

MANUFACTURING COMPLIANCE ANALYSIS FOR

ARCHITECTURAL DESIGN:

A KNOWLEDGE-AIDED FEATURE-BASED MODELING

FRAMEWORK

A Dissertation

Presented to

The Academic Faculty

by

Francisco Valdes

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy in the

 College of Architecture

Georgia Institute of Technology

May 2016

COPYRIGHT© 2016 BY FRANCISCO VALDES

ii

MANUFACTURING COMPLIANCE ANALYSIS FOR

ARCHITECTURAL DESIGN:

A KNOWLEDGE-AIDED FEATURE-BASED MODELING

FRAMEWORK

Approved by:

Dr. Russell Gentry, Advisor

College of Architecture

Georgia Institute of Technology

 Dr. John Haymaker

Director of Research

Perkins & Will

Dr. Charles Eastman, Co-Advisor

College of Architecture

Georgia Institute of Technology

 Mr. Kevin Caravati

Senior Research Scientist

Georgia Tech Research Institute

Dr. Jason Brown

College of Architecture

Georgia Institute of Technology

 Date Approved: March 16th, 2016

iii

To my parents and brothers for their love and unconditional support.

iv

ACKNOWLEDGEMENTS

After this life-changing academic journey, firstly, I’d like to thank my advisor,

Dr. Russell Gentry and my co-advisor Chuck Eastman for all their support, kindness, and

inspiration during all these years. The outcome of this dissertation has been mostly

possible because of their exceptional knowledge of the field and their encouraging

attitude. In addition, I’d like to thank the rest of my committee, Dr. John Haymaker, Dr.

Jason Brown, and Mr. Kevin Caravati for they important involvement during my

dissertation proposal and final defense. Furthermore, I’d like to thank the Georgia Tech

Research Institute and Mr. Gary McMurray, Food Processing Technology Division Chief

of the Aerospace, Transportation, and Advanced Systems laboratory for all the

understanding and financial support that allowed me to achieve this important academic

milestone. Also, I would like to thank Fulbright, the Comision Nacional de Ciencia y

Tecnologia of Chile, and Universidad Tecnica Federico Santa Maria for their essential

financial and organizational support during my Ph.D.

Besides my committee and financial supporters, this dissertation would not have

been possible without the help of many other significant people. I would like to thank Mr.

Stephen Forrest, from Maplesoft, for all his transcendental assistance during the

implementation stage of this project; Dr. Ann Carpenter for her endless support,

insightful comments, and dedicated reading of my dissertation; and Mr. Andres Cavieres

for our daily discussions about the future of our field. Furthermore, I’d like to thank my

friends of the Section 313 at the NASA Jet Propulsion Laboratory, Dr. Sebastian Herzig,

Mr. Chris Delp, and Dr. Nicholas Rouquette, who helped me to get started in the Model

Based Systems Engineering domain that later became a critical aspect of my dissertation.

v

Also, I would like thank my friends of the College or Architecture Mrs. Paula

Gomez, Mr. Marcelo Bernal, and Mr. Pedro Soza for all their moral support and help

during this academic process. Finally, I would like thank Robin Tucker from the College

of Architecture and Christy Rackness from the Office of International Education for

helping me to efficiently navigate all administrative and institutional matters.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iv

LIST OF TABLES xi

LIST OF EQUATIONS xii

LIST OF FIGURES xiii

LIST OF SYMBOLS AND ABBREVIATIONS xxii

SUMMARY xxv

CHAPTER 1: Introduction 1

1.1 Impact of Geometric Variability in the Building Industry 8

1.2. General Comparison between Aerospace and Construction Modeling

Methods 9

1.3. Towards an Integrated Modeling Approach for Building Design 12

1.4. Boundaries of the approach 14

1.5. Organization of this Dissertation 16

CHAPTER 2: Research Questions and Hypothesis 19

2.1. Research Questions 19

2.2. Hypothesis 19

2.3. Impact of Proposed Dissertation and Possible Generalizations 27

CHAPTER 3: Background Review 30

3.1. Geometric Dimensioning and Tolerancing (GD&T) 30

3.2. Geometric Variation and GD&T Evolution 35

vii

3.3. Model Based System Engineering (MBSE), System Modeling Language

(SysML), and Building Information Modeling (BIM) 38

CHAPTER 4: Tolerances in Building Construction 67

4.1. The Challenge of Modeling Construction Tolerances 67

4.2. Towards a Construction Tolerances Taxonomy 70

CHAPTER 5: Knowledge and Tolerances Representation in Construction 84

5.1. Current Approach for Drawings and Specifications 84

5.2. Representation of construction tolerances 86

5.3. Mathematical approach to represent tolerances 87

5.4. Statistical tolerances analysis through Monte Carlo method 96

5.5. Model Simplification to represent tolerances 97

5.6. Allocating Manufacturing Knowledge and Tolerances on Solid Models 99

CHAPTER 6: Methodology 103

6.1. From domain issues to functionalities proposed for the modeling

framework 105

6.2. SysML-CAD integration 109

3.3.1. Document-centric approach to a Model-centric approach: 41

3.3.2. Diagrams of the System Modeling Language (SysML) 45

3.3.3. Requirements Management in Systems Engineering 57

3.3.4. System Modeling Language Integration Background 62

3.3.5. Consistency Management in MBSE Background 65

4.2.1. Single Domain Construction Tolerances (SDCT) and Off-site Sub-

Assemblies 72

4.2.2. Heterogeneous Construction Tolerances (HCT). 80

viii

6.3. SysML-CAD semantic integration through Domain Specific Languages

(DSL) 112

6.4. Representation of CAD data structures in SysML 114

6.5. General description of the present project: 115

6.6. Explanation of the Modeling Framework Case study: Cylindrical

Fit 117

6.7. Structural Decomposition: Meta-modeling CAD geometry into SysML 121

6.8. Knowledge Acquisition 137

6.9. Knowledge Allocation 146

6.10. Parametric Execution 151

6.11. Specifications Verification 158

6.12. Knowledge-Compliant Geometry Update 175

CHAPTER 7: System Evaluation 181

7.1. Case study 2: Lower Chord Assembly, a QuadPod Solar Canopy System 181

7.2. Case study 3: Multi-material Assembly: Steel frame, Pre-Cast, Cast-in Place,

PVC Window 213

7.1.1. Structural decomposition of the studied components 186

7.1.2. Knowledge Allocation of the Four Components of the Studied

Assembly 191

7.1.3. Parametric Executions of SDCT: Manufacturing and Design

Specifications 196

7.1.4. QuadPod Node Assembly HCT evaluation 203

7.1.5. QuadPod Node Assembly: Feature-Based Components Update

Based on Analyses Results 207

ix

CHAPTER 8: Evaluation of the Proposed Implementation 266

8.1. General 266

8.2. Positive Aspects of the Implementation 270

8.3. Manufacturing data obtained from the case study analyses 272

8.4. Unanticipated issues and resolutions of Compliance Analysis

implementation 272

8.5. Current Challenges of the Implementation 274

8.6. The Role of the Systems Architect 275

CHAPTER 9: Conclusions 277

9.1. Research Questions and Hypothesis 278

9.2. Contributions 282

9.3. Recommendations for Future Research and Development 284

9.4. Concluding Remarks 286

APPENDIX 1: Implementation Code: 289

7.2.1. Material Systems 218

7.2.2. Features Decomposition 222

7.2.3. Knowledge Allocation of the Four Components of the Studied

Assembly 229

7.2.4. Parametric Executions of SDCT: Manufacturing and Design

Specifications 241

7.2.5. Wall Assembly HCT evaluation 252

7.2.6. Wall Assembly: Feature-Based Components Update based on

Analyses Results 258

9.2.1. Expected research contributions of the present dissertation 282

x

REFERENCES 493

VITA 507

xi

LIST OF TABLES

Page

Table 1 Tolerances stack modeling equationsadapted from [99] 92

Table 2 Manufacturing data available previous to the tolerances analysis 119

Table 3 Integration of analysis stages to validate a clearance prescription 121

Table 4 Outer Lower Chord CAD update results 208

Table 5 Lower Chord Stiffener CAD update results 209

Table 6 Inner Lower Chord CAD results update 210

Table 7 Transversal Welded Plate CAD update results 211

Table 8 Bottom Track CAD results update 258

Table 9 Stud CAD results update 258

Table 10 Window CAD results update 259

Table 11 Top Track CAD results update 259

Table 12 StudShortHearders CAD results update 259

Table 13 Concrete Slab CAD results update 260

Table 14 Headers CAD results update 260

Table 15 Short Stud Bottom CAD results update 260

Table 16 Short Stud Top CAD results update 261

Table 17 Precast Plank CAD results update 261

Table 18 Stud Jamb CAD results update 262

Table 19 Validation procedures 281

xii

LIST OF EQUATIONS

Page

Equation 1 Hoffman’s tolerances formula 87

Equation 2 Joint design equation 89

Equation 3 RSS basic formula 90

Equation 4 WC scenario example 93

Equation 5 RSS scenario example 93

Equation 6 reversed WS analysis example 94

Equation 7 reversed RSS analysis example 94

Equation 8 standard deviation from mean at upper limit 95

Equation 9 standard deviation from mean at lower limit 95

Equation 10 percentage of contribution formula WC 95

Equation 11 percentage of contribution formula RSS 96

Equation 12 plus/minus formula from UL and LL 140

Equation 13 centered dimension formula from UL and LL 140

xiii

LIST OF FIGURES

Page

Figure 1 Example of tolerances incompatibility of cast-in-place concrete with

prefabricated steel frame. 6

Figure 2 Construction Risk Matrix. 9

Figure 3 Impact of design changes during building lifecycle 28

Figure 4 Geometric Tolerances Taxonomy (adapted from [30]) 31

Figure 5 Conventional +/- Tolerancing and GD&T specification 36

Figure 6 Document-Centric Approach 43

Figure 7 Model-Centric Approach 44

Figure 8 Building instance case study for the natural ventilation example 46

Figure 9 Hierarchy of SysML diagrams 47

Figure 10 Block Definition Diagram (bdd) structural decomposition of a building

assembly. Valdes. Sun (2012) 49

Figure 11 bdd of the space distribution of a building story with 4 rooms and a

central common stack. Valdes. Sun (2012) 50

Figure 12 ibd of the same building story shown as bdd in the previous picture.

Valdes. Sun (2012) 51

Figure 13 Parametric Diagram (par) example. Valdes. Sun (2012) 52

Figure 14 Activity Diagram SysML. Valdes. Sun (2012) 54

Figure 15 State Machine Diagram. SysML. Valdes. Sun (2012) 55

Figure 16 Requirements Diagram. SysML Valdes. Cavieres DBL Symposium.

GaTech (2013) 56

Figure 17 SysML Integration Status 63

Figure 18 Integration Environment of NatVent Project. Valdes. Sun 2012 65

Figure 19 The Construction Process (author) 68

Figure 20 Representation of the different bodies of knowledge that define the

accuracy of an assembly in building design 72

xiv

Figure 21 Tolerances incompatibility among different SDCT systems 74

Figure 22 Example of SDCT Masonry with its levels of tolerances 77

Figure 23 Hierarchical diagram of construction tolerances 83

Figure 24 Software environment of the implementation. Solid red lines define new

pieces of software developed for this dissertation and dashed lines

represent specific integration between different tools. 105

Figure 25 General hierarchy of construction variability issues 106

Figure 26 Modeling approach without the proposed implementation 108

Figure 27 Modeling approach with the proposed implementation 108

Figure 28 Features tree view of the building component “InnerLowerChord” 111

Figure 29 CAD representation view of component "InnerLowerChord" 111

Figure 30 Case Study1: Double cylindrical fit of a multi-material assembly 118

Figure 31 Basic hierarchy of elements of a conventional solid modeler 123

Figure 32 High level meta-model of the CAD data structure 125

Figure 33 Extended NXSheetMetal meta-classes using stereotypes that carry

domain specific properties and constraints 127

Figure 34 Elements hierarchy of a component imported into a system model 129

Figure 35 Custom Icons for the implementation 129

Figure 36 Containment tree with imported CAD geometry 131

Figure 37 The two importing commands of the created application are highlighted

in the red square 132

Figure 38 Stereotype Filter to manage Model Granularity 133

Figure 39 Filtered versus full model hierarchy structure 134

Figure 40 Ballast assembly: CAD representation (left) and component level SysML

representation (right) after model-to-model transformation. 135

Figure 41 Model-to-model transformation output: full CAD structure 135

Figure 42 Link NX file command 136

xv

Figure 43 Name disambiguation while linking a NX file with a SysML element 137

Figure 44 File already linked error 137

Figure 45 Meta-classes of material-specific knowledge 139

Figure 46 Constraint block of bushing and shaft tolerances specification for steel

milling component 142

Figure 47 Constraint block that delivers clearance assessments for WC and RSS of

a bushing assembly. 142

Figure 48 Constraint blocks from design and manufacturing specifications must be

allocated to their targeted features 143

Figure 49 Material-Specific Knowledge: Reusable manufacturing specifications

diagram 144

Figure 50 Examples of constraints and specification libraries as they appear in the

containment tree of the MagicDraw user interface 145

Figure 51 Reusable manufacturing specifications table version 146

Figure 52 General description of the integration between processes standards and

CAD features through a mathematical engine 147

Figure 53 Dependency matrix for knowledge allocation 148

Figure 54 In-context manufacturing specifications allocation through a dependency

association 149

Figure 55 In-context manufacturing and design specifications 150

Figure 56 Main stereotypes developed for parametric execution of manufacturing

knowledge and tolerances evaluation in a SysML model profile 152

Figure 57 Parametric diagram used as analysis context template before geometric

data allocation 154

Figure 58 Analysis context in a parametric diagram that is ready for execution 155

Figure 59 Math console of MagicDraw during parametric execution 156

Figure 60 Execution and results of an analysis context 157

Figure 61 Instances specifications results 158

Figure 62 Text-based <<Manufacturing Specification>> that is enforced by a

constraint typed as <<Knowledge Based Constraint>> 161

xvi

Figure 63 Text-based <<Manufacturing Specification>> that is enforced by a

constraint typed as <<Critical Dimension>> 161

Figure 64 Overall process diagram for multi-material system assembly knowledge

verification and validation 159

Figure 65 Validation context example 164

Figure 66 Execution and results of a validation context 165

Figure 67 Trade-off analysis of different scenarios of a validation context using

instances specifications 165

Figure 68 Overall specifications validation 166

Figure 69 Overall validation context of an imported CAD model 167

Figure 70 Instances results report 168

Figure 71 Understanding the use of target value properties 168

Figure 72 Target value property rationale 169

Figure 73 Specification of a slot that has a <<Target Value Property>> as its

defining feature. 170

Figure 74 Target Value Property with custom property "Original Classifier" 171

Figure 75 Use cases for (NX- SysML) external consistency analysis 174

Figure 76 Consistency report example 174

Figure 77 Resolve NX-SysML inconsistencies 175

Figure 78 Knowledge-compliant geometry update 176

Figure 79 Instance specification element example 177

Figure 80 Details of instance specifications properties 177

Figure 81 Update block value properties from instance table 179

Figure 82 Update geometry procedure 180

Figure 83 QuadPod Canopy system V1 182

Figure 84 Different knowledge for a critical assembly design 184

Figure 85 Knowledge integration for a critical assembly design 185

xvii

Figure 86 Nominal geometry for the studied assembly 185

Figure 87 Diagonal Hat Stiffener feature-based decomposition 186

Figure 88 Lower Chord Stiffener feature-based decomposition 187

Figure 89 Inner Lower Chord feature-based decomposition 188

Figure 90 Outer Lower Chord feature-based decomposition 189

Figure 91 Transversal Welded Plate feature-based decomposition 190

Figure 92 Upper Chord Splice feature-based decomposition. 191

Figure 93 Inner Lower Chord Knowledge Allocation Matrix 192

Figure 94 In-context Knowledge Allocation Inner Lower Chord 192

Figure 95 Lower Chord Stiffener Knowledge Allocation Matrix 193

Figure 96 Lower Chord Stiffener with manufacturing and design specifications 193

Figure 97 Outer Lower Chord Knowledge Allocation Matrix 194

Figure 98 In-context Knowledge Allocation Outer Lower Chord 194

Figure 99 Transversal Welded Plate Knowledge Allocation 195

Figure 100 Transversal Welded Plate with allocated manufacturing and design

specifications 195

Figure 101 Parametric execution analysis for SDCT Inner Lower Chord 197

Figure 102 SDCT parametric execution results for Inner Lower Chord 198

Figure 103 Parametric execution analysis for SDCT Lower Chord Stiffener 199

Figure 104 SDCT parametric execution for Lower Chord Stiffener (failed) 199

Figure 105 SDCT parametric execution for Lower Chord Stiffener (passed) 200

Figure 106 Parametric execution analysis for SDCT Outer Lower Chord 201

Figure 107 SDCT parametric execution results for Outer Lower Chord 202

Figure 108 Parametric analysis context for SDCT Transversal Welded Plate 202

Figure 109 SDCT parametric execution results for Transversal Welded Plate

(passed) 203

xviii

Figure 110 Feature-based decomposition QuadPod assembly level 203

Figure 111 Parametric execution analysis context for assembly clearances HCT for

QuadPod assembly 204

Figure 112 Lower Chord Node_AssemblyClearances_HCT analysis results 205

Figure 113 Expanded Inner Chord - Lower Chord Stiffener analysis results 206

Figure 114 Expanded Inner Chord - Outer Chord analysis results 207

Figure 115 Before and after design and manufacturing knowledge allocation 212

Figure 116 Studied QuadPod assembly after fabrication and erection 212

Figure 117 Final result of QuadPod includes studied parts and assembly 213

Figure 118 Possible scenarios of variability based on standard tolerances

calculations 214

Figure 119 Sketches are fully constrained to maintain the integrity of the model

when applying parametric modifications within SysML 215

Figure 120 Wall Assembly with context-specific issues about material systems

tolerances; and clearances to be identified during the case study 218

Figure 121 Interference check before analyses 222

Figure 122 Full import of a sheet metal component 223

Figure 123 TopTrack feature-based decomposition 224

Figure 124 Bottom Track feature-based decomposition 224

Figure 125 Headers feature-based decomposition 225

Figure 126 Pre-cast Plank feature-based decomposition 225

Figure 127 ShortStudBottom feature-based decomposition 226

Figure 128 ShortStudTop feature-based decomposition 226

Figure 129 SlabConcrete feature-based decomposition 227

Figure 130 Stud feature-based decomposition 227

Figure 131 StudJamb feature-based decomposition 228

Figure 132 StudShortHeader feature-based decomposition 228

xix

Figure 133 Window simplified feature-based decomposition 229

Figure 134 BottomTrack Knowledge Allocation Matrix 230

Figure 135 BottomTrack with Manufacturing and Design Specifications 230

Figure 136 Headers Knowledge Allocation Matrix 231

Figure 137 Headers with Manufacturing and Design Specifications 231

Figure 138 Precast Plank Knowledge Allocation Matrix 232

Figure 139 Precast Plank with Manufacturing and Design Specifications 232

Figure 140 ShortStudBottom Knowledge Allocation Matrix 233

Figure 141 ShortStudBottom with Manufacturing and Design Specifications 233

Figure 142 ShortStudTop Knowledge Allocation Matrix 234

Figure 143 ShortStud with allocated Manufacturing and Design Specifications 234

Figure 144 SlabConcrete Knowledge Allocation Matrix 235

Figure 145 SlabConcrete with Manufacturing and Design Specifications 235

Figure 146 Stud Knowledge Allocation Matrix 236

Figure 147 Stud with allocated Manufacturing and Design Specifications 236

Figure 148 StudJamb Knowledge Allocation Matrix 237

Figure 149 StudJamb with allocated Manufacturing and Design Specifications 237

Figure 150 Stud_ShortHeader Knowledge Allocation Matrix 238

Figure 151 Stud_ShortHeader with Manufacturing and Design Specifications 238

Figure 152 TopTrack Knowledge Allocation Matrix 239

Figure 153 TopTrack with allocated Manufacturing and Design Specifications 239

Figure 154 Window simplified Knowledge Allocation Matrix 240

Figure 155 Window with allocated Manufacturing and Design Specifications 240

Figure 156 Parametric Execution Analysis Context for SDCT Bottom Track 241

Figure 157 SDCT Parametric Execution results for Bottom Track 242

xx

Figure 158 Parametric Execution Analysis Context for SDCT Headers 242

Figure 159 SDCT Parametric Execution results for Headers 243

Figure 160 Parametric Execution Analysis Context for SDCT ShortStudBottom 243

Figure 161 SDCT Parametric Execution results for Short Stud Bottom 244

Figure 162 Parametric Execution Analysis Context for SDCT ShortStudTop 244

Figure 163 SDCT Parametric Execution results for ShortStudTop 245

Figure 164 Parametric Execution Analysis Context for SDCT Stud 245

Figure 165 SDCT Parametric Execution results for Stud 246

Figure 166 Parametric Execution Analysis Context for SDCT StudJamb 246

Figure 167 SDCT Parametric Execution results for Stud Jamb 247

Figure 168 Parametric Execution Analysis Context for SDCT StudShortHeader 247

Figure 169 SDCT Parametric Execution results for Stud Short Headers 248

Figure 170 Parametric Execution Analysis Context for SDCT TopTrack 248

Figure 171 SDCT Parametric Execution results for Top Track 249

Figure 172 Parametric Execution Analysis Context for SDCT Precast Plank 249

Figure 173 SDCT Parametric Execution results for Precast Plank 250

Figure 174 Parametric Execution Analysis Context for SDCT Concrete Slab 250

Figure 175 SDCT Parametric Execution results for Concrete Slab 251

Figure 176 Parametric Execution Analysis Context for SDCT PVC Window 251

Figure 177 SDCT Parametric Execution results for PVC Window 252

Figure 178 Wall Assembly case study 3 252

Figure 179 Wall Assembly clearances HCT Analysis Context 1 for the first group

of nested components: Bottom Track; Stud; and StudJamb 253

Figure 180 Wall Assembly Analysis Context 1 results for the first group of nested

components: Bottom Track; Stud; and StudJamb 254

xxi

Figure 181 Wall Assembly clearances evaluation HCT Analysis Context 2; for the

second group of nested components: Top Track; Stud; and

Stud_ShortHeader 255

Figure 182 Wall Assembly Analysis Context 2 results; for the second group of

nested components: Top Track; Stud; and Stud_ShortHeader 256

Figure 183 Wall Assembly clearances evaluation HCT Analysis Context 3 for the

second group of nested components: StudShortHearders; Headers; and

Window 257

Figure 184 Wall Assembly Analysis Context three results for the third group of

nested components: StudShortHearders; Headers; and Window 257

Figure 185 Wall assembly interference check after geometry update 263

Figure 186 Interference check: before and after manufacturing analysis 264

Figure 187 Detail examples of some geometric updated after manufacturing and

tolerances analyses 265

Figure 188 Detail examples of some geometric updated after manufacturing and

tolerances analyses 265

xxii

LIST OF SYMBOLS AND ABBREVIATIONS

ANSI. American National Standards Institute

AITC. American Institute of Timber Construction

AEC. Architecture, Engineering, and Construction

ACI. American Concrete Institute

API. Application Programing Interface

AREMA. American Railway Engineering and Maintenance of way Association

ASCC. American Society of Concrete Contractors

ASME. American Society of Mechanical Engineers

AISC. American Institute of the Steel Construction

ASTM. American Society for Testing and Materials

AWS. American Welding Society

BIM. Building Information Modeling

BOS-X. Balance of Systems in photovoltaics

BDD. Block Definition Diagram

CAD. Computer Aided Design

CAA. Computer Aided Analysis

CASE. Council of American Structural Engineers

CAM. Computer Aided Manufacturing

CFD. Computational Fluid Dynamics

COMPASS. Comprehensive Modeling for Advanced Systems of Systems

CSG. Constructive Solid Geometry

CWM. Common Warehouse

xxiii

DAG. Directed Acyclic Graph

DSL. Domain Specific Language

FEA. Finite Element Analysis

GD&T. Geometric Dimensioning and Tolerancing

GUM. Guide to the Expression of Uncertainty and Measurement

GTRI. Georgia Tech Research Institute

HCT. Heterogeneous Construction Tolerances

IBD. Internal Block Diagram

IFC. Industry Foundation Classes

IRDS. Information Resource Dictionary Systems

ISO. International Organization for Standardization

IT. Information Technology

KAOS. Knowledge Acquisition in Automated Specification

KCMA. Kitchen Cabinet Manufacturers

KBE. Knowledge Based Engineering

LL. Lower Limit tolerances

MBMA. Metal Building Manufacturers Association

MBSE. Model Based System Engineering

MDD. Model Driven Development

MOF. Meta-Object Facility

NC. Numeric Control

NX. Siemens NX

OMG. Object Management Group

xxiv

PAR. Parametric Diagram

PV. Photovoltaics

PVC. Polyvinyl Chloride

QUPER. Quality PERformance

RCSC. Research Council on Structural Connections

RTM. Requirements Traceability Matrix

RFI. A written request for information or clarification generated during the

construction phase of the project

ROI. Return Of Investment

RSS. Root Sum Square

SCRAM. Scenario Requirements Analysis Method

SDCT. Single Domain Construction Tolerances

SE. Systems Engineering

SEMP. Systems Engineering Management Plan

SJI. Steel Joist Institute

SM. Sheet Metal

SoS. Systems of Systems

STEP. Standard for The Exchange of Product model data

STREAM-A. Strategy for Transition between Requirements and Architectural Models for

Adaptive Systems

SysML. System Modeling Language

UML. Unified Modeling Language

UL. Upper Limit tolerances

WC. Worst Case scenario

WDMA. Windows and Door Manufacturing Association

xxv

SUMMARY

Given that achieving nominal (all dimensions are theoretically perfect) geometry

is challenging during building construction, understanding and anticipating sources of

geometric variation through tolerances modeling and allocation is critical. However,

existing building modeling environments lack the ability to support coordinated,

incremental and systematic specification of manufacturing and construction

requirements. This issue becomes evident when adding multi-material systems produced

off site by different vendors during building erection. Current practices to improve this

situation include costly and time-consuming operations that challenge the relationship

among the stakeholders of a project. As one means to overcome this issue, this research

proposes the development of a knowledge-aided modeling framework that integrates a

parametric CAD tool with a system modeling application to assess variability in building

construction. The CAD tool provides robust geometric modeling capabilities, while

System Modeling allows for the specification of feature-based manufacturing

requirements aligned with construction standards and construction processes know-how.

The system facilitates the identification of conflicting interactions between tolerances and

manufacturing specifications of building material systems. The expected contributions of

this project are the representation of manufacturing knowledge and tolerances interaction

across off-site building subsystems to identify conflicting manufacturing requirements

and minimize costly construction errors. The proposed approach will store and allocate

manufacturing knowledge as Model-Based Systems Engineering (MBSE) design

specifications for both single and multiple material systems. Also, as new techniques in

xxvi

building design and construction are beginning to overlap with engineering methods and

standards (e.g. in-factory prefabrication), this project seeks to create collaborative

scenarios between MBSE and Building Information Modeling (BIM) based on

parametric, simultaneous, software integration to reduce human-to-data translation errors,

improving model consistency among domains.

Important sub-stages of this project include the comprehensive review of

modeling and allocation of tolerances and geometric deviations in design, construction

and engineering; an approach for model integration among System Engineering models,

mathematical engines and BIM (CAD) models; and finally, a demonstration

computational implementation of a System-level tolerances modeling and allocation

approach.

1

CHAPTER 1: Introduction

The following extract from ACI 117R-90, “Commentary on Standard

Specifications for Tolerances for Concrete Construction and Materials” condenses the

need for construction tolerances, and some principles that should be applied in selecting

proper tolerances [1]:

“No structure is exactly level, plumb, straight, and true. Fortunately, such

perfection is not necessary. Tolerances are a means to establish permissible variations in

dimensions and location, giving both the designer and the contractor parameters within

which the work is to be performed. They are the means by which the designer conveys to

the contractor the performance expectations upon which the design is based or the use of

the project requires. Such specified tolerances should reflect design assumptions and

project needs, being neither overly restrictive nor lenient. Necessity rather than

desirability should be the basis of selecting tolerances.” [2]

In building construction, it is common that after the execution of a project, certain

stakeholders will not be pleased with the manufacturing accuracy or overall quality of the

final product [3]. For Instance design and construction failures in the Frank Gehry’s MIT

$300 million Stata Center resulted in pervasive leaks, cracks and drainage problems that

have required costly repairs [4]. In some cases the contractor finds that some components

will not come together during building erection [5] which requires repairs to the

assemblies, or it could be that the architect or the owner have concerns that the walls are

not straight or the slabs are not flat enough [5]. This often occurs because the

construction process was not precise enough, specifications were not properly

communicated [6], or, as is often the case, because the suggested requirements of

2

tolerances were unachievable or unrealistic. One important issue that continues to spread

in construction projects and contributes to cost and schedule growth is design changes

and errors [7] [8] [9]. The genesis of these situations are hard to trace during the building

lifecycle, but in the end they require extra project time and costly repairs. Chapter 1 of

this dissertation starts by describing this problem, introducing important concepts such as

nominal geometry, tolerances, and geometric variability; and concludes by proposing a

high-level modeling framework to overcome the weaknesses of the current approach.

During the design stages of a building, it may be assumed to be that the geometric

CAD models are dimensionally perfect – that is to say, that the features and parts in the

model contain exactly the geometry that is desired in the final building1. This

representation is known as nominal geometry. However, nominal geometry is not

achievable during the stages of construction. On the contrary, there are a number of

factors leading to a resulting building that differs geometrically from the nominal model:

 Complex building assemblies made by human labor;

 Unpredicted deviations from manufacturing processes;

 Incomplete manufacturing documentation and knowledge;

 Improper assumptions about materials and processes during design stages;

1 This dissertation assumes that CAD models are able to completely and accurately describe the

geometry of the parts and assemblies. This dissertation does not address modeling mistakes, which are

inaccuracies made in the nominal geometry which lead to geometrically or functionally inadmissible

models.

3

 Addition of different material systems with different levels of variability;

 Reaction of materials to forces and temperature changes, and building

behavior;

 These factors produce significant geometric deviations that must be considered,

accommodated, and mitigated as part of the construction requirements and specifications

development. The main formal modeling element used to prescribe these kinds of

geometric deviations is known as a tolerance. Tolerance has many different meanings

based in the field that it applies. For this dissertation a tolerance is defined as the

permissible limit or limits of variation in a physical dimension [10]. Although the concept

of tolerance is broadly understood, applicability of construction specifications and

tolerances allocation have not been adequately established due to the lack of knowledge

integration during design stages, and the lack of multidisciplinary coordination among

different stakeholders of a building project. Furthermore, many of the construction

requirements or specifications cannot be assured from the beginning because they evolve

and transform during the course of a project. Early decisions about tolerances and

clearances are usually made based on improper assumptions, or without an understanding

of the “big picture” with respect to system implications. Decisions made late in a design

or construction stage are often taken without knowledge or consideration of earlier

decisions, or without understanding of the effects that these changes will produce in other

material systems. In any of these cases, as-built geometric deviations obtained in

construction are much larger than commonly expected [11]. While early multidisciplinary

integration and constant coordination efforts under a BIM-augmented workflow are

certainly important means to reduce geometric variability problems [12] [13], they are

4

not sufficient. Current tools and methodologies lack the ability to support coordinated,

incremental, and systematic specification of tolerances requirements and the set of

interactions that emerge across them during building lifecycle. Also, for the most

common design-bid-build project delivery system, the team includes design

professionals, a construction manager or general contractor, and many subcontractors

[14]. In the early part of the project, the design team is primary – but in the later stages

the general contractor assumes primacy. And so in this case, the responsibility for

addressing tolerance incompatibility issues is often not clearly defined. In managed

contractual systems in which the construction manager does not self-perform the work,

field personnel may not be familiar with the manufacturing specifications of the project,

and they are also less likely to anticipate tolerance requirements and incompatibility

problems [1].

During the development of a building project the state of knowledge about construction

tolerances is diffuse, and no stakeholder has access to the entire knowledge base about

material-specific manufacturing, or what dimensional tolerances are realistic to prescribe.

A common example of a geometric variability, which is the deviation range of the

nominal geometry of a part or assembly, occurs when designers make late changes to

reduce construction costs associated with some building component (e.g. to replace

welding in steel connections of a roof structure with bolted connections). While a

modification may satisfy the specific construction requirement goal (e.g., reduce

installation time), the systems-level implications and long-term side effects are usually

not well understood (e.g. bolted connections may allow more movement at the joints,

increasing deflection, leading to poor rain drainage, leakage, corrosion, and air

5

infiltrations) and even if the problem is identified qualitatively, there exists no modeling

framework in which to assess the implications of the problem quantitatively. The

following list of typical tolerances compatibility problems in modeling and among

different material systems [1] has been presented by an inter-industry working group.

These problems have been subdivided into four main areas: (1) Tolerance Modeling and

Simulation, (2) Building Behavioral Modeling, (3) Manufacturing Knowledge

Documentation and Coordination, and (4) Process Standards; and was hosted by the

American Society of Concrete Contractors (ASCC) and co-sponsored by several other

important construction organizations such as the American Concrete Institute, American

Institute of Steel Construction, American Society of Civil Engineers Construction

Institute, among others.

Tolerances Modeling and Simulation:

 A modeling approach to determining conformance with stated tolerances is

needed.

 Steel connections may require three-dimensional adjustability when steel and

concrete dimensions are at their tolerance extremes.

 Anchor bolts embedded in concrete for steel connections may be incorrectly

positioned—laterally or vertically—or may be bent after being correctly placed.

Field solutions are often available, but increase cost significantly (Figure 1).

 Tolerances at the interface between precast cladding panels and the structural

frame are critical. Cladding must be capable of field adjustability.

 Out-of-square or out-of-plane racking interferes with operation of windows and

doors, mars appearance, and decreases resistance to water and air infiltration.

6

 Installation costs for windows, doors, and curtain walls increase when openings

are too large or too small, embeds are improperly located, or floor edges or

columns are not properly aligned.

Figure 1: Example of tolerances incompatibility of cast-in-place concrete with prefabricated

steel frame.

Building Behavioral Modeling:

 Windows, doors, and curtain walls in concrete openings must be designed to

accommodate construction tolerances and building movement after construction.

 Three-way adjustment is needed to allow for alignment changes. Field fixes to

accommodate out-of-tolerance openings may not be structurally sound or allow

the needed movement after construction.

 Doors and windows that open and close require especially tight tolerances to

operate properly.

Manufacturing Knowledge Documentation and Coordination:

7

 Manufacturing requirements are not always clearly written and are thus subject to

differing interpretations by members of the construction team.

 Geometry does not comply with material-specific manufacturing rules.

 When tolerances have been allocated, every material system complies

independently with its own manufacturing rules, without considering any

heterogeneous materials assembly or mating conditions. This situation leads to

tolerances incompatibility.

 Multiple tolerances allocated by different contractors for the same building

component create disputes about which tolerance should be used.

 Project documents should clearly indicate how tolerance measurements will be

made, who will make them, what corrective actions are needed when tolerances

are exceeded, and who is responsible for taking the corrective actions.

 For precast cladding operations, the structural engineer does the slab drawings

and the architect does the cladding details. The concrete contractor who builds to

the structural drawings often does not see the cladding details. But if the detail

allows little or no tolerance, and the slab is built to common ACI 117 tolerances,

panels may not fit and the concrete contractor is blamed.

Processes Standards:

 Because there are no measurement protocols for many tolerances, disputes about

conformance with tolerances sometimes result.

From all the groups of tolerances compatibility problems presented above, the main focus

of this dissertation is the Manufacturing Knowledge Documentation and Coordination

category.

8

1.1 Impact of Geometric Variability in the Building Industry

Failure to predict geometric variability during design stages and failure in the

appropriate application of construction tolerances may contribute to the following issues:

cracks in walls, cladding, and tiles; buckling; building condensation; leaky facades;

structural collapse; poor visual results; poor energy performance; window and door

defects; curtain wall defects; mechanical equipment installation defects; and unexpected

clashes, among others. These problems result in redundant work on the construction site,

demolition of defective work, lost time, failure to meet construction specifications,

disputes among stakeholders, and, potentially, a financial burden on the occupier or

owner [15].

With regard to cost impact, the average cost of design-attributable errors is about

14 percent of contract value [16], which is approximately the total budget dedicated to

design fees. Also, as can be seen in Figure 3, design errors and omissions (D1) have the

maximum impact and maximum likelihood of all the different risk categories of

construction [17], followed by construction cost overruns (C1), which are also commonly

related to geometric variability and re-work problems [18]. In order to reduce these

issues, BIM tools need to be able to represent a building at a whole-system level,

capturing the functional and behavioral relationships that span across different domains,

material systems, and lifecycle stages. It is in modeling these relationships that the

identification of conflicts among tolerances requirements and manufacturing

9

specifications can be facilitated.

Figure 2: Construction Risk Matrix: adapted from: http://dx.doi.org/10.5772/51460 (Intech).

Construction Risk Categories: Design Risk (D): External Risk (E): Environmental Risk (En):

Organizational Risk (O): Project Management Risk (PM): Right of Way Risk(R): Construction Risk

(C).

1.2. General Comparison between Aerospace and Construction Modeling

Methods

During the past decades, aerospace engineering have improved their approach to

managing geometric variability and manufacturing knowledge [19]. The aerospace

industry has taken advantage of modern computer-aided manufacturing technology to

integrate CAD tools with manufacturing processes. For example, the Active Workspace

tool was created at Siemens and used for the development of the Curiosity Mars Rover at

the Jet Propulsion Laboratory [20]. This tools supports a systems engineering driven

product development process. It is systems engineering that allows linking together all

the disparate elements of a product design into an intelligent product model, which can be

continuously validated over its lifecycle. It is the key to enabling true model-based

development [20]. Hence, the aerospace realm has dramatically reduced the need for

human translation or interpretation of project data. However, an aerospace approach

http://dx.doi.org/10.5772/51460

10

cannot be directly applied to construction due to critical differences among current

practices in these two domains.

In building design and construction, drawings are mostly interpreted by human

labor and, there is a high risk of ambiguity and the chance for accumulated measurement

error. For example, in the way most construction measurements are expressed, the

dimension or size may or may not indicate the accuracy of the measurement. These

tolerances may be specified in a national standard which is included as a project

requirement by reference, but it is likely that neither the designer nor the general

contractor is aware of the implications of the tolerance requirements. The tolerance

information is, at least potentially, available, but it is not part of the modeling or

fabrication process. It is an unmet requirement. Also, the level of accuracy while

translating measurements from drawings to real parts and assemblies usually varies from

worker to worker or even from measuring system to measuring system [21]. As a result,

construction processes executed by human labor are highly stochastic in their outcomes.

In contrast, in the aerospace engineering domain, automated methods of manufacturing

promote tight levels of accuracy in their measurements that result in high quality

products. Similarly, because most of the aerospace manufacturing processes are mostly

repetitive, production of mechanical parts relies on high cost tooling and dies instead of

the one-at-the-time approaches often used in building construction.

Despite all these differences, building construction and aerospace engineering

share numerous guidelines concerning geometric deviations taxonomy, manufacturing

requirements, and process standardization [22]. Furthermore, based on the normalization

11

of cross-field CAD platforms2, such as BIM, together with the development of highly

engineered building products, the construction industry is undertaking an exponential

modernization [23]. As an illustration, modern building construction processes are

shifting from on-site centered to in-factory centered. By taking advantage of better supply

chain, specialized factories, and controlled production environment, modern building

products companies are ensuring higher quality control and better working environment

while reducing overall time to market of projects.

Another important engineering advancement, which constitutes a critical focus of

this dissertation, has occurred in the intersection of information technology and industrial

engineering. The expansion of Systems Engineering3 (SE) has enabled the development

of model-centric architectures, and the ability to integrate numerous domain-specific

tools in a single computer application and modeling language. This dissertation

demonstrates how the tools promulgated by SE can generate new collaborative

environments that allow geographically and functionally distributed groups of

stakeholders to facilitate the process of tolerances and knowledge allocation in

2 This dissertation uses the term CAD for the generic 3D model, and the terms BIM and solid

modeling when some of the specific features of these modeling paradigms are referenced.

3 Systems Engineering is an interdisciplinary approach and means to enable the realization of

successful systems. It focuses on defining customer needs and required functionality early in the

development cycle, documenting requirements, then proceeding with design synthesis and system

validation while considering the complete problem

12

construction models. The following section introduces a general description of how SE

could support a knowledge-aided modeling environment for construction.

1.3. Towards an Integrated Modeling Approach for Building Design

In the SE field, the development of a mature Model Based System Engineering

(MBSE) approach allows the management of multiple domains and applications in a

progressively complex Information Technology (IT) environment [24] [25] [26]. MBSE

is defined as a practice of applying modeling and simulation for implementing the

processes and practices of SE [27]. The main characteristic of a MBSE methodology is to

link different modeling requirements and views, from different domains, in a central

model that allows interoperability and consistency between domains. Use of MBSE has

led to the development of a general-purpose system-level architecture that allows multi-

disciplinary modeling with proper levels of abstraction. One of these knowledge-

modeling environment is the System Modeling Language (SysML). SysML is a general-

purpose modeling language for systems engineering applications. It supports the

specification, analysis, design, verification and validation of a broad range of systems and

systems-of-systems [24]. As Delligatti states “MBSE and its associated language SysML

promise increased modeling quality and affordability for one simple reason: The cheapest

defect to fix is the one you prevented. And at the heart of this approach is this new kind

of engineering artifact called the system model” [27]. Based on these characteristics and

considering that current BIM tools cannot fully model tolerances requirements among

different material systems, this research proposes the development of a tolerances

modeling framework that integrates a parametric CAD tool with a MBSE modeling

application. The CAD tool provides robust geometric modeling capabilities, while MBSE

13

allows the modeling of tolerances requirements from a system-level standpoint. Thus, the

identification of system interactions between manufacturing requirements and

specifications of building material systems is based on this CAD-MBSE integration. This

framework provides high-level descriptions of manufacturing specifications on the

MBSE (SysML) side, which becomes a low level description of feature-based

(geometric) tolerances allocation on the CAD side. Tolerances calculations are performed

by a mathematical engine, and tolerances are allocated in the CAD model.

With the aim of describing and implementing this approach, this document

identifies several parallel tracks:

 Review of tolerances and geometric deviations in construction and engineering,

 Study of the likelihood of using a MBSE approach to model and store reusable

manufacturing knowledge and design specifications for construction,

 Proposal of a model integration and model consistency approach among system

engineering models, mathematical engines and BIM (CAD) models, and

 Development and computational implementation of a system-level tolerances

modeling and allocation based on a MBSE approach.

The expected general contributions of this dissertation are the representations of

manufacturing knowledge and tolerances interaction across building sub-systems to

identify conflicting manufacturing requirements and minimize costly construction errors.

The proposed approach stores and allocates manufacturing knowledge as MBSE design

specifications of single and multiple material systems. In addition, as new techniques in

building construction are beginning to overlap with mechanical engineering methods and

standards (e.g. in-factory pre-fabrication), this dissertation provides examples of

14

integration scenarios between MBSE and BIM to reduce human data translation errors,

improving model consistency among domains. In this regard, other specific expected

contributions for the work presented in this dissertation are:

 Model-to-Model Transformation: Development of a structural, feature-based

decomposition method of parametric CAD models into System Models;

 Model Integration Approach: Development of a parametric, simultaneous,

seamless software integration for knowledge allocation, analysis, and verification

to reduce human data translation;

 One Truth, multiple Model Views: Foundation of a model-centric architecture to

manage manufacturing knowledge, project requirements, geometry, and design

specifications in an interoperable modeling environment;

 Domain Expert Advice: Development of an automated allocation of material-

specific knowledge for components and assemblies based of geometric features

and material systems;

 Machine Readable/ Executable: Development of a programmatic integration of

CAD geometry with manufacturing know-how through knowledge-based

mathematical and logical constraints; and

 Model Consistency Approach: On-demand model-to-model and tool-to-tool

consistency assessment and model data update.

1.4. Boundaries of the approach

Due to the heterogeneity of the domain knowledge and tools that have been

incorporated for the development of this dissertation, it is important to establish a set of

limitations and assumptions for the created framework.

15

Assumptions about the field of study: The field of study for this dissertation is

architecture and construction. Although, this dissertation may have also contributed to

other areas of engineering such as MBSE and computer science, it should be evaluated

only by its contribution in its main areas of study.

Assumptions about interoperability and model integration: This dissertation

does not deal with interoperability in the sense of creating standard neutral files to

exchange model information among proprietary CAD or BIM tools. This dissertation

proposes a model integration approach that does not require an exchange file. Rather, all

commands performed in application A can be simultaneously executed in application B.

 Assumption about modeling mistakes: Inaccuracies made in the nominal

geometry which lead to geometrically and functionally inadmissible models, or

documented design that does not reflect the designer’s intent will not be considered as

relevant for this dissertation. For example a bolt will not fit through a hole because the

two parts do not line up due to a modeling mistake in applying mating conditions to an

assembly. Rather, it is assumed that all models are nominally perfect, and compliant with

the rules of solid modeling.

Assumptions about design errors: It is the focus of this dissertation to deal with

errors discovered as part of the model integration methodology proposed for the present

computational implementation. Design errors emerge when design, as documented, does

reflect the designer’s intent, but that intent is flawed [28]. By applying design and

construction specifications, along with material-specific knowledge, to the nominal

geometry, the application will determine if the proposed design will either result as

intended or not from the nominal geometry model.

16

Assumptions about mathematical models: It is not the focus of this dissertation

to propose, assess, or improve any of the mathematical or statistical models used to

describe geometric variability in construction. For this dissertation such models and

equations will be assumed as valid and incorporated as they are described in the literature

into constraints modeling elements of the implementation.

Assumptions about material-specific knowledge: It will be assumed that all the

material-specific knowledge, from standards and other sources of know-how has been

properly validated in each material system field. This dissertation does not focus on

creation of new material-specific manufacturing knowledge. Rather, this dissertation

focuses on the development of a modeling framework that allows the seamless

integration of knowledge and geometry to perform simultaneous analysis for

manufacturing compliance.

1.5. Organization of this Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2 Hypothesis, introduces the research questions and hypothesis and then

presents the expected impact and possible generalizations of this dissertation;

Chapter 3 Background, presents the overall background of this dissertation that

has been divided in Geometric Dimensioning and Tolerancing; geometric variation and

GD&T evolution; Model Based Systems Engineering and its associated language SysML.

This section also introduces a discussion about the differences between document-centric

approach and a model-centric approach for engineering. Furthermore, this section also

presents the diagrams of the System Modeling Language (SysML), a section that deals

17

with Requirements Management in Systems Engineering; and finally a review of SysML

modeling integrations and consistency management in MBSE.

Chapter 4 Tolerances in building construction, presents the challenges of

modeling construction tolerances; introduces a tolerances taxonomy created for the

implementation; and finally presents the main outcomes of this taxonomy: Single

Domain Construction Tolerances (SDCT), and Heterogeneous Construction Tolerances

(HCT).

Chapter 5 Knowledge and Tolerances Representation in Construction,

discusses drawings and specifications for construction; the representation of construction

tolerances, a mathematical approach to represent construction tolerances; Statistical

tolerances analysis through Monte Carlo methods; and model simplification and

allocation of manufacturing knowledge and tolerances on solid models.

Chapter 6 Methodology, Goes from domain issues to functionalities proposed

for the modeling framework; presents a general SysML-CAD integration approach;

presents an approach to SysML-CAD semantic integration through Domain Specific

Languages (DSL); introduces the representation of CAD data structures in SysML; offers

a general description of the present project and explain the modeling framework though a

first case study : Cylindrical fit.

Chapter 7 System Evaluation, presents a second and third case study in a SDCT

and a HCT domains: A multi-feature, 4 components, single-material (sheet metal) critical

assembly of an architectural PV racking structure, QuadPod; and a light gauge wall

assembly with eleven components and four concurrent material systems (Cast-in-place

concrete, precast concrete, light gauge framing, and PVC windows);

file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755
file:///D:/DROPBOX/Dropbox/Research/PhD%20proposal/TEXT/ValdesFrancisco_Dissertation_02.07.2017.docx%23_Toc442805755

18

Chapter 8 System Validation, restates the case studies developed during Chapter

7, presents 4 complementary evaluation methods for the implementation; delivers the

positive aspects of the implementation, presents the found and resolved issues faced

during the implementation, and finally suggests the items of the present dissertation that

require further improvement.

Chapter 9 Conclusions, summarizes the motivations and approach for this

dissertation, answers the research questions and assess the hypothesis, presents and

develop a list of contributions of the present dissertation, and finally delivers some

concluding remarks.

19

CHAPTER 2: Research Questions and Hypothesis

2.1. Research Questions

Based on the problem statement and motivations offered in the introduction

section and further supported by a comprehensive background review (see Chapter 3), the

research questions of the present dissertation are:

1. Is it possible to represent and store machine-readable manufacturing knowledge

to parametrically assess manufacturability and tolerances of CAD geometry in

the early stages of building design?

2. Is it possible to develop a computationally-integrated modeling framework among

Model Based Systems Engineering models, mathematical engines, and CAD

models?

3. Given that questions 1 and 2 above can be answered affirmatively, can use the

systems as postulated to predict conflicting tolerances interactions among

different material systems from different vendors before creating building

assemblies on the site?

These research questions are integrated below in the dissertation’s hypothesis

which is further decomposed in detailed explanations of its core concepts. Key elements

of the hypothesis are numbered (a) through (e) and are discussed in detail in the

following sections.

2.2. Hypothesis

The seamless integration of parametric CAD geometry with a system-level

modeling environment (a) allows the feature-based allocation of manufacturing

20

specifications (b), based on material-specific knowledge and processes constraints (c),

and also identifies complex conflicting interactions of tolerances (d) across multi-

material building assemblies(e).

The details of each aspect of the hypothesis are explained in what follows and

also describes the first intent to enumerate the contributions of the present dissertation:

(a) Seamless integration of parametric CAD geometry with a system-level modeling

environment, SysML

 A seamless CAD-SysML integration fills the gap between geometry-focused CAD

and analysis and simulation-focused SysML through an simultaneous modeling tool.

The proposed approach programmatically integrates two different data structures by

recreating the meta-model4 of the CAD application through a graph-based

representation in SysML (see Section 6.7). The set of elements and rules to perform

such a transformation will be called a SysML Profile or Domain Specific Language

(DSL). Thus, this profile or DSL defines the elements, languages and processes from

which to form a model, and will be based on the assembly> part> feature>

parameter> value paradigm to describe geometry as used in most solid modeling

applications.

4 A meta-model is a detailed classification of the constructs and rules required for creating

semantic models, which means the implementation of specific independent descriptions of the underlying

algorithmic ideas [117].

21

 Integration of specific features of geometric data with a system modeling tool will

allow rule-based design and solve operations that otherwise require manual data

translation, which is error prone and time consuming. One of the main difficulties of

tolerances allocation in the construction industry is that rules and values of tolerances

specifications are not based in a geometric-specific context. For example, when

applying tolerances to a specific building component, designers usually follow tables

and standards that do not consider mating conditions between components that belong

to different material systems. Also, tolerance specifications based on tables [29] are

usually described in ranges instead of instance-based approaches, which reduces

tolerances accuracy. This implementation proposes tolerances allocation as a factor of

the critical dimension to be specified (case-based tolerances allocation).

 A CAD-SysML integration will provide geometric data to numerous domain-specific

tools. For example, it will populate tolerance model equations by linking CAD critical

dimensions with construction knowledge and standards, which are instantiated from

SysML profiles. Although the implementation presented in this dissertation

implements the integration of a single CAD application with a single system-level

tool, one the of the contributions of the approach is to demonstrate that such

integration could be achieved with any design or engineering tool in the building

lifecycle that has an API and a data structure that can be represented as a SysML

profile. In addition, this implementation is integrated with a mathematical solver that

can perform calculations transferring metrics from any of the integrated tools.

 An automated CAD-SysML integration will ensure data consistency among models.

As it has been explained previously, one of the main sources of geometric deviations

22

during construction is the lack of numeric consistency among different model views

and tools. Reasons for this lack of consistency range from simple isolated data

transcription mistakes to consistency issues that arise from the document-oriented

nature of construction. An encoded consistency approach is one of the bases of the

present implementation, and it will promote a truly model-based approach for

construction.

(b) Feature-based automated allocation of manufacturing specifications

 This dissertation focuses on the integration of manufacturing specifications and

geometry, as tolerances analysis and allocation processes that require geometry

handling are intrinsically interconnected and codependent. This implementation,

through the creation of material specific profiles in SysML, produces reusable blocks

of manufacturing knowledge to assess geometric variability and tolerances allocation.

Each block of manufacturing knowledge, described as a <<Design Specification>> or

<<Manufacturing Specification>> in the proposed SysML profile, contains the

rationale of a specific tolerances or manufacturing rule and is automatically enforced

via connection to specific CAD features through mathematical expressions as

<<Constraints>> (see Section 6.8). As Bernal and Haymaker [30] suggested,

constraint-based methods capture design knowledge in the form of constraints and

requirements that must be satisfied by the design.

 An automated integration between manufacturing knowledge and geometry is

required due to the highly heterogeneous environment of domain-specific

applications and languages that affect tolerances modeling and allocation. Parametric

geometry tools like that used for this implementation have modest domain-specific

23

knowledge capabilities in a few well-understood domains. For example, sheet metal

bends or flanges can be easily created because placeholders for all necessary domain-

specific parameters are included in the user interface. Yet, this modeling environment

does not contain proper tools to calculate and allocate a correct value for each of

those domain-specific parameters. For instance, a bending radius is automatically

applied when a flange is created. However, if the material thickness changes, the

bending radius, which is highly dependent on material thickness, will not be updated.

The required information to update these parameters is mainly contained in

manufacturing specifications, managed by different stakeholders, is largely human

readable, and stored in different documents. Therefore, one of the important

contributions of this integration is the knowledge-based allocation of metrics for

CAD feature parameters.

 A systematic approach for tolerances specification starts from high-level descriptions

of manufacturing specifications on the SysML side and progress into low-level

descriptions of feature-carried geometric tolerances on the CAD side. A tolerances

lifecycle5 must be embedded as part of the entire project lifecycle. The lifecycle

includes building requirements that inform design specifications, and these are then

5 For this dissertation, tolerances lifecycle represents the different stages of tolerances modeling

and allocation. It starts with requirements modeling, then tolerances are converted in SDCT specifications

applied to individual components; and then the SDCT evolve to HCT where multiple-material assemblies

are analyzed to provide case-based tolerances and clearances allowances.

24

instantiated as geometric features to fulfill those original requirements. However,

challenges arise due to different semantic nature and non-interoperable modeling

environments of the building industry. An important aspect of this implementation is

to ensure data continuity by allowing text-based requirements to be automatically

traced from a geometric feature and vice versa.

 Two or more engineering views6 can read from and write to a shared attribute of the

geometric design. For this reason, the associated manufacturing knowledge, model

elements and their possible parallel changes and updates have to be consistent. For

instance, two component-specific geometric features that belong to two different

material systems could share a mating relationship. This mating relationship will

create an HCT assembly specification (e.g. clearance). However, the two same

features will most likely also have manufacturing specifications that only apply

within their material system (SDCT). In this case, the automated allocation of

manufacturing knowledge must consider an appropriate process hierarchy to ensure

that both parts of the process are complementary and not conflicting. Consequently,

SysML rules correct both for internal material logics (SDCT) as well as external

6 A view is a representation of a whole system or subsystem from the specific well-defined

perspective. A viewpoint is a specification of the conventions and rules for constructing and using a view

for the purpose of addressing a set of stakeholder concerns [24].

25

tolerance logics (HCT) , and it is important that these corrections take place in the

proper sequence.

(c) Material-specific knowledge and processes constraints

 Most of the tolerances parameters of a building product depend on non-geometric

rules and process modeling. Although most solid modeling applications have robust

parametric capabilities that allow the creation of associations among parameters (e.g.

“the length is the double of the width” or x= 2y), the rationale behind such an

expression is not present in those models. Thus, there is a need for an integrated

functionality that keeps a text-based specification or requirement tied to a

mathematical expression to enforce its applicability.

 An automated system for tolerances allocation should identify and verify critical

dimensions against current construction specifications and/or user-defined, domain-

specific knowledge. This is because not all of the knowledge necessary to design

building assemblies with proper understanding of its geometric variability is captured

in the specification. It is important that the design methodology is extended to permit

the instantiation of rules from experts. This functionality will be guaranteed by

creating an encoded relation among four different model elements in SysML an

element of the meta-class <<NXFeature>> that contains metrics linked from the

CAD geometry and typed as <<NXValueProperty>>; an element typed as <<Design

Specification>> or <<Manufacturing Specification>> that contains the rationale of a

manufacturing or assembly rule; and an element of the meta-class <<Knowledge-

Based Constraint>> or <<Critical Dimension>> that contains the mathematical

representation of the manufacturing or assembly rule. This last element, by using

26

binding connections, will verify that all metrics are compliant with the rationale

expressed in the <<Design Specification>>.

 Modeling material processes as special arrangements of metrics and constraints7 will

allow the formal specification of tolerances that are behavior-dependent (for instance,

geometric deviations due to kinematics or temperature changes). This reusable

system will be based on the element <<Analysis Context>>. The <<Analysis

Context>> stereotypes are specializations of SysML blocks that are used to create

system boundaries defining where to execute a domain-specific evaluation, in similar

fashion of a scenario. As Gane and Haymaker [31] state, an scenario is a specific

group of constraints, which restricts the context of design decisions

(d) Complex conflicting interactions of tolerances

 Representing the building as a whole system will capture the functional and

behavioral interactions that occur across different domains and material systems. This

will be achieved by integrating geometry, processes, and design specifications in a

single modeling platform that enables the calculation of tolerances and clearances of

combined tools and multiple material systems. This capability will replace the current

industry approach that specifies tolerances allocation as a separate task for each

material system and vendor.

7 For this dissertation, metrics are numerical values assigned to model parameters, and constraints

are domain-specific mathematical expressions that condition those numerical values.

27

 Reinforcing a system-level semantic layer on the CAD environment will facilitate the

representation of geometric and non-geometric interactions of a building project.

(e) Multi-material building assemblies

 The multi-party nature of the building construction lifecycle and the uncertain

outcomes from construction processes are some of the main causes of geometric

variability in construction [1]. The generality of the implementation, which allows

modeling new knowledge through SysML profiles and meta-classes, enables the

creation of model elements that represent material-system boundaries, for example

joints and clearances, and other relationships within heterogeneous assemblies.

 System-based modeling of multi-material building assemblies will result in not just

tolerances attributable to fabrication accuracy but also behavioral considerations that

affect their variation. Examples include the addition of materials with different

mechanical properties and the addition of components fabricated by different

subcontractors with dissimilar processes and standards.

2.3. Impact of Proposed Dissertation and Possible Generalizations

As it was explained in Chapter 1, design errors arise when design, as documented,

reflects the designer’s intent, but that intent is flawed due to a lack of information or due

to wrong design assumptions [28]. A survey research by Lopez and Love [32] estimated

design error costs obtained from 139 building construction projects. The mean direct and

indirect costs for design errors were estimated to be 6.85 percent and 7.36 percent of

contract value, respectively. This totals more than 14 percent of the project contract in

design attributable errors alone. Also, as Li [16] presents, “The proportion of money and

time spent on rework in the design phase is usually higher than that of the construction

28

phase, as design is an iterative process during which engineers try to solve coupled

problems with complex relationships.” In the same regard, as it can be seen in the

MacLeamy Curve (Figure 3), costs and time associated with errors or conflict correction

increase substantially if the error is identified after construction documentation is

complete. Although the promise of completely eliminating design errors seems

impractical, this project will help reduce the time and cost associated with tolerances-

related design issues including on-site re-work, demolition of defective work, and

disputes among stakeholders.

Figure 3: Impact of design changes during building lifecycle (adapted from Patrick

MacLeamy)

This project supports the early identification of conflicting manufacturing and

performance requirements and minimize costly construction errors by representing

tolerances interaction across different building sub-systems. This objective is achieved by

integrating a BIM tool (Siemens NX) with a system engineering tool (SysML), and a

29

mathematical simulation engine for analysis calculations (Maple 17-18). This integration

is intended to support the collaborative modeling of a building project as a “system-of-

systems,” and to provide the computational infrastructure and knowledge necessary to fix

conflicts when they are detected.

Another important contribution of this dissertation, which can be generalized in

different aspects of building design, is to formulate and execute more consistent analysis

and simulations by incorporating parametric CAD data into a system modeling

environment. In a highly specialized and heterogeneous modeling environment as

described by Haymaker [33], a parametric software integration will reduce human data

translation errors, improving model consistency among domains. Furthermore, an

integrated multi-system view of structure and behavior will enable the comparison of

alternatives based on trade-offs and risks. Also, this implementation can integrate

different modeling requirements tools, from different engineering fields, in a central

model that enhances interoperability and consistency among domains.

30

CHAPTER 3: Background Review

The background section will be divided in several critical areas related to this

project: Geometric Dimensioning and Tolerancing (GD&T), geometric variation and

GD&T Evolution, Model Based System Engineering (MBSE), System Modeling

Language (SysML) and BIM, document-centric versus model-centric approaches,

diagrams of the SysML language, requirements management, SysML modeling

integration, and consistency management in MBSE.

3.1. Geometric Dimensioning and Tolerancing (GD&T)

Geometric Dimensioning and Tolerancing (GD&T) is an engineering approach to

describe a nominal – or theoretically perfect – geometry of parts and assemblies and to

subsequently describe the allowable difference in form and size of individual features and

the allowable variation between features from this theoretically perfect geometry [15].

Tolerances specifications are a set of rules that are applied to different types of relations

among geometric features. Figure 4 presents a geometric tolerances taxonomy common

to most of the engineering domains. This taxonomy, although not specific to building

construction, refers to the general geometric representations of deviations of parts and

processes. Accordingly, the level of abstraction of this taxonomy is appropriate to

represent tolerances of the construction industry.

31

Figure 4: Geometric Tolerances Taxonomy (adapted from [30])

According to Juster [35], Kandikjan, Shah, and Davidson [36], the manufacturing

industry employs two types of Geometric Dimensioning and Tolerancing (GD&T)

approaches that are supported by the current standards: conventional tolerancing and

geometric tolerancing (Figure 5). Conventional tolerancing represents the long-

established practice of using plus-minus tolerances. In conventional dimensioning and

tolerancing, tolerances applied to dimensions depict the allowed deviation of the shape in

the direction of a given dimension. In contrast, geometric tolerancing provides a complete

set of controls for every specific characteristic of the geometry (form, orientation,

location, etc.) to the degree required to satisfy the function or interchangeability

requirements of the mechanical part. For example, for specifications of geometric

tolerances it is significant to provide material and theoretical dimensions. Theoretical

dimensions exist between theoretical entities [37]. A theoretical entity is a datum or a

resolved object of a feature. For example, the center of a circle is a theoretical entity

because it is a virtual element that is not really there, that is, it only exists as a concept.

However, the edge of a face is real as it represents and object of the physical

environment. Theoretical dimensions can become the basis for the specification of

32

geometric tolerances [37]. Furthermore, because of its ability to manage a large amount

of inter-related feature-based geometric variation, geometric tolerancing emerges as more

suitable for representing the complexity of the construction domain [15]. As information

technology becomes more powerful to manipulate large parametric models, the potential

grows to build increasingly sophisticated functional systems for designing, modeling and

fabricating buildings [38]. This dissertation focuses specifically on how the formal

description of design requirements, manufacturing specifications, and a subsequent

feature-based integration with CAD geometry can describe a more accurate tolerance

specification. Geometric tolerancing is more closely related to the conceptual framework

used in feature-based solid modelers. In this context, explicit interactions between the

entities that control the geometry of a part (parametric model) can be joined to the

geometric tolerancing specification through the SysML profile. This is in contrast to the

conventional tolerancing (plus/minus) where the tolerance rule is applied locally but is

not really relatable to the overall behavior of the part (from the material logic

perspective) or the tolerance stack.

Since 1970, research in GD&T has been widely developed from several points of

view such as geometry representation, variation of geometry representation, tolerances

allocation, and manufacturing processes. One of the first steps to incorporate GD&T into

CAD models was defining description languages for parts and assemblies [39].

Additionally, the development of Constructive Solid Geometry (CSG) of Requicha and

Tilove [40], was also relevant to create geometric representations that are able to carry

information of variation and tolerances. Later, Virtual Boundary Requirements (VBRs)

and offsetting operations in solid models were successfully implemented by Srinivasan

33

and Jayaraman [41]. Furthermore, tolerance allocation for manufacturing processes has

been also proposed For example, Zhang and Wang [42] have investigated the tolerances

and variation that come from machine selection, which extends the scope for geometric

variation to identify conflicting manufacturing interactions. In addition, Sodeberg [43]

has focused on the association between critical dimensions and product life cycle to

identify conflicting correlations among these categories. This design approach is

demonstrated through a case study that considers the tolerance specifications for an

automotive body panel, where specified tolerances influence a critical dimension that

affects the product’s assembled functionality. The potential for loss of functionality and

the impact of selecting alternative manufacturing sequences on tolerances has been also

covered by Fathi, Mittal, and Cline [44]. In the same regard, from the manufacturing

prospective, Fraticelli, Lehtihet, and Cavalier [45] investigated the alternative processes

definition. They described how tool wear influences the geometric variation of

manufactured parts.

GD&T has also been studied from the optimization point of view through

experimental design [46], and by means of Monte Carlo simulations [47]. GD&T

research has also covered issues regarding quality loss under the restraints of process

capability limits, functionality of design, and production quality requirements. These

issues have been analyzed by using tolerance chart optimization procedures [48].

Tolerance allocation is another important topic covered by GD&T research. In this

regard, a feature-based tolerance charting methodology was developed by Tseng and

Terng [49], and Tseng and Kung [50]. This important work proposed a feature-based

34

tolerance charting methodology to automatically allocate the working dimensions and

tolerances for 3D prismatic parts represented in boundary representation data.

Although various GD&T conceptual models are described in the literature, among

scientists, classifying them is still a matter of discussion. For this research, GD&T

models are classified using the Kandikjan, Shah, and Davidson [36] schema. This

classification includes: documentation-oriented models, analysis-oriented models,

production-oriented models, and control-oriented models. The documentation-oriented

models aimed to include dimension and tolerancing information in CAD models and their

documentation. In practice, these tolerances were introduced in the 2D drawings as notes

only – and are not machine readable and thus rely on human transcription and

interpretation The second GD&T model is the analysis-oriented model. This model is

based on the concept of variational geometry and represents the tolerances through the

variation of the position of some specific control points within the Euclidian space. The

system-oriented tolerances model centers on creating the boundaries of the tolerance zone

and conformance to tolerance. The production-oriented tolerances model employs graph-

based tolerance representation for fabrication as well as machining setup and texture

planning. Control-oriented models, based on graph representations, allows the

specification of tolerances according to manufacturing standards.

Since the creation of the production-oriented modeling, most of the CAD/CAM

systems that include tolerances follow the widely accepted ISO 10303 Standard for The

Exchange of Product model data (STEP) to encapsulate tolerance data. STEP describes

geometric tolerances information via EXPRESS language. [51]. This STEP

implementation is important to assure quality throughout the process of transferring data

35

among different actors in the manufacturing industry. Today many manufacturing (but

few construction) industries require process planners to generate manufacturing

specifications based on functional requirements of the ISO standard [52].

The majority of the efforts presented above have been introduced by the

mechanical engineering domain and implemented in the aerospace and automotive

industries. However, they are rarely deployed in construction. Therefore, an important

goal of this research is to adapt these accomplishments made in the mechanical world

into a model for the construction domain.

3.2. Geometric Variation and GD&T Evolution

Since the 1980s, the representation of GD&T in aerospace and mechanical

engineering have vastly improved. New devices to capture and assess geometric

deviations, such as electronic scanners, and new GD&T computational approaches have

allowed a robust interoperability among different CAD systems. During the early days of

CAD implementation, texts and symbols were written into exchange files. A receiving

system could display them on the screen or print them, but only a human could interpret

them (Figure 5 left). This approach is called conventional tolerancing. The conventional

tolerancing method is still used in many construction activities. Then, with the purpose of

improving the readability of the tolerances information, variational data was introduced

by means callouts referring to specific features of the model, for instance, a datum feature

callout and a datum reference frame. This advanced approach was later known as GD&T.

As it can be seen in Figure 5 (right), the advancement of human-readable tolerances

representation included several new fields of information, which mostly refer to the

feature-based context of the variational data. Besides numeric values and the variational

36

limits of the dimension, these new descriptions depicted tolerances types and datum

frames to further define the expected variation. Also, the development of user-driven

GD&T representation specified which element of the geometry of a product model has

GD&T capabilities. For example, a system supporting GD&T representation may display

the GD&T information in a tree or other dialog that allows the user to directly select and

highlight specific features of the product in 2D and 3D. With the purpose of having better

interoperability within a GD&T representation systems, the next level of evolution

incorporated all the previous capabilities in an exchange file, for instance a STEP

exchange. More specifically, a receiving system that allows a user to select a GD&T

callout and view the corresponding feature highlighted on the shape of the product [53].

Figure 5. Conventional +/- Tolerancing and GD&T specification

37

Another critical improvement of the GD&T method was the development of a

formal language to describe its functionality. This language, supported by the ISO

organization, has built-in rules and restrictions for proper GD&T usage. This capability

led to another important advancement in the representation of tolerances: the GD&T

validation approach. Using the variational data as well as the GD&T representation and a

supportive geometric format (e.g. boundary representation), it is possible to validate the

completeness and consistency of the GD&T information. For instance, the newer

approach classifies syntactic errors in a GD&T specification by converting ASME

standards into grammar rules to check for ambiguities in datum referencing for a CAD

model. Also, the ASME standard Y14.5 defines a set rule for GD&T to specify

permissible variation in manufacturing [54].

Further development of the approach proposed in this dissertation will use

geometric variation data at a system level to improve complex manufacturing and

assembly processes, energy simulations, realistic visualization, and geometric assurance

within the construction domain. In order to achieve these goals, the semantic layer

created by the MBSE platform needs to be integrated with the current CAD environment

to allow the representation of system-level manufacturing specifications interaction. The

next section will present a review of the state of the art in MBSE, its integration with

other modeling and simulation tools, and will further explain the importance of model

consistency within MBSE to ensure successful integration in the construction realm.

38

3.3. Model Based System Engineering (MBSE), System Modeling

Language (SysML), and Building Information Modeling (BIM)

MBSE is the formalized application of modeling to support system requirements,

design, analysis, verification, and validation activities beginning in the conceptual design

phase and continuing throughout development and later life cycle phases [27]. MBSE

tools and the associated visual architectural8 modeling language, which has been

established by the Object Management Group (OMG) based on the Unified Modeling

Language (UML) is the System Modeling Language (SysML). It both extends UML to

the domain of physical objects (UML is focused primarily on software and data) and

limits UML by identifying the subset of UML that is useful for modeling objects and

processes in the physical world. SysML is a general purpose modeling language for

systems engineering applications and its scope goes through a wide range of systems, or

systems of systems, including hardware, software, processes, and facilities [27]. Some of

the general issues of using SysML for MBSE have been identified in [55] is that while

SysML creators indicates that it is a "smaller, simpler" language for systems engineers,

SysML suffers from language bloat because it adds two new diagrams (Requirements and

Parametrics) and substantially increases the number of stereotypes with imprecise

8 Here, the word “architectural” is used to describe system architecture, that is, how parts and

assemblies relate to one another in terms of geometry, requirements, production process, supplier, etc. A

synonym used for architectural used in this context might be organizational.

39

semantics. Also, another issue identified that has close relation with this dissertation is

that Instance Specifications are ambiguously defined and poorly integrated with the rest

of SysML [55]. An <<Instance Specification>> defines an occurrence (real-world

examples) of a <<Block>> element. For this dissertation, instead of using <<Instance

Specification>> elements to capture numeric values from CAD geometry, the approach

uses simple <<Block>> elements (classes) as they are better integrated with the rest of

the SysML language. This section of the document will introduce the motivations for the

development of systems engineering; it will explain how systems engineering transitions

from a document-centric approach to a model-centric methodology; and it will explain

the development of System Modeling Language with its motivations and main

components. A brief background about the state of the art in SysML model integration,

requirements engineering, and model consistency will complete this chapter.

In current practices of architectural design, building engineering and construction,

products and systems are expected to perform at predicted levels. As Friedenthal et al.

[56] states: “Competitive pressures demand that these systems leverage technological

advances to provide continuously increasing capability at reduced costs and within

shorter delivery cycles.” In the building industry, this increasing capability usually refers

to a highly detailed set of functional requirements that challenge current modes of design,

delivery, and operation of buildings. In order to successfully produce better buildings, the

design and construction industry has integrated computational tools to shift away from

the traditional approach of independent development of material systems and

stakeholders requirements towards Building Information Modeling (BIM). BIM can be

defined as a centralized modeling environment that allows connectivity of multiple

40

vectors, including project information, assembly specifications, building operation, and

building users [57]. However, the development of BIM, although crucial at the geometry

level, has not been equally successful in developing well-defined transactional

construction process models to eliminate data interoperability issues [58].

A building, as any other complex system, is not a static entity. Rather, it changes

over time as sub-systems or other building components are incorporated or detached

during the building lifecycle. These changes result in requirements and behaviors of

constituent systems that may not have been anticipated when the system was developed

[56]. Furthermore, in building design, multi-functional components are highly common.

For example, a building roof covers and encloses the space of a building; it protects the

inner space from weather events such as rain and snow. it adds thermal protection to the

interior; it enables the installation of other systems such as windows or solar panels. Any

of these functions has to comply with a very precise set of functional, structural,

aesthetic, and economical constraints during the building lifecycle. If no proper

knowledge and project data integration platform is implemented, presumably any change

of the roof design, meant to improve one aspect, will result in the detriment or at least

some change of some other functionality. As one proposed solution to this larger

problem, the systems engineering approach, through its modeling language SysML, has

been extensively recognized in the aerospace and mechanical engineering industry to

provide system solutions to technologically challenging and mission-critical problems

[56] [27] [59]. The next section of the dissertation will explain how systems engineering

is applied to develop a model-centric approach in engineering, and how this approach can

be used as a platform for dealing with the data heterogeneity in the building domain.

41

3.3.1. From a Document-centric approach to a Model-centric approach:

One of the important contributions of MBSE has been the development of model-

based architectures that have enhanced the ability to share and exchange project data.

This approach, although significant, requires improved knowledge and skills of users to

facilitate the adoption of model-based practices. This need has led to the increasing

significance of the system architect as a managing entity for the integrated platform. In

the following section, we will contrast the distinctions of the document-based approach

and the model-based approach for systems engineering applications. In the AEC world,

the skill of modelers has been challenged by the implementation of BIM, which is

inherently 3D and requires a higher level of modeling skill. Most BIM authoring tools

require that modelers assert the relationships between building objects as part of building

BIM models, which is an additional challenge, but which makes the building model

richer and more useful. The system model includes everything in BIM and adds sub-

models for requirements and processes. Thus the modeling complexity is increased even

further, leading to the identification of the “systems architect” as a managing entity.

Even with the development of BIM and system engineering, the current practice

of architectural design and construction still relies on the conventional document-centric

approach to deliver and manage building lifecycle data. This method usually emphasizes

the generation of individual design documents, in hard copy or electronic file format with

restrictive interoperable capabilities, which are exchanged among the project

stakeholders.

If systems models are deployed using a document-based approach, the following

modeling objects are generated to assert the relationship between documents [27]:

42

concept of operations (ConOps), requirements specifications, requirement traceability

and verification matrices (RTVMs), interface definition documents (IDDs), N2 charts

(also known as N-squared charts—matrices of structural interfaces), architecture

description documents (ADDs), system design specifications, test case specifications, and

specialty engineering analyses (e.g., analyses of reliability, availability, schedulability,

throughput, response time).

Considering that in this increasingly complex IT environment [38] a building

project creates endless amounts of project data from different people and tools, the

document-centric approach requires a significant amount of time to ensure that

documentation is valid, complete and consistent. The classic document-centric approach

specifications are depicted in specifications trees. Then, a systems engineering

management plan (SEMP) defines how the systems engineering procedure fits in the

project, and how all the concurring disciplines come together to develop the

documentation necessary to satisfy the requirements in the specification tree [56]. In the

document-based approach, functional decomposition is executed to explain how

functional requirements are to be fulfilled by the components of the system or building.

Usually, these kind of relationships will be depicted in design documentation such as

flow diagrams. However, flow diagrams of a document-centric approach lack

interoperable functionality. In addition, requirements management is performed to parse

requirements of the design specifications with design embodiments, to capture those

requirements in requirements databases, and to trace requirements by identifying the

systems or sub-systems that the specifications are referring to [27]. Current requirements

43

management tools have capabilities to verify requirements satisfaction and to reflect the

traceability in the requirements database.

Figure 6: Document-Centric Approach

To summarize: though a document-centric approach may be quite rigorous, it has

a critical limitation when assessing the consistency and completeness of project data. For

this approach to be successful, the systems architecture must be clear and the stakeholder

in charge of the document mapping must be consistent and constant in order to maintain a

complete systems model. As [56] points out, The comprehensiveness, consistency, and

relationships between requirements, design, engineering analysis, and test data are hard to

evaluate due to the fact that information is spread across several documents.

Understanding a particular view of the system and executing the necessary traceability

and design-change impact assessments is clearly challenging. Applying this scenario to

the AEC domain may lead to a deficient coordination of design requirements, which

44

could subsequently lead to poor knowledge integration regarding material systems and

manufacturing processes, and finally to quality issues when the final product is delivered.

As it has been described above, the document-centric approach for systems

engineering –although having many advantages, suffers from an important disadvantage:

model inconsistencies. This situation was one of the main motivations for the

development of the MBSE approach With the MBSE approach, many of the intermediate

deliverables of the modeling activities seen in the document-centric approach can be

generated automatically. However, as [27] explains, in the model-centric approach, the

main product of those activities is an integrated, coherent, and consistent system model,

produced using a dedicated systems modeling tool: the System Modeling Language

(SysML). All other artifacts are secondary—automatically generated from the system

model using the same modeling tool.

Figure 7: Model-Centric Approach

One of the important characteristics of a comprehensive model is that it enables

stakeholders to take informed decisions. Decisions made within an MBSE framework

45

take place within a central repository, where each design decision is captured by a model

element or a relationship among model elements. With the model-centric method, all

diagrams and self-generated text objects are simply views of the underlying system

model, they are not the model itself. And that difference is the core of the return on

investment (ROI) that MBSE offers over the document-centric approach [27]. In the

system model, as all modeling elements are programmatically and systemically

integrated, any change that is produced will be automatically propagated to the rest of the

model. This capability is possible because of the programmatic characterization of

underlying dependencies of the model elements. It does not matter if the elements are

depicted in a diagram that is user-defined or automatically created, or if the model is too

large or complex. After all, the diagrams of the system models are just views of the real

model, which keeps its internal consistency based on its seamlessly integrated approach.

3.3.2. Diagrams of the System Modeling Language (SysML)

This section introduces the different diagrams available in current the version of

SysML as it is explained by the Object Management Group (OMG,

http://www.omgsysml.org/). Also, an introduction for the use of SysML diagrams in the

building domain is provided in a study of CAD-SysML integration for natural ventilation

assessment [60]. This project starts by modeling generic natural-ventilated buildings in

SysML, and examines the model through some scenarios produced from parametric

geometric iterations. The aim of those parametric iterations is to model the natural

ventilation system to survey different options of a building in a short period of time in

early stages of design. The building is a five-story, open plan, office building located in

Atlanta with stack-assisted cross ventilation.

http://www.omgsysml.org/

46

Figure 8: Building instance used as case study for the natural ventilation example

One of the main goals of the project is to visualize the geometric impact of

decisions taken in the building energy performance analysis domain. The size of rooms

and windows, height of stories, and building orientation will influence the results of

ventilation performance and also affect the appearance of the building. For the geometric

design of this development a parametric identification of the building was created in

Grasshopper, a parametric modeling tool that works within the Rhinoceros 3D modeler

environment. This Grasshopper definition contains all the basic elements of the office

building: basic structure, floors, exterior walls, interior walls, openings, roofs. The

Grasshopper definition also contains all the topological relationships among the elements.

 Figure 9 shows the hierarchy of SysML diagrams. Then, the rest of the section

provides examples of instances of these diagrams offered through the natural ventilation

example [60].

47

Figure 9: Hierarchy of SysML diagrams

SysML has an intuitive interface of multi-functional diagrams where the

<<block>> is the basic unit of a structure. Every system structure can be represented by

block definition diagrams (bdd) and internal block diagrams (ibd) [24] [25]. A block

definition diagram defines the system hierarchy and system/component taxonomies and

the internal block diagram describes the inner structure of a system in terms of its parts,

ports, and associations – in other words, the bdd describes how assemblies and parts are

related and nested semantically and the ibd depicts how the properties of elements

(already defined in bdds) are related [55]. The bdd is the most common of the SysML

modeling elements and is intended to depict the structure of a system. For example, if the

diameter of a hole in a plate and the diameter of a bolt are related, then this relationship is

declared in an ibd, but the definition of the plate and the bolt take place in a bdd [55].

One of the characteristics of the bdd is the level of granularity or detail that users can

obtain, depending on the target stakeholder for whom the diagram is intended. Bdd has to

48

be created based on the level of detail that is needed in the creation of subsequent system

modeling diagrams. For example, if an activity diagram refers to the drilling and

subsequent measuring of a hole in a part, then the bdd must define the part, and the hole

that is in the part, and must provide the dimensions of the part and the hole so that these

can be referenced in the activity diagram. The model elements that are displayed on

bdds—blocks, actors, value types, constraint blocks, flow specifications, and interfaces—

work as stereotypes for the other model elements shown on the other kinds of SysML

diagrams. These elements that appear on bdds are known as elements of definition. These

elements of definition are the foundation for everything else in a system model [27]. The

main elements of a <<block>>, which are shown in Figure 10, are the parts and values.

The parts represent subcomponents that are typed as “children” of the <<block>> and the

values represent model parameters that are depicted in the model to drive mathematical

analyses and simulations. There are three central kinds of relationships that can be

created between blocks: associations, generalizations, and dependencies. In Figure 10,

blocks are connected by using a “black diamond” association. This means the blocks are

physically connected to the parent block by using a “has a” relationship. If a block was

part of the parent block but did not physically connect to it, this association would be of

the reference kind and it would be represented by an open diamond, which indicates a

simple aggregation.

49

Figure 10: Block Definition Diagram (bdd) showing the structural decomposition of a

building assembly, Valdes, Sun (2012)

The internal block diagram (ibd) depicts the internal view of a system block, and

is usually instantiated from the block definition diagram, to represent the integration of

all blocks within the main system block [24]. As an example, the bdd in Figure 11

represents a room network in a building story. The story contains four rooms and a

central common space for all the stories depicted as “stack.” It is important to note that,

even though the bdd contains only one block called “Sub-Space”, it is actually

representing four different rooms because of its four composite associations to the parent

block “Floor 1”.

50

Figure 11: bdd of the space distribution of a building story with 4 rooms and a central

common stack, Valdes, Sun (2012)

Figure 12 represents the same building story shown in the bdd, but it is

characterized as an ibd. In this ibd, the internal structure of the air transference network

is depicted using the same elements of the bdd. The main difference is that in the ibd the

associations are showing an item flow instead of a hierarchical relationship among the

parts. In an ibd, item flows are required to match the ports that they are binding together.

It is important to note that all item flows and ports of the example in Figure 12 are typed

as “air” as they represent parts of a natural ventilation model. It should also be noted that

item flows between two ports are required to specify the direction of the flow.

51

Figure 12: ibd of the same building story shown as bdd in the previous picture, Valdes, Sun

(2012)

 In order to integrate specifications and design models with engineering analysis

models, parametric diagrams (par) represent constraints on attribute values which can be

derived from material, performance, and reliability properties. As can be seen in Figure

13, a parametric diagram contains four basic elements: an instance block that represents

the occurrence of a <<block>> element, and contains numerical values to perform

mathematical or logical calculations; a constraint block that contains a mathematical or

logical expression to be calculated during the parametric execution; a port that defines the

type (e.g. real) of the specific value of the element; and a binding connector that links

<<block>> data with the inputs of the expression in the constraint block through their

port elements. Parametric diagrams enable a value property that might be deeply nested

52

in a containing hierarchy to be referenced at the outer containing level [25]. Also,

parametric diagrams explicitly show the item exchange and the interdependencies

between parameters and attribute values that drive the different components of a system.

This facilitates the identification of sources of performance and the composition of a

system with good performance. For example, the Aspect System defined by Augenbroe

[61] represents a subset of a building model that is important from a functional

perspective. This functional view is achieved by functional decomposition, as in ibds, and

needs to be agreed upon with all design stakeholders. Then, the Aspect System will be

formulated as a measurable expression of performance.

Figure 13: Parametric Diagram (par) example, Valdes, Sun (2012)

53

Behavior diagrams comprise the use case diagram (uc) and activity diagram (act)

shown in Figure 14 and the sequence diagram (seq) and state machine diagram (sm)

shown in Figure 15. A use case diagram provides a high-level description of functionality

that is achieved through interaction among systems or system parts. The activity diagram

denotes the flow of data and control among activities. A sequence diagram represents the

interaction between collaborating parts of a system. The state machine diagram describes

the state transitions and actions that a system or its parts perform in response to events.

Activity diagrams can represent specific construction processes by means of the

description of process phases and associated metrics. All these metrics can be traced step-

by-step through sequence and state machine diagrams, and can be compared to formal

specification of design standards through requirements diagrams (Figure 16).

The activity diagram in Figure 14 illustrates space cooling through natural

ventilation. The control logic is when indoor air temperature is higher than the indoor set

point temperature of 22 degrees Celsius and outdoor air has cooling potential (i.e.

outdoor air is cooler than 22 C), the natural cooling system will control window opening

areas. After the window area is adjusted, wind pressure drives outdoor air flow through

open windows. Finally, the status of fresh air and air temperature in the room will be

updated. This activity needs to repeat periodically, so the indoor environment will be

monitored.

54

Figure 14: Activity Diagram, SysML, Valdes, Sun (2012)

The state machine diagrams represent several states that an object may be in and

the transitions between behaviors and states. Actually, as it is understood in other

modeling languages, it is common for this type of diagram to be named a state-transition

diagram or a state diagram. A state characterizes a phase in the behavior of an element,

and as in SysML activity diagrams, they will have initial states and final states [62]. The

following example in Figure 15 represents a state machine diagram of a room used in the

natural ventilation project. The sm diagram comprehends all elements that are activated

when the room is being occupied. State machine diagrams are clear examples of

behavioral modeling in SysML and its applicability in building simulations.

55

Figure 15: State Machine Diagram, SysML, Valdes, Sun (2012)

SysML contains a graphical methodology to represent text-based requirements

and relate them to other model elements as critical dimensions obtained from the CAD

model. The requirements diagram captures requirements hierarchies and requirements

derivation, which then satisfy and verify those relationships. The requirement diagram

will associate manufacturing knowledge, included in construction standards and material

56

systems know-how, with the model element that satisfies or verifies the requirements of

the system model.

Figure 16: Requirements Diagram, SysML, Valdes, Cavieres DBL Symposium: GaTech

(2013)

One of the most important functions of MBSE is to allow a formalized body of

knowledge to support rule-based design, hence relieving designers of the monotonous

activities affecting the engineering design process [63] [64]. One central aspect of this

approach is the generation and management of complex product configurations that

provide data to several discipline-specific tools involving geometry inputs or geometry

manipulation. Knowledge-based geometry and tolerances modeling and allocation are

examples of such configurations. Also, all the sub-processes and analysis that include

geometry manipulation are highly interconnected and rely on each other to advance the

product through its lifecycle. For example, most of the geometric design parameters of a

building product depend on non-geometric rules and requirements modeling, and must be

57

verified against construction standards. However, the geometric data necessary to

elaborate systems models within SysML still relies on manually-entered and updated

procedures. This situation leads to several drawbacks of model integration such as invalid

data, lack of consistency among models, and excessive design review procedures. In

order to implement a SysML method in a highly geometry-based field like BIM, a proper

artifact to automate BIM-SysML data translation in a product development lifecycle is

required. With this enhancement, BIM could potentially ensure data consistency among

models, leading to an increased building quality and a reduction in time and cost.

However, as it is found in the construction realm, the multi-disciplinary nature of BIM

results in vast amounts of project data, managed in different tools, corresponding to

different domains but which can be coordinated through SysML. Although SysML has

been successfully applied to several areas of the engineering design, such as

implementation for analysis (CAA) and communication and collaboration with several

stakeholders and external applications, the integration of SysML with geometry intensive

platforms as BIM is still an ongoing research area.

3.3.3. Requirements Management in Systems Engineering

Software development is highly dependent upon the Requirements Engineering

domain. Furthermore, within the requirements engineering process, the elicitation of

customer’s requirements is a crucial stage. Saiedian et al. [65] focuses directly on the

factors that shape requirements elicitation. In this regard, the elicitation stage addresses

requests and needs of consumers and presents a solution for their specific system.

Additionally, Chituc [66] takes Requirements Engineering research into another context:

long term digital preservation. There is limited research on Requirements Engineering

58

along the lines of long-term digital preservation. Chituc introduces the challenges and

advantages that could be present if digital preservation research was done in depth. In

relation to Requirements Engineering research, elicitation is also a common phase in the

context of digital preservation, but it takes the form of questions, surveys, and interviews.

However, due to the lack of integrated tools for gathering information about the

consumer’s and practitioner’s needs, the elicitation process usually results in poor

communication, resistance, and lack of perspective. Through an industrial study, Sikora

et al. [67] propose methods to understand practitioners’ needs concerning Requirements

Engineering research and development. This study included qualitative interviews as well

as qualitative data collected via questionnaires that reported five aspects of Requirements

Engineering approaches. The interview and questionnaire results concluded that the use

of natural language was prevalent in all industries, but many of the stakeholders felt that

including models would be a more comprehensive approach. In that regard, graphical

representations and prototypes have been found to be a technique that could reduce the

amount of ambiguity between the consumer and the modeled system. Graphical

representations extend from blueprints to hierarchies of problems, while prototypes

enhance the understanding of problems to identify solutions. In addition, Dos Santos

Soares et al. [68] offers new ideas about user requirements, mainly for software-intensive

systems, focusing on diagrammatically documenting them. System Modeling Language

(SysML), diagrams and tables, could effectively represent most of the meta-requirements

for complex system. SysML requirements diagram display requirement relationships,

while SysML tables show traceability and decomposition for software-intensive systems.

59

Holt et al. [69] debates how the application of Model-based Systems Engineering

is becoming well understood at the systems level, yet there is a lack of research and

subsequent application at the system of systems (SoS) level. This research proposes a

Model-based Systems Engineering approach called COMPASS (Comprehensive

Modeling for Advanced Systems of Systems), for requirements engineering, that could be

applied to both the system of systems (SoS) level and its constituent system (CS) level.

The four basic types of SoS requirements presented in this research include virtual,

collaborative, acknowledged, and directed, which are essential in the application of

MBSE. Winkler and Pilgrim focus on the current traceability research and practice in

requirements engineering and model-driven development (MDD) to bring stakeholders

together by identifying commonalities and differences in the two areas and finding

unsolved challenges that affect both. Traceability is found in requirements engineering

and MDD, because it is important in the verification and validation process. Also in

traceability, Cuddleback et al. [70] investigated what factors influence a human analyst’s

performance when vetting a candidate requirements traceability matrix (RTM). RTM is a

mapping process between elements of one artifact to another and is one of the most

revered processes in construction. Since RTM is highly revered, there may have been

some bias among the analysts in the study from a golden standard already established.

The study found that the analysts move their RTMs towards the line that represents recall

precision, meaning RTMs with low recall and low precision were improved drastically.

In a study by Ingmar [71], the main focus is discussing how a system is built with

operational descriptions of the missions the system is to complete through a central

model. A central model is essentially a means for developers to eliminate problems with

60

concurrency and incrementalism, basically as a control for engineering. Once the central

model is established, the model is extended into a Common Project Model. The Common

Model Project is the breakdown of a system’s structure and behavior, shown in a way that

manages problems.

Mancin [72] explains how to implement Model-Based Systems Engineering

(MBSE) as systems become more complex in their design. Through the use of

UML/SysML as independent modeling language, support analysis, design, development,

verification, and validation phases, an executable model will be created for proper

implementation. SysML is the main focus of his article, more specifically the analysis

stems from the implementation of the SysML language and the use of the SysML

diagram.

Capilla et al. [73] consolidated the findings of three other articles, creating a

summary solution to research challenges as it relates to requirements and architecture.

The first challenge was developing a strategy that allows requirements to transition to

architecture models. A Strategy for Transition between Requirements and Architectural

Models for Adaptive Systems (STREAM-A) was proposed to solve this challenge. This

approach uses goal models based on the i-star framework to design and evolve systems.

This system allows software engineers to perform the smooth transition from

requirements to architecture models. Transitioning is not the only problem for systems,

quality performance is also a concern when architecting with quality requirements. The

proposed model to resolve this is called QUality PERformance (QUPER), which uses

qualitative reasoning to make estimating quality targets easier and reasonable for quality

requirements. QUPER has already been applied in the industry, so further application will

61

increase upgradability, performance requirements, and improve the decision making

process. Finally, improving and understanding software quality requirements will

continue to evolve and will always present a challenge. To limit the number of challenges

in the industry, web applications (WebApp) can be used to indicate internal/external

usability problems [73]. Usability problems will be assessed through the WebApp, which

will provide recommendations for improvement. With diversity on the rise in technology,

it becomes more complex to balance relevant quality attributes and support different

levels of quality.

Goal-oriented requirements have received an increasing amount of attention

because they are used to elicit, elaborate, structure, specify, analyze, negotiate, document,

and modify requirements. Essentially, Van Lamsweerde [74] presents the various efforts,

arguments in favor of goal orientation, and a case study that shows how the goal-oriented

method works. Specifically, the Knowledge Acquisition in Automated Specification

(KAOS) method is advanced, because the four sub-models it creates can be applied to

any size project. The four sub-models essentially assist in analysis in developing the

goals and their application. Identifying the consumer’s goals in the early stages of the

Requirements Engineering process is a benefit of the KAOS method. Goals allow for the

consumer to see explicitly what they what the system to do. Goal-oriented Requirements

Engineering is specific to goals, verifying the requirements to ensure the goals are

identified and satisfied by the requirements. Goals are essential in goal-oriented

requirements, hence the name, especially because of their ability to support goal

modeling via qualitative or formal reasoning.

62

Sutcliffe [75], defines the role of scenarios in Requirements Engineering and the

Scenario Requirements Analysis Method (SCRAM) that allows for proper prototyping of

scenarios. Scenarios have been found to be helpful in counteracting human reasoning by

testing hypothesis and assumptions in models. In relation to models, scenarios

complement them by including all the goals of the stakeholder and making them clearer

to show how the system might work. Ultimately, scenarios present real world

applications leading to prototyping for models. Along with modeling requirements

through scenarios, the SCRAM method is one of the most successful techniques when

applied. This method consists of four phases, initial requirements capture and domain

familiarity, storyboarding and design visioning, requirements exploration, and

prototyping and requirements validation, which allows for the safe guiding process in

organizing the requirements analysis. The requirements analysis is essential so that all the

needs are included in the scenarios for the consumer to see what the system does

explicitly. In the end scenario-based requirements engineering has provided numerous

avenues to fulfill requirements for consumers.

3.3.4. System Modeling Language Integration Background

Model integration between SysML and other domain-specific applications has

been a matter of long development. These integrations have dealt with several

programming languages and data structures. However, the integration with CAD data

structures has not been successful so far. This section introduces the most relevant

integration project of SysML and other design and simulation tools.

One of the first approaches to create model integration within MBSE was

GeneralStore of Reichmann [64]. This approach proposed a common execution language

63

to deal with models already developed. GeneralStore has been considered as a limited

approach because it does not work during changing design stages. Hooman et al. [76]

introduced a co-simulation approach to exchange information between models during

runtime stages.

Figure 17: SysML Integration Status

Tolk [77] presented research that surveyed several issues about meta-modeling

and mapping among different modeling languages. Also, Vanderperren and Dehaene

[78], developed an integration between Matlab and UML. In addition, Brisolara et al.

[79] also developed an approach to integrate SysML with Simulink. In 2007, Pop et al.

[80] developed a SysML profile to integrate SysML with Modelica. Also in 2007,

Nytsch-Geusen [81] introduced a profile to graphically describe Modelica models in

SysML. Johnson et al. [59] [82] also worked on a SysML Modelica integration. Brucker

64

and Doser [83] developed a Meta-model-Based UML Notations for Domain-Specific

Languages to explain how to create domain-specific formal semantics.

Huang et al. [84] developed an approach to apply simulation activities within

SysML by means of mapping simulation models from Tecnomatrix plant simulation. Van

der Velden et al. [85] introduced an adaptable methodology for automation application

development. In 2008, Jobe et al. [86] proposed multi-domain integration in SysML

through a Multi-Aspect component model called MAsCOM. Giese et al. [87] introduced

an approach to produce low-level models in an automatic manner. This approach

formally described the meta-models to automate the process. In 2010 Shah et al. [88]

developed an approach to create multi-view modeling by means of SysML profiles and

model transformations. Schamai et al. [89] similarly introduced integration approaches

between SysML and Modelica by means of ModelicaML. Several other efforts have tried

to improve the integration of SysML and Modelica. For example, OMG developed an

approach to standardize a SysML – Modelica integration [90]. Furthermore, in the

Modelica environment, efforts to generate code from abstract models have been produced

by Dassault Systems (2011) and OpenModelica Consortium (2011). Additional

integration methods either provide execution capability for executing SysML models,

such as ParaMagic (InterCAX, 2011), which aids in executing SysML parametric

diagrams based on composable objects [26], or they focus on integrating SysML with

other modeling and simulation languages. Marchenko el al. [91] developed a new method

of visualization and documentation of parametric information of 3D CAD models. In

2012, Rocca [92] presented research to explain the concept of Knowledge Based

Engineering (KBE) through the integration of AI and CAD. Also in 2012, Mosier [93]

65

presented an overview of the NASA-integrated model-centric architecture. Valdes and

Sun [60] developed an approach to parametrically assess natural ventilation performance

in early stages of building design. This approach integrates metrics from a parametric

model into a SysML model to perform critical analysis with Model Center. Figure 18

shows the integration environment of this approach.

Figure 18: Integration Environment of NatVent Project: Valdes: Sun: (2012)

3.3.5. Consistency Management in MBSE Background

The MBSE realm integrates numerous embedded systems and applications that

need to be properly coordinated and consistent. As we have seen, every embedded system

will carry domain specific data that will be represented through domain-specific

languages (DSL). In this multi-disciplinary environment, two consistency categories

arise: internal consistency and external consistency. The first category deals with

consistency within a model itself and the second deals with inconsistencies among multi-

domains models created through different modeling languages [94]. As this project deals

with the integration of CAD models and SysML models, the second category is our main

interest. There have been more than a few projects related to consistency and consistency

66

checking in the MBSE literature. In 2007, Adourian et al. [95] proposed a methodology

to check consistency between geometric and dynamic views of a mechanical system.

Hehenberg at al. [96] developed an approach to analyze consistency issues in

mechatronic design models. In 2009, Gausemeier et al. [97] developed a project of

management of cross-domain model consistency during the development of advanced

mechatronic systems. The UML language has been identified as an important ground for

consistency issues by several authors. Chanda et al. (2010) developed a framework for

semantic verification of UML diagrams, Simmonds et al. [98] proposed a method to

maintain consistency between UML models using description logic, and Mens et al. [99]

worked on another framework for managing consistency in evolving UML models. Also,

the OMG has developed approaches to deal with semantics in UML.

67

CHAPTER 4: Tolerances in Building Construction

4.1. The Challenge of Modeling Construction Tolerances

Design errors and omissions, such as failure to predict and control geometric

variability in construction, have enormous effects on cost and efficiency of today’s

building industry [32] [16]. Hence, in order to produce high quality, cost-effective

buildings; planning and execution of processes of construction must consistently consider

the option of geometric deviations during the design stages. However, to achieve this

goal there are numerous challenges that have introduced in this dissertation:

 Multiple material systems with different bodies of manufacturing knowledge [2];

 Geometry does not necessarily comply with manufacturability while being

designed and later updates to remedy inconsistencies will increase the likelihood

of mismatches with other components [15];

 Lack of knowledge representation and allocation methods for each material

system [57] [2];

 Lack of integrated manufacturing knowledge traceability from specifications to

geometry [52];

 Lack of manufacturing and tolerances verification methods [52]; and

 Lack of consistency across different tools and models [94].

This dissertation, will consider five stages of the construction process: early stage;

design validation; construction preparation, which include detail design of fabricated

components; building erection and production of off-site components; and building

management. Every stage of the construction process also contains sub-stages that are

located horizontally on the graph in Figure 19. All the sub-stages, or tasks, are connected

68

with two basic kinds of dependency elements: single-direction arrows and double-

direction arrows. While the first indicates that information will flow from task A to task

B, the double-direction arrow indicates a mutual dependency between two tasks. Also,

when a single arrow goes against the time line, this will mean that the specific

dependency is part of a multiple-task loop. In order to introduce the level of influence of

geometric variation at different sub-stages of the construction process, a simple color

code is offered in the diagram. This color code introduces the following logic: the darker

the color, the higher the geometric variation influence of the task. This research does not

consider the demolition stage because its relationship with geometric variation has not

been considered relevant.

Figure 19: The Construction Process (author)

Besides understanding the multi-party nature of the construction process with

regard to stakeholders and software environments, it is important to recognize how the

geometric complexity of building assemblies leads to construction inaccuracies. A

69

building is a highly complex assembly that often has millions of different components.

All components are interconnected in relationships that depend not just on levels of

accuracy of the manufacturing and assembly strategies, but also behavioral

considerations during building operation. Furthermore, every material system has its own

set of manufacturing rules, behaviors, processes, and standards, which, when put together

with other materials systems, creates unpredicted interactions that may reduce the

expected performance of the building. This issue leads to new and increased demands on

the ability to break down manufacturing and tolerances requirements to subparts and

subsystems, and to be able to sum up the expected variation from subparts to a system

level.

In addition, planning and production methods of construction have changed over

time. The foundation for such changes has been the virtual product development through

computational modeling and simulation using BIM tools [23] [57]. This advance enables

scenarios of reliable analysis and complex calculations of the entire life cycle of the

building. As a result of this computational development, many physical mock-ups have

vanished and are now replaced by digital simulations [100]. To take real advantage of

this technology, deviations produced during construction practice must be adequately

represented in BIM models. So far, however, BIM tools do not provide enough

computational support to consider all the geometric variation and tolerances of

construction [57]. Rather, today’s processes of construction are entirely driven by

nominal CAD models and geometry with unassessed manufacturability, without

considering the multi-level interaction of building components and processes. To address

70

this issue, it is essential to understand how different levels of interaction of building

components affect the likelihood of a nominal outcome.

The following section will assess this inquiry by creating a construction

tolerances taxonomy, which will be the basis for a further representation of different

types of construction variability during the implementation stage.

4.2. Towards a Construction Tolerances Taxonomy

In building construction, causes of inaccuracies can be traced from a design and

manufacturing perspective or directly from materials, parts, and assemblies during

construction. This project proposes four categories that are accountable for geometric

construction inaccuracies: materials knowledge, geometry knowledge, assemblies’

knowledge, and processes knowledge. The first category, materials knowledge, considers

physical, chemical, and mechanical properties and deformations based on material

properties or surface roughness. For instance, in construction, there is an important

phenomenon called hysteresis that is a permanent altering of an object’s physical

properties due to a certain repeated external influence over time. The most common

causes of hysteresis are the influence of gravity, thermal expansion or contraction, and

changes due to moisture exposure. When thermal influence occurs, deformation may be

magnified by the fact that two assembly components experience different temperature

gradients. Besides the effect in the appearance, this can negatively affect the material’s

strength. The second category, geometry knowledge, considers geometric variation levels

of a single building component that belongs to a specific material system (for instance, a

brick, a precast beam, or a sheet metal component). This category is probably the most

important for the development of this dissertation. Often, single components do not fit

71

during aggregation because their defining geometry has not been evaluated by specific

rules of manufacturability for the precise material system. Although designing with “non-

nominal” or “as-built” geometry is not the aim of this dissertation, prior to

manufacturing, the intended nominal geometry must be as close as possible to an ideal

instantiation of the intended form and function. Furthermore, this geometry must be

evaluated by using the manufacturing constraints that comes from the project

requirements and specifications. In this category, geometric variability is to be addressed

by defining a set of “critical dimensions” usually revised during quality control

procedures, before building erection. The third category, assemblies’ knowledge,

includes assembly sequences, number of parts for assembly, prefabricated assemblies

versus on-site assemblies, and automated assembly versus manual assembly. Considering

that assembly procedures are often produced substantially by human labor on-site, this

category is highly dependent on accumulated geometric variation known as tolerances

stack. Tolerances stack is critical in construction and will be covered in the

implementation section of this document. The last category, processes knowledge,

considers values of machines and tools, process capabilities of the selected fabricators

and contractors, skill levels of the human labor teams, and the percentage of on-site

construction that the project will include. Although anticipating every aspect of geometric

deviation is almost an endless task (for example, simulating the texture of a concrete

brick), a proper approximation of model construction inaccuracies requires understanding

the composite nature of buildings. This includes geometric variability of a single material

system (parts, components) and geometric variability of a heterogeneous material system

(assemblies). The following section will address this matter and will offer a simple

72

tolerances taxonomy by dividing the sources of inaccuracies between single domain

construction tolerances and heterogeneous construction tolerances.

Figure 20: Representation of the different bodies of knowledge that define the accuracy of an

assembly in building design

4.2.1. Single Domain Construction Tolerances (SDCT) and Off-site Sub-

Assemblies

The construction industry contains numerous material systems that can be divided

into two main categories: a distinctive material together with its associated

manufacturing processes or at a certain stage during the building life cycle. An example

of the first kind of sub-construction domain is the “structural steel domain.” As its name

implies, the structural steel domain comprehends all the processes of manufacturing and

assembly that are related with this specific material. On the other hand, a material system

stage is the group of processes related to a single or multi-material assembly that belongs

to a specific moment of the building life cycle. For example, finishes are a sub

construction domain that fits in this category. Both kinds of sub-domains will be

associated to the Single Domain Construction Tolerances type (SDCT). One of the main

73

issues of the SDCT group is that they have their own internal tolerances, which are

addressed separately, usually within different manufacturing-specific workflows and

subcontractors. As can be seen in Figure 20, frequently building products that belong to a

SDCT will have a very specific set of manufacturing rules and tolerances standards. That

is, concerns such as the composition of the material or if the component is made on-site

or in a factory will affect the expected deviation from nominal. Differences in expected

variability are also increased when dissimilar material systems come together in some

assembly condition that overlaps some of their three-dimensional features. As an

example, in construction it is very common to have assemblies that combine on-site

concrete casting with off-site manufactured steel structure. While a steel assembly could

target geometric deviations within 1/32 of an inch [2], the cast-in-place component will

be probably around one quarter to even one half inch of variability, according to SDCT

rules. If we also add the natural geometric complexity of building products and their

behavior, and the number of SDCT-SDCT interactions, the addition of all those

variabilities will produce significant sources of building inaccuracies. All in all,

variability assessment in SDCT will frequently fall within specification. The real problem

of SDCT is in their aggregation. Assemblies of dissimilar material systems have led to

the creation of a new variability category that will be introduced in the next section:

Heterogeneous Construction Tolerances (HCT). Considering this and the increasing

interest of the BIM community in pre-fabrication, this research focuses on variability

interactions of multi-SDCT assemblies that combine knowledge-dissimilar off-site

components (or sub-assemblies). The following sections will give a brief description of

74

the most important material systems used in current construction and their most typical

sources of variability.

Figure 21: Tolerances incompatibility among different SDCT systems

Building Layout

The first SDCT of the building life cycle is the building layout. This SDCT

mainly comprehends the variational location of the building within a construction site and

the regulations about general paving and right-of-way laws. The most important

geometric deviations that can be accommodated by using tolerances are right angle

layouts of sides and site. A suitable approach to measure deviations of the building layout

is to create a tridimensional survey grid from which all the tolerances are allocated. For

the vertical layout, a critical dimension to consider is the accuracy of plumbness that can

be represented as a percentage of the length. Building layout allowances are described in

several guides and handbooks like: Handbook of Construction Tolerances [29], NIST

handbook [101], Construction Science Research Foundation (1989); and ISO 2263-1,

Measurement Methods for Buildings, (1989).

Concrete

75

Concrete SDCT contain numerous sub-sections related to cast-in-place concrete

and precast concrete. A sub section of precast concrete describes all the pre- and post-

stressed details of this SDCT. Important variation aspects that have to be prescribed

include levelness of concrete and asphalt paving and variations in the slope and thickness

of the sections. Another important tolerances aspect of concrete is geometric variation

produced by inaccuracies of reinforcement placement in walls and columns, precast

panels and beams, precast insulated panels, and reinforcement placement of prestressing

steel. These kinds of inaccuracies, as in most of the material systems, are frequently

caused by design errors due to the lack of material-specific knowledge during design

stages. In addition, elevated and on-grade slabs will produce two types of variation. First

there will be a tolerance of elevation and second a tolerance of flatness and levelness.

Cast in place needs to be toleranced especially in its plumb and also in its sectional

variations due to deformations of the framework. In addition, special attention is required

for changes in height and right of way construction details. Some sources of variability

that are difficult to include in GD&T are related to inaccuracies in the concrete mix

preparation. The principle sources of describing allowances of concrete SDCT are the

American Concrete Institute [102] [2], the American Society for Testing Materials [103].

Structural Steel

The steel SDCT contains mill tolerances for different steel shapes and numerous

allowances for connections. Mill manufacturing tolerances should define values for

camber and sweep in S and M shapes profiles, and the same for structural angles and tees.

Special attention is required to specify tolerances of architecturally exposed structural

steel, location of connections and welding threads, and elevator shaft tolerances. Besides

76

tolerances allocation, Steel structures must consider proper clearances to allow

connections. The main sources of guides and allowances are suggested by the American

Institute of the Steel Construction [104] and the American Society for Testing Materials

[105] (2003, 2004, and 2005).

Unit Masonry

The unit masonry SDCT describes allowances of brick manufacturing,

reinforcement, and assembly tolerances shows the diverse levels of variability from an

inherited structure. Although there are some differences among construction material

systems, this model applies to most of them. In the case of masonry, the first level of

inaccuracies is the masonry unit itself. Differences in the sizes and surface evenness are

the most significant issues. In this material system, the most important source of variation

that needs to be addressed by tolerances allocation is the unit placement. Here, the

thickness of the mortar and the overall plumbness of the wall are critical. In the graph,

arrows indicate variation inheritance among levels that describes a summed tolerance or

tolerances stack. Other issues related to unit masonry construction are relative alignment

of rows, bearing wall level alignment and changes in the height due to variation of the

mortar layer among rows. Also, prefabricated masonry panels need to allocate tolerances

for out-of-square and out-of-plane recurrent issues. Most of the standards for unit

masonry have been created by the American Society for Testing Materials (ASTM) [29]

77

Figure 22: Example of SDCT Masonry with its levels of tolerances

Stone

The stone SCDT contains standards for different kind of stone construction as

granite, marble, and limestone. The most important deviations related to this material that

are easily described through tolerances allocation are the assurance of thickness and

squareness of every block. The second most important issue that is very recurrent in

cladding is the lack of flatness due to variations in material temperature. During granite

and marble installation, relative alignment and plumbing must be toleranced to create

adequate joints. Stone SDCTs have been proposed by the Marble Institute of America

[106], and the Indiana Limestone Handbook [107].

Structural lumber

The structural lumber SDCT covers topics such as glued laminated timber

fabrication and plywood in general, fiber board manufacturing, rough lumber framing,

and wood floors. In laminated members we have to define dimensional tolerances,

camber or straightness tolerances, squareness tolerances, rough lumber, and end trimming

tolerances. In addition, in plywood, fiberboard and particleboard manufacturing, we find

variational sources that describe size tolerances, squareness and straightness tolerances,

and thickness tolerances. For structural timber that is assembled mainly through human

78

labor, special awareness must be considered for bows and twists of rough lumber framing

and wood floor framing and subflooring. The main organizations that have defined

standards for allowances of inaccuracies in this category are the American Institute of

Timber Construction [108], the American National Standard Institute [109], and the

National Institute of Building Science [110]

Finish Carpentry and Architectural Woodwork

The finish carpentry and architectural woodwork SDCT, defined in the

Tolerances Handbook of Ballast [86] is also presented as a sub construction domain. This

section contains several site-built wooden applications as well as frames, jambs, and

window variational allowances. Manufacturing tolerances must be applied independently

for rough lumber and dressed board lumber. This section is very sensitive to site-built

cabinets, countertops, and stairs and trim. Tolerances described for joints that do not

produce gaps are critical. Special awareness must be considered for continuity of doors

and window frames, where allocation of clearances and joints are not allowed, and which

require mitered joints. The codes and allowances for this category are basically the same

as prescribed for the structural lumber SDCT with some specific additions as the Kitchen

Cabinet Manufacturers (ANSI/KCMA) standards [111].

Curtain Walls

The curtain wall SDCT is also suggested for this tolerances category. The

aluminum curtain wall fabrication and installation are the main sub sections of this

segment. The PVC curtain wall standard has to be included as well. Both materials have

similar sources of variation of their glassing framing. The main issues found in the

curtain wall assemblies are height and width tolerances, maximum alignment of vertical

79

members, and control of diagonals of the glazing framing to ensure squareness of the

structure. Also, curtain walls installation is very sensitive to the exterior alignment of

different stories of the building and to the clearances given for embedded windows and

doors. The main sources of this standard are the American Architectural Manufacturers

Associations [112], and the ANSI Dimensional Tolerances for Aluminum Mill Products

[113].

Finishes

The finishes SDCT, for being a “stage” sub-construction domain is quite diverse

in its specifications. The scope goes from framing for gypsum wallboard, wallboard

partitions, and acoustical ceiling, to stone and wood flooring and rods and bars. Being a

very thin material, the main sources of inaccuracies of the light-gauge framing, which

produce several other inaccuracies with other material installations, are plumbness and

straightness. Also, for floor and wall tiles, wedging and thickness variation is critical. In

this kind of material, the proper allocation of joint tolerances will allow a better finish.

The same rules apply for the specification of wood flooring, which also generates

variation due to moisture content changes. The principal sources of finishes allowances

are ANSI [114], and ASTM [115].

Doors, Windows, and Glassing

The final SCDT is doors, windows, and glassing. This SCDT shares basically all

the sources of geometric variation with curtain walls and finishes. The allowances of this

SCDT comprise all the frame work tolerances for windows and doors, as well as all the

standards of insulation of glassing. The sources of these standards come from several

80

guides including ASTM, ANSI, the Windows and Door Manufacturing Association

WDMA [116], and the Steel Door Institute [117].

In general, every process of building construction will generate deviations from

nominal geometry. These deviations are statistically studied, and annotated in

construction standards, or informal know-how documents through minimum, maximum,

and average values. These construction standards are guides where observations of past

experiences about geometric deviations are consolidated and also where a cushion to

allocate that variation is prescribed as a tolerance. As a synthesis, every expected,

unintentional, geometrical deviation from nominal values that is estimated in advance

should be prescribed as construction tolerances. However, the current methods for

tolerances modeling still relies on off-feature, table-based allocation procedures. To

overcome this old-fashioned approach, and considering that the problem is not the lack of

manufacturing knowledge but its applicability, this dissertation aims for an integrated

modeling framework where features and knowledge can programmatically coexist. This

section has presented the main issues about geometric variation and tolerances for each of

the most relevant construction sub-domains. The next section will discuss the knowledge

and materials aggregation of multiple SDCTs that led to the development of

heterogeneous construction tolerances.

4.2.2. Heterogeneous Construction Tolerances (HCT).

The previous section provided a summary of geometric deviations that apply to

single material systems and construction components. Allowances regarding tolerances of

these material systems are included in standards or informal know-how guidelines that

will be used in this project as base knowledge for a software demonstration of an

81

integrated modeling environment. These single materials usually belong to a sub-group of

domain tolerances and geometric variations. However, at some part of the building

erection, assemblies will be built by merging different materials systems with off-site

components (SDCT) and processes. These kind of heterogeneous assemblies produce

geometric deviations due to the addition of materials with different mechanical properties

or due to the addition of components fabricated by different subcontractors with different

workflows, processes, and standards. These types of material-boundary geometric

deviations must be represented by Heterogeneous Construction Tolerances (HCT). A

central characteristic of HCT assemblies is that they can be easily field-adjusted [29].

This field adjustment process may well produce deviations in other parts of the building

and in the tolerances stack. This situation might involve the specification of looser

tolerances or clearances, but the excessive prescription of variability will also increase

uncertainty in the assembly. A better method may be to allocate tolerances at a system

level that, by means of simulations based on manufacturing knowledge, are capable of

coordinating several SDCT at once. Another critical aspect of an HCT assembly, besides

tolerances allocation and field adjustment, is the specification of clearances. In the

Tolerances Handbook [29] a clearance is defined as the space between two components

that is provided to allocate tolerances and movements. However, in HCT specifications,

clearances are also required to allow human labor (for example, tightening a bolt in a

curtain wall assembly). In a building, usually clearance offsets define the boundaries of a

material system assembly and therefore define the interface between assemblies of

different building material systems.

82

Besides clearances, the physical artifact of interfaces between material system

assemblies in the construction environment is the joint. A joint is the material connection

between elements of an assembly or sub-assembly. In addition to their functions of

building continuity inside a building assembly and adding a clearance offset to allow

deformations, the significance of a joint comes from its capability to make construction

irregularities less noticeable [29]. Real assemblies need to create their connection using

an interface that negotiates between edges or faces of different parts. There are numerous

approaches to create joints among parts in a building assembly. Some of them will create

a structural assembly and some will create continuity among layers (for example, the

layers of the building skin). Many architects consider only movement due to thermal

expansion and contraction, if they size joints at all. However, there are several other

factors that influence correct sizing and placement of joints. Any change of plane or

materials requires a joint. Wind loading affects joint placement not only for structural

glazing applications but also for parapet walls. Moisture-related movement of materials

also plays a part, concrete shrinks as it dries, brick grows as it absorbs water, and wood

alternately shrinks and swells. Differential thermal movement between adjacent materials

systems must also be accommodated with joints. All these aspects of joint design, if

checked one at the time, do not assure a successful outcome because they depend on each

other. Rather, specification of joints must be addressed in a coordinated fashion by

integrating them in a system level. As it has been explained in section 3.3.2, the SysML

environment enables the formal representation of these kinds of building behaviors by

means of activity diagrams and state machine diagrams. Then, these diagrams can use

linked CAD data to evaluate how behavior affects geometry, in context.

83

Figure 23: Hierarchical diagram of construction tolerances

Figure 23 offers a hierarchy of the different kinds of geometric tolerances within

the construction industry. In the first column, from bottom to top, the chart presents

several levels of geometric deviations that are nested during the construction process,

starting from the minimal feature-based deviation and adding variation until the building

project level, these levels are connected to their domains as suggested in this research,

which are SDCT and HCT, respectively. Accordingly, features, parts, and sub-assemblies

are mainly described as SDCT and assembly and building project level are described by

HCT. Each SDCT and HCT defines different tolerances types. SDCT primarily generates

positional tolerances and feature based tolerances. HCT generates flexible joints and

ergonomic clearances. Furthermore, these tolerance types are associated with specific

geometric variations sources or necessities. In this regard, the sources of feature based

tolerances type is associated to manufacturing deviations, positional and flexible

tolerances are associated to manufacturing or assembly deviations, and clearances are

associated to operational and accessibility conditions.

84

CHAPTER 5: Knowledge and Tolerances Representation in

Construction

5.1. Current Approach for Drawings and Specifications

Design drawings and specifications are based upon consideration of the design,

assembly, and loads and forces to be resisted by the all materials involved in the building

project. These design drawings and specifications clearly show the work that is to be

performed and give the following information with sufficient dimensions to accurately

convey the quantity and nature of components to be fabricated and assembled [118]. This

list, created by the American Institute of Steel Construction (AISC), offers a

comprehensive approach that can be used for any material system in construction. The

list of items includes:

 The size, section, material specification, and location of all members

 All geometry and working points necessary for layout and assembly

 Floor elevations, top views, context drawings

 Column centers and offsets

 The camber requirements for structural and pre-stressed members

 Tolerances for each member and assembly [118]

Design drawings and specifications include any special requirements for the

fabrication and erection of the all the components. Specially, structural design drawings,

specifications, and addenda have to be numbered and dated for the purposes of further

identification [118]. One important issue in construction is that contract documentation

usually differs in complexity and completeness. Nonetheless, the fabricator and the

85

constructor must be capable of relying on the precision and completeness of the contract

documents. This allows the fabricator and the constructor to provide the owner with bids

that are adequate and complete. It also enables the preparation of the shop and erection

drawings, the ordering of materials and the timely fabrication and erection of shipping

pieces.

In some cases, the owner can benefit when reasonable latitude is allowed in the

contract documents for alternatives that can reduce cost without compromising quality.

However, critical requirements that are necessary to protect the owner’s interest, that

affect the integrity of the structure or that are necessary for the fabricator and the erector

to proceed with their work must be included in the contract documents [118]. Some

examples of critical information include:

 Standard specifications and codes that govern design and construction,

including bolting and welding

 Material specifications

 Special material requirements to be reported

 Welded-joint configuration

 Special requirements for work of other material systems

 Connections or data for Connection selection and/or completion

 Restrictions on Connection types

 Openings for other trades

 Surface preparation and shop painting requirements

 Shop and field inspection requirements

 Non-destructive testing requirements, including acceptance criteria

86

 Special requirements on delivery

 Special erection limitations

 Column differential shortening information

 Special fabrication and erection tolerances [118]

5.2. Representation of construction tolerances

During specification of manufacturing processes, a tolerances modeler could

create a target tolerance, based on standards, obtained from statistical procedures that

every construction system creates within its domain. Tolerances can also be embedded in

a building model considering maximum and minimum statistic values and could be

represented as a callout on shop drawings. These approaches neither estimate specific

tolerances for every situation nor coordinately integrate industry standards or domain

specific know-how into BIM platforms. Rather, they require an individual with the proper

expertise to estimate and allocate the allowances. Furthermore, current tolerances

approaches do not generate pre-visualization of the outcomes to understand the real

impact of decisions taken in the design stages. It is very common, for example, to

consider tolerances as attributes of individual features or groups of features, which bear

no relation to other features or tolerances. This condition allows allocation of tolerances

to one feature at the time but it does not allocate tolerances of complex assemblies with

several levels of nested datum frames, as it is the common scenario in construction. As a

result, actual tolerance applications do not meet the requirements about flexibility and

complexity management that building construction requires. This is part of the motivation

for creating a system-level approach to model tolerances in construction. This section

87

will cover the evolution of the most relevant standpoints about tolerances representation

and their considerations for being used in the construction industry.

5.3. Mathematical approach to represent tolerances

This section summarizes the basics of mathematical and geometric representation

approaches that have been considered as critical for single domain construction

tolerances (SDCT) and heterogeneous construction tolerances (HCT). It is important to

emphasize that this project will not create a new mathematical method of tolerance

calculation or a statistical treatment of tolerances. Rather, this dissertation proposes a

novel modeling framework by which a mathematical method for representing

manufacturing knowledge can be embedded in a system model and tied to a geometrical

(CAD/BIM) representation of building components to assess manufacturability and

calculate feature-based tolerances.

The mathematical models for calculating and representing geometric variation

and tolerances have been developed using the tolerance zone approach (statistical), the

variational geometry approach, or other variational models. With the aim of creating

mathematical formulations for geometric variation and tolerancing, all the variational

models appear to be suitable for implementing in current solid modeling tools as the ones

encountered in BIM tools. The variational model of an object is constructed from its

nominal boundary model by allowing each of the bounding surfaces to be varied within

some specified tolerance zones [119]. According to Hoffman [120], any tolerance

specification corresponds to a set of inequalities, which are of the following type:

Equation 1: Hoffman’s tolerances formula

𝐿 ≤ 𝑓(𝑥) ≤ 𝑈

88

Where:

x = parameter vector of a part (critical dimension)

𝑓 = tolerance function

L, U = lower and upper bounds of the tolerance zone

Numerous authors defined mathematical approaches for describing this tolerance

function and its proper representation. Hillyard and Braid [121] created the concept of

variational geometry that is a dimension-driven, constraint-based technique. They used

this concept to analyze inconsistencies in the specification of dimensions and tolerances

in CAD models. Lin et al. [122] promoted the variational geometry approach from the

viewpoint of the user interface and computational efficiency. Requicha [37] introduced

the variational class notion for representing tolerances in solid models. Turner and

Wozny [123] developed a model based on the variational approach where specified

tolerances are used to directly define the valid regions covered by the model variables.

Gupta and Turner [124] expanded the previous model to a surface-based variational

model in which the model variables are linked to the coefficients of the equations of each

surface and the vertex coordinates are computed from the intersection of surface

equations. Liu and Dong [125] presented a solid boundary-based tolerance representation

model that is comparable to Turner and Wozny [123] model. Whitney and Gilbert [126]

presented a tolerance representation method using matrix transformations to propagate

tolerance data that is suitable for tolerance analysis of assemblies. Efforts have also been

made to reproduce functional requirements in tolerance representations. Rivest, et al

[127] proposed to represent tolerance from a manufacturing point of view while

Jayaraman and Srinivasan [128] did so from an assembly point of view. The possibility

89

of using statistics and probability methods for allocation of tolerances has also been

explored with the intent of developing tools for tolerance synthesis.

Besides the general purpose variational models mentioned above, there are other

important mathematical considerations, specially related to HCT, which will be addressed

during this research (for instance, the joint design formula and the accumulated tolerance

equation, both introduced by Ballast [29]). For the joint design formula, the size of the

joint depends on several factors such as movement-expected tolerances of the assembly,

and the flexibility of the sealant (if any). All these factors will vary from case to case due

to numerous other issues such as thermal expansion or contraction, gravity, and

deflection. From these factors it is possible to derive equations such as the following to

size a specific joint:

Equation 2: Joint design equation

𝐽 =
100(𝑒∆𝑡𝐿 + 𝑆)

𝑀
+ 𝑇

Where:

𝐽 = Joint Width, in

e= Coefficient of thermal expansion in/in/F

∆𝑡 = Expected temperature change

L= length of the material joined

M= movement capability of the sealant in inches (if any)

T= nominal tolerance of the material (offset inches)

S= Other expected movement caused by seismic forces or other non-thermal

causes

90

The second example approach for HCT that must be considered in any

computational implementation of geometric variation and tolerancing is the accumulated

tolerances factor or tolerances stack. Dimensional variation during manufacturing

accumulate or stack-up statistically and propagate through an assembly in a kinematic

fashion, causing critical features of the products to have degrees of variation. The

tolerance stacking problem arises in the context of assemblies from interchangeable parts

because of the inability to produce or join parts exactly according to nominal. Either the

relevant part dimension varies around some nominal value from part to part or it is the act

of assembly that leads to variation. To calculate this factor it is necessary to consider

variations of all the components of an assembly, which can be in different directions with

different magnitudes. As an important note, tolerances calculations need a specific

theoretical datum from where they are measured. This means, from a theoretical datum

plane, the calculation applies only to the direction described as normal to the datum

plane. Thus, they are unidirectional. Also, where tolerances of individual components are

different in “+” and “-”, in order to get independent calculations, two different equations

will be necessary. The basic accumulated tolerances equation, based in the Root Sum

Square (RSS) technique is represented as follows:

Equation 3: RSS basic formula

𝑻 = √𝒕𝟏𝟐 + 𝒕𝟐𝟐 + 𝒕𝟑𝟐 + 𝒕𝟒𝟐 + 𝒕𝒏𝟐

Where:

T= Total tolerance

𝑡𝑛2 are the single tolerances of each element that participates of the specific

assembly in inches.

The following stack-up analysis process has been adapted from [99]:

91

1. Identify the measurements that in sequence control a critical dimension or feature

parameter. This critical task must be achieved by applying material systems-specific

conditions to the calculated assembly. In this section, allocation of tolerances must be

designed. This is not automatically allocated because identifying critical dimensions

through assembly analysis is not trivial and requires artificial intelligence capabilities.

2. The mean assembly measurement is attained by summing the mean of the dimensions

in the chain as it has been explained in the previous paragraph.

3. The total variability will be projected by the accumulation of variations of each

component in the stack-up process.

4. Variation of the assembly is ideally compared to the engineering limits (lower limit

and upper limit) to assess the amount of rejects or non-conforming assemblies. One

significant attention about tolerances is categorizing the proper data to compare the

analysis results. In this task, comparison to actual measured data is preferred.

However, in the absence of measured data, comparisons must be performed against

data from similar parts or processes [129]. This later statement is what led to the

development of know-how data, or domain-specific knowledge that comes from

experience rather than from formal documented standards. For this dissertation, and

because the author has been successfully exposed to this informal (yet proven) know-

how data, an important focus is to create a knowledge modeling environment to

organize and formalize these insights.

5. Design changes in parts and assemblies may be made after evaluating the analysis

outcomes.

92

Tolerances analysis is a quantitative tool for predicting the accumulation of

variation in an assembly by performing a stack-up analysis. The weakness of the previous

model is the assumption that all distributions are perfectly nominal-centered and perfectly

Gaussian, or normal. Because these two assumptions allow for a simple calculation of

compound probability, they do not represent the vast majority of manufacturing processes

and quality control systems which exist in the real world production environment.

The following table shows the most common tolerances stack-up models of this

project. For example, the Worst Case (WC) delivers the extreme limits of the sum of

absolute values of tolerances to obtain the worst combination of tolerances stack. Also, as

was seen in the previous paragraph, the RSS adds the variation by means of a Root Sum

Square approach. This approach provides preliminary insights about statistical

distribution of the tolerances problem. In the following equations, the total variation of

the RSS model is divided by three to fit within three standard deviations range.

Table 1: Tolerances stack modeling equationsadapted from [129]

Model Stack Formula Key Use Application

Kind

Worst Case

(WC)
𝜎𝐴𝑆𝑀= ∑|𝑇𝑖|

Not Statistical

Extreme

limits of variation

Critical

Systems.

Most costly

model

Statistical

(RSS)
𝜎𝐴𝑆𝑀

= √∑(
𝑇𝑖
3

)
2 Probable

variation

Reasonable

estimate.

Some

rejects allowed

Six Sigma

(6𝜎)

𝜎𝐴𝑆𝑀

= √∑(
𝑇𝑖

3𝐶𝑝(1−𝑘))

2

Cp= Process

capability index.

k= Drift factor

Long Term

Variation

Drift in

mean over time

expected.

For high

quality

Measured

Data (Meas)
𝜎𝐴𝑆𝑀

= √∑ 𝜎𝑖
2
 Variation

using existing part

measurements

After parts

are made.

What if?

study

93

In the previous table, the Six Sigma equation accounts for high quality by altering

the stack-up equation to include the process capability index (Cp) and the drift factor (k).

Cp represents the ability of a process to produce output within specification limits. As Cp

increases, the contribution of that dimension decreases, causing the total variation to

decrease. The drift factor (k) measures how much the mean of a distribution has been

observed to drift during production. This drift factor ranges between 0 and 1. During

simulation, where there is no data about drift factor, it usually values 0.25.

From the previous Table 1, Worst Case (WC) will compute extreme limits by

summing absolute values of the tolerances to obtain the worst combination of wrong

dimensions.

The statistical model will add variations by root-sum-squares (RSS). As this

approach considers statistical probabilities of possible dimensions combinations, the

predicted values using this approach are more reasonable. RSS predicts the statistical

distribution of the assembly feature, from where percentage of rejects can be obtained

[99].

The following example shows an assembly of nine components containing the

same precision of T = 0.01.

Equation 4: WC scenario example

𝑊𝐶: 𝑇𝐴𝑆𝑀 = ∑|𝑇𝑖| = 9 × 0.01 = ±0.09

Equation 5: RSS scenario example

𝑅𝑆𝑆: 𝑇𝐴𝑆𝑀 = √∑ 𝑇𝑖
2 = √9 × 0.012 = ±0.03

It can be seen that WC predicts more variation than RSS and that difference will

increase as the number of components of the chain increase as well.

94

In the reverse case, if we had a 𝑇𝐴𝑆𝑀 = 0.09 and we want to calculate the

reversed stack analysis, the component tolerance can be determined from the assembly

tolerance:

Equation 6: reversed WS analysis example

𝑊𝐶: 𝑇𝑖 =
𝑇𝐴𝑆𝑀

9
=

0.09

9
= ±0.01

Equation 7: reversed RSS analysis example

𝑅𝑆𝑆: 𝑇𝑖 =
𝑇𝐴𝑆𝑀

√9
=

0.09

3
= ±0.03

It can be seen that WC requires much tighter tolerances than RSS to meet the

assembly requirement.

Also demonstrated by [129], two other important examples of mathematical

models to assess variability in mechanical or construction assemblies are:

 Prediction of rejects during manufacturing

 Calculation of the percentage of contribution of a possible geometric deviation in a

part or assembly

Usually, most of produced parts will be grouped close to the mean value, causing

the charts to increase in the middle. As you go further from the center, fewer parts will

fall there, causing the frequency chart to decrease to zero at the extremes. In the

following equations, UL and LL give the upper and lower limits of dimensional variation,

as they have been obtained from design requirements. Any normal distribution may be

converted in a standard normal curve distribution, where the mean will be 0 and the

standard deviation will be 1. In this case, instead of plotting the frequency versus size, the

number of standard deviations from the mean are plotted. Thus, it is possible to determine

the fraction of assemblies that will fall out of the engineering limits [129].

95

This process is carried out as follows:

1. Run a tolerance stack-up analysis to get the mean and standard deviation of the

assembly dimension X, which has design requirements 𝑋𝑈𝐿 and 𝑋𝐿𝐿.

2. Obtain the number of standard deviations from the mean to each limit

Equation 8: standard deviation from mean at upper limit

𝑍𝑈𝐿 =
𝑋𝑈𝐿−𝑋̅

𝜎𝑋

Equation 9: standard deviation from mean at lower limit

𝑍𝐿𝐿 =
𝑋𝐿𝐿−𝑋̅

𝜎𝑋

3. Were 𝑋̅ and 𝜎𝑋 are the mean and standard deviation of the assembly dimension X,

and 𝑍̅= 0 and 𝜎𝑍 = 1.0 are the mean and standard deviation of the transformed

distribution curve.

4. Using standard normal tables, look up the fraction of assemblies lying between

𝑍𝑈𝐿 and 𝑍𝐿𝐿 (under the curve). As explained in [129], this is the predicted fraction of

assemblies that will meet the requirements. What is outside the limits is 1.0 – yield.

These are predicted rejects that are expressed as parts per million (ppm).

Percent contribution gives the designer the ability of calculate how every feature

variation contributes to the resultant assembly variation. With this tool, it is possible to

decide where to concentrate efforts for reducing construction variability. The percent

contribution factor is simply calculated as the ratio of a component feature dimensional

standard deviation to the total assembly standard deviation.

Equation 10: percentage of contribution formula WC

𝑊𝐶: %𝐶𝑜𝑛𝑡 = 100
𝑇𝑖

𝑇𝐴𝑆𝑀

%𝐶𝑜𝑛𝑡: Percent contribution

96

𝑇𝑖: component feature dimensional deviation

𝑇𝐴𝑆𝑀: Assembly dimensional deviation

Equation 11: percentage of contribution formula RSS

𝑅𝑆𝑆: %𝐶𝑜𝑛𝑡 = 100
𝜎2

𝑖

𝜎2
𝐴𝑆𝑀

%𝐶𝑜𝑛𝑡: Percent contribution

𝜎2
𝑖: component feature dimensional standard deviation

𝜎2
𝐴𝑆𝑀: Assembly dimensional standard deviation

Although this dissertation does not propose new mathematical models for

tolerances assessment, or any other kind of contribution to the mathematical domain, the

previously explained equations, mostly developed by [129], will be converted in

<<constraint>> blocks and seamlessly applied to specific CAD features to assess

tolerances of manufacturing and assembly activities. In this dissertation, these equations

are assumed to be the most suitable models for being implemented in a construction-

oriented tolerances model. The following section will briefly introduce the Monte Carlo

method to calculate variations and tolerances for construction.

5.4. Statistical tolerances analysis through Monte Carlo method

The Monte Carlo approach has been standardized by the Guide to the Expression

of Uncertainty and Measurement (GUM) [130]. To determine the quality level for

assemblies before actual construction, an exploration of variation using an uncertainty

approach is required. This strategy allows complex parts of buildings to be analyzed and

improved before the first physical structure is built. A reliable way to apply a

mathematical model to this approach is by means of Monte Carlo simulations. This

97

method can be applied to situations where it is possible to create formal equivalence

between the preferred result and the anticipated behavior of a stochastic system. Through

the Monte Carlo method, it is possible to obtain better results in less time than using

deterministic techniques [131]. In many cases, the calculations of tolerance deviations of

very complex assemblies cannot be realized using deterministic approaches. Having

simulated and calculated the tolerances of a given part of assembly, the next step will be

the allocation of tolerances analysis results in the CAD model. The next section

introduces the fundamentals of this matter.

5.5. Model Simplification to represent tolerances

Currently, there is a misinterpretation about tolerances capabilities of current

CAD packages. Some of these tools are believed to have automatic tolerances

capabilities. Yet, what they actually do is create a callout as a placeholder from a part or

feature, indicating the plus/minus allowance. In contrast, what is really important is to

know how those callout values were calculated, and where to access the material system

knowledge that led to those calculations. A better approach is to divide the efforts for

representing tolerances into two main groups: system dependent and system independent.

Accordingly, the first category focuses on representation of tolerances information within

a specific geometric modeling system, and the second category focuses on geometric

modeling and tolerances allocation as separate tasks. In this dissertation, based on

assumptions of understanding geometric variability and geometry as parts of the same

entity, this study focuses on the system dependent option. Furthermore, an improved

approach of representing geometric variability in a solid model is to embed

manufacturing knowledge as calculated values of the nominal geometry of the object. In

98

order to accurately assess manufacturing compliance and tolerances in a timely manner,

one must utilize simplified model views that retain the important details and eliminate the

irrelevant ones. Here is where a Systems Engineering approach, based on the SysML

language, performs most properly. SysML enables a model simplification process that

does not disrupt the integrity of the solid model. Furthermore, based on domain specifics

profiles, this process can filter the geometric information, thus creating model views with

a sub-set of the instantiated meta-classes, which are geometric features of the original

model.

The minimal element that can represent geometric variation and carry tolerances

is the feature. Features cannot be understood as independent from each other just as

variational information cannot be independent from nominal geometry. There are several

sub-categories of features based on their relationships. These are: lower-level features

(e.g. the basic topological entities, faces, edges, and vertices) and higher-level features,

which are the combination of the lower-level features (or the combination of other

higher-level features) having certain functional relationships among themselves. This

separation between higher and lower features is crucial to achieve model simplification

without producing inaccurate results. For the implementation of a knowledge-based tool

to assess manufacturing compliance, this dissertation will use higher-level features as its

basic modeling meta-class, and lower-level features will only be instantiated as value

holders.

Existing model simplification techniques that are useful from a physics-based

simulation point of view are broadly classified in four categories, based on the type of

simplification operators used in their respective techniques. The first simplification

99

category is surface entity developed by Sheffer [132] and Lee [133] [134]. The second

category is volumetric entity developed by Andújar, Brunet, and Ayala [135]. The third

category is explicit feature and dimensional reduction created by Joshi and Dutta [136]

and Zhu and Menq [137]. The last category is dimension reduction based operations

developed by Rezayat [138]; Donaghy, Armstrong, and Price [139]; and Thakur and

Banerjee [140]. There are also some recent experiences of simulating variational

geometry in the automotive domain. Wickman et al. [141] joined a commercial virtual

reality tool with a variation simulation software to visualize non-nominal variation in a

photo realistic atmosphere. Another method for visualization of non-nominal variation

was offered by Maxfield, Zhao, Juster, and Fitchie [142]. This method was meant to meet

the demands concerning packaging and visualization that can be used for faster

investigation of the variation in complex assemblies. Lo, Lindkvist, and Soderberg [143]

introduced a general procedure to compute and visualize the total volume in space a part

or assembly creates when it is affected by displacement or motion.

5.6. Allocating Manufacturing Knowledge and Tolerances on Solid

Models

A representation of a solid is defined as a mapping from a mathematical model of

a solid onto a set of symbolic structures or representations. If a computer representation is

to be used to calculate geometric properties, it must possess certain formal properties.

These characteristics are: well-formedness, generality, completeness, and efficiency of

storage data [144]. The development of solid modeling has been a matter of significant

research and growth. Many approaches have attempted to represent solids in a truthful

way, the most significant being spatial occupancy enumeration, Constructive Solid

100

Geometry (CSG), and Boundary Representation (B-Rep). Among these three

approaches, B-Rep has been the most advanced, and also the most common found in 3D

modeling applications. B-Rep is built from two main sources of information. One is

dimensional and locational (geometry), and the other is about relations and rules among

its elements (topology); both structures depend on each other to achieve well-formedness

and unambiguity of the shape. Solid modeling systems, found in computationally

complete representations of 3D solid objects, are used to represent nominal geometry.

Technically, these systems permit any well-defined geometric property of a solid to be

calculated automatically. This allows solid modeling systems to provide the geometric

data necessary for conducting design and construction activities such as finite-element

analysis or digital manufacturing. Even though the representation of the nominal shape of

mechanical parts with computers is successfully performed with solid models,

representation of geometric variation and tolerances, or representation of manufacturing

rules to ensure a smooth fabrication and assembly processes in construction, have not

been equally advanced.

A simple solution of representing manufacturing knowledge in a solid model is to

hold tolerances as attributes of geometry of the object as it is modeled. In order to

accurately represent geometric tolerances in a timely manner, simplified models that

retain the important details and eliminate the irrelevant ones are most desirable. In this

scenario, the implementation that is proposed in this dissertation specifically deals with

this issue. Fully represented solid modeling data is converted into system data by

decomposing the features tree of the CAD into a sub-set of <<block>> instances that

carry only what is necessary to perform a tolerances calculation. These filtered yet

101

consistent data are assessed by formally represented pieces of manufacturing knowledge

called <<constraint>> blocks.

When linking manufacturing knowledge and tolerances allocation with Solid

Modeling, there are two important aspects that need to be addressed: (1) how to create a

variational model based in object parameterization and (2) how to assess

manufacturability and allocate tolerances on a solid model based on construction

knowledge:

1. In Solid Modeling, the set of features that is involved in any tolerance specification or

geometric variation is a sub-group of connected elements. This sub-group contains

several parameters that can be managed using the object parameterization capability

of any parametric package available in the market. This approach of object

parameterization is a starting point to describe a variational model in Solid Modeling.

The object parameterization of Solid Modeling has two main approaches: direct

parameterization and indirect parameterization. In the first case, the user will directly

assign all the parameters of the model as object dimensions to produce geometric

variations or instances. By using indirect parameterization, the user defines the

model, and then attaches dimensions. This has the effect of defining the dimensions

in terms of the model parameters [145].

2. The second aspect is manufacturability and tolerances allocation based on

manufacturing knowledge. Computer-based tolerances representation in commercial

solid modelers is application-oriented and usually different from ISO/ANSI/ASME

standards to describe GD&T [36]. Most common systems are variational geometry

constraint-based systems in which tolerances are specified on sketches. Tolerances

102

are specified as the variation of dimensional constraints (for example, distance

between two points) and geometric constraints (for example, parallel lines).

Tolerances are represented as the variation of the position of control points, for

example, at an intersection of lines or center of a circle. Although these approaches

are useful to allocate tolerances values, as it has been previously explained, they lack

methods to compare such numbers with domain-specific knowledge within a feature-

based geometric context. Therefore, having the ability to describe tolerances values is

not the problem. The challenge is to understand how such values are constructed and

how these values affect and are affected by other features of the assembly.

Besides the implementation of geometric approaches to describe tolerances in

solid models, their integration into a system model through SysML is another important

challenge. The following section will address this matter by introducing the main issues

and the keys for such an integration.

103

CHAPTER 6: Methodology

Complexity of product models for construction happens both at the high

abstraction level, where requirements have to be modeled and maintained, and at the low

abstraction level, where detailed design is performed by means of specific design

parameters from different domains and stakeholders. This complex scenario, based on a

highly heterogeneous body of information, makes it difficult for average BIM operators

and building designers to integrate knowledge and tools among construction domains.

These skills are more typical of software developers and computer scientists. For this

reason, it is critical to develop software that seamlessly integrates different domain-

specific applications to eliminate the need for hard coded, ad hoc solutions every time

that integration is required.

A proper methodology for modeling and representation of construction tolerances

needs to satisfy two basic set of requirements: compatibility requirements and

computability requirements [146]. The first set is required to generate consistency with

construction practice. This set basically digests the representation of all types of

dimensions, representation of material systems, SDCT and HCT, tolerances stack,

material conditions, and manufacturing processes. The second set, computability

requirements, adds support for model-to-model transformation, feature-based integration

among applications, extraction of critical dimensions from CAD features, model

consistency assurance, and inspection of feature types to allocate tolerances. All told,

compatibility requirements are tied to the acquiring and representation of manufacturing

know-how and standards for construction and computability requirements are tied to the

unambiguous, consistent representation of this knowledge in a SysML-CAD

104

environment. Besides the application developed in this project, additional software

required to create the integrated environment includes:

 MagicDraw (Version 17.03 used for this project) provides the System Modeling

environment;

 SysML plugin for MagicDraw provides the SysML profile that works on the

UML9 environment;

 Siemens NX (Version 8.5 used for this project) is the CAD package used for the

implementation;

 Maple (Version 17 and 18 –beta-- used for this project) is the mathematical

engine that calculates tolerances analysis and allocation for this project;

The following diagram shows the software environment for the present

implementation. From left to right, the CAD application will be queried by a set of pre-

established routines (NX client10) created in Maple. On the right side, the developed tool

will be allocated in Magic Draw by means of a JAVA implementation. Here, other

domain-specific tools can be also integrated through SysML profiles. For example, a cost

analysis tool could be coordinated with a tolerances analysis tool to evaluate the cost

impact of manufacturing decisions.

9 The Unified Modeling Language (UML) is a general-purpose modeling language in the field of software

engineering, which is designed to provide a standard way to visualize the design of a system

10 NX client created by the author has been released in the beta version of Maple 18, commercially available

105

Figure 24: Software environment of the implementation. Solid red lines define new pieces of

software developed for this dissertation and dashed lines represent specific integration between

different tools.

6.1. From domain issues to functionalities proposed for the modeling

framework

Figure 25 shows the general hierarchy of construction variability issues identified

from the literature and from interaction with manufacturers. The dark colored boxes,

depicted under “rule- or knowledge-based” sources of variability are the main focus of

this dissertation, and that have been listed in Section 4.1. of this dissertation.

106

Figure 25: General hierarchy of construction variability issues adapted from [12]

The following figures show the current modeling methodology with and without

the proposed framework. In Figure 26 the depicted diagram represents the current

approach to inform design in building construction. In this case, material-specific

knowledge is never formally integrated with the assembly geometry. Assumptions about

material interactions and components design, rather than formal feature-based

assessments, create room for inconsistencies between design specifications and

manufacturing-compliant geometry. In this dissertation, a formal connection between

material-specific knowledge and geometric features is the proposed way to assure the full

validation of the building requirements. Also, a proposed tolerances assessment will

ensure that components and assembly are compliant with manufacturing rules and know-

how. In order to implement this approach, the interactions diagram needs to incorporate a

new element that will open several other kinds of relations in the process.

A geometric constraint is proposed as the negotiating point between material-

specific knowledge and design geometry. Furthermore, a geometric constraint can be the

107

formalization of a piece of manufacturing knowledge. For example, a basic formula to

calculate the minimum bending radius of sheet metal is r = t, where r is the radius of the

bending and t is the thickness of the sheet metal part. Then, the mathematical expression

r = t represents a portion of domain-specific (sheet metal) manufacturing knowledge.

This basic piece of manufacturing knowledge can be automatically evaluated in a

geometric feature if CAD parameters and knowledge are linked together. In order to

make this geometric constraint operational, most of the exchanges depicted in Figure 27

must be programmatically formalized. In this dissertation, the material system-specific

knowledge will be formalized as a specialization of Systems Engineering requirements,

which will be programmatically linked to their formalizations as constraints. Also,

another internal loop of the process, which involves design specifications, geometric

constraints, and geometric features, must be automated. As it can be seen in Figure 27,

design specifications will inform geometric features, as previously depicted in Figure 26.

However, parameters of geometric features will populate the domain-specific constraint,

which will verify that the design specification is in compliance.

108

Figure 26: Modeling approach without the proposed implementation

Figure 27: Modeling approach with the proposed implementation

In order to implement the proposed general modeling framework presented above,

the following list of general functionalities will be developed in this dissertation:

 Model-to-Model Transformation: structural, feature-based decomposition of

parametric CAD models into system models.

109

 Model Integration Approach: parametric, real time, seamless software

integration for knowledge allocation, analysis, and verification to reduce human

data translation.

 One Truth, multiple model views: centralized project requirements, geometry,

and design specifications in an interoperable modeling environment.

 Domain Expert Advice: automated allocation of material-specific knowledge for

components and assemblies based on geometric features and material systems.

 Machine Readable/ Executable: CAD geometry programmatically integrated to

manufacturing know-how through knowledge-based mathematical and logical

constraints.

 Model Consistency Approach: On-demand model-to-model and tool-to-tool

consistency assessment and model data update.

In the previous sections, this paper has described the nature of construction

tolerances, created a taxonomy of the domain problem, and has explained the

implications of a system-level computational implementation. The next sections will

convert the previous set of system requirements into specific activities that have been

programmatically implemented during the development of this dissertation.

6.2. SysML-CAD integration

In order to create a knowledge-based modeling environment that assesses

manufacturing compliance of geometric data, a SysML-CAD integration is proposed.

Many efforts have attempted to integrate domain-specific engineering views into the

SysML environment. However, most of these approaches do not integrate with

geometric-based applications. Recently, there have been several initiatives in Model

110

Based Systems Engineering (MBSE) and Knowledge-Based Engineering (KBE) to face

this integration disadvantage. However, the majority have proposed ad hoc solutions that

are only useful within a short term development. According to Rocca [92], these

integrations lack defined guidelines and standard procedures. Integration and consistency

issues between MBSE and CAD can be analyzed from a general high level perspective

regarding Systems Engineering (SE) and also by taking a closer look at the low level

integration of tools and programming languages. In this dissertation, we will understand

high level as general objectives of a specific computational method and low level as the

detailed executable computer implementation.

From the most general judgment about SE, one of the obvious and most important

challenges is dealing with multiple views of a complex system (in this case a building).

Each view represents a specific set of information that will interact with other views of

the same system. For example, a building component can be diagrammatically described

at a general level in SysML by decomposing its features tree (Figure 28) and will also

have a geometric low level description within a CAD representation (Figure 29).

111

Figure 28: Features tree view of the building component “InnerLowerChord”

Figure 29: CAD representation view of the building component "InnerLowerChord"

Because this multi-view approach will create dependencies between models from

different domains, a consistency issue among the corresponding design models arises.

Specifically, this happens because two or more views can affect a shared attribute of the

design and for that reason, the association between models’ elements and the parallel

changes must be consistent. As Shah et al. [88] stated, maintaining consistency between

multiple data sets and tool-specific models becomes an issue when analyzing different

system architectures during the design process. Additionally, due to the fact that models

112

are created within different domains and languages, defining the general rules to manage

consistency across domains is a significant challenge. Specific problems that arise from

consistency issues are the inability to share models in a collaborative environment and

the inability to identify model consistency issues until late in the design process.

Apart from the issues regarding the multi-model approach of SE, there are also

several challenges that need to be addressed related to the implementation in SysML

language. First, because SysML is a general purpose modeling language, it lacks the

detailed, formal semantics needed for formal domain-specific analysis and automated

tool support [83]. For the same condition of generality, any model can be represented

through SysML language. This situation makes it difficult for domain experts to describe

models in SysML, thereby reducing the acceptance of SysML for specific domains [88].

This situation is especially common in the AEC domain, where the semantics of system

modeling are not readily apparent to the professionals in this area. As it turns out, to

ensure the success of this project, it is necessary to address the low integration of the

SysML language with direct geometry and geometry-based data management. The next

section will review the necessary elements for the functional integration of CAD and

SysML.

6.3. SysML-CAD semantic integration through Domain Specific

Languages (DSL)

One of the most significant characteristics of Systems Engineering is its ability to

deal with embedded systems from different domains. As Shah et al. [88] explain, these

multiple domains cover different information maintained in numerous views for each of

the various subsystems. Considering this heterogeneous condition, model consistency is

113

difficult to achieve because different views require different or transformed data. For

example, to run a finite element analysis of a building, geometric details such as

components’ shape and their relative positioning in the space are critical. On the contrary,

for a material quantity take off, specific component dimension metrics such as weight or

length may be required. However, specific positioning in the Euclidian space is

irrelevant. In this quantity take off case, geometric representation is transformed to a set

of independent metrics that operate in a non-geometric modeling environment. Therefore,

this contradicts the principles of interoperability, where data remain the same throughout

different applications. As Mosier [93] stated, a significant gap is observed because of the

lack of integration across domains of design tools through domain-specific development

activities. For this project, a CAD representation of a building assembly must be

consistent with its SysML representation. However, these two modeling approaches

differ in their programming and semantic languages. As a proposed solution, one

important aspect of the SysML approach is the ability to create domain-specific

semantics through Domain Specific Languages (DSL). DSLs make simpler commonly

used features of a domain and decrease the need for lower level constructs. Also, DSLs

enhance computer interpretability since the information in a valid model is encoded at the

meta-level instead of the model level [88]. In this project, a SysML profile that represents

the CAD data structure at the meta-level will be created as an NXProfile within the CAD

model in Siemens NX. This SysML profile will help the CAD-SysML integration to

automate low level and highly manual tasks, the integration of applications and datasets,

documentation and report generation, and the simplification and standardization of more

complex processes such as system-level tolerances allocation.

114

6.4. Representation of CAD data structures in SysML

Manufacturing compliance analysis can potentially reduce cost and time

generated by construction errors or design omissions. In order to obtain reliable results

from this methodology, an automated, seamless integration between geometry (CAD) and

a system modeling tool (SysML) is critical. Yet, there are several issues related to the

different nature of both architectures (CAD-SysML) that need to be elucidated. Two

fundamental considerations of knowledge-based models such as SysML are the lack of

geometry handling rules and the highly general modeling environment where these rules

operate. First, geometry handling rules do not generally exist in any traditional system-

based application because their evaluation involves excessive information about space,

solids, and relative positioning of assembly, parts, and features. This is why data

structures of CAD systems are extremely complex and resource consuming. However,

integrating specific portions of geometric data with performance-based parameters can

accomplish operations that otherwise require manual input, which are time consuming

and error prone. Second, the design process of building products requires the interaction

of multidisciplinary teams and vast amounts of mixed project data. Every part of the

design process is carried out through domain-specific models, tools, and knowledge that

create a heterogeneous complexity. Because of its generality, SysML is able to represent

and integrate many of these domain-specific bodies of knowledge by using interfaces

called profiles. For an integration of SysML with a CAD tool, a profile must represent

key aspects of the data structure of that specific CAD package. This data structure is also

called meta-model, and for a CAD package as Siemens NX, the basic meta-model is

115

centered on the traditional assembly/part/feature paradigm, as is shown in the next

section.

6.5. General description of the present project:

The present dissertation proposes the development of a Knowledge-Aided

Modeling Framework that integrates a parametric CAD tool with a System Modeling

application to assess manufacturability and tolerances in construction. The CAD tool

provides robust geometric modeling capabilities, while System Modeling allows the

specification of feature-based manufacturing requirements aligned with construction

standards and construction processes know-how. With this approach, manufacturability

assessment and the identification of conflicting interactions between tolerances

requirements of building material systems are performed.

The methodology for the implementation of the proposed modeling framework is

composed of the following six activities, which will be developed in detail further in this

document.

1. Structural Decomposition: This includes the creation of a feature-based

representation of the CAD model in the SysML environment. It follows the

project>assembly>part>feature>parameter approach to describe geometry. Also,

it creates a data graph based on CAD meta-model, which defines the languages

and processes from which to form a model.

2. Knowledge Acquisition: This corresponds to the domain-specific knowledge,

and its formalization, necessary for a manufacturing compliance analysis or

optimization/verification processes of an assembly or section of a building. The

knowledge acquisition process will be carried away manually by adding specific

116

rules as <<requirements>> in SysML, which will be further specified as

<<Design Specification>> or <<Manufacturing Specification>>. However, all

knowledge created will be stored and be ready for use by searching within the

domain-specific knowledge folder in the SysML Model. This folder will have

manufacturing requirements that lead to manufacturing specifications represented

as mathematical expressions such as <<constraint>> blocks.

3. Knowledge Allocation: CAD features decomposed in numeric parameters from

CAD data will be connected to <<constraint>> blocks that carry domain-specific

knowledge about materials or processes for the imported CAD file. The allocation

process will be executed automatically. The created application will query the

imported CAD model by looking at its features <<stereotype>> and will offer the

user options to link <<requirement>> blocks and <<constraint>> blocks that

match the feature types.

4. Parametric Execution: The application created in this dissertation will execute

all the domain specific <<constraint>> blocks using numerical data obtained from

the CAD models. This geometric information will be stored in <<instance

specification>> blocks in a specific, user-defined folder within the SysML model.

The <<instance specification>> blocks store results of parametric executions so

that the user can compare them and pick the best analysis scenario for a given

analysis context.

5. Specifications Verification: Routines coded for this implementation in SysML

and Maple will evaluate and verify the consistency between CAD metrics and the

formal definition of manufacturing requirements about tolerances. This

117

verification will be evaluated by defining two customizations of the NX value

property stereotypes: <<Validation Value Property>> and <<Performance Value

Property>>. The main difference between both stereotypes is that the

<<Validation Value Property>> is typed as Boolean, and the <<Performance

Value Property>> actually carries a real value derived from the geometric data.

Although not present in the CAD geometry, these indicators will be critical to

assess the consistency and manufacturing compliance of the CAD model.

6. Knowledge Compliant Geometry Update: This stage defines a series of

functions that will consolidate changes produced in the model on either the CAD

or the SysML side. In an integrated framework, changes might be produced in

different domain-specific applications. For this implementation, if changes that

were positively evaluated by the application were produced on the CAD side,

there will be an “update SysML model from NX” command in the SysML menu.

Conversely, if changes were made in the SysML side, there will be an “update

NX model from SysML” command. Both commands will use the consistency

checking engine that is presented in section 7.13 of this document.

6.6. Explanation of the Modeling Framework Through a Case study:

Cylindrical Fit

The aim of this first case study is to navigate through all the different components

of the implementation by using a simple example of manufacturing integration between

dissimilar material systems. The detailed explanation of the methodology will be divided

according to the implementation activities presented in the previous section. This

118

classification of stages will also integrate pertinent references to previous works and will

show real screen captures of the proposed software interface and constructs.

This case study presents a double cylindrical fit with two different materials:

concrete and steel. Radial clearance between two telescopic tubes is very important and,

for a great number of applications in construction, a high degree of precision is needed

when two tubes are expected to slide one within the other. Without a high degree of

precision, the wrong clearance within the fit of the two tubes can cause the telescopic

action between the two tubes to lock up. In an effort to prevent this, a quality sliding

motion is needed.

Evidently, the allowable clearance between the two mating tubes is a function of

the length of engagement. Thus the longer the engagement, the more radial clearance can

be tolerated. This is true for two tubes that are expected to slide freely relative to one

another (telescopic tubing) as it is for a metal bushing sliding up and down a precision

shaft.

Figure 30: Case Study1: Double cylindrical fit of a multi-material assembly

For this simple example, there are two types of variations that must be addressed

during the study. The two variations are the manufacturing tolerances of the three mating

119

components, specified independently, and a radial clearance among the three components

to allow the sliding effect that the functional requirements specify for the assembly. In

both cases, the tolerance specifications refer to Single Domain Construction Tolerances

(SDCT) as described in a previous section of this document. In the current practice of

building construction, these kinds of specifications are generally overlooked or only

prescribed as feature-independent rules via a general callout in the construction

documentation. In contrast, this research proposes these kinds of specifications as

parametrically constrained by the specific instance of a feature within its assembly

conditions .

Table 2: Manufacturing data available previous to the tolerances analysis

Considering that all the fields shown in previous table are critical for anticipating

the manufacturing performance of the assembly, it is evident that having only nominal

values from the CAD domain will not create enough context for the tolerance and

clearance analysis. Rather, this sole exercise will require the integration of different

pieces of knowledge as shown in the following

120

Table 3. Besides the CAD data, at least three other stages with their own specific

knowledge will be developed (Material-specific manufacturing knowledge,

tolerances/clearances assessment, and tolerances/clearances validation). The material-

specific manufacturing section of the table will define Lower Limit Tolerances (LL) and

Upper Limit Tolerances (UL). Usually, the common practice for construction uses the

same value for both limits. This approach is called +/- (plus/minus) tolerances. However,

in modern engineering, these values are independently calculated based on estimations

that consider geometric and material characteristics, which define the material-specific

manufacturing knowledge. In this case study, for example, the proper specification of a

bushing condition will most likely define UL and LL, both at negative values from the

nominal parameter. Then, the following basic stage for manufacturing compliance will be

the assessment of the values obtained from the integration between the CAD feature

parameters and the material-specific manufacturing knowledge that define their upper

and lower limits. In this stage, besides calculations of centered dimensions and +/-

tolerances, the specification of assembly clearances will be performed. An important note

at this point is to establish the fundamental difference that exists between tolerances and

clearance. Tolerances refers to the limit of unintentional deviation of a dimension from its

nominal value and clearance is the amount of intentional deviation between two mating

dimensions in a fit. Finally, the tolerances validation stage will confirm, by using

performance indicators established from the combination of different material systems

knowledge, if the manufacturing allowances will be optimal for the assembly.

121

Table 3: Integration of different analysis stages to finally validate a clearance prescription

The following sub-sections will restate and develop all activities required to

transform the overall approach exposed in this section into a system-level computational

implementation. All the introduced commands and functionality have been developed

exclusively for this dissertation.

6.7. Structural Decomposition: Meta-modeling CAD geometry into SysML

A meta-model is a detailed classification of the constructs and rules required for

creating semantic models, which means the implementation of specific independent

descriptions of the underlying algorithmic ideas [147]. A SysML profile can represent a

meta-model as an ontological structure. The profile will specify a vocabulary of concepts

of the original specific domain as stereotypes. It will also order them in relation to each

122

other by means of formal rules and add specific properties to the concepts (e.g. metrics)

so that users can perform meaningful analysis and calculations. As Shah et al. [88]

explained, these graph representations are called meta because they are themselves

models that define the languages in which the models of the views are described. There

are a few approaches to describe meta-models, with the most general based on the UML

language. OMG has also defined more specialized representations such as the Meta-

Object Facility (MOF), which, according to OMG (2006), specifies an approach to

define, manipulate, and integrate metadata and data in a platform-independent way. In the

same sense, the Common Warehouse M?(CWM) and the Information Resource

Dictionary Systems (IRDS) are examples of meta-modeling languages.

Although Siemens NX is not a traditional BIM tool, it is a well-known parametric

solid modeler for aerospace and mechanical engineering. Siemens NX has very robust

feature recognition and feature learning capabilities. These capabilities are important for

automating tool setup and process allocation, which is one of the objectives of the

implementation.

Because of the highly complex and heterogeneous body of knowledge that can be

represented, Siemens NX has an extremely fine grained meta-model. Consequently, an

approach that automatically converts the meta-model of Siemens NX into a SysML

profile through a model-to-model transformation does not seem appropriate without an

important meta-model simplification. This is one of the bases of this project – model

integration between SysML and Siemens NX simply transforms what is reflected in the

profile. However, the meta-model simplification leaves room for full extensibility

through more wide-ranging or domain-specific profiles. For example, a Siemens NX

123

profile for FEA would be different than a Siemens NX profile for manufacturing

processes optimization. As Marchenko [91] proposed, models help to understand the

nature of a design method by ignoring some of the not-so-important details. Thus, when

modeling a design process, determining the proper level of abstraction is fundamental for

the model to be beneficial to its users. For this project, the SysML profile created to

accomplish the model integration is a simplification of the meta-model of Siemens NX.

Although extensive, the NXProfile contains only the basic elements of the feature-based

CAD representation. In a very general view, these elements are assemblies, parts,

features, and parameters (Figure 31).

Figure 31. Basic hierarchy of modeling elements of a conventional solid modeler.

As previously stated, Siemens NX is a multi-task CAD package that manages

more than just geometric data. Rather, Siemens NX can perform several other tasks

during the life cycle of a product model. For example, it can perform feature-based

design (e.g. sheet metal), stress and finite element analysis, kinematics simulations,

124

Computational Fluid Dynamics (CFD), and Numerical Control (NC) manufacturing

iterations. For each one of these activities, it is possible to create specific meta-models

that can be converted into SysML profiles. One key SysML profile stereotype created

during this project to embed this Siemens NX information into a SysML model is the

<<NXPartFeature>>. In the context of this dissertation, a feature is the minimal

information required to represent geometric variation and tolerances. There are several

sub-categories of features based on feature-to-feature relationships. These are lower-

level features (e.g. the basic topological entities, faces, edges, and vertices) and higher-

level features which are the combination of the lower-level features (or the combination

of other higher-level features) having certain relationships among them (e.g., a hole is

different than a cutout). In construction, this separation between higher and lower

features is crucial to achieve model simplification (filtering) without creating inaccurate

results.

Several specializations of the <<NXPartFeature>> stereotype have been created

to successfully integrate datum coordinate systems, extrusions, geometric Boolean

operations, NX sketches, and numerous other CAD elements as SysML entities. The

following graph shows a reduced example of the basic elements of the NXProfile created

for this project, which will be further explained in more detail. The white triangle

associations represent hierarchical generalizations where the highest-level element within

SysML correspond to the block class. Every node of the profile represents a specific

stereotype. A stereotype is a kind of extensibility instrument of SysML. Stereotypes can

be understood as object-oriented classes, which are used to extend the language of

125

SysML with the aim of creating new model elements from existing ones, with detailed

attributes suitable for domain-specific applications.

Even considering that parameters could exist in any kind of element in a system

model, for this implementation the imported CAD parameters will be assumed to be

dimensional value properties of parts or assemblies. NX has just one file type (.prt) to

describe parts and assemblies. For that reason, it is important to find an approach to

represent parts and assemblies independently. To do so, special information has been

added to the different stereotypes of the NXProfile. The most important additions were

created in the specification of <<NXPart>>, <<NXPartProperty>>, and

<<NXAssembly>> stereotypes. They are: currentPartPath, directory, and uniqueID.

CurrentPartPath and directory show the location of the last updated file, and uniqueID

contains the global unique identifier of the file generated within NX. This data is crucial

to keep SysML and NX elements synchronized, even if the file names change.

Figure 32: High level meta-model of the CAD data structure

126

Figure 32 shows the high-level description of the basic elements of the CAD

package Siemens NX data structure as explained in Figure 31. However, in order to apply

material-specific manufacturing knowledge, we need to further specialize these elements

with detailed information about specific features of the manufacturing field that we are

trying to represent. Figure 33 shows an extension of the Siemens NX meta-model to

describe specific features of the sheet metal domain, which corresponds to one of the

material systems used as a case study for the implementation developed in this

dissertation. As depicted in the picture, the top level of the DSL corresponds to the

<<stereotype>> element, which is a meta-model element before being instantiated. This

element is called NXPartFeature and represents any CAD feature that is imported from

Siemens NX. The problem of how to automatically apply a domain-specific knowledge

to a feature with this high level of generality then arises. To address this issue, new

subtype elements have been produced, called specializations, on which we can create

custom fields of information that will generate the proper context to automatically apply

the required knowledge for a meaningful manufacturing analysis. In Figure 33 a family of

features are created under the <<NXSheetMetalFeatures>> element. These elements

inherit all properties, visible and invisible, of their super-type, as also include other

properties that define the specifics of every feature. For example, a basic feature of the

sheet metal domain is flange, which is represented in the NX Sheet Metal Features

diagram as NX SM Flange. This element, which is a specialization of the

NXSheetMetalFeatures, contains all the parameters that define a flange: BendRadius,

NeutralFactor, BendAngle, BendReliefWidth, BendReliefDepth, and others.Any time

that a feature is typed as flange in a NX model that is being imported into a system

127

model, this stereotype will obtain the values of such a feature and populate its fields to

create a flange instance.

Figure 33: Extended NXSheetMetal meta-classes using stereotypes that carry domain

specific properties and constraints

Figure 34 shows an imported sheet metal element in the system model

environment (SysML). As can be seen in the diagram, all elements have been

automatically allocated stereotypes from the sheet metal domain, and their parameter

fields have been instantiated with numeric values. Also, custom icons were created for all

new elements of the developed NXProfile (Figure 35). The black diamond association

between components is called composition association and it defines a structural

relationship between parents and children. This capability of creating a topological

hierarchy of features from a CAD component is not naturally present in the NX

128

package11, and is an added functionality of this implementation to replicate the real

structural topology of a material system. For example, as depicted in the diagram, the .prt

level inner lower chord (file level) is a the top of the hierarchical structure. This chord

has a child typed as base flange, which is the basic element for constructing a sheet metal

component. This base flange has two children typed as <<NXSMFlange>> named Side 1

and Side 2. In a fourth level of hierarchy, Flange 1 has a child feature typed as

<<NXSMNormalCutout>> named SideNestedHoles. Using this example, we can

establish a basic domain-specific hierarchy for sheet metal fabrication that is compliant

with the real processes of the field. That is, it cannot be a flange without a base flange, or

it cannot be a hole without a base flange or a flange. In this manner it is ensured that the

structural decomposition does not defy the basic rules of solid modeling with respect to

consistency with the built environment.

11 As it is shown in Figure 35 the expressions list in NX does not introduce any kind of indentation

or other structure that describes the hierarchy of features.

129

Figure 34: Elements hierarchy of a sheet metal component imported into a system model

Figure 35: Custom Icons legend of the implementation

The following section presents the main commands and functionalities developed

for this implementation.

130

Import CAD Model:

This command creates a SysML model from a CAD model. When importing a

single file, it creates a folder with the name of the NX file. This folder contains two

elements, which are a block structure of the NX file and an empty folder to store

instances from further parametric executions. However, when importing an assembly, the

process is a little different because blocks (classes) cannot contain any packages as

children. Then, in the assembly importing procedure, we have added just one folder at the

top of the structure tree. All sub components (Also of <<NXPart>> stereotype) will be

incorporated inside the same package.

The following steps detail the procedure to import the CAD model into the

SysML model:

1. Right click on the folder where the CAD model will be imported;

2. Go to the command “Import CAD Model”12 as shown in Figure 37;

3. Select a CAD file to be imported on the SysML model; and

4. Repeat for all different CAD files that will be part of the parametric execution13.

At this point, all CAD components will be decomposed as feature trees in the

SysML environment. The outcome of the import command will be a SysML instance of

12 As an alternative, the command “Import CAD Model with Feature Type Filter” performs the

same action. However, the model will be filtered before imported.

13 Upon completion of a multiple System Integration with several domain specific tools, these files

could come from different CAD packages

131

the CAD model that will include all the geometric data based on the data structure of the

NXProfile SysML DSL. Figure 36 shows the outcome of a successful import in the

containment tree of the MagicDraw environment. The highlighted CAD component has

been automatically created in the MagicDraw modeling environment as a SysML model,

which can be later dragged into SysML diagrams to graphically access specific design

parameters or for reporting activities.

Figure 36: Containment tree with imported CAD geometry

132

Figure 37: The two importing commands of the created application are highlighted in the

red square

Import CAD Model with Feature Type Filter:

A specific subset of CAD data that is required to run a domain-specific analysis is

called “View.” In order to create Views, we need to filter the data that we obtain from the

CAD model. To do so, we have created the stereotypes filter. The stereotype filter creates

a SysML model from CAD the same way that importing a full model would, creating a

folder with the name of the NX file, which contains a block structure of the NX file.

However, it offers a check box window to specify what feature types need to be

imported and what feature types will not be included in the view. In the case that we are

importing NX assemblies, the import operation will create just one folder at the top level

(assembly level). Considering that the complexity of building models is very high, this is

133

a critical capability of the system. For example, in Figure 38, the datum planes have been

deselected, as they are not required at this time for manufacturing compliance analysis.

Figure 38: Stereotype Filter to manage Model Granularity

The following is the procedure to import the CAD model with the stereotype filter

into the SysML model:

1. Right click on a SysML folder (stereotype <<package>>);

2. Click on “Import CAD model with Feature Type Filter;

3. The Feature Filter will show up in the screen as shown in Figure 38;

4. Uncheck the boxes in front of the features you are not importing and click

“Import;” and,

5. The model will be imported into the SysML environment. This model will have a

hierarchy indentation, and if some feature was “filtered,” the remaining block will

be attached to the element in the next level up in the hierarchy.

134

Figure 39: Filtered versus full model hierarchy structure

A feature filter will offer the option of controlling the level of granularity of the

model (Figure 39). The filter will automatically and dynamically14 create a list of all the

stereotypes present in the NXProfile and will offer the user a checkbox for each of them.

Thus, the user can check just the stereotypes needed for the specific modeling task. This

capability is meant to control levels of granularity of data-rich building models. However,

no matter how “coarse” the SysML representation of the CAD model is, after filtering,

the CAD and SysML models will always be consistent. Figure 40 illustrates a model

where only the file level hierarchy (<<NXPart>> or <<NXAssembly>>) have been

imported, and all the features itemization has been filtered. Figure 41 shows the same

14 Every time that the features filter is requested, it will query the NXProfile to see if new

stereotypes have been added or deleted.

135

fully unfiltered model where all CAD data has been imported into the system model

environment.

Figure 40: Ballast assembly: CAD representation (left) and component level SysML

representation (right) after model-to-model transformation.

Figure 41: Model-to-model transformation output: full CAD structure

136

Link CAD Model to Existing SysML Model:

The application developed in this dissertation allows users to link existing SysML

elements to NX files by using the “Link NX file” command. The linked elements could

be single components or even assemblies. To perform this task, the user must right click

the SysML element that will be linked and choose the proper command as shown in

Figure 42. This command has been created because usually building projects start from a

description of requirements prior to a geometric instantiation.

Figure 42: Link NX file command

137

When linking an existing NX file with an existing SysML modeling element (a

<<NXPart>> or a <<NXAssembly>>), it is likely the two elements will differ in name. In

this case the application will prompt the user with a window to pick the name that the

user wants to keep as the name of the file and the SysML element as shown in Figure 43.

Figure 43: Name disambiguation while linking a NX file with a SysML element

Also, if the user tries to link an NX file within an <<NXProject>> or a

<<NXPart>> element, and the NX file to import already exists in the project context, the

implementation will prompt the user with an error as shown in Figure 44.

Figure 44: File already linked error

6.8. Knowledge Acquisition

This important stage of the manufacturing compliance method includes the

acquisition and formalization of domain-specific knowledge necessary to execute

parametric analysis on imported CAD models in the SysML environment. This stage is

one of the only processes of this implementation that is not developed in an automated

fashion. The reason is that this stage requires the user to build pieces of knowledge,

138

encapsulated in SysML requirements and specification, directly from construction

standards, material systems reports, books, or other kinds of written manufacturing know-

how, which are not machine-readable. The acquired knowledge will be stored in

specifications and constraints. It will be available for reuse by searching within the

domain-specific knowledge folder in the SysML Model or by automatically allocating it

during the knowledge allocation stage. This folder will have manufacturing requirements

that lead to manufacturing specifications represented as mathematical expressions in

<<constraintBlock>> elements.

For this implementation the SysML stereotype <<requirement>> has been used

and specialized as a text-based knowledge container, and the SysML stereotype

<<constraintBlock>> has been used and specialized as a mechanism that ensures that the

knowledge is being applied and the CAD geometry is in compliance. Figure 45 shows the

portion of the NXProfile and the meta-classes that deal with the knowledge acquisition,

knowledge allocation, and parametric execution stages. There are three different kinds of

stereotypes necessary for this analysis task: a specification, a constraint, and a repository.

These elements respectively come from the meta-classes <<Requirement>>,

<<ConstraintBlock>>, and <<ElementsLibrary>>. For this implementation the

<<Requirement>> class has been specialized into two stereotypes: <<Design

Specification>> and <<Manufacturing Specification>>. Both elements are represented by

custom icons for easy readability, and are verified by two different kinds of

<<ConstraintBlock>> stereotypes. The design specification will be verified by a

<<Knowledge-Based Constraint>> and the manufacturing specification will be verified

by a <<Critical Dimension>>. Both verification procedures require an association

139

element between the requirement and its associated constraint to automatically evaluate

whether the CAD geometry is in compliance with the domain rule. With this double

stereotype approach, analysis for SDCT and HCT will be kept separated, as they belong

to different stages of the overall analysis. Then, an element typed as <<Manufacturing

Knowledge>>, which inherits all the properties of an <<ElementsLibrary>> will act as

permanent storage for the created knowledge. As explained later in this dissertation, other

critical elements such as <<Analysis Context>> will be stored in the same kind of

libraries for easy access and allocation.

Figure 45: Meta-classes of material-specific knowledge

In the previous example of the cylindrical fit, the following equations represent

the Domain-Specific Knowledge (DSK) that the designer needs to be aware of when

prescribing clearances for any kind of cylindrical fit based on steel components.

140

Bushing/Shaft tolerances calculation:

Milling tolerances for SDCT steel components require the specification of Upper

Level tolerances (UL) and Lower Level tolerances (LL), which are described in different

manufacturing standards [104]. These DSK will be described in SysML as a construction

specification by means of <<Requirement>> elements type.

Plus/Minus (PM) tolerance from LL and UL tolerances specification:

Equation 12: plus/minus formula from UL and LL

𝑃𝑀𝑡 =
(𝐿𝐿 − 𝑈𝐿)

2

Where:

PM = Plus/minus tolerances value

LL = Lower level tolerance specification

UL = Upper level tolerance specification

Centered dimension calculation from LL and UL tolerance specification:

Equation 13: centered dimension formula from UL and LL

𝑐𝑇 = 𝑋 +
(𝐿𝐿 + 𝑈𝐿)

2

Where:

cT = Centered tolerance dimension

X = Nominal dimension

LL = Lower level tolerance specification

UL = Upper level tolerance specification

Integrating DSK of tolerances and clearances calculations into the

implementation:

141

In the SysML Language, as previously explained, constraints blocks are used to

define equations or other logical expressions. As a block, a constraint block is an element

of definition—one that defines a Boolean constraint expression (an expression that must

evaluate to either true or false) [27]. Most often, the constraint expression defined in a

constraint block is an equation or an inequality (a mathematical relationship that is used

to constrain value properties of blocks). This is done mainly for two reasons:

 To specify assertions about valid system values in an operational system, and

 To perform engineering analyses during the design stage of the life cycle.

The variables in a constraint expression are called constraint parameters.

Generally, they represent quantities, and so they are stereotyped most often by value

types. For example, the following figures shows a constraint block (left)

named Bushing_Metals_Tolerances, which contains four constraint expressions that will

assess a design specification or a design requirement about tolerances for a bushing

component. In this case the constraints are grouped in a single constraint block. The

notation for a constraint block on a block definition diagram (bdd) is a rectangle with the

stereotype <<constraint>> preceding the name. However, as most of the modeling

elements in this implementation have been customized to be applied in construction,

these constraints blocks will be specialized as <<Critical Dimension>> or <<Knowledge-

Based Constraint>> (Figure 46, Figure 47). The constraint expression always appears

between curly brackets ({}) in the constraints compartment. The constraint parameters in

the constraint expression are listed individually in the parameters compartment [27].

142

Figure 46: Constraint block of bushing and shaft tolerances specification for steel milling

component

Figure 47: Constraint block that delivers clearance assessments for WC and RSS of a

bushing assembly.

143

Figure 48: Constraint blocks from design and manufacturing specifications must be

allocated to their targeted features

The capability of the constraint block to carry several equations in a single unit

allows designers to apply several related calculations and analyses at the same time. For

general equations, such as centered dimension equations, the parameters are real

numbers. Since this research deals mostly with dimensional values, all of the value types

for this implementation are also real. Thus, all values can be connected to parameter ports

that are specified as real numbers. However, different value types can be created when

the user intent is to simulate or assess the model from a behavioral standpoint.

144

Figure 49: Material-Specific Knowledge: Reusable manufacturing specifications: diagram

In addition to sub-types of constraints such as critical dimensions or knowledge-

based constraints, Figure 49 depicts the main elements defined for the material-specific

knowledge representation. The manufacturing and design specifications, which are text-

based, are intended to convey the rationale of a specific piece of knowledge. In addition

to this information, these knowledge modeling elements contain an identification number

to be sorted or organized in domain-specific libraries within the system model (Figure

50). Another important element for the topological description of domain-specific

knowledge is the association. As shown in Figure 49, for this dissertation, the description

of relationships between constraints and specifications has two distinctive kinds of

associations: the containment association and the dependency association. The former

kind refers to the ability of organizing manufacturing and design specifications

145

hierarchically. This means there are main specification elements that can have children

specification elements. For example, in Figure 49 the specification Bushing-Shaft

Clearance assessment has a derived relation to the Telescopic Fit_SteelPipe. Furthermore,

this Telescopic Fit_SteelPipe has two containment relationships to the elements Shaft

Tolerances and Bushing tolerances. The same indentation approach can be seen in

Requirements and Specifications of Figure 50 and in the reusable manufacturing

specification in the table presented in Figure 51.

Figure 50: Examples of constraints and specification libraries as they appear in the

containment tree of the MagicDraw user interface

146

Figure 51: Reusable manufacturing specifications: table version

6.9. Knowledge Allocation

As explained in the previous section of this document, manufacturing

specifications and design specifications are cumulative, verifiable, reusable, and they are

stored in domain-specific knowledge libraries within the SysML modeling environment.

As shown in Figure 52, the knowledge allocation within parametric diagrams will allow

the user to link the formal representation of manufacturing knowledge (geometric

constraints as equations) with numeric values obtained from the imported CAD model.

The expressions created for such an association will be solved by the mathematical

147

engine. Then, the newly calculated numeric values will be reallocated in the geometric

features parameters to create a manufacturing knowledge-compliant geometry update.

Figure 52: General description of the integration between processes standards and CAD

features through a mathematical engine

Based on the features stereotypes held by the imported CAD geometry, the

application will recommend, through a dependency matrix, the manufacturing

specifications or design specifications that the user should include to assess the

manufacturability of the intended part or building assembly. This activity is performed by

looking at the material or feature type of the imported CAD component. However,

critical parameters of each feature must be identified by the user. For instance, in a sheet

metal component like the one shown in Figure 53, a manufacturing specification that

assesses a Flange Length Limit has been automatically suggested by the developed

application. However, this allocation matrix did not specify which of the flange Side 1

parameters must be linked with the manufacturing constraint that verifies the

manufacturing specification. As stated in most of the literature related to Systems

Engineering (SE) and Geometric Dimensioning & Tolerancing (GD&T), tolerances must

148

be designed, and that takes time. The value of applying a modeling approach as the one

proposed in this dissertation comes when parametric iterations are desired, when

conflicting system interactions need to be identified, or when an analysis context for

repetitive procedures has been stored for reusability. The first step will be the

identification, based on features stereotypes of the profile, of the critical dimensions that

must be analyzed for tolerances allocation and manufacturability. Critical dimensions are

at the <<NXValueProperty>> level of the <<NXProfile>> and these dimensions carry

parametric information seamlessly coordinated with the CAD model. The following

dependency matrix depicts the result of a knowledge allocation procedure. In Figure 53,

the small arrow dependency icon refers to a “verified by” relationship. For example “Side

1” is verified by a bending radius design specification (hammer icon).

Figure 53: Dependency matrix for knowledge allocation

When allocated, manufacturing specifications or design specifications are

displayed in-context in the feature level diagram of a block definition diagram (bdd).

These specifications require an <<Allocation>> type of association for traceability and

verification. This capability offers the option of visually assessing all modeling features

149

to confirm that a requirement is fulfilled, or to verify that a design or manufacturing

specification is met. Figure 55 shows a block definition diagram where the light grey

elements are manufacturing or design specifications and the light brown elements are the

feature-based decomposition of the green element “LowerChordStiffener.prt.” In this

knowledge allocation diagram, all specifications have been reduced to four fields of

information, and other elements such as text-based rationale or constraints have been

hidden. Figure 55 depicts the manufacturing specification from top to bottom, including a

stereotype <<Manufacturing specification>> with the associated icon, a specification

named “Hole to Bend Distance,” an identification field for the specification (Id), and the

material system where the specification has been taken from.

Figure 54: In-context manufacturing specifications allocation through a dependency

association

150

Figure 55: In-context manufacturing and design specifications

When domain-specific knowledge has been properly allocated to a feature-based

decomposition of a CAD component or assembly, the model is ready to be executed in a

151

parametric diagram by means of an <<Analysis Context>> element, which will be

explained in the following section.

6.10. Parametric Execution

Parametric models limit the properties of a system. The parametric engine of

SysML, which for this dissertation is powered by Maple 18, enables the mathematical

evaluation of a system model and uses profiles as a base meta-language to instantiate all

required elements. Also, constraints are conveyed as equations or logical expressions, and

the parameters of the equations are linked to the properties of the system being evaluated

[27]. Furthermore, all parametric models capture the description of one or more

engineering views of a design. As explained in [27], a parametric model which captures

multiple engineering views such as the ones created in this implementation —

performance, validation, or target values—can be used to calculate several design

alternatives, to support trade-off analysis, or optimize a design based on multiple criteria.

Accordingly, for the present dissertation, the main use of parametric diagrams will be the

development of analysis contexts where domain-specific knowledge will assess the

manufacturability of parts and assemblies.

152

Figure 56: Main stereotypes developed for parametric execution of manufacturing

knowledge and tolerances evaluation in a SysML model profile

The parametric execution of this implementation is only possible when started

from a parametric diagram (par) (Figure 57), which contains SysML blocks <<block>>

that carry information from the CAD model, and SysML constraint blocks

<<constraint>> that carry domain knowledge represented as mathematical or logical

expressions. Both element types will be contained in properties of a third kind of element,

the <<CAD-SysML Analysis Context>> or <<CAD-SysML Validation Context>>. The

analysis context stereotypes are specializations of SysML blocks that are used to create

system boundaries defining where to execute a domain-specific evaluation. Both kinds

(the <<CAD-SysML AnalysisContext>> and the <<CAD-SysML ValidationContext>>)

can represent any of the custom values stereotypes as depicted in Figure 56. These

custom values stereotypes are:

NXValueProperty: Original value property developed in this implementation to

represent any numeric parameter of an imported CAD feature.

153

Target Value Property: Sub-type of the NXValueProperty, used as a stereotype

of an outcome for a parametric calculation. Target value properties will update the value

of its custom property “Original Classifier,” which is a parameter directly imported

during the structural decomposition stages. Target value properties are critical for this

implementation, as they will finally upgrade the CAD geometry for manufacturing

compliance. Target values will be covered in more detail in the specifications verification

stage.

Validation Value Property: Elements typed as Boolean will verify that the CAD

geometry has met the manufacturing and tolerances specifications. This stereotype has

been specifically created to assist in decision making and system evaluation during the

specification verification stage.

Performance Value Property: These elements are numerical outcomes of

parametric calculations that do not come from a specific CAD parameter. Rather, these

elements represent the instantiation of domain-specific knowledge required to assess

manufacturability. For example, in Figure 57, the three green elements at the right, which

are parameters of the analysis context, are metrics used to verify the status of a bushing-

shaft clearance. These elements do not directly belong to any imported feature, but they

assess a mating condition (clearance) between two different CAD components.

Reusability of Analysis Contexts

Figure 57 presents an example of a <<CAD-SysML Analysis Context>> template

for a bushing-shaft evaluation in a SDCT environment. The element to the right, a

<<Knowledge-Based Constraint>> called Bushing-Shaft Clearance, calculates several

performance value properties of the required assembly clearance, such as minimum and

154

maximum conditions, mean values, and also RSS and WC tolerances assessment. This

knowledge-based constraint derives its input values from two <<Critical Dimension>>

elements that calculate LL and UL tolerances for the individual features, as well as

centered and plus minus (+/-) tolerances values. As can be seen in the diagram, the

dashed box “Linked CAD Data” is still empty, which means it can be populated with

different CAD embodiments that match the described context. Also, as the analysis

context can be represented as a single element, as depicted at the left side of Figure 60, it

is possible to copy, paste, or store it in libraries for reusability. This capability is intended

for industries that execute repetitive analysis of similar topologies or tasks that involve

trade-off evaluation of specific assembly conditions.

Figure 57: Parametric diagram used as analysis context template before geometric data

allocation

Analysis Context Execution

In t Figure 58 the “Linked CAD Data” has been already populated with features

and values that were previously imported from a features decomposition of a CAD

model. As seen in Figure 57, the analysis context, with its critical value properties and

155

constraints, was already created as a template. Therefore, for a parametric execution, the

user only has to connect the required CAD metrics into the “Domain-Specific Knowledge

from Requirements Specification” dashed box of the parametric diagram. In the same

way that all elements of the analysis context are connected together, the linked CAD data

will use binding connectors typed as real numbers. A binding connector specifies an

equal (“=”) relationship between the connected elements, and also ensures that units on

both sides of the association are compatible.

Figure 58: Analysis context in a parametric diagram that is ready for execution

After the components have been properly connected in an analysis context

diagram, the system is ready to execute the model. When the model it is executed, the

math console procedurally shows each performed calculation by following the analysis

context internal organization (Figure 59).

156

Figure 59: Math console of MagicDraw during parametric execution

Figure 60 shows the two stages of a parametric execution. At the left, the depicted

block represents the same analysis context shown in Figure 57 and Figure 58. However,

in this representation, the inner structure of the analysis context has been hidden. Despite

this condition, all inner components of the analysis context are still visible and accessible

in the block. Furthermore, as the <<CAD-SysML AnalysisContext>> is a sub-type of the

<<block>> stereotype, it inherits the latter internal elements such as constraints, parts,

and values, which are the required elements to perform the parametric evaluation. At the

right side of Figure 60, the variables window shows the results of the parametric

execution. In this window, constraints, parts, and values are also shown. However, the

values placeholders of the analysis context have been instantiated with numeric values.

157

These values, which follow the NXProfile DSL shown in Figure 56, are target values and

performance values. These values will be then stored in instances specification blocks

that carry the stereotype of the specific analysis context (Figure 61);they will then be

evaluated during the specification verification stage.

Figure 60: Execution and results of an analysis context

One of the main functionalities of this modeling framework is to perform quick

trade-off analyses by parametrically changing the values that have been incorporated into

the domain-specific evaluation. By doing so, designers can immediately prevent possible

undesired tolerances interactions. For example, in Figure 61, when looking at important

performance values such as Clearance Max and Clearance Min, we can quickly state that

in Analysis 2 those parameters have negative values. This means, when both clearance

limits have negative results, most likely there will be a conflicting assembly interaction in

the form of a collision.

158

Figure 61: Instances specifications results

The following section of this document will take the results of the parametric

execution and it will confirm that all manufacturing and tolerances specifications have

been met during the specifications verification stage.

6.11. Specifications Verification

Figure provides a general description of the implementation regarding

verification and validation. In this diagram, three different verification and validation

stages are depicted at both SDCT and HCT hierarchical levels. These verification and

validation stages are: manufacturing specification assessment, design specification

assessment, and assembly design specifications verification.

159

Figure 62: Overall process diagram for multi-material system assembly knowledge

verification and validation

During the first stage, manufacturing specification assessment, each CAD single

component (as NX Part) incorporated in the system model will be independently

evaluated based on domain-specific knowledge of the material or process being identified

for that component. This assessment, which comes from a manufacturing specification,

will be documented by connecting linked CAD data to a mathematical constraint typed as

<<Critical Dimension>>. This <<Critical Dimension>> element will then enforce that

what is written in the <<Manufacturing Specification>> element is consistent with the

embodiment (CAD values) of the feature that it is evaluating. For example, in Figure a

simple element of the type <<Manufacturing Specification>> and an element typed as

<<Critical Dimension>> are depicted. The <<Manufacturing Specification>> element

has a very simple, but meaningful, written statement about the minimum distance

160

between a cutout and a bending feature in a SDCT sheet metal component. A failure to

incorporate this piece on manufacturing know-how will most likely result in geometric

deviations of the cutout feature due to the distortion that the bending operation will

produce on the cutout feature. However, as this human readable statement cannot be

understood for a machine15, for this dissertation another machine readable stereotype has

been created: <<Critical Dimension>>. As can be seen in Figure , both elements are

connected by a verification type dependency (dashed line pointing from the critical

dimension to the manufacturing specification). The dependency association has two

meanings: first, it states that the <<Critical Dimension>> verifies the <<Manufacturing

Specification>>; it also creates a link that defines a supplier/client relationship that can be

queried at any time and from any part of the system model. For this implementation,

custom icons have been established for all created stereotypes at the upper right corner of

the element: manufacturing specifications are identified by a hammer and critical

dimensions are identified by a 45-degree square.

15 Although it could be a research area in the artificial intelligence domain, in this dissertation,

text-based requirements and specifications will be considered as non-machine readable.

161

Figure 63: Text-based <<Manufacturing Specification>> that is enforced by a constraint

typed as <<Critical Dimension>>

The second part of the specification verification state is called design

specification assessment. This stage works in similar fashion to the manufacturing

specification assessment procedure. One difference, as opposed to the previous

procedure, is that in this stage the evaluation refers to the integration of multiple design

features together. This procedure can be applied either to a single component or to an

assembly within the same material system. However, this stage will not evaluate

manufacturing variability but rather design decisions. For example, Figure shows a

<<Design Specification>> called Bushing-Shaft Clearance Assessment. This

specification is linked, by using a dependency association, to a <<Knowledge-Based

Constraint>> named Bushing-Shaft_Clearance. In this case, the design specification is

not assessing a possible geometric deviation that could occur during the manufacturing of

either the bushing or shaft components. Instead, what the knowledge-based constraint

does is to assess if the clearance between these two theoretically perfect components will

162

meet the requirements for a telescopic assembly. Thus, the specification change required

for either the bushing or shaft diameter to be compliant with the telescopic requirement is

a design decision and not a manufacturing consideration.

Figure 64: Text-based <<Design Specification>> that is enforced by a constraint typed as

<<Knowledge-Based Constraint>>

The third verification procedure shown in Figure operates in the same way as the

design specification assessment. The only difference in this stage is that the design

knowledge required to execute the evaluation comes from different material systems.

Therefore, this stage will operate in the HCT domain. The critical stage identified in this

dissertation as HCT involves a system integration of dissimilar manufacturing know-how

and material properties, which has been identified as the main source of assemblies

mismatches and geometric variability during building erection.

163

Validation Context Execution:

The CAD-SysML Validation Context is executed in the same way as a CAD-

SysML Analysis Context, as they both are specializations of the same SysML modeling

element (<<block>>). Validation contexts are also created in block definition diagrams

(bdd), which can be stored for reusability, and will be executed in parametric diagrams

(par). Although validation and analysis contexts are at the same hierarchical level in the

NXProfile, usually a validation context will contain one or more analysis contexts, and

will confirm their numeric results by means of Boolean statements. The reason for this

condition is that analysis contexts will apply the domain-specific knowledge of design

and manufacturing, and their execution will create a set of target and performance values.

However, an analysis context will not verify that those values actually meet the overall

manufacturing specifications of the assembly. For this task, an artifact that performs

knowledge validation has been created. Figure shows a validation context for the

bushing-shaft example.

164

Figure 65: Validation context example

The validation context diagram, which is a specialization of a parametric diagram

(par) contains five different types of elements: the validation constraint, typed as

<<constraint>>; the analysis context being validated, typed as <<CAD-SysML Analysis

Context>>; any complementary CAD feature required for validation, typed as

<<NXPartFeature>>; any performance value, typed as <<Performance Value

Property>>; any validation value, typed as <<Validation Value Property>>; and several

binding connectors required to allocate values to and from the validation constraint.

Functionally, the constraint block, based on domain-specific knowledge, will assess the

values coming from the analysis context and will deliver a Boolean result (true or false)

to notify the designer whether the manufacturing or design specifications have been met.

The rationale of this custom validation procedure is to give quick and evident

assessments without the need to refer to the instance value after calculations. This

approach is intended to minimize the human interpretation of results in a complex

165

modeling environment such as BIM. However, performance values will be also provided

for a deeper assessment. Figure represents a validation context (left) and the results of its

evaluation (right). Parametric iterations based on knowledge allocation or direct value

changes can be stored for trade-off analysis as shown in Figure .

Figure 66: Execution and results of a validation context

Figure 67: Trade-off analysis of different scenarios of a validation context using instances

specifications

166

Figure 68: Overall specifications validation

Analysis and validation contexts can be nested parametrically in order to use

results of previous parametric executions as inputs for new ones. In the diagram above

(Figure), the analysis stage contains two analysis contexts for the two mating conditions

being analyzed (metal to metal and concrete to metal). These analysis contexts are then

fed into two validation contexts and finally, an overall validation context will evaluate the

full manufacturing compliance of the CAD model. This feature greatly reduces the

immediate complexity of the model by using the nested analysis contexts approach.

Figure shows the interactive variables window of the parametric execution of the

“OverallVALIDATIONContext” described in Figure . Here, the original unknown values

seen in Table 2 have been calculated based on manufacturing knowledge, have been

allocated directly to geometric features parameters, and have been validated through

design specifications. At a high level, Figure summarizes the general approach of the

implementation offered in this dissertation.

167

Figure 69: Overall validation context of an imported CAD model

The table shown in Figure contains the overall manufacturing and design

specifications validation of an imported CAD model. Therefore, it contains all

calculations and runtime values defined within the boundaries of the analysis. For each

plus (+) sign in the table, a set of parts, constraints, and values will be expanded, making

the model highly granulated and, sometimes, hard to navigate. In order to improve this

issue, for the present implementation, a custom instances results report was created

(Figure 62). This report summarizes the values properties that have been evaluated during

the analysis. Also, using the same approach of the stereotypes filter (Figure 38), the

instances results report offers the option of filtering the stereotypes shown in the table.

168

For example, in Figure 62, the validation values have been filtered to allow only numeric

values to be displayed given that these values require a Boolean expression.

Figure 620: Instances results report

The <<Target Value Property>> Stereotype

One of the issues that have been addressed in this implementation is the

calculation of many runtime values for the same <<value property>> during the

execution of nested <<CAD-SysML Analysis Context>> elements. We will consider the

following situation shown in Figure:

Figure71: Understanding the use of target value properties

169

In the capture, there is a <<NXPart>> called “Part” that contains a

<<NXPartFeature>> called “Feature,” which contains a single parameter called “Value”

with a default value of “10.” In the picture above there is also an Analysis Context

“Analysis” that contains three parameters differentiated with a number (1,2,3). These

numbers stand for different stages of analysis as seen in Figure:

Figure 72: Target value property rationale

The picture above shows that “Value” is fed into “A” and becomes “Value1,”

then “Value 1” is fed into “B” and becomes “Value2.” Finally, after going through the

last <<Critical Dimension>> “C” (<<constraint>>), it becomes “Value3.” All of these

runtime values (blue parameters) are required to maintain links to their initial classifier

(“Value”) and to keep the internal consistency of the model. However, as the <<slot>>

elements of instances specifications carry a link to their last classifier (called “defining

feature” in Figure), after two constraints calculations, the link of parameters to their

original classifier (Value) will be lost. To overcome this situation, in the present

implementation a <<Target Value Property>> stereotype has been created. This element

stereotype has a custom property called “Original Classifier” (shown in Figure 56) that

carries the original <<value property>> object from where <<Target Value Properties>>

170

were made. Then, the slot of the runtime value has a “defining feature.” The application

will query the defining feature, and request its “Original Classifier” object as shown in

Figure.

Figure 73: Specification of a slot that has a <<Target Value Property>> as its defining

feature.

171

Figure 74: Target Value Property with custom property "Original Classifier"

CAD-SysML Consistency Approach:

This is a complex matter because both representations (SysML and CAD) are not

mapped one-to-one on each side. On the one hand, the CAD representation is compliant

with all the fundaments and rules of solid modeling, which ensure the correct depiction of

three-dimensional objects in the Euclidian space. That is, faces, vertices, and features are

geometrically and unequivocally specified. On the other hand, the system model

representation of the CAD component could be a sub-set of the CAD entities. For

example, if, while importing, the stereotype filter is used and we uncheck the << NX

Coordinate System>> stereotype, the SysML representation will not include such CAD

entities. This is one of the characteristics of this integration – a SysML representation

helps to synthetize only what is important for a specific user in a specific context. This is

what we call a “view” of the model. Thus, the consistency analysis must be unidirectional

172

– obtain the first element on the SysML side, then determine if the element is available

on the CAD side. If not, it is a missing element and the mismatch must be added to the

consistency report. If it is, the user must compare parameters and values (names, values).

When differences are found, it is necessary to add those values to the consistency report.

In this approach, from each CAD part file we extract a list of components (if this part is

an assembly) and a list of features. Within the NX format, there is a directed relationship

between features – any given feature may have any number of feature parents and any

number of feature children. This structure is known as a Directed Acyclic Graph or

DAG. When extracting the list of features from a CAD part, this graph structure is

simplified into a tree as follows: perform a depth-first traversal of the feature graph

marking each visited node and add a node to our tree if it has not been visited previously.

A generic traversal routine has been implemented, which performs a simultaneous

traversal of a (possibly empty) MagicDraw tree and an extracted CAD tree. At each step,

the traversal routine maintains a pointer to a node in the MagicDraw tree and in the CAD

tree; it then examines the list of child nodes for each, and from these invokes first a

custom handler and then invokes itself recursively. The custom handler routine permits

an action specific to a given task to be performed at each node in the tree. For example,

during import the handler routine creates a new node and adds child nodes, while during

a consistency check the handler routine simply compares the information between the

nodes in the NX and MagicDraw trees and reports on inconsistencies. This routine will

have a dialog box allowing the user to pick the correct information while scrolling

through the inconsistency list (Figure). For each inconsistency, the user will have to

173

choose either the Siemens NX value, the SysML value, or do nothing (leave the

difference unresolved until later on the process).

These are the steps implemented for such a capability. Some are User Actions

(UA), some are Internal Actions (IA), and some are outcomes (O)):

1. UA: Right click on a SysML element with the stereotypes <<NXPart>> or

<<NXAssembly>>

2. UA: Click on “Execute CAD-SysML Consistency Analysis”

3. O: Show the message box “Checking Consistency”

4. IA: Execute analysis following the use cases shown in Figure

o If there is a SysML element and a CAD element, the system looks at the

SysML element and compares its values to the CAD element. If values

(names or numbers) are different, they are added to the consistency report.

o If there is not a SysML element, but there is a CAD element, the system

does nothing

o If there is a SysML element, but there is not a CAD element, the system

warns the user about the missing element by adding the inconsistency to

the report.

5. O: The report is presented on the screen (Figure).

174

Figure 75: Use cases for (NX- SysML) external consistency analysis

Figure 76: Consistency report example

Resolve CAD-SysML inconsistencies:

After inconsistencies are found by using the “Execute CAD - SysML Consistency

Analysis,” users can resolve inconsistences choosing between SysML and CAD data by

means of a custom “Resolve Model” tool created in this implementation. There are two

approaches built into the command: resolve all by selecting SysML or CAD, and resolve

175

one at a time by selecting SysML or CAD for each mismatch. This capability allows the

user to recover a broken SysML model by restoring consistency with its CAD

counterpart.

Figure 77: Resolve NX-SysML inconsistencies

6.12. Knowledge-Compliant Geometry Update

After the analysis and validations have been completed, the user will be able to

commit those changes in the CAD model. This action will generate a manufacturing

knowledge-compliant model that will include a complete assessment of manufacturing

specification, design specifications, and tolerances calculations of a building assembly.

Figure shows the main steps towards the knowledge-compliant geometry update from

the instances specification perspective.

176

Figure 78: Knowledge-compliant geometry update

1.The features parameters of the imported CAD geometry will inform the

calculation of knowledge-based material system-specific values. These values can be

<<Target Value Property>>, to be re-allocated into the CAD parameters; or

<<Performance Value Property>>, to be used as simultaneous feedback of specific

feature-independent metrics such as tolerances or clearances values. The results of these

calculations will be stored in <<Instances Specifications>> like the one showed in Figure

.

177

Figure 79: Instance specification element example

An instance specification is the manifestation of a <<block>> element. As seen in

Figure , an instance specification will be created from a “classifier” element. Also, the

instance specification will carry a value property for each parameter of its classifier.

Value properties applied to instances specifications are of the type <<slot>>, and can be

found in the “Owned Elements” field of the specifications box (Figure).

Figure 80: Details of instance specifications properties

178

2 and 3.<<Target Value Property>> and <<Performance Value Property>>

elements will be fed into Analysis 3 <<CAD-SysML Validation Context>> to verify that

the numeric values actually fulfill the intended requirements described in the

manufacturing and design specifications.

4. After being verified, the <<Target Value Properties>> parameters (revised

values from the CAD model) will be pushed out to <<Instances Specification>> elements

for storage, trade-off analysis, and geometry updating. These instances specifications are

storable copies of the original imported <<NXPartFeature>> elements. The only

difference is that <<Instances Specification>> blocks have a composite naming

convention, where the original feature name will be combined with the given name of the

instance separated by a colon (:) symbol as shown in Figure .

5. The revised parameter values of the instances specification will update their

<<block>> counterpart, which is the original imported <<NXPartFeature>>. This action

will push the value of each <<slot>> of the instance specification to upgrade the default

value of the original CAD feature. For example, in Figure the “PocketDia” feature value

of the imported CAD feature (7) will be replaced by the calculated “PocketDia” slot

value of the instance specification (7.0256). This action will be performed by using the

custom artifact “Updated Block Value Property from Instance” (Figure).

6. All new default values of the <<NXPartFeature>> parameters will be pushed

back to the NX CAD model for final geometry update.

Update Block Value Properties from Instances Results:

As previously explained in this section, the Update Block Value Properties from

Instance capability offers the option of populating the block structure of the model with

179

the values obtained from parametric calculations. Possibly, there will be several instances

that contain results from different parametric calculations. Those instances will be stored

in a folder with the name of the target block of the parametric execution (or other name),

under a folder “Executions Results.” Once the instances are stored, the user will be able

to right click that PartName.prt instance and apply the command “Update Block Value

Properties from Instance.” Then the application will traverse all instances blocks inside

the folder, return their block classifier (root block), look up value properties, and populate

the instance value property in the default value property of the blocks. As the instance

folder will contain only a subset of the elements of the block structure, the application

will not flag a missing component during this stage. The application will simply scan the

instance folder, look for the root, and update the root value. To commit new value

properties to the <<NXFeature>> parameters, the user will use the “Update Block Value

Properties from Instance” command shown in Figure .

Figure 81: Update block value properties from instance table

180

Update CAD model from SysML model:

This action will populate the CAD model with new value properties of features

(and potentially new names) from the SysML Model. Usually, this will happen after

executing parametric calculations on the SysML side. All parameters typed as target

values are sent back to the feature based SysML representation of the CAD model.

Finally, the command “Update CAD from SysML Model” will create the “Knowledge

Compliant Geometry.”

Figure 82: Update geometry procedure

Update SysML model from CAD model:

This action will populate a SysML model with new value properties of features

(and potentially new names) from the CAD Model.

Although this dissertation only addresses knowledge-based matters, there is great

potential for extensibility in several other areas of the building lifecycle. The next section

will introduce a SDCT sheet metal case study based on a real project where the proposed

approach has been tested for manufacturing.

181

CHAPTER 7: System Evaluation

7.1. Case study 2: Lower Chord Assembly, a QuadPod Solar Canopy

System

QuadPod is a three-dimensional truss racking and mounting system for largescale

photovoltaic (PV) power generation infrastructures. The system was developed as part of

the Georgia Tech Research Institute’s (GTRI) work as part of the United States

Department of Energy’s Sunshot program. In the third quarter of 2011, GTRI was

awarded a BOS-X award, as part of Sunshot’s broad initiative to revolutionize the solar

industry. GTRI researchers developed radical new products that would allow solar to

compete with other conventional energy sources by reducing projected labor costs and

boosting installation efficiencies [148].

The QuadPod system is universal and is predicated on the principles of large-scale

pre-assemblies and material reduction through the use of deep three-dimensional trusses.

PV modules are aggregated into a structural mega-array in a pre-assembly facility or

work area near the installation site, loaded onto lifting equipment, and deployed to the

site as a complete prefabricated system, thus moving the vast majority of assembly

activities into a central, controlled environment. The QuadPod system, as an architectural

product, enables multi-functional spaces, including covered work spaces, shaded parking

areas, and remote field hangars. The main premise is to be easily assembled on the

ground by nonspecialized local technicians. It yields 80 to 90 percent more kilowatts per

acre compared to conventional canopy systems, commanding the highest canopy-to-

ground coverage ratio [148].

182

Figure 83: QuadPod Canopy system V1

A Version 1 QuadPod system has been successfully designed using galvanized

sheet metal components and custom tooling and has been deployed in the field as a pilot

project. However, the excessive use of hardware, some structural issues, and the lack of a

scale manufacturing approach led to the development of QuadPod Version 2, where most

of the components were optimized for lean manufacturing and easier field installation.

The author of this dissertation has been appointed as lead designer for the optimization of

all the components of the system. The main challenges of this endeavor have been the

calculation of tolerances and clearances and the material reduction optimization through

engineering design. The general scope of the optimization process was defined as

follows:

 Standardization of lengths with respect to panel dimensions

 Ability to vary lengths of systems

 Reduction in part count and complexity

 Reduction of bolts and splices

This case study will test how applying the proper domain-specific knowledge to a

set of different parts of a sheet metal assembly can reduce the likelihood of tolerances

183

and clearances mismatches. To set a realistic scenario, all the components of the studied

assembly will be imported independently into the SysML environment. Despite the fact

that the present case study includes Single Domain Construction Tolerances (SDCT), the

simple restriction of importing the components independently emulates the circumstance

where all assembly parts come from different sources, different vendors, or different

applications, which was the case for the QuadPod project. Another restriction of the

exercise is the need to design every part at its nominal value, and to follow the default

settings of the feature-based capabilities of the CAD software. For example, bending radii

of formed parts have been left as suggested by the CAD application. Thus, all

components will perfectly fit in the CAD environment. In the end, after running design

and manufacturing specifications for each independent, dimensionally-nominal

component of the assembly, all components will be collected together in a non-linked

assembly to assess the results of the analysis.

Restrictions of the exercise:

 Components will be modeled as nominal, which means clearances will be zero

and fastener holes will be modeled as the nominal value of the bolt, among other

nominal conditions.

 Components will be independently imported to the SysML platform. Mating

conditions, fastening features, and their clearances will be calculated independent

of geometry, based on design and manufacturing specifications stored in the

SysML environment.

Parts to be tested:

 Inner lower chord

184

 Outer lower chord

 Lower chord stiffener

 Upper chord hat stiffener

 Upper chord splice

 Transversal welded plate

These six components will be assessed from a manufacturing standpoint and four

will be also evaluated from a design specifications standpoint (assembly clearances). The

four components to be evaluated for assembly clearances belong to a critical and

repetitive node of the structure that showed tolerances issues in the previous design.

Figure shows the general geometric situation of the assembly clearances exercise. Figure

, Figure , and Figure show the three different kinds of construction knowledge addressed

in this dissertation, which will be further decomposed in an additional analysis.

Figure 84: Different knowledge for a critical assembly design

The nominal depiction of the studied assembly is shown in Figure and Figure . It

should be noted, especially from Figure , that the CAD assembly has been modeled with

nominal fit, as assembly clearances cannot be identified among the components.

185

Figure 85: Knowledge integration for a critical assembly design

Figure 86: Nominal geometry for the studied assembly

186

7.1.1. Structural decomposition of the studied components

Structural decomposition of the six QuadPod components chosen for this case

study are shown in Figures 87-92.

Figure 87: Diagonal Hat Stiffener: feature-based decomposition

187

Figure 88: Lower Chord Stiffener: feature-based decomposition

188

Figure 89: Inner Lower Chord: : feature-based decomposition

189

Figure 90: Outer Lower Chord: feature-based decomposition

190

Figure 91: Transversal Welded Plate: feature-based decomposition

191

Figure 92: Upper Chord Splice: feature-based decomposition.

7.1.2. Knowledge Allocation of the Four Components of the Studied

Assembly

The following pictures show the results of the knowledge allocation stage. In this

section a picture with a Knowledge Allocation Matrix and a picture with the

representation in context of the feature-linked manufacturing specifications and design

specifications will be given for each of the four components of the assembly.

192

Figure 93: Inner Lower Chord Knowledge Allocation Matrix

Figure 94: In-context Knowledge Allocation: Inner Lower Chord

193

Figure 95: Lower Chord Stiffener Knowledge Allocation Matrix

Figure 96: Lower Chord Stiffener with allocated manufacturing and design specifications

194

Figure 97: Outer Lower Chord Knowledge Allocation Matrix

Figure 98: In-context Knowledge Allocation Outer Lower Chord

195

Figure 99: Transversal Welded Plate Knowledge Allocation

Figure 100: Transversal Welded Plate: with allocated manufacturing and design

specifications

196

7.1.3. Parametric Executions of SDCT: Manufacturing and Design

Specifications

The following figures show the specific analysis context of each of the four

components of the QuadPod assembly being studied. For each component, the results of

the parametric executions of the SDCT are also presented. For easy visual access to the

components of the parametric diagram a simple color code is used. At the left, in a light

yellow-brown color, are the imported CAD values and features needed for the parametric

calculations. At the center, in a bright yellow color, the knowledge-based constraints and

critical dimensions are connected to the CAD parameters through binding connectors

specified as “real.” At the right, in a dark brown color, are the <<Target Value

Property>> elements and in a blue color, the <<Validation Value Property>> elements.

These components are also connected to the knowledge-based constraints by means of

binding connectors, which are typed as real for numeric values and Boolean for

validation values.

197

Figure 101: Parametric execution analysis context for SDCT Inner Lower Chord

For all the parametric execution results tables, custom icons have been created for

easy visual access during results evaluation. Target values will later replace the default

values imported from the CAD model for a final knowledge-based geometry update. At

this point of the analysis, target values have been evaluated for knowledge and

manufacturing compliance.

198

Figure 102: SDCT parametric execution results for Inner Lower Chord

199

Figure 103: Parametric execution analysis context for SDCT Lower Chord Stiffener

Figure 104: SDCT parametric execution results for Lower Chord Stiffener (failed)

200

Figure shows a parametric execution where some validation values have not been

met. In this case, the user will check the names of the validation values that did not pass

specification verifications (e.g. HoleDisToEdge) and search for the constraint with a

similar name to verify what values are not in compliance with the specification.

Figure 105: SDCT parametric execution results for Lower Chord Stiffener (passed)

These situations must be verified by the user, as some specifications changes

could potentially create a conflict in the CAD model. For instance, a hole feature that is

too close to the edge will not pass the HoleDisToEdge verification. However, if the

201

feature were moved to comply with that rule, it would potentially create an alignment

mismatch with a feature that belongs to a different component of the assembly. In the

Figure , the values have been reviewed and the part is now in compliance with all

manufacturing rules.

Figure 106: Parametric execution analysis context for SDCT Outer Lower Chord

202

Figure 107: SDCT parametric execution results for Outer Lower Chord

Figure 108: Parametric execution analysis context for SDCT Transversal Welded Plate

203

Figure 109: SDCT parametric execution results for Transversal Welded Plate (passed)

7.1.4. QuadPod Node Assembly HCT evaluation

Figure depicts a general description of the QuadPodNode_Assembly being

studied. After the SDCT analyses have taken place, all components (NXPart) will be

brought together to analyze clearances and assembly tolerances by means of an HCT

evaluation.

Figure 110: Feature-based decomposition: QuadPod: assembly level

204

As depicted at the far left in Figure , features and parameters from all four

components of the assembly are included in this clearances and tolerances assessment of

multi-nested parts. As seen at the far left side of the diagram, some parameters shown in a

dark brown color are also inputs. These elements are the products of previous SDCT

calculations.

Figure 111: Parametric execution analysis context for assembly clearances: HCT for

QuadPod assembly

This scenario exemplifies how the presented approach can accommodate nested

analyses. It should also be noted that the “outer-inner chord:

Nested_Fit_Clearance_AnalysisContext_TEMPLATE” has been framed as a single

element with all its internal structure shown as a white box. This approach facilitates the

205

allocation of repetitive analyses and also enables an easy binding procedure by showing

all internal ports of nested knowledge-based constraints.

 Figure depicts the results of clearances and tolerances allocations for the entire

assembly, although no target or validation values are visible. This situation occurs when

all analyses contained in the parametric diagram are actually nested from other analyses

or pasted as independent white boxes. However, in the red box in Figure , three nested

analyses are shown. Accessing the useful data of these analyses is not a mandatory step.

Alternatively, if the user follows the suggested process and applies the custom commands

to commit the analyses results back to the CAD file, no human inspection will be

required. Yet, if the user needs to inspect the evaluated parameters, double clicking in

any of these nested analyses will display the hidden data.

Figure 112: Lower Chord Node_AssemblyClearances_HCT general analysis results

206

Figure 113: Expanded Inner Chord - Lower Chord Stiffener analysis results

207

Figure 114: Expanded Inner Chord - Outer Chord analysis results

7.1.5. QuadPod Node Assembly: Feature-Based Components Update

Based on Analyses Results

The following tables show the comparison of CAD parameters values before and

after the knowledge-based manufacturing and design specifications analyses.

208

Table 4: Outer Lower Chord CAD update results

N Expression Name

Expression Original

Definition

Expression

Original Value

Expression Knowledge-

Allocated Value

1 Base_Width 200 200 193.75+7 = 200.75

2 Flange1_BendRadius 1 1 3.51

3 HoleCenterEndDis 6*25.4 152.4

4 HoleDia1 Hole_Dia 15.875 16.51

5 HoleDia2 Hole_Dia 15.875 16.51

6 HoleDia3 Hole_Dia 15.875 16.51

7 HoleDisSmalFl2 HoleDisSmallFl 94.6

8 HoleDisSmallFl 94.6 94.6

9 HoleDisToEdge Hole_X_Offset 50.8

10 HoleToHoleDis 263.2 263.2

11 Hole_Dia 15.875 15.875 16.51

12 Hole_X_Offset 50.8 50.8

13 Length 3317.638+101.6-4.3383414.85

14 MaterialThickness 3.51 3.51

15 SM_Validation_MIN_Punch_Tool_Clearance5 5

16 SM_Validation_MIN_WEB_LENGTH 5 5

17 Sheet_Metal_Bend_Radius 3 3 3.51

18 Sheet_Metal_Flat_In_Corner_Value 0.1 0.1

19 Sheet_Metal_Flat_Out_Corner_Value 0.1 0.1

20 Sheet_Metal_Material_Thickness 3 3

21 Sheet_Metal_Neutral_Factor 0.33 0.33

22 Sheet_Metal_Relief_Depth 3 3

23 Sheet_Metal_Relief_Width 3 3

24 [degrees]Side1_Angle 90 90

25 Side1_Offset 0 0

26 Side1_length 196.18 196.18

27 [degrees]Side2_Angle 90 90

28 Side2_BendRadius 1 1 3.51

29 Side2_Length 196.18 196.18

30 Side2_Offset 0 0

31 [degrees]SmallFl2_Angle 90 90

32 SmallFl2_Length 19.05 19.05

33 SmallFl2_BendRadius 1 1 3.51

34 [degrees]SmallFl_Angle 90 90

35 SmallFl_Length 19.05 19.05

36 SmallFl_Radius 1 1 3.51

209

Table 5: Lower Chord Stiffener CAD update results

N Expression Name

Expression Original

Definition

Expression

Original Value

Expression Knowledge-

Allocated Value

1 BaseWidth 185.96 185.96 185.2905

2 BoltDia5_8 (CenterBolt_Dia) 15.875 15.875 16.718

3 CentHoleDisToEnd 165.25 165.25

4 CenterHoleDia2 25.4 25.4 26.624

5 CenterHole_Dia 25.4 25.4 26.624

6 CornerRadius 10 10

7 CutLength 90 90

8 CutWidth 70 70

9 DisToBend 34.28 34.28

10 DisToEdge 130.25 130.25

11 HoleDisToBend 49.5 49.5

12 HoleToCenter_Dis 95 95

13 HoleToEdgeDis BaseWidth/2 92.98

14 MaterialThickness 12.7 12.7

15 PattDisDir_1 85 85

16 PattDisDir_2 -85 -85

17 PattNumInsDir_1 2 2

18 PattNumInsDir_2 2 2

19 Radius 10 10

20 SIdeFl_Offset 0.0 // Used By ... 0

21 SM_Validation_MIN_Punch_Tool_Clearance5 5

22 SM_Validation_MIN_WEB_LENGTH5 5

23 SdeFl_BendRadius 1 // Used By ... 1 12.7

24 Sheet_Metal_Bend_Radius 3 3

25 Sheet_Metal_Flat_In_Corner_Value 0.1 0.1

26 Sheet_Metal_Flat_Out_Corner_Value 0.1 0.1

27 Sheet_Metal_Material_Thickness 3 3

28 Sheet_Metal_Neutral_Factor 0.33 0.33

29 Sheet_Metal_Relief_Depth 3 3

30 Sheet_Metal_Relief_Width 3 3

31 [degrees]SideFl_Angle 90.0 // Used By ... 90

32 SideFl_Length 142 142

33 SideFl_Neutral Sheet_Metal_Neutral_Factor // Used By ...

210

Table 6: Inner Lower Chord CAD results update

N Expression Name

Expression Original

Definition

Expression

Original Value

Expression Knowledge-

Allocated Value

1 Base_Width 192.98 192.98 186.7037 + 7 = 193.7037

2 Flange1Length 193 193

3 HoleCenterEndDis 6*25.4 152.4

4 HoleDia1 Hole_Dia 15.875 16.51

5 HoleDia2 Hole_Dia 15.875 16.51

6 HoleDia3 Hole_Dia 15.875 16.51

7 HoleDisEnd Hole_X_Offset 50.8

8 HoleDisSmallFl2 HoleDisSmallFlange 98.5

9 HoleDisSmallFlange 98.5 98.5

10 HoleToHoleDis 263.2 263.2

11 Hole_Dia 15.875 15.875 16.51

12 Hole_X_Offset 50.8 50.8

13 MaterialThickness 3.51 3.51

14 [degrees]SIdeFlange1BendAngle 90 90

15 SIdeFlange1BendRadius 1 1 3.51

16 SIdeFlange1Offset 0 0

17 Sheet_Metal_Bend_Radius 3 3

18 Sheet_Metal_Flat_In_Corner_Value 0.1 0.1

19 Sheet_Metal_Flat_Out_Corner_Value 0.1 0.1

20 Sheet_Metal_Material_Thickness 3 3

21 Sheet_Metal_Neutral_Factor 0.33 0.33

22 Sheet_Metal_Relief_Depth 3 3

23 Sheet_Metal_Relief_Width 3 3

24 [degrees]SideFlangeAngle 90 90

25 SideFlangeLength 193 193

26 SideFlangeOffset 0 0

27 SideFlangeRadius 1 1 3.51

28 [degrees]SmallFlAngle 90 90

29 SmallFlLength 23.5 23.5

30 SmallFlOffset 1 1

31 SmallFlBendingRadius 1 1 3.51

32 SmallFl_Length 23.5 23.5

33 SmallFl_Radius 1 1 3.51

34 TotalLength 3317.638+101.6-4.338 3414.85

211

Table 7: Transversal Welded Plate CAD update results

Figure shows the before and after knowledge-based manufacturing and design

specifications allocations. Before analyses, all geometry is modeled with nominal

dimensions such as sizes for bolts and thicknesses and nominal fits for assemblies. The

following list offers a summary of the material-specific design and manufacturing

constraints automatically applied to the CAD geometry for this case study:

 SDCT hole clearances for all bolts sizes were applied

 SDCT coating hole clearances for all hot-dip galvanized components were applied

 SDCT bending radii were calculated based on material thickness and geometry

context

 SDCT contours of nested shapes were calculated to avoid clashes

 SDCT cut-to-edge distances for cutout features were validated

 SDCT cut-to-bend distances for cutout features were validated

 HCT clearances were calculated and applied for all nested components

 HCT tolerances of clearances based on RSS, WC, were calculated

N Expression Name

Expression Original

Definition

Expression

Original Value

Expression Knowledge-

Allocated Value

1 CenterBolt_DisToSide 80.3 80.3

2 CornerRadius 1 1 16.7

3 CutOutCornerRadii 10 10

4 CutOut_Height 25.4*1.5 38.1

5 CutOut_Width 90 90

6 MaterialThickness 12.7 12.7

7 Sheet_Metal_Bend_Radius 3 3

8 Sheet_Metal_Flat_In_Corner_Value 0.1 0.1

9 Sheet_Metal_Flat_Out_Corner_Value 0.1 0.1

10 Sheet_Metal_Neutral_Factor 0.33 0.33

11 Sheet_Metal_Relief_Depth 3 3

12 Sheet_Metal_Relief_Width 3 3

13 TotalHeight 140 140 131.5333

14 TotalWidth 160.6 160.6 152.1333

15 CenterBolt_Dia 25.4 25.4 27.248

212

 HCT plus/minus, mean, and centered tolerances were calculated for all assembly

clearances

Figure 115: Before and after design and manufacturing knowledge analysis and allocation

Figure 116: Studied QuadPod assembly after fabrication and erection

213

Figure 117: Final result of QuadPod structure that includes the studied parts and assembly

7.2. Case study 3: Multi-material Assembly: Steel frame, Pre-Cast, Cast-

in Place, PVC Window

This case study is intended to demonstrate the manufacturing compliance

functionality of the developed application in a multi-material assembly. The same case

study was previously conducted through a different tolerances analysis method developed

by the author. In that study, the main objective of the analysis was to create “virtual, as-

built” geometry of assemblies to assess possible scenarios of dimensional variability. To

reach that outcome, the previous approach used SolidWorks design tables to specify

ranges of variability of critical dimensions based on information about tolerances and

clearances. The design-table-based system (Figure) produced five areas of possible

variation – nominal dimensions, worst case and best case scenarios based on tolerances

specification, and the RSS max and RSS procedures). In addition, for each of the

assembly dimensions identified as “critical,” an independent random case (n) was

applied.

214

Figure 118: Possible scenarios of variability based on standard tolerances calculations

In the “virtual, as-built” experiment, when CAD geometry was modified by

applying tolerances directly as dimensional constraints, some parts kept the “coincidental

mate” condition, but parts that changed at least one dimensional attribute did not keep the

same level of assembly consistency. This situation generated breaks in the assembly tree

definition and, as a result, the entire topology of the assembly failed. In this case,

simulations broke the model because certain parametric as-built-like modifications

created unfixable topological inconsistencies in the solid model. For example, conflicting

mating conditions for the same components or paradoxical operations broke sketches of

some features. Another issue with this past experiment was the complexity of the

assembly. Most tools and methods for tolerances allocation work very well on single

components. However, when numerous groups of object and features are analyzed, the

number and complexity of parameters and geometric constraints grows exponentially.

Furthermore, the numbers of parameters that a simple assembly can reach and keep

consistent is a persistent challenge of the solid modeling domain. [38] explains how a

very small detail of precast concrete can yield numerous different parameters and

relations (Figure). To keep consistency in this kind of assembly, those parameters and

their internal relations must be defined by domain experts. Overlooking this restriction

215

generates constant failures of the assemblies when one parameter is updated without

considering all the domain-specific implications. The semantic validity of a model can

only be judged by a domain expert. Incorrect (or “absurd”) design situations are obvious

to a human viewer, but are amorphous and thus very difficult to identify algorithmically

[38]. To overcome the issues learned from the previous approach, for the new

methodology, we have created manufacturing-compliant nominal geometry, of

heterogeneous material assemblies, based on material-specific knowledge. This approach

is expected to provide domain-specific semantics that will keep the unambiguous CAD

representation in compliance with manufacturing rules and design specifications.

Figure 119: It's critical that sketches are fully constrained to maintain the integrity of the

model when applying parametric modifications within SysML

A proper balance among constraints is necessary in order to get a fully-defined

object. If the constraints of a solid model are not enough to define an object, we call it

under defined, and if the object has more constraints that it needs, the object is over

defined. Both under and over defined objects can lead to semantic contradictions and

modeling inconsistencies. The present implementation aims to control the constraints

216

balance by only evaluating rules coming from material-specific knowledge into well-

defined, fully-constrained, solid models. This means, there will not be topological

modifications started outside a fully-defined CAD model.

Parametric model of the assembly

The first activity of this exercise was the development of a parametric model for

the assembly. For each element of the system, all geometric features that must be

described for a complete model will be created in the CAD application and then imported

into the SysML environment for analysis.

Restrictions and assumptions for the exercise:

 Components will be modeled as nominal, which means clearances will be zero

and lengths will be at their ideal value, for all material systems.

 Only manufacturing, tolerances, and clearances will be assessed. Although other

parameters or behaviors such as gravity can be incorporated in this approach, they

will not be part of the scope of this exercise.

 Off-the-shelf standard dimensions for all components will not be considered.

Rather, all components will be understood as custom made for the specific

assembly. This condition will ensure total geometric freedom for features updates

for each material system to their ideal.

 Components will be independently imported to the SysML platform. Mating

conditions, fastening features, and their clearances will be calculated independent

of geometry, based on design and manufacturing specifications stored in the

SysML environment.

217

 Based on the current practice of light-gauge steel framing, which allows a case-

by-case field fastening, this exercise will not consider hole locations.

Parts to be tested and their material domain:

 BottomTrack: Sheet metal SDCT

 TopTrack: Sheet metal SDCT

 Headers : Sheet metal SDCT

 Planks: Pre-cast concrete SDCT

 ShortStudBottom: Sheet metal SDCT

 ShortStudTop: Sheet metal SDCT

 ConcreteSlab: Cast in place SDCT

 Stud: Sheet metal SDCT

 StudJamb: Sheet metal SDCT

 StudShortHeader: Sheet metal SDCT

 Window: PVC windows SDCT

218

Figure 120: Wall Assembly with context-specific issues about material systems: tolerances:

and clearances to be identified during the case study

7.2.1. Material Systems

Light-gauge framing:

The recommended tolerances from several standard and know-how sources state

that plumbness and the level of studs must be within 1/960 of the span, or 1/8 inch (3mm)

per 10 feet. ASTM C840 [115] requires that the attachment surface of any member shall

not vary more than 1/8 inch from the plane of the faces or adjacent framing members.

The Gypsum Association also states that adjacent fastening surfaces of framing or furring

should not vary more than 1/8 inch. Previous specification guides from the Metal

Lath/Steel Framing Association (ML/SFA) also recommended the same tolerances as

219

ASTM C1007. The 1/8 inch (3mm) per 10 feet tolerance is consistent with the substrate

requirements for other finish materials, such as some types of ceramic. ASTM C754

requires that spacing of studs and other framing members vary no more than 1/8 inch

from the required spacing and that the cumulative error does not exceed 1/8 inch (3mm).

This is to ensure that the edge of a piece of gypsum board has sufficient bearing on half

of a stud for fastening.

Concrete slab tolerances:

SDCT for concrete are applied to physical dimensions such as thickness, length,

width, squareness, and location and size of openings. They are determined by economical

and practical production considerations, and functional and appearance requirements. For

this classification we identify two main kinds of concrete surfaces. First, formed surface

is a surface requiring formwork to provide shape and texture/finish to the concrete.

Second, unformed surface is a surface that does not require formwork to provide either

shape or finish to the surface, for example, the top surface of slabs or pavements. These

surfaces generally have to meet two independent tolerances the “flatness” of the surface

and variation from the designed elevation called “levelness”. Flatness is the deviation of

the surface from a straight line joining two points on the surface. Levelness (height

tolerance) is the permitted vertical variation of the surface from a fixed external reference

point or datum. Level alignment tolerances of the top surface of the slab are important

because it is in this surface where the bottom track profile that will support the metal

structure will be assembled. From Standards, over the entire surface of the slab, all points

must fall within an envelope of ¾ inch (19mm) above or below the ideal (nominal) plane.

Flatness is also relevant to ensure the correct fix of the bottom track of the metal framing.

220

From Standards, fatness of a slab that will require a proper level of flatness to fix a track

profile without creating gaps must fall within ¼ inch (6mm) and ½ inch (13mm).

Hollow‐core concrete plank:

Allowable dimensional tolerance for the hollow-core concrete blocks based on

ASTM standards is a general 1/8 inch (3mm) from the actual dimension . This includes

width, height, and length. However, in practice the units are manufactured to a 1/16 inch

(1.6 mm) tolerance. For non-load-bearing concrete blocks, the face shell thickness cannot

be less than ½ inch (13mm). For concrete building bricks, the face shell thickness

tolerance is 1/8 inch (3mm). In addition, the total variation in finished face dimensions of

prefaced unit cannot exceed 1/16 inch between the largest and the smallest unit in any lot

of each size. The distortion of the plane and edges of the face or prefaced unit from the

corresponding plane and edges of the concrete unit cannot exceed 1/16 inch (1.6mm).

PVC Windows:

This section includes the standards and dimensions for PVC windows that are

manufactured according to the Windows Institute. It is very often seen that windows and

doors present issues with installations and operations due to tolerances problems. Some

of the specifications for tolerances are the results of tests using mechanical equipment

such as ventilators to check gaps between framing parts. For residential units it should

not be possible to insert a feeler gauge 0.031 inch thick between the inside contacts or

freely insert a 0.020 inch feeler gauge between more than 40 percent of the contacts. For

the framing sections, these must be constructed so that the glass in each window will lie

in the same plane within a tolerance of ¼ inch. For the frame members I applied a

deflection tolerance that is not bigger than 1/175 of the span of the member. Outside

221

frame members must be designed to lap masonry at least ½ inch. This last condition has

not been applied to the actual model.

For this experiment, the critical matter is to know how the assembly analysis

determines if all the parts will fit together. In particular, we are concerned with

determining if an assembly is an interchangeable assembly. An assembly is an

interchangeable assembly if none of the constituent parts interfere with each other in their

assembled positions for any possible set of parts that are manufactured to within specified

tolerances (Figure). For instance, Figure shows that before the analyses, several

components are interfering with each other, which means it is not an interchangeable

assembly due to assembly tolerances and clearances that have not been well specified.

From the interferences presented in Figure , we are interested in those labeled as “(Hard)”

as they refer to physical clashes. The interferences labeled as “(Touching)” are not

critical as they could exist based on components aggregation strategies during assembly.

222

Figure 121: Interference check before analyses

7.2.2. Features Decomposition

This section presents the feature-based structural decomposition of the eleven

wall components chosen for this case study. In SysML, diagrams are built from imported

CAD models stored in the containment tree of MagicDraw. Figure shows a fully

imported CAD model in the MagicDraw containment tree (browser). Thus, the creation

of diagrams based on models imported in the browser offers another option for filtering

223

the features tree without interfering with the underlying topological structure of the

model (Figure).

Figure 122: Full import of a sheet metal component

224

Figure 123: TopTrack: feature-based decomposition

Figure 124: Bottom Track: feature-based decomposition

225

Figure 125: Headers: feature-based decomposition

Figure 126: Pre-cast Plank: feature-based decomposition

226

Figure 127: ShortStudBottom: feature-based decomposition

Figure 128: ShortStudTop: feature-based decomposition

227

Figure 129: SlabConcrete: feature-based decomposition

Figure 130: Stud: feature-based decomposition

228

Figure 131: StudJamb: feature-based decomposition

Figure 132: StudShortHeader: feature-based decomposition

229

Figure 133: Window: simplified feature-based decomposition

7.2.3. Knowledge Allocation of the Four Components of the Studied

Assembly

The following pictures show the results of the knowledge allocation stage. In this

section a diagram with a Knowledge Allocation Matrix and a diagram with the

representation in context of the feature-linked manufacturing specifications and design

specifications will be given for each of the eleven components of the wall assembly.

230

Figure 134: BottomTrack: Knowledge Allocation Matrix

Figure 135: BottomTrack: with allocated Manufacturing and Design Specifications

231

Figure 136: Headers: Knowledge Allocation Matrix

Figure 137: Headers with allocated Manufacturing and Design Specifications

232

Figure 138: Precast Plank: Knowledge Allocation Matrix

Figure 139: Precast Plank with allocated Manufacturing and Design Specifications

233

Figure 140: ShortStudBottom: Knowledge Allocation Matrix

Figure 141: ShortStudBottom with allocated Manufacturing and Design Specifications

234

Figure 142: ShortStudTop: Knowledge Allocation Matrix

Figure 143.: ShortStud with allocated Manufacturing and Design Specifications

235

Figure 144: SlabConcrete: Knowledge Allocation Matrix

Figure 145: SlabConcrete with allocated Manufacturing and Design Specifications

236

Figure 146: Stud: Knowledge Allocation Matrix

Figure 147: Stud with allocated Manufacturing and Design Specifications

237

Figure 148: StudJamb: Knowledge Allocation Matrix

Figure 149: StudJamb with allocated Manufacturing and Design Specifications

238

Figure 150: Stud_ShortHeader: Knowledge Allocation Matrix

Figure 151: Stud_ShortHeader with allocated Manufacturing and Design Specifications

239

Figure 152: TopTrack: Knowledge Allocation Matrix

Figure 153: TopTrack with allocated Manufacturing and Design Specifications

240

Figure 154: Window: simplified Knowledge Allocation Matrix

Figure 155: Window with allocated Manufacturing and Design Specifications

241

7.2.4. Parametric Executions of SDCT: Manufacturing and Design

Specifications

The following figures show the specific analysis context diagrams of each of the

eleven components of the wall assembly being studied. For each component, the results

of the parametric executions of the SDCT are also offered. As in previous examples, it is

important to pay attention to the performance values (gauge icon) and target values

(target icon) in the parametric executions results pane. Performance values will serve as

tolerances and clearances specifications for shop drawings, and target values will update

their CAD classifier parameters as “new nominal” information. Furthermore, as a

convention, target values can hold the same name of their original classifier, or can be

called as “CentDim,” which stands for “centered dimension.”

Figure 156: Parametric Execution Analysis Context for SDCT Bottom Track

242

Figure 157: SDCT Parametric Execution results for Bottom Track

Figure 158: Parametric Execution Analysis Context for SDCT Headers

243

Figure 159: SDCT Parametric Execution results for Headers

Figure 160: Parametric Execution Analysis Context for SDCT ShortStudBottom

244

Figure 161: SDCT Parametric Execution results for Short Stud Bottom

Figure 162: Parametric Execution Analysis Context for SDCT ShortStudTop

245

Figure 163: SDCT Parametric Execution results for ShortStudTop

Figure 164: Parametric Execution Analysis Context for SDCT Stud

246

Figure 165: SDCT Parametric Execution results for Stud

Figure 166: Parametric Execution Analysis Context for SDCT StudJamb

247

Figure 167: SDCT Parametric Execution results for Stud Jamb

Figure 168: Parametric Execution Analysis Context for SDCT StudShortHeader

248

Figure 169: SDCT Parametric Execution results for Stud Short Headers

Figure 170: Parametric Execution Analysis Context for SDCT TopTrack

249

Figure 171: SDCT Parametric Execution results for Top Track

Figure 172: Parametric Execution Analysis Context for SDCT Precast Plank

250

Figure 173: SDCT Parametric Execution results for Precast Plank

Figure 174: Parametric Execution Analysis Context for SDCT Concrete Slab

251

Figure 175: SDCT Parametric Execution results for Concrete Slab

Figure 176: Parametric Execution Analysis Context for SDCT PVC Window

252

Figure 177: SDCT Parametric Execution results for PVC Window

7.2.5. Wall Assembly HCT evaluation

Figure shows a general description of the wall assembly being considered in this

third case study. After all the SDCT analysis have been executed, it is time to get all

components (NXPart) together to evaluate clearances and assembly tolerances by means

of a HCT procedures of all the involved material systems.

Figure 178: Wall Assembly: case study 3

253

Figure 179: Wall Assembly clearances evaluation HCT Analysis Context 1: for the first

group of nested components: Bottom Track: Stud: and StudJamb

254

Figure 180: Wall Assembly Analysis Context 1 results: for the first group of nested

components: Bottom Track: Stud: and StudJamb

255

Figure 181:Wall Assembly clearances evaluation HCT Analysis Context 2: for the second

group of nested components: Top Track: Stud: and Stud_ShortHeader

256

Figure 182: Wall Assembly Analysis Context 2 results: for the second group of nested

components: Top Track: Stud: and Stud_ShortHeader

257

Figure 183: Wall Assembly clearances evaluation HCT Analysis Context 3 for the second

group of nested components: StudShortHearders: Headers: and Window

Figure 184: Wall Assembly Analysis Context three results: for the third group of nested

components: StudShortHearders: Headers: and Window

258

7.2.6. Wall Assembly: Feature-Based Components Update based on

Analyses Results

The following tables show the comparison of CAD parameters values before and

after the knowledge-based manufacturing and design specifications analyses. The new

values (green) have been sent to the CAD application for geometry update.

Table 8: Bottom Track CAD results update

Table 9: Stud CAD results update

259

Table 10: Window CAD results update

Table 11: Top Track CAD results update

Table 12: StudShortHearders CAD results update

260

Table 13: Concrete Slab CAD results update

Table 14: Headers CAD results update

Table 15: Short Stud Bottom CAD results update

261

Table 16: Short Stud Top CAD results update

Table 17: Precast Plank CAD results update

262

Table 18: Stud Jamb CAD results update

The following list offers a summary of the material-specific design and

manufacturing constraints automatically applied to the CAD geometry of the present wall

assembly case study:

 SDCT Precast joint clearances were specified

 SDCT Precast groove features were applied

 SDCT bending radii were calculated based on material thickness and geometry

context

 SDCT contours of nested shapes were calculated to avoid clashes

 SDCT Cast-in-place dimensional variability was applied

 SDCT Window clearances were calculated

 HCT clearances were calculated and applied for all nested components

 HCT tolerances of clearances based on RSS, WC, were calculated

263

 HCT plus/minus, mean, and centered tolerances were calculated for all assembly

clearances

Figure 185: Wall assembly interference check after geometry update

After the analyses have been performed and the updated values have been sent

back to the CAD application, a new interference check analysis will be executed (Figure

). It’s important to mention that no CAD value was modified within the NX environment.

All modification come directly from the SysML model and has been executed by the

developed application. Figure shows the evident difference in the number of

interferences found before and after manufacturing analysis. Twenty-six hard clashes

were identified before the analyses and only four after analyses. Also, the number of

touching conditions was dramatically reduced. The focus of this dissertation was not

CAD clashes, as they can be produced by many factors (bad design, for instance).

However, the identification of clashes and further automatic correction based on applied

knowledge of clearances and tolerances is not trivial. The hard interferences reduction

happened because manufacturing knowledge was prescribed for each component. This

knowledge was represented as manufacturing specifications, corrected bending radii,

components lengths, and angles of flanges, among others. Also, touching conditions were

264

reduced because assembly knowledge, as with design specifications, was applied to

several critical mating conditions of the assembly. This knowledge prescribed proper

clearances for nested elements, installation of windows, and clearances for material

system boundaries. Some examples of these improvements can be seen in Figure .

Figure 186: Interference check comparison: before and after manufacturing analysis

265

Figure 187: detail examples of some geometric updated after manufacturing and tolerances

analyses

266

CHAPTER 8: Evaluation of the Proposed Implementation

Chapter 8 presents the evaluation of the application developed in this dissertation.

the first subsection restates the three case studies included in the evaluation. Then, the

four evaluation methods are introduced. For each of these methods, a brief explanation

about the specific evaluation goal is offered. Further in the chapter, the positive aspects of

the developed application are enumerated. At the end, unanticipated issues and

resolutions of compliance analysis implementation and the potential for future

advancement of the implementation are discussed

8.1. General

This dissertation has developed a framework for the integration of construction

tolerance data into CAD models and three case studies to demonstrate and evaluate the

main functionalities of the proposed implementation:

1. A cylindrical fit study among three telescopic components with two different

material systems (cast-in-place concrete and steel);

2. A multi-feature, four-component, single-material (sheet metal) assembly of an

architectural photovoltaic racking structure called QuadPod;

3. A light-gauge wall assembly with eleven components and four concurrent

material systems (cast-in-place concrete, precast concrete, light-gauge framing,

and PVC windows);

The main focus of each test has been the execution of five critical stages of the

proposed framework: (1) feature-based structural decomposition, (2) knowledge

267

acquisition/allocation, (3) parametric execution, (4) knowledge validation, and (5) CAD

geometry update. The goal for these case studies has been to assess the functionality of

the automated geometric modifications implemented to demonstrate the integration of

geometric and process knowledge to CAD through SysML. The set of elements and rules

to perform this analysis have been created as a SysML profile or Domain Specific

Language (DSL). This profile or DSL defines the elements, languages and processes

from which to form and evaluate the studied models. The approach is based on the

assembly> part> feature> parameter> value standard to describe geometry as seen in

most solid modeling applications [40]. Although the definitive validation of the proposed

modeling framework will require a more comprehensive analysis, including several

comparisons between CAD and built geometry, for this dissertation, four complementary

evaluation methods were applied:

1. Evaluation with manufactured parts: A large set of press-broken and stamped

manufactured steel parts for the QuadPod were fabricated using the methodology

of the proposed approach, then sent directly to the site without a preliminary fit-

up in the factory. Some components, which were thought to be well-designed

were inadvertently left out of the case-study, that is, they were designed using

conventional expert judgement but not treated to the system-based allocation of

GD&T. These components of the structure, which were not included in the

analysis, created minor installation conflicts. on site – but these were able to be

accommodated due to appropriate tolerances in the other parts . The assembly was

determined to be “easily buildable” by the installation crew. Also, the assembly

268

crew stated that the specified clearances were such that there was no need to use

mallets or other typical field-adjusting techniques.

2. Evaluation with validation values built to assess the compliance of the

geometry with domain-specific manufacturing, tolerances, and clearances: In

addition to verification of dimensional (numerical) constraints, the validation

value stereotypes created for this implementation acted as a critical component of

the knowledge verification stage. By means of nested Booleans (true/false), these

value properties were able to traverse an entire integrated CAD-SysML model

and verify that performance and target values met the intended specification.

3. Evaluation comparing parameters before and after parametric executions:

The before and after value properties obtained from the CAD model were

compared in design tables included in in Chapter 7. Using the updated values, and

after CAD modifications were committed to the model, interference analyses

were completed (see particularly the Wall Assembly case study in Chapter 7).

Although, an interference analysis might produce incidental benefits that improve

several issues due to modeling mistakes, this is not the focus of this dissertation.

However, it was obvious after the exercise that by combining geometry and

knowledge, several conflicting tolerances and clearances issues can be avoided.

Identifying the clash is not helpful enough. We also need to understand why it

was produced, and how to fix it. Furthermore, in the Wall Assembly case study,

most of the interferences were automatically fixed after the manufacturing

compliance analysis.

269

4. Evaluation by comparing the proposed methodology with another approach

of modeling geometric variability for construction: The wall assembly case

study had been previously developed using a “virtual as-built” modeling

approach. This previous approach randomly selected a parameter value from five

different values coming from typical tolerances calculations (RSS, WC, LLt, ULt,

nominal)16. The previous approach failed to meet several of the assembly

constraints due to a lack of topological consistency among the randomly selected

values, for each critical dimension, after the parameters were altered. The new

approach has proven to keep the same internal CAD topological consistency

before and after modifications have been done on the critical dimensions.

After all these complementary systems evaluations have been performed the

following sections address the results in three relevant categories:

1. Positive aspects of the implementation,

2. Manufacturing data obtained from the case study analyses,

3. Unanticipated issues and resolutions of Compliance Analysis implementation,

and

4. Potential for Future Advancement of the Implementation.

16 RSS: Root Square Sum. WC: Worst Case scenario. LLt: Lower Limit of tolerance. ULt: Upper

Limit of tolerance. Nominal: Nominal geometry.

270

8.2. Positive Aspects of the Implementation

As discussed in this dissertation, one of the central problems of a tolerances

modeling and allocation framework for the building industry is that rules and values of

tolerances specifications are not provided in a geometric-specific context. Hence, for this

implementation, tolerances allocation is performed as a factor of the critical dimension to

be evaluated (case-based tolerances allocation). Another important matter of a

multidisciplinary domain such as building construction is that tolerances and clearances

data are either missing or fragmented during the design process. Therefore, for this

implementation, it has been necessary to create data continuity by defining special

modeling elements that can be programmatically concatenated in a single set of

procedures that requires little user input, In other words, the parametric model of the

nominal geometry are created with the a priori knowledge that the manufacturing

compliance analysis would update the geometry, and the model had to be built with this

in mind. This approach is meant to ensure that text-based requirements can be

automatically mapped onto geometric features. And so at a general level, the main

practical functionalities of the proposed application are:

 Adding knowledge-compliant, feature-oriented, case-based tolerances and

clearances to the CAD model;

 Automatically assessing manufacturability of parts and assemblies to identify

possible fabrication conflicts;

 Upgrading “nominal geometry” by adding feature-oriented considerations based

on material-system-specific engineering and manufacturing knowledge; and

271

 Evaluating and validating tolerances and clearances specified for parts and

assemblies.

In the evaluation stage in Chapter 7, numerous SysML diagrams have been

created for each case study. They represent knowledge, structure, and behavior. These

diagrams are not only graphic representations of an underlying object-oriented

programming language, but also an intuitive way to combine geometric and non-

geometric information in a unified language. This is one of the strengths of this

implementation. Because knowledge is stored in encapsulated elements or blocks, they

are easy to apply and combine with other elements stereotypes through SysML

associations. Furthermore, this evaluation demonstrates the application of these reusable

blocks of manufacturing knowledge to assess geometric variability and tolerances

allocation. These blocks, described as <<Design Specification>> or <<Manufacturing

Specification>> in the NXProfile, contain the rationale of specific tolerances or

manufacturing rules and are automatically enforced through binding associations to

specific CAD features. The results of design and manufacturing specifications analysis

have been successfully converted in one of the following value types:

 Target values that are calculated values taken from the CAD structure and come

back to the CAD structure as updated values;

 Validation values that are Booleans that verify that a specific rule has been met

with a “true” or “false” statement; and

 Performance values that are computed real values that do not belong to a any

specific CAD feature, but are used to verify some dimensional constraint or to

272

inform some part of the process or create shop drawings (for example, RSS or

WC values).

8.3. Manufacturing data obtained from the case study analyses

The following list describes the data available to the user after performing the

manufacturing compliance evaluation proposed in this framework:

 Tolerances and clearances specifications for each evaluated

feature/component/assembly;

 Rationale regarding tolerances, clearances, and manufacturability through text-

based requirements and specifications, which can be easily accesses from the

system model;

 Mathematical expressions that assess geometry through manufacturing

knowledge;

 Performance assessments that verify in real-time the quality of clearances of an

assembly; and

 Automatically suggested manufacturing specifications based on assigned

materials of the CAD model (this information is displayed in specifications

allocation matrices).

8.4. Unanticipated issues and resolutions of Compliance Analysis

implementation

A Siemens NX assembly has the same .prt file extension of a single part.

However, in an assembly, the files (.prt) contains other files (.prt) as children, which are

the components of the assembly. Based on the original approach of creating an empty

273

folder for each <<NXPart>> element to store updated instances from parametric

execution, an error was identified. The reason for this error was that adding SysML

packages17 to blocks defies the topological internal structure of the SysML language.

This problem was fixed by creating instances folders at the top level of any CAD import

execution.

Also, during early versions of the implementation, the application understood

intentional filtering of stereotypes as “inconsistencies.” Rather, filtering stereotypes is

intended to reduce the complexity of the model to keep only what is relevant for a

specific “view,” but still maintaining the topological structure of the model.

Furthermore, when a feature name was changed in SysML and the consistency analysis

was executed, the application loses its mapping ability. This means, the one-to-one

comparison breaks at the renamed feature and for this reason, everything after the break

is understood as an inconsistency. This problem was also fixed by using underlying

references to the elements without considering their current name. Rather, for this we

updated the process by assigning a GUID that belongs to every CAD element imported in

SysML.

17 A package is the model element that correspond to a “folder,” which is used to store any kind of

model elements and diagrams in SysML.

274

8.5. Current Challenges of the Implementation

Parametric modeling is largely used in the design and manufacture of parts and

assemblies for engineering and construction. However, the development of highly

complex models of parts and assemblies can lead to failures in the automation of

processes or in the implementation of constraints. This procedure requires from the

designer/modeler a deep understanding about how to specify fully constrained models to

make meaningful analyses using the proposed tool. When multiple sets of parts and

object-behaviors are considered, the complexity of parameters can lead to performance

degradation or the propagation of mistakes.

The tolerances evaluation on assemblies is not a typical practice in parametric

modeling – and the literature contains not enough guidelines on how to implement

GD&T within a parametric modeling environment. Certain common features within

parametric solids models do not work well with compliance analysis developed here. For

example, features are often generated as patterns. The location of these patterned features

cannot be applied separately for each instance of the pattern as a single parameter

manages all of the instances. Although, it is possible to create pattern tolerances relations

within the SysML model, bringing variability of pattern parameters back to the CAD

model remains a challenge. For the purpose of this dissertation, every component has

been modeled as separate entity.

Another important consideration to improve the proposed framework is naming

semantics. At this point of the implementation, obtaining meaningful analyses requires

designers to be consistent in the way they name features and parameters. This situation

occurs because the user is responsible for accurately connecting constraints parameters to

275

CAD parameters by means of binding connectors. A more intuitive (or automated) way to

make such connection would enhance the robustness of the system, while reducing

modeling time.

8.6. The Role of the System Architect

Similar to the functions of a BIM manager, which deal specifically with IT

interoperability, the proposed framework requires an actor that assumes all the

responsibilities for the creation of SysML integration profiles, and proper knowledge

allocation during coordination of trades and stakeholders. Also, besides modeling

integration, another important functions of the systems architect is knowledge integration.

This task involves the creation and maintenance of design specifications and standards

based on data collected from the different stakeholders of the project. With this domain-

specific knowledge, another important task arises: automation of all routines that will

ensure that the required knowledge is properly applied during design and analysis. This

task includes knowledge allocation to the imported models, and the creations of reusable

analysis contexts (model views) that will assess the compliance of the building geometry.

For the systems architect, a proper coordination with all stakeholders is critical,

especially at the beginning of the project when all data needs to be collected and properly

conveyed from every actor and material system. After all models have been

imported/linked the systems architect will guarantee that knowledge verification (e.g.

SDCT and HCT analyses) is executed right on time to meet project schedule of to discuss

corrective actions with the trade-specific design teams. The following SysML activity

Diagram depicts an example of project coordination centralized in the system architect

roles to explain how this new actor fits with current activities of the BIM workflow.

276

F
ig

u
re

 1
8

8
,

S
y

st
em

 E
n

g
in

ee
r
 P

ro
ce

ss
 M

a
p

277

CHAPTER 9: Conclusions

This dissertation has developed a feature-based, knowledge-aided modeling

framework that integrates a parametric CAD tool with a system modeling platform to

assess geometric variability and manufacturability in building construction. Furthermore,

the work facilitates the representation of material-specific knowledge across different

material systems to help designers identify conflicting manufacturing requirements and

specifications This framework provides high-level descriptions of tolerances

requirements and manufacturing specifications on the system model side, which becomes

a low-level description of feature-based (geometric) tolerances allocation on the CAD

side. Complex tolerances calculations are performed by a mathematical engine and then

automatically allocated in the CAD model. In addition to the computational

implementation that demonstrates the proposed compliance analysis framework, this

dissertation provides a comprehensive review of tolerances for building design,

engineering and construction that clarifies the methods of GD&T, and identifies those

methods that best suited for model-based integration. The dissertation also provides a

review of model-based systems engineering and its associated modeling language,

SysML.

This project was motivated by the obvious fact that nominal geometry is not

achievable during construction stages, a fact that is exacerbated by the fact that designers

using CAD/BIM tools have few tools by which to virtually assess the build-ability of

their designs. This condition leads to drawbacks affecting cost, schedule, and quality of

buildings. This situation occurs due to the multi-party nature of the construction lifecycle,

the highly stochastic outcomes from construction processes, and the heterogeneousness

278

and complexity of building assemblies. From a computational perspective, the lack of

common ground between design and construction stages when developing design

specifications, the lack of manufacturing-specific knowledge available for designers in

the early stages of design, the lack of manufacturing compliance and verification methods

for BIM models, and the lack of multidisciplinary consistency among tools and

stakeholders are also identified as main causes of inaccuracies in construction. This

dissertations argues that the aforementioned problems can best be addressed in the

context of an integrated knowledge-modeling platform. The thesis was demonstrated

through the development a model-centric architecture that enabled the integration of

dissimilar domain-specific tools in a single platform and modeling language, SysML. The

developed implementation focused on model integration and model consistency among

System Engineering models, mathematical engines, and BIM (CAD) models.

9.1. Research Questions and Hypothesis

 RQ1: It is possible to represent and store machine-readable manufacturing

knowledge to parametrically assess manufacturability and tolerances of CAD

geometry in the early stages of building design?

Yes. Most of the technical knowledge about material systems, such as tolerances

and clearances, material standards, building codes, and other documents that contain

manufacturing know-how describe manufacturing and design rules as a mathematical

expression, logical expression, or simple numeric values (dimensions). This condition is

critical to establish machine-readable protocols for three reasons:

279

1. Mathematical and logical expressions are highly interoperable, which means they

are easily transferred between geometric and non-geometric tools through

standard programming protocols.

2. The storing of mathematical or logical expressions, which can be adapted to

formally represent a piece of manufacturing knowledge, is the central

characteristic of the <<constraints>> SysML modeling element. The

<<constraints>> stereotype also allows straightforward connectivity with text-

based requirements and specification by means of dependency associations. This

condition enables the coexistence of a text-based rationale (Requirements or

specifications) and its mathematically-described assessment tool (Constraint

blocks).

3. The depiction of a point set, as a CAD shape, by a single real-valued function of

point coordinates is a traditional problem of analytical geometry that is based on

mathematical, logical, and topological expressions [149]. Furthermore, in

parametric solid modeling, mathematics allows the independent handling of each

CAD feature parameter. Through the feature-based structural decomposition

approach developed in this dissertation, CAD geometry has been successfully

translated from a geometry-based environment (in Siemens NX) to a non-

geometry based environment. In the latter, the combination of the numeric

depiction of parametric CAD geometry with the <<constraints>> elements has

allowed the integration of knowledge-based and geometric features, which has

been the main focus of this project.

280

 RQ2: It is possible to develop a computationally integrated modeling framework

among Model Based Systems Engineering models, mathematical engines, and

BIM (CAD) models?

Yes, the high level of generality of the SysML language, which enables the

formal representation of the data structure of almost any engineering tool by means of

SysML profiles or Domain Specific Languages (DSL) has allowed the computational

integration of MagicDraw SysML, Siemens NX, and Maplesoft Maple. This integration

has been developed through a JAVA application that accesses the API modules of each of

the integrated tools. Although the integration of MagicDraw SysML with Maple has

recently been included in Maple 18 by18 Maplesoft, at the start of this dissertation, there

was very little work done on the integration of SysML with NX or any other CAD

package. Thus, the proposed SysML-CAD integration framework is an important

contribution to the engineering domain as it allows better geometric-centered analysis

and optimization.

 RQ3: Can we predict conflicting tolerances interactions among different material

systems from different vendors before creating building assemblies on the site?

Although the results described here are positive, to fully answer this question,

more testing must be done. So far, four different evaluation procedures have been

18 Part of the Maple-Siemens NX integration work developed by the author of this dissertation has

been included in the version 18 of Maple, which is commercially available.

281

executed (see Table 19, below). The results of each evaluations supports the conclusion

that the framework is an effective tool to predict conflicting tolerances interaction.

Definitive case studies that tracked fabrication of similar (or identical) building systems,

composite of several multi-material building assemblies, and the validated against their

built instances, would be the ultimate proof.

From the case studies presented here, it is clear that the developed implementation

has identified and automatically corrected several manufacturing knowledge-related

interferences of the multi-material, nominally-designed wall assembly. In addition, the

QuadPod case study considered several processes of the structural steel and sheet metal

domains such as metal forming, metal cutting, assembly clearances and fastening,

galvanizing, and others. Although steel sheet metal and structural steel are both of the

same underlying material they are use fabrication procedures, which adds a level of

heterogeneity to the case study.

Table 19: Validation procedures

Then, restating and separating this dissertation hypothesis on its constituting parts

we can confirm:

The seamless integration of parametric CAD geometry with a system-level

modeling environment (a) allows the feature-based allocation of manufacturing

specifications (b), based on material-specific knowledge and processes constraints (c),

282

and also identifies complex conflicting interactions of tolerances (d) across multi-

material building assemblies(e).

9.2. Contributions

This dissertation contributed to the BIM and architectural design fields by

developing and implementing a knowledge-based modeling framework to assess

manufacturability and identify/prevent negative tolerances interaction in the

manufacturing and assembly of building components. In addition, the dissertation

contributed to the systems engineering and computer science fields by demonstrating a

system modeling platform, integrated into a CAD application, through a novel model-to-

model transformation approach.

9.2.1. Expected research contributions of the present dissertation

Innovative model-to-model transformation methodology:

This general contribution for construction and engineering aims for the

development of a structural, feature-based decomposition approach of parametric CAD

models into System Models. This method programmatically integrates two different data

structures (but could be any number) by recreating the meta-model of the CAD

application through a graph-based representation in SysML. This machine

readable/executable framework links feature-based geometry to manufacturing know-

how through knowledge-based mathematical and logical constraints. Although many

project have been completed to integrate engineering analysis with SysML, none of them

has successfully integrated feature-based parametric CAD geometry.

Domain expert advice about manufacturing and assembly processes:

283

This contribution to the construction field enables the programmed allocation of

material-specific knowledge for components and assemblies based on geometric context

and material type. The integration of specific features of geometric data with a system

modeling tool allows rule-based design and solve operations that otherwise require

extensive manual data interpretation and translation. Furthermore, linking features

(geometry and function) and manufacturing knowledge in the same interface allows

designers to develop a better understanding of the impact of their design actions. This

platform encourages the designer to link CAD features to <<requirements>>, <<design

specifications>>, and <<manufacturing specifications>> to verify different levels of

project compliance. The methodology is clearly extensible to domains beyond that of

geometric tolerancing and compliance analysis.

One truth, multiple model views:

This contribution to the engineering and construction domains centralizes project

requirements, geometry, evaluation, and design specifications in a single integrated

modeling environment. Much work in the development of BIM tools that support

architectural design, including much of the work at Georgia Tech, has focused on the

development of workflows that involve multiple translations of data. But these

translations, even when tightly scripted, often suffer from the loss of sematic clarity. The

model integration developed in this dissertation provides geometric data to numerous

domain-specific tools – in a bi-directional manner.

Finally, it is argued that reinforcing a system-level semantic layer on the BIM

environment will facilitate the representation of geometric and non-geometric

interactions of a building project. For example, this methodology, based on a central

284

model (system model), enables the integration of several model views and tolerances

analysis from different vendors. This approach can potentially replace the current

industry standard that specifies tolerances allocation as a separate task for each material

system.

Model consistency method:

The implementation of an on-demand model-to-model and tool-to-tool

consistency assessment and model data update will hopefully lead to better model

consistency, and at least the automated identification of inconsistencies between different

abstractions of the model. This feature in the present framework has been established due

to the fact that many of the negative interactions among building components are caused

by data fragmentation and inconsistencies among different model views and tools.

9.3. Recommendations for Future Research and Development

Although, important contributions of this dissertation can be recognized from the

previous section 9.2.1., there is still a long way to go to achieve a fully automated

integration of knowledge and geometry.

Automatic allocation of variational data on shop drawings is an opportunity for

further development. In this dissertation, all manufacturing-compliant parameters that

belong to the CAD geometry are seamlessly updated from SysML. This is, the outcome

of the evaluation is a “manufacturing-compliant, design-compliant nominal geometry.”

However, the complete variational data of tolerances and clearances values such as WC,

RSS, centered dimensions, LL, UL, plus/minus, are stored in the SysML tables obtained

from the analyses results. Although this approach greatly helps to convey variational data

more efficiently than the current state of the art, the ability to automatically add

285

variational data within shop drawings would produce a greater level of automation and

model consistency.

Also, this dissertation has seamlessly integrated one CAD (BIM) application into

a system model environment. Furthermore, this dissertation has proven that this kind of

integrations is possible by translating the meta-model (data structure) of the CAD

application into a DSL (profile) in SysML. However, if more BIM tools need to be

integrated, it will require a specific DSL and implementation code for each of them.

Although, this approach is feasible and replicable, it would be more effective to create a

single application/DSL that can translate any CAD package into a system model

environment. Likewise, this project did not deal with interoperability in the sense of

creating neutral files to go from one CAD package to another. Rather, what this project

proposes is the simultaneous integration of disparate modeling environments without the

need of an exchange file. Still, I envision an nonproprietary integration approach that can

incorporate any CAD by means of a “standard integration method,” which would

probably use the IFC19 or STEP descriptive methods as foundation for this translation.

Finally, domain-specific feature-based modeling environments, as sheet metal of

Siemens NX, are critical for a knowledge-based integration. It is unlikely that

19 The Industry Foundation Classes (IFC) data model describe building and construction industry

data. It is a platform neutral, open file format specification that is not controlled by a single vendor or group

of vendors.

286

manufacturing knowledge will refer to a virtual geometric entity (a point or a line) as

they are representational, but not existent in the real world. Rather, manufacturing

knowledge refers to features, which are a set of virtual modeling elements that create

design intent on their topological aggregation. Unfortunately, feature-based design tools

have only created domain-specific modeling environment for few material systems,

mostly for aerospace or automotive engineering. Then, an important research area would

be the integration of several other construction-specific feature based modeling

environments in current parametric modeling tools.

9.4. Concluding Remarks

This dissertation has covered several aspects of the building construction domain.

The understanding and prevention of construction variability is a complex matter that

involves not just geometry, but also a deep familiarity with each of the building

component manufacturing and assembly processes. For each material system, there are

people that develop and advance this knowledge throughout their entire lives – and the

expert knowledge of these actors are embodied, but not completely nor consistently, in

design and construction specifications. This fact makes the design of building parts and

the assembly of these parts scenario even more complex. We can highlight this

complexity by imagining the lifecycle of a specific feature on a specific part – and ask a

series of questions.

 How is a single feature created?

 What are the processes from which this feature can be built?

 Based on different manufacturing processes available, how different will be our

feature when finally built?

287

 Which are other features will the feature be linked to?

 How do we know if our feature is meeting a design requirement or a specification

requirement?

 How do we know what will happen to an assembly if our feature is changed?

Ultimately, how do we know if our feature will be what we want our feature to

be?

To answer these questions requires an immense amount of knowledge in

countless fields, and yet, based on the unsolvable modeling uncertainty that motivated

this research, we will never get an absolute answer. And so, considering this scenario, the

goal of this dissertation has not been to gather all construction knowledge and make it

automatically available, as this would be an endless endeavor. Rather, the goal of this

dissertation has been to create a platform for this knowledge to be gathered, stored and

applied by means of innovative computational workflows, which are both coordinated

and consistent.

The cheapest construction inaccuracy to fix is the one that you prevented. The

sole success of this goal has required advancements in different aspects of BIM and the

systems engineering domain. The specific focus of this project, manufacturing

compliance and construction tolerances, have been surveyed from different perspectives

so that the meta-requirements for modeling the knowledge are understood. There are,

however, still many aspects of building semantics, behaviors, and workflows that have

not been considered in this work. In the future, a complete representation of the building

as a whole system will capture all functional and behavioral interactions that occur across

different domains and stages of the building lifecycle. This ideal scenario will result in

288

not just tolerances attributable to fabrication accuracy but also behavioral considerations

that affect their variation. With proper development, the framework proposed by this

dissertation could create a new kind of building design paradigm: A modeling

environment that virtually and simultaneously brings to the table all domain experts,

anytime that building feature is created.

289

APPENDIX 1: Implementation Code:

Controller:

ContaintmentTreeContextPopConfigurator:

package gov.nasa.jpl.imce.sysmlnxsync.controller;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.ImportNXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.ImportNXPartWithFilte

r;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.InternalUpdate;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.InternalValidate;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.LinkNXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.ResolveNXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.UpdateFromNXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.UpdateToNXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.actions.ValidateAgainstNXPart

;

import java.util.Collection;

import com.nomagic.actions.ActionsManager;

import

com.nomagic.magicdraw.actions.BrowserContextAMConfigurator;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import com.nomagic.magicdraw.ui.browser.Tree;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.InstanceSpe

cification;

290

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

/**

 * Configuration of the pop up menu that appears when

right clicking in the containment browser

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class ContainmentTreeContextPopConfigurator

implements BrowserContextAMConfigurator {

 private static final boolean

isPackageWithInstanceChildren(Object object) {

 if (!(object instanceof Package)) {

 return false;

 }

 Package userPackage = (Package)object;

 // Check if it has any children which are

properties

 Collection<Element> children =

userPackage.getOwnedElement();

 for (Element child : children) {

 if (child instanceof

InstanceSpecification) {

 return true;

 }

 }

 return false;

 }

 /**

 * Configure the containment browser context menu

- you can extend this by adding more classes that

 * extend class MDAction

 */

 @Override

 public void configure(ActionsManager

actionsManager, Tree tree) {

 // You may want to do some checks here to

see which element is currently selected

 // E.g. if you want to check whether a

package was selected, you can write something like

291

 // if(tree.getSelectedElement() instance of

Package) { ...

 Object userObject =

tree.getSelectedNode().getUserObject();

 Application.getInstance().getGUILog().log("userObject

" + userObject);

 Project project =

Application.getInstance().getProject();

 if (userObject instanceof Package) {

 actionsManager.getLastActionsCategory().addAction(new

ImportNXPart());

 actionsManager.getLastActionsCategory().addAction(new

ImportNXPartWithFilter());

 if

(isPackageWithInstanceChildren(userObject)) {

 actionsManager.getLastActionsCategory().addAction(new

InternalUpdate());

 actionsManager.getLastActionsCategory().addAction(new

InternalValidate());

 }

 } else if (userObject instanceof Class) {

 Class userClass = (Class)userObject;

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 if

(StereotypesHelper.hasStereotype(userClass,

nxPartStereotype)) {

 actionsManager.getLastActionsCategory().addAction(new

UpdateToNXPart());

 actionsManager.getLastActionsCategory().addAction(new

UpdateFromNXPart());

 actionsManager.getLastActionsCategory().addAction(new

LinkNXPart());

292

 actionsManager.getLastActionsCategory().addAction(new

ValidateAgainstNXPart());

 actionsManager.getLastActionsCategory().addAction(new

ResolveNXPart());

 }

 }

 }

 @Override

 public int getPriority() {

 return 0;

 }

}

293

PluginMain:
package gov.nasa.jpl.imce.sysmlnxsync.controller;

import

com.nomagic.magicdraw.actions.ActionsConfiguratorsManager;

import com.nomagic.magicdraw.core.Project;

import com.nomagic.magicdraw.plugins.Plugin;

import

com.nomagic.magicdraw.plugins.ResourceDependentPlugin;

/**

 * Main entry point into the plugin

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class PluginMain extends Plugin implements

ResourceDependentPlugin {

 public static final boolean DEBUG = true;

 /**

 * Perform any potentially necessary cleanup when

the plugin is unloaded

 */

 @Override

 public boolean close() {

 return true;

 }

 @Override

 public String getPluginName() {

 return "SysMLNXSync";

 }

 @Override

 public String getPluginVersion() {

 return "1.0";

 }

 /**

 * This function is called after isSupported()

has been called. Any initialization

 * should be done at this point

 */

 @Override

 public void init() {

 // Smoke test: show a message dialog

294

 ActionsConfiguratorsManager.getInstance().addContainme

ntBrowserContextConfigurator(

 new

ContainmentTreeContextPopConfigurator()

);

 }

 @Override

 public boolean isPluginRequired(Project p) {

 return false;

 }

 /**

 * isSupported allows for pre-loading checks to

be performed, i.e. one could check at

 * this point whether NX is installed and return

false if that is not the case

 */

 @Override

 public boolean isSupported() {

 return true;

 }

}

295

NXConnection:

MapleNXEngine:

package gov.nasa.jpl.imce.sysmlnxsync.nxconnection;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Collection;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import com.maplesoft.externalcall.MapleException;

import com.maplesoft.openmaple.Algebraic;

import com.maplesoft.openmaple.Engine;

import com.maplesoft.openmaple.EngineCallBacksDefault;

import com.maplesoft.openmaple.MString;

import com.sun.xml.bind.StringInputStream;

/**

 * Implementation of NX connection using open maple

interface

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class MapleNXEngine implements NXEngine {

 private static Engine engine;

 private static void initializeMaple() {

 // Create a new Maple Engine object

 try {

 if (engine == null) {

 String[] mapleEngineArgs = new

String[0];

 //mapleEngineArgs[0] = "java";

 engine = new

Engine(mapleEngineArgs, new EngineCallBacksDefault(), null,

null);

296

 }

 }

 catch (MapleException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 public MapleNXEngine() throws

NXConnectionException {

 try {

 initializeMaple();

 engine.restart();

 String cmd = "CAD:-NX:-

OpenConnection():";

 engine.evaluate(cmd);

 engine.evaluate("[foo], [bar];");

 } catch (MapleException me) {

 throw new NXConnectionException();

 }

 }

 @Override

 public void closeConnection() {

 try {

 engine.evaluate("CAD:-NX:-

CloseConnection();");

 engine.evaluate("[foo], [bar];");

 } catch (MapleException me) {

 me.printStackTrace();

 }

 }

 @Override

 public boolean closePart(NXPart part) {

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public Collection<String> getComponentList(NXPart

part) {

 // TODO Auto-generated method stub

 return null;

 }

297

 @Override

 public Collection<NXExpression>

getExpressions(NXPart part) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public Collection<NXFeature> getFeatures(NXPart

part) {

 // TODO Auto-generated method stub

 return null;

 }

 @Override

 public Collection<NXExpression>

getParameterInfo(NXPart part) {

 String filename = part.getPath();

 try {

 String mathml =

((MString)engine.evaluate("MathML:-

ExportPresentation([seq([x,CAD:-NX:-

GetParameterValue(x,form=\"NX\")], x in CAD:-NX:-

GetParameterNames(\"" + filename.replace("\\", "\\\\") +

"\"))]);")).stringValue();

 Collection<NXExpression> params =

parseMathML(mathml);

 return params;

 } catch (MapleException me) {

 me.printStackTrace();

 }

 return null;

 }

 @Override

 public String getUniqueIdentifier(NXPart part) {

 Algebraic result;

 String filename = part.getPath();

 try {

 result =

engine.evaluate("GetPartUID(\"" + filename.replace("\\",

"\\\\") + "\");");

 return result.toString();

 } catch (MapleException me) {

 me.printStackTrace();

298

 }

 return null;

 }

 @Override

 public boolean isConnected() {

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public NXPart openPart(File file) {

 return openPart(file, false);

 }

 @Override

 public NXPart openPart(File file, boolean

recurse) {

 NXPart result = null;

 System.out.println("opening part " + file);

 String filename = file.getAbsolutePath();

 try {

 engine.evaluate("CAD:-NX:-OpenPart(\""

+ filename.replace("\\", "\\\\") + "\"):");

 result = new NXPart(filename, filename

);

 } catch (MapleException me) {

 me.printStackTrace();

 }

 return result;

 }

 private Collection<NXExpression> parseMathML(

String mathml) {

 DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

 DocumentBuilder db = null;

 try {

 db = dbf.newDocumentBuilder();

 } catch (ParserConfigurationException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 Document dom = null;

 try {

 dom = db.parse(new StringInputStream(

mathml));

299

 } catch (SAXException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 org.w3c.dom.Element docElement =

dom.getDocumentElement();

 org.w3c.dom.Node rootNode =

docElement.getFirstChild();

 NodeList nl = rootNode.getChildNodes();

 if (nl == null) {

 return new ArrayList<NXExpression>();

 }

 int parLen = 0;

 org.w3c.dom.Node child;

 parLen = nl.getLength();

 String key, val;

 Collection<NXExpression> params = new

ArrayList<NXExpression>();

 for (int i=0; i < parLen; i++) {

 org.w3c.dom.Node pair = nl.item(i);

 child = pair.getFirstChild();

 key = child.getTextContent();

 val =

child.getNextSibling().getTextContent();

 params.add(new NXExpression(key, val,

null));

 }

 return params;

 }

 @Override

 public boolean renameFeature(NXPart part, String

oldName, String newName) {

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public boolean renameParameter(NXPart part,

String oldName, String newName) {

300

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public boolean savePart(NXPart file) {

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public boolean setParameterInfo(NXPart part,

Collection<NXExpression> params) {

 String name;

 try {

 Algebraic result = null;

 for (NXExpression param : params) {

 name = param.getName();

 result = engine.evaluate("CAD:-

NX:-SetParameterValue(\"" + name + "\", \"" +

param.getValue() + "\"):");

 //engine.evaluate("[foo], [bar];"

);

 //System.out.println("CAD:-NX:-

SetParameterValue(\"" + paramNames.get(i) + "\", \""

+paramValues.get(i) + "\"):");

 }

 return true;

 } catch (MapleException me) {

 me.printStackTrace();

 }

 return false;

 }

 @Override

 public boolean setParameterValue(NXPart part,

String param, String value) {

 // TODO Auto-generated method stub

 return false;

 }

 @Override

 public boolean setWorkPart(NXPart part) {

 // TODO Auto-generated method stub

 return false;

 }

}

301

NXClientEngine:

package gov.nasa.jpl.imce.sysmlnxsync.nxconnection;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import java.io.BufferedReader;

import java.io.File;

import java.io.IOException;

import java.io.InputStreamReader;

import java.io.StringReader;

import java.util.ArrayList;

import java.util.Collection;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

import com.maplesoft.externalcall.MapleException;

import com.maplesoft.openmaple.Algebraic;

import com.maplesoft.openmaple.Engine;

import com.maplesoft.openmaple.EngineCallBacksDefault;

import com.maplesoft.openmaple.MString;

import com.nomagic.magicdraw.core.Application;

/**

 *Implementation of NX connection using NX client

binary

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class NXClientEngine implements NXEngine {

 private static String mapleDir;

 private static Engine mapleEngine;

 protected final static boolean TESTINPUT = false;

 static {

302

 initializeMaple();

 }

 private static String[] buildCommandArray(String

cmd, String args) {

 String[] cmdArray = new String[4];

 cmdArray[0] =

String.format("%s\\run_managed.exe",

System.getenv("UGII_ROOT_DIR"));

 cmdArray[1] =

String.format("%s\\nxclient.exe", mapleDir);

 cmdArray[2] = cmd;

 cmdArray[3] = args;

 return cmdArray;

 }

 private static void initializeMaple() {

 if (TESTINPUT) return;

 String[] mapleEngineArgs ={"java"};

 Algebraic result;

 // Create a new Maple Engine object

 try {

 if (mapleEngine == null) {

 mapleEngine = new

Engine(mapleEngineArgs, new EngineCallBacksDefault(), null,

null);

 mapleEngine.restart();

 result =

mapleEngine.evaluate("kernelopts(bindir);");

 if (result instanceof MString) {

 mapleDir =

((MString)result).stringValue();

 }

 }

 }

 catch (MapleException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 private static final boolean isOkay(String result

) {

 return "okay".equals(result);

 }

303

 private static final String quote(String s) {

 return "\"" + s + "\"";

 }

 private boolean _isConnected = false;

 public NXClientEngine() throws

NXConnectionException {

 String result = runNXClient("ping", "");

 boolean connected = result.equals("NX

Okay");

 if (!connected) {

 throw new NXConnectionException();

 }

 }

 private String buildExpression(Element element) {

 if

("expression".equalsIgnoreCase(element.getTagName())) {

 return

element.getAttribute("description");

 } else {

 return null;

 }

 }

 private NXFeature buildFeature(Element element) {

 if

("feature".equalsIgnoreCase(element.getTagName())) {

 String name =

element.getAttribute("name");

 String type =

element.getAttribute("type");

 String customName;

 if (element.hasAttribute("customname")) {

 customName =

element.getAttribute("customname");

 if (customName == "") customName =

null;

 } else {

 customName = null;

 }

 NXFeature feature = new NXFeature(name,

type, customName);

 NodeList nodeList =

element.getChildNodes();

304

 for (int i = 0; i < nodeList.getLength();

i++) {

 Node node = nodeList.item(i);

 if (node.getNodeType() ==

Node.ELEMENT_NODE) {

 Element child = (Element)node;

 String childName =

child.getTagName();

 if

("feature".equalsIgnoreCase(childName)) {

 NXFeature childFeature =

buildFeature(child);

feature.addChild(childFeature);

 } else if

("expression".equalsIgnoreCase(childName)) {

 name =

child.getAttribute("name");

 String val =

child.getAttribute("value");

 feature.addExpression(name,

val);

 }

 }

 }

 return feature;

 }

 return null;

 }

 @Override

 public void closeConnection() {

 _isConnected = false;

 }

 @Override

 public boolean closePart(NXPart part) {

 return isOkay(runNXClient("closepart",

quote(part.getPath())));

 }

 @Override

 public Collection<String> getComponentList(NXPart

part) {

 String result =

runNXClient("get_component_list", quote(part.getPath()));

 String[] components = result.split(";");

305

 ArrayList<String> arr = new

ArrayList<String>();

 String strim;

 for (String s : components) {

 strim = s.trim();

 if (strim.length() > 0) {

 arr.add(strim);

 }

 }

 return arr;

 }

 @Override

 public Collection<NXExpression>

getExpressions(NXPart part) {

 return getParameterInfo(part);

 }

 @Override

 public Collection<NXFeature> getFeatures(NXPart

part) {

 String result;

 if (TESTINPUT) {

 result = returnTestInput();

 } else {

 result = runNXClient("get_features",

quote(part.getPath()));

 }

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("getFeatures

" + part.getPath());

 Application.getInstance().getGUILog().log("[COMPONENTS

: input " + part.getName());

 Application.getInstance().getGUILog().log("[COMPONENTS

: output " + result);

 }

 Document doc = (result != null ? parseXML(

result) : null);

 if (doc == null) {

 return null;

306

 }

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("DOCUMENT

OK");

 }

 NodeList nodeList = doc.getChildNodes();

 if (nodeList.getLength() == 0) {

 return null;

 }

 // The first node will be the part node

 Node partNode = nodeList.item(0);

 if (partNode.getNodeType() !=

Node.ELEMENT_NODE ||

!("part".equalsIgnoreCase(((Element)partNode).getTagName())

)) {

 return null;

 }

 // nodeList is the list of children of the

part node

 nodeList = partNode.getChildNodes();

 ArrayList<NXFeature> features = new

ArrayList<NXFeature>();

 for (int i = 0; i < nodeList.getLength(); i++)

{

 Node node = nodeList.item(i);

 if (node.getNodeType() ==

Node.ELEMENT_NODE) {

 NXFeature feature = buildFeature(

(Element)node);

 if (feature != null) {

 features.add(feature);

 }

 }

 }

 return features;

 }

 @Override

 public Collection<NXExpression>

getParameterInfo(NXPart part) {

 String result = runNXClient("expressions",

quote(part.getPath()));

 String[] lines = result.split(";");

 Collection<NXExpression> params = new

ArrayList<NXExpression>();

307

 String[] parampairs;

 String res, name, val, paramName, paramValue;

 int n;

 for (String line : lines) {

 line = line.replaceFirst("^[\\s]*Record.",

"").replaceFirst(".;[\\s]*$", "");

 if (line.trim().length() > 0) {

 parampairs = line.split(", ");

 paramName = paramValue = null;

 for (String pair : parampairs) {

 res = pair.replaceFirst(" *([A-Za-

z0-9]*) *= *\"([^\"]*)\"", "$1|$2");

 //System.out.println("pair: " +

pair);

 //System.out.println("relt: " +

res);

 n = res.indexOf('|');

 name = res.substring(0,

res.indexOf('|'));

 val = res.substring(n+1);

 if (name.equals("name")) {

 paramName = val;

 } else if (name.equals("value")) {

 paramValue = val;

 }

 }

 params.add(new NXExpression(

paramName, paramValue, null));

 }

 }

 return params;

 }

 @Override

 public String getUniqueIdentifier(NXPart part) {

 String result =

runNXClient("get_unique_identifier",

quote(part.getPath()));

 return result;

 }

 @Override

 public boolean isConnected() {

 return _isConnected;

308

 }

 private boolean isPartOpen(File file) {

 String result = runNXClient("isopen", quote(

file.getAbsolutePath()));

 return result.equals("yes");

 }

 @Override

 public NXPart openPart(File file) {

 return openPart(file, false);

 }

 @Override

 public NXPart openPart(File file, boolean recurse)

{

 NXPart part;

 if (TESTINPUT) {

 part = new NXPart("testpart.prt",

"testpart.prt");

 part._features = getFeatures(part);

 return part;

 }

 boolean result;

 String filename = file.getAbsolutePath();

 if (isPartOpen(file)) {

 part = new NXPart(filename, filename);

 result = setWorkPart(part);

 } else {

 result = isOkay(runNXClient("openpart",

quote(filename)));

 part = (result ? new NXPart(filename,

filename) : null);

 }

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("open NX

part status: " + part);

 }

 if (part != null) {

 part._components =

getComponentList(part);

 part._features = getFeatures(part);

 part._expressions = getExpressions(part);

309

 part._uid =

getUniqueIdentifier(part);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("open NX

part status2: " + part);

 }

 if (recurse) {

 part._openComponents = new

ArrayList<NXPart>();

 NXPart compPart;

 for (String comp : part._components) {

 compPart = openPart(new File(

comp), true);

part._openComponents.add(compPart);

 }

 }

 }

 return part;

 }

 private Document parseXML(String xml) {

 DocumentBuilderFactory dbf =

DocumentBuilderFactory.newInstance();

 DocumentBuilder db = null;

 try {

 db = dbf.newDocumentBuilder();

 } catch (ParserConfigurationException pce) {

 return null;

 }

 InputSource inStream = new InputSource();

 inStream.setCharacterStream(new

StringReader(xml));

 Document doc = null;

 try {

 doc = db.parse(inStream);

 } catch (SAXException se) {

 } catch (IOException io) {

 }

 return doc;

 }

 @Override

 public boolean renameFeature(NXPart part, String

oldName, String newName) {

310

 setWorkPart(part);

 return isOkay(runNXClient("rename_feature",

quote(oldName) + " " + quote(newName)));

 }

 @Override

 public boolean renameParameter(NXPart part, String

oldName, String newName) {

 setWorkPart(part);

 return isOkay(runNXClient("rename_parameter",

quote(oldName) + " " + quote(newName)));

 }

 private String returnTestInput() {

 return "<part><feature name=\"Extrude(0)\"

type=\"EXTRUDE\" tag=\"35850\">" +

 "<expression name=\"p8\" value=\"0\"

units=\"MilliMeter\" type=\"Number\" equation=\"p8=0\"

description=\"(Extrude(0) Start Limit)\"/>" +

 "<expression name=\"p9\" value=\"1.5\"

units=\"MilliMeter\" type=\"Number\" equation=\"p9=1.5\"

description=\"(Extrude(0) End Limit)\"/>" +

 "<feature name=\"SB Convert To Sheet

Metal(1)\" type=\"Convert To Sheetmetal\"

tag=\"45866\"></feature>" +

 "<feature name=\"Datum Coordinate

System(2)\" type=\"DATUM_CSYS\" tag=\"45865\"><feature

name=\"SKETCH_000:Sketch(2)\" type=\"SKETCH\"

tag=\"45863\">" +

 "<feature name=\"SB Bend(2)\" type=\"BEND\"

tag=\"45864\">" +

 "<expression name=\"p12\" value=\"3\"

units=\"MilliMeter\" type=\"Number\"

equation=\"p12=Sheet_Metal_Bend_Radius\" description=\"(SB

Bend(2) Bend Radius)\"/>" +

 "<expression name=\"p13\" value=\"3\"

units=\"MilliMeter\" type=\"Number\"

equation=\"p13=Sheet_Metal_Relief_Depth\" description=\"(SB

Bend(2) Bend Relief Depth)\"/>" +

 "<expression name=\"p14\" value=\"3\"

units=\"MilliMeter\" type=\"Number\"

equation=\"p14=Sheet_Metal_Relief_Width\" description=\"(SB

Bend(2) Bend Relief Width)\"/>" +

 "<expression name=\"p15\" value=\"0.33\"

type=\"Number\" equation=\"p15=Sheet_Metal_Neutral_Factor\"

description=\"(SB Bend(2) Neutral Factor)\"/>" +

311

 "<expression name=\"p16\" value=\"90\"

units=\"Degrees\" type=\"Number\" equation=\"p16=90\"

description=\"(SB Bend(2) Bend

Angle)\"/></feature></feature></feature>" +

 "<feature name=\"Datum Coordinate

System(3)\" type=\"DATUM_CSYS\" tag=\"35849\"><feature

name=\"SKETCH_001:Sketch(3)\" type=\"SKETCH\"

tag=\"45862\"><feature name=\"SB Bend(3)\" type=\"BEND\"

tag=\"35853\">" +

 "<expression name=\"p17\" value=\"3\"

units=\"MilliMeter\" type=\"Number\"

equation=\"p17=Sheet_Metal_Bend_Radius\" description=\"(SB

Bend(3) Bend Radius)\"/>" +

 "<expression name=\"p18\" value=\"3\"

units=\"MilliMeter\" type=\"Number\"

equation=\"p18=Sheet_Metal_Relief_Depth\" description=\"(SB

Bend(3) Bend Relief Depth)\"/>" +

 "<expression name=\"p19\" value=\"3\"

units=\"MilliMeter\" type=\"Number\"

equation=\"p19=Sheet_Metal_Relief_Width\" description=\"(SB

Bend(3) Bend Relief Width)\"/>" +

 "<expression name=\"p20\" value=\"0.33\"

type=\"Number\" equation=\"p20=Sheet_Metal_Neutral_Factor\"

description=\"(SB Bend(3) Neutral Factor)\"/>" +

 "<expression name=\"p21\" value=\"90\"

units=\"Degrees\" type=\"Number\" equation=\"p21=90\"

description=\"(SB Bend(3) Bend Angle)\"/>" +

 "<feature name=\"Datum Coordinate

System(4)\" type=\"DATUM_CSYS\" tag=\"35851\"><feature

name=\"SKETCH_002:Sketch(4)\" type=\"SKETCH\"

tag=\"45860\"><feature name=\"SB Bend(4)\" type=\"BEND\"

tag=\"45861\"><expression name=\"p22\" value=\"3\"

units=\"MilliMeter\" type=\"Number\"

equation=\"p22=Sheet_Metal_Bend_Radius\" description=\"(SB

Bend(4) Bend Radius)\"/><expression name=\"p23\"

value=\"3\" units=\"MilliMeter\" type=\"Number\"

equation=\"p23=Sheet_Metal_Relief_Depth\" description=\"(SB

Bend(4) Bend Relief Depth)\"/><expression name=\"p24\"

value=\"3\" units=\"MilliMeter\" type=\"Number\"

equation=\"p24=Sheet_Metal_Relief_Width\" description=\"(SB

Bend(4) Bend Relief Width)\"/><expression name=\"p25\"

value=\"0.33\" type=\"Number\"

equation=\"p25=Sheet_Metal_Neutral_Factor\"

description=\"(SB Bend(4) Neutral Factor)\"/><expression

name=\"p26\" value=\"15\" units=\"Degrees\" type=\"Number\"

equation=\"p26=15\" description=\"(SB Bend(4) Bend

Angle)\"/></feature></feature></feature><feature

312

name=\"Datum Coordinate System(5)\" type=\"DATUM_CSYS\"

tag=\"35852\"><feature name=\"SKETCH_003:Sketch(5)\"

type=\"SKETCH\" tag=\"35854\"><feature name=\"Split

Body(6)\" type=\"SPLIT BODY\"

tag=\"45859\"></feature></feature></feature></feature></fea

ture></feature></feature></part>";

 }

 private String runNXClient(String cmd, String

args) {

 Runtime r = Runtime.getRuntime();

 Process p = null;

 String[] cmdArray = buildCommandArray(cmd,

args);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log(

"PluginMain.DEBUG: " + cmdArray);

 }

 if (TESTINPUT) {

 return "okay";

 }

 try {

 p = r.exec(cmdArray);

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 StringBuilder sb = new StringBuilder();

 BufferedReader br = new BufferedReader(new

InputStreamReader (p.getInputStream()));

 String line;

 try {

 while (((line = br.readLine()) != null)) {

 //System.out.println(line);

 sb.append(line);

 }

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 try {

 if (p.waitFor() != 0) {

313

 System.out.println("problem");

 }

 } catch (InterruptedException ie) {

 // TODO Auto-generated catch block

 ie.printStackTrace();

 }

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log(

"PluginMain.DEBUG: " + sb.toString());

 }

 return sb.toString();

 }

 @Override

 public boolean savePart(NXPart part) {

 String result = runNXClient("save",

quote(part.getPath()));

 System.out.println("Result of saving " +

part.getName() + ": " + result);

 return isOkay(result);

 }

 @Override

 public boolean setParameterInfo(NXPart part,

Collection<NXExpression> params) {

 String value;

 String result = null;

 String name;

 boolean overallSuccess = true;

 for (NXExpression expr : params) {

 name = expr.getName();

 value = expr.getValue();

 //currentName =

SysMLParameters.getSynchronizedParameterName(params, name);

 //if (!name.equals(currentName)) {

 // boolean success = renameParameter(

part, currentName, name);

 // overallSuccess = overallSuccess &&

success;

 // if (success) {

 //

SysMLParameters.setSynchronizedParameterName(params, name);

 // }

 //}

 result = runNXClient(

 "set_parameter_value",

314

 String.format("%s %s", quote(name),

quote(value))

);

 overallSuccess = overallSuccess && (result

!= null && isOkay(result));

 }

 return overallSuccess;

 }

 @Override

 public boolean setParameterValue(NXPart part,

String param, String value) {

 setWorkPart(part);

 return isOkay(

runNXClient("set_parameter_value", quote(param) + " " +

quote(value)));

 }

 @Override

 public boolean setWorkPart(NXPart part) {

 return isOkay(runNXClient("setwork", quote(

part.getPath())));

 }

}

315

NXConnectionException:
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection;

public class NXConnectionException extends Exception {

}

NXEngine:
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection;

import java.io.File;

import java.util.Collection;

/**

 * NX connection interface

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public interface NXEngine {

 public void closeConnection();

 public boolean closePart(NXPart part);

 public Collection<String> getComponentList(NXPart

part);

 public Collection<NXExpression>

getExpressions(NXPart part);

 public Collection<NXFeature> getFeatures(NXPart

part);

 public Collection<NXExpression>

getParameterInfo(NXPart part);

 public String getUniqueIdentifier(NXPart part);

 boolean isConnected();

 public NXPart openPart(File file);

 public NXPart openPart(File file, boolean

recursive);

 public boolean renameFeature(NXPart part, String

oldName, String newName);

 public boolean renameParameter(NXPart part,

String oldName, String newName);

 public boolean savePart(NXPart file);

316

 public boolean setParameterInfo(NXPart part,

Collection<NXExpression> params);

 public boolean setParameterValue(NXPart part,

String param, String value);

 public boolean setWorkPart(NXPart part);

}

NXExpression:
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

public class NXExpression {

 private String _name;

 private Property _prop;

 private String _value;

 public NXExpression(String name, String value,

Property prop) {

 _name = name;

 _value = value;

 _prop = prop;

 }

 public String getName() { return _name; }

 public Property getProperty() { return _prop; }

 public String getValue() { return _value; }

}

317

NXFeature:
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection;

import java.util.ArrayList;

import java.util.Collection;

public class NXFeature {

 private ArrayList<NXFeature> _children;

 private ArrayList<NXExpression> _expressions;

 private String _name;

 private String _type;

 private String _customName;

 public NXFeature(String name, String type, String

customName) {

 _name = name;

 _type = type;

 _customName = customName;

 _children = new ArrayList<NXFeature>();

 _expressions = new

ArrayList<NXExpression>();

 }

 public void addChild(NXFeature feature) {

 _children.add(feature);

 }

 public void addExpression(String name, String

value) {

 _expressions.add(new NXExpression(name,

value, null));

 }

 public Collection<NXFeature> getChildren() {

 return _children;

 }

 public String getCustomName() {

 return _customName;

 }

 public Collection<NXExpression> getExpressions()

{

 return _expressions;

 }

 public String getName() {

318

 return _name;

 }

 public String getType() {

 return _type;

 }

}

319

NXPart:
package gov.nasa.jpl.imce.sysmlnxsync.nxconnection;

import java.io.File;

import java.util.ArrayList;

import java.util.Collection;

public class NXPart {

 protected Collection<String> _components;

 protected Collection<NXExpression> _expressions;

 protected Collection<NXFeature> _features;

 private File _file;

 protected Collection<NXPart> _openComponents;

 protected String _uid;

 protected NXPart(File file) {

 _file = file;

 _components = new ArrayList<String>();

 _openComponents = new ArrayList<NXPart>();

 _features = new ArrayList<NXFeature>();

 _expressions = new

ArrayList<NXExpression>();

 }

 protected NXPart(String path, String name) {

 _file = new File(path);

 }

 public Collection<String> getComponents() {

 return _components;

 }

 public Collection<NXExpression> getExpressions()

{

 return _expressions;

 }

 public Collection<NXFeature> getFeatures() {

 return _features;

 }

 public String getName() {

 return _file.getName();

 }

 public File getFile() {

 return _file;

320

 }

 public Collection<NXPart> getOpenComponents() {

 return _openComponents;

 }

 public String getPath() {

 return _file.getAbsolutePath();

 }

 public String getUniqueIdentifier() {

 return _uid;

 }

 public boolean isAssembly() {

 return (_components.size() > 0);

 }

 @Override

 public String toString() {

 String c = (_components != null ?

Integer.toString(_components.size()) : "null");

 String f = (_features != null ?

Integer.toString(_features.size()) : "null");

 return String.format(

"NXPart[%s][c=%s][f=%s]", _file, c, f);

 }

}

321

Actions:

Import NXPart:

package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.PartFileFilter;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.io.File;

import java.util.Collection;

import javax.swing.JFileChooser;

import javax.swing.JOptionPane;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ModelElementsManager;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.magicdraw.openapi.uml.SessionManager;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

322

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

/**

 * Simple action that allows for a file to be selected

using a file dialog - the file is then loaded

 * using the Maple API and a corresponding SysML block

with properties is created. Note that for reasons

 * of making this more readable, the logic should be

split into several classes, but, to get started,

 * let's keep everything in one file

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class ImportNXPart extends DefaultBrowserAction

{

 private File _file;

 private Package _package;

 /** * Constructor - configures the action, in

this case our menu item

 */

 public ImportNXPart() {

 // In the containment browser context pop

the text that will be displayed in the menu item

 // is what we specify as the second

argument. The first argument is an ID

 super("Import_NX_Part", "Import CAD Model",

null, null);

 }

 /**

 * This function (or action) will be fired

whenever a user clicks on the menu item that we are

 * describing in this class. I.e. whenever

someone right clicks in the containment browser and

 * selects our action, in this case "Import CAD

Part ...", this function will be called

 */

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

323

 Object userObject = getSelectedObject();

 if (!(userObject instanceof Package)) {

 return;

 }

 Project project =

Application.getInstance().getProject();

 _package = (Package)userObject;

 // Create a new file chooser object

 JFileChooser fc = new JFileChooser();

 fc.setFileFilter(new PartFileFilter());

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 // Show an "Open" dialog and check whether

the user has chosen to select a file (and has not

 // pressed "Cancel")

 if (fc.showOpenDialog(parentFrame) !=

JFileChooser.APPROVE_OPTION) return;

 // Get the file that was selected

 _file = fc.getSelectedFile();

 boolean check = confirmUpdate(parentFrame,

project, _file);

 if (!check) return;

 importNX(project);

 }

 private boolean confirmUpdate(Frame parentFrame,

Project project, File filePart) {

 Collection<Class> parts =

SysMLUtility.getAllParts(project, _package);

 Class res =

SysMLUtility.findPartByFilePath(project, parts, filePart);

 if (res != null) {

 int response =

JOptionPane.showConfirmDialog(parentFrame,

 "Model element file already exists

in SysML.\nOverride existing part model?",

 "Model element already exists",

 JOptionPane.OK_CANCEL_OPTION,

 JOptionPane.WARNING_MESSAGE

);

 return (response ==

JOptionPane.YES_OPTION);

324

 } else {

 return true;

 }

 }

 public void importNX(Project project) {

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 NXPart part =

SysMLUtility.openPart(parentFrame, _file);

 if (part == null) return;

 WaitDialog waitDialog = new

WaitDialog(parentFrame, "Importing data from NX...",

"System is working");

 waitDialog.setVisible(true);

 String fileName = _file.getName();

 ElementsFactory elementsFactory =

project.getElementsFactory();

 ElementsFactory factory = elementsFactory;

 //Interaction interaction = (Interaction)

ModelHelper.findInParent(project.getModel(),

"Interaction1", Interaction.class, true);

 //Lifeline lifeline1 =

factory.createLifelineInstance();

 //Lifeline lifeline2 =

factory.createLifelineInstance();

 //Connector connector =

factory.createConnectorInstance();

 //connector.setOwner(interaction);

 //ModelHelper.setClientElement(connector,

lifeline1.getRepresents());

 //ModelHelper.setSupplierElement(connector,

lifeline2.getRepresents());

 //PresentationElementsManager manager =

PresentationElementsManager.getInstance();

 //DiagramPresentationElement diagramView =

getDiagramPresentationElement();

325

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Class sysmlPart =

elementsFactory.createClassInstance();

 sysmlPart.setName(fileName);

 StereotypesHelper.addStereotype(sysmlPart,

nxPartStereotype);

 SessionManager.getInstance().createSession(project,

"CAD Plugin: add subtree");

 try {

 ModelElementsManager.getInstance().addElement(sysmlPar

t, _package);

 } catch (ReadOnlyElementException roee) {

 throw new IllegalStateException("ROEE:

Cannot add package to subpackage");

 }

 SessionManager.getInstance().closeSession(project);

 SysMLModelTraverser traverser =

SysMLModelTraverser.launch(project, sysmlPart, part, new

UpdateFromNXResolver(null));

 Class resolvedClass =

traverser.getResolvedClass();

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Resolved

class : " + resolvedClass);

 }

 //traverser = SysMLModelTraverser.launch(

project, _package, resolvedClass, part, null);

 waitDialog.setVisible(false);

 }

}

326

ImportNXPartWithFilter:
package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.ui.StereotypeFilterDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.PartFileFilter;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.StereotypeFilterHandl

er;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.io.File;

import java.util.Collection;

import javax.swing.JFileChooser;

import javax.swing.JOptionPane;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ModelElementsManager;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.magicdraw.openapi.uml.SessionManager;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

327

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

public class ImportNXPartWithFilter extends

DefaultBrowserAction {

 private File _file;

 private Package _package;

 /** * Constructor - configures the action, in

this case our menu item

 */

 public ImportNXPartWithFilter() {

 // In the containment browser context pop

the text that will be displayed in the menu item

 // is what we specify as the second

argument. The first argument is an ID

 super("Import_NX_Part_Filtered", "Import CAD

Model with Feature Type Filter", null, null);

 }

 /**

 * This function (or action) will be fired

whenever a user clicks on the menu item that we are

 * describing in this class. I.e. whenever

someone right clicks in the containment browser and

 * selects our action, in this case "Import CAD

Part ...", this function will be called

 */

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

 Object userObject = getSelectedObject();

 if (!(userObject instanceof Package)) {

 return;

 }

328

 Project project =

Application.getInstance().getProject();

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 // Create a new file chooser object

 JFileChooser fc = new JFileChooser();

 fc.setFileFilter(new PartFileFilter());

 // Show an "Open" dialog and check whether

the user has chosen to select a file (and has not

 // pressed "Cancel")

 if (fc.showOpenDialog(parentFrame) !=

JFileChooser.APPROVE_OPTION) return;

 // Get the file that was selected

 File file = fc.getSelectedFile();

 Collection<Stereotype> st =

SysMLUtility.getProfileStereotypes(project);

 Package pkg = (Package)userObject;

 boolean check = confirmUpdate(parentFrame,

project, pkg, file);

 if (!check) return;

 if (st == null) {

 throw new IllegalStateException();

 }

 _package = pkg;

 _file = file;

 final StereotypeFilterDialog stFilter = new

StereotypeFilterDialog(parentFrame, st);

 stFilter.setVisible(true);

 Collection<Stereotype> filter =

stFilter.getFilter();

 if (filter != null) {

 Application.getInstance().getGUILog().log("Showing

filtered stereotypes: " + filter.size());

 for (Stereotype s : filter) {

 Application.getInstance().getGUILog().log("ST: " + s

);

 }

329

 Application.getInstance().getGUILog().log("End

Showing filtered stereotypes: " + filter.size());

 importWithFilter(project, filter);

 }

 }

 private boolean confirmUpdate(Frame parentFrame,

Project project, Package pkg, File filePart) {

 Collection<Class> parts =

SysMLUtility.getAllParts(project, pkg);

 Class res =

SysMLUtility.findPartByFilePath(project, parts, filePart);

 if (res != null) {

 int response =

JOptionPane.showConfirmDialog(parentFrame,

 "Model element file already exists

in SysML.\nOverride existing part model?",

 "Model element already exists",

 JOptionPane.OK_CANCEL_OPTION,

 JOptionPane.WARNING_MESSAGE

);

 return (response ==

JOptionPane.YES_OPTION);

 } else {

 return true;

 }

 }

 public Property enterExpression(Project project,

Class parent, Property sysmlExpression, NXExpression

nxExpression) throws ReadOnlyElementException {

 return sysmlExpression;

 }

 public void importWithFilter(Project project,

Collection<Stereotype> filter) {

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Size of

filtered set" + filter.size());

 }

 NXPart part =

SysMLUtility.openPart(parentFrame, _file);

330

 if (part == null) return;

 String fileName = _file.getName();

 ElementsFactory elementsFactory =

project.getElementsFactory();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Class sysmlPart =

elementsFactory.createClassInstance();

 sysmlPart.setName(fileName);

 StereotypesHelper.addStereotype(sysmlPart,

nxPartStereotype);

 SessionManager.getInstance().createSession(project,

"CAD Plugin: add subtree");

 try {

 ModelElementsManager.getInstance().addElement(sysmlPar

t, _package);

 } catch (ReadOnlyElementException roee) {

 throw new IllegalStateException("ROEE:

Cannot add package to subpackage");

 }

 SessionManager.getInstance().closeSession(project);

 SysMLModelTraverser traverser =

SysMLModelTraverser.launch(project, sysmlPart, part, new

UpdateFromNXResolver(null));

 Class resolvedClass =

traverser.getResolvedClass();

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Resolved

class : " + resolvedClass);

 }

 StereotypeFilterHandler handler = new

StereotypeFilterHandler(filter);

 Application.getInstance().getGUILog().log(

"Resolved class : " + handler);

 traverser = SysMLModelTraverser.launch(

project, resolvedClass, null, handler);

 }

}

331

332

InternalUpdate:
package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.ui.StereotypeFilterDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.PartFileFilter;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.StereotypeFilterHandl

er;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.io.File;

import java.util.Collection;

import javax.swing.JFileChooser;

import javax.swing.JOptionPane;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ModelElementsManager;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.magicdraw.openapi.uml.SessionManager;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

333

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

public class ImportNXPartWithFilter extends

DefaultBrowserAction {

 private File _file;

 private Package _package;

 /** * Constructor - configures the action, in

this case our menu item

 */

 public ImportNXPartWithFilter() {

 // In the containment browser context pop

the text that will be displayed in the menu item

 // is what we specify as the second

argument. The first argument is an ID

 super("Import_NX_Part_Filtered", "Import CAD

Model with Feature Type Filter", null, null);

 }

 /**

 * This function (or action) will be fired

whenever a user clicks on the menu item that we are

 * describing in this class. I.e. whenever

someone right clicks in the containment browser and

 * selects our action, in this case "Import CAD

Part ...", this function will be called

 */

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

 Object userObject = getSelectedObject();

 if (!(userObject instanceof Package)) {

 return;

 }

334

 Project project =

Application.getInstance().getProject();

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 // Create a new file chooser object

 JFileChooser fc = new JFileChooser();

 fc.setFileFilter(new PartFileFilter());

 // Show an "Open" dialog and check whether

the user has chosen to select a file (and has not

 // pressed "Cancel")

 if (fc.showOpenDialog(parentFrame) !=

JFileChooser.APPROVE_OPTION) return;

 // Get the file that was selected

 File file = fc.getSelectedFile();

 Collection<Stereotype> st =

SysMLUtility.getProfileStereotypes(project);

 Package pkg = (Package)userObject;

 boolean check = confirmUpdate(parentFrame,

project, pkg, file);

 if (!check) return;

 if (st == null) {

 throw new IllegalStateException();

 }

 _package = pkg;

 _file = file;

 final StereotypeFilterDialog stFilter = new

StereotypeFilterDialog(parentFrame, st);

 stFilter.setVisible(true);

 Collection<Stereotype> filter =

stFilter.getFilter();

 if (filter != null) {

 Application.getInstance().getGUILog().log("Showing

filtered stereotypes: " + filter.size());

 for (Stereotype s : filter) {

 Application.getInstance().getGUILog().log("ST: " + s

);

 }

335

 Application.getInstance().getGUILog().log("End

Showing filtered stereotypes: " + filter.size());

 importWithFilter(project, filter);

 }

 }

 private boolean confirmUpdate(Frame parentFrame,

Project project, Package pkg, File filePart) {

 Collection<Class> parts =

SysMLUtility.getAllParts(project, pkg);

 Class res =

SysMLUtility.findPartByFilePath(project, parts, filePart);

 if (res != null) {

 int response =

JOptionPane.showConfirmDialog(parentFrame,

 "Model element file already exists

in SysML.\nOverride existing part model?",

 "Model element already exists",

 JOptionPane.OK_CANCEL_OPTION,

 JOptionPane.WARNING_MESSAGE

);

 return (response ==

JOptionPane.YES_OPTION);

 } else {

 return true;

 }

 }

 public Property enterExpression(Project project,

Class parent, Property sysmlExpression, NXExpression

nxExpression) throws ReadOnlyElementException {

 return sysmlExpression;

 }

 public void importWithFilter(Project project,

Collection<Stereotype> filter) {

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Size of

filtered set" + filter.size());

 }

 NXPart part =

SysMLUtility.openPart(parentFrame, _file);

336

 if (part == null) return;

 String fileName = _file.getName();

 ElementsFactory elementsFactory =

project.getElementsFactory();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Class sysmlPart =

elementsFactory.createClassInstance();

 sysmlPart.setName(fileName);

 StereotypesHelper.addStereotype(sysmlPart,

nxPartStereotype);

 SessionManager.getInstance().createSession(project,

"CAD Plugin: add subtree");

 try {

 ModelElementsManager.getInstance().addElement(sysmlPar

t, _package);

 } catch (ReadOnlyElementException roee) {

 throw new IllegalStateException("ROEE:

Cannot add package to subpackage");

 }

 SessionManager.getInstance().closeSession(project);

 SysMLModelTraverser traverser =

SysMLModelTraverser.launch(project, sysmlPart, part, new

UpdateFromNXResolver(null));

 Class resolvedClass =

traverser.getResolvedClass();

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Resolved

class : " + resolvedClass);

 }

 StereotypeFilterHandler handler = new

StereotypeFilterHandler(filter);

 Application.getInstance().getGUILog().log(

"Resolved class : " + handler);

 traverser = SysMLModelTraverser.launch(

project, resolvedClass, null, handler);

 }

}

337

338

InternalValidate:
package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.ui.InstanceReportDialog;

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.InstanceReportResult;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.io.File;

import java.util.Collection;

import java.util.HashMap;

import java.util.HashSet;

import java.util.List;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ModelElementsManager;

import

com.nomagic.magicdraw.openapi.uml.PresentationElementsManag

er;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.magicdraw.uml.symbols.DiagramPresentationElemen

t;

import

com.nomagic.magicdraw.uml.symbols.shapes.ShapeElement;

339

import com.nomagic.uml2.ext.jmi.helpers.ModelHelper;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Association

;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Classifier;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.InstanceSpe

cification;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

/**

 * Simple action that allows for a file to be selected

using a file dialog - the file is then loaded

 * using the Maple API and a corresponding SysML block

with properties is created. Note that for reasons

 * of making this more readable, the logic should be

split into several classes, but, to get started,

 * let's keep everything in one file

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class InternalValidate extends

DefaultBrowserAction {

340

 public static class UpdateResolver extends

DefaultNodeHandler {

 private InstanceSpecification

_featureInstance;

 private Collection<Stereotype> _filter;

 private HashMap<Class,ShapeElement> _hm =

new HashMap<Class,ShapeElement>();

 private Package _package;

 public UpdateResolver(Package pkg,

Collection<Stereotype> filter) {

 _package = pkg;

 _filter = filter;

 }

 private void addChildClass(Project project,

Class classB, Class classA) {

 if (classA == null || classB == null) {

 return;

 }

 Element model = project.getModel();

 ElementsFactory f =

project.getElementsFactory();

 ModelElementsManager

modelElementsManager = ModelElementsManager.getInstance();

 try {

 Association link =

f.createAssociationInstance();

 //Dependency dependency =

f.createDependencyInstance();

 modelElementsManager.addElement(link, model);

 ModelHelper.setClientElement(link,

classA);

 ModelHelper.setSupplierElement(link, classB);

 DiagramPresentationElement

activeDiagram = project.getActiveDiagram();

 PresentationElementsManager

presentationElementsManager =

PresentationElementsManager.getInstance();

 if (activeDiagram != null) {

 ShapeElement clientShape;

341

 if (!_hm.containsKey(classA))

{

 clientShape =

presentationElementsManager.createShapeElement(classA,

activeDiagram);

 _hm.put(classA,

clientShape);

 } else {

 clientShape =

_hm.get(classA);

 }

 ShapeElement supplierShape;

 if (!_hm.containsKey(classB))

{

 supplierShape =

presentationElementsManager.createShapeElement(classB,

activeDiagram);

 _hm.put(classB,

supplierShape);

 } else {

 supplierShape =

_hm.get(classB);

 }

 presentationElementsManager.createPathElement(link,

clientShape, supplierShape);

 } else {

 Application.getInstance().getGUILog().log("activeDiagr

am is NULL ");

 }

 } catch (ReadOnlyElementException roee)

{

 }

 }

 @Override

 public Property enterExpression(Project

project, Class parent,

 Property sysmlExpression,

NXExpression nxExpression) throws ReadOnlyElementException

{

 if (nxExpression != null) {

 String nxName =

nxExpression.getName();

 ElementsFactory elementsFactory =

project.getElementsFactory();

342

 Stereotype

sysmlNXValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 Stereotype

sysmlValuePropertyStereotype =

StereotypesHelper.getStereotype(project, "ValueProperty");

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log(

 "Visiting Feature:

SysML: " + (sysmlExpression != null ?

sysmlExpression.getName() : "[NULL] ")

 + " NX : " +

(nxExpression != null ? nxExpression.getName() : "[NULL] ")

);

 }

 Property resolvedExpression;

 LiteralString blockSpec;

 LiteralString instanceSpec;

 Slot slot;

 // So we have the parameter, now

set the value

 instanceSpec =

elementsFactory.createLiteralStringInstance();

 instanceSpec.setValue(nxExpression.getValue());

 if (sysmlExpression != null) {

 resolvedExpression =

sysmlExpression;

 blockSpec =

(LiteralString)resolvedExpression.getDefaultValue();

 // So we have the parameter,

now set the value

 blockSpec.setValue(nxExpression.getValue());

 slot =

resolvedExpression.get_slotOfDefiningFeature().iterator().n

ext();

 } else {

 resolvedExpression =

elementsFactory.createPropertyInstance();

343

 blockSpec =

elementsFactory.createLiteralStringInstance();

 // So we have the parameter,

now set the value

 blockSpec.setValue(nxExpression.getValue());

 resolvedExpression.setName(nxName);

 StereotypesHelper.addStereotype(resolvedExpression,

sysmlNXValuePropertyStereotype);

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName",

nxName);

 StereotypesHelper.addStereotype(resolvedExpression,

sysmlValuePropertyStereotype);

 //

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "Type", "Real");

 resolvedExpression.setDefaultValue(blockSpec);

 slot =

elementsFactory.createSlotInstance();

 slot.setDefiningFeature(resolvedExpression);

 slot.setOwningInstance(_featureInstance);

 ModelElementsManager.getInstance().addElement(resolved

Expression, parent);

 }

 slot.getValue().add(instanceSpec);

 // LiteralReal realSpec =

elementsFactory.createLiteralRealInstance();

 // realSpec.setValue(

Double.parseDouble(nxExpression.getValue()));

 // Set instance relationships

 if (PluginMain.DEBUG) {

344

 Application.getInstance().getGUILog().log("Updated

expression: " + resolvedExpression.getName() + " child of "

+ parent.getName());

 }

 return resolvedExpression;

 } else if (sysmlExpression != null) {

 ModelElementsManager.getInstance().removeElement(sysml

Expression);

 }

 return null;

 }

 @Override

 public Class enterFeature(Project project,

Class parent, Class sysmlFeature, NXFeature nxFeature)

throws ReadOnlyElementException {

 if (nxFeature != null) {

 ElementsFactory elementsFactory =

project.getElementsFactory();

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 Stereotype additionalStereotype =

null;

 Class resolvedFeature;

 if (sysmlFeature != null) {

 resolvedFeature =

sysmlFeature;

 } else {

 String nxName =

nxFeature.getName();

 resolvedFeature =

elementsFactory.createClassInstance();

 resolvedFeature.setName(nxName);

 StereotypesHelper.addStereotype(resolvedFeature,

nxFeatureStereotype);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("NX Feature

Type: " + nxFeature.getType());

 }

345

 // Set instance relationships

 _featureInstance =

elementsFactory.createInstanceSpecificationInstance();

 _featureInstance.setName(nxName + " instance");

 _featureInstance.getClassifier().add(resolvedFeature

);

 //resolvedFeature.setAppliedStereotypeInstance(_featur

eInstance);

//

 StereotypesHelper.addStereotype(_featureInstance,

nxFeatureStereotype);

 String type =

nxFeature.getType();

 if (type != null) {

 additionalStereotype =

SysMLUtility.featureTypeToStereotype(project, type);

 }

 if (additionalStereotype !=

null) {

 StereotypesHelper.addStereotype(resolvedFeature,

additionalStereotype);

 //

 StereotypesHelper.addStereotype(_featureInstance,

additionalStereotype);

 }

 }

 if (_filter != null &&

additionalStereotype != null &&

_filter.contains(additionalStereotype)) {

 // skip this feature and

absorb any children into its parent

 return null;

 } else {

 // Set stereotype property

values

 StereotypesHelper.setStereotypePropertyValue(resolvedF

346

eature, nxFeatureStereotype, "currentFeatureName",

nxFeature.getName());

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "featureType",

nxFeature.getType());

 ModelElementsManager.getInstance().addElement(resolved

Feature, parent);

 //

 Application.getInstance().getGUILog().log("Updated

feature: " + resolvedFeature.getName() + " child of " +

parent.getName());

 //addChildClass(project,

resolvedFeature, parent);

 return resolvedFeature;

 }

 } else if (sysmlFeature != null) {

 ModelElementsManager.getInstance().removeElement(sysml

Feature);

 }

 return null;

 }

 @Override

 public Class enterPart(Project project,

Class parent, Class sysmlPart, NXPart nxPart) throws

ReadOnlyElementException {

 if (nxPart != null) {

 ElementsFactory elementsFactory =

project.getElementsFactory();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Stereotype nxAssemblyStereotype =

StereotypesHelper.getStereotype(project, "NXAssembly");

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log(

 "Visiting Part:

SysML: " + (sysmlPart != null ? sysmlPart.getName() :

"[NULL] ")

 + " NX : " +

(nxPart != null ? nxPart.getName() : "[NULL] ")

347

);

 }

 Class resolvedPart;

 if (sysmlPart != null) {

 resolvedPart = sysmlPart;

 } else {

 resolvedPart =

elementsFactory.createClassInstance();

 resolvedPart.setName(nxPart.getName());

 StereotypesHelper.addStereotype(resolvedPart,

nxPartStereotype);

 }

 // Now set the appropriate

stereotypes

 // Set some special stereotype

properties, in this case the filename and unique ID

 File file = new File(

nxPart.getPath());

 String uid =

nxPart.getUniqueIdentifier();

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "directory", file.getParent());

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "currentPartPath",

file.getAbsolutePath());

 StereotypesHelper.setStereotypePropertyValue(sysmlPart

, nxPartStereotype, "uniqueID", uid);

 if (nxPart.isAssembly()) {

 StereotypesHelper.addStereotype(resolvedPart,

nxAssemblyStereotype);

 }

 if (parent != null) {

 ModelElementsManager.getInstance().addElement(resolved

Part, parent);

 }

 //addChildClass(project,

resolvedPart, parent);

348

 return resolvedPart;

 } else if (sysmlPart != null) {

 ModelElementsManager.getInstance().removeElement(sysml

Part);

 }

 return null;

 }

 }

 private static Class

getBlock(InstanceSpecification is) {

 List<Classifier> classifierList =

is.getClassifier();

 for (Classifier classifier : classifierList)

{

 if (classifier instanceof Class) {

 return (Class)classifier;

 }

 }

 return null;

 }

 private static final boolean

isPackageWithInstanceChildren(Object object) {

 if (!(object instanceof Package)) {

 return false;

 }

 Package userPackage = (Package)object;

 // Check if it has any children which are

properties

 Collection<Element> children =

userPackage.getOwnedElement();

 for (Element child : children) {

 if (child instanceof

InstanceSpecification) {

 return true;

 }

 }

 return false;

 }

 private List<InstanceReportResult> _report;

 private HashSet<String> _uniqueID;

349

 private boolean _result;

 /**

 * Constructor - configures the action, in this

case our menu item

 */

 public InternalValidate() {

 // In the containment browser context pop

the text that will be displayed in the menu item

 // is what we specify as the second

argument. The first argument is an ID

 super("Validate_Internal", "Instance Results

Report", null, null);

 }

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

 Object userObject = getSelectedObject();

 if

(isPackageWithInstanceChildren(userObject) == false) {

 return;

 }

 //ValidateResolver resolver = new

ValidateResolver();

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 WaitDialog waitDialog = new

WaitDialog(parentFrame, "Performing internal consistency

check...", "System is working");

 waitDialog.setVisible(true);

 _report =

InstanceReportResult.generateList(Application.getInstance()

.getProject(),(Package)userObject);

 waitDialog.setVisible(false);

 //for (StructuralFeature key : hm.keySet())

{

 //

 Application.getInstance().getGUILog().log(

 // "Slot name: " + key.getName()

+ " type: " + key +

350

 // " size: " +

hm.get(key).size()

 //);

 //

 // updateBlockFromSlot(hm.get(key).get(0)

);

 // }

 InstanceReportDialog instanceReport = new

InstanceReportDialog(parentFrame, _report);

 instanceReport.setVisible(true);

 }

 private void fail(String name, String fname,

String pname, String type, String report) {

 String s = String.format("%s||%s||%s||%s",

fname, pname, type, report);

 if (!_uniqueID.contains(s)) {

 _report.add(new

InstanceReportResult(name, fname, pname, type, report));

 _uniqueID.add(s);

 }

 _result = false;

 }

 private void updateBlockFromSlot(Slot slot) {

 ElementsFactory elementsFactory =

Application.getInstance().getProject().getElementsFactory()

;

 StructuralFeature sfeature =

slot.getDefiningFeature();

 if (sfeature instanceof Property) {

 List<ValueSpecification> lit =

slot.getValue();

 if (lit.isEmpty()) { return; }

 ValueSpecification val = lit.get(0);

 ValueSpecification defaultValue;

 if (val instanceof LiteralString) {

 String sysmlValue =

((LiteralString)val).getValue();

 LiteralString instanceSpec =

elementsFactory.createLiteralStringInstance();

 instanceSpec.setValue(sysmlValue);

 defaultValue = instanceSpec;

 } else {

 defaultValue = val;

 }

351

 // Propagate default value

 Property prop = (Property)sfeature;

 if (defaultValue != null) {

 prop.setDefaultValue(defaultValue);

 }

 }

 }

}

352

LinkNXPart:
package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.PartFileFilter;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver;

import java.awt.Dimension;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.File;

import java.util.Collection;

import javax.swing.Box;

import javax.swing.JButton;

import javax.swing.JComboBox;

import javax.swing.JDialog;

import javax.swing.JFileChooser;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.WindowConstants;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.NamedElemen

t;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

353

/**

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class LinkNXPart extends DefaultBrowserAction {

 class NameChooserDialog extends JDialog

implements ActionListener {

 private JButton _cancelButton;

 private JComboBox _combo;

 private JButton _confirmButton;

 private String _result;

 public NameChooserDialog(Frame parent,

String sysmlPartName, String nxPartName) {

 super(parent, "Select part name",

true);

 Box vbox = Box.createVerticalBox();

 Box box = Box.createHorizontalBox();

 vbox.add(Box.createVerticalStrut(20));

 JLabel label = new JLabel("Select part

name:");

 _combo = new JComboBox();

 _combo.setEditable(true);

 box.add(label);

 box.add(_combo);

 if (sysmlPartName != null &&

sysmlPartName.trim().length() > 0) {

 _combo.addItem(sysmlPartName);

 }

 if (nxPartName != null &&

nxPartName.trim().length() > 0) {

 _combo.addItem(nxPartName);

 }

 vbox.add(box);

 vbox.add(Box.createVerticalStrut(20));

 box = Box.createHorizontalBox();

 _cancelButton = new JButton("Cancel");

354

 _confirmButton = new

JButton("Confirm");

 box.add(_cancelButton);

 box.add(_confirmButton);

 vbox.add(box);

 vbox.add(Box.createVerticalStrut(20));

 add(vbox);

 setPreferredSize(new Dimension(300,

150));

 setLocationRelativeTo(parent);

 pack();

 setDefaultCloseOperation(

WindowConstants.HIDE_ON_CLOSE);

 _cancelButton.addActionListener(this);

 _confirmButton.addActionListener(this);

 }

 @Override

 public void actionPerformed(ActionEvent ae)

{

 Object target = ae.getSource();

 if (target == _cancelButton) {

 setVisible(false);

 } else if (target == _confirmButton) {

 _result =

_combo.getSelectedItem().toString();

 setVisible(false);

 }

 }

 public String getResult() {

 return _result;

 }

 }

 /**

 * Constructor - configures the action, in this

case our menu item

 */

 public LinkNXPart() {

 // In the containment browser context pop

the text that will be displayed in the menu item

355

 // is what we specify as the second

argument. The first argument is an ID

 super("Link_NX_Part", "Link CAD Model to

Existing SysML Model", null, null);

 // Configure the maple engine arguments -

must be a list of strings with the first element being

"java"

 }

 /**

 * This function (or action) will be fired

whenever a user clicks on the menu item that we are

 * describing in this class. I.e. whenever

someone right clicks in the containment browser and

 * selects our action, in this case "Link NX Part

...", this function will be called

 */

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

 Object userObject = getSelectedObject();

 if (!(userObject instanceof Class)) {

 return;

 }

 Class userClass = (Class)userObject;

 Project project =

Application.getInstance().getProject();

 ElementsFactory elementsFactory =

project.getElementsFactory();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 if

(!(StereotypesHelper.hasStereotype(userClass,

nxPartStereotype))) {

 return;

 }

 JFileChooser fc = new JFileChooser();

 fc.setFileFilter(new PartFileFilter());

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

356

 // Show an "Open" dialog and check whether

the user has chosen to select a file (and has not pressed

"Cancel")

 if(fc.showOpenDialog(parentFrame) ==

JFileChooser.APPROVE_OPTION) {

 // Get the file that was selected

 File file = fc.getSelectedFile();

 Collection<Class> parts =

SysMLUtility.getPartChildren(project, userClass);

 Class search =

SysMLUtility.findPartByFilePath(project, parts, file);

 if (search != null) {

 JOptionPane.showMessageDialog(parentFrame, "File

already linked", "Selected file already exists in SysML",

JOptionPane.ERROR_MESSAGE);

 return;

 }

 String partName = choosePartName(file,

userClass);

 userClass.setName(partName);

 NXPart part =

SysMLUtility.openPart(parentFrame, file);

 // DOES NOT WORK

 SysMLModelTraverser.launch(project,

userClass, part, new UpdateFromNXResolver(null));

 }

 }

 private String choosePartName(File file,

NamedElement sysmlElement) {

 Frame parent =

MDDialogParentProvider.getProvider().getDialogParent();

 if (!file.exists()) {

 JOptionPane.showMessageDialog(parent,

"File not found", "Selected file not found",

JOptionPane.ERROR_MESSAGE);

 return null;

 }

 String partName = sysmlElement.getName();

357

 String nxPartName = file.getName();

 NameChooserDialog dialog = new

NameChooserDialog(parent, partName, nxPartName);

 dialog.setVisible(true);

 //System.out.println("Dialog Output: " +

partName);

 partName = dialog.getResult();

 if (partName != null &&

!partName.toLowerCase().endsWith(".prt")) {

 partName = partName + ".prt";

 }

 return partName;

 }

/* private void updateComponent(Project project,

NamedElement sysmlElement, String partName, File file,

String uid) {

 if (partName == null) {

 return;

 }

 sysmlElement.setName(partName);

 Stereotype nxPartStereotype =

NXStereotype.getStereotype(Application.getInstance().getPro

ject(), sysmlElement);

 if (nxPartStereotype != null) {

 StereotypesHelper.setStereotypePropertyValue(sysmlElem

ent, nxPartStereotype, "directory", file.getParent());

 StereotypesHelper.setStereotypePropertyValue(sysmlElem

ent, nxPartStereotype, "currentPartPath",

file.getAbsolutePath());

 StereotypesHelper.setStereotypePropertyValue(sysmlElem

ent, nxPartStereotype, "uniqueID", uid);

 }

 }

 /*private void linkPart (File file, NamedElement

userElement) {

 Project project =

Application.getInstance().getProject();

 String filename = file.getAbsolutePath();

358

 Stereotype st =

NXStereotype.getStereotype(project, userElement);

 System.out.println("Read stereotype " +

st.getName());

 NamedElement search =

SysMLUtility.findPartByName(project,

(Class)userElement.getOwner(), filename);

 Frame parent =

MDDialogParentProvider.getProvider().getDialogParent();

 if (search != null) {

 JOptionPane.showMessageDialog(parent,

"File already linked", "Selected file already exists in

SysML", JOptionPane.ERROR_MESSAGE);

 return;

 }

 WaitDialog waitDialog = new

WaitDialog(parent);

 waitDialog.setVisible(true);

 NXConnection engine =

NXClientEngine.getInstance();

 boolean success;

 success = engine.openConnection();

 System.out.println("Open connection: " +

success);

 NXPart part = engine.openPart(file);

 success = (part != null);

 System.out.println("Open part: " +

success);

 if (!success) {

 return;

 }

 String uid = engine.getUniqueIdentifier(

part);

 System.out.println("Get UID: " + uid);

 NXExpressionList nxParams =

engine.getParameterInfo(part);

 Collection<String> components =

engine.getComponentList(part);

 success = engine.closeConnection();

 System.out.println("Close connection: " +

success);

 //int numParams = nxParams.size();

359

 //System.out.println("NumParams: " +

numParams);

 String partName = choosePartName(file,

userElement);

 //NamedElement otherElement =

SysMLUtility.getCorrespondingElement(project, userElement,

st);

 linkPartInternal(project, userElement,

partName, file, uid, nxParams, components);

 //if (otherElement != null) {

 // linkPartInternal(project,

otherElement, partName, file, uid, nxParams, components);

 //}

 //SysMLUtility.linkComponents(project,

userElement, otherElement, components);

 waitDialog.setVisible(false);

 }

 private void linkPartInternal(Project project,

NamedElement element, String partName, File file, String

uid, NXExpressionList nxParams, Collection<String>

components) {

 SysMLUtility.clearAssemblyComponents(project,

element);

 updateComponent(project, element, partName,

file, uid);

 if (element instanceof Class) {

 int numParams = nxParams.size();

 SysMLParameters.removeAllParameters(element);

 for (NXExpression param : nxParams) {

 SysMLParameters.addParameterToClass(elementsFactory,

element, param);

 System.out.printf("%s -> %s\n",

param.getName(), param.getValue());

 }

 if (components.size() > 0) {

360

 Stereotype nxAssemblyStereotype =

StereotypesHelper.getStereotype(Application.getInstance().g

etProject(), "NXAssembly");

 StereotypesHelper.addStereotype(element,

nxAssemblyStereotype);

 }

 }

 }*/

}

361

ResolveNXPart:
package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXClientEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXConnectionExce

ption;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.ui.ConsistencyReportDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.ui.InteractiveConsistencyRepo

rtDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.ConsistencyResult;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateObject;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.io.File;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashSet;

import java.util.List;

import javax.swing.JDialog;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ModelElementsManager;

362

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

public class ResolveNXPart extends

DefaultBrowserAction {

 static class FeatureNameUpdate extends

UpdateObject {

 private NXEngine _engine;

 private NXFeature _nxFeature;

 private NXPart _nxPart;

 private Project _project;

 private Class _sysmlFeature;

 public FeatureNameUpdate(NXEngine engine,

Project project, Class sysmlFeature, NXPart nxPart,

NXFeature nxFeature) {

 _project = project;

 _sysmlFeature = sysmlFeature;

 _nxFeature = nxFeature;

 _nxPart = nxPart;

 }

 @Override

 public boolean canUpdateNX() { return true;

}

 @Override

363

 public boolean canUpdateSysML() { return

true; }

 @Override

 public void updateNX() {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(_project, "NXPartFeature");

 String newName =

_sysmlFeature.getName();

 String oldName =

StereotypesHelper.getStereotypePropertyFirst(_sysmlFeature,

nxFeatureStereotype, "currentFeatureName").toString();

 if (!oldName.equals(newName)) {

 _engine.renameFeature(_nxPart,

oldName, newName);

 StereotypesHelper.setStereotypePropertyValue(_sysmlFea

ture, nxFeatureStereotype, "currentFeatureName", newName);

 }

 }

 @Override

 public void updateSysML() {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(_project, "NXPartFeature");

 String name = _nxFeature.getName();

 _sysmlFeature.setName(name);

 StereotypesHelper.addStereotype(_sysmlFeature,

nxFeatureStereotype);

 }

 }

 static class FeatureTypeUpdate extends

UpdateObject {

 private NXFeature _nxFeature;

 private NXPart _nxPart;

 private Project _project;

 private Class _sysmlFeature;

 public FeatureTypeUpdate(Project project,

Class sysmlFeature, NXPart nxPart, NXFeature nxFeature) {

 _project = project;

 _sysmlFeature = sysmlFeature;

 _nxFeature = nxFeature;

 _nxPart = nxPart;

 }

 @Override

364

 public boolean canUpdateNX() { return false;

}

 @Override

 public boolean canUpdateSysML() { return

false; }

 @Override

 public void updateSysML() {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(_project, "NXPartFeature");

 String type = _nxFeature.getType();

 Stereotype additionalStereotype;

 additionalStereotype = (type != null ?

SysMLUtility.featureTypeToStereotype(_project, type) :

null);

 if (additionalStereotype != null) {

 StereotypesHelper.addStereotype(_sysmlFeature,

additionalStereotype);

 }

 if (additionalStereotype != null) {

 // Set stereotype property values

 StereotypesHelper.setStereotypePropertyValue(_sysmlFea

ture, nxFeatureStereotype, "currentFeatureName",

_nxFeature.getName());

 StereotypesHelper.setStereotypePropertyValue(_sysmlFea

ture, nxFeatureStereotype, "featureType", type);

 }

 }

 }

 static class NewFeatureUpdate extends

UpdateObject {

 private NXFeature _nxFeature;

 private Project _project;

 private Class _sysmlParent;

 public NewFeatureUpdate(Project project,

Class parent, NXFeature nxFeature) {

 _project = project;

 _sysmlParent = parent;

 _nxFeature = nxFeature;

 }

 @Override

365

 public boolean canUpdateNX() { return false;

}

 @Override

 public boolean canUpdateSysML() { return

true; }

 @Override

 public void updateSysML() {

 ElementsFactory elementsFactory =

_project.getElementsFactory();

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(_project, "NXPartFeature");

 Stereotype additionalStereotype = null;

 Class resolvedFeature =

elementsFactory.createClassInstance();

 String name = _nxFeature.getName();

 resolvedFeature.setName(name);

 StereotypesHelper.addStereotype(resolvedFeature,

nxFeatureStereotype);

 String type = _nxFeature.getType();

 if (type != null) {

 additionalStereotype =

SysMLUtility.featureTypeToStereotype(_project, type);

 }

 if (additionalStereotype != null) {

 StereotypesHelper.addStereotype(resolvedFeature,

additionalStereotype);

 }

 // Set stereotype property values

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "currentFeatureName", name);

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "featureType",

_nxFeature.getType());

 try {

 ModelElementsManager.getInstance().addElement(resolved

Feature, _sysmlParent);

 } catch (ReadOnlyElementException roe)

{

366

 }

 }

 }

 static class NewParameterUpdate extends

UpdateObject {

 private NXExpression _nxExpression;

 private Project _project;

 private Class _sysmlParent;

 public NewParameterUpdate(Project project,

Class parent, NXExpression nxExpression) {

 _project = project;

 _sysmlParent = parent;

 _nxExpression = nxExpression;

 }

 @Override

 public boolean canUpdateNX() { return false;

}

 @Override

 public boolean canUpdateSysML() { return

true; }

 @Override

 public void updateSysML() {

 ElementsFactory elementsFactory =

_project.getElementsFactory();

 Stereotype sysmlValuePropertyStereotype

= StereotypesHelper.getStereotype(_project,

"NXValueProperty");

 String nxName =

_nxExpression.getName();

 Property resolvedExpression =

elementsFactory.createPropertyInstance();

 resolvedExpression.setName(nxName);

 StereotypesHelper.addStereotype(resolvedExpression,

sysmlValuePropertyStereotype);

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName",

nxName);

 // So we have the parameter, now set

the value

367

 LiteralString spec =

elementsFactory.createLiteralStringInstance();

 spec.setValue(_nxExpression.getValue()

);

 resolvedExpression.setDefaultValue(spec);

 try {

 ModelElementsManager.getInstance().addElement(resolved

Expression, _sysmlParent);

 } catch (ReadOnlyElementException roe)

{

 }

 }

 }

 static class NewPartUpdate extends UpdateObject {

 private NXEngine _engine;

 private NXPart _nxPart;

 private Project _project;

 private Class _sysmlParent;

 public NewPartUpdate(NXEngine engine,

Project project, Class parent, NXPart nxPart) {

 _project = project;

 _sysmlParent = parent;

 _nxPart = nxPart;

 }

 @Override

 public boolean canUpdateNX() { return false;

}

 @Override

 public boolean canUpdateSysML() { return

true; }

 @Override

 public void updateSysML() {

 ElementsFactory elementsFactory =

_project.getElementsFactory();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(_project, "NXPart");

 Stereotype nxAssemblyStereotype =

StereotypesHelper.getStereotype(_project, "NXAssembly");

368

 Class resolvedPart =

elementsFactory.createClassInstance();

 resolvedPart.setName(_nxPart.getName());

 StereotypesHelper.addStereotype(resolvedPart,

nxPartStereotype);

 // Now set the appropriate stereotypes

 // Set some special stereotype

properties, in this case the filename and unique ID

 File file = new File(_nxPart.getPath()

);

 String uid =

_nxPart.getUniqueIdentifier();

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "directory", file.getParent());

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "currentPartPath",

file.getAbsolutePath());

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "uniqueID", uid);

 if (_nxPart.isAssembly()) {

 StereotypesHelper.addStereotype(resolvedPart,

nxAssemblyStereotype);

 }

 try {

 ModelElementsManager.getInstance().addElement(resolved

Part, _sysmlParent);

 } catch (ReadOnlyElementException roe)

{

 }

 //addChildClass(project, resolvedPart,

parent);

 }

 }

 static class ParameterNameUpdate extends

UpdateObject {

 private NXEngine _engine;

 private NXExpression _nxExpression;

369

 private NXPart _nxPart;

 private Project _project;

 private Property _sysmlExpression;

 public ParameterNameUpdate(NXEngine engine,

Project project, Property sysmlExpression, NXPart nxPart,

NXExpression nxExpression) {

 _project = project;

 _sysmlExpression = sysmlExpression;

 _nxExpression = nxExpression;

 _nxPart = nxPart;

 _engine = engine;

 }

 @Override

 public boolean canUpdateNX() { return true;

}

 @Override

 public boolean canUpdateSysML() { return

true; }

 @Override

 public void updateNX() {

 Stereotype sysmlValuePropertyStereotype

= StereotypesHelper.getStereotype(_project,

"NXValueProperty");

 String newName =

_sysmlExpression.getName();

 String oldName =

StereotypesHelper.getStereotypePropertyFirst(_sysmlExpressi

on, sysmlValuePropertyStereotype,

"currentName").toString();

 boolean result = true;

 if (!oldName.equals(newName)) {

 result = _engine.renameParameter(

_nxPart, oldName, newName);

 StereotypesHelper.setStereotypePropertyValue(_sysmlExp

ression, sysmlValuePropertyStereotype, "currentName",

newName);

 }

 }

 @Override

 public void updateSysML() {

 ElementsFactory elementsFactory =

_project.getElementsFactory();

370

 Stereotype sysmlValuePropertyStereotype

= StereotypesHelper.getStereotype(_project,

"NXValueProperty");

 String nxName =

_nxExpression.getName();

 Property resolvedExpression =

elementsFactory.createPropertyInstance();

 resolvedExpression.setName(nxName);

 StereotypesHelper.addStereotype(resolvedExpression,

sysmlValuePropertyStereotype);

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName",

nxName);

 }

 }

 static class ParameterValueUpdate extends

UpdateObject {

 private NXEngine _engine;

 private NXExpression _nxExpression;

 private NXPart _nxPart;

 private Project _project;

 private Property _sysmlExpression;

 public ParameterValueUpdate(NXEngine engine,

Project project, Property sysmlExpression, NXPart nxPart,

NXExpression nxExpression) {

 _project = project;

 _sysmlExpression = sysmlExpression;

 _nxExpression = nxExpression;

 _nxPart = nxPart;

 _engine = engine;

 }

 @Override

 public boolean canUpdateNX() { return true;

}

 @Override

 public boolean canUpdateSysML() { return

true; }

 @Override

 public void updateNX() {

 // Set stereotype property values

 String newName =

_sysmlExpression.getName();

371

 ValueSpecification spec =

_sysmlExpression.getDefaultValue();

 String sysmlValue = (spec instanceof

LiteralString ? ((LiteralString)spec).getValue() : null);

 //Application.getInstance().getGUILog().log("Expr

sysmlValue: " + sysmlValue);

 if (_nxExpression != null && sysmlValue

!= null && !sysmlValue.equals(_nxExpression.getValue())) {

 NXExpression newExpr = new

NXExpression(newName, sysmlValue,

_nxExpression.getProperty());

 _engine.setParameterValue(

_nxPart, newName, sysmlValue);

 }

 }

 @Override

 public void updateSysML() {

 ElementsFactory elementsFactory =

_project.getElementsFactory();

 // So we have the parameter, now set

the value

 ValueSpecification spec =

_sysmlExpression.getDefaultValue();

 if (spec instanceof LiteralString) {

 ((LiteralString)

spec).setValue(_nxExpression.getValue());

 } else {

 throw new

IllegalStateException("illegal value specification type");

 }

 }

 }

 static class PartNameUpdate extends UpdateObject

{

 private NXEngine _engine;

 private NXPart _nxPart;

 private Project _project;

 private Class _sysmlPart;

 public PartNameUpdate(NXEngine engine,

Project project, Class sysmlPart, NXPart nxPart) {

 _project = project;

 _sysmlPart = sysmlPart;

 _nxPart = nxPart;

372

 _engine = engine;

 }

 @Override

 public boolean canUpdateNX() { return true;

}

 @Override

 public boolean canUpdateSysML() { return

true; }

 @Override

 public void updateNX() {

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(_project, "NXPart");

 Stereotype nxAssemblyStereotype =

StereotypesHelper.getStereotype(_project, "NXAssembly");

 // Now set the appropriate stereotypes

 // Set some special stereotype

properties, in this case the filename and unique ID

 String newName = _sysmlPart.getName();

 String dir =

StereotypesHelper.getStereotypePropertyFirst(_sysmlPart,

nxPartStereotype, "directory").toString();

 String filename = dir + File.separator

+ newName;

 File newFile = new File(filename);

 NXPart finalPart = _nxPart;

 NXPart newPart =

SysMLUtility.renameNXPart(_engine, _nxPart, newFile);

 if (newPart != null) {

 StereotypesHelper.setStereotypePropertyValue(

_sysmlPart, nxPartStereotype, "currentPartPath", filename

);

 finalPart = newPart;

 }

 }

 @Override

 public void updateSysML() {

 ElementsFactory elementsFactory =

_project.getElementsFactory();

373

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(_project, "NXPart");

 Stereotype nxAssemblyStereotype =

StereotypesHelper.getStereotype(_project, "NXAssembly");

 _sysmlPart.setName(_nxPart.getName());

 StereotypesHelper.addStereotype(_sysmlPart,

nxPartStereotype);

 // Now set the appropriate stereotypes

 // Set some special stereotype

properties, in this case the filename and unique ID

 File file = new File(_nxPart.getPath()

);

 String uid =

_nxPart.getUniqueIdentifier();

 StereotypesHelper.setStereotypePropertyValue(_sysmlPar

t, nxPartStereotype, "directory", file.getParent());

 StereotypesHelper.setStereotypePropertyValue(_sysmlPar

t, nxPartStereotype, "currentPartPath",

file.getAbsolutePath());

 StereotypesHelper.setStereotypePropertyValue(_sysmlPar

t, nxPartStereotype, "uniqueID", uid);

 if (_nxPart.isAssembly()) {

 StereotypesHelper.addStereotype(_sysmlPart,

nxAssemblyStereotype);

 }

 }

 }

 public class ValidateResolver extends

DefaultNodeHandler {

 private ArrayList<ConsistencyResult>

_consistencyReport;

 private NXEngine _engine;

 private ArrayList<NXPart> _partHierarchy;

 private boolean _result;

 private HashSet<String> _uniqueID;

 public ValidateResolver(NXEngine engine) {

374

 _consistencyReport = new

ArrayList<ConsistencyResult>();

 _uniqueID = new HashSet<String>();

 _result = true;

 _partHierarchy = new

ArrayList<NXPart>();

 _engine = engine;

 }

 @Override

 public Property enterExpression(Project

project, Class parent,

 Property sysmlExpression,

NXExpression nxExpression) {

 String sysmlName = (sysmlExpression !=

null ? sysmlExpression.getName() : null);

 NXPart nxPart = _partHierarchy.get(0);

 if (nxExpression != null) {

 String nxName =

nxExpression.getName();

 if (sysmlExpression != null) {

 if

(!nxName.equals(sysmlExpression.getName())) {

 fail(

 "Expression",

sysmlName,

 String.format("NX

parameter name %s differs from SysML parameter name",

nxName),

 new

ParameterNameUpdate(_engine, project, sysmlExpression,

nxPart, nxExpression)

);

 }

 } else {

 fail(

 "Expression", nxName,

"No SysML equivalent for NX parameter",

 new

NewParameterUpdate(project, parent, nxExpression)

);

 }

 } else if (sysmlExpression != null) {

 fail("Expression", sysmlName, "No

NX equivalent for SysML parameter", errorUpdate);

 }

375

 if (sysmlExpression != null &&

nxExpression != null) {

 ValueSpecification spec =

sysmlExpression.getDefaultValue();

 String sysmlValue = (spec

instanceof LiteralString ? ((LiteralString)spec).getValue()

: null);

 if (sysmlValue != null) {

 if

(!sysmlValue.equals(nxExpression.getValue())) {

 fail(

 "Expression",

sysmlName,

 String.format("Value conflict: NX value %s differs

from SysML value %s", nxExpression.getValue(), sysmlValue),

 new

ParameterValueUpdate(_engine, project, sysmlExpression,

nxPart, nxExpression)

);

 }

 } else {

 fail("Expression",

nxExpression.getName(), "SysML parameter value cannot be

read", errorUpdate);

 }

 }

 return sysmlExpression;

 }

 @Override

 public Class enterFeature(Project project,

Class parent, Class sysmlFeature, NXFeature nxFeature) {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 String sysmlName = (sysmlFeature !=

null ? sysmlFeature.getName() : null);

 NXPart nxPart = _partHierarchy.get(0);

 if (nxFeature != null) {

 String nxName =

nxFeature.getName();

 if (sysmlFeature != null) {

 if

(!nxName.equals(sysmlFeature.getName())) {

 fail(

376

 "Feature",

sysmlName,

 String.format("NX

feature name %s differs from SysML feature name", nxName),

 new

FeatureNameUpdate(_engine, project, sysmlFeature, nxPart,

nxFeature)

);

 }

 } else {

 fail(

 "Feature", nxName,

 "No SysML equivalent for

NX feature",

 new

NewFeatureUpdate(project, parent, nxFeature)

);

 }

 } else if (sysmlFeature != null) {

 fail("Feature", sysmlName, "No NX

equivalent for SysML feature", errorUpdate);

 }

 //String sysmlFeatureName =

sysmlFeature.getName();

 //String nxFeatureName =

nxFeature.getName();

 //if

(!sysmlFeatureName.equals(nxFeatureName)) {

 // consistencyResult = new

ConsistencyResult(false, String.format("Feature name %s

differs from feature name %s", nxFeatureName,

sysmlFeatureName));

 // return sysmlFeature;

 //}

 if (sysmlFeature != null && nxFeature

!= null) {

 String nxFType =

nxFeature.getType();

 if

(StereotypesHelper.hasStereotype(sysmlFeature,

nxFeatureStereotype) &&

 StereotypesHelper.getStereotypePropertyValue(sysmlFeat

ure, nxFeatureStereotype, "featureType") != null) {

377

 Object childFtype =

StereotypesHelper.getStereotypePropertyFirst(sysmlFeature,

nxFeatureStereotype, "featureType");

 String sysmlFType =

childFtype.toString();

 if

(!sysmlFType.equals(nxFType)) {

 fail(

 "Feature",

sysmlName,

 String.format("NX

feature type %s differs from SysML feature type %s",

nxFType, sysmlFType),

 new

FeatureTypeUpdate(project, sysmlFeature, nxPart, nxFeature)

);

 return sysmlFeature;

 }

 } else {

 fail(

 "Feature", sysmlName,

 String.format("NX

feature type is %s, SysML has no feature type %s",

nxFType),

 new

FeatureTypeUpdate(project, sysmlFeature, nxPart, nxFeature)

);

 }

 Collection<NXExpression>

nxExpressions = nxFeature.getExpressions();

 Collection<Property>

sysmlExpressions = SysMLUtility.getExpressions(project,

sysmlFeature);

 if (nxExpressions.size() !=

sysmlExpressions.size()) {

 fail("Feature", sysmlName,

String.format("%d parameters in NX, %d parameters in

SysML", nxExpressions.size(), sysmlExpressions.size()),

errorUpdate);

 return sysmlFeature;

 }

 Collection<NXFeature>

nxSubfeatures = nxFeature.getChildren();

378

 Collection<Class> sysmlSubfeatures

= SysMLUtility.getFeatures(project, sysmlFeature);

 if (nxSubfeatures.size() !=

sysmlSubfeatures.size()) {

 fail("Feature", sysmlName,

String.format("%d features in NX, %d features in SysML",

nxSubfeatures.size(), sysmlSubfeatures.size()), errorUpdate

);

 }

 }

 return sysmlFeature;

 }

 @Override

 public Class enterPart(Project project,

Class parent, Class sysmlPart, NXPart nxPart) {

 //ElementsFactory elementsFactory =

project.getElementsFactory();

// Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 String sysmlName = (sysmlPart != null ?

sysmlPart.getName() : null);

 _partHierarchy.add(0, nxPart);

 if (nxPart != null) {

 String nxName = nxPart.getName();

 if (sysmlPart != null) {

 if

(!nxName.equals(sysmlPart.getName())) {

 fail(

 "Part", sysmlName,

 String.format("NX

part name %s differs from SysML part name %s", nxName),

 new

PartNameUpdate(_engine, project, sysmlPart, nxPart)

);

 }

 } else {

 fail(

 "Part", nxName,

 "No SysML equivalent for

NX part",

 new

NewPartUpdate(_engine, project, parent, nxPart)

);

 }

379

 } else if (sysmlPart != null) {

 fail("Part", sysmlName, "No NX

equivalent for SysML part", errorUpdate);

 }

 return sysmlPart;

 }

 private void fail(String type, String id,

String report, UpdateObject obj) {

 String s = String.format("%s||%s||%s",

type, id, report);

 if (!_uniqueID.contains(s)) {

 _consistencyReport.add(new

ConsistencyResult(type, id, report, obj));

 _uniqueID.add(s);

 }

 _result = false;

 }

 public List<ConsistencyResult>

getInconsistencyList() {

 return _consistencyReport;

 }

 public boolean getResult() {

 return _result;

 }

 }

 ElementsFactory elementsFactory =

Application.getInstance().getProject().getElementsFactory()

;

 UpdateObject errorUpdate = new UpdateObject() {

 @Override

 public boolean canUpdateNX() { return true;

}

 @Override

 public boolean canUpdateSysML() { return

true; }

 };

 /**

 * Constructor - configures the action, in this

case our menu item

 */

 public ResolveNXPart() {

380

 // In the containment browser context pop

the text that will be displayed in the menu item

 // is what we specify as the second

argument. The first argument is an ID

 super("Resolve_NX_Part_Maple", "Resolve

SysML-CAD Inconsistencies", null, null);

 }

 /**

 * This function (or action) will be fired

whenever a user clicks on the menu item that we are

 * describing in this class. I.e. whenever

someone right clicks in the containment browser and

 * selects our action, in this case "Import NX

Part ...", this function will be called

 */

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

 NXEngine engine;

 try {

 engine = new NXClientEngine();

 } catch (NXConnectionException nxce) {

 engine = null;

 }

 if (engine == null) { return; }

 Object userObject = getSelectedObject();

 if (!(userObject instanceof Class)) {

 return;

 }

 Class userClass = (Class)userObject;

 Project project =

Application.getInstance().getProject();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 if

(!(StereotypesHelper.hasStereotype(userClass,

nxPartStereotype))) {

 return;

 }

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

381

// WaitDialog waitDialog = new

WaitDialog(parent);

// waitDialog.setVisible(true);

 //ProgressMonitor pm = new

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE,

"Please wait", 0, 10);

 String currentPartPath =

StereotypesHelper.getStereotypePropertyFirst(userClass,

nxPartStereotype, "currentPartPath").toString();

 File file = new File(currentPartPath);

 ValidateResolver resolver = new

ValidateResolver(engine);

 NXPart part =

SysMLUtility.openPart(parentFrame, file);

 SysMLModelTraverser.launch(project,

userClass, part, resolver);

 JDialog consistencyReport;

 List<ConsistencyResult> res =

resolver.getInconsistencyList();

 if (res == null) { res = new

ArrayList<ConsistencyResult>(); };

 if (res.size() > 0) {

 consistencyReport = new

InteractiveConsistencyReportDialog(parentFrame, res,

project, userClass, file, part);

 } else {

 consistencyReport = new

ConsistencyReportDialog(parentFrame, res);

 }

 consistencyReport.setVisible(true);

 }

}

UpdateFromNXPart:
package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

382

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.io.File;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

/**

 * Simple action that allows for a file to be selected

using a file dialog - the file is then loaded

 * using the Maple API and a corresponding SysML block

with properties is created. Note that for reasons

 * of making this more readable, the logic should be

split into several classes, but, to get started,

 * let's keep everything in one file

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class UpdateFromNXPart extends

DefaultBrowserAction {

 /**

 * Constructor - configures the action, in this

case our menu item

 */

 public UpdateFromNXPart() {

 // In the containment browser context pop

the text that will be displayed in the menu item

 // is what we specify as the second

argument. The first argument is an ID

383

 super("Update_Part_from_NX", "Update SysML

Model from CAD Model", null, null);

 }

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

 Object userObject = getSelectedObject();

 if (!(userObject instanceof Class)) {

 return;

 }

 Class userClass = (Class)userObject;

 Project project =

Application.getInstance().getProject();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 if

(!(StereotypesHelper.hasStereotype(userClass,

nxPartStereotype))) {

 return;

 }

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 WaitDialog waitDialog = new

WaitDialog(parentFrame, "Updating from NX...", "System is

working");

 waitDialog.setVisible(true);

 Object currentPartPath =

StereotypesHelper.getStereotypePropertyFirst(userClass,

nxPartStereotype, "currentPartPath");

 File nxFile = new File(

currentPartPath.toString());

// ProgressMonitor pm = new

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE,

"Please wait", 0, 10);

 DefaultNodeHandler resolver = new

UpdateFromNXResolver(null);

 NXPart part =

SysMLUtility.openPart(parentFrame, nxFile);

 SysMLModelTraverser.launch(project,

userClass, part, resolver);

384

 resolver = null;

 // Read parameter and components

// pm.close();

 waitDialog.setVisible(false);

 }

}

385

UpdateToNXPart:
package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXClientEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXConnectionExce

ption;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateToNXResolver;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.io.File;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

/**

 * Simple action that allows for a file to be selected

using a file dialog - the file is then loaded

 * using the Maple API and a corresponding SysML block

with properties is created. Note that for reasons

 * of making this more readable, the logic should be

split into several classes, but, to get started,

386

 * let's keep everything in one file

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class UpdateToNXPart extends

DefaultBrowserAction {

 ElementsFactory elementsFactory =

Application.getInstance().getProject().getElementsFactory()

;

 /**

 * Constructor - configures the action, in this

case our menu item

 */

 public UpdateToNXPart() {

 // In the containment browser context pop

the text that will be displayed in the menu item

 // is what we specify as the second

argument. The first argument is an ID

 super("Update_NX_Part_Maple", "Update CAD

Model from SysML Model", null, null);

 }

 /**

 * This function (or action) will be fired

whenever a user clicks on the menu item that we are

 * describing in this class. I.e. whenever

someone right clicks in the containment browser and

 * selects our action, in this case "Import CAD

Part ...", this function will be called

 */

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

 NXEngine engine;

 try {

 engine = new NXClientEngine();

 } catch (NXConnectionException nxce) {

 engine = null;

 }

 if (engine == null) { return; }

387

 Object userObject = getSelectedObject();

 if (!(userObject instanceof Class)) {

 return;

 }

 Class userClass = (Class)userObject;

 Project project =

Application.getInstance().getProject();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 if

(!(StereotypesHelper.hasStereotype(userClass,

nxPartStereotype))) {

 return;

 }

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 WaitDialog waitDialog = new

WaitDialog(parentFrame, "Updating to NX...", "System is

working");

 waitDialog.setVisible(true);

 // ProgressMonitor pm = new

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE,

"Please wait", 0, 10);

 Object currentPartPath =

StereotypesHelper.getStereotypePropertyFirst(userClass,

nxPartStereotype, "currentPartPath");

 File nxFile = new File(

currentPartPath.toString());

 NXPart part =

SysMLUtility.openPart(parentFrame, nxFile);

 SysMLModelTraverser.launch(project,

userClass, part, new UpdateToNXResolver(engine));

 waitDialog.setVisible(false);

// pm.close();

 }

}

388

ValidateAgainstNXPart:
package gov.nasa.jpl.imce.sysmlnxsync.actions;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.ui.ConsistencyReportDialog;

import gov.nasa.jpl.imce.sysmlnxsync.ui.WaitDialog;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.ConsistencyResult;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.io.File;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashSet;

import java.util.List;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.ui.browser.actions.DefaultBrowserActi

on;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

389

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

public class ValidateAgainstNXPart extends

DefaultBrowserAction {

 public class ValidateResolver extends

DefaultNodeHandler {

 private ArrayList<ConsistencyResult>

_consistencyReport;

 private boolean _result;

 private HashSet<String> _uniqueID;

 public ValidateResolver() {

 _consistencyReport = new

ArrayList<ConsistencyResult>();

 _uniqueID = new HashSet<String>();

 _result = true;

 }

 @Override

 public Property enterExpression(Project

project, Class parent,

 Property sysmlExpression,

NXExpression nxExpression) {

 String sysmlName = (sysmlExpression !=

null ? sysmlExpression.getName() : null);

 if (nxExpression != null) {

 String nxName =

nxExpression.getName();

 if (sysmlExpression != null) {

 if

(!nxName.equals(sysmlExpression.getName())) {

 fail("Expression",

sysmlName, String.format("NX parameter name %s differs from

SysML parameter name", nxName));

 }

 } else {

 fail("Expression", nxName,

"No SysML equivalent for NX parameter");

 }

 } else if (sysmlExpression != null) {

390

 fail("Expression", sysmlName, "No

NX equivalent for SysML parameter");

 }

 if (sysmlExpression != null &&

nxExpression != null) {

 ValueSpecification spec =

sysmlExpression.getDefaultValue();

 String sysmlValue = (spec

instanceof LiteralString ? ((LiteralString)spec).getValue()

: null);

 if (sysmlValue != null) {

 if

(!sysmlValue.equals(nxExpression.getValue())) {

 fail("Expression",

sysmlName, String.format("Value conflict: NX value %s

differs from SysML value %s", nxExpression.getValue(),

sysmlValue));

 }

 } else {

 fail("Expression",

nxExpression.getName(), "SysML parameter value cannot be

read");

 }

 }

 return sysmlExpression;

 }

 @Override

 public Class enterFeature(Project project,

Class parent, Class sysmlFeature, NXFeature nxFeature) {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 String sysmlName = (sysmlFeature !=

null ? sysmlFeature.getName() : null);

 if (nxFeature != null) {

 String nxName =

nxFeature.getName();

 if (sysmlFeature != null) {

 if

(!nxName.equals(sysmlFeature.getName())) {

 fail("Feature",

sysmlName, String.format("NX feature name %s differs from

SysML feature name", nxName));

 }

 } else {

391

 fail("Feature", nxName, "No

SysML equivalent for NX feature");

 }

 } else if (sysmlFeature != null) {

 fail("Feature", sysmlName, "No NX

equivalent for SysML feature");

 }

 //String sysmlFeatureName =

sysmlFeature.getName();

 //String nxFeatureName =

nxFeature.getName();

 //if

(!sysmlFeatureName.equals(nxFeatureName)) {

 // consistencyResult = new

ConsistencyResult(false, String.format("Feature name %s

differs from feature name %s", nxFeatureName,

sysmlFeatureName));

 // return sysmlFeature;

 //}

 if (sysmlFeature != null && nxFeature

!= null) {

 String nxFType =

nxFeature.getType();

 if

(StereotypesHelper.hasStereotype(sysmlFeature,

nxFeatureStereotype) &&

 StereotypesHelper.getStereotypePropertyValue(sysmlFeat

ure, nxFeatureStereotype, "featureType") != null) {

 Object childFtype =

StereotypesHelper.getStereotypePropertyFirst(sysmlFeature,

nxFeatureStereotype, "featureType");

 String sysmlFType =

childFtype.toString();

 if

(!sysmlFType.equals(nxFType)) {

 fail("Feature",

sysmlName, String.format("NX feature type %s differs from

SysML feature type %s", nxFType, sysmlFType));

 return sysmlFeature;

 }

 } else {

 fail("Feature", sysmlName,

String.format("NX feature type is %s, SysML has no feature

type %s", nxFType));

392

 }

 Collection<NXExpression>

nxExpressions = nxFeature.getExpressions();

 Collection<Property>

sysmlExpressions = SysMLUtility.getExpressions(project,

sysmlFeature);

 if (nxExpressions.size() !=

sysmlExpressions.size()) {

 fail("Feature", sysmlName,

String.format("%d parameters in NX, %d parameters in

SysML", nxExpressions.size(), sysmlExpressions.size()));

 return sysmlFeature;

 }

 Collection<NXFeature>

nxSubfeatures = nxFeature.getChildren();

 Collection<Class> sysmlSubfeatures

= SysMLUtility.getFeatures(project, sysmlFeature);

 if (nxSubfeatures.size() !=

sysmlSubfeatures.size()) {

 fail("Feature", sysmlName,

String.format("%d features in NX, %d features in SysML",

nxSubfeatures.size(), sysmlSubfeatures.size()));

 }

 }

 return sysmlFeature;

 }

 @Override

 public Class enterPart(Project project,

Class parent, Class sysmlPart, NXPart nxPart) {

 //ElementsFactory elementsFactory =

project.getElementsFactory();

// Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 String sysmlName = (sysmlPart != null ?

sysmlPart.getName() : null);

 if (nxPart != null) {

 String nxName = nxPart.getName();

 if (sysmlPart != null) {

 if

(!nxName.equals(sysmlPart.getName())) {

393

 fail("Part", sysmlName,

String.format("NX part name %s differs from SysML part name

%s", nxName));

 }

 } else {

 fail("Part", nxName, "No

SysML equivalent for NX part");

 }

 } else if (sysmlPart != null) {

 fail("Part", sysmlName, "No NX

equivalent for SysML part");

 }

 return sysmlPart;

 }

 private void fail(String type, String id,

String report) {

 String s = String.format("%s||%s||%s",

type, id, report);

 if (!_uniqueID.contains(s)) {

 _consistencyReport.add(new

ConsistencyResult(type, id, report, null));

 _uniqueID.add(s);

 }

 _result = false;

 }

 public List<ConsistencyResult>

getInconsistencyList() {

 return _consistencyReport;

 }

 public boolean getResult() {

 return _result;

 }

 }

 ElementsFactory elementsFactory =

Application.getInstance().getProject().getElementsFactory()

;

 /**

 * Constructor - configures the action, in this

case our menu item

 */

 public ValidateAgainstNXPart() {

394

 // In the containment browser context pop

the text that will be displayed in the menu item

 // is what we specify as the second

argument. The first argument is an ID

 super("Validate_NX_Part_Maple", "Execute CAD

- SysML Consistency Analysis", null, null);

 }

 /**

 * This function (or action) will be fired

whenever a user clicks on the menu item that we are

 * describing in this class. I.e. whenever

someone right clicks in the containment browser and

 * selects our action, in this case "Import NX

Part ...", this function will be called

 */

 @Override

 public void actionPerformed(ActionEvent

actionEvent) {

 super.actionPerformed(actionEvent);

 Object userObject = getSelectedObject();

 if (!(userObject instanceof Class)) {

 return;

 }

 Class userClass = (Class)userObject;

 Project project =

Application.getInstance().getProject();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 if

(!(StereotypesHelper.hasStereotype(userClass,

nxPartStereotype))) {

 return;

 }

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 WaitDialog waitDialog = new

WaitDialog(parentFrame, "Checking consistency...", "System

is working");

 waitDialog.setVisible(true);

 //ProgressMonitor pm = new

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE,

"Please wait", 0, 10);

395

 String currentPartPath =

StereotypesHelper.getStereotypePropertyFirst(userClass,

nxPartStereotype, "currentPartPath").toString();

 File file = new File(currentPartPath);

 ValidateResolver resolver = new

ValidateResolver();

 NXPart part =

SysMLUtility.openPart(parentFrame, file);

 SysMLModelTraverser.launch(project,

userClass, part, resolver);

 List<ConsistencyResult> res =

resolver.getInconsistencyList();

 if (res == null) { res = new

ArrayList<ConsistencyResult>(); };

 waitDialog.setVisible(false);

 ConsistencyReportDialog consistencyReport =

new ConsistencyReportDialog(parentFrame, res);

 consistencyReport.setVisible(true);

 }

}

396

Model:

ExpressionModel:
package gov.nasa.jpl.imce.sysmlnxsync.model;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

public class ExpressionModel {

 private Property _sysmlProperty;

 private LiteralString _instanceValue;

 public ExpressionModel(Property sysmlProperty,

LiteralString instanceValue) {

 _sysmlProperty = sysmlProperty;

 _instanceValue = instanceValue;

 }

 public Property getBlock() {

 return _sysmlProperty;

 }

 public LiteralString getInstance() {

 return _instanceValue;

 }

}

397

FeatureModel:
package gov.nasa.jpl.imce.sysmlnxsync.model;

import java.util.LinkedList;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

public class FeatureModel {

 private Class _sysmlClass;

 private Package _instancePackage;

 private LinkedList<FeatureModel> _subFeatures;

 public FeatureModel(Class sysmlClass, Package

instancePackage) {

 _sysmlClass = sysmlClass;

 _instancePackage = instancePackage;

 _subFeatures = new

LinkedList<FeatureModel>();

 }

 public void addFeature(FeatureModel fm) {

 _subFeatures.add(fm);

 }

 public Class getBlock() {

 return _sysmlClass;

 }

 public FeatureModel getFeatures(int i) {

 return _subFeatures.get(i);

 }

 public Package getInstancePackage() {

 return _instancePackage;

 }

}

398

PartModel:
package gov.nasa.jpl.imce.sysmlnxsync.model;

import java.util.LinkedList;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

public class PartModel {

 private Class _sysmlClass;

 private LinkedList<PartModel> _subParts;

 private LinkedList<FeatureModel> _subFeatures;

 public PartModel(Class sysmlClass) {

 _sysmlClass = sysmlClass;

 _subParts = new LinkedList<PartModel>();

 _subFeatures = new

LinkedList<FeatureModel>();

 }

 public void addFeature(FeatureModel fm) {

 _subFeatures.add(fm);

 }

 public void addPart(PartModel pm) {

 _subParts.add(pm);

 }

 public Class getBlock() {

 return _sysmlClass;

 }

 public FeatureModel getFeatures(int i) {

 return _subFeatures.get(i);

 }

 public PartModel getPart(int i) {

 return _subParts.get(i);

 }

}

399

UserInterface:

ConsistencyReportDialog:
package gov.nasa.jpl.imce.sysmlnxsync.ui;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.ConsistencyResult;

import java.awt.Component;

import java.awt.Dimension;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.List;

import javax.swing.AbstractCellEditor;

import javax.swing.Box;

import javax.swing.JButton;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.JTextArea;

import javax.swing.ScrollPaneConstants;

import javax.swing.WindowConstants;

import javax.swing.table.AbstractTableModel;

import javax.swing.table.TableCellEditor;

public class ConsistencyReportDialog extends JDialog

implements ActionListener {

 static class ConsistencyTableModel extends

AbstractTableModel {

 private List<ConsistencyResult>

_consistencyResult;

 public ConsistencyTableModel(

List<ConsistencyResult> consistencyResult) {

 _consistencyResult = consistencyResult;

 }

 @Override

 public int getColumnCount() {

 return 3;

 }

 @Override

400

 public String getColumnName(int column) {

 switch(column) {

 case 0:

 return "Type";

 case 1:

 return "Name";

 case 2:

 return "Message";

 default:

 return

super.getColumnName(column);

 }

 }

 @Override

 public int getRowCount() {

 return _consistencyResult.size();

 }

 @Override

 public Object getValueAt(int rowIndex, int

columnIndex) {

 if (rowIndex <

_consistencyResult.size()) {

 switch(columnIndex) {

 case 0:

 return

_consistencyResult.get(rowIndex).getType();

 case 1:

 return

_consistencyResult.get(rowIndex).getIdentifier();

 case 2:

 return

_consistencyResult.get(rowIndex).getMessage();

 default:

 return "";

 }

 } else {

 return "";

 }

 }

 }

 static private class MyCellEditor extends

AbstractCellEditor implements TableCellEditor {

 private final JTextArea _ta;

401

 public MyCellEditor() {

 _ta = new JTextArea();

 _ta.setEditable(false);

 }

 @Override

 public Object getCellEditorValue() {

 return _ta.getText();

 }

 @Override

 public Component

getTableCellEditorComponent(JTable table,

 Object value, boolean isSelected,

int row, int column) {

 _ta.setText(value.toString());

 return _ta;

 }

 }

 /**

 *

 */

 private static final long serialVersionUID =

1140107010316106563L;

 private JButton _ok;

 private JTable _report;

 private JLabel _result;

 public ConsistencyReportDialog(Frame parent,

List<ConsistencyResult> consistencyResult) {

 super(parent, "Consistency Report");

 Box vbox = Box.createVerticalBox();

 Box hbox = Box.createHorizontalBox();

 JLabel label = new JLabel(

(consistencyResult.isEmpty() ? "Model element is

consistent" : "Model element is inconsistent"));

 hbox.add(label);

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(hbox);

402

 if (!consistencyResult.isEmpty()) {

 _report = new JTable(new

ConsistencyTableModel(consistencyResult));

 JScrollPane scroll = new

JScrollPane(_report);

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS);

 scroll.setPreferredSize(new

Dimension(450, 250));

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(scroll);

 _report.getColumnModel().getColumn(0).setPreferredWidt

h(40);

 _report.getColumnModel().getColumn(1).setPreferredWidt

h(60);

 _report.getColumnModel().getColumn(2).setPreferredWidt

h(400);

 _report.getColumnModel().getColumn(2).setCellEditor(

new MyCellEditor());

 }

 _ok = new JButton("OK");

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(_ok);

 vbox.add(Box.createVerticalStrut(10));

 add(vbox);

 setMinimumSize(new Dimension(500, 300));

 setLocationRelativeTo(parent);

 invalidate();

 setDefaultCloseOperation(

WindowConstants.DISPOSE_ON_CLOSE);

 pack();

 _ok.addActionListener(this);

 }

403

 @Override

 public void actionPerformed(ActionEvent ae) {

 Object target = ae.getSource();

 if (target == _ok) {

 setVisible(false);

 dispose();

 }

 }

}

404

InstanceReportDialog:
package gov.nasa.jpl.imce.sysmlnxsync.ui;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.InstanceReportResult;

import java.awt.Component;

import java.awt.Dimension;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Comparator;

import java.util.List;

import javax.swing.AbstractCellEditor;

import javax.swing.Box;

import javax.swing.JButton;

import javax.swing.JCheckBox;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.JTextArea;

import javax.swing.ScrollPaneConstants;

import javax.swing.WindowConstants;

import javax.swing.table.AbstractTableModel;

import javax.swing.table.TableCellEditor;

public class InstanceReportDialog extends JDialog

implements ActionListener {

 private List<InstanceReportResult> _resultList;

 private List<InstanceReportResult>

_filteredResultList;

 private static final long serialVersionUID =

1140107010316106563L;

 private JButton _ok;

 private AbstractTableModel _model;

 private JTable _report;

 private JLabel _result;

 private JCheckBox _filterStructuralValues,

_filterValidationValues, _filterTargetValues,

_filterPerformanceValues;

405

 class InstanceReportTableModel extends

AbstractTableModel {

 @Override

 public int getColumnCount() {

 return 5;

 }

 @Override

 public String getColumnName(int column) {

 switch(column) {

 case 0:

 return "Parameter Name";

 case 1:

 return "Feature Name";

 case 2:

 return "Part Name";

 case 3:

 return "Value Type";

 case 4:

 return "Value";

 default:

 return

super.getColumnName(column);

 }

 }

 @Override

 public int getRowCount() {

 return _filteredResultList.size();

 }

 @Override

 public Object getValueAt(int rowIndex, int

columnIndex) {

 if (rowIndex <

_filteredResultList.size()) {

 InstanceReportResult res =

_filteredResultList.get(rowIndex);

 switch(columnIndex) {

 case 0:

 return res.getName();

 case 1:

 return res.getFeatureName();

 case 2:

406

 return res.getPartName();

 case 3:

 return res.getType();

 case 4:

 return res.getValue();

 default:

 return "";

 }

 } else {

 return "";

 }

 }

 }

 static private class MyCellEditor extends

AbstractCellEditor implements TableCellEditor {

 private final JTextArea _ta;

 public MyCellEditor() {

 _ta = new JTextArea();

 _ta.setEditable(false);

 }

 @Override

 public Object getCellEditorValue() {

 return _ta.getText();

 }

 @Override

 public Component

getTableCellEditorComponent(JTable table,

 Object value, boolean isSelected,

int row, int column) {

 _ta.setText(value.toString());

 return _ta;

 }

 }

 /**

 *

 */

 public List<InstanceReportResult>

getFilteredList(List<InstanceReportResult> result) {

 ArrayList<InstanceReportResult> arr = new

ArrayList<InstanceReportResult>();

 for (InstanceReportResult row : result) {

407

 if ("Part

Property".equals(row.getType()) || "Constraint

Parameter".equals(row.getType()) || "Constraint

Property".equals(row.getType())) {

 // Ignore and never include in

result list

 } else if

("NXValueProperty".equals(row.getType()) || "Value

Property".equals(row.getType())) {

 if

(_filterStructuralValues.isSelected()) arr.add(row);

 } else if ("Validation Value

Property".equals(row.getType())) {

 if

(_filterValidationValues.isSelected()) arr.add(row);

 } else if ("Performance Value

Property".equals(row.getType())) {

 if

(_filterPerformanceValues.isSelected()) arr.add(row);

 } else if ("Targert Value

Property".equals(row.getType())) {

 if

(_filterTargetValues.isSelected()) arr.add(row);

 } else {

 arr.add(row);

 }

 }

 Comparator<InstanceReportResult> cmp = new

Comparator<InstanceReportResult>() {

 public int compare(InstanceReportResult

c1, InstanceReportResult c2) {

 return

c1.getName().compareTo(c2.getName());

 }

 };

 Collections.sort(arr, cmp);

 return arr;

 }

 public InstanceReportDialog(Frame parent,

List<InstanceReportResult> result) {

 super(parent, "Instance Results Report");

 _filterStructuralValues = new

JCheckBox("Structural Values", true);

 _filterValidationValues = new

JCheckBox("Validation Values", true);

408

 _filterTargetValues = new

JCheckBox("Target Values", true);

 _filterPerformanceValues = new

JCheckBox("Performance Values", true);

 Box vbox = Box.createVerticalBox();

 Box hbox = Box.createHorizontalBox();

 JLabel label = new JLabel("View:");

 hbox.add(label);

 hbox.add(_filterStructuralValues);

 hbox.add(_filterValidationValues);

 hbox.add(_filterTargetValues);

 hbox.add(_filterPerformanceValues);

 vbox.add(hbox);

 vbox.add(Box.createVerticalStrut(10));

 _resultList = result;

 _filteredResultList = getFilteredList(

_resultList);

 _model = new InstanceReportTableModel();

 _report = new JTable(_model);

 JScrollPane scroll = new

JScrollPane(_report);

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS);

 scroll.setPreferredSize(new Dimension(600,

250));

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(scroll);

 _report.getColumnModel().getColumn(0).setPreferredWidt

h(125);

 _report.getColumnModel().getColumn(1).setPreferredWidt

h(125);

 _report.getColumnModel().getColumn(2).setPreferredWidt

h(125);

 _report.getColumnModel().getColumn(3).setPreferredWidt

h(150);

409

 _report.getColumnModel().getColumn(4).setPreferredWidt

h(125);

 _report.getColumnModel().getColumn(0).setCellEditor(

new MyCellEditor());

 _report.getColumnModel().getColumn(1).setCellEditor(

new MyCellEditor());

 _report.getColumnModel().getColumn(2).setCellEditor(

new MyCellEditor());

 _report.getColumnModel().getColumn(3).setCellEditor(

new MyCellEditor());

 _report.getColumnModel().getColumn(4).setCellEditor(

new MyCellEditor());

 _ok = new JButton("OK");

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(_ok);

 vbox.add(Box.createVerticalStrut(10));

 add(vbox);

 setMinimumSize(new Dimension(600, 300));

 setLocationRelativeTo(parent);

 invalidate();

 setDefaultCloseOperation(

WindowConstants.DISPOSE_ON_CLOSE);

 pack();

 _filterStructuralValues.addActionListener(this);

 _filterValidationValues.addActionListener(this);

 _filterTargetValues.addActionListener(this);

 _filterPerformanceValues.addActionListener(this);

 _ok.addActionListener(this);

 }

410

 @Override

 public void actionPerformed(ActionEvent ae) {

 Object target = ae.getSource();

 if (target == _ok) {

 setVisible(false);

 dispose();

 } else if (target == _filterStructuralValues

|| target == _filterValidationValues ||

 target == _filterTargetValues

|| target == _filterPerformanceValues) {

 _filteredResultList = getFilteredList(

_resultList);

 _model.fireTableDataChanged();

 _report.invalidate();

 }

 }

}

411

InteractiveConsistencyReportDialog:
package gov.nasa.jpl.imce.sysmlnxsync.ui;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXClientEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXConnectionExce

ption;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.ConsistencyResult;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.DefaultNodeHandler;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLModelTraverser;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateFromNXResolver;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.UpdateToNXResolver;

import java.awt.Component;

import java.awt.Dimension;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.File;

import java.util.ArrayList;

import java.util.List;

import javax.swing.AbstractCellEditor;

import javax.swing.Box;

import javax.swing.DefaultCellEditor;

import javax.swing.JButton;

import javax.swing.JComboBox;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.JTextArea;

import javax.swing.ScrollPaneConstants;

import javax.swing.WindowConstants;

import javax.swing.table.DefaultTableModel;

import javax.swing.table.TableCellEditor;

import javax.swing.table.TableCellRenderer;

412

import javax.swing.table.TableColumn;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

public class InteractiveConsistencyReportDialog

extends JDialog implements ActionListener {

 static private class ComboBoxCellEditor extends

DefaultCellEditor {

 public ComboBoxCellEditor(String[] items) {

 super(new JComboBox(items));

 }

 }

 static private class ComboBoxCellRenderer extends

JComboBox implements TableCellRenderer {

 private List<ConsistencyResult> _cr;

 public

ComboBoxCellRenderer(List<ConsistencyResult> cr) {

 super();

 _cr = cr;

 }

 @Override

 public Component

getTableCellRendererComponent(JTable table, Object value,

 boolean isSelected, boolean hasFocus,

int row, int column) {

 super.removeAllItems();

 if (_cr.get(row).canUpdateNX())

super.addItem("NX");

 if (_cr.get(row).canUpdateSysML())

super.addItem("SysML");

 if (isSelected) {

setForeground(table.getSelectionForeground());

super.setBackground(table.getSelectionBackground());

 } else {

 setForeground(table.getForeground());

 setBackground(table.getBackground());

 }

 // Select the current value

 setSelectedItem(value);

413

 setEnabled(true);

 return this;

 }

 }

 static class ConsistencyTableModel extends

DefaultTableModel {

 private List<ConsistencyResult>

_consistencyResult;

 private List<Boolean> _res;

 public ConsistencyTableModel(

List<ConsistencyResult> consistencyResult) {

 super(new

String[]{"Type","Name","Message","Resolve Using"},

consistencyResult.size());

 _consistencyResult = consistencyResult;

 _res = new ArrayList<Boolean>();

 }

 @Override

 public Object getValueAt(int rowIndex, int

columnIndex) {

 if (rowIndex <

_consistencyResult.size()) {

 switch(columnIndex) {

 case 0:

 return

_consistencyResult.get(rowIndex).getType();

 case 1:

 return

_consistencyResult.get(rowIndex).getIdentifier();

 case 2:

 return

_consistencyResult.get(rowIndex).getMessage();

 case 3:

 default:

 return

super.getValueAt(rowIndex, columnIndex);

 }

 } else {

 return super.getValueAt(rowIndex,

columnIndex);

 }

 }

 }

414

 static private class MyCellEditor extends

AbstractCellEditor implements TableCellEditor {

 private final JTextArea _ta;

 public MyCellEditor() {

 _ta = new JTextArea();

 _ta.setEditable(false);

 }

 @Override

 public Object getCellEditorValue() {

 return _ta.getText();

 }

 @Override

 public Component

getTableCellEditorComponent(JTable table,

 Object value, boolean isSelected,

int row, int column) {

 _ta.setText(value.toString());

 return _ta;

 }

 }

 /**

 *

 */

 private static final long serialVersionUID =

1140107010316106563L;

 private File _nxFile;

 private NXPart _part;

 private Project _project;

 private JTable _report;

 private JButton _resolveNX, _resolveSysML,

_resolve, _cancel;

 private JLabel _result;

 private Class _userClass;

 public InteractiveConsistencyReportDialog(Frame

parent,

 List<ConsistencyResult>

consistencyResult,

415

 Project project, Class userClass, File

nxFile, NXPart part) {

 super(parent, "Resolve Model");

 _project = project;

 _userClass = userClass;

 _part = part;

 _nxFile = nxFile;

 Box vbox = Box.createVerticalBox();

 Box hbox = Box.createHorizontalBox();

 JLabel label = new JLabel(

(consistencyResult.isEmpty() ? "Model element is

consistent" : "Model element is inconsistent"));

 hbox.add(label);

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(hbox);

 if (!consistencyResult.isEmpty()) {

 _report = new JTable(new

ConsistencyTableModel(consistencyResult));

 JScrollPane scroll = new

JScrollPane(_report);

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS);

 scroll.setPreferredSize(new

Dimension(700, 300));

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(scroll);

 TableColumn col =

_report.getColumnModel().getColumn(0);

 col.setCellEditor(new MyCellEditor()

);

 col.setPreferredWidth(100);

 col =

_report.getColumnModel().getColumn(1);

 col.setCellEditor(new MyCellEditor()

);

 col.setPreferredWidth(60);

 col =

_report.getColumnModel().getColumn(2);

416

 col.setCellEditor(new MyCellEditor()

);

 col.setPreferredWidth(400);

 col =

_report.getColumnModel().getColumn(3);

 ComboBoxCellRenderer cbcr = new

ComboBoxCellRenderer(consistencyResult);

 ComboBoxCellEditor cbce = new

ComboBoxCellEditor(new String[]{"NX", "SysML"});

 col.setCellEditor(cbce);

 cbcr.setSelectedItem("NX");

 col.setCellRenderer(cbcr);

 col.setPreferredWidth(140);

 }

 hbox = Box.createHorizontalBox();

 _resolve = new JButton("Resolve Using Above

Settings");

 _resolveNX = new JButton("Resolve using CAD");

 _resolveSysML = new JButton("Resolve using

SysML");

 _cancel = new JButton("Cancel");

 hbox.add(_resolve);

 hbox.add(Box.createHorizontalStrut(10));

 hbox.add(_resolveNX);

 hbox.add(Box.createHorizontalStrut(10));

 hbox.add(_resolveSysML);

 hbox.add(Box.createHorizontalStrut(10));

 hbox.add(_cancel);

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(hbox);

 vbox.add(Box.createVerticalStrut(10));

 add(vbox);

 setMinimumSize(new Dimension(500, 300));

 setLocationRelativeTo(parent);

 invalidate();

 setDefaultCloseOperation(

WindowConstants.DISPOSE_ON_CLOSE);

 pack();

 _cancel.addActionListener(this);

417

 _resolve.addActionListener(this);

 _resolveNX.addActionListener(this);

 _resolveSysML.addActionListener(this);

 }

 @Override

 public void actionPerformed(ActionEvent ae) {

 NXEngine engine;

 try {

 engine = new NXClientEngine();

 } catch (NXConnectionException nxce) {

 engine = null;

 }

 if (engine == null) { return; }

 Object target = ae.getSource();

 if (target == _cancel) {

 setVisible(false);

 dispose();

 } else if (target == _resolve || target ==

_resolveSysML) {

 DefaultNodeHandler resolver = new

UpdateToNXResolver(engine);

 SysMLModelTraverser.launch(_project,

_userClass, _part, resolver);

 setVisible(false);

 dispose();

 } else if (target == _resolveNX) {

// Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

// ProgressMonitor pm = new

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE,

"Please wait", 0, 10);

 DefaultNodeHandler resolver = new

UpdateFromNXResolver(null);

 SysMLModelTraverser.launch(_project,

_userClass, _part, resolver);

 resolver = null;

 setVisible(false);

 dispose();

 } else if (target == _resolveSysML) {

418

 DefaultNodeHandler resolver = new

UpdateToNXResolver(engine);

 SysMLModelTraverser.launch(_project,

_userClass, _part, resolver);

 resolver = null;

 setVisible(false);

 dispose();

 }

 }

}

419

InteractiveInstanceReportDialog:
package gov.nasa.jpl.imce.sysmlnxsync.ui;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.InstanceReportResult;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.InteractiveInstanceRe

portResult;

import java.awt.Component;

import java.awt.Dimension;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import javax.swing.AbstractCellEditor;

import javax.swing.Box;

import javax.swing.DefaultCellEditor;

import javax.swing.DefaultComboBoxModel;

import javax.swing.JButton;

import javax.swing.JCheckBox;

import javax.swing.JComboBox;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.JTextArea;

import javax.swing.ScrollPaneConstants;

import javax.swing.WindowConstants;

import javax.swing.table.AbstractTableModel;

import javax.swing.table.DefaultTableModel;

import javax.swing.table.TableCellEditor;

import javax.swing.table.TableColumnModel;

import javax.swing.table.TableModel;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature;

public class InteractiveInstanceReportDialog extends

JDialog implements ActionListener {

420

 private List<InteractiveInstanceReportResult>

_resultList;

 private ArrayList<JComboBox> _valueSelector;

 private ArrayList<TableCellEditor> _editors;

 class MyTable extends JTable {

 public MyTable (DefaultTableModel tm) {

 super(tm);

 }

 /*@Override

 public TableCellEditor getCellEditor(int

row, int column) {

 int modelColumn =

convertColumnIndexToModel(column);

 if (modelColumn == 3) {

 return _editors.get(row);

 }

 return super.getCellEditor(row,

column);

 }*/

 }

 class InteractiveInstanceReportTableModel extends

DefaultTableModel {

 @Override

 public int getColumnCount() {

 return 5;

 }

 @Override

 public String getColumnName(int column) {

 switch(column) {

 case 0:

 return "Parameter Name";

 case 1:

 return "Feature Name";

 case 2:

 return "Part Name";

 case 3:

 return "Default Value";

 case 4:

 return "Value";

 default:

421

 return

super.getColumnName(column);

 }

 }

 @Override

 public int getRowCount() {

 return _resultList.size();

 }

 @Override

 public Object getValueAt(int rowIndex, int

columnIndex) {

 if (rowIndex < _resultList.size()) {

 InteractiveInstanceReportResult

res = _resultList.get(rowIndex);

 switch(columnIndex) {

 case 0:

 return res.getName();

 case 1:

 return res.getFeatureName();

 case 2:

 return res.getPartName();

 case 3:

 return res.getDefaultValue();

 case 4:

 return res.getValue().get(0);

 default:

 return

super.getValueAt(rowIndex, columnIndex);

 }

 } else {

 return super.getValueAt(rowIndex,

columnIndex);

 }

 }

 }

 static private class MyCellEditor extends

AbstractCellEditor implements TableCellEditor {

 private final JTextArea _ta;

 public MyCellEditor() {

 _ta = new JTextArea();

 _ta.setEditable(false);

422

 }

 @Override

 public Object getCellEditorValue() {

 return _ta.getText();

 }

 @Override

 public Component

getTableCellEditorComponent(JTable table,

 Object value, boolean isSelected,

int row, int column) {

 _ta.setText(value.toString());

 return _ta;

 }

 }

 public class CustomComboBoxEditor extends

DefaultCellEditor implements TableCellEditor {

 // Decalre a model that is used for adding

the elements to the `Combo box`

 private DefaultComboBoxModel _cbModel;

 public CustomComboBoxEditor() {

 super(new JComboBox());

 _cbModel =

(DefaultComboBoxModel)((JComboBox)getComponent()).getModel(

);

 }

 @Override

 public Component

getTableCellEditorComponent(JTable table, Object value,

boolean isSelected, int row, int column) {

 // Add the elements which you want to

the model.

 // Here I am adding elements from the

orderList(say).

 TableModel model = table.getModel();

 _cbModel.removeAllElements();

 List<String> valList =

_resultList.get(row).getValue();

 for (String val : valList) {

 _cbModel.addElement(val);

 }

423

 Object val = table.getValueAt(row,

column);

 _cbModel.setSelectedItem(val);

 //model.setValueAt(valList.get(0), row,

column);

 //finally return the component.

 return

super.getTableCellEditorComponent(table, value, isSelected,

row, column);

 }

 }

 /**

 *

 */

 private static final long serialVersionUID =

1140107010316106563L;

 private JButton _cancelButton, _updateButton;

 private JTable _report;

 private JLabel _result;

 public InteractiveInstanceReportDialog(Frame

parent, List<InteractiveInstanceReportResult> resultList) {

 super(parent, "Update Block Value Properties

from Instance");

 _resultList = resultList;

 _valueSelector = new ArrayList<JComboBox>();

 _editors = new ArrayList<TableCellEditor>();

 JComboBox cb;

 for (InteractiveInstanceReportResult result

: resultList) {

 cb = new

JComboBox(result.getValue().toArray());

 _valueSelector.add(cb);

 _editors.add(new DefaultCellEditor(cb)

);

 }

 Box vbox = Box.createVerticalBox();

 Box hbox = Box.createHorizontalBox();

424

 DefaultTableModel tm = new

InteractiveInstanceReportTableModel();

 _report = new MyTable(tm);

 TableColumnModel cm =

_report.getColumnModel();

 JScrollPane scroll = new

JScrollPane(_report);

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS);

 scroll.setPreferredSize(new Dimension(600,

250));

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(scroll);

 cm.getColumn(0).setPreferredWidth(120);

 cm.getColumn(1).setPreferredWidth(120);

 cm.getColumn(2).setPreferredWidth(120);

 cm.getColumn(3).setPreferredWidth(120);

 cm.getColumn(4).setPreferredWidth(120);

 cm.getColumn(1).setCellEditor(new

MyCellEditor());

 cm.getColumn(2).setCellEditor(new

MyCellEditor());

 cm.getColumn(3).setCellEditor(new

MyCellEditor());

 cm.getColumn(4).setCellEditor(new

CustomComboBoxEditor());

 _cancelButton = new JButton("Cancel");

 _updateButton = new JButton("Update");

 vbox.add(Box.createVerticalStrut(10));

 hbox = Box.createHorizontalBox();

 hbox.add(_cancelButton);

 hbox.add(Box.createHorizontalStrut(10));

 hbox.add(_updateButton);

 vbox.add(hbox);

 vbox.add(Box.createVerticalStrut(10));

 add(vbox);

425

 setMinimumSize(new Dimension(500, 300));

 setLocationRelativeTo(parent);

 invalidate();

 setDefaultCloseOperation(

WindowConstants.DISPOSE_ON_CLOSE);

 pack();

 _updateButton.addActionListener(this);

 }

 @Override

 public void actionPerformed(ActionEvent ae) {

 Object target = ae.getSource();

 if (target == _updateButton) {

 setVisible(false);

 dispose();

 } else if (target == _cancelButton) {

 setVisible(false);

 dispose();

 }

 }

}

426

StereotypeFilterDialog:
package gov.nasa.jpl.imce.sysmlnxsync.ui;

import

gov.nasa.jpl.imce.sysmlnxsync.utility.SysMLUtility;

import java.awt.Component;

import java.awt.Dimension;

import java.awt.Frame;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Collections;

import java.util.Comparator;

import java.util.List;

import javax.swing.AbstractCellEditor;

import javax.swing.Box;

import javax.swing.JButton;

import javax.swing.JDialog;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.JTextArea;

import javax.swing.ScrollPaneConstants;

import javax.swing.WindowConstants;

import javax.swing.table.AbstractTableModel;

import javax.swing.table.TableCellEditor;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

public class StereotypeFilterDialog extends JDialog

implements ActionListener {

 static private class MyCellEditor extends

AbstractCellEditor implements TableCellEditor {

 private final JTextArea _ta;

 public MyCellEditor() {

 _ta = new JTextArea();

 _ta.setEditable(false);

 }

 @Override

427

 public Object getCellEditorValue() {

 return _ta.getText();

 }

 @Override

 public Component

getTableCellEditorComponent(JTable table,

 Object value, boolean isSelected,

int row, int column) {

 _ta.setText(value.toString());

 return _ta;

 }

 }

 static class StereotypeTableModel extends

AbstractTableModel {

 private List<Stereotype>

_excludedStereotypes;

 private List<Stereotype>

_profileStereotypes;

 public StereotypeTableModel(

Collection<Stereotype> profileStereotypes) {

 _profileStereotypes = new

ArrayList<Stereotype>(profileStereotypes);

 Collections.sort(_profileStereotypes,

new Comparator<Stereotype>() {

 @Override

 public int compare(Stereotype st1,

Stereotype st2) {

 return

st1.getName().compareTo(st2.getName());

 }

 });

 // list of excluded stereotypes is

initially empty

 _excludedStereotypes = new

ArrayList<Stereotype>();

 }

 @Override

 public Class<?> getColumnClass(int

columnIndex) {

 if (columnIndex == 0) {

 return Boolean.class;

 }

 return

super.getColumnClass(columnIndex);

428

 }

 @Override

 public int getColumnCount() {

 return 2;

 }

 @Override

 public String getColumnName(int column) {

 switch(column) {

 case 0:

 return "Include?";

 default:

 case 1:

 return "Name";

 }

 }

 public Collection<Stereotype>

getExcludedStereotypes() {

 return _excludedStereotypes;

 }

 @Override

 public int getRowCount() {

 return _profileStereotypes.size();

 }

 @Override

 public Object getValueAt(int rowIndex, int

columnIndex) {

 Stereotype st =

_profileStereotypes.get(rowIndex);

 switch(columnIndex) {

 case 0:

 return

!_excludedStereotypes.contains(st);

 default:

 case 1:

 return st.getName();

 }

 }

 @Override

 public boolean isCellEditable(int rowIndex,

int columnIndex) {

429

// if (columnIndex == 0) {

// String sn =

_profileStereotypes.get(rowIndex).getName();

// if ("NXSketch".equals(sn) ||

"NXCoordinateSystem".equals(sn)) {

// return true;

// }

// }

// return false;

 return true;

 }

 @Override

 public void setValueAt(Object aValue, int

rowIndex, int columnIndex) {

 Stereotype st1 =

_profileStereotypes.get(rowIndex);

 if (columnIndex == 0) {

 Stereotype st =

_profileStereotypes.get(rowIndex);

 Boolean checked = (Boolean)aValue;

 if (checked &&

_excludedStereotypes.contains(st)) {

 _excludedStereotypes.remove(st);

 } else if (!checked &&

!_excludedStereotypes.contains(st)) {

 _excludedStereotypes.add(st);

 }

 } else {

 super.setValueAt(aValue, rowIndex,

columnIndex);

 }

 }

 }

 private JButton _cancel;

 private JButton _import;

 private JTable _filter_table;

 private StereotypeTableModel _filter_table_model;

 private Collection<Stereotype> _filter;

 public StereotypeFilterDialog(Frame parent,

Collection<Stereotype> profileStereotypes) {

 super(parent, "Set Stereotype Filter",

true);

 Box vbox = Box.createVerticalBox();

 Box hbox = Box.createHorizontalBox();

430

 //JLabel label = new JLabel(

(consistencyResult.isEmpty() ? "Model element is

consistent" : "Model element is inconsistent"));

 //hbox.add(label);

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(hbox);

 //if (!consistencyResult.isEmpty()) {

 _filter_table_model = new

StereotypeTableModel(profileStereotypes);

 _filter_table = new JTable(

_filter_table_model);

 JScrollPane scroll = new

JScrollPane(_filter_table);

 scroll.setVerticalScrollBarPolicy(ScrollPaneConstants.

VERTICAL_SCROLLBAR_ALWAYS);

 scroll.setPreferredSize(new

Dimension(300, 250));

 vbox.add(Box.createVerticalStrut(10));

 vbox.add(scroll);

 _filter_table.getColumnModel().getColumn(0).setPreferr

edWidth(50);

 _filter_table.getColumnModel().getColumn(1).setPreferr

edWidth(250);

 //}

 _import = new JButton("Import");

 _cancel = new JButton("Cancel");

 vbox.add(Box.createVerticalStrut(10));

 hbox = Box.createHorizontalBox();

 hbox.add(_import);

 hbox.add(Box.createHorizontalStrut(50));

 hbox.add(_cancel);

 vbox.add(hbox);

 vbox.add(Box.createVerticalStrut(10));

 add(vbox);

431

 setMinimumSize(new Dimension(400, 300));

 setLocationRelativeTo(parent);

 invalidate();

 setDefaultCloseOperation(

WindowConstants.DISPOSE_ON_CLOSE);

 pack();

 _import.addActionListener(this);

 _cancel.addActionListener(this);

 }

 @Override

 public void actionPerformed(ActionEvent ae) {

 Object target = ae.getSource();

 if (target == _import) {

 setVisible(false);

 Collection<Stereotype> excl =

_filter_table_model.getExcludedStereotypes();

 Project project =

Application.getInstance().getProject();

 Collection<Stereotype> bst =

SysMLUtility.getBasicStereotypes(project);

 excl.removeAll(bst);

 _filter = excl;

 dispose();

 } else if (target == _cancel) {

 setVisible(false);

 dispose();

 }

 }

 public Collection<Stereotype> getFilter() {

 return _filter;

 }

}

432

WaitDialog:
package gov.nasa.jpl.imce.sysmlnxsync.ui;

import java.awt.Dimension;

import java.awt.Frame;

import javax.swing.Box;

import javax.swing.JDialog;

import javax.swing.JLabel;

import javax.swing.WindowConstants;

/**

 * Display window during synchronization

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class WaitDialog extends JDialog {

 public WaitDialog(Frame parent, String title,

String message) {

 super(parent, title);

 Box box = Box.createHorizontalBox();

 JLabel label = new JLabel(message);

 box.add(label);

 add(box);

 setPreferredSize(new Dimension(300, 150));

 setLocationRelativeTo(parent);

 invalidate();

 setDefaultCloseOperation(

WindowConstants.DISPOSE_ON_CLOSE);

 pack();

 }

}

433

Utility:

ConsistencyResult:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

public class ConsistencyResult {

 private String _id;

 private String _message;

 private String _type;

 private UpdateObject _updateObject;

 public ConsistencyResult (String type, String id,

String message, UpdateObject obj) {

 _type = type;

 _id = id;

 _message = message;

 _updateObject = obj;

 }

 public boolean canUpdateNX() {

 return _updateObject.canUpdateNX();

 }

 public boolean canUpdateSysML() {

 return _updateObject.canUpdateSysML();

 }

 public String getIdentifier() {

 return _id;

 }

 public String getMessage() {

 return _message;

 }

 public String getType() {

 return _type;

 }

 public void updateNX() {

 _updateObject.updateNX();

 }

 public void updateSysML() {

 _updateObject.updateSysML();

 }

}

434

435

DefaultNodeHandler:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

public abstract class DefaultNodeHandler {

 public Property enterExpression(Project project,

Class parent, Property sysmlExpression, NXExpression

nxExpression) throws ReadOnlyElementException {

 return null;

 }

 public Class enterFeature(Project project, Class

parent, Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 return null;

 }

 public Class enterPart(Project project, Class

parent, Class sysmlPart, NXPart nxPart) throws

ReadOnlyElementException {

 return null;

 }

 public Property exitExpression(Project project,

Class parent, Property sysmlExpression, NXExpression

nxExpression) throws ReadOnlyElementException {

 return null;

 }

436

 public Class exitFeature(Project project, Class

parent, Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("222" +

sysmlFeature);

 }

 return null;

 }

 public Class exitPart(Project project, Class

parent, Class sysmlPart, NXPart nxPart) throws

ReadOnlyElementException {

 return null;

 }

}

IdentityNodeHandler:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

public abstract class IdentityNodeHandler extends

DefaultNodeHandler {

 @Override

 public Property enterExpression(Project project,

Class parent, Property sysmlExpression, NXExpression

nxExpression) throws ReadOnlyElementException {

 return sysmlExpression;

 }

 @Override

437

 public Class enterFeature(Project project, Class

parent, Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 return sysmlFeature;

 }

 @Override

 public Class enterPart(Project project, Class

parent, Class sysmlPart, NXPart nxPart) throws

ReadOnlyElementException {

 return sysmlPart;

 }

 @Override

 public Property exitExpression(Project project,

Class parent, Property sysmlExpression, NXExpression

nxExpression) throws ReadOnlyElementException {

 return sysmlExpression;

 }

 @Override

 public Class exitFeature(Project project, Class

parent, Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("111" +

sysmlFeature);

 }

 return sysmlFeature;

 }

 @Override

 public Class exitPart(Project project, Class

parent, Class sysmlPart, NXPart nxPart) throws

ReadOnlyElementException {

 return sysmlPart;

 }

}

InstanceReportResult:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

438

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

public class InstanceReportResult {

 private String _name, _fname, _pname, _value,

_type;

 public InstanceReportResult (String name, String

fname, String pname, String type, String value) {

 _name = name;

 _fname = fname;

 _pname = pname;

 _type = type;

 _value = value;

 }

 public String getName() {

 return _name;

 }

 public String getFeatureName() {

 return _fname;

 }

 public String getPartName() {

 return _pname;

 }

 public String getValue() {

 return _value;

 }

 public String getType() {

 return _type;

 }

 public static List<InstanceReportResult>

generateList(Project project, Package pkg) {

439

 Stereotype targetValuePropertyStereotype =

StereotypesHelper.getStereotype(project, "Targert Value

Property");

 ArrayList<InstanceReportResult> arr = new

ArrayList<InstanceReportResult>();

 Map<StructuralFeature, List<Slot>> hm =

SysMLUtility.getInstanceMap(project, pkg);

 for (StructuralFeature key : hm.keySet()) {

 String name = key.getName();

 Slot sl = hm.get(key).get(0);

 Property df =

((Property)sl.getDefiningFeature());

 String type = df.getHumanType();

 String val =

SysMLUtility.getValueSpecificationValue(

sl.getValue().get(0));

// String val = df.getDefault();

 /*Application.getInstance().getGUILog().log(

 "Slot name: " + key.getName()

+ " type: "

 + key +

 " size: " +

hm.get(key).size() + " val: " + hm.get(key).get(0) +

 " val2: " +

hm.get(key).get(0).getHumanName() +

 " val3: " +

hm.get(key).get(0).getDefiningFeature() +

 " val4: " + df.getDefault() +

 " val5: " + df.getHumanName()

+

 " val6: " +

df.getDefaultValue() +

 " val7: " +

df.getUpperValue()

);*/

 Property target = df;

 if (StereotypesHelper.hasStereotype(df,

targetValuePropertyStereotype)) {

 Object o =

StereotypesHelper.getStereotypePropertyFirst(df,

targetValuePropertyStereotype, "Original Classifier");

 if (o instanceof Property) {

 target = (Property)o;

 }

440

 }

 String fname =

SysMLUtility.getFeatureName(project, target);

 String pname =

SysMLUtility.getPartName(project, target);

 arr.add(new InstanceReportResult(name,

fname, pname, type, val));

 }

 return arr;

 }

}

InteractiveInstanceReportResult:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication;

public class InteractiveInstanceReportResult {

 private String _name, _fname, _pname,

_defaultValue, _type;

 private List<String> _value;

 public InteractiveInstanceReportResult (String

name, String fname, String pname, String type, String

defaultValue, List<String> value) {

 _name = name;

 _fname = fname;

 _pname = pname;

 _type = type;

 _defaultValue = defaultValue;

441

 _value = value;

 }

 public String getName() {

 return _name;

 }

 public String getFeatureName() {

 return _fname;

 }

 public String getPartName() {

 return _pname;

 }

 public String getDefaultValue() {

 return _defaultValue;

 }

 public List<String> getValue() {

 return _value;

 }

 public String getType() {

 return _type;

 }

 public static

List<InteractiveInstanceReportResult> generateList(Project

project, Package pkg) {

 ArrayList<InteractiveInstanceReportResult>

arr = new ArrayList<InteractiveInstanceReportResult>();

 Map<StructuralFeature, List<Slot>> hm =

SysMLUtility.getInstanceMap(project, pkg);

 ArrayList<String> values;

 String defaultValue, val = "", type = "";

 for (StructuralFeature key : hm.keySet()) {

 defaultValue = "";

 values = new ArrayList<String>();

 for (Slot sl : hm.get(key)) {

 Property df =

((Property)sl.getDefiningFeature());

 type = df.getHumanType();

 if (df.getDefaultValue() != null)

{

442

 defaultValue =

SysMLUtility.getValueSpecificationValue(df.getDefaultValue(

));

 }

 for (ValueSpecification vs :

sl.getValue()) {

 val =

SysMLUtility.getValueSpecificationValue(vs);

 values.add(val);

 }

 }

 String name = key.getName();

 String fname =

SysMLUtility.getFeatureName(project, key);

 String pname =

SysMLUtility.getPartName(project, key);

 if ("Part Property".equals(type) ||

"Constraint Parameter".equals(type) || "Constraint

Property".equals(type)) {

 // Ignore and never include in

result list

 } else if ("Validation Value

Property".equals(type)) {

 // Ignore and never include in

result list

 } else if ("Performance Value

Property".equals(type)) {

 // Ignore and never include in

result list

 } else {

 arr.add(new

InteractiveInstanceReportResult(name, fname, pname, type,

defaultValue, values));

 }

 }

 return arr;

 }

}

PartFileFilter:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import java.io.File;

import javax.swing.filechooser.FileFilter;

/**

443

 * File filter for file.prt

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class PartFileFilter extends FileFilter {

 @Override

 public boolean accept(File file) {

 return file.isDirectory() ||

file.getName().toLowerCase().endsWith(".prt");

 }

 @Override

 public String getDescription() {

 // TODO Auto-generated method stub

 return "NX Part Files";

 }

}

444

StereotypeFilterHandler:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import java.util.Collection;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ModelElementsManager;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

public class StereotypeFilterHandler extends

IdentityNodeHandler {

 private Collection<Stereotype> _filter;

 public

StereotypeFilterHandler(Collection<Stereotype> filter) {

 _filter = filter;

 }

 @Override

 public Class exitFeature(Project project, Class

parent, Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("000" +

sysmlFeature);

 if (parent != null) {

 Application.getInstance().getGUILog().log("001" +

parent + " | " + parent.getName());

 } else {

445

 Application.getInstance().getGUILog().log("001 parent

is null ");

 }

 }

 boolean included = true;

 if (sysmlFeature != null) {

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("AAA

Checking feature : " + sysmlFeature.getName());

 }

 for (Stereotype st : _filter) {

 Application.getInstance().getGUILog().log("BBB

Checking stereotype : " + st.getName());

 if

(StereotypesHelper.hasStereotype(sysmlFeature, st)) {

 included = false;

 break;

 }

 }

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("CCC Is

Included?" + sysmlFeature.getName() + " " + included);

 }

 if (included) {

 return sysmlFeature;

 } else {

 Collection<Class> featureList =

SysMLUtility.getFeatures(project, sysmlFeature);

 ModelElementsManager msm =

ModelElementsManager.getInstance();

 msm.removeElement(sysmlFeature);

 for (Class childElement :

featureList) {

 msm.removeElement(childElement);

 msm.addElement(childElement,

parent);

 }

 return parent;

 }

 }

446

 return parent;

 }

}

447

SysMLModelTraverser:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import java.awt.Frame;

import java.util.Collection;

import javax.swing.JOptionPane;

import javax.swing.ProgressMonitor;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.magicdraw.openapi.uml.SessionManager;

import

com.nomagic.magicdraw.ui.dialogs.MDDialogParentProvider;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

public class SysMLModelTraverser extends Thread {

 public static SysMLModelTraverser launch(Project

project, Class rootPartClass, NXPart nxPart,

DefaultNodeHandler resolver) {

 // Now send some commands to Maple

 SessionManager sm =

SessionManager.getInstance();

 sm.createSession("NX Plugin");

 Frame parentFrame =

MDDialogParentProvider.getProvider().getDialogParent();

 ProgressMonitor pm = new

ProgressMonitor(parentFrame, JOptionPane.PLAIN_MESSAGE,

"Please wait", 0, 10);

448

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Test! 123 "

+ resolver);

 }

 SysMLModelTraverser traverser = new

SysMLModelTraverser(project, rootPartClass, nxPart,

resolver, pm);

 //traverser._sm = sm;

 //traverser.start();

 //try {

 // traverser.join();

 //} catch (InterruptedException ie) {

 // // TODO Auto-generated catch block

 // ie.printStackTrace();

 //}

 traverser.run();

 sm.closeSession();

 // waitDialog.setVisible(false);

 return traverser;

 }

 private DefaultNodeHandler _handler;

 private NXPart _nxPart;

 private ProgressMonitor _pm;

 private Project _project;

 private Class _resolvedClass;

 private boolean _result;

 private Class _partClass;

 private SysMLModelTraverser (Project project,

Class partClass, NXPart nxPart,

 DefaultNodeHandler handler,

ProgressMonitor pm) {

 _project = project;

 _partClass = partClass;

 _nxPart = nxPart;

 _handler = handler;

 _pm = pm;

 _result = true;

 }

449

 public Class getResolvedClass() {

 return _resolvedClass;

 }

 public boolean getResult() {

 return _result;

 }

 /**

 * Creates a SysML representation of a part. The

mapping that we want in this case is:

 * (NX)Part => (SysML)Block[stereotype=NXOpen]

 * where:

 *

 (SysML)Block[stereotype=NXOpen].name =

(NX)Part.name

 *

 (SysML)Block[stereotype=NXOpen].filename =

(NX)Part.filename

 *

 * @param part The part to work with

 * @param filename The filename of the part

 * @throws ReadOnlyElementException

 */

 @Override

 public void run() {

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Test!

sysmlPart: " + (_partClass));

 Application.getInstance().getGUILog().log("Test! NX

part status: " + _nxPart);

 }

 Class result = null;

 try {

 result = traversePart(null,

_partClass, _nxPart);

 } catch (ReadOnlyElementException roee) {

 roee.printStackTrace();

 }

 _resolvedClass = result;

 _result = true;

 }

450

 private Property traverseExpression(Class

parent, Property sysmlExpression, NXExpression nxExpression

) throws ReadOnlyElementException {

 Property res = _handler.enterExpression(

_project, parent, sysmlExpression, nxExpression);

 _handler.exitExpression(_project, parent,

sysmlExpression, nxExpression);

 return res;

 }

 private Class traverseFeature(Class parent,

Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 // Call resolver on it

 Class resolvedFeature =

_handler.enterFeature(_project, parent, sysmlFeature,

nxFeature);

 if (resolvedFeature == null) {

 resolvedFeature = parent;

 }

 // Traverse expressions

 Collection<Property> sysmlExpressions =

SysMLUtility.getExpressions(_project, resolvedFeature);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("traverseFea

ture: [SysML:" + sysmlFeature + ", NX:" + nxFeature +"]");

 Application.getInstance().getGUILog().log("traverseFea

ture exprs: " + resolvedFeature + ": " +

sysmlExpressions.size());

 }

 if (nxFeature != null) {

 Collection<NXExpression> nxExpressions

= nxFeature.getExpressions();

 Property childExpression;

 for (NXExpression nxExpression :

nxExpressions) {

 // Traverse the expression

 childExpression =

SysMLUtility.findExpressionByName(_project,

sysmlExpressions, nxExpression.getName());

 traverseExpression(

resolvedFeature, childExpression, nxExpression);

 // Remove the expression from our

collection

451

 sysmlExpressions.remove(childExpression);

 }

 }

 // sysmlExpressions now is a list of

rejects, i.e. stuff in SysML with no analogue in NX

 for (Property childExpression :

sysmlExpressions) {

 traverseExpression(resolvedFeature,

childExpression, null);

 }

 // Traverse child features

 Collection<Class> sysmlFeatures =

SysMLUtility.getFeatures(_project, resolvedFeature);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("traverseFea

ture children: " + resolvedFeature + ": " +

sysmlFeatures.size());

 }

 if (nxFeature != null) {

 Collection<NXFeature> childFeatures =

nxFeature.getChildren();

 Class childFeature;

 for (NXFeature nxChildFeature :

childFeatures) {

 // Traverse the feature

 childFeature =

SysMLUtility.findFeatureByName(_project, sysmlFeatures,

nxChildFeature.getName(), nxChildFeature.getType());

 traverseFeature(resolvedFeature,

childFeature, nxChildFeature);

 // Remove the expression from our

collection

 sysmlFeatures.remove(childFeature);

 }

 }

 // sysmlFeatures now is a list of rejects,

i.e. stuff in SysML with no analogue in NX

 for (Class childFeature : sysmlFeatures) {

 traverseFeature(resolvedFeature,

childFeature, null);

// _handler.enterFeature(_project, parent,

cls, null);

452

// _handler.exitFeature(_project, parent,

cls, null);

 }

 _handler.exitFeature(_project, parent,

sysmlFeature, nxFeature);

 return resolvedFeature;

 }

 private Class traversePart(Class parent, Class

sysmlPart, NXPart nxPart) throws ReadOnlyElementException

{

 // if sysmlPart is null, search for part

under current parent

 // Perform resolver action on part itself

 Class resolvedPart = _handler.enterPart(

_project, parent, sysmlPart, nxPart);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("traversePar

t: [Parent:" + parent + " SysML:" + sysmlPart + ", NX:" +

nxPart + " resolvedPart " + resolvedPart +"]");

 }

 // Decide on name for part

 String name = resolvedPart.getName();

 if (!name.endsWith(".prt")) {

 name = name + ".prt";

 resolvedPart.setName(name);

 }

 // First traverse feature children

 Collection<Class> sysmlFeatures =

SysMLUtility.getFeatures(_project, resolvedPart);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("traversePar

t: SysML feature count: " + sysmlFeatures.size());

 }

 if (nxPart != null) {

 Collection<NXFeature> nxFeatures =

nxPart.getFeatures();

 if (PluginMain.DEBUG) {

453

 Application.getInstance().getGUILog().log("traversePar

t: NX feature count: " + nxFeatures.size());

 }

 Class childFeature;

 for (NXFeature nxFeature : nxFeatures)

{

 childFeature =

SysMLUtility.findFeatureByName(_project, sysmlFeatures,

nxFeature.getName(), nxFeature.getType());

 traverseFeature(resolvedPart,

childFeature, nxFeature);

 sysmlFeatures.remove(childFeature);

 }

 }

 // sysmlFeatures now is a list of rejects,

i.e. stuff in SysML with no analogue in NX

 for (Class childFeature : sysmlFeatures) {

 traverseFeature(resolvedPart,

childFeature, null);

 }

 // Now traverse part children

 Collection<Class> sysmlComponents =

SysMLUtility.getPartChildren(_project, resolvedPart);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Part: SysML

component count: " + sysmlComponents.size());

 }

 // Traverse components

 if (nxPart != null) {

 Collection<NXPart> nxComponents =

nxPart.getOpenComponents();

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("traversePar

t: NX feature count: " + nxComponents.size());

 }

 Class childPart;

 for (NXPart nxChildPart : nxComponents)

{

 childPart =

SysMLUtility.findPartByFilePath(_project, sysmlComponents,

nxChildPart.getFile());

454

 traversePart(resolvedPart,

childPart, nxChildPart);

 sysmlComponents.remove(childPart);

 }

 }

 // sysmlComponents now is a list of rejects,

i.e. stuff in SysML with no analogue in NX

 for (Class childPart : sysmlComponents) {

 traversePart(resolvedPart, childPart,

null);

 }

 _handler.exitPart(_project, parent,

sysmlPart, nxPart);

 return resolvedPart;

 }

}

455

SysMLParameters:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import java.util.Collection;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

/**

 * Class for managing parameter within SysML

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class SysMLParameters {

 public static void addParameterToClass(Project

project, Class sysmlClass, NXExpression param) {

 String name = param.getName();

 String value = param.getValue();

 ElementsFactory factory =

project.getElementsFactory();

 Stereotype sysmlValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 Property myProperty =

factory.createPropertyInstance();

 // New property step 1

 myProperty.setName(name);

456

 ValueSpecification spec =

factory.createLiteralStringInstance();

 ((LiteralString)spec).setValue(value);

 myProperty.setDefaultValue(spec);

 StereotypesHelper.addStereotype(myProperty,

sysmlValuePropertyStereotype);

 StereotypesHelper.setStereotypePropertyValue(myPropert

y, sysmlValuePropertyStereotype, "currentName",

param.getName());

 if (sysmlClass != null) {

 myProperty.setUMLClass(sysmlClass);

 sysmlClass.getAttribute().add(myProperty);

 }

 }

 public static String

getSynchronizedParameterName(Project project,

Collection<NXExpression> params, String name) {

 Stereotype sysmlValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 NXExpression found = null;

 for (NXExpression expr : params) {

 if (name.equals(expr.getName())) {

 found = expr;

 break;

 }

 }

 if (found != null) {

 return

StereotypesHelper.getStereotypePropertyFirst(found.getPrope

rty(), sysmlValuePropertyStereotype,

"currentName").toString();

 } else {

 return null;

 }

 }

 public static boolean removeAllParameters(Element

sysmlElement) {

 if (sysmlElement instanceof Class) {

457

 Class sysmlPart = (Class)sysmlElement;

 sysmlPart.getAttribute().clear();

 }

 return true;

 }

 public static boolean removeParameter(Element

sysmlElement, String parameterName) {

 if (sysmlElement instanceof Class) {

 Class sysmlPart = (Class)sysmlElement;

 for (Property prop :

sysmlPart.getAttribute()) {

 if (parameterName.equals(

prop.getName())) {

 sysmlPart.getAttribute().remove(prop);

 return true;

 }

 }

 }

 return false;

 }

 public static boolean

setSynchronizedParameterName(Project project,

Collection<NXExpression> params, String name) {

 Stereotype sysmlValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 NXExpression found = null;

 for (NXExpression expr : params) {

 if (name.equals(expr.getName())) {

 found = expr;

 break;

 }

 }

 if (found != null) {

 StereotypesHelper.setStereotypePropertyValue(found.get

Property(), sysmlValuePropertyStereotype, "currentName",

name);

 return true;

 } else {

 return false;

 }

 }

458

 public static boolean

updateParameter(ElementsFactory elementsFactory, Element

sysmlElement, NXExpression param) {

 if (sysmlElement instanceof Class) {

 Class sysmlPart = (Class)sysmlElement;

 Property targetProperty = null;

 for (Property prop:

sysmlPart.getAttribute()) {

 if

(param.getName().equals(prop.getName())) {

 targetProperty = prop;

 break;

 }

 }

 if (targetProperty != null) {

 LiteralString spec =

elementsFactory.createLiteralStringInstance();

 spec.setValue(param.getValue());

 targetProperty.setDefaultValue(spec);

 return true;

 } else {

 return false;

 }

 }

 // we don't currently add parameters to

properties so we don't update them

 return false;

 }

}

459

SysMLUtility:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXClientEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXConnectionExce

ption;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import java.awt.Frame;

import java.io.File;

import java.util.ArrayList;

import java.util.Collection;

import java.util.HashMap;

import java.util.HashSet;

import java.util.List;

import java.util.Map;

import javax.swing.JOptionPane;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.auxiliaryconstructs.mdmodels

.Model;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.InstanceSpe

cification;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralBool

ean;

460

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralInte

ger;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralReal

;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.NamedElemen

t;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Package;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Packageable

Element;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.StructuralF

eature;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Profile;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

/**

 * Class to interoperate between NX and SysML

 *

 * @author francisco.valdes@jpl.nasa.gov,

 */

public class SysMLUtility {

 public static Stereotype

featureTypeToStereotype(Project project, String type) {

 Application.getInstance().getGUILog().log("Type is: "

+ type);

 if (type.equals("DATUM_CSYS")) {

461

 return

StereotypesHelper.getStereotype(project,

"NXCoordinateSystem");

 } else if (type.equals("DATUM_PLANE")) {

 return

StereotypesHelper.getStereotype(project, "NXDatumPlane");

 } else if (type.equals("EXTRACT_BODY")) {

 } else if (type.equals("SIMPLE HOLE")) {

 return

StereotypesHelper.getStereotype(project, "NXSimpleHole");

 } else if (type.equals("HOLE PACKAGE")) {

 } else if (type.equals("SB_FLAT_SOLID")) {

 } else if (type.equals("FLAT_PATTERN")) {

 } else if (type.equals("BALL_END_SLOT")) {

 return

StereotypesHelper.getStereotype(project, "NXBallEndSlot");

 } else if (type.equals("MIRROR")) {

 return

StereotypesHelper.getStereotype(project, "NXMirrorBody");

 } else if (type.equals("MIRROR_SET")) {

 return

StereotypesHelper.getStereotype(project,

"NXMirrorFeature");

 } else if (type.equals("CHAMFER")) {

 return

StereotypesHelper.getStereotype(project, "NXChamfer");

 } else if (type.equals("SKETCH") ||

type.equals("Sketch")) {

 return

StereotypesHelper.getStereotype(project, "NXSketch");

 } else if (type.equals("Base Tab")) {

 return

StereotypesHelper.getStereotype(project, "NXSMBaseFlange");

 } else if (type.equals("Break Corner")) {

 return

StereotypesHelper.getStereotype(project,

"NXSMCornerBreak");

 } else if (type.equals("Flange")) {

 return

StereotypesHelper.getStereotype(project, "NXSMFlange");

 } else if (type.equals("Normal Cutout")) {

 return

StereotypesHelper.getStereotype(project,

"NXSMNormalCutOut");

 }

 return null;

 }

462

 public static Property findExpressionByName(

Project project, Collection<Property> exprs, String

paramName) {

 Stereotype sysmlValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 Object currentName;

 for (Property expr : exprs) {

 currentName =

StereotypesHelper.getStereotypePropertyFirst(expr,

sysmlValuePropertyStereotype, "currentName");

 if (currentName != null &&

paramName.equals(currentName.toString())) {

 return expr;

 }

 }

 return null;

 }

 public static Class findFeatureByName(Project

project, Collection<Class> features, String featureName,

String featureType) {

 Stereotype nxPartFeature =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 Object childFtype;

 String childFNewname, childFOldname;

 for (Class childFeature : features) {

 childFtype =

StereotypesHelper.getStereotypePropertyFirst(childFeature,

nxPartFeature, "featureType");

 childFNewname = childFeature.getName();

 childFOldname =

StereotypesHelper.getStereotypePropertyFirst(childFeature,

nxPartFeature, "currentFeatureName").toString();

 if ((featureName.equals(childFOldname)

|| featureName.equals(childFNewname)) && childFtype != null

&& featureType.equals(childFtype.toString())) {

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Feature

Search: [NX=" + featureName+"][SysML="+childFOldname+"]");

 }

 return childFeature;

 }

 }

463

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Feature

Search: [NX=" + featureName+"][SysML=null]");

 }

 return null;

 }

 public static Class findPartByFilePath(Project

project, Collection<Class> parts, File path) {

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Object currentPartPath;

 File currentPartFile;

 for (Class elem : parts) {

 currentPartPath =

StereotypesHelper.getStereotypePropertyFirst(elem,

nxPartStereotype, "currentPartPath");

 if (currentPartPath == null) continue;

 currentPartFile = new File(

currentPartPath.toString());

 Application.getInstance().getGUILog().log("SYSml Part

name: " + currentPartPath.toString());

 if (currentPartFile.equals(path)) {

 return elem;

 }

 }

 return null;

 }

 public static Collection<Class> getAllParts(

Project project, Package pkg) {

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Collection<Class> parts = new

HashSet<Class>();

 Collection<PackageableElement> children =

pkg.getPackagedElement();

 for (PackageableElement child : children) {

 if

(StereotypesHelper.hasStereotype(child, nxPartStereotype))

{

 parts.add((Class)child);

 }

 }

 return parts;

464

 }

 /*public static NamedElement

getCorrespondingElement(Project project, NamedElement

userElement, Stereotype st) {

 Object val =

StereotypesHelper.getStereotypePropertyFirst(userElement,

st, "currentPartPath");

 String originalName = (val != null ?

val.toString() : null);

 Stereotype otherStereotype =

getCorrespondingStereotype(project, st);

 if (otherStereotype != null && originalName

!= null) {

 return getClassByPathname(project,

userElement.getOwner(), otherStereotype, originalName);

 } else {

 return null;

 }

 }*/

 private static Collection<NamedElement>

getAssemblyComponents(Element queryElement, Project

project) {

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Stereotype nxPartPropertyStereotype =

StereotypesHelper.getStereotype(project, "NXPartProperty");

 Collection<NamedElement> parts = new

HashSet<NamedElement>();

 Collection<Element> children =

queryElement.getOwnedElement();

 for (Element child : children) {

 if

(StereotypesHelper.hasStereotype(queryElement,

nxPartStereotype)) {

 parts.add((NamedElement)child);

 } else if

(StereotypesHelper.hasStereotype(queryElement,

nxPartPropertyStereotype)) {

 parts.add((NamedElement)child);

 }

 }

 return parts;

 }

465

 public static Collection<Stereotype>

getBasicStereotypes(Project project) {

 String nm;

 Profile nxProfile =

StereotypesHelper.getProfile(project, "NXProfile");

 Application.getInstance().getGUILog().log("NX Profile

is " + (nxProfile != null) + "|" + nxProfile.getName());

 Collection<Stereotype> stc =

StereotypesHelper.getStereotypesByProfile(nxProfile);

 ArrayList<Stereotype> list = new

ArrayList<Stereotype>();

 for (Stereotype st : stc) {

 nm = st.getName();

 if (nm.equals("NXPart") ||

nm.equals("NXAssembly") || nm.equals("NXFeature") ||

 nm.equals("NXPartFeature") ||

nm.equals("NXProject") ||

 nm.equals("NXSheetMetalFeatures")

||

 nm.equals("NXPartProperty") ||

nm.equals("NXValueProperty")) {

 list.add(st);

 }

 }

 return list;

 }

 public static Collection<Property>

getExpressions(Project project, Class parent) {

 Stereotype sysmlValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 Collection<Property> params = new

HashSet<Property>();

 for (Property prop : parent.getAttribute())

{

 if

(StereotypesHelper.hasStereotype(prop,

sysmlValuePropertyStereotype)) {

 params.add(prop);

 }

 }

 return params;

 }

466

 public static Collection<NXExpression>

getExpressionsNX(Project project, Class parent) {

 Stereotype sysmlValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 Collection<NXExpression> params = new

HashSet<NXExpression>();

 ValueSpecification spec;

 String paramName = null;

 String paramValue = null;

 for (Property prop : parent.getAttribute())

{

 if

(StereotypesHelper.hasStereotype(parent,

sysmlValuePropertyStereotype)) {

 paramName = prop.getName();

 spec = prop.getDefaultValue();

 paramValue =

SysMLUtility.getValueSpecificationValue(spec);

 }

 params.add(new NXExpression(

paramName, paramValue, prop));

 }

 return params;

 }

 public static Collection<Class> getFeatures(

Project project, Class parent) {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 Collection<Class> features = new

HashSet<Class>();

 Collection<Element> children =

parent.getOwnedElement();

 for (Element child : children) {

 if

(StereotypesHelper.hasStereotype(child,

nxFeatureStereotype)) {

 features.add((Class)child);

 }

 }

 return features;

 }

467

 public static String getFeatureName(Project

project, StructuralFeature element) {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 Element parent = element.getOwner();

 while (parent != null) {

 if

(StereotypesHelper.hasStereotype(parent,

nxFeatureStereotype)) {

 return

((NamedElement)parent).getName();

 }

 parent = parent.getOwner();

 }

 return "";

 }

 public static String getPartName(Project project,

StructuralFeature element) {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Element parent = element.getOwner();

 while (parent != null) {

 if

(StereotypesHelper.hasStereotype(parent,

nxFeatureStereotype)) {

 return

((NamedElement)parent).getName();

 }

 parent = parent.getOwner();

 }

 return "";

 }

 public static List<String>

getQualifiedFeatureName(Project project, StructuralFeature

element) {

 ArrayList<String> arr = new

ArrayList<String>();

 Element parent = element.getOwner();

 while (parent != null && parent instanceof

NamedElement) {

 if (parent instanceof Model) { break; }

 arr.add(0,

((NamedElement)parent).getName());

 parent = parent.getOwner();

 }

468

 return arr;

 }

 public static Map<StructuralFeature, List<Slot>>

getInstanceMap(Project project, Package pkg) {

 Collection<Element> children =

pkg.getOwnedElement();

 HashMap<StructuralFeature,List<Slot>> hm =

new HashMap<StructuralFeature ,List<Slot>>();

 for (Element child : children) {

 if (child instanceof

InstanceSpecification) {

 InstanceSpecification is =

(InstanceSpecification)child;

 //Class block = getBlock(is);

 Collection<Element> grandchildren

= child.getOwnedElement();

 for (Element slotElement :

grandchildren) {

 if (slotElement instanceof

Slot) {

 Slot slot1 =

(Slot)slotElement;

 StructuralFeature str =

slot1.getDefiningFeature();

 if

(!(hm.containsKey(str))) {

 hm.put(str, new

ArrayList<Slot>());

 }

 hm.get(str).add(slot1);

 }

 }

 }

 }

 return hm;

 }

 public static String

getValueSpecificationValue(ValueSpecification val) {

 if (val instanceof LiteralReal) {

 LiteralReal lr = (LiteralReal)val;

 return Double.toString(lr.getValue());

 } else if (val instanceof LiteralInteger) {

 LiteralInteger lr =

(LiteralInteger)val;

469

 return Integer.toString(lr.getValue());

 } else if (val instanceof LiteralBoolean) {

 LiteralBoolean lb =

(LiteralBoolean)val;

 return Boolean.toString(lb.isValue());

 } else if (val instanceof LiteralString) {

 LiteralString ls = (LiteralString)val;

 return ls.getValue();

 } else {

 return val.toString();

 }

 }

 public static Collection<Class> getPartChildren(

Project project, Class partClass) {

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Collection<Class> parts = new

HashSet<Class>();

 for (Element child :

partClass.getOwnedElement()) {

 if

(StereotypesHelper.hasStereotype(child, nxPartStereotype))

{

 parts.add((Class)child);

 }

 }

 return parts;

 }

 /*public static Class getPartClass(Package

partPackage) {

 for (Object o :

partPackage.getOwnedElement()) {

 if (o instanceof Class) {

 return (Class)o;

 }

 }

 return null;

 }*/

 public static Collection<Stereotype>

getProfileStereotypes(Project project) {

 String nm;

 Profile nxProfile =

StereotypesHelper.getProfile(project, "NXProfile");

470

 Application.getInstance().getGUILog().log("NX Profile

is " + (nxProfile != null) + "|" + nxProfile.getName());

 Collection<Stereotype> stc =

StereotypesHelper.getStereotypesByProfile(nxProfile);

 ArrayList<Stereotype> list = new

ArrayList<Stereotype>();

 for (Stereotype st : stc) {

 nm = st.getName();

 if (!(nm.equals("NXPart") ||

nm.equals("NXAssembly") || nm.equals("NXFeature") ||

 nm.equals("NXPartFeature") ||

nm.equals("NXProject") ||

 nm.equals("NXSheetMetalFeatures")

||

 nm.equals("NXPartProperty") ||

nm.equals("NXValueProperty"))) {

 list.add(st);

 }

 }

 return list;

 }

 public static NXPart openPart(Frame parentFrame,

File nxFile) {

 boolean success = true;

 NXPart nxPart = null;

 NXEngine engine;

 // Read parameter and components

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("NX Feature

Type: " + nxFile.toString());

 }

 if (!(nxFile != null && nxFile.exists() &&

nxFile.canRead())) {

 throw new IllegalStateException();

 }

 try {

 engine = new NXClientEngine();

 } catch (NXConnectionException nce) {

 JOptionPane.showMessageDialog(

parentFrame,

471

 "Cannot connect to Siemens

NX.\nEnsure that Execute->NX Open->nx_maple_server.dll has

been run",

 "NX connection error",

 JOptionPane.ERROR_MESSAGE

);

 return null;

 }

 Application.getInstance().getGUILog().log("NX Open

Connection: " + success);

 nxPart = engine.openPart(nxFile, true);

 engine.closeConnection();

 if (nxPart != null) {

 return nxPart;

 } else {

 return null;

 }

 }

 public static NXPart renameNXPart(NXEngine

engine, NXPart part, File newFile) {

 File originalFile = new File(part.getPath()

);

 if (newFile.equals(originalFile)) {

 return null;

 }

 // do nothing, no change needed

 if (newFile.exists()) {

 JOptionPane.showMessageDialog(null,

 "New part file name already

exists.\nRemove existing file or choose a different name.",

 "updating NX file error",

 JOptionPane.ERROR_MESSAGE

);

 return null;

 }

 // RENAME is attempted

 // Renames are allowed, the rename is

nontrivial (i.e. oldname != newname) and newname doesn't

exist yet

472

 //String originalName =

originalFile.getAbsolutePath();

 boolean closeResult = engine.closePart(part

);

 originalFile.renameTo(newFile);

 if (!newFile.exists()) {

 JOptionPane.showMessageDialog(null,

 "Could not rename NX part

file.\nPlease ensure the target directory is writable.",

 "Part file error",

 JOptionPane.ERROR_MESSAGE

);

 return null;

 }

 NXPart newPart = engine.openPart(newFile);

 return newPart;

 //List<String> qualifiedPath =

getSysMLQualifiedName(

Application.getInstance().getProject(), queryElement,

nxStereotype);

// Stereotype otherStereotype =

getCorrespondingStereotype(Application.getInstance().getPro

ject(), nxPartStereotype);

// if (otherStereotype != null) {

// NamedElement otherElem =

getClassByPathname(project, queryElement.getOwner(),

otherStereotype, originalName);

// otherElem.setName(name);

//

 StereotypesHelper.setStereotypePropertyValue(

otherElem, otherStereotype, "dir", dir);

//

 StereotypesHelper.setStereotypePropertyValue(

otherElem, otherStereotype, "currentPartPath", filename);

// }

 // At this point, the Class and the

PartProperty should have the same name, dir, and

currentPartPath,

 // which will all correspond to the

present state of the corresponding part file in NX.

 /* } else {

473

 // if renames are not allowed then

display warning to user

 JOptionPane.showMessageDialog(null,

 "Cannot change name of part in

assembly.\nPlease change part name within NX.",

 "Cannot change part name",

 JOptionPane.WARNING_MESSAGE

);

 }*/

 }

 private static boolean updateFeatureToNX(Project

project, NXEngine engine, NXPart part, NamedElement

featureElement) {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 if

(StereotypesHelper.hasStereotype(featureElement,

nxFeatureStereotype)) {

 boolean result = true;

 String newName =

featureElement.getName();

 String oldName =

StereotypesHelper.getStereotypePropertyFirst(featureElement

, nxFeatureStereotype, "currentFeatureName").toString();

 if (!oldName.equals(newName)) {

 result =

engine.renameFeature(part, oldName, newName);

 for (NamedElement subfeature :

getFeatures(project, (Class)featureElement)) {

 if (!result) break;

 result = result &&

updateFeatureToNX(project, engine, part, subfeature);

 }

 }

 return result;

 } else {

 return false;

 }

 }

 private static boolean

updatePartToNXInternal(Project project, NXEngine engine,

 NamedElement contextElement,

boolean renamesAllowed) {

474

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Stereotype nxAssemblyStereotype =

StereotypesHelper.getStereotype(project, "NXAssembly");

// Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 Collection<NXExpression> params =

SysMLUtility.getExpressionsNX(project,

(Class)contextElement);

 boolean success = true;

 String name = contextElement.getName();

 if (!name.endsWith(".prt")) {

 name = name + ".prt";

 contextElement.setName(name);

 }

 Element queryElement = null;

 queryElement = contextElement;

 // Now send some commands to Maple

 String filename, dir, originalName,

uniqueID;

 dir =

StereotypesHelper.getStereotypePropertyFirst(queryElement,

nxPartStereotype, "directory").toString();

 originalName =

StereotypesHelper.getStereotypePropertyFirst(queryElement,

nxPartStereotype, "currentPartPath").toString();

 uniqueID =

StereotypesHelper.getStereotypePropertyFirst(queryElement,

nxPartStereotype, "uniqueID").toString();

 filename = dir + File.separator + name;

 File newFile = new File(filename);

 File originalFile = new File(originalName

);

 NXPart part = engine.openPart(originalFile);

// List<String> featureList =

getFeatureNames(engine, part);

 //filename = dir + File.separator + name;

475

 NXPart newPart = renameNXPart(engine, part,

newFile);

 if (newPart != null) {

 StereotypesHelper.setStereotypePropertyValue(

queryElement, nxPartStereotype, "currentPartPath", filename

);

 part = newPart;

 }

// File file = new File(filename);

//

// NXPart part = engine.openPart(file);

 if (part != null) {

 //overallSuccess = overallSuccess &&

engine.setWorkPart(filename);

 success = engine.setParameterInfo(

part, params);

 Collection<Class> childFeatures =

SysMLUtility.getFeatures(project, (Class)queryElement);

 for (NamedElement featureElement :

childFeatures) {

 success =

updateFeatureToNX(project, engine, part, featureElement);

 }

 success = engine.savePart(part);

 } else {

 JOptionPane.showMessageDialog(null,

 "Could not open NX part

file.\nPlease ensure the file exists and is readable.",

 "Part file error",

 JOptionPane.ERROR_MESSAGE

);

 }

 Collection<NamedElement> childParts =

getAssemblyComponents(queryElement, project);

 for (NamedElement childPart : childParts) {

 success =

updatePartToNXInternal_recurse(project, engine, childPart,

renamesAllowed);

 }

 return success;

476

 }

 /*public static Stereotype

getCorrespondingStereotype(Project project, Stereotype st)

{

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Stereotype nxPartPropertyStereotype =

StereotypesHelper.getStereotype(project, "NXPartProperty");

 if (st == nxPartStereotype) {

 return nxPartPropertyStereotype;

 } else if (st == nxPartPropertyStereotype) {

 return nxPartStereotype;

 } else {

 return null;

 }

 }*/

 private static boolean

updatePartToNXInternal_recurse(Project project, NXEngine

engine,

 NamedElement queryElement, boolean

renamesAllowed) {

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 boolean success = false;

 //Stereotype nxStereotype =

NXStereotype.getStereotype(project, queryElement);

 // Perform any feature-level renames that

are required

 Collection<NamedElement> childParts =

getAssemblyComponents(queryElement, project);

 for (NamedElement child : childParts) {

 success =

updatePartToNXInternal_recurse(project, engine, child,

renamesAllowed);

 }

 return success;

 }

 public static boolean updateToNX(Project project,

NamedElement userElement) {

477

 boolean success;

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 if (nxPartStereotype == null ||

!StereotypesHelper.hasStereotype(userElement,

nxPartStereotype)) {

 return false;

 }

 if (userElement instanceof Class) {

 NXEngine engine;

 try {

 engine = new NXClientEngine();

 } catch (NXConnectionException ne) {

 engine = null;

 }

 if (engine != null) {

 updatePartToNXInternal(null,

engine, userElement, true);

 engine.closeConnection();

 success = true;

 }

 return true;

 } else {

 return true;

 }

 }

}

478

UpdateFromNXResolver:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import java.io.File;

import java.util.Collection;

import java.util.HashMap;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ModelElementsManager;

import

com.nomagic.magicdraw.openapi.uml.PresentationElementsManag

er;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.magicdraw.uml.symbols.DiagramPresentationElemen

t;

import

com.nomagic.magicdraw.uml.symbols.shapes.ShapeElement;

import com.nomagic.uml2.ext.jmi.helpers.ModelHelper;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Association

;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Element;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.InstanceSpe

cification;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng;

479

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Slot;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

import com.nomagic.uml2.impl.ElementsFactory;

public class UpdateFromNXResolver extends

DefaultNodeHandler {

 private InstanceSpecification _featureInstance;

 private Collection<Stereotype> _filter;

 private HashMap<Class,ShapeElement> _hm = new

HashMap<Class,ShapeElement>();

 public

UpdateFromNXResolver(Collection<Stereotype> filter) {

 _filter = filter;

 }

 private void addChildClass(Project project, Class

classB, Class classA) {

 if (classA == null || classB == null) {

 return;

 }

 Element model = project.getModel();

 ElementsFactory f =

project.getElementsFactory();

 ModelElementsManager modelElementsManager =

ModelElementsManager.getInstance();

 try {

 Association link =

f.createAssociationInstance();

 //Dependency dependency =

f.createDependencyInstance();

 modelElementsManager.addElement(link,

model);

 ModelHelper.setClientElement(link,

classA);

 ModelHelper.setSupplierElement(link,

classB);

 DiagramPresentationElement

activeDiagram = project.getActiveDiagram();

480

 PresentationElementsManager

presentationElementsManager =

PresentationElementsManager.getInstance();

 if (activeDiagram != null) {

 ShapeElement clientShape;

 if (!_hm.containsKey(classA)) {

 clientShape =

presentationElementsManager.createShapeElement(classA,

activeDiagram);

 _hm.put(classA, clientShape);

 } else {

 clientShape =

_hm.get(classA);

 }

 ShapeElement supplierShape;

 if (!_hm.containsKey(classB)) {

 supplierShape =

presentationElementsManager.createShapeElement(classB,

activeDiagram);

 _hm.put(classB,

supplierShape);

 } else {

 supplierShape =

_hm.get(classB);

 }

 presentationElementsManager.createPathElement(link,

clientShape, supplierShape);

 } else {

 Application.getInstance().getGUILog().log("activeDiagr

am is NULL ");

 }

 } catch (ReadOnlyElementException roee) {

 }

 }

 @Override

 public Property enterExpression(Project project,

Class parent,

 Property sysmlExpression,

NXExpression nxExpression) throws ReadOnlyElementException

{

 if (nxExpression != null) {

 String nxName = nxExpression.getName();

481

 ElementsFactory elementsFactory =

project.getElementsFactory();

 Stereotype

sysmlNXValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 Stereotype sysmlValuePropertyStereotype

= StereotypesHelper.getStereotype(project,

"ValueProperty");

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log(

 "Visiting Feature:

SysML: " + (sysmlExpression != null ?

sysmlExpression.getName() : "[NULL] ")

 + " NX : " +

(nxExpression != null ? nxExpression.getName() : "[NULL] ")

);

 }

 Property resolvedExpression;

 LiteralString blockSpec;

 //LiteralString instanceSpec;

 Slot slot;

 // So we have the parameter, now set

the value

 //instanceSpec =

elementsFactory.createLiteralStringInstance();

 //

 instanceSpec.setValue(nxExpression.getValue());

 if (sysmlExpression != null) {

 resolvedExpression =

sysmlExpression;

 blockSpec =

(LiteralString)resolvedExpression.getDefaultValue();

 // So we have the parameter, now

set the value

 blockSpec.setValue(nxExpression.getValue());

 //slot =

resolvedExpression.get_slotOfDefiningFeature().iterator().n

ext();

 } else {

482

 resolvedExpression =

elementsFactory.createPropertyInstance();

 blockSpec =

elementsFactory.createLiteralStringInstance();

 // So we have the parameter, now

set the value

 blockSpec.setValue(nxExpression.getValue());

 resolvedExpression.setName(nxName);

 StereotypesHelper.addStereotype(resolvedExpression,

sysmlNXValuePropertyStereotype);

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName",

nxName);

 StereotypesHelper.addStereotype(resolvedExpression,

sysmlValuePropertyStereotype);

 //

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "Type", "Real");

 resolvedExpression.setDefaultValue(blockSpec);

 slot =

elementsFactory.createSlotInstance();

 //

 slot.setDefiningFeature(resolvedExpression);

 //

 slot.setOwningInstance(_featureInstance);

 ModelElementsManager.getInstance().addElement(resolved

Expression, parent);

 }

 // slot.getValue().add(instanceSpec);

 // LiteralReal realSpec =

elementsFactory.createLiteralRealInstance();

 // realSpec.setValue(

Double.parseDouble(nxExpression.getValue()));

 // Set instance relationships

483

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Updated

expression: " + resolvedExpression.getName() + " child of "

+ parent.getName());

 }

 return resolvedExpression;

 } else if (sysmlExpression != null) {

 ModelElementsManager.getInstance().removeElement(sysml

Expression);

 }

 return null;

 }

 @Override

 public Class enterFeature(Project project, Class

parent, Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 if (nxFeature != null) {

 ElementsFactory elementsFactory =

project.getElementsFactory();

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 Stereotype additionalStereotype = null;

 Class resolvedFeature;

 if (sysmlFeature != null) {

 resolvedFeature = sysmlFeature;

 } else {

 String nxName =

nxFeature.getCustomName() != null ?

nxFeature.getCustomName() : nxFeature.getName();

 resolvedFeature =

elementsFactory.createClassInstance();

 resolvedFeature.setName(nxName);

 StereotypesHelper.addStereotype(resolvedFeature,

nxFeatureStereotype);

 String type = nxFeature.getType();

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("NX Feature

Type: " + type);

484

 }

 if (type != null) {

 additionalStereotype =

SysMLUtility.featureTypeToStereotype(project, type);

 Application.getInstance().getGUILog().log("SysML

Stereotype for " + type + " is non-null: " +

(additionalStereotype != null));

 if (additionalStereotype !=

null) {

 StereotypesHelper.addStereotype(resolvedFeature,

additionalStereotype);

 }

 }

 }

 if (_filter != null &&

additionalStereotype != null &&

_filter.contains(additionalStereotype)) {

 // skip this feature and absorb

any children into its parent

 return null;

 } else {

 // Set stereotype property values

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "currentFeatureName",

nxFeature.getName());

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "nxName", nxFeature.getName()

);

 StereotypesHelper.setStereotypePropertyValue(resolvedF

eature, nxFeatureStereotype, "featureType",

nxFeature.getType());

 ModelElementsManager.getInstance().addElement(resolved

Feature, parent);

//

 Application.getInstance().getGUILog().log("Updated

feature: " + resolvedFeature.getName() + " child of " +

parent.getName());

485

 //addChildClass(project,

resolvedFeature, parent);

 return resolvedFeature;

 }

 } else if (sysmlFeature != null) {

 ModelElementsManager.getInstance().removeElement(sysml

Feature);

 }

 return null;

 }

 @Override

 public Class enterPart(Project project, Class

parent, Class sysmlPart, NXPart nxPart) throws

ReadOnlyElementException {

 if (nxPart != null) {

 ElementsFactory elementsFactory =

project.getElementsFactory();

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Stereotype nxAssemblyStereotype =

StereotypesHelper.getStereotype(project, "NXAssembly");

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log(

 "Visiting Part: SysML: "

+ (sysmlPart != null ? sysmlPart.getName() : "[NULL] ")

 + " NX : " + (nxPart !=

null ? nxPart.getName() : "[NULL] ")

);

 }

 Class resolvedPart;

 if (sysmlPart != null) {

 resolvedPart = sysmlPart;

 } else {

 resolvedPart =

elementsFactory.createClassInstance();

 resolvedPart.setName(nxPart.getName());

 StereotypesHelper.addStereotype(resolvedPart,

nxPartStereotype);

 }

486

 // Now set the appropriate stereotypes

 // Set some special stereotype

properties, in this case the filename and unique ID

 File file = new File(nxPart.getPath()

);

 String uid =

nxPart.getUniqueIdentifier();

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "directory", file.getParent());

 StereotypesHelper.setStereotypePropertyValue(resolvedP

art, nxPartStereotype, "currentPartPath",

file.getAbsolutePath());

 StereotypesHelper.setStereotypePropertyValue(sysmlPart

, nxPartStereotype, "uniqueID", uid);

 if (nxPart.isAssembly()) {

 StereotypesHelper.addStereotype(resolvedPart,

nxAssemblyStereotype);

 }

 if (parent != null) {

 ModelElementsManager.getInstance().addElement(resolved

Part, parent);

 }

 //addChildClass(project, resolvedPart,

parent);

 return resolvedPart;

 } else if (sysmlPart != null) {

 ModelElementsManager.getInstance().removeElement(sysml

Part);

 }

 return null;

 }

}

487

UpdateObject:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

public abstract class UpdateObject {

 public abstract boolean canUpdateNX();

 public abstract boolean canUpdateSysML();

 public void updateNX() {

 }

 public void updateSysML() {

 }

}

488

UpdateToNXResolver:
package gov.nasa.jpl.imce.sysmlnxsync.utility;

import

gov.nasa.jpl.imce.sysmlnxsync.controller.PluginMain;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXEngine;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXExpression;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXFeature;

import

gov.nasa.jpl.imce.sysmlnxsync.nxconnection.NXPart;

import java.io.File;

import java.util.ArrayList;

import com.nomagic.magicdraw.core.Application;

import com.nomagic.magicdraw.core.Project;

import

com.nomagic.magicdraw.openapi.uml.ReadOnlyElementException;

import

com.nomagic.uml2.ext.jmi.helpers.StereotypesHelper;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Class;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.LiteralStri

ng;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.Property;

import

com.nomagic.uml2.ext.magicdraw.classes.mdkernel.ValueSpecif

ication;

import

com.nomagic.uml2.ext.magicdraw.mdprofiles.Stereotype;

public class UpdateToNXResolver extends

DefaultNodeHandler {

 private NXEngine _engine;

 private ArrayList<NXExpression> _paramsToSet;

 private ArrayList<NXPart> _partHierarchy;

 public UpdateToNXResolver(NXEngine engine) {

 _engine = engine;

 _paramsToSet = new

ArrayList<NXExpression>();

 _partHierarchy = new ArrayList<NXPart>();

489

 }

 @Override

 public Property enterExpression(Project project,

Class parent, Property sysmlExpression, NXExpression

nxExpression) throws ReadOnlyElementException {

 Stereotype sysmlValuePropertyStereotype =

StereotypesHelper.getStereotype(project,

"NXValueProperty");

 if (sysmlExpression == null) {

 throw new IllegalStateException("Empty

MagicDraw expression");

 } else if(nxExpression == null) {

 throw new IllegalStateException("Empty

NX expression");

 }

 NXPart currentPart = _partHierarchy.get(0);

 Property resolvedExpression;

 resolvedExpression = sysmlExpression;

 String newName = sysmlExpression.getName();

 String oldName =

StereotypesHelper.getStereotypePropertyFirst(sysmlExpressio

n, sysmlValuePropertyStereotype, "currentName").toString();

 if (!oldName.equals(newName)) {

 boolean result =

_engine.renameParameter(currentPart, oldName, newName);

 if (!result) {

 throw new

IllegalStateException("Engine: cannot rename expression");

 }

 StereotypesHelper.setStereotypePropertyValue(resolvedE

xpression, sysmlValuePropertyStereotype, "currentName",

newName);

 }

 // Set stereotype property values

 ValueSpecification spec =

sysmlExpression.getDefaultValue();

 String sysmlValue = (spec instanceof

LiteralString ? ((LiteralString)spec).getValue() : null);

490

 if (nxExpression != null && sysmlValue !=

null && !sysmlValue.equals(nxExpression.getValue())) {

 NXExpression newExpr = new

NXExpression(newName, sysmlValue,

nxExpression.getProperty());

 _paramsToSet.add(newExpr);

 _engine.setParameterValue(currentPart,

newName, sysmlValue);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Updated

expression: " + resolvedExpression.getName() + " child of "

+ parent.getName());

 }

 }

 return resolvedExpression;

 }

 @Override

 public Class enterFeature(Project project, Class

parent, Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 if (sysmlFeature == null) {

 // We couldn't find a sysmlFeature with

this NX name, suggesting the feature's been renamed

 // on the SysML side

 throw new IllegalStateException("Empty

MagicDraw feature");

 } else if (nxFeature == null) {

 throw new IllegalStateException("Empty

NX feature");

 }

 Stereotype nxFeatureStereotype =

StereotypesHelper.getStereotype(project, "NXPartFeature");

 String newName = sysmlFeature.getName();

 String internalName =

StereotypesHelper.getStereotypePropertyFirst(sysmlFeature,

nxFeatureStereotype, "currentFeatureName").toString();

 NXPart part = _partHierarchy.get(0);

 _engine.renameFeature(part, internalName,

newName);

 if (PluginMain.DEBUG) {

 Application.getInstance().getGUILog().log("Set feature

name: " + sysmlFeature.getName() + " child of " +

parent.getName());

491

 }

 return sysmlFeature;

 }

 @Override

 public Class enterPart(Project project, Class

parent, Class sysmlPart, NXPart nxPart) throws

ReadOnlyElementException {

 Stereotype nxPartStereotype =

StereotypesHelper.getStereotype(project, "NXPart");

 Stereotype nxAssemblyStereotype =

StereotypesHelper.getStereotype(project, "NXAssembly");

 // Now set the appropriate stereotypes

 // Set some special stereotype properties,

in this case the filename and unique ID

 String newName = sysmlPart.getName();

 String dir =

StereotypesHelper.getStereotypePropertyFirst(sysmlPart,

nxPartStereotype, "directory").toString();

 String filename = dir + File.separator +

newName;

 File newFile = new File(filename);

 NXPart finalPart = nxPart;

 NXPart newPart = SysMLUtility.renameNXPart(

_engine, nxPart, newFile);

 if (newPart != null) {

 StereotypesHelper.setStereotypePropertyValue(

sysmlPart, nxPartStereotype, "currentPartPath", filename);

 finalPart = newPart;

 }

 // Push the part stack

 _partHierarchy.add(0, finalPart);

 //_engine.savePart(nxPart);

// if (PluginMain.DEBUG) {

//

 Application.getInstance().getGUILog().log("Updated

part: " + finalPart.getName()+ " child of " +

parent.getName());

// }

492

 return sysmlPart;

 }

 @Override

 public Property exitExpression(Project project,

Class parent, Property sysmlExpression, NXExpression

nxExpression) throws ReadOnlyElementException {

 return sysmlExpression;

 }

 @Override

 public Class exitFeature(Project project, Class

parent, Class sysmlFeature, NXFeature nxFeature) throws

ReadOnlyElementException {

 return sysmlFeature;

 }

 @Override

 public Class exitPart(Project project, Class

parent, Class sysmlPart,

 NXPart nxPart) throws

ReadOnlyElementException {

 // Pop the part stack

 //NXPart part = _partHierarchy.get(0);

 _partHierarchy.remove(0);

 return sysmlPart;

 }

}

493

REFERENCES

[1] A. S. o. C. Contractors, "Reducing the Cost of Tolerances compatibility

Problems," Missouri, 2006.

[2] American Concrete Institute, Commentary on Standard Specifications for

Tolerances for Concrete Construction and Materials (ACI 117R-90),,

Farmington Hills, MI: American Concrete Institute, 1990.

[3] P. C. Albert and P. L. Chan an Ada, "Key performance indicators for

measuring construction success," Benchmarking: An International Journal, vol.

11, no. 2, pp. 203-221, 2004.

[4] R. Pogrebin and K. Zezima, "M.I.T. Sues Frank Gehry, Citing Flaws in Center

He Designed," New York Times, 7 Nov 2007. [Online]. Available:

http://www.nytimes.com/2007/11/07/us/07mit.html?_r=0. [Accessed June

2015].

[5] W. Dalgliesh, A. Little and C. Tucker, "Variations in Position of Columns and

Slabs," in 11th Canadian Conference on Building Science and Technology,

Banff, Alberta, 2007.

[6] K. Ballast, "Tolerances In Construction: Dimensional Tolerances for Surface

Accessibility," Architectural Research Consulting, 2011.

[7] P. E. D. Love, "Forensic project management: the underlying causes of

rework in construction projects," Civil Environmental Engineering Systems, vol.

12, no. 3, pp. 207-228, 2004.

[8] P. Love, J. Edwards, J. Smith and D. Walker , "Congruence or divergence? A

path model of rework in building and civil engineering projects," ASCE Journal

of Perfromance Construction Facilities, vol. 23, no. 6, pp. 480-488, 2009.

[9] P. Love, P. Davis, J. Ellis and Cheung SO, "Dispute causation: identification

of pathogenic influences," Engineering, Construction and Architecture

Management, vol. 17, no. 4, pp. 404-423, 2010.

[10] Wikipedia, "Engineering Tolerance," May 2006. [Online]. Available:

https://en.wikipedia.org/wiki/Engineering_tolerance. [Accessed 21 3 2015].

494

[11] P. Birkeland and L. Westhoff, "Dimensional Tolerances in a Tall Concrete

Building," ACI Journal, vol. 68, pp. 600-607, 1971.

[12] P. Love, D. Edwards, S. Han and Y. Goh, "Design error reduction: toward the

effective utilization of building information modeling," Reserach in Engineering

Design, vol. 22, pp. 173-187, 2011.

[13] R. K. Allen, S. N. Pollalis and B. R. Schwegler, "Promise and barriers to

technology enabled and open project collaboration," ASCE Journal Prof Issues

Engineering Education Practice, vol. 131, no. 4, pp. 301-311, 2005.

[14] C. Juliana and A. Ramirez, "Construction Management/Design-Build,"

Lorman Seminar, 2005.

[15] F. Valdes, "Geometric Deviations and Tolerances in Construction.," Georgia

Institute of Technology, Atlanta Ga, 2012.

[16] Y. Li, "The Impact of Design Rework on Construction Project Performance,"

University of Kentucky, College of Engineering, Lexington.

[17] N. Banaitiene and A. Banaitis, "Risk Management in Construction Projects,"

Business, Management and Economics, 2012.

[18] N. Banaitiene and A. Banaiti, "Risk Management in Construction Projects,"

in Risk Management - Current Issues and Challenges, 2012.

[19] National Defense Industrial Association, "21st Century Advanced

Manufacturing Modeling & Simulation Roadmap Focus Area

Recommendations," Advanced Manufacturing Engineering Capabilities

(AMEC) Committee, 2013.

[20] E. Yares, "3D CAD World," Siemems, 7 August 2012. [Online]. Available:

http://www.3dcadworld.com/how-was-the-mars-rover-curiosity-designed/.

[Accessed 21 8 2015].

[21] Institution of Mechanical Engineers, "Begginers guide to measurement in

mechanical engineering," National Physical Laboratory, Teddington , 2014.

[22] International Organization for Standardization, "ISO," 11 8 2015. [Online].

Available: http://www.iso.org/iso/home.html. [Accessed 14 1 2016].

495

[23] C. Eastman, R. Sacks, P. Teicholz and Liston Kathleen, BIM handbook: A

guide to building information modeling for owners, managers, designers,

engineers and contractors, John Wiley & Son, 2007.

[24] Object Direct, sysML Modeling Language explained, Object Direct.

[25] No Magic, SysML Plugin User Guide 18.1, No Magic, 2015.

[26] R. Peak, S. Friedenthal, M. Wilson, M. Bajaj and KIm, "Simulation-based

design using sysml," in INCOSE Internations Symposium , San Diego, 2007.

[27] L. Delligatti, SysML Distilled: A Brief Guide to the System Modeling

Language, Addison-Wesley Professional, Nov. 2013.

[28] J. Brown, Interviewee, design errors vs modeling mistakes. [Interview]. 15 2

2016.

[29] D. Ballast, Handook of Construction Tolerances, 2007.

[30] M. Bernal, J. Haymaker and C. Eastman, "On the role of computational

support for designers in action," Design Studies, vol. 41, no. B, pp. 163-182,

2015.

[31] V. Gane and J. Haymaker, "Design Scenarios: Enabling transparent

parametric design spaces," Advanced Engineering Informatics, pp. 618-640,

2012.

[32] R. Lopez and P. Love, "Design Errors Costs in Construction Projects," J.

Constr. Eng. Manage., vol. 5, pp. 585-593, 2012.

[33] J. Hymaker, P. Keel, E. Ackerman and W. Porter, "Filter mediated design:

generating coherence in collaborative design," Design Studies, vol. 21, no. 2, pp.

205-220, 2000.

[34] G. Ameta, S. Serge and M. Giordano , "Comparison of Spatial Math Models

for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS," J.

Comput. Inf. Sci. Eng , vol. 11, no. 2, p. 8, 2011.

[35] J. N.P., "Modelling and Representation of Dimensions and Tolerances: a

survey," Computer-Aided Design, vol. 24(1), pp. 3-17, 1992.

496

[36] T. Kandikjan, J. Shah and J. Davidson, "A Mechanism for Validating

Dimensioning and Tolerancing Schemes in CAD Systems," Computer-Aided

Design, pp. 721-737, 2001.

[37] A. Requicha, "Toward a theory of geometric tolerancing," Journal of Robotics

Research, vol. 2, no. 4, pp. 45-60, 1983.

[38] G. Lee, R. Sacks and C. Eastman, "Specifying parametric building object

behavior (BOB) for a building information modeling system," Knowledge

Enabled Information System Applications in Construction, vol. 15, no. 6, pp.

758-776, 2006.

[39] A. Requicha, "Part and Assembly Description Languages. 1. Dimensioning

and Tolerancing," Production Automation Project, 1970.

[40] A. Requicha and R. Tilove, "Mathematical Foundations of Constructive Solid

Geometry: General Topology of Closed Regular Sets," Production Automation

Project, 1978.

[41] V. Srinivasan and R. Jaramaran, "Issues in Conditional Tolerances in CAD

systems," in IEEE, St. Louis, 1985.

[42] C. Zhang and H. P. Wang, "Simultaneous optimization of design and

manufacturing—tolerances with process (machine) selection," Cirp IRP, vol.

41(4), pp. 569-572, 1992.

[43] R. Soderberg, "Tolerances Allocation Considering Customer and

Manufacturer Objectives," Advances in Design Automation, vol. 2, no. 65, pp.

149-157, 1993.

[44] P. M. Martin, Y. Fathi, R. O. Mittal and J. L. Cline, "Alternative

Manufacturing Sequence and Tolerance build Up: A Point of View and a Case

Study," Int. J. Pord. Res, vol. 2, no. 35, pp. 123-136, 1997.

[45] B. P. Fraticelli, E. A. Lehtihet and T. M. Cavalier, "Tool Wear Effect

Compensation Sequential Tolerance Control," Int. J. Prod. Res., vol. 3, no. 37,

pp. 639-651, 1999.

[46] M. H. Gaddalah and H. A. EIMaraghy, "The Tolerance Optimization Problem

Using an Experimental Design," Advances in Design Automation, 1994.

497

[47] V. Skowronski and J. Turner, "Using Monte-Carlo variance reduction in

statistical tolerance synthesis," Computer-Aided Design, vol. 29, no. 1, pp. 63-

69, 1997.

[48] A. Jeang, "Tolerance Chart Optimization for Quality and Cost," International

Journal of Production, pp. 2529-2541, 1998.

[49] Y. Tseng and Y. Terng, "alternative Tolernace Alocations for Machining Parts

Represented with Multiple Sets of Features," J. Prod. Res., vol. 37, no. 7, pp.

1561-1579, 1999.

[50] Y. Tseng and H. Kung, "Evaluation of alternative tolerance allocations for

multiple machining sequences with geometric tolerances," int. J. Prod., vol. 37,

no. 17, pp. 3883-3900, 1999.

[51] X. Zhao, T. Kethara and Pasupathy, "Modeling and representation of

geometric tolerances information in integrated measurement processes,"

Computers in Industry, vol. 57, no. 3, pp. 319-330, 2006.

[52] B. Anselmettu and H. Louati, "Generation of manufacturing Tolerancing

based on ISO Standards," International Journal of Machine Tools and

Manufacture, vol. 45, no. 10, pp. 1124-1131, 2005.

[53] International Organization for Standarization, "Geometrical product

specifications (GPS) — Geometrical tolerancing — Tolerances of form,

orientation, location and run-out," ISO, 2012.

[54] American Society of Mechanical Engineers, "ASME Y14.5-2009 Standard,"

ASME, 2009.

[55] PivotPoint Technology Corp., "SysML Forum," 2015. [Online]. Available:

http://sysmlforum.com/sysml-faq/. [Accessed 21 january 2016].

[56] S. Friedenthal, A. Moore and R. Steiner, A practical Guide toSysML, 3rd

Edition, Morgan Kaufman, October 2014.

[57] C. Eastman, P. Teicholz, R. Sacks and G. Lee, "Development of a

Knowledge-Rich CAD System for American Precast Concrete Industry," in

Computer Aided Design in Architecture (ACADIA), Muncie, Indiana, 2003.

498

[58] S. Azhar, "Building Information Modeling (BIM): Trends, Benefits, Risks,

and Challenges for the AEC Industry," Leadership Manage. Eng., vol. 11, no. 3,

pp. 241-252, 2011.

[59] T. Johnson, C. Paredis and R. Burkhart, "Integrating Models and Simulations

of Continuous Dynamics into SysML," in Modelica Conference, Germany, 2008.

[60] F. Valdes and Y. Sun, "Parametric Natural Ventilation Simulation with Real-

time," in SIGRADI, 2012.

[61] G. Augenbroe, "The role of simulation in performance based building," in

Building Performance Simulation for Design and Operation, ed. J.L.M. Hensen

and R. Lamberts, 2011, pp. 15-36.

[62] AgileModeling.com, "The Object Primer 3rd Edition: Agile Model Driven

Development with UML 2," 2014. [Online]. Available:

http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm.

[63] G. L. Rocca, "Knowledged-based Engineering: Between AI and CAD.

Review of a language based technology to support engineering design.,"

Advanced Engineering Inforamatics, vol. 26, no. 2, 2012.

[64] M. Reichmann, P. Kuhl and P. Graf, "GenaralStore – A CASE-Tool

Integration Platform Enabling Model Level Coupling of Heterogeneous Designs

for Embedded Electronic Systems," in 11th IEE int. conference and workshop

on the engineering of Computer-Based System (ECBS'04), 2004.

[65] H. Saiedian and R. Dale, "Requirements engineering: making the connection

between the software developer and customer," Information and Software

Technology, vol. 42, no. 6, pp. 419-428, 2000.

[66] C.-M. Chituc, "Requirements Engineering Reaserach and Long Term Digital

Preservation," 2012. [Online]. Available: 2014-02-20].http:ht-

tp://link.springer,com/content/pdf/10.1007%2F978-3-642-37804-1. pdf (2012).

[67] E. Sikora, B. Tenbergen and K. Pohl, "Industry Needs and Reserach

Directions in Requirements Engineering for Embedded Systems," Requirements

Engineering, vol. 17, no. 1, pp. 57-78, 2012.

[68] M. dos Santos Soares, J. Vrancken and A. Vebraeck, "User requirements

modeling and analysis of software-intensive systems," Journal of Systems and

Software, vol. 84, no. 2, pp. 328-339, 2011.

499

[69] J. Holt, S. Perry, M. Brownsword and D. Cancila, "Model-based requirements

engineering for system of system," in System of Systems Engineering (SoSE), 7th

International Conference, Genoa, 2012.

[70] D. Cuddleback, A. Dekhtyar and J. Huffman Hayes, "Automated

requirements traceability: The study of human analysts," in Requirements

Engineering Conference IEEE, 2010.

[71] O. Ingmar, "On principles for model‐based systems engineering," Systems

Engineering, vol. 3, no. 1, pp. 38-49, 2000.

[72] E. Mancin, "How Model Based Systems Engineering streamlines the

development of complex systems," in INCOSE Italian Chapter Conference on

Systems Engineering (CIISE2014), Rome, 2014.

[73] R. Capilla, M. Ali Babar and O. Pastor, "Quality requirements engineering for

systems and software architecting: methods, approaches, and tools," Quality RE

For Sys. & Architecting, vol. 17, no. 4, pp. 255-258, 2012.

[74] A. Van Lamsweerde, "Goal-Oriented Requirements Engineering: A Guided

Tour," in Fifth IEEE International Symposium, 2001.

[75] A. Sutcliffe, "Scenario-Based Requirements Engineering," in Requirements

Engineering Conference, 2003. Proceedings. 11th IEEE International, 2003.

[76] H. J., "Coupling Simulink and UML Models," in Symposium

FORMS/FORMATS, 2004.

[77] T. A., "Meta-models and mappings—ending the interoperability war," in Fall

Simulation Interoperability workshop , 2004.

[78] Y. Vandeperren and W. Dehaene, "From UML/SysML to Matlab/Simulink:

Current state and future perspectives," in Design Automation and Test in Europe

DATE, Munich, 2006.

[79] L. Brisolara, M. Oliveira, F. Nascemento, L. Carro and F. Wagner, "Using

UML as a Front-End for an Efficient Simulink-Based Multithread Code

Generation Targeting MPSoCs.," in Design Automation conference, Calfornia,

2007.

500

[80] A. Pop, D. Akhvlediani and P. Fritzon, "Towards Unified Systems Modeling

with the ModelicaML UML Profile," in Workshop on Equation-Based Object-

Oriented Languanges and Tools, Berlin, 2007.

[81] C. Nytsch-Geusen, "The Use of UML within the Modeling Process of

Modelica-Models," in International Worshop on Equation-Based Object-

Oriented Languages and Tools, Berlin, 2007.

[82] T. Johnson, C. Paredis and J. Jobe, "Modeling Continuous System Dynamics

into SysML," in Modelica Conference, Germany, 2008.

[83] A. Brucker and J. Doser, "'Meta-model-Based UML Notations for Domain-

Specific Languages'," in Workshop on Software Language Engineering,

Nashville, 2007.

[84] E. Huang, R. Ramamurthy and McGinnis, "System and Simulation modeling

using SysML," in Winter Simulation Conference, Washington D.C., 2007.

[85] C. Van der Velden, "An adaptable methodology for automation application

developmen," in International Council of the Aeronautical Sciences, Anchorage,

2008.

[86] J. Jobe, T. Johnson and C. Paredis, "Multi-Aspect Component Models: A

Framework for Model Reuse in SysML," in International Design Engineering

Technical Conference & Computer Information in Engineering Conferences,

Brooklyn, 2008.

[87] Giese, Holgar and Wagner, "From model transformation to incremental

bidirectional model synchronization," in Software and System Modeling, 2009.

[88] A. Shah, A. Kerzhner, D. Schaefer and C. Paredis, "Multi-view modeling to

support embedded systems engineering in sysml," in Graph Transformation and

Model Driven Engineering, 2010.

[89] W. Schamai, P. Fritzon, C. Paredis and A. Pop, "Towards Unified System

Modeling and Simulation with ModelicaML: Modeling of Executable Behaviour

Using Graphical Notations," in Modelica Conference, Como, Italy, 2009.

[90] C. Paredis, Y. Bernard, R. Burkhart, H. de Koning, S. Friedenthal, N.

Rouquette and W. Schamai, "5.5.1 An Overview of the SysML-Modelica

Transformation Specification," INCOSE International Symposium, vol. 722, no.

1, p. 709, 2010.

501

[91] M. Marchenko, G. Behrens, R. Wrobel, R. Sheffler and M. Plebow, "New

Method of Visualization and Documentation of Parametric Information of 3D

CAD Models," in cadaps, 2011.

[92] G. Rocca, "Knowledge based engineering: Between AI and CAD. Review of

a language based technology to support engineering design.," Advanced

Engineering Informatics, vol. 26, no. 2, pp. 159-179, 2012.

[93] G. Mosier, "Finding NIMA, An overview of NASA integrated Model-Centric

Architecture project," in Systems Engineering Seminar, 2012.

[94] S. Herzig, A. Qamar, A. Reichwein and C. Paredis, "A conceptual framework

for consistency management in model-based systems engineering," in

International Design Engineering Technical Conferences & Computer

Informtion in Engineering Conference, 2011.

[95] C. Adourian and H. Vangheluwe, "Consistency between geometric and

dynamic views of a mechanical system," in Summer Computer Simulation

Conference, San Diego, 2007.

[96] P. Hehenberger, A. Egyed and K. Zeman, "Consistency Checking of

Mechatronic Design Models," in International Design Engineering Technical

Conferences & Computers and Information in Engineering Conference , Qebec,

2010.

[97] J. Gausemier, W. Schafer, J. Greenyer, S. Kahl and P. Sascha, "Management

of cross domain model consistency during the development of advanced

mechatronic systems.," in International Conference of Engineering Design,

2009.

[98] J. Simmonds, R. Van Der Straeten, V. Jonckers and T. Mens, "Maintaining

consistency between UML models using description logic," EUZENAT and

Bernard, Carre, editors, RSTI serie L'Objet, vol. 10, pp. 231-244, 2004.

[99] T. Mens, R. Van Der Straeten and J. Simmonds, "A framework for managing

consistency of evolving UML models," Software Evolution with UML and XML,

pp. 1-31, 2005.

[100] The Mission Hospital - st. Joseph Health System, 2015.

[101] National Institute of Standards and Technology (NIST), NIST Handbook,

U.S. Department of Commerce, 2003.

502

[102] American Concrete Institute, 117-10 Specification for Tolerances for

Concrete Construction and Materials (ACI 117-10) and Commentary, 2015.

[103] american Society for Testing and Materials, Standard Test Methd for

Determining Floor Flatness and Floor Levelness, West Conshohocken : ASTM,

2001.

[104] American Institute of Steel Construction, Code for Standard Practice for Steel

Buildings and Bridges, Chicago: AISC, 2005.

[105] American Institute of Steel Construction, Standard Specification for General

Requirements of Rolled structural Steel Bars, Plates, Shapes, and Sheet Piling,

West Chosohocken, PA: American Society for Testing and Materials, 2005.

[106] Marble Institute of America, Dimension Stone Design Manual, Cleveland:

Marble Institute of America, 2003.

[107] Indiana Limestone Institute of America, Indiana Limestone Handbook, 2002.

[108] American Institute of timber Construction, Standards for Dimensions of

Structural Glued Laminated Timbers, Centenial, CO: American Institute of

timber Construction, 2001.

[109] American National Standards Institute, Wood Products: Structural Glued

Laminated Timber, Washington DC: American National Standards Institute,

2002.

[110] American National Standards Institute, Standard for Particleboard,

Washington DC: ANSI, 1999.

[111] Kitchen Cabinets Manufacturers Association, Recomended Performance and

Construction Standards for Kitchen and Vanity Cabinets, Potomac Falls: ANSI,

2000.

[112] American Architectural Manufacturing Association, Metal Curtain Wall

Manual, Schaumburg: AAMA, 2002.

[113] American National Standard Institute, Dimensional Tolerances for

Aluminium Mill Products, Arlington VA: ANSI, 2003.

503

[114] American National Standard Institute, Specifications for Interior Installations

of Cementitious Backer Units, Anderson SC: Tile Council of North American,

Inc, 2005.

[115] Americn Society of Testing and Materials, Standard Specification for

Installation of Steel framing Members to Receive Screw-Attached Gypsum

Panel Products., Chicago Il: Metal Lath/Steel framing Association, 2004.

[116] window and Door manufacturing Association, Industry specification for

Architectural wood Flush Doors, Des Plaines Il: WDMA I.S..

[117] Steel Door Institute, Manufacruting Tolerances, Standards Steel Doors and

Frames, Cleveland: SDI, 2000.

[118] AISC Board of Directors, "Code of Standard Practice for Steel Buildings and

Bridges," American Institute of Steel Construction, Inc, Chicago, Illinois, 2005.

[119] U. Roy and B. Li, "Representation and interpretation of geometric tolerances

for polyhedral objects. II.: Size, orientation and position tolerances," computer-

Aided Design, vol. 31, no. 4, pp. 273-285, 1999.

[120] P. Hoffman, "Analysis of tolerances and process inaccuracies in discrete part

manufacturing," Computer-Aided Design, vol. 14, no. 2, pp. 83-88, 1982.

[121] R. Hillyard and Braid I, "Analysis of dimensions and tolerances in computer-

aided mechanical design," Computer-Aided Design, vol. 10, no. 3, pp. 161-166,

1978.

[122] V. Lin, R. Light and D. Gossard, "Variational geometry in computeraided

design. Computer Graphics," Computer Graphics, vol. 15, no. 3, pp. 171-177,

1981.

[123] J. Turner and M. Wozny, "The M-space theory of tolerances," in Design

Automation Conference, Chicago, 1990.

[124] S. Gupta and J. Turner, "Variational solid modeling for tolerance analysis," in

ASME International Computers in Engineering, Santa Clara, 1991.

[125] S. Liu and Z. Dong, "A solid boundary based tolerance representation model,"

in Design Automation Conference, Scottdale, 1992.

504

[126] D. Whitney and O. Gilbert , "Representation of geometric variations using

matrix transforms for statistical tolerance analysis in assemblies," in

International Conference on Robotics and Automation, Atlanta, 1993.

[127] L. Rivest, C. Fortin and C. Morel, "Tolerancing a solid model with a

kinematic formulation," Computer-Aided Design, vol. 31, no. 4, pp. 273-285,

1999.

[128] R. Jayaraman and V. Srinivasan, "Geometric Tolerancing. Part II: Virtual

Boundary Requirements," IBM Journal of Research and Development, vol.

33(2), pp. 105-125, 1989.

[129] K. Chase, "BASIC TOOLS FOR TOLERANCES ANALYSIS OF

MECHANICAL ASSEMBLIES," in Manufacturing Engineering Handbook,

Provo, McGraw-Hill, 2004, pp. 13-26.

[130] I. I. JCGM member organizations (BIPM, "Evaluation of measurement data -

Guide to the expression of uncertainty in measurement," 2008.

[131] M. Karsten and Decker, "The Monte Carlo method in Science and

Engineering," Theory and Application Institute for Applied Mathematics,

University of Berne, Switzerland, 1990.

[132] A. Sheffer, "Model Simplification for Meshing using Face Clustering,"

Computer-Aided Design, vol. 33, no. 13, pp. 925-934, 2001.

[133] Y. Lee and K. Lee, "Geometric detail suppression by the Fourier transform,"

Computer-Aided Design, vol. 30, no. 9, pp. 667-693, 1998.

[134] J. Lee and J. H. Lee, "A cellular topology-based approach to generating

progresive solid models from feature-centric models," Computer-Aided Design,

vol. 36, no. 3, pp. 217-229, 2004.

[135] C. Andujar, P. Brunet and D. Ayala, "Topology reducing surface

simplification using discrete solid representation," ACM Transactions on

Graphics, vol. 21, no. 2, pp. 88-105, 2002.

[136] N. Joshi and D. Dutta, "Feature simplification techniques for freeform surface

models," Journal of computing and Information Science in Engineering, vol. 3,

pp. 177-186, 2003.

505

[137] H. Zhu and C. Meng, "B-Rep model simplification by automatic fillet/round

suppressing for efficient automatic feature recognition," Computer-Aided

Design, vol. 34, no. 2, pp. 109-123, 2002.

[138] m. Rezayat, "Midsurface abstraction from 3D solid models: General theory

and applications," Computer-Aided Design, vol. 28, no. 11, pp. 905-915, 1998.

[139] R. Donaghy, C. Armstrong and M. Price, "Dimensional reduction of surface

models for analysis," Engineering with Computers, vol. 16, no. 1, pp. 24-35,

2000.

[140] A. Thankur and A. Banerjee, "A survey of CAD model simplification

techniques for physics-based simulation applications," Computer-Aided Design,

vol. 41, no. 2, pp. 65-80, 2009.

[141] C. Wickman, R. Soderberg and L. Lindkvist, Toward Non-Nominal Virtual

Geometric Verification By Combining VR and CAT Technologies., 2001.

[142] J. Maxfield, P. Dew, J. Zhao, N. Juster and M. Fitchie , "A Virtual

Environment for Aesthetic Quality Assessment of Flexible Assemblies in the

Automotive Design Process," in SAE 2002 World Congress, Detroit, 2002.

[143] F. Lo, L. Lindkvist and R. Soderberg, " Visualization of Motion Envelope of

Parts and Assemblies Based on Simulation or Measurement Data," in ASME

International Mechanical Engineering Congress and Exposition, Chicago, 2006.

[144] Y. Kalay, Modeling Objects and Environments, 1989.

[145] N. Juster, "Modelling and representation of dimensions and tolerances: a

survey," Computer-Aided Design, vol. 24, no. 1, pp. 3-17, 1992.

[146] T. Kandikjana, J. Shah and J. Davidson, "A Mechanism for Validating

Dimensioning and Tolerancing Schemes in CAD Systems," Computer-Aided

Design, pp. 721-737, 2001.

[147] A. Tolk, "Metamodels and Mappings –Ending the Interoperability War," in

Fall Simulation and Interoperability Workshop, Orlando, 2004.

[148] Q. Renewables, "Solar Racking Solutions," [Online]. Available:

http://www.questrenewables.com/quadpod-canopy.html. [Accessed 12th

December 2015].

506

[149] A. Pasko, "Function-based shape modeling: mathematical framework and

specialized language," in Automated Deduction in Geometry. Lecture Notes in

Artificial Intelligence 2930, Berlin Heidelberg, Ed. F. Winkler, Springer-Verlag,

2004, pp. 132-160.

507

VITA

Francisco Valdes, Chilean, obtained his Bachelor in Industrial Design and

professional degree in Industrial Design, both from Pontifical Catholic University of

Valparaiso, Chile. Before moving to United Stated pursuing his Ph.D. degree with a

Fulbright scholarship, Francisco worked 7 years as faculty at the School of Architecture

of the Santa Maria University of Technology, where he established his interest in

advanced manufacturing, digital design, and Building Information Modeling (BIM).

During those years, Francisco also built a professional practice that includes projects in

the Antarctic field with the Chilean Air Force and Army, and numerous industry

customers. In the United States, Francisco has worked in several sustainable projects at

Georgia Tech, has been instructor in the College of Architecture and Industrial Design,

and also has worked in other important institutions as the Jet propulsion Laboratory of

NASA, where he developed software for the systems architectures group. Currently,

Francisco works as a research engineer at Georgia Tech Research Institute (GTRI).

Francisco’s work focuses in mechanical design and Product Lifecycle Management

(PLM) with special emphasis in lean manufacturing and renewable energy systems. Also,

he is currently working on the Model Based Systems Engineering (MBSE) domain,

where he is developing software to seamlessly integrate mechanical CAD models into

Systems Engineering (SE) models.

