
Fast Multipole-Based

Elliptic PDE Solver and Preconditioner

Dissertation by

Huda Ibeid

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

King Abdullah University of Science and Technology, Thuwal,

Kingdom of Saudi Arabia

October, 2016

2

EXAMINATION COMMITTEE PAGE

The dissertation of Huda Ibeid is approved by the examination committee

Committee Chairperson: Professor. David Keyes
Committee Members: Professor Hakan Bagci, Professor Xin Gao, Professor Rio
Yokota, Professor William Gropp

3

©October 2016

Huda Ibeid

All Rights Reserved

4

ABSTRACT

Fast Multipole Method-Based

Elliptic PDE Solver and Preconditioner

Huda Ibeid

Exascale systems are predicted to have approximately one billion cores, assuming

Gigahertz cores. Limitations on a↵ordable network topologies for distributed memory

systems of such massive scale bring new challenges to the currently dominant parallel

programing model. Currently, there are many e↵orts to evaluate the hardware and

software bottlenecks of exascale designs. It is therefore of interest to model application

performance and to understand what changes need to be made to ensure extrapolated

scalability. Fast multipole methods (FMM) were originally developed for accelerating

N -body problems for particle-based methods in astrophysics and molecular dynamics.

FMM is more than an N -body solver, however. Recent e↵orts to view the FMM as

an elliptic PDE solver have opened the possibility to use it as a preconditioner for

even a broader range of applications. In this thesis, we (i) discuss the challenges

for FMM on current parallel computers and future exascale architectures, with a

focus on inter-node communication, and develop a performance model that considers

the communication patterns of the FMM for spatially quasi-uniform distributions,

(ii) employ this performance model to guide performance and scaling improvement of

FMM for all-atom molecular dynamics simulations of uniformly distributed particles,

and (iii) demonstrate that, beyond its traditional use as a solver in problems for which

5

explicit free-space kernel representations are available, the FMM has applicability as

a preconditioner in finite domain elliptic boundary value problems, by equipping it

with boundary integral capability for satisfying conditions at finite boundaries and by

wrapping it in a Krylov method for extensibility to more general operators. Compared

with multilevel methods, FMM is capable of comparable algebraic convergence rates

down to the truncation error of the discretized PDE, and it has superior multicore and

distributed memory scalability properties on commodity architecture supercomputers.

Compared with other methods exploiting the low rank character of o↵-diagonal blocks

of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the

amount of communication because it is matrix-free and exploits the tree structure of

FMM. Fast multipole-based solvers and preconditioners are demonstrably poised to

play a leading role in exascale computing.

6

TABLE OF CONTENTS

EXAMINATION COMMITTEE PAGE 2

Copyright 3

Abstract 4

List of Figures 11

List of Tables 14

1 Introduction 16

1.1 Objectives and Contributions . 20

1.2 Contents of the Thesis . 21

2 Fast Multipole Method 23

2.1 Basic Components . 24

2.2 Flow of Calculation . 25

2.2.1 Dual tree traversal . 27

2.3 Multipole Expansions . 30

2.4 FMM Communication Scheme . 32

3 A Performance Model for the Communication in FMMs for Spatially

Uniform Distributions 35

3.1 Related Work . 36

3.2 Performance Challenges . 37

3.2.1 Trends in computer hardware 38

3.2.2 Communication . 38

3.3 FMM Communication Phases . 39

3.3.1 Global M2L . 39

7

3.3.2 Global M2M . 40

3.3.3 Local M2L . 41

3.3.4 Local P2P . 41

3.4 Modeling Performance . 42

3.4.1 Baseline model ((↵, �) model) 43

3.4.2 Distance penalty ((↵, �, �) model) 43

3.4.3 Bandwidth penalty on � . 44

3.4.4 Multicore penalty on ↵ or � 44

3.5 Model Validation . 44

3.5.1 Machine description . 44

3.5.2 Experimental setup . 46

3.5.3 Model validation . 48

3.6 Conclusions . 56

4 Molecular Dynamics Simulation of Uniformly Distributed Particles

Using the FMM 58

4.1 Computational Methods . 60

4.1.1 Basic MD functions . 61

4.1.2 Non-bonded short range force 62

4.1.3 Non-bonded long-range force 63

4.1.4 Periodic fast multipole method 64

4.2 Performance Benchmarks . 64

4.2.1 E�ciency of the force calculation kernel 65

4.2.2 Sustained performance of the large-scale simulations 66

4.2.3 Load balance . 68

4.2.4 Performance of the FMM . 69

4.2.5 Accuracy of periodic FMM . 71

4.3 Macromolecular Crowding Simulations with All Atoms 73

4.3.1 Simulation methods . 73

4.3.1.1 Simulated systems 73

4.3.1.2 MD Simulations . 73

4.3.2 Simulations of macromolecular crowding 74

4.4 Conclusions . 74

5 FMM-Based Preconditioners for Sparse Iterative Solvers 76

5.1 Model Problems . 77

5.1.1 Poisson model problem . 78

8

5.1.2 Stokes model problem . 78

5.1.3 Helmholtz model problem . 79

5.2 Iterative Solvers and Preconditioning 80

5.2.1 Krylov subspace methods . 80

5.2.2 Preconditioning . 82

5.2.3 The FMM-BEM preconditioner 85

5.3 Boundary Element Method . 86

5.3.1 Formulation . 86

5.3.2 Singular integrals . 89

5.3.3 Discretization . 89

5.3.4 Variable coe�cient problems 91

5.4 Numerical Results . 92

5.4.1 The Poisson equation . 92

5.4.2 Variable-coe�cient Poisson equation 95

5.4.3 Stokes problem . 97

5.4.4 The Helmholtz equation . 98

5.4.5 Variable-coe�cient Helmholtz equation 103

5.4.6 E↵ect of FMM precision on convergence 104

5.5 Performance Analysis . 109

5.5.1 The Poisson equation . 109

5.5.1.1 Serial results . 109

5.5.1.2 Parallel results . 111

5.5.1.3 Extension to 3-D . 112

5.5.2 The Helmholtz equation . 114

5.6 Conclusions . 115

6 FMM as a Matrix-Free Hierarchically Low Rank Approximation 117

6.1 Hierarchically Low Rank Approximation: Analytic or Algebraic? . . . 119

6.1.1 Analytic low-rank approximation 119

6.1.2 Semi-analytical FMM . 120

6.1.3 Algebraic low-rank approximation 121

6.2 Experimental Results . 122

6.2.1 Matrix-vector multiplication 123

6.3 Conclusions . 125

9

7 Summary and Future Work 127

7.1 Summary . 127

7.2 Future Research Work . 128

7.2.1 Nonuniform distributions . 128

7.2.2 Future vision of the macromolecular crowding e↵ect 129

7.2.3 Practical applications of the FMM preconditioner 129

7.2.4 Benchmarking HLRA based methods 130

References 132

Appendices 151

Appendix A Machines Description 152

A.1 Titan . 152

A.2 K computer . 152

A.3 Mira . 153

A.4 Shaheen II . 153

A.5 Stampede . 153

A.6 Piz Dora . 154

A.7 Shaheen I . 154

Appendix B Mathematical Supplements 155

B.1 Divergence Theorem . 155

B.2 Dirac’s Delta Function (�) . 155

B.3 Fundamental Solutions . 156

B.3.1 Laplace Equation . 156

B.3.1.1 Fundamental solution in 2-D 156

B.3.1.2 Fundamental solution in 3-D 158

B.3.2 Helmholtz Equation . 160

B.3.2.1 Fundamental solution in 2-D 160

B.3.2.2 Fundamental solution in 3-D 161

Appendix C Boundary Element Method 163

C.1 Weighted Residual Methods . 163

C.2 Weak Form . 164

C.3 Inverse Form . 165

C.4 BEM Matrices . 166

C.5 Discretization . 169

10

C.6 Matrix Construction . 172

Appendix D Papers Accepted, Submitted, and Under Preparation 175

11

LIST OF FIGURES

2.1 Hierarchical decomposition . 24
2.2 Schematic of Fast Multipole Method. (a) shows the interactions for a

O(N2) direct method. (b) shows the interactions for the O(N) FMM,
describing the type of interaction between elements in the tree data
structure. (c) shows the same FMM kernels as in (b), but from a
geometric point of view of the hierarchical domain decomposition. . . 26

2.3 Decomposition of the distance vector x
ij

= x
i

�x
j

into five parts, that
correspond to the five stages P2M, M2M, M2L, L2L, and L2P in the
FMM. 31

2.4 Splitting of the local and global tree in FMM. 33
2.5 Heat maps for level-by-level communication patterns for the M2L phase

of an FMM with N=62,500 per process using 128 processes. Areas of
black indicate zero messages between processes, the peak communica-
tion volume is represented in red. In this example, the switch between
global and local trees is between Level 3 and Level 4. 34

3.1 Performance model prediction and actual time for M2L communication
phase on Shaheen I. 49

3.2 Load balance of M2L communication phase on Shaheen I. 50
3.3 Performance model prediction and actual time for M2L communication

phase on Mira. 53
3.4 Performance model prediction and actual time for M2L communication

phase on Titan. 54
3.5 Performance model prediction and actual time for M2L communication

phase on Piz Dora. 55

4.1 Vicinal area of TTHA for the in vivo system. The TTHA molecule
is drawn using the ribbon model, and ovalbumin molecules are drawn
using the space-filled model. Each ovalbumin molecule is colored dif-
ferently. 60

4.2 Weak scaling for 6,542 atoms/node. Constant wall clock times/step
show the perfect scaling. Ratios of force calculation/communication/others
are also constant, and force calculation is dominant. 67

4.3 Strong scaling to number of atoms per node. The red curve shows
Amdahl’s law. 68

12

4.4 Computational workload (FLOP count) in each node. 70
4.5 Weak scaling of FMM part of the MD simulation for 6,542 atoms/n-

ode. “Local FMM” is the aggregate time of all FMM kernels in the
local tree, “Communicate Cells” is the time of the M2L communica-
tion in the local trees, “global M2M” and “global M2L” include both
the communication time and computation time of the M2M and M2L
kernels in the global tree. The dashed line is a reference for confirming
the logP behavior of global communications. 71

4.6 Error of periodic FMM with respect to the order of expansion P and
number of periodic images 3k ⇥ 3k ⇥ 3k. The error is the relative L2

norm of the di↵erence between the force from the Ewald summation
and periodic FMM. With this measure, 10�8 indicates that 8 significant
digits are matching. 72

4.7 Conformational fluctuations of TTHA for in vivo (viv) and in vitro
systems (vit). The red and green lines indicate the RMSFs of TTHA
in viv (FMM: solid, PME: dashed) and vit (FMM: solid, PME: dashed),
respectively. The abscissa axis is the residue number of TTHA and the
ordinate axis is the RMSF value (in Angstrom). Red and white boxes
indicate alpha-helices and beta-sheets, respectively. 75

5.1 Solution of the Laplace and Helmholtz equations with the same bound-
ary conditions. 84

5.2 Evolution of the residual of the unpreconditioned GMRES method for
the Laplace equation, k = 0, and the Helmholtz equation, k = 15. . . 85

5.3 Flow chart of the FMM-BEM preconditioner within the conjugate gra-
dient method. 87

5.4 Eigenvalues of the the coe�cient matrix A for the problem described
in (5.19) with k = 5, 10, 20, and 40, respectively, h = 2�5. 99

5.5 The right-hand term f and solution u of (5.22) for µ = 1, 4, 6, and 8. 102
5.6 Convergence rate of the FMM preconditioner for the Poisson equa-

tion with di↵erent precision, plotted along with algebraic multigrid,
geometric multigrid, and incomplete Cholesky preconditioners. The ✏
represents the precision of the FMM, where ✏ = 10�6 corresponds to
six significant digits of accuracy. 105

5.7 Convergence rate of the FMM preconditioner for the Helmholtz equa-
tion with di↵erent precision, plotted along with AMG, GMG, and IC
preconditioners. The ✏ represents the precision of the FMM where
✏ = 10�6 corresponds to six significant digits of accuracy, h = 2�5. . . 106

5.8 Convergence of spatial discretization error for the FEM and BEM.
The relative L2 norm of the di↵erence between the analytical solution
is plotted against the grid spacing �x. 107

5.9 Eigenvalues of the coe�cient matrix A and the FMM-preconditioned
matrix M�1A with di↵erent FMM precisions ✏ = 10�2, 10�4, and 10�6,
h = 2�5. 108

13

5.10 Time-to-solution for di↵erent problem sizes of the FMM and AMG
preconditioners on a single core of a Xeon E5-2680. 110

5.11 Strong scaling of the 2-D FMM and AMG preconditioners. 112
5.12 Calculation time of 2-D and 3-D FMM for the same problem size. . . 113
5.13 Strong scaling of the 3-D Poisson FMM and AMG preconditioners. . 114
5.14 Calculation time of 3-D Laplace and 3-D Helmholtz FMM for the same

problem size. 115

6.1 The compute-memory trade-o↵ between the analytic and algebraic hi-
erarchically low rank approximation methods. Various techniques lie
between the analytic and algebraic extremes. 119

6.2 Elapsed time for the matrix-vector multiplication using FMM and HSS
for di↵erent problem sizes. 123

6.3 Percentage of the computation time of HSS for di↵erent problem sizes. 124
6.4 Peak memory usage of FMM and HSS for the 3-D Laplace equation. . 125

C.1 Discretization of global integral into a sum of piecewise local integrals 168
C.2 Local integral by superposition of basis functions 169
C.3 Element centric and node centric approaches for BEM discretization . 173

14

LIST OF TABLES

3.1 Amount of communication in FMM 39
3.2 Machine parameters for latency ↵, inverse bandwidth �, and distance

penalty �, on Shaheen I, Mira, Titan, and Piz Dora. 45
3.3 Statistics of the M2L communication. 47

4.1 Performance on the main loop and the kernel loop for 418,707 atom
simulation by 64 process . 65

4.2 Conditions of the simulation for the peak performance 66

5.1 Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude for the problem with �r2u = 1 and homogeneous
boundary conditions. 93

5.2 Smallest (�
min

) and largest (�
max

) eigenvalues and condition number
() of the sti↵ness matrix A and FMM-preconditioned matrix P�1A
for the problem with �r2u = 1 and homogeneous boundary conditions. 93

5.3 Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude for the problem with �r2u = 0 and inhomoge-
neous boundary conditions. 95

5.4 Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude for the problem with �r2u = �4 and inhomoge-
neous boundary conditions. 95

5.5 Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude (h = 2�6, m = 1 and n = 1). 96

5.6 Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude (h = 2�6, µ = 2�4). 96

5.7 Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude (m = 4, h = 2�6, µ = 2�4). 97

5.8 Smallest (�
min

) and largest (�
max

) eigenvalues and condition number
(k) of the sti↵ness matrix A and FMM-preconditioned matrix P�1A
with µ = 2�4. 97

5.9 Preconditioned MINRES iterations for the relative residual to reduce
by six orders of magnitude for the Stokes problem. 98

5.10 Preconditioned GMRES iterations for the relative residual to reduce
by six orders of magnitude, kh = 0.3125. 100

15

5.11 Preconditioned GMRES iterations for the relative residual to reduce
by six orders of magnitude, k = 5. 100

5.12 Preconditioned GMRES iterations for the relative residual to reduce
by six orders of magnitude, h = 2�6. 101

5.13 Preconditioned GMRES iterations for the relative residual to reduce
by six orders of magnitude for µ = 1, 4, 6, and 8. 103

5.14 Preconditioned GMRES iterations for the relative residual to reduce
by six orders of magnitude (h = 2�5, m = 4, n = 16, and k = 10). . . 104

5.15 Preconditioned GMRES iterations for the relative residual to reduce
by six orders of magnitude (h = 2�6, µ = 2�4, and k = 15). 104

5.16 Preconditioned GMRES iterations for the relative residual to reduce
by six orders of magnitude (m = 4, n = 4, h = 2�6, µ = 2�4). 105

6.1 Categorization of algebraic low-rank approximation methods. 121

A.1 Machines Description (as of November, 2016[1]) 154

C.1 Weighted Residual Methods . 164
C.2 Di↵erent basis functions . 171

16

Chapter 1

Introduction

Elliptic PDEs arise in a vast number of applications in scientific computing. A signif-

icant class of these involve the Laplace operator, which appears not only in potential

calculations but also in, for example, Stokes and Navier-Stokes problems [2, Chapters

5 and 7], electron density computations [3, Part II] and reaction-convection-di↵usion

equations [4, Part IV]. Another important class of elliptic PDEs is the Helmholtz

equation, which can be used to describe both wave propagation and scattering phe-

nomena arising in many fields of science and technology. For example, Helmholtz

equations are used to express acoustic phenomena in aeronautics [5] and underwater

acoustics [6, 7]. They are also utilized in geophysical applications [8] and in electro-

magnetic applications, e.g., photolithography [9]. Consequently, the rapid solution of

such PDEs is of wide interest.

The classification of a PDE is related to its characteristic curves, which are paths

in the solution domain along which information propagates. Elliptic PDEs have

no real characteristic curves. The solution at every point in the solution domain

depends upon the solution at all other points, including the boundaries. This all-to-

all mathematical dependence must be accommodated in any solution algorithm.

Although many successful numerical methods for such PDEs exist, changing com-

puter architectures necessitate new paradigms for computing and the development

of new algorithms. Computer architectures of the future will favor algorithms with

17

high concurrency, high data locality, high arithmetic intensity (Flop/Byte), and low

synchronicity. This trend is manifested on GPUs and co-processors, where some

algorithms are accelerated much less than others on the class of architectures that

can be extended to extreme scale. There is always a balance between algorithmic

e�ciency in a convergence sense, and how well an algorithm scales on parallel ar-

chitectures. This balance is shifting towards increased parallelism, even at the cost

of increasing computation. Since the processor frequency has plateaued for the last

decade, Moore’s law holds continued promise only for those who are willing to make

algorithmic changes.

Among the scientific applications ripe for reconsideration, those governed by ellip-

tic PDEs will be among the most challenging. A common solution strategy for such

systems is to discretize the partial di↵erential equations by fairly low-order finite el-

ement, finite volume or finite di↵erence methods and then solve the resulting large,

sparse linear system. However, elliptic systems are global in nature, and this does

not align well with the sweet spots of future architectures. The linear solver must

enable the transfer of information from one end of the domain to the other, either

through successive local communications (as in many iterative methods), or a direct

global communication (as in direct solvers with global recurrences, multigrid methods

with global coarse grids, or Krylov methods with global reductions). In either case,

avoiding synchronization and reducing communication are the main challenges.

Scalable algorithms for solving elliptic PDEs tend to have a hierarchical structure,

as in multigrid methods [10], fast multipole methods (FMM) [11], andH-matrices [12].

This structure is crucial, not only for achieving optimal arithmetic complexity, but

also for minimizing data movement. For example, the standard 3-D FFT with three

all-to-all communications requires O(
p
P) communication for the transpose between

pencil-shaped subdomains on P processes [13] and a recently published algorithm [14]

with five all-to-all communication phases achieves O(P 1/3) communication, whereas

18

these hierarchical methods require O(logP) communication [15]. This O(logP) com-

munication complexity is likely to be optimal for elliptic problems, since an appropri-

ately coarsened representation of a local forcing must somehow arrive at all other parts

of the domain for the elliptic equation to converge. In other words, an elliptic problem

for which the solution is desired everywhere cannot have a communication complexity

of O(1). However, the convergence of these hierarchical solvers can be fragile with re-

spect to coe�cient distribution in the second-order term, and, if present, with respect

to the first-order and zeroth-order terms.

Krylov subspace methods provide another popular alternative to direct methods

for general operators. We note that methods such as Chebyshev semi-iteration can

require even less communication in the fortunate case when information about the

spectrum of the coe�cient matrix is known [16, Section 10.1.5], [17]. Among the best

known Krylov methods are the conjugate gradient method [18], MINRES [19] and

GMRES [20], although a multitude of Krylov solvers are available in popular scalable

solver libraries. The great advantage of these solvers is their robustness – for any

consistent linear system there exists a Krylov method that will converge, in exact

arithmetic, for su�ciently many iterations. However, the convergence rate of Krylov

methods typically deteriorates as the discretization of an elliptic PDE is refined.

Mesh-independent convergence for Krylov methods applied to systems from el-

liptic PDEs can often be recovered by preconditioning. Among the best performing

preconditioners are the optimal hierarchical methods or, for multiphysics problems

such as Stokes and Navier-Stokes equations, block preconditioners with these meth-

ods as components. By combining these hierarchical methods and Krylov subspace

solvers we get the benefits of both approaches and obtain a linear solver that is fast

but robust. These hierarchical methods all have multiple parameters for controlling

the precision of the solution and are able to trade-o↵ accuracy for speed, which is a

useful feature for a preconditioner. Furthermore, in analogy to geometric multigrid

19

and algebraic multigrid, H2-matrices [21] can be thought of as an algebraic general-

ization of what FMMs do geometrically. There are advantages and disadvantages to

using algebraic and geometric methods, and both have their place as preconditioners.

There has been some recent work on algebraic multigrid methods (AMG) in antici-

pation of the future hardware constraints mentioned above. Gahvari et al. developed a

performance model for AMG and tested it on various HPC systems – Intrepid, Jaguar,

Hera, Zeus, and Atlas [22]. They found that network distance and contention were

both substantial performance bottlenecks for AMG. Adams presents a low-memory

matrix-free full multigrid (FMG) with a full approximation storage (FAS) [23]. He

revives an idea from the 1970s [24], which processes the multigrid algorithm ver-

tically, and improves data locality and asynchronicity. Baker et al. compared the

scalability of di↵erent smoothers – hybrid Gauss-Seidel, l
1

Gauss-Seidel, and Cheby-

shev polynomial, and showed that l
1

Gauss-Seidel and Chebychev smoothers scale

much better [25]. Vassilevski and Yang [26] present additive variants of AMG that

are significantly improved with respect to classical additive methods and show their

scalable performance on up to 4,096 cores. Indeed, there is continuous progress to

evolve multigrid to future hardware constraints, and it is likely that multigrid will

remain competitive.

On the other hand, performing a hierarchically low rank approximation (HLRA)

of the o↵-diagonal blocks of a matrix leads to a whole new variety of O(N) solvers

or preconditioners. HLRA-based methods include FMM itself [11], H-matrices [12],

hierarchically semi-separable matrices [27], hierarchically o↵-diagonal low-rank tech-

nique [28], and recursive skeletonization [29]. These techniques can be applied to a

dense matrix or the Schur complement during a sparse direct solve, thus enabling an

O(N) matrix-vector multiplication of a N ⇥N dense matrix or an O(N) direct solve

of a N⇥N sparse matrix to within a specified accuracy. These HLRA-based methods

require a smooth kernel in the far field which yields a block low-rank structure. The

20

distinguishing features of the variants come in the way the low-rank approximation

is constructed – rank-revealing LU [30], rank-revealing QR [31], pivoted QR [32],

truncated SVD [33], randomized SVD [34], adaptive cross approximation [35], hybrid

cross approximation [36], and Chebychev interpolation [37] are all possibilities. Mul-

tipole/local expansions in the FMM constitute another way to construct the low-rank

approximations. In fact, many of the original developers of FMM are now working

on these algebraic variants [38].

Literature on the HLRA-based methods mentioned above mainly focuses on the

error convergence of the low-rank approximation and there is little investigation of

the parallel scalability or direct comparison against multigrid. An exception is the

work by Grasedyck et al. [39], where their H-LU preconditioner is compared with

BoomerAMG, Pardiso, MUMPS, UMFPACK, SuperLU, and Spooles. However, their

executions are serial, and show that their H-matrix code is not yet competitive with

these other highly optimized libraries. Another is the work by Gholami et al. [40]

where they compare FFT, FMM, and multigrids methods for the Poisson problem

with constant coe�cients on the unit cube with periodic boundary conditions.

1.1 Objectives and Contributions

The contributions of this thesis folds in the following streams:

• We discuss the challenges for FMM on current parallel computers and future

exascale architectures, with a focus on inter-node communication. We also

develop a performance model that considers the communication patterns of the

FMM for spatially uniform distributions, and observe a good match between

our model and the actual communication time on four HPC systems, when

latency, bandwidth, network topology, and multi-core penalties are all taken

into account.

21

• We discuss the performance and scaling of FMMs for molecular dynamics sim-

ulations of uniformly distributed particles on the K computer. To measure

the performance of the K computer, we performed all-atom classical molecular

dynamics simulations of two systems: target proteins in a solvent, and target

proteins in an environment of molecular crowders that mimic the conditions

of a living cell. Using the full system, we achieved 4.4 PFLOPs during a 520

million-atom simulation with cuto↵ of 28 Å.

• We demonstrate that, beyond its traditional use as a solver in problems for

which explicit free-space kernel representations are available, the FMM has ap-

plicability as a preconditioner in finite domain elliptic boundary value problems,

by equipping it with boundary integral capability for satisfying conditions at

finite boundaries and by wrapping it in a Krylov method for extensibility to

more general operators.

• We provide a thorough review of the recent advancements in the field of HLRA

from both analytical and algebraic perspectives, and present a comparative

benchmark of highly optimized implementations of contrasting methods for

some simple yet representative test cases.

• We describe all our tests in reproducible detail with freely available codes and

outline directions for further extensibility.

1.2 Contents of the Thesis

The thesis is organized as follows. Chapter 2 describes the FMM, the essential kernel

that makes our methods e�cient and scalable. We develop a performance model for

the communication in the FMM in Chapter 3. Our performance model is validated on

four di↵erent architectures, Shaheen I (BG/P), Mira (BG/Q), Titan (Cray XK7), and

Piz Dora (Cray XC40). Then in Chapter 4, we discuss the performance and scaling

22

of FMMs for molecular dynamics simulations of uniformly distributed particles. In

Chapter 5, we combine the FMM with Krylov iteration as a scalable and highly

performant preconditioner for traditional low-order finite discretizations of elliptic

boundary value problems. The FMM-preconditioner is compared with multilevel

and sparse direct solvers on a variety of elliptic problems. Chapter 6 shows the

contrast between the analytical and algebraic hierarchically low rank approximations,

by reviewing the contributions over the years and placing them along the analytical-

algebraic spectrum. Our concluding remarks are given in Chapter 7.

23

Chapter 2

Fast Multipole Method

N -body problems arise in many areas of physics (e.g., astrophysics, molecular dy-

namics, acoustics, electrostatics). In these problems, the system is described by a

set of N particles and the dynamics of the system arise from interactions that occur

between every pair of particles, which has the form

f(x
i

) =
NX

j=1

q
j

K(x
i

,x
j

). (2.1)

Here, f(x
i

) represents a field value evaluated at a point x
i

which is generated

by the influence of sources located at x
j

with weights q
j

. K(x
i

,x
j

) is the kernel

that governs the interactions between evaluation and source particles. The direct

approach to simulate the N -body problem is relatively simple; it evaluates all pair-

wise interactions among the particles. While this method is exact to within machine

precision, the solution isO(N2) in its computational complexity, which is prohibitively

expensive for even modestly large data sets. However, its simplicity and ease of

implementation make it an appropriate choice when simulating small particle sets

(N < 1000) where high accuracy is desired [41]. For a larger number of particles,

many faster algorithms have been invented, e.g., treecodes [42] and the fast multipole

method [11]. The main idea behind these fast algorithms is to coarse grain the e↵ect

of su�ciently far particles as permitted by rigorous analysis. The most common way

to achieve this approximation is to cluster the far particles into successively larger

24

(a) 2-D view (b) Tree view

Figure 2.1: Hierarchical decomposition

groups by constructing a tree. The treecode clusters the far particles and achieves

O(N logN) complexity. The FMM further clusters the near particles in addition to

the far particles to achieve O(N) complexity.

In this chapter, we present an overview of the FMM algorithm. First, the spatial

hierarchy and fast approximate evaluation of the FMM are discussed in Section 2.1.

The flow of calculation of the FMM algorithm is provided in Section 2.2. Section

2.3 presents the mathematics behind the specific FMM kernels. Then, in Section 2.4,

a description of the communication pattern introduced by the domain partitioning

scheme used in the FMM algorithm is descried.

2.1 Basic Components

Both treecodes and FMM are based on two key ideas: the tree representation for

the spatial hierarchy, and the fast approximate evaluation. The spatial hierarchy

means that the computational domain is hierarchically decomposed into increasing

levels of refinement, and then the near and far subdomains can be identified at each

level. It is common to use an octree in 3-D and quad-tree in 2-D, where the space is

recursively split until the finest level of refinement or “leaf level”. Figure 2.1 illustrates

such hierarchical space decomposition for a 2-D domain (a), associated to a quad-

25

tree structure (b). The splitting is usually performed adaptively, so that the densely

populated areas result in a deeper branching of the tree. The original FMM [43] is

based on a series expansion of the Laplace Green’s function (1/r) and therefore can be

applied to the evaluation of related potentials and/or forces [44]. The approximation

reduces the number of operations in exchange for accuracy.

2.2 Flow of Calculation

In Figure 2.2, we show by schematic how the fast multipole method is able to calculate

(2.1) in O(N) operations. Figures 2.2a and 2.2b show how the source particles (red)

interact with the target particles (blue) for the direct method and FMM, respectively.

In the direct method, all source particles interact with all target particles directly. In

the FMM, the source particles are first converted to multipole expansions using the

P2M (particle to multipole) kernel. Figure 2.2c shows the corresponding geometric

view of the hierarchical domain decomposition of the particle distribution. Then,

multipole expansions are aggregated into larger groups using the M2M (multipole to

multipole) kernel. Following this, the multipole expansions are translated to local

expansions between well-separated cells using the M2L (multipole to local) kernel.

Both Figures 2.2b and 2.2c show that the larger cells interact if they are significantly

far away, and smaller cells may interact with slightly closer cells. The direct neighbors

between the smallest cells are calculated using the P2P (particle to particle) kernel,

which is equivalent to the direct method between a selected group of particles. Then,

the local expansions of the larger cells are translated to smaller cells using the L2L

(local to local) kernel. Finally, the local expansions at the smallest cells are translated

into the potential on each particle using the L2P (local to particle) kernel. The

mathematical formula for these kernels will be given in Section 2.3.

As discussed earlier, in order to perform the FMM calculation mentioned above,

one must first decompose the domain in a hierarchical manner by splitting it by its

26

(a) Direct method

P2M
M2M L2L

L2P

M2L

P2P
(b) Fast Multipole Method

M2M

M2L

L2L

L2P

P2P
source particles target particles

P2M

M2L

(c) Flow of data in FMM

Figure 2.2: Schematic of Fast Multipole Method. (a) shows the interactions for a
O(N2) direct method. (b) shows the interactions for the O(N) FMM, describing the
type of interaction between elements in the tree data structure. (c) shows the same
FMM kernels as in (b), but from a geometric point of view of the hierarchical domain
decomposition.

27

geometrical centerline. This splitting is performed recursively until the number of

particles per cell reaches a prescribed threshold. A common requirement in FMMs is

that these cells must be isotropic (cubes or squares and not rectangles), since they are

used as units for measuring the well-separatedness, as shown in Figure 2.2c, during

the M2L interaction. However, our FMM does not use the size of cells to measure the

distance between them and allows the cells to be of any shape as long as they can be

hierarchically grouped into a tree structure. Once the tree structure is constructed, it

is trivial to find parent-child relationships between the cells/particles. This relation is

all that is necessary for performing P2M, M2M, L2L, and L2P kernels. However, for

the M2L and P2P kernels one must identify a group of well-separated and neighboring

cells, respectively. We will describe an e�cient method for finding well-separated cells

in the following section.

2.2.1 Dual tree traversal

The simplest method for finding well-separated pairs of cells in the FMM is to “loop

over all target cells and find their parent’s neighbor’s children that are non-neighbors,”

as shown by Greengard and Rokhlin [11]. A scheme that permits the interaction of

cells at di↵erent levels for an adaptive tree was introduced by Carrier et al. [45]. This

scheme is used in many modern FMM codes, and is sometimes called the UVWX-

list [15]. Another scheme to find well-separated pair of cells is to “simultaneously

traverse the target and source tree while applying a multipole acceptance criterion

(MAC),” as shown by Warren and Salmon [46]. Teng [47] showed that this dual tree

traversal can produce interaction pairs that are almost identical to the adaptive inter-

action list by Carrier et al. [45]. A concise explanation and optimized implementation

of the dual tree traversal is provided by Dehnen [48].

The dual tree traversal has many favorable properties compared to the explicit

construction of interaction lists. First of all, the definition of well-separatedness can

28

be defined quite flexibly. For example, if one were to construct explicit interaction lists

by extending the definition of neighbors from 3⇥3⇥3 to 5⇥5⇥5 using the traditional

scheme, the M2L list size will increase rapidly from 63�33 = 189 to 103�53 = 875 in

3-D, which is never faster for any order of expansions. On the other hand, the dual tree

traversal can adjust the definition of neighbors much more flexibly and the equivalent

interaction list always has a spherical shape. (We say “equivalent interaction list”

because there is no explicit interaction list construction in the dual tree traversal.)

The cells no longer need to be cubic, since the cells themselves are not used to

measure the proximity of cells. Of course, the explicit interaction list construction

can be modified to include more flexibility, too [49]. However, the resulting code

becomes much more complicated than the dual tree traversal, which is literally a few

lines of code, see Pseudocode 1. This simplicity is a large advantage on its own.

Furthermore, the parallel version of the dual tree traversal simply traverses the local

tree for the target with the local essential tree (LET)1 for the sources, so the serial

dual tree traversal code can be used once the local essential tree is assembled.

A possible (but unlikely) limitation of dual tree traversals is the loss of explicit

parallelism as it has no loops. It would not be possible to simply use an OpenMP

“parallel for” directive to parallelize the dual tree traversal. In contrast, the tradi-

tional schemes always have an outer loop over the target cells, which can be easily

parallelized and dynamically load balanced with OpenMP directives. However, this

is not an issue since task based parallelization tools such as Intel Thread Building

Blocks (TBB) can be used to parallelize the dual tree traversal. With the help of

these tools, tasks are spawned as the tree is traversed and dispatched to idle threads

dynamically. In doing so, we not only assure load balance but also data locality, so

it may actually end up being a superior solution than parallelizing “for loops” with

1The LET for any process is defined as the union of the interaction lists of all owned leaves and
their ancestors, i.e., the data that will be required to compute the forces on every body in the local
domain [50].

29

EvaluateFMMUsingDualTreeTraversal()

push pair of root cells (A,B) to stack;

while stack is not empty do

pop stack to get (A,B);

if target cell is larger than source cell then

for all children a of target cell A do

Interact(a,B);

end
else

for all children b of target cell B do

Interact(A, b);

end
end

end

Interact(A,B)

if A and B are both leafs then

call P2P kernel;

else

if A and B satisfy MAC then

call M2L kernel;

else

push pair (A,B) to stack;

end
end

Pseudocode 1: Dual tree traversal

30

OpenMP, especially on NUMA architectures.

Considering the advantages mentioned above, we have decided to use the dual

tree traversal in our current work. This allows us to perform low accuracy optimiza-

tions by adjusting the multipole acceptance criterion without increasing the order

of expansions too much, which is the secret to our speed [51]. These low accuracy

optimizations can give the FMM a performance boost when used as a preconditioner.

2.3 Multipole Expansions

For the 2-D Laplace equation, the free space Green’s function has the form

G
ij

=
1

2⇡
log

✓
1

r
ij

◆
, (2.2)

where r
ij

= |x
i

� x
j

| is the distance between point i and point j. By using complex

numbers to represent the two-dimensional coordinates z = x+◆y, (2.1) can be written

as

f(x
i

) =
NX

j=1

q
j

2⇡
< {� log(z

ij

)} , (2.3)

where <(z) represents the real part of z. Figure 2.3 shows the decomposition of

vector x
ij

into five parts, x
ij

= x
i�

+ x
�⇤

+ x
⇤M

+ x
Mµ

+ x
µj

, where � and ⇤ are

the center of local expansions and µ and M are the center of multipole expansions.

The lower case is used for the smaller cells and upper case is used for the larger

cells. We denote the nth order multipole expansion coe�cient at x as M
n

(x), and

the nth order local expansion coe�cient as L
n

(x), where n = 0, 1, ..., p � 1 for a

pth order truncation of the series. For well separated cells, we may assume the

relation |x
⇤M

| > |x
i�

+ x
�⇤

| + |x
Mµ

+ x
µj

|. Given this relation, the following FMM

approximations are valid [45]:

31

xΛ
xj

xΜxi
xμ

xλ

Figure 2.3: Decomposition of the distance vector x
ij

= x
i

� x
j

into five parts, that
correspond to the five stages P2M, M2M, M2L, L2L, and L2P in the FMM.

1. P2M from particle at x
j

to multipole expansion at x
µ

,

M
0

(x
µ

) =

ˆ

NX

j=1

q
j

, (2.4)

M
n

(x
µ

) =

ˆ

NX

j=1

�q
j

(�z
µj

)n

n
, n = {1, 2, ..., p� 1}. (2.5)

where N̂ is the total number of particles in the corresponding cell.

2. M2M from multipole expansion at x
µ

to multipole expansion at x
M

,

M
0

(x
M

) = M
0

(x
µ

), (2.6)

M
n

(x
M

) = �M
0

(x
µ

)
(�z

Mµ

)n

n
+

nX

k=1

M
k

(x
µ

)(�z
Mµ

)n�k

✓
n� 1

k � 1

◆
. (2.7)

3. M2L from multipole expansion at x
M

to local expansion at x
⇤

,

L
0

(x
⇤

) ⇡ M
0

(x
M

) log(z
⇤M

) +
p�1X

k=1

M
k

(x
M

)

zk
⇤M

, (2.8)

L
n

(x
⇤

) ⇡ � M
0

(x
M

)

(�z
⇤M

)nn
+

p�1X

k=1

(�1)nM
k

(x
M

)

zn+k

⇤M

✓
n+ k � 1

k � 1

◆
. (2.9)

32

4. L2L from local expansion at x
⇤

to local expansion at x
�

,

L
n

(x
�

) ⇡
p�1X

k=n

L
k

(x
⇤

)zk�n

�⇤

✓
k

n

◆
. (2.10)

5. L2P from local expansion at x
�

to particle at x
i

,

u
i

⇡ <

p�1X

n=0

L
n

(x
�

)zn
i�

!
. (2.11)

For the P2M, M2M, and M2L kernels, the first term requires special treatment. The

expansions are truncated at order p, so the accuracy of the FMM can be controlled

by adjusting p. In our implementation, we do not construct any matrices during

the calculation of these kernels. The P2P kernel is vectorized with the use of SIMD

intrinsics, and the log() function is calculated using a polynomial fit for log
2

(x)/(x�1)

using SIMD.

2.4 FMM Communication Scheme

Partitioning of the FMM global tree structure and communication stencils are shown

in Figure 2.4. The binary tree on the left side is a simplification of what is actually an

octree in a 3-D FMM. Likewise, the schematics on the right are a 2-D representation

of what is actually a 3-D grid structure. Each leaf of the global tree is a root of a

local tree in a particular MPI process, where the global tree has L
global

levels, and the

local tree has L
local

levels. Each process stores only the local tree, and communicates

the halo region at each level of the local and global tree as shown in the red hatched

region in the four illustrations on the right. The blue, green, and black lines indicate

global cell boundaries, process boundaries, and local cell boundaries, respectively.

The switch between local and global trees produces a change in the communication

pattern, as revealed in the heat map in Figure 2.5.

33

Lglobal

rank 0 rank 1

Local P2P

Local M2L

Global M2M

Global M2L
Level : 0

Level : 1

Level : 2

Level : Lglobal-2

Level : Lglobal-1

Level : Lglobal

Level : Lglobal+1

Level : Lglobal+Llocal-2

Level : Lglobal+Llocal-1

Level : Lglobal+Llocal-3

global cell boundaries
process boundaries
local cell boundaries

Llocal

Many local cells in one process

Many process in one global cell

Figure 2.4: Splitting of the local and global tree in FMM.

34

(a) Level=7 (b) Level=6 (c) Level=5

(d) Level=4 (e) Level=3 (f) Level=2

Figure 2.5: Heat maps for level-by-level communication patterns for the M2L phase
of an FMM with N=62,500 per process using 128 processes. Areas of black indicate
zero messages between processes, the peak communication volume is represented in
red. In this example, the switch between global and local trees is between Level 3
and Level 4.

35

Chapter 3

A Performance Model for the Communication in FMMs for

Spatially Uniform Distributions

Since the performance of a single-processor core has plateaued, future supercomput-

ing performance will depend mainly on increases in system scale rather than improve-

ments in single-processor performance. Processor counts are already over ten million

for the top system. Modeling application performance at such scales is required to

guide algorithmic choices and tunings on existing architectures and evaluate contem-

plated architectures. Since the performance of the FMM has a large impact on a wide

variety of applications across a wide range of disciplines, it is important to understand

the challenges that FMM implementations face on architectures with increased par-

allelism, as well as to predict and locate bottlenecks that might cause performance

degradation. On future architectures where computation becomes relatively cheap

compared to data movement, we anticipate that inter-node communication will be-

come the bottleneck. The priority of the present chapter is the communication model

of FMM.

To model the performance, we start with the baseline model, namely (↵, �) model

for communication, where ↵ is the latency and � is the inverse bandwidth. Then,

some penalties are added to the baseline model based on machine constraints. These

This chapter includes results from the previously published paper, “A performance model for the
communication in fast multipole methods on high-performance computing platforms” by H. Ibeid,
R. Yokota, and D. Keyes [52], ©2016 SAGE Publications, doi:10.1177/1094342016634819.

36

penalties include distance and reduced per-core bandwidth. Our performance model

is related to universal communication features and can be applied regardless of local

FMM implementation choices, core-scale machine characteristics that do not a↵ect

communication, and arithmetic workload associated with other aspects of the compu-

tation. Of course, the importance of communication as a bottleneck depends strongly

on the cost of other tasks, but it is important to be able to evaluate communication

costs as a component in an overall cost model. The Byte-count parameters in our

model makes it adaptable to any of the various FMM implementations, while the

penalties in our model are tunable to various architectures. We validate our perfor-

mance model on four di↵erent architectures, Shaheen I (BG/P), Mira (BG/Q), Titan

(Cray XK7), and Piz Dora (Cray XC40).

The chapter is organized as follows. Section 3.1 gives an overview of related

work. Section 3.2 summarizes some performance challenges that face FMM on par-

allel machines. These challenges include massive parallelism and degradation due

to inter-node communication. In Section 3.3, an exposition of the fast multipole

method su�ciently detailed to expose communication properties is given. Section

3.4 describes our performance model. Experiments done to validate the performance

models are provided in Section 3.5 and we conclude in Section 3.6.

3.1 Related Work

Performance modeling and characterization for understanding and predicting the per-

formance of scientific applications on HPC platforms have been targeted by many

related projects. For example, Clement and Quinn developed a performance predic-

tion methodology through symbolic analysis of their source code [53]. Mendes and

Reed focused on predicting scalability of an application program executing on a given

parallel system [54]. Mendes proposed methodology to predict the performance scala-

bility of data parallel applications on multi-computers based on information collected

37

at compile time [55]. The approach of combining computation and communication to

obtain a general performance model is described by Snavely et al. [56]. DeRose and

Reed concentrate on tool development for performance analysis [57]. Performance

models for implicit CFD codes have been considered in [58]. The e�ciency of the

spectral transform method on parallel computers has been evaluated by Foster [59].

Kerbyson et al. provide an analytical model for the application SAGE [60]. Perfor-

mance models for AMG were developed by Gahvari et al. [22], who have also analysed

the performance of AMG over a dragonfly network in [61]. Traditional evaluation of

specific machines via benchmarking is presented by Worley [62].

Scaling FMM to higher and higher processor counts has been a popular topic [63,

64], while extensive study of single-node performance optimization, tuning, and anal-

ysis of FMM has also been of interest [65]. However, there has been little e↵ort

to model the inter-node communication of FMMs. Lashuk et al. derive the overall

complexity of FMM on distributed memory heterogeneous architectures [66], but do

not validate the model against the actual performance. The present work is based

on the communication model for AMG [22], and extends their theory to FMM. To

our knowledge, this is the first formal characterization of inter-node communication

in FMM, which validates the model against actual measurements of communication

time.

3.2 Performance Challenges

High performance computing systems have shown a sustained exponential growth

with performance improvement of approximately 10x every 3.6 years as measured,

for instance, by the Gordon Bell Prizes or the Top500 benchmark over the past 2.5

decades. This performance improvement comes at a cost in code complexity and in-

troduces many challenges. Furthermore, the development of an exascale computing

capability will cause significant and dramatic changes in computing hardware archi-

38

tecture relative to current petascale computers. In this section we present some of the

challenges faced by FMMs to achieve good parallel performance on future exascale

systems.

3.2.1 Trends in computer hardware

Computers consisting of nodes in the tens of thousands with cores per node in the

hundreds have emerged as the most widely used high-performance computing plat-

forms. These nodes communicate by sending messages through a network, which

leads to lower scalability and less performance due to cores on a single node content-

ing for access to the interconnect. We discuss multicore and manycore issues in more

detail when presenting our performance models that take this into account.

3.2.2 Communication

Two types of costs in terms of time and energy are usually analyzed separately:

computation (FLOPs) and communication (Bytes). Communication involves moving

data between levels of a memory hierarchy in case of sequential algorithms and ex-

changing data between processors over a network in the case of parallel algorithms.

Therefore, without considering overlap, the running time of an algorithm is the sum

of three terms: the number of FLOPs times the time per flop, the number of words

moved divided by the bandwidth (measured as words per unit time), and the number

of messages times the latency. The last two terms determine the time consumed by

communication. The time per flop is already an order of magnitude less than recip-

rocal bandwidth and latency and the gaps between computation and communication

are growing exponentially with time. Communication performance models can guide

development of algorithms to help reduce the communication.

39

3.3 FMM Communication Phases

As shown in Figure 2.4, our FMM uses a separate tree structure for the local and

global tree. In order to construct a performance model for the communication in

FMM, we estimate the amount of data that must be sent at each level of the hierarchy.

Table 3.1 shows the number of cells that are sent, which correspond to the illustrations

in Figure 2.4. L
global

is the depth of the global tree, L
local

is the depth of the local

tree. We define N as the global number of particles, and P as the number of processes

(MPI ranks). The global tree is constructed so that each MPI process is a leaf node in

the global tree. Therefore, the depth of the global tree only depends on the number

of processes P and not N . The depth of the global tree grows with log
8

P , whereas

the depth of the local tree grows with log
8

(N/P). For the current calculations we

are assuming a nearly uniform particle distribution (as in explicit solvent molecular

dynamics; an application example is provided in Chapter 4) and therefore a full octree

structure.

3.3.1 Global M2L

In Table 3.1 we show the number of cells to send per level and the total amount of

communication for all levels. There are four types of communication in our FMM,

which correspond to the four stages shown with the red hatching in Figure 2.4. The

first is the “Global M2L” communication, which sends 26 ⇥ 8 cells at each level, as

shown at the top right of Figure 2.4. The green lines are the process boundaries

Table 3.1: Amount of communication in FMM

Cells to send / level Total comm.
Global M2L 26⇥ 8 O(logP)
Global M2M 7 O(logP)
Local M2L (2i + 4)3 � 8i O((N/P)2/3)
Local P2P (2i + 2)3 � 8i O((N/P)2/3)

40

and the blue lines are the cell boundaries, which means one FMM cell belongs to

many processes in the global tree. In order to avoid redundant communication, we

index each process that shares a global cell and perform a one-to-one communication

between the processes with matching indices only. In order to further reduce the

communication, we select one process for a group of eight cells to do the communica-

tion. Therefore, the number of processes to communicate with (p
i

) is always 26 and

the number of cells to send is always 8 for every process and for every level in the

global tree. In other words, for the “Global M2L” communication the message size

and number of sends is constant regardless of N and P , and only the number of hops

between the processes will increase depending on the network topology. On torus

networks, we map the MPI ranks to the torus and synchronize the direction of the 26

one-to-one communications. The communication per level is O(1) and the number of

levels in the global tree is O(logP), so the total communication complexity for this

stage is O(logP) as shown in Table 3.1.

3.3.2 Global M2M

The second type of communication is the “Global M2M,” which sends 7 cells at

each level, as shown in Figure 2.4. We use a similar technique to the “Global M2L”

case to avoid redundant communication by pairing the MPI ranks for the one-to-

one communication when many processes share the same global cell. The number

of processes to communicate with is always seven and the number of cells to send

is always one for every process and for every level in the global tree. Similar to the

“Global M2L” case, only the number of hops during the one-to-one communication

will increase, and the rate depends on the network topology. The communication

per level is O(1) and the number of levels is O(logP), so the total communication is

O(logP) for the “Global M2M” stage.

41

3.3.3 Local M2L

The third type of communication is the “Local M2L,” which is shown in the red

hatching in the second picture from the bottom on the right side of Figure 2.4. The

process boundaries shown in green are coarser than the local cell boundaries shown in

black, which means that one process contains many cells, in contrast to the previous

two communication types. In a full octree structure, we know that all cells are non-

empty so we simply need to send two layers of halo cells for the M2L calculation at

each level, as shown in Figure 2.4. Therefore, the number of processes to communicate

with is always the 26 neighbors, and the number of cells to send depends on the level.

At level i of the local tree, there are 2i cells in each direction. Two layers of halo cells

on each side will create a volume of (2i+4)3 cells, and subtracting the center volume

8i will give (2i+4)3�8i as shown in Table 3.1. The leading term is O(4i) since the 8i

term cancels out. Since the number of levels in the local tree grow as log
8

(N/P) the

communication complexity for the “Local M2L” isO(4log8(N/P)) = O((N/P)2/3). This

can also be understood as the surface to volume ratio of the bottom two illustrations

in Figure 2.4. Since N/P is constant for weak scaling and decreases for strong scaling,

this part does not a↵ect the asymptotic weak/strong scalability of the FMM.

3.3.4 Local P2P

The fourth type of communication in the FMM is the “Local P2P,” which is shown in

the bottom picture on the right side of Figure 2.4. This communication only happens

at the bottom level of the local tree. Similar analysis to the “Local M2L” stage

shows that (2i + 2)3 � 8i cells must be sent, as shown in Table 3.1. In this case, i is

exactly log
8

(N/P) and we obtain the same asymptotic amount of communication of

O((N/P)2/3). Similar to the “Local M2L,” this part does not a↵ect the asymptotic

weak/strong scalability of the FMM. However, the content of the data is di↵erent

42

from the previous three cases where the multipole expansion coe�cients were being

sent. In the P2P communication the coordinates and the charges of every particle that

belongs to the cell must be sent. Therefore, the asymptotic constant of O(N/P)2/3 is

typically much larger than that of the “Local M2L,” and this could be the dominant

part of the communication time depending on the number of particles per leaf cell.

3.4 Modeling Performance

Performance modeling is a key ingredient in high performance computing. It has a

great importance in the design, development and optimization of applications, archi-

tectures and communication systems. It also plays a crucial role in understanding

important performance bottlenecks of complex systems. For this reason, performance

models are used to analyze, predict, and calibrate performance for systems of interest.

The tree-based communication of FMM is increasingly important in HPC applica-

tions, both of FMM itself and, for instance, of hierarchically low-rank (or “rank-

structured”) matrices, which are under active development in theory and software.

The application of a model of demonstrated relevance to one application to an entirely

di↵erent application makes a statement about the value and general applicability of

the model. In this section we develop a performance model to understand the per-

formance of the communication in FMM through a phase-by-phase analysis based on

four principal phases.

We start with a baseline model that is a combination of the latency and inverse

bandwidth. We subsequently refine this baseline model to reach a more realistic model

that is able to cover the relevant system architecture properties, with the exception

that overlapping communication with computation is not considered in this work.

43

3.4.1 Baseline model ((↵, �) model)

To model interprocess communication, we begin with the basic (↵, �) model, where ↵

represents communication latency, where � is the send time per-Byte (inverse band-

width). Using the basic model, a message send cost can be represented as

T
↵��

= ↵ + n�, (3.1)

where n is the number of Bytes in the message.

This basic model describes the communication over an ideal architecture where

the communication cost does not depend on processor locations or network tra�c

caused by many processors communicating at the same time [67]. For a more realis-

tic architecture, a more detailed model is needed. For this reason, we add penalties

to this basic model to take into account machine-specific performance issues. In par-

ticular, we consider communication distance, interconnection switching delay, limited

bandwidth, and the e↵ect of multiple cores on a single node contending for available

resources.

3.4.2 Distance penalty ((↵, �, �) model)

Following [22], we refine the assumption that distance between processors in intercon-

nected networks does not have e↵ect on communication time. To take into account

the e↵ect of distance we refine the baseline model according to the number of extra

hops a message travels

T
↵����

= ↵ + n� + (h� h
m

)�, (3.2)

where h is the number of hops a message travels, h
m

is the smallest possible number

of hops a message can travel in the network, and � is the delay per extra hop. If there

44

is no network contention and all messages travel with minimum number of hops, this

distance penalty should have no e↵ect.

3.4.3 Bandwidth penalty on �

The peak hardware bandwidth is rarely achieved in message passing. Therefore, we

multiply � by B
max

/B to incorporate the ratio between the peak hardware per-node

bandwidth B
max

and the e↵ective bandwidth from the benchmark B.

T
��Penalty

= ↵ + n�
B

max

B
+ (h� h

m

)�. (3.3)

3.4.4 Multicore penalty on ↵ or �

Increasing the number of cores per node increases the data tra�c between nodes, and

could potentially result in congestion. Furthermore, larger number of cores per node

introduces more noise caused by access to resources shared by multiple cores. To

model these e↵ects, we multiply ↵ and/or � by the number of active cores per node c.

This model focuses on the worst case behavior where a machine’s aggregate bandwidth

could be exceeded by all cores communicating simultaneously. The resulting models

are

T
↵�Penalty

= c↵ + n� + (h� h
m

)�, (3.4)

T
��Penalty

= ↵ + n� + c(h� h
m

)�. (3.5)

3.5 Model Validation

3.5.1 Machine description

To validate our performance models we benchmark our FMM code on four di↵er-

ent architectures; Shaheen I, Mira, Titan, and Piz Dora. Machine descriptions are

45

Table 3.2: Machine parameters for latency ↵, inverse bandwidth �, and distance
penalty �, on Shaheen I, Mira, Titan, and Piz Dora.

Shaheen I Mira Titan Piz Dora
↵ 4.12 µs 5.33 µs 1.67 µs 0.46 µs
� 2.14 ns 1.32 ns 1.62 ns 0.41 ns
� 29.9 ns 134 ns 284 ns 484 ns

provided in Appendix A.

In order to obtain the machine parameters, the “b e↵” benchmark in the HPC

Challenge suite [68] was used to determine the parameters ↵ and �. We report the

best-case latency and bandwidth measurements. To find the parameter �, we followed

the same procedure as Gahvari et al. [22]. Starting with the formulation of ↵ as a

function of the number of hops h

↵(h) = ↵(h
m

) + �(h� h
m

), (3.6)

we set ↵(h
m

) to be the measured value of ↵. If D is the diameter of the network, the

maximum latency possible is

↵(D) = ↵(h
m

) + �(D � h
m

). (3.7)

We use the maximum latency reported by the same benchmark we used to measure

↵ as a value for ↵(D). Then

� =
↵(D)� ↵(h

m

)

D � h
m

. (3.8)

The machine parameters for Shaheen I, Mira, Titan, and Piz Dora are shown in

Table 3.2. Note that our definition of � is defined as send time per Byte, whereas

Gahvari et al. define their � as send time per element (8 Bytes).

46

3.5.2 Experimental setup

We run the FMM code for ten steps and measured the time spent on the communi-

cation for the “Global M2L” and “Local M2L” phases. The results are then divided

by ten to get the average time spent at each level. The “Global M2M” phase is neg-

ligible and the “Local P2P” phase only occurs at the bottom level and is irrelevant

to the scalability of the FMM, so we do not consider these two phases in the current

analysis. We use the Laplace kernel in three dimensions with random distribution of

particles in a cube. We use periodic boundary conditions so that there is no load im-

balance at the edges of the domain. The number of MPI processes is varied between

P = {128, 1024, 8192}, while the number of particles per process is kept constant at

N/P = 62, 500. On all machines we use the maximum number of cores on each node

before increasing the number of nodes. Timings are measured with “gettimeofday()”

after a “MPI Barrier()” call. We use the default rank mapping to the nodes that the

system provides.

Table 3.3 shows communication information and statistics when running the FMM

on 128, 1024, and 8192 processes. “Level” is the level within the tree structure and

goes from 0 to L
global

+ L
local

� 1, where L
local

= 4 for N/P = 62, 500. Therefore,

the bottom four levels in Table 3.3 (a), (b), and (c) belong to the local tree. The

depth of the global tree L
global

is 4, 5, and 6 for 128, 1024, and 8192 processes,

respectively. “Cells” is the total number of cells at that level of the tree structure,

which is simply 8Level for a full octree. “Sends” is the number of processes to which

sends. As mentioned in Section 3.3 we have developed a communication scheme that

limits the number of sends to 26 regardless of the problem size, number of processes,

or the level. “Bytes” is the aggregate data size that is sent by a given process at

each level of the tree. As shown in Table 3.1, the number of cells for the “Global

M2L” communication is 26⇥ 8. For each cell we are sending 56 multipole expansion

47

Table 3.3: Statistics of the M2L communication.

(a) 128 Processes
Level Cells Sends Bytes
0 1 0 0
1 8 0 0
2 64 26 46,592
3 512 26 46,592
4 4,096 26 46,592
5 32,768 26 100,352
6 262,144 26 272,384
7 2,097,152 26 874,496

(b) 1024 Processes
Level Cells Sends Bytes
0 1 0 0
1 8 0 0
2 64 26 46,592
3 512 26 46,592
4 4,096 26 46,592
5 32,768 26 46,592
6 262,144 26 100,352
7 2,097,152 26 272,384
8 16,777,216 26 874,496

(c) 8192 Processes
Level Cells Sends Bytes
0 1 0 0
1 8 0 0
2 64 26 46,592
3 512 26 46,592
4 4,096 26 46,592
5 32,768 26 46,592
6 262,144 26 46,592
7 2,097,152 26 100,352
8 16,777,216 26 272,384
9 134,217,728 26 874,496

coe�cients in single precision (4 Bytes). Therefore, the total number of Bytes for the

“Global M2L” phase is 26 ⇥ 8 ⇥ 56 ⇥ 4 = 46, 592. We can see from Table 3.1 that

the amount of cells involved in the “Local M2L” communication can be calculated by

(2i+4)3�8i, where i is the level in the local tree (not the “Level” shown in Table 3.3).

48

For example, for level one in the local tree, the amount of cells will be (21 + 4)3 � 81

which is equivalent to 26 ⇥ 8. This is why the “Bytes” is the same for the “Global

M2L” and the first level of the “Local M2L” in Table 3.3.

3.5.3 Model validation

We compare the actual communication time for the M2L communication with our

performance model on Shaheen I, Mira, Titan, and Piz Dora. We compare against

same combination of models as in the multigrid study [22]. The combinations are:

1. Baseline model (↵� � model)

2. With distance penalty (↵� � � � model)

3. With distance and bandwidth penalty (� penalty)

4. With distance and bandwidth penalty, plus multicore penalty on latency (↵, �

penalty)

5. With distance and bandwidth penalty, plus multicore penalty on distance (�, �

penalty)

6. With distance and bandwidth penalty, plus multicore penalty on latency and

distance (↵, �, � penalty)

The results on Shaheen I are shown in Figure 3.1. The actual measured perfor-

mance is shown as a black line, where an error bar is drawn according to the standard

deviation in communication time among the di↵erent MPI ranks. By comparing the

Bytes in Table 3.3 with the communication time in Figure 3.1, we see that the deepest

four levels that belong to the “Local M2L” phase have a communication time that

is proportional to the data size being sent. The main discrepancy in the models is

49

2 3 4 5 6 7 8
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(a) 128 processes

2 3 4 5 6 7 8 9
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(b) 1024 processes

2 3 4 5 6 7 8 9 10
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(c) 8192 processes

Figure 3.1: Performance model prediction and actual time for M2L communication
phase on Shaheen I.

50

20 40 60 80 100 1200

0.002

0.004

0.006

0.008

0.01

0.012

MPIRANK

tim
e

[s
]

7
6
5
4
3

(a) 128 processes

200 400 600 800 10000

0.002

0.004

0.006

0.008

0.01

0.012

MPIRANK

tim
e

[s
]

8
7
6
5
4
3

(b) 1024 processes

2000 4000 6000 80000

0.002

0.004

0.006

0.008

0.01

0.012

MPIRANK

tim
e

[s
]

9
8
7
6
5
4
3

(c) 8192 processes

Figure 3.2: Load balance of M2L communication phase on Shaheen I.

51

caused by the � penalty, for which the ratio between the theoretical injection band-

width and the “b e↵” benchmark results is accounted for. The actual communication

time agrees well with the models with ↵, �, and � penalties.

For the shallow levels that belong to the “Global M2L” phase, the communication

time increases as the level decreases/coarsens. Here, and in Figures 7, 8, and 9 to

follow, the “Global M2L” levels are 3 in part (a), 3 and 4 in part (b), and 3, 4, and 5 in

part (c). The reason for the increase can be understood by looking back at Figure 2.4,

where the “Global M2L” is communicating with farther processes at coarser levels

of the tree. Since we are mapping the geometric partitioning of the octree to the

3-D torus network of Shaheen I, the proximity in the octree directly translates to

the proximity in the network. Therefore, even though the data size is constant for

all levels in the “Global M2L” phase, the number of hops is larger, which accounts

for switching delays and also network contention to some extent. This increases the

communication time at coarser levels and the models that incorporate � are able to

predict this behavior.

In Figure 3.2, the M2L communication time on Shaheen I is plotted against the

MPI rank to show the load balance between the processes. Each color shows M2L

communication at a di↵erent level of the tree structure, and the numbers in the legend

represent the levels. The communication time of each level is stacked on top of the

others so that the total hight of the area plot represents the total M2L communication

time shown in Figure 3.1. The MPI ranks are sorted according to the total M2L

communication time for better visibility in the small di↵erences between processes.

As can be seen from the figure, the load balance is quite good. The imbalance seems

to come from the finest levels, which are 7, 8, and 9 for 128, 1024, and 8192 processes,

respectively.

The M2L communication time on Mira is plotted along with the six model pre-

dictions in Figure 3.3. Similarly to the runs on Shaheen I, the main di↵erence in

52

the model predictions is caused by the � penalty. We also see a discrepancy be-

tween the model predictions with and without the ↵ penalty for the “Global M2L”

phase (coarser levels). The multicore penalty is very small on the Bluegene/Q. This

lack of multicore penalty has been observed in other applications where the use of

hybrid OpenMP+MPI approach did not improve the performance over a flat MPI

approach [69]. In contrast to the runs on Shaheen I, the communication time has a

nearly flat profile for the “Global M2L” phase. This is because the 5-D torus network

minimizes the number of hops and network contention so the degradation at coarse

levels of the tree is minimal. Far nodes in the octree are not so far in the Bluegene/Q

network topology.

Figure 3.4 shows the M2L communication time on Titan along with the six model

predictions. Similarly to the previous two cases, the di↵erence between the model

predictions is mainly due to the correction for the inverse bandwidth. This di↵erence

in the theoretical injection bandwidth and measured e↵ective bandwidth seems to

have the largest e↵ect on all three architectures. What is di↵erent from the previous

two cases is the large jump in the actual communication time for the “Global M2L”

phase. For example, for the 8192 process run level 5 is taking about 10 times more

than level 6 even though the message size is 46, 592 Bytes for both cases. The � term

in the current performance models anticipates such behavior. The error bars in the

actual timings are quite large, which indicates that there is a large load imbalance

compared to the previous two systems. The concave-convex switch at level 5 in 8(b)

is not well predicted by the models, but the more refined models do pick it up at level

6 in 8(c). Though a good match between the measurements and simple models is not

realized for M2L at all granularities on Titan, performance trends are generally well

predicted.

The M2L communication time on Piz Dora is plotted along with the six model

predictions in Figure 3.5. In the case of 128 processes, the best fitting model is the

53

2 3 4 5 6 7 8
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(a) 128 processes

2 3 4 5 6 7 8 9
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(b) 1024 processes

2 3 4 5 6 7 8 9 10
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(c) 8192 processes

Figure 3.3: Performance model prediction and actual time for M2L communication
phase on Mira.

54

2 3 4 5 6 7 8
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(a) 128 processes

2 3 4 5 6 7 8 9
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(b) 1024 processes

2 3 4 5 6 7 8 9 10
Level

10 -4

10 -3

10 -2

10 -1

Ti
m

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(c) 8192 processes

Figure 3.4: Performance model prediction and actual time for M2L communication
phase on Titan.

55

2 3 4 5 6 7 8

10−4

10−3

10−2

10−1

Level

Ti
m

e
(s

)

actual
α−β Model
α−β−γ Model
β Penalty
α,β Penalties
β,γ Penalties
α,β,γ Penalties

(a) 128 processes

2 3 4 5 6 7 8 9

10−4

10−3

10−2

10−1

Level

Ti
m

e
(s

)

actual
α−β Model
α−β−γ Model
β Penalty
α,β Penalties
β,γ Penalties
α,β,γ Penalties

(b) 1024 processes

2 3 4 5 6 7 8 9 10

10−4

10−3

10−2

10−1

Level

Ti
m

e
(s

)

actual
α−β Model
α−β−γ Model
β Penalty
α,β Penalties
β,γ Penalties
α,β,γ Penalties

(c) 8192 processes

Figure 3.5: Performance model prediction and actual time for M2L communication
phase on Piz Dora.

56

baseline model plus only the distance penalty. Increasing the number of processes

increases the possibility of contention and makes the model with all penalties the

best fitting model. Similar to the runs on Titan, there is a large jump in the actual

communication time for the “Global M2L” phase with even worse load balancing

suggested by the large error bars. The performance model is able to predict the poor

performance at the coarse levels.

3.6 Conclusions

The goal of this chapter is to model the global communication of the FMM, to be able

to anticipate challenges on future exascale machines. To improve model fidelity, we

consider penalties based on machine constraints including distance e↵ects, reduced

per core bandwidth, and the number of cores per node. We observe a good match

between the (↵, �, �) model with multicore penalties and the actual communication

time. The discrepancy between the other models means that all components of the

model; latency (↵), bandwidth (�), hops (�), and multicore penalty must be taken

into account when predicting the communication performance of FMM.

In our benchmark tests, we compare the performance models with measurements

for the M2L communication, since this is the dominant part of the FMM communica-

tion. Our observations are consistent with those of the studies by Gahvari et al. [22],

where the performance of an algebraic multigrid method is analyzed using the same

model. The measurements fall within the bounds of the performance models, and

match best with the model where latency, bandwidth, hops, and multicore penalty

are all taken into account.

The ultimate communication model is predictive in an absolute sense; however,

on complex systems, this objective is often out of reach, or of a di�culty out of

proportion to its benefit when there exists a simpler model that is inexpensive and

su�cient to guide coding decisions leading to improved scaling. The current model

57

provides such guidance.

Looking into the future, we will most likely be seeing more network topologies with

larger diameter (more hops). Large radix networks seem to be the current trend, but

with the exponential increase in the core count the increase of the network diameter is

unavoidable. Our communication model with the distance penalty is able to capture

the increase in communication time at the coarse levels of the FMM communication on

Titan’s torus network. This should allow predicting the communication bottlenecks

on future networks with larger diameter.

The performance model herein is applicable to evolving heterogeneous systems,

such as GPUs or Xeon Phis. This is because the accelerators and coprocessors a↵ect

the per-node computation but not the inter-node communication. Nor is the model

a↵ected by the on-node computational performance of FMM, as long as the accelera-

tors and coprocessors are not using more than one MPI process, which is the optimal

way to use the current generation of such hardware.

58

Chapter 4

Molecular Dynamics Simulation of Uniformly Distributed Par-

ticles Using the FMM

The human body is made up of an estimated 60 trillion cells (with estimates vary-

ing by counting conventions) that consist of various biomolecules. Each biomolecule

plays an important role in biological activities; the functions of biomolecules are re-

alized by their inherent structures and dynamics. Recent experimental techniques

such as X-ray crystallographic analysis and nuclear magnetic resonance (NMR) spec-

troscopy enable us to measure both the structure and fluctuation of biomolecules.

Computational approaches have also been attempted to study the dynamic and ther-

modynamic properties of biomolecules. Among these methods, molecular dynamics

(MD) simulation is the most prevalent. In MD simulations, atoms are treated as a

point mass, and their orbits are calculated using Newton’s equation of motion. A

typical time step size �t of the simulation is in the order of femtoseconds, while sam-

pling over microseconds or milliseconds is sometimes necessary to observe events of

interest. Therefore, MD simulations require large computational power, and they are

often used as HPC benchmarks. In this section, we report large-scale MD simulations

of proteins in a crowded environment on the massively parallel “K computer”.

In typical MD simulations, proteins are immersed in solvents or lipids. This

This chapter includes results from the previously published paper, “Petascale molecular dynam-
ics simulation using the fast multipole method on K computer” by Y. Ohno, R. Yokota, H. Koyama,
G. Morimoto, A. Hasegawa, G. Masumoto, N. Okimoto, Y. Hirano, H. Ibeid, T. Narumi, and M.
Taiji [70], ©2014 Elsevier, doi:http://dx.doi.org/10.1016/j.cpc.2014.06.004.

59

corresponds to an ideal environment in a test tube – in vitro. On the other hand,

living cells are crowded because macromolecules comprise ⇠30% of their molecular

weight [71, 72, 73]. An actual intracellular environment in vivo is extremely di↵erent

from an in vitro environment [74]. In order to understand the structure and dynamics

of biomolecules in a living cell, systems with crowded environments have been studied

using crowding agents [72].

Previous computational studies on macromolecular crowding have used reduced

models because of the high computational costs of all-atom simulations. However,

explicit solvent models are known to be essential for detailed analyses of protein dy-

namics. The precise treatment of protein flexibility is also essential for the study of

protein fluctuations. In this section, we aim to clarify the e↵ects of these important

factors using a cutting-edge algorithm on a state-of-the-art high-performance com-

puter. The K computer system has 82,944 processors that consist of 663,552 cores,

and a theoretical peak performance of 10.6 PFLOPs. Therefore, we needed to extend

the parallel e�ciency up to nearly a million cores. To achieve this goal, we have

developed a scalable MD simulation code for biomolecular systems, using a FMM.

The major bottleneck for the scalability of MD simulations is the long range force

calculation that is commonly performed by a particle-mesh Ewald method (PME) [75].

The 3-D FFT in PME prevents the simulation from scaling to hundreds of thousands

of cores. The FMM, on the other hand, is known to scale to the full granularity of the

largest supercomputers of today [15]. This di↵erence comes from the di↵erence in the

communication pattern of FFT and FMM. A 3-D FFT requires a global transpose

of the data. On P processes the optimal communication complexity is O(
p
P) when

2-D decomposition (pencil decomposition) is used. The FMM has O(logP) com-

munication complexity because the volume of communication decays logarithmically

with the distance. Furthermore, our present FMM uses a hierarchical local commu-

nication scheme, which eliminates the use of “MPI Alltoallv” type communications.

60

Figure 4.1: Vicinal area of TTHA for the in vivo system. The TTHA molecule is
drawn using the ribbon model, and ovalbumin molecules are drawn using the space-
filled model. Each ovalbumin molecule is colored di↵erently.

This communication scheme maps well to the 6-D torus network of the K computer.

For measurement of performance of MD simulation on K computer, we per-

formed all-atom classical MD simulations of TTHA1718 (a protein from Thermus

thermophilus HB8, hereafter TTHA) using ovalbumins (Figure 4.1) as crowders that

mimic the conditions of a living cell [76].

This chapter is organized as follows. In section 4.1 we explain the computational

methods. Following that, we present the benchmark results of the large-scale MD

simulations in section 4.2. The comparison between results of FMM and PME on

macromolecular crowding are presented in section 4.3. Finally, conclusions are given

in section 4.4.

4.1 Computational Methods

In a classical MD simulation, every atom’s position is updated at each discrete time

step. When the number of atoms is N
atom

, the computational cost should be propor-

61

tional to the product of N
atom

and the number of time steps if a cuto↵ is applied for

long-range electrostatics. Therefore, our goal is to design software that can scale up

to large N
atom

and N
node

.

4.1.1 Basic MD functions

MD simulation is composed of evaluation of forces between atoms and the integration

of their trajectories. The following equations express the exact MD equations of our

computations:

m
i

d2r
i

dt2
= �rU(r

1

, · · · , r
N

atom

) (4.1)

U({r
i

}) =
X

bond

1

2
k
b

(r � r
0

)2 +
X

angle

1

2
k
a

(✓ � ✓
0

)2

+
X

torsions

1

2
V
n

[1 + cos(n! � �)]

+
X

|r
ij

|<R

c

(
✏
ij

"✓
�
ij

r
ij

◆
12

� 2

✓
�
ij

r
ij

◆
6

#

+
q
i

q
j

4⇡✏
0

r
ij

+ (r
ij

)

�
(4.2)

where m
i

and r

i

represent the mass and position of the ith particle, respectively,

r
ij

= |r
i

� r

j

|, and a smoothed 3rd degree polynomial, , is the GROMACS shift

function [77]. In (4.2), the first three terms express bonded forces, and the last sum-

mation describes nonbonded forces. Note that bonded forces such as bond stretching,

angle, and torsion refer only to several topologically connected atoms; therefore, their

computational costs are relatively lower than that of nonbonded forces.

We have implemented a symplectic time integration (Verlet method) with SHAKE

[78]/RATTLE [79] and SETTLE [80] holonomic constraint algorithms, and several

well-established numerical algorithms to solve the above equations e�ciently for both

short-range and long-range interactions. In this work, we use a shift function for the

62

cuto↵ method for short-range contributions, and FMM for the long-range contribu-

tions.

4.1.2 Non-bonded short range force

Although almost all algorithms in MD simulations have linear complexity, nonbonded

forces such as Coulomb and Lennard-Jones potentials are dominant because of the

large number of interacting atom companions. When the cuto↵ method is used for

these nonbonded force calculations, the number of interacting atoms depends on the

cuto↵ radius. For example, a typical biomolecular circumstance involves 0.1 atoms in

one cubic Angstrom; a spherical volume of 10 Å radius includes approximately 419

atoms. For the e�cient calculation of the nonbonded forces, we organize a cell index

and a “pair list,” which is a list of atom pairs within the cuto↵ radius. All atoms are

distributed to “cells,” which are cubic space decompositions of the simulation space.

For each individual cell, we build a list of cells within the reach of the cuto↵ radius

from the cell. Since the pairing atoms are located only in the cells in the list, we

can limit the search volume to a region with a fixed volume of {2⇥ (cuto↵ radius +

cell size)}3.

If pair lists are updated every time step, the total calculation cost is the same

as the cost using only the cell index without the pair list. To reduce the cost, our

code updates the pair list once every 40 steps. For the generation of the pair list

in this case, we must use a longer distance than the cuto↵ radius because the list

must include atoms that may move inside the cuto↵ sphere in the next 40 steps.

The fraction of pairs within the cuto↵ radius in the pair list depends on this pair-list

margin and cuto↵. We use 28 Å cuto↵ radius and 2 Å margins in our code, and the

fraction is 0.81.

Despite the margin, the particles may jump inside the cuto↵ radius during the

40-step interval. In such cases, our code rolls back to the previous update step and

63

recalculates with a decreased interval. In our 100,000-step simulation with 180 million

atoms at a 28 Å cuto↵, we observed 16 occurrences of such events, which correspond

to only 0.6% redundant calculation. Because these events are so rare, the redundant

calculations have no serious impact on performance.

4.1.3 Non-bonded long-range force

Particle mesh Ewald (PME) [75] and its variants such as Gaussian splitting Ewald

(GSE) [81] are e�cient methods for calculating lattice sums with periodic boundary

conditions. Although, these lattice sum methods are accurate for periodic systems

such as crystals, they su↵er from long-range correlation artifacts and anisotropy e↵ects

for noncrystalline systems such as cellular environments [82, 83, 84]. To avoid such ar-

tifacts, variation of cuto↵methods that include long-range e↵ects have been proposed.

For example, isotropic periodic sum (IPS) [85], which sums over the isotropic periodic

images, and the Wolf method or zero-dipole summation [86, 87], which use potential

damping under charge neutral or zero-dipole conditions. The accuracy of such cuto↵

methods depend on the uniformity of the far field, which means that the cuto↵ length

must be larger than the scale of the structure. Therefore, a cuto↵ method with long

cuto↵ length can be an e↵ective tool for MD simulation of large protein structures.

Especially when arithmetic is becoming cheaper relative to bandwidth, the selection

of the optimal algorithm requires careful consideration.

Another disadvantage of PME is its scalability, since it requires a large amount

of global communication due to the nature of the FFT. It is di�cult to achieve even

weak scaling (not to mention strong scaling) for a large number of CPUs with full

electrostatics. Note that several studies (e.g., [88]) have attempted to improve the

network performance of long-range force calculations. On the other hand, fast mul-

tipole methods can reduce the amount of communication in long-range interactions

from O(
p
P) to O(logP), where P is the number of processes.

64

4.1.4 Periodic fast multipole method

In the present simulations, an FMM with periodic boundary conditions [89] is used to

calculate the long range force. An FMM can approximate the long-range forces using

multipole expansions and local expansions, and is able to calculate the interaction of

N bodies in O(N) time.

When the distribution of bodies is not uniform, the tree structure is unbalanced

and parallelization of the FMM becomes a non-trivial task. However, for molecular

dynamics simulations, where water molecules uniformly fill the entire domain, the

FMM can use a full tree structure. This has many implications when constructing

a highly parallel FMM. First, the data structure of a full tree is much simpler than

that of an adaptive tree. Since one can assume that all nodes of the octree are

full, multipole-to-local translation stencils are identical for every cell. The periodic

boundary condition is another ingredient, which helps create an entirely homogeneous

translation stencil even near the boundaries of the domain. This enables optimization

techniques that exploit the symmetry of the translation stencils and precalculation of

the multipole-to-local translation matrix. Second, the communication on distributed

memory machines is much simpler for a full tree since the data structures on remote

nodes are known. Again, the periodic boundary condition also helps to create a

perfect load balance, since the boundary cells have a full stencil. Third, a full tree

means that there is no need to reconstruct it once it is built on the first time step.

It is only a matter of updating which atoms belong to which leaf cells. This is also a

significant advantage when developing a highly parallel FMM code.

4.2 Performance Benchmarks

This section presents the results of the performance benchmarks of macromolecular

simulations on the K computer (machine description is provided in Appendix A). It

65

Table 4.1: Performance on the main loop and the kernel loop for 418,707 atom sim-
ulation by 64 process

Main loop
Time consumption (ms/step) 114.02
Performance (MFLOPs) 3,551,808
E�ciency 0.4336
Kernel loop
Time consumption (ms/step) 77.36
Performance (MFLOPs) 5,180,754
E�ciency 0.632
SIMD ratio 1 0.572
FLOP counts per pair of atom 2 108.3
1Number of SIMD instructions / Number of all instructions
2Evaluated by the performance counter and estimated number of atom pairs

is well known that the force calculation dominates the cost of an MD simulation. In

the results of our benchmark, the force calculation and communication cost represent

83% and 14% of the CPU time, respectively. Here, we first provide the CPU core

performance of the force calculation kernel and then describe the overall performance

of macromolecular in vitro system simulations on the parallel processors. The in vitro

system contains 418,707 atoms (4 proteins and 137,977 water molecules) in a (163 Å)3

cube. We simply replicate this system for larger runs. The details of this molecular

system are described in Section 4.3.

4.2.1 E�ciency of the force calculation kernel

The CPU core performance was monitored by a hardware performance counter and

reported using a profiler tool. Table 4.1 shows the result of the in vitro simulation

model on 64 nodes (64 CPU, 512 cores). The scientific descriptions of these models

are provided in the subsequent section. We have measured execution time with and

without performance counters and confirmed that the overhead of the performance

counter is less than 1.5%. Thus, we use the number of FLOP counts based on the

performance counter as references. In Table 4.1, we summarize the performance

66

Table 4.2: Conditions of the simulation for the peak performance

Model 432 in vitro
Number of atoms (N

atom

) 522,546,336
Cuto↵ radius 28 Å + 2 Å margin
Number of pairs per atom 8,835 (+2,031 in margin)
FLOP counts for 1,000 steps 510,481,566,661 MFLOP
Spatial size Å3 1956⇥ 2119⇥ 1304
Potential energy every time step
Topology of computation node 48⇥ 52⇥ 32
Number of nodes 79,872
Number of cores 638,976
Theoretical peak performance 10.223616 PFLOPs
Calculation time for 1,000 step 116.357 sec
Sustained performance 4.387 PFLOPs
E�ciency 0.429

count. The force calculation kernel of the code ran at 63% of the theoretical peak,

where 57% of the instructions were SIMD vectorized. By analyzing the source code

of the kernel loop, we obtained (62 + division + square-root) of FLOP counts per

atom-pair calculation. This is consistent with the performance of ⇠110 FLOP counts,

as seen in Table 4.1.

4.2.2 Sustained performance of the large-scale simulations

Here, we report the sustained performance of the parallel runs. The wall-clock time

of each block of the program is measured by inserting a Unix system call “gettime-

ofday()”. We have confirmed that the overhead of adding this system call is less

than 0.5%. Using 523 millions atoms, we achieved sustained performance of 4.387

PFLOPs on 79,872 nodes, which is 42.9% of the theoretical peak of the 10.2 PFLOPs

K computer. The parameters of this simulation are summarized in Table 4.2.

Figure 4.2 shows the time spent in blocks per step for the weak scaling of the in

vitro system (418,707 atoms/64 nodes). These times did not increase because almost

all communications were local, except for a small number of “all gather” calls for the

temperature calculation. Parallel e�ciency, which is defined by T(64)/T(79,872), was

67

 0

 20

 40

 60

 80

 100

 120

512 4096 32768 65536

Ti
m

e
Co

ns
um

pt
io

n
(m

s/
st

ep
)

Number of Node

Force Calculation

Communication

Other

Figure 4.2: Weak scaling for 6,542 atoms/node. Constant wall clock times/step
show the perfect scaling. Ratios of force calculation/communication/others are also
constant, and force calculation is dominant.

above 0.96.

Figure 4.3 shows the operation time of a strong scaling in vitro system against

number of atoms per node. Time spent on the force calculation decreased propor-

tionally to the number of nodes N
node

, as expected. Theoretically, the communication

time is proportional to (N
node

)�2/3, since the import volume per node is proportional

to a ratio of a surface and a volume of a region assigned to each node. Though, the

points of the measurements are not enough to reproduce the exact theoretical curve,

we see the weak decrease of the communication time in the case of a small number

of nodes. Beyond 6,400 atoms/node, we observed a saturation, which was caused by

an increase in communication targets per node. In the case of 100 atoms/node, the

side length of the region assigned to each node was about 10 Å, which was 1/3 of the

cuto↵ radius (28 Å). Thus, each node had to communicate with ±3 nodes in each

direction; ignoring the corner cells. In this case, the number of communication target

nodes becomes 310.

68

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 64 512 4096 32768

52,338 6,542 817 102

Ti
m

e
pe

r o
ne

 s
te

p
(m

s)

Number of nodes

Number of atoms/node

53000(1.0-0.9998+0.9998/N)

total

Force Calculation

Communication

Other

Figure 4.3: Strong scaling to number of atoms per node. The red curve shows Am-
dahl’s law.

The total time of Amdahl’s law [90], T
1

(1�P +P/N
node

), is shown in Figure 4.3,

where T
1

is the serial execution time, 1�P is the fraction of the serial part, and N
node

is the number of nodes. The estimated parallelization rate P is 0.9998. Note that

the value of P improves as the number of atoms per node increase. At this number

of atoms, the rate P is not su�cient for an 80,000-node system. The result shows

that 50% e�ciency of the ideal scaling was obtained at around 10,000 nodes with 8.4

million atoms. Thus, strong scaling was achieved up to 800 atoms per node. This

means a system with 64 million atoms is su�cient to achieve 50% parallel e�ciency

for the full K computer system with 80,000 nodes.

4.2.3 Load balance

We now examine the workload balance among the nodes in the benchmark calcula-

tions. Figure 4.4 shows the calculation load of each node measured by FLOP counts

69

for the in vitro and in vivo simulations, whose average numbers of atoms per node

were 6,542 and 6,224, respectively. This figure shows a relatively large load imbalance

in the in vivo simulation, compared to the in vitro one. The maximum load for the

in vitro system exceeds the minimum by 5.2%, while the maximum for the in vivo

system exceeds the minimum by 12.7%. Note that since the measurements are based

on the FLOP counts, they do not reflect the fluctuation in the execution e�ciency.

As we have noted previously, most of the computational workload in MD simulations

is due to the force calculation, which is organized by the atom pair lists. Because of

the cuto↵ method used, the number of atom pairs per node depends on the local par-

ticle density. Therefore, the performance number on each node also depends on the

local density. In the in vitro system, 98.9% of atoms belong to the water molecules,

which are distributed in a spatially uniform manner. Thus, the particles in the in

vitro system are distributed more uniformly than those in the in vivo system, which

contains a large number of proteins. This results in a better load balance in the in

vitro system.

4.2.4 Performance of the FMM

Weak scaling of FMM part of the MD simulation for 6,542 atoms/node is shown in

Figure 4.5. The execution time of the local FMM kernels remains constant throughout

the entire range from P = 64 to P = 24, 576. The time of all communications

seem to roughly follow the upper bound of logP , and the absolute time spent on

communication is approximately 1 millisecond per step. Taking into account the

topology of the TOFU network, the communication at the coarse level of the global

tree will have a latency proportional to the number of hops O(3
p
P). Therefore, the

communication should ultimately scale as O(3
p
P) instead of O(logP) on the TOFU’s

3-D torus network. Extrapolating these results to the full system of the K computer

Note that the TOFU is not a full 6-D torus, and 3 of the dimensions are smaller than the others,
and are mainly designed for fault tolerance.

70

(a) in vitro

(b) in vivo

Figure 4.4: Computational workload (FLOP count) in each node.

suggests that a 540 million atom simulation is possible in a few milliseconds per step,

although we did not have enough run time on the full system to conduct such a run.

In terms of time-to-solution of large MD simulations, we were able to calculate 210

million atoms in 14 milliseconds per step on 4,096 nodes of the K computer. Total

calculation times were 43.42 ms/step and 47.90 ms/step using 64 nodes and 24,576

nodes. Parallel e�ciency (T (64)/T (24, 576)) was 0.906.

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Ti
m

e
C

on
su

m
pt

io
n

(m
s/

st
ep

)

Number of Process

Local Copy
Local FMM

Communicate Cells
global M2M
global M2L
global L2L
log(x)*0.15

Figure 4.5: Weak scaling of FMM part of the MD simulation for 6,542 atoms/node.
“Local FMM” is the aggregate time of all FMM kernels in the local tree, “Communi-
cate Cells” is the time of the M2L communication in the local trees, “global M2M”
and “global M2L” include both the communication time and computation time of the
M2M and M2L kernels in the global tree. The dashed line is a reference for confirming
the logP behavior of global communications.

4.2.5 Accuracy of periodic FMM

The periodic fast multipole method approximates the infinite periodic sum by placing

a finite number of periodic images around the original domain. There are three sources

of error in the periodic FMM:

• The truncation error of the multipole/local expansions in the FMM

• The error from using a finite number of periodic images

• The di↵erence between the Ewald sum and use of periodic images (dipole cor-

rection)

72

2 4 6 810−8

10−6

10−4

10−2

k

Er
ro

r

P=5
P=10
P=15
P=20
P=25

p = 5
p = 10
p = 15
p = 20
p = 25

Figure 4.6: Error of periodic FMM with respect to the order of expansion P and
number of periodic images 3k ⇥ 3k ⇥ 3k. The error is the relative L2 norm of the
di↵erence between the force from the Ewald summation and periodic FMM. With
this measure, 10�8 indicates that 8 significant digits are matching.

The first two are controllable and are a trade-o↵ between the computational cost.

The third source of error can be removed by adding a dipole correction term [89].

In Figure 4.6, we compare the results of a Ewald summation code, and periodic

FMM code for di↵erent number of expansions p and di↵erent number of periodic

images 3k ⇥ 3k ⇥ 3k. The number of atoms used in this test was N = 1, 000 randomly

distributed in a unit cube. When the order of expansion is too small, the FMM error

dominates, and increasing the number of periodic images will not help. As p increases,

it becomes possible to achieve higher accuracy with the use of su�cient number of

periodic images. With p = 15 and k = 4, we are able to match 5 significant digits

with the Ewald summation.

73

4.3 Macromolecular Crowding Simulations with All Atoms

4.3.1 Simulation methods

4.3.1.1 Simulated systems

To compare FMM and PME, we performed all-atom classical MD simulations of two

di↵erent systems: an in vitro system and an in vivo system. The in vitro system con-

sists of target proteins in a solvent, and the in vivo system consists of target proteins

in a macromolecular crowding environment. The target protein is a putative heavy-

metal binding protein TTHA, whose structure was determined by in vitro and in-cell

NMR [91]. The initial structure of TTHA was taken from PDB entry 2ROE [91],

which was solved by the NMR experiment in vitro. Ovalbumin, the major protein

in egg whites, was chosen as the crowding agent. The structure of ovalbumin was

taken from the PDB entry 1OVA [92]. The in vitro systems contained four TTHA

molecules, 372 sodium ions, 364 chloride ions, and 137,977 water molecules in a 160

Å-side cube (vit). The in vivo system contained 8 TTHA molecules, 64 ovalbumin

molecules, 1,200 potassium ions, 480 chloride ions, and 316,952 water molecules in a

240 Å-side cube (viv). The in vivo system mimics the conditions of a macromolecular

crowding environment in living cells, where the macromolecules comprise ⇠30% of

their molecular weight. These systems were equilibrated before the MD simulations,

under temperature control (T = 300 K) and pressure control (P = 1 bar), using

PMEMD in the AMBER program [93].

4.3.1.2 MD Simulations

The simulations of viv and vit were performed with periodic boundary conditions

using the simulation software described earlier. We adopted the AMBER99SB force

field [94] and used the TIP3P rigid water model [95] as the solvent molecule. The

74

integration time step was 2.0 fs. The bond lengths involving hydrogen atoms were

constrained to equilibrium lengths using the RATTLE method. The Coulomb inter-

actions were assessed by applying the PME and FMM methods. PME calculation [75]

with a real cuto↵ of 12 Å and beta-spline interpolation order of 4 was used and FMM

calculation with a real cuto↵ of 12 Å, multipole expansion order of 6, and 27 periodic

images in each direction. A smooth cuto↵ scheme for nonbonded interactions was

used for van der Waals interactions with a cuto↵ distance of 12 Å. The volume was

kept constant in each system, and the temperature was maintained at 300 K using

the Nosé-Hoover method [96, 97, 98]. The simulation time for analysis was 1 ns for

each system. It is short for study of crowding but enough to detect di↵erence of FMM

and PME. Conformations of the TTHA molecules were recorded at every 1 ps.

4.3.2 Simulations of macromolecular crowding

All-atom classical MD simulations of target proteins in solution (vit) and target pro-

teins in a crowded environment (viv) were performed to measure the di↵erence of

FMM and PME. The root mean square deviations (RMSDs) to the initial structure

taken from the in vitro experiment for vit (fmm), vit (pme), viv (fmm) and viv

(pme) were 1.001 ± 0.128 Å, 1.036 ± 0.142 Å, 1.310 ± 0.133 Å, and 1.211 ± 0.160

Å, respectively.

Figure 4.7 shows the root-mean square fluctuation (RMSF) curves of vit (fmm and

pme), and viv (fmm and pme). These curves indicated that the di↵erence of the fluc-

tuations between FMM and PME was smaller than the di↵erence of the fluctuations

between vit and viv.

4.4 Conclusions

We have performed all-atom MD simulations for molecular crowding on the K com-

puter. The performance benchmarks have shown excellent scalability of our classical

75

Figure 4.7: Conformational fluctuations of TTHA for in vivo (viv) and in vitro sys-
tems (vit). The red and green lines indicate the RMSFs of TTHA in viv (FMM:
solid, PME: dashed) and vit (FMM: solid, PME: dashed), respectively. The abscissa
axis is the residue number of TTHA and the ordinate axis is the RMSF value (in
Angstrom). Red and white boxes indicate alpha-helices and beta-sheets, respectively.

MD code on up to 79,872 processors, and 638,976 cores. The sustained performance of

4.387 PFLOPs has been achieved using the K computer system with a nominal peak

performance of 10.2 PFLOPs for the simulation with 523 million atoms. Good weak

scalability were achieved for the simulations using the cuto↵ technique and FMM.

We simulated the protein TTHA in ovalbumins as crowders using millions of atoms.

The results obtained from the MD simulation using FMM were in good agreement

with those obtained from PME, while the communication was reduced from O(P) in

the PME to O(logP) in the FMM for P processes.

76

Chapter 5

FMM-Based Preconditioners for Sparse Iterative Solvers

Among optimal hierarchical algorithms for the computational solution of elliptic prob-

lems, the FMM stands out for its adaptability to emerging architectures, having high

arithmetic intensity, tunable accuracy, and relaxable global synchronization require-

ments. We demonstrate that, beyond its traditional use as a solver in problems for

which explicit free-space kernel representations are available, the FMM has applicabil-

ity as a preconditioner in finite domain elliptic boundary value problems, by equipping

it with boundary integral capability for satisfying conditions at finite boundaries and

by wrapping it in a Krylov method for extensibility to more general operators. Here,

we do not discuss the well developed applications of FMM to implement matrix-

vector multiplications within Krylov solvers of boundary element methods. Instead,

we propose using FMM for the volume-to-volume contribution of inhomogeneous

elliptic problems, where the boundary integral is a small part of the overall compu-

tation. Our method may be used to precondition sparse matrices arising from finite

di↵erence/element discretizations, and can handle a broader range of scientific ap-

plications. Like multigrid, it is capable of comparable algebraic convergence rates

down to the truncation error of the discretized PDE, and it o↵ers potentially superior

multicore and distributed memory scalability properties on commodity architecture

This chapter includes results from the paper, “Fast Multipole Preconditioners for Sparse Ma-
trices Arising from Elliptic Equations” by H. Ibeid, R. Yokota, J. Pestana, and D. Keyes [99] and
the paper, “A Matrix-free Preconditioner for the Helmholtz Equation based on the Fast Multipole
Method” by H. Ibeid, R. Yokota, and D. Keyes [100].

77

supercomputers. Compared with other methods exploiting the low-rank character of

o↵-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iter-

ation may reduce the amount of communication because it is matrix-free and exploits

the tree structure of FMM.

In this chapter, we consider the Laplace, Stokes, and Helmholtz equations and de-

vise highly scalable preconditioners for these problems. Our Poisson and Helmholtz

preconditioners are based on a boundary element method in which matrix-vector

multiplies are performed using FMM; the results are scalable O(N) and O(N logN)

preconditioners for the Laplace and Helmholtz equations, respectively. For the Stokes

problem, we apply a block diagonal preconditioner, in which our Poisson precondi-

tioner is combined with a simple diagonal matrix. FMM-based preconditioners were

first proposed by Sambavaram et al. [101]. Such methods lacked practical motivation

when FLOPs were expensive, since they turn a sparse matrix into a dense matrix

of the same size before hierarchically grouping the o↵-diagonal blocks. But in a

world of cheap FLOPs, the notion of a “compute-bound preconditioner” sounds more

attractive.

The chapter is organized as follows. In Section 5.1 we present the model problems

and in Section 5.2 we give an overview of Krylov subspace methods and precon-

ditioning. The basis of our preconditioner is a boundary element method that is

discussed briefly in Section 5.3. Our numerical results in Section 5.4 examine the

convergence rates of FMM and multigrid for small Poisson, Stokes, and Helmholtz

problems. Then, in Section 5.5 we scale up the test problems and perform strong

scalability runs. Our conclusions are given in Section 5.6.

5.1 Model Problems

In this section we introduce the Poisson, Stokes, and Helmholtz model problems we

wish to solve and describe properties of the linear systems that result from their

78

discretization. We focus on low-order finite elements but note that discretization by

low-order finite di↵erence or finite volume methods give linear systems with similar

properties.

5.1.1 Poisson model problem

The model Poisson problems we wish to solve are of the form

�r · (aru) = f in ⌦, (5.1a)

u = g on �, (5.1b)

where ⌦ 2 Rd, d = 2, 3 is a bounded connected domain with piecewise smooth

boundary �, f is a forcing term, g defines the Dirichlet boundary condition, and

a � a
0

> 0 is a su�ciently smooth function of space.

Discretization of (5.1) by finite elements or finite di↵erences leads to a large, sparse

linear system of the form

Ax = b, (5.2)

where A 2 RN⇥N is the sti↵ness matrix and b 2 RN contains the forcing and boundary

data. The matrix A is symmetric positive definite and its eigenvalues depend on the

mesh size, which we denote by h, as is typical of discretizations of elliptic PDEs. In

particular, the condition number  = �
max

(A)/�
min

(A), the ratio of the largest and

smallest eigenvalues of A, grows as O(h�2) (see, for example, [2, Section 1.6]).

5.1.2 Stokes model problem

Incompressible Stokes problems are important when modeling viscous flows and for

solving Navier-Stokes equations by operator splitting methods [102, Section 2.1]. The

equations governing the velocity u 2 Rd, d = 2, 3, and pressure p 2 R of a Stokes fluid

79

in a bounded connected domain ⌦ with piecewise smooth boundary � are [102], [2]:

�r2

u+rp = 0 in ⌦, (5.3a)

r · u = 0 in ⌦, (5.3b)

u = w on �. (5.3c)

Discretizing (5.3) by a stabilized finite element or finite di↵erence approximation

leads to the symmetric saddle point system

2

64
A BT

B �C

3

75

| {z }
A

2

64
u

p

3

75 =

2

64
f

g

3

75 , (5.4)

where A 2 RN⇥N is the vector-Laplacian, a block diagonal matrix with blocks equal

to the sti↵ness matrix from (5.2), B 2 RM⇥N is the discrete divergence matrix,

C 2 RM⇥M is the symmetric positive definite pressure mass matrix and f 2 RN and

g 2 RM contain the Dirichlet boundary data.

The matrix A is symmetric indefinite and the presence of the sti↵ness matrix

means that the condition number ofA increases as the mesh is refined. However, as we

will see in the next section, the key ingredient in a preconditioner for A that mitigates

this mesh dependence is a good preconditioner for the Poisson problem. This allows

us to use our preconditioner for the Poisson problem in this more complicated fluid

dynamics problem as well.

5.1.3 Helmholtz model problem

The Helmholtz equation can be used to describe both wave propagations and scat-

tering phenomena arising in many fields of science and technology. While most ap-

Although we treat only stabilized discretizations here, stable discretizations are no more di�cult
to precondition and are discussed in detail in Elman et al. [2, Chapter 6].

80

plications are concerned with waves propagation in exterior domains, it is common

to utilize Helmholtz equations posed in interior domains with impedance boundary

conditions to describe acoustic and elastic problems in finite domains. The Helmholtz

equation takes the form

r2u+ k2u = f in ⌦, (5.5a)

@
n

u� iku = g on �, (5.5b)

where ⌦ is a connected bounded domain in Rd, d = 2, 3, with piecewise smooth

boundary �, k represents a constant wave number, and f and g are prescribed complex

functions.

Discretizing (5.5) by finite element or finite di↵erence methods leads to a large

sparse linear system of the form

Ax = b, (5.6)

where A 2 CN⇥N is a large sparse symmetric matrix and b 2 CN contains the

forcing and boundary data. For large values of k, the matrix A is complex-valued

and indefinite, i.e., A has eigenvalues with both positive and negative real parts.

Iterative methods, such as Krylov subspace solvers, are widely used in many ar-

eas of scientific computing for solving such large sparse linear systems where direct

methods, although robust and reliable, have expensive computational requirements.

5.2 Iterative Solvers and Preconditioning

5.2.1 Krylov subspace methods

The main idea of Krylov subspace methods is to generate a basis of Krylov subspace

K
j

(A, r
0

) = span{r
0

, Ar
0

, A2r
0

, . . . , Aj�1r
0

}, (5.7)

81

and then seek an approximate solution to the original problem from this subspace.

Here, r
0

= b � Ax
0

, x
0

is the initial approximate solution, and K
j

(A, r
0

) is the jth

Krylov subspace associated with A and r
0

. A wide variety of iterative methods fall

within the Krylov subspace framework.

The conjugate gradient method (CG) [18] is the optimal Krylov solver for solving

sparse symmetric positive definite linear systems [103]. To solve symmetric indefinite

linear systems, minimal residual method (MINRES) [19] can be used, as well as its

generalization to the nonsymmetric case, GMRES [20]. Both algorithms have the

minimization property but GMRES has the advantage that theoretically it guaran-

tees convergence. The main problem in GMRES is that it uses long recurrences which

implies that the amount of storage increases at each iteration. Therefore, applications

of GMRES may be limited by available storage. To overcome this problem, restarted

versions of the GMRES method are used, e.g., GMRES(m) [20]. In the restarted

GMRES, computation and storage costs are limited by specifying a fixed number

of vectors to be generated. However, since restarting removes the previous conver-

gence history, GMRES(m) does not guarantee convergence. The biconjugate gradient

stabilized (BiCGSTAB) [104] and conjugate gradient squared (CGS) [105] methods

are short recurrence alternatives to GMRES. Even though BiCGSTAB is generally

more stable and robust than CGS [106], neither method guarantees monotonically

decreasing residuals.

In this work we focus on three Krylov methods: the CG for systems with sym-

metric positive definite coe�cient matrices, and the MINRES and GMRES methods

for systems with symmetric indefinite matrices. For implementation and convergence

details, we refer the reader to the books by Greenbaum [107] and Saad [108].

82

5.2.2 Preconditioning

The convergence of Krylov subspace methods depends on the spectrum of the coe�-

cient matrix which for the Poisson, Stokes, and Helmholtz problems, as well as other

elliptic PDEs, deteriorates as the mesh is refined. This dependence can be removed

by preconditioning. The general rule for preconditioners is that the preconditioned

system should be easy to solve, i.e., converges rapidly, and cheap to apply [109]. It is

important to strike a balance between these two requirements as they are competing

with each other.

One can apply a preconditioner on the left of the linear system, the right, or a

combination of both. By left preconditioning, we solve a linear system premultiplied

by a preconditioning matrix M�1, i.e.,

M�1Ax = M�1b. (5.8)

On the other hand, right preconditioning is based on solving

AM�1x̂ = b, (5.9)

where x̂ = Mx. Both preconditionings show typically a similar convergence behavior

and the type of preconditioning to use depends mainly on the choice of the iterative

method and the problem characteristics. For example, right preconditioning is often

used with the GMRES method [109]. The essential di↵erence between left and right

preconditioned GMRES is that the left-preconditioned method computes residuals

based on the preconditioned system while the residuals for the right-preconditioned

GMRES are identical to the true residuals. This di↵erence may a↵ect the stopping

criterion [108].

When Krylov subspace methods are used, it is not necessary to form the pre-

83

conditioning matrix M�1 explicitly. Instead, the preconditioning matrix can be a

linear operation that defines the inverse of a matrix implicitly. This enables us to use

matrix-free approaches such as multigrid or the fast multipole method.

Many preconditioners for the Poisson problem reduce the number of iterations,

with geometric and algebraic multigrid among the most e↵ective strategies [2], [10].

However, to achieve a lower time-to-solution than can by obtained for the original

system, it is also necessary to choose a preconditioner that can be cheaply applied

at each iteration. Both geometric and algebraic multigrid methods are O(N), and

therefore exhibit good performance on machines and problems for which computa-

tion is expensive. However, stresses arise in parallel applications as discussed in the

introduction.

For Stokes problems we consider the block diagonal preconditioner

P =

2

64
P
A

0

0 P
S

3

75 , (5.10)

where P
A

2 RN⇥N and P
S

2 RM⇥M are symmetric positive definite matrices. The

advantage of this preconditioner is that there is no coupling between the blocks, so

P is scalable provided the blocks P
A

and P
S

are.

Appropriate choices for P
A

and P
S

have been well studied and it is known that

mesh-independent convergence of MINRES can be recovered when P
A

is spectrally

equivalent to A in (5.4) and P
S

is spectrally equivalent to the pressure mass matrix

Q 2 RM⇥M [110], [2, Chapter 6]. These spectral equivalence requirements imply that

the eigenvalues of P�1

A

A and P�1

S

Q are bounded in an interval on the positive real

line independently of the mesh width h.

It typically su�ces to use the diagonal of Q [2, Chapter 6], [111] or a few steps

of Chebyshev semi-iteration [112] for P
S

. Moreover, the diagonal matrix is extremely

parallelizable. Thus, the key to obtaining a good preconditioner for A is to approx-

84

(a) Laplace equation (b) Helmholtz equation

Figure 5.1: Solution of the Laplace and Helmholtz equations with the same boundary
conditions.

imate the vector Laplacian e↵ectively. This is typically the most computationally

intensive part of the preconditioning process, since in most cases M ⌧ N .

For Helmholtz equations Krylov methods are not e↵ective solvers without a good

preconditioner [113]. Using the problem defined in (5.21), Figure 5.1 shows the fun-

damental influence of the wave number k on the solution of the Helmholtz equation

by comparing it against the Laplace equation (k = 0). The solution of the Laplace

equation is large only near the point source while for the Helmholtz equation, with

k = 15, the solution takes on large values periodically throughout the domain. Fig-

ure 5.2 shows how this influences the convergence of the unpreconditioned GMRES

method. While the residual decreases rapidly for the Laplace equation, convergence

stagnates for the Helmholtz problem. It is therefore important to have a precondi-

tioner as GMRES method alone is not competitive for Helmholtz equations.

Multigrid methods, while enormously e↵ective when applied to coercive equations,

have severe convergence problems when applied to the indefinite Helmholtz equa-

tion [10]. The reason for this is while the characteristic components of the Helmholtz

problem can be accurately approximated by the discrete equations on the fine grids,

these components are invisible to any local relaxation since their errors can have

85

0 10 20 30 40

Iterations
10 -4

10 -3

10 -2

10 -1

10 0

R
es
id
ua
l

(a) Laplace equation

0 10 20 30 40

Iterations
10 -4

10 -3

10 -2

10 -1

10 0

R
es
id
ua
l

(b) Helmholtz equation

Figure 5.2: Evolution of the residual of the unpreconditioned GMRES method for
the Laplace equation, k = 0, and the Helmholtz equation, k = 15.

very small residuals. On the other hand, the characteristic components can not be

approximated on coarser grids since these grids do not resolve their oscillations [114].

5.2.3 The FMM-BEM preconditioner

In this chapter we propose an alternative preconditioner for Poisson, Stokes, and

Helmholtz problems that heavily utilizes the fast multipole method. The FMM is

O(N) with compute intensive inner kernels. It has a hierarchical data structure that

allows asynchronous communication and execution. These features make the FMM a

promising preconditioner for large scale problems on future computer architectures.

We show that this preconditioner improves the convergence of Krylov subspace meth-

ods, and is e↵ectively parallelized on today’s highly distributed architectures.

The FMM in its original form relies on free-space Green’s functions and is able

to solve problems with free-field boundary conditions. In Section 5.3 the FMM pre-

conditioner is extended to Dirichlet, Neumann or Robin boundary conditions for

arbitrary geometries by coupling it with a boundary element method (BEM). Our

approach uses the FMM as a preconditioner inside a sparse matrix solver and the

86

BEM solve is inside the preconditioner. Numerous previous studies use FMM for

the matrix-vector multiplication inside the Krylov solver for the dense matrix arising

from the boundary element discretization. In the present method we are calculating

problems with non-zero sources in the volume, and the FMM is used to calculate the

volume-to-volume contribution. This means we are performing the action of an N⇥N

dense matrix-vector multiplication, where N is the number of points in the volume

(not the boundary). Additionally, as discussed in Section 5.3.4, it is possible to ex-

tend the boundary element method to problems with variable di↵usion coe�cients,

particularly since low accuracy solves are often su�cient in preconditioning.

Figure 5.3 shows the flow of calculation of our FMM-BEM preconditioner within

the conjugate gradient method; its role in other Krylov solvers is similar. The FMM

is used to approximate the matrix-vector multiplication of A�1 within the precondi-

tioner. The BEM solver adapts the FMM to finitely applied boundary conditions.

During each step of the iteration, the u vector from the previous iteration is used to

determine @u/@n at the boundary from (5.13), then (5.14) is used to compute the

new u in the domain ⌦.

5.3 Boundary Element Method

5.3.1 Formulation

We use a standard Galerkin boundary element method [115] with volume contribu-

tions to solve the Poisson and Helmholtz equations. A brief description of the for-

mulation is given here, more details are provided in Appendix C. Applying Green’s

third identity to (5.1a) with a ⌘ 1 or to (5.5a) gives

Z

�

@u

@n
Gd��

Z

�

u
@G

@n
d�+

Z

⌦

u(r2G)d⌦ =

Z

⌦

fGd⌦, (5.11)

87

Preconditioner
boundary Eq. (8)
internal Eq. (9)

Update conjugate vector

Obtain A and b

Compute inner products

Calculate residual

Update solution and residual

Check convergence

Figure 5.3: Flow chart of the FMM-BEM preconditioner within the conjugate gradient
method.

88

where G is the Green’s function of the Laplace or Helmholtz operators, @

@n

is the

derivative in the outward normal direction, and � is the boundary. Following the

definition of the Green’s function r2G = �, the third term in (5.11) becomes

Z

⌦

u(r2G)d⌦ =

Z

⌦

u�d⌦ =

8
>><

>>:

1

2

u on @⌦,

u in ⌦.

(5.12)

Therefore, we may solve the constant coe�cient inhomogeneous Poisson and Helmholtz

problems by solving the following set of equations

Z

�

@u

@n
Gd� =

Z

�

u

✓
@G

@n
� 1

2
�

◆
d�+

Z

⌦

fGd⌦ on @⌦, (5.13)

u =

Z

�

u
@G

@n
d��

Z

�

@u

@n
Gd�+

Z

⌦

fGd⌦ in ⌦. (5.14)

As an example, consider the case where Dirichlet boundary conditions are pre-

scribed on �. The unknowns are @u/@n on � and u in ⌦\�, where (5.13) solves for

the former and (5.14) can be used to determine the latter. For Neumann boundary

conditions one can simply switch the two boundary integral terms in (5.13) and solve

for u instead of @u/@n. In either case, we obtain both u and @u/@n at each point on

the boundary, then calculate (5.14) to obtain u at the internal points. The last term

in (5.14) takes up most of the calculation time since it is a volume integral for every

point in the volume, whereas other terms are either for every point on the boundary

or are boundary integrals.

89

5.3.2 Singular integrals

The Laplace Green’s function in 2-D

G = � 1

2⇡
log r (5.15)

is singular. Therefore, the integrals involving G or @G/@n in (5.13) and (5.14) are

singular integrals. As described in the following section, these singular integral are dis-

cretized into piecewise integrals, which are evaluated using Gauss-Legendre quadra-

tures with special treatment for the singular piecewise integral. For boundary in-

tegrals in (5.13) and (5.14), analytical expressions exist for the piecewise integral.

However, for the volume integral an analytical expression does not exist [116]. For

this reason, we use a smoothed Green’s function of the form

G = � 1

2⇡
log(

p
r2 + ✏2), (5.16)

where ✏ is a small number that changes with the grid resolution.

5.3.3 Discretization

The integrals in equations (5.13) and (5.14) are discretized in a similar fashion to

finite element methods. In the following description of the discretization process, we

will use the term on the left hand side in (5.13) as an example. The first step is to

break the global integral into a discrete sum of piecewise local integrals over each

element Z

�

@u

@n
Gd� ⇡

N�X

j=1

Z

�

j

@u
j

@n
Gd�

j

, (5.17)

where N
�

is the number of boundary nodes. These piecewise integrals are performed

by using quadratures over the basis functions [115]. In the present case, we use

90

constant elements so there are no nodal points at the corners of the domain for the

tests in Sections 5.4 and 5.5. By applying this discretization technique to all terms

in (5.13) we obtain

N
�

8
>>>><

>>>>:

N�z }| {2

66664

. . .

G
ij

. . .

3

77775

2

66664

...

@u

j

@n

...

3

77775

| {z }
unknown

=

N�z }| {2

66664

. . .

@G

ij

@n

� 1

2

�
ij

. . .

3

77775

2

66664

...

u
j

...

3

77775
+

N⌦z }| {2

66664

. . .

G
ij

. . .

3

77775

2

66664

...

f
j

...

3

77775
,

whereN
⌦

is the number of internal nodes. All values on the right hand side are known,

and @u/@n at the boundary is determined by solving the linear system. Similarly, we

apply the discretization to (5.14) to have

N
⌦

8
>>><

>>>:

2

6664

...

u
i

...

3

7775
=

N�z }| {2

66664

. . .

@G

ij

@n

. . .

3

77775

2

6664

...

u
j

...

3

7775
�

N�z }| {2

66664

. . .

G
ij

. . .

3

77775

2

6664

...

@u

j

@n

...

3

7775
+

N⌦z }| {2

66664

. . .

G
ij

. . .

3

77775

2

6664

...

f
j

...

3

7775
.

At this point, all values on the right hand side are known so one can perform three

matrix-vector multiplications to obtain u at the internal nodes, and the solution to

the original equation (5.1a) or (5.5a). The third term on the right hand side involves

an N
⌦

⇥ N
⌦

matrix, and is the dominant part of the computational load. This

matrix-vector multiplication can be approximated in O(N) time by using the FMM

described in Chapter 2. We also use the FMM to accelerate all other matrix-vector

multiplications.

91

5.3.4 Variable coe�cient problems

A natural question that arises is how to extend the boundary element method, which

is the basis of our preconditioner, to problems with variable di↵usion coe�cients.

Several strategies for extending boundary element methods to problems with vari-

able di↵usion coe�cients have been proposed (see, for example, the thesis of Brun-

ton [117, Chapter 3]). Additionally, in this preconditioner setting we may not need

to capture the variation in the di↵usion coe�cient to a high degree of accuracy; for a

similar discussion in the context of additive Schwarz preconditioners see, for example,

Graham et al. [118].

Although analytic fundamental solutions can sometimes be found for problems

with variable di↵usion (see, e.g., Cheng [119] and Clements [120]), in most cases

numerical techniques are employed. One popular method is to introduce a number of

subdomains, on each of which the di↵usion coe�cient is approximated by a constant

function [121, 122].

A second option is to split the di↵erential operator into a part for which a funda-

mental solution exists and another which becomes part of the source term. Specifi-

cally, starting from (5.1), a similar approach to that described in Banerjee [123] and

Cheng [119] leads to

Z

�

au
@G

@n
d� �

Z

�

a
@u

@n
G �

Z

⌦

ura · rGd⌦ �
Z

⌦

aur2Gd⌦ =

Z

⌦

fGd⌦,

where again G is the standard fundamental solution for the Laplace operator, i.e., not

the fundamental solution for (5.1). We can then proceed as described above for (5.11).

It is also possible (see Concus and Golub [124]) to change the dependent variable to

soak up the variation in a prior to discretization, again resulting in a modified source

FEM.

92

5.4 Numerical Results

In this section we demonstrate the potential of the FMM-based preconditioner by

applying it to a number of test problems and comparing it with standard precon-

ditioners. The primary aim is to assess the e↵ectiveness of the preconditioner at

reducing the number of Krylov subspace iterations that are required for convergence

to a given tolerance. Additionally, we seek to ascertain whether mesh independence is

achieved. We defer reporting on performance to Section 5.5. Accordingly, we choose

problems that are small enough to enable solution by MATLAB.

Our Poisson and Helmholtz problems are all two dimensional and include examples

with homogeneous and inhomogeneous Dirichlet boundary conditions. We addition-

ally present a 2-D Stokes flow problem and show that, as predicted, combining the

FMM-based Poisson preconditioner with a block diagonal matrix gives an e↵ective

preconditioner for the saddle point problem (5.4).

Throughout, our stopping criterion is a decrease in the relative residual of six

orders of magnitude. If such a decrease is not achieved after maxit iterations the

computations are terminated; this is denoted by ‘—’ in the tables. This maximum

number of iterations is stated for each problem below. For all problems and pre-

conditioners the initial iterate is the zero vector. Our MATLAB implementation of

the FMM used in this section is a direct N -body summation that is subsequently

degraded to simulate a truncated FMM.

5.4.1 The Poisson equation

We first test our preconditioner on three 2-D Poisson problems with a constant dif-

fusion coe�cient on the domain on [�1, 1]2. Though these problems di↵er only in

their inhomogeneities, they verify di↵erent segments of code for the PDE and bound-

ary element discretization. We discretize the problems by Q
1

finite elements using

93

h GMG AMG FMM IC

2�4 6 5 5 10
2�5 6 6 6 18
2�6 7 6 6 —
2�7 7 6 6 —
2�8 7 6 7 —

Table 5.1: Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude for the problem with �r2u = 1 and homogeneous boundary
conditions.

h �
min

(A) �
max

(A) (A) �
min

(P�1A) �
max

(P�1A) (P�1A)

2�4 0.076 3.94 52 0.73 1.29 1.77
2�5 0.019 3.99 207 0.72 1.29 1.79
2�6 0.005 4.00 830 0.72 1.30 1.80

Table 5.2: Smallest (�
min

) and largest (�
max

) eigenvalues and condition number ()
of the sti↵ness matrix A and FMM-preconditioned matrix P�1A for the problem with
�r2u = 1 and homogeneous boundary conditions.

IFISS [125], [126], with default settings. Our fast multipole preconditioner is com-

pared with the incomplete Cholesky (IC) factorization [127] with zero fill implemented

in MATLAB and the algebraic multigrid (AMG) and geometric multigrid (GMG)

methods in IFISS. Within the GMG preconditioner we select point-damped Jacobi as

a smoother instead of the default ILU, which is less amenable to parallelization. Oth-

erwise, default settings for both multigrid methods are used. For all preconditioners,

maxit = 20 and we apply preconditioned conjugate gradients.

Our first example is the first reference problem in Elman et al. [2, Section 1.1] for

which

r2u = 1 in ⌦ = [�1, 1]2, u = 0 on �.

Table 5.1 lists the preconditioned CG iterations for each preconditioner applied.

The FMM preconditioner, as well as GMG and AMG appear to give mesh-independent

convergence, although the incomplete Cholesky factorization does not.

In Table 5.2 we plot the eigenvalues of the FMM preconditioned sti↵ness matrix

94

for h = 2�4, 2�5 and 2�6. It is clear that the smallest eigenvalue of A decreases as the

mesh is refined leading to an increase in the condition number; this is particularly

problematic for Krylov subspace methods, such as CG iteration, whose iteration count

can grow as the square root of the condition number. However, the eigenvalues

of the FMM-preconditioned matrix are bounded away from the origin in a small

interval that does not increase in size as the mesh is refined. This hints at spectral

equivalence between the FMM-based preconditioner and the sti↵ness matrix which

is unsurprising given that FMM is derived from the exact inverse of the continuous

problem. The condition number appears to be bounded, which is a consequence of

the mesh-independent convergence observed.

Our second example is the third reference problem from Elman et al. [2, Section

1.1] posed on [�1, 1]2 which is characterized by inhomogeneous Dirichlet boundary

conditions and the analytic solution

u(x, y) =
2(1 + y)

(3 + x)2 + (1 + y)2
.

From Table 5.3 we find that, similarly to the previous problem, the FMM precon-

ditioner and both multigrid preconditioners are mesh independent but the Cholesky

preconditioner is not. The FMM preconditioner is also competitive with the multi-

grid methods. Thus, on systems on which applying the FMM preconditioner is sig-

nificantly faster than applying the multigrid preconditioners, we will achieve a faster

time-to-solution with the former. We note that the eigenvalues and condition num-

bers obtained for the FMM preconditioned sti↵ness matrix are the same as those

computed for the previous example.

The final problem we consider in this section is the Poisson problem with solution

u(x, y) = x2 + y2

95

h GMG AMG FMM IC

2�4 5 5 5 11
2�5 5 5 5 19
2�6 5 5 5 —
2�7 5 5 5 —
2�8 5 5 5 —

Table 5.3: Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude for the problem with �r2u = 0 and inhomogeneous boundary
conditions.

h GMG AMG FMM IC

2�4 5 5 5 10
2�5 5 5 5 18
2�6 5 5 5 —
2�7 5 5 5 —
2�8 5 5 5 —

Table 5.4: Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude for the problem with �r2u = �4 and inhomogeneous boundary
conditions.

on [�1, 1]2, which has forcing term f ⌘ �4 in the domain and inhomogeneous Dirich-

let boundary conditions. The convergence results for this problem, given in Table 5.4,

are similar to those for the previous problems. They show that the FMM precondi-

tioner gives mesh independent convergence and is competitive with AMG and GMG.

We also obtain the same eigenvalue results as for the previous examples.

5.4.2 Variable-coe�cient Poisson equation

For su�ciently smooth di↵usion coe�cient variation, we can precondition the variable-

coe�cient problem with the constant-coe�cient problem, since they are spectrally

equivalent. We test this approach on the variable-coe�cient Poisson equation of the

96

µ AMG FMM

2�16 6 6
2�8 6 6
2�4 6 7
2�2 6 8

Table 5.5: Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude (h = 2�6, m = 1 and n = 1).

m n AMG FMM

1 1 6 7
2 2 6 7
4 4 6 7
8 8 6 7
16 16 6 7

Table 5.6: Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude (h = 2�6, µ = 2�4).

form

�r · (aru) = 1 in ⌦,

u = 0 on �,

where

a = 1 + µ(sin(m⇡x) sin(n⇡y)).

Tables 5.5, 5.6, and 5.7 show that the FMM preconditioner and both multigrid

preconditioners achieved mesh independent convergence for di↵erent amplitudes µ

and frequencies m and n. Also, the FMM preconditioner is competitive with the

algebraic multigrid method requiring comparable number of iterations.

Similar to Table 5.2, Table 5.8 shows that the eigenvalues of the FMM-preconditioned

matrix are bounded away from the origin.

97

n AMG FMM

1 6 7
2 6 7
4 6 7
8 6 7
16 6 7

Table 5.7: Preconditioned CG iterations for the relative residual to reduce by six
orders of magnitude (m = 4, h = 2�6, µ = 2�4).

h m n �
min

(A) �
max

(A) k(A) �
min

(P�1A) �
max

(P�1A) k(P�1A)

2�4 3 3 0.0759 3.9923 53 0.4423 1.0000 2.26
2�5 6 6 0.0192 4.0199 209 0.4371 1.0040 2.29
2�6 12 12 0.0048 4.0280 839 0.4360 1.0061 2.31

Table 5.8: Smallest (�
min

) and largest (�
max

) eigenvalues and condition number (k)
of the sti↵ness matrix A and FMM-preconditioned matrix P�1A with µ = 2�4.

5.4.3 Stokes problem

Next, we examine convergence for a 2-D Stokes flow. The leaky cavity problem [2,

Example 5.1.3] on [�1, 1] is discretized by Q
1

�P
0

elements in MATLAB using IFISS

with default settings. As described in Section 5.2, by combining a sti↵ness matrix

preconditioner P
A

with the diagonal of the pressure mass matrix P
S

, an e↵ective

preconditioner (5.10) for the saddle point system (5.4) is obtained. Here, we are in-

terested in using the FMM preconditioner for P
A

, and we compare its performance

with AMG and GMG in Table 5.9. We do not consider the incomplete Cholesky fac-

torization of A because of its poor performance on the sti↵ness matrix (see Tables 5.1,

5.3 and 5.4). We set maxit = 50 and apply preconditioned MINRES to the saddle

point system.

As for the Poisson problem, the FMM-based preconditioner provides a mesh-

independent preconditioner that is comparable to algebraic and geometric multigrid.

Although two or three more iterations are required by the FMM preconditioner than

the AMG preconditioner, if each iteration is faster the time-to-solution may be lower.

98

h GMG AMG FMM

2�4 32 31 35
2�5 32 32 35
2�6 33 32 33
2�7 31 31 33
2�8 31 31 31

Table 5.9: Preconditioned MINRES iterations for the relative residual to reduce by
six orders of magnitude for the Stokes problem.

5.4.4 The Helmholtz equation

Here, several 2-D numerical experiments are performed to assess the convergence

of the FMM preconditioner for the Helmholtz equation for an increasing mesh size

(h�1) and/or increasing wavenumber (k). The domain ⌦ is discretized by Q
1

finite

elements in MATLAB using IFISS where we construct the coe�cient matrix by adding

the sti↵ness matrix to k2 times the mass matrix. The discretization results in a large

sparse symmetric linear system which we solve using the GMRES iterative solver with

maxit = 20.

Our first Helmholtz problem [128] is posed on a unit square [0, 1]2 of homogeneous

medium with homogeneous Dirichlet boundary conditions as follows

r2u+ k2u = (k2 � 5⇡2) sin(⇡x) sin(2⇡y) in ⌦, (5.19a)

u = 0 on �. (5.19b)

The exact solution of (5.19) is

u = sin(⇡x) sin(2⇡y). (5.20)

The sub-figures in Figure 5.4 show the eigenvalues of the coe�cient matrix of

the original linear system for k = 5, 10, 20, and 40, respectively. Notice that the

99

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Real

-1

0

1
Im
ag

(a) k = 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Real

-1

0

1

Im
ag

(b) k = 10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Real

-1

0

1

Im
ag

(c) k = 20

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Real

-1

0

1

Im
ag

(d) k = 40

Figure 5.4: Eigenvalues of the the coe�cient matrix A for the problem described in
(5.19) with k = 5, 10, 20, and 40, respectively, h = 2�5.

100

h k GMG AMG FMM IC

2�4 5 11 5 4 13
2�5 10 — 6 4 —
2�6 20 — — 4 —
2�7 40 — — 5 —

Table 5.10: Preconditioned GMRES iterations for the relative residual to reduce by
six orders of magnitude, kh = 0.3125.

h GMG AMG FMM IC

2�5 — 15 5 —
2�6 — 15 4 —
2�7 — 15 4 —

Table 5.11: Preconditioned GMRES iterations for the relative residual to reduce by
six orders of magnitude, k = 5.

coe�cient matrix becomes more indefinite as the wavenumber increases with k = 5

resembles the slightly indefinite problem. Di↵erent mesh refinements are used to

solve (5.19) with various wave numbers k. Table 5.10 lists the number of GMRES

iterations required to reach the pre-specified tolerance for the GMG, AMG, FMM, and

IC preconditioners. For small wave numbers, all preconditioners show a satisfactorily

performance. GMG and IC become less e↵ective for increasing values of k where

the number of iterations required for convergence increases rapidly. For larger k,

preconditioning with FMM shows the best performance where other preconditioners

fail to converge within maxit.

The second Helmholtz example is posed on the square domain [�1, 1]2 and is

characterized by homogeneous Dirichlet boundary conditions as follows

r2u+ k2u = e�10((y�1)

2
+(x�0.5)

2
) in ⌦, (5.21a)

u = 0 on �. (5.21b)

101

k GMG AMG FMM IC

0.8 5 5 4 —
2 8 6 4 —
5 — 15 4 —

Table 5.12: Preconditioned GMRES iterations for the relative residual to reduce by
six orders of magnitude, h = 2�6.

Table 5.11 gives the number of GMRES iterations required for convergence on

various mesh sizes with k = 5 for the GMG, AMG, FMM and IC precondition-

ers. Both FMM and AMG preconditioners appear to give mesh independent conver-

gence, whereas GMG and IC factorization fail to converge within maxit. Table 5.12

lists the number of preconditioned GMRES iterations for each preconditioner applied

as a function of the wave number k with h = 2�6. For small wave numbers, the

GMG, AMG, and FMM preconditioners show a very comparable performance. As

k increases, both multigrid methods start to diverge while the FMM preconditioner

maintains a wavenumber-independent convergence for the given range of k.

The third Helmholtz example [129] is posed on [0, 1]2 and is characterized by

inhomogeneous Dirichlet boundary conditions as follows

r2u+ k2u = 2 sin(µx) cos(µy) + 4µx cos(µx) cos(µy) in ⌦, (5.22a)

u = x2 sin(µx) cos(µy) on �, (5.22b)

where k = µ
p
2.

The right-hand term f and exact solution u in a unit square domain with various

parameter µ are shown in Figure 5.5. Notice that the larger the value of µ, the greater

the variation of the function. The subtables in Table 5.13 list the number of precondi-

tioned GMRES iterations for the GMG, AMG, FMM, and IC preconditioners for µ =

1, 4, 6, and 8, respectively. For low frequencies, the GMG, AMG, and FMM precondi-

tioners show a very satisfactorily comparable performance. The GMG preconditioner

102

(a) f , µ = 1 (b) u, µ = 1

(c) f , µ = 4 (d) u, µ = 4

(e) f , µ = 6 (f) u, µ = 6

(g) f , µ = 8 (h) u, µ = 8

Figure 5.5: The right-hand term f and solution u of (5.22) for µ = 1, 4, 6, and 8.

103

h GMG AMG FMM IC

2�5 11 5 7 19
2�6 14 5 6 —
2�7 17 5 6 —

(a) µ = 1

h GMG AMG FMM IC

2�5 16 7 7 —
2�6 — 7 6 —
2�7 — 7 6 —

(b) µ = 4

h GMG AMG FMM IC

2�5 — 8 6 —
2�6 — 8 6 —
2�7 — 8 6 —

(c) µ = 6

h GMG AMG FMM IC

2�5 — 15 7 —
2�6 — 15 7 —
2�7 — 15 6 —

(d) µ = 8

Table 5.13: Preconditioned GMRES iterations for the relative residual to reduce by
six orders of magnitude for µ = 1, 4, 6, and 8.

becomes less e↵ective for increasing values of k where the number of iterations re-

quired for convergence exceeds maxit. For larger k, the FMM preconditioner requires

the smallest number of iterations to converge to the predefined tolerance. Examining

all the subtables in Table 5.13 shows that the FMM preconditioner achieves both

mesh-independent and wavenumber-independent convergence for the given values of

h and k.

5.4.5 Variable-coe�cient Helmholtz equation

Similarly to the Poisson equation, we can precondition the variable-coe�cient Helmholtz

problem with the constant-coe�cient one. We test this approach on the variable-

coe�cient Helmholtz equation of the form

r · (aru) + k2u = 1 in ⌦,

u = 0 on �,

where

a = 1 + µ(sin(m⇡x) sin(n⇡y)).

104

µ AMG FMM

2�16 7 4
2�8 8 5
2�4 10 6
2�2 10 8

Table 5.14: Preconditioned GMRES iterations for the relative residual to reduce by
six orders of magnitude (h = 2�5, m = 4, n = 16, and k = 10).

m n AMG FMM

1 1 12 5
2 2 11 6
4 4 11 5
8 8 11 5
16 16 11 5

Table 5.15: Preconditioned GMRES iterations for the relative residual to reduce by
six orders of magnitude (h = 2�6, µ = 2�4, and k = 15).

Tables 5.14, 5.15, and 5.16 show that the FMM preconditioner is competitive with

the algebraic multigrid method requiring smaller numbers of iterations for di↵erent

wave numbers k, amplitudes µ, and frequencies m and n.

5.4.6 E↵ect of FMM precision on convergence

For the results shown above, the FMM precision was set to preserve six significant

digits. However, the FMM can be accelerated further by trading precision for speed.

Since we are using the FMM as a preconditioner, the accuracy requirements are some-

what lower than that of general applications of FMM. Although this balance between

the accuracy and speed of FMM is a critical factor for evaluating the usefulness of

FMM as a preconditioner, the relation between the FMM precision and convergence

rate has not been studied previously.

In Figure 5.6 the relative residual at each CG iteration is plotted against the

number of iterations for FMM, AMG, GMG, and IC. The problem is the same as in

Table 5.1. Three cases of FMM are used with six, four, and two significant digits of

105

k AMG FMM

5 4 4
10 7 5
15 11 5

Table 5.16: Preconditioned GMRES iterations for the relative residual to reduce by
six orders of magnitude (m = 4, n = 4, h = 2�6, µ = 2�4).

0 5 10 15 20
10−8

10−6

10−4

10−2

100

102

Iterations

R
es

id
ua

l

FMM (ε=10−6)
FMM (ε=10−4)
FMM (ε=10−2)
AMG
GMG
Inc Chol

Figure 5.6: Convergence rate of the FMM preconditioner for the Poisson equation
with di↵erent precision, plotted along with algebraic multigrid, geometric multigrid,
and incomplete Cholesky preconditioners. The ✏ represents the precision of the FMM,
where ✏ = 10�6 corresponds to six significant digits of accuracy.

accuracy, respectively. The ✏ = 10�6 case corresponds to the condition for the tests

in Tables 5.1–5.4. Decreasing the FMM accuracy to four digits has little e↵ect during

the first few iterations, but slows down the convergence near the end. Decreasing the

FMM accuracy further to two digits slows down the convergence somewhat, but is

still much better than the incomplete Cholesky.

A similar plot is shown for the Helmholtz equation using the problem defined in

(5.21) with grid spacing of h = 2�5 and wave number k = 7 in Figure 5.7. The

nomenclature of the legend is identical to that of Figure 5.6. In this case, we see a

larger di↵erence between the convergence rate of FMM and Multigrid. Even the FMM

106

0 5 10 15 20
Iterations

10 -8

10 -6

10 -4

10 -2

10 0

10 2

R
es

id
ua

l

FMM (0=10 -6)
FMM (0=10 -4)
FMM (0=10 -2)
AMG
GMG
Inc Chol

Figure 5.7: Convergence rate of the FMM preconditioner for the Helmholtz equation
with di↵erent precision, plotted along with AMG, GMG, and IC preconditioners. The
✏ represents the precision of the FMM where ✏ = 10�6 corresponds to six significant
digits of accuracy, h = 2�5.

with the worst accuracy does better than the multigrid. We have also confirmed that

the FMM preconditioner has a convergence rate that is independent of the problem

size, up to moderate wave numbers of k.

Increasing the precision of the FMM past six digits does not result in any no-

ticeable improvement because truncation error begins to dominate. We are precon-

ditioning a matrix resulting from a FEM discretization by using a integral equation

with Green’s function kernels. Each has its own error, below which algebraic error

need not be reduced. We show in Figure 5.8 the convergence of spatial discretization

error for the FEM and BEM approaches. We use the same reference problem as in

Table 5.1, which has an analytical solution. The discretization error is measured by

taking the relative L2 norm of the di↵erence between the analytical solution and the

individual numerical solutions. We see that the FEM is second order and BEM is

first order. The five di↵erent values of �x correspond to h = {2�4, 2�5, 2�6, 2�7, 2�8},

107

10 -3 10 -2 10 -1

" x

10 -6

10 -5

10 -4

10 -3

10 -2

Di
sc

re
tiz

at
io

n
Er

ro
r

O(" x)

O(" x 2)

FEM
BEM

Figure 5.8: Convergence of spatial discretization error for the FEM and BEM. The
relative L2 norm of the di↵erence between the analytical solution is plotted against
the grid spacing �x.

which were used in the previous experiments. For the current range of grid spacing,

the discrepancies between the FEM and BEM truncation error is in the range of 10�3

to 10�4.

The best preconditioners for Krylov subspace methods move the smallest eigen-

values of the coe�cient matrix away from the origin. Convergence bounds for Krylov

subspace methods are based on the condition number of the preconditioned system,

which, for symmetric positive definite systems, as here, is the ratio of the maximum

to the minimum eigenvalue. Our linear system is scaled such that the largest eigen-

value of the discrete Laplacian is bounded by four, while the smallest is proportional

to the inverse mesh spacing squared. The sub-figures in Figure 5.9 show the eigen-

values clustering for the FMM-preconditioned coe�cient matrix with di↵erent FMM

precisions for the same reference problem as in Figure 5.7. Notice that as the FMM

accuracy increases, the eigenvalues of the FMM-preconditioned matrix become better

clustered and more bounded away from zero.

108

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Real

-1

0

1
Im
ag

(a) �(A)

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Real

-0.2

0

0.2

Im
ag

(b) �(M�1A), ✏ = 10�2

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Real

-2

0

2

Im
ag

#10 -4

(c) �(M�1A), ✏ = 10�4

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

Real

-2

0

2

Im
ag

#10 -6

(d) �(M�1A), ✏ = 10�6

Figure 5.9: Eigenvalues of the coe�cient matrix A and the FMM-preconditioned
matrix M�1A with di↵erent FMM precisions ✏ = 10�2, 10�4, and 10�6, h = 2�5.

109

5.5 Performance Analysis

In this section we evaluate the performance of the FMM-based preconditioner by com-

paring its time-to-solution to an algebraic multigrid code BoomerAMG. We have im-

plemented our FMM-preconditioner in PETSc [130] ,[131] via PetIGA [132]. PetIGA

is a software layer that sits on top of PETSc that facilitates NURBS-based Galerkin

finite element analysis. For our present analysis, we simply use PetIGA to reproduce

the same finite element discretization as the tests shown in Section 5.4, but in a high

performance computing environment. All codes that were used for the current study

are publicly available. A branch of PetIGA that includes the FMM preconditioner is

hosted on bitbucket.

5.5.1 The Poisson equation

For the following Poisson performance evaluation, we select the first problem in Sec-

tion 5.4.1 with �r2u = 1 and homogeneous Dirichlet boundary conditions.

All calculations in this section were performed on the TACC Stampede sys-

tem without using the coprocessors (machine description is provided in Appendix

A). We used the Intel compiler (version 13.1.0.146) and configured PETSc with

“COPTFLAGS=-O3 FOPTFLAGS=-O3 –with-clanguage=cxx

–download-fblaslapack –download-hypre –download-metis

–download-parmetis –download-superlu dist –with-debugging=0”.

5.5.1.1 Serial results

We first evaluate the serial performance of our method using the same 2-D Poisson

problem used in Section 5.4.1. We confirmed that the iteration counts shown in

Table 5.1 did not change for the PETSc version of our code. Then, we measured

https://bitbucket.org/rioyokota/petiga-fmm

110

10 3 10 4 10 5 10 6 10 7 10 8

N

10 -3

10 -1

10 1

10 3

tim
e

[s
]

O(N)

PCSetUp(FMM)
PCApply(FMM)
PCSetUp(AMG)
PCApply(AMG)

Figure 5.10: Time-to-solution for di↵erent problem sizes of the FMM and AMG
preconditioners on a single core of a Xeon E5-2680.

the time-to-solution for di↵erent problem sizes. Since the domain size is [�1, 1], the

grid spacing of h = {2�4, 2�5, 2�6, 2�7, 2�8} in Section 5.4 correspond to a grid size of

N = {322, 642, 1282, 2562, 5122}. In the PETSc version, the time-to-solution improves

significantly so we tested for larger problem sizes of N = {642, 1282, 2562, 5122, 10242,

20482, 40962}.

The time-to-solution is plotted against the problem size N in Figure 5.10. Since

we are using PETSc, we can change the preconditioner to AMG in the command

line by passing the option “–pc type hypre” during runtime. Therefore, the time-to-

solution of BoomerAMG is shown as a reference in the same figure. For BoomerAMG

we compared di↵erent relaxation, coarsening, and interpolation methods and found

that

“-pc hypre boomeramg relax type all backward-SOR/Jacobi

-pc hypre boomeramg coarsen type modifiedRuge-Stueben

-pc hypre bommeramg interp type classical” gives the best performance.

111

Both FMM and AMG runs are serial, where we used a single MPI process and a

single thread. The majority of the time goes into the setup of the preconditioner “PC-

SetUp” and the actual preconditioning “PCApply,” so only these events are shown in

the legend. The “PCSetUp” is called only once for the entire run, while “PCApply”

is called every iteration. For the present runs, both FMM and AMG required six it-

erations for the relative residual to drop six digits, so all runs are calling “PCApply”

six times. The order of expansion for the FMM is set to p = 6, which gives about six

significant digits of accuracy. With this accuracy for the FMM, we are still able to

converge in six iterations.

By taking a closer look at Figure 5.10, one can see that both the FMM and AMG

show O(N) asymptotic behavior. The FMM seems to have a slower preconditioning

time, but a much faster setup time compared to AMG. The FMM also has a constant

overhead which becomes evident when N is small. In summary, the time-to-solution

of the FMM is approximately an order of magnitude larger than that of AMG for the

serial runs. This is consistent with our intuition that FMM is not the preconditioner

of choice for solving small problems on a single core. We will show in the following

section that the FMM becomes competitive when scalability comes into the picture.

5.5.1.2 Parallel results

Using the same Poisson problem, we now compare the performance of FMM and

AMG for parallel runs on Stampede. We also compare with a sparse direct solver

MUMPS by invoking at runtime “-ksp type preonly -pc type lu

-pc factor mat solver package mumps”.

The strong scaling of FMM, AMG, and MUMPS are shown in Figure 5.11. We use

the largest grid size in the previous runs N = 40962. Stampede has 16 cores per node

so all runs first parallelize among these cores and then among the nodes after the 16

cores are filled. The FMM strong scales quite well up to 1024 cores, while the parallel

112

10 0 10 1 10 2 10 3

Number of cores

10 -1

10 0

10 1

10 2

10 3

10 4

tim
e

[s
]

MUMPS
FMM
AMG

Figure 5.11: Strong scaling of the 2-D FMM and AMG preconditioners.

e�ciency of AMG starts to decrease after 128 cores. The sparse direct solver has a

much larger time-to-solution even on a single core, and is much less scalable than the

other two hierarchical preconditioners. It is worth mentioning that the setup cost of

the direct solver is dominant and so if several linear systems are solved with the same

coe�cient matrix then this cost is amortized. For this particular Poisson problem

on this particular machine using this particular FMM code we see an advantage over

BoomerAMG past 512 cores.

5.5.1.3 Extension to 3-D

The results above are all two-dimensional. A natural question that arises is whether

the extension to 3-D is straightforward, and whether FMM will still be competitive as

a preconditioner or not. Our results showed that a dominant part of the calculation

time for the FMM preconditioner is the “PCApply” stage, which is the dual tree

traversal for calculation of M2L and P2P kernels. For 3-D kernels, the M2L operation

is much more complicated so the calculation time of the FMM will increase, even for

113

10 5 10 6 10 7

N

10 -2

10 -1

10 0

10 1

10 2

tim
e

[s
]

2-D FMM
3-D FMM

Figure 5.12: Calculation time of 2-D and 3-D FMM for the same problem size.

the same number of unknowns N .

Figure 5.12 shows the calculation time of our 2-D FMM and 3-D FMM, both

for the Laplace kernel with four significant digits of accuracy on a single core of a

Xeon E5-2680, 2.7 GHz CPU. The problem size N varies from 105 to 107. We see

that the 3-D FMM is about an order of magnitude slower than the 2-D FMM for the

same problem size. Nevertheless, Figure 5.13 shows that the 3-D FMM preconditioner

strong scales quite well up to 1024 cores forN = 2563 when compared to BoomerAMG

with these configurations “-pc hypre boomeramg coarsen type hmis

-pc hypre boomeramg interp type ext+i -pc hypre boomeramg p max 4

-pc hypre boomeramg agg nl 1”, and to GMG with “-da grid x 5 -da grid y 5

-pc mg levels 5”. These runs were performed on Shaheen II (machine description is

provided in Appendix A).

114

10 0 10 1 10 2 10 3

Number of cores

10 -1

10 0

10 1

10 2

10 3

tim
e

[s
]

GMG
FMM
AMG

Figure 5.13: Strong scaling of the 3-D Poisson FMM and AMG preconditioners.

5.5.2 The Helmholtz equation

Figure 5.14 shows the calculation time of the 3-D Laplace and 3-D Helmholtz FMM.

For the same problem size, the 3-D Helmholtz kernel is about an order of magnitude

slower than the 3-D Poisson because the Helmholtz operations are more costly to

compute as higher order of expansion is needed to get meaningful results for the

Helmholtz problem. Higher order of expansion is necessary at the coarsest scale in

the tree to resolve the oscillatory part of the Helmholtz kernel. Ideally, higher order

of expansion should be used only at the coarsest levels of the octree. This feature

is not supported in our implementation, however. Nevertheless, our model problems

in Section 5.4.4 show that the FMM-based preconditioner requires less number of

iterations to converge to the predefined tolerance when compared to the GMG, AMG,

and IC preconditioners which may lead to a lower time-to-solution.

115

10 3 10 4 10 5 10 6

N

10 -3

10 -2

10 -1

10 0

10 1

10 2

tim
e

[s
]

3-D Laplace
3-D Helmholtz

Figure 5.14: Calculation time of 3-D Laplace and 3-D Helmholtz FMM for the same
problem size.

5.6 Conclusions

The Fast Multipole Method, originally developed as a free-standing solver, can be

e↵ectively combined with Krylov iteration as a scalable and highly performant pre-

conditioner for traditional low-order finite discretizations of elliptic boundary value

problems. In model problems it performs similarly to algebraic multigrid in conver-

gence rate, while excelling in scalings where AMG becomes memory bandwidth-bound

locally and/or synchronization-bound globally. No preconditioner considered in iso-

lation can address the fundamental architectural challenges of Krylov methods for

sparse linear systems, which are being simultaneously adapted to less synchroniza-

tion tolerant computational environments through pipelining, but it is important to

address the bottlenecks of preconditioning this most popular class of solvers by mak-

ing a wide variety of tunable preconditioners available and better integrating them

into the overall solver. Fast multipole-based preconditioners are demonstrably ready

116

to play an important role in the migration of sparse iterative solvers to the exascale.

117

Chapter 6

FMM as a Matrix-Free Hierarchically Low Rank Approxima-

tion

Many of the original FMM researchers have now moved on to develop algebraic vari-

ants of FMM, such as H-matrix [12], H2-matrix [134], hierarchically semi-separable

(HSS) [27], hierarchically block-separable (HBS) [135], and hierarchically o↵-diagonal

low-rank (HODLR) [136] matrices. The di↵erences between these methods are con-

cisely summarized by Ambikasaran & Darve [137]. These algebraic generalizations of

the FMM can perform addition, multiplication, and even factorization of dense ma-

trices with near linear complexity. This transition from analytic to algebraic did not

happen suddenly, and semi-analytic variants were developed along the way [138, 139].

Optimization techniques for the FMM such as compressed translation operators and

their precomputation, also fall somewhere between the analytic and algebraic ex-

tremes.

The spectrum that spans purely analytic and purely algebraic forms of these hi-

erarchically low rank approximation methods, represents the trade-o↵ between com-

putation (FLOPs) and memory (Bytes). The purely analytic FMM is a matrix-free

H2-matrix-vector product, and due to its matrix-free nature it has very high arith-

metic intensity (Flop/Byte) [140]. On the other end we have the purely algebraic

methods, which precompute and store the entire hierarchical matrix. This results

This chapter includes results from the paper, “Fast Multipole Method as a Matrix-Free Hierar-
chical Low-Rank Approximation” by R. Yokota, H. Ibeid, and D. Keyes [133].

118

in more storage and more data movement, both vertically and horizontally in the

memory hierarchy. When the cost of data movement increases faster than arithmetic

operations on future architectures, the methods that compute more to store/move

less will become advantageous. Therefore, it is important to consider the whole spec-

trum of hierarchically low rank approximation methods, and choose the appropriate

method for a given pair of application and architecture.

There have been few attempts to quantitatively investigate the trade-o↵ between

the analytic and algebraic hierarchically low rank approximation methods. Previ-

ously, the applicability of the analytic variants were limited to problems with Green’s

functions, and could only be used for matrix-vector products but not to solve the

matrix. With the advent of the kernel-independent FMM (KIFMM) [138] and in-

verse FMM (IFMM) [137], these restrictions no longer apply to the analytic variants.

Furthermore, the common argument for using the algebraic variants because they

can operate directly on the matrix without the need to pass geometric information is

not very convincing. Major libraries like PETSc o↵er interfaces to insert one’s own

matrix free preconditioner as a function, and passing geometric information is some-

thing that users are willing to do if the result is increased performance. Therefore,

there is no strong reason from the user perspective to be monolithically inclined to

use the algebraic variants. It is rather a matter of choosing the method with the right

balance between its analytic (FLOPs) and algebraic (Bytes) features.

In this chapter, we categorize the recent advances in the field of HLRA from the

perspective of compute-memory trade-o↵ in a comparison between FMM and HSS

for the Laplace kernel for some simple yet representative test cases.

119

6.1 Hierarchically Low Rank Approximation: Analytic or

Algebraic?

In this section we review the full spectrum of hierarchically low rank approximations

starting from the analytic side and proceeding to the algebraic side. The spectrum is

depicted in Figure 6.1, where various techniques lie between the analytic and algebraic

extremes. One can choose the appropriate method for a given architecture to achieve

the best performance.

6.1.1 Analytic low-rank approximation

On the analytic end of the spectrum, we have classical methods such as the Treecode [42],

FMM [141, 11], and panel clustering methods [142]. These methods have extremely

high arithmetic intensity (Flop/Byte) due to their matrix-free nature, and are compute-

bound on most modern architectures. These are not brute force methods that do

unnecessary FLOPs, but are (near) linear complexity methods that are only doing

useful FLOPs, but they are still able to remain compute-bound. This is very di↵er-

ent from achieving high FLOPs counts on dense matrix-matrix multiplication or LU

decomposition that have O(N3) complexity. The methods we describe in this section

can approximate the same dense linear algebra calculation in O(N) or O(N logN)

time.

Algebraic Geometric / Analytic

Compute [Flops]Memory [Bytes]

Sampling
Randomization

Precomputation
Use of symmetry

Kernel independent
Black-box

Compressed operators

Diagonalization

Figure 6.1: The compute-memory trade-o↵ between the analytic and algebraic hi-
erarchically low rank approximation methods. Various techniques lie between the
analytic and algebraic extremes.

120

As an example of the absolute performance of the analytic variants, we refer

to the Treecode implementation — “Bonsai,” which scales to the full size of Titan

using 18,600 GPUs achieving 24.77 PFLOPs [143]. Bonsai’s performance comes not

only from its matrix-free nature, but also from domain specific optimizations for

hardcoded quadrupoles and an assumption that all charges are positive. Therefore,

this kind of performance cannot be transferred to other applications that require

higher accuracy. However, viewing these methods as a preconditioner instead of a

direct solver significantly reduces the accuracy requirements [99, 28].

6.1.2 Semi-analytical FMM

The methods described in the previous section all require the existence of an analytical

form of the multipole/local translation operator, which is kernel dependent. There

are a class of methods that remove this restriction by using equivalent charges instead

of multipole expansions [144, 145, 146]. A well known implementation of this method

is the kernel independent FMM (KIFMM) code [138]. There are also variants that

use Chebychev polynomials [37], and a representative implementation of this is the

Black-box FMM [139]. As the name of these codes suggest, these variants of the FMM

have reduced requirements for the information that has to be provided by the user.

The translation operators are kernel independent, which frees the user from the most

di�cult task of having to provide an analytical form of the translation operators.

It is important to note that these methods are not entirely kernel independent or

black-box because the user still needs to provide the kernel dependent analytic form

of the original equation they wish to calculate. Using the vocabulary of the algebraic

variants, one could say that these analytical expressions for the hierarchical matrices

are kernel independent only for the o↵-diagonal blocks, and for the diagonal blocks

the analytical form is kernel dependent.

121

Table 6.1: Categorization of algebraic low-rank approximation methods.

Method Hierarchical Weak admissibility Nested basis

H-matrix [12] yes maybe no
H2-matrix [134] yes maybe yes
HODLR [136] yes yes no
HSS [27]/HBS [135] yes yes yes
BLR [147] no yes no

6.1.3 Algebraic low-rank approximation

There are many variants of algebraic low-rank approximation methods. They can

be categorized based on whether they are hierarchical, whether they use weak ad-

missibility, or if the basis is nested, as shown in Table 6.1. For the definition of

admissibility see [33]. Starting from the top, H-matrices [12, 148] are hierarchi-

cal, usually use standard or strong admissibility, and no nested basis. The analytic

counterpart of the H-matrix is the Treecode. The H2-matrices [134, 149] are also

hierarchical and use standard or strong admissibility, but unlike H-matrices use a

nested basis. This brings the complexity down from O(N logN) to O(N). The an-

alytic counterpart of the H2-matrix is the FMM. The next three entries in Table

6.1 do not have analytic counterparts because analytic low-rank approximations do

not converge under weak admissibility conditions. Hierarchical o↵-diagonal low-rank

(HODLR) matrices [136, 28], are basically H-matrices with weak admissibility con-

ditions. Similarly, hierarchically semi-separable (HSS) [27, 150], and hierarchically

block-separable (HBS) [135] matrices are H2-matrices with weak admissibility con-

ditions. The block low-rank (BLR) matrices [147] are a non-hierarchical version of

the HODLR, with just the bottom level. A summary of implementations and their

characteristics are presented in [151].

For methods that do not have weak admissibility, it is common to use geometrical

information to calculate the standard/strong admissibility condition. This depen-

122

dence on the geometry of the algebraic variants is not ideal. There have been various

proposals for algebraic clustering methods [152, 153, 39]. This problem requires even

more advanced solutions for high dimension problems [154]. Stronger admissibility is

also problem for parallelization since it results in more communication. There have

been studies on how to partition hierarchical matrices on distributed memory [155].

There are also methods to reduce the amount of memory consumption during the

construction of HSS matrices [156].

The categorization in Table 6.1 is for the hierarchical matrix structure, and any

low-rank approximation method can be used with each of them during the compres-

sion phase. The singular value decomposition is the most näıve and expensive way

to calculate a low-rank approximation. QR or LU decompositions can be used to

find the numerical rank by using appropriate pivoting. Rank-revealing QR [157] has

been proposed along with e�cient pivoting strategies [158, 159, 31]. Rank-revealing

LU [160] also requires e�cient pivoting strategies [161, 162, 163]. Rank-revealing LU

is typically faster than rank-revealing QR [30].

6.2 Experimental Results

There have been very few comparisons between the analytic and algebraic hierarchi-

cally low rank approximation methods. From a high performance computing perspec-

tive, the practical performance of highly optimized implementations of these various

methods is of great interest. There have been many e↵orts to develop new methods

in this area, which has resulted in a large amount of similar methods with di↵erent

names without a clear overall picture of their relative performance on modern HPC

architectures. The trend in architecture where arithmetic operations are becoming

cheap compared to data movement, is something that must be considered carefully

when predicting which method will perform better on computers of the future.

We acknowledge that the comparisons we present here are far from complete,

123

103 104 105 106 107

N

10-4

10-3

10-2

10-1

100

101

102

103

tim
e

[s
]

O(N) HSS(Laplace3D)
HSS(Laplace2D)
FMM(Laplace3D)
FMM(Laplace2D)

Figure 6.2: Elapsed time for the matrix-vector multiplication using FMM and HSS
for di↵erent problem sizes.

and much more comparisons between all the di↵erent methods are needed in order

to achieve our long term objective. The limitation actually comes from the lack of

highly optimized implementations of these methods that are openly available to us

at the moment.

6.2.1 Matrix-vector multiplication

In this section we compare exaFMM – a highly optimized implementation of FMM,

with STRUMPACK – a highly optimized implementation of HSS. We select the 2-D

and 3-D Laplace equation on uniform lattices as test cases. For HSS we directly

construct the compressed matrix by calling the Green’s function in the randomized

low-rank approximation routine. We perform the matrix-vector multiplication using

the FMM and HSS, and measure the time for the compression/precalculation and

application of the matrix-vector multiplication. We also measure the peak memory

consumption of both methods.

The elapsed time for the FMM and HSS for di↵erent problem sizes is shown in

124

1024 2048 4096 8192 16384 32768 65536
N

0

20

40

60

80

100

%
 o

f t
ot

al

Sample
Compress
Mat-Vec

Figure 6.3: Percentage of the computation time of HSS for di↵erent problem sizes.

Figure 6.2. In order to isolate the e↵ect of the thread scalability of the two methods,

these runs are performed on a single core of a 12-core Ivy Bridge (E5-2695 v2). For

the 2-D Laplace equation, the FMM shows some overhead for small N , but is about

three orders of magnitude faster than HSS for larger problems. For the 3-D Laplace

equation, the FMM is about 2 orders of magnitude faster than HSS for smaller N ,

but HSS exhibits non-optimal behavior for large N because the rank keeps growing.

The large di↵erence in the computational time is actually coming from the heavy

computation in the sampling phase and compression phase of the HSS. In Figure

6.3, we show the percentage of the computation time of HSS for di↵erent problem

sizes N . “Sample” is the sampling time, “Compress” is the compression time, and

“Mat-Vec” is the matrix-vector multiplication time. We can see that the sampling is

taking longer and longer as the problem size increases. This is because the rank k

increases with the problem size N , and both sampling and compression time increase

with the k and N .

The peak memory usage of FMM and HSS is shown in Figure 6.4 for the 3-D

125

103 104 105 106

N

10-1

100

101

102

103

104

105

M
em

or
y

us
ag

e
[M

B]

O(N)

HSS
FMM

Figure 6.4: Peak memory usage of FMM and HSS for the 3-D Laplace equation.

Laplace equation. We see that the FMM has strictly O(N) storage requirements,

but since the rank in the HSS grows for 3-D kernels it does not show the ideal

O(N logN) behavior. The disadvantage of HSS is two-fold. First of all, its algebraic

nature requires it to store the compressed matrix, where as the FMM is analytic

and therefore matrix-free. Secondly, the weak admissibility causes the rank to grow

for 3-D problems, and with that the memory consumption grows at a suboptimal

complexity.

6.3 Conclusions

We have shown the contrast between the analytical and algebraic hierarchically

low rank approximations, by reviewing the contributions over the years and plac-

ing them along the analytical-algebraic spectrum. The relation between Treecode,

FMM, KIFMM, black-box FMM, H-matrix, H2-matrix, HODLR, HSS, HBS, and

BLR were explained from the perspective of compute-memory trade-o↵.

Our comparison benchmarks between FMM and HSS are still preliminary tests for

126

a very simple case. However, they clearly demonstrate the magnitude of the di↵erence

that lies between the various hierarchically low rank approximation methods.

127

Chapter 7

Summary and Future Work

7.1 Summary

The main contributions and results of this thesis can be summarized as follows.

• We discuss the challenges for FMM on current parallel computers and future

exascale architectures, with a focus on inter-node communication. We also

develop a performance model that considers the communication patterns of the

FMM for spatially uniform distributions and observe a good match between

our model and the actual communication time on four HPC systems, when

latency, bandwidth, network topology, and multi-core penalties are all taken

into account.

• We discuss the performance and scaling of FMMs for molecular dynamics sim-

ulations of uniformly distributed particles on the K computer. To measure

the performance of the K computer, we performed all-atom classical molecular

dynamics simulations of two systems: target proteins in a solvent, and target

proteins in an environment of molecular crowders that mimic the conditions

of a living cell. Using the full system, we achieved 4.4 PFLOPS during a 520

million-atom simulation with cuto↵ of 28 Å.

• We demonstrate that, beyond its traditional use as a solver in problems for

which explicit free-space kernel representations are available, the FMM has ap-

128

plicability as a preconditioner in finite domain elliptic boundary value problems,

by equipping it with boundary integral capability for satisfying conditions at

finite boundaries and by wrapping it in a Krylov method for extensibility to

more general operators.

• We provide a review of the recent advancements in the field of HLRA from both

analytical and algebraic perspectives, and present a comparative benchmark of

highly optimized implementations of contrasting methods for some simple yet

representative test cases.

• We describe all our tests in reproducible detail with freely available codes and

outline directions for further extensibility.

7.2 Future Research Work

The work presented in this thesis can be extended in the following directions.

7.2.1 Nonuniform distributions

In Chapter 3, we limited our FMM analysis and performance modeling to the uniform

distribution which is applicable to our molecular dynamic simulations presented in

Chapter 4. However, for many other practical applications, the distribution of points

results in an adaptive tree. Modeling nonuniform distributions in general is a hard

problem. However, recent work by Yokota et al. [164] showed that the tightest upper

bound of our model still holds for the nonuniform case with adaptive tree structures.

Same complexity also holds for algebraic variants of FMM, such as H-matrices and

HSS, wherever an upper bound exists on the number of blocks in a block row in the

low-rank representation.

129

7.2.2 Future vision of the macromolecular crowding e↵ect

Large-scale and all-atom simulations are essential for a deep understanding of the

macromolecular crowding e↵ect. In Chapter 4, we obtained a prevision of the macro-

molecular crowding e↵ect from all-atom simulations in a large-scale system containing

about 1.35 million atoms. However, the simulation lengths were insu�cient for equi-

librium of the systems. Longer time simulations can provide clear information on the

conformation and dynamics of all macromolecules in a crowded environment. Inno-

vations in the field of high performance computing would lead to an understanding

of life phenomena such as immune responses and intracellular signaling, which are

topics that attract a lot of medical attention.

Our MD simulation exhibits 0.2µm of spatial scale, while a typical biological cell

has a size of at least 1µm. Exascale supercomputing will enable cellular scale all-atom

simulations, and our simulation is the first step towards molecular simulations of a

whole cell.

7.2.3 Practical applications of the FMM preconditioner

The current trend in computer architecture favors algorithms with data locality and

asynchronicity. Improving the data locality and asynchronicity of Krylov iterations

is an interesting topic all on its own [165], but in Chapter 5 we focus on the pre-

conditioner. The three important keywords in our approach are hierarchical, approx-

imate, and matrix-free. The hierarchy provides a processor scale-independent O(N)

arithmetic complexity and an O(logP) communication complexity, where N is the

number of unknowns and P is the number of processes. The approximation decreases

the asymptotic constant of O(N) and O(logP) by trading o↵ the accuracy. These

features are shared by methods like multigrid and H-matrices. The third feature

matrix-free will further decrease the asymptotic constant of the communication, but

130

will increase the asymptotic constant of the computation. Such approach will make

more and more sense as the computation becomes cheaper compared to data move-

ment on future architectures. The combination of these three features can be achieved

by using the FMM as a preconditioner.

In Chapter 5, we showed that the fast multipole method can be successfully

coupled to the boundary element method to give an e↵ective preconditioner for the

Poisson, Stokes, and Helmholtz problems. Additional algorithmic development, ad-

ditional testing of implementations on emerging architectures, and exploiting precon-

ditioning on more practical applications are necessary to more fully define the niche

in which FMM is the preconditioner of choice.

An interesting application for future work is the solution of the 3-D Helmholtz

acoustic problem with perfectly matched layer (PML) boundary conditions. This is

a prerequisite for acoustic full-waveform inversion of marine and land seismic data.

Another application is to use the FMM-based preconditioner for pressure corrections

and other Laplace inversions that arise in multiphysics problems. In such problems,

the pressure is determined at every node at every time step for 10, 000�100, 000 times

per run. This accounts for 50%�80% of the CPU time, depending on the application.

Another possibility is to extend the FMM preconditioner to other Green’s functions,

like those of frequency-domain Maxwell’s equations that are used to describe electro-

magnetic and optical phenomena.

7.2.4 Benchmarking HLRA based methods

The topic of investigating the trade-o↵ between analytic and algebraic hierarchical

low-rank approximation methods is broad. In Chapter 6, we limited our investi-

gation to the compute-memory trade-o↵ in a comparison between highly optimized

implementations of contrasting methods for some simple yet representative test cases.

Our comparisons are far from complete, and more thorough comparisons between

131

all the di↵erent methods are needed in order to be able to choose the appropriate

method for a given pair of application and architecture. The limitation comes from the

lack of highly optimized implementations of these methods that are openly available

to us at the moment.

132

REFERENCES

[1] TOP500.org, TOP500 Supercomputer Site, 2016. [Online]. Available: www.

top500.org

[2] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast

Iterative Solvers: With applications in incompressible fluid dynamics. Oxford:

Oxford University Press, 2005.

[3] R. M. Martin, Electronic Structure: Basic Theory and Practical Methods. Cam-

bridge, UK: Cambridge University Press, 2004.

[4] W. Hundsdorfer and J. G. Verwer, Numerical Solution of Time-Dependent

Advection-Di↵usion-Reaction Equations. Germany: Springer-Verlag, 2003.

[5] A. L. Laird and M. B. Giles, “Preconditioned iterative solution of the 2d

Helmholtz equation,” Oxford University Computing Laboratory, Tech. Rep.

NA-02/12, 2002.

[6] A. Arnold and M. Ehrhardt, “Discrete transparent boundary conditions

for wide angle parabolic equations in underwater acoustics,” Journal of

Computational Physics, vol. 145, no. 2, pp. 611 – 638, 1998. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0021999198960430

[7] G. J. Fix and S. P. Marin, “Variational methods for underwater acoustic

problems,” Journal of Computational Physics, vol. 28, no. 2, pp. 253 – 270,

1978. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

0021999178900372

www.top500.org
www.top500.org
http://www.sciencedirect.com/science/article/pii/S0021999198960430
http://www.sciencedirect.com/science/article/pii/0021999178900372
http://www.sciencedirect.com/science/article/pii/0021999178900372

133

[8] R.-E. Plessix and W. Mulder, “Frequency-domain finite-di↵erence amplitude-

preserving migration,” Geophysical Journal International, vol. 157, no. 3, pp.

975–987, 2004.

[9] H. Urbach and R. Merkx, “Finite element simulation of electromagnetic plane

wave di↵raction at gratings for arbitrary angles of incidence,” in Mathematical

and Numerical Aspects of Wave Propagation Phenomena, Proceedings of SIAM

First Conference on Mathematical and Numerical Aspects of Wave Propagation,

1991, pp. 89–99.

[10] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid. London: Academic

Press, 2001.

[11] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” Jour-

nal of Computational Physics, vol. 73, no. 2, pp. 325–348, 1987.

[12] W. Hackbusch, “A sparse matrix arithmetic based on H-matrices, Part I: In-

troduction to H-matrices,” Computing, vol. 62, pp. 89–108, 1999.

[13] K. Czechowski, C. McClanahan, C. Battaglino, K. Iyer, P.-K. Yeung, and

R. Vuduc, “On the comunication complexity of 3d FFTs and its implications

for exascale,” in Proceedings of the 26th ACM International Conference on Su-

percomputing, 2012, pp. 205–214.

[14] J. Jung, C. Kobayashi, T. Imamura, and Y. Sugita, “Parallel implementation

of 3d FFT with volumetric decomposition schemes for e�cient molecular

dynamics simulations,” Computer Physics Communications, vol. 200, pp. 57

– 65, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0010465515004063

[15] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,

A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros, “A massively

parallel adaptive fast multipole method on heterogeneous architectures,” Com-

munications of the ACM, vol. 55, no. 5, pp. 101–109, 2012.

[16] G. H. Golub and C. F. van Loan, Matrix Computations. Baltimore: The John

Hopkins University Press, 1996.

http://www.sciencedirect.com/science/article/pii/S0010465515004063
http://www.sciencedirect.com/science/article/pii/S0010465515004063

134

[17] G. H. Golub and R. S. Varga, “Chebyshev semi iterative methods, successive

overrelaxation iterative methods and second order Richardson iterative meth-

ods. Part I.” Numerische Mathematik, vol. 3, pp. 147–156, 1961.

[18] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear

systems,” Journal of Research of the National Bureau of Standards, vol. 49, pp.

409–436, 1952.

[19] C. C. Paige and M. A. Saunders, “Solution of sparse indefinite systems of linear

equations,” SIAM Journal on Numerical Analysis, vol. 12, pp. 617–629, 1975.

[20] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algo-

rithm for solving nonsymmetric linear systems,” SIAM Journal on Scientific

and Statistical Computing, vol. 7, pp. 856–869, 1986.

[21] W. Hackbusch, B. Khoromskij, and S. Sauter, “On H2-Matrices,” in

Lectures on Applied Mathematics, H.-J. Bungartz, R. Hoppe, and C. Zenger,

Eds. Springer Berlin Heidelberg, 2000, pp. 9–29. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-59709-1 2

[22] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and W. Gropp,

“Modeling the performance of an algebraic multigrid cycle on HPC platforms,”

in ICS ’11 Proceedings of the International Conference on Supercomputing,

2011, pp. 172–181.

[23] M. F. Adams, J. Brown, M. Knepley, and R. Samtaney, “A multigrid technique

for data locality,” SIAM Journal on Scientific Computing, 2016.

[24] A. Brandt, “Multi-level adaptive techniques (MLAT) for partial di↵erential

equations: Ideas and software,” in Mathematical Software, J. R. Rice, Ed. Aca-

demic Press, 1977, vol. III, pp. 277–318.

[25] A. H. Baker, R. D. Falgout, T. Gamblin, T. V. Kolev, M. Schulz, and U. M.

Yang, “Scaling algebraic multigrid solvers: On the road to exascale,” in Com-

petence in High Performance Computing, C. Bischof, H.-G. Hegering, W. E.

Nagel, and G. Wittum, Eds. Springer, 2012, pp. 215–226.

http://dx.doi.org/10.1007/978-3-642-59709-1_2

135

[26] P. S. Vassilevski and U. M. Yang, “Reducing communication in algebraic

multigrid using additive variants,” Numerical Linear Algebra with Applications,

vol. 21, pp. 275–296, 2014.

[27] S. Chandrasekaran, M. Gu, and T. Pals, “A fast ULV decomposition solver for

hierarchically semiseparable representations,” SIAM Journal on Matrix Analy-

sis and Applications, vol. 28, no. 3, pp. 603–622, 2006.

[28] A. Aminfar, S. Ambikasaran, and E. Darve, “A fast block low-rank

dense solver with applications to finite-element matrices,” Journal of

Computational Physics, vol. 304, pp. 170 – 188, 2016. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0021999115006750

[29] K. L. Ho and L. Greengard, “A fast direct solver for structured linear systems

by recursive skeletonization,” SIAM Journal on Scientific Computing, vol. 34,

no. 5, pp. A2507–A2532, 2012.

[30] C. T. Pan, “On the existence and computation of rank-revealing LU factoriza-

tions,” Linear Algebra and its Applications, vol. 316, pp. 199–222, 2000.

[31] M. Gu and S. C. Eisenstat, “E�cient algorithms for computing a strong rank-

revealing QR factorization,” SIAM Journal on Scientific Computing, vol. 17,

no. 4, pp. 848–869, 1996.

[32] W. Y. Kong, J. Bremer, and V. Rokhlin, “An adaptive fast direct solver for

boundary integral equations in two dimensions,” Applied and Computational

Harmonic Analysis, vol. 31, pp. 346–369, 2011.

[33] L. Grasedyck andW. Hackbusch, “Construction and arithmetics of H-matrices,”

Computing, vol. 70, pp. 295–334, 2003.

[34] E. Liberty, F. Woolfe, P. G. Martinsson, V. Rokhlin, and M. Tygert, “Random-

ized algorithms for the low-rank approximation of matrices,” PNAS, vol. 104,

no. 51, pp. 20 167–20 172, 2007.

http://www.sciencedirect.com/science/article/pii/S0021999115006750

136

[35] S. Rjasanow, “Adaptive cross approximation of dense matrices,” in Interna-

tional Association for Boundary Element Methods, UT Austin, TX, USA, May

28-30 2002.

[36] S. Börm, “Hybrid cross approximation of integral operators,” Numerische Math-

ematik, vol. 101, pp. 221–249, 2005.

[37] A. Dutt, M. Gu, and V. Rokhlin, “Fast algorithms for polynomial interpolation

integration and di↵erentiation,” SIAM Journal on Numerical Analysis, vol. 33,

no. 5, pp. 1689–1711, 1996.

[38] L. Greengard, D. Guey�er, P. G. Martinsson, and V. Rokhlin, “Fast direct

solvers for integral equations in complex three dimensional domains,” Acta Nu-

merica, vol. 18, pp. 243–275, 2009.

[39] L. Grasedyck, W. Hackbusch, and R. Kriemann, “Performance of H-LU precon-

ditioning for sparse matrices,” Computational Methods in Applied Mathematics,

vol. 8, no. 4, pp. 336–349, 2008.

[40] A. Gholami, D. Malhotra, H. Sundar, and G. Biros, “FFT, FMM, or multigrid?

a comparative study of state-of-the-art Poisson solvers for uniform and nonuni-

form grids in the unit cube,” SIAM Journal on Scientific Computing, vol. 38,

no. 3, pp. C280–C306, 2016.

[41] W. T. Rankin, “E�cient parallel implementations of multipole based N-body

algorithm,” Ph.D. dissertation, Duke University, 1999.

[42] J. Barnes and P. Hut, “O(N logN) force-calculation algorithm,” Nature, vol.

324, pp. 446–449, 1986.

[43] L. Greengard and R. V., “On the e�cient implementation of the fast multipole

algorithm,” Yale University, Research Report RR-602, 1988.

[44] N. L. Gorn and D. V. Berkov, “Adaptation and performance of the fast multi-

pole method for dipolar systems,” Journal of Magnetism and Magnetic Mate-

rials, vol. 272-276, pp. 698–700, 2004.

137

[45] J. Carrier, L. Greengard, and V. Rokhlin, “A fast adaptive multipole algorithm

for particle simulations,” SIAM Journal on Scientific and Statistical Computing,

vol. 9, no. 4, pp. 669–686, 1988.

[46] M. S. Warren and J. K. Salmon, “A portable parallel particle program,” Com-

puter Physics Communications, vol. 87, pp. 266–290, 1995.

[47] S.-H. Teng, “Provably good partitioning and load balancing algorithms for

parallel adaptive N-body simulation,” SIAM Journal on Scientific Computing,

vol. 19, no. 2, pp. 635–656, 1998.

[48] W. Dehnen, “A hierarchical O(N) force calculation algorithm,” Journal of Com-

putational Physics, vol. 179, no. 1, pp. 27–42, 2002.

[49] N. A. Gumerov and R. Duraiswami, “Fast multipole methods on graphics pro-

cessors,” Journal of Computational Physics, vol. 227, pp. 8290–8313, 2008.

[50] M. S. Warren and J. K. Salmon, “Astrophysical N-body simulation using hierar-

chical tree data structures,” in Proceedings of the 1992 ACM/IEEE Conference

on Supercomputing, 1992, pp. 570–576.

[51] R. Yokota, “An FMM based on dual tree traversal for many-core architectures,”

Journal of Algorithms and Computational Technology, vol. 7, no. 3, pp. 301–324,

2013.

[52] H. Ibeid, R. Yokota, and D. Keyes, “A performance model for the communi-

cation in fast multipole methods on high-performance computing platforms,”

International Journal of High Performance Computing Applications, vol. 30,

no. 4, pp. 423–437, 2016.

[53] M. J. Clement and M. J. Quinn, “Symbolic performance prediction of scal-

able parallel programs,” in Proceedings of the International Parallel Processing

Symposium, April 1995, pp. 635–639.

[54] C. L. Mendes and D. A. Reed, “Integrated compilation and scalability analysis

for parallel systems,” International Conference on Parallel Architectures and

Compilation Techniques (PACT’98), pp. 385–392, October 1998.

138

[55] C. L. Mendes, “Performance scalability prediction on multicomputers,” Ph.D.

dissertation, University of Illinois, Urbana-Champaign, May 1997.

[56] A. Snavely, N. Wolter, and L. Carrington, “Modeling application performance

by convolving machine signatures with application profiles,” in Proceeding of the

IEEE Workshop on Workload Characterization, December 2001, pp. 149–156.

[57] L. DeRose and D. A. Reed, “SvPablo: A multi-language, architecture-

independent performance analysis system,” in Proceeding of the International

Conference on Parallel Processing, Augest 1999, pp. 311–318.

[58] W. D. Gropp, D. Kaushik, D. Keyes, and B. Smith, “Toward realistic perfor-

mance bounds for implicit CFD codes,” in Proceedings of Parallel CFD’99, May

1999, pp. 23–26.

[59] I. T. Foster and P. H. Worley, “Parallel algorithms for the spectral transform

method,” SIAM Journal on Scientific and Statistical Computing, vol. 18, no. 3,

pp. 806–837, 1997.

[60] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, A. Wasserman, and M. Gittings,

“Predictive performance and scalability modeling of a large-scale application,”

in Proceedings of the 2001 ACM/IEEE conference on Supercomputing, 2001,

pp. 1–12.

[61] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang, “Algebraic

multigrid on a dragonfly network: First experience on a Cray XC30,” in Pro-

ceeding of the 5th International Workshop on Performance Modeling, Bench-

marking and Simulation of High Performance Computer Systems (PMBS14),

November 2014.

[62] P. H. Worley, “Performance evaluation of the IBM SP and the Compaq Al-

phaServer SC,” in Proceeding of the ACM International Conference of Super-

computing 2000, 2000, pp. 235–244.

[63] J. M. Perez-Jorda and W. Yang, “On the scaling of multipole methods for

particle-paticle interactions,” Chemical Physics Letters, vol. 282, pp. 71–78,

1998.

139

[64] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kale, and T. R. Quinn, “Scaling

hierarchical N-body simulations on GPU clusters,” in SC ’10 Proceedings of the

2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, 2010, pp. 1–11.

[65] A. Chandramowlishwaran, S. Williams, L. Oliker, I. Lashuk, G. Biros, and

R. Vuduc, “Optimizing and tuning the fast multipole method for state-of-the-art

multicore architectures,” in Proceedings of the International Parallel Distributed

Processing Symposium (IPDPS), 2010, pp. 1–12.

[66] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,

A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros, “A massively

parallel adaptive fast multipole method on heterogeneous architectures,” in

Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis, 2009, pp. 1–12.

[67] I. Foster, Designing and Building Parallel Programs. Addison-Wesley, 1995.

[68] P. Luszczek and J. Dongarra, “Introduction to the HPC Challenge Benchmark

Suite,” University of Tennessee, Knoxville, Technical Report ICL-UT-05-01,

March 2005.

[69] M. Lee, N. Malaya, and R. D. Moser, “Petascale direct numerical simulation of

turbulent channel flow on up to 768k cores,” in Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis, Denver,

CO, USA, Novermber 16-22 2013.

[70] Y. Ohno, R. Yokota, H. Koyama, G. Morimoto, A. Hasegawa, G. Masumoto,

N. Okimoto, Y. Hirano, H. Ibeid, T. Narumi, and M. Taiji, “Petascale molec-

ular dynamics simulation using the fast multipole method on K computer,”

Computer Physics Communications, vol. 185, pp. 2575–2585, 2014.

[71] G. Rivas, F. Ferrone, and J. Herzfeld, “Life in a crowded world,”

EMBO reports, vol. 5, no. 1, pp. 23–27, 2004. [Online]. Available:

http://embor.embopress.org/content/5/1/23

http://embor.embopress.org/content/5/1/23

140

[72] N. A. Chebotareva, B. I. Kurganov, and N. B. Livanova, “Biochemical e↵ects

of molecular crowding,” Biochemistry (Moscow), vol. 69, no. 11, pp. 1239–1251,

2004. [Online]. Available: http://dx.doi.org/10.1007/s10541-005-0070-y

[73] J. F. Watson and V. P. B. Jr., “Biologic activity of digoxin-specific antisera,”

The Journal of Clinical Investigation, vol. 51, no. 3, pp. 638–648, 3 1972.

[Online]. Available: http://www.jci.org/articles/view/106853

[74] N. A. Chebotareva, I. E. Andreeva, V. F. Makeeva, N. B. Livanova, and B. I.

Kurganov, “E↵ect of molecular crowding on self-association of phosphorylase

kinase and its interaction with phosphorylase b and glycogen,” Journal of Molec-

ular Recognition, vol. 17, no. 5, pp. 426–432, 2004.

[75] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An n log(n)

method for Ewald sums in large systems,” The Journal of Chemical Physics,

vol. 98, no. 12, 1993.

[76] A. P. Minton, “Implications of macromolecular crowding for protein assembly,”

Current Opinion in Structural Biology, vol. 10, no. 1, pp. 34 – 39,

2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0959440X99000457

[77] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J.

Berendsen, “GROMACS: fast, flexible, and free,” Journal of Computational

Chemistry, vol. 26, no. 16, pp. 1701–1718, 2005.

[78] J.-P. Ryckaert, G. Ciccotti, and H. J. Berendsen, “Numerical integration

of the cartesian equations of motion of a system with constraints:

molecular dynamics of n-alkanes,” Journal of Computational Physics,

vol. 23, no. 3, pp. 327 – 341, 1977. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/0021999177900985

[79] H. C. Andersen, “Rattle: A velocity version of the shake algorithm for

molecular dynamics calculations,” Journal of Computational Physics, vol. 52,

no. 1, pp. 24 – 34, 1983. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/0021999183900141

http://dx.doi.org/10.1007/s10541-005-0070-y
http://www.jci.org/articles/view/106853
http://www.sciencedirect.com/science/article/pii/S0959440X99000457
http://www.sciencedirect.com/science/article/pii/S0959440X99000457
http://www.sciencedirect.com/science/article/pii/0021999177900985
http://www.sciencedirect.com/science/article/pii/0021999177900985
http://www.sciencedirect.com/science/article/pii/0021999183900141
http://www.sciencedirect.com/science/article/pii/0021999183900141

141

[80] S. Miyamoto and P. A. Kollman, “Settle: An analytical version of

the shake and rattle algorithm for rigid water models,” Journal of

Computational Chemistry, vol. 13, no. 8, pp. 952–962, 1992. [Online].

Available: http://dx.doi.org/10.1002/jcc.540130805

[81] Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E. Shaw, “Gaussian

split Ewald: A fast Ewald mesh method for molecular simulation,” The Journal

of Chemical Physics, vol. 122, no. 5, p. 054101, 2005.

[82] P. H. Hünenberger and J. A. McCammon, “Ewald artifacts in computer sim-

ulations of ionic solvation and ion–ion interaction: a continuum electrostatics

study,” The Journal of Chemical Physics, vol. 110, no. 4, pp. 1856–1872, 1999.

[83] P. E. Smith and B. M. Pettitt, “Ewald artifacts in liquid state molecular dy-

namics simulations,” The Journal of Chemical Physics, vol. 105, no. 10, 1996.

[84] F. Figueirido, G. S. Del Buono, and R. M. Levy, “On finite-size e↵ects in

computer simulations using the Ewald potential,” The Journal of Chemical

Physics, vol. 103, no. 14, 1995.

[85] X. Wu and B. R. Brooks, “Isotropic periodic sum: A method for the calculation

of long-range interactions,” The Journal of Chemical Physics, vol. 122, no. 4,

p. 044107, 2005.

[86] D. Wolf, P. Keblinski, S. Phillpot, and J. Eggebrecht, “Exact method for the

simulation of coulombic systems by spherically truncated, pairwise r�1 sum-

mation,” The Journal of Chemical Physics, vol. 110, no. 17, pp. 8254–8282,

1999.

[87] I. Fukuda, Y. Yonezawa, and H. Nakamura, “Molecular dynamics scheme for

precise estimation of electrostatic interaction via zero-dipole summation prin-

ciple,” The Journal of Chemical Physics, vol. 134, no. 16, p. 164107, 2011.

[88] D. F. Richards, J. N. Glosli, B. Chan, M. Dorr, E. W. Draeger, J.-L. Fattebert,

W. D. Krauss, T. Spelce, F. H. Streitz, M. P. Surh, and J. A. Gunnels, “Beyond

homogeneous decomposition: scaling long-range forces on massively parallel

http://dx.doi.org/10.1002/jcc.540130805

142

systems,” in Proceedings of the Conference on High Performance Computing

Networking, Storage and Analysis. IEEE, 2009, pp. 1–12.

[89] C. G. Lambert, T. A. Darden, and J. A. B. Jr., “A multipole-

based algorithm for e�cient calculation of forces and potentials in

macroscopic periodic assemblies of particles,” Journal of Computational

Physics, vol. 126, no. 2, pp. 274 – 285, 1996. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0021999196901370

[90] G. M. Amdahl, “Validity of the single processor approach to achieving large

scale computing capabilities,” in Proceedings of the April 18-20, 1967, Spring

Joint Computer Conference. ACM, 1967, pp. 483–485.

[91] D. Sakakibara, A. Sasaki, T. Ikeya, J. Hamatsu, T. Hanashima, M. Mishima,

M. Yoshimasu, N. Hayashi, T. Mikawa, M. Wälchli, B. Smith, M. Shirakawa,

P. Güntert, and Y. Ito, “Protein structure determination in living cells by in-cell

nmr spectroscopy,” Nature, vol. 458, no. 7234, pp. 102–105, 2009.

[92] P. E. Stein, A. G. Leslie, J. T. Finch, and R. W. Carrell, “Crystal structure of

uncleaved ovalbumin at 1· 95 å resolution,” Journal of Molecular Biology, vol.

221, no. 3, pp. 941–959, 1991.

[93] D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz,

A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, “The Amber biomolec-

ular simulation programs,” Journal of Computational Chemistry, vol. 26, no. 16,

pp. 1668–1688, 2005.

[94] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling,

“Comparison of multiple amber force fields and development of improved pro-

tein backbone parameters,” Proteins: Structure, Function, and Bioinformatics,

vol. 65, no. 3, pp. 712–725, 2006.

[95] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.

Klein, “Comparison of simple potential functions for simulating liquid water,”

The Journal of Chemical Physics, vol. 79, no. 2, 1983.

http://www.sciencedirect.com/science/article/pii/S0021999196901370

143

[96] S. Nos, “A unified formulation of the constant temperature molecular dynamics

methods,” The Journal of Chemical Physics, vol. 81, no. 1, 1984.

[97] W. G. Hoover, “Canonical dynamics: equilibrium phase-space distributions,”

Physical review A, vol. 31, no. 3, p. 1695, 1985.

[98] G. J. Martyna, M. E. Tuckerman, D. J. Tobias, and M. L. Klein, “Explicit re-

versible integrators for extended systems dynamics,” Molecular Physics, vol. 87,

no. 5, pp. 1117–1157, 1996.

[99] H. Ibeid, R. Yokota, J. Pestana, and D. E. Keyes, “Fast multipole precondi-

tioners for sparse matrices arising from elliptic equations,” arXiv:1308.3339v2,

2014.

[100] H. Ibeid, R. Yokota, and D. Keyes, “A matrix-free preconditioner for

the Helmholtz equation based on the fast multipole method,” 2016,

http://arxiv.org/abs/1608.02461.

[101] S. R. Sambavaram, V. Sarin, A. Sameh, and A. Grama, “Multipole-based pre-

conditioners for large sparse linear systems,” Parallel Computing, vol. 29, pp.

1261–1273, 2003.

[102] M. Benzi, G. H. Golub, and J. Liesen, “Numerical solution of saddle point

problems,” Acta Numerica, vol. 14, pp. 1–137, 2005.

[103] A. Logg, K.-A. Mardal, and G. Wells, Automated solution of di↵erential equa-

tions by the finite element method: The FEniCS book. Springer Science &

Business Media, 2012, vol. 84.

[104] H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant

of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci.

Stat. Comput., vol. 13, no. 2, pp. 631–644, Mar. 1992. [Online]. Available:

http://dx.doi.org/10.1137/0913035

[105] P. Sonneveld, “CGS, a fast Lanczos-type solver for nonsymmetric linear

systems,” SIAM J. Sci. Stat. Comput., vol. 10, no. 1, pp. 36–52, Jan. 1989.

[Online]. Available: http://dx.doi.org/10.1137/0910004

http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0910004

144

[106] C. G. Broyden and M. T. Vespucci, Krylov Solvers for Linear Algebraic Systems:

Krylov Solvers. Elsevier, 2004, vol. 11.

[107] A. Greenbaum, Iterative Methods for Solving Linear Systems. USA: SIAM,

1997.

[108] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia: SIAM,

2003.

[109] M. Benzi, “Preconditioning techniques for large linear systems: A survey,”

Journal of Computational Physics, vol. 182, no. 2, pp. 418–477, Nov. 2002.

[Online]. Available: http://dx.doi.org/10.1006/jcph.2002.7176

[110] J. Cahouet and J.-P. Chabard, “Some fast 3D finite element solvers for the

generalized Stokes problem,” International Journal for Numerical Methods in

Fluids, vol. 8, pp. 869–895, 1988.

[111] A. J. Wathen, “Realistic eigenvalue bounds for the Galerkin mass matrix,” IMA

Journal of Numerical Analysis, vol. 7, pp. 449–457, 1987.

[112] A. Wathen and T. Rees, “Chebyshev semi-iteration in preconditioning for prob-

lems including the mass matrix,” Electronic Transactions on Numerical Anal-

ysis, vol. 34, pp. 125–135, 2009.

[113] O. G. Ernst and M. J. Gander, “Why it is di�cult to solve Helmholtz

problems with classical iterative methods,” in Numerical Analysis of

Multiscale Problems, ser. Lecture Notes in Computational Science and

Engineering, I. G. Graham, T. Y. Hou, O. Lakkis, and R. Scheichl, Eds.

Springer Berlin Heidelberg, 2012, vol. 83, pp. 325–363. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-22061-6 10

[114] A. Brandt and I. Livshits, “Wave-ray multigrid method for standing

wave equations.” ETNA. Electronic Transactions on Numerical Analysis

[electronic only], vol. 6, pp. 162–181, 1997. [Online]. Available: http:

//eudml.org/doc/119506

http://dx.doi.org/10.1006/jcph.2002.7176
http://dx.doi.org/10.1007/978-3-642-22061-6_10
http://eudml.org/doc/119506
http://eudml.org/doc/119506

145

[115] S. A. Sauter and Ch. Schwab, Boundary Element Methods. Heidelberg:

Springer-Verlag, 2011.

[116] S. J. Aarseth, “Dynamical evolution of clusters of galaxies, I,” Monthly Notices

of the Royal Astronomical Society, vol. 126, p. 233, 1963.

[117] I. Brunton, “Solving variable coe�cient partial di↵erential equations using the

boundary element method,” Ph.D. dissertation, University of Auckland, 1996.

[118] I. G. Graham, P. O. Lechner, and R. Scheichl, “Domain decomposition for

multiscale PDEs,” Numerische Mathematik, vol. 106, pp. 589–626, 2007.

[119] A. H.-D. Cheng, “Darcy’s flow with variable permeability: A boundary integral

solution,” Water Resources Research, vol. 20, pp. 980–984, 1984.

[120] D. L. Clements, “A boundary integral equation method for the numerical so-

lution of a second order elliptic equation with variable coe�cients,” Journal of

the Australian Mathematical Society, vol. 22 (Series B), pp. 218–228, 1980.

[121] U. Langer, G. Of, O. Steinbach, and W. Zulehner, “Inexact fast multipole

boundary element tearing and interconnecting methods,” in Domain Decompo-

sition Methods in Science and Engineering XVI. Springer Berlin Heidelberg,

2007.

[122] L. J. Wardle and J. M. Crotty, “Two dimensional boundary integral equa-

tion analysis for non-homogeneous mining applications,” in Recent Advances in

Boundary Element Methods. Pentch Press, 1978.

[123] P. K. Banerjee, “Non-linear problems of potential flow,” in Developments in

Boundary Element Methods—I. Applied Science, 1979.

[124] P. Concus and G. H. Golub, “Use of fast direct methods for the e�cient numer-

ical solution of nonseparable elliptic equations,” SIAM Journal on Numerical

Analysis, vol. 10, pp. 1103–1120, 1973.

146

[125] H. Elman, A. Ramage, and D. Silvester, “Algorithm 866: IFISS, a Matlab

toolbox for modelling incompressible flow,” ACM Transactions on Mathematical

Software, vol. 33, pp. 2–14, 2007.

[126] D. Silvester, H. Elman, and A. Ramage, “Incompressible Flow and Iterative

Solver Software (IFISS) version 3.2,” May 2012,

http://www.manchester.ac.uk/ifiss.

[127] J. A. Meijerink and H. A. van der Vorst, “An iterative solution method for linear

systems of which the coe�cient matrix is a symmetric M -matrix,” Mathematics

of Computation, vol. 31, pp. 148–162, 1977.

[128] Y. Erlangga, C. Vuik, and C. Oosterlee, “On a class of preconditioners for solv-

ing the discrete Helmholtz equation,” in Proceedings of The Sixth International

Conference on Mathematical and Numerical Aspects of Wave Propagation Held

at Jyväskylä, Finland, 30 June - 4 July, 2003, G. Cohen, E. Heikkola, P. Joly,

and P. Neittaanmäki, Eds. Berlin: Springer, 2003, pp. 788–793.

[129] W. Hui and Q. Qinghua, “Some problems with the method of fundamental

solution using radial basis functions,” Acta Mechanica Solida Sinica, vol. 20,

no. 1, pp. 21 – 29, 2007. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0894916609601269

[130] S. Balay, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik,

M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc users

manual,” Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision 3.4,

2013.

[131] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Kne-

pley, L. C. McInnes, B. F. Smith, and H. Zhang, “PETSc Web page,” 2013,

http://www.mcs.anl.gov/petsc.

[132] V. C. N. Collier, L. Dalcin, “PetIGA: High-performance isogeometric analysis,”

arxiv, no. 1305.4452, 2013, http://arxiv.org/abs/1305.4452.

http://www.sciencedirect.com/science/article/pii/S0894916609601269
http://www.sciencedirect.com/science/article/pii/S0894916609601269

147

[133] R. Yokota, H. Ibeid, and D. Keyes, “Fast multipole method as a matrix-free

hierarchical low-rank approximation,” CoRR, vol. abs/1602.02244, 2016.

[Online]. Available: http://arxiv.org/abs/1602.02244

[134] W. Hackbusch, B. Khoromskij, and S. A. Sauter, “On H2-matrices,” in Lectures

on Applied Mathematics, H. Bungartz, R. Hoppe, and C. Zenger, Eds. Springer-

Verlag, 2000.

[135] P. G. Martinsson and V. Rokhlin, “A fast direct solver for boundary integral

equations in two dimensions,” Journal of Computational Physics, vol. 205, pp.

1–23, 2005.

[136] S. Ambikasaran and E. Darve, “An O(NlogN) fast direct solver for partial hi-

erarchically semi-separable matrices,” Journal of Scientific Computing, vol. ac-

cepted, 2013.

[137] ——, “The inverse fast multipole method,” arXiv:1407.1572v1, 2014.

[138] L. Ying, G. Biros, and D. Zorin, “A kernel-independent adaptive fast multipole

algorithm in two and three dimensions,” Journal of Computational Physics, vol.

196, no. 2, pp. 591–626, 2004.

[139] W. Fong and E. Darve, “The black-box fast multipole method,” Journal of

Computational Physics, vol. 228, pp. 8712–8725, 2009.

[140] L. A. Barba and R. Yokota, “How will the fast multipole method fare in the

exascale era?” SIAM News, vol. 46, no. 6, pp. 1–3, 2013.

[141] A. W. Appel, “An e�cient program for many-body simulation,” SIAM Journal

on Scientific and Statistical Computing, vol. 6, no. 1, pp. 85–103, 1985.

[142] W. Hackbusch and Z. P. Nowak, “On the fast matrix multiplication in

the boundary element method by panel clustering,” Numerische Mathematik,

vol. 54, pp. 463–491, 1989.

[143] J. Bédorf, E. Gaburov, M. S. Fujii, K. Nitadori, T. Ishiyama, and S. Porte-

gies Zwart, “24.77 Pflops on a gravitational tree-code to simulate the Milky

http://arxiv.org/abs/1602.02244

148

Way galaxy with 18600 GPUs,” in Proceedings of the 2014 ACM/IEEE In-

ternational Conference for High Performance Computing, Networking, Storage

and Analysis, 2014, pp. 1–12.

[144] C. R. Anderson, “An implementation of the fast multipole method without

multipoles,” SIAM Journal on Scientific and Statistical Computing, vol. 13,

no. 4, pp. 923–947, 1992.

[145] C. L. Berman, “Grid-multipole calculations,” SIAM Journal on Scientific Com-

puting, vol. 16, no. 5, pp. 1082–1091, 1995.

[146] J. Makino, “Yet another fast multipole method without multipoles – Pseudopar-

ticle multipole method,” Journal of Computational Physics, vol. 151, no. 2, pp.

910–920, 1999.

[147] P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and C. Weis-

becker, “Improving multifrontal methods by means of block low-rank represen-

tations,” SIAM Journal on Scientific Computing, vol. 37, no. 3, pp. A1451–

A1474, 2015.

[148] M. Bebendorf, Hierarchical Matrices, ser. Lecture Notes in Computational Sci-

ence and Engineering. Springer, 2008, vol. 63.

[149] S. Börm, “Construction of data-sparse H2-matrices by hierarchical compres-

sion,” SIAM Journal on Scientific Computing, vol. 31, no. 3, pp. 1820–1839,

2009.

[150] J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, “Fast algorithms for hierar-

chically semiseparable matrices,” Numerical Linear Algebra with Applications,

vol. 17, pp. 953–976, 2010.

[151] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov, “A distributed-memory

package for dense hierarchically semi-separable matrix computations using

randomization,” ACM Transactions on Mathematical Software, vol. 42, no. 4,

pp. 27:1–27:35, Jun. 2016. [Online]. Available: http://doi.acm.org/10.1145/

2930660

http://doi.acm.org/10.1145/2930660
http://doi.acm.org/10.1145/2930660

149

[152] S. Le Borne, “Multilevel hierarchical matrices,” SIAM Journal on Matrix Anal-

ysis and Applications, vol. 28, no. 3, pp. 871–889, 2006.

[153] S. Oliveira and Y. F., “An algebraic approach for H-matrix preconditioners,”

Computing, vol. 80, pp. 169–188, 2007.

[154] W. B. March, B. Xiao, and G. Biros, “ASKIT: Approximate skeletonization

kernel-independent treecode in high dimensions,” SIAM Journal on Scientific

Computing, vol. 37, no. 2, pp. A1089–A1110, 2015.

[155] M. Izadi, “Hierarchical matrix techniques on massively parallel computers,”

Ph.D. dissertation, Universität Leipzig, 2012.

[156] K. Lessel, M. Hartman, and S. Chandrasekaran, “A fast memory e�cient con-

struction algorithm for hierarchically semi-separable representations,” SIAM

Journal on Matrix Analysis and Applications, vol. 37, no. 1, pp. 338–353, 2016.

[157] T. F. Chan, “Rank revealing QR factorizations,” Linear Algebra and its Appli-

cations, vol. 88/89, pp. 67–82, 1987.

[158] Y. P. Hong and C. T. Pan, “Rank-revealing QR factorizations and the singular

value decomposition,” Mathematics of Computation, vol. 58, no. 197, pp. 213–

232, 1992.

[159] S. Chandrasekaran and I. C. F. Ipsen, “On rank-revealing factorizations,” SIAM

Journal on Matrix Analysis and Applications, vol. 15, no. 2, pp. 592–622, 1994.

[160] T. F. Chan, “On the existence and computation of LU-factorizations with small

pivots,” Mathematics of Computation, vol. 42, no. 166, pp. 535–547, 1984.

[161] T.-M. Hwang, W.-W. Lin, and E. K. Yang, “Rank revealing LU factorizations,”

Linear Algebra and its Applications, vol. 175, pp. 115–141, 1992.

[162] T.-M. Hwang, W.-W. Lin, and D. Pierce, “Improved bound for rank revealing

LU factorizations,” Linear Algebra and its Applications, vol. 261, no. 1, pp.

173–186, 1997.

150

[163] L. Miranian and M. Gu, “Strong rank revealing LU factorizations,” Linear

Algebra and its Applications, vol. 367, pp. 1–16, 2003.

[164] R. Yokota, G. Turkiyyah, and D. Keyes, “Communication complexity of the

fast multipole method and its algebraic variants,” Supercomputing Frontiers

and Innovations, vol. 1, no. 1, pp. 63–84, 2014.

[165] M. Hoemmen, “Communication-avoiding Krylov subspace methods,” Ph.D. dis-

sertation, Berkeley, CA, USA, 2010, aAI3413388.

151

APPENDICES

152

Appendix A

Machines Description

In this thesis, we run our experiments on six principal machines described in this

chapter: Titan, K computer, Mira, Shaheen II, Stampede, Piz Dora, and Shaheen I.

A summary of the key features of each machine is provided in Table A.1.

A.1 Titan

A Cray XK7 system with 18, 688 compute nodes each equipped with an AMD Opteron

6274 CPU and NVIDIA Kepler K20X GPU. The CPU has 16 cores running at 2.2GHz

with 16 kB L1 cache, 2 ⇥ 4 MB L2 cache, and 8 ⇥ 2 MB L3 cache. The GPU has

15 ⇥ 64 cores running at 730MHz with 64 + 48 kB L1 cache and 1.5 MB L2 cache.

Each compute node has 32 GB of RAM with 51.2 memory bandwidth. The nodes

are connected by a 3-D torus with 20 GB/s of injection bandwidth per node. We do

not use any of the GPUs in the current study.

A.2 K computer

A Fujitsu system with 82, 944 compute nodes each equipped with a SPARC64 VIIIfx

CPU, an interconnect chip (ICC), and memory. A special rack houses 96 nodes, disk

drives, and I/O units. The CPU has 8 cores running at 2GHz. Each compute node

has 32 GB of RAM with 51.2 memory bandwidth. The nodes are connected by a

153

TOrus FUsion (Tofu), a 6-D mesh/torus network.

A.3 Mira

An IBM BlueGene/Q system with 48 racks each contains 1024 Power A2 CPUs. The

CPU has 16 + 1 cores running at 1.6GHz with 16 kB private L1 cache and 32 MB

shared L2 cache. Each compute node has 16 GB RAM with 42.6 GB/s memory

bandwidth. The nodes are connected by a 5-D torus network with 20 GB/s injection

bandwidth per node.

A.4 Shaheen II

A Cray XC40 system with 6, 174 compute nodes each equipped with two Intel Haswell

CPUs (Intel®Xeon®E5-2698 v3). The CPU has 16 cores running at 2.3GHz. Each

compute node has 128 GB of RAM running at 2, 300 MHz. The nodes are connected

by a dragonfly network using the Aries interconnect where the routers in each group

are arranged as rows and columns of a rectangle, with all-to-all links across each row

and column but not diagonally.

A.5 Stampede

A Dell Linux Cluster based on 6, 400 Dell PowerEdge server nodes, each outfitted with

two Intel Xeon E5 (Sandy Bridge) processors and an Intel Xeon Phi Coprocessor (MIC

Architecture). The CPU has 8 cores running at 2.7GHz. The majority of the 6, 400

nodes are configured with two Xeon E5-2680 processors and one Intel Xeon Phi SE10P

Coprocessor (on a PCIe card). These compute nodes are configured with 32 GB of

“host” memory with an additional 8 GB of memory on the Xeon Phi coprocessor card.

A smaller number of compute nodes are configured with two Xeon Phi Coprocessors.

The nodes are connected by an Infiniband FDR network.

154

A.6 Piz Dora

A Cray XC40 system with 1, 256 compute nodes each equipped with two Intel Haswell

CPUs (Intel®Xeon®E5-2690 v3). The CPU has 18 cores running at 2.1GHz. Out of

the total, 1, 192 nodes features 64 GB of RAM each, while the remaining 64 compute

nodes have 128 GB of RAM each (fat nodes). The nodes are connected by a dragonfly

network using the Aries interconnect.

A.7 Shaheen I

An IBM BlueGene/P system with 16 racks each contains 1024 PowerPC 450 CPUs.

The CPU has 4 cores running at 850MHz with 32 kB private L1 cache and 8 MB

shared L3 cache. Each compute node has 2 GB RAM with 13.6 GB/s memory

bandwidth. The nodes are connected by 3-D torus network with 5.1 GB/s injection

bandwidth per node.

Table A.1: Machines Description (as of November, 2016[1])

Active Manufacturer Peak PFlop/s Ranking1 Topology Processor
Titan 2012 Cray Inc. 17.59 3 3D Torus Opteron 6274 16C

K computer 2011 Fujitsu 10.51 7 Tofu interconnect SPARC64 VIIIfx 8C
Mira 2012 IBM 8.59 9 5D Torus Power BQC 16C

Shaheen II 2016 Cray Inc. 5.54 15 Aries interconnect Xeon E5-2698v3 16C
Stampede 2012 Dell 5.17 17 Infiniband FDR Xeon E5-2680 8C
Piz Dora 2014 Cray Inc. 1.41 71 Aries interconnect Xeon E5-2695v4 18C

1 TOP500: November, 2016[1]

155

Appendix B

Mathematical Supplements

Let ⌦ be an arbitrary domain that is bounded by a piecewise closed boundary �, and

n be the unit vector that is normal to � pointing outward.

B.1 Divergence Theorem

The Divergence theorem, also known as Gauss’s theorem, states that the domain

integral of the divergence of any di↵erentiable function f inside ⌦ is equal to the flow

rate of f across �

Z

⌦

r · fd⌦ =

Z

�

f · nd�. (B.1)

B.2 Dirac’s Delta Function (�)

By construction, Dirac’s delta function is endowed with the following properties:

1. The Dirac’s delta function vanishes everywhere except at the point x0, where

is becomes infinite

�(x� x0) =

8
>><

>>:

0, x 6= x0,

1, x = x0.

2. The integral of the delta function over the domain ⌦ that contains the singular

156

point x0 is equal unity Z

⌦

�(x� x0)d⌦ = 1. (B.2)

3. The integral of the product of an arbitrary function f(x) and the delta function

over a domain ⌦ that contains the point x0 is equal to value of the function at

the singular point Z

⌦

�(x� x0)f(x)d⌦ = f(x0). (B.3)

B.3 Fundamental Solutions

In this section, we derive the fundamental solutions of the 2-D and 3-D Laplace and

Helmholtz equations. Note that the Green functions G of these equations in the free

space are equivalent to the fundamental solutions.

B.3.1 Laplace Equation

By definition, the Green’s function, denoted by G(x, x
0

), satisfies the singularly forced

Laplace equation

r2G(x, x
0

) = �(x� x
0

). (B.4)

B.3.1.1 Fundamental solution in 2-D

We first look for the function f(x, y) in the whole space R2 that satisfies (B.4). Using

polar coordinates r and ✓ centered around (0, 0), where x = r cos ✓ and y = r sin ✓,

(B.4) can be written as

1

r

@

@r

✓
r
@

@r

◆
+

1

r2
@2

@✓2
= �(r), (B.5)

where (r, ✓) = f(r cos ✓, r sin ✓).

To find the 2-D Laplace fundamental solution we first find the simplest function

157

that satisfies (B.4) in 2-D. We assume that is independent of ✓ which reduces (B.5)

to the ordinary di↵erential equation

d

dr
(r
d

dr
) = 0, r 6= 0. (B.6)

The above equation can be written as

 00 +
1

r
 0 = 0. (B.7)

We integrate (B.7) as follow
 00

 0 =
�1

r
,

(ln | 0|)0 = �1

r
,

ln | | = � ln r + a,

| 0| = e� ln rea,

 0 =
A

r
.

Which yields the general solution

 (r) = Aln(r) + B, (B.8)

for some constants a, A and B.

We can take B = 0 because constants will be di↵erentiated away and shift the

center of the polar coordinates from (0, 0) to (x
0

, y
0

) as follows

f(x, y) = A ln
p
(x� x

0

)2 + (y � y
0

)2. (B.9)

158

To find A, we integrate f(x, y) over a disc of radius ✏ centered at (0, 0)

Z

⌦

r2f(x, y)d⌦ =

Z

⌦

�(x, y)d⌦ = 1. (B.10)

Using the Divergence Theorem (B.1)

Z

�

rf(x, y) · nd� = 1, (B.11)

where � is a circle of circumference 2⇡✏. Combining the previous equations gives

Z

�

rf(x, y) · nd� = 1 =

Z

�

A

✏
d� = 2⇡A. (B.12)

Therefore,

f(x, y) =
1

2⇡
ln(r), (B.13)

where r =
p

(x� x
0

)2 + (y � y
0

)2.

We refer to the function f(x, y) as the fundamental solution of the Laplacian in

R2. It is clear that for any point x
0

2 R2, r2f(x, x
0

) = �(x� x
0

).

B.3.1.2 Fundamental solution in 3-D

Following the analysis in the previous section, we define a function f(x, y, z) that sat-

isfies (B.4) in R3. Using the spherical coordinates r, ✓, and centered around (0, 0, 0),

we define (r, ✓,) = f(r sin cos ✓, r sin sin ✓, r cos), where r =
p

x2 + y2 + z2.

The 3-D Laplacian in polar coordinates can be written as

1

r2
@

@r
(r2

@

@r
) +

1

r2 sin2

@2

@✓2
+

1

r2 sin

@

@
(sin

@

@
) = �(r). (B.14)

Solving for the simplest function that satisfies (B.4) in 3-D given that depends on

159

the coordinate r only reduces (B.14) to the ordinary di↵erential equation

d

dr
(r2

@

@r
) = 0. (B.15)

Which can be rewritten as

 00 +
2

r
 0 = 0. (B.16)

We integrate (B.16) twice as follow

 00

 0 =
�2

r
,

(ln | 0|)0 = �2

r
,

ln | | = �2 ln r + a,

| 0| = e�2 ln rea,

 0 =
b

r2
.

Which yields

 (r) =
A

r
+B, (B.17)

for some constants a, b, A and B.

To find the constants, we set B = 0 because constants will be di↵erentiated away

and integrate f(x, y, z) over a sphere of radius ✏ centered at the origin using (B.1),

which gives Z

�

rf(x, y) · nd� = 1 =

Z

�

A

✏2
d� = �4⇡A. (B.18)

Therefore, the fundamental solution of the R3 Laplacian can be written as

f(x, y, z) =
�1

4⇡r
. (B.19)

160

B.3.2 Helmholtz Equation

The fundamental solution of the Helmholtz equation G(x, x
0

) is defined as

r2G(x, x
0

) + k2G(x, x
0

) = �(x� x
0

). (B.20)

B.3.2.1 Fundamental solution in 2-D

We first look for the function f(x, y) that satisfies (B.20) in the whole space R2. By

using the Laplacian in the polar coordinates (B.5), (B.20) can be written as

1

r

d

dr

✓
r
d

dr

◆
+ k2 = �(r). (B.21)

Equation (B.21) can be rewritten as

1

r

d

dr

✓
r
d

dr

◆
+ k2 = 0. (B.22)

The above equation is known as the Bessel’s di↵erential equation. Equation (B.22)

admits the solution

 (r) = Y
0

(kr) + iJ
0

(kr), (B.23)

where J
0

and Y
0

are the zeroth order Bessel functions of the first and second kinds,

respectively. Equation B.23 is known as the Hankel function of the first kind H1

0

(kr).

The Bessel functions J
0

and Y
0

are given by

J
0

(x) =
1X

m=0

(�1)mx2m

4m(m!)m
, (B.24)

and

Y
0

(x) =
2

⇡
(ln(

x

2
) + �)J

0

(x)� 2

⇡

1X

m=0

(�1)mx2m

4m(m!)2
, (B.25)

161

where � is the Euler constant defined by

� = lim
n!1

(�ln(n) + 1 +
1

2
+

1

3
+ · · ·+ 1

n
). (B.26)

Therefore, the fundamental solution of the 2-D Helmholtz equation can be written as

 (r) = AH1

0

(kr). (B.27)

The constant A is determined by substituting (B.27) into (B.20), and then integrating

(B.20) over a disc of radius ✏ centered at (0, 0), as

Z

�

rf(x, y)d�+

Z

⌦

k2f(x, y)d⌦ = 1. (B.28)

By taking the limit of r ! 0, we obtain A = i/4. Therefore, the fundamental solution

of the 2-D Helmholtz equation can be written as

f(x, y) =
i

4
H1

0

(kr). (B.29)

B.3.2.2 Fundamental solution in 3-D

We define a function f(x, y, z) that satisfies (B.20) in R3. By using the 3-D Laplacian

in the polar coordinates (B.14), (B.20) can be written as

1

r2
d

dr

✓
r2
d

dr

◆
+ k2 = �(r). (B.30)

By multiplying both sides by r, (B.30) can be rewritten as

d2

dr2
(r) + k2(r) = 0. (B.31)

162

Equation B.31 is solved to obtain

 (r) = A
e�ikr

r
. (B.32)

The arbitrary constant A is determined by substituting (B.32) into (B.20), and then

integrating (B.20) within the small circle including the origin, as

Z

⌦

r2f(x, y, z)d⌦ =

Z

�

rf(x, y, z)d�

= 4⇡r2r̂.rf(x, y, z)

= 4⇡Ar2
✓
e�ikr

r2
+ ik

e�ikr

r

◆

Z

⌦

k2f(x, y, z)d⌦ = 4⇡k2A

✓
� 1

ik
re�ikr +

1

k2

(e�ikr � 1)

◆

Z

⌦

�d⌦ = 1.

By taking the limit of r ! 0, we get A = 1/4⇡. Therefore, the fundamental

solution of the 3-D Helmholtz equation can be written as

f(x, y, z) =
1

4⇡r
eikr. (B.33)

163

Appendix C

Boundary Element Method

C.1 Weighted Residual Methods

Let us consider the Poisson equation of the form

r2ũ = f. (C.1)

The exact solution ũ can be discretized by

ũ =
X

i

u
i

�
i

, (C.2)

where u
i

and �
i

are the nodal values and basis functions at node i, respectively.

Similarly, the spatial coordinates x can be expressed by a superposition of shape

functions

x̃ =
X

i

x
i

i

. (C.3)

With this in mind, a broad range of methods can be formulated as weighted residual

methods Z

⌦

(r2u� f)| {z }
R

Wd⌦ = 0, (C.4)

where R and W are the residual and weight, respectively. The integral is over the

domain ⌦, which represents a volume in 3-D and surface in 2-D problems. Depending

164

on what is used for the weighting function W , this can turn into many di↵erent types

of numerical methods as shown in Table C.1.

The weighting function for least squares method could be understood better by

substituting it into (C.4) to obtain

@

@u
i

Z

⌦

R2d⌦ = 0, (C.5)

which now looks like a minimization problem for the squared residual.

C.2 Weak Form

Equation (C.4) can be transformed to yield powerful numerical methods. We will use

two mathematical concepts in the following analysis. The Gauss divergence theorem

(B.1) and integration by parts

Z
f 0(x)g(x) =

Z
(f(x)g(x))0 �

Z
f(x)g0(x). (C.6)

Moving f in (C.4) to the right hand side gives

Z

⌦

(r2u)Wd⌦ =

Z

⌦

fWd⌦. (C.7)

Table C.1: Weighted Residual Methods

W
i

= �(|x� x
i

|) Collocation Method

W
i

=
@R

@u
i

Least Squares Method

W
i

= xi Method of Moments
W

i

= �
i

Galerkin Method
W

i

= G(|x� x
i

|) Green’s Function Solution

165

Then, by separating the divergence operator on the left-hand side we obtain

Z

⌦

r · (ru)Wd⌦ =

Z

⌦

fWd⌦. (C.8)

Integrating by parts, by treating ru as f(x) and W as g(x) in (C.6), changes the

left-hand side of (C.8) to

Z

⌦

r · (ruW)d⌦�
Z

⌦

(ru) ·rWd⌦ =

Z

⌦

fWd⌦. (C.9)

Then, we apply Gauss’s theorem (B.1) to the first term on the left-hand side

Z

�

n · (ruW)d��
Z

⌦

(ru) ·rWd⌦ =

Z

⌦

fWd⌦. (C.10)

Since n ·r = @/@n, we have

Z

�

@u

@n
Wd��

Z

⌦

(ru) ·rWd⌦ =

Z

⌦

fWd⌦. (C.11)

This is the weak form of (C.4). When basis functions are used as the weights W = �

in the weak form, this becomes the finite element method.

C.3 Inverse Form

Applying integration by parts to the second term in (C.11), treating u as f(x) and

rW as g(x) in (C.6), gives

Z

�

@u

@n
Wd��

Z

⌦

r · (urW)d⌦+

Z

⌦

u(r2W)d⌦ =

Z

⌦

fWd⌦. (C.12)

166

Using the divergence theorem on the second term gives

Z

�

@u

@n
Wd��

Z

�

u
@W

@n
d�+

Z

⌦

u(r2W)d⌦ =

Z

⌦

fWd⌦. (C.13)

When the Green’s function is used as weights W = G, this becomes the boundary

element method

Z

�

@u

@n
Gd��

Z

�

u
@G

@n
d�+

Z

⌦

u(r2G)d⌦ =

Z

⌦

fGd⌦. (C.14)

The Green’s function has the property r2G = �, so the third term becomes

Z

⌦

u(r2G)d⌦ =

Z

⌦

u�d⌦. (C.15)

Inside the domain
R
⌦

u�d⌦ = u, and at the boundary
R
�

u�d� = 1/2u. Thus, on the

boundary we have

Z

�

@u

@n
Gd��

Z

�

u

✓
@G

@n
� 1

2
�

◆
d� =

Z

⌦

fGd⌦, (C.16)

and inside the domain we have

u =

Z

�

u
@G

@n
d��

Z

�

@u

@n
Gd�+

Z

⌦

fGd⌦. (C.17)

C.4 BEM Matrices

Solving (C.16) and (C.17) allows one to solve the Poisson equation (C.1) for Dirichlet,

Neumann, and mixed boundary conditions. For Dirichlet boundary conditions, u is

known on the boundary and the second term in (C.16) moves to the right-hand side,

167

and can be written in the following matrix form

N
�

N�z }| {8
>>>><

>>>>:

2

66664

. . .

G(r
ij

)

. . .

3

77775

2

66664

...

@u

j

@n

...

3

77775

| {z }
unknown

=

N�z }| {2

66664

. . .

@G(r

ij

)

@n

� 1

2

�
ij

. . .

3

77775

2

66664

...

u
j

...

3

77775
+

N⌦z }| {2

66664

. . .

G(r
ij

)

. . .

3

77775

2

66664

...

f
j

...

3

77775
,

where N
�

and N
⌦

are the number of boundary nodes and internal nodes, respectively.

The G matrix on the left-hand side and the (@G/@n� �/2) matrix on the right-hand

side are N
�

⇥N
�

matrices, while the G matrix on the right hand side is a N
�

⇥N
⌦

matrix. The vector @u/@n on the left-hand side is the only unknown in this equation,

and can be obtained by solving the linear system. For Neumann boundary conditions,

@u/@n is known and the first term in (C.16) moves to the right-hand side

N
�

N�z }| {8
>>>><

>>>>:

2

66664

. . .

@G(r

ij

)

@n

� 1

2

�
ij

. . .

3

77775

2

66664

...

u
j

...

3

77775

| {z }
unknown

=

N�z }| {2

66664

. . .

G(r
ij

)

. . .

3

77775

2

66664

...

@u

j

@n

...

3

77775
�

N⌦z }| {2

66664

. . .

G(r
ij

)

. . .

3

77775

2

66664

...

f
j

...

3

77775
.

For this case, one solves the linear system for vector u. For mixed boundary condi-

tions, we move the unknown part of vectors u and @u/@n to the left-hand side, and

the known part to the right-hand side. The corresponding matrix entries in G and

(@G/@n� �/2) must also be moved. This results in the following system of equations

N
�

N�
z }| {8
>>>>>>><

>>>>>>>:

2

66666664

. . .

G(rij)
1
2 �ij �

@G(rij)

@n

. . .

3

77777775

2

66666666664

.

.

.
@uj
@n

uj

.

.

.

3

77777777775

| {z }

unknown

=

N�
z }| {2

66666664

. . .

@G(rij)

@n � 1
2 �ij �G(rij)

. . .

3

77777775

2

664

.

.

.

uj
@uj
@n

.

.

.

3

775+

N⌦
z }| {2

66666664

. . .

G(rij)

. . .

3

77777775

2

64

.

.

.

fj

.

.

.

3

75 .

168

Γ Γ1Γ2

Γj

Figure C.1: Discretization of global integral into a sum of piecewise local integrals

The size of the vectors and matrices remain the same as the previous cases, but the

entries are mixed according to the knowns and unknowns. In any case, the values

of u and @u/@n will be known everywhere on the boundary after solving the linear

system. With this information it becomes possible to solve (C.17), which can also be

expressed in the following matrix form

N
⌦

8
>>><

>>>:

2

6664

...

u
i

...

3

7775
=

N�z }| {2

66664

. . .

@G(r

ij

)

@n

. . .

3

77775

2

6664

...

u
j

...

3

7775
�

N�z }| {2

66664

. . .

G(r
ij

)

. . .

3

77775

2

6664

...

@u

j

@n

...

3

7775
+

N⌦z }| {2

66664

. . .

G(r
ij

)

. . .

3

77775

2

6664

...

f
j

...

3

7775
.

On the left-hand side, we have the values u at the internal points in the domain

⌦, which is precisely the solution to the Poisson equation. The first two matrices

on the right hand side have size N
⌦

⇥ N
�

, while the last matrix is a N
⌦

⇥ N
⌦

ma-

trix. A classical N -body problem simply solves for this last term on the right hand

side, and is a special case of this more general framework that can be extended to

Dirichlet/Neumann boundary conditions for arbitrary geometries.

An important aspect when constructing these BEMmatrices is how the continuous

integrals in (C.16) and (C.17) are transformed into the discrete sums to form the linear

systems shown above. This process will be explained in detail in the following section.

169

Γj

φ1
φ2

uj1
uj2

uu

ξx -1 1

h

Figure C.2: Local integral by superposition of basis functions

C.5 Discretization

Discretization of all domain/boundary integrals in (C.16) and (C.17) is done in three

steps:

1. Break the global integral into a sum of piecewise local integrals over each element

as shown in Figure C.1. For example, the integration of the second term on the

right-hand side of (C.17) can be expressed as

Z

�

u
@G

@n
d� =

X

j

Z

�

j

u
@G

@n
d�

j

. (C.18)

The piecewise integration is still performed analytically.

2. Break the local integrals into the sum of contributions from the basis functions

of each node that belongs to the element. Figure C.2 shows an example for the

case of a linear and continuous basis function, where integration of a piecewise

element �
i

can be obtained from

Z

�

j

u
@G

@n
d�

j

=

Z

�

j

u
j1

�
1

(x)
@G

@n
d�

j

+

Z

�

j

u
j2

�
2

(x)
@G

@n
d�

j

=

Z
1

�1

u
j1

�
1

(⇠)
@G

@n
|J

j

|d⇠ +
Z

1

�1

u
j2

�
2

(⇠)
@G

@n
|J

j

|d⇠, (C.19)

where �
1

(⇠) = (1� ⇠)/2, �
2

(⇠) = (1+ ⇠)/2, and J
j

= @x
j

/@⇠ is the Jacobian of

the jth element. For this simple 1-D example |J
j

| = h/2, where h is the length

170

of the element. It can be thought of as a scaling factor for the parameterized

integration. Examples of other basis functions are shown in Table C.2. The

figures on the left show the numerical values of u, which the basis functions

reproduce. The vertical lines represent the boundaries of each element, and the

black dots represent the location of the nodes, while the white dots represent

the value of u at each of these nodes. The first row of the table is for constant

(0th order) elements. Constant elements are always discontinuous at the element

boundaries. The second row is for linear continuous elements, which was shown

in the example in Figure C.2. One can also construct linear discontinuous

elements by using the function in the third row of Table C.2. Finally, the

bottom row depicts a quadratic continuous element, where each element has

three nodes. Continuous elements have nodes at the edges of the element, while

discontinuous elements have all the nodes away from the edges of the element.

To account for these various basis functions, (C.19) can be generalized to

Z

�

j

u
@G

@n
d�

j

= |J
j

|
X

k

u
jk

Z
1

�1

�
k

(⇠)
@G

@n
d⇠, (C.20)

where the index k sums over all nodes in the element. Since |J
j

| is constant

within each element, it can be moved outside of the summation and integration.

Also, u
jk

is not a function of ⇠ so it can be moved outside of the integration.

171

Table C.2: Di↵erent basis functions

Order Continuous Function
f

x
0 no �

1

= 1

f

x
1 yes

�
1

= (1� ⇠)/2

�
2

= (1 + ⇠)/2

f

x
1 no

�
1

= 1/2� ⇠

�
2

= 1/2 + ⇠

f

x
2 yes

�
1

= ⇠(⇠ � 1)/2

�
2

= ⇠(⇠ + 1)/2

�
3

= (1� ⇠)(1 + ⇠)

172

3. Integrate over each basis function using Gaussian quadrature. Equation (C.20)

is not completely discretized since it still requires analytical integration over the

parametrized space ⇠. In special cases where the basis function � is of low order,

and the Green’s function G is simple (such as 2-D Laplace), the integration can

be performed analytically. However, a more general solution to this problem is

provided through numerical integration using Gaussian quadrature

Z
1

�1

�
k

(⇠)
@G

@n
d⇠ =

X

l

�
k

(⇠
l

)
@G

jkl

@n
w

l

, (C.21)

where ⇠
l

and w
l

are the parametrized coordinates and weights of the quadra-

tures, respectively. The Green’s function is a function of the location of the

quadrature points, which depends on j, k, and l, and is therefore noted as G
jkl

.

By combining (C.18), (C.20), and (C.21) we have

Z

�

u
@G

@n
d� =

X

j

|J
j

|
X

k

u
jk

X

l

�
k

(⇠
l

)
@G

jkl

@n
w

l

, (C.22)

where the indices j, k, and l correspond to the elements, nodes, and quadrature

points, respectively.

C.6 Matrix Construction

The discretization shown in Section C.5 takes an element centric approach, where we

first loop over the elements and then loop over the nodes that belong to this element.

From the perspective of discretization, this is natural since the basis functions and

quadratures are defined per element. Conversely, the matrices in Section C.4 take

a node centric approach, where each matrix entry represents the contribution from

each node. This is also quite natural since the data (x, y, z, u) are stored on the

nodes and not the elements, and the matrix operates on this data directly. For

173

1

2

3

(a) Element centric

1 2

3

4
5

6

(b) Node centeric

Figure C.3: Element centric and node centric approaches for BEM discretization

constant basis functions or discontinuous elements (see Table C.2) nodes are not

shared between elements, so being element centric or node centric does not make

a big di↵erence. One can simply loop over the elements and then the nodes that

belong to the element, and this will always be equivalent to looping over all of the

nodes directly. However, for continuous elements, nodes are shared between di↵erent

elements and the relation between looping over elements and looping over nodes

becomes slightly more complicated.

Let us consider the case of 2-D triangular linear elements as shown in Figure C.3.

The element centric approach for (C.22) will loop over the elements j and then over

the three nodes k and then the quadrature points l. In order to retrieve u
jk

, one

must map the kth node in the jth element to the actual index of the node in vector

u. Although such mapping is easy to do, the element centric approach results in

irregular data access patterns, since the shared nodes will be visited multiple times

by di↵erent elements. The fact that the data are stored on the nodes is unchangeable,

and a logical solution to this problem is to bring the compute to the data. This can be

achieved by taking the node centric approach shown in Figure C.3. In this approach,

one first loops over the nodes, then loops over the elements that contain this node

and calculate the contribution from the corresponding basis function. Finally, the

174

innermost loop goes over the quadrature points in a similar fashion to the element

centric case. We may redefine the indices in (C.22) accordingly to obtain

Z

�

u
@G

@n
d� =

X

j

u
j

X

k

|J
jk

|
X

l

�
jk

(⇠
l

)
@G

jkl

@n
w

l

, (C.23)

where the indices j, k, and l correspond to the nodes, elements, and quadrature

points, respectively. In this case, one must map the kth element of the jth node to the

actual index of the element to obtain J
jk

. Furthermore, it is necessary to keep track

of whether the node is the first, second, or third node in that element, in order to

obtain the correct basis function �
jk

. With the node centric approach one can easily

construct the matrix from

Z

�

u
@G

@n
d� = N

�

N�z }| {8
>>>>><

>>>>>:

2

666664

. . .
X

k

|J
jk

|
X

l

�
jk

(⇠
l

)
@G

jkl

@n
w

l

. . .

3

777775

2

66664

...

u
j

...

3

77775
. (C.24)

Note that this matrix is square (N
�

⇥ N
�

) and defines the relation between source

nodes to target nodes. The complication of having elements and quadratures has

been absorbed into the matrix elements themselves. This becomes a classical N -body

problem where the point values at the nodes (x, y, z, u) can be used directly. There

is no need to construct special data types for elements or quadratures to be fed in

to the N -body solver. In the case of hierarchical N -body solvers, one simply needs

to modify the P2P and P2M kernels to take into account the two loops over the

elements and quadratures. The same logic can be applied to all other terms in (C.16)

and (C.17).

175

Appendix D

Papers Accepted, Submitted, and Under Preparation

• M. AbdulJabbar, H. Ibeid, R. Yokota, and D. Keyes. Simultaneously minimiz-

ing and Balancing Communication in Distributed Hierarchical N-body Methods. In

preparation.

•H. Ibeid, R. Yokota, and D. Keyes. A Matrix-free Preconditioner for the Helmholtz

Equation based on the Fast Multipole Method. In preparation.

• H. Ibeid, R. Yokota, J. Pestana, and D. Keyes. Fast Multipole Preconditioners

for Sparse Matrices Arising from Elliptic Equations. Computing and Visualization in

Science, submitted.

• H. Ibeid, R. Yokota, and D. Keyes. A performance model for the communication

in fast multipole methods on high-performance computing platforms. International

Journal of High Performance Computing Applications (IJHPCA), 2016.

• R. Yokota, H. Ibeid, and D. Keyes. Fast Multipole Method as a Matrix-Free Hier-

archical Low-Rank Approximation. In Proc. International Workshop on Eigenvalue

Problems: Algorithms; Software and Applications, in Petascale Computing (EPASA

2015), Lecture Notes in Computer Science, to appear.

• Y. Ohno, R. Yokota, H. Koyama, G. Morimoto, A. Hasegawa, G. Masumoto, N.

Okimoto, Y. Hirano, H. Ibeid, T. Narumi, and M. Taiji. Petascale molecular dy-

namics simulation using the fast multipole method on K computer. Computer Physics

Communications, Vol. 185, No. 10, pp. 2575-2585 (2014).

176

• H. Ibeid, D. Kaushik, D. Keyes, and H. Ltaief. Toward Accelerating the Ma-

trix Inversion Computation of Symmetric Positive-Definite Matrices on Heterogenous

GPU-Based Systems. Student Research Symposium, The annual IEEE International

Conference on High Performance Computing (HiPC), 2011.

	EXAMINATION COMMITTEE PAGE
	Copyright
	Abstract
	List of Figures
	List of Tables
	Introduction
	Objectives and Contributions
	Contents of the Thesis

	Fast Multipole Method
	Basic Components
	Flow of Calculation
	Dual tree traversal

	Multipole Expansions
	FMM Communication Scheme

	A Performance Model for the Communication in FMMs for Spatially Uniform Distributions
	Related Work
	Performance Challenges
	Trends in computer hardware
	Communication

	FMM Communication Phases
	Global M2L
	Global M2M
	Local M2L
	Local P2P

	Modeling Performance
	Baseline model ((,) model)
	Distance penalty ((,,) model)
	Bandwidth penalty on
	Multicore penalty on or

	Model Validation
	Machine description
	Experimental setup
	Model validation

	Conclusions

	Molecular Dynamics Simulation of Uniformly Distributed Particles Using the FMM
	Computational Methods
	Basic MD functions
	Non-bonded short range force
	Non-bonded long-range force
	Periodic fast multipole method

	Performance Benchmarks
	Efficiency of the force calculation kernel
	Sustained performance of the large-scale simulations
	Load balance
	Performance of the FMM
	Accuracy of periodic FMM

	Macromolecular Crowding Simulations with All Atoms
	Simulation methods
	Simulated systems
	MD Simulations

	Simulations of macromolecular crowding

	Conclusions

	FMM-Based Preconditioners for Sparse Iterative Solvers
	Model Problems
	Poisson model problem
	Stokes model problem
	Helmholtz model problem

	Iterative Solvers and Preconditioning
	Krylov subspace methods
	Preconditioning
	The FMM-BEM preconditioner

	Boundary Element Method
	Formulation
	Singular integrals
	Discretization
	Variable coefficient problems

	Numerical Results
	The Poisson equation
	Variable-coefficient Poisson equation
	Stokes problem
	The Helmholtz equation
	Variable-coefficient Helmholtz equation
	Effect of FMM precision on convergence

	Performance Analysis
	The Poisson equation
	Serial results
	Parallel results
	Extension to 3-D

	The Helmholtz equation

	Conclusions

	FMM as a Matrix-Free Hierarchically Low Rank Approximation
	Hierarchically Low Rank Approximation: Analytic or Algebraic?
	Analytic low-rank approximation
	Semi-analytical FMM
	Algebraic low-rank approximation

	Experimental Results
	Matrix-vector multiplication

	Conclusions

	Summary and Future Work
	Summary
	Future Research Work
	Nonuniform distributions
	Future vision of the macromolecular crowding effect
	Practical applications of the FMM preconditioner
	Benchmarking HLRA based methods

	References
	Appendices
	Appendix Machines Description
	Titan
	K computer
	Mira
	Shaheen ii
	Stampede
	Piz Dora
	Shaheen i

	Appendix Mathematical Supplements
	Divergence Theorem
	Dirac's Delta Function ()
	Fundamental Solutions
	Laplace Equation
	Fundamental solution in 2-D
	Fundamental solution in 3-D

	Helmholtz Equation
	Fundamental solution in 2-D
	Fundamental solution in 3-D

	Appendix Boundary Element Method
	Weighted Residual Methods
	Weak Form
	Inverse Form
	BEM Matrices
	Discretization
	Matrix Construction

	Appendix Papers Accepted, Submitted, and Under Preparation

