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SUMMARY

Inflatable Aerodynamic Decelerators (IADs) are a candidate technology NASA

began investigating in the late 1960s. Compared to supersonic parachutes, IADs rep-

resent a decelerator option capable of operating at higher Mach numbers and dynamic

pressures. IADs have seen a resurgence in interest from the Entry, Descent, and Land-

ing (EDL) community in recent years. The 2015 NASA Space Technology Roadmap

(STR) highlights EDL systems, as well as, Materials, Structures, Mechanical Systems,

and Manufacturing (MSMM) as key Technology Areas for development in the future;

recognizing deployable decelerators, flexible material systems, and computational de-

sign of materials as essential disciplines for development. This investigation develops

a multi-scale flexible material modeling approach that enables efficient high-fidelity

IAD design and a critical understanding of the new materials required for robust

and cost effective qualification methods. The approach combines understanding of

the fabric architecture, analytical modeling, numerical simulations, and experimental

data. This work identifies a simple and fast method for determining IAD material

characteristics while not utilizing complicated or expensive research equipment. This

investigation also recontextualizes an existing mesomechanical model through valida-

tion for structures pertaining to the analysis of IADs. In addition, corroboration and

elaboration of this model is carried out by evaluating the effects of varying input pa-

rameters. Finally, the present investigation presents a novel method for numerically

determining mechanical properties. A sub-scale section that captures the periodic

pattern in the material (unit cell) is built. With the unit cell, various numerical tests

are performed. The effective nonlinear mechanical stiffness matrix is obtained as a

xix



function of elemental strains through correlating the unit cell force-displacement re-

sults with a four node membrane element of the same size. Numerically determined

properties are validated for relevant structures. Optical microscopy is used to capture

the undeformed geometry of the individual yarns.
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CHAPTER I

LITERATURE REVIEW AND MOTIVATION

1.1 Background

Future Mars missions will require the landing of more massive payloads on the surface.

As vehicles grow in mass, it becomes more difficult to dissipate all the kinetic energy

necessary to meet desired end conditions. Currently, the operating Mach numbers and

dynamic pressures of Mars supersonic parachutes limit the available payload mass and

thereby constrain future mission design. Inflatable Aerodynamic Decelerators (IADs)

are a candidate technology NASA began investigating in the late 1960s. Compared

to supersonic parachutes, IADs are capable of operating at higher Mach numbers

and dynamic pressures [1]. IADs have seen a resurgence in interest from the Entry,

Descent, and Landing (EDL) community in recent years [2]. Technology investments

in the last decade have significantly advanced three IAD design classes: attached

isotensoid, tension cone, and stacked toroid [3, 4, 5].

Materials are enabling or critical technologies for most aerospace vehicle systems.

Material properties and capabilities provide the form and function to structures,

sensors, thermal, and many other systems. Vehicle mass is always of importance, and

thus materials need to have the desired functionality coupled with low overall mass.

Developing materials with improved properties directly aimed at upcoming mission

needs is critical to the success of future missions.

Flexible materials allow large systems to be stored in minimal space and deployed

or inflated as needed. Such systems have challenges with stowage and deployment

strategies, material properties, damage resistance, and mass. The focus of flexible

material systems research is the identification of soft goods or flexible systems that
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enable the assembly of expandable structures from a small volume to a larger volume

through the combined use of rigid linkages and joints with soft thin shells or mem-

branes. The objective of this technology is to offer an increased volume, lower mass

solution than rigid metal or composite structures through a reliance on the ability

to minimize weight and stowed volume without sacrificing operational functionality

and reliability. Technology solutions require low-density flexible materials for efficient

stowage with deployed systems possessing high strength and stiffness for applications

ranging from satellite booms and solar arrays to the construction of temporary shel-

ters and inflatable thermal protection systems.

Design and certification methods are necessary for development of any structural

system. The current development approach to design and certify flexible material sys-

tems is based on a building block sequence of structural components from very small

material coupon samples to large, full scale assemblies or components. The structural

response and failure modes are interrogated at each scale to provide a statistically

significant data set for design and certification. This is a highly empirical, heritage

approach with basis in early aircraft design. However, from a time or economic point

of view, this approach not well suited to space hardware requiring only a few replicate

production runs.

The NASA Space Technology Roadmap (STR) highlights EDL systems, as well

as, Materials, Structures, Mechanical Systems, and Manufacturing (MSMM) as key

Technology Areas (TAs) for development in the future; recognizing deployable decel-

erators, flexible material systems, and computational design of materials as essential

disciplines for development [6, 7]. New techniques for the computational design of

flexible material systems used on deployable decelerators address multiple capabilities

in TA09 and TA12 of the STR.
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1.2 Inflatable Aerodynamic Decelerators

1.2.1 Tested Configurations

While only a few IADs have been flight tested, several geometries have been tested in

wind tunnels and even more have been analyzed as part of system studies. Smith et al

describes the development history of the IAD from the 1960s to 2010 [8]. Many IAD

configurations have been studied, but recent technology investments in the Isotensoid,

Tension Cone, and Stacked Toroid configurations have progressed the understanding

of these three configurations far beyond others. As a result, these IADs have the

highest probability of being utilized in future missions and discussion in the following

sections is limited to these three configurations.

1.2.1.1 Isotensoid

In 1964, Houtz presented a decelerator design with uniaxially loaded meridional cords

encompassing a biaxially-stressed envelope [9]. The theory behind the Isotensoid de-

sign provides for equal stresses in principal directions of the envelope, as well as, being

constant across the surface in the absense of aerodynamic loads. In addition, tensile

loads in the cords are constant along their length. These properties hold except near

discontinuities created by inlets and other structures. In reality, additional lobing on

the envelope is created in between the cords due to the orthotropic material proper-

ties that causes stress deviations from the developed theory. An analytic expression

for stresses in a lobed isotensoid as a function of the design stress, internal pressure,

number of gores, and material bias was presented by Barton [10]. Static structural

tests of 1.5m isotensoid models included shape verification, inflation, and material

strength testing. From those tests, the limitations of using linear theory are seen in

lower than predicted experimental loads [10, 11, 12].
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1.2.1.2 Tension Cone

In 1965, Anderson presented a decelerator design with a surface of revolution that

exhibits only tensile stresses in both principle directions (tension shell) and a hooped

shaped support that carries compressive loads [13]. An inflated torus is usually in-

corporated as the support member for the tension shell. Required internal pressure,

minor diameter, and material properties are determined from buckling loads using

linear membrane theory [14]. Limitations in fabrication techniques have generally

driven the tension shell and torus be created in multiple segments. The resulting

non-circular shape differs from the ideal. As a result, a different state of stress occurs

in both the shell and torus. While static structural tests on both the continuous and

segmented tension cone design have not been conducted, wind tunnel data has been

gathered for validation and verification purposes [15]. The use of advanced fabrica-

tion techniques and materials have potential to decrease required inflation pressure,

and therefore mass, beyond that of linear predictions [16].

1.2.1.3 Stacked Toroid

The Stacked Toroid configuration is typically created by stacking a series of concen-

tric toroidal members (connected by load bearing straps) and wrapping them with a

cover, potentially also serving as the thermal protection system (TPS) [17]. While

the aerodynamic pressure distribution is not directly used to design the shape of the

stacked toroid, aerodynamic loads still affect required inflation pressures, material

properties, and thus system mass. Compared to the Tension Cone and Isotensoid

designs, the stacked toroid is usually a more complicated system to analyze with a

higher mass. The complexity of the Stacked Toroid (e.g. variable boundary con-

ditions, uneven strap loading, load sharing among tori, etc.) makes it difficult to

analyze analytically; often requiring numerical or empirical models [18, 19]. As an

example, the IRVE-3 toroids consist of a urethane bladder, a Kevlar R© braided tube
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coated with urethane, radial straps, and axial cords adhered within the braid [20].

1.2.2 Development History

NASA Langley Research Center (LaRC) first proposed the use of inflatable reentry

vehicles in the 1960s [21]. During the Viking, Pioneer Venus, and Galileo mission

planning phases of the 1970s, IADs were considered. At the same time, the Disk-

Gap-Band (DGB) parachute was being developed as a deployable decelerator. IADs

were shown to be capable of operating at Mach numbers and dynamic pressures at

which the DGB exhibited undesirable behaviors. However, the Viking mission did

not require decelerator deployment outside of the DGBs performance capabilities [22].

As a result, IAD development was halted in the late 1970s, leaving many issues

unaddressed.

Interest in IADs has renewed in recent years and led to substantial technology

investments. The Program to Advance Inflatable-Decelerators for Atmospheric En-

try (PAIDAE) brought attention to hypersonic IAD technology with a successful

flight test of the Inflatable Reentry Vehicle Experiment (IRVE) stacked toroid IAD

in 2009 [23]. In the supersonic regime, viable IAD geometries and materials were

also assessed. NASA LaRC, ILC Dover Inc., and the Georgia Institute of Technol-

ogy carried out a series of wind tunnel tests to explore aerodynamic and structural

performance characteristics of two different supersonic IAD configurations. Clark

performed conceptual studies, wind tunnel testing, and computational aerodynamic

analyses to advance the state of supersonic tension cone IAD [14]. The inflatable

tension cone model is shown in Figure 1.

Tanner performed subsonic and transonic wind tunnel tests using attached isoten-

soid and tension cone models. In addition, Tanner developed a Fluid-Structure In-

teraction (FSI) framework for the static aeroelastic analysis of IADs [15]. The Hy-

personic Inflatable Aerodynamic Decelerator (HIAD) and Low Density Supersonic
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Figure 1: Inflatable Tension Cone Model (Front View) [15]

Decelerator (LDSD) Programs conducted ground and flight tests to develop design,

analysis, manufacturing, and assembly techniques for IADs [3, 5].

1.2.3 Structural Analysis and Testing

When designing an IAD, it is often difficult to create a shape that is simultaneously

loaded in tension in both principle directions. Wrinkling in a membrane will be initi-

ated as soon as in-plane tension is lost (or in other words, the lowest principle in-plane

stress becomes zero). At this condition, unpredictable behavior is introduced that can

create stress concentrations and undesirable aerodynamic performance. Linear the-

ory has thus been used in the design of IADs to determine the shape necessary to

maintain a tensile load state under a known aerodynamic load [2].

In the 1960s, it was necessary to design and analyze IADs using analytical the-

ories; however, scientific computing has enabled Finite Element Analysis (FEA) of

large complex structures and Computational Fluid Dynamics (CFD) analysis of flow
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fields around rigid bodies. FSI frameworks couple FEA and CFD together to investi-

gate how a flow field will change a structure and visa-versa. Rohrschneider, Tanner,

and others have coupled two independent FEA and CFD codes together to analyze

IADs [15, 24]. Currently, FSI analysis suffers from long run times and lack of quan-

titative validation data. Tanner’s validation efforts relied on qualitative comparisons

against images obtained during wind tunnel testing. As IAD development continues,

more emphasis is being placed on in-situ measurement of displacements and forces.

Typical strain measurement techniques such as strain gauges locally stiffen the in-

flatable structures; thus non-invasive techniques, like photogrammetry, show promise

for acquiring validation data. Only recently have these techniques been used in IAD

wind tunnel experiments [5].

Flight like loading conditions are desirable for structural testing of IADs; how-

ever, the cost of flight testing limits its use. Aerodynamically deformed shapes can

be achieved inside wind tunnels but, in the case a Mars environment, proper test

conditions will be difficult to achieve as IADs grow beyond the size limits of wind

tunnel test sections. Static structural testing will also become more important as

IADs continue to develop.

1.2.4 Materials

During the supersonic IAD development of the 1960s, work focused on materials with

high strength and high temperature capability. Since most of a supersonic IADs

(SIAD) deceleration occurs at high dynamic pressures, material strength is more of

a concern. Additionally, SIAD deceleration occurs below Mach 5, so aeroheating is

not a large concern. For a SIAD, high strength woven materials with good thermal

characteristics such as Kevlar R©, Vectran R©, Nomex R©, and , Technora R© have emerged

as popular materials [25, 3, 26]. Silicon or urethane coatings are often applied to

the materials to reduce porosity and add abrasion resistance. LDSDs SIAD-E is
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constructed from a braided Technora R© coated with silicon capable of withstanding

supersonic deployment temperatures [3].

A hypersonic IAD (HIAD) undergoes exo-atmospheric inflation and significant

heat loads during entry due to the high operating Mach numbers, thus requiring a

TPS. The materials must have low porosity, high heat resistance, strength retention,

and chemical stability in the oxidizing environment. Recent HIAD developments have

used several different material layers for the most effective and lightweight design. For

example, the IRVE-3 stacked toroid TPS is made up of two outer layers of Nextel
TM

that serve an aerodynamic surface, two layers of Pyrogel R© insulation, a Kapton R©

coated Kevlar R© which provides a gas barrier, and load carrying Kevlar R© webbing

incorporated into the TPS in a radial pattern. As the number and complexity of

materials utilized for IADs grows, so does the difficulty in analyzing the structure.

Predicting the response of such materials under aerodynamic loads is difficult even

with FEA given the lack of textile material property knowledge. To aid in the finite

element modeling of IADs, Hutchings utilized several experimental test methods to

obtain material property data for candidate IAD orthotropic materials [26]. The

material data obtained from this testing was utilized in Tanner’s FSI work. Similar

test methods were used in a combined effort between NASA and ILC Dover to carry

out an experimental program to better characterize the stiffness of coated woven

fabrics [25]. The results of this activity were intended to support a ground test

campaign for inflatable decelerators. The work from the Hutchings and ILC Dover

testing resulted in linear elastic and shear moduli, which are reasonable estimates for

early design studies. However, data obtained from uniaxial tensile testing does not

accurately represent the biaxial loading seen in flight. In addition, the shear modulus

obtained from cylinder biaxial testing provides data at only one state of stress. Tanner

and Hutchings both acknowledge the benefit of a more detailed characterization of

woven fabric material properties as the limitations of the experimental studies provide
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an incomplete picture. Researchers at the University of Maine have experimentally

quantified the effective inflation pressure dependent constitutive properties of several

coated, woven and braided textiles using tension/torsion tests on pressurized fabric

beams to achieve various states of stress. The effective material properties obtained

from those experiments were used in finite element models to validate four-point

bending tests on inflated airbeams [27].

1.3 Air-Inflated Fabric Structures

Air inflated structures are tensioned structures that possess unique advantages in their

use over traditional structures. Light weight designs, rapid and self-erecting deploy-

ment, enhanced mobility, large stowed-to-deployed volume ratios, fail-safe collapse,

and possible rigidification are among these advantages.

The majority of R&D pursued in air-inflated structures can be traced to com-

mercial, recreational, marine, military, and space applications. Examples include:

Air Ships, Weather Balloons, Inflatable Antennas, Temporary Shelters, Pneumatic

Actuators, Inflatable Boats, Temporary Bridges, and Automotive Air Bags.

However, the modern day advances in high performance fibers combined with con-

tinuous textile manufacturing processes has enabled a next generation of air-inflated

structures. These air-inflated structures can be designed as viable alternatives to

conventional structures.

Because these structures combine both textile and structural engineering disci-

plines, the following section will provide an introduction to the terminology used in

textile materials and their manufacturing processes. Reference [28] provides addi-

tional insight. In addition, Reference [29] provides a more in depth look into air-

inflated structures.
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1.3.1 Basic Architecture

Air-inflated fabric structures are constructed on fabric shells that enclose a volume

of pressurized air. The textile architectures that are most often used are shown

in Figure 2. With selection of architecture comes its own design, manufacturing,

tooling, and cost implications. These architectures behave different structurally when

subjected to loads.

The plain-weave architecture utilizes orthogonal yarn placement that enables ex-

tensional stiffness along the two yarn axes. Unfortunately, it lacks shear stiffness

for off-axis loads. The braided architecture, on the other hand, provides the fabric

with shear stiffness due to the non-orthogonality of the yarns but lacks extensional

stiffness. The angle between the braid axis and the yarns, θ, is often referred to as

the braid angle or bias angle. Both triaxial braided and axial strap-reinforced braid

architectures provide extensional and shear stiffnesses.

Figure 2: Example Fabric Architectures used in Air-Inflated Structures [29]

The air pressure develops a biaxial pre-tensioning state of stress through the fabric.
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This enables the structure to generate the intended shape, while providing stiffness

to resist deflections and stability against collapse from external loads. The fabric

materials can often be modeled as tension-only or membrane materials, meaning

their in-plane compressive and bending moduli are negligible, for design purposes.

Inflation pressure is a major variable when considering the stiffness of the struc-

ture. As inflation pressure increases, the stresses related to pre-tensioning of the

fabric increase and, as a result, stiffen the structure. A complete redistribution of

stress occurs due to the change in inflation pressure. This redistribution balances

the loads and keeps the structure in a state of static equilibrium. Depending on the

type of air-inflated structure and the applied loads (i.e., tension, compression, shear,

torsion, etc.), the redistribution of stresses can either increase or decrease the net

tensile stresses in the fabric. As long as no regions of the fabric experience a net loss

in tension, the stability of the structure can be ensured. However, if the stresses from

the applied loads begin to drive the tension to zero, the onset of wrinkling is said to

have occurred within the structure. Wrinkling of the fabric decreases the structure’s

load carrying capability and with continued loading, buckling or collapse will occur.

Possibly, the two most significant advantages air-inflated structures have over

conventional structures are that collapse is reversible and often visually detectable.

Upon an overload condition, a collapse of the structure does not necessarily damage

the membrane. As the overload condition is removed, the structure generally restores

itself to its design load configuration. Since wrinkling can be visually detected, it can

serve as a warning indicator before the collapse.

1.3.2 Fiber Materials and Yarn Constructions

In the design of air-inflated fabric structures, proper selection of fiber materials and

yarn constructions are important factors. These should be simultaneously optimized

to achieve desired performance characteristics at the fabric and structural levels.
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Modern air-inflated fabric structures use high performance continuous fibers such

as: Vectran R© - thermoplastic liquid crystal polymer, PEN R© - polyethylene naphtha-

late, DSP R© - dimensionally stable polyester, Kevlar R© - Para-Aramid, and Technora R©

- Aramid.

These fibers provide improved structural performance (high strength, low elon-

gation, fatigue, flexibility, cyclic loadings, creep, etc.) and environmental resistance

(ultraviolet rays, heat, humidity, moisture, abrasion, chemicals, etc.).

Yarns are constructed from fibers that are either aligned unidirectionally or in

twisted bundles. Twist, which is measured in turns per unit yarn length, affects

the yarn tensile properties. The twist is used primarily to protect the yarns dur-

ing handling in textile processing. For discontinuous fibers, twist can increase the

yarn breaking strength due to the internal forces at the fiber ends transferring to

neighboring fibers via inter-fiber shear forces. Hearle, however, showed that twist in

continuous fibers can reduce the yarn breaking strength [30]. Therefore, in the case of

continuous fibers, it is often desired to have the minimum amount of twist to provide

adequate handling protection.

Hearle also experimentally investigated the effects of twist on the tensile behavior

of several continuous fiber yarns [30]. The results showed that yarn tenacity (tensile

strength in grams-force per denier or grams-force per tex) decreased with increasing

twist for three prescribed tensions used during twist formation. Overall, the yarn

modulus decreased with increasing twist, yarn elongation at break increased with

increasing twist, and yarn elongation decreased with increasing yarn tension. A dif-

ference in the load-extension behavior of twisted and non-twisted yarns is that a

twisted yarn, when subjected to tension, will undergo compaction of its cross section

through movement of its fibers and develop greater inter-fiber frictional forces than a

non-twisted yarn. Similar to fabrics, the architecture and processing can be tailored

to affect the structural performance of yarns.
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The ”as-processed” fabric structure can often behave differently than expected

from the ”as-designed” fabric structure. Once the fabric is constructed, it is rec-

ommended that tensile tests be carried out on sample yarns to be compared to the

design requirements. Cavallaro measured the tensile properties of continuous-fiber,

non-twisted yarns, that were removed from a plain-woven fabric airbeam, using an

Instron R© machine [31]. The experimental setup was similar to that shown in Figure 3.

The cross-sectional areas of the yarns were estimated using the fiber diameter and

quantity. The results showed that the average breaking stress of the weft yarns was

approximately 20% less than that of the warp yarns. This reduction was attributed to

fiber damage caused by the application of higher tension forces in those yarns during

the weaving process.

Figure 3: Yarn Tensile Testing using Instron R©

1.3.3 Effects of Fabric Construction on Structural Behavior

Fabric materials are built from yarns that cross over and under each other in a

repetitive, undulating pattern. The undulations shown in the geometrical model

of a fabric as illustrated in Figure 4 are referred to as crimp. A full discussion of the

geometrical model and its applications to practical problems of woven fabric design

has been given by Peirce and Hearle [32, 33]. The warp (w) and weft (f) yarns,

which are perpendicular straight lines in the ideal form of the fabric, become curved

13



under stress and form a natural system of curvilinear coordinates for the description

of its deformed state. The basic parameters consist of two values of yarn length,

(l), two crimp heights, (h), two yarn spacings, (p), and the sum of the diameters of

the two yarns, (D). Given any four of these, the other three can be calculated from

the model. There are three basic relationships among these parameters as shown in

Equations (1) to (3). The definitions of the parameters set in the structural model

are denoted as follows:

h = (l −Dθ)sinθ +D(1− cosθ) (1)

p = (l −Dθ)cosθ +Dsinθ (2)

hw + hf = D (3)

Figure 4: Fabric Geometric Model [33]

These equations are based on an idealized geometry and assumptions such as

circular yarn cross sections and ignoring force or stiffness effects.

Braided fabrics will behave differently under load compared to plain-woven fabrics

because their yarns are usually aligned at different angles. Braided fabrics have a

+θ/-θ yarn placement with respect to the braid axis, where θ is commonly referred

to as the bias angle. In contrast, plain-woven fabrics have a nearly orthogonal yarn

placement of warp and weft (or fill) yarns. By most textile definitions, warp yarns

are those yarns running parallel to the selvage (a self-finished edge of the fabric that
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is created by the weft thread looping back at the end of each row) and are virtually

unlimited in length. The weft yarns are perpendicular to the selvage and are limited

in length by the width of the weaving equipment.

The stress-strain behavior of plain-woven fabrics is initially dominated by crimp

interchange rather than yarn elasticity. It is not uncommon for the factors of safety

for air-inflated structures to be between 4-6 and as a result the operating stresses

are low in comparison to the fabric strength. Therefore, the influence of crimp inter-

change must be considered when addressing the structural performance of fabrics. In

addition, the relative yarn motions (slip and rotation) also affect the stiffness prop-

erties. The crimp ratio, (C), is defined, as in Equation (4), as the waviness of a yarn

and is calculated by measuring the length of the fabric in the yarn direction, (Lfabric),

and the length of the yarn after it has been extracted and straightened out, (Lyarn).

This can be done for both the warp and weft yarns.

C =
Lyarn − Lfabric

Lfabric
(4)

Using Equations (1) to (4), Equations (5) and (6) to relate crimp height and

ratio:

C =
l

p
− 1 (5)

h

p
=

4

3
C

1
2 (6)

Consider a plain woven fabric subjected to a uniaxial tension along one yarn

direction. The yarns under load will begin to straighten which decreases their crimp

heights and elongates their effective lengths. As a result, the perpendicular family

are forced to increase their crimp heights and decrease their effective lengths. This

change in crimp height is referred to as crimp interchange and is often compared to

the Poisson’s effect from continuum mechanics. In uniaxial tension tests on plain

15



woven fabrics, crimp interchange can visibly reduce the width of the specimen.

As the biaxial tension increases for a given load ratio, yarn kinematics (slip at

the cross over points) cease and the spacing between the yarns start to converge

to minimum values. Backer describes this phenomenon as the extensional jamming

point, which can prevent a family of yarns from straightening and as a result, not

achieve it at full strength [33]. Crimp interchange is a function of the ratio of initial

crimp between the yarn axes and the ratio of stress between yarn axes, not the stress

level themselves. Crimp interchange is a source of nonlinear load-extension behavior

for fabrics.

Next, consider the plain-woven fabric subjected to shearing through the applica-

tion of a uniaxial load at ±45◦ to either yarn direction. The yarns will rotate at

the crossover points with respect to each other and become increasingly skewed as

the angle between the yarns changes. The change in the angle between the yarns

is referred to as the shear angle. As the shear angle increases, the available space

between the yarns decreases and rotational jamming (locking or shear jamming) oc-

curs. The angle at which the yarns become jammed is the locking or jamming angle.

The locking angle decreases with increasing yarn density ratio and can be estimated

from Peirce’s model or calculated from experimental trellising or bias-extension tests.

Loading beyond the onset of locking will produce wrinkles leading to localized out-

of-plane deformations. It is important to determine extensional and shear jamming

points for structural stiffness concerns.

1.3.4 Improved Damage Tolerance Methods

Various methods have been used to increase the reliability of air-inflated fabric struc-

tures against several damage mechanisms. Damage associated with punctures, im-

pacts, tears, and abrasion can be mitigated by using high density weaves, rip-stop
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fabrics and coatings. High density weaves are less susceptible to punctures and pro-

vide greater protection for bladders. Rip-stop fabrics have periodic high tenacity

yarns woven in to prevent fractures of the basic yarns from propagating. The break-

ing strength of a yarn is referred to as tenacity which is defined in units of grams-force

per denier. Denier is a mass per unit length measure given as the mass in grams of

a nine thousand meter long yarn.

Coatings protect the fabric against environmental exposure (i.e., ultraviolet rays,

moisture, fire, chemicals, etc.). Coatings such as urethane, silicone, PVC (polyvinyl

chloride), neoprene, EPDM (ethylene propylene diene monomer) are commonly used.

Coatings can be applied in two stages. First, coatings can be applied to the yarns prior

to forming the fabric via a liquid bath immersion. This provides the best treatment to

the fibers. Alternatively, coatings can be applied by spraying, painting, or laminating

directly to the fabric after forming. This bridges the gaps formed between adjacent

yarns. For maximum protection, both stages are often utilized. However, protective

coatings have been shown to increase the stiffness of the fabric due to the restricting

of relative yarn motion. The flexibility and packing efficiency advantages are not

negatively affected by the coatings though.

1.3.5 Continuous Manufacturing and Seamless Fabrics

Before the development of continuous circular weaving and braiding processes, air-

inflated fabric structures were constructed using piece cut manufacturing methods

involving bonding segments using adhesives. These methods were limited to low

pressures due to failures and air leakage at the seams. Continuous weaving and

braiding techniques minimize or even eliminate the number of seams resulting in

increased reliability, pressure capacities, and structural load carrying capability. In

many circumstances, seams cannot be avoided and the structure should be designed

such that failure occurs in the surrounding fabric rather than at the seams. Factors
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of safety of appropriate magnitude for burst and seam failures should be prescribed

for the safe and reliable utilization of these structures. As an example, a minimum

factor of safety of four to six is often used on yarn strength.

Similar to more traditional composite materials, fabrics can be tailored to meet

desired structural performance requirements. Fiber placement can be optimized for

air-inflated fabric structures by varying the yarn denier (mass in grams of a nine

thousand meter length yarn) and yarn counts along each direction. Consider a inflated

fabric cylinder with a 2:1 ratio of hoop stress per unit length to axial stress per unit

circumference. Equal factors of safety can be ensured against yarn failure in both

directions by weaving twice as many weft yarns per unit length of the air beam than

the number of warp yarns per unit circumference. As an alternative, the same goal

can be accomplished by doubling the denier of weft yarns with respect to the denier

of warp yarns.

1.3.6 Air Beams

Air beams are an example of air-inflated structural elements that are capable of

supporting several types of loads similar to conventional beams. To date, seamless air

beams, with diameters up to 42 inches, have been built with continuous manufacturing

methods. An outer fabric skin surrounds an internal bladder usually made from an

elastomer material. The purpose of the bladder is to contain the air, prevent leakage,

and transfer the pressure load to the fabric. Air beams have cylindrical cross-sections

with lengths that can be tailored to be straight or curve to form an arch or torus.

A variety of termination methods have been used to close the ends such as bonding,

stitching, and mechanical clamps. The selection of termination method depends on

the inflation pressure, loading requirements, and desired shape. Clamping methods

have the advantages of permitting assembly, repair, and replacement of the bladder

and fabric layers.
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A pressurized air beam pretensions the fabric and provides the air beam with

axial, bending, shear, and torsional stiffnesses. As shown in Figure 5, the ratio of

cylindrical (hoop) stress per unit length of an inflated air beam to the longitudinal

stress per unit circumference is 2:1.

Figure 5: Plain-Woven Fabric Cylinder Yarn Tensions

The weft yarn tension per unit length of cylinder is equal to the internal pressure

multiplied by the radius of the cylinder. The warp yarn tension per unit circumference

is half the weft yarn tension. Equation (7) expresses the yarn density ratio (YDR) as

a ratio of the number weft to warp yarns.

Y arn Density Ratio (Y DR) =
# weft yarns per unit length of cylinder

# warp yarns per unit circumference
(7)

The warp yarns of plain-woven air beams are aligned parallel to the longitudinal

axis of the air beam and resist axial and bending loads. The weft yarns spiral through

the weave and are located at approximately 90◦ to the warp axis and lie along the

hoop axis of the air beam.

In the case of braided air beams, the braid axis runs along the longitudinal axis

of the air beam. Assuming the ends of the braided air beam are unconstrained from

moving in the longitudinal direction, the yarns will rotate exhibiting a scissoring ef-

fect that causes the length of the beam to length or shorten with pressure depending

on the selection of braid angle. Eventually, the yarns will reach a maximum rotation

angle and become jammed. This phenomenon can be explained by applying netting

theory [34]. The bias angle can be adjusted to allow either contraction or expansion of
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the air beam during inflation. In order for an unconstrained braided air beam to resist

axial tension, longitudinal reinforcements must be incorporated, such as as distributed

axial yarns (triaxial braid) or axial straps attached around the circumference. Bray-

ley tested the bending response of inflatable, braided beams and arches with external

reinforcing straps [35]. The work focused on experimentally determining the consti-

tutive properties of the constituent materials, and quantifying the load-deformation

behavior of beams and arches with full scale laboratory tests. The straps were tested

in pure tension to obtain accurate tensile modulus. The braided material was tested

in torsion to obtain shear modulus as a function of inflation pressure.

The bending stiffness, (EI), for beams normally has units of force x distance2 and

is written as the product of the elastic modulus, (E), and the area moment of inertia,

(I). For air inflated fabric structures, the fabric elastic modulus, (Ef ), is commonly

expressed in units of force per unit length. Thus, Ef I is in units of force x distance3.

Fabric strengths are also typically expressed in units of force per unit length.

Next, consider an air beam under transverse loads. The pre-tension and bending

stresses algebraically add. The compressive bending stresses relax or subtract from

the pre-tension on the compressive surface of the beam, while the tensile bending

stresses add to the pre-tension on the tensile surface. If any point on the air beam

develops a net zero longitudinal tensile stress, the onset of wrinkling is said to have

occurred in the structure. The corresponding bending moment is referred to as the

wrinkling moment, (Mw). Prior to wrinkling, the moment-curvature relationship is

linear, assuming there are no material nonlinearities or significant changes in pressure

or volume. A stress balance based on classic strength of materials theory is generally

used to calculate, Mw. Once the onset of wrinkling has begun, the air beam moment-

curvature relationship is nonlinear because with further loading, the cross-section

loses bending stiffness and the neutral axis moves away from the centroidal axis of

the cross-section and eventually the beam collapses. The wrinkling spreads around
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the circumference of the beam in a similar manner to the flow of plasticity in metal

beams under bending loads. Loading beyond the onset of wrinkling will decrease the

beam’s volume and as a result will increase the internal pressure. In addition, the

work done on the air will affect the post-wrinkled bending stiffness and the response

becomes nonlinear. Figure 6 shows the superposition of the pressure and bending

induced forces for three air beam architectures.

Figure 6: Superposition of Pressure and Bending Loads in Plain-Woven, Triaxial
Braided, and an Axial Strap Reinforced Braided Air Beams [29]

Inflatable braided, strapped beams were tested at the University of Maine in the

2009. The beams were provided fully assembled by Vertigo, Inc. of Lake Elsinore,

CA. The beams were constructed with an internal urethane bladder, a braided fabric

at a 75◦ bias, and four external reinforcing straps as shown in Figure 7. The beams

were coated for protection from abrasion. Strap material and inflation pressure were

varied to determine the effect on the load-deflection response and ultimately obtain

load-deflection data for model validation and calibration [35].

Tests were conducted at inflation pressures of 69, 138, 207, 276, and 345 kPa.

Beams were tested in a three and four-point bend configuration. Figure 8 shows the

layout of the four-point bend test setup.
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Figure 7: Cross-Section of Braided Member with External Reinforcing Straps [35]

Figure 8: Air Beam Four-Point Bend Test Diagram [35]

A beam finite element model that accounts for braid angle and strap stiffness was

developed to model the bending response of the inflatable, braided strapped beams

and arches. Quasi-static load-deformation tests of arches and beams were performed

to provide data for model validation. The FE model effectively predicted the load-

deformation response of the members to and beyond the point of fabric wrinkling as

shown in Figure 9.
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Figure 9: Air Beam Four-Point Bend Test Results [35]

1.3.7 Effects of Air Compressibility on Structural Stiffness

In addition to the initial inflation pressure, the load-deflection response of air-inflated

fabric structures may have other stiffening sources. Sources include nonlinearities in

the fabric stress-strain response and the work done on the air by external forces. If

appreciable changes in pressure or volume occur during loading, work is performed on

the air compression which stiffens the structure. From thermodynamic principles, the

Ideal Gas Law shown in Equation (8) models the air compressibility using absolute

pressure (P), volume (V), mass (m), air gas constant (R), and temperature (T).

PV = mRT (8)

Assuming a quasi-static isothermal process, the work done on the air by compres-

sion is as shown in Equation (9).

Wair =

∫ V2

V1

PdV =

∫ V2

V1

mRT

V
dV = mRT ln

V2

V1

(9)

The total energy of the structure, (Etotal), shown in Equation (10) is the work
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done by all external forces, (Wext) which is equal to the total strain energy of the

fabric, (Uf ), plus (Wair), from Equation (9).

Etotal = Wext = Uf +Wair (10)

In the case of homogeneous membranes, the elastic and shear moduli are deter-

mined from standardized tests. However, for the case of plain-woven and braided

fabrics, the elastic and shear moduli vary not only as a function of pressure but also

with fabric architecture, external loads, and coatings (if present).

1.4 Fabric Material Property Determination

It has been shown that fabric material properties are a function of applied loading:

mechanical and thermal. Theoretical analysis of fabrics can become quite compli-

cated and relies on validation from experimental testing. A great deal of work has

been done to better determine the mechanical properties of fabrics experimentally.

Basset et al. reviews several experimental methods for determining fabric elastic and

shear moduli [36]. Uniaxial and biaxial tension, trellis-frame, and bias-extension are

performed to measure one of the fabrics mechanical properties while keeping the oth-

ers constant. Combined load testing like the inflated cylinder test, utilize hydrostatic

pressure, axial force, and torsion to simultaneously vary the state of stress.

Generally, there are three stress-strain behaviors of interest that are obtained

from an experimental test: Normal stress vs. strain in the warp and weft directions,

transverse contraction vs. axial strain, and shear stress vs. shear strain. Due to

the nature of fabrics, these three relationships are coupled. As an example, a highly

tensioned fabric will have a different shear modulus than the same fabric will have

under lower tension. For most applications, the fabric thickness is usually much

less than the other two dimensions. Therefore, the bending properties are assumed to

have a negligible effect and only in-plane properties are considered. Viscoelastic effects
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and friction have received considerable attention in the past [37, 38], but sufficient

information for including frictional and viscoelastic effects in an analysis involving

multiple independent and dependent variables is currently lacking and therefore often

neglected.

1.4.1 Separate Test Methods

Hearle categorizes three regions of stiffness for tensile loading of a plain-woven fabric

as shown in Figure 10 [33]. Initially, the yarns slide with resistance due to friction.

As the load increases, crimp interchange occurs before leading to elastic behavior.

In practice, air-inflated fabric structures are designed to operate in the inter-fiber

friction and decrimping regions. This ensures that the yarns are loaded well below

their breaking strength.

Figure 10: Idealized Uncoated Response [39]

Uniaxial and biaxial tension tests are the most common methods to determine

tensile moduli in the warp and weft directions. The presence of transverse loading

has been shown to have a large effect on the apparent stiffness of the fabric due

to decrimping and significantly affects the effective Poissons ratio (ν); historically,

however, uniaxial tests have been used most often due to available test apparatuses.
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Many testing methods have been developed for evaluating the mechanical properties

of yarns and fabrics including ASTM standards, Kawabata Evaluation System, MIL-

Spec, and British Standards. It is recommended that an engineer become familiar

with the applicability of these standards to the design and testing of fabric materials

as applicable to air-inflated fabric structures. Recently, many researchers have used

the methodology for uniaxial testing for fabrics that is standardized by ASTM D-

5035-0641 [26, 25, 40]. Typically elongation, which is used to compute strain, is

tracked with an optical method, an attached extensometer, or crosshead extension.

Figure 11 shows examples of uniaxial and biaxial testers found in literature.

(a) Uniaxial Tension (b) Biaxial Tension

Figure 11: Uniaxial and Biaxial Tension Test Methods [26, 40]

Once the fabric is biaxially stressed and subjected to an in-plane shear stress, the

yarns will shear (rotate) with respect to their original orientations. The shear stiffness

(resistance to yarn rotations) results from inter-yarn friction and compaction at the

crossover points. Therefore, the shear modulus is actually a system property rather

than a constitutive (material) property. As the shear rotations increase, an upper

limit is reached when then yarns in both directions become locked or jammed.
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Farboodmanesh et al conducted shear tests on a rubber coated plain woven fab-

ric [41]. The results showed that the initial shear response was dominated by the

coating and with increased shearing, the behavior transitioned to that of an uncoated

fabric. The idealized shear stress-strain behavior of a coated woven fabric is pre-

sented in Figure 12. A rubber sheet demonstrates a plastic response, while woven

fabrics typically have a hyperelastic response. The response of a coated woven fabric

is typically a composite of these patterns, with the rubberized sheet dominating at

low strain, and the woven fabric at higher strain.

Figure 12: Idealized Coated Response [39]

As discussed earlier, shear behavior generally consists of several phases, such as

deformation when the shearing forces at yarn intersections are too small to overcome

friction, slippage of the yarns once that friction is overcome, and elastic deformation

after yarn locking. While the shear modulus is usually much less than the elastic

modulus for plain-woven fabrics in the warp and weft directions, it has a significant

effect on the effective moduli of orientations not aligned with the warp and weft

directions. Two common tests to determine shear behavior are the trellis frame and

bias extension tests, as shown in Figure 13 [25].
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(a) Trellis Frame (b) Bias Extension

Figure 13: Shear Test Methods [25]

The Bias-Extension test method can be combined with uniaxial tension tests in the

warp and weft directions to estimate the shear modulus, (G), using Equation (11) [42].

G12 =

(
4

E45

− 1

E1

− 1

E2

+
ν21

E1

+
ν12

E2

)−1

(11)

While this equation is a linear approximation, a nonlinear solution can be obtained

using theory from large deformation continuum mechanics. Using the deformation

gradient for two line elements, one originally aligned with the warp yarns and the

other with the fill yarns, the Green-Lagrange strain tensor can be derived. In practice,

line markings are made on the sample and tracked over time using photogrammetry.

For each photo, the length of each line element is used to determine the stretch and

orientation.
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1.4.2 Combined Test Methods

Biaxial inflated cylinder tests use internal pressure to create a 2:1 stress ratio in the

material. Additional tension and/or torsion can be applied to change the axial and

shear stresses. Hutchings carried out biaxial cylinder tests on several IAD fabrics;

however, only shear modulus at one state of stress could be obtained as the test

apparatus did not have the capability to apply tensile loads [26]. Hutchings points

out that cylinder testing is important for structural fabrics because stiffness, which

is dependent on the internal pressure, is generally more important than the strength

in inflatable applications.

Kabche et al experimentally applied tension and torsion loads to inflated beams

to obtain effective material properties as a function of internal pressure [43]. The test

setups used by Hutchings and Kabche et al are shown in Figure 14. Pressure depen-

dent material properties were used in a beam based finite element model to predict

the response of the beam in bending. It was shown that the effective elastic and shear

moduli of the fabric varied as a function of inflation pressure, material properties of

the fibers, and the structure of the weave. These are very useful observations, but

required large amounts of testing and the quantitative results are only applicable to

the specific fabrics in their study.

Cavallaro et al utilized a novel test fixture for experimental testing of fabrics

subjected to combined biaxial tension and shear loads as shown in Figure 15 [44].

Through a combination of analysis and experimentation, the work addressed changes

in fabric architecture and the combined effects of biaxial tension, shear, and crimp

interchange on the global behavior of woven fabrics. The fixture was designed for

use with conventional tension-torsion machines to characterize the elastic and shear

moduli of fabrics as a function of biaxial loads. It utilizes a standard cruciform

shaped specimen and was designed to evaluate both strength and stiffness properties

of various fabric architectures subjected to biaxial loads, shear loads or combined
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(a) Torsion Only (b) Tension-Torsion

Figure 14: Inflated Cylinder Test Methods [26, 43]

loads. For fabrics constructed of two principal fiber directions, the fixture utilizes

two rhombus-shaped frames connected with rotary joints. Cavallaro notes that for

triaxial braided fabrics, the fixture has a third rhombus-shaped frame with additional

rotary joints.

Lastly, full field strain measurement, while avoiding any mechanical interference

with the specimen, is of great interest to researchers of inflatable structures [5]. Pho-

togrammetry is a measurement technique used to estimate the 3-dimensional coordi-

nates of points on an object. Post processing of the photogrammetry data provides

the trajectory of a discrete set of material points as load is applied. This discrete

set of points corresponds to the locations where the targets were attached to the

fabric. With the kinematics known at these discrete points, the calculation of the

displacement vector is possible. When the photogrammetry targets are laid out in

a grid, the spatial derivatives of the displacement vector can be approximated. The

displacement vector data can be interpolated to finer resolution grids to result in more
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(a) Biaxial Tension (b) In-Plane Shear

Figure 15: Combined Biaxial Tension and In-Plane Shear Test Methods [44]

accurate derivative approximations. In either case, the Lagrangian strain tensor is

computed with the displacement vector spatial derivatives. Obtaining additional data

for comparison and correlation between test methods, aids in determining which are

best suited for validation efforts.

1.5 Analytical and Numerical Models

Early mechanical modeling of woven fabrics date back to the 1930s. This work was

analytical and focused on tensile and shear of fabrics based on the weave geometry

of a unit cell [33, 32, 45, 46]. Work has shifted to computational modeling in recent

years, where more complicated fabric architectures and loadings can be considered.

The computer graphics and composites industries have pioneered much of the latter

computational modeling. Most of the computer graphics work focused on visual

applications rather than mechanical behavior [47], while the composites industry has

focused on manufacturing processes. Several approaches have been developed to
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simulate the macroscopic behavior of woven fabrics, such as yarn models, particle-

spring models, and continuum models. Particular emphasis is placed on continuum

models as much of the recent work has been focused large scale simulations.

1.5.1 Yarn Models

Analytical models for yarns have built on the work of Peirce, who set the standard

for plain woven yarn geometry, shown in Figure 16 [45]. These models capture the

behavior of woven fabrics by defining a unit cell or the smallest repeating pattern

in the fabric and studying the yarns interactions in the weave. Tensile, shear, and

contact forces acting on yarns are determined from extensions and rotations of the

yarns. After the forces on the yarns are calculated, the number of ends or picks per

unit length is used to calculate the force per unit length of the fabric. An analytical

solution for the initial elastic moduli of a plain woven fabric due to decrimping was

derived by Grosberg and Kedia [46]. The work assumed an inextensible thin beam

model for the yarns in the decrimping region. The shape of the yarns between in-

tersection points is determined from the reaction forces, initial geometry and yarn

material properties.

Figure 16: Peirce’s Basic Plain Weave Yarn Geometry [45]

Later, Kawabata et al studied the deformation of fabrics subjected to biaxial, uni-

axial, and shear loading [48, 49, 50]. The theory assumed elastic, but not necessarily

linear behavior. The biaxial model is a function of several parameters, including:
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yarn material properties, densities, crimp, spacing in warp and weft directions, angle

defined by the yarn and out-of-plane axes, unit cell yarn length, undeformed distance

between the neutral line and the yarn axis along the out-of-plane axis, and the deflec-

tion of the yarn along the out-of-plane axis in the deformed state. Using information

from the original and deformed geometries, Kawabata et al developed a procedure

to find the tensile forces in the warp weft yarns, as well as, the contact forces at

the intersection points from the stretch ratios in each yarn direction, as shown in

Figure 17.

Figure 17: Kawabata’s Basic Plain Weave Yarn Geometry [48]

Later models were modified to include changes in the yarn cross-section. Veri-

fication of the model included comparison of theoretical results with experimental

results for two loading conditions: uniform biaxial loading (λ1 = λ2) and strip biaxial

loading (λ1 6=λ2) . The stretch ratio, (λ), is defined in Equation (12).

λ =
deformed length

undeformed length
= strain+ 1 (12)

In the case of uniaxial tension, the biaxial theory has to be adjusted, as the tensile
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force in the transverse direction being zero would result in the contact force also being

zero; which does not align with experimental results [49]. Modifying biaxial theory to

include a first order approximation for contact force based on material and geometric

information, the contact force at an intersection point is shown to be the summation

of normal and shearing forces. Since the shear term can be positive or negative

depending on a state of loading or unloading, the model can capture the hysteresis

seen in experimental data.

Finally, the theory was extended to include shear deformation [50]. Using linear

approximations and contact forces, an estimate can be made for the moments required

to change the yarn intersection angle by a prescribed angle. Along with the yarn

extensions, moments were used to calculate shear forces. Again, experimental data

was compared to theoretical results. Overall, the models developed by Kawabata et

al provide realistic results for biaxial, uniaxial, and shear deformation that include

nonlinearity and hysteresis. However, the models are not conducive for large scale

or complex fabric simulations due to the necessary computations. Furthermore, the

number and type of input parameters are cumbersome to obtain.

In addition to analytical models, unit cell finite element analysis has been imple-

mented to obtain effective material properties. Cavallaro experimentally and analyt-

ically tested the bending response of an inflated beam [31]. In addition, the micro

and meso mechanical effects were studied through finite element modeling. It was

observed that a full-scale beam model which included each warp and weft yarns, as

well as, their interactions was too computationally expensive. A unit cell of the fabric

was built to extract material properties that were then implemented in a model of the

inflated air beam. The results showed that the finite element model was stiffer than

the experimental results. This was due to finite element model employing constant

elastic and shear moduli, while the experimental material properties varied during

loading [31]. Figure 18 shows the 4-point bending setup and sub-scale sections.
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Figure 18: 4-Point Beam Bending and Fabric Sections

Peng and Cao utilized a novel approach for predicting the effective nonlinear

elastic moduli of a textile fabric [51]. A unit cell as shown in Figure 19 was built and

various numerical tests, like uniaxial tension testing and shear testing were carried

out. Force vs. displacement curves were obtained from the unit cell and an iterative

procedure was employed to transfer effective material properties to a four node shell

element that could be applied to large scale model [51].

Figure 19: Plain Woven Fabric Unit Cell [51]

Komeili and Milani observed that the meso level finite element modeling of fab-

rics had mostly been based on individual axial tension and shear modes [52]. They
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presented a general unit cell model modified from that of Badel [53]. The effect of

combined loading on the response of a fabric unit cell was studied under different

combined axial-shear loading modes. Axial loading was induced through controlled

displacement along the yarns and shear loading was applied through controlled ro-

tations on the boundaries of the unit cell. Results showed a high level of nonlinear

interactions between the material response in the axial tension and shear modes.

Interestingly, it was found that under combined loading, the crimp changes due to

each loading mode affected the reaction from the other mode. In a subsequent study,

geometrical and material related uncertainty factors were studied using two-level fac-

torial designs. Through the obtained half-normal probability plots as well as main and

interaction effects, the most significant parameters were identified and discussed [54].

1.5.2 Particle-Spring Models

The efforts in computational modeling of fabrics at the macroscopic level have fo-

cused on two areas since the 1990’s: Particle-Spring Models and Continuum Models.

Particle-Spring methods, pioneered by Breen [55], are derived from yarn geometry

and treat the intersections of warp and weft yarns as point masses or particles that

are connected to other particles by springs and dashpots as shown in Figure 20 that

can account for the stretching, shearing, and bending of fabric.

Figure 20: Example Particle-Spring Mesh [55]
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With respect to macroscopic deformation, particle-spring models are able to accu-

rately predict fabric behavior by tuning the spring and dashpot parameters to match

experimental data. Broubaker et al studied yarn interactions and their effect on fab-

rics using particle-spring models [56, 57, 58]. Recently, Zhou et al used particle-spring

models to predict out-of-plane buckling using in-plane shear loads [59]. While this

method has been used extensively in computer graphics simulations due to the ease

of implementation and visual realism, the input parameters are not tied directly to

the material and are difficult to obtain when loading is unexpected.

1.5.3 Continuum Models

Currently, researchers most often utilize FEA to simulate loading of woven fabrics.

As stated before, woven fabrics are actually discontinuous and heterogeneous systems

composed of individual yarns and fibers. Continuum models, however, homogenize

these systems into a thin continuous medium. Because the fabric thickness is usually

much less than the in-plane dimensions, plane stress orthotropic material models are

often developed for shell or membrane elements.

Peng and Cao developed a continuum mechanics-based constitutive model for

woven fabrics. The model allowed for non-orthogonal unit vectors that correspond

to the local orientation of the warp and weft yarns [60]. A coordinate system that

coincided with the warp and weft yarns was used in a shell element. Experimental

tension tests showed three regions of load-deformation behavior: a region with small

tensile modulus due the decrimping of yarns, a larger approximately linear tensile

modulus, and a final region with a non-linear modulus resulting from damage to the

fabric. Experimental shear tests showed two regions: an initial decrimping and yarn

rotation region followed be a stiffer region due to the locking of yarns. Material

properties were obtained by curve fitting the experimental tensile and bias-extension

data. Numerical results were validated with experimental results from bias extension
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and shear testing.

Ruiz and Gonzalez implemented various hyperelastic strain energy functions that

were expressed as a function of the strain tensor to model fabrics [61]. Two cases were

considered: one with only uniaxial tension data and another with uniaxial tension,

biaxial tension, and shear data. The methodology involved selecting a hyperelastic

model, introducing experimental data, determining model coefficients through a non-

linear regression technique, and finally utilizing FEA to solve a test case. In the case

of uniaxial tension only, the Mooney-Rivlin, Yeoh, and Arruda-Boyce models fit the

experimental data best. In the other case, the Mooney-Rivlin fit the data well. How-

ever, only the uniaxial tension cases with Yeoh or Arruda-Boyce models were able to

reach convergence.

Multiscale analysis is an extension of continuum models. In the multiscale ap-

proach, the fabric is considered a continuum that is subjected to macroscopic loads

and boundary conditions. To serve as an input to a unit cell analysis, the deformation

gradient at integration points is calculated using a combination of continuum mechan-

ics and finite element methods. From this, yarn modeling or particle-spring methods

are used to calculate forces acting on yarns. Forces are then averaged and used to

calculated continuum scale stresses. King et al and Nadler et al performed work in

this area [62, 63]. Ivanov and Tabiei presented a computational material model for

plain woven fabrics for use in FEA [64]. The model utilized a combination of the

mesomechanical approach and the homogenization technique. The mesomechancial

model is made efficient and suitable for large-scale analyses by breaking the unit cell

into four subcells as shown in Figure 21 and using symmetry to reduce computations.

This model accounts for the reorientation of yarns and the fabric architecture. The

behavior of the fabric is achieved by discounting the shear moduli of the material

in the free state. The model was implemented in the LS-DYNA nonlinear finite

element analysis code. The developed model has been validated using experimental
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Figure 21: Tabiei and Ivanov Representative Volume Cell [64]

ballistic impact test data on Kevlar R© fabric. By combining the advantages of yarn

and continuum models, a multiscale approach shows promise to predict the effective

nonlinear elastic material properties of fabrics.

1.6 Motivation

Three important insights are taken from the literature. The first is that previous

IAD structural analyses have approximated the fabric as a homogeneous material

and utilized only macroscopic models of the effective mechanical behavior. These

models have relied on constitutive relationships that do not capture actual fabric

behavior. Micromechanical structural analysis of the fabric is possible using a model

of the individual fibers; however, this is computationally intensive and not practical

in the conceptual or preliminary design stage with current resources. Mesomechanical

models, which treat the yarns as a continuum, are able to capture yarn reorientation

and fabric architecture and are more suitable for large scale analysis. For a multi-

scale approach to be useful, new methods will need to be defined to accurately model

the yarns and their interactions. In addition, validation of mesomechanical models

against experimental data will be required.

The second insight is that experimental determination of IAD material properties

has provided an incomplete picture of the load-deformation behavior. References

present some uniaxial tensile stress and shear stress data, but lack data at several

states of stress and from different test equipment. Due to the cost and time required
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for complete experimental investigation, researchers have utilized equipment that is

readily available. The modeling of fabric structures would benefit from the publication

of additional macro and meso level material data. In addition, there are several

experimental methods for obtaining fabric material properties, but no comparison

has been made between the methods.

Lastly, there have been several efforts to numerically determine the effective mate-

rial properties of fabrics [31, 51, 52]. Approaches include the homogenization method,

the finite element method, as well as both analytical and experimental approaches.

It is impractical to experimentally obtain material characterizations for all the possi-

ble composite materials and fabric geometries. Furthermore, new testing is required

when any changes are made to the fabric. It can be difficult to apply analytical meth-

ods when the fabric geometry becomes complex. While the homogenization method

works well for predicting material properties, it comes with a large computational

cost. By combining the advantages of the finite element method with the homoge-

nization method, a procedure can be developed for predicting the effective nonlinear

elastic moduli of fabrics. Though the textile industry has proposed this methodology

for rigid composite applications, no evidence has been found for application of this

technique to inflatable structures.

1.7 Contributions

This investigation proposes the development of a multi-scale flexible material model-

ing approach that enables efficient high-fidelity IAD design and a critical understand-

ing of the new materials required for robust and cost effective qualification methods.

The approach combines knowledge of the fabric architecture, analytical modeling,

numerical simulations, and experimental data to build a physics-based understanding

necessary to rapidly develop new materials that are optimized for an intended use.

Rather than relying solely on experimental data, the initial goal is to shift toward
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the prediction of material behavior based on first principles, backed up by experimen-

tation. The ultimate goal is to eventually reduce the cost and time to develop and

certify flight systems. Three objectives are described below to reach this goal.

Application of Parameter Identification to Current Experimental Me-

chanical Property Determination Methods. Based on the above-mentioned

elements, this work aims to identify an efficient method that is as simple and as

fast as possible for determining IAD material characteristics that does not utilize

complicated or expensive research equipment. Starting from the uniaxial tensile test

on the warp and weft directions and on the bias test, it is sought to determine the

mechanical property data needed for introduction into a complex IAD simulation.

The material characteristics of the fabric material are obtained by applying an es-

tablished parameter identification methodology. The analysis imposes a decrease in

the mismatch between the force-displacement curves obtained numerically and exper-

imentally, respectively, for both directions (weft and warp) as well as the decrease in

that of the extension curve for the Bias-Extension test. This methodology can be ap-

plied immediately to existing material models without the utilization of complicated

or expensive research equipment.

Application of Parameter Identification to a Mesomechanical Material

Model. Structural analysis codes such as ABAQUS, ANSYS, and LS-DYNA have

been investigated for IAD applications; with LS-DYNA producing the most consistent

answers. The fabric material model in LS-DYNA was originally developed for the

airbag industry. The model is a variant of a nonlinear orthotropic material model

and is valid for 3 or 4 node membrane elements. This model has been used by the

IAD industry, but has required excessive augmentation to model inputs in order to

recover realistic deformations. A second (higher fidelity) fabric material model in LS-

DYNA was developed for ballistic impact applications in 2001. This model considers

a mesomechanical approach to model the response of dry plain woven fabrics, but
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requires information not typically tested for in standard methods regarding behavior

of the yarns themselves. The present investigation will recontextualize this existing

mesomechanical model through validation for structures pertaining to the analysis

of IADs. In addition, corroboration and elaboration of this model is carried out by

evaluating the effects of changing input parameters, as well as, providing guidance

for obtaining relevant model inputs. Finally, an established parameter identification

methodology is applied to demonstrate feasibility for estimating input parameters.

The experimental data used to evaluate this higher fidelity material model are taken

from a series of previous tests to measure and characterize the normal and shear

stress-strain behavior of textile fabrics relevant to IADs.

Numerical Determination of Mechanical Properties for Flexible Mate-

rial Systems. Material property data for IAD finite element simulations has histor-

ically been obtained experimentally. Data at several states of stress are absent in the

current literature. The present investigation presents a novel method for numerically

determining mechanical properties. Based on the properties of the individual fibers,

data from literature is used to estimate the effective elastic constants of the yarn. A

sub-scale section that captures the characteristic periodic pattern in the fabric (unit

cell) is built. With the unit cell, various numerical tests can be performed. The

effective nonlinear mechanical stiffness matrix can be obtained as a function of ele-

mental strains through correlating the force-displacement results for a unit cell with a

four node membrane element of the same size. The effective nonlinear elastic moduli

can be incorporated into a traditional or a user defined material model associated

with membrane elements for greater control of the input parameters. Numerically

determined properties are validated for structures pertaining to the analysis of IADs.
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CHAPTER II

APPLICATION OF PARAMETER IDENTIFICATION TO

CURRENT EXPERIMENTAL MECHANICAL

PROPERTY DETERMINATION METHODS

2.1 Introduction

Most engineering problems are posed for direct analysis, where a physical phenomenon

is studied using an analytical model. Model parameters and boundary conditions are

known and the goal is to compute the system response or model outputs. In the

case of 4-point air beam bending response modeling, the loading boundary conditions

are known from experimentation and the parameters and material properties defining

the material model are also known. The goal of 4-point air beam bending response

modeling is to predict the load-deformation response by calculating variables such as

wrinkling load and maximum applied load. This is an example of a direct problem.

If measurements of a systems response are available, the problem can be ap-

proached in an inverse fashion. For these problems, the objective is to estimate the

model parameters or boundary conditions from measured outputs. In the case of

4-point air beam bending response modeling, measurement of applied loads and dis-

placement in a few locations is available, and the goal is to accurately estimate model

parameters and boundary conditions that result in a predicted system response that

closely matches the data. In a broad range of engineering applications, this approach

is referred to as inverse analysis.

For complex problems where parameters contribute to the uncertainty, a compre-

hensive framework is necessary to yield an accurate multi-parameter estimation. The

results of the inverse estimation depend strongly on the range of measurements used
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in the analysis, as well as the input parameters being estimated. It is vital that the

measurement and parameter selections are performed intelligently prior to the inverse

estimation. The framework developed here proposes guidelines on how to conduct

the parameter estimation via three steps: Nominal Analysis, Sensitivity Analysis, and

Inverse Analysis.

Nominal analysis examines the quality of the data and provides a comparison

between the data and model predictions. This is analogous to the direct approaches

historically used by the IAD community. The range of reliable measurements for

inverse analysis is identified. Sensitivity analysis starts with a complete list of material

and system parameters and down select to a smaller subset containing parameters

of most importance. Sensitivity analysis is particularity important with the number

of input parameters and computational cost are high. These steps provide a list

of parameters to be estimated and the range of data is to be used in the estimation

process. The final step is apply an inverse method to estimate the selected parameters

from the given data.

This chapter utilizes LS-OPT and LS-DYNA within the parameter identification

methodology. LS-OPT is a standalone design optimization package with an interface

to LS-DYNA [65]. The analysis code LS-DYNA is a nonlinear finite element solver

developed by the Livermore Software Technology Corporation that has been exten-

sively used by industry and government entities to analyze textile structures such as

airbags, pressure stabilized beams, and parachutes [66].

2.1.1 Nominal Analysis

Nominal analysis can be thought of as a direct analysis. The goal is to examine the

quality of the data and perform a direct comparison between the data and nominal

model predictions before proceeding with inverse analysis. Model and measurement

errors can lead to inaccurate solution of the inverse problem and introduction of bias
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errors in the estimated parameters. Nominal analysis is performed to identify such

errors and determine the range of measurements that are reliable for inverse analysis

by examining the test data and performing a direct comparison of predictions to test

data. The objectives and steps of the nominal analysis are as follows:

• Examine the data quality to identity measurement errors, anomalies or sensor

problems.

• Correct for measurement errors, if possible. If not, determine the appropriate

range of the reliable data for inverse analysis.

• Compare the data to the predictions from the physical model based on nominal

parameters.

• Examine the model fidelity by identifying where the data trends are fundamen-

tally different from model predictions.

• Select the measurement range that will be used in the inverse analysis.

2.1.2 Sensitivity Analysis

Sensitivity analysis aims to describe how much model output values are affected by

changes in model input values. As discussed earlier, both geometrical and material

factors in woven fabrics can potentially affect the material response at macro level

and have a contribution on test non-repeatability. The approach employed to accom-

plish these goals is probabilistic, and is accomplished with full factorial designs. The

objective is to start with a complete list of material and system parameters and down

select to a smaller subset containing parameters of most importance.

As an example, Komeili and Milani studied geometrical and material related un-

certainty factors using two-level factorial designs [54]. In a two-level factorial design,

each factor is allowed to take two levels (an upper and lower limit within its range

of variation). Then all possible combinations of the factor levels are analyzed to find
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the sensitivity of a pre-defined response to the factors and their interactions [67]. As

an example, if the number of factors for a geometric sensitivity analysis is, n, 2n finite

element runs would be performed for the sensitivity analysis.

The individual effect of each factor (main effect) is defined as the change in the

response by a change in the level of a factor. In two-level factorial designs, a main

effect is calculated by the difference between average responses measured under two

different levels of a given factor. It should be noted that the variation caused by the

factor levels may be affected by the levels of other factors. In this case, it means

there is an interaction between factors. The approach for calculating effects from

interactions depends on the level of interactions (i.e., interaction between 3 or 4

factors) [67].

Two-level factorial design results are generally presented in the form of half-normal

probability plots. The half-normal probability plot is a graphical technique used in

full-factorial design of experiments (DOE) to differentiate between two groups of

significant (important) and insignificant (unimportant) factors. In such plots, the

absolute values of factor effects (defined for each factor as the absolute value of the

difference between the average response at the upper level and the lower level of that

factor) are plotted against expected values from a half-normal distribution. In some

cases, the effects are adjusted using their standard errors to arrive at the Standardized

Effects metric. Significant factors tend to be on the right side of the graph whereas

insignificant factors almost lie on a straight line on the left side. Data on the horizontal

axis are sorted by their magnitudes from left to right. In a practical sense, this means

the factors falling on the left side of the graph cannot be used to vary the average

response. From a theoretical standpoint, their low contributions could be on the same

order as random noises in the given system or experiment. Thus, they follow a normal

distribution near zero. It has been shown that using a half normal plot as opposed

to a standard normal plot provides a more sensitive scale for detection of significant
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factors [67].

Half-normal probability plots are a graphical technique and thus a subjective form

of screening. From a quantitative point of view, for the interpretation of absolute val-

ues of main/interaction effects, the Lenth’s Criterion is used to identify the significant

factors in single-replication factorial designs [68]. The criterion is based on two met-

rics: the Margin of Error (ME), in Equation (13), and Pseudo Standard Error (PSE)

as shown in Equation (14).

The following is a brief description of Lenth’s method. Suppose there are m effects

from factors and interactions (contrasts) in a factorial design and are referred to as

c1,c2,...,cm. Therefore, for a 2k full factorial design, m = 2k - 1. Lenth’s method

begins with an estimation of the variance of the smallest contrast.

ME = tα
2
,dPSE (13)

where tα
2
,d is the t-distribution with a significance level of α. In this case, α=0.05

and d=m/3 is the degree of freedom.

PSE = 1.5×median
(
|cj| : |ci| < 2.5s0

)
(14)

and

s0 = 1.5×median
(
|cj|
)

(15)

Lenth showed that PSE can be used as a reasonable estimation of contrast variance

when there are not many active (significant) effects. PSE can then be used to judge

the significance of factors by comparing each factor effect to the margin of error (ME).

Quantitatively, a factor is significant if the absolute value of its effect is larger than

ME.

While the Analysis of Variance (ANOVA)) technique is a very popular method

to assess the contribution of different regression terms, Sobol’s Global Sensitivity
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Analysis (GSA) is widely used to study the importance of different variables for

higher order models [65]. The Sobol’s indices are a generally applicable non-linear

sensitivity measure. The determination is computationally expensive because many

sampling points are required. To overcome this problem, the indices can be based

on metamodels. In LS-OPT, the metamodels give an approximation of the response

function attributed to the variables.

In this method, a function is decomposed into sub-functions of different variables

such that the mean of each sub-function is zero and each variable contribution only

appears once. Then, the variance of each sub-region represents the variance of the

function with respect to that variable contribution. Based on the evaluation of the

metamodels, the Sobol’s indice, Si, of variable vi is computed as shown in Equa-

tion (16).

Si =
variance caused by vi

total variance of response
(16)

As shown in Equation (17), the sum of all Sobol’s indices of one response is 1:

n∑
i=1

Si = 1 (17)

where n is the number of variables. The theory of Sobol’s GSA method is described

in more detail in [65].

2.1.3 Inverse Analysis

Parameter and system identification or estimation has been applied in many fields.

More narrowly, material identification has been used by various researchers to char-

acterize materials used in structural analysis. Different optimization methods have

been applied to minimize the resulting non-linear distance function. Yao et al. uses

a genetic algorithm to minimize the residual in a nonlinear Parameter Estimation

via Genetic Algorithm (PEGA) approach [69]. Seibert et al. use a modified random
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search algorithm in the identification of viscoplastic material models [70]. Li and

Roberts have applied Extended Kalman filters to the problem [71, 72]. Rikards et al.

employ experimental design techniques to identify the plastic properties of polymers

and the elastic properties of laminated composites [73, 74, 75]. Kok et al. applied

the BFGS algorithm with design sensitivity analysis (DSA) gradients to identify the

parameters of a temperature and rate-dependent viscoplastic polycrystal model [76].

Mullerschn et al applied the response surface methodology to the optimization of

material parameters for rate dependent foam materials [77]. LS-OPT was also used

in that study.

Figure 22: Material Identification Process

The process is shown schematically in Figure 22. The material constitutive re-

lationship on the left typically involves different quantities than the experimental

results on the right. The material constitutive law is a point-wise relationship valid

at all points in the structural continuum while the experimental results are discrete

values of response quantities, typically as a function of time or deformation. The

arrows represent both simulation (forward) and optimization (backward) processes

to be performed to match the two curve sets. Multiple load configurations or geome-

tries, involving the same material, can be introduced resulting in the multiple cases

being defined for the same optimization run.

The diagram in Figure 23 shows the methodology for deriving material proper-

ties from experimental results in LS-OPT. Definitions are required for each of the
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steps in the flowchart. Setup refers to the setting of initial input parameter values

and ranges. Sampling refers to selection of metamodel type and point selection

method. Analysis refers to the finite element simulation using selected input param-

eters. Metamodels refers to the building of a response surface using the simulation

results. Composites refers to the comparison between response surfaces and test

data to construct the objective function. Global Sensitivties assesses the contribu-

tion of different regression terms to variance of the response. Optimization refers

to the optimization of the objective function with respect to the input parameters.

Termination Criteria is defined to assess model convergence. Domain Reduc-

tion is employed to accelerate convergence. If termination criteria is satisfied using

metamodel results, a Verification simulation assesses metamodel accuracy.

To summarize the above definitions: A set of designs are selected from the set of

input parameters. The simulation results obtained for the selected designs are used

to build a response surface. The response surface is compared to the experimental

data and the composite is used as the objective function to be minimized. If defined

termination criteria are met, a verification simulation is carried out using the optimal

set of designs from the metamodel. If not, the domain may or may not be reduced in

size or shifted for the next iteration.

2.1.4 Mean Square Error

Depending on the application for which the material identification is required, the

formulation used in the optimization is adjusted accordingly. The two best known

approaches are the minimization of the maximum residual and the minimization of

a residual norm constructed from the Least Squares Residual (LSR) or RMS error.

The formulation utilized in this work, shown in Equation (18), is a variation of the

second called the Mean Square Error (MSE) approach:
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Figure 23: Single Case Parameter Identification Process Flowchart

MSE
(
x̄
)

=
1

P

P∑
i=1

Wi

fi(x̄)−Gi

si

2

→ min (18)

where P represents the number of responses constituting the residual, Wi and si are

scaling factors required for weighting and normalization of each response respectively.

fi(x) and Gi are the simulated response curve of variable vector x and the target curve,

respectively. Figure 24 shows a graph containing the curve f(x, z) and points Gi(z).

The points can be connected together to form a curve G(z). As stated above, f is

a computed response curve at a point x in the parameter space. System or material

constants are typical parameters used in constructing finite element models. The

independent state variable z can represent time, but also may represent any response

type such as strain or deformation. The target curve G is constant with respect to x

and most often represents test results.

In this work, the residual is constructed as a composite, using a response surface
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Figure 24: Components of Mean Square Error Formulation

for each fi(x). For the MSE approach an unconstrained minimization problem can

be solved unless other constraints related to e.g. monotonicity in the curves to be

matched are prescribed. Stander et al adds these constraints where optimization was

used for airbag system identification [78].

2.1.5 Curve Mapping

A major difficulty in the use of ordinate-based curve matching is that steep parts of

the curve are often difficult to match. Failure models typically have steep declines in

the stress-strain curve toward the end, while most of the leading part of the curve

is linear. This presents a strong case for the incorporation of abscissa into the curve

matching metric.

Another problem with ordinate-based matching is that some points of the com-

puted and target curves do not coincide horizontally such that some of the points are

ignored. It is even possible that in portions of the optimization there is not a single

vertical line which can will cross both the computed and target curves. This type of
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problem can cause instabilities in the computation because its impossible to quantify

the error.

Hysteretic curves (curves with more than one possible y value for some of the x

values) cannot be quantified due to the non-uniqueness of the ordinate values of the

computed cure with respect to the target curve. A logical approach for comparison

of the two curves is to map one of the curves onto the other. The questions of

how to scale the curves and how to match two curves of unequal length immediately

arise. Scaling can be particularly important since scale changes have an effect on the

distances between the two curves. In many cases, such as stress vs. strain, there

may be several orders of magnitude difference between the values on the abscissa and

ordinate.

As stated above, this work utilizes the MSE approach as a curve matching metric.

The above comments should be considered however when setting up future problems.

For a more detailed discussing on the use of curve mapping for parameter identifica-

tion, refer to the work of Witowski and Stander [79].

2.2 Silicone Coated Plain Woven Kevlar R© Test Case

There have been several recent efforts to characterize the mechanical properties of a

variety of coated woven fabrics intended for IAD systems [15, 25, 26]. The results

have provided a large database of experimental results from which to extract trends.

The current work focuses on a silicone coated plain weave Kevlar R© fabric from Lin

et al. [25], which was selected as a good example. The details of the Kevlar R© sample

are provided in Tables 1 and 2.

The material used is this work is a 200 denier Plain Woven Silicone coated

Kevlar R©. The Kevlar R© material was the same type used on the IRVE II flight article

in the structural bladder skin. The following sections discuss details of the fabric

architecture as well as the test methods used to characterize material. Discussion
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related to the test methods includes observations regarding the trends in experimen-

tal data and analytical relations commonly used to convert load-deformation into

stress-strain data. A more detailed discussion regarding the uniaxial tension and

trellis-frame test data reduction is presented in Appendix B.

2.2.1 Material Description

The Kevlar R© material is a plain woven fabric that is 200 denier. As discussed earlier,

denier is the weight in grams of a 9000 meter length of fiber. The thread count or

threads per inch (TPI) is a measure of the coarseness or fineness of a fabric. It is

measured by counting the number of threads contained in on square inch of fabric,

including both the warp and weft yarns. The terms ends per inch (EPI) and picks per

inch (PPI) refer to the warp and weft threads per inch of woven fabric, respectively.

The Kevlar R© material was primed with a silicone infused solution to promote adhesion

and then calendared with a Dow Corning Silicone Rubber. The calendaring process

presses the rubber into the fabric filling the discontinuities under extreme load. A

summary of the fabric properties before and after coating is provided in Table 1

Table 1: Properties of Silicone Coated Plain Woven Kevlar R© Fabric

Uncoated Coated Uncoated Coated
Denier TPI Areal Density Areal Density Thickness Thickness

(oz/yd2) (oz/yd2) (in) (in)
200 40 x 40 2.1 8.0 0.005 0.008

For modeling purposes, it is necessary to know the density of the fabric and

not just that of the fiber. Density calculation for all samples were made using a

Mettler Density Determination Kit, ME-33360 [25]. The process is essentially density

measurement by hydrostatic weighing. Reference [25] a more detailed explanation of

the density determination process as well as a summary of all fabric densities for the

materials characterized in that study. A summary of fiber and fabric densities for all

the 200 denier kevlar R© fabric is provided in Table 2. As would be expected, the fabric
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density which includes the coating and discontinuities is less than the fiber density.

Table 2: Silicone Coated Plain Woven Kevlar R© Fabric Density

Fiber Yarn Coating Mean Fabric
Density Density Add-on Density
(g/cm3) (yarns/in) (oz/yd2) (g/cm3)

1.44 40 x 40 5.9 1.1099

2.2.2 Test Methods

The experimental test program discussed in Reference [25] used four different test

methods to measure and characterize the normal stress-strain and shear stress-strain

behavior of textile materials for IADs. Two of the test methods, specifically the

uniaxial and biaxial cylinder tests, were used in Hutchings work [26]. ILC added

the capability of photogrammetry to capture additional data for comparison and

correlation. In addition, the trellis-frame and bias extension tests for shear behavior

were modified to include photogrammetry capability for comparison and correlation

with the biaxial cylinder test method. The purpose of using multiple test methods to

gather shear stress-strain behavior was to aid in the determination of which method

is best suited for future wind tunnel test correlation.

The uniaxial, trellis-frame, bias-extension tests were performed using an Instron

test machine, model number 1125. Calibration data showed the machine results to

be within ±0.2%. Extensometers were used during testing, but data is not used in

this work as only the load cell and crosshead extension data is necessary. For more

detailed information regarding the specifics related to the test procedures, the reader

is referred to the ILC paper and the ASTM standards that work references.

This work utilizes test data from all of the available normal and shear methods

reported in Reference [25], however the trellis-frame test will not be modeled. The

uniaxial and bias extension tests are modeled and used in the parameter identifica-

tion methodology. The inflated cylinder test is modeled for purposes of comparing
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the material properties obtained from parameter identification to the experimental

inflated cylinder data at multiple inflation pressures.

2.2.3 Normal Stress-Strain

The uniaxial tension test is one of the most common test methods for determining

the normal stress-strain characteristics of textile materials. Reference [25] utilizes the

Strip Method as described by ASTM D5035-06. In the strip tensile test, a narrow

strip of fabric, 3 in wide by 6 in long, is used. Since the stress-strain behavior of

a textile are usually different in the orthogonal warp and weft fiber directions, two

sets of test samples were prepared for the test method. One set of samples has the

warp fibers running parallel to the axis of load application, while the second set of

samples has the weft fibers running parallel to the axis of load application as shown

in Figure 25.

Figure 25: Textile Uniaxial Stress-Strain

The uniaxial tension tests in the 200 denier Kevlar R© warp and weft directions

measured load-deformation for the load interval [0,2500 N]. That data was used to

calculate normal stress-strain for the stress interval [0,32.2 N/mm]. Units of stress
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were reported in units of load per unit length. The fabric thickness was removed

from the calculation. It is typical for fabric experimental data to be reported in these

units. The thickness for the 200 denier fabric is reported in Table 2. The experimental

data from uniaxial loading over ten cycles exhibit appreciable hysteresis, as well as,

a wandering or strain set between cycles. The amount of wandering between cycles

appears to decrease as the cycle number increases. The strain set was observed to

be approximately 20% of the strain maximum for the first load cycle. Neglecting the

impact of strain set, the slopes for the tenth load cycle were very similar to those of

the first. Figure 26 shows all ten warp and weft direction load vs extension cycles for

one of the samples tested.
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Figure 26: 200 Denier Kevlar R© Warp and Weft Uniaxial Tension Test - All Ten Cycles

Consider an idealized uniaxial loading hysteresis cycle as shown in Figure 27. At

the peak of the load cycle, the crosshead is held fixed for a brief period of time.

During this period, the stress of fabric relaxes without minimal changes in strain. At

the bottom of the load cycle, the residual strain in the fabric relaxes with minimal
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changes in stress. Thus, the observed hysteresis is caused by this relaxation process.

If the timescale of the relaxation process is greater than that of the pause at the peaks

of the load and unload cycles, there is an observed wandering of the response.

Figure 27: Idealized Uniaxial Loading Hysteresis Cycle

Hysteresis has been modeled using rate dependent damping terms in past studies.

However, the low crosshead speed used for experimental testing prevents the repli-

cation of the observed hysteresis using plausible values of damping coefficient. It is

difficult to model hysteresis using a modification to stiffness or damping matrices as

there is no increment in strain (or strain rate) present to alter the stress during load

relaxation. Murman et al. implemented an inertial lag technique that is consistent

with the physics of the fabric [39]. In solid specimens, the load is essentially trans-

ferred instantaneously throughout the entire specimen. In fabrics, the loading in the

different regions can lead or lag due to local yarn and coating stretching. Murmans

technique was implemented as a user defined forcing function in LS-DYNA and scaled

with sample size, thus implying that the hysteresis would be present at flight scale.
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Williams modeled hysteresis using a method that considered energy dissipation

and residual friction [80]. As discussed earlier, the initial load-deformation behavior

results from inter-fiber friction, inter-yarn friction, and yarn decrimping which results

in relatively high elongation and small tensile stress. After the yarn lock occurs, the

rest of the behavior is dominated by the mechanical properties of the constituents.

The recovery of the fabric as it is unloaded exhibits hysteresis due to energy dissipation

and residual friction between fibers and yarns. In this context, hysteresis is defined

as the permanent strain set resulting from the loading history.

The MAT FABRIC material model within LS-DYNA includes the capability to

model hysteresis. The model allows the input of load curves that define stress vs uni-

axial strain along both fiber directions. Optional unload and reload curves are avail-

able for specific element formulations. An optional reloading parameter (RL) may be

defined with values between 0 (reloading on the unload curve) and 1 (reloading on a

minimum linear slope between unloading curve and loading curve). In addition, an

optional hysteresis parameter (H) defines the fraction of dissipated energy during a

load cycle in terms of the maximum possible dissipated energy. The normalized hys-

teresis parameter can also be varied between 0 and 1. Varying these parameters until

the finite element model matches experimental data provides a means of modeling

hysteresis.

The scope of this work has been defined around air inflated fabric structures

and specifically IADs. As discussed in Chapter 1, many IAD designs contain purely

biaxially loaded structures, such as inflated toroids and pre-tensioned gores that are

not largely cyclically load. In these cases, it is possible to simplify the modeling

approach to neglect the nonlinear crimp interchange region. With most modeling

approaches assigning the cause of hysteretic behavior to the yarn decrimping and

friction, it is assumed that hysteresis is not a significant factor within the scope of

this work and is neglected.
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2.2.4 Shear Stress-Strain

Several approaches have been developed and used by industry and academia to char-

acterize the shear stress-strain behavior of textile materials. This section provides a

detailed description of the bias-extension, trellis frame, inflated cylinder test methods.

Underlying theories and experimental test data are discussed.

2.2.4.1 Bias-Extension

As load is applied to the sample, three distinct zones occur that contain different

deformation modes as shown in Figure 28 [42]. At the top and bottom in zone A,

near the grips, little to no deformation occurs. Zone B, which surrounds the center

region, is a transition zone where a mixture of shearing and extension occurs. Zone

C, contains mainly shear deformation. This is the zone from which the measurements

are taken.

Figure 28: Bias Extension Deformation Zones

Kilby provides an empirical equation using the bias-extension test, uniaxial tension

tests in the warp and weft directions, and Poisson’s ratios to estimate the shear
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modulus using Equation (11) [42], but this linear approximation has yet to be verified

over multiple data sets. The data reported for the Bias Extension test is usually

load and crosshead extension rather than shear stress and strain. The cross head is

converted to shear strain by taking advantage of the pure shear that occurs in the

sample shown in Figure 28. The shear angle, (γ), is defined in Equation (19).

γ =
π

2
− 2φ =

π

2
− 2cos−1

[
cosφ0 +

δ

2cosφ0(H −W )

]
(19)

In the Equation (19), H = sample height, W = sample width, δ = displacement,

and φ0 is the initial half angle that the top corner Zone C makes with the vertical.

φ0 is usually assumed to equal 45◦.

2.2.4.2 Trellis Frame

The objective of the trellis-frame test, shown in Figures 13 and 29, is to measure

the in-plane shear stress-strain response by using a trellis-frame or picture frame

apparatus actuated by an Instron testing machine.

Figure 29: Trellis Frame - Shear Modulus Estimation
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The trellis-frame consists of four pinned corners and four clamped edges. The

clamped edges secure the cross shaped fabric in the frame without slippage. During

the testing process, the distance between the top and bottom corners of the frame is

changed by the Instron machine. This change reorients the yarns in the samples in

a shearing motion. The Instron load cell and cross-head displacement measurements

were recorded for several cycles and photogrammetry pictures were taken at speci-

fied conditions. A discussion of the trellis-frame test data reduction is presented in

Appendix B.

2.2.4.3 Inflated Cylinder

In the inflated cylinder torsion test, the torque vs. twist angle is measured for an

inflated cylinder as shown in Figure 30. One end cap has a free rotational degree of

freedom and the other end cap has a free axial degree of freedom.

Figure 30: Inflated Cylinder - Shear Modulus Estimation [26]

Using well known relations from mechanics of materials, the applied torque is

converted to the resulting shear stress and the twist angle is converted into shear

strain. Applied torque is converted into shear stress using Equation (20).

τ =
Tr

J
(20)

where T is the applied torque, r is the radius of the cylinder, and J is the polar

moment of inertia. J is calculated using Equation (21) with t being the thickness of
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the material.

J = 2πr3t (21)

End cap rotation is converted into engineering shear strain using measurements of

the cylinder circumference and length. The engineering shear strain was calculated

using Equation (22).

γ =
r∆φ

∆x
(22)

where r is the radius of the cylinder, ∆φ is the twist angle, and ∆x is the length

of the cylinder. This relation makes a small angle approximation. The shear modulus

in Equation (23) is calculated by dividing the shear stress by the shear strain.

G =
τ

γ
(23)

2.3 Nominal Analysis

Nominal analysis can be thought of as direct analysis. The data quality is assessed

by comparing the experimental test data directly with the nominal model predictions

before proceeding to the inverse analysis. The following describes the geometric and

material models, boundary and loading conditions, as well as nominal results.

2.3.1 Geometric Modeling

This section provides descriptions for the uniaxial and bias-extension finite element

models. The samples tested experimentally are simply rectangular strips of fabric that

are clamped on two ends and stretched to predetermined load levels. The first step in

modeling the experimental testing is to build appropriate geometric models. Table 3

restates the full model dimensions for both the uniaxial tension and bias-extension

cases.
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Table 3: Uniaxial and Bias Extension Full Model Dimensions

Model Length (mm) Width (mm) Thickness (mm)
Uniaxial 152.4 76.2 0.202

Bias-Extension 218.4 88.9 0.202

The diagram in Figure 31 shows the boundary conditions applied to a full model.

Boundary conditions are the specified values of field variables (or related variables

such as derivatives) on the boundaries of the field. In this case, these are displacement

boundary conditions that constrain the model in such a manner as to be representative

of the experimental set up. The geometric model is meshed with 4 node membrane

elements. A mesh convergence study is presented later in this chapter. All of the nodes

at the base or left of the model have displacement degrees of freedom (DOF) that are

fixed or set to one. This approximates the clamping of the fabric at the base. At the

other end of the model, the nodes are allowed to translate along the longitudinal or

y-axis and fixed in the other two dofs. This approximates the clamping of the fabric

on the right, while allowing for load to be applied in the y-axis. All rotational dofs

are left free at both ends of the model.

Figure 31: Full Model - Representative of Uniaxial Tension and Bias-Extension Tests

One method of efficiently using finite element modeling is to exploit the planes

of symmetry of anti-symmetry. When symmetry is exploited, only a portion of the
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actual structure is modeled in order to reduce the analysis run time and memory

required. The lines or planes of symmetry or anti-symmetry in an FE model can be

simulated by providing proper restraints to the symmetrical faces or edges. To model

symmetry or anti-symmetry, the geometry and the restraints must be symmetric

about a plane. The loads must be either symmetric or anti-symmetric.

For both the uniaxial tension and bias extension cases, there exists two planes of

symmetry. Thus, only a quarter of the structure needs to be modeled and additional

boundary conditions are added to simulated the symmetry planes. As shown by the

shaded portion in Figure 31, a quarter section of the sample is modeled.

2.3.2 Material Modeling

All of the finite element analyses in this research use one of LS-DYNA’s fabric ma-

terial models (MAT FABRIC or MAT MICROMECHANICS DRY FABRIC). This

section utilizes MAT FABRIC and the latter will be discussed in the next chapter.

MAT FABRIC is built option a layered orthotropic composite material model and is

valid for 3 and 4 node shell elements only. The model obtains membrane behavior by

eliminating bending stiffness and permitting the elimination of compressive stresses

in the element. An optional liner, which acts as a separate isotropic linear elastic

material, helps stabilize discontinuous behavior near zero stress conditions. The liner

helps prevent collapsed elements and enhances the membrane’s stability. The liner

is not necessary for these types of tensile only analyses. The model invokes a spe-

cial membrane element formulation that uses only one through thickness integration

point, does not hourglass, and only experiences strain in two dimensions.

The fabric can be modeled as either isotropic or orthotropic with arbitrary fiber

angles. This work utilizes the orthotropic material definition. Appendix B provides

an explanation of how the experimental data were reduced to obtain an appropriate

set of material properties. These material properties are restated in Table 4 for
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convenience. This set of material properties was used for all nominal analysis within

this chapter.

Table 4: Linear Elastic Orthotropic Material Properties

Property Symbol Value Units
Density ρ 1.101x10−9 ton/mm3

Thickness h 0.202 mm
Young’s Modulus, warp direction Ea 8409.8 MPa
Young’s Modulus, weft direction Eb 7673.4 MPa

Poisson’s Ratio νab 0.3
Shear Modulus Gab 0.898 MPa

Only a summary of the MAT FABRIC material model was provided. The reader

is referred to the LS-DYNA material model user manual for a more thorough expla-

nation of model theory and capabilities [66].

2.3.3 Boundary and Loading Conditions

A quarter symmetry model is used to model both the uniaxial tension and bias-

extension tests. Different boundary and loading conditions must applied when choos-

ing to model only a quarter of the model. As shown in Figure 32, the nodes on base or

left of the quarter model are constrained to have zero displacement in the y and z di-

rections. The x dof remains free to allow for any lateral contraction the may occur in

the model. Along the boundary defined by the vertical symmetry plane (or bottom),

all nodes are constrained to have zero displacement in the x and z directions. The

constraint on the x direction maintains symmetry along that face. The constraint on

the z direction is not necessary to achieve an accurate solution, but does help prevent

unnecessary out of plane motion from occurring.

To simulate the load applied on the model, a prescribed nodal displacement is

imposed on the top right side of the model. The displacement dofs are fixed in the

x and z directions, but the y dof remains free. The prescribed nodal displacement

of the nodes on the right are in the y direction. LS-DYNA calculates the required

force to displace these nodes by the defined amount. When comparing the reaction
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Figure 32: Quarter Symmetry Model - Representative of Uniaxial Tension and Bias-
Extension Tests

forces from the quarter symmetry model to the experimentally obtained loads, the

experimental loads must be divided by two to account for the symmetry conditions.

All rotational dofs are left free along the boundaries of the model.

2.3.4 Convergence Study

In finite element modeling, a finer mesh often results in a more accurate solution.

However, as the mesh is made finer, the computation time increases. It is then

desirable to find a balance between accuracy and computational expense. One way

to accomplish this goal is to perform a mesh convergence study.

The formal method of achieving mesh convergence requires a curve of a critical

parameter in a specific location to be plotted against some measure of mesh density.

It is common practice for at least three convergence runs to be required in order

to generate a plot which can be used to indicate when convergence is achieved or

how far off the most refined mesh is from full convergence. However, if two runs of

different mesh density give the same result, convergence is typically assumed and no

convergence curve is necessary.
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As discussed in a previous section, when an idealized test sample shown in Fig-

ure 28 undergoes bias extension deformation, the sample can be divided into three

regions of deformation. In Region A, the warp and weft have free yarn ends resulting

in pure shear deformation in this zone. In Region B, one yarn direction is clamped

at one end, the other direction is free at both ends. This region has half the shear

deformation (half the shear angle) as compared to Region A. In Region C, the warp

and weft yarns have clamped ends and there is no shear deformation in this zone.

The complex deformation behavior of the bias-extension test requires a more refined

finite element model mesh as compared to the uniaxial extension test. The following

describes the bias-extension mesh convergence study and provides the selected mesh

size for the remainder of the analyses.
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Figure 33: Applied Load (N) Vs Number of Elements

Two metrics were selected to assess the mesh convergence of the bias-extension

model. The first metric is the resultant reaction forces at the boundary containing

all the nodes fully constrained in translational dofs. This resultant force is compared
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to experimental load cell force that has been divided by two. The model meshes

were varied from a coarse 250 elements to a much finer 12250 elements. Figure 33

shows the convergence of the resulting reaction force as a function of the number of

elements. The simulation is converging to the experimental value of approximately

7.3 N. Note that this value has been divided by two from the actual experimental

value.

Quantifying what amount of error is allowable is beyond the scope of this work.

With these simulations being unusually simple in the context of typical IAD finite

element simulations, even the finest mesh of 12250 elements is only mildly com-

putationally intensive. Table 5 shows the percent difference in the simulation and

experimental forces as a function of element number. Over 99% of the reaction force

is recovered using the highest number of elements. With approximately 33% the

amount of elements, still 95% of the reaction can be recovered.

Table 5: Convergence Study, Bias Extension - Percent Difference in Reaction Force
and Engineering Shear Strain

Element Percent Difference Percent Difference
Number Reaction Force Engineering Shear Strain

250 35.7% 23.5%
4000 5.0% 10.9%
12250 0.7% 2.1%

The second metric is the engineering shear strain in the pure shear region of

the model. Figure 34 shows the engineering shear strain along the centerline of the

model for varying number of elements. The engineering shear strain in the elements

bordering the y axis symmetry plane is plotted as a function of the element’s position

on along the length of the model. The simulation data is plotted along with two

bounding regions, BA and BB. Region BA defines the theoretical size of the full

pure shear region. Region BB defines a subset of BA that does not border other

surrounding regions. In reality, the deformation regions blend over into one another.

69



The shear strain of approximately 13.2o calculated in these regions was obtained using

experimental displacement measurements and Equation (19). It can be seen that

the simulations are converging to the experimental data as the number of elements

increases. In addition, the model is more accurate further away from the boundary

conditions.
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The remaining simulations in this chapter use models containing 12250 four node

membrane elements. The complex deformation behavior of the bias-extension test

requires a more refined finite element model mesh as compared to the uniaxial ex-

tension test. As such, the bias-extension mesh size requirements are more strict that

the uniaxial case. The same mesh size is used for all models, but it is noted that

there is significant room to decrease the number of elements in the unaxial case. If

5% and 10.9% difference in loads and strain respectively are deemed acceptable in

future work, a model with approximately 33% the number of elements could be used

for the bias-extension case.
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2.4 Inverse Analysis

The purpose of inverse analysis is to provide a better match between the data and

LS-DYNA simulations through the estimation of certain input parameters. This is

accomplished by minimizing the MSE objective function using the metamodel-based

optimization method discussed in Chapter A. The parameter identification results

will be compared with experimental results from the uniaxial tension and trellis-frame

tests.

The set of parameters to be estimated for MAT FABRIC is relatively small. From

the discussion preceding the nominal analysis, Ea, Eb, νab, and Gab are selected. There

are many options for the range of the data to be used in the parameter identification

process and the variables that should be estimated. Since the list of variables is small

in this case, all will be carried throughout the remaining analyses.

It is advantageous to find a method for setting initial parameter ranges that does

not rely on a prori knowledge of the load-deformation behavior of the fabric. An

estimate of the elastic modulus of a fabric can be estimated using the volume fraction

of the fibers in the fabric for a given yarn direction as shown in Equation (24) [30].

This can be used as a quick reality check for measured values. This estimate has

been shown to consistently over estimate the actual values due to the exclusion of

yarn crimp from the equation and thus provides a good estimate for the upper bound

on the design space for elastic modulus when the longitudinal tensile modulus of the

fiber is used in the equation. An estimate for the lower bound on the design space

can be found be using the transverse tensile modulus of the fiber in the equation.

The mechanical properties of the Kevlar R© 29 fiber used to construct the 200 denier

fabric are not available so representative estimates are utilized. Estimates for the

mechanical properties of Kevlar R© 29 fibers were obtained from an online educational

database.
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Efabric '
Vfiber
Vfabric

Efiber (24)

Of the test data available for the 200 denier Kevlar R© fabric, fiber volume fraction

was not measured. However, the density (mass per unit volume) and areal density

(mass per unit area) of the fibers, coating, and fabric were measured and can be used

to estimate volume fraction as shown in Equation (25). As the mass ratio between

the fiber and fabric was not available, the areal density is used to approximate that

ratio by assuming that the fibers and fabric occupy equal areas. This approximation

improves when there is less coating in between individual yarns as well as when the

yarns are tightly packed.

Vfiber
Vfabric

'
(
ρfabric
ρfiber

)(
ρAfiber

ρAfiber + ρAcoating

)
(25)

As discussed in Section 1.4.1, the initial shear response of a coated plain woven

fabric is dominated by the coating and with increased shearing, the behavior transi-

tions to that of an uncoated fabric. Since this analysis utilizes a linear elastic shear

modulus, the shear load-deformation data is limited to the lower strain values dom-

inated by the coating. The data in this region is approximately linear as shown in

Appendix B. The mechanical properties of the silicone rubber used to coat the 200

denier fabric are not available so representative estimates are utilized. The upper and

lower bounds on the design space are estimated based on ranges for shear modulus

of the silicone rubber coating referenced in an online educational database.

During uniaxial loading, lateral contraction of the fabric is observed that is similar

to the Poisson effect from solid mechanics. The ratio of lateral to axial strain, νab, was

measured for the 200 denier Kevlar R© fabric in both the warp and weft directions [25].

The observed value of effective Poisson’s ratio from these tests exceed unity, which

is inconsistent with typical isotropic and orthotropic material models. For numerical

stability reasons in orthotropic models, it is common in practice to limit Poisson’s
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ratio to significantly lower values than unity. Murman showed that the complete

lateral contraction response under uniaxial loading cannot be replicated using a ho-

mogeneous FEM approximation [39]. As discussed earlier, the lateral contraction in

the fabric is caused by the crimp interchange seen at the low load levels in uniaxial

tension. It has also been noted that crimp interchange can be neglected in cases of

biaxial loading like that of air inflated fabric structures. Therefore, it is appropriate

to assume that νab ≈ 0. To investigate this however, νab is left as a parameter in this

study and upper and lower bounds are set to a reasonable range of [0,0.4].

Table 6: Initial Values and Lower and Upper Design Space Bounds for Parameters

Name Starting Minimum Maximum
Ea 6596 850 12342
Eb 6596 850 12342
νab 0.2 0 0.4
Gab 1.65 0.3 3.0

Table 6 lists the initial values for each variable as well as the upper and lower

bounds for the initial design space. The sources for estimates on the ranges for

all parameters was discussed above. The initial values were obtained by taking the

average of the upper and lower bounds on the design space.

The diagram in Figure 35 shows the parameter identification methodology with

three separate cases to be optimized simultaneously. A set of designs are selected

from the set of input parameters. The simulation results obtained for the selected

designs are used to build response surfaces. The response surfaces are compared to

the experimental data and the composite MSE is used as the objective function to be

minimized. If defined termination criteria are met, a verification simulation is carried

out using the optimal set of designs from the metamodel. If not, the domain may or

may not be reduced in size or shifted for the next iteration.

After the initial parameter values and ranges are defined, polynomials are selected

to construct the metamodels. Experimental design is the selection procedure for
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Figure 35: Multiple Case Parameter Identification Process Flowchart

finding the points in the design space that are to be analyzed. The D-optimal method

is utilized. The experiments are selected within a sub-region in the design space

thought to contain the optimum. For the 4 parameters to be estimated, the number

of D-optimal designs is 8 per iteration per case.

Three separate LS-DYNA simulations are run simultaneously. The number and

type of parameters that can be estimated are based on available data. The differ-

ences in the simulations are in the geometry and material axes orientations. The 1st

simulation corresponds to the bias-extension model which has different dimensions

than the models for the the remaining two simulations. The 2nd and 3rd simulations

correspond to loading in the warp and weft directions. The material axes are rotated

about the element normal to achieve the desired orientation. The material coordinate

system is defined by specifying an angle, β, relative to the local element coordinate

system. The material axes are rotated by [-45o,45o] from the local element coordinate

system for the bias-extension model, [0o,90o] for the weft model, and [90o,0o] for the
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warp model. Appendix B discusses the specifics of how the material axes are rotated.

The computed and interpolated test curves are used to calculate the MSE. Exper-

imental force-displacement curves are input into the simulation with pre-processing

to account for the use of symmetry in the finite element models. In order to con-

struct the corresponding simulation force-displacement curves, the SECFORC and

NODOUT database keywords are implemented for each model. The SECFORC

card is setup to output the sum of resultant forces for all the nodes at the fully con-

strained end of the model. The NODOUT card is setup to output the y component

of the displacement vector for a defined node at the opposite end in each model.

In this work, the residual is constructed as a composite, using a response surface

for each fi(x). For the MSE approach an unconstrained minimization problem can be

solved. The objective function is defined in Equation (26) as the mean square error

for each of the three cases.

MSE
(
x̄
)
total

= MSE
(
x̄
)
warp

+MSE
(
x̄
)
weft

+MSE
(
x̄
)
bias

(26)

In LS-OPT, global sensitivities are evaluated on the metamodels, Therefore the

accuracy depends on the quality of the metamodel. Unless a subregion is specified, the

sensitivities are calculated for the global bounds of the variables. Sampling constraints

are not considered while calculating the sensitivities. The composite expressions and

subregion sensitivities are always evaluated using the Monte-Carlo simulations. The

typical number of sampling points for Monte-Carlo simulations is 10,000. This number

can be increased for better accuracy of sensitivity coefficients.

Depending on the optimization task and strategy, the LS-OPT allows the user

to specify tolerances on the design change (∆xi) and the objective function change

(∆fi). The user can specify if one or both termination criteria are to be met. The

design change criteria termination shown in Equation (27) becomes active if,
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||xk − xk−1||
||d||

< εx (27)

where x refers to the vector of design variables and d is the size of the design

space. The objective function termination criteria shown in Equation (28) becomes

active if,

∣∣∣∣fk − fk−1

fk−1

∣∣∣∣ < εf (28)

where f denotes the value of the objective function, (k) and (k − 1) refer to two

successive iteration numbers. The termination criteria shown in Table 7 also includes

a maximum number of optimization iterations. If the termination criteria described

above are reached first, LS-OPT will terminate and not perform the maximum number

of iterations.

Table 7: Termination Criteria and Domain Reduction Parameters

Description Value
Design Change Tolerance 0.01

Objective Function Tolerance 0.01
Maximum Iteration Number 5

Proximity Zoom 0.6
Oscillation Contraction 0.6
Panning Contraction 1

To automate the successive sub-domain reduction scheme for the Sequential Re-

sponse Surface Methodology (SRSM), the size of the region of interest (as defined by

the range of each variable) is adapted based on the accuracy of the previous optimum

as well as the occurrence of oscillation. The accuracy is estimated using the proximity

of the predicted optimum of the current iteration to the starting (previous) design.

The smaller the distance between the starting point and optimum designs, the more

rapidly the region of interest will diminish in size. If the solution is on the bound of the

region of interest, the optimal point is estimated to be beyond the region. Therefore,

a new subregion, which is centered on the current point, does not change size. This is
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called panning. If the optimum point coincides with the previous one, the subregion

is stationary, but reduces in size by zooming. Both panning and zooming may occur

simultaneously if there is partial movement. A zoom parameter is defined in LS-OPT

by the user and is typically set to 0.6. Panning, zooming, and combinations of both

are shown in Section A.2.2.2 in Figure A.1. A contraction parameter is determined

based on whether the current and previous designs are on the opposite or same side

of the region of interest. The contraction parameter is a function of two parameters

and an oscillation indicator. The oscillation indicator is a function of the range of

and distance between current and previous designs. The oscillation parameter and

panning parameter are defined in LS-OPT by the user and are typically set to 0.6

and 1 respectively. A summary of the parameters discussed above is provided in

Table 7.

After the last full iteration, a verification run of the predicted optimal design

is executed. If only the predicted optimum from the metamodel is of interest, the

verification run can be omitted.
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Figure 36: Total Mean Square Error Vs. Number of Iterations
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As shown in Figure 36, the majority of the reduction in the objective function

or MSE occurs during the first iteration. The objective function decreases by 99.9%

after the first iteration and only 9.3% after the second iteration. Figure 36 shows

the combined MSE for all three cases as the number of iterations progresses. The

objective function changes on the order 1E-5 after the first iteration indicating that

the default termination criteria of objective function changes less than 0.1 was set

too high and should be set closer to 1E-6. Table 8 shows the optimization histories

for all five iterations.

Table 8: Multi-Case Optimization Histories

Iteration Ea Eb Gab νab MSEtotal
0 6596.00 6596.00 1.65 0.20 6.460E-2
1 8410.74 7953.57 0.890 0.00 6.439E-5
2 8415.82 7965.36 0.887 0.00 5.839E-5
3 8424.59 7986.18 0.883 0.00 5.678E-5
4 8426.12 7985.61 0.878 0.00 5.286E-5
5 8426.15 7985.20 0.876 0.00 5.211E-5

Table 9 provides the 95% confidence intervals for individual optimal parameters.

The larger confidence interval and low correlation of νab to MSE can be explained by

the insignificance of that parameter on the objective function. The final values are

from the verification run and explains why they differ from those in Table 8.

Table 9: 95% Confidence Intervals for Individual Optimal Parameters

Name Final Lower Upper
Ea 8403.4 7249.8 9557.0
Eb 7967.1 6860.1 9074.1
νab 1.28e-6 -1.996 1.996
Gab 0.886 0.744 1.028

Examining Table 10 provides insights about the effect of each input variable on

the MSE and also the degree of correlation between the input parameters. There is

high correlation between each input parameter and the corresponding MSE. This is

expected as these experimental tests were design to isolate their respective material
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input parameter. It should be noted that the correlation trends observed here are

case dependent and the analysis has to be repeated for other applications. As an

example, if the material is an uncoated plain woven fabric and subjected to larger

shear deformations, the shear behavior will be greatly influenced by yarns and will

have higher correlation with the two elastic moduli.

Table 10: Correlation Coefficients Showing Linear Dependency Between Parameters
and Composites

Ea Eb νab Gab MSEbias MSEwarp MSEweft
Ea 1 0.30 0.16 0.30 0.22 0.91 0.35
Eb 1 0.28 0.34 0.43 0.39 0.91
Gab 1 0.14 0.85 0.12 0.32
νab 1 0.30 0.40 0.45

MSEbias 1 0.26 0.55
MSEwarp 1 0.47
MSEweft 1

Finally, it is worth making a comparison as shown in Table 11 between a few of

the methods described thus far for estimating in-plane shear modulus. The trellis-

frame test compares well with the results from LS-OPT and the bias-extension test.

This is expected as the trellis-frame test has been a widely accepted method. Kilby’s

relationship shown in Equation (11) over-estimates the shear modulus. This equation

is a linear approximation and has not be validated against several fabric architectures

and coatings.

Table 11: Comparison of Three Methods for Estimating Shear Modulus

LS-OPT Trellis-Frame Kilby
0.886 0.898 1.461

2.5 Validation

In this study, an experimental data set from the inflated cylinder torsion test method

to characterize the shear stress-strain behavior of textile materials is used to validate

the above methodology for air-inflated structures. In the inflated cylinder torsion
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test, torque versus twist angle is measured for an inflated cylinder where one end cap

has a free rotational degree of freedom and the other end cap has a free axial degree

of freedom. Using the well known relations from engineering mechanics discussed in

Section 2.2.4.3, the applied torque can be converted to the resulting shear stress and

the twist angle to shear strain.

Figure 37: Inflated Cylinder Finite Element Model

A finite element analysis was completed in LS-DYNA using the MAT FABRIC

material model. The inflated cylinder model has a radius of 97.7 mm, a length of 497

mm, and thickness of 0.202 mm. The model is meshed with membrane elements; of

which 2000 membrane elements were dedicated to the fabric portion of the model.

Linear moduli from Table 9 were used for Ea, Eb, νab, and Gab. The end caps were

modeled as steel with isotropic material properties.

The nodes at one end cap were constrained to have only a free rotational degree

of freedom about the longitudinal axis. This end cap had a prescribed rotation(
40◦
)

applied consistent with that in the experimental testing. The opposite end cap

was constrained to have only a free axial degree of freedom. Inflation pressure is
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applied using a simple airbag model to capture the effects of air compressibility on

the structures stiffness. The inflation pressures were tested at 1 psi and 7 psi. The

model was allow to inflate to the prescribed inflation pressure and then the prescribed

rotation was applied. After the model reached a steady state, the resulting torque was

measured at the nodes that were constrained from rotating about the longitudinal

axis.
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Figure 38: Applied Torque versus Twist Angle Comparison between Model and Data
Cylinder of Urethane Coated Kevlar R© at Three Inflation Pressures

Figure 38 provides a comparison between the experimental data and simulation

results. The plot shows only a the final torque-rotation values from the simulation,

with a line connecting them to the origin. This should not imply that the simulation

results were linear. The torque-rotation values are compared because the important

trends do not require the conversion to stress-strain.

The simulation results trend well with the experimental data. As the pressure

increases the stiffness in the model increases. This is consistent with previous analysis

and testing [43, 35, 27]. While the stiffness of the inflated cylinder increases with
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increasing pressure, the same material shear modulus was used for all three models.

This distinction is important because estimating shear modulus from the inflated

cylinder test method and applying it to model of an air-inflated structure as shown

above will likely result in an overly stiff structure.

2.6 Summary

In this chapter, the developed parameter identification methodology is applied to a

set of bias-extension and uniaxial tension experimental test data. The parameter

identification methodology is introduced. Mean Square Error is defined as the objec-

tive function to be minimized in the methodology. Multiple analyses are performed

in preparation for the inverse analysis. These steps provide the prerequisite informa-

tion required in a successful inverse analysis. In the nominal analysis, the nominal

predictions are compared to the data through a direct analysis to identify where the

model is fundamentally different than the experimental data. The nominal analysis

describes the geometric and material models used in the finite element simulation as

well as the specified loading and boundary conditions. A convergence study shows

that the mesh size is set based on a balance between accuracy and computational

expense. The strain distribution in the converged finite element model is shown to

be consistent with theory.

Finally, an inverse analysis is performed to obtain an accurate match between

the model predictions and the data through estimation of input parameters. The

majority of the reduction in the objective function occurred during the first iteration.

Poisson’s ratio was shown to be an insignificant contribution to the objective function.

This finding is consistent with the empirical knowledge of air-inflated structures. A

high degree of correlation was shown between the three remaining parameters and the

simulation of the test used to obtain them experimentally. The resulting estimate of

shear modulus compares well with the experimental data from the trellis-frame test.
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CHAPTER III

APPLICATION OF PARAMETER IDENTIFICATION TO

A MESOMECHANICAL MATERIAL MODEL

3.1 Introduction

Rohrschneider investigated structural analysis codes ABAQUS, ANSYS, and LS-

DYNA for use on IAD models. In that work, LS-DYNA performed the best and

produced consistent answers. [24]. Rohrschneider utilized several element formu-

lations and material models with LS-DYNA in buckling simulations of an inflated

column and torus as well.

The LS-DYNA fabric material model (MAT FABRIC) discussed in Chapter 2 and

originally developed for the airbag industry, was shown to provide solutions closest

to the experimental data. The model is a variant of a nonlinear orthotropic material

model and is valid for 3 or 4 node membrane elements. This model has been used ex-

tensively by the aerospace industry, but has required excessive and repetitive material

testing for mechanical property inputs in order to recover realistic deformations.

A higher fidelity fabric material model (MAT 235) in LS-DYNA was developed

for ballistic impact applications in 2001 [64]. This model considers a mesomechanical

approach to provide the response of dry plain woven fabrics, but requires informa-

tion not typically tested for in standard methods regarding behavior of the yarns

themselves.

The present investigation will validate a mesomechanical model for structures per-

taining to the analysis of IADs, as well as, provide guidance for obtaining required

model inputs. The experimental data used to evaluate this higher fidelity material
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model are taken from a series of previous tests to measure and characterize the nor-

mal and shear stress-strain behavior of textile fabrics relevant to IADs [25]. While

a specific LS-DYNA material model is discussed in this chapter, observations and

findings are generally relevant to the use of mesomechanical models regardless of the

finite element solver employed.

3.2 Model Description

3.2.1 Representative Volume Cell

The development of this model follows the derivations of Ivanov and Tabiei [64]. This

work, however, corroborates and elaborates on the model in much greater detail than

is found in any one literature source. This is achieved through reconstructing the

model outside of LS-DYNA in an effort to understand implementation specifics. In

addition, multiple sources are combined to provided more detailed model development

than is provided in Reference alone [64].

The foundation of the model is the Representative Volume Cell (RVC) as shown in

Figure 39. The RVC, at the meso level, is constructed to represent the periodic struc-

ture of the fabric. While most other meso scale models use a cell with sides parallel

to fiber directions, this model aligns its diagonals with the fiber directions [36]. It is

most often assumed that the warp and weft yarns are initially orthogonal; however,

as a result of deformations, they will not remain as such.

The RVC is shown in more detail in Figure 40 where the RVC is divided into four

subcells. Two of the cells contain the weft (fill) yarn and the other two contain the

warp yarn. The two subcells containing the same yarn are antisymmetric. The figure

also shows the angles utilized for determining the direction of each yarn. The braid

angle, θ, and the undulation angle, β. βf and βw are defined for the weft and warp

yarns, respectively. The subcells are label (f, w, F,W ), as shown in Figure 40. This

will be utilized in the homogenization procedure in an effort to make the mathematical
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Figure 39: Flexible Woven Interlacing Pattern [64]

operations clear, as well as take advantage of the antisymmetry.

Figure 40: Tabiei and Ivanov Representative Volume Cell [64]

Prior to the homogenization process, the necessary coordinate systems must be

defined. Three different coordinate systems will be utilized: the yarn material coor-

dinate system, the RVC coordinate system, and the fabric coordinate system. The

material properties of the yarns are expressed in the material coordinate system. The

yarns are assumed to be transversely isotropic: meaning a special class of orthotropic

material in which it has the same material properties in one plane and different prop-

erties in the direction normal to this plane.

The Voigt notation is used to express Hooke’s Law. This notation will be consis-

tently used throughout the development of material model. Equation (29) presents
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the yarn material stiffness matrix, [C], expressed in the material coordinate system

is noted with a (′′). The material coordinate axes are labeled with lower case (x,y,z).

The coordinate system transformations can be confusing without proper notation.

[
σ

′′

]
=



σxx

σyy

σzz

σxy

σyz

σxz


=



C
′′
11 C

′′
12 C

′′
13 0 0 0

C
′′
21 C

′′
22 C

′′
23 0 0 0

C
′′
31 C

′′
32 C

′′
33 0 0 0

0 0 0 C
′′
44 0 0

0 0 0 0 C
′′
55 0

0 0 0 0 0 C
′′
66





εxx

εyy

εzz

2εxy

2εyz

2εxz


=

[
C

′′

]



εxx

εyy

εzz

γxy

γyz

γxz


(29)

where (σ) defines the Cauchy stress and (ε) defines the Cauchy strain. As shown

in Equation (30), The yarn stiffness matrix is expressed in the material coordinate

system and contains 6 elastic constants. E1, E2, G12, G23, ν12, and ν23 are the Elastic

moduli, Shear moduli, and Poissons ratios of the yarn, respectively. The coefficient in

front of the shear moduli, µ, is called the discount factor. It is defined as a function

of the braid angle and can take on a value such that 0 < µ ≤ 1. The fabric is not a

continuous medium and the yarns will rotate over one another until they lock or jam

together as a result of being loaded. The discount factor is used to model the low

shear resistance in the fabric prior to the locking of the yarns. The initial value of

the discount factor is typically set very close to zero because, due to friction between

the yarns, the fabric has some shear resistance. µ is not allowed to be exactly zero as

it would cause the stiffness matrix to become singular. When locking has occurred,

the fabric begins to behave as an elastic medium, the discount factor is set to 1, and

the yarns full shear modulus is regained.
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[
C

′′

]
=



1
E1

−ν12
E1

−ν12
E1

0 0 0

−ν12
E1

1
E2

−ν23
E2

0 0 0

−ν12
E1

−ν23
E2

1
E2

0 0 0

0 0 0 1
µG12

0 0

0 0 0 0 1
µG23

0

0 0 0 0 0 1
µG12



−1

(30)

Different stiffness matrices are used for the weft and warp yarns to allow for model-

ing an unbalanced fabric. As part of the homogenization procedure, the yarn material

properties expressed in the material coordinate system must be rotated to the RVC

coordinate system. The transformation of each subcell is performed using Equa-

tion (31). The yarn material stiffness matrix expressed in the RVC coordinate system

is noted with a (’). [T] is the strain transformation matrix.

[
C

′]
=
[
T
(
β, θ
)]T [

C
′′][

T
(
β, θ
)]

(31)

This transformation matrix is a function of the directional cosines of the material

axes unit vectors with respect to the RVC coordinate system. For purposes of ex-

pressing the constitutive matrix of the yarn material in the RVC coordinate system,

the directional cosine convention shown in Equation (32) is followed in the rotation

matrix. It should be noted that the components including sin(β) have a sign change

to treat these rotations as positive rather than negative.


xx

yy

zz

 =


cos(β) cos(θ) cos(β) sin(θ) sin(β)

− sin(θ) cos(θ) 0

− sin(β) cos(θ) − sin(β) sin(θ) cos(β)



XX

Y Y

ZZ

 =


l1 m1 n1

l2 m2 n2

l3 m3 n3



XX

Y Y

ZZ


(32)

The strain transformation matrix referenced in Equation (31) is defined as shown

in Equation (33).
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[
T

]
=



l21 m2
1 n2

1 l1m1 m1n1 n1l1

l22 m2
2 n2

2 l2m2 m2n2 n2l2

l23 m2
3 n2

3 l3m3 m3n3 n3l3

2l1l2 2m1m2 2n1n2 (l1m2 + l2m1) (m1n2 +m2n1) (n1l2 + l2n1)

2l2l3 2m2m3 2n2n3 (l2m3 + l3m2) (m2n3 +m3n2) (n2l3 + l3n2)

2l3l1 2m3m1 2n3n1 (l3m1 + l1m3) (m3n1 +m1n3) (n3l1 + l1n3)


(33)

As a result of expressing the yarn material properties in the RVC coordinate

system, the constitutive matrix has the form shown in Equation (34). All of the

matrix components are now possibly non-zero. The RVC coordinate axes are labeled

with upper case (X,Y,Z).

[
σ

′

]
=



σXX

σY Y

σZZ

σXY

σY Z

σXZ


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





εXX

εY Y

εZZ

γXY

γY Z

γXZ


=

[
C

′

] [
ε
′

]
(34)

Each of the subcell stiffness matrices must be computed during the homogenization

process. Each of the subcells is generally symmetric about the main diagonal. In

addition, there is antisymmetry between the weft subcells and the warp subcells.

This makes the transformation easier since only two transformations are necessary to

calculate all four matrices. Equation (35) is used to calculate the F subcell stiffness

matrix using that of the f subcell. The same relation exists between the W and w

subcells.
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[
CF

]
=



Cf
11 Cf

12 Cf
13 Cf

14 −Cf
15 −C

f
16

Cf
21 Cf

22 Cf
23 Cf

24 −Cf
25 −C

f
26

Cf
31 Cf

32 Cf
33 Cf

34 −Cf
35 −C

f
36

Cf
41 Cf

42 Cf
43 Cf

44 −Cf
45 −C

f
46

−Cf
51 −C

f
52 −C

f
53 −C

f
54 Cf

55 Cf
56

−Cf
61 −C

f
62 −C

f
63 −C

f
64 Cf

65 Cf
66


(35)

The four subcell stiffness matrices are combined in order to arrive at a single stiff-

ness matrix for the RVC. The transformed subcell stiffness matrices are homogenized

in order to obtain the effective material properties of the RVC.

3.2.2 Homogenization Method

The homogenization procedure was originally formulated in Reference [81]. Iso-stress

and strain conditions are assumed across the subcell boundaries. The stress and strain

components are divided into the iso-strain or in-plane components and the iso-stress

or out-of-plane components. The subcell 6 component stress and strain vectors are ex-

pressed using the organizational convention in Equation (36). These components are

reorganized to group the in-plane and out-of-plane components together. The three

in-plane stress components expressed in the RVC coordinate system are organized as

follows, as a function of both the in plane and out of plane strain components.

[
σN

]
k

=


σXX

σY Y

σXY


k

=


C11 C12 C14

C21 C22 C24

C41 C42 C44


k


εXX

εY Y

γXY


k

+


C13 C15 C16

C23 C25 C26

C43 C45 C46


k


εZZ

γY Z

γXZ


k

(36)

The subscript (N) denotes the iso-strain or in plane components. These are the

stress and strain components associated with plane stress conditions. The (k) sub-

script is used to denote the subcells (f, w, F,W ). A contracted notation shown in

Equation (37) is used for the remainder of the discussion.
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[
σN

]
k

=

[
CNN

]
k

[
εN

]
k

+

[
CNS

]
k

[
εS

]
k

(37)

The subscript (S) denotes the iso-stress or out of plane components. The three out

of plane stress components expressed in the RVC coordinate system are organized as in

Equation (38), as a function of both the in-plane and out of plane strain components.

[
σS

]
k

=


σZZ

σY Z

σXZ


k

=


C31 C32 C34

C51 C52 C54

C61 C62 C64


k


εXX

εY Y

γXY


k

+


C33 C35 C36

C53 C55 C56

C63 C65 C66


k


εZZ

γY Z

γXZ


k

(38)

Similar to the iso-strain components, the contracted notation for the iso-stress

components is shown in Equation (39).

[
σS

]
k

=

[
CSN

]
k

[
εN

]
k

+

[
CSS

]
k

[
εS

]
k

(39)

The result of the homogenization procedure is the effective stiffness matrix shown

in Equations (41) and (42). The effective stress components are constructed using

volumetric averages of the subcells known as The Rule of Mixtures. This is permit-

ted by assuming that at all points, within the homogenized volume, the stress and

strain are the same.

σ̄N
σ̄S

 =

[
σ̄

]
=

[
C̄ ′
] [
ε̄

]
=

C̄NN C̄NS

C̄SN C̄SS


ε̄N
ε̄S

 (40)

Applying the mixed boundary conditions to the subcells, the iso-strain assumption

implies that the effective in-plane strains must be the same across the subcells. In ad-

dition, the out-of-plane stresses are also assumed to be the same. The rule of mixtures

is applied to the out of plane strains and in plane stresses, as well. Equations (41)

to (44) expresses the above assumptions mathematically.
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[
ε̄N

]
=

[
εN

]
k

(41)

[
σ̄S

]
=

[
σS

]
k

(42)

[
ε̄S

]
=
∑
k

fk

[
εS

]
k

(43)

[
σ̄N

]
=
∑
k

fk

[
σN

]
k

(44)

The boundary conditions are associated with the shell or membrane element for-

mulation. The volume fraction, fk, of the kth subcell in the RVC can be varied to

account for an unbalanced fabric. Using a value of (fk = 1
4
) implies that the warp

and weft yarns constitute equal portions of the RVC.

Substituting Equations (41) and (42) into both Equations (37) and (39) results in

subcell out of plane strains and in plane stresses expressed as a function of effective

out of plane stresses and in plane strains. These resulting quantities are then substi-

tuted into Equations (43) and (44); which are rearranged to arrive at Equations (45)

and (46), where the effective stresses are a function of the effective strains.

[
σ̄N

]
=

([
C∗1

]
+

[
C∗2

] [
C∗3

]−1
)[

ε̄N

]
+

([
C∗2

] [
C∗3

]−1
)[

ε̄S

]
(45)

[
σ̄S

]
=

([
C∗3

]−1 [
C∗4

])[
ε̄N

]
+

([
C∗3

]−1
)[

ε̄S

]
(46)

where intermediate matrices are defined in Equations (47) to (50) in order to

condense the above equations.

[
C∗1

]
=
∑
k

fk

([
CNN

]
k

−
[
CNS

]
k

[
CSS

]−1

k

[
CSN

]
k

)
(47)
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[
C∗2

]
=
∑
k

fk

[
CNS

]
k

[
CSS

]−1

k

(48)

[
C∗3

]
=
∑
k

fk

[
CSS

]−1

k

(49)

[
C∗4

]
=
∑
k

fk

[
CSS

]−1

k

[
CSN

]
k

(50)

The resulting effective stiffness matrix represents the properties of the fabric ma-

terial expressed in the RVC coordinate system. The components of this matrix will

be symmetric about the main diagonal due to the nature of the subcells. It is noted

that the effective stiffness shown in Equation (51) is reordered back to the original

convention established prior to the homogenization process.

[
σ̄

]
=



σ̄XX

σ̄Y Y

σ̄ZZ

σ̄XY

σ̄Y Z

σ̄XZ


=



C̄11 C̄12 C̄13 C̄14 0 0

C̄21 C̄22 C̄23 C̄24 0 0

C̄31 C̄32 C̄33 C̄34 0 0

C̄41 C̄42 C̄43 C̄44 0 0

0 0 0 0 C̄55 C̄56

0 0 0 0 C̄65 C̄66





ε̄XX

ε̄Y Y

ε̄ZZ

γ̄XY

γ̄Y Z

γ̄XZ


(51)

Since the model is implemented into a membrane element formulation, the C̄55,

C̄56, and C̄66 components can be eliminated from the effective stiffness matrix. This

elimination is allowed because the corresponding stress and strain components are

always zero for membrane elements. This comes with the added benefit of making

the code more computationally efficient. At every time step in an explicit finite

element simulation, the instantaneous stiffness matrix is used to obtain the stress

response of the fabric resulting from an increment of strain.
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3.2.3 Yarn Reorientation

The reorientation of the fabric yarns is accounted for in this model. At a given time

step, the current state of the global finite element model is a function of the yarns

orientation in the RVC. Geometric nonlinearity is introduced to the model through

the yarn reorientation and possible locking. As shown in Figure 41, unit direction

vectors qf and qw are defined in the RVC coordinate system for the weft (fill) and

warp yarns, respectively.

Figure 41: Range of Locking Angles [64]

The unit direction vectors ,(~q), for the warp and weft yarns are defined for the

yarn material in the w and f subcells. Initially, the unit direction vectors are defined

as shown in Equation (52):

~qi =

{
cos(βi) cos(θ) cos(βi) sin(θ) sin(βi)

}T
for i = f, w (52)

The deformation gradient matrix, [F ], is used to update the unit direction vectors

at each time step. Due to the small increments in strain, an infinitesimal strain

assumption is employed to construct the deformation gradient. To understand how
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the yarn unit direction vectors are rotated as the element is deformed, the derivation

of the deformation gradient in the model is stepped through in more detail. First,

it is beneficial to provide a physical understanding to the deformation gradient prior

to defining it mathematically. The deformation gradient is a tensor that quantifies

the shape change and material rotation. This property makes it better than strain

as a more comprehensive measure of deformation in material elements. Consider

the simple example provided in Figure 42. Let the shape on the left represent an

undeformed material element, while the shape on the right represents the deformed

element. By introducing horizontal and vertical axes, the undeformed element can

be said to have unit length in both axes. It can be seen that the deformed element is

stretched in both principal directions.

Figure 42: Determination of Deformation Gradient Graphically

The resulting direction vectors are expressed in terms of the initial unit direction

vectors. Reading from the plot on the right, the components of the direction vectors

can expressed in vector form as in Equation (53).

~g1 =

[
1.4 0

]T
and ~g2 =

[
1.3 1.5

]T
(53)

Assembling these components into a 2 × 2 matrix as shown in Equation (54)

results in a 2D deformation gradient tensor for this element.
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F =

1.4 1.3

0 1.5

 (54)

Working from the derivation in Crisfield, consider an element dX that has original

coordinates (X) [82]. Let the element be moved to new coordinates (x) resulting from

displacement (u) as shown in Figure 43.

Figure 43: Element Position Vectors

This can be written in vector form and differentiated to give the later part of

Equation (55).

~x = ~X + ~u ⇒ ~dx =
∂~x

∂ ~X
d ~X = Fd ~X =

∂( ~X + ~u)

∂ ~X
d ~X (55)

Expanding upon this, Equation (56) introduces the mathematical representation

of the deformation gradient (F) which can be expressed as the identity matrix plus the

displacement derivative matrix. In the case of infinitesimal strains, the deformation

gradient can be expressed in the final form of Equation (56). This form works well

with the explicit finite element method because of the inherently small time steps

used in this method.
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F =


∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

 =


1 + ∂u

∂X
∂u
∂Y

∂u
∂Z

∂v
∂X

1 + ∂v
∂Y

∂v
∂Z

∂w
∂X

∂w
∂Y

1 + ∂w
∂Z

 =


1 + ∆ε1

∆ε4
2

0

∆ε4
2

1 + ∆ε2 0

0 0 1 + ∆ε3


(56)

As stated earlier, the directions of both the warp and weft yarns are determined

by the unit direction vectors, qw and qf , respectfully. At the beginning of the simula-

tion, the unit direction vectors are defined based on Equation (52). After computing

the deformation gradient matrix, using the strains at each time step, the updated

direction vectors of each yarn are computed and normalized, as in Equation (57), to

remain unit vectors.

~q′i = F~qi ⇒ ~qi =
~q′i

‖~q′‖
for i = f, w (57)

New values defining the orientation of the yarns are then calculated, as is shown

in Equations (58) and (59), from the components of the unit direction vectors.

βi = sin−1(qi3) for i = f, w (58)

θ =
tan−1(qf2/qf1)− tan−1(qw2/qw1)

2
(59)

For an explicit finite element code, such as LS-DYNA, the time integration stabil-

ity conditions require small time steps. This works well with the infinitesimal strain

assumption. In the case of plane stress for membrane elements in the explicit finite

element method, the transverse normal strain increment component, ∆ε̄3, has to be

calculated first. This transverse strain is important in calculating the change in thick-

ness for the membrane elements. The transverse normal strain is obtained from the,

∆c̄3 = 0 , condition in Equation (60).
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∆ε̄3 = −C̄13∆ε̄1 + C̄23∆ε̄2 + C̄34∆ε̄4
C̄33

(60)

3.2.4 Parameter Discussion

Values for the initial braid angle are usually set in a free state at an angle equal to

45◦. In the case that this model is used to simulate the behavior of a biaxial braided

fabric, the initial braid angle could be set to values other than 45◦ to study the effect

of varying braid angle on an air-inflated structure. In addition, this parameter could

be used to study the effect of a small misalignments in the yarns on a structure.

Mathematically, the undulation angle changes with the yarn and varies from

0◦<β≤90◦. In practice, it is typical for undulation angles much smaller than that.

As discussed in previous chapters, the maximum value of the undulation angle is a

function of crimping. In this model, the undulation angle is an average value char-

acterizing the material principle directions of a sub-cell. As shown in Equation (61),

the inverse tangent of half the fabric thickness divided by the distance between yarns

is considered a good approximation for the undulation angle needed for the model.

β = tan−1

(
h

2s

)
(61)

The discount factor, µ, scales the shear moduli of the yarn before locking occurs.

The factor is a function of the braid angle and can be altered to switch the fabric

model from a trellis mechanism to an elastic medium. A piece-wise function with a

linear transition range is chosen for the discount factor [64]. Parameters µ0, ∆θ, and

θlock govern the initial behavior, transition range, and locked behavior respectively.

∆θ can be set a small as possible while being large enough to prevent high frequency

oscillations that can occur from sharp changes in model behavior.

The minimum value of the discount factor, µ0, corresponds to the period in the

load history when the yarns are still open. The value should provide small shear
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resistance and negligible tension in the yarns when loading is applied in the bias

direction. In the case of a coated plain woven fabric, the initial discount factor

should be set to model the initial shear behavior dominated by the coating.

As shown in Figure 44, the range of the locking angle, θlock, can be obtained

from the yarn width, w, and the spacing parameter of the fabric, s, using the simple

geometrical approximation in Equation (62). In the absence of actual yarn measure-

ments, a good approximation for the spacing parameter of the fabric is the reciprocal

of the thread count in a given direction.

sin 2θmin =
w

s
(62)

Figure 44: In-plane Motion of Woven Fabrics as Trellis Mechanism (a) Initial State
(b) Slightly Stretched in Bias Direction (c) Stretched to Locking [64]

Table 12 provides descriptions for all model parameters.

Using initial parameter estimates and ranges, these parameters can be chosen to

fit the force-displacement curve recorded during tests such as the Bias-Extension,
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Table 12: MAT 235 Input Parameters and Descriptions

Variable Symbol Description
RO ρ Yarn Mass Density
E1 E1 Young’s Modulus of Yarn - Axial Direction
E2 E2 Young’s Modulus of Yarn - Transverse Direction

G12 G12 Shear Modulus of Yarn
G23 G23 Transverse Shear Modulus of Yarn
V12 ν12 Poisson’s Ratio
V23 ν23 Transverse Poisson’s Ratio
XT Xt Stress or Strain to Failure
THI θi Initial Braid Angle
THL θl Yarn Locking Angle
BFI βfi Initial Undulation Angle - Weft Direction
BWI βwi Initial Undulation Angle - Warp Direction

DSCF µ Discount Factor
CNST DR Reorientation Damping Constant
ATLR ∆θ Angle Tolerance for Locking

Uniaxial Tension, or Trellis Frame tests of the fabric. Parameters are chosen to sim-

ulate and best fit the force-displacement curve to the experimentally obtained curve.

Before proceeding to the inverse analysis, the experimental data is examined and

corrected if necessary. Nominal analyses are carried out using the initial parameter

estimates. These nominal analyses are used to examine the model fidelity by iden-

tifying where the data trends are fundamentally different from model predictions.

Finally, parameter ranges that are used in the inverse analyses are selected.

3.3 Nominal Analysis

The experimental data used to carry out the inverse analysis is that of the 200 denier

Plain Woven Silicone coated Kevlar R© introduced in the previous chapter. The loading

condition is that of the Bias Extension test which is well suited for this material

model. Due to the orientation of the RVC, a rectangular mesh aligned with the edges

of the fabric sample aligns the yarns in this manner. Thus, the Bias Extension test

is perhaps a natural starting point for numerical simulation.

As described earlier in this work, a fabric’s shear behavior consist of several phases,

such as deformation when the shearing forces at yarn intersections is too small to
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overcome friction, slippage of the yarns once that friction is overcome, and elastic

deformation after yarn locking. While the shear modulus, G, is usually much less

than the elastic modulus, E, in the warp and weft directions, it has a significant effect

on the effective moduli on orientations not align with the warp and weft directions.

The idealized shear stress-strain behavior of a coated woven fabric is presented back

in Figure 12. A rubber sheet demonstrates a plastic response, while woven fabrics

typically have a hyperelastic response. The response of a coated woven fabric is

typically a composite of these patterns, with the rubberized sheet dominating at low

strain, and the woven fabric at higher strain.

The Bias Extension test data available for this work is limited to lower strains. As

such the attempts to model the elastic deformation after yarn locking that occurs at

higher strains requires additional data from which to fit. One method to deal with the

lack of data is to extrapolate from the existing data. This can be complicated when

there is not actual data from which to continue the trend in the curve. In addition,

the more nonlinear the data, the less confidence one has in accuracy. In this work,

a combination of literature sources and complimentary data sets are utilized to lend

confidence in the extrapolation method. Furthermore, this work is more interested in

demonstrating the parameter identification methodology on applicable data sets than

providing exact parameter estimates for the 200 denier Plain Woven Silicone coated

Kevlar R© fabric.

Figure 45 provides a comparison of the experimental bias extension test data with

an extrapolated curve fit. A fourth order curve fit with an R2 > 0.999 was applied

to available data. The curve fit equation was then use to calculate a simulated force-

displacement curve ranging from 0 to 40 mm. The resulting curve fit exhibits an

initial approximately linear region, that fits well with the available data, followed by

steeper response that corresponds to the elastic response after locking.

Taha et al. provide a comparison of Trellis Frame and Bias Extension tests for
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Figure 45: Comparison of Experimental Data with Extrapolated Curve Fit

the characterization of shear behavior in natural fibre woven fabrics [83]. In that

study, force-displacement curves for both tests are compared and the data trends are

consistent between the simulated Bias Extension data and available Trellis Frame

data from Reference [25]. This lends confidence to extrapolation method selected for

this work.

Table 13 outlines the initial input parameter values. The initial yarn material

property estimates were obtained from a combination of sources including an online

database for the Kevlar R© 29 yarn [84]. Strain rate effects are not considered in

this work. Thus, the two viscous modulus parameters were set to values near zero.

Initial estimates for fabric architecture are made using approximates discussed in this

chapter. DR is related to CNST and refers to the reorientation damping coefficient.

The Bias Extension geometric model and boundary conditions are kept consistent

with Chapter 2. This investigation utilizes the LS-DYNA MAT 235 material model
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Table 13: MAT 235 Nominal Input Parameter Values

Symbol Value Units
ρ 1.44 g/cm3

E1 61 GPa
E2 4.2 GPa
G12 2.9 GPa
G23 2.9 GPa
ν12 0.35 -
ν23 0.35 -
Xt 10 GPa
θi 45 Deg
θl 7.5 Deg
βfi 5 Deg
βwi 5 Deg
µ 2e-4 -
DR 1000 -
∆θ 0.5 Deg

which utilizes the micro-mechanical approach and the homogenization technique usu-

ally used in composite material models. The model accounts for reorientation of

the yarns and the fabric architecture. The behavior of the flexible fabric material is

achieved by discounting the shear moduli of the material in free state, which allows

the simulation of the trellis mechanism before packing the yarns. As of the writing of

this thesis MAT 235 is not supported by the implicit solver, so the LS-DYNA explicit

solver is used for all simulations.

Figure 46 provides a comparison of the experimental Bias Extension test data with

model predictions using nominal parameters. The nominal results exhibit the initial

trellising behavior followed by stiffer locking behavior. Comparing the simulation

results with the experimental data, a shallower initial response, sharper transition,

and steeper response after the transition are observed.

The homogenization procedure and yarn reorientation are carried out at each

time step. While the yarn reorientation procedure utilizes the deformation gradient

to update the yarn unit vectors, the homogenization procedure only considers the

architecture’s current state. This means that the homogenized material properties

can be studied regardless of any deformation information. It is beneficial to study the
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Figure 46: Comparison of Data with Predictions from Model Based on Nominal
Parameters

homogenized results to gain insights into material property sensitivity to changes in

input parameters. Figures 47, 48, 49, and 50 show the homogenized in plane material

properties as a function of the undulation angle. The RVC orientation corresponds to

loading in the bias direction. The material properties are the elastic moduli, Poisson’s

Ratio, and shear modulus in the local material coordinate system.

As expected, Figures 47 and 48 have identical trends since the warp and weft

yarns are oriented [−45◦,+45◦] from the loading axis. The plots show data for free

and locked states. A value of µ = 1e − 5 provides a great enough discount on the

yarn shear moduli to show the difference between the two states. The plots show

little influence from changes in undulation angle between 0 and 9◦. This is a realistic

range of angles based on estimates calculated using information from Table 1 and

Equation (61). The yarn material properties used for this homogenization study were

consistent with those in Reference [64]. The elastic moduli are near 0.1 MPa in the

free state and approximately 8.9 GPa in the locked state. This behavior can be
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Figure 47: Comparison of Undulation Angle Influence on Homogenized Longitudinal
Elastic Modulus in Free and Locked States

mapped to the large deformation seen in the Bias Extension test for the yarns lock.
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Figure 48: Comparison of Undulation Angle Influence on Homogenized Transverse
Elastic Modulus in Free and Locked States
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Figure 49 shows the in plane Poisson’s ratio for homogenized RVC for varying

initial undulation angles. Considering that, in the free state, E1 and E2 are approx-

imately equal and invariant to changes in the undulation angle as well as G12 being

effectively constant as a function of β, it follows that ν12 would be approximately

one and invariant to changes in β. In the locked state, ν12 follows the other property

trends by decreasing with increasing β, but takes on a value less than one due to the

other properties being closer in magnitude.
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Figure 49: Comparison of Undulation Angle Influence on Homogenized In Plane
Poisson’s Ratio in Free and Locked States

When the yarns are oriented [−45◦,+45◦] from the loading axis and the yarns are

not locked, the shear properties of the RVC are lower and dominated by the shear

moduli of the yarns. This is due to the discounting of the shear moduli with the

parameter µ. In the transformed homogenized compliance matrix, the reciprocal of

the entry in the last column and row is equal to the in plane shear modulus for the

RVC. This entry is a function of the yarn’s two elastic moduli, Poisson’s ratio, in plane

shear modulus, and braid angle. The result of multiplying the yarn’s in plane shear
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modulus by µ which approaches zero, is the inverse of that number is very large. Thus,

it’s contribution to the shear properties of the RVC is dominant. However, when the

full shear modulus is regained, the shear properties are higher and are governed by the

elastic moduli of the yarn. This is because all of the properties are within one order of

magnitude of each other and the largest entry, which is the yarn’s longitudinal elastic

modulus, dominates the other’s contribution. Figure 50 shows that the homogenized

in plane shear modulus decreases with increasing undulation angle. Again, this effect

is more noticeable when the yarn’s are locked, but β′s effect is still present. In the

free state, G12 increases rapidly near zero β due to trigonometric functions in the

strain transformation matrix.
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Figure 50: Comparison of Undulation Angle Influence on Homogenized In Plane Shear
Modulus in Free and Locked States

Figures 51, 52, 53, and 54 show the homogenized in plane material properties as

a function of the braid angle. Similar to Figures 47 and 48, Figures 51 and 52 show

trends that are expected based on RVC orientation. Data is shown for free and locked

states and shows little influence from changes in braid angle between 42 and 48◦.
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Figure 51: Comparison of Braid Angle Influence on Homogenized Longitudinal Elastic
Modulus in Free and Locked States

Again, in the free state, the elastic moduli are small and in the MPa range.

However, the trends with increasing and decreasing θ from the nominal value of 45◦

are opposite for E1 and E2. Once the yarns are rotated away from 90◦ from each

other, they no longer contribute equally to the homogenized RVC longitudinal and

transverse elastic moduli. As the yarns rotate toward one direction, they contribute

more the stiffness in that direction and less to the perpendicular direction.

Figure 53 shows the in plane Poisson’s ratio for homogenized RVC for varying

initial braid angles. Considering that, in the free state, E1 and E2 are approximately

equal and invariant to changes in the braid angle as well as G12 being effectively

constant as a function of θ with the exception of near 45◦, it follows that ν12 would

be approximately one and invariant to changes in θ. However this is not the case, as

Poisson’s ratio increases with θ. While it is hard to observe from Figures 51 and 52 due

to the magnitude differences, the two elastic moduli are changing with braid angle.

In the locked stated, ν12 decreases with increasing braid angle. As the braid angle
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Figure 52: Comparison of Braid Angle Influence on Homogenized Transverse Elastic
Modulus in Free and Locked States

increases, the yarns are rotated off the loading axis. This directs more of the yarn’s

longitudinal elastic modulus perpendicular to the loading axis, which then provides

more resistance to transverse contraction resulting from longitudinal extension.

In the free state, the in-plane shear modulus of the homogenized RVC has a similar

but more exaggerated trend as in the locked state as shown in Figure 54. The shear

properties are maximum near 45◦ and decreases at angles away from nominal. Again

in the free state, the shear properties of the RVC are lower and dominated by the

shear moduli of the yarns. However, when the full shear modulus is regained, the

shear properties are higher and are governed largely by elastic moduli of the yarn.

It should be noted that the trends discussed above are valid only for the RVC

orientation and parameter ranges stated above. While the figures above correspond

to bias loading, loading parallel to the yarn longitudinal axes would produce differ-

ent trends. The previous discussion was focused on gaining insights for purposes of

directing the sensitivity analysis before proceeding to the inverse analysis.
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Figure 53: Comparison of Braid Angle Influence on Homogenized In Plane Poisson’s
Ratio in Free and Locked States
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Figure 54: Comparison of Braid Angle Influence on Homogenized In Plane Shear
Modulus in Free and Locked States
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3.4 Sensitivity Analysis

Responses can depend on many variables, and the computational effort of an optimiza-

tion strongly depends on the number of variables. In most cases, only a few variables

are significant. Sensitivity analysis allows for the determination of the significance

of design variables when computing a selected response. This helps to understand

the simulation model and to reduce the design variables used in an optimization.

The least significant ones can be neglected to reduce the computational effort. This

filtering happens through variation of the variables and comparison of the response

values. In a sensitivity analysis, usually rather large variable ranges are examined in

order to reproduce design changes. The set of points is uniformly distributed on the

design space (Space Filling or D-Optimal as examples).

Two sensitivity measures can be implemented in LS-OPT: Linear ANOVA and

GSA. Both are global in nature and are evaluated using the metamodel. Thus, the

metamodel quality is essential to achieve reasonable sensitivity results. ANOVA is

a linear sensitivity measure, whereas GSA is non-linear. The results are comparable

for linear metamodels. An advantage of GSA is, that the values are normalized.

Hence they can be summed up to determine the influence of a parameter on multiple

responses, on a full load case, or on the entire optimization problem. In this work,

Sobol’s GSA is implemented to filter variables.

As a first step, a single iteration is run using quadratic polynomial based meta-

model to find the most sensitive parameters. With only one iteration, the total

computational expense is comparatively much lower than the several iterations to

convergence used in the inverse analysis. Thus, a higher order model is selected for

the single iteration over a initial design space. There is also considerable practical

experience indicating that quadratic models work well in solving real-world response

surface problems. In this manner, a non-linear approximation is created across the
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whole design space. The number of simulation points required to build the meta-

model using the D-Optimal method increases from 22 in the linear case to 158 in the

quadratic case.

The computed vs. predicted MSE is provided in Figure 55 along with the corre-

sponding R2 ≈ 0.994. The computed and predicted pairs lie closely along a straight

line. The straight line in the graph is a result of a least squares fit. This is usually a

good indication that the model is satisfactory fit to the data.
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Figure 55: Comparison of Computed and Predicted Mean Square Error for Sensitivity
Analysis

Figure 56 shows the global sensitivities for the MSE response. Each bar represents

the contribution of a variable to the variance of the respective response (MSE). The

values are normalized such that the sum of all displayed values is 100%. The values are

sorted in descending order of contribution to the total variance. Approximately 93%

of the total variance is attributed to the initial braid angle, locking angle, undulation

angle, and reorientation damping coefficient. Thus, one case in the inverse analysis

should be dedicated to estimating these four parameters while keeping the others
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constant. As an initial check of these results, model theory can be utilized. The

impact of the initial braid angle, locking angle, and undulation angle can be traced

back to specific locations in model theory. As the load case for this study is that of

the bias-extension, it makes sense that the fabric architecture would have a strong

influence on the shear stress-strain response. However, the reorientation damping

coefficient is not easily traced in model theory or even explicitly defined in literature.

The LS-DYNA material model manual makes only one reference to the parameter by

noting that the parameter is defined to damp some of the high frequency oscillations.

With no physical attribute to map to, further sensitivity studies will be required to

understand more about this parameter’s impact on model behavior. Additionally,

the response from which the sensitivities are calculated can be checked. In LS-OPT,

sensitivities are calculated from the response surface. Because the response accuracy

is dependent on the response type and parameter ranges, a poor model fit can lead

to misleading sensitivities. Since this work is focused more on demonstrating the
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methodology for a representative material, these checks on sensitivity calculations

are saved for future work.

It should be noted that the trends discussed above are valid only for the RVC

orientation and parameter ranges stated above. The sensitivities discussed above

correspond to bias loading and the significant parameters for loading parallel to the

yarn longitudinal axes would likely change. In the following section results from full

parameter analyses are compared with those using a parameter subset.

3.5 Inverse Analysis

The purpose of inverse analysis is to provide a better match between the experi-

mental test data and the finite element model predictions. This is accomplished by

minimizing the mean square error objective function using the methods discussed

in Appendix A. Using the sequential response surface method, the parameter iden-

tification results for various sets of parameters will be compared. The parameters

used here are a subset of parameters identified from the sensitivity analysis. After

identifying the appropriate subset of parameters using the results of the sensitivity

analysis, a metamodel-based optimization is performed using a sequential response

surface method with domain reduction and linear metamodels.

The are many options for selecting the initial parameter values and ranges to

be used in the estimation process. The previous steps helped provide guidance for

intelligent selection process. Considering the homogenization method’s effect on the

individual yarn material properties and initial yarn architecture, it is difficult to

estimate these parameters simultaneously. In addition, without carrying out yarn

material testing, it is difficult to find consistent material property data. In researching

nominal values for the 200 denier Kevlar R© 29 yarn’s longitudinal elastic moduli,

sources varied by as much as approximately 30%. However, with minimal testing,

the 6 yarn material properties can typically be acquired to a higher confidence level
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than the yarn architecture. The yarn architecture can be estimated from optical

microscopy images, but the process of integrating the fabrics into larger structures

can have a large impact on the final values.

Table 14 summarizes the initial input parameter values and ranges. As discussed

in a previous section, the yarn material properties for the exact 200 denier Kevlar R© 29

yarn were not available for this work. Several material databases were referenced in an

effort to bound the likely ranges for the material properties. The nominal values were

found in literature and the minimum and maximum values are based on differences

other sources. The initial braid angle, locking angle, and undulation angle estimates

were based on geometrical approximations combined with known fabric data. The

remaining parameter estimates were based on nominal analyses and suggestions found

in Reference [64].

Table 14: MAT 235 Initial Input Parameter Values and Ranges

Symbol Value Minimum Maximum Units
ρ 1.44 1.40 1.50 g/cm3

E1 61 50 70 GPa
E2 4.2 2.7 5.7 GPa
G12 2.9 1.9 3.9 GPa
G23 2.9 1.9 5.0 GPa
ν12 0.35 0.25 0.5 -
ν23 0.35 0.25 0.5 -
θi 45 42 48 Deg
θl 7.5 6.5 8.5 Deg
βfi 5 1 9 Deg
βwi 5 1 9 Deg
µ 2e-4 1e-5 4e-4 -
DR 1000 500 1500 -
∆θ 2.75 0.50 5.00 Deg

Table 15 shows the 5 parameter identification analyses performed using different

sets of estimated parameters. In all cases, the initial estimate for the parameter

values was the nominal values and then the sequential domain reduction algorithm is

employed to obtain a better estimate of these parameters by attempting to minimize

the objective function. The first two cases attempt to estimate all parameters with

the only difference being that the initial undulation angles are constrained to remain
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equal in the second case. This decision was made in an attempt to reduce the number

of parameters and is a reasonable constraint considering the manufacturing process.

Table 15: Summary of Parameter Identification Analyses

Case Parameters Description
Initial See Table 13

1 All See Table 14
2 All βf = βw
3 ∆θ,β,µ,θi,θl Constant Yarn Mat. Props
4 β,µ,θi,θl −
5 β,DR,θi,θl −

It can be clearly seen from cases 1 − 5 in Table 16 that different parameter es-

timates can be obtained depending on what parameters are estimated. There is an

improvement in the estimation seen by constraining the initial undulation angles to

be the same. Cases 2 and 3 show consistent results from constraining yarn material

properties to their nominal values. Cases 4 and 5 show only marginal increases in the

MSE from reducing the number of parameters even further.

Table 16: Summary of Parameter Identification Results

Parameters Initial Case 1 Case 2 Case 3 Case 4 Case 5
ρ 1.44 1.469 1.479 Nominal Nominal Nominal
E1 61 53.565 50.685 Nominal Nominal Nominal
E2 4.2 4.433 4.336 Nominal Nominal Nominal
G12 2.9 1.900 1.900 Nominal Nominal Nominal
G23 2.9 4.914 4.481 Nominal Nominal Nominal
ν12 0.35 0.437 0.401 Nominal Nominal Nominal
ν23 0.35 0.286 0.385 Nominal Nominal Nominal
θi 45 45.985 47.021 47.230 47.484 47.058
θl 7.5 7.000 6.514 6.653 7.349 6.693
βfi 5 3.696 1.369 1.113 1.005 1.680
βwi 5 1.413 1.369 1.113 1.005 1.680
µ 2e-4 3.021e-4 2.331e-4 1.013e-4 6.397e-5 Nominal
DR 1000 565 592 671 Nominal 646
∆θ 2.75 1.450 3.255 5.000 Nominal Nominal

MSE (10−4) 185.724 7.516 2.883 2.652 3.110 3.920

The load-displacement plots in Figures 57 and 58 show results for the Bias Exten-

sion test cases. Figure 57 illustrates the experimental test data compared to results

using nominal parameters and the case 1 best estimate parameters. Figure 58 shows
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the comparison for the best estimated parameters from cases 3 through 5. A closer

match with the data is obtained through the parameter identification process. Similar

results are seen with the subset of parameters as with the full set.
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Figure 57: A Closer Match Between the Data and FEA Predictions Achieved Through
the Inverse Analysis

In some cases multiple solutions will give the same or similar values for the ob-

jective function. This phenomenon often appears in under-defined parameter identi-

fication problems. The underlying problem is that of a singular system of equations

having more than one solution. One symptom of non-uniqueness is different solutions

are found having the same objective function values. Another symptom is the confi-

dence interval for a non-linear regression problem is very large, signaling a singular

system. An important check is that the test/target results are sufficient. It may be

that the data set is large but that some of the parameters are insensitive to the func-

tions corresponding to the data. As an example, cases 1-3 had confidence intervals

that extended to plus and minus infinity. This is a signal that the problem is likely

under-defined. As shown in Tables 17 and 18, by constraining the problem further
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Figure 58: Close Agreement Between the Data and FEA Predictions Achieved
Through the Inverse Analysis with Subset of Parameters

much lower confidence intervals exist for the remaining parameters.

Table 17: Case 4-95% Confidence Intervals for Individual Optimal Parameters

Name Value Lower Upper
θi 47.484 47.370 47.598
θl 7.349 7.222 7.476
β 1.005 0.695 1.314
µ 6.397e-5 2.777e-5 1.002e-4

Inverse analyses were carried out to 20 iterations with the exception of Case 1

which was only carried out to 15 iterations. The maximum iterations were increased

from 15 to 20 after analyzing the results from Case 1. The convergence in MSE

is shown in Figure 59 with most cases showing convergence by 15 iterations. The

initial behavior of all cases shown in the plot indicates a poorer model fit in the early

iterations. As the design space is reduced in size, the linear metamodels improve in

model fit and eventually converge to a solution.
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Table 18: Case 5-95% Confidence Intervals for Individual Optimal Parameters

Name Value Lower Upper
θi 47.058 46.931 47.186
θl 6.693 6.321 7.065
β 1.680 1.563 1.796
DR 646 560 732
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Figure 59: Convergence of Mean Square Error Between Test and Computed Curves
for Multiple Cases

3.6 Summary

In this chapter, the parameter identification methodology is applied to a mesome-

chanical material model using a set of experimental test data. The model accounts

for the reorientation of yarns and the fabric architecture. Fabric behavior is achieved

by discounting the shear moduli of the material in the free state. The mesomechanical

model is developed through a detailed presentation of homogenization method and

yarn reorientation algorithm. The model is presented in more detail than, at the time

of this writing, was found in any one literature source. In the nominal analysis, the

model predictions are compared to the bias-extension data through a direct analysis
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to identify where the model is fundamentally different than the experimental data.

The available data is insufficient for purposes of studying the yarn locking behavior.

Simulated data is used to extend the experimental force-displacement curve in to the

locking region.

The homogenization process is studied to gain insights into effective material prop-

erty sensitivity to changes in input parameters. The model shows effective material

properties that vary with undulation and and initial braid angle. In addition, the

discount factor is shown to have a significant impact on model behavior. In the sen-

sitivity analysis, the contribution of each variable to the variance of the response is

calculated. Based on the information provided in the previous steps, an inverse anal-

ysis is performed to obtain an accurate match between the model predictions and the

data through estimation of input parameters. The inverse analysis was performed for

many different parameter subsets to illustrate the advantage of the methodology as

compared to the traditional direct approach. Results show a significant improvement

in the matching between the model predictions and the data.
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CHAPTER IV

NUMERICAL DETERMINATION OF MECHANICAL

PROPERTIES FOR FLEXIBLE MATERIAL SYSTEMS

4.1 Introduction

A methodology is explored that involves homogenizing a unit cell in a manner such

that the yarn mechanics are accounted for prior to the global simulation of a larger

model. This is in contrast to the LS-DYNA MAT 235 mesomechanical model utilized

in Chapter 3 that accounts for yarn mechanics at each time step of the simulation.

By modeling a small, but detailed, unit cell of the fabric at the meso level and then

applying a homogenization method to produce the material properties that can be

applied to a membrane element, the nonlinear and stress state dependent behavior

of the fabric can be captured without sacrificing computational cost. In addition,

this methodology is not limited to the plain woven and biaxial braided fabric ar-

chitectures like MAT 235, but can be applied to many fabric architectures. The

process begins with measurements of geometrical parameters obtained from optical

microscopy. Next, the fabric architecture is replicated at the meso scale within a de-

tailed 3D unit cell (RVC) model. Material models of the yarn and coating are applied

to the unit cell. A combination of specified displacements and periodic boundary

conditions are applied to this model and the resulting reaction forces are extracted

from the numerical testing. The unit cell force-displacement relationship is corre-

lated to a membrane element. The homogenized element can then be applied to a

large scale model. This methodology requires some knowledge of the expected state

of stress over the large scale structure, but has the benefit of reducing the amount

of experimental testing required to characterize the fabric at several states of stress
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and could eventually bring higher fidelity structural models for IADs forward in the

design process. Furthermore, not only is the amount of experimental testing reduced,

the type of testing (yarn vs. fabric) allows the results to be applicable to multiple

fabric architectures. This has the potential effect of increasing the speed between

iterations be reducing additional testing between design cycles. The yarn geometri-

cal and mechanical property measurements which take the most time to obtain in

this methodology (days) are front loaded, while the remaining steps are governed by

computational resources.

In a similar manner to Chapters 2 and 3, this work relies on experimental data for

validation. In contrast though, a Urethane Coated Plain Woven 400 Denier Kevlar R©

49 Fabric is utilized. The switch from the fabric used in previous chapters was made

due to availability of physical fabric samples for measurement of geometric param-

eters. Table 19 summarizes properties of the fabric used for IAD testing in [4].

In addition, uniaxial extension and inflated cylinder tests were carried out on the

Kevlar R© 49 fabric [26]. These results are used for validation of the methodology.

Table 19: Properties of Urethane Coated Plain Woven Kevlar R© Fabric

Coated Coated
Denier TPI Areal Density Thickness

(oz/yd2) (in)
400 36 11.1 0.01315

These properties alone are not sufficient to model the yarn geometry and weave ar-

chitecture. Optical microscopy measurements are taken of fabric samples to construct

a unit cell model. The next section presents the development unit cell geometric and

finite element models.

4.2 Unit Cell

A mesomechanical approach captures the actual yarn geometry and weave architec-

ture by modeling individual yarns and the weave pattern with solid finite elements.

121



The fabric geometry and material properties of a single yarn in an undeformed state

are needed to build the finite element model. To obtain the appropriate weave archi-

tecture, a novel procedure is employed. High resolution images are used to provide a

microscopic view of the yarn geometry.

4.2.1 Geometry Computation

The geometric description in Figure 74 for the plain woven fabric used by McBride

and Chen defines four sinusoidal curves, shown in Equation (63), in terms of the yarn

width, w, yarn spacing, s, and yarn thickness, h to represent the periodic pattern of

the textile [85]. Using these three values the periodic nature can be modeled in the

unit cell.

Figure 60: Unit Cell Geometry

The cross-sections of the yarns are approximated as circular arcs. The characteris-

tic values of w, s, and h shown in Table 20 are averaged from 30 total measurements.

The value t refers to the total fabric thickness, including coating. The method for

taking the fabric measurements and data processing as discussed in Appendix C.
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In comparing Table 20 with Table 19, a difference of approximately 46% in fabric

thickness is observed between the value referenced in [4] and that measured directly.

Fabric thickness measurement can be problematic due to the high level of fabric com-

pressibility. The thickness obtained is highly sensitive to the amount of pressure

applied during measurement. As the method of measurement of thickness taken from

literature is unclear, this work will rely on that taken from direct optical measure-

ments. The warp and weft measurements shown in Appendix C were quite close

and as a means of simplifying the modeling process, were homogenized to arrive at

a balanced plain weave model. The five measurements each in the warp and weft

directions were averaged and the resulting values shown in Table 20.

Table 20: Characteristic Yarn Values from Fabric Image Measurements

w (mm) s (mm) h (mm) t (mm)
0.5621 0.7223 0.091 0.3715

4.2.2 Geometric Modeling

In this work, the fabric geometry, shown in Figure 61, is generated using TexGen in

combination with the characteristic yarn values in Table 20. TexGen is an open source

software tool developed at the University of Nottingham for modeling the geometry

of textile structures [86].
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Figure 61: 400 Denier Kevlar R© 49 Plain Woven Fabric RVE Created Using TexGen

Once a model has been specified as described above it can be meshed to proceed

with analysis. Dry fiber volume meshes can be created in TexGen using tetrahedral

and hexahedral elements as illustrated in Figures 62 and 63, respectively. When both

the yarns and matrix are required to be meshed a tetrahedral mesh is created. Views

of the resulting yarn and combined yarn/matrix tetrahedral meshes are shown in

Figure 62.

(a) With Matrix (b) Without Matrix

Figure 62: 4 Noded Tetrahedral Elements - Volume Mesh

Generation of conformal meshes can be challenging for textile geometries. In par-

ticular, close to yarn crossovers it is often difficult or impossible to generate elements
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of acceptable quality that conform to the local yarn surfaces. Furthermore, utiliz-

ing tetrahedral elements adds difficulty in specifying proper material directions for

the non-isotropic yarns. Uniform hexahedral meshes are better suited for controlling

material directions of the yarns.

Figure 63: 8 Noded Hexahedral Elements - Volume Mesh

The geometry can also be discretized with a regular pattern of 8-node hexahedral

finite elements. This pattern is known as a voxel mesh (volume and pixel). Each

element is assigned to the material of the phase where its center is located: either in

the matrix material or in the homogenized yarn material. In the latter case, the local

orientation is mapped from the geometry to the yarn element. Such a voxel mesh is

illustrated on Figure 64, shown with and without the matrix elements.

(a) With Matrix (b) Without Matrix

Figure 64: 8 Noded Hexahedral Elements - Voxel Mesh
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In a voxel mesh, the boundary between the matrix element set and the yarn

element set is a patch of rectangular facets that are parallel to one of the RVC faces.

It may then be regarded as a less accurate approximation to the RVC inner surfaces

than the one that would be obtained with a usual tetrahedral mesh generator with

nodes exactly on the surfaces. This approach is more robust than that alternative

which can lead to poorly-shaped tetrahedral elements in areas between yarns or close

to yarn crossings. Moreover, the resulting finite element stiffness matrix has a smaller

bandwidth and a better conditioning number than with a conventional mesh. The

linear systems to be solved are well suited to iterative solvers, which have been found

to be computationally efficient in this work. Consequently, models with small element

edges, which represent the geometry sufficiently well, may be solved in a moderate

CPU time.

When the fabric demonstrates a large degree of yarn reorientation in shear loading,

the 8 noded hexahedral element based volume mesh approach is recommended. The

smoother surface obtained from the nodes being exactly on the surfaces allows for

better modeling of the rotations. However, when a matrix or coating restricts the

reorientation, this attribute is less significant and a voxel mesh is sufficient to provide

accurate results. Remaining simulations are performed using a voxel mesh.

4.3 Numerical Tests on Unit Cell

Numerical tests such as uniaxial and trellising are conducted on the unit cell for

the determination of the effective material properties for a membrane element. Two

methods are presented for obtaining the effective mechanical stiffness matrix. The

first is a linear approach in which the macro complaince matric, S is obtained by

inverting the macro stiffness matrix, C and, by definition, effective linear material

properties can be computed. In the second appraoch, the nonlinear mechanical stiff-

ness matrix will be iteratively modified and imposed on a membrane element in each
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increment of the finite element analysis to match the force-displacement curves of the

unit cell obtained from numerical tests. The same displacement as the unit cell will

be prescribed on a membrane element at each increment.

4.3.1 Material Modeling

At present, it is not feasible to simulate each fiber using an FEM approach. In this

work, the yarns are considered as orthotropic solid bodies. The longitudinal direction

is defined by (11), which is parallel to the fibers; the transverse plane is described

by directions (22) and (33), which are characterized by a plane of isotropy at every

point in the yarn. The orthotropic behavior of the yarn is described using a 3D

stiffness matrix containing up to nine independent constants. Data for all the 400

Denier Kevlar R© 49 yarn elastic constants are not available in the literature. Baseline

material estimates as shown in Table 21 are defined consistent with those found in lit-

erature [84] and [64]. Matrix estimates are consistent with urethane rubber coatings.

The accuracy of these values is unknown and are consider rough estimates. Future

studies would benefit from dedicated yarn material testing to support simulations.

Table 21: Estimate Yarn and Matric Elastic Constants

Yarn E11 E22 E33 G12 G13 G23 ν12 ν13 ν23
Property (GPa) 135 7.4 7.4 2.5 2.5 5 0.2 0.2 0.2
Matrix E ν
Property (MPa) 3 0.2

Since yarns are highly anisotropic materials, an important point is to define ma-

terial orientation and to specify the mechanical characteristics in the appropriate

directions during simulations. A local orthogonal material coordinate system is de-

fined for material properties. The material coordinate system is defined by specifying

an angle, β, relative to the local element coordinate system; which is defined by

element connectivity.
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4.3.2 Boundary Conditions

Fabric unit cell modeling is based on the assumption that fabric deformation is uni-

form at the meso scale. Periodic boundary conditions are applied to replicate the

repeating nature of the fabric. Since plain woven fabrics can be treated as a peri-

odical array of unit cells, the PBC devised by Xia et al. is applied on the unit cell

to ensure that there is continuity between neighboring cells [87]. Since the periodic

array of the unit cell represents a continuous physical body, two continuities must be

satisfied at the boundaries of the neighboring unit cells. One is that the displacement

must be continuous. In other words, neighboring unit cells cannot be separated or

overlap after deformation. The second condition implies that the traction distribu-

tions at the opposite parallel boundaries of a unit cell must be the same. From this,

the individual unit cells can be assembled as a continuous body.

The solution obtained by applying unified displacement-difference periodic bound-

ary conditions, in a displacement-based finite element analysis, will also meet the trac-

tion continuity conditions. All the boundary pairs match each other exactly, which

is a necessary condition for applying periodic boundary conditions. When generat-

ing the mesh, special attention is paid on the node locations on all boundary pairs so

that the node pairs can be found and constrained. By applying the periodic boundary

conditions and using Equation (64), the constraints can be imposed on any arbitrary

node pair.

ui
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)
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l, y, z

)
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[
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]
j
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]
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i, j = 1, 2, 3; 0 ≤ x ≤ l; 0 ≤ y ≤ w; 0 ≤ z ≤ t
)

(64)

where, ui denotes the displacement along the i direction; l, w, and t, respectively,

128



denote the length, width, and thickness of the unit cell. The global strain ε̄ij is exerted

on the unit cell.

4.3.3 Loading Conditions

The mechanical behavior of the unit cells under tensile strain and in-plain shear

strain are analyzed in the following sections. First, the specific loading conditions are

discussed along with method for effective material property calculation.

4.3.3.1 Uniaxial Loading

The prescribed deformation applied on the RVC for the uniaxial tension in warp

and weft directions are shown in Equation (65), where the word unprescribed in

the deformation gradient implies that the RVC is free to contract or expand in the

corresponding direction. The RVC is imposed by the periodic boundary conditions.

As part of the PBC, master nodes were defined on the global y axis and z axis. These

master nodes were employed in the PBC to allow the strain in those directions to be

unprescribed, but still constrain all the boundary pairs match each other exactly. As

stated in Appendix C, the measurements of the fabric were averaged in the warp and

weft directions. Thus, only one case of uniaxial tension is required for this analysis

and the orthogonal direction is assumed to be identical.

Funiaxial =


1 + εxx εxy εxz

εyx 1 + εyy εyz

εzx εzy 1 + εzz

 =


1 + εxx 0 0

0 unprescribed 0

0 0 unprescribed


(65)

Figure 65 provides an example of how a unit cell is loaded in uniaxial tension.

The figure shows a cube of material with a load Fx applied on one of the faces along

the x-direction. Assume that the face coincident with the y-z plane is constrained

to in-plane motion. In addition, the corner at the origin of the coordinate system is
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completely fixed. One other constraint is necessary to stop this model from rotating

about the x-axis. As a result of these constraints and loading, the cube face displaces

along the x-axis by some amount δ. Due to the Poisson effect, the cube will displace

in the y and z directions as well. However, those displacements do not need to be

prescribed. The applied force and resulting displacement can then be mapped to

stress and strain on the cube.

Figure 65: Cube of Material Under Uniaxial Tension

4.3.3.2 Shear Loading

The prescribed in-plane shear deformation applied to the RVC is shown in Equa-

tion (66), where the word unprescribed in the deformation gradient implies that the

RVC is free to contract or expand in the corresponding direction. Compared to the

uniaxial tension case, the RVC is imposed by the different PBC. As part of the PBC,

master nodes were defined on the global y axis and z axis. These master nodes were

employed in the PBC to allow the strain in those directions to be unprescribed, but

still constrain all the boundary pairs match each other exactly.

Fshear =


1 + εxx εxy εxz

εyx 1 + εyy εyz

εzx εzy 1 + εzz

 =


0 εxy 0

εyx 0 0

0 0 unprescribed

 (66)
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Figure 66 provides an example of how a unit cell is loaded in in-plane shear. The

figure shows a cube of material with a shear stress τxy applied on one of the faces along

the y-direction. Assume that the face coincident with the y-z plane is constrained

to in-plane motion. In addition, the corner at the origin of the coordinate system is

completely fixed. One other constraint is necessary to stop this model from rotating

about the x-axis. As a result of these constraints and loading, the cube face displaces

along the y-axis by some amount δ. Due to the Poisson effect, the cube will displace

in the z directions as well. However, this displacement is not prescribed. For small

angles, the shear strain γxy for this cube can be approximated as δ/a. This is just

one example of how pure in-plane shear can be applied to a unit cell.

Figure 66: Cube of Material Under Shear Stress

4.3.3.3 Effective Material Property Calculation

For a full 6 × 6 stiffness matrix, six different cases must be run, and each case will be

assigned the above-mentioned PBC as well as a unit strain in a certain direction. For

the simplification of plane stress, where the stresses in the z-direction are considered

negligible, σzz = σyz = σxz = 0, the stress-strain stiffness relationship for orthotropic

materials reduces to that shown in Equation (67). From this simplification, the num-

ber of cases required reduces to three. Each case gives one column of the stiffness

matrix. After completing the stiffness matrix, the compliance matrix can be obtained
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by inverting the stiffness matrix, from which all engineering constants can be com-

puted as shown in Equation (68). A further simplification can be made by assuming

that the Ex = Ey (as is the case in this work). Based on this assumption, only two

cases are required to obtain the all the necessary engineering constants.


σ̄x

σ̄y

σ̄xy

 =


C11 C12 0

C12 C22 0

0 0 C66



ε̄x

ε̄y

γ̄xy

 (67)

Ex =
1

S11

, Ey =
1

S22

, νxy = −S12

S11

, and Gxy =
1

S66

(68)

4.3.4 Results

The warp and weft yarns, as well as the matrix (coating), were meshed with 8-node

3D linear hexahedral (brick) elements. According the periodicity characteristic of the

fabric, the RVC us meshed such that the corresponding opposite surfaces (left and

right; front and back; top and bottom) are discretized into equivalent distribution of

nodes.

In practice, the interface debonding between the fiber and matrix can occur during

the fabrication process (due to the mismatch of their thermal expansion coefficients).

However, the interface debonding between the fiber and matrix is not considered in

this work because the microstructure constituted of the fibers and the matrix within

the yarn is not modeled, as explained earlier. Therefore, the nodes between the yarns

and matrix interfaces are merged in order to simulate the perfect bonding between

both volumes. Moreover, the perfect bonding is justified to reduce the computational

cost and time, since the interface formulation can increase the cost and time.

Four levels of meshes are created for the textile RVC, from level 1 (coarse) to level

4 (fine), for obtaining the optimum meshed RVC in terms of the accuracy of analysis

results and CPU time. Figure 67 shows the range of mesh densities of the matrix
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volume and yarns volume. Table 22 shows the number of nodes, number of elements,

total number of degrees of freedom (DOF), and the relative CPU time for the analysis

(uniaxial tension) in each mesh density level.

(a) 8000 Elements (b) 74088 Elements

Figure 67: Comparison Between Course and Fine Voxel Meshes

The deformation gradient matrix, F shown in Equations (65) and (66), is applied

on the RVC for prescribing the total deformation through the displacement of a de-

fined control node and imposed by the PBC. The control node is defined by creating

an additional node not tied to the unit cell geometry. The amount of displacement

prescribed for the uniaxial and shear cases is defined to be consistent with the exper-

imental results used for validation [26]. The subscripts x, y, and z are denoted for

the directions of the axes on the global coordinate system. The material properties

of the yarns are considered transversely anisotropic defined by a local material coor-

dinate system and the matrix (coating) is considered to be isotropic as described in

Section 4.3.1.

Table 22: Textile RVE Mesh Statistics

Mesh Density Number of Number of Degrees of Relative CPU
Level Nodes Elements Freedom Time
1
(
coarse

)
9261 8000 27783 1

2 19683 17576 59049 3.55
3 42875 39304 128625 14.36
4
(
fine
)

79507 74088 238521 45.44

Figure 68 shows the analysis results (maximum Von Mises stress) for varying mesh

density levels. Table 22 shows the relative CPU time for each mesh level. There is a

clear difference between the coarse mesh (level 1) and the other meshes, however the
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mesh density level 3 and level 4 (fine) show very similar results. Furthermore, the

maximum Von Mises stress for each mesh density level provides sufficient maximum

equivalent stress compared to level 4. The mesh density level 3 gives a much lower

relative CPU time compared to the finest mesh. Thus, it can be concluded from

Figure 68 and Table 22 that the mesh density level 3 is sufficient to provide accurate

results. Remaining simulations are performed using mesh density level 3. The shear

loading case utilizes the same mesh density due to the same conclusion.

Number of Elements ×104
0 1 2 3 4 5 6 7 8

M
ax

im
um

 V
on

 M
is

es
 S

tr
es

s 
(M

Pa
)

3700

3800

3900

4000

4100

4200

4300

4400

4500

4600

Figure 68: Von Mises Stress Vs. Number of Elements

The reaction force on the unit cell as a result of uniaxial displacement ux is shown

in Figure 69. The plot shows a linear relationship between force and displacement.

Using the transformations in Appendix B, the results can be converted to PKII stress

and Green strain. It is observed that this model does not capture the decrimping

behavior typically seen in the low strain region of fabrics under uniaxial load. This

is explained by referring back to Section 1.3.3. The decrimping of the fabric is a

product of the yarns initially sliding over one another with resistance due to friction.
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As discussed earlier, the nodes between the yarns and matrix interfaces are merged

in order to simulate the perfect bonding. This prevents the unit cell from capturing

the decrimping phenomenon. Modeling the decrimping process can achieved by not

merging the nodes and defining contact conditions between the yarns and coating.

The comes at the cost of increased computational expense.
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Figure 69: Reaction Force Vs. Displacement Ux

The Poisson effect in the unit cell is shown in Figure 70 with the contraction of the

unit cell in the y-direction as a result from extension in the x-direction. As expected,

the contraction is much smaller in magnitude than the extension. From Section 1.3.3,

the yarns under load will begin to straighten which decreases their crimp heights and

elongates their effective lengths. As a result, the perpendicular family are forced to

increase their crimp heights and decrease their effective lengths. This change in crimp

height is referred to as crimp interchange and is often compared to the Poisson’s effect

from continuum mechanics. As shown in [25], plain woven fabrics can exhibit effective

Poisson’s ratios greater than 1. Similar to decrimping, the nodes between the yarns
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and matrix interfaces being merged limits that amount of lateral contraction in the

unit cell due to longitudinal extension.
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Figure 70: Displacement Uy Vs. Displacement Ux

In Chapter 1, it was noted that air inflated structures are subjected to biaxial

states of stress. This biaxial loading typically prevents crimp interchange from oc-

curring in any significant manner due to loading occurring in both yarn directions.

Similarly, it is common for the low stiffness region due to decrimping to be much

smaller in cases of biaxial loading. From these observations, it is reasonable to ex-

pect this unit cell model to capture the important load-deformation characteristics of

air-inflated structures.

The mechanical behavior of the unit cell under tensile strain is yarn dominated.

However, the mechanical behavior of the unit cell is matrix dominated under shear

loading. It is observed in Figure 71 that compared to Figure 69, a larger resultant

displacement causes a much lower resultant force. The domination of the matrix in

the shear case is also shown in the absense of a significant increase in stiffness usually
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attributed to the yarn locking. Furthermore, it is likely that the coating shown in

Figure C.2 prevents the yarns from rotating to a degree that yarn locking would occur.
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Figure 71: Resultant Force Vs. Resultant Displacement

The results in Table 23 show a comparison between the elastic constants obtained

from numerical tests on the unit cell with the experimental results. Using Equa-

tions (67) and (68), linear elastic constants are calculated. There is a small difference

between the experimental elastic moduli in warp and weft directions. The unit cell

elastic moduli are identical resulting from assumptions discussed earlier. Overall,

there is good agreement with the experimental and unit cell results. It is likely that

better yarn material estimates would increase the agreement between experimental

and calculated results. In addition, the nodes between the yarns and matrix inter-

faces were merged in order to simulate perfect bonding between both volumes. Better

agreement between the experimental and calculated results may be achieved by un-

merging the nodes and defining contact conditions between the yarns and matrix.

This would better simulate the yarn reorientation under loading. The experimental
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shear moduli reported are from an inflated cylinder test. This method includes both

the strain energy from the fabric and the work done by the air. Thus, experimental

results report a higher shear modulus than shown in Table 23. A better comparison

is made at the end of this chapter by simulating the inflated cylinder test.

Table 23: Comparison Between the Elastic Constants Obtained from Unit Cell Nu-
merical Tests with Experimental Results

Experimental Unit Cell
E1(GPa) 13.68 12.51
E2(GPa) 13.32 12.51

G12(MPa) - 5.96

In the preceding section, effective linear material properties were computed from

numerical tests on a unit cell. It may however be desirable to obtain nonlinear

material based on the force-displacement results from the numerical testing. The

following section presents a process for correlating the nonlinear stress-strain curve

applied to a membrane element with the force-displacement results of the unit cell.

4.4 Membrane Element Correlation

In the second approach, the nonlinear mechanical stiffness matrix is iteratively mod-

ified and imposed on a membrane element in each increment of the finite element

analysis to match the force-displacement curves of the unit cell obtained from nu-

merical tests. The same displacement as the unit cell is prescribed on a membrane

element at each increment.

4.4.1 Effective Mechanical Stiffness Matrix

This portion of study employs a four node membrane element with the outer size of

the unit cell and the MAT FABRIC material model in LS-DYNA. In Appendix B, it

is noted that Form 14 within MAT FABRIC allows to use of nonlinear stress-strain

data in the form of input curves. MAT FABRIC requires the input of Ea, Eb, νab,
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and Gab as either constants or input curves. The following sections develop a method

for the parametrization the input stress-strain curves in such manner that curve can

be modified systematically to best match the unit cell and membrane element force-

displacement curves.

4.4.2 Parameterization

To optimize LS-DYNA input curves, e.g. stress vs. strain data, one solution is to

use splines that interpolate a certain number of given points. The coordinates of the

points are defined as parameters. A hermetic cubic spline formulation is used in order

to generate continuous load curves for the optimization. Each load curve is divided

into 3 segments with a cubic polynomial interpolation for each respective segment as

shown in Figure 72.

Figure 72: Input Stress-Strain Curve

4.4.2.1 Parametric Cubic Curves

In order to ensure C1 continuity at two extremities, our functions, shown in Equa-

tions (69) and (70) must be of at least degree 3. If the slope of the curve (or the first

derivative of the function) is continuous, then the function has 1st order continuity.

Consider the following 3rd order equations:
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x = axt
3 + bxt

2 + cxt+ dx (69)

y = ayt
3 + byt

2 + cyt+ dy (70)

By applying the above equations and the first derivatives at two extremities and

rearranging into matrix form, the hermite specification is expressed as a matrix equa-

tion. The resulting equation is used to solve for the coefficients as shown in Equa-

tion (71).



ax ay

bx by

cx cy

dx dy


=



2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0





x1 y1

x2 y2

dx1
dt

dy1
dt

dx2
dt

dy2
dt


(71)

The coefficients can then be substituted back into the original 3rd order paramet-

ric equations. In matrix form, with t ∈ [0,1], the resulting parametric equation is

expressed in Equation (72).

[
x y

]
=



2t3 − 3t2 + 1

−2t3 + 3t2

t3 − 2t2 + t

t3 − t2





x1 y1

x2 y2

dx1
dt

dy1
dt

dx2
dt

dy2
dt


(72)

From this, four points are needed to define the input stress-strain curve. The

first point is constrained to be located at
(
0, 0
)

so that the model has zero stress at

zero strain. The final strain value is also predetermined based on the expected strain

range. This range is set by the experimental testing used for validation. This leaves

five parameters remaining to alter the shape of the input curve. These parameters

are optimized to produce an input stress-strain curve that results in a best match the

unit cell and membrane element force-displacement curves.
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Utilizing nonlinear input stress-strain curves are not limited to the numerical

testing methodology presented in this chapter. The parameter identification process

shown in Chapter 2 utilized constant mechanical properties by neglecting the nonlin-

ear crimp interchange region in the stress-strain curve. By redefining the problem to

include the above five parameters for each parameter estimated in Chapter 2, non-

linear behavior can me included in the model. However, the entire load-deformation

test curve, not just the linear elastic region, must be include in the process.

4.4.3 Objective Function and Constraints

In order to optimize the input curve, an objective function must be defined. Sim-

ilar to Chapters 2 and 3, the objective function is the mean square error, defined

in Equation (18), between the unit cell and membrane element force-displacement

curves.

This study adds two constraints to ensure that the supporting points are mono-

tonically increasing and hence the stress-strain curve is monotonically increasing. As

shown in Equations (73) and (74), assuming δ is a positive constant, the inequality

constraints ensure the supporting points are monotonically increasing.

x2 − x1 > δx (73)

y2 − y1 > δy (74)

4.4.4 Numerical Tests on Membrane Element

The nonlinear input stress-strain curves are iteratively modified and applied to a

membrane element in each increment of the finite element analysis to match the

force-displacement curves of the unit cell obtained from numerical tests. The same

displacement as the unit cell is prescribed on the membrane element.
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The tensile elastic moduli E1 and E2 are determined by the uniaxial tension test.

In the extension tests, the shear strain is theoretically zero, so the value of the shear

modulus in this load case is insignificant. A small positive constant is input for

the shear modulus of the membrane element to prevent numerical instabilities [51].

Also, from the uniaxial tests, the effective Poissons ratio for the shell element can be

obtained. The ratio between the warp direction strain and the weft direction strain

at the end of each increment is taken as the Poissons ratio at the strain level in the

warp direction. The same procedure can be applied for the Poissons ratio at strain

levels in the weft direction. The process is notionally shown in Figure 73.

Figure 73: Equivalent Membrane Element in Uniaxial Tension

The effective shear modulus is determined from the trellising test. In the trellising

test, the edges of the membrane element will be clamped, but allowed to rotate

freely along the corner points. The major strains are expected to be negligible when

compared to the shear strain and there is no coupling between shearing and extension

in this case, so arbitrary small positive constants is input for the tensile moduli and

Poissons ratio for the membrane element [51]. The process is notionally shown in

Figure 74.

To demonstrate this process, the shear loading unit cell results shown in Figure 71
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Figure 74: Equivalent Membrane Element in Shear

is used as a test case. The parameter identification methodology developed in Chap-

ter 2 and show in Figure 23 is employed here as well. The only addition to the process

is a step in between the sampling of a set of designs to build the response surface and

the simulation. This step is the execution of the theory developed in Section 4.4.2.1

to construct the input curve before the simulation begins. To set initial estimates

and ranges for the five parameters in the optimization, unit cell and experimental

validation data provide guidance. An estimate for the initial value of y3 is given from

the linear shear modulus shown in Table 23. The remaining two points are evenly

distributed along the line from the origin and the fourth point. The nominal values

are allowed to initially vary by ±20% in the x and y directions. A comparison be-

tween the final resulting force-displacement curve from the membrane and that of the

unit is shown in Figure 75. There is good agreement between the two data sets. The

resulting nonlinear input stress-strain curve is shown in Figure 76.

143



Resultant Displacement (mm)
0 0.05 0.1 0.15

R
es

ul
ta

nt
 F

or
ce

 (
N

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Shell Element
Unit Cell

Figure 75: Comparison of Resultant Force in Pure Shear

Shear Strain, γ (mm/mm)
0 0.05 0.1 0.15

Sh
ea

r 
St

re
ss

, τ
 (

M
Pa

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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4.5 Validation

In this study, an experimental data set from the inflated cylinder torsion test method

to characterize the shear stress-strain behavior of textile materials is used to validate

the above methodology for air-inflated structures. In the inflated cylinder torsion

test, torque versus twist angle is measured for an inflated cylinder where one end cap

has a free rotational degree of freedom and the other end cap has a free axial degree

of freedom. Using the well known relations from engineering mechanics discussed in

Section 2.2.4.3, the applied torque can be converted to the resulting shear stress and

the twist angle to shear strain.

Figure 77: Inflated Cylinder Finite Element Model

A finite element analysis was completed in LS-DYNA using the MAT FABRIC

material model. The inflated cylinder model has a radius of 98.6 mm, a length of

392 mm, and thickness of 0.3715 mm. The model is meshed with 2732 nodes and

2628 membrane elements; of which 1960 membrane elements were dedicated to the

fabric portion of the model and the remained elements were used on the end caps.

Linear elastic moduli from Table 23 were used for Ea and Eb, the Poisson’s ratio was
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assumed to be low, and the non-linear shear modulus was that shown in Figure 76.

The end caps were modeled as steel with isotropic material properties.

The nodes at one end cap were constrained to have only a free rotational degree

of freedom about the longitudinal axis. This end cap had a prescribed rotation(
20◦
)

applied consistent with that in the experimental testing. The opposite end

cap was constrained to have only a free axial degree of freedom. Inflation pressure is

applied using a simple airbag model to capture the effects of air compressibility on the

structures stiffness. The inflation pressures were tested at 4 psi, 7 psi, and 10 psi. The

model was allow to inflate to the prescribed inflation pressure and then the prescribed

rotation was applied. After the model reached a steady state, the resulting torque was

measured at the nodes that were constrained from rotating about the longitudinal

axis.
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Figure 78: Applied Torque versus Twist Angle Comparison between Model and Data
Cylinder of Urethane Coated Kevlar R© at Three Inflation Pressures

Figure 78 provides a comparison between the experimental data and simulation

results. The plot shows only a the final torque-rotation values from the simulation,
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with a line connecting them to the origin. This should not imply that the simulation

results were linear. The torque-rotation values are compared because the important

trends do not require the conversion to stress-strain.

The simulation results trend well with the experimental data. As the pressure

increases the stiffness in the model increases. This is consistent with previous analysis

and testing [43, 35, 27]. While the stiffness of the inflated cylinder increases with

increasing pressure, the same material shear modulus was used for all three models.

This distinction is important because estimating shear modulus from the inflated

cylinder test method and applying it to model of an air-inflated structure as shown

above will likely result in an overly stiff structure.

Tanner found evidence in the inflatable tension cone models that an unrealistically

low shear modulus value was needed to recover displacements that correspond to test

data. This could be explained by the utilization of shear moduli calculated from the

inflated cylinder test. The unrealistic estimate of shear modulus of 371 psi, used for

the tension cone model, is much closer the values shown in Figure 76 and Table 23

than the value of 7417 psi obtained from the inflated cylinder test [15].

To illustrate this, Figure 79 shows the change in the predicted tension cone torus

pitch angle from 0◦ to 9◦ AoA as a function of shear and elastic moduli originally

shown in Reference [15]. The range of elastic moduli used in this orthotropic sensi-

tivity analysis were based on varying the elastic moduli by ±30% around the nominal

value. The range of shear moduli is progressively decreased by a factor of 20 from the

isotropic value. It was initially thought that non-physical material properties may be

necessary for the MAT FABRIC model in LS-DYNA in order to recover more realis-

tic magnitudes of deformation; however the unit cell estimate of shear modulus equal

to 864 psi, which was estimated from physical dimensions and material properties,

compares well with experimentally observed torus rotation of 1.89◦. Tanner found

that an elastic modulus of 501,417 psi and shear modulus of 371 psi resulted in a
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Shear and Elastic Moduli. Dashed Line Corresponds to Experimentally Observed
Torus Rotation of 1.89◦

1.96◦ change in torus rotation, which is within 4% of the experimentally observed

rotation of 1.89◦. The unit cell estimate of shear modulus equal to 864 psi resulted

in a change in torus rotation within 2% of the experimentally observed rotation.

4.6 Summary

A novel methodology is presented in this chapter for predicting the effective nonlinear

elastic moduli of fabrics using a combination of the homogenization method and finite

element analysis. The methodology is shown on a Urethane Coated Plain Woven 400

Denier Kevlar R© 49 Fabric. The general process is summarized as:

Step 1. Obtain or estimate geometric and material properties for the yarn.

Step 2. Build a unit cell for the fabric.

Step 3. Characterize the material behavior of force versus displacement by numerical

trellising and extension tests on the unit cell using finite element analysis.
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Step 4. Obtain equivalent elastic constants for membrane elements by correlating the

force vs. displacement curves of the unit cell and a membrane element with the

same outer dimensions.

A unit cell finite element model was constructed from fabric measurements taken

using an high magnification microscope. Multiple mesh types were considered for the

unit cell finite element model, including 4-node tetrahedral elements, 8-node hexahe-

dral elements. A voxel based mesh was chosen using 8-node hexahedral elements in

order to provide a balance in computational efficiency and accuracy. Periodic bound-

ary conditions are applied to replicate the repeating nature of the fabric. Numerical

tests such as uniaxial and trellising are conducted on the unit cell for the determi-

nation of the effective material properties for a membrane element. A transversely

anisotropic material model is utilized for the yarns, while an isotropic material model

is utilized for the matrix (coating). Nonlinear input stress-strain curves are iteratively

modified and applied to a membrane element in each increment of the finite element

analysis to match the force-displacement curves of the unit cell obtained from nu-

merical tests. Comparison with experimental inflated cylinder results validates the

effectiveness of this procedure. The methodology can be extended to other textile

architectures by constructing the corresponding unit cell.
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CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

This thesis proposes the development of a multi-scale flexible material modeling ap-

proach that enables efficient high-fidelity IAD design and a critical understanding of

the new materials required for robust and cost effective qualification methods. The

approach combines understanding of the fabric architecture, analytical modeling, nu-

merical simulations, and experimental data. The work herein was performed to reach

this goal.

Chapter 1 discusses the motivation and provided a background for the topics pre-

sented in this work. The development history of three IAD configurations is presented.

Air-inflated structures in general are discussed in the context of fabric architectures

and construction methods to provide insight into important mechanical properties.

A comparison of experimental textile mechanical property determination methods is

provided to highlight advantages and disadvantages of each method. Finally, three

past approaches are provided to simulate the macroscopic behavior of woven fabrics.

Chapter 2 applies the parameter identification methodology to a set of bias-

extension and uniaxial tension experimental test data. The parameter identification

methodology is introduced. Mean Square Error is defined as the objective function

to be minimized in the methodology. The nominal predictions are compared to the

data through a direct analysis to identify where the model is fundamentally different

than the experimental data. The nominal analysis describes the geometric and mate-

rial models used in the finite element simulation as well as the specified loading and

boundary conditions. A convergence study shows that the mesh size is set based on
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a balance between accuracy and computational expense. Based on the information

provided in the previous steps, an inverse analysis is performed to obtain an accu-

rate match between the model predictions and the data through estimation of input

parameters. Poisson’s ratio was shown to be an insignificant contribution to the ob-

jective function. A high degree of correlation was shown between the three remaining

parameters and the simulation of the test used to obtain them experimentally. The

resulting estimate of shear modulus compares well with the experimental data from

the trellis-frame test.

Chapter 3 applies the parameter identification methodology to a mesomechanical

material model using a set of experimental test data. The mesomechanical model

is developed through a detailed presentation of homogenization method and yarn

reorientation algorithm. The homogenization process is studied to gain insights into

effective material property sensitivity to changes in input parameters. The model

shows effective material properties that vary with undulation and and initial braid

angle. In addition, the discount factor is shown to have a significant impact on

model behavior. In the sensitivity analysis, the contribution of each variable to the

variance of the response is calculated. Based on the information provided in the

previous steps, an inverse analysis is performed to obtain an accurate match between

the model predictions and the data through estimation of input parameters. The

inverse analysis was performed for many different parameter subsets to illustrate the

advantage of the methodology as compared to the traditional direct approach. Results

show a significant improvement in the matching between the model predictions and

the data.

Chapter 4 presents a novel methodology for predicting the effective nonlinear

elastic moduli of fabrics using a combination of the homogenization method and

finite element analysis. The general process is summarized as:

Step 1. Obtain or estimate geometric and material properties for the yarn.
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Step 2. Build a unit cell for the fabric.

Step 3. Characterize the material behavior of force versus displacement by numerical

trellising and extension tests on the unit cell using finite element analysis.

Step 4. Obtain equivalent elastic constants for membrane elements by correlating the

force vs. displacement curves of the unit cell and a membrane element with the

same outer dimensions.

A unit cell finite element model was constructed from fabric measurements taken

using an high magnification microscope. Multiple mesh types were considered for the

unit cell finite element model, including 4-node tetrahedral elements, 8-node hexa-

hedral elements. Periodic boundary conditions are applied to replicate the repeating

nature of the fabric. Numerical tests such as uniaxial and trellising are conducted

on the unit cell for the determination of the effective material properties for a mem-

brane element. A transversely anisotropic material model is utilized for the yarns,

while an isotropic material model is utilized for the matrix (coating). Nonlinear input

stress-strain curves are iteratively modified and applied to a membrane element in

each increment of the finite element analysis to match the force-displacement curves

of the unit cell obtained from numerical tests. Comparison with experimental inflated

cylinder results validates the effectiveness of this procedure. The methodology can be

extended to other textile architectures by constructing the corresponding unit cell.

The next section provides recommendations for future efforts to advance the state

of mechanical property determination research as it pertains to air-inflated structures.

The modeling of fabric structures would benefit from the publication of additional

macro and meso level material data. A discussion of possible augmentations to the

parameter identification methodology is also presented.
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5.2 Suggestions for Future Work

The higher fidelity material models presented in this work require information not

typically tested for in standard mechanical tests regarding fibers and yarns used to

construct the fabrics. A limitation encountered in this work was the lack of experi-

mental test available for the individual yarns. Currently, modeling efforts rely only on

macromechanical information for a particular fabric with minimal information regard-

ing the constituent materials. The modeling of air-inflated fabric structures would

benefit from publication of additional macromechanical properties and the mesome-

chanical properties of candidate materials. By performing uniaxial tension tests on

the fabric yarns, more accurate data can be obtained for the longitudinal elastic mod-

ulus. Even with this, however, the other yarn material properties are more difficult

to obtain experimentally. To overcome this, researchers have employed a homoge-

nization method that relies on fiber material properties as well as estimates of fiber

volume fraction [51]. The material properties for the yarn fibers is more consistent

and easier to find in literature. Estimates of fiber volume fraction can be made using

methods like optical microscopy as discussed in Appendix C.

IADs typically operate at lower strain levels far away from the failure load of the

material. Furthermore, the IAD may operate on both the load or unload portion of

the stress-strain curve. The analysis presented in this work focused on the single load

cycles characteristic of air-inflated fabric structures. The raw experimental data from

Chapters 2 and 3 exhibited appreciable hysteresis, as well as, a wandering or strain

set between cycles. For future efforts, it may be necessary to model the hysteretic

behavior in uniaxial loading and unloading of structural components. Hysteretic

curves (curves with more than one possible y value for some of the x values) cannot be

quantified using the ordinate-based curive matching approach introduced in Chapter 2

due to the non-uniqueness of the ordinate values of the computed curve with respect

to the target curve. A logical approach for comparison of the two curves is to map
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one of the curves onto the other. The questions of how to scale the curves and how

to match two curves of unequal length immediately arise. Scaling can be particularly

important since scale changes have an effect on the distances between the two curves.

In many cases, such as stress vs. strain, there may be several orders of magnitude

difference between the values on the abscissa and ordinate. The experimental data in

Reference [25] provides a source of validation data for this effort. For a more detailed

discussing on the use of curve mapping for parameter identification, refer to the work

of Witowski and Stander [79]. The mesomechanical model presented in Chapter 3

also has the potential to capture hysteretic behavior through the yarn reorientation,

but load and unload simulations will be required to determine which parameters have

the largest impact on this phenomenon.

The numerical testing methodology presented herein has the advantage of being

applicable to virtually any composite type under any load condition. Further develop-

ment of this methodology should explore higher strain levels as well as various states

of stress and braid angles. In the case of shear loading, simulations at higher strain

levels would investigate a model’s ability to capture the locking behavior discussed in

Chapter 1. This investigation was limited to looking at pure tension and pure shear

loading cases. Biaxial loading cases at multiple states of stress will be necessary

for design space explorations. This effort would also benefit from the publication of

biaxial experimental data to validate against. The available test data also limited

this work to plain woven fabrics. Validating the methodology for other fabric archi-

tectures such as biaxial and triaxial braided fabrics would show broad applicability

to air-inflated structures. The unit cell mesh utilized in this work was appropriate

for fabric architecture and strain levels being modeled. When attempting to model

signification yarn reorientation, the ability of a model to capture this behavior is

important. The 8-node hexahedral volume mesh (that follows the yarn surface) may

154



prove to be necessary over the voxel based mesh in this case. Furthermore, the per-

fect bonding assumption between the matrix and yarns should be challenged in cases

of little or no coating. Unmerging the nodes between the yarns and matrix, as well

as, adding contact conditions between adjacent materials could capture more of the

physics related to yarn reorientation.

Although the experimental test methods discussed in this work are representative

of loads experienced by air-inflated structures, larger scale test articles address par-

ticular structural and integration issues related to flight IAD systems that can not be

captured in sub-scale tests. As discussed in Chapter 1, Brayley tested the bending

response of inflatable, braided beams and arches with external reinforcing straps [35].

The work focused on experimentally determining the constitutive properties of the

constituent materials, and quantifying the load-displacement behavior of beams and

arches with full scale laboratory tests. By matching the load-displacement data from

the 4-point bend tests using the parameter identification methodology employed in

Chapter 2, estimates for the material properties can be compared to those obtained

from typical sub-scale tests. This would allow for modeling assumptions and scale

effects to be quantified. As an example, the membrane assumption could be inves-

tigated for the tension cone shown in Figure 1 where deformation in the tension

shell indicates bending may be important at that scale. Additionally, the inflatable,

braided beam with external reinforcing straps shown in Figure 7 contains multiple

components and materials that may impact the overall constitutive behavior of the

structure.
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APPENDIX A

STRUCTURAL OPTIMIZATION USING LS-OPT

A.1 Introduction

The material identification process is a non-linear optimization process that uses

experimentally measured data to determine the parameters describing a material

model. A non-linear simulation is performed with the model parameters as inputs

and the deviation of the simulated performance from that measured is used as a

criterion for minimization [88].

In using LS-OPT, the successive response surface method is used, which exploits

a domain reduction scheme in order to converge to an optimum. Commonly, the

construction of the response surface used a design of experiments approach in com-

bination with a D-optimal experimental design. The following is a presentation of

some of the basics in LS-OPT.

A.2 Optimization Algorithm

A.2.1 Problem Setup

The following introduction into optimization basics is necessary for the sake of com-

pleteness [65]. Vanderplaats describes the objective of engineering optimization as

striving to produce the “best quality of life possible with the resources available [89].”

Expressed mathematically in Equations (75) and (76), the above phrase is as follows:

min f(x̄) (75)

subject to
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gj(x̄) ≤ 0 , j = 1, 2, . . . ,m (76)

where f and g are functions of independent design variables x1, x2, . . . , xn. The

function f is called the objective function and identifies the quantity to be minimized

(or maximized). The design restriction in the form of inequality constraint functions

g must be considered. The value m specifies the number of inequality constraints

of the problem. It should be noted that equality constraints may exist, but can

be algebraically represented by two inequality constraints with identical upper and

lower bounds. Thus, the equality constraints are removed from this formulation.

The independent design variables or design parameters are collectively described in

Equation (77) by the vector x̄, which is bounded by lower (x̄L) and upper (x̄U) bounds

such that

x̄L ≤ x̄ ≤ x̄U (77)

The numerical solution of constrained optimization problems can be transformed

into pseudo-unconstrained problems by introducing the Lagrange function. The con-

straint function is added to the objective function with the help of the Lagrange

multiplier vector, λ as shown in Equation (78).

L(x̄, λ) = f(x̄) + λTg(x̄) (78)

The optimization problem has been mathematically transferred into the determi-

nation of a saddle point on the Lagrange function (stationary problem). In order

to properly determine the saddle point the partial derivatives of the Lagrange func-

tion with respect to the optimization variables are necessary. Through the use of

the Kuhn-Tucker necessary conditions, an individual design point can be assessed for

optimality. These conditions are discussed in more detail in Vanderplaats [89].
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Solving the optimization problem requires an optimization algorithm. Gradient-

based methods, like the Sequential Quadratic Programming (SQP) method, are often

used and require the determination of first order derivatives of the objective and

constraint functions with respect to the design variables. In order to guarantee con-

vergence of the gradient-based methods, the functions as well as their 1st derivatives

must be continuous. The gradients can be either computed analytically or numer-

ically. Unfortunately, analytical gradients are generally difficult or impossible to

obtain due to high nonlinearity of the problem being solved. Numerical gradients

on the other hand, obtained from finite differences, can be spurious and not suitable

for gradient-based optimization. From this, selecting the correct size for the finite

differences can be problematic: too small and spurious gradients may occur, too large

and a loss of accuracy occurs. It is often advised that gradient-based methods be

used for linear structural analysis and certain simulations [65]. Unfortunately, most

IAD simulations do not meet these criteria.

In order to overcome the problems mentioned above and to obtain a smooth design

response, researchers have focused on approximation methods [90]. Two popular

approximation methods are the Response Surface Methodology (RSM) and Neural

Networks [91, 92]. In the following, an introduction into the methodology of RSM is

presented.

A.2.2 Metamodel-Based Optimization

Stander and Craig note that the Response Surface Methodology (RSM) has its origin

in the statistics and physical experimentation and has been the primary gradient-free

simulation based approach available [93, 94, 95]. Instead of utilizing local information

like gradients, RSM selects experimental design points that are optimally distributed

within the design space. Utilizing those experimental design points, approximative

surfaces are constructed. Rather than finding the optimum of the exact functions,
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the approximative surfaces are used. Because only a few experimental design points

are used to construct the approximation, this approach is relatively rapid and also

suited for applications in which experimental data is used directly.

The first step in the RSM is the definition of the form for the approximate func-

tions. LS-OPT allows for linear, elliptical (linear and diagonal terms), interaction

(linear and off-diagonal terms) as well as quadratic functions for the approximation.

The exact mathematical expression is then approximated as is shown in Equation (79)

y = η(x̄) ≈ f(x̄) =
L∑
i=1

aiφi(x̄) (79)

where φi are the basis functions that are dependent on the design variables x̄ and

weighting parameters ai to be determined. L is the number of basis functions that

are used to approximate the model. As examples, a linear approximation is shown in

Equation (80) and quadratic approximation is shown in Equation (81).

1, x1, x2, . . . , xn (80)

1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, . . . , x

2
n (81)

The generally accepted practice is to select the basis functions such that the

approximation surface is accurate enough to achieve fast convergence, but simple

enough to be used in numerous repeating calculations. Higher order basis functions

are more accurate than lower order functions. It would be advantageous to select the

functions on the basis of some knowledge about the true behavior of the structure

which is seldom known [96, 97].

A.2.2.1 D-Optimal Designs

A specific number, P , of experimental design points are needed, depending on the

order of approximation, for the second step of constructing the approximation. To
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account for noisy responses, it is common to use a 50% oversampling in the experi-

mental design points [98]. The actual number of experimental design points, P , also

influences the accuracy. Generally, the prediction accuracy of the response surface

improves as the number of points is increased; however, the computational cost in-

creases as well. The design points in the actual region of interest are chosen using

a factorial design that uses the D-optimality criterion [94]. An advantage in using

the D-optimality criterion is that it can be applied to irregularly shaped design re-

gions and any number of experimental design points can be considered [65]. The

D-optimality criterion states that the best set of design points selected from a basis

design is to maximize the determinant of XTX, which is a measure for the accuracy

of the approximation [99, 96].

As shown in in Equation (82), the unknown parameters, ai in Equation (79) are

determined on the basis of a least squares fit of the error, E(ā) between exact values

y(x̄p) and approximations f(x̄p) at the selected experimental design points.

E(ā) =
P∑
p=1

[
y(x̄p)− f(x̄p)

]2

=
P∑
p=1

[
y(x̄p)−

L∑
i=1

aiφi(x̄)
]2

→ min (82)

The solution for the unknown coefficients is as shown in Equations (83) and (84).

ā = (XTX)−1XT ȳ (83)

where the matrix X is:

X =
[
Xpi

]
=
[
φi(x̄)

]
=


φ1(x̄1) · · · φi(x̄1)

...
. . .

...

φ1(x̄p) · · · φi(x̄p)

 (84)

The final step is concerned with the prediction of optimized values for each de-

sign variable. This prediction is made on the basis of the response surface just now
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determined. LS-OPT automatically creates the next set of simulations (experimental

designs) using these optimized design variables.

A.2.2.2 Sequential Response Surface Method

The current work exploits the successive RSM option in LS-OPT in order to accel-

erate convergence. As a result, the region of interest is neither constant in size nor

is it fixed in space allowing for a convergence of the solution to a prescribed toler-

ance. Contraction and panning parameters control the successive adaptation of the

subregion [65]. Those parameters are dependent on the previous optimum design and

they are designed to reduce oscillation and prevent premature convergence [95, 100].

Figure A.1 highlights three possible cases for the adaptation of the region of interest:

(a) pure panning, (b) pure zooming, (c) a combination of both.

Figure A.1: Adaption of subregion: (a) pure panning, (b) pure zooming, (c) a com-
bination of both

An adaptive domain reduction strategy is used to reduce the size of the subregion

in order to accelerate convergence. During a particular iteration, new points are

located in a subregion of the design space. This, however, is typically only used

for an optimization process where the user is interested in the final optimum point

rather than a global exploration of the design space. Thus, using a sequential domain

reduction strategy is often used in parameter identification. SRSM allows the building
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of a new response surface (typically linear polynomial) in each iteration. The size of

the subregion is adjusted for each iteration and points belonging to the previous

iteration are ignored. To automate the successive sub-domain reduction scheme for

SRSM, the size of the region of interest (as defined by the range of each variable) is

adapted based on the accuracy of the previous optimum as well as the occurrence of

oscillation.

A variable subregion (trust region) has already been used in previous works [101,

102, 103]. Stander and Roux et al. provide a detailed description of SRSM [98].
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APPENDIX B

MATERIAL PROPERTY DETERMINATION

A silicone coated 200 denier Kevlar R© material underwent a series of pseudo-static

test to determine its mechanical properties, the results of which are provided in Lin

et al. [25]. Selected samples are included in this appendix as well. The tests were

performed by researchers at ILC Dover. The MAT FABRIC material model is used

throughout this work and a short description is provided in Section 2.3.2. This

appendix explains how the experimental test data were interpreted and reduced to

arrive at an appropriate set of material properties for use in the nominal analyses.

B.1 Experimental Data

The purpose of this appendix is to outline the steps taken to post process the exper-

imental load-deformation data obtained from the uniaxial tension and trellis-frame

tests into an appropriate format for the MAT FABRIC model with linear elastic

material properties.

B.1.1 Uniaxial Tension Test

The uniaxial tension tests in the 200 denier Kevlar R© warp and weft directions measure

load-deformation for the load interval [0,2500 N]. Five samples were tested in each

direction, with each sample undergoing ten load cycles. Figure B.1 shows the complete

load history for one sample (sample B) in both the warp and weft directions. Both

hysteresis and strain set are observed in the warp and weft directions. The loading

in the weft direction shows a longer period of lower stiffness. This is most likely

attributed to an increase in crimp in the weft direction.
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Subjecting the samples to repeated load-deformation cycles serves multiple pur-

poses. In addition to observing the hysteresis and strain set in the fabric samples, the

multiple cycles serve as means of removing kinks and crimp that occur from manu-

facturing and processing. It can be seen in Figure B.1 that after the first cycle, the

remaining cycles still contain a small amount of hysteresis but the drift in strain has

effectively stopped. The last cycle, as shown in Figure B.2, is used to proceed with

the post-processing.
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Figure B.1: 200 Denier Kevlar R© Warp and Weft Uniaxial Tension Test - All Ten
Cycles

B.1.2 Trellis Frame Test

A similar procedure for post-processing is followed for the trellis-frame test. One of

the objectives in Chapter 2 is to show that shear modulus can be obtained from the

bias-extension test, which is simpler and less expensive to carry out when compared

to the trellis-frame test. The data from the trellis-frame will be compared to data

from the bias-extension tests for validation purposes. Five samples were subjected to
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Figure B.2: 200 Denier Kevlar R© Warp and Weft Uniaxial Tension Test - Last Cycle

pure shear loading over five cycles. The last cycle from one of the samples (sample D)

is selected. Figure B.3 shows hysteresis in both tension and compression. It should be

noted that little to no drift was observed in the strain response over multiple cycles.
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Figure B.3: 200 Denier Kevlar R© Trellis Frame

B.2 Determination of Orthotropic Material Properties

The following properties are required for an orthotropic material definition: linear

elastic modulus in both fiber directions, Ea and Eb and Poisson’s ratios in both

fiber directions νab and νba. MAT FABRIC allows the input of Ea, Eb, and νab and

uses Hooke’s Law, as shown in Equation (85) to calculate the remaining value. In

addition, the model requires the input of a linear shear modulus, Gab. The a and b

fiber directions correspond to the warp and weft fiber directions.

νab
Ea

=
νba
Eb

(85)

The material model allows fiber directions to be defined relative to the material

coordinate system in the 3 or 4 node shell element. The material coordinate system

is defined by specifying an angle, β, relative to the local element coordinate system.

In LS-DYNA, the term local refers to the shell element coordinate system. This

system is determined from element connectivity, not some coordinate system defined

166



in the input deck. The node 1 to node 2 vector (n1-n2) is the local x-direction, the

local z-direction is the normal to the shell (cross product of n1-n2 and n1-n4) and the

local y-direction is the cross product of z and x. While the fiber orientations can be

arbitrary for an orthotropic analysis in LS-DYNA, all of the analyses in this work

assume the fibers to be orthogonal.

There exists several membrane element formulations within MAT FABRIC that

alter the stress-strain calculations within LS-DYNA. While rigorous mathematical

derivations of these formulations are unavailable due to the nature of the commercial

code, the LS-DYNA Keyword and Material Model user manuals provides some ref-

erence [66]. The least computationally intensive and default formulation is form 0.

This formulation assumes orthogonal fiber directions and is based on engineering

stress and strain. The most expensive formulation is form 14 which is not limited

to small strain assumptions and is formulated in terms of Green strain and the 2nd

Piola-Kirchhoff (PKII) stress. The addition of quadratic terms gives the Green strain

tensor its rotation independence. Form 14 allows to use of nonlinear stress-strain

data, but calls on a linear elastic moduli if nonlinear data is not present. Recent

updates have allowed the input of nonlinear data at negative values of strain. This

is available in order to model the compressive stresses resulting from tight folding of

an airbag for example. Non-orthogonal fiber directions are allowed for form 14, so

fiber directions must be specified in the input deck.

B.2.1 Uniaxial Tension Test Data - Sample B

The load-extension data from the warp and weft directions is shifted to remove the

strain set in the data and allow the curves to originate at (0,0) as shown in Figure B.4.

It should be noted that nonlinear stress-strain data used in form14 have to be

converted from Cauchy stress and stress values typically obtained from mechanical
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Figure B.4: 200 Denier Kevlar R© Warp and Weft Uniaxial Tension Test - Shifted, Last
Cycle

testing to the Green strain and PKII stress required by the formulation. The uniax-

ial test is carried out using a strip of fabric material with the initial length, l0, and

cross-section area, A0. The measurements taken from the test are the grip handle dis-

placement, d, and the force, f(d), as a function of displacement. In lieu of calculating

engineering stress and strain from force and displacement, Equations (86) and (87)

can be used to go directly to Green strain and PKII stress. The stress-strain curve

to be used in the material model is thus obtained by the following transformations to

Green strain and PKII stress and shown in Figure B.5.

EG =
1

2

(
d

l0
+ 1

)2

− 1

2
(86)

SPKII =
f(d)

A0

l0
(l0 + d)

(87)

The ramp down or unloading portion of the curve is not being modeled and thus
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Figure B.5: 200 Denier Kevlar R© Warp and Weft Uniaxial Stress Vs. Strain

Figure B.6 shows on the loading phase. A short region of lower stiffness followed by

a linear stress-strain response is observed in the data. The initial region is attributed

to mostly crimp interchange. As this phenomenon can be neglected for biaxial loaded

cases, only the later linear portion is considered for the calculation of the warp and

weft elastic moduli.

As shown in Figure B.7, only the linear portions of the stress-strain responses are

utilized. When modeling this data using a linear curve fit, both the warp and weft

curves have non-zero y-intercepts. The intercepts are neglected and the samples are

assumed to have a linear response during all phases of loading. This is consistent

with the work of Kabche et al [43].

The linear curves for the warp and weft direction curves produces slopes equal

to 8409.8 MPa and 7673.4 MPa respectively. The mechanical behavior of the this

material indicates that the Poisson’s ration for a textile under uniaxial loading can

be nonlinear and significantly greater than the value of 0.3 used by Tanner [15]. This
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Figure B.6: 200 Denier Kevlar R© Warp and Weft Uniaxial Stress Vs. Strain - Ramp
Up
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Figure B.7: 200 Denier Kevlar R© Warp and Weft Uniaxial Stress Vs. Strain - Linear
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property of textiles make it difficult to match Poisson’s ratio using MAT FABRIC.

As discussed earlier, the lateral contraction in the fabric is caused by the crimp

interchange seen at the low load levels in uniaxial tension. Since the crimp interchange

can be neglected in cases of biaxial loading like that of air inflated fabric structures.

Therefore, it is expected that νab ≈ 0. For purposes of the nominal analysis, the value

utilized is 0.3.

B.2.2 Trellis-Frame Test Data - Sample D

Only the tensile portion of the load history is utilized. Figure 29 provides reference to

the equations that are utilized to convert load-deformation measurements into shear

stress-strain data as shown in Figure B.8.

The force measured from the INSTRON load cell is converted into shear force in

Equation (88) using the frame angle φ which is a function of the cross-head displace-

ment and the frame kinematics.

F =
Faxial
2cosφ

(88)

In Equation (88), F is the resulting shear force. In Equation (89), Lfabric is the

side length of the fabric sample. The shear stress near the center of the sample is

calculated using Equation (89).

τ =
F

Lfabrict
(89)

The shear strain in Equation (90) is a function of the cross-head displacement and

Lframe which is the side length of the trellis frame fixture.

γ = cos−1

[
1√
2

+
δ

2Lframe

]
(90)

This is working is limited to modeling only the ramp up portion of loading. The

unloading is neglected and thus can be remove from the stress-strain plot as shown in
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Figure B.8: 200 Denier Kevlar R© Trellis Frame Stress Vs. Strain

Figure B.9. As discussed in Section 1.4.1, the results show trends that are consistent

with the assumption that the initial shear response was dominated by the coating

and with increased shearing, the behavior transitioned to that of an uncoated fabric.

The initial region of low shear strain is modeled well using a linear curve fit with a

slope of 0.898.

Table B.1 provides a summary of nominal set of material model input parameters

obtained from experimental data.

Table B.1: Linear Elastic Orthotropic Material Properties

Property Symbol Value Units
Density ρ 1.101x10−9 ton/mm3

Thickness h 0.202 mm
Young’s Modulus, warp direction Ea 8409.8 MPa
Young’s Modulus, weft direction Eb 7673.4 MPa

Poisson’s Ratio νab 0.3
Shear Modulus Gab 0.898 MPa
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Figure B.9: 200 Denier Kevlar R© Trellis Frame Stress Vs. Strain - Ramp Up
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APPENDIX C

YARN GEOMETRY COMPUTATION

Microscopy is used to obtain cross-sectional images of a fabric cut along a particular

plane. In order to restrict the movement of fibers during the cutting phase the fabric

is often first cast in a resin. After allowing the resin to cure the composite structure

can be cut along a desired plane. The surface is then usually polished to obtain a

smooth surface. In the case of a composite that is already suspended in a matrix

or coating, the casting and polishing steps can be skipped depending on the degree

to which the yarns are restricted from moving. A microscope is used to take highly

magnified images of the structure.

Figure C.1: Kevlar R© 49 Face Image Taken Using Keyence Digital Microscope with
100 X Magnification

For this investigation, multiple samples were cut from a single roll of fabric. The
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roll of fabric was provided by ILC Dover and was left over from a wind tunnel test

campaign [2, 15]. The square samples were cut to be approximately 2 inches wide. The

samples already contained a coating, so the cutting of the fabric did not significantly

alter the architecture.

Figure C.2: Kevlar R© 49 Cross-Section Image Taken Using Keyence Digital Microscope
with 150 X Magnification

Each sample was placed under a microscope and multiple images were taken of the

sample faces and cross-sections as shown in Figures C.1 and C.2. The measurements

were taken manually at multiple locations.

Images from five samples were used to obtain measurements. Six measurements

were taken per image. Measurements of the same characteristic were taken on the

face and cross-section for comparison purposes. The measurements were averaged

across the five samples. Table C.1 provides a summary of the measurements taken

using the Keyence Digital Microscope. The table sorts the measurements in terms of

the yarn width, w, yarn spacing, s, and yarn thickness, h. The subscripts w and f

refer to the warp and weft directions respectively.
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Table C.1: Optical Microscopy Image Measurements

Location Type Measurements (µm)
1 2 3 4 5

Face ww 522 596 551 543 524
Face wf 586 504 600 616 579
Face sw 727 710 745 714 718
Face sf 755 747 716 716 675

Cross Section h 75 76 83 120 101
Cross Section s 751 738 754 735 733
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APPENDIX D

RELEVANT PUBLICATIONS

D.1 Journal Articles

1. Hill, J.L., and Braun, R.D.; “Numerical Determination of Mechanical Prop-

erties for Flexible Material Systems,” Computers and Structures, Submitted in

March 2016.

2. Hill, J.L., and Braun, R.D.; “Application of Parameter Identification to Cur-

rent Experimental Mechanical Property Determination Methods,” Finite Ele-

ments in Analysis and Design, (to be published).

3. Hill, J.L., and Braun, R.D.; “Application of Parameter Identification to a

Mesomechanical Material Model,” Computers and Structures, (to be published).

D.2 Conference Papers

D.2.1 Published

1. Smith, B.P., Hill, J.L., Clark, I.G., Braun, R.D.; “Oscillation of Supersonic In-

flatable Aerodynamic Decelerators at Mars,” AIAA 2011-2516, 21st AIAA Aero-

dynamic Decelerator Systems Technology Conference, Dublin, Ireland, May

2011.

2. Hill, J.L., and Braun, R.D.; “Implementation of a Mesomechanical Mate-

rial Model for IAD Fabrics within LS-DYNA,” AIAA 2013-1367, 22nd AIAA

Aerodynamic Decelerator Systems Technology Conference, Daytona Beach, FL,

March 2013.

3. Hill, J.L., and Braun, R.D.; “Modeling of Plain Woven Fabrics for Inflatable
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Aerodynamic Decelerators,” AIAA 2014-0631, 55th AIAA / ASMe / ASCE /

AHS / SC Structures, Structural Dynamics, and Materials Conference, National

Harbor, MD, January 2014.

4. Hill, J.L.; and Braun, R.D.; “Explicit Finite Element Analysis of Inflatable

Braided Strapped Beams,” AIAA 2015-0804, 23rd AIAA Aerodynamic Decel-

erator Systems Technology Conference, Daytona Beach, FL, April 2015.

D.2.2 Planned

1. Hill, J.L., and Braun, R.D.; “Numerical Determination of Mechanical Proper-

ties for Flexible Material Systems,” AIAA 2017-pending, 58th AIAA / ASMe /

ASCE / AHS / SC Structures, Structural Dynamics, and Materials Conference,

Gaylord, TX, January 2017.
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