 

   userClass.setName( partName ); 

 

   NXPart part = 

SysMLUtility.openPart(parentFrame, file); 

   // DOES NOT WORK 

   SysMLModelTraverser.launch( project, 

userClass, part, new UpdateFromNXResolver(null)  ); 

  } 

 } 

  

 private String choosePartName(File file, 

NamedElement sysmlElement) { 

  Frame parent = 

MDDialogParentProvider.getProvider().getDialogParent(); 

   

  if (!file.exists()) { 

   JOptionPane.showMessageDialog(parent, 

"File not found", "Selected file not found", 

JOptionPane.ERROR_MESSAGE); 

   return null; 

  } 

   

  String partName = sysmlElement.getName(); 
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  String nxPartName = file.getName(); 

 

  NameChooserDialog dialog = new 

NameChooserDialog(parent, partName, nxPartName); 

   

  dialog.setVisible(true); 

  //System.out.println("Dialog Output: " + 

partName); 

  partName = dialog.getResult(); 

   

  if (partName != null && 

!partName.toLowerCase().endsWith(".prt")) { 

   partName = partName + ".prt"; 

  } 

  return partName; 

 } 

  

/* private void updateComponent(Project project, 

NamedElement sysmlElement, String partName, File file, 

String uid) { 

  if (partName == null) { 

   return; 

  } 

  sysmlElement.setName( partName ); 

  Stereotype nxPartStereotype = 

NXStereotype.getStereotype(Application.getInstance().getPro

ject(), sysmlElement); 

  if (nxPartStereotype != null) { 

  

 StereotypesHelper.setStereotypePropertyValue(sysmlElem

ent, nxPartStereotype, "directory", file.getParent()); 

  

 StereotypesHelper.setStereotypePropertyValue(sysmlElem

ent, nxPartStereotype, "currentPartPath", 

file.getAbsolutePath()); 

  

 StereotypesHelper.setStereotypePropertyValue(sysmlElem

ent, nxPartStereotype, "uniqueID", uid); 

  } 

 } 

  

 /*private void linkPart (File file, NamedElement 

userElement) { 

  Project project = 

Application.getInstance().getProject(); 

   

  String filename = file.getAbsolutePath(); 
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  Stereotype st = 

NXStereotype.getStereotype(project, userElement); 

  System.out.println("Read stereotype " + 

st.getName()); 

   

  NamedElement search = 

SysMLUtility.findPartByName( project, 

(Class)userElement.getOwner(), filename ); 

  Frame parent = 

MDDialogParentProvider.getProvider().getDialogParent(); 

  if (search != null) { 

    

   JOptionPane.showMessageDialog(parent, 

"File already linked", "Selected file already exists in 

SysML", JOptionPane.ERROR_MESSAGE); 

   return; 

  } 

   

  WaitDialog waitDialog = new 

WaitDialog(parent); 

  waitDialog.setVisible(true); 

   

  NXConnection engine = 

NXClientEngine.getInstance(); 

  boolean success; 

  success = engine.openConnection(); 

  System.out.println("Open connection: " +  

success); 

  NXPart part = engine.openPart( file ); 

  success = (part != null); 

  System.out.println("Open part: " +  

success); 

  if (!success) { 

   return; 

  } 

  String uid = engine.getUniqueIdentifier( 

part ); 

  System.out.println("Get UID: " + uid); 

  NXExpressionList nxParams = 

engine.getParameterInfo( part ); 

  Collection<String> components = 

engine.getComponentList( part ); 

  success = engine.closeConnection(); 

  System.out.println("Close connection: " + 

success); 

  //int numParams = nxParams.size(); 
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  //System.out.println("NumParams: " + 

numParams); 

   

  String partName = choosePartName( file, 

userElement ); 

 

  //NamedElement otherElement = 

SysMLUtility.getCorrespondingElement(project, userElement, 

st); 

 

  linkPartInternal( project, userElement, 

partName, file, uid, nxParams, components ); 

  //if (otherElement != null) { 

  // linkPartInternal( project, 

otherElement, partName, file, uid, nxParams, components ); 

  //} 

 

  //SysMLUtility.linkComponents(project, 

userElement, otherElement, components); 

   

  waitDialog.setVisible(false); 

 } 

  

 private void linkPartInternal(Project project, 

NamedElement element, String partName, File file, String 

uid, NXExpressionList nxParams, Collection<String> 

components) { 

 

 SysMLUtility.clearAssemblyComponents(project, 

element); 

  updateComponent( project, element, partName, 

file, uid ); 

   

  if (element instanceof Class) { 

   int numParams = nxParams.size(); 

  

 SysMLParameters.removeAllParameters(element); 

   for (NXExpression param : nxParams) { 

   

 SysMLParameters.addParameterToClass( elementsFactory, 

element, param ); 

    System.out.printf( "%s -> %s\n", 

param.getName(), param.getValue() ); 

   } 

    

   if (components.size() > 0) { 
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    Stereotype nxAssemblyStereotype = 

StereotypesHelper.getStereotype(Application.getInstance().g

etProject(), "NXAssembly"); 

   

 StereotypesHelper.addStereotype(element, 

nxAssemblyStereotype); 

   }  

  } 

   

 }*/ 

 

} 
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ResolveNXPart: 
package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXClientEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXConnectionExce

ption; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.ui.ConsistencyReportDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.ui.InteractiveConsistencyRepo

rtDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.ConsistencyResult; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateObject; 

 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.io.File; 

import java.util.ArrayList; 

import java.util.Collection; 

import java.util.HashSet; 

import java.util.List; 

 

import javax.swing.JDialog; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ModelElementsManager; 
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import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

 

public class ResolveNXPart extends 

DefaultBrowserAction { 

  

 static class FeatureNameUpdate extends 

UpdateObject { 

  private NXEngine _engine; 

  private NXFeature _nxFeature; 

  private NXPart _nxPart; 

  private Project _project; 

  private Class _sysmlFeature; 

   

  public FeatureNameUpdate(NXEngine engine, 

Project project, Class sysmlFeature, NXPart nxPart, 

NXFeature nxFeature) { 

   _project = project; 

   _sysmlFeature = sysmlFeature; 

   _nxFeature = nxFeature; 

   _nxPart = nxPart; 

  } 

  @Override 

  public boolean canUpdateNX() { return true; 

} 

  @Override 
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  public boolean canUpdateSysML() { return 

true; } 

   

  @Override 

  public void updateNX() { 

   Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(_project, "NXPartFeature"); 

   String newName = 

_sysmlFeature.getName(); 

   String oldName = 

StereotypesHelper.getStereotypePropertyFirst(_sysmlFeature, 

nxFeatureStereotype, "currentFeatureName").toString();  

  

   if (!oldName.equals(newName)) { 

    _engine.renameFeature( _nxPart, 

oldName, newName ); 

   

 StereotypesHelper.setStereotypePropertyValue(_sysmlFea

ture, nxFeatureStereotype, "currentFeatureName", newName ); 

   } 

  } 

  @Override 

  public void updateSysML() { 

   Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(_project, "NXPartFeature"); 

   String name = _nxFeature.getName(); 

   _sysmlFeature.setName(name);  

  

 StereotypesHelper.addStereotype(_sysmlFeature, 

nxFeatureStereotype); 

  } 

 } 

  

 static class FeatureTypeUpdate extends 

UpdateObject { 

  private NXFeature _nxFeature; 

  private NXPart _nxPart; 

  private Project _project; 

  private Class _sysmlFeature; 

  public FeatureTypeUpdate(Project project, 

Class sysmlFeature, NXPart nxPart, NXFeature nxFeature) { 

   _project = project; 

   _sysmlFeature = sysmlFeature; 

   _nxFeature = nxFeature; 

   _nxPart = nxPart; 

  } 

  @Override 
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  public boolean canUpdateNX() { return false; 

} 

  @Override 

  public boolean canUpdateSysML() { return 

false; } 

  @Override 

  public void updateSysML() { 

   Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(_project, "NXPartFeature"); 

   String type = _nxFeature.getType(); 

   Stereotype additionalStereotype; 

   additionalStereotype = (type != null ? 

SysMLUtility.featureTypeToStereotype(_project, type) : 

null); 

   if (additionalStereotype != null) { 

   

 StereotypesHelper.addStereotype(_sysmlFeature, 

additionalStereotype); 

   }   

   if (additionalStereotype != null) { 

    // Set stereotype property values 

   

 StereotypesHelper.setStereotypePropertyValue(_sysmlFea

ture, nxFeatureStereotype, "currentFeatureName", 

_nxFeature.getName() ); 

   

 StereotypesHelper.setStereotypePropertyValue(_sysmlFea

ture, nxFeatureStereotype, "featureType", type ); 

   } 

  } 

 } 

  

 static class NewFeatureUpdate extends 

UpdateObject { 

  private NXFeature _nxFeature; 

  private Project _project; 

  private Class _sysmlParent; 

   

  public NewFeatureUpdate(Project project, 

Class parent, NXFeature nxFeature) { 

   _project = project; 

   _sysmlParent = parent; 

   _nxFeature = nxFeature; 

  } 

   

  @Override 
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  public boolean canUpdateNX() { return false; 

} 

  @Override 

  public boolean canUpdateSysML() { return 

true; } 

   

  @Override 

  public void updateSysML() { 

   ElementsFactory elementsFactory = 

_project.getElementsFactory(); 

   Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(_project, "NXPartFeature"); 

 

   Stereotype additionalStereotype = null; 

   Class resolvedFeature = 

elementsFactory.createClassInstance(); 

   String name = _nxFeature.getName(); 

   resolvedFeature.setName(name);  

  

 StereotypesHelper.addStereotype(resolvedFeature, 

nxFeatureStereotype); 

    

   String type = _nxFeature.getType(); 

   if (type != null) { 

    additionalStereotype = 

SysMLUtility.featureTypeToStereotype(_project, type); 

   } 

   if (additionalStereotype != null) { 

   

 StereotypesHelper.addStereotype(resolvedFeature, 

additionalStereotype); 

   } 

   // Set stereotype property values 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "currentFeatureName", name ); 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "featureType", 

_nxFeature.getType() ); 

 

   try { 

   

 ModelElementsManager.getInstance().addElement(resolved

Feature, _sysmlParent); 

   } catch (ReadOnlyElementException roe) 

{ 
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   } 

  } 

 } 

  

 static class NewParameterUpdate extends 

UpdateObject { 

  private NXExpression _nxExpression; 

  private Project _project; 

  private Class _sysmlParent; 

   

  public NewParameterUpdate(Project project, 

Class parent, NXExpression nxExpression) { 

   _project = project; 

   _sysmlParent = parent; 

   _nxExpression = nxExpression; 

  } 

   

  @Override 

  public boolean canUpdateNX() { return false; 

} 

  @Override 

  public boolean canUpdateSysML() { return 

true; } 

     

  @Override 

  public void updateSysML() { 

   ElementsFactory elementsFactory = 

_project.getElementsFactory(); 

   Stereotype sysmlValuePropertyStereotype 

= StereotypesHelper.getStereotype(_project, 

"NXValueProperty"); 

    

   String nxName = 

_nxExpression.getName(); 

   Property resolvedExpression = 

elementsFactory.createPropertyInstance(); 

   resolvedExpression.setName(nxName); 

  

 StereotypesHelper.addStereotype(resolvedExpression, 

sysmlValuePropertyStereotype); 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName", 

nxName); 

    

   // So we have the parameter, now set 

the value 
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   LiteralString spec = 

elementsFactory.createLiteralStringInstance(); 

   spec.setValue( _nxExpression.getValue() 

); 

  

 resolvedExpression.setDefaultValue(spec); 

 

   try { 

   

 ModelElementsManager.getInstance().addElement(resolved

Expression, _sysmlParent); 

   } catch (ReadOnlyElementException roe) 

{ 

   } 

  } 

 } 

  

 static class NewPartUpdate extends UpdateObject { 

  private NXEngine _engine; 

  private NXPart _nxPart; 

  private Project _project; 

  private Class _sysmlParent; 

   

  public NewPartUpdate(NXEngine engine, 

Project project, Class parent, NXPart nxPart) { 

   _project = project; 

   _sysmlParent = parent; 

   _nxPart = nxPart; 

  } 

   

  @Override 

  public boolean canUpdateNX() { return false; 

} 

  @Override 

  public boolean canUpdateSysML() { return 

true; } 

   

  @Override 

  public void updateSysML() { 

   ElementsFactory elementsFactory = 

_project.getElementsFactory(); 

   Stereotype nxPartStereotype     = 

StereotypesHelper.getStereotype(_project, "NXPart"); 

   Stereotype nxAssemblyStereotype = 

StereotypesHelper.getStereotype(_project, "NXAssembly"); 

 



368 

 

   Class resolvedPart = 

elementsFactory.createClassInstance(); 

  

 resolvedPart.setName(_nxPart.getName());  

  

 StereotypesHelper.addStereotype(resolvedPart, 

nxPartStereotype); 

    

   // Now set the appropriate stereotypes 

   // Set some special stereotype 

properties, in this case the filename and unique ID 

   File file = new File( _nxPart.getPath() 

); 

   String uid = 

_nxPart.getUniqueIdentifier(); 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "directory", file.getParent()); 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "currentPartPath", 

file.getAbsolutePath()); 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "uniqueID", uid); 

 

   if (_nxPart.isAssembly()) { 

   

 StereotypesHelper.addStereotype(resolvedPart, 

nxAssemblyStereotype); 

   } 

   try { 

   

 ModelElementsManager.getInstance().addElement(resolved

Part, _sysmlParent); 

   } catch (ReadOnlyElementException roe) 

{ 

   } 

   //addChildClass(project, resolvedPart, 

parent); 

  } 

 } 

  

 static class ParameterNameUpdate extends 

UpdateObject { 

  private NXEngine _engine; 

  private NXExpression _nxExpression; 
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  private NXPart _nxPart; 

  private Project _project; 

  private Property _sysmlExpression; 

   

  public ParameterNameUpdate(NXEngine engine, 

Project project, Property sysmlExpression, NXPart nxPart, 

NXExpression nxExpression) { 

   _project = project; 

   _sysmlExpression = sysmlExpression; 

   _nxExpression = nxExpression; 

   _nxPart = nxPart; 

   _engine = engine; 

  } 

   

  @Override 

  public boolean canUpdateNX() { return true; 

} 

  @Override 

  public boolean canUpdateSysML() { return 

true; } 

  @Override 

  public void updateNX() { 

   Stereotype sysmlValuePropertyStereotype 

= StereotypesHelper.getStereotype(_project, 

"NXValueProperty"); 

   String newName = 

_sysmlExpression.getName(); 

   String oldName = 

StereotypesHelper.getStereotypePropertyFirst(_sysmlExpressi

on, sysmlValuePropertyStereotype, 

"currentName").toString(); 

 

   boolean result = true; 

   if (!oldName.equals(newName)) { 

    result = _engine.renameParameter( 

_nxPart, oldName, newName ); 

   

 StereotypesHelper.setStereotypePropertyValue(_sysmlExp

ression, sysmlValuePropertyStereotype, "currentName", 

newName ); 

   } 

  } 

   

  @Override 

  public void updateSysML() { 

   ElementsFactory elementsFactory = 

_project.getElementsFactory(); 
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   Stereotype sysmlValuePropertyStereotype 

= StereotypesHelper.getStereotype(_project, 

"NXValueProperty"); 

   String nxName = 

_nxExpression.getName(); 

   Property resolvedExpression = 

elementsFactory.createPropertyInstance(); 

   resolvedExpression.setName(nxName); 

  

 StereotypesHelper.addStereotype(resolvedExpression, 

sysmlValuePropertyStereotype); 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName", 

nxName); 

  } 

 } 

  

 static class ParameterValueUpdate extends 

UpdateObject { 

  private NXEngine _engine; 

  private NXExpression _nxExpression; 

  private NXPart _nxPart; 

  private Project _project; 

  private Property _sysmlExpression; 

   

  public ParameterValueUpdate(NXEngine engine, 

Project project, Property sysmlExpression, NXPart nxPart, 

NXExpression nxExpression) { 

   _project = project; 

   _sysmlExpression = sysmlExpression; 

   _nxExpression = nxExpression; 

   _nxPart = nxPart; 

   _engine = engine; 

  } 

  @Override 

  public boolean canUpdateNX() { return true; 

} 

  @Override 

  public boolean canUpdateSysML() { return 

true; } 

   

  @Override 

  public void updateNX() { 

   // Set stereotype property values 

   String newName = 

_sysmlExpression.getName(); 
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   ValueSpecification spec = 

_sysmlExpression.getDefaultValue(); 

   String sysmlValue = (spec instanceof 

LiteralString ? ((LiteralString)spec).getValue() : null ); 

  

 //Application.getInstance().getGUILog().log("Expr 

sysmlValue: " + sysmlValue);  

   if (_nxExpression != null && sysmlValue 

!= null && !sysmlValue.equals(_nxExpression.getValue())) { 

    NXExpression newExpr = new 

NXExpression( newName, sysmlValue, 

_nxExpression.getProperty() ); 

    _engine.setParameterValue( 

_nxPart, newName, sysmlValue ); 

   } 

  } 

   

  @Override 

  public void updateSysML() { 

   ElementsFactory elementsFactory = 

_project.getElementsFactory(); 

   // So we have the parameter, now set 

the value 

   ValueSpecification spec = 

_sysmlExpression.getDefaultValue(); 

   if (spec instanceof LiteralString) { 

    ((LiteralString) 

spec).setValue(_nxExpression.getValue()); 

   } else { 

    throw new 

IllegalStateException("illegal value specification type"); 

   } 

  } 

 } 

  

 static class PartNameUpdate extends UpdateObject 

{ 

  private NXEngine _engine; 

  private NXPart _nxPart; 

  private Project _project; 

  private Class _sysmlPart; 

   

  public PartNameUpdate(NXEngine engine, 

Project project, Class sysmlPart, NXPart nxPart) { 

   _project = project; 

   _sysmlPart = sysmlPart; 

   _nxPart = nxPart; 
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   _engine = engine; 

  } 

   

  @Override 

  public boolean canUpdateNX() { return true; 

} 

  @Override 

  public boolean canUpdateSysML() { return 

true; } 

   

  @Override 

  public void updateNX() { 

   Stereotype nxPartStereotype     = 

StereotypesHelper.getStereotype(_project, "NXPart"); 

   Stereotype nxAssemblyStereotype = 

StereotypesHelper.getStereotype(_project, "NXAssembly"); 

 

   // Now set the appropriate stereotypes 

   // Set some special stereotype 

properties, in this case the filename and unique ID 

   String newName = _sysmlPart.getName(); 

 

   String dir = 

StereotypesHelper.getStereotypePropertyFirst(_sysmlPart, 

nxPartStereotype, "directory").toString(); 

   String filename = dir + File.separator 

+ newName; 

 

   File newFile = new File( filename ); 

    

   NXPart finalPart = _nxPart; 

   NXPart newPart = 

SysMLUtility.renameNXPart( _engine, _nxPart, newFile ); 

   if (newPart != null) { 

   

 StereotypesHelper.setStereotypePropertyValue( 

_sysmlPart, nxPartStereotype, "currentPartPath", filename 

); 

    finalPart = newPart; 

   } 

  } 

   

  @Override 

  public void updateSysML() { 

   ElementsFactory elementsFactory = 

_project.getElementsFactory(); 
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   Stereotype nxPartStereotype     = 

StereotypesHelper.getStereotype(_project, "NXPart"); 

   Stereotype nxAssemblyStereotype = 

StereotypesHelper.getStereotype(_project, "NXAssembly"); 

 

   _sysmlPart.setName(_nxPart.getName());  

  

 StereotypesHelper.addStereotype(_sysmlPart, 

nxPartStereotype); 

    

   // Now set the appropriate stereotypes 

   // Set some special stereotype 

properties, in this case the filename and unique ID 

   File file = new File( _nxPart.getPath() 

); 

   String uid = 

_nxPart.getUniqueIdentifier(); 

  

 StereotypesHelper.setStereotypePropertyValue(_sysmlPar

t, nxPartStereotype, "directory", file.getParent()); 

  

 StereotypesHelper.setStereotypePropertyValue(_sysmlPar

t, nxPartStereotype, "currentPartPath", 

file.getAbsolutePath()); 

  

 StereotypesHelper.setStereotypePropertyValue(_sysmlPar

t, nxPartStereotype, "uniqueID", uid); 

 

   if (_nxPart.isAssembly()) { 

   

 StereotypesHelper.addStereotype(_sysmlPart, 

nxAssemblyStereotype); 

   } 

  } 

 } 

  

 public class ValidateResolver extends 

DefaultNodeHandler { 

  private ArrayList<ConsistencyResult> 

_consistencyReport; 

  private NXEngine _engine; 

  private ArrayList<NXPart> _partHierarchy; 

  private boolean _result; 

  private HashSet<String> _uniqueID; 

   

  public ValidateResolver(NXEngine engine) { 
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   _consistencyReport = new 

ArrayList<ConsistencyResult>(); 

   _uniqueID = new HashSet<String>(); 

   _result = true; 

   _partHierarchy = new 

ArrayList<NXPart>(); 

   _engine = engine; 

  } 

   

  @Override 

  public Property enterExpression(Project 

project, Class parent, 

    Property sysmlExpression, 

NXExpression nxExpression) { 

    

   String sysmlName = (sysmlExpression != 

null ? sysmlExpression.getName() : null); 

   NXPart nxPart = _partHierarchy.get(0); 

   if (nxExpression != null) { 

    String nxName = 

nxExpression.getName(); 

    if (sysmlExpression != null) { 

     if 

(!nxName.equals(sysmlExpression.getName())) { 

      fail( 

       "Expression", 

sysmlName, 

       String.format("NX 

parameter name %s differs from SysML parameter name", 

nxName), 

       new 

ParameterNameUpdate(_engine, project, sysmlExpression, 

nxPart, nxExpression) 

      ); 

     } 

    } else { 

     fail( 

      "Expression", nxName, 

"No SysML equivalent for NX parameter", 

      new 

NewParameterUpdate(project, parent, nxExpression) 

     ); 

    } 

   } else if (sysmlExpression != null) { 

    fail("Expression", sysmlName, "No 

NX equivalent for SysML parameter", errorUpdate ); 

   } 
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   if (sysmlExpression != null && 

nxExpression != null) { 

    ValueSpecification spec = 

sysmlExpression.getDefaultValue(); 

    String sysmlValue = (spec 

instanceof LiteralString ? ((LiteralString)spec).getValue() 

: null ); 

    if (sysmlValue != null) { 

     if 

(!sysmlValue.equals(nxExpression.getValue())) { 

      fail( 

       "Expression", 

sysmlName, 

      

 String.format("Value conflict: NX value %s differs 

from SysML value %s", nxExpression.getValue(), sysmlValue), 

       new 

ParameterValueUpdate(_engine, project, sysmlExpression, 

nxPart, nxExpression) 

      ); 

     } 

    } else { 

     fail("Expression", 

nxExpression.getName(), "SysML parameter value cannot be 

read", errorUpdate); 

    } 

   } 

   return sysmlExpression; 

  } 

   

  @Override 

  public Class enterFeature(Project project, 

Class parent, Class sysmlFeature, NXFeature nxFeature) { 

   Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

   String sysmlName = (sysmlFeature != 

null ? sysmlFeature.getName() : null); 

   NXPart nxPart = _partHierarchy.get(0); 

   if (nxFeature != null) { 

    String nxName = 

nxFeature.getName(); 

    if (sysmlFeature != null) { 

     if 

(!nxName.equals(sysmlFeature.getName())) { 

      fail( 
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       "Feature", 

sysmlName, 

       String.format("NX 

feature name %s differs from SysML feature name", nxName), 

       new 

FeatureNameUpdate(_engine, project, sysmlFeature, nxPart, 

nxFeature) 

      ); 

     } 

    } else { 

     fail( 

      "Feature", nxName, 

      "No SysML equivalent for 

NX feature", 

      new 

NewFeatureUpdate(project, parent, nxFeature) 

     ); 

    } 

   } else if (sysmlFeature != null) { 

    fail("Feature", sysmlName, "No NX 

equivalent for SysML feature", errorUpdate ); 

   } 

    

   //String sysmlFeatureName = 

sysmlFeature.getName(); 

   //String nxFeatureName = 

nxFeature.getName(); 

   //if 

(!sysmlFeatureName.equals(nxFeatureName)) { 

   // consistencyResult = new 

ConsistencyResult( false, String.format("Feature name %s 

differs from feature name %s", nxFeatureName, 

sysmlFeatureName) ); 

   // return sysmlFeature; 

   //} 

    

   if (sysmlFeature != null && nxFeature 

!= null) { 

    String nxFType = 

nxFeature.getType(); 

    if 

(StereotypesHelper.hasStereotype(sysmlFeature, 

nxFeatureStereotype) && 

     

 StereotypesHelper.getStereotypePropertyValue(sysmlFeat

ure, nxFeatureStereotype, "featureType") != null) { 
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     Object childFtype = 

StereotypesHelper.getStereotypePropertyFirst(sysmlFeature, 

nxFeatureStereotype, "featureType"); 

     String sysmlFType = 

childFtype.toString(); 

     if 

(!sysmlFType.equals(nxFType)) { 

      fail( 

       "Feature", 

sysmlName, 

       String.format("NX 

feature type %s differs from SysML feature type %s", 

nxFType, sysmlFType), 

       new 

FeatureTypeUpdate(project, sysmlFeature, nxPart, nxFeature) 

      ); 

      return sysmlFeature; 

     } 

    } else { 

     fail( 

      "Feature", sysmlName, 

      String.format("NX 

feature type is %s, SysML has no feature type %s", 

nxFType), 

      new 

FeatureTypeUpdate(project, sysmlFeature, nxPart, nxFeature) 

     ); 

    } 

     

    Collection<NXExpression> 

nxExpressions = nxFeature.getExpressions(); 

    Collection<Property> 

sysmlExpressions = SysMLUtility.getExpressions(project, 

sysmlFeature); 

     

    if (nxExpressions.size() != 

sysmlExpressions.size()) { 

     fail("Feature", sysmlName, 

String.format("%d parameters in NX, %d parameters in 

SysML", nxExpressions.size(), sysmlExpressions.size()), 

errorUpdate ); 

     return sysmlFeature; 

    } 

     

    Collection<NXFeature> 

nxSubfeatures = nxFeature.getChildren(); 
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    Collection<Class> sysmlSubfeatures 

= SysMLUtility.getFeatures(project, sysmlFeature); 

     

    if (nxSubfeatures.size() != 

sysmlSubfeatures.size()) { 

     fail("Feature", sysmlName, 

String.format("%d features in NX, %d features in SysML", 

nxSubfeatures.size(), sysmlSubfeatures.size()), errorUpdate 

); 

    } 

   } 

  

   return sysmlFeature; 

  } 

   

  @Override 

  public Class enterPart(Project project, 

Class parent, Class sysmlPart, NXPart nxPart) { 

   //ElementsFactory elementsFactory = 

project.getElementsFactory(); 

//   Stereotype nxPartStereotype     = 

StereotypesHelper.getStereotype(project, "NXPart"); 

   String sysmlName = (sysmlPart != null ? 

sysmlPart.getName() : null); 

   _partHierarchy.add( 0, nxPart ); 

   if (nxPart != null) { 

    String nxName = nxPart.getName(); 

    if (sysmlPart != null) { 

     if 

(!nxName.equals(sysmlPart.getName())) { 

      fail( 

       "Part", sysmlName, 

       String.format("NX 

part name %s differs from SysML part name %s", nxName), 

       new 

PartNameUpdate(_engine, project, sysmlPart, nxPart) 

      ); 

     } 

    } else { 

     fail( 

      "Part", nxName, 

      "No SysML equivalent for 

NX part", 

      new 

NewPartUpdate(_engine, project, parent, nxPart) 

     ); 

    } 
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   } else if (sysmlPart != null) { 

    fail("Part", sysmlName, "No NX 

equivalent for SysML part", errorUpdate ); 

   } 

   return sysmlPart; 

  } 

   

  private void fail(String type, String id, 

String report, UpdateObject obj) { 

   String s = String.format("%s||%s||%s", 

type, id, report); 

   if (!_uniqueID.contains(s)) { 

    _consistencyReport.add( new 

ConsistencyResult( type, id, report, obj ) ); 

    _uniqueID.add(s); 

   } 

   _result = false; 

  } 

 

  public List<ConsistencyResult> 

getInconsistencyList() { 

   return _consistencyReport; 

  } 

 

  public boolean getResult() { 

   return _result; 

  } 

 } 

  

 ElementsFactory elementsFactory = 

Application.getInstance().getProject().getElementsFactory()

; 

  

 UpdateObject errorUpdate = new UpdateObject() { 

  @Override 

  public boolean canUpdateNX() { return true; 

} 

  @Override 

  public boolean canUpdateSysML() { return 

true; } 

 }; 

  

 /** 

  * Constructor - configures the action, in this 

case our menu item 

  */ 

 public ResolveNXPart() { 
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  // In the containment browser context pop 

the text that will be displayed in the menu item 

  // is what we specify as the second 

argument. The first argument is an ID 

  super("Resolve_NX_Part_Maple", "Resolve 

SysML-CAD Inconsistencies", null, null); 

 } 

  

 /** 

  * This function (or action) will be fired 

whenever a user clicks on the menu item that we are 

  * describing in this class. I.e. whenever 

someone right clicks in the containment browser and 

  * selects our action, in this case "Import NX 

Part ...", this function will be called 

  */ 

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 

   

  NXEngine engine; 

  try { 

   engine = new NXClientEngine(); 

  } catch (NXConnectionException nxce) { 

   engine = null; 

  } 

  if (engine == null ) { return; } 

   

  Object userObject = getSelectedObject(); 

  if (!(userObject instanceof Class)) { 

   return; 

  } 

  Class userClass = (Class)userObject; 

  Project project = 

Application.getInstance().getProject();   

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  if 

(!(StereotypesHelper.hasStereotype(userClass, 

nxPartStereotype))) { 

   return; 

  } 

   

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 
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//  WaitDialog waitDialog = new 

WaitDialog(parent); 

//  waitDialog.setVisible(true); 

  //ProgressMonitor pm = new 

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE, 

"Please wait", 0, 10); 

 

  String currentPartPath = 

StereotypesHelper.getStereotypePropertyFirst(userClass, 

nxPartStereotype, "currentPartPath").toString(); 

  File file = new File( currentPartPath ); 

  ValidateResolver resolver = new 

ValidateResolver(engine); 

 

  NXPart part = 

SysMLUtility.openPart(parentFrame, file); 

  SysMLModelTraverser.launch( project, 

userClass, part, resolver ); 

 

  JDialog consistencyReport;  

  List<ConsistencyResult> res = 

resolver.getInconsistencyList(); 

  if (res == null) { res = new 

ArrayList<ConsistencyResult>(); }; 

  if (res.size() > 0) { 

   consistencyReport = new 

InteractiveConsistencyReportDialog(parentFrame, res, 

project, userClass, file, part); 

  } else { 

   consistencyReport = new 

ConsistencyReportDialog(parentFrame, res); 

  } 

  consistencyReport.setVisible(true); 

 } 

 

} 

UpdateFromNXPart: 
package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 
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import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver; 

 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.io.File; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

 

/** 

 * Simple action that allows for a file to be selected 

using a file dialog - the file is then loaded 

 * using the Maple API and a corresponding SysML block 

with properties is created. Note that for reasons 

 * of making this more readable, the logic should be 

split into several classes, but, to get started, 

 * let's keep everything in one file 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

public class UpdateFromNXPart extends 

DefaultBrowserAction { 

  

 /** 

  * Constructor - configures the action, in this 

case our menu item 

  */ 

 public UpdateFromNXPart() { 

  // In the containment browser context pop 

the text that will be displayed in the menu item 

  // is what we specify as the second 

argument. The first argument is an ID 
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  super("Update_Part_from_NX", "Update SysML 

Model from CAD Model", null, null); 

 } 

 

  

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 

   

  Object userObject = getSelectedObject(); 

  if (!(userObject instanceof Class)) { 

   return; 

  } 

  Class userClass = (Class)userObject; 

  Project project = 

Application.getInstance().getProject();   

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  if 

(!(StereotypesHelper.hasStereotype(userClass, 

nxPartStereotype))) { 

   return; 

  } 

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

  WaitDialog waitDialog = new 

WaitDialog(parentFrame, "Updating from NX...", "System is 

working"); 

  waitDialog.setVisible(true); 

  

  Object currentPartPath = 

StereotypesHelper.getStereotypePropertyFirst(userClass, 

nxPartStereotype, "currentPartPath"); 

  File nxFile = new File( 

currentPartPath.toString() ); 

 

//  ProgressMonitor pm = new 

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE, 

"Please wait", 0, 10); 

   

  DefaultNodeHandler resolver = new 

UpdateFromNXResolver(null); 

  NXPart part = 

SysMLUtility.openPart(parentFrame, nxFile); 

  SysMLModelTraverser.launch( project, 

userClass, part, resolver ); 
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  resolver = null; 

  // Read parameter and components 

 

//  pm.close(); 

  waitDialog.setVisible(false); 

 } 

} 
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UpdateToNXPart: 
package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXClientEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXConnectionExce

ption; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateToNXResolver; 

 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.io.File; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

 

 

/** 

 * Simple action that allows for a file to be selected 

using a file dialog - the file is then loaded 

 * using the Maple API and a corresponding SysML block 

with properties is created. Note that for reasons 

 * of making this more readable, the logic should be 

split into several classes, but, to get started, 
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 * let's keep everything in one file 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

public class UpdateToNXPart extends 

DefaultBrowserAction { 

  

  

  

 ElementsFactory elementsFactory = 

Application.getInstance().getProject().getElementsFactory()

; 

  

 /** 

  * Constructor - configures the action, in this 

case our menu item 

  */ 

 public UpdateToNXPart() { 

  // In the containment browser context pop 

the text that will be displayed in the menu item 

  // is what we specify as the second 

argument. The first argument is an ID 

  super("Update_NX_Part_Maple", "Update CAD 

Model from SysML Model", null, null); 

 } 

  

 /** 

  * This function (or action) will be fired 

whenever a user clicks on the menu item that we are 

  * describing in this class. I.e. whenever 

someone right clicks in the containment browser and 

  * selects our action, in this case "Import CAD 

Part ...", this function will be called 

  */ 

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 

   

  NXEngine engine; 

  try { 

   engine = new NXClientEngine(); 

  } catch (NXConnectionException nxce) { 

   engine = null; 

  } 

  if (engine == null ) { return; } 
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  Object userObject = getSelectedObject(); 

  if (!(userObject instanceof Class)) { 

   return; 

  } 

  Class userClass = (Class)userObject; 

  Project project = 

Application.getInstance().getProject();   

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  if 

(!(StereotypesHelper.hasStereotype(userClass, 

nxPartStereotype))) { 

   return; 

  } 

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

  WaitDialog waitDialog = new 

WaitDialog(parentFrame, "Updating to NX...", "System is 

working"); 

  waitDialog.setVisible(true);   

 //  ProgressMonitor pm = new 

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE, 

"Please wait", 0, 10);   

    

  Object currentPartPath = 

StereotypesHelper.getStereotypePropertyFirst(userClass, 

nxPartStereotype, "currentPartPath"); 

  File nxFile = new File( 

currentPartPath.toString() ); 

   

  NXPart part = 

SysMLUtility.openPart(parentFrame, nxFile); 

  SysMLModelTraverser.launch( project, 

userClass, part, new UpdateToNXResolver(engine) ); 

    

  waitDialog.setVisible(false); 

//    pm.close(); 

   

 } 

 

} 
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ValidateAgainstNXPart: 
package gov.nasa.jpl.imce.sysmlnxsync.actions; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.ui.ConsistencyReportDialog; 

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.ConsistencyResult; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.io.File; 

import java.util.ArrayList; 

import java.util.Collection; 

import java.util.HashSet; 

import java.util.List; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 
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import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

 

public class ValidateAgainstNXPart extends 

DefaultBrowserAction { 

  

 public class ValidateResolver extends 

DefaultNodeHandler { 

  private ArrayList<ConsistencyResult> 

_consistencyReport; 

  private boolean _result; 

  private HashSet<String> _uniqueID; 

   

  public ValidateResolver() { 

   _consistencyReport = new 

ArrayList<ConsistencyResult>(); 

   _uniqueID = new HashSet<String>(); 

   _result = true; 

  } 

   

  @Override 

  public Property enterExpression(Project 

project, Class parent, 

    Property sysmlExpression, 

NXExpression nxExpression) { 

    

   String sysmlName = (sysmlExpression != 

null ? sysmlExpression.getName() : null); 

   if (nxExpression != null) { 

    String nxName = 

nxExpression.getName(); 

    if (sysmlExpression != null) { 

     if 

(!nxName.equals(sysmlExpression.getName())) { 

      fail("Expression", 

sysmlName, String.format("NX parameter name %s differs from 

SysML parameter name", nxName) ); 

     } 

    } else { 

     fail("Expression", nxName, 

"No SysML equivalent for NX parameter" ); 

    } 

   } else if (sysmlExpression != null) { 
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    fail("Expression", sysmlName, "No 

NX equivalent for SysML parameter" ); 

   } 

    

   if (sysmlExpression != null && 

nxExpression != null) { 

    ValueSpecification spec = 

sysmlExpression.getDefaultValue(); 

    String sysmlValue = (spec 

instanceof LiteralString ? ((LiteralString)spec).getValue() 

: null ); 

    if (sysmlValue != null) { 

     if 

(!sysmlValue.equals(nxExpression.getValue())) { 

      fail("Expression", 

sysmlName, String.format("Value conflict: NX value %s 

differs from SysML value %s", nxExpression.getValue(), 

sysmlValue) ); 

     } 

    } else { 

     fail("Expression", 

nxExpression.getName(), "SysML parameter value cannot be 

read"); 

    } 

   } 

    

   return sysmlExpression; 

  } 

   

  @Override 

  public Class enterFeature(Project project, 

Class parent, Class sysmlFeature, NXFeature nxFeature) { 

   Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

   String sysmlName = (sysmlFeature != 

null ? sysmlFeature.getName() : null); 

   if (nxFeature != null) { 

    String nxName = 

nxFeature.getName(); 

    if (sysmlFeature != null) { 

     if 

(!nxName.equals(sysmlFeature.getName())) { 

      fail("Feature", 

sysmlName, String.format("NX feature name %s differs from 

SysML feature name", nxName) ); 

     } 

    } else { 
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     fail("Feature", nxName, "No 

SysML equivalent for NX feature" ); 

    } 

   } else if (sysmlFeature != null) { 

    fail("Feature", sysmlName, "No NX 

equivalent for SysML feature" ); 

   } 

    

   //String sysmlFeatureName = 

sysmlFeature.getName(); 

   //String nxFeatureName = 

nxFeature.getName(); 

   //if 

(!sysmlFeatureName.equals(nxFeatureName)) { 

   // consistencyResult = new 

ConsistencyResult( false, String.format("Feature name %s 

differs from feature name %s", nxFeatureName, 

sysmlFeatureName) ); 

   // return sysmlFeature; 

   //} 

    

   if (sysmlFeature != null && nxFeature 

!= null) { 

    String nxFType = 

nxFeature.getType(); 

    if 

(StereotypesHelper.hasStereotype(sysmlFeature, 

nxFeatureStereotype) && 

     

 StereotypesHelper.getStereotypePropertyValue(sysmlFeat

ure, nxFeatureStereotype, "featureType") != null) { 

     Object childFtype = 

StereotypesHelper.getStereotypePropertyFirst(sysmlFeature, 

nxFeatureStereotype, "featureType"); 

     String sysmlFType = 

childFtype.toString(); 

     if 

(!sysmlFType.equals(nxFType)) { 

      fail("Feature", 

sysmlName, String.format("NX feature type %s differs from 

SysML feature type %s", nxFType, sysmlFType) ); 

      return sysmlFeature; 

     } 

    } else { 

     fail("Feature", sysmlName, 

String.format("NX feature type is %s, SysML has no feature 

type %s", nxFType) ); 
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    } 

     

    Collection<NXExpression> 

nxExpressions = nxFeature.getExpressions(); 

    Collection<Property> 

sysmlExpressions = SysMLUtility.getExpressions(project, 

sysmlFeature); 

     

    if (nxExpressions.size() != 

sysmlExpressions.size()) { 

     fail("Feature", sysmlName, 

String.format("%d parameters in NX, %d parameters in 

SysML", nxExpressions.size(), sysmlExpressions.size()) ); 

     return sysmlFeature; 

    } 

     

    Collection<NXFeature> 

nxSubfeatures = nxFeature.getChildren(); 

    Collection<Class> sysmlSubfeatures 

= SysMLUtility.getFeatures(project, sysmlFeature); 

     

    if (nxSubfeatures.size() != 

sysmlSubfeatures.size()) { 

     fail("Feature", sysmlName, 

String.format("%d features in NX, %d features in SysML", 

nxSubfeatures.size(), sysmlSubfeatures.size()) ); 

    } 

   } 

  

   return sysmlFeature; 

  } 

   

  @Override 

  public Class enterPart(Project project, 

Class parent, Class sysmlPart, NXPart nxPart) { 

   //ElementsFactory elementsFactory = 

project.getElementsFactory(); 

//   Stereotype nxPartStereotype     = 

StereotypesHelper.getStereotype(project, "NXPart"); 

   String sysmlName = (sysmlPart != null ? 

sysmlPart.getName() : null); 

   if (nxPart != null) { 

    String nxName = nxPart.getName(); 

    if (sysmlPart != null) { 

     if 

(!nxName.equals(sysmlPart.getName())) { 
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      fail("Part", sysmlName, 

String.format("NX part name %s differs from SysML part name 

%s", nxName) ); 

     } 

    } else { 

     fail("Part", nxName, "No 

SysML equivalent for NX part"); 

    } 

   } else if (sysmlPart != null) { 

    fail("Part", sysmlName, "No NX 

equivalent for SysML part" ); 

   } 

   return sysmlPart; 

  } 

   

  private void fail(String type, String id, 

String report) { 

   String s = String.format("%s||%s||%s", 

type, id, report); 

   if (!_uniqueID.contains(s)) { 

    _consistencyReport.add( new 

ConsistencyResult( type, id, report, null ) ); 

    _uniqueID.add(s); 

   } 

   _result = false; 

  } 

 

  public List<ConsistencyResult> 

getInconsistencyList() { 

   return _consistencyReport; 

  } 

 

  public boolean getResult() { 

   return _result; 

  } 

 } 

  

 ElementsFactory elementsFactory = 

Application.getInstance().getProject().getElementsFactory()

; 

  

 /** 

  * Constructor - configures the action, in this 

case our menu item 

  */ 

 public ValidateAgainstNXPart() { 
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  // In the containment browser context pop 

the text that will be displayed in the menu item 

  // is what we specify as the second 

argument. The first argument is an ID 

  super("Validate_NX_Part_Maple", "Execute CAD 

- SysML Consistency Analysis", null, null); 

   

 } 

  

 /** 

  * This function (or action) will be fired 

whenever a user clicks on the menu item that we are 

  * describing in this class. I.e. whenever 

someone right clicks in the containment browser and 

  * selects our action, in this case "Import NX 

Part ...", this function will be called 

  */ 

 @Override 

 public void actionPerformed(ActionEvent 

actionEvent) { 

  super.actionPerformed(actionEvent); 

   

  Object userObject = getSelectedObject(); 

  if (!(userObject instanceof Class)) { 

   return; 

  } 

  Class userClass = (Class)userObject; 

  Project project = 

Application.getInstance().getProject();   

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  if 

(!(StereotypesHelper.hasStereotype(userClass, 

nxPartStereotype))) { 

   return; 

  } 

   

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

  WaitDialog waitDialog = new 

WaitDialog(parentFrame, "Checking consistency...", "System 

is working"); 

  waitDialog.setVisible(true);  

  //ProgressMonitor pm = new 

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE, 

"Please wait", 0, 10); 
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  String currentPartPath = 

StereotypesHelper.getStereotypePropertyFirst(userClass, 

nxPartStereotype, "currentPartPath").toString(); 

  File file = new File( currentPartPath ); 

  ValidateResolver resolver = new 

ValidateResolver(); 

 

  NXPart part = 

SysMLUtility.openPart(parentFrame, file); 

  SysMLModelTraverser.launch( project, 

userClass, part, resolver ); 

   

  List<ConsistencyResult> res = 

resolver.getInconsistencyList(); 

  if (res == null) { res = new 

ArrayList<ConsistencyResult>(); }; 

   

  waitDialog.setVisible(false); 

   

  ConsistencyReportDialog consistencyReport = 

new ConsistencyReportDialog(parentFrame, res); 

  consistencyReport.setVisible(true); 

 } 

 

} 
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Model: 

ExpressionModel: 
package gov.nasa.jpl.imce.sysmlnxsync.model; 

 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

 

public class ExpressionModel { 

 private Property _sysmlProperty; 

 private LiteralString _instanceValue; 

 

 public ExpressionModel(Property sysmlProperty, 

LiteralString instanceValue) { 

  _sysmlProperty = sysmlProperty; 

  _instanceValue = instanceValue; 

 } 

  

 public Property getBlock() { 

  return _sysmlProperty; 

 } 

 

 public LiteralString getInstance() { 

  return _instanceValue; 

 } 

} 
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FeatureModel: 
package gov.nasa.jpl.imce.sysmlnxsync.model; 

 

import java.util.LinkedList; 

 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

 

public class FeatureModel { 

 private Class _sysmlClass; 

 private Package _instancePackage; 

 private LinkedList<FeatureModel> _subFeatures; 

 

 public FeatureModel(Class sysmlClass, Package 

instancePackage) { 

  _sysmlClass = sysmlClass; 

  _instancePackage = instancePackage; 

  _subFeatures = new 

LinkedList<FeatureModel>(); 

 } 

  

 public void addFeature(FeatureModel fm) { 

  _subFeatures.add(fm); 

 } 

 

 public Class getBlock() { 

  return _sysmlClass; 

 } 

 

 public FeatureModel getFeatures(int i) { 

  return _subFeatures.get(i); 

 } 

  

 public Package getInstancePackage() { 

  return _instancePackage; 

 } 

 

} 
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PartModel: 
package gov.nasa.jpl.imce.sysmlnxsync.model; 

 

import java.util.LinkedList; 

 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

 

public class PartModel { 

 private Class _sysmlClass; 

 private LinkedList<PartModel> _subParts; 

 private LinkedList<FeatureModel> _subFeatures; 

 

 public PartModel(Class sysmlClass) { 

  _sysmlClass = sysmlClass; 

  _subParts = new LinkedList<PartModel>(); 

  _subFeatures = new 

LinkedList<FeatureModel>(); 

 } 

 

 public void addFeature(FeatureModel fm) { 

  _subFeatures.add(fm); 

 } 

  

 public void addPart(PartModel pm) { 

  _subParts.add(pm); 

 } 

  

 public Class getBlock() { 

  return _sysmlClass; 

 } 

 

 public FeatureModel getFeatures(int i) { 

  return _subFeatures.get(i); 

 } 

  

 public PartModel getPart(int i) { 

  return _subParts.get(i); 

 } 

} 
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UserInterface: 

ConsistencyReportDialog: 
package gov.nasa.jpl.imce.sysmlnxsync.ui; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.ConsistencyResult; 

 

import java.awt.Component; 

import java.awt.Dimension; 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.util.List; 

 

import javax.swing.AbstractCellEditor; 

import javax.swing.Box; 

import javax.swing.JButton; 

import javax.swing.JDialog; 

import javax.swing.JLabel; 

import javax.swing.JScrollPane; 

import javax.swing.JTable; 

import javax.swing.JTextArea; 

import javax.swing.ScrollPaneConstants; 

import javax.swing.WindowConstants; 

import javax.swing.table.AbstractTableModel; 

import javax.swing.table.TableCellEditor; 

 

public class ConsistencyReportDialog extends JDialog 

implements ActionListener { 

 static class ConsistencyTableModel extends 

AbstractTableModel { 

   

    private List<ConsistencyResult> 

_consistencyResult; 

   

  public ConsistencyTableModel( 

List<ConsistencyResult> consistencyResult ) { 

   _consistencyResult = consistencyResult; 

  } 

 

  @Override 

  public int getColumnCount() { 

   return 3; 

  } 

 

  @Override 
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  public String getColumnName(int column) { 

   switch(column) { 

   case 0: 

    return "Type"; 

   case 1: 

    return "Name"; 

   case 2: 

    return "Message"; 

   default: 

    return 

super.getColumnName(column); 

   } 

  } 

   

  @Override 

  public int getRowCount() { 

   return _consistencyResult.size(); 

  } 

 

 

  @Override 

  public Object getValueAt(int rowIndex, int 

columnIndex) { 

   if (rowIndex < 

_consistencyResult.size()) { 

    switch(columnIndex) { 

    case 0: 

     return 

_consistencyResult.get(rowIndex).getType(); 

    case 1: 

     return 

_consistencyResult.get(rowIndex).getIdentifier(); 

    case 2: 

     return 

_consistencyResult.get(rowIndex).getMessage(); 

    default: 

     return ""; 

    } 

   } else { 

    return ""; 

   } 

  } 

   

 } 

 static private class MyCellEditor extends 

AbstractCellEditor implements TableCellEditor { 

  private final JTextArea _ta; 
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  public MyCellEditor() { 

   _ta = new JTextArea(); 

   _ta.setEditable(false); 

  } 

 

  @Override 

  public Object getCellEditorValue() { 

   return _ta.getText(); 

  } 

 

  @Override 

  public Component 

getTableCellEditorComponent(JTable table, 

    Object value, boolean isSelected, 

int row, int column) { 

   _ta.setText(value.toString()); 

   return _ta; 

  } 

 } 

 /** 

  *  

  */ 

 private static final long serialVersionUID = 

1140107010316106563L; 

 private JButton _ok; 

   

 private JTable _report; 

  

 private JLabel _result; 

 

 

 public ConsistencyReportDialog(Frame parent, 

List<ConsistencyResult> consistencyResult) { 

  super(parent, "Consistency Report"); 

  Box vbox = Box.createVerticalBox(); 

   

  Box hbox = Box.createHorizontalBox(); 

  JLabel label = new JLabel( 

(consistencyResult.isEmpty() ? "Model element is 

consistent" :  "Model element is inconsistent" ) ); 

 

  hbox.add(label); 

 

  vbox.add(Box.createVerticalStrut(10)); 

  vbox.add(hbox); 
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  if (!consistencyResult.isEmpty()) { 

   _report = new JTable( new 

ConsistencyTableModel(consistencyResult) ); 

   JScrollPane scroll = new 

JScrollPane(_report); 

  

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS); 

   scroll.setPreferredSize( new 

Dimension(450, 250) ); 

   vbox.add(Box.createVerticalStrut(10)); 

   vbox.add(scroll); 

    

  

 _report.getColumnModel().getColumn(0).setPreferredWidt

h(40); 

  

 _report.getColumnModel().getColumn(1).setPreferredWidt

h(60); 

  

 _report.getColumnModel().getColumn(2).setPreferredWidt

h(400); 

    

  

 _report.getColumnModel().getColumn(2).setCellEditor( 

new MyCellEditor() ); 

  } 

         

        _ok = new JButton("OK"); 

         

  vbox.add(Box.createVerticalStrut(10)); 

  vbox.add(_ok); 

  vbox.add(Box.createVerticalStrut(10)); 

   

  add( vbox ); 

   

  setMinimumSize( new Dimension(500, 300)); 

   

  setLocationRelativeTo( parent ); 

   

  invalidate(); 

  setDefaultCloseOperation( 

WindowConstants.DISPOSE_ON_CLOSE); 

  pack(); 

   

  _ok.addActionListener(this); 

 } 
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 @Override 

 public void actionPerformed(ActionEvent ae) { 

  Object target = ae.getSource(); 

  if (target == _ok) { 

   setVisible(false); 

   dispose(); 

  } 

 } 

} 
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InstanceReportDialog: 
package gov.nasa.jpl.imce.sysmlnxsync.ui; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.InstanceReportResult; 

 

import java.awt.Component; 

import java.awt.Dimension; 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.util.ArrayList; 

import java.util.Collections; 

import java.util.Comparator; 

import java.util.List; 

 

import javax.swing.AbstractCellEditor; 

import javax.swing.Box; 

import javax.swing.JButton; 

import javax.swing.JCheckBox; 

import javax.swing.JDialog; 

import javax.swing.JLabel; 

import javax.swing.JScrollPane; 

import javax.swing.JTable; 

import javax.swing.JTextArea; 

import javax.swing.ScrollPaneConstants; 

import javax.swing.WindowConstants; 

import javax.swing.table.AbstractTableModel; 

import javax.swing.table.TableCellEditor; 

 

public class InstanceReportDialog extends JDialog 

implements ActionListener { 

 private List<InstanceReportResult> _resultList; 

 private List<InstanceReportResult> 

_filteredResultList; 

  

 private static final long serialVersionUID = 

1140107010316106563L; 

 private JButton _ok; 

  

 private AbstractTableModel _model; 

 private JTable _report; 

 private JLabel _result; 

  

 private JCheckBox _filterStructuralValues, 

_filterValidationValues, _filterTargetValues, 

_filterPerformanceValues; 



405 

 

  

 class InstanceReportTableModel extends 

AbstractTableModel { 

    

  @Override 

  public int getColumnCount() { 

   return 5; 

  } 

 

  @Override 

  public String getColumnName(int column) { 

   switch(column) { 

   case 0: 

    return "Parameter Name"; 

   case 1: 

    return "Feature Name"; 

   case 2: 

    return "Part Name"; 

   case 3: 

    return "Value Type"; 

   case 4: 

    return "Value"; 

   default: 

    return 

super.getColumnName(column); 

   } 

  } 

   

  @Override 

  public int getRowCount() { 

   return _filteredResultList.size(); 

  } 

 

 

  @Override 

  public Object getValueAt(int rowIndex, int 

columnIndex) { 

   if (rowIndex < 

_filteredResultList.size()) { 

    InstanceReportResult res = 

_filteredResultList.get(rowIndex); 

    switch(columnIndex) { 

    case 0: 

     return res.getName(); 

    case 1: 

     return res.getFeatureName(); 

    case 2: 
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     return res.getPartName(); 

    case 3: 

     return res.getType(); 

    case 4: 

     return res.getValue(); 

    default: 

     return ""; 

    } 

   } else { 

    return ""; 

   } 

  } 

   

 } 

 static private class MyCellEditor extends 

AbstractCellEditor implements TableCellEditor { 

  private final JTextArea _ta; 

 

  public MyCellEditor() { 

   _ta = new JTextArea(); 

   _ta.setEditable(false); 

  } 

 

  @Override 

  public Object getCellEditorValue() { 

   return _ta.getText(); 

  } 

 

  @Override 

  public Component 

getTableCellEditorComponent(JTable table, 

    Object value, boolean isSelected, 

int row, int column) { 

   _ta.setText(value.toString()); 

   return _ta; 

  } 

 } 

 /** 

  *  

  */ 

  

 public List<InstanceReportResult> 

getFilteredList(List<InstanceReportResult> result) { 

  ArrayList<InstanceReportResult> arr = new 

ArrayList<InstanceReportResult>(); 

  for (InstanceReportResult row : result) { 
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   if ("Part 

Property".equals(row.getType()) || "Constraint 

Parameter".equals(row.getType()) || "Constraint 

Property".equals(row.getType())) { 

    // Ignore and never include in 

result list 

   } else if 

("NXValueProperty".equals(row.getType()) || "Value 

Property".equals(row.getType())) { 

    if 

(_filterStructuralValues.isSelected()) arr.add(row); 

   } else if ("Validation Value 

Property".equals(row.getType())) { 

    if 

(_filterValidationValues.isSelected()) arr.add(row); 

   } else if ("Performance Value 

Property".equals(row.getType())) { 

    if 

(_filterPerformanceValues.isSelected()) arr.add(row); 

   } else if ("Targert Value 

Property".equals(row.getType())) { 

    if 

(_filterTargetValues.isSelected()) arr.add(row); 

   } else { 

    arr.add(row); 

   } 

  } 

  Comparator<InstanceReportResult> cmp = new 

Comparator<InstanceReportResult>() { 

      public int compare(InstanceReportResult 

c1, InstanceReportResult c2) { 

          return 

c1.getName().compareTo(c2.getName()); 

      } 

  }; 

  Collections.sort(arr, cmp ); 

  return arr; 

 } 

  

 public InstanceReportDialog(Frame parent, 

List<InstanceReportResult> result) { 

  super(parent, "Instance Results Report"); 

   

  _filterStructuralValues  = new 

JCheckBox("Structural Values", true); 

  _filterValidationValues  = new 

JCheckBox("Validation Values", true); 
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  _filterTargetValues      = new 

JCheckBox("Target Values", true); 

  _filterPerformanceValues = new 

JCheckBox("Performance Values", true); 

   

  Box vbox = Box.createVerticalBox(); 

  Box hbox = Box.createHorizontalBox(); 

 

  JLabel label = new JLabel( "View:" ); 

  hbox.add(label); 

  hbox.add(_filterStructuralValues); 

  hbox.add(_filterValidationValues ); 

  hbox.add(_filterTargetValues); 

  hbox.add(_filterPerformanceValues); 

  vbox.add(hbox); 

   

  vbox.add(Box.createVerticalStrut(10)); 

   

  _resultList = result;  

  _filteredResultList = getFilteredList( 

_resultList ); 

   

  _model = new InstanceReportTableModel(); 

  _report = new JTable( _model ); 

  JScrollPane scroll = new 

JScrollPane(_report); 

 

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS); 

  scroll.setPreferredSize( new Dimension(600, 

250) ); 

  vbox.add(Box.createVerticalStrut(10)); 

  vbox.add(scroll); 

   

 

 _report.getColumnModel().getColumn(0).setPreferredWidt

h(125); 

 

 _report.getColumnModel().getColumn(1).setPreferredWidt

h(125); 

 

 _report.getColumnModel().getColumn(2).setPreferredWidt

h(125); 

 

 _report.getColumnModel().getColumn(3).setPreferredWidt

h(150); 
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 _report.getColumnModel().getColumn(4).setPreferredWidt

h(125); 

   

 

 _report.getColumnModel().getColumn(0).setCellEditor( 

new MyCellEditor() ); 

 

 _report.getColumnModel().getColumn(1).setCellEditor( 

new MyCellEditor() ); 

 

 _report.getColumnModel().getColumn(2).setCellEditor( 

new MyCellEditor() ); 

 

 _report.getColumnModel().getColumn(3).setCellEditor( 

new MyCellEditor() ); 

 

 _report.getColumnModel().getColumn(4).setCellEditor( 

new MyCellEditor() ); 

         

        _ok = new JButton("OK"); 

         

  vbox.add(Box.createVerticalStrut(10)); 

  vbox.add(_ok); 

  vbox.add(Box.createVerticalStrut(10)); 

   

  add( vbox ); 

   

  setMinimumSize( new Dimension(600, 300)); 

   

  setLocationRelativeTo( parent ); 

   

  invalidate(); 

  setDefaultCloseOperation( 

WindowConstants.DISPOSE_ON_CLOSE); 

  pack(); 

   

 

 _filterStructuralValues.addActionListener(this); 

 

 _filterValidationValues.addActionListener(this); 

  _filterTargetValues.addActionListener(this); 

 

 _filterPerformanceValues.addActionListener(this);   

  _ok.addActionListener(this); 

 } 
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 @Override 

 public void actionPerformed(ActionEvent ae) { 

  Object target = ae.getSource(); 

  if (target == _ok) { 

   setVisible(false); 

   dispose(); 

  } else if (target == _filterStructuralValues 

|| target == _filterValidationValues || 

     target == _filterTargetValues 

|| target == _filterPerformanceValues) { 

   _filteredResultList = getFilteredList( 

_resultList ); 

   _model.fireTableDataChanged(); 

   _report.invalidate(); 

  } 

 } 

} 
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InteractiveConsistencyReportDialog: 
package gov.nasa.jpl.imce.sysmlnxsync.ui; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXClientEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXConnectionExce

ption; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.ConsistencyResult; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateToNXResolver; 

 

import java.awt.Component; 

import java.awt.Dimension; 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.io.File; 

import java.util.ArrayList; 

import java.util.List; 

 

import javax.swing.AbstractCellEditor; 

import javax.swing.Box; 

import javax.swing.DefaultCellEditor; 

import javax.swing.JButton; 

import javax.swing.JComboBox; 

import javax.swing.JDialog; 

import javax.swing.JLabel; 

import javax.swing.JScrollPane; 

import javax.swing.JTable; 

import javax.swing.JTextArea; 

import javax.swing.ScrollPaneConstants; 

import javax.swing.WindowConstants; 

import javax.swing.table.DefaultTableModel; 

import javax.swing.table.TableCellEditor; 

import javax.swing.table.TableCellRenderer; 
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import javax.swing.table.TableColumn; 

 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

 

public class InteractiveConsistencyReportDialog 

extends JDialog implements ActionListener { 

 static private class ComboBoxCellEditor extends 

DefaultCellEditor { 

  public ComboBoxCellEditor(String[] items) { 

   super( new JComboBox(items) ); 

  } 

 } 

 static private class ComboBoxCellRenderer extends 

JComboBox implements TableCellRenderer { 

  private List<ConsistencyResult> _cr; 

  public 

ComboBoxCellRenderer(List<ConsistencyResult> cr) { 

   super(); 

   _cr = cr; 

  } 

   

     @Override 

  public Component 

getTableCellRendererComponent(JTable table, Object value, 

             boolean isSelected, boolean hasFocus, 

int row, int column) { 

 

      super.removeAllItems(); 

      if (_cr.get(row).canUpdateNX()) 

super.addItem("NX"); 

      if (_cr.get(row).canUpdateSysML()) 

super.addItem("SysML"); 

 

      if (isSelected) { 

             

setForeground(table.getSelectionForeground()); 

             

super.setBackground(table.getSelectionBackground()); 

         } else { 

             setForeground(table.getForeground()); 

             setBackground(table.getBackground()); 

         } 

 

         // Select the current value 

         setSelectedItem(value); 
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         setEnabled(true); 

         return this; 

     } 

 } 

 static class ConsistencyTableModel extends 

DefaultTableModel { 

   

    private List<ConsistencyResult> 

_consistencyResult; 

    private List<Boolean> _res; 

   

  public ConsistencyTableModel( 

List<ConsistencyResult> consistencyResult ) { 

   super(new 

String[]{"Type","Name","Message","Resolve Using"}, 

consistencyResult.size()); 

   _consistencyResult = consistencyResult; 

   _res = new ArrayList<Boolean>(); 

  } 

 

  @Override 

  public Object getValueAt(int rowIndex, int 

columnIndex) { 

   if (rowIndex < 

_consistencyResult.size()) { 

    switch(columnIndex) { 

    case 0: 

     return 

_consistencyResult.get(rowIndex).getType(); 

    case 1: 

     return 

_consistencyResult.get(rowIndex).getIdentifier(); 

    case 2: 

     return 

_consistencyResult.get(rowIndex).getMessage(); 

    case 3: 

    default: 

     return 

super.getValueAt(rowIndex, columnIndex); 

    } 

   } else { 

    return super.getValueAt(rowIndex, 

columnIndex); 

   } 

  } 

   

 } 
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 static private class MyCellEditor extends 

AbstractCellEditor implements TableCellEditor { 

  private final JTextArea _ta; 

 

  public MyCellEditor() { 

   _ta = new JTextArea(); 

   _ta.setEditable(false); 

  } 

 

  @Override 

  public Object getCellEditorValue() { 

   return _ta.getText(); 

  } 

 

  @Override 

  public Component 

getTableCellEditorComponent(JTable table, 

    Object value, boolean isSelected, 

int row, int column) { 

   _ta.setText(value.toString()); 

   return _ta; 

  } 

 } 

 /** 

  *  

  */ 

 private static final long serialVersionUID = 

1140107010316106563L; 

 private File _nxFile; 

 private NXPart _part; 

 private Project _project; 

   

 private JTable _report; 

  

 private JButton _resolveNX, _resolveSysML, 

_resolve, _cancel; 

 

 private JLabel _result; 

 

 private Class _userClass; 

 

 

 public InteractiveConsistencyReportDialog(Frame 

parent, 

   List<ConsistencyResult> 

consistencyResult, 
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   Project project, Class userClass, File 

nxFile, NXPart part) { 

  super(parent, "Resolve Model"); 

  _project = project; 

  _userClass = userClass; 

  _part = part; 

  _nxFile = nxFile; 

  Box vbox = Box.createVerticalBox(); 

   

  Box hbox = Box.createHorizontalBox(); 

  JLabel label = new JLabel( 

(consistencyResult.isEmpty() ? "Model element is 

consistent" :  "Model element is inconsistent" ) ); 

 

  hbox.add(label); 

 

  vbox.add(Box.createVerticalStrut(10)); 

  vbox.add(hbox); 

   

  if (!consistencyResult.isEmpty()) { 

   _report = new JTable( new 

ConsistencyTableModel(consistencyResult) ); 

   JScrollPane scroll = new 

JScrollPane(_report); 

  

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS); 

   scroll.setPreferredSize( new 

Dimension(700, 300) ); 

   vbox.add(Box.createVerticalStrut(10)); 

   vbox.add(scroll); 

    

   TableColumn col = 

_report.getColumnModel().getColumn(0); 

   col.setCellEditor( new MyCellEditor() 

); 

   col.setPreferredWidth(100); 

    

   col = 

_report.getColumnModel().getColumn(1); 

   col.setCellEditor( new MyCellEditor() 

); 

   col.setPreferredWidth(60); 

    

   col = 

_report.getColumnModel().getColumn(2); 
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   col.setCellEditor( new MyCellEditor() 

); 

   col.setPreferredWidth(400); 

 

   col = 

_report.getColumnModel().getColumn(3); 

   ComboBoxCellRenderer cbcr = new 

ComboBoxCellRenderer(consistencyResult); 

   ComboBoxCellEditor cbce = new 

ComboBoxCellEditor( new String[]{"NX", "SysML"}); 

   col.setCellEditor( cbce ); 

   cbcr.setSelectedItem("NX"); 

   col.setCellRenderer( cbcr ); 

   col.setPreferredWidth(140); 

  } 

   

  hbox = Box.createHorizontalBox(); 

        _resolve = new JButton("Resolve Using Above 

Settings"); 

        _resolveNX = new JButton("Resolve using CAD"); 

        _resolveSysML = new JButton("Resolve using 

SysML"); 

        _cancel = new JButton("Cancel"); 

        hbox.add(_resolve); 

        hbox.add(Box.createHorizontalStrut(10)); 

        hbox.add(_resolveNX); 

        hbox.add(Box.createHorizontalStrut(10)); 

        hbox.add(_resolveSysML); 

        hbox.add(Box.createHorizontalStrut(10)); 

        hbox.add(_cancel); 

         

  vbox.add(Box.createVerticalStrut(10)); 

  vbox.add(hbox); 

  vbox.add(Box.createVerticalStrut(10)); 

   

  add( vbox ); 

   

  setMinimumSize( new Dimension(500, 300)); 

   

  setLocationRelativeTo( parent ); 

   

  invalidate(); 

  setDefaultCloseOperation( 

WindowConstants.DISPOSE_ON_CLOSE); 

  pack(); 

   

  _cancel.addActionListener(this); 
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  _resolve.addActionListener(this); 

  _resolveNX.addActionListener(this); 

  _resolveSysML.addActionListener(this); 

 } 

 

 @Override 

 public void actionPerformed(ActionEvent ae) { 

   

  NXEngine engine; 

  try { 

   engine = new NXClientEngine(); 

  } catch (NXConnectionException nxce) { 

   engine = null; 

  } 

  if (engine == null ) { return; } 

   

  Object target = ae.getSource(); 

  if (target == _cancel) { 

   setVisible(false); 

   dispose(); 

  } else if (target == _resolve || target == 

_resolveSysML) { 

   DefaultNodeHandler resolver = new 

UpdateToNXResolver(engine); 

   SysMLModelTraverser.launch( _project, 

_userClass, _part, resolver ); 

   setVisible(false); 

   dispose(); 

    

  } else if (target == _resolveNX) { 

    

//   Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

//   ProgressMonitor pm = new 

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE, 

"Please wait", 0, 10); 

    

   DefaultNodeHandler resolver = new 

UpdateFromNXResolver(null); 

   SysMLModelTraverser.launch( _project, 

_userClass, _part, resolver ); 

   resolver = null; 

    

   setVisible(false); 

   dispose(); 

    

  } else if (target == _resolveSysML) { 
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   DefaultNodeHandler resolver = new 

UpdateToNXResolver(engine); 

   SysMLModelTraverser.launch( _project, 

_userClass, _part, resolver ); 

   resolver = null; 

    

   setVisible(false); 

   dispose(); 

  } 

 } 

} 
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InteractiveInstanceReportDialog: 
package gov.nasa.jpl.imce.sysmlnxsync.ui; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.InstanceReportResult; 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.InteractiveInstanceRe

portResult; 

 

import java.awt.Component; 

import java.awt.Dimension; 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.util.ArrayList; 

import java.util.List; 

import java.util.Map; 

 

import javax.swing.AbstractCellEditor; 

import javax.swing.Box; 

import javax.swing.DefaultCellEditor; 

import javax.swing.DefaultComboBoxModel; 

import javax.swing.JButton; 

import javax.swing.JCheckBox; 

import javax.swing.JComboBox; 

import javax.swing.JDialog; 

import javax.swing.JLabel; 

import javax.swing.JScrollPane; 

import javax.swing.JTable; 

import javax.swing.JTextArea; 

import javax.swing.ScrollPaneConstants; 

import javax.swing.WindowConstants; 

import javax.swing.table.AbstractTableModel; 

import javax.swing.table.DefaultTableModel; 

import javax.swing.table.TableCellEditor; 

import javax.swing.table.TableColumnModel; 

import javax.swing.table.TableModel; 

 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature; 

 

public class InteractiveInstanceReportDialog extends 

JDialog implements ActionListener { 
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 private List<InteractiveInstanceReportResult> 

_resultList; 

 private ArrayList<JComboBox> _valueSelector; 

 private ArrayList<TableCellEditor> _editors; 

  

 class MyTable extends JTable { 

   

  public MyTable (DefaultTableModel tm) { 

   super(tm); 

  } 

   

  /*@Override 

  public TableCellEditor getCellEditor(int 

row, int column) { 

   int modelColumn = 

convertColumnIndexToModel( column ); 

   if (modelColumn == 3) { 

    return _editors.get(row); 

   } 

   return super.getCellEditor(row, 

column); 

  }*/ 

   

 } 

  

 class InteractiveInstanceReportTableModel extends 

DefaultTableModel { 

   

  @Override 

  public int getColumnCount() { 

   return 5; 

  } 

 

  @Override 

  public String getColumnName(int column) { 

   switch(column) { 

   case 0: 

    return "Parameter Name"; 

   case 1: 

    return "Feature Name"; 

   case 2: 

    return "Part Name"; 

   case 3: 

    return "Default Value"; 

   case 4: 

    return "Value"; 

   default: 
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    return 

super.getColumnName(column); 

   } 

  } 

   

  @Override 

  public int getRowCount() { 

   return _resultList.size(); 

  } 

 

 

  @Override 

  public Object getValueAt(int rowIndex, int 

columnIndex) { 

   if (rowIndex < _resultList.size()) { 

    InteractiveInstanceReportResult 

res = _resultList.get(rowIndex); 

    switch(columnIndex) { 

    case 0: 

     return res.getName(); 

    case 1: 

     return res.getFeatureName(); 

    case 2: 

     return res.getPartName(); 

    case 3: 

     return res.getDefaultValue(); 

    case 4: 

     return res.getValue().get(0); 

    default: 

     return 

super.getValueAt(rowIndex, columnIndex); 

    } 

   } else { 

    return super.getValueAt(rowIndex, 

columnIndex); 

   } 

  } 

   

 } 

  

 static private class MyCellEditor extends 

AbstractCellEditor implements TableCellEditor { 

  private final JTextArea _ta; 

 

  public MyCellEditor() { 

   _ta = new JTextArea(); 

   _ta.setEditable(false); 
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  } 

 

  @Override 

  public Object getCellEditorValue() { 

   return _ta.getText(); 

  } 

 

  @Override  

  public Component 

getTableCellEditorComponent(JTable table, 

    Object value, boolean isSelected, 

int row, int column) { 

   _ta.setText(value.toString()); 

   return _ta; 

  } 

 } 

  

 public class CustomComboBoxEditor extends 

DefaultCellEditor implements TableCellEditor { 

 

  // Decalre a model that is used for adding 

the elements to the `Combo box` 

  private DefaultComboBoxModel _cbModel; 

 

  public CustomComboBoxEditor() { 

   super(new JComboBox()); 

   _cbModel = 

(DefaultComboBoxModel)((JComboBox)getComponent()).getModel(

); 

  } 

 

  @Override 

  public Component 

getTableCellEditorComponent(JTable table, Object value, 

boolean isSelected, int row, int column) { 

      // Add the elements which you want to 

the model. 

      // Here I am adding elements from the 

orderList(say). 

   TableModel model = table.getModel(); 

    

   _cbModel.removeAllElements(); 

   List<String> valList = 

_resultList.get(row).getValue(); 

   for (String val : valList) { 

    _cbModel.addElement(val); 

   } 
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   Object val = table.getValueAt(row, 

column); 

   _cbModel.setSelectedItem(val); 

    

      //model.setValueAt(valList.get(0), row, 

column); 

 

   //finally return the component. 

   return 

super.getTableCellEditorComponent(table, value, isSelected, 

row, column); 

  } 

   

 } 

  

 /** 

  *  

  */ 

 private static final long serialVersionUID = 

1140107010316106563L; 

 private JButton _cancelButton, _updateButton; 

   

 private JTable _report; 

 private JLabel _result; 

 

 public InteractiveInstanceReportDialog(Frame 

parent, List<InteractiveInstanceReportResult> resultList) { 

  super(parent, "Update Block Value Properties 

from Instance"); 

   

  _resultList = resultList; 

  _valueSelector = new ArrayList<JComboBox>(); 

  _editors = new ArrayList<TableCellEditor>(); 

  JComboBox cb; 

   

  for (InteractiveInstanceReportResult result 

: resultList) { 

   cb = new 

JComboBox(result.getValue().toArray()); 

   _valueSelector.add(cb); 

   _editors.add( new DefaultCellEditor(cb) 

); 

  } 

   

  Box vbox = Box.createVerticalBox(); 

  Box hbox = Box.createHorizontalBox(); 
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  DefaultTableModel tm = new 

InteractiveInstanceReportTableModel(); 

  _report = new MyTable(tm); 

  TableColumnModel cm = 

_report.getColumnModel(); 

   

  JScrollPane scroll = new 

JScrollPane(_report); 

 

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS); 

  scroll.setPreferredSize( new Dimension(600, 

250) ); 

  vbox.add(Box.createVerticalStrut(10)); 

  vbox.add(scroll); 

   

   

  cm.getColumn(0).setPreferredWidth(120); 

  cm.getColumn(1).setPreferredWidth(120); 

  cm.getColumn(2).setPreferredWidth(120); 

  cm.getColumn(3).setPreferredWidth(120); 

  cm.getColumn(4).setPreferredWidth(120); 

   

  cm.getColumn(1).setCellEditor( new 

MyCellEditor() ); 

  cm.getColumn(2).setCellEditor( new 

MyCellEditor() ); 

  cm.getColumn(3).setCellEditor( new 

MyCellEditor() ); 

  cm.getColumn(4).setCellEditor(new 

CustomComboBoxEditor()); 

         

  _cancelButton = new JButton("Cancel"); 

        _updateButton = new JButton("Update"); 

         

  vbox.add(Box.createVerticalStrut(10)); 

   

  hbox = Box.createHorizontalBox(); 

  hbox.add(_cancelButton); 

  hbox.add(Box.createHorizontalStrut(10)); 

  hbox.add(_updateButton); 

  vbox.add(hbox); 

   

  vbox.add(Box.createVerticalStrut(10)); 

   

  add( vbox ); 
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  setMinimumSize( new Dimension(500, 300)); 

   

  setLocationRelativeTo( parent ); 

   

  invalidate(); 

  setDefaultCloseOperation( 

WindowConstants.DISPOSE_ON_CLOSE); 

  pack(); 

   

  _updateButton.addActionListener(this); 

 } 

 

 @Override 

 public void actionPerformed(ActionEvent ae) { 

  Object target = ae.getSource(); 

  if (target == _updateButton) { 

   setVisible(false); 

   dispose(); 

  } else if (target == _cancelButton) { 

   setVisible(false); 

   dispose(); 

  } 

 } 

} 
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StereotypeFilterDialog: 
package gov.nasa.jpl.imce.sysmlnxsync.ui; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility; 

 

import java.awt.Component; 

import java.awt.Dimension; 

import java.awt.Frame; 

import java.awt.event.ActionEvent; 

import java.awt.event.ActionListener; 

import java.util.ArrayList; 

import java.util.Collection; 

import java.util.Collections; 

import java.util.Comparator; 

import java.util.List; 

 

import javax.swing.AbstractCellEditor; 

import javax.swing.Box; 

import javax.swing.JButton; 

import javax.swing.JDialog; 

import javax.swing.JScrollPane; 

import javax.swing.JTable; 

import javax.swing.JTextArea; 

import javax.swing.ScrollPaneConstants; 

import javax.swing.WindowConstants; 

import javax.swing.table.AbstractTableModel; 

import javax.swing.table.TableCellEditor; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

 

public class StereotypeFilterDialog extends JDialog 

implements ActionListener { 

 

 static private class MyCellEditor extends 

AbstractCellEditor implements TableCellEditor { 

  private final JTextArea _ta; 

 

  public MyCellEditor() { 

   _ta = new JTextArea(); 

   _ta.setEditable(false); 

  } 

 

  @Override 
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  public Object getCellEditorValue() { 

   return _ta.getText(); 

  } 

 

  @Override 

  public Component 

getTableCellEditorComponent(JTable table, 

    Object value, boolean isSelected, 

int row, int column) { 

   _ta.setText(value.toString()); 

   return _ta; 

  } 

 } 

 static class StereotypeTableModel extends 

AbstractTableModel { 

  private List<Stereotype> 

_excludedStereotypes; 

  private List<Stereotype> 

_profileStereotypes; 

   

  public StereotypeTableModel( 

Collection<Stereotype> profileStereotypes ) { 

   _profileStereotypes = new 

ArrayList<Stereotype>( profileStereotypes ); 

   Collections.sort( _profileStereotypes, 

new Comparator<Stereotype>() { 

             @Override 

    public int compare(Stereotype st1, 

Stereotype st2) { 

                 return 

st1.getName().compareTo(st2.getName()); 

             } 

         }); 

   // list of excluded stereotypes is 

initially empty 

   _excludedStereotypes = new 

ArrayList<Stereotype>(); 

  } 

 

  @Override 

  public Class<?> getColumnClass(int 

columnIndex) { 

   if (columnIndex == 0) { 

    return Boolean.class; 

   } 

   return 

super.getColumnClass(columnIndex); 
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  } 

 

  @Override 

  public int getColumnCount() { 

   return 2; 

  } 

 

  @Override 

  public String getColumnName(int column) { 

   switch(column) { 

   case 0: 

    return "Include?"; 

   default: 

   case 1: 

    return "Name"; 

   } 

  } 

 

  public Collection<Stereotype> 

getExcludedStereotypes() { 

   return _excludedStereotypes; 

  } 

   

  @Override 

  public int getRowCount() { 

   return _profileStereotypes.size(); 

  } 

 

 

  @Override 

  public Object getValueAt(int rowIndex, int 

columnIndex) { 

   Stereotype st = 

_profileStereotypes.get(rowIndex); 

   switch(columnIndex) { 

   case 0: 

    return 

!_excludedStereotypes.contains(st); 

   default: 

   case 1: 

    return st.getName(); 

   } 

  } 

   

  @Override 

  public boolean isCellEditable(int rowIndex, 

int columnIndex) { 
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//   if (columnIndex == 0) { 

//    String sn = 

_profileStereotypes.get(rowIndex).getName(); 

//    if ("NXSketch".equals(sn) || 

"NXCoordinateSystem".equals(sn)) { 

//     return true; 

//    } 

//   } 

//   return false; 

   return true; 

  } 

   

  @Override 

  public void setValueAt(Object aValue, int 

rowIndex, int columnIndex) { 

   Stereotype st1 = 

_profileStereotypes.get(rowIndex); 

   if (columnIndex == 0) { 

          Stereotype st = 

_profileStereotypes.get(rowIndex); 

          Boolean checked = (Boolean)aValue; 

          if (checked && 

_excludedStereotypes.contains(st)) { 

           _excludedStereotypes.remove(st); 

          } else if (!checked && 

!_excludedStereotypes.contains(st)) { 

           _excludedStereotypes.add(st); 

          } 

         } else { 

          super.setValueAt(aValue, rowIndex, 

columnIndex); 

         } 

  } 

 } 

 private JButton _cancel; 

 private JButton _import; 

 private JTable _filter_table; 

 private StereotypeTableModel _filter_table_model; 

 private Collection<Stereotype> _filter; 

 

 public StereotypeFilterDialog(Frame parent, 

Collection<Stereotype> profileStereotypes) { 

  super(parent, "Set Stereotype Filter", 

true); 

  Box vbox = Box.createVerticalBox(); 

   

  Box hbox = Box.createHorizontalBox(); 
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  //JLabel label = new JLabel( 

(consistencyResult.isEmpty() ? "Model element is 

consistent" :  "Model element is inconsistent" ) ); 

 

  //hbox.add(label); 

 

  vbox.add(Box.createVerticalStrut(10)); 

  vbox.add(hbox); 

   

  //if (!consistencyResult.isEmpty()) { 

   _filter_table_model = new 

StereotypeTableModel(profileStereotypes); 

   _filter_table = new JTable( 

_filter_table_model ); 

   JScrollPane scroll = new 

JScrollPane(_filter_table); 

  

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS); 

   scroll.setPreferredSize( new 

Dimension(300, 250) ); 

   vbox.add(Box.createVerticalStrut(10)); 

   vbox.add(scroll); 

    

  

 _filter_table.getColumnModel().getColumn(0).setPreferr

edWidth(50); 

  

 _filter_table.getColumnModel().getColumn(1).setPreferr

edWidth(250); 

  //} 

         

        _import = new JButton("Import"); 

        _cancel = new JButton("Cancel"); 

         

  vbox.add(Box.createVerticalStrut(10)); 

   

  hbox = Box.createHorizontalBox(); 

  hbox.add(_import); 

  hbox.add(Box.createHorizontalStrut(50)); 

  hbox.add(_cancel); 

  vbox.add(hbox); 

   

  vbox.add(Box.createVerticalStrut(10)); 

   

  add( vbox ); 
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  setMinimumSize( new Dimension(400, 300)); 

   

  setLocationRelativeTo( parent ); 

   

  invalidate(); 

  setDefaultCloseOperation( 

WindowConstants.DISPOSE_ON_CLOSE); 

  pack(); 

   

  _import.addActionListener(this); 

  _cancel.addActionListener(this); 

 } 

  

 @Override 

 public void actionPerformed(ActionEvent ae) { 

  Object target = ae.getSource(); 

  if (target == _import) { 

   setVisible(false); 

    

   Collection<Stereotype> excl = 

_filter_table_model.getExcludedStereotypes(); 

   Project project = 

Application.getInstance().getProject(); 

   Collection<Stereotype> bst = 

SysMLUtility.getBasicStereotypes( project ); 

   excl.removeAll(bst); 

   _filter = excl; 

    

   dispose(); 

  } else if (target == _cancel) { 

   setVisible(false); 

   dispose(); 

  } 

 } 

  

 public Collection<Stereotype> getFilter() { 

  return _filter; 

 } 

  

} 
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WaitDialog: 
package gov.nasa.jpl.imce.sysmlnxsync.ui; 

 

import java.awt.Dimension; 

import java.awt.Frame; 

 

import javax.swing.Box; 

import javax.swing.JDialog; 

import javax.swing.JLabel; 

import javax.swing.WindowConstants; 

 

/** 

 * Display window during synchronization  

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

 

public class WaitDialog extends JDialog { 

  

 public WaitDialog(Frame parent, String title, 

String message) { 

  super(parent, title); 

   

  Box box = Box.createHorizontalBox(); 

   

  JLabel label = new JLabel( message ); 

   

  box.add(label); 

   

  add( box ); 

   

  setPreferredSize( new Dimension(300, 150)); 

  setLocationRelativeTo( parent ); 

   

  invalidate(); 

  setDefaultCloseOperation( 

WindowConstants.DISPOSE_ON_CLOSE); 

  pack(); 

 } 

  

} 
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Utility: 

ConsistencyResult: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

public class ConsistencyResult { 

 private String _id; 

 private String _message; 

 private String _type; 

 private UpdateObject _updateObject; 

  

 public ConsistencyResult (String type, String id, 

String message, UpdateObject obj) { 

  _type = type; 

  _id = id; 

  _message = message; 

  _updateObject = obj; 

 } 

 

 public boolean canUpdateNX() { 

  return _updateObject.canUpdateNX(); 

 } 

  

 public boolean canUpdateSysML() { 

  return _updateObject.canUpdateSysML(); 

 } 

  

 public String getIdentifier() { 

  return _id; 

 } 

  

 public String getMessage() { 

  return _message; 

 } 

 

 public String getType() { 

  return _type; 

 } 

  

 public void updateNX() { 

  _updateObject.updateNX(); 

 } 

 

 public void updateSysML() { 

  _updateObject.updateSysML(); 

 } 

} 
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DefaultNodeHandler: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

 

public abstract class DefaultNodeHandler { 

  

 public Property enterExpression( Project project, 

Class parent, Property sysmlExpression, NXExpression 

nxExpression) throws ReadOnlyElementException { 

  return null; 

 } 

 

 public Class enterFeature( Project project, Class 

parent, Class sysmlFeature, NXFeature nxFeature) throws 

ReadOnlyElementException { 

  return null; 

 } 

 

 public Class enterPart( Project project, Class 

parent, Class sysmlPart, NXPart nxPart) throws 

ReadOnlyElementException { 

  return null; 

 } 

  

 public Property exitExpression( Project project, 

Class parent, Property sysmlExpression, NXExpression 

nxExpression) throws ReadOnlyElementException { 

  return null; 

 }  
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 public Class exitFeature( Project project, Class 

parent, Class sysmlFeature, NXFeature nxFeature) throws 

ReadOnlyElementException { 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log( "222" + 

sysmlFeature ); 

  } 

  return null; 

 } 

 public Class exitPart( Project project, Class 

parent, Class sysmlPart, NXPart nxPart) throws 

ReadOnlyElementException { 

  return null; 

 } 

  

} 

IdentityNodeHandler: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

public abstract class IdentityNodeHandler extends 

DefaultNodeHandler { 

 @Override 

 public Property enterExpression( Project project, 

Class parent, Property sysmlExpression, NXExpression 

nxExpression) throws ReadOnlyElementException { 

  return sysmlExpression; 

 } 

 @Override 
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 public Class enterFeature( Project project, Class 

parent, Class sysmlFeature, NXFeature nxFeature) throws 

ReadOnlyElementException { 

  return sysmlFeature; 

 } 

 @Override 

 public Class enterPart( Project project, Class 

parent, Class sysmlPart, NXPart nxPart) throws 

ReadOnlyElementException { 

  return sysmlPart; 

 } 

 @Override 

 public Property exitExpression( Project project, 

Class parent, Property sysmlExpression, NXExpression 

nxExpression) throws ReadOnlyElementException { 

  return sysmlExpression; 

 } 

 @Override 

 public Class exitFeature( Project project, Class 

parent, Class sysmlFeature, NXFeature nxFeature) throws 

ReadOnlyElementException { 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log( "111" + 

sysmlFeature ); 

  } 

  return sysmlFeature; 

 } 

 @Override 

 public Class exitPart( Project project, Class 

parent, Class sysmlPart, NXPart nxPart) throws 

ReadOnlyElementException { 

  return sysmlPart; 

 } 

 

} 

InstanceReportResult: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import java.util.ArrayList; 

import java.util.List; 

import java.util.Map; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 



438 

 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

 

public class InstanceReportResult { 

 private String _name, _fname, _pname, _value, 

_type; 

  

 public InstanceReportResult (String name, String 

fname, String pname, String type, String value) { 

  _name = name; 

  _fname = fname; 

  _pname = pname; 

  _type = type; 

  _value = value; 

 } 

 

 public String getName() { 

  return _name; 

 } 

  

 public String getFeatureName() { 

  return _fname; 

 } 

  

 public String getPartName() { 

  return _pname; 

 } 

  

 public String getValue() { 

  return _value; 

 } 

 

 public String getType() { 

  return _type; 

 } 

  

 public static List<InstanceReportResult> 

generateList(Project project, Package pkg) { 
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  Stereotype targetValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, "Targert Value 

Property"); 

  ArrayList<InstanceReportResult> arr = new 

ArrayList<InstanceReportResult>(); 

  Map<StructuralFeature, List<Slot>> hm = 

SysMLUtility.getInstanceMap(project, pkg); 

  for (StructuralFeature key : hm.keySet()) { 

   String name = key.getName(); 

   Slot sl = hm.get(key).get(0); 

   Property df = 

((Property)sl.getDefiningFeature()); 

    

   String type = df.getHumanType(); 

   String val = 

SysMLUtility.getValueSpecificationValue( 

sl.getValue().get(0) ); 

//   String val = df.getDefault(); 

    

  

 /*Application.getInstance().getGUILog().log( 

     "Slot name: " + key.getName() 

+ " type: "  

       + key +  

     " size: " + 

hm.get(key).size() + " val: " + hm.get(key).get(0) + 

     " val2: " + 

hm.get(key).get(0).getHumanName() + 

     " val3: " + 

hm.get(key).get(0).getDefiningFeature() + 

     " val4: " + df.getDefault() + 

     " val5: " + df.getHumanName() 

+ 

     " val6: " + 

df.getDefaultValue() + 

     " val7: " + 

df.getUpperValue() 

   );*/ 

   Property target = df; 

   if (StereotypesHelper.hasStereotype(df, 

targetValuePropertyStereotype)) { 

    Object o = 

StereotypesHelper.getStereotypePropertyFirst(df, 

targetValuePropertyStereotype, "Original Classifier"); 

    if (o instanceof Property) { 

     target = (Property)o; 

    } 
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   }    

    

   String fname = 

SysMLUtility.getFeatureName(project, target); 

   String pname = 

SysMLUtility.getPartName(project, target); 

   arr.add( new InstanceReportResult(name, 

fname, pname, type, val) ); 

  } 

  return arr; 

 } 

  

} 

InteractiveInstanceReportResult: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import java.util.ArrayList; 

import java.util.List; 

import java.util.Map; 

 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication; 

 

public class InteractiveInstanceReportResult { 

 private String _name, _fname, _pname, 

_defaultValue, _type; 

 private List<String> _value; 

  

 public InteractiveInstanceReportResult (String 

name, String fname, String pname, String type, String 

defaultValue, List<String> value) { 

  _name = name; 

  _fname = fname; 

  _pname = pname; 

  _type = type; 

  _defaultValue = defaultValue; 



441 

 

  _value = value; 

 } 

 

 public String getName() { 

  return _name; 

 } 

  

 public String getFeatureName() { 

  return _fname; 

 } 

 

 public String getPartName() { 

  return _pname; 

 } 

 

 public String getDefaultValue() { 

  return _defaultValue; 

 } 

  

 public List<String> getValue() { 

  return _value; 

 } 

 

 public String getType() { 

  return _type; 

 } 

  

 public static 

List<InteractiveInstanceReportResult> generateList(Project 

project, Package pkg) { 

  ArrayList<InteractiveInstanceReportResult> 

arr = new ArrayList<InteractiveInstanceReportResult>(); 

  Map<StructuralFeature, List<Slot>> hm = 

SysMLUtility.getInstanceMap(project, pkg); 

  ArrayList<String> values; 

  String defaultValue, val = "", type = ""; 

  for (StructuralFeature  key : hm.keySet()) { 

   defaultValue = ""; 

   values = new ArrayList<String>(); 

   for (Slot sl : hm.get(key)) { 

    Property df = 

((Property)sl.getDefiningFeature()); 

    type = df.getHumanType(); 

    if (df.getDefaultValue() != null) 

{ 
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     defaultValue = 

SysMLUtility.getValueSpecificationValue(df.getDefaultValue(

)); 

    } 

    for (ValueSpecification vs : 

sl.getValue()) { 

     val = 

SysMLUtility.getValueSpecificationValue(vs); 

     values.add(val); 

    } 

   } 

   String name = key.getName(); 

   String fname = 

SysMLUtility.getFeatureName(project, key); 

   String pname = 

SysMLUtility.getPartName(project, key); 

    

   if ("Part Property".equals(type) || 

"Constraint Parameter".equals(type) || "Constraint 

Property".equals(type)) { 

    // Ignore and never include in 

result list 

   } else if ("Validation Value 

Property".equals(type)) { 

    // Ignore and never include in 

result list 

   } else if ("Performance Value 

Property".equals(type)) { 

    // Ignore and never include in 

result list 

   } else { 

    arr.add( new 

InteractiveInstanceReportResult(name, fname, pname, type, 

defaultValue, values) ); 

   } 

  } 

  return arr; 

 } 

  

} 

PartFileFilter: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import java.io.File; 

 

import javax.swing.filechooser.FileFilter; 

/** 
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 * File filter for file.prt 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

 

public class PartFileFilter extends FileFilter { 

 

 @Override 

 public boolean accept(File file) { 

  return file.isDirectory() || 

file.getName().toLowerCase().endsWith(".prt"); 

 } 

 

 @Override 

 public String getDescription() { 

  // TODO Auto-generated method stub 

  return "NX Part Files"; 

 } 

 

} 
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StereotypeFilterHandler: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

 

import java.util.Collection; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ModelElementsManager; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

 

public class StereotypeFilterHandler extends 

IdentityNodeHandler { 

 private Collection<Stereotype> _filter; 

  

 public 

StereotypeFilterHandler(Collection<Stereotype> filter) { 

  _filter = filter; 

 } 

 

 @Override 

 public Class exitFeature(Project project, Class 

parent, Class sysmlFeature, NXFeature nxFeature) throws 

ReadOnlyElementException { 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log( "000" + 

sysmlFeature ); 

   if (parent != null) { 

   

 Application.getInstance().getGUILog().log( "001" + 

parent + " | " + parent.getName() ); 

   } else { 
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 Application.getInstance().getGUILog().log( "001 parent 

is null " ); 

   } 

  } 

  boolean included = true; 

   

  if (sysmlFeature != null) { 

   if (PluginMain.DEBUG) { 

   

 Application.getInstance().getGUILog().log( "AAA 

Checking feature : " + sysmlFeature.getName() ); 

   } 

   for (Stereotype st : _filter) { 

   

 Application.getInstance().getGUILog().log( "BBB 

Checking stereotype : " + st.getName() ); 

    if 

(StereotypesHelper.hasStereotype(sysmlFeature, st)) { 

     included = false; 

     break; 

    } 

   } 

   if (PluginMain.DEBUG) { 

   

 Application.getInstance().getGUILog().log( "CCC Is 

Included?" + sysmlFeature.getName() + " " + included ); 

   } 

   if (included) { 

    return sysmlFeature; 

   } else { 

    Collection<Class> featureList = 

SysMLUtility.getFeatures(project, sysmlFeature); 

    ModelElementsManager msm = 

ModelElementsManager.getInstance(); 

    msm.removeElement(sysmlFeature); 

    for (Class childElement : 

featureList) { 

    

 msm.removeElement(childElement); 

     msm.addElement(childElement, 

parent); 

    } 

    return parent; 

     

   } 

  } 
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  return parent; 

 } 

} 
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SysMLModelTraverser: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

 

import java.awt.Frame; 

import java.util.Collection; 

 

import javax.swing.JOptionPane; 

import javax.swing.ProgressMonitor; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.magicdraw.openapi.uml.SessionManager; 

import 

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

 

public class SysMLModelTraverser extends Thread { 

  

 public static SysMLModelTraverser launch(Project 

project, Class rootPartClass, NXPart nxPart, 

DefaultNodeHandler resolver) { 

  // Now send some commands to Maple 

  SessionManager sm = 

SessionManager.getInstance(); 

  sm.createSession("NX Plugin"); 

 

  Frame parentFrame = 

MDDialogParentProvider.getProvider().getDialogParent(); 

  ProgressMonitor pm = new 

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE, 

"Please wait", 0, 10); 
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  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("Test! 123 " 

+ resolver ); 

  } 

   

 

  SysMLModelTraverser traverser = new 

SysMLModelTraverser( project, rootPartClass, nxPart, 

resolver, pm ); 

  //traverser._sm = sm; 

  //traverser.start(); 

   

  //try { 

  // traverser.join(); 

  //} catch (InterruptedException ie) { 

  // // TODO Auto-generated catch block 

  // ie.printStackTrace(); 

  //} 

  traverser.run(); 

   

  sm.closeSession(); 

   

 // waitDialog.setVisible(false); 

   

  return traverser; 

 } 

 private DefaultNodeHandler _handler; 

 private NXPart _nxPart; 

 private ProgressMonitor _pm; 

 private Project _project; 

 private Class _resolvedClass; 

 private boolean _result; 

 private Class _partClass; 

  

 private SysMLModelTraverser (Project project, 

Class partClass, NXPart nxPart, 

    DefaultNodeHandler handler, 

ProgressMonitor pm) { 

  _project = project; 

  _partClass = partClass; 

  _nxPart = nxPart; 

  _handler = handler; 

  _pm = pm; 

  _result = true; 

 } 
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 public Class getResolvedClass() { 

  return _resolvedClass; 

 } 

   

 public boolean getResult() { 

  return _result; 

 } 

  

 /** 

  * Creates a SysML representation of a part. The 

mapping that we want in this case is: 

  * (NX)Part => (SysML)Block[stereotype=NXOpen] 

  *   where: 

  *      

 (SysML)Block[stereotype=NXOpen].name  = 

(NX)Part.name 

  *      

 (SysML)Block[stereotype=NXOpen].filename = 

(NX)Part.filename 

  *      

  * @param part The part to work with 

  * @param filename The filename of the part 

  * @throws ReadOnlyElementException  

  */ 

 @Override 

 public void run() { 

   

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("Test!  

sysmlPart: " + (_partClass) ); 

  

 Application.getInstance().getGUILog().log("Test!  NX 

part status: " + _nxPart ); 

  } 

   

  Class result = null; 

  try { 

   result = traversePart( null, 

_partClass, _nxPart ); 

  } catch (ReadOnlyElementException roee) { 

   roee.printStackTrace(); 

  } 

   

  _resolvedClass = result; 

  _result = true; 

 } 
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 private Property traverseExpression( Class 

parent, Property sysmlExpression, NXExpression nxExpression 

) throws ReadOnlyElementException { 

  Property res = _handler.enterExpression( 

_project, parent, sysmlExpression, nxExpression ); 

  _handler.exitExpression( _project, parent, 

sysmlExpression, nxExpression ); 

  return res; 

 } 

  

 private Class traverseFeature( Class parent, 

Class sysmlFeature, NXFeature nxFeature ) throws 

ReadOnlyElementException { 

  // Call resolver on it 

  Class resolvedFeature = 

_handler.enterFeature( _project, parent, sysmlFeature, 

nxFeature ); 

  if (resolvedFeature == null) { 

   resolvedFeature = parent; 

  } 

  // Traverse expressions 

  Collection<Property> sysmlExpressions = 

SysMLUtility.getExpressions(_project, resolvedFeature); 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("traverseFea

ture: [SysML:" + sysmlFeature + ", NX:" + nxFeature +"]" ); 

  

 Application.getInstance().getGUILog().log("traverseFea

ture exprs: " + resolvedFeature + ": " + 

sysmlExpressions.size() ); 

  } 

  if (nxFeature != null) { 

   Collection<NXExpression> nxExpressions 

= nxFeature.getExpressions(); 

   Property childExpression; 

   for (NXExpression nxExpression : 

nxExpressions) { 

    // Traverse the expression 

    childExpression = 

SysMLUtility.findExpressionByName( _project, 

sysmlExpressions, nxExpression.getName() ); 

    traverseExpression( 

resolvedFeature, childExpression, nxExpression ); 

    // Remove the expression from our 

collection 
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 sysmlExpressions.remove(childExpression); 

   } 

  } 

  // sysmlExpressions now is a list of 

rejects, i.e. stuff in SysML with no analogue in NX 

  for (Property childExpression : 

sysmlExpressions) { 

   traverseExpression(resolvedFeature, 

childExpression, null); 

  } 

   

  // Traverse child features 

  Collection<Class> sysmlFeatures = 

SysMLUtility.getFeatures(_project, resolvedFeature); 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("traverseFea

ture children: " + resolvedFeature + ": " + 

sysmlFeatures.size() ); 

  } 

  if (nxFeature != null) { 

   Collection<NXFeature> childFeatures = 

nxFeature.getChildren(); 

   Class childFeature; 

   for (NXFeature nxChildFeature : 

childFeatures) { 

    // Traverse the feature 

    childFeature = 

SysMLUtility.findFeatureByName( _project, sysmlFeatures, 

nxChildFeature.getName(), nxChildFeature.getType() ); 

    traverseFeature( resolvedFeature, 

childFeature, nxChildFeature ); 

    // Remove the expression from our 

collection 

   

 sysmlFeatures.remove(childFeature); 

   } 

  } 

  // sysmlFeatures now is a list of rejects, 

i.e. stuff in SysML with no analogue in NX 

  for (Class childFeature : sysmlFeatures) { 

   traverseFeature( resolvedFeature, 

childFeature, null ); 

//   _handler.enterFeature(_project, parent, 

cls, null); 
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//   _handler.exitFeature(_project, parent, 

cls, null); 

  } 

   

  _handler.exitFeature( _project, parent, 

sysmlFeature, nxFeature ); 

   

  return resolvedFeature; 

 } 

 

 private Class traversePart( Class parent, Class 

sysmlPart, NXPart nxPart ) throws ReadOnlyElementException 

{ 

  // if sysmlPart is null, search for part 

under current parent 

   

  // Perform resolver action on part itself 

  Class resolvedPart = _handler.enterPart( 

_project, parent, sysmlPart, nxPart ); 

 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("traversePar

t: [Parent:" + parent + " SysML:" + sysmlPart + ", NX:" + 

nxPart + " resolvedPart " + resolvedPart +"]" ); 

  } 

 

  // Decide on name for part 

  String name = resolvedPart.getName();  

  if (!name.endsWith(".prt")) { 

   name = name + ".prt"; 

   resolvedPart.setName(name); 

  } 

   

  // First traverse feature children 

  Collection<Class> sysmlFeatures = 

SysMLUtility.getFeatures(_project, resolvedPart); 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("traversePar

t: SysML feature count: " + sysmlFeatures.size()); 

  } 

  if (nxPart != null) { 

   Collection<NXFeature> nxFeatures = 

nxPart.getFeatures(); 

   if (PluginMain.DEBUG) { 
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 Application.getInstance().getGUILog().log("traversePar

t: NX feature count: " + nxFeatures.size()); 

   } 

   Class childFeature; 

   for (NXFeature nxFeature : nxFeatures) 

{ 

    childFeature = 

SysMLUtility.findFeatureByName( _project, sysmlFeatures, 

nxFeature.getName(), nxFeature.getType() ); 

    traverseFeature( resolvedPart, 

childFeature, nxFeature ); 

   

 sysmlFeatures.remove(childFeature); 

   } 

  } 

  // sysmlFeatures now is a list of rejects, 

i.e. stuff in SysML with no analogue in NX 

  for (Class childFeature : sysmlFeatures) { 

   traverseFeature( resolvedPart, 

childFeature, null ); 

  } 

 

  // Now traverse part children 

  Collection<Class> sysmlComponents = 

SysMLUtility.getPartChildren(_project, resolvedPart); 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("Part: SysML 

component count: " + sysmlComponents.size()); 

  } 

  // Traverse components 

  if (nxPart != null) { 

   Collection<NXPart> nxComponents = 

nxPart.getOpenComponents(); 

   if (PluginMain.DEBUG) { 

   

 Application.getInstance().getGUILog().log("traversePar

t: NX feature count: " + nxComponents.size()); 

   } 

   Class childPart; 

   for (NXPart nxChildPart : nxComponents) 

{ 

    childPart = 

SysMLUtility.findPartByFilePath( _project, sysmlComponents, 

nxChildPart.getFile() ); 
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    traversePart( resolvedPart, 

childPart, nxChildPart ); 

    sysmlComponents.remove(childPart); 

   } 

  }   

  // sysmlComponents now is a list of rejects, 

i.e. stuff in SysML with no analogue in NX 

  for (Class childPart : sysmlComponents) { 

   traversePart( resolvedPart, childPart, 

null ); 

  } 

     

  _handler.exitPart( _project, parent, 

sysmlPart, nxPart ); 

   

  return resolvedPart; 

 } 

 

} 
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SysMLParameters: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

 

import java.util.Collection; 

 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

/** 

 * Class for managing parameter within SysML 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

 

public class SysMLParameters { 

  

 public static void addParameterToClass( Project 

project, Class sysmlClass, NXExpression param ) { 

  String name = param.getName(); 

  String value = param.getValue(); 

  ElementsFactory factory = 

project.getElementsFactory(); 

  Stereotype sysmlValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

  Property myProperty = 

factory.createPropertyInstance(); 

  // New property step 1 

  myProperty.setName( name ); 
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  ValueSpecification spec = 

factory.createLiteralStringInstance(); 

  ((LiteralString)spec).setValue( value ); 

  myProperty.setDefaultValue(spec); 

   

  StereotypesHelper.addStereotype(myProperty, 

sysmlValuePropertyStereotype); 

   

 

 StereotypesHelper.setStereotypePropertyValue(myPropert

y, sysmlValuePropertyStereotype, "currentName", 

param.getName()); 

   

  if (sysmlClass != null) { 

   myProperty.setUMLClass(sysmlClass); 

  

 sysmlClass.getAttribute().add(myProperty); 

  } 

 } 

  

 public static String 

getSynchronizedParameterName( Project project, 

Collection<NXExpression> params, String name ) { 

  Stereotype sysmlValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

  NXExpression found = null; 

  for (NXExpression expr : params) { 

   if (name.equals(expr.getName())) { 

    found = expr; 

    break; 

   } 

  } 

  if (found != null) { 

   return 

StereotypesHelper.getStereotypePropertyFirst(found.getPrope

rty(), sysmlValuePropertyStereotype, 

"currentName").toString(); 

  } else { 

   return null; 

  } 

 } 

  

 public static boolean removeAllParameters(Element 

sysmlElement) { 

  if (sysmlElement instanceof Class) { 
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   Class sysmlPart = (Class)sysmlElement; 

   sysmlPart.getAttribute().clear(); 

  } 

  return true; 

 } 

  

 public static boolean removeParameter(Element 

sysmlElement, String parameterName) { 

  if (sysmlElement instanceof Class) { 

   Class sysmlPart = (Class)sysmlElement; 

   for (Property prop : 

sysmlPart.getAttribute() ) { 

    if (parameterName.equals( 

prop.getName() )) { 

    

 sysmlPart.getAttribute().remove(prop); 

     return true; 

    } 

   } 

  } 

  return false; 

 } 

  

 public static boolean 

setSynchronizedParameterName( Project project, 

Collection<NXExpression> params, String name ) { 

  Stereotype sysmlValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

  NXExpression found = null; 

  for (NXExpression expr : params) { 

   if (name.equals(expr.getName())) { 

    found = expr; 

    break; 

   } 

  } 

  if (found != null) { 

  

 StereotypesHelper.setStereotypePropertyValue(found.get

Property(), sysmlValuePropertyStereotype, "currentName", 

name); 

   return true; 

  } else { 

   return false; 

  } 

 } 
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 public static boolean 

updateParameter(ElementsFactory elementsFactory, Element 

sysmlElement, NXExpression param) { 

  if (sysmlElement instanceof Class) { 

   Class sysmlPart = (Class)sysmlElement; 

   Property targetProperty = null; 

   for (Property prop: 

sysmlPart.getAttribute() ) { 

    if 

(param.getName().equals(prop.getName())) { 

     targetProperty = prop; 

     break; 

    } 

   } 

    

   if (targetProperty != null) { 

    LiteralString spec = 

elementsFactory.createLiteralStringInstance(); 

    spec.setValue(param.getValue()); 

   

 targetProperty.setDefaultValue(spec); 

    return true; 

   } else { 

    return false; 

   } 

  } 

  // we don't currently add parameters to 

properties so we don't update them 

  return false; 

 } 

  

} 
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SysMLUtility: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXClientEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXConnectionExce

ption; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

 

import java.awt.Frame; 

import java.io.File; 

import java.util.ArrayList; 

import java.util.Collection; 

import java.util.HashMap; 

import java.util.HashSet; 

import java.util.List; 

import java.util.Map; 

 

import javax.swing.JOptionPane; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.auxiliaryconstructs.mdmodels

.Model; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.InstanceSpe

cification; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralBool

ean; 



460 

 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralInte

ger; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralReal

; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.NamedElemen

t; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Packageable

Element; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Profile; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

 

/** 

 * Class to interoperate between NX and SysML 

 *  

 * @author francisco.valdes@jpl.nasa.gov,   

 */ 

 

public class SysMLUtility { 

  

 public static Stereotype 

featureTypeToStereotype(Project project, String type) { 

 

 Application.getInstance().getGUILog().log("Type is: " 

+ type ); 

  if (type.equals("DATUM_CSYS")) { 
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   return 

StereotypesHelper.getStereotype(project, 

"NXCoordinateSystem"); 

  } else if (type.equals("DATUM_PLANE")) { 

   return 

StereotypesHelper.getStereotype(project, "NXDatumPlane");  

  } else if (type.equals("EXTRACT_BODY")) { 

  } else if (type.equals("SIMPLE HOLE")) { 

   return 

StereotypesHelper.getStereotype(project, "NXSimpleHole");  

  } else if (type.equals("HOLE PACKAGE")) { 

  } else if (type.equals("SB_FLAT_SOLID")) { 

  } else if (type.equals("FLAT_PATTERN")) { 

  } else if (type.equals("BALL_END_SLOT")) { 

   return 

StereotypesHelper.getStereotype(project, "NXBallEndSlot");  

  } else if (type.equals("MIRROR")) { 

   return 

StereotypesHelper.getStereotype(project, "NXMirrorBody");  

  } else if (type.equals("MIRROR_SET")) { 

   return 

StereotypesHelper.getStereotype(project, 

"NXMirrorFeature");  

  } else if (type.equals("CHAMFER")) { 

   return 

StereotypesHelper.getStereotype(project, "NXChamfer");  

  } else if (type.equals("SKETCH") || 

type.equals("Sketch")) { 

   return 

StereotypesHelper.getStereotype(project, "NXSketch");  

  } else if (type.equals("Base Tab")) { 

   return 

StereotypesHelper.getStereotype(project, "NXSMBaseFlange");  

  } else if (type.equals("Break Corner")) { 

   return 

StereotypesHelper.getStereotype(project, 

"NXSMCornerBreak");  

  } else if (type.equals("Flange")) { 

   return 

StereotypesHelper.getStereotype(project, "NXSMFlange");  

  } else if (type.equals("Normal Cutout")) { 

   return 

StereotypesHelper.getStereotype(project, 

"NXSMNormalCutOut"); 

  } 

  return null; 

 } 
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 public static Property findExpressionByName( 

Project project, Collection<Property> exprs, String 

paramName ) { 

  Stereotype sysmlValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

  Object currentName; 

  for (Property expr : exprs) { 

   currentName = 

StereotypesHelper.getStereotypePropertyFirst(expr, 

sysmlValuePropertyStereotype, "currentName"); 

   if (currentName != null && 

paramName.equals(currentName.toString())) { 

    return expr; 

   } 

  } 

  return null; 

 } 

 

 public static Class findFeatureByName( Project 

project, Collection<Class> features, String featureName, 

String featureType ) { 

  Stereotype nxPartFeature = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

  Object childFtype; 

  String childFNewname, childFOldname; 

  for (Class childFeature : features) { 

   childFtype = 

StereotypesHelper.getStereotypePropertyFirst(childFeature, 

nxPartFeature, "featureType"); 

   childFNewname = childFeature.getName(); 

   childFOldname = 

StereotypesHelper.getStereotypePropertyFirst(childFeature, 

nxPartFeature, "currentFeatureName").toString(); 

    

   if ((featureName.equals(childFOldname) 

|| featureName.equals(childFNewname)) && childFtype != null 

&& featureType.equals(childFtype.toString())) { 

    if (PluginMain.DEBUG) { 

    

 Application.getInstance().getGUILog().log("Feature 

Search: [NX=" + featureName+"][SysML="+childFOldname+"]" ); 

    } 

    return childFeature; 

   } 

  } 
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  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("Feature 

Search: [NX=" + featureName+"][SysML=null]" ); 

  } 

  return null; 

 } 

 

 public static Class findPartByFilePath( Project 

project, Collection<Class> parts, File path ) { 

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Object currentPartPath; 

  File currentPartFile; 

  for (Class elem : parts) { 

   currentPartPath = 

StereotypesHelper.getStereotypePropertyFirst(elem, 

nxPartStereotype, "currentPartPath"); 

   if (currentPartPath == null) continue; 

   currentPartFile = new File( 

currentPartPath.toString() ); 

  

 Application.getInstance().getGUILog().log("SYSml Part 

name: " + currentPartPath.toString() ); 

   if (currentPartFile.equals(path)) { 

    return elem; 

   } 

  } 

  return null; 

 } 

 

 public static Collection<Class> getAllParts( 

Project project, Package pkg ) { 

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Collection<Class> parts = new 

HashSet<Class>(); 

  Collection<PackageableElement> children = 

pkg.getPackagedElement(); 

  for (PackageableElement child : children) { 

   if 

(StereotypesHelper.hasStereotype(child, nxPartStereotype)) 

{ 

    parts.add( (Class)child ); 

   } 

  } 

  return parts; 
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 } 

   

 /*public static NamedElement 

getCorrespondingElement(Project project, NamedElement 

userElement, Stereotype st) { 

  Object val = 

StereotypesHelper.getStereotypePropertyFirst(userElement, 

st, "currentPartPath"); 

  String originalName = (val != null ? 

val.toString() : null); 

  Stereotype otherStereotype = 

getCorrespondingStereotype(project, st); 

  if (otherStereotype != null && originalName 

!= null) { 

   return getClassByPathname( project, 

userElement.getOwner(), otherStereotype, originalName ); 

  } else { 

   return null; 

  } 

 }*/ 

 private static Collection<NamedElement> 

getAssemblyComponents(Element queryElement, Project 

project) { 

  Stereotype nxPartStereotype         = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Stereotype nxPartPropertyStereotype = 

StereotypesHelper.getStereotype(project, "NXPartProperty"); 

   

  Collection<NamedElement> parts = new 

HashSet<NamedElement>(); 

  Collection<Element> children = 

queryElement.getOwnedElement(); 

  for (Element child : children) { 

   if 

(StereotypesHelper.hasStereotype(queryElement, 

nxPartStereotype)) { 

    parts.add( (NamedElement)child ); 

   } else if 

(StereotypesHelper.hasStereotype(queryElement, 

nxPartPropertyStereotype)) { 

    parts.add( (NamedElement)child ); 

   } 

  } 

  return parts; 

 } 
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 public static Collection<Stereotype> 

getBasicStereotypes( Project project ) { 

  String nm; 

  Profile nxProfile = 

StereotypesHelper.getProfile( project, "NXProfile" ); 

 

 Application.getInstance().getGUILog().log("NX Profile 

is " + (nxProfile != null) + "|" + nxProfile.getName() ); 

  Collection<Stereotype> stc = 

StereotypesHelper.getStereotypesByProfile( nxProfile ); 

  ArrayList<Stereotype> list = new 

ArrayList<Stereotype>(); 

  for (Stereotype st : stc) { 

   nm = st.getName(); 

   if (nm.equals("NXPart") || 

nm.equals("NXAssembly") || nm.equals("NXFeature") || 

    nm.equals("NXPartFeature") || 

nm.equals("NXProject") || 

    nm.equals("NXSheetMetalFeatures") 

|| 

    nm.equals("NXPartProperty") || 

nm.equals("NXValueProperty")) { 

    list.add(st); 

   } 

  } 

  return list; 

 } 

  

 public static Collection<Property> 

getExpressions( Project project, Class parent ) { 

  Stereotype sysmlValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

  Collection<Property> params = new 

HashSet<Property>(); 

  for (Property prop : parent.getAttribute()) 

{ 

   if 

(StereotypesHelper.hasStereotype(prop, 

sysmlValuePropertyStereotype)) { 

    params.add( prop ); 

   } 

  } 

  return params; 

 } 
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 public static Collection<NXExpression> 

getExpressionsNX( Project project, Class parent ) { 

  Stereotype sysmlValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

  Collection<NXExpression> params = new 

HashSet<NXExpression>(); 

  ValueSpecification spec; 

  String paramName = null; 

  String paramValue = null; 

   

  for (Property prop : parent.getAttribute()) 

{ 

   if 

(StereotypesHelper.hasStereotype(parent, 

sysmlValuePropertyStereotype)) { 

    paramName = prop.getName(); 

    spec = prop.getDefaultValue(); 

    paramValue = 

SysMLUtility.getValueSpecificationValue(spec); 

   } 

   params.add( new NXExpression( 

paramName, paramValue, prop ) ); 

  } 

  return params; 

 } 

  

 public static Collection<Class> getFeatures( 

Project project, Class parent ) { 

  Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

   

  Collection<Class> features = new 

HashSet<Class>(); 

  Collection<Element> children = 

parent.getOwnedElement(); 

  for (Element child : children) { 

   if 

(StereotypesHelper.hasStereotype(child, 

nxFeatureStereotype)) { 

    features.add( (Class)child ); 

   } 

  } 

  return features; 

 } 
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 public static String getFeatureName(Project 

project, StructuralFeature element) { 

  Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

  Element parent = element.getOwner(); 

  while (parent != null) { 

   if 

(StereotypesHelper.hasStereotype(parent, 

nxFeatureStereotype)) { 

    return 

((NamedElement)parent).getName(); 

   } 

   parent = parent.getOwner(); 

  } 

  return ""; 

 } 

  

 public static String getPartName(Project project, 

StructuralFeature element) { 

  Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Element parent = element.getOwner(); 

  while (parent != null) { 

   if 

(StereotypesHelper.hasStereotype(parent, 

nxFeatureStereotype)) { 

    return 

((NamedElement)parent).getName(); 

   } 

   parent = parent.getOwner(); 

  } 

  return ""; 

 } 

  

 public static List<String> 

getQualifiedFeatureName(Project project, StructuralFeature 

element) { 

  ArrayList<String> arr = new 

ArrayList<String>(); 

  Element parent = element.getOwner(); 

  while (parent != null && parent instanceof 

NamedElement) { 

   if (parent instanceof Model) { break; } 

   arr.add(0, 

((NamedElement)parent).getName()); 

   parent = parent.getOwner(); 

  } 
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  return arr; 

 } 

  

 

 public static Map<StructuralFeature, List<Slot>> 

getInstanceMap(Project project, Package pkg) { 

  Collection<Element> children = 

pkg.getOwnedElement(); 

  HashMap<StructuralFeature,List<Slot>> hm = 

new HashMap<StructuralFeature ,List<Slot>>(); 

  for (Element child : children) { 

   if (child instanceof 

InstanceSpecification) { 

    InstanceSpecification is = 

(InstanceSpecification)child; 

    //Class block = getBlock(is); 

    Collection<Element> grandchildren 

= child.getOwnedElement(); 

    for (Element slotElement : 

grandchildren) { 

     if (slotElement instanceof 

Slot) { 

      Slot slot1 = 

(Slot)slotElement; 

      StructuralFeature str = 

slot1.getDefiningFeature(); 

      if 

(!(hm.containsKey(str))) { 

       hm.put(str, new 

ArrayList<Slot>()); 

      } 

      hm.get(str).add(slot1); 

     } 

    } 

   } 

  } 

  return hm; 

 } 

  

 public static String 

getValueSpecificationValue(ValueSpecification val) { 

  if (val instanceof LiteralReal) { 

   LiteralReal lr = (LiteralReal)val; 

   return Double.toString(lr.getValue()); 

  } else if (val instanceof LiteralInteger) { 

   LiteralInteger lr = 

(LiteralInteger)val; 
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   return Integer.toString(lr.getValue()); 

  } else if (val instanceof LiteralBoolean) { 

   LiteralBoolean lb = 

(LiteralBoolean)val; 

   return Boolean.toString(lb.isValue()); 

  } else if (val instanceof LiteralString) { 

   LiteralString ls = (LiteralString)val; 

   return ls.getValue(); 

  } else { 

   return val.toString(); 

  } 

 } 

  

 public static Collection<Class> getPartChildren( 

Project project, Class partClass ) { 

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Collection<Class> parts = new 

HashSet<Class>(); 

  for (Element child : 

partClass.getOwnedElement()) { 

   if 

(StereotypesHelper.hasStereotype(child, nxPartStereotype)) 

{ 

    parts.add( (Class)child ); 

   } 

  } 

  return parts; 

 } 

  

 /*public static Class getPartClass( Package 

partPackage ) { 

  for (Object o : 

partPackage.getOwnedElement()) { 

   if (o instanceof Class) { 

    return (Class)o; 

   } 

  } 

  return null; 

 }*/ 

 

 public static Collection<Stereotype> 

getProfileStereotypes( Project project ) { 

  String nm; 

  Profile nxProfile = 

StereotypesHelper.getProfile( project, "NXProfile" ); 
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 Application.getInstance().getGUILog().log("NX Profile 

is " + (nxProfile != null) + "|" + nxProfile.getName() ); 

  Collection<Stereotype> stc = 

StereotypesHelper.getStereotypesByProfile( nxProfile ); 

  ArrayList<Stereotype> list = new 

ArrayList<Stereotype>(); 

  for (Stereotype st : stc) { 

   nm = st.getName(); 

   if (!(nm.equals("NXPart") || 

nm.equals("NXAssembly") || nm.equals("NXFeature") || 

    nm.equals("NXPartFeature") || 

nm.equals("NXProject") || 

    nm.equals("NXSheetMetalFeatures") 

|| 

    nm.equals("NXPartProperty") || 

nm.equals("NXValueProperty"))) { 

    list.add(st); 

   } 

  } 

  return list; 

 } 

  

 public static NXPart openPart(Frame parentFrame, 

File nxFile) { 

  boolean success = true; 

  NXPart nxPart = null; 

  NXEngine engine; 

  // Read parameter and components 

   

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("NX Feature 

Type: " + nxFile.toString() ); 

  } 

    

  if (!(nxFile != null && nxFile.exists() && 

nxFile.canRead())) { 

   throw new IllegalStateException(); 

  } 

   

  try { 

   engine = new NXClientEngine(); 

  } catch (NXConnectionException nce) { 

   JOptionPane.showMessageDialog( 

parentFrame, 
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    "Cannot connect to Siemens 

NX.\nEnsure that Execute->NX Open->nx_maple_server.dll has 

been run", 

    "NX connection error", 

    JOptionPane.ERROR_MESSAGE 

   ); 

   return null; 

  } 

   

 

 Application.getInstance().getGUILog().log("NX Open 

Connection: " + success ); 

 

  nxPart = engine.openPart( nxFile, true ); 

 

  engine.closeConnection(); 

   

  if (nxPart != null) { 

   return nxPart; 

  } else { 

   return null; 

  } 

 } 

  

 public static NXPart renameNXPart( NXEngine 

engine, NXPart part, File newFile ) { 

  File originalFile = new File( part.getPath() 

); 

  if (newFile.equals(originalFile)) { 

   return null; 

  } 

  // do nothing, no change needed 

  if (newFile.exists()) { 

   JOptionPane.showMessageDialog(null, 

    "New part file name already 

exists.\nRemove existing file or choose a different name.", 

    "updating NX file error", 

    JOptionPane.ERROR_MESSAGE 

   ); 

   return null; 

  } 

    

  // RENAME is attempted 

  // Renames are allowed, the rename is 

nontrivial (i.e. oldname != newname) and newname doesn't 

exist yet 
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  //String originalName = 

originalFile.getAbsolutePath(); 

  boolean closeResult = engine.closePart( part 

); 

   

  originalFile.renameTo(newFile); 

   

  if (!newFile.exists()) { 

   JOptionPane.showMessageDialog(null, 

    "Could not rename NX part 

file.\nPlease ensure the target directory is writable.", 

    "Part file error", 

    JOptionPane.ERROR_MESSAGE 

   ); 

   return null; 

  } 

    

  NXPart newPart = engine.openPart( newFile ); 

   

  return newPart; 

  //List<String> qualifiedPath = 

getSysMLQualifiedName( 

Application.getInstance().getProject(), queryElement, 

nxStereotype ); 

 

//    Stereotype otherStereotype = 

getCorrespondingStereotype(Application.getInstance().getPro

ject(), nxPartStereotype); 

//    if (otherStereotype != null) { 

//     NamedElement otherElem = 

getClassByPathname( project, queryElement.getOwner(), 

otherStereotype, originalName ); 

//     otherElem.setName(name); 

//    

 StereotypesHelper.setStereotypePropertyValue( 

otherElem, otherStereotype, "dir", dir ); 

//    

 StereotypesHelper.setStereotypePropertyValue( 

otherElem, otherStereotype, "currentPartPath", filename ); 

//    } 

   // At this point, the Class and the 

PartProperty should have the same name, dir, and 

currentPartPath, 

   // which will all correspond to the 

present state of the corresponding part file in NX. 

   

 /* } else { 
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   // if renames are not allowed then 

display warning to user 

   JOptionPane.showMessageDialog(null, 

    "Cannot change name of part in 

assembly.\nPlease change part name within NX.", 

    "Cannot change part name", 

    JOptionPane.WARNING_MESSAGE 

   ); 

  }*/ 

 } 

  

 private static boolean updateFeatureToNX(Project 

project, NXEngine engine, NXPart part, NamedElement 

featureElement) { 

  Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

  if 

(StereotypesHelper.hasStereotype(featureElement, 

nxFeatureStereotype)) { 

   boolean result = true; 

   String newName = 

featureElement.getName(); 

   String oldName = 

StereotypesHelper.getStereotypePropertyFirst(featureElement

, nxFeatureStereotype, "currentFeatureName").toString(); 

   

   if (!oldName.equals(newName)) { 

    result = 

engine.renameFeature(part, oldName, newName); 

    for (NamedElement subfeature : 

getFeatures( project, (Class)featureElement) ) { 

     if (!result) break; 

     result = result && 

updateFeatureToNX(project, engine, part, subfeature); 

    }      

   } 

   return result; 

  } else { 

   return false; 

  } 

 } 

  

 private static boolean 

updatePartToNXInternal(Project project, NXEngine engine, 

    NamedElement contextElement, 

boolean renamesAllowed) { 
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  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype( project, "NXPart" ); 

  Stereotype nxAssemblyStereotype = 

StereotypesHelper.getStereotype(project, "NXAssembly"); 

 

//  Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

   

  Collection<NXExpression> params = 

SysMLUtility.getExpressionsNX( project, 

(Class)contextElement ); 

   

  boolean success = true; 

  String name = contextElement.getName(); 

   

  if (!name.endsWith(".prt")) { 

   name = name + ".prt"; 

   contextElement.setName(name); 

  } 

   

  Element queryElement = null; 

  queryElement = contextElement; 

  

  // Now send some commands to Maple 

  String filename, dir, originalName, 

uniqueID; 

      

  dir = 

StereotypesHelper.getStereotypePropertyFirst(queryElement, 

nxPartStereotype, "directory").toString(); 

  originalName = 

StereotypesHelper.getStereotypePropertyFirst(queryElement, 

nxPartStereotype, "currentPartPath").toString(); 

  uniqueID = 

StereotypesHelper.getStereotypePropertyFirst(queryElement, 

nxPartStereotype, "uniqueID").toString(); 

  filename = dir + File.separator + name; 

 

  File newFile = new File( filename ); 

  File originalFile = new File( originalName 

); 

  NXPart part = engine.openPart(originalFile); 

//  List<String> featureList = 

getFeatureNames(engine, part); 

   

  //filename = dir + File.separator + name; 

   



475 

 

  NXPart newPart = renameNXPart( engine, part, 

newFile ); 

  if (newPart != null) { 

  

 StereotypesHelper.setStereotypePropertyValue( 

queryElement, nxPartStereotype, "currentPartPath", filename 

); 

   part = newPart; 

  } 

     

//  File file = new File( filename ); 

//   

//  NXPart part = engine.openPart( file ); 

   

  if (part != null) { 

   //overallSuccess = overallSuccess && 

engine.setWorkPart( filename ); 

   success = engine.setParameterInfo( 

part, params ); 

    

   Collection<Class> childFeatures = 

SysMLUtility.getFeatures( project, (Class)queryElement); 

   for (NamedElement featureElement : 

childFeatures) { 

    success = 

updateFeatureToNX(project, engine, part, featureElement); 

   } 

    

   success = engine.savePart( part ); 

  } else { 

   JOptionPane.showMessageDialog(null, 

    "Could not open NX part 

file.\nPlease ensure the file exists and is readable.", 

    "Part file error", 

    JOptionPane.ERROR_MESSAGE 

   ); 

  } 

     

  Collection<NamedElement> childParts = 

getAssemblyComponents(queryElement, project); 

  for (NamedElement childPart : childParts) { 

   success = 

updatePartToNXInternal_recurse(project, engine, childPart, 

renamesAllowed ); 

  } 

   

  return success; 
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 } 

  

 /*public static Stereotype 

getCorrespondingStereotype(Project project, Stereotype st) 

{ 

  Stereotype nxPartStereotype         = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Stereotype nxPartPropertyStereotype = 

StereotypesHelper.getStereotype(project, "NXPartProperty"); 

  if (st == nxPartStereotype) { 

   return nxPartPropertyStereotype; 

  } else if (st == nxPartPropertyStereotype) { 

   return nxPartStereotype; 

  } else { 

   return null; 

  } 

 }*/ 

  

 private static boolean 

updatePartToNXInternal_recurse(Project project, NXEngine 

engine, 

    NamedElement queryElement, boolean 

renamesAllowed) { 

  Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

 

  boolean success = false; 

 

  //Stereotype nxStereotype = 

NXStereotype.getStereotype( project, queryElement ); 

   

  // Perform any feature-level renames that 

are required 

   

  Collection<NamedElement> childParts = 

getAssemblyComponents(queryElement, project); 

  for (NamedElement child : childParts) { 

   success = 

updatePartToNXInternal_recurse(project, engine, child, 

renamesAllowed); 

  } 

  

  return success; 

 } 

  

 public static boolean updateToNX(Project project, 

NamedElement userElement) { 
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  boolean success; 

  Stereotype nxPartStereotype = 

StereotypesHelper.getStereotype( project, "NXPart" ); 

   

  if (nxPartStereotype == null || 

!StereotypesHelper.hasStereotype(userElement, 

nxPartStereotype)) { 

   return false; 

  } 

   

  if (userElement instanceof Class) { 

   NXEngine engine; 

   try { 

    engine = new NXClientEngine(); 

   } catch (NXConnectionException ne) { 

    engine = null; 

   } 

   if (engine != null) { 

    updatePartToNXInternal(null, 

engine, userElement, true); 

    engine.closeConnection(); 

    success = true; 

   } 

    

   return true; 

  } else { 

   return true; 

  } 

 } 

} 
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UpdateFromNXResolver: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

 

import java.io.File; 

import java.util.Collection; 

import java.util.HashMap; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ModelElementsManager; 

import 

com.nomagic.magicdraw.openapi.uml.PresentationElementsManag

er; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.magicdraw.uml.symbols.DiagramPresentationElemen

t; 

import 

com.nomagic.magicdraw.uml.symbols.shapes.ShapeElement; 

import com.nomagic.uml2.ext.jmi.helpers.ModelHelper; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Association

; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.InstanceSpe

cification; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng; 
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import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

import com.nomagic.uml2.impl.ElementsFactory; 

 

public class UpdateFromNXResolver extends 

DefaultNodeHandler { 

  

 private InstanceSpecification _featureInstance; 

 private Collection<Stereotype> _filter; 

 private HashMap<Class,ShapeElement> _hm = new 

HashMap<Class,ShapeElement>(); 

  

 public 

UpdateFromNXResolver(Collection<Stereotype> filter) { 

  _filter = filter; 

 } 

  

 private void addChildClass(Project project, Class 

classB, Class classA) { 

  if (classA == null || classB == null) { 

   return; 

  } 

  Element model = project.getModel(); 

  ElementsFactory f = 

project.getElementsFactory(); 

  ModelElementsManager modelElementsManager = 

ModelElementsManager.getInstance(); 

   

  try { 

   Association link = 

f.createAssociationInstance(); 

   //Dependency dependency = 

f.createDependencyInstance(); 

   modelElementsManager.addElement(link, 

model); 

   ModelHelper.setClientElement(link, 

classA); 

   ModelHelper.setSupplierElement(link, 

classB); 

  

   DiagramPresentationElement 

activeDiagram = project.getActiveDiagram(); 
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   PresentationElementsManager 

presentationElementsManager = 

PresentationElementsManager.getInstance(); 

    

   if (activeDiagram != null) { 

    ShapeElement clientShape; 

    if (!_hm.containsKey(classA)) { 

     clientShape = 

presentationElementsManager.createShapeElement(classA, 

activeDiagram); 

     _hm.put(classA, clientShape); 

    } else { 

     clientShape = 

_hm.get(classA); 

    } 

    ShapeElement supplierShape; 

    if (!_hm.containsKey(classB)) { 

     supplierShape = 

presentationElementsManager.createShapeElement(classB, 

activeDiagram); 

     _hm.put(classB, 

supplierShape); 

    } else { 

     supplierShape = 

_hm.get(classB); 

    } 

   

 presentationElementsManager.createPathElement(link, 

clientShape, supplierShape); 

   } else { 

   

 Application.getInstance().getGUILog().log("activeDiagr

am is NULL "); 

   } 

  } catch (ReadOnlyElementException roee) { 

  } 

 } 

  

 @Override 

 public Property enterExpression(Project project, 

Class parent, 

    Property sysmlExpression, 

NXExpression nxExpression) throws ReadOnlyElementException 

{ 

  if (nxExpression != null) { 

   String nxName = nxExpression.getName(); 
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   ElementsFactory elementsFactory = 

project.getElementsFactory(); 

   Stereotype 

sysmlNXValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

   Stereotype sysmlValuePropertyStereotype 

= StereotypesHelper.getStereotype(project, 

"ValueProperty"); 

    

   if (PluginMain.DEBUG) { 

   

 Application.getInstance().getGUILog().log( 

      "Visiting Feature: 

SysML: " + (sysmlExpression != null ? 

sysmlExpression.getName() : "[NULL] ") 

          + " NX : " + 

(nxExpression != null ? nxExpression.getName() : "[NULL] ")  

    ); 

   } 

    

   Property resolvedExpression; 

   LiteralString blockSpec; 

   //LiteralString instanceSpec; 

   Slot slot; 

        

   // So we have the parameter, now set 

the value 

   //instanceSpec = 

elementsFactory.createLiteralStringInstance(); 

 // 

 instanceSpec.setValue(nxExpression.getValue()); 

    

   if (sysmlExpression != null) { 

    resolvedExpression = 

sysmlExpression; 

    blockSpec = 

(LiteralString)resolvedExpression.getDefaultValue(); 

    // So we have the parameter, now 

set the value 

   

 blockSpec.setValue(nxExpression.getValue()); 

    //slot = 

resolvedExpression.get_slotOfDefiningFeature().iterator().n

ext(); 

   } else { 
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    resolvedExpression = 

elementsFactory.createPropertyInstance(); 

    blockSpec = 

elementsFactory.createLiteralStringInstance(); 

    // So we have the parameter, now 

set the value 

   

 blockSpec.setValue(nxExpression.getValue()); 

     

   

 resolvedExpression.setName(nxName); 

   

 StereotypesHelper.addStereotype(resolvedExpression, 

sysmlNXValuePropertyStereotype); 

   

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName", 

nxName); 

   

 StereotypesHelper.addStereotype(resolvedExpression, 

sysmlValuePropertyStereotype);      

   //

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "Type", "Real"); 

   

 resolvedExpression.setDefaultValue(blockSpec); 

    slot = 

elementsFactory.createSlotInstance(); 

  // 

 slot.setDefiningFeature(resolvedExpression); 

  // 

 slot.setOwningInstance(_featureInstance); 

 

   

 ModelElementsManager.getInstance().addElement(resolved

Expression, parent); 

   } 

    

  // slot.getValue().add(instanceSpec); 

 

    

   // LiteralReal realSpec = 

elementsFactory.createLiteralRealInstance(); 

   // realSpec.setValue( 

Double.parseDouble( nxExpression.getValue() ) ); 

    

   // Set instance relationships 
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   if (PluginMain.DEBUG) { 

   

 Application.getInstance().getGUILog().log("Updated 

expression: " + resolvedExpression.getName() + " child of " 

+ parent.getName() ); 

   } 

   return resolvedExpression; 

  } else if (sysmlExpression != null) { 

  

 ModelElementsManager.getInstance().removeElement(sysml

Expression); 

  } 

  return null; 

 } 

 

 @Override 

 public Class enterFeature(Project project, Class 

parent, Class sysmlFeature, NXFeature nxFeature) throws 

ReadOnlyElementException { 

  if (nxFeature != null) { 

   ElementsFactory elementsFactory = 

project.getElementsFactory(); 

   Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

 

   Stereotype additionalStereotype = null; 

   Class resolvedFeature; 

   if (sysmlFeature != null) { 

    resolvedFeature = sysmlFeature; 

   } else { 

    String nxName = 

nxFeature.getCustomName() != null ? 

nxFeature.getCustomName() : nxFeature.getName(); 

    resolvedFeature = 

elementsFactory.createClassInstance(); 

    resolvedFeature.setName(nxName);  

   

 StereotypesHelper.addStereotype(resolvedFeature, 

nxFeatureStereotype); 

     

     

    String type = nxFeature.getType(); 

    if (PluginMain.DEBUG) { 

    

 Application.getInstance().getGUILog().log("NX Feature 

Type: " + type ); 
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    } 

     

    if (type != null) { 

     additionalStereotype = 

SysMLUtility.featureTypeToStereotype(project, type); 

    

 Application.getInstance().getGUILog().log("SysML 

Stereotype for " + type + " is non-null: " + 

(additionalStereotype != null) ); 

     if (additionalStereotype != 

null) { 

     

 StereotypesHelper.addStereotype(resolvedFeature, 

additionalStereotype); 

     } 

    } 

   } 

    

   if (_filter != null && 

additionalStereotype != null && 

_filter.contains(additionalStereotype)) { 

    // skip this feature and absorb 

any children into its parent 

    return null; 

   } else { 

    // Set stereotype property values 

   

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "currentFeatureName", 

nxFeature.getName() ); 

   

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "nxName", nxFeature.getName() 

); 

   

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "featureType", 

nxFeature.getType() ); 

  

   

 ModelElementsManager.getInstance().addElement(resolved

Feature, parent); 

//   

 Application.getInstance().getGUILog().log("Updated 

feature: " + resolvedFeature.getName() + " child of " + 

parent.getName() ); 
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    //addChildClass(project, 

resolvedFeature, parent); 

 

    return resolvedFeature; 

   } 

  } else if (sysmlFeature != null) { 

  

 ModelElementsManager.getInstance().removeElement(sysml

Feature); 

  } 

  return null; 

 } 

 

 @Override 

 public Class enterPart(Project project, Class 

parent, Class sysmlPart, NXPart nxPart) throws 

ReadOnlyElementException { 

  if (nxPart != null) { 

   ElementsFactory elementsFactory = 

project.getElementsFactory(); 

   Stereotype nxPartStereotype     = 

StereotypesHelper.getStereotype(project, "NXPart"); 

   Stereotype nxAssemblyStereotype = 

StereotypesHelper.getStereotype(project, "NXAssembly"); 

 

   if (PluginMain.DEBUG) { 

   

 Application.getInstance().getGUILog().log( 

      "Visiting Part: SysML: " 

+ (sysmlPart != null ? sysmlPart.getName() : "[NULL] ") 

      + " NX : " + (nxPart != 

null ? nxPart.getName() : "[NULL] ") 

      ); 

   } 

    

   Class resolvedPart; 

   if (sysmlPart != null) { 

    resolvedPart = sysmlPart; 

   } else { 

    resolvedPart = 

elementsFactory.createClassInstance(); 

   

 resolvedPart.setName(nxPart.getName());  

   

 StereotypesHelper.addStereotype(resolvedPart, 

nxPartStereotype); 

   } 
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   // Now set the appropriate stereotypes 

   // Set some special stereotype 

properties, in this case the filename and unique ID 

   File file = new File( nxPart.getPath() 

); 

   String uid = 

nxPart.getUniqueIdentifier(); 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "directory", file.getParent()); 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "currentPartPath", 

file.getAbsolutePath()); 

  

 StereotypesHelper.setStereotypePropertyValue(sysmlPart

, nxPartStereotype, "uniqueID", uid); 

 

   if (nxPart.isAssembly()) { 

   

 StereotypesHelper.addStereotype(resolvedPart, 

nxAssemblyStereotype); 

   } 

   if (parent != null) { 

   

 ModelElementsManager.getInstance().addElement(resolved

Part, parent); 

   } 

   //addChildClass(project, resolvedPart, 

parent); 

   return resolvedPart; 

  } else if (sysmlPart != null) { 

  

 ModelElementsManager.getInstance().removeElement(sysml

Part); 

  } 

  return null; 

 } 

} 
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UpdateObject: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

public abstract class UpdateObject { 

 public abstract boolean canUpdateNX(); 

 public abstract boolean canUpdateSysML(); 

 public void updateNX() { 

 } 

 public void updateSysML() { 

 } 

} 
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UpdateToNXResolver: 
package gov.nasa.jpl.imce.sysmlnxsync.utility; 

 

import 

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature; 

import 

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart; 

 

import java.io.File; 

import java.util.ArrayList; 

 

import com.nomagic.magicdraw.core.Application; 

import com.nomagic.magicdraw.core.Project; 

import 

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException; 

import 

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property; 

import 

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication; 

import 

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype; 

 

public class UpdateToNXResolver extends 

DefaultNodeHandler { 

 private NXEngine _engine; 

 private ArrayList<NXExpression> _paramsToSet; 

 private ArrayList<NXPart> _partHierarchy; 

  

 public UpdateToNXResolver(NXEngine engine) { 

  _engine = engine; 

  _paramsToSet = new 

ArrayList<NXExpression>(); 

  _partHierarchy = new ArrayList<NXPart>(); 
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 } 

  

 @Override 

 public Property enterExpression(Project project, 

Class parent, Property sysmlExpression, NXExpression 

nxExpression) throws ReadOnlyElementException { 

  Stereotype sysmlValuePropertyStereotype = 

StereotypesHelper.getStereotype(project, 

"NXValueProperty"); 

   

  if (sysmlExpression == null) { 

   throw new IllegalStateException("Empty 

MagicDraw expression"); 

  } else if(nxExpression == null) { 

   throw new IllegalStateException("Empty 

NX expression"); 

  } 

 

  NXPart currentPart = _partHierarchy.get(0); 

   

  Property resolvedExpression; 

  resolvedExpression = sysmlExpression; 

   

  String newName = sysmlExpression.getName(); 

  String oldName = 

StereotypesHelper.getStereotypePropertyFirst(sysmlExpressio

n, sysmlValuePropertyStereotype, "currentName").toString(); 

 

  if (!oldName.equals(newName)) { 

   boolean result = 

_engine.renameParameter( currentPart, oldName, newName ); 

   if (!result) { 

    throw new 

IllegalStateException("Engine: cannot rename expression"); 

   } 

  

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName", 

newName ); 

  } 

   

  // Set stereotype property values 

  ValueSpecification spec = 

sysmlExpression.getDefaultValue(); 

  String sysmlValue = (spec instanceof 

LiteralString ? ((LiteralString)spec).getValue() : null ); 
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  if (nxExpression != null && sysmlValue != 

null && !sysmlValue.equals(nxExpression.getValue())) { 

   NXExpression newExpr = new 

NXExpression( newName, sysmlValue, 

nxExpression.getProperty() ); 

   _paramsToSet.add( newExpr ); 

   _engine.setParameterValue( currentPart, 

newName, sysmlValue ); 

   if (PluginMain.DEBUG) { 

   

 Application.getInstance().getGUILog().log("Updated 

expression: " + resolvedExpression.getName() + " child of " 

+ parent.getName() ); 

   } 

  }    

  return resolvedExpression; 

 } 

 

 @Override 

 public Class enterFeature(Project project, Class 

parent, Class sysmlFeature, NXFeature nxFeature) throws 

ReadOnlyElementException { 

  if (sysmlFeature == null) { 

   // We couldn't find a sysmlFeature with 

this NX name, suggesting the feature's been renamed 

   // on the SysML side 

   throw new IllegalStateException("Empty 

MagicDraw feature"); 

  } else if (nxFeature == null) { 

   throw new IllegalStateException("Empty 

NX feature");  

  } 

  Stereotype nxFeatureStereotype = 

StereotypesHelper.getStereotype(project, "NXPartFeature"); 

  String newName = sysmlFeature.getName(); 

  String internalName = 

StereotypesHelper.getStereotypePropertyFirst(sysmlFeature, 

nxFeatureStereotype, "currentFeatureName").toString();  

  

  NXPart part = _partHierarchy.get(0); 

  _engine.renameFeature( part, internalName, 

newName ); 

  if (PluginMain.DEBUG) { 

  

 Application.getInstance().getGUILog().log("Set feature 

name: " + sysmlFeature.getName() + " child of " + 

parent.getName() ); 
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  } 

  return sysmlFeature; 

 } 

 

 @Override 

 public Class enterPart(Project project, Class 

parent, Class sysmlPart, NXPart nxPart) throws 

ReadOnlyElementException { 

   Stereotype nxPartStereotype     = 

StereotypesHelper.getStereotype(project, "NXPart"); 

  Stereotype nxAssemblyStereotype = 

StereotypesHelper.getStereotype(project, "NXAssembly"); 

 

  // Now set the appropriate stereotypes 

  // Set some special stereotype properties, 

in this case the filename and unique ID 

  String newName = sysmlPart.getName(); 

 

  String dir = 

StereotypesHelper.getStereotypePropertyFirst(sysmlPart, 

nxPartStereotype, "directory").toString(); 

  String filename = dir + File.separator + 

newName; 

 

  File newFile = new File( filename ); 

   

  NXPart finalPart = nxPart; 

  NXPart newPart = SysMLUtility.renameNXPart( 

_engine, nxPart, newFile ); 

  if (newPart != null) { 

  

 StereotypesHelper.setStereotypePropertyValue( 

sysmlPart, nxPartStereotype, "currentPartPath", filename ); 

   finalPart = newPart; 

  } 

 

  // Push the part stack 

  _partHierarchy.add( 0, finalPart ); 

   

  //_engine.savePart( nxPart ); 

   

//  if (PluginMain.DEBUG) { 

//  

 Application.getInstance().getGUILog().log("Updated 

part: " + finalPart.getName()+ " child of " + 

parent.getName() ); 

//  } 
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  return sysmlPart; 

 } 

 

 @Override 

 public Property exitExpression(Project project, 

Class parent, Property sysmlExpression, NXExpression 

nxExpression) throws ReadOnlyElementException { 

  return sysmlExpression; 

 } 

  

 @Override 

 public Class exitFeature(Project project, Class 

parent, Class sysmlFeature, NXFeature nxFeature) throws 

ReadOnlyElementException { 

  return sysmlFeature; 

 } 

 

 @Override 

 public Class exitPart(Project project, Class 

parent, Class sysmlPart, 

   NXPart nxPart) throws 

ReadOnlyElementException { 

  // Pop the part stack 

  //NXPart part = _partHierarchy.get(0); 

   

  _partHierarchy.remove(0); 

  return sysmlPart; 

 } 

  

} 
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