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ABSTRACT

Light matter interaction in chaotic resonators

Changxu Liu

Chaos is a complex dynamics with exponential sensitivity to the initial conditions.

Since the study of three-body problem by Henri Poincare, chaos has been exten-

sively studied in many systems, ranging from electronics to fluids, brains and more

recently photonics. Chaos is a ubiquitous phenomenon in Nature, from the gigan-

tic oceanic waves to the disordered scales of white beetles at nanoscale. The pres-

ence of chaos is often unwanted in applications, as it introduces unpredictability,

which makes it difficult to predict or explain experimental results. Inspired by how

chaos permeates the natural world, this thesis investigates on how the interaction

between light and chaotic structure can enhance the performance of photonics de-

vices. With a proper design of the lighter-mater interaction in chaotic resonators, I

illustrate how chaos can be used to enhance the ability of an optical cavity to store

electromagnetic energy, realize a blackbody system composed of gold nanoparticles,

localize light beyond the diffraction limit and control the phase transition of super-

radiance.
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sity, P (Ē), retrieved from NSOM experiments for d-1 (triangle mark-

ers). (b) Comparison of FDTD results (triangle markers) and NSOM

experiments for the case of d=7 (circle markers), with Eq. 4.1 for

δφ = π/10 (diamond markers). In both panels, the probability law

dependence of the classical random walk (dashed line) is also shown

for reference. (c) Time evolution of the electromagnetic energy den-

sity when a nanoscale rogue wave settles in. (d) Section of the energy

distribution along x when the rogue wave exhibits the maximum in-

tensity. (e) Temporal dynamics of the rogue wave energy peak. In (c)

the color bar on the right indicates the values of the electromagnetic

energy density, which are normalized with respect to the significant

wave height of the field intensity (SWHI). . . . . . . . . . . . . . . . 97



18

4.5 Details of Fig .4.4b. (a) shows (circle markers) the time average en-
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Chapter 1

INTRODUCTION AND

SUMMARY OF

EXPERIMENTAL AND

THEORETICAL RESULTS

1.1 Evolutionary photonics inspired by nature

Through millions of years of evolution, Nature has made unparalleled optimizations

onto the animals and plants. In spite of limited range of component materials in

the ambient environmental, the Nature Selection developed amazing strategies to

optimize the structure of the creating, providing a cornucopia to inspire scientists

and engineers to development new technologies [1, 2, 3, 4].

Figure.1.1 illustrates several typical examples how the Nature selection helps the

animals to develop elegant architectures for the optimization of optical properties.

Cataglyphis bombycina, a silver ant living in Sahara can survive in the scorching

environment with the help of dense arrays of triangular hairs (shown in Fig. 1.1a to

c) [5]. Such structures not only generate the silver color, but also enhance both the
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solar reflection in visible and near-infrared and infrared thermal radiation to the

environment, leading to the development of passive radiative cooling of objects [6].

Callophrys gryneus, a butterfly native to North America is demonstrated with bril-

liant colorful wings [7] (Fig. 1.1 d to f,). Through nature selection, the butterfly de-

veloped the microstructures with ordered periodicity. Such structures form a pho-

tonics crystal that perfectly reflects the light within a certain bandgap and gener-

ates the vivid color that can protect them away from the predators.

Figure 1.1 g demonstrates scarlet macaw, a larger colorful South American parrot.

The sponge in the blue feather barbs forms a amorphous photonic structures with

short-range order and long-range disorder (Fig. 1.1i), an natural optimization to

maximize diffuse coloration[8].

The last example is the Cyphochilus, a white beetle in southeast Asia. The insect

developed the ultra-brilliant color through evolution, providing a perfect camouflage

in the fungi where it lives (see Fig. 1.1 j and k ). Quite interestingly, the brilliant

white color of the insect is not due to the white pigment, but due to the diffusion

and broadband reflection of light from the disordered thin scales. The thin scales

with only 5µm form a dense scattering media resulted from the structural chaos,

generating ultra-white color [9].

Following the examples mentioned above (especially the last one with disordered

structure), we may propose a question, can we harness the chaos with the assis-

tance of the inspiration from Nature? The presence of chaos is often unwanted, as

it introduces unpredictability, which makes it difficult to predict or explain exper-

imental results. On the other hand, chaos is a ubiquitous phenomenon in Nature,

such as the macroscopic oceanic hydrodynamics and the disordered scales of white

beetles with micrometer size. With proper design, we may take advantages of the

chaos that can ameliorate the performance of photonics devices. Specifically Con-

sidering the light-matter interaction in a resonator, chaos can be used to enhance
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the capability of an optical cavity to store energy (Chapter2), realize a blackbody

at nanoscale (Chapter3), localize light beyond the diffraction limit (Chapter4) and

control the phase transition of superradiance (Chapter5).
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Figure 1.1: (a) Cataglyphis bombycina, a silver ant living in Sahara, Africa.
(b)SEM images of the head of the ant covered by the triangular hairs. (c) The
cross-section of the hairs of by focused ion beam. [5]. (d) Callophrys gryneus, a
butterfly native to North America. (e) the ventral wing cover scales of the butter-
fly. (f) SEM image of the dorsal surface of the scale with periodic structures. [7] (g)
Scarlet macaw, a larger colorful South America parrot. (h) Image of cross-section
of a blue barb (i) cross-sectional SEM picture of the spongy keratin structure. [8]
(j) A picture of Cyphochilus, a white beetle in south-east Asia. (k) SEM picture of
internal scale of the beetle. [9]
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1.2 Broadband light harvesting based on chaotic

resonator

Harvesting broadband light efficiently into an optical resonator is of substantial in-

terest for many practical applications, ranging from photovoltaics to nonlinear op-

tics [10, 11]. Always there is a trade-off between the bandwidth and the coupling

efficiency. For a monochromatic light, the energy can be effectively coupled into

the cavity with the resonance matching the wavelength. But the coupling efficiency

drops drastically as the wavelength goes outside the resonance.

The maximum power that can be transferred depends on the coupling coefficient

and loss (lifetime) of each given mode [12]. The maximum efficiency reaches 50%

when the coupling strength is equal to the loss. However, the lifetimes of the modes

supported by resonators with classical geometries vary across the spectrum, making

the effective energy transfer at few modes inside the band and thus limit the aver-

age coupling efficiency for a broadband applications.

Inspired by the nonclassical shape of chloroplasts in the photosynthesis, we over-

come this intrinsic limitation by exploiting specific shape deformations to the res-

onators. The chaos introduced to the geometry randomizes the trajectories for light

rays, manipulating all lifetimes of the modes towards a single value. The conver-

gence makes the energy available in the spectrum equally distributed to each degree

of freedom (the mode in the cavity), which is similar to the well-known Brownian

motion. Such energy equipartition dramatically enhance the energy storage capabil-

ity for a broad band light source.

Our analytical, numerical and experimental results validate the increment of the

energy trapped inside the cavity, 600% in 2D FDTD simulation and 12% in 3D ex-

periment separately. With the assist of chaos, the energy trapped in the cavity is

considerable enhanced without introducing extra material, opening a cost-effective
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avenue for the broadband energy harvesting.
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1.3 Bio-inspired Structural darkness created from

disordered gold nanostructures

Blackbody is a theoretical material that absorbs radiation at all angles, wavelengths

and polarizations without any transmission and reflection. Blackbody emits as

much energy as, or more energy than, any other body at the same temperature ac-

cording to the second law of thermodynamics, behaving like a perfect absorber and

emitter. As an ideal source for energy absorption and emission, black material is of

paramount importance in a variety of fields ranging from solar energy harvesting to

thermal light emitting sources and sensors. Significant efforts have been devoted to-

wards the ideal material, and vertically-aligned single-walled carbon nanotube array

is of one candidate to achieve the high broadband absorption [13]. However, such

structures suffer from a comparatively large thickness (hundreds of microns) and

lose of flexibility in practical applications.

Inspired by the specific kind of beetles, Cyphochilus, we developed the blackbody

system from gold nanoparticles. The brilliant white color of these beetles is not

due to a white pigment, but stems from a disordered network of thin scales that

scatter incident light at all wavelengths. After reversing the effect and applying a

conformal optical mapping, a blackbody system can be realized from a random dis-

tribution of gold nanoparticles. The material has extremely high broadband absorp-

tion (>98%) between 400-1200nm, with a tiny filling factor (1.5 · 10−5) . The thin

film made from such nanoparticles shows a high absorption (98% averaged over the

spectrum with 10 µm thick) nearly independent of incident angle.

Based on the nano-absorber, we are managed to generate mono-color emission through

light condensation process without the need of any resonance. The light condensa-

tion process can select all the available spectral energy and build up it to the band

edge with exponential efficiency.
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1.4 Subwavelength rogue waves generated through

chaos on a photonic chip

Rogue waves, also known as freak waves, are extreme events characterized by the

appearance of localized waveform with exceptional high amplitude. The historical

record of rogue waves is dated back to 1861, where an oceanic wave with 40 meters

has been observed near Eagle Island, Mayo, Ireland. More recently, the existence of

rogue waves was confirmed by the radar images from two European Space Agency

satellites, showing ten giant waves with height over 25m. Since then, freak waves

have been extensively studied in various scientific fields, ranging from oceanography

to acoustics, capillary waves, microwaves, and beyond [14]. In Optics, rogue waves

have been reported in microstructure optical fibers, lasers operating in both mode

locking and continuous regime, and oscillators realized in liquid crystals media [15].

There is a tremendous amount of energy embedded inside the rogue waves, pro-

viding a possibility to the extreme localization of waves. However, the probabilis-

tic fashion makes them difficult to predict and hard to generate on demand. Using

chaotic optical resonators with engineered losses, we can trigger the onset of rare

events akin to rogue waves controllably. Gigantic optical pulses are formed in both

space and time inside the cavity, coherently building up all the energy available in

the spectrum. Through near-field imaging experiments, we record confined rogue

waves characterized by a spatial localization of 206 nm and with an ultrashort du-

ration of 163 fs at a wavelength of 1.55 µm. Without using any complexed metallic

nanostructures or sophisticated wavefront shaping techniques, chaos helps the for-

mation of the subwavelength localization in a homogenous media, opening a new

path for the nano-fusing in linear regime.
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1.5 Observation of superradiant phase transition

in quantum chaos

Superradiance is process of enhanced spontaneous radiation resulting from the co-

herent cooperation between atoms through a common radiation field. An atomic

system is composed of N two-level atoms, with only one at the excited state. When

the atoms are closely located, the decay rate of the system is enhanced by N times

compared to the intrinsic decay rate of a single atom. Such effect was firstly pre-

dicted by Robert Dicke in 1954 [16, 17] and experimentally observed in 1973 [18].

Since then, such phenomena has been reported extensively in different systems,

both in classical an quantum regime [19].

Despite a large body of theoretical results, however, many questions about super-

radiance are still debated; this lack of experimental evidence originates, in part,

from the difficulties in replicating the original setup investigated by Dicke. We in-

troduce an engineered chaotic optical cavity with controllable losses that mimics

the dynamics of a quantum system, and we conduct a detailed study of superradi-

ant states. We modulate the cavity losses and investigate both how superradiance

is dynamically approached and the universal hallmarks of this effect.

Our experimental setup takes advantage of the technology of two-dimensional pho-

tonics crystals, which makes it possible to fabricate micro-sized, transparent cavi-

ties with no absorption losses and completely controllable properties. When light

enters a chaotic resonator, it bounces against the resonator walls in a random fash-

ion and excites cavity resonances. When the cavity losses are sufficiently small, the

cavity resonances do not interact. Above a specific loss threshold, however, reso-

nances cooperate and superradiant states are formed, with the system entering into

a new self-organized phase. We use experimental results, analytical predictions, and

numerical modeling to demonstrate that multiple superradiant states are gener-
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ated. We employ random-matrix theory to determine the nonlinear dynamics of the

Dicke transition.
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Chapter 2

ENHANCED ENERGY

STORAGE IN CHAOTIC

OPTICAL RESONATORS

2.1 Energy storage inside a cavity

The enhanced interaction between light and matter in optical cavity resonators is

an interdisciplinary subject of a great interest as it affects many areas of condensed

matter physics, including cavity electrodynamics [20], quantum and nonlinear op-

tics, but also more applied aspects such as optical signal processing [21, 22, 23] and

resonantly enhanced optical absorption [24]. All these applications are enabled by

highly optimized optical resonators that can efficiently trap electromagnetic energy

in narrow frequency bands. In conventional cavities, there is a simple tradeoff be-

tween bandwidth and the enhancement of trapped energy: the higher the enhance-

ment, the narrower the bandwidth. A great challenge in the field is therefore to de-

velop a new generation of cavities that are able to break this fixed relationship and

store more energy in a given bandwidth window than conventional cavities would

allow. These are expected to provide new breakthroughs in the field, thus accessing
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a novel series of applications ranging from sensing to lasers, energy harvesting and

cavity quantum electrodynamics.

The maximum power that can be transferred into a conventional resonator de-

pends on the coupling coefficient and loss of each given mode, and tends to vary

across the mode spectrum, especially when broadband operation (∆λ on the scale

of hundreds of nanometres) is considered. In addition, classical two- and three-

dimensional geometries tend to accommodate modes with very different lifetimes

in the same spectral region, a good example being the widely used photonic crys-

tal L3 type cavity that features modes of very different Q-factor closely spaced

in frequency [25]. Therefore, the use of classical resonators for broadband energy

storage is limited. Here, we overcome this intrinsic limitation by exploiting specific

shape deformations that support chaotic trajectories for light rays. Surprisingly, we

note that in a chaotic cavity regardless of any regime of coupling the lifetimes of

all modes tend towards a common value, thus significantly improving the transfer

of energy into the cavity and increasing the energy-storage capability of the cavity.

Such chaotic resonators [26] have been well exploited in the field of laser devices

[27, 28, 29, 30, 31, 32, 33, 34]. We also note that the mode spectrum of deformed

microsphere resonators has been studied recently, with remarkable changes in Q-

factors being observed [35]. However, despite this large body of literature, noth-

ing is known about the capacity of such resonators to store and collect light energy

over a broad spectral range.

The increased energy storage capacity of a chaotic resonator when compared to a

classical one can be explained intuitively by adopting a ray optics approach and

considering that a suitable shape deformation is accompanied by the breaking of

symmetry in the structure. As a consequence, the deformed resonator cannot sup-

port any cyclic motion of light, so the trajectory of light rays changes from regular

to random, statistically resulting in a larger lifetime of the photons in the cavity
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[26]. To clarify this result, we start our analysis from a symmetric (classical) res-

onator and observe its capacity to trap energy as it is deformed. We define a defor-

mation parameter α, which we will use in the following description as a handle to

deform any given geometry, where α = 0 indicates the original, undeformed struc-

ture and α > 0 indicates a proportionally deformed geometry. For example, a circle

would be described by α = 0, and a deformed circle by α > 0, with a describing

the degree of deformation. And the value of α depends on a specific geometry. This

parameter is generic and can be used to describe the deformation of any type of

resonator, for example, square or disk in two dimensions or cube or sphere in three

dimensions. In general, the larger a is, the larger the degree of chaos, until a satu-

ration value is reached.
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2.2 A single ab initio experiment

Figure 2.1: Ab initio results of chaotic energy storage with a super-continuum
light source from 300 to 1000 nm. (a) Snapshot of the electromagnetic energy den-
sity H distribution after t = 45fs in a resonator (dashed line) with A=30 µm2 for
α = 0 (a) and α = 1.5 (b). (c) Time evolution of the average electromagnetic en-
ergy 〈E〉 for different α.

The theory is more easily developed in two dimensions, starting from a circular res-

onator. Our set-up consists of a silicon dielectric resonator with air holes, the shape

of which is defined by the following function in polar coordinates (ρc, θc):

ρc =

√
A

π
− α2

2
+ α cos θc, 0 ≤ θ ≤ 2π (2.1)
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where A is the resonator area and α ≥ 0 is the single parameter that controls the

resonator shape. Equation 2.1 belongs to the family of analytic curves investigated

by Robnik: for α > 0, equation 2.1 supports chaos in the trajectory of light rays,

which randomly bounce inside the resonator [36]. From a physical perspective, the

shape defined by equation 2.1 is equivalent to an asymmetric deformation of a disk,

and can be realized experimentally with conventional nanofabrication tools.

In our simulations, we fixed the resonator area to A = 30µm2 and numerically cal-

culated the electromagnetic energy E stored inside the resonator for varying values

of α. Although the value of α in equation 2.1 is not bound to an upper value, we

note that the system reaches saturation for a maximum degree of chaos described

by α = 1.5 (see Section 2.7 for more details). We therefore restrict our numeri-

cal analysis to α ∈ [0 1.5]. The calculation of the electromagnetic E(t) =
∫
D
Hdr is

performed by a numerical integration of the energy density H(ρ; t) = 1
2
(E·D+E·D)

in the volume D encompassed by the resonator and defined by ρ ≤ ρc and 0 ≤

θ ≤ 2π. We simulated the input from a supercontinuum source centered at z = 0

and propagating along z for wavelengths between λ = 300 nm and λ = 1300 nm,

which simulates a broadband source such as sunlight. Figure 2.1 a,b shows a time

snapshot of the spatial distribution of H after t = 45 fs, and illustrates how the ge-

ometry of the resonator changes with a (Fig. 2.1 a,b, dashed line). As seen, even

a small deformation in shape (at a constant volume) yields a radically different

behavior in the distribution of light energy inside the resonator. Figure 2.1c, con-

versely, displays the time-averaged energy 〈E〉 = 1
t

∫ t
0
E(t′)dt′ evolution with increas-

ing parameter α. Remarkably, the introduction of chaos into the motion of light

is accompanied by a dramatic change in the energy stored inside the resonator;

indeed, the steady-state regime (when the insertion of energy balances radiation

losses) shows an approximately sixfold increase even for α = 1.5 (Fig. 2.1b). This

energy accumulation grows with the deformation, and rises monotonically as α in-
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creases from 0 to 1.5.

We use time-dependent coupled mode theory (TDCMT) [12] to develop a simple

and reliable model for the lightresonator interaction. The system can be modelled

as a side-coupled resonator, the dynamical equations of which can be easily solved

to obtain energy Ek and power Pk stored in the the kth mode (Section 2.6):

Ek =
τk

2

τe
(1− e

t
τk )2,Pk =

2 τe
τk0

(1 + τe
τk0

)2
|S|2 (2.2)

where |S| is the input source power and 1/τk = 1/τk0 + 1/τe is the mode decay

rate (τk0 is the intrinsic cavity decay rate of the kth mode and 1/τe is the escape

rate due to coupling with the environment). The power Pk strongly depends on

the ratio between the radiation and the coupling loss through the parameter τk0/τe,

achieving the maximum value of Pk = 0.5|S|2 when τe = τk0. Outside this match-

ing condition, the power coupled into the structure decreases very quickly. To study

how the dynamics of the decay rates can be affected by chaos, we began by calcu-

lating the evolution of the decay rates τk0 for different a in the resonator defined by

equation 2.1. In a series of finite-difference time domain (FDTD) simulations, we

first excited the resonator with a source and then monitored the energy evolution

E(t) when the source was switched off. The decay constants τk0 are extracted from

the time energy evolution E(t) =
∑

k |Ak|
2e−2t/τk0 by applying the Prony method

[37].
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t

Figure 2.2: Chaos-induced modal collapse. (a) Log-plot of the energy E relaxation
dynamics for α = 0 and α = 1.25, showing FDTD results (symbols) and Prony
exponential fits (solid lines). (b) Normalized distribution of the difference between
the maximum and minimum decay constants ∆(α)/∆(0) = ∆/∆0 versus α. (c)
Steady-state energy distribution 〈Es〉 = 〈E〉 (t = 45 fs) for varying values of α.
(d) to (e) Effects of convergence of the decay constants τk on the power Pk trans-
ferred into the structure. This behavior is plotted versus τe/τk0 as a solid line. In
the non-chaotic situation (d) the distribution of τe/τk0 (coloured arrows) is broad
and only a few frequencies efficiently transfer power. In the strongly chaotic case
(e), conversely, a condensed distribution of τe/τk0 yields the same contribution for
all wavelengths and a much larger number of frequencies contribute to store energy.

Figure 2.2a shows two typical examples of numerical simulations (markers) and a

fit (continuous line) for two different values of a. In general, modes of different fre-

quency exhibit different decay rates 1/τk0. However, when strong chaos is generated

in the structure, the distribution of τk0 converges towards a frequency-independent

delta function. In fact, calculations that start from initial conditions already be-

longing to the chaotic region of phase space will always be distributed according
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to the same probability distribution, which defines the so-called natural invariant

measures of the system20. As a result, when the entire phase space is dominated

by chaos, we observe the same evolution of the decay rates, for all possible initial

conditions, towards a frequency-independent decay rate τk0 = τ0. A convenient way

of highlighting this dynamics is to plot the difference between the maximum and

the minimum decay constant, ∆(α) = max(τk0) − min(τk0), for different values of

a (Fig. 2.2b). We clearly observe a transition scenario. Below the chaos threshold,

α ≤ α∗, the dynamics simply shows an oscillation of ∆(α) around the same aver-

age value, while above it (α ≥ α∗), a clear convergence of ∆ → 0 is observed. The

value α∗ depends on the specific geometry of the chaotic resonator, and can be as-

sessed by calculating the relative area of the system phase space that encompasses

chaos (Section 2.7). The effect of this convergence towards a single lifetime of all

the modes on the energy collected by the resonator can be readily evaluated from

equation 2.2 . The total power transferred into the structure, in particular, then be-

comes frequency-independent ( Pk = P0 = 2|S|2 τe
τk0

(1 + τe
τk0

)−2 ), and every mode

contributes to the same extent to storing energy inside the resonator. When many

modes are present in the resonator, their large number results in a coherent buildup

process that leads to a significant accumulation of energy (Figs 2.1b, 2.2c). In the

non-chaotic case, conversely, much fewer modes are able to efficiently transfer en-

ergy into the resonator due to the mismatch between τk0 and τe (Figs 2.1b, 2.2d).

The chaos-assisted energy buildup process observed when (α ≥ α∗ originates from

the fundamental thermodynamic principle of equipartition, which can be high-

lighted using equation 2.2. By substitutingτk0 = τ0 into the left-hand side of equa-

tion 2.2, and assuming a dense distribution of modes, with wavelength separation

λk+1 − λk = dλ = λ, we obtain

∂E
∂λ

= const. = E0, (2.3)
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which can be regarded as an equipartition theorem, with the energy equally dis-

tributed among all degrees of freedom (that is, the spectral wavelengths) due to the

strongly chaotic nature of the system. Equipartition is at the foundation of classi-

cal statistical mechanics, and forms the basis for thermodynamic ensembles and the

observation of different phases of matter [38]. Applied to photonics, we have the

remarkable opportunity of exploiting this principle for enhancing the energy con-

finement properties of photonic structures. As already discussed above, this oppor-

tunity was confirmed by calculating the energy stored for a broadband source in the

two limiting conditions of a fully chaotic geometry. (Fig. 2.3, squares) and a non-

chaotic geometry (Fig. 2.3, circles), finding a sixfold enhancement in the chaotic

case.

Figure 2.3: Results for a variable-bandwidth source. FDTD calculated average en-
ergy 〈E〉 versus time for α = 1.5 and different normalized bandwidth ∆λ symmetri-
cally centered at 800 nm. Inset: FDTD computed steady-state average energy 〈Es〉
versus bandwidth ∆λ for α = 0 (circle markers) and α = 1.5 (square markers).
The solid line indicates the behaviour predicted by equation 2.3. The energy 〈Es〉 is
normalized to the maximum value 〈Em〉 attained for α = 1.5 and ∆λ = 1µm.
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2.3 Two-dimensional experiments in photonic-

crystal cavities

Energy equipartition and chaotic energy harvesting occur because of the conver-

gence of the modal lifetimes towards a single value τk0. We therefore begin our ex-

periments by investigating the occurrence of this phenomenon in real structures

with controllable chaoticity. We designed and experimentally realized a series of

planar two-dimensional stadium-shaped resonators in planar photonic crystals fab-

ricated in Silicon On Insulator (SOI). The substrate consists of a 220-nm-thick sil-

icon layer on a 2-mm-thick insulator buried oxide. The patterns were written into

ZEP resist on a modified LEO/RAITH system with 2 nm step size and etched with

a 50:50 mixture of SF6 and CHF3 gases in a reactive ion etching machine. After

stripping the residual resist, the sample was cleaved for end-fire coupling.

Figure 2.4: Summary of two-dimensional experimental results. (a) to (c) SEM im-
ages of the sample geometry for α = 0 (a), α = 0.75 (b) and α = 1 (c). (d) Ex-
perimental spectrum (circles) and theoretical reconstruction via wavelet multiscale
analysis (solid line) for A = 400µm2 and α = 1; PDS, power density spectrum. (e)
Probability distribution P (δω) of the resonance widths δω calculated for the fully
chaotic resonator (α = 1). (f) Standard deviation σ(δω)of the resonance widths
versus α.
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Figure 2.4 a-c presents a set of scanning electron microscopy (SEM) images that il-

lustrates how the shape of the resonator evolves with a change in the deformation

parameter α. The shape starts as a regular square (Fig. 2.4,a) for α = 0 and be-

comes a fully chaotic stadium-shaped resonator (Fig. 2.4c) for α = 1, with strong

chaos already developed for α ≥ α∗ = 0.5. Since the α is an geometric depen-

dent parameter, the value goes from 0 to 1 in this case, which is different from the

previous Robnik billiard with 0 6 α 6 1.5. The parameter a =
√
A/(4 + πα2)

guarantees a constant resonator area A as α is varied (Fig. 2.4b). As the photonic-

crystal lattice was designed to exhibit a bandgap around 1.5µm with a bandwidth

of ∼ 400 nm, any electromagnetic wave in this range is perfectly reflected at the

photonic-crystal boundaries, and can only escape via the input/output waveguides

of the structure or by scattering at imperfections. The system can therefore be de-

scribed as a two-dimensional resonator with measurable losses, and the modal de-

cay constants τk can be extracted from the transmitted spectrum. We used the

multiscale analysis described in ref. [39], which provides an excellent reconstruc-

tion technique even when the resonances overlap. The method fits the spectrum by

means of a sum of suitable wavelet functions, allowing the wavelength position λ0

and the widthδλ of each mode to be computed. The resonance widths δλ are then

inversely proportional to the modal decay rates 1/τk = δω = cδλ/nλ2
0 (ref. [12]).

To collect statistically relevant data, we fabricated several samples with different

areas A (400 µm2, 800 µm2 and 1200 µm2), and for each area we considered five

different degrees of chaos, expressed through the deformation parameters α = 0,

0.25, 0.5, 0.75 and 1. To characterize the samples, we used polarized light in the

wavelength range 1520-1620 nm. Figure 2.4d shows a portion of one of the mea-

sured spectra, together with its reconstruction via multiscale analysis [39], which

shows a perfect reproduction of the experimental results. All spectra (not shown

here) have been reconstructed with the same level of accuracy. We are able to ex-
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tract ∼ 2000 resonances for each a, which allows us to extract statistically relevant

trends. Figure 2.4e displays the resonance linewidth probability distribution P (δω)

for α = 1 (stadium) and α = 0 (square). We note that for α = 1, the resonances

are strongly converging towards a value of δω ' 5 × 1023 THz with only negligible

contributions arising from the short-lived modes that are characterized by a larger

δλ. Conversely, in the non-chaotic regime, we observed the presence of many short-

lived resonances, indicated by the presence of data points up to, and even beyond

0.1 THz, as well as the wider probability distribution observed at low frequencies.

To study the convergence of the lifetimes towards a single value, we group the data

for different A and the same a together, and calculate the standard deviation σ(δω)

of the resonance widths δω. Figure 2.4f illustrates the results of this analysis. In

perfect agreement with our theoretical predictions and ab initio simulations (Fig.

2.4f, FDTD symbols), we observed a significant narrowing of the linewidth distri-

bution above the threshold for chaos. It is worth highlighting that this convergence

of the linewidth towards a single value does not depend on A, but only on a, which

is a clear experimental demonstration that the phenomenon relies entirely on the

chaotic properties of the motion of light. The consequences of such an experimen-

tally demonstrated collapse are shown in Fig. 2.5, where we have calculated, by ab

initio simulations, the energy trapped in the structure with same area. As seen, the

energy increases by a factor of 207% in the chaotic structure. Considering the small

bandwidth of the signal (∼100nm), this is a remarkable result demonstrating the

superior energy storage ability of the chaotic cavity compared to the regular coun-

terpart.
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Time(ms)

Figure 2.5: Energy trapping in two-dimensional resonators. FDTD calculated av-
eraged energy 〈E〉 evolution in the two-dimensional photonic-crystal structure in
fully chaotic (α = 0) and non-chaotic (α = 1) conditions.
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2.4 Three-dimensional experiments with deformed

microspheres

An ubiquitous technology should not rely on complicated optimization processes,

but should instead be reliable and simple to develop. In the previous section, we

tuned the chaoticity of the structure to reach full chaos, thus obtaining a 207% in-

crease in energy. However, even when chaos is not fully developed in phase space,

the presence of chaos increases the similarity of the lifetimes and leads to broad-

band energy storage (Figs 1c, 2b,c). We can therefore exploit chaotic harvesting

even for very simple conditions, where fine-tuning of chaos is not provided.We ac-

complished this final step in a three-dimensional system, which incidentally also

proves how the physics of chaotic resonators is independent of the dimensionality of

the problem. In particular, we used polystyrene microspheres and studied the ab-

sorption when their spherical shape is deformed and the symmetry of the system is

broken, thus providing chaotic light motion.

Our sample consists of a low-density monolayer of microspheres (Fig. 2.6a) that are

deformed by mechanical compression (Fig. 2.6b) in order to obtain an asymmetric

shape such as that shown in Fig. 2.1b. Monolayer fabrication was performed using

convective assembly [40, 41], where the microspheres are self-assembled on a sub-

strate using a deposition blade (Fig. 2.6a). The blade height was set at 12 µm from

the substrate (sphere size of ∼10µm) to ensure the formation of a single layer. Fol-

lowing deposition, a glass slide was placed on top of the microspheres for heating

and applying mechanical pressure. Deformation was realized by heating the sys-

tem slightly beyond the glass transition temperature Tg of polystyrene (Tg = 25oC;

ref. [42]), which softens the microspheres sufficiently to deform their shape (Fig.

2.6b,c). Compression and heating were performed with an Instron 5960 dual col-

umn tabletop universal testing system. The pressure force was ramped to 500 N
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over 2.5 min. Figure 2.6d,e presents optical micrographs of a microsphere before

(Fig. 2.6d) and after (Fig. 2.6e) compression, highlighting the asymmetric deforma-

tion.

Figure 2.6: Summary of the three-dimensional experimental results with de-
formed microspheres. (a) Sketch of monolayer sample fabrication by convective self-
assembly. (b) and (c) Furnace for sample heating and deformation with mechanical
pressure. (d) and (e) SEM images of a microsphere in the original (d) and deformed
(e) case. (f) Average normalized absorption of the deformed microsphere 〈Ad/A〉,
measured for different wavelengths and normalized with respect to the undeformed
case 〈A〉.

We evaluated the energy harvesting capacity of this system by performing absorp-

tion measurements on a single sphere in both deformed and undeformed conditions.

To acquire sufficiently large statistics from different input conditions, we placed our

sample on a goniometric stage and, through a series of pump-and-probe measure-

ments, calculated the absorption of the sphere at various illumination angles in the

range of ±30o. During each measurement, we illuminated the sphere with a broad-

band source (consisting of a halogen lamp with bandwidth of ∼1 µm centered at
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700 nm) and measured the absorption A from the relation A = 1 − T − R, where

T and R are the transmittance and reflectance of the microsphere, respectively. To

properly collect the scattered light, transmission and reflection spectra were mea-

sured in the near field with a lens with a high numerical aperture. The data were

acquired with an Ocean Optics QE65000-FL spectrometer.

Figure 2.6f shows the average absorption 〈Ad/A〉 of the deformed system, where

Ad and A are the absorption measured in the deformed and undeformed case, re-

spectively. For every angle we obtained an increased absorption due to deformation,

with a variance of less than one percent (¡0.2%). This originates from the larger

electromagnetic energy stored by the microsphere in the deformed case, which led

to a higher absorption in the entire absorption window of polystyrene (Fig. 2.6f

). Near the wavelength λ=450nm, in particular, the average absorption increases

by ∼12%, whereas in the region where the optical spectrum contains the maxi-

mum power (∼600 nm), the absorption shows a broadband increase of ∼68%. The

chaotic enhancement of the absorption is greater in the spectral region where A is

larger and the energy trapped is higher. Outside the absorption frequency window

of polystyrene (Fig. 2.6f, dashed lines), as expected, the chaotic energy accumula-

tion does not induce any measurable variation of the absorption. It is worth noting

that an absorption increase of ∼12% over a large bandwidth of 400 nm in a trans-

parent material such as polystyrene is quite a remarkable result. Since the defor-

mation in three diminutional cannot not be precisely controlled experimentally, the

increment is not as large as the results from simulations.
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2.5 Discussion

Our results have addressed the problem of light trapping in chaotically deformed

resonators and demonstrate the possibility of exploiting equipartition and chaos as

a new avenue for energy harvesting. Equipartition, in our case, is manifested by

the uniform distribution of energy among all degrees of freedom of the chaotic res-

onator, that is, the cavity modes. The process is equivalent to the Brownian motion

of particles in a liquid, where each particle carries the same amount of energy. In a

liquid, the particles always achieve a uniform distribution regardless of the shape of

the vessel in which they are contained. In our optical analogue, the steady state of

chaotic modes also does not depend on the particular realization of the resonator,

but only on its macroscopic geometry, for which the only requirement is to support

chaotic trajectories for the trapped light. Besides the obvious implications at the

fundamental level, where we demonstrated the existence of a fundamental principle

of thermodynamics in the framework of photonics, our results also have real-world

practical implications. The cost of many semiconductor devices, for example, light-

emitting diodes and solar cells, is determined to a significant extent by the cost of

the material. We show that the functionality of a given geometry can be enhanced

up to sixfold by changing the shape alone, that is, without increasing the amount of

material and without increasing the material costs. Furthermore, a chaotic system

is easier to fabricate as the tolerances are relaxed. Our results can also be extended

beyond microresonators, as the phenomenon of chaotic scattering is ubiquitous and

also occurs at the nanoscale, that is, when light diffuses into random aggregates of

scatterers [43]. We therefore envisage that our ideas will stimulate new research in

the assembly of new random nanostructures for efficient energy harvesting.
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2.6 Time dependent coupled mode theory

Figure 2.7 a shows a TDCMT model of the light-resonator system. In this scheme,

the environment is represented as a waveguide side coupled to the resonator. The

input signal S(t) interacts with the resonator through the coupling coefficient γ and

transfers energy to the modes of the cavity ak(t) = Ake
iωkt−t/τk (k ∈ [1, N ]), being

ωk the frequency, 1/τk the lifetime, Ak the amplitude and Ek = |ak|2 the energy

carried by the k?th mode. The total energy stored in the resonator is E =
∑

k Ek.

Decay rates 1/τk can be further decomposed as follows 1/τk = 1/τk0 + 1/τe, with

1/τk0 the intrinsic decay constant of the mode and 1/τe the decay constant due to

coupling with the source. Cavity modes obey the following evolution equations [12]:

dak
dt

=
[
iωk − (1/τk)

]
ak + γ · S(t), k ∈ [1, ..., n] (2.4)

with γ =
√

1/τe, while reflection R =
∑

k Rk and transmission T =
∑

k Tk are given

by the following expresions:

Rk = −
√

1/τeak, Rk = −
√

1/τe + S (2.5)

with Rk and Tk the reflection and transmission oft he k?th mode,respectively. In

the presence of a single frequency excitation S = eiωtΘ(t) switched on at t=0, with

?Θ(t) being the Heaviside function, Eq. 2.4 are readily solved for each ak and read:

ak =

√
1

τe

eiωt − eiωt−t/τk
(ω − ωk)2 + 1/τ 2

k

(2.6)

For a broad bandsource, S =
∫
eiωtΘ(t)dω, the total electromagnetic energy E =∑

k |ak|
2 stored in the cavity is readily found to be:

H =

∫
dω

τe

∑
k

1 + e−2t/τk − 2e−t/τk cos[(ω − ωk)t]
i(ω − ωk) + 1/τk

(2.7)
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Equation 2.7 can be further simplified as the integral yields significant contributions

only for ω ≈ ωk, and we obtain:

Hτe =
∑
k

τ 2
k (1− e−t/τk)2 (2.8)

The power Pk transferred into the k?th mode is conversely evaluated from the en-

ergy balance equation:

∂|ak|2

∂t
= Pk = |S|2 − |Rk|2 − |Tk|2 (2.9)

that,in conjunction with Eqs 2.5 and 2.6, yields:

Pk =
2 τe
τk0

(1 + τe
τk0

)2
|S|2 (2.10)

Figure 2.7: Coupled mode theory modelling and characterisation of chaos. (a)
light-cavity interaction TDCMT scheme: S(t) is the input source, R(t),T(t) are re-
flection and transmission signals, respectively, ak is the k-th mode in the resonator
and γ is the coupling coefficient between the resonator and the external environ-
ment; (b) normalized entropy K versus chaotic degree for the Robnik billiard ex-
pressed by Eq. 2.1.
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2.7 Characterization of chaos

We quantitatively describe the chaoticity of light motion by evaluating the rela-

tive area of the resonators phase space that encompasses chaos. This is achieved by

first calculating the distribution of the Lyapunov exponent [43] in phase space,and

then performing a weighted summation by assigning 1 if the Lyapunov exponent is

positive,and 0 otherwise.The resulting quantity K can be regarded as a normalised

version of the Kolmogorov Sinai entropy [43, 44]. In particular, When K=0, the res-

onator dynamics exhibits no chaos and the resulting motion is totally reversible,

while for K = 1 the phase space is totally chaotic and all input conditions lead to

chaos. Values of K between these two limiting conditions indicate a phase space

partially chaotic, with K measuring the relative area of the chaotic sea with re-

spect to the reversible portion of the dynamics. Figure 2.7 d
¯
isplays the behaviour

of K for the billiard expressed by Eq 2.1. For α lower than the threshold value

α∗ = 0.75, no chaos is observed in the structure,while for α > α∗, strong chaos is

generated through the shape deformation. At α = 1.5, the structure is fully chaotic

and the phase space is totally dominated by a single chaotic sea.
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Chapter 3

HARNESSING STRUCTURAL

DARKNESS IN THE VISIBLE

AND INFRARED

WAVELENGTHS FOR A NEW

SOURCE OF LIGHT

3.1 Introduction for blackbody

A black body is an ideal dark material, the practical realization of which can enable

efficient technologies in many fields [45, 46, 47, 48, 49, 50, 51, 52, 53]. A black body

can emit the same amount of energy as it absorbs [54], which makes it not only

the perfect absorber, but also an ideal thermal source [55, 56]. To date, the best

blackbody realizations have been reported with carbon nanotubes, which achieve

99.95% absorption with thickness of 800 µm, and broadband absorption between

98 and 99% for thicknesses of 300-500 µm under normal incidence [13, 57]. The de-

sign of these media is typically guided by the principle of optimizing lightmatter
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interactions in a suitable resonant system of finite size, which represents the ab-

sorber [50, 13, 57, 58, 59, 60, 61, 62]. In this Article we wish to explore a different

approach, which takes inspiration from natural structures that show an incredible

whiteness, and thanks to the idea of chaotic energy harvesting [63], reverses the ef-

fect in a biomimetic material that is completely dark. The material is based on the

random assembly of specific nanoparticles, which show an extremely strong dark-

ness even in microscopic concentrations. We have developed a wetchemistry synthe-

sis that can fabricate these nanostructures on large scales with minimal costs.

Traditionally, the concept of a blackbody is usually associated either with strong

absorption or the incoherent emission of energy [54]. When energy is emitted in-

coherently, each frequency in the spectrum behaves independently from the oth-

ers, and they do not interact constructively. Pioneering investigations in resonant

systems show that constructive wave phenomena, if properly exploited, can have

a dramatic impact on energy emission [64, 65, 66, 67, 68]. Our nanomaterial does

not possess any resonance, as it appears totally black. However, in the presence

of an optical amplifier, it sustains surprising emission dynamics. In a series of ex-

periments performed with an optical dye, we show that the light-matter interac-

tion generates a process of light condensation, where all available energy is con-

structively transferred on a single spectral frequency and spontaneously emitted as

monochromatic light. This opens up the possibility of the use of dark nanomateri-

als as new types of coherent energy sources.
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3.2 Sample design

Figure 3.1 illustrates, on very simple physical grounds, the idea for the design of

our material. A full wave analysis of the system is presented in Section 3.7 and il-

lustrated in Fig. 3.17. The starting point of our discussion stems from the camou-

flage of a specific species of beetle, the Cyphochilus. After millions of years, this lit-

tle animal has developed a unique ability for the generation of ultra-brilliant shells

[69]. This color is the result of disordered thin scales, which scatter light chaoti-

cally in all directions. To reverse this effect we developed a complex porous system

(Fig. 3.1a), which is composed of a region of space (Fig. 3.1a, gradient blue area)

to which is attached a random network of pores made of infinitely long, metallic

waveguides. Light propagating in the space bounces continuously within the system

(Fig. 3.1a, solid green line) until it reaches one of the pores. The left panel of Fig.

1b presents a two-dimensional projection of the dynamics along the x′ − y′ plane.

When impinging on a generic pore, some light is coupled into the waveguide chan-

nel, and the remaining energy is scattered back. Light entering into the waveguide

(Fig. 3.1a,b, darker areas) never returns (due to the infinite length of the channel)

and is fully absorbed into the pore (Fig. 3.1b, left panel, darker area). The disor-

dered distribution of pores completely randomizes the reflections of light, provid-

ing a source of chaotic light scattering. In these conditions the system dynamics is

equivalent to a Brownian motion, whereby equivalent light particles diffuse, gener-

ating an electromagnetic response that becomes almost independent of the input

conditions [63]. In the porous system of Fig. 3.1a, the equivalent diffusion forces

light to explore the distribution of pores with the same probability irrespective of

the input conditions (frequency, angle of incidence and polarization), triggering a

process of broadband absorption that creates a completely dark material.
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Figure 3.1: From a complex porous system to a nanostructured blackbody for
light. (a) Sketch of a porous material composed of a metallic cavity and a random
network of pores, each comprising an infinitely long waveguide. (b) Left: section
along the x′ − y′ plane of the porous structure of a, and associated light dynam-
ics. Right: transformed structure obtained by applying a conformal mapping de-
scribed by the transformation (x, y) = Ω(x′, y′) (see Methods for more details). In b
(left), the shaded area describing the pore is mapped into the curved area near kiss-
ing point K. (c) Illustration of the blackbody structure, composed of a collection of
random scatterers, each represented by the nanostructure in b (left). The structure
in (c) is fully equivalent to the porous material of (a).

To transform the ideal design of Fig. 3.1a into a realistic structure, we created a

suitable illusion by mapping the single pore element of Fig. 3.1 b(left) into the fi-

nite nanostructure of Fig. 3.1b (right). This was performed with transformation

optics [70, 71] using the coordinate transformation (x, y) = (x′, y′), which stretches

the space so as to emulate an infinitely long material (see Methods for additional

details). The two structures shown in Fig. 3.1b display the same electromagnetic

behavior. The nano-absorber in Fig. 3.1b (right) comprises a nanorod attached to

a nanosphere, which mirrors the pores of the space (x′, y′) leading into the darker

shaded area around kissing point K. Light entering the pores in the transformed

space (x, y) has the illusion of propagating into an infinitely long channel, which

never terminates. The last ingredient to replicate the structure of Fig. 1a is a disor-

dered distribution of pores, which is accomplished by creating a random collection

of nano-absorbers (Fig. 3.1c), each with the structure shown in Fig. 3.1b (right).

The two systems in Fig. 3.1a,c, despite their different appearances, are completely
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equivalent. It is worth emphasizing that there is no theoretical limit to the absorp-

tion power of the waveguide pores, as they represent channels of infinite length.

However, non-idealities in the design of Fig. 3.1b (right), such as surface rough-

ness in the nanosphere, lead to the appearance in space(x′, y′) of scattering objects

inside the channel pores that produce unwanted reflections.
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3.3 Sample fabrication

Figure 3.2: TEM images of (a) the gold nanorod seeds and (various nanostructures
after seeded growth with different concentrations of 4-MP: (b) C4−MP = 0mM , (c)
C4−MP = 1mM , (d) C4−MP = 10mM

We used seed-mediated method to synthesize to designed particle [72, 73]. We started

with single crystalline gold nano rod with the length 75.3±7.4 nm and radius 9.2±0.8

nm as shown in Fig. 3.2 a. We first incubated nanorods in thiol ligand 4-mercaptophenol

(4-MP) with gold precursor HAuCl4 and reducing agent ascorbic acid. The con-

nection of 4-MP plays an detrimental role in the final shape of the nanoparticles.

When the concentration of 4-MP C4−MP=0, the gold ions continuously accumu-
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lated to the nanorod, and formed a peanut-like structure as shown in Fig. 3.2b.

When the concentration C4−MP increased to 1mM, the gold can grow on the seed

crystal, but with irregular shape as shown in Fig. 3.2c. Quite interestingly, when

properly set to C4−MP =10mM, we successfully synthesized the design dimer struc-

ture with a remarkable high yield beyond 90%, with a single nanosphere settling

on the nanorod seed, as illustrated in Fig. 3.2d. The metallic bonding between the

sphere and rod differs out dimer from the one connected with surface ligands, pro-

viding excellent stability. The variation of the shape demonstrates the impact of

the concentration C4−MP : the high concentration enhances the asymmetric growth

and suppresses the epitaxial growth of the gold layer on the seed. When we fur-

ther increased the concentration C4−MP beyond 15mM, we did not observe any sec-

ondary growth, indicating that the high concentration of 4-MP ligands may reduce

the gold ions.

Thanks to the mediate growth speed, we can track the dynamics of the formation

of the dimer by quenching the reaction at the intermediate states under Transmis-

sion Electron Microscopy (TEM). Figure 3.3 summarized the TEM images at differ-

ent reaction time t when ascorbic acid is added to stop the reaction. When t = 3s,

we observed the initial emergence of nanosphere on the nanorod. The High Resolu-

tion Transmission Electron Microscopy (HRTEM) in Fig.3.3f clearly demonstrates a

small particle around 3nm is formed on the nanorod seed long [111] direction. Fast

Fourier Fransform (FFT) diffractogram in Fig. 3.3g and h demonstrates the stack-

ing faults existing in the budding rods while the sphere is defect-free. During the

period 3s≤ t ≤ 20s, the tiny buds gradually grow int to larger irregular agglomer-

ates, as seen from Fig. 3.3b and c. For the final step when t≥60s, the agglomerates

re-crystallized to fuse into a large gain, eliminating the boundaries. Despite the dif-

ferent geometries of the agglomerates, it finally developed into a single sphere as

shown in Fig .3.3e. The longer the reaction time, the smoother the surfaces.
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Figure 3.3: TEM images of intermediate states of the dimer at different seeded
growth stages, which were obtained by quenching the reaction at (a) 3, (b) 10, (c)
20, (d) 60, and (e) 180 s. The circles in (a) encircle the tiny budding particles. The
arrows in (b and c) indicate worm-like agglomerates (red arrows) and cauliflower-
like agglomerates (green arrows). (f) HRTEM image of the intermediate at 3 s
taken along the [11̄0] axis of the gold nano rod, showing a small particle protrud-
ing falong the [111] direction. (g, h) FFT diffractograms of (g) region I and (h) re-
gion II marked in (f). The diffuse reflections in (h) are indicative of the presence
of stacking faults. (i) HRTEM image of the intermediate at 20 s taken along the
[110̄] axis of the nanorod. The ellipse indicates a gap formed by the cauliflower-like
agglomerate and the nanorod. (j) Enlarged HRTEM image of the interface region
marked in (i), in which two arrows point to nanotwin boundaries.
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Figure 3.4: Optical blackbody, the fabrication of which occurs via seeded growth
of Au nanospheres from Au nanorods. (a) Low-magnification TEM image of a real-
ized sample. (b) TEM image of a single nanostructure. (c) HRTEM image near the
kissing point between the nanosphere and the nanorod.

Figure 3.4a presents a TEM image of a representative sample, and Fig. 3.4b shows

a detail of a single absorber. Each nano-absorber is composed of a nanorod of length

75 ± 7 nm and diameter 18 ± 2 nm and a nanosphere with a diameter of 30 ±3

nm. Figure 3.4c presents a HRTEM image of the crystal structure near the kissing

point K between the nanosphere and the nanorod, showing the clear sharp corner
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formed by metallic bonding of the differently curved surfaces of the rod and the

sphere, which have the same crystalline structure. This structure provides excellent

thermal stability properties, as shown in Section 3.8 with Fig. 3.7 to Fig. 3.15.
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3.4 Tuning structural darkness

Figure 3.5: Tuning the structural darkness of the samples. (a) Visual appearance
of samples at different concentrations, measured as multiples of unit concentration
C0 = 2.7 × 1010 cm−3. (b) Position of each color in the RGB cube, obtained by
extracting the relative component of red, green and blue from the corresponding
images.

In a first series of experiments we dispersed the nano-absorbers into a liquid host

material composed of water and studied the absorption of the nanostructures by

varying their concentration as integer multiples of unit density C0 = 2.7 × 1010 cm

−3. The value of C0 was determined using inductively coupled plasma-optical emis-

sion spectrometry. In the case of a maximum concentration of 14C0, the volume

filling fraction f of the nanostructures is microscopic at only f = 1.9 · 10−5. De-

spite the ultra-small concentration, we immediately perceived the absorption power

of our nanostructures from the deep dark color acquired by the liquid (Fig. 3.5a,

sample 14C0). By varying the nanoparticle concentration we observed the genera-

tion of different shades of grey (Fig. 3.5a). These were characterized by displaying

the corresponding position in a red/green/blue (RGB) cube (Fig. 3.5b). Our mate-
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rial displays colors (Fig. 3.5b, circles) on the diagonal connecting the darkest point

in the cube with the brightest (Fig. 3.5b, dashed line). This indicates the broad-

band nature of our absorbers, which at all concentrations display a wide spectral

response. Fig. 3.6 illustrates the color achieved by diluting a fixed concentration

14C0 of nanospheres, nanorods, as well as a mixture of them, into water. In these

cases, the samples acquired only light shades of a red color, with no blackbody fea-

ture.

Figure 3.6: Structural darkness of our material versus individual components:
nanospheres, nanorods and their mixture. The figure illustrates the structural color
formed by (from left to right): individual nanospheres, individual nanorods, mix-
ture of nanospheres and nanorods, and our nanostructures. In all cases we used the
same concentration 14C0 of nanomaterial.

To quantify the level of darkness achieved by our nanostructures, we measured their

absorption using a UV-VIS-IR spectrum analyzer (more details in Section 3.9 and

illustrates in Fig. 3.13). The nanoparticles tended to sediment after about 10 days

(Fig. 3.7), but sedimentation did not influence the reported results, which are sum-

marized in Fig. 3.9. An integrating sphere was used in the configuration shown in

Fig. 3.9a, with the sample placed in the middle of the sphere and off-axis (by angle

θ, varying in the range ±70o) with respect to the input light. Figure 3.9b presents

the results of nanoparticle absorption γ and absorbance δ, the latter defined as
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δ = log10
1

1−γ . This figure reports individual spectra obtained for each θ (Fig. 3.9b,

solid red lines), as well as their average value over rotation angle θ varying in a

range of 30o (Fig. 3.9b, solid black line). In the broadband optical window inves-

tigated, the material shows a quite flat absorption spectrum between 98% and 99%,

with a peak maximum of 99.2% at λ = 497 nm. Figure 3.9c presents a detailed plot

of absorption versus sample concentration for the specific wavelength λ = 497 nm,

illustrating the possibility to fully tune the material response over a wide range of

absorption values between 20% and 99.2%. For concentrations greater than 14C0,

no appreciable absorption increase is observed. Fig. 3.8 provides a further compari-

son of our absorbers and commercially available carbon nanotubes.

Figure 3.7: Nanoparticles absorption in liquid solution versus time. The figure il-
lustrates the variation ∆γ = (γ − γ0)/γ0 of nanoparticles absorption γ versus time,
being γ0 the nanoparticles absorption spectrum at day 0. The measurement has
been performed by keeping the sample inside the integrating sphere and measuring
the nanoparticles absorption day by day.

Achieving strong broadband absorption with a microscopic filling fraction of nanopar-

ticles opens up the possibility of engineering thin-film structures of remarkable

absorption power. Through spin coating, a thin layer of nano-absorbers was de-
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posited over a Si substrate (Fig. 3.10 a), and the total absorption of the structure

was measured with the integrating sphere set-up of Fig. 3.9a, varying the illumina-

tion angles between -70o and +70o. Figure 3.10b reports the results for normal inci-

dence, and Fig. 3.10c illustrates the absorption averaged over the whole bandwidth

between 400 and 1400 nm, for different illumination angles. A layer with a thick-

ness of only 4.9 µm already achieves an average broadband absorption of 95% (Fig.

3.10b, solid red line), with a peak value of 96.8% at λ = 900nm. On increasing the

layer thickness to t = 10.2 µm, we measured an almost flat average absorption of

98.43%, with a peak absorption of 99.7% at λ = 850nm. These results agree well

with the nanoparticle absorption obtained in the liquid sample. The absorption of

the sample is virtually insensitive to the illumination angle (Fig. 3.10c). By con-

sidering input angles as large as 60o, the material maintains an impressive average

broadband absorption of 98%. To the best of our knowledge, this value of averaged

absorption at oblique incidence is the highest reported for a thin structure of 10.2

µm in such a large optical window.
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Figure 3.8: Absorption spectrum of our nanomaterial versus carbon nanotubes.
The figure compares the absorption spectrum, measured by the integrating sphere
configuration of Fig. 3.9a , of our nanostructures (solid red line) and commercial
carbon nanotubes (CNT, solid green line). In order to compare the two systems in
the same configuration, we used a fixed volume filling fraction of material corre-
sponding to f = 1.9 · 10−5, which corresponds to a concentration of nanoabsorbers
of 14C0. In our experiments, we employed carbon nanotubes from Sigma-Aldrich,
with nanotube lengths between 0.3µm - 5µm.
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Figure 3.9: Absorption experimental results. (a) Sketch of the integrating sphere
set-up used to measure the total integrated absorption. The sample is placed in
the middle of the sphere, and a goniometric stage ensures off-axis illumination. (b)
Nanoparticle absorption γ and absorbance log10(1/(1 − γ)) measured between 400
and 1200 nm for varying sample concentration. Both the average value (solid black
line) and the result for different illumination angles (solid red lines) is shown. (c)
Absorption versus sample concentration (measured in multiples of unit concentra-
tion C0) at λ=497 nm.
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Figure 3.10: Absorption of planar thin films. (a) Scanning electron microscopy
cross-section image of a fabricated sample composed of a Si substrate with a de-
posited thin layer of nano-absorbers. (b) Absorption spectra for different layer
thicknesses t under normal incidence illumination. Measurements were performed
with the integrating sphere set-up in Fig. 3.9a. Results are shown for different sam-
ples (solid red lines), as well as the average value (solid black lines). (c) Average
absorption of the sample with varying illumination angle. For each input angle θ,
the calculated absorption is averaged in the wavelength range 400-1400 nm (sym-
bols). The average absorption for varying theta is normalized with respect to the
average absorption under normal incident conditions (θ = 0).
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3.5 Light condensation in a structurally dark nano-

material

The possibility to create thermally stable and versatile dark nanoparticles opens up

new possible applications for blackbody materials. An intriguing question is related

to the dynamics of a blackbody when placed into an active material that can con-

tinuously inject photons into the system. This condition can be realized easily by

mixing the nanostructures with a dye optical amplifier, which is pumped to gen-

erate photons by fluorescence or stimulated emission. Intuitively, we might expect

that all generated photons are absorbed inside the dark nanoparticles. However, if

an extremely dark medium such as a blackbody is placed into an environment at

non-zero temperature, light absorption becomes mediated by a strong process of

thermal emission. We theoretically investigated the physical scenario by developing

a quantum statistical model of the lightmatter interaction (more details in Section

3.10). We complemented our theory with experiments with Rhodamine B, a dye

with a fluorescence peak at λ=625 nm. An aqueous solution composed of 1.4 mM

Rhodamine B and a 4C0 concentration of nanostructures (≈95% absorption in the

fluorescence bandwidth of the dye) was optically pumped with a pulsed laser emit-

ting 10 ns pulses with a repetition rate of 10 Hz at λ = 532 nm. Laser light was fo-

cused on a 3 mm circular spot at the surface of the sample. The resulting emission

spectra were collected by a fibre-spectrograph. Figure 3.11 summarizes the theoret-

ical and experimental results. According to our model, the energy density W (ω) of

the system at thermodynamic equilibrium, and in the presence of an active material

that injects photons in a bandwidth ∆ω, is given by:

W (ω) =

√
∆ω2 − ω2

π∆ω2
coth

[
β
l(P )− ω

2

]
(3.1)
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where β = 1/T is an effective inverse temperature that characterizes the thermo-

dynamic equilibrium state of the material and l is a state parameter that depends

on the pumping rate P, which measures the rate of photon number increase in the

system. Details on the derivation of this equation are provided in Section 3.10. The

condition of thermodynamic equilibrium is a natural hypothesis for our system.

The lightmatter interaction with 10 ns pulses at a 10 Hz repetition rate generates

photons that scatter inside the dye molecules and the nanoparticles for a very large

temporal window before being probed by the millisecond integration time of our

spectrum analyzer. This provides the photons with enough time to reorganize their

distribution according to the thermodynamic configuration that minimizes the free

energy of the system. Figure 3.11a illustrates the results of this process by plot-

ting the behavior of W at different P. At low pumping rates, the emission spec-

trum does not show any particular behavior and maintains a bell-shaped form in

ω ∈
[
− ∆ω,∆ω

]
(Fig. 3.11a, for P<2). However, when the pumping becomes

stronger (Fig. 3.11a, P>3), a radically different dynamics is observed, in which the

blackbody self-redistributes the energy in the spectrum and a condensation process

occurs, which constructively builds up photons at the highest frequency ωc = ∆ω.

Such counterintuitive dynamics depends on the fact that the condensate repre-

sents the most favorable energetic configuration for the system. In this process,

the higher the energy that is optically pumped into the blackbody, the stronger the

tendency of the system to redistribute the spectral power to create a macroscopic

dominant state at the band-edge.
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Figure 3.11: Light condensation with dark nanoparticles. (a) Theoretical predic-
tion of the evolution of the energy density spectrum W (ω) of a blackbody in the
presence of an active material, which generates photons in bandwidth δ. The pho-
ton number increase is expressed by the pumping rate P , which measures the vari-
ation of the total number of photons contained in the bandwidth ∆ω. The calcu-
lations were performed using equation 3.1, with an effective inverse temperature
β = 1/T = 1/300. (b) Experimentally acquired emission spectra, obtained by
pumping a Rhodamine B dye with a pulsed nanosecond laser system. Laser input
power p was varied between p = 50 and 450 mW, which correspond to a pumping
rate P between 1 and 9. The theoretical prediction in the case of P = 9 (dashed
line) is reported for completeness. (c) and (d) Evolution of the emission peak (c)
and FWHM (d) of the spectra displayed in (a) and (b) for varying pumping rate
P. The error bars represent the standard deviation of the measurements of emis-
sion peak and laser power (c), and the standard deviation in the estimation of the
FWHM and laser power (d).
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Figure 3.11a presents the experimentally acquired emission spectra at different

pumping rates. To match the pumping rate of our calculations, the laser input

power was varied from p = 50 to 450 mW. At low powers we observed a broad-

band emission around 628 nm, which corresponds to the dye fluorescence. When

the pumping rate was higher, in complete agreement with Fig. 3.11a, we observed

the spontaneous creation of an optical condensate, which systematically transfers

all the available spectral energy at the band-edge frequency state around 590 nm.

On comparing the experimental results (Fig. 3.11b, solid green line) with the theo-

retical prediction (Fig. b, dashed green line) at the largest pumping rate P = 9, we

found remarkably good agreement. The properties of the condensation process are

further studied in Fig. 3.11c, which shows the experimental (symbols) and theoret-

ical (solid line) behavior of the energy peak for increasing P. Quite remarkably, we

observe that the energy peak increases exponentially for a linear increase in P. At

the highest input power p = 450 mW, which corresponds to an enhancement rate

of P = 9, the emission peak is about 60 times larger than the initial value, show-

ing very good agreement with our statistical model. The dynamics measured in Fig.

3.11c report the signature of a condensation process, which differs from the typi-

cal emission of resonant nanoplasmonic structures [74]. In fact, in these resonant

structures the emission peak shows an abrupt transition when the pumping rate

is increased. In the stimulated emission regime, the peak power increases linearly

with P. In Fig. 3.11c, the system response exhibits a smooth nonlinear behaviour.

This results from the nature of the condensation process. As seen in Fig. 3.11a,b,

all the energy contained in the bandwidth progressively participates to amplify the

macroscopic state at the band-edge: a linear increase in the total number of pho-

tons, which implies a linear increase in the area of W (ω), generates a nonlinear in-

crease in the emission peak because the condensation process is obtaining energy

from more and more frequencies.
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Figure 3.11d, finally, shows the behaviour of the full-width at half maximum (FWHM)

of the emission spectrum at different pumping rates P. Theory is quantitatively in

good agreement with the experimental outcomes, which show a significant shrinking

of the emission linewidth of the system. Deviations in the FWHM between theory

and experiment in the central region of the curve are due to the presence of ampli-

fied spontaneous emission, or superluminescence [75], of the Rhodamine B used in

our measurements.

Fig. 3.18 presents the emission spectra of the dye without nanoparticles, and shows

a broad emission with superluminescence at a wavelength of 628 nm. In the exper-

iments shown in Fig. 3.11b, the competition between superluminescence and light

condensation is observed in the smooth knee formed around 628 nm in the recorded

spectra. The presence of superluminescence is intrinsic to our set-up, where the

concentration of nanoparticles is diluted in a much higher volume of dye (each nano-

absorber is dispersed in 6 × 109 dye molecules), and light scatters in a large region

of dye before reaching the nanostructures. The presence of superluminescence al-

ters the shape of the emission curve around λ = 628 nm, affecting the evaluation

of FWHM in the central region of Fig. 3.11d. The deviation is minimized at high

pumping rates, when the effects of condensation are stronger (Fig. 3.11b, dashed

line, and Fig. 3.11d). Fig. 3.19 further analyses the spectral characteristics of the

emission peak. This analysis shows that, at the highest pumping power of P = 9,

the emission linewidth of the nanoparticles is only 5.6 nm wide, starting from an

initial broad emission of ∼50 nm bandwidth at P = 1. This corresponds to a 1/9

th-fold reduction of the spectrum. Figure 3.12, finally, compares the effects of light

condensation and superluminescence, showing the much stronger emission peak fur-

nished by condensation effects.



73

Figure 3.12: Competition between superluminescence and light condensation in
the emitted spectra of Fig. 3.11b. Figure shows the behavior of the energy peak
emitted through superluminescence (diamond markers) and condensation (circle
markers) for a varying pumping rate in the emitted spectra of the dark material.
The contribution of superluminescence has been extracted from the expansion of
Eq. 3.18, by calculating the amplitude of the corresponding exponential peak emit-
ted at 628 nm.

For nanoparticle concentrations lower than 4C0, we still observed the condensation

dynamics but with less pronounced effects. This is due to the fact that at lower ab-

sorption, the system tends to lose the blackbody character, and electromagnetic en-

ergy is not efficiently trapped inside it, requiring a higher pumping power in order

to initiate the condensation effect. Using a pumping power of p<450 mW we did

not observe condensation effects for a nanoparticle concentration below 2C0 (av-

erage broadband absorption of 80%). It is worth stressing that the condensation

dynamics reported in Fig. 3.11 is unrelated to the Anderson localization of light in

strongly scattering dielectrics [76], which is a dynamic of spatial origin that does

not show any similarity with the cooperative spectral dynamics of light condensa-
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tion observed here.
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3.6 Discussion

We have designed and realized nanostructured particles that, even in extremely mi-

croscopic quantities, present an almost ideal blackbody absorption performance

in the visible and infrared window without requiring normal incidence conditions

and/or specific polarizations. The structural darkness of the system is fully tun-

able over a wide range of absorption values and is observable in extremely thin

film structures. In conjunction with an optical amplifier, it spontaneously generates

monochromatic emission through a process of light condensation.

Engineered dark nanoparticles are quite interesting in many aspects. They are very

versatile, easily dispersed into liquids and easily deposited in solid thin-film struc-

tures. By means of light condensation effects they achieve single line emission, such

as in classical lasers, but without the use of a cavity, resonance or any special de-

sign element. In addition, monochromatic emission is achieved with exponential

efficiency by harnessing broadband energy from emission spectra that can, in prin-

ciple, be arbitrarily large. One interesting possible use of such nanostructures is to

harness a wide portion of the solar spectrum and efficiently concentrate it to a sin-

gle color. This could not only significantly increase the efficiency of photovoltaic

technology, but also benefit a large part of available photonic/plasmonic technology

for energy harvesting and transmission, which is typically optimized for narrowband

excitations.

Another important possibility concerns the photothermal enhancement of energy

conversion processes, including thermodynamic solar applications [49]. All these

technologies rely on efficiently increasing the temperature of liquids (for example,

water) or crystalline solid materials. The broad absorption characteristics observed

in the nanoscale pores of our absorbers can have dramatic effects on the tempera-

ture increase of a host material, furnishing an ideal system with which to investi-

gate energy-harvesting phenomena.
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From a more fundamental perspective, the condensation observed in Fig. 3.11 opens

up stimulating perspectives, especially with reference to the Bose-Einstein Con-

densation (BEC) of light observed in optical microcavities [68]. Although a thor-

ough analysis of this issue goes beyond the scope of this Article, we can highlight

some important aspects. In the experiments performed in ref. [68], the authors re-

ported a BEC of light by varying the photon density in a dye material that was

maintained in thermal equilibrium inside a microresonator. In our experiments we

report condensation dynamics in a dye filled with dark nanoparticles, which do not

possess any resonant behavior. As in ref. [68], thermalization is achieved through

a complex process involving absorption, scattering and re-emission in the dye ma-

terial. Both nanoparticles and dye molecules scatter light energy, so both systems

can, in principle, contribute to the scattering process. However, the ultrasmall con-

centration of nanoparticles, their small scattering cross-section in the visible (Fig.

3.15e), as well as their dark nature, suggest that the main scattering player in this

set-up is the dye material. The main role of the nanoparticles is to keep radiation

inside the system, creating the blackbody condition necessary for light condensation

to be observed according to our theory (Section 3.10 Energy condensation). Our

experiments illustrate this point very clearly, showing the existence of a minimum

darkness threshold (80%, as stated in the previous section) for experimentally ob-

serving light condensation in our set-up. This scenario is so far unexplored in active

materials and can open new fundamental connections between the BEC of light and

nanoplasmonics.
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3.7 First principle simulations of light -matter

interaction in a single nanoabsorber

In order to complement the ray optics picture provided in the main text, we here

present the results of full first principle simulations on the light matter interac-

tion with a single nanoabsorber. We begin by considering an enlarged portion of

the structure represented in Fig. 3.1b left of the main text, and simulate by FDTD

the dynamics of light in the presence of a radiating dipole placed in the axis origin

(x′, y′) = (0, 0). In the transformed geometry of Fig. 3.1b right, this point corre-

sponds to the infinity point and simulates an external source placed far away from

the nanostructure. As expected on the basis of ray analysis, light bounces into the

structure and get coupled into the metallic waveguides in terms of Surface Plasmon

Polariton (SPP) waves [77], which exists at the metallo dielectric interface (Fig.

3.13a) and are butt-coupled inside the channels. In the geometry of Fig. 3.13a,

light propagates in the waveguide channels without never reaching the end, which

occurs at infinity.

In the transformed geometry of Fig. 3.1 right, this illusion is provided by an adia-

batic compression of the waveguide modes ( Fig.3.13b-c). This originated from the

contraction of the space generated by the coordinate transformation: while elec-

tromagnetic energy tends to propagate towards the kissing point K (correspond-

ing to infinity in Fig. 3.13a), the velocity of the electromagnetic energy is progres-

sively reduced in Fig. 3.13b-c, eventually reaching the point K in an infinite time.

This mechanism allows light to be efficiently absorbed in an extremely narrow spa-

tial region where the electromagnetic energy is accumulated (Fig. 3.13c). Figures

3.13d-e, finally, report the absorption σa and scattering σs cross section of a sin-

gle nanoabsorber, comparing it to the response of a nanosphere (blue dots) and a

nanorod (green dots). Calculations have been made by using finite element simula-
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tions with COMSOL mutliphysics software. The absorption cross section of a single

nanostructure, as expected on the basis of our theory, shows almost flat absorption

over the visible and near infrared. The absorption of the nanosphere is, in general,

orders of magnitude higher than the one of a nanorod and a nanosphere, except in

the region between 400 nm and 500 nm where the nanosphere exhibits its nanoplas-

monic resonance and the two structures have comparable cross section.
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Figure 3.13: Light-matter interaction with a single nanoabsorber: firstprinciple re-
sults. Panel (a-b) report the FDTD calculated electromagnetic energy distribution
of (a) the structure of Fig. 3.1b left and (b) the transformed structure represented
in Fig. 3.1b right of the main text. Panel (c) provides a zoomed detail of the area
around the kissing point region in Panel (b). In the simulation, we used a radiating
dipole placed at infinity in the geometry of Panel (b). The dipole location in the
transformed space of Panel (a) corresponds to the axes origin (x′, y′) = (0, 0). Due
to the scaling invariance of Maxwell equations, we use dimensionless spatial units
defined with reference to the scaling constant a. Panel (e)-(d), finally, reports the
absorption σa (d) and scattering σs (e) cross section, calculated by finite element
simulations using the COMSOL multiphysics software.
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3.8 Thermal stability of the nanostructures

Figure 3.14: Stability of the nanoparticles versus temperature: in-situ TEM re-
sults. Left panel reports the temperature increase of the nanoparticles, measured
from room temperature, with associated TEM snapshots (a-f panels on the right) of
the same nanoparticle at different times.

The metallic bonding between the nanosphere and the nanorod gives to our nanopar-

ticles excellent thermal stability properties, as we illustrate in this section. In a first
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series of experiments, we monitor the stability of the nanoparticles subjected to an

increasing temperature. Fig. 3.14 illustrates the results, obtained during 200 min-

utes where the nanoparticles temperature is increased from room temperature to

T = 600oC (Fig. 3.14, left panel). This measurement has been performed in-situ of

the TEM imaging facility, by depositing the nanoparticles over the standard TEM

grid and collecting TEM snapshots of the same nanostructure at different temper-

atures. The results (Fig. 3.14a-f) show that the system is completely stable and

unaffected by the temperature increase. The amorphous material surrounding the

particles and visible in Fig. 3.14 is carbon contaminant, which accumulated on

the particles during the heating process. In a second series of experiments, we de-

posited the nanoparticles on the TEM grid and subjected them to a prolonged solar

illumination (Fig. 3.15). This experiment is realized by using a Newport 91160-

1000 solar simulator, which generates an intensity of 2KW/m2. TEM images ac-

quired before (Fig. 3.15a) and after 10 hours of solar illumination (Fig. 3.15b) show

that the nanoparticles are perfectly stable and do not suffer from any apparent de-

formation. Fig. 3.16 reports the dynamics of the absorption spectra of the nanopar-

ticles at different temperatures. The experiments were performed by heating the

nanoparticles deposited by spin-coating over a planar sample, and then measur-

ing the nanoparticles absorption at every 50oC temperature increase after reaching

the temperature of 150oC degrees. The absorption spectra appears quite stable: at

150oC, 200oC and 250oC degrees, the average absorption variation is 0.4%, 0.7%

and 0.8%.
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Figure 3.15: TEM images of nanoparticles after prolonged solar illumination.
Panel a reports TEM images of selected nanoparticles at the beginning of the ex-
periment, prior to the illumination. Panel b reports TEM images of the nanoparti-
cles image after 10 hours of solar illumination, obtained by exposing the nanoparti-
cles to a solar simulator generating the intensity of 2kW/m2.

Figure 3.16: Nanoparticles absorption spectra versus temperature. The figure re-
ports the variation ∆γ0 = (γ − γ0)/γ0 of nanoparticles absorption γ versus temper-
ature, being γ0 the nanoparticles absorption spectrum at room temperature. The
temperature curve used is the same of Fig. 3.14a.
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3.9 Spectrophotometer measurements

Figure 3.17: Calibration measurement of the UV-VIS-NIR spectrometer. (a) Mul-
tiple reflections model for analyzing light propagation in the glass cuvette sample.
Panel (b) reports the reflectivity r measured from the transmission Tw and absorp-
tion Aw of a sample composed by a glass cuvette filled up with water, for normal
incidence illumination. The solid red line represent our experimental measure, the
solid blue line illustrates the exact result calculated by using Fresnel formulae and
the refractive indices of glass and water available in the literature.

All absorption measurements were carried out using a CARY 5000 UV-VIS-NIR

spectrophotometer equipped with an integrating sphere. Absorption was calculated

as 100% − T − R, being T and R the energy transmission and reflection respec-



84

tively. The 100% transmission baseline measurement was an empty sphere. The

absorption of the nanoparticles in the liquid solution is estimated by using stan-

dard arguments from elementary wave theory. Fig. 3.17a illustrates the dynamics

of light when impinging on a sample composed by a glass cuvette with a liquid in-

side. Each glass side of the cuvette is characterized by one input air/glass and out-

put glass/water interface. In order to simplify the analysis, we group together these

two interfaces into a single air/glass/water interface element. For a liquid composed

only by water, light of intensity I0 is initially reflected by the first interface air/-

glass/water and generate the first component r0 = I0r, being r the reflectivity

of the air/glass/water interface element. The transmitted energy I0(1 − r) propa-

gates into water, reaching the output air/glass/water interface as I0(1 − r)α, being

α ∈ [0, 1] the attenuation of water, with 1−α the water absorption. Light transmit-

ted at the output air/glass/water interface generates the first contribution to the

transmissivity t0 = I0(1 − r)2α, as well as a series of multiple reflections/transmis-

sions in the sample, whose components can be straightforwardly found by iterating

the propagation algorithm described above. Total reflectivity Rw, transmissivity Tw

and absorption Aw = 1− Tw −Rw are expressed as follows:


Tw =

∑
n
tn
I0

= (1−r2)α
1−r2α2

Rw =
∑

n
rn
I0

= r(1 + Twα)

Aw = (r−1)(1−α)
rα−1

(3.2)

When a second attenuating specie such as our nanoparticles is diluted in the liquid

at an ultra small concentration, Eq. 3.2 hold with α → α · β, being 1 − β ≡ γ

the absorption of the nanoparticles. From the total absorption of the sample A =

(r − 1)(1 − αβ)/(rαβ − 1), we can easily obtain the nanoparticles absorption γ by



85

direct inversion:

γ = 1− A+ r − 1

α(Ar + r − 1)
(3.3)

Quantities r and α appearing in Eq. 3.3 are directly measured in our setup from

the transmission Tw and absorption Aw of a water sample through Eq. 3.2. Once

these quantities are measured, the nanoparticles absorption is obtained after an ab-

sorption measurement A through Eq. 3.3. To evaluate the accuracy of our setup,

we provided a calibration experiment by reporting the spectrum of λ as measured

from a water sample made by a glass cuvette filled with water. We considered nor-

mal incident condition. We compare the experimentally retrieved result to the ex-

act value obtained from the transfer matrix equations of a multilayer structure

composed by air/glass/water planar interfaces. For glass and water, we used optical

constants estimated independently from us and available in the literature [78, 79].

Figure 3.17 b illustrates the results. The figure shows an excellent matching, with

the largest difference between the exact result and the measured one of only 0.6%,

showing the great accuracy of our setup. When deposited in the planar film struc-

ture, the nanoparticles absorption An is directly evaluated from the absorption

An = 100% − R − T of the whole sample. 100% transmission baseline is an empty

sphere.
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3.10 Energy condensation

In this section we build a statistical model of a blackbody in the presence of a suit-

able gain material, and study at leading order the main emission properties of the

system at thermodynamic equilibrium. Following the classical approach in the anal-

ysis of the blackbody spectrum [54], we use a quantum statistical mechanics frame-

work that does not rely explicitly to the microscopic details of the system, but try

to predict the main physical outcomes from general and universal perspectives.

Our analysis begins by considering a cubical volume V , with side L, sufficiently

large to completely include the blackbody material inside it. The electromagnetic

details of the blackbody are defined by an inhomogeneous dielectric response ε(r, ω),

defined inside V , which depends on both space r and frequency ω. In our case, the

dielectric response function σdescribes the random spatial configuration of nanos-

tructures that compose our material. Without loss of generality, due to the struc-

ture of our nano-absorbers and their nanoscale length, we can perform the calcu-

lations by assuming an ideal conductor with real εfunction. In the volume region

defined by V , we can quantize the electromagnetic field by following the scatter-

ing method. This approach is introduced and thoroughly described in [80], hence,

we here limit to present the main results, remanding to Ref. [80] for all the demon-

strations. The scattering approach begins by expanding the vector potential A of

Maxwell equations into a set of plane waves:

A((r), t) =
∑
k

ek
Q̂k√
(V )

ei(kr−ωkt) (3.4)

being ek a unit polarization vector of the k-th plane wave possessing wavevector

k and frequency ωk, while Q̂k is is the corresponding position operator. The plane

waves form a continuum set of modes, where for each frequency ωk the wavevector

k can be displaced in all possible spatial directions.
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By introducing standard creation â†k and annihilation âk operators from the expan-

sion Q̂k =
√

~/2ωk(â†k + âk), the scattering approach expresses the Hamiltonian Ĥ

of Maxwell equations in the compact nondiagonal form:

Ĥ =
∑
kk′

Jkk′ â
†
kâk′ (3.5)

described by a coupling matrix J characterised by symmetric couplings Jkk′ = J?kk′

defined as follows:

Jkk′ = ~ωkδkk′ +
~√ωkωk′

4V
e?kek′

∫
χ

ε
ei∆kk′rdV (3.6)

having introduced the shorthands χ(r) = 1 − ε(r), ∆kk′ = k − k′ and being δkk′ the

Kronecker delta function. Equations 3.5 and 3.6, despite the lengthy expression of

3.6 furnish a very intuitive physical scheme of light matter interaction. In the ab-

sence of nanostructures, ε = 1, χ = 0 and Jkk′ = ~ωkδkk′ . In this condition, the

energy Hamiltonian Ĥ =
∑
kk′

~ωkâ†kâk′ becomes simply expressed by the sum of non-

interacting elements. When a generic material is inserted into V, conversely, ε 6= 1

and plane-waves become coupled by the non diagonal terms Jkk′ for k 6= k′. In our

case, the coupling coefficients are fully random, due to the inhomogeneous dielectric

constant ε(r) that models random distributions of nanostructures. The net effect

of disorder is therefore to create a source of random couplings among the different

modes that characterize photons propagation at every frequency and polarization.

In the absence of gain, each plane wave described by â†k and âk k fluctuates around

a stationary configuration of thermal equilibrium. When a suitable gain material

(such as a dye or a more general optical amplifier) is inserted into the volume V

and is optically pumped, the equilibrium configuration of the system is changed.

While the optical pumping introduces new photons in the volume, the light-matter

processes of spontaneous and stimulated emission alter their distributions by e.g.,
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depleting the number of photons at some frequency and creating photons at other

wavelengths. The effects of this dynamics are observed at every frequency, owing

to the nonzero couplings Jkk′ among all the modes that describe light propagation.

The complexity of this interaction makes a statistical treatment the most conve-

nient choice to derive an effective model that can capture the main physical out-

comes. From a statistical perspective, if the the spatio-temporal evolution of the

photons dynamics is sufficiently long, the system has enough time to explore the

available phase-space and find a new equilibrium state. This is described by a new

average value of photon intensity, or equivalently, a new average photon number:

∑
k

〈â†kâk〉 = Nn̄ (3.7)

being 〈...〉 a quantum statistical mechanics average, â†kâk the photon number oper-

ator for the k-th mode, N the total number of photons in the volume V and n̄ the

average number of photons contained in a single mode. Equations 3.5 and 3.6, with

the constraint defined by 3.7, completely specify our problem from a statistical me-

chanics perspective. They are very simple and general, describing an ensemble of

interacting modes (Eq. 3.7) This model is very general and its predictions are not

limited to the nanoparticle system considered in this work, but to any blackbody

material where the number of photons is maintained at steady-state. At leading or-

der in the dynamics of 3.5 and 3.6, we do not need to keep into account nonlinear

interactions among the modes; as we will illustrate in the following, in fact, Eqs.

3.5 and 3.6 are already sufficient to predict the system dynamics and match very

well our experimental results.

By generalizing the Langevin approach found in [81], it is also possible to demon-

strate that the thermodynamic state characterized by an effective temperature is

indeed the stationary state of the system of Eqs. 3.4 to 3.5. This analysis requires

long and involved mathematics that goes beyond the scope of this paper and will
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be presented elsewhere. The statistical analysis of Eqs. 3.5 and 3.6 can be per-

formed in closed form, and we here present the principal results.

To solve for the associated thermodynamics, we add a Lagrange multiplier l to Eq.

3.5 and define a new Hamiltonian:

Ĥ =
∑
kk′

Jkk′ â
†
kâk′ − ~l

∑
k

â†kâk (3.8)

The variable guarantees that the condition Eq. 3.7 is fulfilled during the dynamical

evolution of Eq. 3.8. The partition function Z can be easily found by diagonalising

the coupling matrix J and reads:

Z = tr
(
e−βH

)
=
∏
k

1

2 sinh β~(ωk−l)
2

(3.9)

being tr the trace operator, β = 1/T with T an effective temperature, and Ωk cor-

responding to the eigenvalues of the coupling matrix J. The variables Ωk represent

a new set of frequencies, which are associated to the normal modes of the coupling

matrix. The parameter T can be regarded as an effective temperature, which de-

scribes the configuration of thermodynamic equilibrium of the system. Once the

partition function is known, we can calculate the Free Energy F :

F = − logZ
β

=
1

β

∑
k

log

[
2 sinh

β~(Ωk − l)
2

]
(3.10)

By combining Eq. 3.10 with the expression obtained from the derivative of the Free

Energy ∂F/∂l = −~
∑

k〈b̂
†
kb̂k〉, we can express the condition of Eq. 3.7:

∑
k

1

2N
coth

[
β~(l − Ωk)

2

]
= n̄ (3.11)

Equation 3.11 furnishes the state equation and allows to identify the various phases

of the system. It is important to highlight a fundamental scaling law of the state
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Eq. 3.11, which can be easily illustrated in the classical limit ~→ 0, which yields:

∑
k

1

N

1

β~(l − Ωk)
= n̄ (3.12)

Equation 3.12 is invariant with respect to the following scaling β → β · α and

n̄ → n̄ · α, for an arbitrary dimensionless α constant. It is therefore convenient

to describe the state of the system with respect to a dimensionless pumping rate

P = n̄/α, defined by the ratio between the average photon number carried by

each mode and an arbitrary reference value α. Without loss of generality, we use

α = 1/~, which simplifies the resulting expressions. Due to the continuum nature

of the plane wave set used in all our expansions, is convenient to express the state

equation the continuum limit, where Ωk → ω:

1

2

∫
p(ω) coth

[
β

(l − ω)

2

]
dω = P (3.13)

with p(ω) representing the probability density distribution of the frequency eigen-

values ω of the coupling matrix J. Without loss of generality, we can assume nor-

mally distributed couplings Jkk′ . In this situation, the eigenvalue density p(ω) is

expressed from the universal distribution of random matrices [82]:

p(ω) =
1

2πσ2

√
σ2 − ω2 (3.14)

The distribution in Eq. 3.14 is nonzero in ω ∈ [−2σ, 2σ], with 2σ ≡ ∆ω defining

the total bandwidth of the plane-wave modes where Eq.3.7 is defined. The substi-

tution of Eq. 3.14 into Eq. 3.13 furnishes a self-consistent equation of state for the

Lagrangian multiplier l, which can be solved for a given pumping rate P and in-

verse temperature β. For any given values of P and β, the parameter decreases for

increasing P until it reaches a critical value lc = ∆ω, which determines a phase

transition of the system. A further increase of P creates a condensed state, where
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all the modes constructively buildup energy into the edge state at ω = ∆ω, which

becomes macroscopically dominant:

â†∆ωâ∆ω

N
=

[
1− βc(P )

β

]
(3.15)

being βc(P ) the inverse transition temperature defined by:

1

2

∫
p(ω) coth

[
βc

(∆ω − ω)

2

]
dω = P (3.16)

The dynamics of this physical process can be observed from the emission spectrum

of the system, obtained by equating Eq. 3.11 with the condition 3.7 written in the

continuum limit, which yields the expression for the mean number of photon con-

tained in each mode and in each frequency ω. The latter furnishes the energy den-

sity spectrum W (ω) of the system, measured in units of ~ω, as a function of the

self-consistent parameter l:

W (ω) =

√
∆ω2 − ω2

π∆ω2
coth

[
β
l − ω

2

]
(3.17)

When we increase the photon number rate P in the frequency bandwidth ∆ω, the

inverse critical temperature βc obtained from Eq. 3.16 becomes smaller and smaller,

forcing the system to enter into a condensed phase regardless of its initial state

(i.e., initial β and P ). This result is particularly interesting, as it predicts the possi-

bility of observing such light condensation at every regime, provided that the opti-

cal pumping is sufficiently large to start the process.
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3.11 Competition between superluminescence and

light condensation effects

(10   /s)14

Figure 3.18: Dye emission for increasing pumping rates. Figure shows the dye
emission spectra for increasing pumping rates P (from the bottom spectrum to the
top: P = 1, P = 4, P = 7) in the same experimental conditions but without nanos-
tructures.

To analyze the condensation process in more detail, we fit each emission spectra

W (ω) with a series of Gaussian lineshaped functions:

W (ω) =
∑
n

ane
− (ω−ωn)2

δω2n/2 (3.18)

being an, ωn and δωn the amplitude, central frequency and linewidth, respectively,

of each gaussian function of the expansion.

Gaussian functions are quite robust, and well fit localized function profiles such as
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the spectral emissions illustrated in Fig. 3.11b. Fig. 3.18a illustrates the distribu-

tion of linewidths δωn at different pumping rates P . In the plot, we scaled each

linewidth δωn contribution with the corresponding amplitude an in the expansion

3.18. The figure provides a clear view of the dynamics, showing a very strong con-

densation process that, from an initial broad linewidth of '50 nm, generates a fi-

nal emission line that is only 5.6 nm wide. This correspond to a 9th-fold reduction

of the spectral linewidth. As a further validation of these results, and in order to

clearly show the fundamental role of our nanostructures in sustaining light conden-

sation effects, we performed experiments by employing a solution of Rhodamine B

with no nanostructures. Fig. 3.18b shows the distribution of linewidths δωn for the

case of a pure solution of Rhodamine B, pumped with the same rate of Fig. 3.18a.

In the absence of nanostructures, energy emission remains with broad spectral fea-

tures, showing modes with approximatively 40 nm linewidth. Fig. 3.19 provides the

emission spectra of the dye. For increasing pumping rates P , the dye tends to ac-

quire a more asymmetric shape around the central emitted frequency at 628 nm,

which identifies the superluminescence emission frequency of the dye. In order to

quantitively study the competition among condensation and superluminescence, we

extracted the latter contribution from the amplitude an of the gaussian function

centred at 628 nm in the expansion 3.18 of the spectra of Fig. 3.11b. Fig. 3.12 re-

ports the behavior of the energy peak of superluminescence for increasing pumping

rate P . The contribution arising from light condensation at band-edge is reported

for completeness. Despite the extremely small amount of nanostructures, the pro-

cess of light condensation is extremely effective, showing a significant increase with

respect to the much smaller variation due to superluminescence effects.
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Figure 3.19: Analysis of the linewidth of emission spectra. Panel (a) reports the
distribution of linewidths δωn of the experimental spectra W (ω) of Fig. 3.11b for
a varying pumping rate. The analysis is performed by decomposing each W (ω)
through Eq. 3.18, which encompasses n = 1, ...,N localised exponential functions
each defined by an amplitude an and a linewdith δωn. In panel (a), each contribu-
tion δωn is displayed with a colour that is proportional to the corresponding ampli-
tude an in the expansion. Panel b shows the same type of analysis in the case of a
pure solution of Rhodamine B.
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Chapter 4

TRIGGERING EXTREME

EVENTS AT THE NANOSCALE

IN PHOTONIC SEAS

4.1 Energy localization and Rogue waves

The extreme localization of waves, either in space or in time, has always been a

subject of great interest in science. Subwavelength manipulation of light has driven

a large body of research in metamaterials and plasmonics, where metallic nanos-

tructures and negative index materials have been investigated to achieve energy

compression, ultrahigh efficiency photovoltaics and superlens effects [83, 84, 85, 86,

87, 88, 89, 90]. Nanofocusing of light has also stimulated new concepts in subwave-

length imaging [91, 92], including the use of disorder with spatial light modulators

to trap photons beyond the diffraction limit [93, 94]. The study of electromagnetic

confinement on short temporal scales, conversely, is at the frontier of research in

ultrafast optics, where it ultimately led to the development of advanced refocus-

ing techniques and single-cycle laser sources [95, 96, 97]. Even though this body of

research spans across very different areas, they are all characterized by the use of
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deterministic effects and predictable events, which require the development of chal-

lenging fabrication processes, sophisticated experimental apparatus and/or elabo-

rate wavefront reshaping techniques.

On the other hand, extreme localization of energy naturally arises in rare events

such as hurricanes, rogue waves and tsunami, which seem to appear at once and

then disappear again. Apart from their catastrophic nature, these phenomena are

not normally exploited owing to their unpredictability, which makes it difficult to

understand their physics and control their emergence. Among various types of rare

dynamics, rogue waves are particularly interesting. Rogue Waves (RWs) are iso-

lated events in wave motion that are characterized by the appearance of localized

waveforms with exceptional amplitude. These events seem to be ubiquitous and

have been reported in a large number of systems sharing diverse degrees of ran-

domness, noise, unpredictability, linear and nonlinear responses [98, 99, 100, 101,

102, 103, 104, 105, 106, 107, 14, 108, 109]. A key issue is the active role of random-

ness [108, 109], and the question whether RW can be observed in fully determin-

istic structures with no intrinsic disorder. Deterministic systems are more easily

controlled, they can provide a simpler platform for studying the physics of these

phenomena, and they can challenge us with an intriguing problem: can we embed

the exceptional amount of energy of a rogue wave into a simple integrated struc-

ture? And if this structure can be engineered, what are the specific limits that we

can break with the unique properties of these events? The ubiquitous character of

RW manifested in uniform media, such as water, and not relying on any particular

geometry has the potential to open a new paradigm where extreme events are not

only investigated for their elusive physics, but can also be the source of inspiration

for unconventional light management techniques.

In this chapter, we report the combined ultrafast (163 fs long) and subwavelength

(206nm wide) localization of photons at a wavelength λ=1.55 µm by exploiting a
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new mechanism for the generation of rare events akin to rogue waves, which also al-

lows one to gain new fundamental insights into the properties of these phenomena.

Our system is a two-dimensional Photonic Crystal (PhC) resonator, integrated onto

a chip, whose shape has been suitably engineered in a quarter-stadium form. This

particular shape has been chosen to allow the generation of an incoherent wave en-

semble through the mechanism of wave chaos [110]. Even though the material ex-

hibits no nonlinearity, the stadium shape supports chaotic motion for light rays,

and fully randomizes any input wavefront into an ensemble of strongly incoherent

waves. In our system, suitably engineered losses trigger a mechanism of sponta-

neous synchronization, which constructively builds up energy into giant nanostruc-

tures of light. The experimental set-up is complemented by a home-built Near-Field

Scanning optical Microscope (NSOM) [111], which allows us to measure both the

amplitude and phase of light with nanometre and femtosecond accuracy.
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4.2 Theoretical model: superposition of random

plane waves

We begin our analysis by investigating the generation of localized rare events from

an incoherent sea of random waves ψ(r, t):

ψ(r, t) =

∫
a(k, ω)ei[ωt−k·r+φ(k,ω)]dωdk (4.1)

with a(k, ω) and φ(k, ω) random random amplitudes and phases, respectively, de-

pending on the wavevector k and frequency ω and φ are distributed uniformly.

Equation 4.1 describes a classical random walk whose intensity probability density

P (I) = P (|ψ|2) follows a Rayleigh law P (I) = exp(−I) as confirmed in Fig. 4.1a.

This case was simulated with an ensemble of 2000 random waves with amplitudes

a(k) uniformly distributed in [0, 1], with randomly displaced wavevectors |k| < π/λ

and and uniformly distributed frequencie ω ∈ [1, 2]. For these conditions, no rare

event of large intensity is generated (Fig. 4.1b). If we apply a suitably small per-

turbation to the system, however, we observe a radically different scenario. Figure

4.1c,d illustrates what happens when the phase probability distribution is diluted

by, for example, a range of inaccessible values for φ(Fig. 4.1c inset). We observe

an anomalous deviation from the Rayleigh law and the appearance of a rare event

(Fig. 4.1c circlemarkers). The deviation fromthe Rayleigh law shown in Fig. 4.1c

has a characteristic ”L” shape with a long tail, which is the hallmark for the ap-

pearance of rogue waves (Fig. 4.1d). Considering the small magnitude of the per-

turbation δφ = π/10, the generation of rare events of strong amplitude (' 60%

higher than the Rayleigh limit) is quite remarkable.
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Figure 4.1: Classical and diluted random walks of photons. Intensity probability
density (a,c) and spatial wave pattern at t=0 (b,d) generated by an ensemble of
2000 random waves with uniformly (a,b) and diluted (c,d) phase distribution. Di-
lution is realized by inserting a small gap δφ = π/10 of inaccessible values in the
probability distribution of φ(c, inset). By comparing (b) and (d), we observe the
spontaneous formation of a rogue wave in the chaotic light pattern. In all simula-
tions, we consider a randomly displaced wavevector k in the plane and uniformly
distributed amplitudes a ∈ [0, 1] and frequencies ω ∈ [1, 2].

The generation of rare events can be intuitively explained by using the idea of path

cancellation. In a classical random walk, the point of maximum intensity In is ob-

served with the lowest probability density P (In) = e−In . The value In can be ob-

tained by different combinations of random waves; however, there exists at least
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one situation where In is generated from a set of waves that destructively interfere,

whose phase is randomly distributed in a region of width δ, and all the remaining

waves that constructively interfere. This event is, by definition, rare and observed

at one (or very few) spatial point, which we label p. When we make the gap δ in-

accessible, the field evolution shows the same paths as the case with no dilution,

minus all the paths originated by waves with phase in the gap δ. The removal of

these paths now enable at p the appearance of a rare event where all the waves con-

structively interfere, or equivalently, are synchronized. The intensity generated in

p is now larger than the Rayleigh limit In, owing to the removal of the components

that were interfering destructively. Such a rare event can be expressed as follows:

ψ(r, t) =

∫
a0 exp [i(ωt− k · r + φ0)]dωdk (4.2)

with φ0 a generic constant value. Equation 4.2 can be regarded as a spontaneous

synchronization of statistical origin. When such a synchronization involves all the

frequency bandwidth ∆ωof the field, the spectral energy contained at each fre-

quency ω ∈ ∆ω is constructively summed up and the resulting intensity reaches

the largest possible value for that particular field. Notably, equation 4.2 embeds a

super-oscillatory [112] nature that beats the diffraction limit even when only diffraction-

limtted components are allowed to interfere. In particular, if we consider a buildup

process where all the possible components k = |k|< 2π/λ are summed up, by inte-

grating eq. 4.2 we obtain:

ψ(r, t) ∝ J0(k|k|)
sin
(
δω
2
t
)

t
(4.3)

with δω the frequency bandwidth where equation 4.2 holds. Equation 4.3, in inten-

sity, exhibits a subwavelength spatial fullwidth at half-maximum (FWHM) that is

25% smaller than the diffraction limit λ/2, and a time FWHM of τ = 2π/δω. Sub-
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wavelength confinement originates from the Bessel wave J0(kr), which is able to os-

cillate faster than its band limited Fourier components owing to super-oscillations.

Super-oscillations have been largely investigated for the realization of superlenses

[91], although super-resolution usually comes at the expense of side lobes that can

be several orders of magnitude higher than the subwavelength spot. The rogue

wave nature of our rare event, conversely, always guarantees that super-oscillatory

behaviors are observed as bright energy spots with small sidelobes, offering a natu-

ral pathway towards overcoming this problem. The brightness of the energy spot

depends on the spectral bandwidth δω of the waves that get synchronized: the

larger the bandwidth, the larger the energy peak of the rogue wave.
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4.3 System Design based on FDTD simulations

Figure 4.2: Photonic crystal resonator. Design and FDTD simulations. a, SEM
image of the structure with the resonator area highlighted in false color. (b)
Largest gap, δφ, in the phase probability density versus waveguide spacing d. (c)
Probability distribution of the electromagnetic energy density, 〈E〉, for d = 1 (circle
markers), d=7 (triangle markers) and a classical random walk process (dashed line).
(d) Order parameter, η = 〈E〉, versus d.

To illustrate the generation of ultrafast, sub-λ rogue waves in an integrated struc-

ture, we design two-dimensional PhC optical cavities with losses controlled by the

width of the output channels (Fig. 4.2a). Light of a frequency within the bandgap

of the photonic crystal can escape from the system only via the input/output chan-

nels, otherwise being reflected at the resonator boundaries. Wave chaos [110] fully
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randomizes light reflections at the resonator boundaries and generates a ”photonic

sea” of incoherent waves, where diffraction-limited contributions are continuously

mixed up. To intuitively understand the effect of the waveguide channels, we use

the same idea of path cancellation introduced previously. When outgoing channels

are absent, light rays cannot escape the system and continuously mix up, generat-

ing a classical random walk with phases randomly distributed in the whole interval

[0,2π]. Such a phase distribution results from the sum of all the paths of light rays

in the closed cavity. In the presence of outgoing channels, conversely, a fraction of

rays escape from the system and deplete the dynamics from their corresponding

paths.

The cancellation of these paths inhibits the random walk from exploring the full

set of phases, and is expected to create a gap in the phase distribution for suffi-

ciently large values of d that is, when a sufficiently large number of paths are can-

celled. The relationship between the phase gap δφ and the output waveguide width

d, however, is far from trivial, and we assess it via massively parallel finite differ-

ence time domain (FDTD) simulations with our code NANOCPP (ref. [63]). To en-

sure a high accuracy, we employed a high resolution of 40 points per internal wave-

length.To model a realistic case,we consider the propagation of a supercontinuum

source with wavelengths in λ ∈ [1.535, 1.565]µm, (that is, 30nm bandwidth centered

at λ0 = 1.55µm, launched at the input waveguide of the PhC cavity. By applying

the Prony algorithm (see Methods), we extracted the probability distribution of the

electromagnetic field amplitude and phase, calculating the size of the largest phase

gap δφ (Fig. 4.2b) and the electromagnetic energy (Fig. 4.2c) for different output

channel widths d. The waveguide spacing d is varied by removing an integer num-

ber of rows from the photonic crystal lattice. As seen in Fig. 4.2b, a variation of

d creates a phase gap δφ with a nonlinear relationship. For d = 3, a small gap of

approximately δφ = π/10 opens up, which slowly increases in size for larger d. To
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investigate the most favorable condition for the observation of these phenomena, we

first calculate the average energy density η = 〈E〉:

η = 〈E〉 =

∫
E ′P (E ′)dE ′ (4.4)

with P (E ′)t he probability distribution of the electromagnetic energy density in the

system. The average density ηof equation 4.4 can be used to measure the largest

deviation from the Rayleigh law, and therefore acts as an order parameter for the

observation of rogue waves in the structure. Figure 4.2d reports the behavior of η

versus waveguide spacing d, showing a maximum around d = 7. In this regime, rare

events (Fig. 4.2c triangle markers) of energy twice as high as the Rayleigh limit

(Fig. 4.2c circle markers) are observed. The behavior of η versus d shown in Fig.

4.2d highlights the competition between a larger gap in phase space due to the in-

crease of d (see Fig. 4.2b) and the reduction of the chaotic strength of the cavity

resulting from the presence of larger output waveguides. This aspect is further illus-

trated by a set of classical billiard simulations (see Section 4.9 for more details).

Figure 4.3 summarizes our FDTD results in the optimal case d=7, showing the spa-

tial distribution of the electromagnetic energy density inside the cavity when an

isolated rogue wave is formed simultaneously in both space (Fig. 4.3a-c) and time

(Fig. 4.3d,e). To quantitatively demonstrate that the observed rare events belong

to the class of rogue waves, other than the anomalous deviation from the exponen-

tial shown in Fig. 4.2c,d, we also calculate the Significant Wave Height (SWH).

The latter is defined as the average of the highest one-third of the waves nearby

and represents a widely accepted parameter for the identification of rogue waves.

As discussed in ref. [113], rogue waves are characterized by a maximum peak that

is at least twice as large as the SWH. This threshold criterion has been initially in-

troduced in hydrodynamics, and is therefore formulated with reference to the wave

amplitude. We comply to the original formulation and measure the SWH with ref-



105

erence to the electromagnetic wave amplitude, which is a parameter accessible from

our FDTD simulations. The spatial hot spot shown in Fig. 3 meets this criterion,

as its electromagnetic field is 2.51 times higher in space and 2.20 times higher in

time than its SWH. The subwavelength nature of the rogue wave is readily eval-

uated by applying equation 4.3 (Fig. 4.3c dashed line), showing a perfect agree-

ment with the result of FDTD (Fig. 4.3c solid line). The time evolution of the

rogue wave exhibits a FWHM of approximatively 250 fs, which matches well with

equation 4.3 by using the full input pulse bandwidth δλ = λ2
0δω/2πc = 30nm

(Fig. 4.3e), with c the speed of light. Quite remarkably, this means that such rogue

waves are constructively accessing the spectral energy contained in the whole fre-

quency bandwidth of the field. This also identifies the maximum value in Fig. 4.2

as the maximum energy that can be extracted for the given input bandwidth of 30

nm.
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Figure 4.3: FDTD analysis of ultrafast subwavelength light localization (a) Elec-
tromagnetic energy distribution in the cavity in the presence of an extremely local-
ized rogue wave. (b) Zoomed detail on the RW energy peak in the area indicated
by the dashed rectangle in (a). (c) Section of the energy distribution along y (solid
line) and the theoretical prediction based on our random wave model (dashed line).
(d) Temporal dynamics of the RW spatial energy peak. (e) Detailed dynamics of d
(solid line) with the corresponding theoretical prediction (dashed line). In b,c and
e, the axis origin is centered with respect to the intensity maximum of the rogue
wave.
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4.4 PhC sample fabrication

We now set out to observe nanoscale RWs on our chips.We begin by fabricating a

series of silicon-on-insulator planar photonic crystal cavities with output couplers

of different widths. The fabrication of optical resonators is realized by a silicon-on-

insulator substrate consisting of a 220-nm-thick silicon layer on a 2-µm-thick layer

of SiO2. The patterns were written using ZEP resist with a modified LEO/RAITH

electron-beam lithography system with a 2nm step size, then etched with a bal-

anced blend of SF6 and CHF3 gases in a reactive ion etching step. After stripping

off the residual resist, the sample was cleaved for end-fire coupling [39].
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4.5 FDTD experiements

In our experiments, we launch 1550 nm, 150 fs light pulses into these resonators

and image the electromagnetic field with an NSOM (see Methods for more details).

In similar fashion to the FDTD analysis, we experimentally recorded the RW dy-

namics only after the light pulse has been inside the cavity for a sufficient long time

to generate a photonic sea. Figure 4.4 a-c summarizes the statistical analysis of

light dynamics inside the optical resonator, providing a quantitative comparison

between theory and experimental NSOM results.

Figure 4.4a considers the case for d=1, comparing the classical random walk condi-

tion from NSOM measurements (triangle markers) and equation 4.7 (dashed line),

which represents the analytical estimate (see Methods). Considering the rare nature

of the phenomenon under study, the agreement between theory and experiments is

quite remarkable. Figure 4.4b then compares the experimental retrieved energy dis-

tribution in the optimal case d=7 for the observation of RWs (circle markers) with

the theoretical predictions of FDTD simulations (triangle markers) and our random

wave model described by equation 4.1 (diamond markers). Fig. 4.5 illustrates each

of the latter contributions NSOM, FDTD and predictions from equation (1) sep-

arately, to better appreciate the high level of agreement between experiments and

theory. Figure 4.4a,b also demonstrates the high level of control offered by our inte-

grated chips in the generation of these events.
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Figure 4.4: Summary of NSOM experimental results and comparison with theory.
(a) Comparison of the time-averaged energy probability density, P (Ē), retrieved
from NSOM experiments for d-1 (triangle markers). (b) Comparison of FDTD re-
sults (triangle markers) and NSOM experiments for the case of d=7 (circle mark-
ers), with Eq. 4.1 for δφ = π/10 (diamond markers). In both panels, the probabil-
ity law dependence of the classical random walk (dashed line) is also shown for ref-
erence. (c) Time evolution of the electromagnetic energy density when a nanoscale
rogue wave settles in. (d) Section of the energy distribution along x when the rogue
wave exhibits the maximum intensity. (e) Temporal dynamics of the rogue wave
energy peak. In (c) the color bar on the right indicates the values of the electro-
magnetic energy density, which are normalized with respect to the significant wave
height of the field intensity (SWHI).
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4.7

4.7

4.7

Figure 4.5: Details of Fig .4.4b. (a) shows (circle markers) the time average en-
ergy probability density P (Ē) retrieved from NSOM experiment in the case of
d = 7. (b) reports (diamond markers) the prediction of P (Ē) from the random
wave model encompassed by Eq. 4.1 with a phase gap δφ = π/10. (c) displays (tri-
angle markers) the calculation of P (Ē) from FDTD simulations with d = 7.All pan-
els report for completeness the probability law dependence of the classical random
walk(dashedline)

.

Figure 4.4c shows a photo sequence of the spatial distribution of the electromag-

netic energy when an ultrafast subwavelength rogue wave is formed by spontaneous

synchronization. The intensity distributions along x (Fig. 4.4d) and in time (Fig.

4.4e) match well with our FDTD predictions (Fig. 4.3c-e). In Fig. 4.4c,we normal-

ized the field energy with respect to the SWH calculated from the field intensity,

which we called SWHI to distinguish it from the SWH previously calculated from

the field amplitude. The peak intensity of the rogue wave formed in Fig. 4.4c is
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six times larger than its SWHI. To further provide a quantitative comparison with

our FDTD simulations, we also we measured the SWH with reference to the field

amplitude, which is accessible in each NSOM experiment. Our rogue waves exhibit

a field peak amplitude that is 2.41 times higher than their SWH in space and 2.1

times higher in time, in full agreement with our FDTD predictions. Experimentally

generated rogue waves exhibit a subwavelength spatial FWHM of 206 nm, which is

25% smaller than λ/2n = 287 nm(with n=2.7 the three-dimensional effective index

of the guidedmodes inside the cavity). The temporal FWHM extension of the rogue

wave, conversely, is 163 fs and corresponds to a bandwidth of δλ = 49nm, which

matches the full electromagnetic field bandwidth (≈50 nm). As further proof of the

reproducibility of our results,we added a second NSOM image (Fig. 4.6) showing

the formation of an ultrafast subwavelength rogue wave appearing at a different

spatio-temporal position.
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Figure 4.6: NSOM experimental results showing the spatial distribution of elec-
tromagnetic energy density of a rogue wave appearing in a different position of the
sample and at a different time. The energy amplitude (colorbar) is normalized with
respect to the significant wave height SWHI of the rogue wave intensity.
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4.6 Discussion

We have proposed and demonstrated a simple integrated platform that generates

ultrafast rare events, which exploit the spectral energy of the full frequency band-

width of an incoherent field to build up nanostructures of light with giant intensity.

Our analytical model, FDTD simulations and experimental observations agree ex-

tremely well, showing that the statistics of these ultrashort subwavelength struc-

tures can be generated on demand, including their spatio-temporal shape.

Our chaotic resonators open up new possibilities, both in fundamental and applied

science. Compared with nanoplasmonic structures, they also achieve subwavelength

localization, but without using tapered metal nanostructures, specific nanoantenna

designs or lossymaterials. Furthermore, they do not require the use of coherent

fields, and the appearance of localized energy spots is not limited to the near field.

In our experiments we observe rogue waves whose mutual distance is ≈ 50 µm,

which corresponds ≈120 wavelengths in Si and is far beyond the near-field distance

of nanoplasmonic hot energy spots. Compared with other methods for generating

subdiffraction-limited light using randomness, no sophisticated spatial light modula-

tor system is required. In the above-mentioned cases (plasmonic structures and ran-

dom systems), evanescent contributions beyond the diffraction cutoff are generated.

The use of rare events provides an alternative approach, where diffraction-limited

components are exploited in very simple dielectrics.

We can identify many applications that may benefit from such an extreme light-

matter interaction, where their appearance is not constrained to any specific posi-

tion but conversely requires a large intensity and a given distribution. These range

from extremely sensitive spectrometers based on speckle[114], to new sensing appa-

ratus based on random light patterns randomly displaced in two dimensions [115],

low-threshold lasers sustained by randomly localized electromagnetic modes [64],

and new energy-harvesting devices relying on chaotic light motion [63].
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An important aspect concerns the suppression of detrimental or destructive man-

ifestations of rogue waves, which other than the open sea [116] seem to be rele-

vant also in high-speed data communication [117]. Our results shown in Fig. 4.2d

open an interesting question whether or not RW can be completely eliminated by

either increasing chaos or the system losses, which can stimulate interesting work in

both nonlinear optics and hydrodynamics. The interplay between nonlinearity and

spontaneous waves synchronization is also an issue of of fundamental interest. A

thorough investigation on this topic is clearly beyond the scope of this work; how-

ever, some interesting points can be highlighted. In the present work we exploit

the mechanism of wave chaos to randomize the dynamics of electromagnetic waves

in phase controlled conditions, which are settled by specific waveguide channels.

Extremely localized rare events then emerge from a totally incoherent field, where

the phases are fully delocalized between 0 and 2π. This opens up a new interest-

ing panorama as compared with nonlinear dynamics, where rogue waves have been

predicted to appear only if the incoherence of the system is small enough [107]. An-

other very intriguing point is related to what can happen if such a random ensem-

ble evolves into a cavity with a fully nonlinear response. The non-trivial interplay

between spontaneous synchronization and classical Kerr nonlinearities [106] can fur-

nish important new results in the study of rare events in physics.
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4.7 Phase Gap analysis

In our FDTD simulations, we calculate the time evolution of the electromagnetic

field at each point of the spatial grid inside the cavity, and decompose it using the

Prony algorithm. Given a time-varying function s(t), the Prony analysis can be

considered as a natural extension of the Fourier transform, allowing the decomposi-

tion of the signal s(t) into a series of damped complex exponentials:

s(t) =
N∑
j=1

Aje

(
iωj− 1

τj

)
t+iφj

(4.5)

where the amplitude Aj, frequency ωj, phase φj and lifetime τj of each frequency

component of the signal are directly calculated. The extraction of these coefficients

requires the inversion of an N by N matrix, whose lengthy expression can be found

in refs [118, 37] and Chapter 1. In our code, the Prony extraction is computed in

parallel and at each instant of the simulation, furnishing the evolution of all the

coefficients Aj, ωj, φj and τj during time. The latter express the distribution of am-

plitudes and phases of the electromagnetic field at each spatial point, and allow a

calculation of the corresponding probability density distributions.
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4.8 Near-field scanning optical microscopy and

corresponding intensity statistics

To image the light-field distributions inside the chaotic resonators we use a home-

built NSOM, whose operation is described in detail in refs [111, 119] Briefly, an

aperture probe consisting of an aluminium-coated tapered SiO2 fiber with a 100-

300nm sized aperture is placed at a distance of 20nm from the surface, within the

evanescent tail of the electromagnetic field inside the cavity. This aperture converts

a small fraction of the near-field radiation to far-field radiation that is transported

through the fiber to a detector, and by raster scanning the probe across the cav-

ity we can construct a two-dimensional map of the electromagnetic field inside the

cavity. To detect this inherently weak signal we use a heterodyne detection scheme

where the microscope is placed in one branch of a Mach-Zehnder interferometer and

interfere the signal from the probe with a reference pulse. This approach both am-

plifies our signal and, by placing and scanning a delay line in one of the branches,

it also allows us to obtain temporal information. NSOM experiments measure both

real Rj(r) and imaginary Cj(r) components of the electromagnetic field in the com-

plex representation Ej(r) = Rj + iCj(i = x, y). The field intensity I obtained from

NSOM experiments is expressed as follows:

I = R2
x +R2

y + C2
x + C2

y (4.6)

In a classical random walk condition, Rj and Cj are normally distributed and the

intensity probability generalizes the Rayleigh distribution to a chi-squared probabil-

ity density with four degrees of freedom:

P (I) =
I

4Γ(4)
e−
I
2 (4.7)
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where Γ is the Gamma function. At large intensity, equation 4.7 is described well

by a Rayleigh law, whereas at low I its shape is characterized by a pronounced

peak. To compare NSOM experiments with FDTD data, we observe that equation

4.6 corresponds to the time average of the electromagnetic field in real space, that

is I = Ē , with Ē denoting a time average of Ē over one optical cycle.
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4.9 Chaotic breakdown at larger wave-guide spac-

ing d

We carried out a series of ray optics simulations on the structure illustrated in Fig.

4.2a, which represents an open optical billiard. Details on these types of struc-

tures and the associated ray optics simulations can be found in [110] and refer-

ences therein. The dynamics of light rays is reported in the Poincare phase diagram

(χ,Φ), defined by the reflection angleχ and the angle Φ between the system center

and the intersection of the ray with the resonator boundary (Fig. 4.7a). Figures

4.7(b-e) shows our results in the case of (b) d = 1, (c) d = 7 and (d) d = 13. When

the system is practically closed for d = 1, we observe fully developed chaos, with

all the phase space (χ,Φ) randomly visited during the time evolution (Fig. 4.7b).

For d = 7, 13, conversely, the system shows the alternation of chaotic islands and

regular motion due to the reduction of the mixing properties of the system (Fig.

4.7d). As a result of the increased losses for d > 1, some portions of the phase space

are never visited (Fig. 4.7cd), which is accompanied by a stronger reduction of the

phase space portion that exhibit chaos, thus preventing an efficient generation of a

chaotic sea from light reflections at the resonator boundaries.
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Figure 4.7: (a) The construction of the Poincare phase-space in the system. (b-d)
Poincare diagram(χ,Φ) illustrating light dynamics inside the resonator in the case
of (b) d = 0, (c) d = 7 and (d) d = 13.
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Chapter 5

DICKE PHASE TRANSITION

WITH MULTIPLE

SUPERRADIANT STATES IN

QUANTUM CHAOTIC

RESONATORS

5.1 Introduction of superradiance

Superradiance is an emergent property of quantum systems that has stirred a large

interest in scientific research [19, 120, 121, 122, 123, 124]. Initially predicted by

Dicke in the context of two-level atoms [16], superradiance has been investigated

in a wide range of systems including gases [18], plasmas [125], semiconductors [126,

127, 127, 128], free-electron lasers [129, 130], Bose-Einstein condensates [131, 132,

133, 134, 135], superconductors [136], quantum systems with impurities [137], and

quantum dots [126, 138, 139]. In two-level media, a superradiant state results from

the spontaneous synchronization of different atoms immersed in a common radi-
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ation field, whose wavelength is larger than the volume occupied by the material.

When this condition is met, a quantum phase transition occurs and atoms radiate

energy with a quadratic dependence on their population (∝ N2), much higher than

the rate predicted by incoherent spontaneous emission (∝ N2) [140, 141, 142, 143].

The consequence of such a superradiant behavior is recognized in the spatiotempo-

ral domain, where a directional, short-lived energy burst is generated due to the en-

hanced radiation rate, while in the case of incoherent emission, only exponentially

decaying intensity is observed [120].

The physics of the superradiant phase transition manifests itself in general N-body

systems as a self-organization process [122]. In this context, the starting model

is that of an effective, non-Hermitian Hamiltonian describing a system with open

channels. When the system is closed and the channel strength is 0, the Hamiltonian

is Hermitian and shows real eigenvalues with infinite lifetimes (i.e., zero imaginary

component). As the coupling with the environment increases, imaginary eigenval-

ues appear in the spectrum and resonances become wider in the frequency domain,

due to the finite lifetime of the corresponding eigenmodes. When resonances start

to overlap, they coherently interact and reorganize, thus originating a phase transi-

tion where multiple superradiant states with broad widths emerge in the spectrum

[144, 145, 146]. The existence of such a transition has also recently been argued as

a mechanism to explain the strong deviations from classical Porter-Thomas prob-

ability distribution observed in neutron-resonance experiments, thus establishing

new connections with the dynamics of complex nuclei [121]. However, if compared

to the large body of theoretical results, experimental work has been limited in this

area. As a consequence, several properties of superradiant states are still debated,

including the emergence of specific scaling laws, the existence of universal statistics,

and how these quantities dynamically approach the superradiant transition [147].

Understanding the features of the Dicke transition can be of primary importance
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not only from a fundamental perspective but also to foster the realization of new

devices, including terahertz amplifiers, optical emitters, and laser systems that are

under intense investigation [123, 124, 148, 149, 150, 151].
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5.2 Analogy between Schrodinger and Maxwell

In recent years, due to the many analogies between electrons and photons, light has

become a widely used tool to investigate energy-transport dynamics. This anal-

ogy is particularly interesting in two dimensions, where the isomorphisms between

Schrdinger and Maxwell equations allow us to investigate different quantum phe-

nomena that manifest in dielectric optical microresonators whose forms mimic clas-

sically chaotic billiards [39, 152, 153, 154, 155, 156, 157, 76]. Here, we show that

a suitably engineered optical resonator can mimic the dynamics of an open many-

body system, allowing for a detailed study of superradiant states. One of the dif-

ficulties of the original system investigated by Dicke lies in the requirement of a

coupling strength of the order of the energy separation of the atomic energy levels

[134]. Our setup, conversely, takes its advantage from the technology of photon-

ics crystals and allows the observation of any coupling regime [39, 63]. The use of

transparent dielectrics, moreover, neglects any unwanted loss mechanism (such as,

e.g., material absorption) and provides an ideal platform to investigate different

properties of quantum chaotic systems.

Here, we show that a suitably engineered optical resonator can mimic the dynamics

of an open many-body system, allowing for a detailed study of superradiant states.

One of the difficulties of the original system investigated by Dicke lies in the re-

quirement of a coupling strength of the order of the energy separation of the atomic

energy levels [134]. Our setup, conversely, takes its advantage from the technology

of photonics crystals and allows the observation of any coupling regime [39, 63].

The use of transparent dielectrics, moreover, neglects any unwanted loss mechanism

(such as, e.g., material absorption) and provides an ideal platform to investigate

different properties of quantum chaotic systems.
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5.3 theoretical predictions: Random Matrix The-

ory modeling

An open quantum N-body system can be considered as an effective Hamiltonian

Heff coupled with M decay channels:

Heff = H0 − i
α

2
V V T (5.1)

where H0 is the Hamiltonian of the closed system and V is an N × M matrix that

models the channel space, with the coupling amplitude defined by α. For nonzero

α, the Hamiltonian Heft is non-Hermitian and possesses a complex eigenvalue Ωn =

En − (i/2)Γn, characterized by the energy En = ~ω and damping (or resonance

width) Γn. The coupling strength κ between the system and the open space (i.e.,

the continuum of modes) can be evaluated as follows [145]:

κ =
Im
[
Tr(Heff )

]
N〈D〉

=
〈 Γ

D

〉
(5.2)

where the 〈D〉 is the mean energy-level distance and 〈Γ〉 is the mean value of the

resonance width Γ.

At low coupling κ ≈ 0, the resonance-width distribution follows a χ-squared [158],

while for increasing κ, appreciable deviations for a χ2 distribution are expected.

In the latter case, numerical evidence suggests that the distribution of resonances

follows a universal power-law γ2 distribution [121]. The superradiant transition is

theoretically predicted in the perfect coupling regime κ = κc = 1 [121, 145, 159,

160] , when resonances split and superradiant states emerge in the spectrum.
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5.4 experimental results with two-dimensional

chaotic optical resonators

Figure 5.1: SEM image of the quarter-stadium resonator. Inset:Enlarged image of
the photonic crystal lattice.

To investigate the appearance of the Dicke transition in our system, we design ex-

periments based on open chaotic cavities realized in two-dimensional photonics

crystals (PhCs) in a silicon-on-insulator platform. We chose the PhC technology

for their versatility on managing light behavior on integrated photonics circuits

[161, 162]. Figure 5.1 shows the SEM image of a typical sample, characterized by

a quarter-stadium resonator equipped with input (left channel) and output (right

channel) waveguides, the latter with a tunable width d. Fabrication details of the

structure can be found in Ref. [39].
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Figure 5.2: (a) Experimentally measured power-density spectrum (PDS) (cross
markers) and theoretical reconstruction (solid line) via wavelet multiscale analysis
for different waveguide spacings d. (b) Experimentally extracted resonance (ω,Γ)
distribution for different output waveguide spacings d. (c) Experimentally measured
gap width ∆, which separates superradiant states from long-living resonances, ver-
sus d.

The stadium shape guarantees that strong chaos is developed in the structure, thus

leading to a fully random unperturbed Hamiltonian H0. The area of the resonator

is 800 µm2. The inset of the same figure shows an enlarged view of the periodic
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lattice, designed to work as omnidirectional mirror for light confined and polarized

in the plane of the crystal. The period a = 450 nm and radius r = 0.3a place the

working range of wavelength in the C + L band, around 1550 nm.

Resonance widths Γi and frequency eigenvalues ωi can be accurately extracted from

the transmitted power-density spectrum measured at the end of the output waveg-

uide, by employing the experimental setup and the wavelet multiscale analysis de-

scribed, e.g., in Ref. [39]. Figure 5.2 a displays a typical experimental spectrum

and its reconstruction through multiscale analysis, showing the excellent accuracy

of the reconstruction procedure. In order to obtain a complete statistic, we realize

48 samples and collect a total of 7000 resonances. Figure 5.2 b displays the reso-

nance distribution in the plane (ω,Γ) for selected values of output channel width d.

The latter is measured in lattice unit-cell units and is varied by removing an integer

number of rows in the PhC.

Figure 5.2 shows the appearance of a superradiant transition when the spacing in-

creases from d =1 to d=29. By increasing the waveguide spacing, in fact, we clearly

observe resonances splitting with the emergence of a spectral gap [solid area in Fig.

5.2b], dividing the resonance plane(ω,Γ) into two distinct regions: a background

containing a large multitude of long-living modes and M=7 superradiant states pos-

sessing very short lifetimes. The width of such superradiant states is about 100

times larger than the widths measured for d=1. In our experiments, the number

of modes supported by the cavity is N ≈ 102 (as extracted from wavelet multiscale

analysis), which shows that the enhancement rate of short-living states is N times

larger with respect to noninteracting resonances, in perfect agreement with what is

expected for a superradiant behavior.

Figure 5.2 c shows the behavior of the gap width ∆ versus waveguide spacing d.

The gap manifests itself for d ≥23 and shows a strongly nonlinear behavior, which

is observed as a quadratic increase up to d =29 with a further decrease for larger
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increments of d. The specific number M=7 of superradiant states observed in our

experiments depends on the nature of the cavity losses, which defines the size of

the channel space. Multiple waveguide openings with different channel widths d,

in particular, can sustain the formation of different channel spaces, leading to the

generation of different numbers of superradiant states.
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5.5 analysis of the properties of superradiant states

To quantitatively validate the occurrence of a superradiant phase transition, we cal-

culate the parameter κ of Eq. 5.2. In order to get a self-consistent evaluation of

this parameter, we employ an independent analysis based on RMT, which is able to

furnish more informationsuch as, e.g., the number of open channels Mabout the dy-

namics of the Dicke transition. To this extent, we begin by diagonalizing an ensem-

ble of Heff given by Eq. 5.1 with H0 taken from the Gaussian orthogonal ensem-

ble of random matrices and the elements of V obeying a normal distribution with

zero mean and unit standard deviation [147]. We then collect large statistics of the

random-matrix eigenvalues and calculate the probability distribution PRMT (Γ) of

resonance width Γi, comparing it with distributions Pexp(Γ) calculated from the ex-

perimental data of Fig. 5.2 b.

Figure 5.3: Experimentally extracted resonance-width distribution Pexp(Γ) (solid
curve) for (a) d=1 and (b) d=29, compared with numerically computed densities
PRMT (Γ) from random-matrix-theory analysis (solid line) and with a χ2 distribu-
tion (dashed line).

Figure 5.3 shows typical results in the low coupling [Fig. 3(a)] and superradiant
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[Fig. 5.3 b] regimes. Probability densities PRMT (Γ) are parametrized by the num-

ber of open channels M and the coupling strength κ, the latter varied through α,

while experimental Pexp distributions depend solely on the losses d. In our com-

parisons, we evaluate parameters M and κ by a least-squares fit of the PRMT (Γ)

distribution with the corresponding experimental density Pexp(Γ) computed at a

specific d. Quite remarkably, for any spacing d, RMT analysis yields a constant

channel-space size M= 7, which perfectly agrees with the experimental results of

Fig. 5.2 that show the appearance of M=7 superradiant states. Figures 5.3 a and

5.3 b also compare experimental results with a χ2 distribution (dashed line). The

latter is known to correctly describe the regime of small resonances overlapping,

i.e., κ � 1, and well matches the case of d=1, while it consistently fails in the su-

perradiant case for d=29 due to strong resonances overlapping.

5.2

Figure 5.4: Experimentally calculated coupling strength κ versus d: comparison
between estimates from Eq. 5.2 (markers) and RMT theory (dashed line).

In order to complete our self-consistent evaluation of κ, we compare RMT predic-

tions with the direct application of Eq. 5.2 to our experimental results, investigat-

ing how the transition is approached when the losses d are increased. Figure ??
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shows our results. In general, the value of κ calculated through Eq. 5.2 matches

very well the results of RMT, showing the clear appearance of a superradiant phase

transition for d ≥ As the value of d is increased from d=1, in particular, the cou-

pling strength κ increases from κ ≈ 0.3 and reaches the critical point κc ≈ 1 at

d= 29. The behavior of κ versus d is strongly nonlinear and can be divided into

three characteristic regions (Fig. 5.4). Below d =25, κ increases very slowly and

linearly with d. For 25≤d≤29, we observe a dramatic increase toward the critic

regime κc = 1, while for d ≥ 30, we observe a decrement from κ ≈ 1 to κ ≈ 0.7.

The latter is due to the breaking of the chaotic behavior of the resonator when the

losses becomes too large, with the consequent weakening of the mixing property of

the system.

A further analysis of superradiant transition concerns the scaling law of probabil-

ity density Pexp(Γ) for for large Γ. There is, in fact, numerical evidence from RMT

analysis that the probability density in the superradiant regime follows a universal

power law ∝ Γ−2 [121]. If this result is experimentally confirmed, it can provide

a new test to verify the presence of a superradiant phase transition. Besides that,

our setup also allows us to investigate the transition dynamics and how such power-

law distribution is approached. To this extent, we fit the tail of the resonancewidth

distribution Pexp(Γ) with a power curve Γ−β and evaluate the coefficient ? from a

least-squares procedure.

Figure 5.5 a illustrates our results for a varying coupling strength κ. Figure 5.5b

shows a typical outcome of our fitting procedure, displaying an enlarged version of

the probability distribution Pexp(Γ) for d=29. As observed, the probability density

at large Γ well agrees with a power-law Γ−2 curve. All the other cases (not reported

here) are represented with the same degree of accuracy by a Γ−β function. The dy-

namics of β for varying losses d follows a similar behavior of κ versus d: For d<25,

we observe a slowly linear decrease from β ≈ 2.5, while for d>25, when the super-
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radiant phase transition appears, the dynamics dramatically converges to β ≈ 2,

experimentally confirming the prediction of RMT.

Figure 5.5: (a) Power-law exponent β (markers) of the large Γ behavior of
Pexp(Γ) ∝ Γ−β at different d. The limiting value β = 2 is reported as a dashed line.
(b) Comparison between experimental Pexp(Γ) for d=29 (solid curve) and power-law
distribution Γ−2 (solid line).
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5.6 discussion

We designed a transparent optical material to investigate the dynamics of the su-

perradiant phase transition in the presence of multiple superradiant states. Our

system circumvented the difficulties in observing the Dicke transition in two-level

atomic media and allowed a detailed experimental study of superradiant states.

Our results showed that the dynamics of the Dicke transition is strongly nonlin-

ear: Characteristic quantities vary slowly below the critical coupling κc = 1, while

near κc, the superradiant transition appears dramatically, with the system entering

a new self-organized phase. This regime has been experimentally observed by the

emergence of M = 7 superradiant states, whose resonance widths are N times larger

than all the others, with N being the total number of resonances. In the superradi-

ant regime, we demonstrated that the resonance-width probability of superradiant

states follows a Γ−2power law, which provides a new criterion to test the occurrence

of a superradiant transition in a physical system. This work is expected to stimu-

late new fundamental studies on cooperative dynamics and facilitate the develop-

ment of novel applications of many-body systems.
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Chapter 6

CONCLUDING REMARKS

6.1 Summary

In this thesis, with the inspiration from the Nature evolution, we show how we can

design and manipulate the optical properties in chaotic resonators.

A simple deformation to the geometry will introduce the chaos into the system,

stimulating the phenomena of energy equipartition that can dramatically enhance

the energy storage ability of a resonator. Using similar principle by a random dis-

tribution of designed nano structures, we can further increase the energy harvest-

ing, i.e. building a blackbody system can collect all the energy from ultraviolet to

infrared, with the practical application not only as a perfect absorber but also a

new type of light source.

Inspired by the Rogue waves in the ocean, we firstly designed and realized its opti-

cal counterpart in a linear regime. With the aid of chaos embedded in the geometry

of resonator, we can localized the light beyond the diffraction limit, creating an-

other pathway to manipulate light at nanoscale in a homogeneous media without

sophisticated structures. With similar chaotic resonators, we realize Dicke super-

radiance experimentally in a pure optical structure, providing a simple to test the

Dicke transition as the analog of atomic systems.
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and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nature

nanotechnology, vol. 9, no. 2, pp. 126–130, 2014.

[50] T. V. Teperik, F. G. De Abajo, A. Borisov, M. Abdelsalam, P. Bartlett,

Y. Sugawara, and J. Baumberg, “Omnidirectional absorption in nanostruc-

tured metal surfaces,” Nature photonics, vol. 2, no. 5, pp. 299–301, 2008.

[51] K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband

polarization-independent resonant light absorption using ultrathin plasmonic

super absorbers,” Nature communications, vol. 2, p. 517, 2011.

[52] Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultra-

broadband light absorption by a sawtooth anisotropic metamaterial slab,”

Nano letters, vol. 12, no. 3, pp. 1443–1447, 2012.

[53] M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical

coatings based on strong interference effects in highly absorbing media,” Na-

ture materials, vol. 12, no. 1, pp. 20–24, 2013.

[54] P. W. Milonni, The Quantum Vacuum. (Academic, 1994.



141

[55] J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and

Y. Chen, “Coherent emission of light by thermal sources,” Nature, vol. 416,

no. 6876, pp. 61–64, 2002.

[56] D. Mann, Y. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang,

Q. Wang, J. Guo, and H. Dai, “Electrically driven thermal light emission

from individual single-walled carbon nanotubes,” Nature Nanotechnology,

vol. 2, no. 1, pp. 33–38, 2007.

[57] Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu,

C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang et al., “Improved broadband

and quasi-omnidirectional anti-reflection properties with biomimetic silicon

nanostructures,” Nature nanotechnology, vol. 2, no. 12, pp. 770–774, 2007.

[58] Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trap-

ping in solar cells,” Proceedings of the National Academy of Sciences, vol. 107,

no. 41, pp. 17 491–17 496, 2010.

[59] Z.-P. Yang, L. Ci, J. A. Bur, S.-Y. Lin, and P. M. Ajayan, “Experimental ob-

servation of an extremely dark material made by a low-density nanotube ar-

ray,” Nano letters, vol. 8, no. 2, pp. 446–451, 2008.

[60] N. Selvakumar, S. Krupanidhi, and H. C. Barshilia, “Carbon nanotube-based

tandem absorber with tunable spectral selectivity: Transition from near-

perfect blackbody absorber to solar selective absorber,” Advanced Materials,

vol. 26, no. 16, pp. 2552–2557, 2014.

[61] T. Matsumoto, T. Koizumi, Y. Kawakami, K. Okamoto, and M. Tomita,

“Perfect blackbody radiation from a graphene nanostructure with applica-

tion to high-temperature spectral emissivity measurements,” Optics express,

vol. 21, no. 25, pp. 30 964–30 974, 2013.

[62] J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang,

M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amor-

phous silicon nanowire and nanocone arrays,” Nano letters, vol. 9, no. 1, pp.

279–282, 2008.



142

[63] C. Liu, A. Di Falco, D. Molinari, Y. Khan, B. Ooi, T. Krauss, and A. Frat-

alocchi, “Enhanced energy storage in chaotic optical resonators,” Nature Pho-

tonics, vol. 7, no. 6, pp. 473–478, 2013.

[64] C. Conti, M. Leonetti, A. Fratalocchi, L. Angelani, and G. Ruocco, “Conden-

sation in disordered lasers: Theory, 3 d+ 1 simulations, and experiments,”

Physical review letters, vol. 101, no. 14, p. 143901, 2008.

[65] A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and

D. Christodoulides, “Optical wave turbulence: towards a unified nonequi-

librium thermodynamic formulation of statistical nonlinear optics,” Physics

Reports, vol. 542, no. 1, pp. 1–132, 2014.

[66] R. Weill, B. Fischer, and O. Gat, “Light-mode condensation in actively-mode-

locked lasers,” Phys. Rev. Lett., vol. 104, p. 173901, 2010.

[67] A. Fratalocchi, “Mode-locked lasers: Light condensation,” Nature Photonics,

vol. 4, no. 8, pp. 502–503, 2010.

[68] J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, “Bose-einstein condensa-

tion of photons in an optical microcavity,” Nature, vol. 468, no. 7323, pp.

545–548, 2010.

[69] P. Vukusic, B. Hallam, and J. Noyes, “Brilliant whiteness in ultrathin beetle

scales,” Science, vol. 315, no. 5810, pp. 348–348, 2007.

[70] U. Leonhardt, “Optical conformal mapping,” Science, vol. 312, no. 5781, pp.

1777–1780, 2006.

[71] J. Pendry, A. Aubry, D. Smith, and S. Maier, “Transformation optics and

subwavelength control of light,” science, vol. 337, no. 6094, pp. 549–552, 2012.

[72] W. Ni, X. Kou, Z. Yang, and J. Wang, “Tailoring longitudinal surface plas-

mon wavelengths, scattering and absorption cross sections of gold nanorods,”

Acs Nano, vol. 2, no. 4, pp. 677–686, 2008.



143

[73] J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao, and

Y. Han, “Site-specific growth of au–pd alloy horns on au nanorods: a plat-

form for highly sensitive monitoring of catalytic reactions by surface enhance-

ment raman spectroscopy,” Journal of the American Chemical Society, vol.

135, no. 23, pp. 8552–8561, 2013.

[74] M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov,

S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a

spaser-based nanolaser,” Nature, vol. 460, no. 7259, pp. 1110–1112, 2009.

[75] J. T. Verdeyen, Laser electronics. Prentice Hall, Englewood Cliffs, NJ, 1989.

[76] C. Conti and A. Fratalocchi, “Dynamic light diffusion, three-dimensional

anderson localization and lasing in inverted opals,” Nature Physics, vol. 4,

no. 10, pp. 794–798, 2008.

[77] S. A. Maier, Plasmonics: fundamentals and applications. Springer Science &

Business Media, 2007.

[78] I. Malitson, “Interspecimen comparison of the refractive index of fused silica,”

JOSA, vol. 55, no. 10, pp. 1205–1208, 1965.

[79] G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to

200-µm wavelength region,” Applied optics, vol. 12, no. 3, pp. 555–563, 1973.

[80] R. J. Glauber and M. Lewenstein, “Quantum optics of dielectric media,”

Physical Review A, vol. 43, no. 1, p. 467, 1991.

[81] C. De Dominicis and I. Giardina, Random fields and spin glasses: a field the-

ory approach. Cambridge University Press, 2006.

[82] M. Mehta, Random Matrices. New York: Academic Press, 1991.

[83] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai,

G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Na-

ture, vol. 461, no. 7264, pp. 629–632, 2009.



144

[84] J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, J. Os-
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namique,” Acta mathematica, vol. 13, no. 1, pp. A3–A270, 1890.

[173] E. N. Lorenz, “Section of planetary sciences: The predictability of hydrody-

namic flow*,,” Transactions of the New York Academy of Sciences, vol. 25,

no. 4 Series II, pp. 409–432, 1963.

[174] M. Sciamanna and K. Shore, “Physics and applications of laser diode chaos,”

Nature Photonics, vol. 9, no. 3, pp. 151–162, 2015.

[175] L. Jackson, A. Lindgren, Y. Kim et al., “A chaotic attractor from chuas cir-

cuit,” IEEE Transactions on Circuits and Systems, vol. 31, p. 1055, 1984.

[176] S. Alben and M. J. Shelley, “Flapping states of a flag in an inviscid fluid:

Bistability and the transition to chaos,” Phys. Rev. Lett., vol. 100, p. 074301,

Feb 2008.

[177] V. Petrov, V. Gaspar, J. Masere, and K. Showalter, “Controlling chaos in the

belousovzhabotinsky reaction,” Nature, vol. 361, no. 6409, pp. 240–243, 1993.

[178] S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano, W. L. Ditto

et al., “Controlling chaos in the brain,” Nature, vol. 370, no. 6491, pp. 615–

620, 1994.

[179] L. Li, H. Peng, J. Kurths, Y. Yang, and H. J. Schellnhuber, “Chaos–order

transition in foraging behavior of ants,” Proceedings of the National Academy

of Sciences, vol. 111, no. 23, pp. 8392–8397, 2014.



154

[180] O. Bohigas, M.-J. Giannoni, and C. Schmit, “Characterization of chaotic

quantum spectra and universality of level fluctuation laws,” Physical Review

Letters, vol. 52, no. 1, p. 1, 1984.

[181] F. Saif, “Classical and quantum chaos in atom optics,” Physics Reports, vol.

419, no. 6, pp. 207–258, 2005.

[182] M. Courtney, N. Spellmeyer, H. Jiao, and D. Kleppner, “Classical, semiclassi-

cal, and quantum dynamics in the lithium stark system,” Physical Review A,

vol. 51, no. 5, p. 3604, 1995.

[183] N. Friedman, A. Kaplan, D. Carasso, and N. Davidson, “Observation of

chaotic and regular dynamics in atom-optics billiards,” Physical review letters,

vol. 86, no. 8, p. 1518, 2001.

[184] S. Chaudhury, A. Smith, B. Anderson, S. Ghose, and P. Jessen, “Quantum

signatures of chaos in a kicked top,” Nature, vol. 461, no. 7265, pp. 768–771,

2009.

[185] A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C. Makrides,

A. Petrov, and S. Kotochigova, “Quantum chaos in ultracold collisions of gas-

phase erbium atoms,” Nature, vol. 507, no. 7493, pp. 475–479, 2014.

[186] F. Stephens, M. Deleplanque, I. Lee, A. Macchiavelli, D. Ward, P. Fallon,

M. Cromaz, R. Clark, M. Descovich, R. Diamond et al., “Order-to-chaos tran-

sition in rotational nuclei,” Physical review letters, vol. 94, no. 4, p. 042501,

2005.

[187] T. Gensty, K. Becker, I. Fischer, W. Elsäßer, C. Degen, P. Debernardi, and

G. P. Bava, “Wave chaos in real-world vertical-cavity surface-emitting lasers,”

Physical review letters, vol. 94, no. 23, p. 233901, 2005.



155

APPENDICES

A Numerical Methods

A.1 FDTD Methond

FDTD is an numerical method to solve the maxwell equations for the electromag-

netic waves. The original idea was developed by Kane Yee in 1962 [163] and the

name was coined by Allen Taflove in 1980 [164]. After five decades of development,

FDTD becomes one of the most used numerical methods in computational elec-

tromagnetics, covering a broad wavelength range from visible light, microwaves to

near-DC signals [165]. Further more, the Maxwell solver based on FDTD can be

coupled with other models such as Bloch equation and Boltzmann transportequa-

tion to model more complicated physics [166, 167, 168]. Besides, the flexibility of

the method benefits its use in parallel computing [169].
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Figure A.1: Yee lattice for FDTD

The dynamics of electromagnetic waves follows Maxwell equations:

∇× E = −µ∂H

∂t
(A.1)

∇×H = ε
∂E

∂t
+ σE (A.2)

with E and H the electric and magnetic field, ε and µ the permittivity and perme-

ability and σ the conductivity. The temporal change of electric field (∂E
∂t

) depends

on the change of magnetic field in space (∇ × H) and vice versa. For any point in

space, the value of current electric filed depends on both the previous value in time

and the local distribution of magnetic field in space.

Using finite difference approximation, we can discretize Maxwell equation’s by central-

difference in both space and time. Based on Yee lattice (Fig. A.1, the electric filed
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and magnetic field are separated in space. To completely decouple the electric and

magnetic fields, a leapfrog scheme is proposed. The updates of the electric field E

staggered half time step with magnetic field H, so the value is always calculated in

the midway of two successive magnetic field, achieving the separation also in time.

Then A two-step algorithm can be applied to calculate the electric field and mag-

netic field separately. At the temporal step t = n, the magnetic field Hn can be cal-

culated from the previous magnetic fields Hn−1 and the electric field around form-

ing a close loop. For example, Hn
y;(i+1/2,j,k+1/2) can be derived from Hn−1

y;(i+1/2,j,k+1/2)

and E
n−1/2
x;(i+1/2,j,k), E

n−1/2
x;(+i1/2,j,k+1), E

n−1/2
z;(i+1,j,k+1/2), E

n−1/2
z;(i,j,k+1/2) using Eq. A.1. For the

second step, the electric field En+1/2 at t = n + 1/2 can be calculated in a similar

way using Eq. A.2. Therefore, the electromagnetic fields in both space and time

can be calculated by iteration of the two-step algorithm. When the time step is

small enough (compared to the period of the electromagnetic wave circle), a good

approximation of the continuous evolution of the electromagnetics.

There are a variety of advantages of FDTD compared to other methods for the

computational electromagnetics. Compared to the finite element in frequency do-

main, FDTD directly illustrates the evolution of the electromagnetic waves in time,

providing a clear picture to explore the physics hidden. For the simulations with

broadband source, the FDTD method in time domain can provide the response in a

single run, while the finite element methods need scan over the frequencies one by

one. Using electric and magnetic fields directly, there is no need for the post pro-

cess of conversion is required. Meanwhile, the huge computational resources limits

the use of the FDTD method for the sophisticated models.

The equations and more details of the FDTD can be found in the text book by

Taflove and Hagness [170]. All the FDTD simulations in the thesis is based on our

home-made FDTD code called NANOCPP, running on the supercomputer SHA-

HEEN I in KAUST.
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A.2 Prony method

Prony method, or Prony analysis, is an numerical method to decompose a time-

varying signal s(t) to damped complex sinusoids( or exponentials) [118]. In this

desertion, it is used to extract the lifetime (or the resonance width) of the modes

supported by a optical cavity from the signal in time domain.

Suppose the signal s(t) can be decomposed into a series of decamped exponential

functions:

s(t) =
N∑
i=1

1

2
Aie

±jφieλit (A.3)

with λi = σi ± jωi the complexed eigenvalues and φi the phases and Aithe ampli-

tudes. Here σi corresponds to the damping factor and ωi is the angular frequency.

Sampling s(t) at the timer interval ∆t, s(t) can be discretized to

Sn = ŝ(∆tn) =
M∑
m=1

Bme
λm∆tn (A.4)

with n an integer number. A difference equation can be derived (more details in ref

[118]):

ŝ(∆tn) = −
M∑
m=1

ŝ[∆t(n−m)]Pm (A.5)

where the coefficient Pm obeys the following equation:

M+1∑
m=1

Pmx
m−1 =

M∏
m=1

(
x− eλm

)
(A.6)

Using Eq. A.5, we can build a matrix equation:


SM

...

SN−1

 = −


SM−1 . . . S0

...
. . .

...

SN−2 . . . SN−M−1



P1

...

PM

 = S


P1

...

PM

 (A.7)
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Then the coefficient Pm can be solved when the inverse matrix of S exists:


P1

...

PM

 = S−1


SM

...

SN−1

 (A.8)

Applying the solution to Eq. A.6, the eigenvalue λm is the m-th root of the follow-

ing equation:

xM +
M∑
m=1

Pmx
m−1 = 0 (A.9)
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Figure A.2: An example of eigenmodes extraction based on Prony method with
M = 8. (a) The comparison between the original and fitted signal. (b) Eigenvalues
in the complex plane λi = σi + jωi for the original ones (red cross) and extracted
ones(blue circle ). A perfect fit is achieved.
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Figure A.2 demonstrates an example of extracting the egienvalue λi from a time-

varying signal s(t). From Fig. A.2a, an excellent match is observed between the

original and fitted s(t). The eigenvalues can be perfectly extracted from the given

signal, as shown in Fig. A.2b.

A.3 Lifetime extraction from spectrum based on

Multi-scale analysis

Prony method explained in the previous section provides an way to extract the life-

time of the eigenmodes from single in time domain. Here, a method in frequency

domain is introduce for the life time extraction based on multi-scale analysis. The

power density spectrum from an optical cavity can be well fitted from the multi-

scale procedure, even in the case of strong eigenmodes overlapping [39].

The multiscale analysis consist of two steps, wavelet transforms and complex land-

scapes topology. Applying the wavelet transformation, power density spectrum

P (λ) (shown in Fig. A.3a) will be converted to:

WP =

∞∫
−∞

ψ
√
χ

(
λ− ζ
χ

)
P (λ)dλ (A.10)

with χ the scaling parameter, ζ the translation parameter, and ψ the mother wavelet.

Mother wavelet ψ is a compact function in L2(R) with zero mean and statisfies:

∞∫
−∞

|ψ̃(f)|2

|f |
df <∞ (A.11)

with ψ̃(f) the Fourier transform of ψ. The symmetric wavelet ψ = (2 − 4t2)e−t
2

is selected to fit the Lorentzian-liked spectrum [39]. Figure A.3b shows a wavelet

transform from a typical experimental spectrum, visualization the hidden resonance
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structures in the spectrum. The resonances join together along the treelike struc-

ture as the increment of the the scaling parameter χ. The surface topology provides

all the informations related to the resonances, as illustrated in Fig. A.3b. The con-

nection between the dense areas is the hallmark of clusters while the isolated reso-

nances are featured by the mssing of the tree structure.

For the second step, an uphill landscape analysis [171] is applied to to deal with the

isolation and clusters in WP . Following the minimum curvature in surface, a se-

ries of runners are applied along the χ direction (solid red lines in Fig. A.3c). An

adjacent matrix A can be define to illustrate the connections of different runners

along the tree, with Aij = 1 that runner i and j share the path and Aij = 0 not.

All the information of topological structures and the composition of the clusters

is self-contained in the adjacent matrix A. Combined with the wavelet transform

WP , both the position and the line-width of the eigenmodes in the optical cavity

can be derived. In the case of isolated resonance (Aij = 0 when i 6= j), we can

follow the path of the related runner to the first maximum point (χ, ζ) at the sur-

face formed by wavelet transform. At that point, the resonance position λ is simply

equal to χ while the Full Width at Half Maximum (FWHM) δλ = χ
√

log 2/2, i.e.
√

2 log 2 times the Gaussian part of the wavelet. In the case of clusters (Aij = 1

for some i, j), a nonlinear simplex optimization search in the subspace spanned by

the corresponding runners is applied to get optimal paris and λ0 and δλ. Finally,

a global nonlinear least-square optimization is applied in the whole spectrum to

further increase the accuracy. Figure A.3d compares the reconstructed ower Den-

sity Spectrum (Power Density Spectrum (PDS)) with the original experimental

measurement. Despite the strong interactions between the resonances, an excellent

matching is achieved through the analysis.
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Figure A.3: An example of eigenmodes extraction based on mulitscale analysis.
(a) A typical PDS P (λ) from an optical cavity. (b) Continuous wavelet transform
of P (λ). (c) Uphil Landspace analysis, showing the clusters and isolated resonance
formeb by the runner (red solid line). (d) Comparison between reconstructed spec-
trum and experimental measurement.
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B Classical Quantum Chaos

B.1 classical chaos and quantum chaos

Chaos is a complicated dynamics with exceptional sensitivity to the initial condi-

tions. Two systems with infinitesimal difference of the initial condition will diverge

exponentially, as shown in Fig. B.1.

Figure B.1: A demonstration of the sensitive of a chaotic system, A system with
initial point [x0, y0] (red line) and [x0 + δ, y0] deviates dramatically with δ = 10−4;

The history of chaos can be dated back to 19th century, when Poincaré studied the

orbits of three-body system [172]. Chaos is a ubiquitous phenomenon that exists in

many natural systems. Probably, the most famous one among them is the butterfly

effect discovered by Edward Lorenz in weather forecast in 1962: something as small

as the flutter of a butterfly’s wing can ultimately cause a typhoon halfway around

the world [173]. Since then chaos has extensively studied in a variety of systems,

including laser diodes [174], electronic circuits [175], fluids [176], chemical reactions
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[177], brains [178] and beyond [179].

Quantum chaos is the counterpart of the classical chaos in the quantum regime.

The Hallmark of quantum chaos is the fluctuations of the energy levels in the Hamil-

tonian [180]. These fluctuations were related the chaotic dynamics at the classical

limit in phase space which sharesthe similar properties of chaotic systems in classi-

cal regime [181, 182]. The spectral fluctuations of a quantum system (the classical

limit is chaotic) show a intense level-repulsion predicated by RMT [147]. Quantum

chaos has been reported in many atomic systems, ranging from cold atoms to rota-

tion nuclei [183, 184, 185, 186].

The isomorphisms between Schrödinger and Maxwell equations allow us to investi-

gate different quantum phenomena that manifest in dielectric optical micro-resonators

that forms mimic classically chaotic billiards and provide us a viable platform to

study the transition of chaos in quantum regime [39, 187]. Light-matter interactions

in a chaotic resonator are of particular interest.
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