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ABSTRACT

Reduced-Order Dynamic Modeling, Optimal Control, and Fouling

Detection of Solar-Powered Direct Contact Membrane Distillation

Ayman Mustafa Karam

Membrane Distillation (MD) is an emerging sustainable desalination technique.

While MD has many advantages and can be powered by solar thermal energy, its

main drawback is the low water production rate. However, the MD process has

not been fully optimized in terms of its manipulated and controlled variables. This is

largely due to the lack of adequate dynamic models to study and simulate the process.

In addition, MD is prone to membrane fouling, which is a fault that degrades the

performance of the MD process.

This work has three contributions to address these challenges. First, we derive a

mathematical model of Direct Contact Membrane Distillation (DCMD), which is the

building block for the next parts. Then, the proposed model is extended to account

for membrane fouling and an observer-based fouling detection method is developed.

Finally, various control strategies are implemented to optimize the performance of

the DCMD solar-powered process.

In part one, a reduced-order dynamic model of DCMD is developed based on

lumped capacitance method and electrical analogy to thermal systems. The result is

an electrical equivalent thermal network to the DCMD process, which is modeled by

a system of nonlinear differential algebraic equations (DAEs). This model predicts

the water-vapor flux and the temperature distribution along the module length. Ex-

perimental data is collected to validate the steady-state and dynamic responses of the

proposed model, with great agreement demonstrated in both.



5

The second part proposes an extension of the model to account for membrane

fouling. An adaptive observer for DAE systems is developed and convergence proof

is presented. A method for membrane fouling detection is then proposed based on

adaptive observers. Simulation results demonstrate the performance of the membrane

fouling detection method.

Finally, an optimization problem is formulated to maximize the process efficiency

of a solar-powered DCMD. The adapted method is known as Extremum Seeking (ES).

A Newton-based ES is designed and the proposed model is used to accurately forecast

the distilled water flux. Although good results are obtained with this method, a

practical modification to the ES scheme is proposed to enhance the practical stability.
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Chapter 1

Introduction

...Water, water, everywhere,

Nor any drop to drink ...

(—Samuel Taylor Coleridge, The Rime of the Ancient Mariner)

1.1 Motivation and Background

Water is essential for the well-being, development, and life of mankind. It is estimated

that an average person requires a minimum of 50 liters of fresh water per day for

his basic needs. Fresh water is also needed for livestock, agriculture, and industry.

However, fresh water only accounts for 2.5% of Earth’s water body, with most of it

inaccessible in the form of glaciers, snow, and ice [3]. The rapid population growth

around the world has increased the demand for fresh water, putting the already limited

natural freshwater resources under great pressure. Many water-stressed countries

heavily rely on desalination plants to meet the ever increasing fresh water demand.

In 2010, it was estimated that about 55% of the total desalinated seawater in the

world was produced in Gulf Cooperation Council (GCC) countries [4].

Desalination is the process of removing salts and minerals from saline water to pro-

duce water suitable for human consumption, irrigation, or industrial purposes. The

objective is always to produce clean water in a cost-effective manner. It is worthwhile

to briefly present water classification based on salinity levels, as these levels generally
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Table 1.1: Water classification based on salinity levels.
Type Total Dissolved Solids (ppm)
freshwater up to 1,500
brackish water 1,500-10,000
Salt water >10,000
seawater 10,000-45,000
standard sea water 35,000

affect the choice of desalination method and the specific energy requirements. Table

1.1 shows the basic classification.

Desalination techniques can be classified into two categories, depending on whether

the feed water goes through a phase change or not. Electro Dialyses process, Microfil-

tration (MF), Revers Osmosis (RO), and Ultrafiltration (UF), are ”membrane-based”

pressure-driven desalination methods. On the other hand, Multiple Effect Distillation

(MED), Multi-Stage Flash (MSF) desalination, Thermal Vapour Compression (TVC),

and Mechanical Vapour Compression (MVC) are examples of ”thermal-based” tech-

niques [3].

Membrane Distillation (MD) is an emerging sustainable water desalination method,

which combines thermal and membrane-based techniques. In this process, thermal

energy is used for phase change of salty feed water while a hydrophobic membrane is

used to separate the water vapor from the hot feed solution. The vapor passes through

the membrane and to the other side where it condenses and is collected. The mass

transfer driving force is the partial vapor pressure difference across the membrane,

which is induced by the transmembrane temperature gradient.

MD technology has seen significant advances in the last 50 years, largely due to

the development of new and more effective membranes and efficient configurations. In

the last decade, attention to the mathematical modeling and sustainable integration

of MD with renewable and waste heat sources, and overall system optimization has

considerably increased. All of these efforts are capitalizing on the advantages of MD

over other desalination methods.
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Unlike the well-known RO process, MD operates at a lower hydrostatic pressure

and the water temperature is usually between (40-80◦C). Therefore, MD requires less

energy and can operate on waste heat, solar or another form of renewable energy. As

a result, MD is a promising stand alone solution that requires minimal infrastructure

for water desalination [5]. There are still several limiting drawbacks to MD how-

ever, notably the low production rates when compared to conventional desalination

techniques. In addition, like many other membrane-based processes, MD is prone to

membrane fouling, which is the result of gradual accumulation of deposited particles

onto the membrane surface. Membrane fouling greatly reduces the mass transfer driv-

ing force and degrades the MD performance and, if left undetected, can cause system

shutdown for cleaning. However, if detected in its early stages, membrane fouling can

be dealt with by preventive actions, which saves on operation and maintenance costs.

To overcome these limitations, it is important to understand and model the dynamic

relations governing the process variables and use the established knowledge in control

theory to enhance and optimize the MD process.

This work has three objectives. First, we need to develop a mathematical model

of the Direct Contact Membrane Distillation (DCMD) that can be adapted for the

process optimization and fouling detection. Then, we extend the proposed model

and develop a fouling detection method based on a new adaptive observer design

technique. Finally, we propose and implement optimal control techniques to the

solar-powered DCMD process.

1.2 Proposed Approach

The main limitation of the current MD water desalination processes is a low freshwater

flux compared to conventional thermal and pressure-driven techniques. The thermal

efficiency of MD processes is another obstacle. The starting point to deal with these

challenges is to develop a deep understanding of the MD process and its intrinsic
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variables. Despite that MD has been around for more than half a century [1], accurate

and dynamical mathematical models are still lacking in the literature.

Most of the reported models describe the steady-state dimensionless heat and mass

transfer phenomena. It is only recently that some studies suggested dynamical models

for MD processes. While black-box input-output models of the process are good for

simple prediction and analysis, a more useful insight into the process can be obtained

from physical modeling. Since MD relies on temperature-driven pressure gradient

to produce flux, the temperature through the module varies spatially and over time.

This suggests that a Partial Differential Equation (PDE) model would be a suitable

mathematical model. However, several limitations of PDE-based models exist. For

instance, complex boundary conditions and geometrical domains make it difficult to

get a closed-form analytic solution. While, numerical discretization methods may be

used to obtain a solution, the resultant system introduces many states that are not

observable in practice. This could lead to issues with model controllability and/or

observability.

Other alternatives to PDE-based models are lumped capacitance models, which

represent a reduced order version of somewhat the equivalent PDE model. These

models offer simplicity and practicality while providing the much needed physical in-

sight. In this work, we derive a reduced-order nonlinear differential algebraic equation

(DAE) model, based on electrical analogy to thermal systems of one configuration

of MD, namely DCMD. This configuration is chosen because of its simplicity and

the availability of a DCMD experimental setup in our laboratory at the Water De-

salination and Reuse Center (WDRC) at King Abdullah University of Science and

Technology (KAUST). In addition, DCMD has the largest number of papers pub-

lished in refereed journals, according to [1]. Moreover, the proposed model can easily

be adapted for other MD configurations. More details and background on the MD

process will be presented in the next chapter 2.
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To address the challenging problem of membrane fouling, which affects many

membrane-based desalination processes including MD, the proposed model is ex-

tended to account for this effect. To detect membrane fouling, an adaptive singular

observer is designed for this purpose. First, the convergence results and design tech-

nique is presented for a general class of nonlinear DAE systems. Then, the proposed

design is extended for the specific application of fouling detection in DCMD.

The proposed model accurately predicts the distilled water flux, therefore enabling

the design and testing of different control algorithms. This becomes more vital when

powering the DCMD process with solar energy and trying to optimize the overall

system. We demonstrate, with simulation results, an optimization method which

minimizes the energy consumption of a DCMD module while maximizing the output

flux. Inspired by the same optimization method, we propose a practical modification

to it.

1.3 Contributions

The contributions of this work folds in the following stream:

� Derived a novel methodology for reduced-order dynamic modeling of heat trans-

fer in fluid flow systems based on electrical equivalent thermal networks.

� Developed a reduced-order dynamic model of the DCMD process, which solves

directly for the variable of interest and provides a physical insight into the

process.

� Implemented a software platform on MATLAB to simulate various setups and

operating conditions of DCMD.

� Validated the proposed model against experimentally collected data for various

steady-state and dynamic conditions.
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� Extended the proposed model of DCMD to account for membrane fouling.

� Developed a new design method for nonlinear adaptive descriptor observers,

convergence results are proven by sufficient condition.

� Implemented a method for membrane fouling detection based on adaptive ob-

servers, results are presented and discussed.

� Formulated and illustrated an optimal control problem for solar-powered DCMD

setup.

� Presented a practical modification of a real-time optimization algorithm called

Extremum Seeking (ES), where an ES algorithm with adaptive dither signal

amplitude proposed.

In chapter 2, a brief background about several water desalination techniques along

with the basic concepts and configurations of the MD process are presented. The pro-

posed model is developed based on mass and energy balance equations in chapter 3.

Simulation results for two case studies are considered and discussed in chapter 4.

The general design method for nonlinear adaptive descriptor observers is developed

in chapter 5. The proposed model of DCMD is extended to account for membrane

fouling, and the performance of a specific implementation of the proposed adaptive

observer design for fouling detection is demonstrated in chapter 6. A review of two

Extremum Seeking (ES) schemes is provided in chapter 7. In addition, the proposed

modification to the ES is presented with simulation results compared to the origi-

nal design. An optimal control problem is formulated for the solar-powered DCMD

in chapter 8. Finally, conclusions are drawn and future directions are proposed in

chapter 9.
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Chapter 2

Membrane Distillation

2.1 Introduction

Membrane Distillation (MD) is a hybrid process where both thermal and membrane

separation techniques are combined. In this process, a hot salty stream passes along

one side (the feed side) of a microporous hydrophobic membrane, while the other

side (the permeate side) of the membrane is kept at a lower temperature. Due to

this temperature difference, water evaporates at the feed-membrane interface, and

only water vapor passes through the hydrophobic membrane, driven by a differential

saturation vapor pressure across the feed and the permeate sides of the membrane.

The water vapor then condenses on the permeate side of the membrane [1].

This chapter gives an overview of several desalination techniques and focuses more

on MD and its configurations. The mechanism of mass and heat transfer in DCMD

is then presented.

2.2 Water Desalination Techniques

Before looking to MD and its configurations, this is a brief background about other

desalination techniques based on the adopted separation process.

� Techniques without phase change: These methods usually employ some sort of

pressure difference to drive water through a membrane. Reverse Osmosis is the

most widely used method among other techniques, like Electro Dialyses, MF,
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and UF. MF and UF are best suited for removal of suspended solids or as a

pretreatment step for other desalination technologies.

– Revers Osmosis (RO)

Osmotic pressure naturally drives solvent substance through a selective

semi-permeable membrane, i.e. a membrane which retains solutes, from

the low concentration side of the membrane (the feed side) into a ”draw”

solution of high concentration. On the other hand, the RO process applies

high pressure at the high concentration side of the membrane to overcome

the osmotic pressure, hence the name reverse osmosis.

� Techniques with phase change: These processes typically vaporize the salty feed

water to produce freshwater. As a result, a substantial amount of thermal

energy is required in these ”thermal-based” processes. The two most widely

used thermal desalination processes are Multiple Effect Distillation (MED) and

Multi-Stage Flash (MSF) desalination, among other techniques like Thermal

Vapour Compression (TVC), and Mechanical Vapour Compression (MVC).

– Multiple Effect Distillation (MED): As the name suggests, this process

includes multiple stages, or ”effects”, where the salty feed water is heated

up via steam tubes in each stage. Some of the water evaporates and this

vapor is used to heat the next stage feed water and so on. The steam from

all the stages is then collected as a freshwater.

– Multi-Stage Flash (MSF) desalination: In this process, a portion of feed

water is flashed into steam by reducing the pressure in the respective stage

chamber. Heat is supplied to the feed across multiple stages by counter-

current heat exchangers. This process accounts for about 66% of the total

desalinated water in the world.
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2.3 MD Configurations

Several configurations have been proposed for MD, each with its pros and cons. The

four main configurations are:

� Direct Contact Membrane Distillation (DCMD)

� Air Gap Membrane Distillation (AGMD)

� Sweeping Gas Membrane Distillation (SGMD)

� Vacuum Membrane Distillation (VMD)

In all of these configurations, the hot feed solution is always kept in direct contact with

one side of the membrane, where vapor forms and passes through to the permeate

side. However, the configurations differ according to the mechanism used to condense

the water vapor.

2.3.1 Direct Contact Membrane Distillation

DCMD is the simplest MD configuration. Both the feed and permeate solutions are

kept in direct contact with the membrane, hence the name direct contact (Fig. 2.1a).

Since evaporation and condensation take place at the respective membrane surface,

the temperatures at the membrane interfaces are very close to that of the respective

bulk steam. This allows for a large temperature drop across the membrane, leading

to a higher mass transfer driving force, hence, a greater water flux than other MD

configurations. This makes DCMD setup suitable for seawater and brackish water

desalination. However, heat losses in DCMD are high since the only barrier between

the hot feed and the cooled permeate is the thin membrane [6].
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DCMD 

(a) 

AGMD 

(b) 

Figure 2.1: Schematic diagram of DCMD and AGMD modules.[1]

2.3.2 Air Gap Membrane Distillation

There are three separate channels in this configuration: the hot feed side, a stagnant

air gap channel (permeate side of the membrane), and a coolant circulation stream

(Fig.2.1 b). Vapor forms at the feed-membrane interface and passes through the

membrane where it condenses on the condensing plate and the flux is collected out

from the air gap. This setup reduces the heat losses by introducing the air gap between

the membrane and the coolant fluid. The air gap thickness is of great importance,

as a larger gap thickness decreases the effective temperature difference across the

membrane, thus reducing the distilled water flux. Since the permeate flux is separated

from the coolant fluid, the Air Gap Membrane Distillation (AGMD) setup is more

convenient for applications such as removal of volatile organic compounds (VOCs)

from aqueous solutions. This is an important advantage AGMD has over DCMD [7].

2.3.3 Sweeping Gas Membrane Distillation

This configuration sweeps gas along the membrane-permeate interface, which carries

the vapor flux out of the MD module. Therefore, an external condenser has to be
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(a) (b) 

VMD SGMD 

Figure 2.2: Schematic diagram of SGMD and VMD modules.[1]

installed to collect the produced water (Fig. 2.2 a). This setup raises the capital

cost of the MD setup by adding the external condenser. However, SGMD reduces the

additional mass transfer resistance found in AGMD by continuously circulating dry

air along the membrane [8].

2.3.4 Vacuum Membrane Distillation

In this MD configuration, a vacuum is applied on the membrane-permeate interface

by a vacuum pump (Fig. 2.2 b). The resultant pressure in the permeate side on the

membrane has to be lower than the saturation vapor pressure at the membrane-feed

surface to drive the mass transfer through the membrane. Like in SGMD, VMD

requires an external condenser to collect the permeate flux. This setup has two

advantages: The heat losses by conduction through the membrane are reduced and the

effect of the thermal boundary layer at the membrane-permeate interface is negligible

because of the low pressure applied at the permeate side of the membrane. In addition,

there is a reduced resistant to mass transfer through the membrane, due to the induced

vacuum. However, this configuration has a higher risk of pore wetting. This is when

the applied vacuum overcomes the liquid entry pressure of the hydrophobic membrane
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[9].

2.4 Theoretical Background

Since only water vapor is allowed through the hydrophobic membrane, MD has a

100% theoretical reject rate of ions, making it more appealing than other separation

methods for water treatment containing non-volatile solutes [10]. There are several

other applications of MD such as seawater desalination [11], and heavy metal removal

[12].

Unlike conventional thermal-based desalination methods, MD does not require

intensive heat, which means it can be integrated with solar thermal energy and waste

heat sources [13, 14]. In addition, since MD operates at a lower hydraulic pressure,

it is less susceptible to scaling and fouling; a general drawback of pressure-driven

membrane-based desalination techniques, like RO. Moreover, the general operational

concept of MD requires demanding membrane characteristics and properties [5]. All

these features make MD ideal for sustainable water desalination in remote areas [15].

In the next subsections, the principles of mass and heat transfer in DCMD are

presented. The proposed mathematical model is then developed based on lumped

capacitance method in the next chapter.

2.4.1 Mass and Heat Transfer in DCMD

A schematic diagram of flat-sheet DCMD module is shown in Fig. 2.3. In this con-

figuration, hot water is passed along one side of a hydrophobic membrane, called

the feed, and cold fresh water flows in the counter direction along the other side,

which is called the permeate. Both heat and mass transfer processes occur simul-

taneously as water evaporates at the feed-membrane interface and condenses at the

permeate-membrane interface. The transport phenomena are described by the classic

gas permeation and heat transfer theories.
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Figure 2.3: Schematic diagram of DCMD module.

Mass Transfer

The temperature difference between the membrane-feed interface (Tmf) and membrane-

permeate interface (Tmp) induces a difference in the saturation vapor pressure (∆P ).

The mass flux (J) in DCMD is related to the saturated vapor pressure difference

across the membrane through the membrane mass transfer coefficient (Bm), as fol-

lows [16]:

J = Bm∆P = Bm

(
Pmf − Pmp

)
(2.1)

The mechanism dominating the mass transfer through the porous membranes depends

on the pore radius (r) and the mean free path of the vapor molecules (λ). For

membranes with pore radius in the range of 0.5λ < r < 50λ, the membrane mass

transfer coefficient is expressed as a parallel combination of Knudsen diffusion (BKn)

and molecular diffusion (BD) coefficients [17], given by

Bm =
1

1/BKn + 1/BD

, (2.2)
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where

BKn =
4

3

εr

χδ

√
2mw

πR̄T
, BD =

ε

χδ

PD

Pa

mw

R̄T
.

The saturated vapor pressure of pure water (P sat
w [T ]) as a function of temperature

(in ◦C) is given by the Antoine equation [18]:

P sat
w [T ] = exp

(
23.1964− 3816.44

T + 227.02

)
. (2.3)

Dissolved salt in the feed stream reduces the saturated vapor pressure. Therefore,

to compensate for this, the following relation was proposed in [18]

Pmf = (1− xNaCl)(1− 0.5xNaCl − 10x2NaCl)P
sat
w [Tmf ], (2.4)

where xNaCl is the mole fraction of NaCl in the feed stream. However, the permeate is

pure and the saturated vapor at the membrane-permeate interface is Pmp = P sat
w [Tmp].

Heat Transfer

As the water evaporates at the membrane-feed interface, the temperature drops from

that of the bulk-feed stream (Tbf), creating a thermal boundary layer. Another bound-

ary layer is formed as the water vapor condenses on the membrane-permeate interface,

and thus raising the temperature higher than that of the bulk-permeate stream(Tbp).

In addition, conduction takes place through the membrane due to the temperature

difference. This is known as the temperature polarization effect [18]. In order to

quantify this effect, The Temperature Polarization Coefficient (TPC) is defined as:

TPC =
Tmf − Tmp

Tbf − Tbp
(2.5)
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This effect reduces the mass transfer driving force, lowering the production rate of

the DCMD desalination system. Moreover, the temperature of the feed and perme-

ate streams varies along the flow direction from inlet to outlet, due to convection.

Therefore, the TPC is not the same along the membrane length. It is essential to

model these spatial variations to be able to characterize the mass flux of the DCMD

module. Various approaches have been proposed to model heat transfer in DCMD.

In the next chapter, we review the current state of the art about MD modeling and

motivate and derive the proposed modeling approach.

2.5 Chapter Summary

This chapter gave an overview of several desalination techniques and highlighted

the advantages and potential of MD towards sustainable desalination. Then, a brief

background about the mass and heat transfer mechanisms was presented. The spatial

temperature distribution presents a challenge for model development and accurate

prediction of mass flux. In the next chapter, we review the literature on MD modeling

and motivate the proposed modeling approach followed by the model development.



33

Part I

Model Development and Validation
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Chapter 3

Reduced-Order Dynamic Modeling of DCMD

3.1 Introduction

Since heat transfer in MD involves several mechanisms, various modeling approaches

have been proposed in the literature. From a simple steady-state model without a

space dimension, which could be useful to understand the heat transfer across the

membrane, to a much detailed computational fluid dynamics model, which may not

be very practical for process control. However, as stated before, the objective is

to derive a physical model of DCMD that is suitable for process analysis and real-

time optimal control. In this chapter, a state of the art literature study on existing

models is first presented. Then, we continue with the heat transfer in DCMD and

the development of the proposed dynamical model is detailed.

3.2 Related Work

To capitalize on the stated advantages of MD, the water desalination process has to

be well understood, modeled, and optimized to maximize the distilled water flux. In

recent years, there have been some efforts to model the MD process and understand

the effect of its operational parameters. The steady-state space-independent analysis

sets the foundation for understanding the process [17, 19]. To capture the steady-state

spatial effects on the process, several approaches have been proposed. In [20], energy

and mass conservation laws were used to compare the energy efficiency of three MD

configurations: DCMD, AGMD, and Vacuum Membrane Distillation (VMD). In [2],
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simulations governed by the laminar steady-state Navier-Stokes equations were com-

pared to measurements of DCMD obtained experimentally. A more recent work, [21],

based on energy and mass balances was also compared to experimental measurements

of a DCMD experimental setup.

However, due to spatial and temporal variations of the temperature distribution

inside the MD module and other effects, it is important to learn more about the

dynamic response of the process. In addition, when coupling the MD process with

renewable energy, the additional challenge of the unsteady nature of the energy source

has to be considered as it evolves in time. All of these reasons have motivated the

dynamical modeling of the MD [13, 11, 22, 23]. Both [13, 22] considered dynamic Par-

tial Differential Equations (PDEs) to model AGMD and DCMD respectively, whereas

[11] proposed a black-box model based on artificial neural networks.

There are two main limitations for most of the reported models: They are ei-

ther only applicable for steady-state dimensionless analysis or are computationally

not suitable for real-time process control and optimization. In contrast to black-box

models, physical models offer more insight into the process and its operational pa-

rameters (i.e. the feed and permeate inlet temperatures and flow rates as well as

the geometry of the module and the membrane properties). It is important to notice

that lumped capacitance models [20, 21] have the benefits of physical models while

maintaining the potential for real-time control and optimization applications. Our

approach builds upon this concept and proposes a dynamical lumped capacitance

model based on electrical analogy to thermal systems.

3.2.1 Heat Transfer in DCMD

To consider spatial variations on the temperature along the feed and permeate flow

directions, the DCMD module is divided into control-volume cells. Then, based on

the lumped capacitance method, a dynamical model for heat transfer is developed



36

Mass flux 𝐽n 
Heat transfer rate 𝑄m 

𝑄fn  

𝑀fn−1 

𝑑𝑧 𝑇mfn  𝑇bfn  𝑇bpn  𝑇mpn  

𝑄fn+1 

𝑀fn 

𝑄pn+1
 

𝑀pn
 

𝑄pn
 

𝑀pn−1
 

M
e

m
b

ra
n

e
 

Figure 3.1: Schematic diagram of the nth DCMD cell.

using the energy conservation law.

Fig. 3.1 depicts the nth DCMD cell, where the bulk temperatures (Tbfn , Tbpn) are

uniform throughout the cell, except at the membrane interfaces due to the tempera-

ture polarization effect, the reader may refer to the List of Symbols for nomenclature

description. Therefore within each cell, heat transfer occurs from the feed side to

the permeate side and takes place mainly by conduction and due to mass transfer, in

three stages. In the first stage, heat is transferred from the hot bulk feed stream to

the boundary layer at the feed-membrane interface, the heat transfer rate is expressed

as

Qmfn = Am
(
hf(Tbfn − Tmfn) + JncpTbfn

)
.

The rate of change of the bulk feed stream energy in the nth cell can now be expressed

as

Cbf
d Tbfn
dt

= Qfn −Qfn+1 − Am (hf(Tbfn − Tmfn) + JncpTbfn) , (3.1)

where Qfn and Qfn+1 are the heat transfer rate into and out of the nth feed cell

respectively.
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At the second stage, heat is transferred through the membrane via three mecha-

nisms. The first mechanism (Qn
m1) is the latent heat of vaporization (Hv) transported

by the mass flux (Jn) through the nth cell1, expressed as

Qn
m1 = AmJnHv[Tmfn ] = Bm(Pmfn − Pmpn)Hv[Tmfn ], (3.2)

where the latent heat of vaporization Hv in (KJ/kg) is expressed as a function of

temperature (T in ◦C):

Hv[T ] = −2.426 T + 2503 (3.3)

The second and third mechanisms are heat conduction through the membrane

material and air trapped in the membrane pores which are combined as

Qn
m2 = Amhm(Tmfn − Tmpn), (3.4)

where the membrane heat transfer coefficient (hm) is the weighted average of thermal

conductivity of the membrane material and air, km and kg respectively, given as [5]:

hm =
kgε+ km(1− ε)

δ
,

where ε is the membrane porosity in percentage, and δ is the overall membrane

thickness.

Combining these mechanisms to write the energy balance at the membrane inter-

faces gives the following equation

Qmfn = Qmpn , (3.5)

where the heat transfer rate at the permeate-membrane interface (Qmpn) is expressed

1The cell index ”n” can be sub-scripted and supper-scripted in this work.
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as

Qmpn = Am
(
hp(Tmpn − Tbpn) + JncpTmpn

)
= Qn

m1 +Qn
m2. (3.6)

Finally, the third stage of heat transfer where the water-vapor condenses at the

permeate-membrane interface and heat is transferred to the bulk permeate mass. The

rate of change of energy for the bulk permeate stream is given by

Cbp
d Tbpn
dt

= Qpn −Qpn+1 + Am (hp(Tmpn − Tbpn) + JncpTmpn) , (3.7)

where Qpn and Qpn+1 are also the heat transfer rate into and out of the nth permeate

cell respectively.

The two heat transfer coefficients at the membrane interfaces (hf , hp) can be

calculated from empirical correlations. These correlations depend on the flow char-

acteristic (laminar or turbulent) and vary accordingly. In this study, the following

relation is used for both heat transfer coefficients [17]:

h = 0.13Re0.64Pr1/3
kw
Dh

, (3.8)

where Re and Pr are the Reynolds and Prandtl numbers respectively.

Thus far, the analysis has presented the foundation of the proposed modeling

method based on energy and mass conservation laws taken on control volume cells

along the module length. However, in order to consider the spatial temperature

distribution, these cells have to be coupled together to account for the temperature

gradient along neighboring cells. More precisely, the heat transfer rates into and out

of the nth cell (Qfn , Qfn+1 , Qpn , and Qpn+1) has to be quantified. This is enabled by

constructing an electrical equivalent thermal network of the DCMD process, based

on equations (3.1)-(3.7), as will be discussed in the next section.
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3.3 Development of the Electrical Equivalent Thermal Net-

work of DCMD

The dynamical model is based on electrical analogy to thermal systems, which can be

derived from the basic laws of each system. Appendix A details the derivation process

while a summary of the analogy is shown in Table A.1. Indeed, electrical-analogy

based methods have been used to describe the dynamical behavior of many industrial

and biological systems such as heat exchangers [24] and the human cardiovascular

system [25]. Moreover, it was shown that the transient diffusion phenomena and the

heat transfer due to non-steady fluid flow can be described by an electrical analog,

see [26] and [27] respectively. The literature above motivated the method presented

in this chapter.

Based on the equations derived for the nth DCMD cell, an electrical analog is

constructed to simulate heat and mass transfer processes. The electrical analog of

the nth cell of the DCMD module is shown in Fig. 3.2. The thermal capacity of

the feed and permeate bulk sides is represented by Cbf and Cbp respectively. In

each of the three stages of heat transfer discussed in Section 3.2.1, the heat transfer

rate by conduction is proportional to the temperature difference across the thermal

resistances Rf , Rm, and Rp, whereas the heat transfer rate due to mass transfer is

modeled by the current sources Qn
1, Qn

m1, and Qn
2. This completes the analogy of

heat transfer within the same cell, and in order to couple neighboring cells, the series

impedances (opposition to the heat transfer rate) Zn
f and Zn

p are introduced. Apart

from the series impedances, Table 3.1 details the expression of each element in the

electrical analog circuit.

Another important part of DCMD electrical analogy is to consider the heat trans-

fer by the feed and permeate inlet mass flow rates. Therefore, the electrical analog

network should be fed and terminated properly to account for the heat transfer rates

into and out of the MD module. This, as well as the series impedances, are fully
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Figure 3.2: Electrical analogue of the nth cell of the DCMD module.

discussed next.

3.3.1 Feeding and Terminating the Network

The feed and permeate inlet temperatures are manipulated by voltage sources (Tfin

and Tpin , respectively) that can be set as required. This allows to simulate any desired

inlet temperature profile. The mass flow rate at the feed inlet (Mfin) supplies heat in

(Watts) at the rate of

Qfin = Qf1 = MfincpTfin . (3.9)

Therefore, the input impedance of the network should be 1/(Mfincp) in order for a

voltage of Tfin to develop at the feed input terminal of the network.

Table 3.1: Elements of the electrical thermal network for DCMD cell
Element Expression Unite

Rf
1

Amhf
◦C/W

Rm
1

Amhm
◦C/W

Rp
1

Amhp
◦C/W

Qn
1 AmJncpTbfn W

Qn
m1 AmJnHv[Tmfn ] W

Qn
2 AmJncpTmpn W

Cbf ρwcpvbf J/◦C
Cbp ρwcpvbp J/◦C
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The rate of heat leaving the feed side is given by:

Qfout = QfN+1
= MfNcpTfout . (3.10)

Similarly, for the permeate side, the rate of heat transfer at the outlet is:

Qpout = Qp1 = Mp1cpTpout . (3.11)

However, by conservation of energy, the feed outlet temperature cannot go be-

low the permeate inlet temperature and vice versa, the permeate outlet temperature

can’t exceed the feed inlet temperature. Based on this argument, the feed and per-

meate outlet sides are terminated across termination resistances (Rfterm and Rpterm ,

receptively) as

0 = Tfout − Tpin −RftermQfN+1
, (3.12)

0 = Tpout − Tfin +RptermQp1 . (3.13)

where Rfterm = 1
MfN

cp
and Rfterm = 1

Mp1cp
.

3.3.2 The Series Impedance

In order to simulate the temperature gradient along the membrane in both the feed

and permeate sides, adjacent cells are coupled together via the series impedances (Zn
f

and Zn
p). Careful analysis should be done to design them in order to obtain the correct

temperature drop from one cell to the next. As stated in [24], this impedance cannot

be determined by direct analogy. However, it is clear that the value of this impedance

should be a function of mass flow rates on both feed and permeate sides and the energy

lost/received to/from the other side of DCMD module, i.e. the thermal resistance at

the membrane interfaces and through the membrane.
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Figure 3.3: Simplified electrical analogue of the feed side.

From the analysis of the constant jacket temperature heat exchanger analog pre-

sented in [24], and some intuition as it will be explained, the feed side of the network

can be simplified as shown in Fig. 3.3, where an equivalent shunt thermal resistance

Rfeq is introduced. Both the series impedance Zn
f and the shunt resistance Rfeq are

unknown and to be identified empirically. It is apparent from the analysis in [24] that

the resistance Rn
fz is inversely proportional to Rfeq and the square of the mass flow

rate Mfn , and takes the following form

Rn
fz =

1

M2
fn
c2pRfeq

. (3.14)

In order to achieve the correct response from the network, several values of the

equivalent shunt thermal resistance Rfeq were tested and verified against experimental

data. Based on that, the following parametrization was found to give the best result:

Zn
f = Rn

fz + jωLn
f , (3.15)

where

Rn
fz =

1

M2
fn
c2p(Rf + Rm + Rp)

, Ln
f =

Rn
fz
2Cbf

4
.
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The symbol jω is used to indicate complex impedance.

The same procedure was used to obtain the parametrization for the permeate side

series impedance (Zn
p) as:

Zn
p = Rn

pz + jωLn
p, (3.16)

where

Rn
pz =

1

M2
pnc

2
p(Rf + 0.5Rm + Rp)

, Ln
p =

Rn
pz

2Cbp

4
.

Let’s explain the idea behind Zn
f and Zn

p parametrization. The thermal inertia of

the nth cell is modeled by the inductors Ln
f and Ln

p, which account for the dynamic

response, while the steady-state response is given by the thermal resistances Rn
fz and

Rn
pz. Heat transfer along the flow direction is significantly affected by the flow inertia

because heat is stored in the feed and permeate streams and is transferred by their

movements. Therefore, the inductive impedances (Ln
fz and Ln

pz) resist any sudden

changes in the flow momentum and converts potential energy stored in the thermal

capacitor to kinetic energy transferred by the stream mass flow rate and vice versa.

This oscillatory behavior is damped by the resistances Ln
f and Ln

p.

This concludes the analysis and design of the electrical equivalent thermal network

analog of the DCMD setup. In this model, the states are the temperatures in each cell

and the heat transfer rates into and out of the cell, the manipulated variables are the

inlet feed and permeate water temperatures and flow rates, the controlled variables

are the water mass fluxes in each cell which when averaged together represent the

overall water mass flux of the DCMD module. In the next section, the equations for

the DCMD electrical analogy will be driven from the completed electrical equivalent

thermal network circuit.
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Figure 3.4: Completed electrical equivalent thermal network analogue of the DCMD
module.

3.4 Equations of the Electrical Equivalent Thermal Network

of DCMD

The elements of the electrical analog network are now properly identified and param-

eterized, and the complete network is shown in Fig.3.4. Based on this analog circuit,

electrical laws are applied to derive the model of DCMD.

The heat transfer rates into and out of the nth cell (Qfn , Qfn+1 , Qpn , and Qpn+1)

can now be quantified to derive the coupling between neighboring cells. Recall that

current in thermal analogy is the heat transfer rate which is flowing through the series

impedance from one cell to the next. At the feed side, the rate of change of the heat

transfer rate from the n− 1 cell to the nth cell is proportional to the temperature

difference between them. Taking into consideration the series impedance Zf
n, this is

expressed as:

d Qfn

dt
=

1

Ln
f

Tbfn−1 −
Rn

fz

Ln
f

Qfn −
1

Ln
f

Tbfn . (3.17)

Applying conservation of energy at the nth feed cell, the rate of change of the bulk
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feed water equals the rate of energy entering the cell minus the rate of energy leaving

the cell. This is also expressed by Kirchoff’s current law at the nth node of the ETN.

It follows that the rate of change for the bulk feed temperature (Tbfn) is

d Tbfn
dt

=
1

Cbf

Qfn −
1

Cbf

(
1

Rf

+ JnAmcp

)
Tbfn −

1

Cbf

Qfn+1 +
1

CbfRf

Tmfn . (3.18)

Notice that (3.18) is equivalent to (3.1), but now (3.17) describes the dynamics of the

heat transfer rates into and out of the nth feed cell (Qfn and Qfn+1 respectively).

Similarly for the permeate side, the rate of change of the heat transfer rate (Qpn)

is

d Qpn

dt
=

1

Ln
p

Tbpn−1 −
Rn

pz

Ln
p

Qpn −
1

Ln
p

Tbpn , (3.19)

and the dynamics of the bulk permeate temperature (Tbpn) is

d Tbpn
dt

=
1

Cbp

Qpn −
1

CbpRp

Tbpn −
1

Cbp

Qpn+1 +
1

Cbp

(
1

Rp

+ JnAmcp

)
Tmpn . (3.20)

The coupling between the feed and the permeate dynamics in the nth cell is established

through the algebraic constraints (3.5) and (3.6), which are written in residue form

as

0 =

(
1

Rf

+ JnAmcp

)
Tbfn −

1

Rf

Tmfn −
(

1

Rp

+ JnAmcp

)
Tmpn +

1

Rp

Tbpn , (3.21)

0 =

(
1

Rm

+
1

Rp

+ JnAmcp

)
Tmpn −

1

Rp

Tbpn − JnAmHv[Tmfn ]− 1

Rm

Tmfn . (3.22)

The outlet temperatures at the terminal cells of the feed and permeate analog are

also given by the algebraic equations (3.12) (3.13).

The heat and mass transfer equations (3.12)-(3.22) represent a nonlinear system

of Differential Algebraic Equation (DAE). When considering a total number of N

interconnected cells, the resultant equations can be expressed as a nonlinear descriptor
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(or DAE) system of the form

EẊ(t) = F
(
X(t), u(t)

)
X +B

(
u(t)

)
, (3.23)

y =

CX
G

 (3.24)

where X ∈ IR6N+4 represents the differential and algebraic states, Ẋ refers to the time

derivative of the state vector, E is singular, rank[E] < 6N + 4, and is called the mass

matrix, F
(
X(t), u(t)

)
∈ IR6N+4×6N+4 is nonlinear in the states and input, B

(
u(t)

)
∈

IR6N+4 represents the input channels into the system, which are the feed and permeate

inlet temperatures and mass flow rates (Tfin , Tpin , Mfin , Tpin . In physical setups, the

measurable outputs of this model are the feed and permeate outlet temperatures

(Tfout , Tpout), which can be linearly inferred from the state vector X by the matrix

C ∈ IR2×6N+4, and water production rate(G in kg/hr), which is a nonlinear function

of the states. This block matrix representation of (3.23) is further detailed in the

next section.

3.5 Descriptor Representation of the DCMD Model

This representation is computationally efficient to solve the nonlinear DAE system

and enables the number of total cells (N) to be chosen as desired. In order to take

advantage of a tridiagonal structure of (3.23), the state vector X combines both

differential and algebraic states in the following order:

X = [ Qf1 , Tbf1 , . . . , TbfN , QfN+1
, Qp1 , Tbp1 , . . . , TbpN , QpN+1

, (3.25)

Tfout , Tpout , Tmf1 , . . . , TmfN , Tmp1 , . . . , TmpN ]T . (3.26)
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As a result, the matrix E is the singular mass matrix, given as:

E =

I4N+2×4N+2 0

0 02N+2×2N+2

 , (3.27)

where I is the identity matrix and 0 is the zero matrix of appropriate size.

The matrix F
(
X(t), u(t)

)
represents the nonlinear dynamics of (3.23) and is com-

posed of several blocks which account for the dynamics of the feed and permeate

sides along with the algebraic coupling between them, the symbol Z refers to a block

matrix for algebraic variables.

F
(
X(t), u(t)

)
is given as

F
(
X(t), u(t)

)
=



Af 0 Zf1 Zf2 0

0 Ap Zp1 0 Zp2

Tfo Tpo I 0 0

Z1 Z2 0 Z3 Z4

0 Z5 0 Z6 Z7


(3.28)

where

Af ∈ IR2N+1×2N+1 : Tridiagonal matrix representing the feed differential dynamics.

Zf1 ∈ IR2N+1×2 : Feed last cell

Zf2 ∈ IR2N+1×N : Coupling to the membrane-feed interface

Ap ∈ IR2N+1×2N+1 : Tridiagonal matrix representing the permeate differential dynamics.

Zp1 ∈ IR2N+1×2 : Permeate first cell

Zp2 ∈ IR2N+1×N : Coupling to the membrane-premeate interface

Tfo ∈ IR2×2N+1 : Outlet temperature of the feed

Tpo ∈ IR2×2N+1 : Outlet temperature of the premeate
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I ∈ IR2×2 : The identity matrix.

Z1 ∈ IRN×2N+1 : Sparse matrix

Z2 ∈ IRN×2N+1 : Sparse matrix

Z3 ∈ IRN×N : Diagonal matrix

Z4 ∈ IRN×N : Diagonal matrix

Z5 ∈ IRN×2N+1 : Sparse matrix

Z6 ∈ IRN×N : Diagonal matrix

Z7 ∈ IRN×N : Diagonal matrix

The matrixB
(
u(t)

)
is a nonlinear function of the manipulated variables (Mfin , Mpin ,

Tfin , Tpin). For convenient representation, the matrix is indexed at the left side:

B
(
u(t)

)
=



1 8 a2 M
4
fin

0

2 0 0

...
...

...

0 0

4N+2 0 −8 a7 M
4
pin

0 0

...
...

6N+4 0 0



Tfin
Tpin

 . (3.29)

The elements of the F
(
X(t), u(t)

)
are detailed as follows. The tridiagonal matrices

Af and Ap are specified by tridiag(Af ) and tridiag(Ap), which refer to the three

diagonal vectors of Af and Ap. Each column is a diagonal vector, starting from the

lower, main, and then upper diagonal vector respectively.
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tridiag(Af ) =



−4a1 M
2
fin

−8a2 M
4
fin

a5 −a3 J1 − a4 −a5

4a2 M
4
f1

−4 a1 M
2
f1

−4a2 M
4
f1

...
...

...

4a2 M
4
fN−1

−4a1 M
2
fN−1

−4a2 M
4
fN−1

a5 −a3 JN − a4 −a5

8a2 M
4
fN

−4a1 M
2
fN



,

tridiag(Ap) =



−4a6 M
2
p1
−8a7 M

4
p1

a9 −a8 −a9

4a7 M
4
p2
−4 a6 M

2
p2
−4a7 M

4
p2

...
...

...

4a7 M
4
pN

−4a6 M
2
pN
−4a7 M

4
pN

a9 −a8 −a9

8a7 M
4
pin
−4a6 M

2
pin



,

Zf1 =



0 0

...
...

0 0

−8a2 M
4
fN

0


, Zf2 =



0 0 . . . 0

a4 0 . . . 0

0 0 . . . 0

0 a4 . . . 0

...
...

. . .
...

0 0 . . . 0

0 0 . . . a4

0 0 . . . 0



,
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Zp1 =



0 8 a7 M
4
p1

0 0

...
...

0 0


, Zp2 =



0 0 . . . 0

a10 J1 + a8 0 . . . 0

0 0 . . . 0

0 a10 J2 + a8 . . . 0

...
...

. . .
...

0 0 . . . 0

0 0 . . . a10 JN + a8

0 0 . . . 0



,

Tfo =

0 . . . 0 − 1
MfN

cp

0 . . . 0 0

 , Tpo =

 0 0 . . . 0

1
Mp1 cp

0 . . . 0

 ,

Z1 =


0 1

Rf
+ a11 J1 0 . . . 0

0 0
. . . 0 0

0 . . . 0 1
Rf

+ a11 JN 0

 , Z2 =


0 1

Rp
0 . . . 0

0 0
. . . 0 0

0 . . . 0 1
Rp

0

 ,

Z3 =



− 1
Rf

0 . . . 0

0 − 1
Rf

. . .
...

...
. . . . . . 0

0 . . . 0 − 1
Rf


,

Z4 =



− 1
Rp
− a11J1 0 . . . 0

0 − 1
Rp
− a11J2

. . .
...

...
. . . . . . 0

0 . . . 0 − 1
Rp
− a11JN


,
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Z5 =


0 − 1

Rp
0 . . . 0

0 0
. . . 0 0

0 . . . 0 − 1
Rp

0

 .

The diagonal vectors of Z6 and Z7 are diag(Z6) and diag(Z7) respectively, which

are given as

diag(Z6) =



− 1
Rm
− AmHv[Tmf1 ]J1

− 1
Rm
− AmHv[Tmf2 ]J2

...

− 1
Rm
− AmHv[TmfN ]JN


, diag(Z7) =



1
Rm

+ 1
Rp

+ a11J1

1
Rm

+ 1
Rp

+ a11J2

...

1
Rm

+ 1
Rp

+ a11JN


.

The parameters a1 to a11 are

a1 =
c2pRfeq

Cbf

a2 =
c4pR

2
feq

Cbf

a3 =
Amcp
Cbf

a4 =
1

CbfRf

a5 =
1

Cbf

a6 =
c2pRpeq

Cbp

a7 =
c4pRpeq

2

Cbp

a8 =
1

CbpRp

a9 =
1

Cbp

a10 =
Amcp
Cbp

a11 =Amcp

where

Rfeq = Rf + Rm + Rp

Rpeq = Rf + 0.5Rm + Rp
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The mass flow rates (Mfn and Mpn) coming out of the nth cell are indexed

Mfn = Mfn−1 − Am Jn; n = 2, 3, . . . ,N

Mpn = Mpn+1 + Am Jn; n = 1, 2, . . . ,N− 1

where as

Mf1 = Mfin − Am J1

MpN = Mpin + Am JN

3.6 Chapter Summary

Membrane distillation is a thermally driven process where only water vapor is passed

through a hydrophobic membrane. Several models have been proposed to study this

process, yet most of them assume steady-state conditions. This work presents a

novel approach to model Direct Contact Membrane Distillation (DCMD) dynamics

based on the analogy between electrical and thermal systems. A distributed lumped

capacitance dynamical model accounting for mass, energy, and momentum balance

was derived and simulated. Counter-current flow setup was considered under various

conditions. This model is promising and can be extended to other MD configurations.

More details about the MATLAB implementation and the model performance and

validation results are discussed in the next chapter 4.
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Chapter 4

Model Validation Results

4.1 Introduction

This chapter presents validation results of the proposed model. The validation has

been carried out for two case studies. First, we discuss the MATLAB implementa-

tion of this model and the developed software. Then simulation results for the two

case studies along with the effect of some operational parameters on the process are

discussed.

4.2 MATLAB Implementation

The proposed model is implemented with MATLAB [28] environment. A software has

been developed which can be easily adjusted to simulate various DCMD experimental

setups and modules, i.e. the membrane characteristics and the module dimensions.

This is very important for process scale-up studies and performance evaluation un-

der various operating conditions. Also, The feed and permeate mass flow rates and

inlet temperatures can follow any desired time-varying profiles. The desired level of

accuracy can be achieved by varying the total number of cells (N). A total number

of cells between 3 and 10, depending on the module size, gives accurate results.

The model is simulated using ode15s MATLAB solver, which uses an adaptive

integration step size based on the user defined tolerance. This solver accepts a mass

matrix, which in this case is a square singular matrix to identify the differential

equations and the algebraic constraints. At the beginning of each simulation run, the
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module dimensions and membrane properties and other experimental setting were set

as required. Then, the ode15s solver is called with relative parameters, such as the

simulation duration, and the feed and permeate inlet temperatures and velocities.

Inside the ode15s function, the DAE model is constructed and model parameters are

updated if necessary as some parameters are temperature dependent. For example,

water properties, like density and dynamic viscosity are interpolated for both the feed

and permeate streams depending on the average temperature between the inlet and

outlet of each channel, so there is one value for the feed side and another one for the

permeate side. Also, the membrane mass transfer coefficient and the heat transfer

coefficients at the membrane interface layers are updated according to the temperature

and flow rate conditions, respectively. Once the simulation passes the first seconds of

a transient response, the adaptive solver increases the step size. Therefore, simulation

results can be obtained relatively fast.

In order to validated the proposed dynamic model of DCMD, simulations were

carried out for two case studies:

� Case 1: An experimental data set that is reported in the literature, see [2],

providing steady-state flux and temperature measurements.

� Case 2: An experimental data set, provided by the WDRC at KAUST, for the

steady-state and dynamic response of the flux and feed outlet temperature.

4.3 Case 1 Results

This experimental data, reported in [2], is chosen to validate the simulation results

of the proposed model because it tests various aspects and criteria of the DCMD

operation as well be presented in the following three tests.
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Figure 4.1: Flux as a function of feed linear velocity. Experimental data (Exp.)
extracted from [2] compared to modeling results (Mod.) for different linear velocities.

4.3.1 Test 1:

Effect of linear velocity on distilled water flux

The distilled water flux is a function of the partial vapor pressure difference across

the membrane, which is expressed as a function of temperature. The linear velocity

inside the feed and permeate channels have a significant effect on the heat transfer

from the bulk stream to the membrane boundary layer, where higher velocity reduces

the thickness of the thermal boundary layer and the temperature polarization effect is

reduced. Therefore, it is important to study the relation between the feed/permeate

stream velocity on the distilled water flux.

This effect was investigated for two feed inlet temperatures, 60◦C and 40◦C and

permeate inlet temperature of 20◦C for both cases. The feed and permeate stream

velocities were increased from 0.17 m/s to 0.55 m/s and the distilled water flux was

recorded. Fig. 4.1 presents the results obtained from the simulated electrical analog

compared to the experimental data reported in [2]. As it was expected, the flux

increased with higher velocities. Also, higher values of flux are achieved with higher

feed inlet temperatures. This is due to the exponential increase in the mass transfer

driving force. It is clear that the modeling results agree with the experimental values
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of flux under the two different feed inlet temperatures with less than 10% difference

between them.

4.3.2 Test 2:

Effect of linear velocity on feed and permeate outlet

temperatures

Another criterion to validate the model is to compare the feed and permeate outlet

temperatures to the experimental measurements reported in [2]. Table 4.1 shows the

outlet temperatures obtained from simulating the model with five feed and permeate

linear velocities starting from 0.17 m/s to 0.55 m/s compared to the experimental

data with these conditions: 1% NaCl concentration, and counter current flow setup.

The model results are accurate to less than 3% error.
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Figure 4.2: Temperature distribution along the flow in the feed and permeate sides.

4.3.3 Test 3:

Temperature distribution along flow direction

The temperature distribution along the flow direction was simulated for the following

settings: counter-current flow, feed and permeate linear velocity of 0.5 m/s, feed inlet

temperature of 60◦C, permeate inlet temperature of 20◦C, and feed NaCl concentra-

tion of 1%. The ETN model results are presented in Fig. 4.2. This temperature

distribution agrees with the experimental data seen in [2]-Fig.8(b).

4.4 Case 2 Results

Two kinds of experiments were conducted by the WDRC to further validate the

proposed model, one under steady-state conditions and the other for a ramp of the feed

inlet temperature. The experimental setup is first presented followed by a description

of the steady-state and dynamic experiments. Finally, the simulation results for both

experiments are shown.
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Figure 4.3: A schematic diagram of the experimental lab scale setup.

Table 4.2: DCMD Module Parameters
Property Value
Active area 0.005 m2

Total thickness 0.170 mm
Pore size 0.27 µm
Porosity 77%
Tortuosity 1.35 µm
Liquid Entry Pressure 15 psi
Contact angle 140 ±3◦

4.4.1 Experimental Setup and Materials

The DCMD lab scale setup used in this experimental work was locally designed

and fabricated at KAUST [29]. A schematic diagram of the setup is presented in

Figure 4.3. All experimental runs were conducted in a 0.1 m × 0.05 m × 0.003 m

flat sheet membrane module made of Poly Methyl Methacrylate (PMMA) material.

A composite membrane with a polytetrafluoroethylene (PTFE) active layer and a

non-woven polypropylene support layer was used in all experiments. Details of the

membrane characteristics and its performance for seawater desalination were widely

reported in previous works, e.g. [30, 29, 31]. Some of these parameters are presented

in Table 4.2.

For the steady-state experiments, Red Sea water was preheated to the desired
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temperature and circulated through the feed side of the membrane, while deionized

(DI) water was circulated through the other side of the membrane simultaneously in a

counter-current mode. The inlet feed and coolant temperatures were controlled using

thermo-regulators. Four experiments were carried out, at various feed inlet tempera-

tures (40◦C, 50◦C, 60◦C, and 70◦C). Fresh seawater was used for each experiment.

For the time-varying response experiment, the influence of feed water temperature

ranging from 30◦C to 68◦C on trans-membrane flux was also studied by ramping the

feed inlet temperature at a rate of 0.05◦C per minute. During the ramping experiment,

the coolant temperature was also maintained at 20◦C.

For all experiments, the feed and coolant flow rates were kept constant at 90

liters/hr and 60 liters/hr, respectively. The inlet and outlet temperatures of the

feed and coolant side were measured by thermocouple sensors with an accuracy of

±1.0◦C. The water-vapor flux produced by the DCMD process increases the volume

of water in the coolant tank and, as a result, overflow occurs through an outlet of

the coolant tank. To measure the water-vapor flux, the overflow was collected in

a separate container placed on a weighing balance (Mattler Toledo NewClassic ML

3200g) with an accuracy of 0.02 g. The increase in weight of the container was

continuously monitored and recorded. All measurements were fed through a data

acquisition unit into an NI LabView software. The conductivity of the coolant and

feed solutions was continuously monitored and measured using conductivity meters

(Oakton Eutech Instruments, Malaysia) with multiple ranges (0 to 20, 20 to 200, 200

to 2000 µS/cm; and 0 to 20.00, 20 to 200 mS/cm) and an accuracy of ±1% of the

full scale.
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Figure 4.4: Distilled water flux at different feed inlet temperatures.

4.4.2 Steady-state Flux Validation at Various Feed Inlet Tem-

peratures

One of the main factors contributing to the flux in DCMD is the feed inlet tempera-

ture. It is important to demonstrate that the proposed model is capable of accurately

forecasting the vapor flux at different feed inlet temperatures.

4.4.3 Dynamic Validation of the Flux and Feed Outlet Tem-

perature

Fig. 4.5 depicts the simulated and experimental feed outlet temperature, where it

is clear that the simulation results closely match the experimental data and within

the sensor tolerance. The water vapor flux was recorded by a sensitive electrical

scale, which could be prone to random error or noise. Despite this, we see that

the simulation results follow the trend of the experimental data closely as in Fig.

4.6. Since the vapor flux is a nonlinear function of the trans-membrane temperature

difference, we notice an exponential increase in the flux with respect to the feed inlet

temperature.

Based on the validation results obtained for both the steady-state and dynamic

responses, the same model can be used to solve for intrinsic variables that are not
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Figure 4.5: Feed outlet temperature for a ramp feed inlet temperature from 30◦C to
68◦C. Dash is experimental measurements, line is simulation results.
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Figure 4.6: Distilled water flux for a ramp feed inlet temperature from 30◦C to 68◦C.
Dots are experimental measurements, line is simulation results.

accessible in the physical setup. For instance, in the time varying ramp experiment,

the average pressure differential grows exponentially with respect to the linear increase

in the feed inlet temperature, see Fig.4.7.

4.5 DCMD Process Analysis and Discussion

Based on the excellent validations results, we propose to use the same model to carry

out design and scale-up studies. As stated before, the proposed model estimates and
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Figure 4.7: The average pressure differential across the membrane predicted over
time for a ramp feed inlet temperature from 30◦C to 68◦C. This shows an exponential
relationship between the feed inlet temperature and pressure differential.

solves for intrinsic variables that are not accessible in the physical setup. In the next

subsections, we analyze and discuss the effects of various operating conditions on the

DCMD process.

4.5.1 Step responses of the DCMD process

An important advantage of the proposed model is the ability to obtain the time

response under dynamic changes in the DCMD process. In this simulation the module

dimensions are set as follows: length 5m, width 0.4m, channel thickness 0.003m. The

feed and permeate inlet velocities are kept constant at 0.4 m/s, the permeate inlet

temperature is set to 20◦C, while the feed inlet temperature is stepped from 50◦C to

60◦C at time t=15s. The time response of the feed-bulk temperature distribution over

the module length is depicted in Fig. 4.8, where each curve shows the temperature

distribution at a given time instant. Starting from the lowest blue curve at t=15s,

the module takes 12.5s in response time to reach the upper red curve which shows

the new steady state temperature distribution. Fig. 4.9 shows the step response of

the bulk-feed and membrane-feed interface temperatures at the cell corresponding to

1.75 m from the feed inlet. Notice that the DCMD process response is relatively fast,
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Figure 4.8: The time response of the bulk feed temperature distribution for a step
change of the feed inlet temperature from 50◦C to 60◦C, where each curve shows the
response at a given time instant.

given sufficient actuation power. The flux response is presented in Fig. 4.10, it also

takes about 12 seconds to reach the new steady-state value.
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Figure 4.9: The time response for a step change in the feed inlet temperature of the
bulk feed (top) and membrane-feed (bottom) temperatures at the cell corresponding
to 1.75 m from the feed inlet.
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Figure 4.10: Water-vapor flux response for a step change in the feed inlet temperature.

4.5.2 Maximizing the DCMD process efficiency

We would like to apply the proposed model to investigate the DCMD process and

optimize its efficiency. Specifically, we want to find the optimal inlet mass flow rates

of the feed and permeate streams that maximize the process efficiency for any given

module size. Define the thermal conversion efficiency as the ratio between the pro-

duction rate in kg/hr and the supplied thermal energy calculated as Qin = MfincpTfin .

The water vapor flux and production rate (kg/hr) are simulated under different feed

and permeate inlet velocities, 0.2, 0.4, 0.6, and 0.8 m/s, while the feed and per-

meate inlet temperatures were kept at 60◦C and 20◦C, respectively. The residence

time (restime) of the feed and permeate streams is increased by increasing the module

length according to this relationship, restime = inlet velocity/module length, while

the module width is set to 0.4 m. In this simulation, we notice that as the length of

the module increases the average flux decreases, as shown in Fig. 4.11. This is due

to the following reasons:

1. As the residence time increases, more heat is lost by conduction through the

membrane.
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Figure 4.11: Predicted flux vs length for velocities 0.8, 0.6, 0.4, 0.2 m/s, top to bottom
respectively

2. The relationship between the saturation vapor pressure and the temperature is

nonlinear. The exponential relationship between the temperature and pressure

is the key factor here. Here are two cases that demonstrate this point.

Case 1: the temperature at the feed membrane interface is 50◦C and at the

permeate membrane side is 40◦C. Calculating the pressure difference across the

membrane gives P1=4970 Pa.

Case 2: the temperature at the feed membrane interface is 60◦C and at the

permeate membrane side is 50◦C. Calculating the pressure difference across the

membrane gives P2=18847 Pa.

In both cases, the temperature difference across the membrane is 10◦C, but

the flux generated in case 2 is much higher due to higher driving force. As

the DCMD module length increases, the temperature drop in the feed side from

inlet to outlet increases. Whereas for the permeate side, as the length increases,

the temperature rise from inlet to outlet increases. At some point, the pressure

differential along the module length decreases, which results in lower average

flux.
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Figure 4.12: Thermal conversion efficiency (kg/hr W) for velocities 0.2, 0.4, 0.6, 0.8
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Figure 4.13: Optimal residence time vs optimal length. Notice that if the module
length increases, then the feed and permeate inlet velocities should be high as well.

On the other hand, the thermal conversion efficiency increases rapidly as the

residence time increases until it reaches a maximum value after which it starts to

gradually decline, as seen in Fig. 4.12. An important remark regarding the optimal

residence time of water inside the DCMD module channels is observed. For small

lengths, it is optimal to run at relatively slow velocities and vice versa, as shown

in Fig.4.13. Therefore, there exist an optimal inlet velocity for each module length,

which achieves maximum efficiency. Plotting the optimal velocity vs the module

length, the following relation can be obtained by fitting the points to a curve, v =

0.0272x1.213.
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4.5.3 Temperature prediction along the module length

Predicting the temperature at the membrane boundary layers is essential to accurately

quantify the water vapor flux. This model provides distributed temperature predic-

tions along the length of the module. Fig. 4.14 shows the feed and permeate bulk and

boundary layers temperatures under the conditions: module length of 16.5 m, width

of 0.4 m, feed and permeate inlet temperatures of 60◦C and 20◦C, respectively, and

the linear velocities of both sides was 0.4 m/s. Since this is a counter-current flow

setup, the bulk-feed and membrane-feed boundary temperatures drop with the flow

direction, whereas the bulk permeate and boundary layer temperature increase with

the flow direction. This figure clearly shows the nonlinear temperature distribution

along the module length.

4.5.4 Effect of linear velocity on the TPC

To investigate the effect of feed and permeate inlet velocities on the TPC, we design

the following simulation. The feed and permeate inlet temperatures are kept constant

at 60◦C and 20◦C, respectively, while the inlet velocities were increased from 0.1 m/s



69

0.65

0.7

0.75

0.8

0.85

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7
TP

C
 (

-)
 

Feed inlet velocity (m/s) 

Figure 4.15: TPC as a function of feed inlet velocity.

to 0.65 m/s. Fig. 4.15 shows the TPC as a function of the inlet velocities. It is clear

that increasing the inlet velocity has a desirable effect on the TPC. However, this effect

begins to saturate starting from 0.5 m/s onward. As the velocity inside the feed and

permeate channels increases, the Reynolds number of the flow increases and, as a

result, the thermal boundary layer thickness is reduced. Therefore the temperatures

at the membrane interfaces are brought closer towards that of the respective bulk

temperature.

4.5.5 Membrane Mass Transfer Coefficient Identification

It is very important to estimate the membrane mass transfer coefficient to study the

efficiency of the module design and monitor the condition of the membrane during

operation. A simple test was designed to identify the membrane mass transfer coeffi-

cient in each cell which demonstrates the potential application of this model. Again

10 cells were used for this test, but now two cells had a membrane mass transfer

coefficient of 4.1919e-07 (Kg/m2 hr Pa) and the remaining eight cells had a mass

transfer coefficient of 6.6919e-07 (Kg/m2 hr Pa). Ten experiments were simulated

with increasing linear velocities of the feed and permeate streams from 0.115 m/s to

0.55 m/s with feed inlet temperature of 60◦C and permeate inlet temperature of 20◦C

and the total flux was recorded for each experiment. The total flux of the module
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can be expressed as the sum of the individual cells fluxes:

J =
10∑
n=1

Bmn∆Pn. (4.1)

A linear system of equations was set to identify the individual cell membrane mass

transfer coefficients, in which the partial vapor pressure difference across the mem-

brane in each cell was calculated from the temperature distribution along the flow

direction. Then, by solving the system of equations for Bmn using the truncated

singular value decomposition method, the mass transfer coefficient of each cell was

successfully identified and in the correct order.

4.6 Chapter Summary

This chapter presented the experimental validation results of the proposed model

under steady-state and dynamic operating conditions. The simulation results were

found to be accurate and within measurement tolerance. Encouraged by these results,

we discussed the effects of various operational parameters on the DCMD process

performance. It was found that the proposed model could be used to estimate the

membrane mass transfer coefficient. However, a more efficient way to evaluate the

characteristics and conditions of the membrane is by designing adaptive observers,

which could run in real-time and take advantage of readily available measurements

(feed and permeate outlet temperatures and flux). This will enable real-time fault

detection of the membrane fouling. In the next chapter, we present a novel design

method of adaptive observers for a class of nonlinear descriptor systems, which will

be later extended and applied for the membrane fouling detection in Chapter 7.
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Part II

Adaptive Observers Design and Fouling Detection
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Chapter 5

Adaptive Observer Design for Descriptor Systems

5.1 Introduction

This chapter reviews the relevant literature about adaptive observers design for de-

scriptor systems. Then, a novel design method of adaptive observers for nonlinear

descriptor systems is presented with proof of convergence. Finally, a numerical ex-

ample illustrates the performance of the proposed adaptive observer.

5.2 Related Work

Adaptive observers are used for joint state and parameter estimation. Among the

main motivations to study and design adaptive observers are adaptive control and

fault detection and isolation (FDI) [32, 33, 34]. Over the past decades, the design

of linear and adaptive observers has been extensively studied in [35, 36, 37, 38] and

references therein. On the other hand, design methods for nonlinear systems are still

an active research field. In [39], a unifying form for adaptive observers for systems

that are linear in their parameters was presented. More recently, an adaptive observer

for a class of systems that are nonlinear in the parameters was introduced in [40].

These methods deal with systems modeled by ordinary differential equations (ODE).

A more general class of models are descriptor systems (also known as differential

algebraic systems or singular systems). These systems appear naturally when model-

ing interconnected processes, electrical networks, and constrained mechanical systems

[23, 41, 42]. There are two common approaches to design observers for descriptor sys-
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tems. The common approach to observer design for linear descriptor systems is to

use a system of ODEs such that its solution converges asymptotically to the true

states by eigenvalue assignment [43, 44]. This approach was extended to estimate

states and unknown inputs for linear systems with applications to fault estimation

[45, 46] and FDI for linear parameter varying systems [47]. Conversely, for nonlinear

descriptor systems, the observer dynamics are a copy of the original system with an

error correction term. This approach may also be applied to linear descriptor sys-

tems. In this approach, under Lipschitz conditions for the nonlinear terms, one can

derive the observer gain based on Lyapunov analysis by solving a set of linear matrix

inequalities (LMI) [48, 49, 50, 51].

The early work by [52] presented a design method for adaptive observer for linear

descriptor systems. Later in [53], an adaptive observer for linear descriptor system

based on the method reported in [43] was proposed. To the best of the authors’

knowledge, adaptive descriptor observers for nonlinear systems has not been studied.

This chapter presents an adaptive descriptor observers design method for a class of

nonlinear descriptor systems with Lipschitz nonlinearities and unknown parameters.

Unlike the methods reported in [43, 44, 45, 53], the proposed method does not require

coordinate transformation. In addition, the adaptive observer gain design is facili-

tated by solving a set of LMI, which guarantees sufficient conditions for asymptotic

convergence of the states and parameters estimations to their true values.

This chapter is organized as follows. In Section 5.3, the problem formulation and

the proposed adaptive observer design with the convergence proof are presented. The

convergence results are established for noise-corrupted systems in Section 5.4. The

performance of the proposed adaptive observer is illustrated with a numerical example

in Section 5.5. This chapter is concluded in Section 5.6. Appendix B recalls some

preliminary results and lemmas.
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5.3 Adaptive Observer Design for Descriptor Systems

5.3.1 Definitions

The following definitions are used for descriptor systems stability and observability,

which are founded in [54].

Definition 5.1: If det(sE − A) 6= 0, s ∈ C, then the pair (E,A) is said to be regular.

A regular pair (E,A) is impulse-free if deg det(sE −A) = rank(E). If all the roots of

the polynomial det(sE−A) = 0, s ∈ C have negative real parts, then the pair (E,A)

is stable. If the pair (E,A) is regular, impulse-free, and stable, then it is said to be

admissible.

Lemma 5.1: [55] The pair (E,A) is admissible if and only if there exists a matrix

X ∈ Rn×n that satisfies the following

ETX = XTE > 0,

ATX +XTA < 0.

(5.1)

Definition 5.2: System (5.4) is called R-detectable if and only if its slow subsystem

(differential equations) is detectable, i.e.

rank

s E − A
C

 = n, ∀s ∈ C, s finite. (5.2)

Definition 5.3: System (5.4) is called impulse-observable if and only if its fast subsys-

tem (algebraic equations) is impulse-observable, i.e.

rank


E A

0 E

0 C

 = n+ rank E. (5.3)
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5.3.2 Observer Design

Consider the following descriptor system

Eẋ = Ax+Bu+Dγ(t, x)θ + ψ(t, y, u),

y = Cx,

(5.4)

where x ∈ Rn is the system state, u ∈ Rm is the system input assumed known, y ∈ Rr

is the system output, θ ∈ Rnθ is a vector of unknown time invariant parameters.

The matrices E,A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×q, C ∈ Rr×n are constants and

rank(E) = s < n. The known nonlinear functions γ(t, x) ∈ Rq×nθ and ψ(t, y, u) ∈ Rn

are locally Lipschitz.

Throughout this chapter, we assume the following:

Assumption 5.1: System (5.4) is R-detectable and impulse-observable.

Assumption 5.2: For α1 > 0, the function γ(t, x) satisfies

‖ γ(t, x1)− γ(t, x2) ‖6 α1 ‖ x1 − x2 ‖ . (5.5)

Assumption 5.3: The parameter vector θ is piecewise constant and bounded

‖ θ ‖6 α2, α2 > 0. (5.6)

The full-order adaptive observer for system (5.4) is of the form

E ˙̂x = Ax̂+Bu+Dγ(t, x̂)θ̂ + ψ(t, y, u) +K(y − ŷ),

ŷ = Cx̂,

(5.7)

where x̂ ∈ Rn and θ̂ ∈ Rnθ are the state and parameter estimates, respectively, and

K ∈ Rn×r is the observer gain to be designed.
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Define the state estimation error by e1 = x − x̂, then from (5.4) and (5.7), the

observer error dynamics are given by

Eė1 = (A−KC)e1 +D
(
γ(t, x)θ − γ(t, x̂)θ̂

)
. (5.8)

The following theorem gives sufficient conditions for convergence of the adaptive

observer error dynamics.

Theorem 5.1: Consider the following parameter estimation adaptation law

˙̂
θ = Σ−1γT (t, x̂)ηC(x− x̂), (5.9)

where Σ−1 = Σ−T > 0 is an arbitrary constant matrix of appropriate dimension,

which can be thought off as the adaptation rate, and η ∈ Rq×r such that DTP = ηC.

Then, system (5.7) is an asymptotically stable adaptive observer for system (5.4),

if there exists a non-singular matrix P ∈ Rn×n, a matrix W ∈ Rr×n such that K =

(WP−1)T , and a scalar ε1 > 0 for which the following matrix inequalities are solvable

ETP = P TE ≥ 0, (5.10)

Ω P T

P −ε1I

 < 0, (5.11)

where Ω = ATP + P TA− CTW −W TC + ε1α
2
1α

2
2 ‖ D ‖2 I.

Moreover, if the persistent excitation condition holds ∀t0,∃ξ, δ > 0 such that

∫ t0+δ

t0

Dγ(τ, x)γ(τ, x)TDTdτ > ξI, (5.12)

then, the parameter estimation error converges asymptotically to zero, i.e θ̂ → θ as

t→∞.
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Proof. If we show that system (5.8) is asymptotically stable, then, it follows that

system (5.7) is a full-order adaptive observer for system (5.4). Let Ā = (A − KC)

and define the Lyapunov candidate function for error dynamics as

V (t) = eT1E
TPe1 + eT2 Σe2, (5.13)

where e2 = θ− θ̂ is the parameter estimation error. The derivative of V (t) is given as

V̇ (t) =(Eė1)
TPe1 + eT1 P

TEė1 + 2eT2 Σė2, (5.14)

=
[
Āe1 +Dγ(t, x)θ −Dγ(t, x̂)θ̂

]T
Pe1

+ eT1 P
T
[
Āe1 +Dγ(t, x)θ −Dγ(t, x̂)θ̂

]
+ 2eT2 Σė2,

=eT1
[
ĀTP + P T Ā

]
e1 + 2

[
Dγ(t, x)θ −Dγ(t, x̂)θ̂

]T
Pe1 + 2eT2 Σė2.

Substituting θ̂ = θ − e2 on the second term

V̇ (t) =eT1
[
ĀTP + P T Ā

]
e1 + 2 [Dγ(t, x)θ −Dγ(t, x̂)θ]T Pe1

+ 2 [Dγ(t, x̂)e2]
T Pe1 + 2eT2 Σė2.

(5.15)

Applying LemmaB.1 on the second term

V̇ (t) 6eT1
[
ĀTP + P T Ā

]
e1 + ε1 ‖ D

(
γ(t, x)− γ(t, x̂)

)
θ ‖2

+ ε−11 eT1 P
TPe1 + 2 [Dγ(t, x̂)e2]

T Pe1 + 2eT2 Σė2. (5.16)

Using (5.5) on the second term

V̇ (t) 6 eT1
[
Ω + ε−11 P TP

]
e1 + 2 [Dγ(t, x̂)e2]

T Pe1 + 2eT2 Σė2, (5.17)

where Ω = ĀTP + P T Ā+ ε1α
2
1α

2
2 ‖ D ‖2 I.

Since θ is piecewise constant, θ̇ = 0, thus ė2 = − ˙̂
θ. Using the condition DTP = ηC
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we obtain 2 [Dγ(t, x̂)e2]
T Pe1+2eT2 Σė2 = 0, and the parameter adaptation law is given

by

˙̂
θ = Σ−1γT (t, x̂)ηCe1. (5.18)

Then, inequality (5.17) becomes,

V̇ (t) 6eT1
[
Ω + ε−11 P TP

]
e1. (5.19)

Therefore, a sufficient condition for V̇ (t) < 0 is

Ω + ε−11 P TP < 0. (5.20)

The above inequality can be converted to an LMI, using Schur complement, as

Ω P T

P −ε1I

 < 0. (5.21)

For some β > 0 and from inequality (5.20), it follows that

Ω + ε−11 P TP < −βI. (5.22)

Substituting (5.22) into (5.19), we have

V̇ (t) 6 −βeT1 e1, (5.23)

which implies that V (t) is bounded, since V (t) ≥ 0 and (5.23) shows that V (t) is

non-increasing. It follows from (5.13) that e1 and e2 are also bounded. integrating

both sides of (5.23) from t = 0 to t = t1 yields

V (t1) 6 V (0)− β
∫ t1

0

eT1 (τ)e1(τ)dτ. (5.24)
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We obtain that e1 ∈ L2 from (5.24). In addition, the observer error dynamics (5.8)

implies that ė1 ∈ L∞. Based on this and using the Barbalat’s lemma [56], it follows

that lim
t→∞

e1 = 0 and, as a result, lim
t→∞

ė1 = 0. Therefore, from (5.8)

lim
t→∞

D
(
γ(t, x)θ − γ(t, x̂)θ̂

)
= 0. (5.25)

As lim
t→∞

x̂ = x, then γ(t, x̂)→ γ(t, x) since γ(t, x) is continuous and as a result (5.25)

is reduced to

lim
t→∞

D
(
γ(t, x)(θ − θ̂)

)
= 0. (5.26)

Moreover, the parameter estimation error converges to zero, i.e. θ̂ → θ if the per-

sistent excitation condition (5.12) holds, which is a typical requirement in system

identification [38].

5.4 Robustness to Noise, Convergence in the Mean

Consider the noise corrupted descriptor system

Eẋ = Ax+Bu+Dγ(t, x)θ + ψ(t, y, u) + w(t)

y = Cx+ ν(t) (5.27)

where w(t) ∈ Rn is the system noise, ν(t) ∈ Rr is measurement noise.

Theorem 5.2: If the noises in system (5.27) w(t) and ν(t) are bounded, then the

state and parameter estimation errors, e1(t) and e2(t) respectively, of the adaptive

descriptor observer (5.7) for system (5.27) are also bounded.

In addition, if the noises w(t) and ν(t) have zero mean for all t and are independent

of γ(t, x), then as t → ∞, the mean of the state and parameter estimation error

E[e1(t)] and E[e2(t)] converge asymptotically to zero.
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Proof. In this case, the observer error dynamics are given by

Eė1 =(A−KC)e1 +D
(
γ(t, x)θ − γ(t, x̂)θ̂

)
+ w(t)−Kν(t), (5.28)

ė2 =− Σ−1γT (t, x̂)ηCe1 − Σ−1γT (t, x̂)ην(t). (5.29)

The homogeneous part of (5.28) is exponentially stable, thus the state estimation

error e1(t) is bounded for γ(t, x) satisfying the local Lipschtiz condition (5.5) and

bounded noises w(t) and ν(t). In the proof of Theorem 5.1, we concluded the asymp-

totic convergence of parameter estimation error e2(t) to zero in the noise free case.

Therefore, for bounded noises the e2(t) is also bounded.

In addition, if we use the assumption that the noises w(t) and ν(t) have zero mean

for all time and are independent of γ(t, x), then we can take the expected value (E)

of the error dynamics for the noise corrupted case (5.28) and (5.29) as

E
d(E[e1])

dt
=(A−KC)E[e1] +D

(
γ(t, x)θ − γ(t, x̂)E[θ̂]

)
, (5.30)

d(E[e2])

dt
=− Σ−1γT (t, x̂)ηCE[e1], (5.31)

where the order of differentiation and expectation operations have been interchanged.

Notice that the dynamics of E E[e1] and E[e2], (5.30) and (5.31) respectively, are

similar to the noise free case. Therefore, the state and parameter estimation errors

converge to zero asymptotically in the mean sense.

5.5 Illustrative Example

We demonstrate the proposed observer design through the following example. Con-

sider system (5.4) with
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E =



0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


, A =



0 −4 0 3

1 2 −4 0

0 2 0 −5

−2 0 3 0


, B =



−1 0

0 0

0 0

0 1


, D =



−1 0

−1 0

0 0

0 1


,

C =

1 0 0 0

0 1 0 0

 , γ =

 sin2(0.125t) x21 + 3
√
x4

x33 + x2 cos2(0.125t)

 .
Setting the design parameters α1 = 1 and α2 = 4 and using YALMIP toolbox [57]

to solve the LMI sufficient conditions (5.10)-(5.11), we obtain the following results:

K =



−8.808 6.250

1.782 2.788

1.267 1.650

7.648 0


, η =

 0 −0.05937

0.05791 0.05845



The initial states of the system and the adaptive observer are respectively x(0) =[
−1.6624 0.8 2.8 0.2

]T
,

x̂(0) =

[
−1.5017 1.0 2.25 0.5

]T
,

θ̂(0) =

[
0.4 − 3.5

]T
.

The adaptation rate was chosen as Σ−1 = diag([50, 30]).

For this simulation, the true values of the parameters θ1 and θ2 switch from 0.1

to 0.3 and from -4 to -2, respectively, at t = 40 and back again at t = 80.

The state and parameters estimation results for the noise-free systems are shown
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Figure 5.1: Observer response showing the two immeasurable states for the noise free
system, top x3, bottom x4.
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Figure 5.2: The estimates of the unknown parameters, top θ1, bottom θ2.

in Fig. 5.1 and 5.2, respectively.

In addition, Gaussian noise with standard deviation of 0.05 is added to the outputs

of the system y(t). The response of the system unknown states and their estimates

is shown in Fig. 5.3. The estimates of two unknown parameters are depicted in Fig.

5.4.

It can be observed that the estimates of the states and parameters are robust

to abrupt changes to the system input signals. The estimate of the parameters re-

converges to the new value in about 10 s. After each parameter change, the state
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estimation error e1(t) converges to zero, in the mean sense, faster than the parameter

error e2(t), as shown in Fig. 5.5.

5.6 Conclusion

This chapter proposed the first design method for descriptor adaptive observer for

nonlinear systems. The convergence of the adaptive observer is obtained by solving

a set of sufficient linear matrix inequalities. Robustness under the noise corrupted

system and measurements has been established. For zero mean noises, the estimation

errors of states and parameters converge, in the mean, to zero. The performance of
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Figure 5.5: The state estimation error for the noise corrupted case.

proposed method has been demonstrated by a numerical example. This method can

be used to systematically design adaptive observers for systems with a large number

of states, which can be useful for fault detection and adaptive control applications.

In the next chapter, we extend this design method and implement it for membrane

fouling detection.
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Chapter 6

Membrane Fouling Detection in DCMD

6.1 Introduction

Like many membrane-based desalination processes, MD is prone to membrane fouling

and scaling, which is a process of accumulated deposition of clay, salt, organic and/or

biological materials onto the membrane surface or into the membrane pores [58]. In

this chapter, we review the current membrane fouling detection methods. Then, we

extend the proposed electrical equivalent thermal network to model membrane fouling

as well as the adaptive observer design method for the specific case of membrane

fouling detection in DCMD.

6.2 Related Work

Membrane fouling affects the water quality and reduces the production rate and may

even cause system shutdown for cleaning, which in turn, increases the operational cost

of the MD system. In MD the fouling layer deposited on the surface of the membrane

introduces a thermal resistance to heat transfer between the bulk feed stream and

the membrane surface, see Fig. 6.1. This results in a lower temperature at the

feed-membrane interface and hence a lower partial vapor pressure, which ultimately

reduces the production rate of the system.

Several methods have been proposed for detecting membrane fouling in various

membrane-based processes. While incorporating sensors into the process is challeng-

ing and can be expensive [59, 60], using mathematical tools and readily available
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measurements to detect fouling is ideal for this application[61, 62]. In [61], a statis-

tical method was developed to indicate fouling in membrane bioreactors. Another

approach is based on the design of system observers, where the estimated profiles

are used to conclude about faults in the system, as in [62] where a polynomial fuzzy

observer is used to detect fouling in heat exchangers.

In fact, observers have been widely applied for fault detection and isolation (FDI)

[32, 33, 34]. While several studies have discussed the design of linear and adaptive

observers in [35, 36, 37, 38] and references therein; design of nonlinear adaptive ob-

servers is still an active area of research. For systems modeled by ODE, the work in

[39] presents the design method of adaptive observers for systems that are linear in

their parameters, whereas the recent work in [40] deals with systems modeled that

are nonlinear in the parameters.

The common method to design observers for linear descriptor systems is to use

a system of ODE, which asymptotically converges to the true states by eigenvalue

assignment [43, 44]. Later, this approach was extended for fault estimation for linear

descriptor systems with unknown inputs [45, 46] and linear parameter varying systems

[47]. On the other hand, for Lipschitz nonlinear descriptor systems several methods

have been proposed, where a stabilizing gain for a Luenberger like observer is designed

by solving a set of linear matrix inequalities (LMI) [48, 49, 50, 51]. Fewer studies

discussed the design of adaptive observers for descriptor systems. The linear case has

been studied in [52, 53]. To the best of the authors’ knowledge, only recently a design

method for nonlinear adaptive descriptor observers has been proposed by us in [63].

The descriptor model for direct contact membrane distillation (DCMD) proposed

in 4 is extended to account for membrane fouling. Then, an adaptive observer is

proposed for the detection of membrane fouling based on [63]. Unlike the methods

reported in [43, 44, 45, 53], the proposed method does not require coordinate trans-

formation. In addition, the adaptive observer gain design is facilitated by solving a
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Figure 6.1: A schematic diagram of the fouling layer in DCMD setups.

set of LMI, which guarantees sufficient conditions for asymptotic convergence of the

states and parameters estimations to their true values.

6.3 Membrane Fouling Modeling

6.3.1 DCMD fouling model

In MD the fouling layer deposited on the surface of the membrane introduces a thermal

resistance to heat transfer between the bulk feed stream and the membrane surface,

see Fig. 6.1. This results in a lower temperature at the feed-membrane interface and

hence a lower partial vapor pressure, which ultimately reduces the production rate of

the system.

The fouling thermal resistance (Rsc) can be incorporated into the previous model

as shown in Fig. 6.2. Rewriting the heat transfer equations to account for the fouling

resistance gives:

dTbfn

dt
=

1

Cbf
Qfn −

1

Cbf
Qfn+1 −

1

Cbf

(
1

Rf
+ JnAmcp

)
Tbfn

+
1

Cbf

(
Rsc(1 + Rf Gn cp)

Rf +Rsc(1 + Rf Gn cp)

)
Tbfn +

1

Cbf(Rf +Rsc(1 +Rf Gn cp))
Tmfn ,

(6.1)
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(
1

Rf
+ JnAmcp +

Rsc(1 + Rf Gn cp)

Rf +Rsc(1 + Rf Gn cp)

)
Tbfn

− 1

(Rf +Rsc(1 +Rf Gn cp))
Tmfn =

(
1

Rp
+ JnAmcp

)
Tmpn −

1

Rp
Tbpn .

(6.2)

Assuming that the feed and permeate inlet mass flow rates into the module are

constant, i.e. not changing over time, then the proposed model can be represented

as:

Eẋ = Ax+Bu+D1γ(t, x)Bm +H(x,Rsc),

y =

Cx
G

 , (6.3)

where x ∈ R6N+4 is the system state vector, A ∈ R6N+4×6N+4 is a constant state

transition matrix, B ∈ R6N+4×2, u is the system input which is the known feed

and permeate inlet temperatures, D1 ∈ R6N+4×3N is a constant matrix mapping the

nonlinear terms to the state equations, γ(t, x) ∈ R3N×1 is the nonlinear part of the

DCMD model related to the mass flux, θ ∈ R+ is the known time invariant membrane

mass transfer coefficient, H(x,Rsc) ∈ R6N+4×1 is a nonlinear function of the state x

and the fouling thermal resistance Rsc, and y ∈ R3×1 is the system output. Note that

this process has two kind of outputs, the first one is linear combination of the system

states through the matrix C ∈ R2×6N+4, in this case it is the feed and permeate
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outlet temperatures. The second is the production rate of the DCMD module (G),

which measured directly from the module. It can be seen that G is a nonlinear

function of the temperatures at the membrane surfaces and the membrane mass

transfer coefficient. The A,B,D, and γ(t, x), matrices can be extracted from the

DAE system representation explained in Section 3.5. Whereas H(x,Rsc), for a model

with three cells, is given as

H(x,Rsc) =



8M4
fin

a2s1Tfin − 4M2
fin
a1s1Qf1 − 8M4

fin
a2s1Tbf1

Rsc(1+Rf G1 cp)
CbfRf (Rsc(1+Rf G1 cp)+Rf )

Tbf1 +
1

Cbf (Rsc(1+Rf G1 cp)+Rf )
Tmf1

4M4
1 a2s2Tbf1 − 4M2

1 a1s2Qf2 − 4M4
1 a2s2Tbf2

Rsc(1+Rf G2 cp)
CbfRf (Rsc(1+Rf G2 cp)+Rf )

Tbf2 +
1

Cbf (Rsc(1+Rf G2 cp)+Rf )
Tmf2

4M4
2 a2s3Tbf2 − 4M2

2 a1s3Qf3 − 4M4
2 a2s3Tbf3

Rsc(1+Rf G3 cp)
CbfRf (Rsc(1+Rf G3 cp)+Rf )

Tbf3 +
1

Cbf (Rsc(1+Rf G3 cp)+Rf )
Tmf3

0

8M4
p1
a7s1Tpout

− 4M2
p1
a6s1Qp1

− 8M4
p1
a7s1Tbp1

0

4M4
p2
a7s2Tbp1

− 4M2
p2
a6s2Qp2

− 4M4
p2
a7s2Tbp2

0

4M4
p3
a7s3Tbp2 − 4M2

p3
a6s3Qp3 − 4M4

p3
a7s3Tbp3

0

0

0

0

− Rsc(1+Rf G1 cp)
Rf (Rsc(1+Rf G1 cp)+Rf )

Tbf1 − 1
Rsc(1+Rf G1 cp)+Rf

Tmf1

− Rsc(1+Rf G2 cp)
Rf (Rsc(1+Rf G2 cp)+Rf )

Tbf2 − 1
Rsc(1+Rf G2 cp)+Rf

Tmf2

− Rsc(1+Rf G3 cp)
Rf (Rsc(1+Rf G3 cp)+Rf )

Tbf3 − 1
Rsc(1+Rf G3 cp)+Rf

Tmf3

0

0

0



. (6.4)
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6.4 Membrane fouling detection

Expanding the function H(x,Rsc) around Rsc = 0, this is the ideal case without

membrane fouling. Taking the linear terms of the Taylor expansion, system (6.3) can

be written as

Eẋ = Ax+Bu+D1γ(t, x)Bm +D2H̃(x)∆Rsc,

y =

Cx
G

 , (6.5)

where H̃(x) is the Jacobian of H(x,Rsc), and ∆Rsc is the deviation from the nominal

value of zero fouling thermal resistance.

Consider the following adaptive observer form for system (6.5)

E ˙̂x = Ax̂+Bu+D1γ(t, x̂)Bm +D2H̃(x̂)∆R̂sc +K(Cx− Cx̂),

ŷ =

Cx̂
Ĝ

 (6.6)

Define the state estimation error by e1 = x − x̂, then from (6.5) and (6.6), the

observer error dynamics are given by

Eė1 = (A−KC)e1 +D2

(
H̃(x)∆Rsc − H̃(x̂)∆R̂sc

)
. (6.7)

The following theorem gives sufficient conditions for convergence of the adaptive

observer error dynamics.

Theorem 6.1: Consider the following adaptation law

∆
˙̂
Rsc = Σ−1H̃(x̂)ηC(x− x̂)− Σ−1L(G− Ĝ) (6.8)
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where Σ−1 = Σ−T > 0 is an arbitrary constant matrix of appropriate dimension,

which can be thought off as the adaptation rate.

Then, system (6.6) is an asymptotically stable adaptive observer for system (6.5),

if there exists a non-singular matrix P ∈ Rn×n, a matrix W ∈ Rr×n such that K =

(WP−1)T , and a scalar ε1 > 0 for which the following matrix inequalities are solvable

ETP = P TE ≥ 0, (6.9)

Ω P T

P −ε1I

 < 0, (6.10)

where Ω = ATP + P TA−CTW −W TC + ε1α
2
1α

2
2 ‖ D2 ‖2 I, α1 is the local Lipschitz

constants of H̃(x), and α2 is the upper bound on the fouling thermal resistance ∆Rsc.

Moreover, if the persistent excitation condition holds ∀t0,∃ξ, δ > 0 such that

∫ t0+δ

t0

D2H̃(x̂)H̃(x̂)TDT
2 dτ > ξI, (6.11)

then, the parameter estimation error converges to zero, i.e ∆R̂sc → ∆Rsc as t→∞.

Proof. If we show that system (6.7) is asymptotically stable, then, it follows that

system (6.6) is a convergent adaptive observer for system (6.5). Let Ā = (A −KC)

and define the Lyapunov candidate function for error dynamics as

V (t) = eT1E
TPe1 + eT2 Σe2, (6.12)

where e2 = ∆Rsc −∆R̂sc is the parameter estimation error. The derivative of V (t) is
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given as

V̇ (t) =(Eė1)
TPe1 + eT1 P

TEė1 + 2eT2 Σė2, (6.13)

=
[
Āe1 +D2H̃(x)∆Rsc −D2H̃(x̂)∆R̂sc

]T
Pe1

+ eT1 P
T
[
Āe1 +D2H̃(x)∆Rsc −D2H̃(x̂)∆R̂sc

]
+ 2eT2 Σė2,

=eT1
[
ĀTP + P T Ā

]
e1 + 2

[
D2H̃(x)∆Rsc −D2H̃(x̂)∆R̂sc

]T
Pe1 + 2eT2 Σė2.

Substituting ∆R̂sc = ∆Rsc − e2 on the second term

V̇ (t) =eT1
[
ĀTP + P T Ā

]
e1 + 2

[
D2H̃(x)∆Rsc −D2H̃(x̂)∆Rsc

]T
Pe1

+ 2
[
D2H̃(x̂)e2

]T
Pe1 + 2eT2 Σė2.

(6.14)

Applying Lemma B.1 on the second term

V̇ (t) 6eT1
[
ĀTP + P T Ā

]
e1

+ ε1 ‖ D2

(
H̃(x)− H̃(x̂)

)
∆Rsc ‖2

+ ε−11 eT1 P
TPe1

+ 2
[
D2H̃(x̂)e2

]T
Pe1 + 2eT2 Σė2. (6.15)

Using the local Lipschitz property of H̃(x) and the bound on ∆Rsc on the second

term

V̇ (t) 6eT1
[
Ω + ε−11 P TP

]
e1

+ 2
[
D2H̃(x̂)e2

]T
Pe1 + 2eT2 Σė2, (6.16)

where

Ω = ĀTP + P T Ā+ ε1α
2
1α

2
2 ‖ D2 ‖2 I. (6.17)
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Since ∆Rsc is piecewise constant, ∆Ṙsc = 0, thus ė2 = − ˙̂
Rsc. Using the condition

DT
2 P = ηC and substituting the adaptation law (6.8), we obtain

2
[
D2H̃(x̂)e2

]T
Pe1 + 2eT2 Σė2 = eT2L(G− Ĝ), (6.18)

where L ∈ R+ is a positive constant gain, then the term −eT2L(G − Ĝ) is always

non-positive as it can be shown


if e2 < 0,→ (G− Ĝ) > 0, thereforeeT2L(G− Ĝ) < 0

if e2 > 0,→ (G− Ĝ) < 0, thereforeeT2L(G− Ĝ) < 0

(6.19)

Then, inequality (6.16) becomes,

V̇ (t) 6eT1
[
Ω + ε−11 P TP

]
e1. (6.20)

Therefore, a sufficient condition for V̇ (t) < 0 is

Ω + ε−11 P TP < 0. (6.21)

The above inequality can be converted to an LMI, using Schur complement, as

Ω P T

P −ε1I

 < 0. (6.22)

For some β > 0 and from inequality (6.21), it follows that

Ω + ε−11 P TP < −βI. (6.23)
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Substituting (6.23) into (6.20), we have

V̇ (t) 6 −βeT1 e1, (6.24)

which implies that V (t) is bounded, since V (t) ≥ 0 and (6.24) shows that V (t) is

non-increasing. It follows from (6.12) that e1 and e2 are also bounded. integrating

both sides of (6.24) from t = 0 to t = t1 yields

V (t1) 6 V (0)− β
∫ t1

0

eT1 (τ)e1(τ)dτ. (6.25)

We obtain that e1 ∈ L2 from (6.25). In addition, the observer error dynamics (5.8)

implies that ė1 ∈ L∞. Based on this and using the Barbalat’s lemma [56], it follows

that limt→∞ e1 = 0 and, as a result, limt→∞ ė1 = 0. Therefore, from (6.7)

lim
t→∞

D2

(
H̃(x)∆Rsc − H̃(x̂)∆R̂sc

)
= 0. (6.26)

As limt→∞ x̂ = x, (6.26) is reduced to

lim
t→∞

D2

(
H̃(x)(∆Rsc −∆R̂sc)

)
= 0. (6.27)

Moreover, the parameter estimation error converges to zero, i.e. ∆R̂sc → ∆Rsc if the

persistent excitation condition (6.11) holds, which is a typical requirement in system

identification [38].

6.5 Numerical results

To demonstrate the performance of the proposed adaptive observer, a simulation of

gradual membrane fouling is developed. For the first 25 seconds, the fouling thermal

resistance (∆Rsc) is set to zero. Then, a gradual increase takes place over the duration
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Figure 6.3: The estimated and actual profile of the thermal fouling resistance (∆Rsc).
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Figure 6.4: The estimated and actual profile of the modules production rate (G).

of 50 seconds, until the fouling thermal resistance reaches 2.5× 10−3 and stays there

for another 25 seconds. The actual and estimated profile of ∆Rsc is shown in Fig.

6.3. It is clear that the adaptive observer is able to track the development of the

membrane fouling as it develops. The production rate over time is shown in Fig. 6.4,

where the effect of membrane fouling is clear on the production rate. To confirm the

response of the temperature distribution estimation, Fig. 6.5 shows the estimated

and simulated temperature spatial profiles for both the feed and permeate sides of

the module at the final time t=100s.
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6.6 Conclusion

In this chapter, membrane fouling in DCMD has been modeled by an extension of the

proposed electrical equivalent thermal network model. The proposed design method

of adaptive observers has been implemented for the specific case of fouling detection

in DCMD. Numerical simulation results were presented and discussed.
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Part III

Optimization of Solar-Powered DCMD
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Chapter 7

Extremum Seeking Control

7.1 Introduction

This chapter introduces the basic idea of Extremum Seeking (ES) control and explain

two main configurations of ES, namely gradient-based ES and Newton-based ES. We

then propose a modification to the Newton-based ES scheme. A numerical example

illustrates the difference between the traditional ES and the proposed method.

7.2 Background

Many physical systems can be described by mathematical models, some of which

are very complex or unreliable. Moreover, these systems might have an unknown

optimal reference to output peak that depends on the system parameters or operating

conditions. While classical adaptive control methods deal with the stabilization of

systems and the tracking of a known set point, ES is an adaptive control method that

finds and tracks an optimal peak of the reference to output map.

Extremum Seeking is non-model based which enables it to track the extremum

(maximum or minimum) of the reference-to-output map as the system evolves. There-

for, ES is a real-time optimization technique contrary to numerical-based optimization

methods which require the plant response to settle down before optimization.

Extremum Seeking control was very popular around the 1960s but advances in

classical adaptive control theory and the emergence of digital computing slowly took

over ES. However, since the proof of stability for ES was published for general non-



99

linear systems [64], it has received an increased attention and development in both

theory and practice. Successful applications of extremum seeking control include

axial-flow compressors [65], photovoltaics [66], optimizing bioreactors [67], and wind

energy [68], as well as many other fields not listed here.

In the next two sections, two schemes of extremum seeking feedback controllers

are presented.

7.3 Gradient Based Extremum Seeking

Consider a general nonlinear system given as

ẋ = f(x, u), (7.1a)

y = h(x), (7.1b)

where x ∈ IRn is the states, u ∈ IRm represents the inputs, y ∈ IR is the output, and

f : IRn × IRm → IRn and h : IRn → IR are smooth functions. Now, suppose that a

smooth control law is parameterized by a scalar value θ.

u(t) = β(x, θ). (7.2)

Then, the closed loop system is

ẋ = f
(
x, β(x, θ)

)
. (7.3)

Finally, consider the following assumptions about the closed loop system 7.3.

Assumption 7.1: There exists a smooth function l : IRm → IRn such that

f
(
x, β(x, θ)

)
= 0 if and only if x = l(θ).

This means there exists an equilibrium point for the close loop system parameter-

ized by θ. The following assumption lies in the heart of extremum seeking control.
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Figure 7.1: Block diagram of gradient-based ES scheme.

Assumption 7.2: There exists a θ∗ such that

∂y

∂θ

∣∣∣∣
θ=θ∗

= 0

∂2y

∂θ2

∣∣∣∣
θ=θ∗

= H ≺ 0, HT = H.

This simply says that the reference-to-output map y = h
(
l(θ)
)

has a maximum

at θ = θ∗. Without loss of generality, the following analysis still holds for the case of

a minimum by replacing y with −y.

A feedback peak seeking scheme is depicted in Fig. 7.1 for a general nonlinear

SISO system. The same analysis holds for a multiple-input case with appropriate

vector dimensions. This configuration resembles the foundation on which other ex-

tensions build on. A ”slow” periodic perturbation is added to the signal θ̂ (which is

an approximate value of the optimal parameter θ∗). The resultant signal (θ) is then

applied to the system as an input which produces a periodic response on the output

y. The high pass filter ( s
s+ωh

) together with the multiplication by the dither signal

a sin(ωt) acts like a differentiator, eliminating the ”DC component” of y and produc-

ing an approximate sinusoidal estimate of the gradient. The low-pass filter ( ωl
s+ωl

)
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extracts the ”DC component” of the multiplication result, which approximately rep-

resent the gradient (Ĝ) of the reference-to-output map with respect to θ. Finally, the

integrator updates θ̂ driving it towards θ∗.

The design and choice of frequencies in this scheme should follow these general

guidelines:

� The perturbation frequency ω should be smaller than the response time of the

system 7.1, as such the plant appears like a static map y = h
(
l(θ)
)
.

� The cut-off frequencies for the high and low pass filters, ωh and ωl respectively,

should be lower than the perturbation frequency ω.

The following equations summaries the system in Fig. 7.1:

ẋ = f
(
x, β(θ̂ + a sinωt)

)
, (7.4)

˙̂
θ = KnĜ, (7.5)

˙̂
G = −ωlĜ+ ωl(y − η)a sinωt, (7.6)

η̇ = −ωh + ωhy. (7.7)

The stability proof of the gradient-based extremum seeking follows from averaging

and singular perturbation analysis [64, 69]. The analysis shows that the solution

converges to an O(a)-neighborhood of the optimal θ∗, where δ is a small positive

constant. However, since extremum seeking control is a non-model based optimization

method, the convergence rate of gradient-based extremum seeking is dictated by the

unknown Hessian of the reference-to-output map. This may reduce the efficiency of

extremum seeking for plants with a wide range of behavior [70]. To address this

limitation, the Newton-based extremum seeking scheme was developed.
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Figure 7.2: Block diagram of multivariable Newton-based ES.

7.4 Newton Based Extremum Seeking

Several configurations have been proposed for the Newton-based extremum seeking

controller [70, 71, 72]. The work in [72] proposes a multivariate scheme for general

non-linear systems and will be presented in this section.

Consider the same problem of finding an extremum of the general non-linear

system reference-to-output map 7.1, with the control law defined as in 7.2. Then,

the closed-loop system is given as

ẋ = f
(
x, β(x, θ)

)
. (7.8)

Assumptions 7.1 and 7.2 are still applied here.

The block diagram of the Newton-based multivariate ES is depicted in Fig.7.2.

This scheme builds on the structure of the gradient-based ES design and adds a mech-

anism to estimate the unknown Hessian. Since Newton’s method requires the inverse

of the Hessian, an estimate of the inverse of the Hessian is obtained asymptotically

by the solution of a dynamic system in the form of a Riccati equation. By including

the information about the gradient and the Hessian of the reference-to-output map,

the convergence rate of the extremum seeking scheme can be user assigned.



103

The dither signals in this scheme are somewhat different from the gradient-based

ones. The following details the design of the perturbation matrices
(
L(t) ∈ IR2×1, Ω(t) ∈

IR2×2, and ϕ(t) ∈ IR2×1) for a system with two inputs and one output:

L(t) = [
2

c1
sin(ω1t),

2

c2
sin(ω2t)]

T , (7.9)

Ω(t) = ΩT (t), (7.10)

Ωi,i =
16

c2i

(
sin2(ωit)−

1

2

)
, (7.11)

Ωi,k =
4

ci ck

(
sin(ωit) sin(ωkt)

)
, i 6= k, (7.12)

ϕ(t) = [c1 sin(ω1t), c2 sin(ω2t)]
T , (7.13)

where ωi 6= ωk such that ωi/ωk is a rational number, and c1, c2 are real positive num-

bers. The cut-off frequencies for the low and high pass filters , ωl and ωh respectively,

are designed appropriately according to this recommendation.

ωl � min{ωi, |ωi − ωk|, |2ωi − ωk|}, (7.14)

ωh > wi, ∀i, k|i 6= k. (7.15)

This design derives an estimate of the gradient vector Ĝ and the Hessian by adding

the perturbation signal, ϕ(t), to the estimated optimal input, θ̂. The estimate of the

Hessian matrix is inverted by a dynamical system to avoid difficulties of algebraically

inverting Ĥ when it is close to singular, given as

Γ̇ = ωrΓ− ωrΓĤΓ, (7.16)

where Γ = Ĥ−1.

The reader is referred to [72] for full detailed convergence proof and design method.
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To following equations summarize the dynamical system shown in Fig. 7.2:

ẋ =f
(
x, β(x, θ)

)
, (7.17)

η̇ =− ωhη + ωhy, (7.18)

˙̂
G =− ωlĜ+ ωlΛ, (7.19)

˙̂
θ =Knξ, (7.20)

˙̂
H =− ωlĤ + ωlΩ(t)

(
y − η

)
, (7.21)

Γ̇ =ωrΓ− ωrΓĤΓ, (7.22)

where ξ1
ξ2

 =−

Γ11 Γ12

Γ21 Γ22


Ĝ1

Ĝ2

 , (7.23)

Λ1

Λ2

 =

L1(t)

L2(t)

 (y − η). (7.24)

7.5 Extremum Seeking with Adaptive Dither

Signal Amplitude

Both of the presented extremum seeking schemes employ dither signals to continu-

ously perturb the plant and obtain derivative like information of the measured output.

However, the amplitude of these dither signals is directly proportional to the radius

of convergence around the neighborhood of the optimal solution, θ∗, as has been in-

dicted in [64][72]. In addition, the controller rate of convergence is also affected by

the magnitude of the perturbation signals. Therefore, it would be convenient and

practically useful to design a mechanism that dynamically controls the amplitude of

the dither signal .

The following design is built around Newton-based extremum seeking presented
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earlier in 7.4 but can easily adapted to other ES configurations. It is well known

that the gradient of the objective function vanishes at the extremum point. Since an

estimate of the gradient is readily available in different extremum seeking schemes, it

can be used to design the control law for the dither signal amplitude. In other words,

when ||ξ|| is large, it is beneficial to have a large value for ci and vise versa. Although

it is tempting to have ci = 0 at the optimal, this is impractical due to measurement

noise in y. Instead, the following equation is proposed:

dci
dt

= kc (α− ci), (7.25)

where α is chosen as

α = max(λ||ξ||, cmin). (7.26)

where kc and λ are positive scalars that can be designed according to the problem.

It is found that passing the norm of the gradient estimate (||ξ||) helps to smooth the

response.

7.5.1 Simulations Results

The following simulation is presented to demonstrate the difference between the stan-

dard Newton-based extremum seeking and the proposed modification. Consider the

following static quadratic input-output map:

y = g(θ) = g∗ +
1

2
(θ − θ∗)TH(θ − θ∗). (7.27)

The following parameters are used to carryout the simulations: g∗ = 100, θ∗ =

[2, 4]T , θ̂0 = [2.5, 5]T , ω1 = 3 rad/s,ω2 = 4 rad/s,ωl = 0.1 rad/s, ωh = 0.08 rad/s,

ωr = 0.1 rad/s, Ĥ0 = 400 diag([1, 1]), Kn = 0.01 diag([1, 1]), H11 = 100, H12 =

H21 = 30, H22 = 20., kc = 0.1, λ = 0.001, and cmin is chosen to be 0.001.

The estimation of the min y = g(θ) (output response) and the parameters θ1, θ2
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Figure 7.3: Comparing the system output of the proposed multivariable Newton-
based ES to that of the original design.

(inputs response) using the original Newton-based ES and the proposed modification

are depicted in Fig. 7.3, top plots for the output response, bottom plots for the

inputs. It takes about 50 seconds for both methods to converge to g∗ = 100, but it is

clear from the zoom that the output of the proposed controller have less oscillation

and goes closer to the optimal point g∗ than that of the original one, which keeps on

oscillating around it. The response of the inputs [θ1, θ2]
T shows clearly that the dither

signal amplitude converges to the minimum value after approximately 200 seconds,

where ||ξ|| is almost zero and the controller switches to the minimum amplitude.
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Chapter 8

Multivariable ES for Solar-Powered DCMD

8.1 Introduction

Now that the distinction between the gradient-based and Newton-based extremum

seeking schemes has been established in the previous Chapter 7. This chapter presents

the problem formulation and simulation results of solar powered DCMD process op-

timization using the Newton-based extremum seeking scheme. This controller takes

into account the varying feed inlet temperature, due to the unsteady nature of the

sun. Moreover, since ES is non-model based, the controller design is robust against

plant-model mismatch. This is important since the results obtained in simulation

should be applicable to experimental validation.

8.2 Optimal Control Problem of the Solar

Powered DCMD

As it is well known, the objective is always to operate any process at optimal settings,

which reduces the operational costs and guarantees the performance and stability of

the system. This is true for the solar-powered MD water desalination, where the

objective is to maximize the water production and reduce the energy consumption

at the same time through the manipulation of the feed and permeate inlet mass flow

rates.

In terms of DCMD process optimization, the work in [11] developed a neural

network model, which was used to calculate optimal feed-forward gains for solar
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Figure 8.1: Schematic diagram of solar powered DCMD setup.

powered MD. However, when coupling the MD with renewable energy, it is important

to consider the unsteady nature of the energy source. Therefore, a real-time optimal

control would be more suitable. The MD water desalination process can be further

explored and a better overall system performance can be achieved.

Several optimal control schemes have been reported in the literature. For instance,

model predictive control (MPC) [73, 74] requires full knowledge of the plant model

and the objective function. On the other hand, extremum seeking is another adaptive

optimal controller which finds and tracks the peak of the reference-to-output map in

real time without knowledge of either the system model or the objective function.

Moreover, ES controllers are computationally efficient, especially when compared to

the other available methods.

The solar powered DCMD water desalination setup is composed of a solar thermal

collector connected to a storage tank and a heat exchanger. The feed water is circu-

lated from the feed tank through a heat exchanger to the DCMD module and back

to the feed tank. The permeate is pumped from a fresh water tank into the DCMD

module, where it collects the distilled water flux and flow back into the fresh water

tank. The setup is depicted in Fig. 8.1, where the control inputs are the mass flow

rates of feed and permeate sides. It is clear that the feed inlet temperature (Tfin) will
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Figure 8.2: The flux response as a function of the feed inlet mass flow rate for various
feed inlet temperatures.

vary according to the solar radiation throughout the day, which affects the distilled

water flux. An Optimal control strategy is needed to ensure the efficiency of the

process under disturbed operating conditions. One way to optimize the process is by

maximizing the objective function Y , which penalizes the feed/permeate inlet mass

flow rates and rewards the distilled water flux (J).

maxY = max
(
α1J − (α2Mfin + α3Mpin)

)
(8.1)

where, α1, α2, and α3 are used to scale the terms of the objective function to be in

the same order of magnitude.

Fig. 8.2 depicts the flux response of the DCMD process under various feed inlet

temperatures and feed inlet mass flow rates. In this simulation, the permeate inlet

mass flow rate was kept constant at 256 Kg/hr, while the feed inlet mass flow rate was

increased from 90 Kg/hr to 375 Kg/hr. This was repeated for 5 feed inlet tempera-

tures. As demonstrated in the figure, increasing the feed inlet temperature increased

the distilled water flux. While increasing the feed inlet mass flow rate increases the
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flux, the flux reaches saturation values at high feed inlet mass flow rates. This behav-

ior provokes the following question: What is the optimal feed/permeate flow rate for

a given feed inlet temperature? Simulation results of equation (8.1) shows that there

exists a maximum value of the objective function (Y) which varies for different feed

inlet temperatures, as shown in Fig. 8.3. The objective function behaves similarly

with respect to the permeate inlet mass flow rate. Therefore, the controller is required

to automatically track the peak of the objective function by manipulating the feed

and permeate inlet mass flow rates.

The block diagram of Newton-based ES for DCMD is depicted in Fig. 8.4. Notice

that the feed inlet temperature (Tfin) is considered as a disturbance in this setup. The

DAE model presented in chapter 3 is used to simulate the flux response, which is then

fed to the objective function along with values of the control inputs (θ = [Mfin ,Mpin ]).

As demonstrated in Fig. 8.3, the performance function (Y) has a Tfin dependent peak.

Hence, Assumptions 7.1 and 7.2 are valid and the closed-loop system is given by

EẊ = F
(
X, β(X, θ)

)
. (8.2)
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Figure 8.4: The block diagram of the Newton-based ES for DCMD.

The perturbation matrices
(
L(t) ∈ IR2×1, Ω(t) ∈ IR2×2, and ϕ(t) ∈ IR2×1), and the

design of the high and low pass filters follow the guidelines presented in section § 7.4.

8.3 Simulation Results

Simulations were carried out in order to demonstrate the effectiveness of the proposed

controller to optimize the solar powered DCMD water desalination process. For

this, realistic membrane parameters were used, as listed in Table 8.1. In order to

design and tune the parameters of the Newton-based ES controller, we started by

choosing the perturbation frequencies, to separate the time scale of the DCMD system

from gradient and Hessian estimation filters and ensures a resealable convergence

time. It was found that setting ω1 = 3rad/s, ω2 = 2rad/s gave a good result. The

next step was to tune the amplitude of the perturbation signal, setting c1 = c2 =

0.15. The frequencies of low and high-pass filters are chosen to have slow time scale,

ωl = 0.1rad/s, ωh = 4rad/s,. The frequency of dynamical inversion system Γ was

designed to be very slow, which ensures a smoother estimate of the Hessian inverse,

ωr = 0.0008. Finally, the gain (Kn) was designed to balance between convergence

time and stability of the closed loop system, Kn = diag([0.05, 0.05]).
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Table 8.1: DCMD Module Parameters
Property Value
Pore size 0.27 µm
Total thickness 0.170 mm
Porosity 77%
Module length 0.4 m
Module width 0.15 m

Time (s)
0 200 400 600 800 1000 1200 1400 1600

T
h

e 
D

is
ti

lle
d

 W
at

er
 F

lu
x 

(K
g

/m
2  h

r)

0

10

20

30

40

50

60

T
h

e 
fe

ed
 in

le
t 

te
m

p
er

at
u

re
 °

 C

50

55

60

65

70

75

80

 J
Temp

Figure 8.5: The distilled water flux (J) is shown on the left axes. The dashed line
shows the feed inlet temperature profile.

The feed inlet temperature profile is designed to reflect a realistic behavior which

is depicted in Fig. 8.5, by the dashed line. The permeate inlet temperature is kept

constant through out the simulation at 20 ◦C. As the feed inlet temperature increase,

the distilled water flux is optimized taking into account the feed and permeate inlet

mass flow rates, as shown in Fig. 8.5 (solid line).
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Chapter 9

Concluding Remarks

This chapter briefly provides an overview of the proposed reduced order dynamic

model of Direct Contact Membrane Distillation process for water desalination and its

relevance to the process optimization. A summary of all the work done in this thesis

along with some future work directions are provided in the next two sections.

9.1 Summary

Membrane distillation (MD) is an emerging technology that has great potential for

sustainable water desalination. In order to pave the way for the successful commer-

cialization of MD-based water desalination, adequate and accurate dynamical models

of the process are essential. A novel dynamic model of DCMD was proposed based on

the analogy between electrical and thermal systems. This model adopts the lumped

capacitance method to obtain a reduced order version of somewhat the equivalent

partial differential equation model of the DCDMD process. The model directly solves

for the temperature distribution along the flow direction and the local flux values.

Simulation results agreed with experimentally collected data for both steady-state

and dynamic response of the system. The effect of some operational parameters was

demonstrated through process efficiency. The problem of membrane fouling detection

was addressed by extending the proposed model to account for the thermal resistance

induced by the fouling layer. Then, an adaptive observer was developed for nonlinear

descriptor systems, and specific implementation for the case of fouling detection in
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DCMD was demonstrated. For the purpose of process optimization, two schemes of

Extremum Seeking were then introduced. Finally, the optimal control problem of

solar powered DCMD model was formulated and the model was used to carry out

simulation and demonstrate the method.

9.2 Future Research Work

The work presented in this thesis can be extended in the following directions.

? We would like to further investigate and test the proposed method for mem-

brane fouling detection and membrane parameters identification on real DCMD

experimental setups.

? The promising simulation results of the solar powered DCMD process optimiza-

tion can be a starting point for experimental validation of ES based controller.

? As it has been presented in section 8.2, the solar powered DCMD configuration

is composed of a solar collector and a thermal storage loop and the DCMD mod-

ule. Although component by component optimization improves the efficiency

of the process, considering the whole system into the optimization problem

formulation exploits all the degrees of freedom and may yield a better overall

result.

? Both of the presented extremum seeking schemes rely on dither signals to mod-

ulate the measured performance signal and obtain an estimate of its derivatives.

A practically useful modification to the extremum seeking schemes is to dynam-

ically adapt the amplitude of these dither signals. This is beneficial in order to

obtain a tighter convergence to the desired optimal solution, as it is proportional

to O(a).
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Appendix A

Electrical Analogues for Thermal Elements

The analogy can be derived from the basic equations of electrical and thermal systems.

Let’s start by considering the one-dimensional heat conduction through an element

of cross-sectional area Acs and thermal conductivity k and length of δx, see Fig. A.1.

The heat transfer rate is given by the Fourier’s law as:

Q = −kAcs
∂T

∂x
. (A.1)

The difference of heat transfer rates between two parallel surfaces is equal to the

heat absorbed to raise the temperature of the control volume, as given by:

∂Q

∂x
= −ρAcscp

∂T

∂t
. (A.2)

Substituting (A.1) into (A.2) gives the one dimensional heat diffusion equation

𝛿𝑥 

Figure A.1: 1D heat flow through an element of length δx and cross sectional area of
Acs.
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Table A.1: Electrical analogues of thermal system

Electrical Thermal

Element Expression Unit Element Expression Unit

Voltage V V Temperature T ◦C or K

Current I A Heat transfer rate Q Watt (W=J/s)

Resistor Relcδx Ω Resistor
δx

kAcs
◦C/W

Capacitor Celcδx F Capacitor C = cpm J/◦C

𝛿𝑥 

𝐼(𝑥) 𝐼(𝑥 + 𝛿𝑥) 

𝑅elc. 𝛿𝑥 

𝑉(𝑥) 𝑉(𝑥 + 𝛿𝑥) 𝐶elc. 𝛿𝑥 

Figure A.2: Schematic diagram of a transmission line.

as:

∂T

∂t
=

k

ρcp

∂2T

∂x2
. (A.3)

This is a 1D heat equation, in which heat transfer takes place along the length δx and

with the assumptions that heat only enters or leaves the element from end surfaces,

further there is no heat exchange on the side boundaries.

In order to complete the analogy, a section of a uniform transmission line is con-

sidered as depicted in Fig. A.2, where the line resistance and capacitance (Relc, Celc

respectively) are given per unit length. For some length δx, the total resistance and

capacitance are Relcδx and Celcδx respectively.

Ohm’s law gives:

V (x+ δx)− V (x) = −IRelc.δx. (A.4)
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Applying Kirchoff’s current law gives:

I(x+ δx)− I(x) = −Celc.δx
∂V

∂t
. (A.5)

Taking the limit as δx→ 0 for (A.4) and (A.5) respectively gives:

I = − 1

Relc

∂V

∂x
, (A.6)

∂I

∂x
= −Celc

∂V

∂t
. (A.7)

Combining equations (A.6) and (A.7) results in the telegraph equations:

∂2V

∂x2
= RelcCelc

∂V

∂t
. (A.8)

Comparing (A.6) with (A.1) and (A.7) with (A.2), leads to the analogy between

electrical and thermal systems given in Table A.1.
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Appendix B

Preliminaries

Here, we present some preliminary results, which are used in the proof of convergence

in section 5.

Lemma B.1: [75] Let x and y be real vectors of the same dimension. Then, for any

scalar ε > 0 the following inequality holds

2xTy 6 εxTx+ ε−1yTy. (B.1)

Lemma B.2: (Schur complement) Given any real matrices X1, X2 and X3 such that

X1 = XT
1 and X3 > 0, then

X1 +XT
2 X

−1
3 X2 < 0, (B.2)

if and only if

X1 XT
2

X2 −X3

 < 0. (B.3)

Lemma B.3: [56](Barbalat’s lemma) Let φ : R→ R be a uniformly continuous func-

tion on [0,∞). Suppose that lim
t→∞

∫ t

0

φ(τ)dτ exists and is finite. Then,

φ(t)→ 0 as t→∞.
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Publications

Journal Papers

[J1] Ayman Karam and T. M. Laleg-Kirati, “Electrical Thermal Network for Direct
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Control, vol. 47, November 2016, Pages 87-97.

[J2] Ayman Karam, A. Alsaadi, N. Ghaffour, and T. M. Laleg-Kirati, “Analysis

of direct contact membrane distillation based on a lumped-parameter dynamic

predictive model”, Desalination, vol. 402, 16 January 2017, Pages 50-61.

Under Preparation

[U1] Ayman Karam and T. M. Laleg-Kirati, “Membrane Fouling Detection in Di-

rect Contact Membrane Distillation based on Nonlinear Adaptive Descriptor

Observer”.
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