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ABSTRACT 

Nonlinear Mechanics of MEMS Rectangular Microplates under 

Electrostatic Actuation 

Shahid Saghir  

The first objective of the dissertation is to develop a suitable reduced order model capable 

of investigating the nonlinear mechanical behavior of von-Karman plates under 

electrostatic actuation. The second objective is to investigate the nonlinear static and 

dynamic behavior of rectangular microplates under small and large actuating forces. 

In the first part, we present and compare various approaches to develop reduced order 

models for the nonlinear von-Karman rectangular microplates actuated by nonlinear 

electrostatic forces. The reduced-order models aim to investigate the static and dynamic 

behavior of the plate under small and large actuation forces. A fully clamped microplate 

is considered. Different types of basis functions are used in conjunction with the Galerkin 

method to discretize the governing equations. First we investigate the convergence with 

the number of modes retained in the model. Then for validation purpose, a comparison of 

the static results is made with the results calculated by a nonlinear finite element model. 

The linear eigenvalue problem for the plate under the electrostatic force is solved for a 

wide range of voltages up to pull-in.  

In the second part, we present an investigation of the static and dynamic behavior of a 

fully clamped microplate. We investigate the effect of different non-dimensional design 
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parameters on the static response. The forced-vibration response of the plate is then 

investigated when the plate is excited by a harmonic AC load superimposed to a DC load. 

The dynamic behavior is examined near the primary and secondary (superharmonic and 

subharmonic) resonances. The microplate shows a strong hardening behavior due to the 

cubic nonlinearity of midplane stretching. However, the behavior switches to softening as 

the DC load is increased. Next, near-square plates are studied to understand the effect of 

geometric imperfections of microplates.  

In the final part of the dissertation, we investigate the mechanical behavior of initially 

curved microplates. Microplates often experience an initial curvature imperfection, due to 

the micro fabrication process, which affects significantly their mechanical behavior. In 

this case a clamped-free-clamped-free microplate is considered. We validate the reduced 

order model by comparing the calculated static behavior and the fundamental natural 

frequency with those computed by a finite element model. As case studies, we consider 

two commonly encountered profiles of the initial curvature imperfection and study their 

effects on both the static and dynamic responses of the microplates.   

Next, an initially curved microplate made of silicon nitride is studied. The static 

behaviour of the microplate is investigated when applying a DC voltage. Then, the 

dynamic behaviour of the microplate is examined under the application of a harmonic AC 

voltage, superimposed to a DC voltage. Simulation results calculated by the reduced 

order model are compared with experimental data for model validation purpose, which 

show good agreement.  
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Chapter 1   

Introduction  

1.1. Introduction and Background 

Micro-Electro-Mechanical Systems (MEMS) devices are prevalent in many fields from 

biomedical engineering [1-3] to automotive engineering [4, 5] and aerospace engineering 

to communications systems [6]. They have received a lot of attention during the last two 

decades due to their small size, low power consumption, and low cost due to batch 

fabrication with the existing micro fabrication techniques [7]. 

MEMS devices are usually actuated by electrostatic, piezoelectric, electrothermal or 

electromagnetic methods, with the electrostatic is considered most commonly used 

actuation method [8, 9]. Electrostatic actuation is realized by a parallel plate capacitor; 

where a flexible structure is suspended over a stationary electrode, which makes the other 

side of the parallel plate capacitor. The flexible structure is often an elastic microbeam or 

a microplate, which is made of a conductive material or coated with a conductive 

material to render conductive properties. It deflects towards stationary electrode under the 

application of an external voltage load due to the electrostatic force, which is balanced by 

the elastic resistance of the structure. By increasing the applied voltage, the electrostatic 

force increases and thus the deflection of the suspended structure also increases. But there 

is a limit to the applied voltage beyond which the elastic resistive forces of the structure 
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are unable to balance the external electrostatic load, and the flexible structure becomes 

unstable and collapses on the stationary electrode. This instability is called pull-in 

instability and the limiting voltage is called pull-in voltage [10, 11]. In some cases this 

phenomenon limits the operation of the MEMS devices while in others it is desirable, for 

example in RF switches. 

MEMS devices are commonly made up of electrically actuated flexible microbeams and 

microplates [8, 12-24]. These  are used in various applications, such as micropumps in 

micro fluidics, biomedical and cooling applications [15-17, 25-27] , microphones [19-

21], pressure sensors [28, 29], mass sensors [22, 23] , and resonators [24, 30] to realize 

sensors and microswitches [31, 32]. These underlying structures often undergo curvature 

imperfections during the micro fabrication process due to residual stresses.  

Accurate modeling and simulation of the mechanical behavior of such structures under 

the applied nonlinear electrostatic force is required to predict the response prior to the 

experimental testing and actual use of the device. Accurate models can guide the design 

engineer through the design process; reducing the design time on one hand and on the 

other hand can help to improve the existing devices. Nevertheless modeling of MEMS 

devices is not a trivial task. It poses several challenges, such as inherent nonlinearities 

and microscale instabilities. Nonlinearities include geometric nonlinearities, the nonlinear 

electrostatic force, and squeeze film damping [7]. 

It is common to study the mechanical behavior of MEMS using linear theory [13, 33, 34]; 

which is applicable only for small deflections. Since in MEMS, structures often undergo 

large deflection, linear theory becomes inaccurate. Common modeling approaches 
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include lumped mass models and the Finite Element Method (FEM) [12, 35-37]. Lumped 

mass models give rough estimate of the response only. FEM based software tools are 

accurate but computationally expensive, especially when it comes to study the nonlinear 

dynamic behavior. Differential quadrature method (DQM) have been utilized to solve the 

governing differential equations [32, 38, 39]. On the other hand Reduced Order Models 

(ROM) based on the Galerkin approach have gained popularity during the last decades 

because of their accuracy and low computational cost [11, 40-43]. They have the 

capability to reveal the effect of different design parameters very conveniently. 

1.2. Literature Review 

In this section, we summarize the main contributions to the modeling and simulation of 

mechanical behavior of electrostatically actuated structures, mainly rectangular 

microplates.  Further we also discuss the various modeling and solutions methods. 

1.2.1.  Flat Plates 

Most of the MEMS modeling works can be categorized into two classes. In the first class, 

the underlying structures are assumed to behave linearly, and hence a linear plate or beam 

theory are used to model them [13, 27, 33, 34, 44-46]. In the second class, the geometric 

nonlinearity is accounted for via nonlinear plate theories, such as von-Karman or Mindlin 

theories [12, 40, 47-49]. Recently, the modified couple stress theory has been used to 

model the size dependent behavior of microplates [50, 51]. 
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Among the previous works on microplates, Machauf et al. [13] studied the characteristics 

of an electrostatically actuated micropump. They used the linear plate theory to model the 

mechanical motion of the pump diaphragm. A ROM was used to predict the performance 

of the pump. Chao and co-workers [33] used the linear plate theory to model the fully 

clamped thin plate under electrostatic pressure. They employed a reduced order model to 

develop an analytical expression for the pull in voltage of the flexible thin plate in the 

applications of microphones and switches. Nayfeh and Younis [34] used the linear plate 

theory to model squeeze film damping in microplates. A compressible Reynolds’s 

equation was used to model the squeeze film damping effect. A combination of 

perturbation and FEM was used to solve for the structural mode shapes, the pressure 

distribution, the natural frequencies, and the quality factors. Theoretically calculated 

quality factors were found in good agreement with the experimental data. Bertarelli et al. 

[27] investigated a circular diaphragm micropump under electric actuation using a linear 

plate theory and a FE model. They analyzed the behavior of the micropump under quasi 

static and dynamic electric loading. Ahmad and Pratap [44] investigated the static 

response of a clamped circular plate under electrostatic load using the Galerkin method. 

Porfiri [45] investigated the small vibrations of a parallel array of identical microplates 

deflected under electric loading. Porfiri [45]  showed that the vibrational properties can 

be tuned by properly selecting the DC voltage across the adjacent microplates. Srinivas 

[46] investigated the static and dynamic pull-in of simply supported microplates using a 

closed form solution and compared the results with those of a Galerkin approximation. 

Ng et al. [12] performed dynamic analysis of microplates under electrostatic forces. They 

used the BEM to solve the Laplace equation for the electric potential to calculate the 
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charge density and the corresponding electric force. The first order shear deformation 

theory (FSDT) was used to model the plate motion and FEM was utilized to discretize the 

governing equations. Mukherjee et al. [52] and Telukunta et al. [37] used a fully 

Lagrangian approach to analyze the coupled electro-mechanical field of a MEMS 

microplate. They employed FEM for the analysis of the mechanical deformations in the 

plate and the BEM to obtain the electric field exterior to the plate.  

Vogl and Nayfeh [47] presented an analytical ROM based on the Galerkin method for 

fully clamped electrostatically actuated circular plates. The model accounted for the 

geometric nonlinearity and residual stresses. Faris et al [25] presented a model for a 

micropump based on electrostatically actuated annular plates. The model predicts the 

deflection accurately for any voltage up to the pull-in voltage.  Mohammadi et al. [39] 

investigated the pull-in instability of electrostatically actuated circular microplates. They 

used the strain gradient elasticity theory to account for the size effects. A generalized 

differential quadrature method (GDQ) was used to solve the governing differential 

equations. Zhao et al. [40] presented a ROM model based on the Galerkin method for 

electrostatically actuated rectangular microplates. The model accounts for the 

nonlinearities due to electric force and midplane stretching through the von-Karman 

strains. They investigated the static deflection under the applied DC voltage. Natural 

frequencies and mode shapes were calculated around the deflected position. Zand and 

Ahmadian [35, 53] investigated the pull-in and vibrational behavior of single and 

multilayer microplates under electric actuation and squeeze film damping. They used a 

combination of FEM and finite difference method (FDM) to solve the system of 

equations.  
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Fu and Zhang [54] investigated the active control of the nonlinear static and dynamic 

responses of piezoelectric viscoelastic microplates actuated electrically. They employed 

the nonlinear von-Karman equations of the plate and used the Galerkin method to 

discretize the equations. Karimzade et al. [55] studied the nonlinear pull-in instability of a 

fully clamped microplate with movable base. They solved the governing equation using 

the extended Kantorovich method and the Galerkin approximation technique.  

In recent years, the modified couple stress theory has attracted several researchers for 

nonlinear analysis of micro structures [50, 51, 56-58]. Gholipour et al. [51] investigated 

the in-plane and out-of-plane size dependent nonlinear dynamics of microplates resting 

on elastic foundation. Farokhi and Ghayesh [56] investigated the dynamic behavior of 

geometrically imperfect microplates.  

1.2.2. Initially Curved Plates 

Initially deflected microstructures have been investigated extensively in the literature for 

structures other than microplates, mainly microbeams and micro arches. For instance 

Vangbo [59] investigated theoretically the snap-through of a doubly clamped beam. 

Ouakad and Younis [60] studied the dynamic behavior of  clamped- clamped micro 

arches under electric actuation. Krylov et al. [61] presented the theoretical and 

experimental investigation of the pull-in behavior of an initially curved doubly clamped 

microbeam actuated by a distributed electrostatic force. Ruzziconi et al. [62]  investigated 

the dynamic behavior of an imperfect clamped–clamped microbeam subjected to 

electrostatic and electrodynamic actuation. 
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Numerous works have been reported on the studies of initially imperfect plates at the 

large scale. Celep [63, 64] made the first attempt to investigate the dynamic behavior of 

imperfect plates. They conducted a free vibration analysis of such plates with various 

boundary conditions. They concluded that the static and dynamic behaviors of the plates 

are very much dependent on the size of the initial imperfection. Yamaki et al. [65, 66] 

presented theoretical analyses and experimental results for the nonlinear vibrations of a 

fully clamped rectangular plate with initial deflection and initial edge displacement. The 

dynamic analog of Marguerre equations [65, 66] was used and the steady state solutions 

were captured by applying the Galerkin method and the harmonic balance method. Marin 

et al. [67] investigated the nonlinear response of simply supported initially deformed 

plates under harmonically varying in-plane edge loading. Lin and Chen [68] investigated 

the large amplitude vibrations of simply supported, initially imperfect, transversely 

isotropic, and moderately thick plates. They used the assumed mode shapes as basis 

function with the Galerkin procedure to discretize the governing equations and the 

Runge-Kutta method for solving the discretized system of equations. They concluded that 

the vibration frequencies are very much dependent on the initial imperfection of the plate 

and the large amplitude behavior may change drastically from hardening to softening 

depending on the initial imperfection. Ostiguy et al. [69] studied the effect of geometric 

imperfections on the dynamic response of simply supported plates subjected to periodic 

in-plane forces. Liu and Yeh [70] studied the nonlinear flexural vibrations of an initially 

imperfect, orthotropic, and moderately thick plates with various edge conditions. They 

found that the fundamental natural frequencies are significantly influenced by the initial 

imperfection. Alijani and Amabili [71] investigated the large amplitude vibration of 
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completely free imperfect rectangular plates. They used the nonlinear higher-order shear 

deformation theory for the analysis of the plate response to transverse harmonic 

excitation near the fundamental mode vibration. Chen et al. [72, 73] derived the 

governing equation for initially imperfect isotropic plates under arbitrary initial stresses 

using the modified von-Karman strains. The Galerkin procedure is used for the 

discretization of the nonlinear governing equations and the Runge-Kutta method is used 

for solving the discretized system of nonlinear ordinary differential equations to obtain 

nonlinear and linear vibration frequencies. Huang [74] studied the large amplitude 

vibrations of imperfect plates using the Lindstedt's perturbation technique and the Runge-

Kutta method. 

1.2.3. Solutions Methods 

The solution methods reported in literature include Finite Element Method (FEM) [12, 

35-37], Boundary Element Method (BEM), Differential Quadrature Method (DQM) [32, 

38, 39], and Runge Kutta method. FEM based software tools are computationally 

expensive and may not be suitable for complicated nonlinear dynamic analysis. Reduced 

order models on the other hand, based on the Galerkin method, are computationally 

efficient and are capable to perform parametric studies to reveal the effect of different 

design parameters [11, 40, 47]. Also they can be implemented in sophisticated nonlinear 

dynamics tools, such as shooting [75, 76].  

1.3. Dissertation Objectives 

The objectives of the dissertation are: 
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 To investigate the various approaches to develop a reduced order model based on 

the Galerkin procedure capable to investigate the static and dynamic behavior of 

von-Karman rectangular plates under small and large electrostatic forces. Also we 

will study the accuracy of the reduced order models by comparing the static and 

natural frequency results with the similar results calculated by finite element 

models. 

 To investigate the nonlinear mechanics of von-Karman microplates under 

electrostatic actuation. We will study the dynamic response by exciting the 

microplates near the primary and secondary resonances; super-harmonic and sub-

harmonic by generating the frequency response curves. We will also study the 

dynamic behavior of an imperfect square microplate. Such an imperfection comes 

practically when fabricating a square plate, which then due to unavoidable 

fabrication imperfections, will come as a near square plate. 

 To develop the reduced order model for initially curved microplates. It is common 

for the microplate to undergo initial curvature imperfection due to residual 

stresses caused by the micro fabrication process. Such plates are essentially 

different from perfectly flat plates and cannot be modeled using flat plates’ 

models. 

 To simulate the mechanical behavior of initially curved microplates under 

electrostatic actuation. We will study the effect of various initial curvature 

profiles on the static and dynamic behavior of such plates. 
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 To conduct experiments to measure the static and dynamic responses of an 

initially curved silicon nitride microplate. We will validate the simulation results 

by the experimentally measured data. 

1.4. Dissertation Contributions 

The contributions of the dissertations are: 

 Various approaches to develop a reduced order model based on the Galerkin 

method are presented for von-Karman plates. The accuracy of the reduced order 

models is studied by comparing the static and natural frequency results with 

results calculated by finite element models. 

 The static and dynamic behaviors of a fully clamped microplate under small and 

large electrostatic actuation have been investigated and presented. 

 The dynamic behavior of an imperfect square plate is presented. 

 A dynamic analogue of von-Karman equations for initially curved plates is 

presented. 

 The static and dynamic behavior of initially curved microplates under electrostatic 

actuation has been investigated and presented. Effects of two commonly 

encountered initial curvature profiles on mechanical behavior are also presented. 

 Reduced order model has been validated by comparing the simulation results with 

experimentally measured data. 
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1.5. Dissertation Organization 

In Chapter1, general introduction, background, and organization of the dissertation are 

described. In Chapter 2, we present derivation of the dynamic analogue of the von-

Karman equations governing the motion of thin plates using the Hamiltonian principle. 

The equations account for the midplane stretching and electrostatic forcing nonlinearities.  

In Chapter 3, we present various approaches to develop reduced order models for the 

von-Karman equations to investigate the static and the dynamic behavior when actuated 

electrostatically. The convergence of the static results with the number of transversal 

modes retained in the model is presented. We also compare the static results and Eigen 

value results calculated by these reduced order models with similar results computed by a 

finite element model implemented in COMSOL Multiphysics, a commercial software. 

This comparison reveals the accuracy of the models.  

In Chapter 4, we present the simulations results for the static and dynamic behavior of a 

fully clamped microplate when actuated electrostatically. Effect of various non-

dimensional design parameters on the static response is presented. Dynamic behavior of 

the microplate is investigated in the neighborhood of primary resonance by generating 

frequency response curves. Moreover, cases of dynamic behavior near secondary 

resonances are also presented. Two case studies of dynamic responses near the super-

harmonic resonance of order three and a subharmonic resonance of order one half are 

presented. We also present the dynamic response of an imperfect square microplate. 
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In Chapter 5, we present the modeling and simulation of the mechanical behavior of 

initially curved microplates under electrostatic actuation. We consider two commonly 

encountered profiles of initial curvature imperfection. To validate the model, we compare 

the natural frequency and static deflection under electrostatic load calculated by the 

reduced order model with similar results calculated by a finite element model 

implemented in COMSOL Multiphysics. An investigation of the effect of the curvature 

profile on the static and dynamic behavior is also presented. 

In Chapter 6, we present the experimentally measured static and dynamic responses of a 

microplate made of Silicone Nitride. The plate is found to be initially curved by an 

optical interferometry profiler. Simulation results based on the model presented in 

Chapter 5 are compared with the experimentally measured static and dynamic response 

data for model validation purpose. In Chapter 7, a summary of the dissertation is 

presented along with the main conclusions and recommendations for future work 

directions. 
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Chapter 2  

Nonlinear von-Karman Analysis of Thin Plates 

In this chapter, we derive a dynamic analogue of the nonlinear von-Karman equations 

and boundary conditions governing the motion of thin isotropic plates, when actuated by 

an electrostatic force (Figure 2.1). We limit our consideration to flat and initially curved 

rectangular plates. To derive the equations, we use a combination of Kirchhoff hypothesis 

and the von-Karman strains. The assumptions of Kirchhoff hypothesis are as follows [77-

79]: 

(1) The deflection of the midplane is small compared with the thickness of the plate. 

The slope of the deflected surface is therefore very small and the square of the 

slope is a negligible quantity in comparison with unity. 

(2) The middle plane remains unstrained and neutral during bending.   

(3) The straight lines, initially normal to the midplane, remain straight and normal to 

the middle surface during the deformation and the length of such elements is not 

altered. This means that the vertical shear strains 13 , 23  and the normal strain 33  

are negligible and can be omitted.  

(4) The stress normal to the midplane, 33  is small compared with the other stress 

components and may be neglected in the stress–strain relations. 
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When the transverse deflection of the midplane is large compared with the thickness of 

the plate, as in the case of thin von-Karman plates, assumptions (1) and (2) are no longer 

applicable because the midplane is stretched. 

 

2.1. Thin Flat Plates 

 

Figure 2.1: A schematic diagram of an electrostatically actuated thin microplate. 

In this section, we consider a flat rectangular thin microplate in the domain 

0 x a  and 0 y b  , as shown in Figure 2.1. The plate has a constant thickness h and a 

reference, xyz Cartesian coordinate system, xy-plane being the middle plane of the plate 

and the z axis being normal to that plane and is directed downwards. We denote the 

displacement components of a point in the middle plane by u, v and w along x, y and z 

direction, respectively. Displacements of an arbitrary point are denoted by ,u v and w , and 

are given by  

                   
w

u u z
x







 ,  
w

v v z
y







,  w w                    (2.1) 
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The von-Karman nonlinear strains are given by 

     
2

11 21e z
w

x






  ,  

2

22 22e z
w

y






 ,  12 1

2

2 2
w

y x
z 


 
     

  and 13 23 33 0                                  (2.2) 

where 1e , 2e  and 12 are middle plane strain components and are given as 
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1

1
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u w

x x
e

  


 
 

 
  ,  

          

2

2

1

2

v w

y
e

y

  


  

  
 ,   

        
12

u v w w

y x x y


   


  



 .          (2.3) 

In the absence of body forces, the extended Hamiltonian principle can be written as 

 
2

1

0

t

e nc

t

T U W W dt                               (2.4) 

where ncW denotes the variation of non-conservative energy Wnc , which is problem 

dependent. Non-conservative damping force can be inserted into the equations of motion 

after the variational principle has been invoked [80]. Variations of kinetic energy T, strain 

energy U and electrostatic potential energy We are given as 

.
z A

T dAdz     D D        (2.5) 
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 11 11 22 22 33 33 12 12 13 13 23 23

z A

U dAdz                    (2.6) 

 

2

2

    

2 

( )

 
e

A

V

d

t
wdA

w
W 




        (2.7) 

where  is the mass density, D denotes the displacement vector of an arbitrary point of 

differential plate element under observation, A denotes the undeformed area of the 

reference plane, ij and ij are the Jaumann stresses and the strains, respectively, d is the 

parallel plate capacitor gap, is the dielectric constant of the plate material and ( )V t is the 

applied voltage. 

The displacement vector D is given by 

  u v w  D i j k       (2.8) 

where i, j and k are the unit vectors along the x,y and z axis, respectively. Substituting 

equation (2.1) into (2.8) and taking time derivative twice and spatial variation, we obtain 

   x yu zw v zw w    D i j k            (2.9)

   x yu z w v z w w         D i j k .   (2.10) 

Substituting equations (2.9) and (2.10) into equation (2.5) and integrating over the 

thickness from / 2z h  to / 2z h yields 

       0 1 0 1 0 2 1 2 1x y x x y y

A

T I u I w u I v I w v I w w I w I u w I w I v w dA                (2.11) 

where  
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   2

0 1 2, , 1, ,
z

I I I z z dz       (2.12) 

and we note that 1 0I  due to homogeneous assumption. By performing partial integration 

and dropping the terms involving 1I , equation (2.11) can be written as 

 



0 0 0 2 2

2 20 0

xx yy

A

y bx a

x yx y
y y

T I u u I v v I w I w I w wdA

I w wdy I w wdx

   

 


 

     

  



 
  (2.13) 

Substituting equations (2.2) and (2.3) into equation (2.6) yields  

 
   

 

11 22

12 2

x x x xx y y y yy

y x x yz yA y x x
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z z
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w zw w w

     

  



 




     
 
    





  .   (2.14) 

Now integrating equation (2.14) over the plate thickness from / 2z h  to / 2z h , we get  

 
   

 

1 12

2 1 2 122

x x x y x x y y x

y y y xx yy xyA

u w w u v w w w w

v w w w

N N
U dA

N M M Mw w
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    


    
 
    
 




    (2.15) 

where the stress resultants Ni and moments Mi are defined as  

   1 2 12 11 22 12, , , ,
z

N N N dz    , 

   1 2 12 11 22 12, , , ,
z

M M M z dz    .    (2.16) 

By performing partial integration, equation (2.15) can be written as 
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  (2.17) 

Substituting equations (2.7), (2.13) and (2.17) into equation (2.4), the three equations of 

motion obtained from the integrand of the area integral by setting each of the coefficients 

of u , v  and w equal to zero are  

1 12 0x yN N I u 
    (2.18) 

2 12 0y xN N I v      (2.19) 

   
 

1 2 12 1 12 2 12 0 22 2

2    

2 

( )
2

 
xx yy xy x y y x xx yyx y

t
M M M N w N w N w N w I w I

V

d w
w I w




           

           (2.20) 

Equation (2.18) and (2.19) describe the inplane motion of the plate and, 
0I u and

0I v are 

inplane inertia terms. Equation (2.20) describes the out-of-plane motion and three terms 

on the right hand side, being the inertia terms. First
0I w  is the transverse inertia term, 

while
2 xxI w and 2 yyI w are rotatory inertia terms. The integrand of the line integral serves to 

establish the boundary conditions as follows: 

Along x=0 and x=a 
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0u     or  
1 0N     

0v     or  
12 0N     

0w     or  1 12 1 12 22 0x y x y xM M N w N w I w          

0xw    or  
1 0M   .    (2.21) 

Along y=0 and x=b 

0u     or  
12 0N     

0v     or  
2 0N     

0w     or  2 12 12 2 22 0y x x y yM M N w N w I w          

0yw    or  2 0M   .    (2.22) 

At (x,y)= (0,0), (a,b), (a,0), (0,b)  

0w     or  12 0M   .    (2.23) 

The stress-strain relations for an isotropic material taking the plane stress assumption for 

the thin plates under consideration are 

 

11 11

22 222
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1 0

1 0
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0 0 1 / 2
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  

  

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    
    

            

    (2.24) 
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Substituting equations (2.24), (2.2) and (2.3) into equation (2.16) and performing the 

integration, we get the expressions for stress resultants Ni and moments Mi as 

       1 2

22

1

1 1

2 21

iEh u w v w
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x x y
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
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
  (2.25) 
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       (2.30) 

In the relations (2.25) to (2.30)  and E are the Poisson’s ratio and Young’s modulus of 

elasticity, respectively, D  is the flexural rigidity of the plate expressed as
 

3

212 1

Eh


 and 

the terms with superscript i stand for the inplane applied edge loads. By substituting 

equations (2.25)-(2.30) into the equations of motion (2.18)-(2.20), ignoring the inplane 

and rotatory inertia terms since they have negligible effect on the transverse motion, and 



36 

 

inserting a non-conservative damping force term
df into equation (2.20), the governing 

equations can be written as 

       
2 2 2 2 2 2

2 2 2 2

1 1 1 1
1 1 1 1 0

2 2 2 2
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  (2.31) 
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  (2.32) 
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where 4 is the bi-harmonic operator expressed as
4 4 4

4

4 2 2 4
2

x x y y

  
   

   
. The applied 

voltage ( )V t  is either a DC voltage
dcV for static analysis or an AC voltage 

acV  

superimposed to
dcV , i.e. ( ) ( t)dc acV t V V Sin   , where   is the actuating frequency. The 

non-conservative damping force
df is expressed as 

w
c

t




, where c  is the viscous damping 

coefficient.  

2.2. Initially Curved Imperfect Plates 

In this section, we consider an initially curved rectangular plate having an initial 

curvature imperfection 0 ( , )w x y  and in the domain 0 x a  and 0 y b  , as shown in 

Figure 2.2.  
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Figure 2.2: A schematic diagram of an electrically actuated initially curved clamped-free-

clamped-free microplate. 

We use the modified von-Karman strains for an initially curved plate along with the 

Kirchhoff hypothesis to derive the governing equations of motion. We denote the 

displacement components of a point in the middle plane by u, v and w along x, y and z 

direction, respectively. Displacements of an arbitrary point are denoted by ,u v and w , and 

are given by  

                                          
w

u u z
x







 ,  
w

v v z
y







,  w w                       (2.34) 

The modified von-Karman nonlinear strains for an initially curved plate are given by 

     
2

11 21e z
w

x






  ,  

2

22 22e z
w

y






 ,  12 1

2

2 2
w

y x
z 


 
     

and   13 23 33 0                              (2.35) 

where 1e , 2e  and 12 are the middle plane strain components and are expressed as 
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   
 

   



   ,  
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0
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wv w w

y y y y
e

    
 

   



  ,   

       0
12

0w wu v w w w w

y x x y x y x y


      


 
  

 


   
.         (2.36) 

In this case variation of the strain energy, by substituting equations (2.35) and (2.36) into 

equation (2.6), is given as  

   

 

11 22

12

0 0

0 0 2

x x x x x xx y y y y y yy

y x x yz y x x y y x xyA

u w w w w w v w w w w w

u v w

z z

w w w w w w w
U dAdz

wz

       

      

 




      
 
      
 




  . 

           (2.37) 

Now integrating equation (2.37) over the plate thickness from / 2z h  to / 2z h , we get 

   

 

1 12

2 1

0 0

0 2 1

0

22

x x x x x y x x y y x x y y x

y y y y y xx yy xyA

u w w w w u v w w w w w w w wN N

v w w w w w
U dA

w wN M M M

        

    




       
 
     
 




  

           (2.38) 

where the stress resultants Ni and moments Mi are defined as in (2.16). By performing 

partial integration, equation (2.38) can be written as 
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   

   
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u v
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  
         
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 

 





   

 





 
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


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 

 





 

           (2.39) 

Substituting equations (2.7), (2.13) and (2.40) into equation (2.4), the three equations of 

motion obtained from the integrand of the area integral by setting each of the coefficients 

of u , v  and w equal to zero are  

1 12 0x yN N I u      (2.40) 

2 12 0y xN N I v      (2.41) 

   

   
 

1 2 12 1 12 2 12

1 0 12 0 2 0

2

12 020 2 2

    

2  

2

( )

xx yy xy x y y xx y

x y y x xx yyx y

V

d

M M M N w N w N w N w

t
N w N w N w N w I w I w w

w
I





      

      
 (2.42) 

Equations (2.40) and (2.41) describe the inplane motion and equation (2.42) describes the 

out-of-plane motion. The integrand of the line integral serves to establish the boundary 

conditions. 

Substituting equation (2.24), (2.35) and (2.36) into equation (2.16) and performing the 

integration, we get the expressions for stress resultants Ni and moments Mi as 
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  (2.43) 

     

22

0 0
22 21

1 1

2 2

iw wEh u w w v w w
N

x x x x y y y y
N 



           
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 

0
12

0
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2 1

iw wEh u v w w w w
N

y x x y x
N

x y y

       
  

        
   


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2

1

2

2 2

w w
M D

x y


  
  

  
       (2.46) 

     
2 2

2 22

w w
M D

x y
  
  
 

  
       (2.47) 

      
2

12 1
w

x
D

y
M 








         (2.48) 

By substituting equations (2.43)-(2.48) into the equations of motion (2.40)-(2.42), 

ignoring the inplane and rotatory inertia terms since they have negligible effect on 

transverse motion, and inserting a non-conservative damping force term
df into equation 

(2.48), the governing equations can be written as follows: 

   

   

22 2 2 2 2

0 0
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0 0 0 0
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  (2.49) 
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. (2.51) 

The associated boundary conditions for the case of a clamped-free-clamped-free plate 

(Figure 2.2) are 

Clamped edges at x=0 and x=a 

0u          (2.52) 

0v          (2.53) 

0w           (2.54) 

0
w

x





        (2.55) 

Free edges at y=0 and y=b 
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Chapter 3  

Approaches for Reduced Order Modeling of 

Electrically Actuated von-Karman Microplates 

In this chapter, we present and compare various approaches to develop reduced order 

models for the nonlinear von-Karman rectangular microplates actuated by nonlinear 

electrostatic forces. The reduced-order models aim to investigate the static and dynamic 

behavior of the plate under small and large actuation forces. A fully clamped microplate 

is considered. Different types of basis functions are used in conjunction with the Galerkin 

method to discretize the governing equations. First we investigate the convergence with 

the number of modes retained in the model. Then for validation purpose, a comparison of 

the static results is made with the results calculated by a nonlinear finite element model. 

The linear eigenvalue problem for the plate under the electrostatic force is solved for a 

wide range of voltages up to pull-in. Results among the various reduced-order modes are 

compared and are also validated by comparing to results of the finite-element model. 

Further, the reduced order models are employed to capture the forced dynamic response 

of the microplate under small and large vibration amplitudes. Comparison of the different 

approaches also is made for this case. 
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3.1. Introduction 

We consider a fully clamped planar microplate as shown in Figure 3.1. The model 

accounts for the geometric nonlinearity as well as the nonlinearity due to the electrostatic 

force. Different types of basis functions are used in conjunction with the Galerkin method 

to discretize the governing equations.  

 

Figure 3.1: A schematic diagram of an electrically actuated fully clamped microplate. 

3.2. Problem Formulation 

We adopt the dynamic version of the von-Karman equations (2.31)-(2.33) to describe the 

plate motion. Associated boundary conditions for a fully clamped plate (Figure 3.1) are  

Clamped edges at x=0 and x=a 
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0u          (3.1) 

0v          (3.2) 

0w           (3.3) 

0
w

x





        (3.4) 

Clamped edges at y=0 and y=b 

0u          (3.5) 

0v          (3.6) 

0w           (3.7) 

0
w

y





        (3.8) 

For convenience, we introduce the non-dimensional variables (denoted by hats); 

  ˆ
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x
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  ,  ˆ
y

y
b

  ,  ˆ
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  ,  
2

ˆ
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2

ˆ
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v
d

  ,   ˆ
t

t
T

    (3.9) 

Substituting equation (3.9) into equations (2.31)-(2.33) and dropping the hats we get the 

following equations: 
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  (3.10) 
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  (3.12) 

The parameters appearing in equations (3.10)-(3.12) are 

b
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whereT is the characteristic time expressed as 
4

T
a

D


     

The boundary conditions for the non-dimensional equations are: 

Clamped edges at x=0 and x=1 

0u          (3.14) 

0v          (3.15) 

0w           (3.16) 

0
w

x





        (3.17) 

Clamped edges at y=0 and y=1 
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0u          (3.18) 

0v          (3.19) 

0w           (3.20) 

0
w

y





        (3.21) 

For the purpose of solving for the eigenvalues of the plate, we linearize the non-

dimensional governing equations (3.10)-(3.12) around the deflected position due to the 

DC electrostatic load. Towards this, we express the microplate response as the sum of the 

static components sw , su and sv and the dynamic components dw , du and dv  

 s dw w w         (3.22) 

   s du u u         (3.23) 

  s dv v v         (3.24) 

Now, by plugging equations (3.22)-(3.24) into equations (3.10)-(3.12), cancelling the 

equilibrium terms and retaining only linear terms in du , dv and dw , we obtain   
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  (3.27)

Equations (3.25)-(3.27) are the linearized governing equations of a microplate initially 

deflected by an electrostatic DC load. These equations are not suitable for analyzing large 

amplitude vibration of the plates; and hence will be only used to determine the 

eigenvalues under the action of the electrostatic forces. The forced vibration analysis will 

be based on the full nonlinear equations (3.10)-(3.12). 

3.3. Reduced Order Models 

In this section we discuss the various approaches to develop the reduced order model for 

the governing equations.  
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3.3.1. Model I 

In the first approach we develop a semi-reduced order model (semi-ROM) of the 

governing equations (3.10)-(3.12). The governing equation of the out-of-plane motion, 

equation (3.12), is reduced into a finite-degree-of-freedom system using the Galerkin 

method. We use the product of beam mode shapes along x  and y as basis functions in the 

Galerkin procedure. Hence, we express the out-of-plane deflection w  as 

                                             
,

1

( ) ( , )j k
m

ii

i

w q t x y


         (3.28)  

where , ( , )j k

i x y are the basis functions constructed by taking product of the clamped-

clamped beam modes; thj mode along x and thk mode along y  axis, , 1,3,5...j k  , 

and ( )iq t  are the unknown time dependent coefficients. We multiply equation (3.12) by 

 
2

1 w to incorporate the electric force term exactly and simplify dealing with the 

electrostatic force term. Substituting equation (3.28) into equation (3.12), multiplying 

by , ( , )j k

i x y and integrating over the plate domain we obtain a discretized form of the out-

of-plane equation of motion. The result is a system of nonlinear ordinary differential 

equations (ODEs) in the time dependent coefficients ( )iq t , coupled with the in-plane 

partial differential equations (3.10) and (3.11).   

This semi-ROM is solved iteratively using a combination of the Runge Kutta method 

along with the method of lines. The numerical method of lines is a technique for solving 

partial differential equations by discretizing in all but one dimension and then integrating 
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the semi-discrete problem as a system of ODEs or DAEs [81]. The solution method of 

model I is outlined in the following: 

1. First we put 0u   and 0v   into the system of discretized ODEs, apply the direct 

voltage dcV  and solve for the out-of-plane deflection w . 

2. Next plug the deflection w  into equations (3.10) and (3.11) and solve them for u  

and v .  

3. Next the solution for u  and v is substituted into the system of ODEs to solve for 

the deflection w  under an applied voltage dcV . 

4. Repeat the procedure until a converged solution for w is obtained. 

This model can work well for static simulations. However, it is not convenient for 

dynamic analysis due to its iterative nature.   

3.3.2. Model II 

In the second approach we develop a full ROM of the governing equations (3.10)-(3.12). 

The difference between this model and model I is that we discretize all three equations of 

motion using beam mode shapes. The Galerkin procedure for the out-of-plane motion, 

equation (3.12), is the same as described in model I. To discretize equations (3.10) and 

(3.11) of the in-plane motion, we express the in-plane displacementsu and v as  

                                     
2,1

( , )( )u x yu q t    (3.29) 

                                     
1,2

( , )( )v x yv q t      (3.30) 

where 2,1
( , )x y and 1,2

( , )x y are the shape-functions constructed by multiplying mode 

shapes of a clamped-clamped beam; where the first superscript refers to the mode along 
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the x  axis and the second superscript refers to the mode along the y  axis, ( )
u

q t  and ( )vq t  

are the corresponding time dependent coefficients. Substituting equations (3.29) and 

(3.30) into equations (3.10) and (3.11), respectively, multiplying by 2,1
( , )x y and 1,2

( , )x y , 

respectively, and integrating over the plate domain we get a set of algebraic equations in 

the time dependent coefficients ( )
u

q t  and ( )vq t  . This set of algebraic equations combined 

with the system of nonlinear ODEs produced in model I constitute the full ROM of the 

governing equations. Numerical integration of the system of differential algebraic 

equations (DAEs) can be performed using the Runge Kutta method to obtain a solution 

for the time dependent coefficients ( )iq t , ( )
u

q t  and ( )vq t , which are substituted back into 

equations (3.28)-( 3.30) to get w , u and v . 

3.3.3. Model III  

In the third model, we use the mode shapes of the plate calculated using a FEM analysis 

as the basis functions in the Galerkin procedure. We use the commercial software 

COMSOL [82] to obtain the mode shapes of the plate. Accordingly, we express the 

displacement variables w , u and v  as  

                                        
1

( ) ( , )
m

i

i

iw q t x y


                  (3.31)  

                              ( ) ( , )
u u

u q t x y    (3.32) 

                              ( ) ( , )v vv q t x y     (3.33) 

where ( , )i x y are out-of-plane mode shapes of the plate while ( , )
u

x y and ( , )v x y  are the 

in-plane mode shapes and ( )iq t , ( )uq t  and ( )vq t  are the corresponding unknown time 
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dependent coefficients. Equation (3.12) is multiplied by  
2

1 w to treat the electric force 

term in its exact form. Substituting equations (3.31)-(3.33) into equations (3.10)-(3.12), 

multiplying equation (3.12) by ( , )i x y and equations (3.10) and (3.11) by 

( , )u x y and ( , )v x y , respectively, and integrating over the domain we get the reduced 

order model of the governing equations. The reduced order model comprises of a system 

of differential algebraic equations (DAEs) in the unknown time dependent coefficients 

( )iq t , ( )
u

q t  and ( )vq t , which as before can be solved for ( )iq t , ( )uq t  and ( )vq t  using the 

Runge Kutta method. 

3.3.4. Model IV 

This model is similar to model III; the deflection and in-plane displacement variables w , 

u and v  are expressed as in equations (3.31)-(3.33). In this model ( , )i x y  are the same 

out-of-plane mode shapes of the plate, obtained using FEM, while ( , )
u

x y and ( , )v x y  

are the shape functions for the in-plane displacements u and v . Here, we do not use 

regular mode shapes for the in-plane displacement. Instead, we make use of the fact that 

the in-plane inertia is negligible, and hence, obtain instead, in-plane shape functions from 

FEM assuming the plate is deflected by a uniform transverse pressure. Both mode shapes 

( , )i x y  and shape functions ( , )
u

x y and ( , )v x y  are obtained using the FEM Software 

COMSOL. A mesh convergence test is run to choose a suitable mesh. Results of the 

mesh convergence test and the mode shapes of the plate along with the in-plane 

displacement shape functions are given in the Appendix. Other than the basis functions, 
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the Galerkin procedure is the same as in model III and the resulting ROM consists of 

DAEs as well. 

3.3.5. Model V 

This approach follows the method outlined in [83]. In this approach, the out-of-plane 

deflection w is expressed as in equation (3.31). Substituting equation (3.31) into equations 

(3.10) and (3.11) we obtain the following equations: 
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Equations (3.34) and (3.35) are nonhomogeneous coupled linear PDEs in u and v . Since 

these equations are linear in u and v, the principle of superposition can be used to 

determine the solution for u and v in the form [83] 

                                           
,k l

kl

k lu q q u    (3.36) 

                                           
,k l

kl

k lv q q v    (3.37) 

where the superscript kl denotes the in-plane displacements klu and klv  caused by the 

loads kl

xf  and kl

yf defined as 
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Equation (3.12) is multiplied by  
2

1 w to treat the electric force term exactly with no 

approximation. Now by substituting equations (3.31), (3.36), and (3.37) into equation 

(3.12), multiplying by ( , )i x y  and integrating over the plate domain we get the reduced 

order model for the governing equations. The reduced order model consists of a system 

of nonlinear coupled ODEs in ( )iq t . This system of ODEs is solved for ( )iq t numerically 

using the Runge Kutta method and is substituted back into equation (3.31), (3.36), and 

(3.37) to obtain w , u and v , respectively. 

3.4. Static Analysis 

To calculate the static deflection of the microplate under a DC load, (t)V is replaced 

by
dcV . We then drop the time derivatives in all the models and the time dependent 

unknown coefficient ( )iq t  in the semi-ROM, and ( )iq t  , ( )uq t and ( )vq t  in all the other 

models are written as constant coefficients iq , uq and vq . This results in a system of 

nonlinear algebraic equations, which is numerically solved for iq in case of the semi-ROM 

and iq , uq  and vq  in all the other models. Then equation (3.28) or equation (3.31) is used 

to find the transverse deflection.  

First we study the convergence of the static results with the number of transverse modes, 

( , )i x y  retained in the reduced order model when 1  and 1 1  . Figure 3.2 shows the 

stable solutions, the non-dimensional deflection maxW at the center of the plate against 

various values of 2

2 dcV . These convergence static results are based on non-dimensional 

parameters and hence are not specific to any plate of a particular geometry or material. 
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A summary of the convergence results for all the approaches is given in Table 3.1. Figure 

3.2 indicates a classical behavior of electrostatically actuated microstructures, where the 

deflection slopes approaches infinity at the pull-in voltage, where the structure collapses 

to the substrate [7]. As clear from the figure and the table, Models I and II require in total 

six transversal mode shapes for convergence, while models III-V require four. 

Table 3.1: Summary of convergence studies, number of transverse modes required for 

convergence and the value of the non-dimensional parameter 2

2 dcV  at the pull-in 

instability. 

Model No. No. of modes for convergence Voltage parameter 2

2 dcV   

Model I 6 188 

Model II 6 191 

Model III 4 186 

Model IV 4 194 

Model V 4 192 

3.5. Model Validation 

For validation purpose, the static response calculated by the reduced order models is 

compared with the results obtained from a FE model implemented in COMSOL [82]. The 

Electro-mechanics module of COMSOL was used to model the electrically actuated 

microplate. A mapped mesh with fifty divisions along each edge was used. The 

geometric and material parameters used are; 300 ma b   , 2 mh  , 2 md  , 

153GPaE  and 0.23  . Since this is a geometrically nonlinear problem, geometric 

nonlinearity is activated before performing the analysis. Figure 3.3 shows the maximum 
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deflection
maxW at the center of the microplate against

dcV  up to the pull-in instability. The 

figure shows excellent agreement between the results calculated by the ROMs and the FE 

model except for model III. Model III predicts the pull-in of the microplate at a lower 

voltage. This means that it does not account for the cubic nonlinearity accurately and 

only captures the effect of midplane stretching partially. In other words, we can remark 

that the shape functions used to represent the in-plane displacements are not accurate 

enough to capture the full effect of midplane stretching. All the other models accurately 

predict the static response of the microplate.  

Although accurate, models I and II require more computational effort as compared with  

models IV and V. Nevertheless they use easy-to-handle analytical functions as basis 

function in the discretization procedure. Model V calculates exact solution for the in-

plane displacement u  and v , hence requires more computational effort to integrate over 

the plate domain as compared with model IV, which approximates the solution through 

equations (3.32) and (3.33).  

Reduced order models are known to be computationally efficient as compared with the 

full order finite element models. To highlight the advantage of using reduced order 

models over finite element model, we compare the time taken to solve the system when a 

DC voltage, 60VdcV  was applied. Results for this comparison are given in Table 3.2. 

One can note that the time taken by full order FE model is much higher than the reduced 

order model because it solves thousands of equations one for each degree of freedom 

[43]. 
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Figure 3.2: Convergence of the static results with the number of transversal mode shapes 

retained in the reduced order models. Variation of the maximum non-dimensional 

deflection maxW  at the center of the microplate with the electrostatic voltage parameter 

2

2 dcV when 1  , and 1 1  : (a) model I, (b) model II, (c ) model III, (d) model IV, (e) 

model V. 
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Figure 3.3: A comparison of the maximum deflection maxW  at the center of the plate, 

calculated by the reduced order models with the results obtained from FE model 

implemented in COMSOL for various values of dcV , until the pull-in instability: (a) model 

I, (b) model II, (c ) model III, (d) model IV, (e) model V.  
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Table 3.2: A comparison of the time taken by the FE model implemented in COMSOL 

and the reduced order models to solve the system under an electrostatic DC voltage. 

Model Time taken (Seconds) 

FE model 125 

Model II 0.140 

Model III 0.046 

Model IV 0.046 

Model V 0.031 

3.6. Dynamic Analysis 

First we present the Eigen frequency analysis of the microplate when deflected under the 

DC voltage dcV . The approaches presented in models II-V are used in conjunction with 

equations (3.25)-(3.27) to calculate the linear natural frequency of the microplate at 

different levels of initial deflection sw under the electrostatic voltage dcV , until the pull-in 

instability. The results are compared in Figure 3.4 with the natural frequencies calculated 

by the FE model implemented in COMSOL. Model I is not included in the analysis due 

to its iterative nature. Results calculated by the ROMs show good agreement with the 

ones calculated by FEM model except for model III, which shows significant deviation. 

This result agrees with the static results and confirms the remark that model III does not 

account accurately for the cubic nonlinearity due to midplane stretching and that the 

shape functions used to represent the in-plane displacements are not accurate enough to 

capture the full effect of midplane stretching.  
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Figure 3.4: The non-dimensional fundamental natural frequency ( 2a
D


  ) of a 

square microplate for different levels of dcV  until pull-in (stars). Comparison with the 

results computed by the FE model implemented in COMSOL (diamonds): (a) model II, 

(b) model III, (c ) model IV, (d) model V. 

Models II, IV and V accurately predict the non-dimensional natural frequencies of the 

microplate.  Although accurate, model II entails more computational effort as compared 

with models IV and V, since it requires more modes for convergence. However it 

employs easy-to-use analytical functions as basis functions in the Galerkin discretization 

procedure. Model IV approximates the solution for the in-plane displacements u  and v  
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through equations (3.32) and (3.33) while model V calculates exact solution, hence 

requires more computational effort to integrate over the plate domain. Nonetheless model 

V is easily adaptable to the microplates with other boundary conditions e.g. clamped-

free-clamped-free (CFCF). Moreover one can note that the natural frequency decreases 

with the increase of the applied DC voltage and drops rapidly near the pull-in instability, 

finally falling to zero at the pull-in instability. This is due to the softening nature of the 

electrostatic force, here by softening we mean that the natural frequency decreases with 

increase of the electrostatic load. The decrease in the natural frequency of the plate with 

the increase in the DC load means that its elastic restoring force is weakening, and hence 

reaches eventually to zero when the natural frequency vanishes. 

Next we present the dynamic response of the microplate calculated by models II-V, when 

actuated with small and large electrostatic forces.  Frequency response curves are 

generated by actuating the microplate by a harmonic load of amplitude acV superimposed 

to dcV  load, i.e., (t) ( t)dc acV V V Sin   . The Runge Kutta method is used to perform long 

time numerical integration to solve the system of governing equations to obtain a stable 

steady solution. A stable steady solution is captured such that the transient response is not 

contributing to the solution. We fix the non-dimensional parameters as 1  , 1 1  , and 

2 1  , and assume that the in-plane external forces are zero i.e. 0xx xy yyN N N  . To 

get a linear response, we actuate the microplate at a small load of 1VdcV  and a harmonic 

load of 0.01VacV  . For the large vibration response we use 1VacV  while dcV is kept the 

same. Figure 3.5 shows a comparison of the dynamic responses calculated by models II-
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V using frequency response curves for the small and large amplitude vibrations of the 

microplate. 
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Figure 3.5: Frequency response curves near the non-dimensional fundamental natural 

frequency, maximum non-dimensional deflection  max ,
2 2

a bW of the microplate against 

actuating frequency . Response is captured at 1VdcV   and (a) 0.01VacV   ,  (b) 1VacV  , 

when 1   , 1 1  , 2 1  and a quality factor 1000Q  . 
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 All the models show good agreement when actuated at small electrostatic loads (Figure 

3.5A). All the models show the linear response very close to each other, model II shows a 

slight difference of less than 1% from other models. This small difference from other 

models appears due to the different kind of shape functions used in this model, which 

seems not of good accuracy.  

Model III shows a significant deviation from the other models (Figure 3.5B), which show 

excellent agreement when actuated at large electrostatic loads. This agrees with the static 

and natural frequency results and ratifies the remark that model III does not account 

accurately for the cubic nonlinearity. For small actuating forces (Figure 3.5a), all the 

models show a resonance near the fundamental natural frequency of the plate. The 

geometric nonlinearity is not activated, and in this regime, the linear plate theory can be 

used. When large electrostatic loads are used to actuate the large amplitude vibrations of 

the plate (Figure 3.5b), the geometric nonlinearity due to midplane stretching is activated. 

The plate shows strong hardening behavior due to the geometric nonlinearity, where the 

nonlinear resonances appear at higher frequencies. All the models capture the nonlinear 

hardening responses of the plate accurately except model III, which fails to capture the 

nonlinearity accurately. In this regime, the linear plate theory fails and only a model that 

accounts for the geometric nonlinearity can capture the plate response accurately. 

Although it sounds appropriate to use any of the models II, IV and V for the investigation 

of large amplitude vibrations of microplates, we believe that model V is the most 

accurate one since it calculates the exact solution for midplane stretching while for all the 

other models we approximate the in-plane displacements using some kind of shape 
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functions. Moreover it can be used with confidence for microplates with other boundary 

conditions for example a clamped-free-clamped-free (CFCF) microplate. For such a case 

the other models may not be used with the same shape functions. So model V is more 

rigorous and versatile and can be used for a microplate with any kind of boundary 

conditions.   
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Chapter 4  

An Investigation of the Static and Dynamic 

Behavior of Electrically Actuated Rectangular 

Microplates 

In this chapter, we present an investigation of the static and dynamic behavior of the 

nonlinear von-Karman plates when actuated by the nonlinear electrostatic forces. The 

investigation is based on a reduced order model developed using the Galerkin method, 

which rely on mode shapes and in-plane shape functions extracted using a finite element 

method. In this study, a fully clamped microplate is considered. We investigate the static 

behavior and the effect of different non-dimensional design parameters. The static results 

are validated by comparison with the results calculated by a finite element model. The 

forced-vibration response of the plate is then investigated when the plate is excited by a 

harmonic AC load superimposed to a DC load. The dynamic behavior is examined near 

the primary and secondary (superharmonic and subharmonic) resonances. The microplate 

shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. 

However, the behavior switches to softening as the DC load is increased. Finally, near-

square plates are studied to understand the effect of geometric imperfections of 

microplates.   
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4.1. Introduction 

In Chapter 3 we have investigated various approaches to develop reduced order model. In 

this chapter we study the static and dynamic behavior of fully clamped rectangular plates 

under electrostatic actuation. We use the reduced order model IV presented in Chapter 3 

for this investigation. The reduced order model is based on the von-Karman equations of 

the plate, in which all three equations of the plate motion are discretized using the 

Galerkin method. For validation purpose, we compare the static results computed by the 

reduced order model with the results calculated using the FEM software COMSOL [82]. 

Further the reduced order model is employed to investigate the nonlinear, large amplitude 

vibration behavior of the plates. Understanding the nonlinear behavior of microplates 

when actuated by large electrostatic loading or when undergoing large motion is 

fundamental to the development of the next generation microplates-based MEMS 

devices.   

We use the problem formulation and reduced order model IV presented in Chapter 3. The 

reduced order model is based on the dynamic analogue of nonlinear von-Karman 

equations of thin plate. 

 The reduced order model, which consist of DAEs is solved for the unknown time 

dependent coefficients ( )iq t , ( )uq t and ( )vq t .  Toward this, we solve equations (3.10) and 

(3.11) for ( )uq t   and ( )vq t  in terms of ( )iq t  and then substitute the results into equation 

(3.12). This equation is then integrated in time using Runge Kutta.  These coefficients are 

substituted back into equations (3.31)-(3.33) to get the displacements w , u  and v . 
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4.2. Static Analysis 

Convergence study of the static results with the number of transverse modes, ( , )i x y  

retained in the reduced order model was performed in Chapter 3 and it was found that 

four transverse modes are sufficient to get reasonably accurate result. Moreover the 

model was also validated by comparing results with the results obtained by FE model. 

 

Figure 4.1: Variation of the maximum non-dimensional deflection
maxW  at the center of 

the microplate with the electrostatic voltage parameter 2

2 dcV until pull-in for various 

values of aspect ratio when 1 1  . 

Here we investigate the effect of different non-dimensional parameters on the static 

response of the plate. Figure 4.1 shows the maximum non-dimensional 

deflection maxW against 2

2 dcV  for various values of the aspect ratio    with fixed value 

of 1 1  . By increasing , the maximum deflection almost remains constant, but the 

voltage instability threshold (pull-in) decreases and saturates near 2

2 75dcV   as the aspect 

ratio approaches  . Figure 4.2 shows the variation of maxW with 2

2 dcV  until pull-in 
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occurs for various values of 1 while 1   (square plate). We notice that the maximum 

non-dimensional deflection maxW  as well as the voltage parameter 2

2 dcV are reduced 

for 1 1  , while for 1 1   both quantities increase and maxW  seems to stabilize near 0.7 

at 1 3  . 

 

Figure 4.2: Variation of the non-dimensional deflection
maxW  at the center of the 

microplate with the electrostatic voltage parameter 2

2 dcV until pull-in for various values 

of 1 when 1  . 

4.3. Dynamic Analysis 

In this section we investigate the dynamic response of the square microplate at primary, 

super-harmonic of order three, and sub-harmonic of order two resonances of the 

fundamental mode.  We analyze the dynamics of the microplate by generating frequency 

response curves. The Runge Kutta method is used to perform long time numerical 

integration to solve the system of DAEs. The stable steady-state solution is captured after 
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making sure that the transient response is no longer contributing to the response. Figure 

4.3 shows the time history of the dynamic response of the microplate when actuated at a 

DC voltage 3VdcV  and an AC voltage 0.1VacV   and 35.1 . Figure 4.3a depicts the 

diminishing transient response, while Figure 4.3b shows the stable steady-state response. 

We use steady-state responses similar to Figure 4.3b to construct the frequency response 

curves. 
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       (a)                                                                                (b) 

Figure 4.3: Time history response of the microplate. (a) Transient response. (b) Steady 

state response. 

4.3.1. Primary Resonance 

To investigate the dynamic response at primary resonance, we fix 1   , 1 1  , 2 1  and 

assume that the in-plane external forces are zero i.e. 1 12 2
ˆ ˆ ˆ 0N N N   . With the above 

parameters the static pull-in voltage for the microplate is near 14 Volts. We investigate 

the nonlinear dynamic behavior of the microplate near primary resonance at a small 

harmonic AC voltage, acV  superimposed to a DC voltage, dcV , i.e., (t) ( t)dc acV V V Sin   . 

Figure 4.4 shows the nonlinear response of the microplate when actuated at 3VdcV  for 
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various values of acV  near primary resonance, which for the linear plate is near 36. The 

quality factor is fixed at 250Q  , which is related to the damping coefficient by 1c
Q


  

[84]. Our choice of a constant value of Q means that we assumed negligible effect of 

squeeze-film damping, which is reasonable assumption assuming that the microplate is 

placed inside a vacuum chamber and is operated at reduced pressure.  Otherwise, 

squeeze-film damping can have strong effect on the dynamics of microplates and needs 

to be modeled using Reynolds equation and a structural-fluidic model [7, 48]. 

Figure 4.4 shows the maximum non-dimensional deflection maxW  at the center of the 

microplate against the non-dimensional frequency.  

     

Figure 4.4: Maximum non-dimensional deflection maxW  at the center of the microplate 

against the actuating frequency  when actuated at 3VdcV  and various values of acV  

while quality factor 250Q  ; ( F )  forward frequency sweep, ( B ) backward frequency 

sweep.    
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The microplate exhibits strong hardening effect due to the cubic nonlinearity, which 

comes into play due to midplane stretching. The hysteresis in the curves is captured by 

performing forward and backward frequency sweeps. Nonlinear resonance peaks occur 

near 36.15  for 0.1VacV  while it is at 36.6 for 0.3VacV  and 36.9 for 0.5VacV  . 

Further we notice that there exist multiple stable solutions over some range of frequency 

and amplitude jumps from higher to lower or lower to higher values depending on the 

type of frequency sweep.  

Figure 4.5 shows the frequency response curves of the microplate when actuated at 

7VdcV   for various values of acV with a quality factor 250Q  . An overlap of stable 

solutions exists when actuated at 0.2VacV  contrary to the responses at 0.4VacV  and 

0.6VacV  , respectively.  

   

Figure 4.5:  Maximum non-dimensional deflection maxW  at the center of the microplate 

against the actuating frequency  when actuated at 7VdcV  and various values of acV  

while quality factor 250Q  .   
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A gap between the two stable solutions starts to emerge in the case of 0.4VacV   by the 

forward and backward frequency sweeps. This gap might indicate that the microplate 

becomes unstable at that actuating voltage and pulls on the stationary electrode. This kind 

of instability is called dynamic pull-in instability, which usually occurs at a lower DC 

load superimposed to a small harmonic load [7, 24, 84, 85]. Another possibility exists, 

especially in the case of  0.4VacV  , that this gap is created due to the numerical 

divergence of the time integration scheme, due to its inability to find suitable initial 

conditions that lead to a stable periodic orbit. In other words, this might indicate highly 

fractal behavior, which usually gets stronger as the system approaches the dynamic pull-

in regime [85] .To confirm if this divergence is due to fractal behavior or due to pull-in 

exactly, one should resort to other numerical techniques to find periodic motions, such as 

shooting and finite difference methods as well as basin of attraction analysis [7, 84].  The 

response on the other hand for the case of 0.6VacV   is most likely an indication of a 

pull-in band, since as reported in [84], further increase in acV  widens the pull-in band gap 

between the stable solutions and makes the upper stable branches terminated at lower 

values [84].  

4.3.2. Secondary Resonances  

Due to the cubic nonlinearity from midplane stretching and quadratic nonlinearity of the 

electrostatic force, the plate is expected to exhibit several secondary resonances [7, 86]. 

These include super harmonic resonances near one-third and one-half the fundamental 

natural frequency as well as subharmonic resonances near twice and three times the 

fundamental natural frequency. As case studies, in this paper, we investigate the dynamic 
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response of the microplate near the super-harmonic resonance of order three and then 

near the subharmonic resonance of order half. We use the non-dimensional parameters of 

Section 4.4.1. 

A. Super-harmonic Resonance at 1

3


 

The generated frequency response curves reveal some interesting phenomena in this case. 

First, Figure 4.6 shows the response at 9VdcV  for various values of acV .  

 

Figure 4.6: Frequency response curves near super-harmonic resonance, 1

3


 of the 

fundamental natural frequency. Maximum non-dimensional deflection maxW at the center 

of the microplate against the actuating frequency  when actuated at 9VdcV  and various 

values of acV  while quality factor 250Q  .    
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The response at 2.1VacV  shows a clear hardening behavior. Now increasing the AC 

voltage to 2.3VacV  and 2.4VacV  , the microplate becomes unstable and jumps to another 

stable state with higher amplitude of vibration near max 0.77W  .  

This behavior is contrary to the one near primary resonance where the microplate jumps 

onto the stationary electrode as dynamic pull-in. This can be due to the fact that the 

response is in the verge of shifting from hardening to softening effect. This is clarified in 

Figure 4.7, which shows the frequency responses at 10VdcV  for various acV . Figure 4.6 

and Figure 4.7 depict the transition from hardening to softening behavior.   

 

Figure 4.7: Frequency response curves near super-harmonic resonance, 1

3


 of the 

fundamental natural frequency. Maximum non-dimensional deflection maxW  at the center 

of the microplate against the actuating frequency  when actuated at 10VdcV  and various 

values of acV  while quality factor 250Q  . 
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This is expected with the increase of the DC voltage, which tends to change the effective 

nonlinearity of the system. Essentially, the effective nonlinearity is dominated by the 

midplane stretching (positive cubic in nature) for low value of DC voltage, and thus the 

plate exhibits hardening behavior. On the other hand, the electrostatic nonlinearities 

(quadratic in nature) dominate the overall nonlinearities leading to softening behavior at 

higher values of DC voltage [7, 87]. This observed behavior is expected also for the 

primary resonance case. Next, we investigate the amplitude jumps in Figure 4.6 by 

plotting phase portraits of the response near terminal points of the lower and upper stable 

branches. Figure 4.8 and 4.9 show the periodic orbits of the stable branches 

at 2.3VacV  and 2.4VacV  , respectively.  
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Figure 4.8: Phase portraits for the lower and upper stable branches of the Figure 4.6 

for 2.3VacV   ; (a) 11.12 , (b) 11.176   , (c) 11.178   , (d) 11.194 .   
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Figure 4.8 shows that the orbit size increases as the actuation frequency increases until 

the maximum value of deflection amplitude max 0.6W   is reached near the terminal point 

of the lower stable branch at 11.176 . Beyond this point, we note that the plate jumps 

to a higher amplitude of vibration, max 0.8W   at 11.178 . The plate jumps back to a 

lower amplitude of vibration, max 0.27W  at 11.194 . A similar response is depicted in 

Figure 4.9 for a higher AC load. 
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Figure 4.9: Phase portraits for the lower and upper stable branches of the Figure 4.6 

for 2.4VacV   ; (a) 11.12 , (b) 11.138   , (c) 11.14   , (d) 11.204 .   

A. Sub-harmonic Resonance at 12  

In this section we investigate the dynamic response of the plate near sub-harmonic 

resonance of order one half. Figure 4.10a shows, as expected, a hardening response. This 
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hardening behavior shifts to softening behavior by further increasing the DC voltage. 

During this transition, Figure 4.10b, an upper discrete dynamical solution is created of 

relatively large amplitude (near maxW =0.8), similar to the observed behavior in Figure 4.6. 

Figure 4.10c shows softening behavior at a higher value of DC voltage. The upper stable 

branch in the case of softening behavior stays high with significantly large amplitude as 

compared with lower branches for a considerably large band of actuation frequency.   

4.3.3. Dynamic Behavior of Imperfect Square Plates 

Next, we investigate the dynamic behavior of imperfect square plates near the second 

symmetric-symmetric mode, which corresponds to symmetric-symmetric degenerate 

modes of square plates [88-91]. By imperfect square microplate we mean that   is close 

to 1. Such an imperfection comes practically when fabricating a square plate, which then 

due to unavoidable fabrication imperfections, will come as a near square plate.  We 

actuate the microplate at small DC and AC voltages. Non-dimensional parameters remain 

the same as in Section 4.3.1 except , which we change slightly to introduce the 

imperfection. A square microplate exhibits degenerate mode due to the symmetrical 

geometry. Figure 4.11a shows the response of a perfect square plate, i.e., 1  while 

Figures 4.11b-d show the responses when is slightly varied ( 0.999  , 0.995  , 

and 0.99  ).  

It is shown that slightly varying the value of   breaks the geometrical symmetry and 

hence the degenerate modes become distinct modes of vibration at distinct frequencies. 

As a consequence two corresponding resonances appear very close to each other.  
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(a) 9VdcV   and 0.5VacV  .                                  

 

(b) 10VdcV   and 0.5VacV  .                               (c) 11VdcV   and 0.5VacV  . 

Figure 4.10: Frequency response curves near sub-harmonic resonance near 
12 . 

Maximum non-dimensional deflection maxW at the center of the microplate against the 

actuating frequency   for a quality factor 250Q  .    

These neighboring resonances are of interest, for instance, for mass sensing MEMS 

applications. It is noticed that for very small imperfections the amplitude of the new 

resonance is very small. By further increasing the imperfection, the amplitudes of both 

resonances become the same but are smaller than the one with the ideal square plate. This 
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is because we are reducing width of plate ( b ) while keeping the length ( a ) constant, to 

get imperfections, which in return causes higher stiffness of the microplate and hence 

lower the amplitude of vibration. 

 

      (a)                                                                       (b) 

 

(c)                                                                   (d) 

Figure 4.11: Dynamic behavior of an imperfect square plate near the second symmetric-

symmetric mode of vibration when actuated at 1VdcV  , 0.3VacV  with a quality 

factor 1000Q  .   
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Chapter 5  

Initially Curved Micro-plates under Electrostatic 

Actuation 

In this chapter, we investigate the mechanical behavior of initially curved microplates 

under electrostatic actuation. It is common for microplates to undergo an initial curvature 

imperfection, due to the micro fabrication process, which affects significantly their 

mechanical behavior. Here, we develop a reduced order model based on the Galerkin 

procedure to simulate the static and dynamic behavior of the microplate. We investigate 

the convergence of static results with the number of modes retained in the reduced order 

model. We validate the reduced order model by comparing the calculated static behavior 

and the fundamental natural frequency with those computed by a finite element model. 

The static behaviour of the microplate is investigated when applying a DC voltage. Then, 

the dynamic behaviour of the microplate is examined under the application of a harmonic 

AC voltage superimposed to a DC voltage. As case studies, we consider two different 

profiles of the initial curvature imperfection and study their effects on both the static and 

dynamic responses of the microplates.  
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5.1. Introduction 

MEMS devices are commonly made up of microbeams and microplates [8, 12-24]. These  

are used in various applications, such as micropumps in micro fluidics, biomedical and 

cooling applications [15-17, 25-27] , microphones [19-21], mass sensors [22, 23] and 

resonators [24, 30] to realize sensors and microswitches [31, 32]. These underlying 

structures undergo imperfections during the micro fabrication process due to residual 

stresses. To model such structures, accurate models are needed, which properly account 

for this initial imperfection. 

We investigate next the effect of initial curvature profile on the static and dynamic 

behavior of the plate. Towards this, we consider two commonly encountered profiles of 

initial curvature and compare their effects on static behavior, eigen frequencies and 

dynamic behavior. Also we compare the results obtained from reduced order model with 

the results from a FE model for some cases to validate the model. 

5.2. Problem Formulation 

In this chapter, we consider a clamped-free-clamped-free (CFCF) rectangular microplate 

having an initial curvature imperfection
0 ( , )w x y  and in the domain 0 x a   and 

0 y b  , as shown in Figure 2.2. The problem was formulated in Chapter 2, where the 

governing equations (2.49)-(2.51) were derived using the modified von-Karman strains. 

The associated boundary conditions are given in equations (2.52)-(2.59).  

For convenience, we introduce the non-dimensional variables (denoted by hats)  
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Substituting equation (5.1) into equations (2.49)-(2.51) and dropping the hats, for 

convenience, we get the following equations:  
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    (5.4) 

The associated boundary conditions for the non-dimensional equations are 
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Clamped edges at x=0 and x=1 

0u          (5.5) 
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The parameters appearing in equations (5.2)-(5.12) are 
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5.3. Reduced Order Model 

This approach follows the method outlined in [11, 43, 83] . In this approach, the out-of-

plane deflection w is expressed as  

                                                        
1

( ) ( , )
m

i

i

iw q t x y


       (5.14)  

where ( , )i x y  are the out-of-plane mode shapes of the plate and ( )iq t are the 

corresponding unknown time dependent coefficients. Substituting equation (5.14) into 

equations (5.2) and (5.3), we obtain the following equations: 
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  (5.16) 

Equations (5.15) and (5.16) are nonhomogeneous coupled linear PDEs in u and v . Since 

these equations are linear, the principle of superposition can be used to determine the 

solution foru and v in the form [83] 
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where the superscript kl denotes the in-plane displacements klu and klv  caused by the 

loads
kl

xf and
kl

yf defined as 
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and similarly superscript k  denotes the in-plane displacements ku and kv caused by the 

loads
k

xf  and
k

yf  defined as 
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Equation (5.4) is multiplied by  
2

1 w  to treat the electric force term exactly with no 

approximation. Now by substituting equations (5.14), (5.17) and (5.18) into equation 

(5.4), multiplying by ( , )i x y and integrating over the plate domain we get the reduced 

order model for the governing equations. The reduced order model consists of a system 

of nonlinear coupled ODEs in ( )iq t . This system of ODEs is solved for ( )iq t  numerically 

using the Runge Kutta method and is substituted back into equation (5.14), (5.17), and 

(5.18) to obtain ,w u , and v respectively.  

5.4. Results 

In the following, we study the effect of the initial curvature on the static and dynamic 

behavior. The effect of initial curvature on fundamental natural frequency is also 

investigated. Toward this, we consider two profiles of initial curvature commonly 

encountered in micro fabricated structures: 

 2

01 0max 1 ( )w w Cos x        (5.23) 

    2

02 0max 1 ( ) ( y)w w Cos x Sin   
 

    (5.24) 

where 0maxw is the maximum curvature at the center of the microplate.  Profile 
01w  

assumes variation in shape along the x axis only (cylindrical bending shape) while profile 

02w  assumes variation in shape along both x and y axis. 
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5.4.1. Static Results 

First, we investigate the convergence of the static solution with the number of transversal 

modes of vibration retained in the reduced order model. We assume that no in-plane 

external forces are applied to the microplate, i.e., 1 12 2
ˆ ˆ ˆ 0i i iN N N   . To calculate the 

static deflection of the microplate under a DC load, the time derivatives are dropped in 

the reduced order model, (t)V  is replaced with
dcV , and the time dependent unknown 

coefficients ( )iq t  are replaced with constant coefficients
iq . This results in a system of 

nonlinear algebraic equations, which is numerically solved for
iq . Then equation (5.14) is 

used to find the non-dimensional transversal deflection. The static response is calculated 

using various values of voltage parameter 2

2 dcV until the pull-in instability (which occurs 

when the electrostatic force overcomes the mechanical force from the structure [7] ). 

Figure 5.1 shows the stable branch of the static response at the centre of the microplate 

against voltage until pull-in.  

One can note that the deflection curve is limited by the pull-in instability, where the slope 

of the curve approaches infinity.  As noted, three modes are sufficient to get a reasonably 

accurate solution. The convergence study is based on non-dimensional parameters, and 

hence is not specific to any plate of a particular geometry or material.  

Next, we investigate the effect of the initial curvature profiles on the static response of 

the microplate. The length and width of the microplate are 250a m  and 125b m , 

respectively. The thickness of the microplate is 1.75h m and the capacitor gap is 

2.5d m . The material parameters used in this investigation are 160GPaE  , 0.25   
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and 32500Kg/m  . The static response is calculated using various values of DC voltage 

dcV  until the pull-in for various values of initial curvature imperfections. Figure 5.2 

shows the variation of pull-in voltage threshold dc pullV   with the initial imperfection 
0maxw  

for the considered profiles 
01w   and 

02w .  
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Figure 5.1: Convergence of the static response with the number of transverse modes 

retained in the reduced order model. Variation of the maximum non-dimensional 

deflection maxW  at the center of the plate with the electrostatic voltage parameter 

2

2 dcV when 1   and 1 1  .  

For validation purpose, similar results calculated by a finite element (FE) model 

implemented in COMSOL Multiphysics  [82] are also shown for profile
01w .The 

Electromechanics module of COMSOL was used to model the electrically actuated 

microplate. A mapped mesh with 50 elements along the length and 25 along the width of 

the microplate was used. The geometric and material parameters used for the FE model 
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are the same as mentioned in this section. Since this is a geometrically nonlinear problem, 

the geometric nonlinearity is activated before performing the analysis. The results 

calculated by the reduced order model show good agreement, particularly for small 

values of imperfection. As the initial imperfection increases, the reduced order model 

results show deviation from the FE model results. This can be attributed to the use of 

mode shapes of a linear flat plate as basis functions in the reduced order model. To 

improve the accuracy for large curvatures, one may need to use mode shapes of a 

similarly curved plate or some other adequate basis functions.   
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Figure 5.2: Variation of the DC voltage 
pullV  at pull-in with the initial imperfection 

calculated by the reduced order model for curvature profiles 01w  and 02w . Results 

calculated by the FE model are also compared with the results of the reduced order model 

for profile 01w . 

One can note that although both profiles affect the pull-in voltage, 
01w  shows a 

significantly large influence as compared to the effect of 
02w . Moreover for profile 

02w , 
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the pull-in voltage reduces even when it is curved away from the other stationary 

electrode while for
01w  the pull-in voltage varies almost linearly. 

5.4.2. Dynamic Results  

In this section, first we investigate the effect of the initial curvature profile on the free 

vibration of the microplate without application of any electrostatic load. Towards this, we 

drop the nonlinear terms in the reduced order model to solve the linear eigenvalue 

problem to get the natural frequency. Figure 5.3 shows the variation of non-dimensional 

natural frequency against the initial curvature 
0maxw . We note that the natural frequency 

rises significantly with the increase of initial curvature of profile 
01w  but for curvature of 

profile
02w , it only rises slightly and then starts decreasing. It signifies that both profiles 

have significantly different effect on the natural frequency of the microplate.  Lin and 

Chen [68] and Liu and Yeh [70] have remarked that fundamental natural frequencies are 

significantly influenced by the initial curvature.  

For validation purpose, the natural frequency results calculated by the FE model 

implemented in COMSOL Multiphysics [82] are also shown for profile 
01w in Figure 

5.3a, which show excellent agreement with the results calculated by the reduced order 

model, thereby validating the current model. 
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                (a) 01w                                                                   (b) 02w  

Figure 5.3: Variation of the non-dimensional fundamental natural frequency 

2

non a
D


     with the initial imperfection 0maxw .  Results calculated by the FE model 

are also compared with the results of the reduced order model for profile 01w . 

Next, we investigate the effect of the initial curvature on the forced dynamic responses of 

the microplate. The dynamic behavior of the microplate is examined by generating 

frequency response curves in the neighborhood of the primary resonance under the 

application of a harmonic AC voltage superimposed to a DC voltage, i.e., 

(t) ( t)dc acV V V Sin   . The Runge Kutta method is used to perform long time numerical 

integration to solve the system of ODEs. The stable steady-state solution is captured after 

making sure that the transient response is no longer contributing to the response.  

First, we study the effect of the initial curvature on the linear response of the microplate. 

A small AC voltage 1VacV   is superimposed to a small DC voltage 1VdcV   to capture 

the linear response. Figure 5.4 shows the frequency response curves of the microplate 
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with curvature profiles
01w  and

02w  for various values of initial curvature
0maxw . One can 

note that for the profile
01w  the resonance frequency increases with increasing the initial 

curvature and for
0max 0.4w  , resonance frequency has increased about 22%. For

02w , the 

resonance frequency rises slightly with the initial curvature but then drops below the 

resonance of a flat plat.  
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                               (a) 01w                                                                (b) 02w  

Figure 5.4: Frequency response curves showing the linear responses of the microplate for 

various values of initial curvature imperfection for profile 01w and 02w when the microplate 

is actuated by a 1VacV  superimposed to a 1VdcV  , and a quality factor 1000Q  . 

Next, we examine the effect of the initial curvature on the nonlinear large amplitude 

vibrations of the microplate. To capture the nonlinear large amplitude vibrations, we 

apply a harmonic AC voltage 5VacV  superimposed to a DC voltage 5VdcV  . Figures 

5.5 and 5.6 show the frequency response curves for various values of initial curvature 

imperfection
0maxw  for profiles

01w and
02w .  
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Figure 5.5: Variation of the maximum non-dimensional deflection maxW  at the center of 

the plate with the actuation frequency  for various values of initial curvature 

imperfection for profile 01w  when 5VacV  , 5VdcV  , and quality factor 1000Q  . 
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Figure 5.6: Variation of the maximum non-dimensional deflection maxW  at the center of 

the plate with the actuation frequency  for various values of initial curvature 

imperfection for profile 02w  when 5VacV  , 5VdcV  , and quality factor 1000Q  . 
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The dynamic response of the flat microplate is a hardening behavior, which is then 

softened with the increase of initial imperfection for both considered profiles that 

ultimately converts to softening behavior for certain value of initial imperfection. Similar 

softening effect due to the initial curvature for completely free plates was reported by 

Alijani and Amabili [71] for large amplitude vibration. Lin and Chen [68] has also 

remarked about the conversion of hardening behavior to softening one depending on 

initial curvature.  

We also investigate the transition of hardening behavior of the microplate to the softening 

behavior with the DC voltage load. We apply a small 1VacV  superimposed to
dcV and 

capture the frequency response curves for various values of DC voltage. Figure 5.7 shows 

that the nonlinear dynamic response of the microplate converts to softening 

when 55VdcV   is applied for both profiles at
0max 0.2w  .    
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(a) 01w , 
0max 0.2w                                        (b) 02w , 

0max 0.2w   

Figure 5.7: Frequency response curves depicting the transition from hardening to 

softening response of the microplate with increasing dcV  with 1acV  . 
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Chapter 6  

Initially Curved Microplates under Electrostatic 

Actuation: Experimental Case Study and Model 

Validation 

We adopt the dynamic analog of the von-Karman governing equations of imperfect plates 

to model and simulate the nonlinear mechanical behavior of an initially curved 

microplate made of silicon nitride. The static behaviour of the microplate is investigated 

when applying a DC voltage, Vdc. Then, the dynamic behaviour of the microplate is 

examined under the application of a harmonic AC voltage, Vac, superimposed to Vdc. 

Simulation results show good agreement with the experimentally measured responses.  

6.1. Introduction 

In this chapter we investigate the nonlinear mechanical behavior of an initially deflected 

CFCF microplate experimentally. Such microplates are fabricated with the same 

procedure as in clamped-clamped microbeams. However, they offer the advantage of 

bigger surface area, for instance, which is of an advantage for surface functionalization in 

mass sensing applications. Also they offer larger flow rates in micropumping 

applications.  
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A silicon nitride microplate is fabricated using the micro-fabrication process detailed in 

[92]. The fabrication has been done by Dr. Mohammed L. Bellaredj at the KAUST 

Advanced Nano Fabrication (ANIC) laboratory. These microplates have acquired initial 

curvature during fabrication process due to residual stresses. These have been tested in 

collaboration with Dr. M. L. Bellaredj and Dr. A. Ramini. Both the static and dynamic 

analysis are performed and results are compared with the simulation results for the model 

validation purpose. 

6.2. Experiment 

First, we used optical interferometry profiler to characterize the dimensions and geometry 

of the microplate without any electrostatic load.  We found that the microplate has an 

initial deflection due to residual stresses caused by the micro fabrication process (Figure 

6.1). The maximum initial deflection 0w  at the center of the microplate is recorded to be 

0max 0.47w m . The length and width of the microplate are 250a m and 125b m , 

respectively. The thickness of the microplate is 1.75h m and the gap d  is found to 

be 2.25d m .  

Since the silicon nitride (Si3N4) is a dielectric material with a dielectric constant 

7rSiNx  , a conductive layer of gold is applied on top of the microplate. The equivalent 

capacitor gap is thus the air gap plus the contribution from the silicon nitride microplate. 

Equivalent capacitor gap eqd for the parallel plate capacitor is calculated by using the 

formula SiNx
eq

rSiNx

t
d d


   [93] and is found to be 2.464eqd m .  
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(a) 

   

(b)  

 

 (c) 

Figure 6.1: (a) Optical microscope view of the fabricated microplate, (b) deflection 

profile along the length of the microplate, and (c) deflection profile along the width of the 

microplate. 
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Figure 6.2 shows the used experimental setup. It consists of a Micro System Analyzer 

[94] which is a laser Doppler vibrometer,  a vacuum chamber; which houses the 

microplate, a vacuum pump to reduce the pressure, and a data acquisition system DAQ. 

 

Figure 6.2: Experimental setup showing the Micro-System Analyzer MSA-500, a vacuum 

chamber, a vacuum pump and data acquisition system DAQ. 

To measure the static response of the plate under electrostatic loads, we apply a DC 

load dcV  and capture the deflection at the center of the microplate using also the optical 

interferometry profiler. Figure 6.3 shows the maximum deflections maxW  measured at the 

center of the microplate against dcV until the plate pulls onto the stationary electrode. The 

measured pull-in voltage pullV  is found near 75V.  
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Figure 6.3: The maximum deflection 
maxW measured at the center of the microplate 

against 
dcV  until pull-in, at a 3.3 mTorr chamber pressure. 

To investigate the dynamic response, first we actuated the microplate by applying a white 

noise signal to identify the linear resonance frequencies. Figure 6.4 shows the velocity 

responses of the microplate to a white noise signal. The figure shows a primary resonance 

somewhere near 250 kHz along with some higher mode resonances.  

 

Figure 6.4: The velocity response of the microplate to the white noise actuation signal at 

Vdc=5V, Vac=10V and 3.3 mTorr chamber pressure.     
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(a) Vdc=1V, Vac=1V                                      (b) Vdc=5V, Vac=5V 
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(c) Vdc=10V, Vac=5V                                       (d) Vdc=15V, Vac=5V 

Figure 6.5: Frequency response plots in the neighborhood of the fundamental natural 

frequency of the microplate at various combinations of applied loads at a 3.3 mTorr 

chamber pressure. 

Next, to find the forced response, a harmonic load of amplitude acV  superimposed to dcV  

was applied to the microplate, i.e., (t) ( t)dc acV V V Sin   . We performed frequency 

sweeps in the neighborhood of the fundamental natural frequency at various applied 

voltages. First we applied small voltages to capture the linear response. We could capture 

a nearly linear response at 1VacV   and 1VacV   (Figure 6.5a). The fundamental natural 

frequency of the microplate f  is found to be around 246.3 KHz. Afterwards nonlinear 
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responses at various higher voltages were captured (Figure 6.5b-c). The microplate shows 

the nonlinear hardening response due to midplane stretching. Nevertheless the hardening 

response has been weakened due to the initial imperfection. This weakening effect will be 

further explained in the next section when we compare the theoretical results of a flat 

plate with the experimental results of the initially deflected microplate. Figure 6.5d shows 

a strange behavior near 250KHz , where the maximum deflection seems to be 

reduced slightly. This can be because of the laser beam getting somewhat away from the 

center of the microplate and hence recording a lower deflection.     

6.3. Theory  

In this section we present the theoretical static and dynamic results calculated by reduced 

order model of Chapter 5 and compare with the experimentally measured data for model 

validation. We use the plate parameters found by experiment along with the material 

parameters 160GPaE  , 0.25   and 
32500Kg/m  . The initial imperfection profile 

of the microplate is approximated by the function  4

0 1 ( ) ( y)w Cos x Sin    
 

, 

where   is the parameter that controls the maximum initial deflection at the center of the 

microplate. Figure 6.6 shows plots of the assumed profile of initial curvature 

imperfection along the length and the width of the plate respectively.  

To calculate the static deflection of the microplate under a DC load, we drop the time 

derivatives in the reduced order model; and the time dependent unknown coefficients 

( )iq t  are replaced with constant coefficients 
iq , and (t)V  is replaced with 

dcV . This 
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results in a system of nonlinear algebraic equations, which is numerically solved for 
iq . 

Then equation (5.14) is used to find the transversal deflection.  
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           (a)                                                                     (b) 

Figure 6.6: Plots of the assumed profile passing through the center of the microplate, (a) 

along the length of the microplate, (b) along the width of the microplate. 

The static response is calculated using various values of DC voltage dcV  until the pull-in. 

The results are compared with the static responses measured experimentally in Figure 

6.7. The results show excellent agreement with the experimentally measured data thus 

validating the reduced order model. 

The dynamic response of the microplate is calculated by applying a acV  superimposed 

to dcV  , i.e.,  (t) ( t)dc acV V V Sin   . The quality factor Q is approximated from the 

experimental frequency response at 1VacV  and 1VdcV   (Figure 6.5a) and is found to be 

around 785. This value is used in the simulations.  
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Figure 6.7: The maximum deflection
maxW  at the center of the microplate against 

dcV until 

the pull-in; calculated by the reduced order model accounting for initial curvature and 

measured experimentally. Results calculated by reduced order model for the flat plat are 

also shown for comparison. 

An in-plane tensile force 0.7N/mxxN   was applied to match the experimentally 

measured fundamental natural frequency. The initial imperfection parameter   is set such 

that the maximum initial imperfection at the center of the microplate is 

0max 0.4718w m .  Figure 6.8 shows the comparison of the dynamic responses 

calculated by the reduced order model with the experimentally measured results in the 

neighborhood of the fundamental natural frequency at various combinations of applied 

voltages. We note the results calculated by reduced order model show good agreement 

with the experimentally measured response. 
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           (a) Vdc=1V, Vac=1V 
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             (b) Vdc=5V, Vac=5V                                      (c) Vdc=10V, Vac=5V 

Figure 6.8: Comparison of the dynamic responses in the neighborhood of the 

fundamental natural frequency, calculated by the reduced order model ‘+’ with the 

experimentally measured results ‘*’ at various combinations of applied voltages. 

Next, we compare the dynamic response of a flat plate with the experimentally measured 

response of the initially deflected microplate. Towards this we set the initial 

imperfection 0 0w  , and capture the frequency response curve near the fundamental 

natural frequency. Figure 6.9 shows that the flat plate exhibits stronger hardening 

nonlinear response as compared to the experimentally measured response of the 
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fabricated microplate. Figure 6.9 reveals that the reduced order model without taking into 

account the effects of initial imperfection produces erroneous results. This is because the 

initial imperfection introduces softening effects due to the quadratic nonlinearity, which 

weakens the hardening behavior. Similar softening effect due to initial curvature 

imperfection was also captured experimentally by Alijani and Amabili [71] for 

completely free rectangular plates for large amplitude vibrations. Lin and Chen [68] 

remarked that large amplitude behavior may change drastically from hardening to 

softening depending on initial imperfection. Ostiguy et al. [69] stated that a plate with 

initial imperfection may exhibit a soft spring behavior.  
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(a) Vdc=1V, Vac=1V                                      (b) Vdc=5V, Vac=5V 

Figure 6.9: Comparison of the simulated dynamic response of a flat microplate ‘+’ with 

the experimentally measured response of the microplate ‘*’, which has initial curvature 

imperfection. 
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Chapter 7  

Summary, Conclusions, and Future Work 

In this chapter we summarize the dissertation and present the main conclusions and 

recommendations for the future works.  

7.1. Summary and Conclusions  

7.1.1. Approaches for Reduced Order Modeling of Electrically 

Actuated von-Karman Microplates 

We presented various approaches to develop a reduced order model for the nonlinear 

von-Karman microplates actuated electrically to study the static and dynamic behavior. 

We used different types of basis functions in conjunction with the Galerkin method to 

discretize the governing equations.  

First the convergence of static response was investigated with the number of modes used 

in the ROM for the different approaches.  Then for validation purpose we compared the 

static response calculated by the models under investigation with the results calculated by 

FE model implemented in COMSOL. The comparison has indicated that all the models 

show an excellent agreement with the FE model results except model III, which was 

shown to represent poorly the cubic nonlinearity due to midplane stretching due to the 

used shape functions. Eigen frequency analysis was performed using the approaches 
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presented in the models II-V, in conjunction with linearized equations for initially 

deflected microplate under DC load
dcV  .  

Eigen frequency results calculated by the current models are compared with the FE 

results, which show an excellent agreement except model III. This agrees with the static 

results and confirms the remark that model III does not account accurately for the cubic 

nonlinearity and that the shape functions used to represent the in-plane displacements are 

not accurate enough to capture the full effect of midplane stretching.  

Next we compared the dynamic response through frequency response curves at a small 

and large harmonic exciting force for the models II-V, since model I is not suitable for 

dynamic studies due to its iterative nature it’s excluded from the dynamic analysis. We 

noted that for linear vibrations analysis all the models show an excellent agreement 

except model II, which show a slight difference from the other models. For the large 

nonlinear vibrations, model III deviate from the other models, which was also the case in 

the static and Eigen frequency analysis and ratifies the remark that model III does not 

account accurately for the cubic nonlinearity. Models II, IV and V show very good 

agreement at large amplitude vibrations.  

As a conclusion, although it sounds appropriate to use any of them for investigation of 

large amplitude vibrations of microplates, we believe that model V is the most accurate 

one since it calculates the exact solution for midplane stretching while for all the other 

models we approximate the in-plane displacements using some kind of shape functions. 

Moreover it can be used with confidence for microplates with other boundary conditions 

for example a clamped-free-clamped-free (CFCF) microplate. For such a case the other 
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models may not be used with the same shape functions. So we conclude that model V is 

more rigorous and versatile and can be used for a microplate with any kind of boundary 

condition.   

7.1.2.  An Investigation of the Static and Dynamic Behavior of 

Electrically Actuated Rectangular Microplates 

We used a reduced order model for the investigation of the static as well as the dynamic 

behavior of electrically actuated rectangular microplates. First convergence of the static 

results with the number of mode shapes retained in the ROM was studied. We found that 

four modes are sufficient for convergence. We investigated the effect of different non-

dimensional parameters on the static behavior. Increasing the plate aspect ratio  

decreases the voltage parameter at pull-in while increasing the gap to thickness ratio 1  

increases the voltage parameter.  

The dynamic behavior of the microplate was investigated near primary and super-

harmonic resonances using long time numerical integration. We captured the stable 

solutions using forward and backward frequency sweeps. The microplate actuated near 

primary resonance shows a strong hardening behavior due to the cubic nonlinearity, 

which comes into play due to midplane stretching. Increasing acV  further widens the gap 

between the two stable solutions captured by forward and backward frequency sweeps 

and pull-in instability occurs at a lower vibration amplitude. Interesting phenomena are 

revealed when the microplate is actuated at 1

3


 super-harmonic.  We found when 

increasing the applied DC load that there is a transition from hardening behavior to 
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softening behavior. We also investigated the response of imperfect square microplates at 

the second symmetric-symmetric mode. Breaking the geometrical symmetry by slightly 

varying the value of  results in distinct neighboring resonances, which can be employed 

for developing mass sensing MEMS devices. 

7.1.3. Initially Curved Micro-plates under Electrostatic Actuation 

We presented a reduced order model based on the Galerkin procedure for initially curved 

rectangular plates under electrostatic actuation to simulate the static and dynamic 

behavior. First, we performed a convergence study for the reduced order model and 

found that three transversal modes retained in the model produce sufficiently accurate 

results. Then, we investigated the effect of the curvature profile on the static behavior of 

the microplate. We found that the considered profiles have significantly different effects 

on the static behavior. For validation purpose, we compared the static results calculated 

by reduced order model with the similar results calculated by a FE model and found a 

good agreement.  

Next, we investigated the free and forced dynamic responses of the microplate. We found 

that the considered profiles have considerably different effects on the natural frequency 

of the microplate. We also compared the natural frequency results calculated by the 

model with the similar results obtained by a FE model implemented in COMSOL 

Multiphysics, which show an excellent agreement thus validating the model.  

Then, we investigated the effect of the curvature profile on the forced dynamic behavior 

of the microplate. Large amplitude vibrations seem to show similar behavior, for which 
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the microplate shows a transition from hardening to softening at certain value of initial 

curvature for both profiles. Transition from hardening to softening behavior at a higher 

DC voltage was noted also in a similar manner for both profiles.  

Thus, we conclude that the curvature profile has significant effect on the static and 

dynamic behavior of the microplate. Eigen frequency may rise significantly or drop 

depending on the curvature profile. Large amplitude vibration behavior of the microplates 

converts from hardening to softening depending on the level of initial curvature.  

7.1.4. Initially Curved Microplates under Electrostatic Actuation: 

Experimental Case Study and Model Validation  

We presented experimental investigations on initially curved Si3N4 microplates to 

validate the reduced order model. We compared the results obtained by the reduced order 

model with the experimentally measured data. The comparison showed excellent 

agreement. Thus we conclude that the reduced order model based on the governing 

equations presented in Chapter 2, which accounts for the effects of initial curvature 

imperfection, is an accurate model. On the contrary, it was revealed in Figure 6.9 that the 

reduced order model without taking into account the effects of initial curvature 

imperfection produces erroneous results.  

7.2. Future Work Directions 

The following is a list of recommendations for future work directions. 
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 The presented investigation of the mechanical behavior of fully clamped 

rectangular microplates is conducted considering a constant quality factor. The 

work should be extended to include squeeze film damping effects into the model 

to simulate the behavior at various air pressure. 

 One interesting future research direction would be to extend the present work to 

model the fluid-structure interaction in micropump applications like drug delivery 

and manipulation in microfluidics.  

 It would be interesting to investigate the mechanics of structure of other 

geometrical shapes for example circular and semicircular. Also present work, 

which is limited to electrostatic actuation should be extended to other actuation 

techniques, e.g., electromagnetic, electrothermal, and piezoelectric.  

 Presented models can be tweaked to model the Graphene structures. Graphene is 

very promising to develop resonators having high quality factors to realize high 

sensitivity sensing application for example mass/gas sensors. 

 The presented reduced order model can be used to implement more sophisticated 

numerical techniques like shooting to simulate both stable and unstable branches 

of response and to clearly identify the dynamic pull-in of the microplate. 

 The present work can be extended to design new microplate based MEMS 

devices, such as micropumps and mass/gas sensors. 



112 

 

 Work needs to be extended to model the MEMS devices operating in liquid 

mediums. 

 The present work can be extended to model and simulate the behavior of 

electrostatically coupled microplates, where both sides of the parallel plate 

capacitor are flexible plates undergoing deflection when an electrostatic load is 

applied.     
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APPENDIX 

Mode Shapes and in-Plane Shape Functions  

The COMSOL Multiphysics FEM software [82] has been used for the extraction of mode 

shapes and the in-plane displacement shape functions. Towards this, we first performed a 

mesh convergence test. The FEM model consists of a square plate of side length 

100 m and thickness of 2 m . Figure A-1 shows the convergence of the first natural 

frequency with increasing the number of elements. We conclude from the figure that 

using a mapped mesh with 100 elements along each side of the square microplate is a 

reasonable compromise between accuracy and computational effort, since further 

increase of accuracy comes at much higher computational cost. 

In Figure A-2 are shown the in-plane shape functions u and v . These shape functions 

are extracted using the FEM software COMSOL [82]. A square microplate is deflected 

by applying a uniform transverse pressure. Then the in-plane displacements 

 ,u x y and  ,v x y  are extracted when the deflection at the center of the plate is nearly 

equal to half the thickness of the microplate. We normalize these displacements to use as 

shape functions u and v  to be used in the model IV. Next the eigenvalue problem of 

the linear undamped square microplate was solved. The first six non-dimensional 

frequencies 
2a

D


    of the symmetric-symmetric mode shapes are given in Table 

A-1 and corresponding mode shapes are shown in Figure A-3.  
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Figure A- 1: Mesh convergence study; convergence of the first natural frequency with 

increasing the number of elements. 

 

                           

(a)                                                                                (b) 

Figure A- 2: In-plane displacement shape functions for model IV, (a) ( , )
u

x y , (b) 

( , )
v

x y . 
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Table A- 1: Frequency parameter
2a

D


   for first six symmetric-symmetric mode 

shapes of a square microplate calculated using the FEM software COMSOL. 

Mode ( i  ) Non-dimensional frequency parameter, ( ) 

1  35.89 

2  130.98 

3  216.54 

4  302.87 

5  383.58 

6  545.7 
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(a)                                                                    (b) 

                  
(c)                                                                   (d) 

                 
(e)                                                                       (f) 

Figure A- 3: The first six symmetric-symmetric transversal mode shapes of a square 

microplate.  


