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ABSTRACT

Geometric Rationalization for Freeform Architecture

Caigui Jiang

The emergence of freeform architecture provides interesting geometric challenges with

regards to the design and manufacturing of large-scale structures. To design these

architectural structures, we have to consider two types of constraints. First, aesthetic

constraints are important because the buildings have to be visually impressive. Sec-

ond, functional constraints are important for the performance of a building and its

e�cient construction. This thesis contributes to the area of architectural geometry.

Specifically, we are interested in the geometric rationalization of freeform architec-

ture with the goal of combining aesthetic and functional constraints and construction

requirements. Aesthetic requirements typically come from designers and architects.

To obtain visually pleasing structures, they favor smoothness of the building shape,

but also smoothness of the visible patterns on the surface. Functional requirements

typically come from the engineers involved in the construction process. For exam-

ple, covering freeform structures using planar panels is much cheaper than using

non-planar ones. Further, constructed buildings have to be stable and should not

collapse. In this thesis, we explore the geometric rationalization of freeform archi-

tecture using four specific example problems inspired by real life applications. We

achieve our results by developing optimization algorithms and a theoretical study

of the underlying geometrical structure of the problems. The four example prob-
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lems are the following: (1) The design of shading and lighting systems which are

torsion-free structures with planar beams based on quad meshes. They satisfy the

functionality requirements of preventing light from going inside a building as shad-

ing systems or reflecting light into a building as lighting systems. (2) The Design of

freeform honeycomb structures that are constructed based on hex-dominant meshes

with a planar beam mounted along each edge. The beams intersect without torsion

at each node and create identical angles between any two neighbors. (3) The design

of polyhedral patterns on freeform surfaces, which are aesthetic designs created by

planar panels. (4) The design of space frame structures that are statically-sound and

material-e�cient structures constructed by connected beams. Rationalization of cross

sections of beams aims at minimizing production cost and ensuring force equilibrium

as a functional constraint.
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Chapter 1

Introduction

An increased use of freeform surfaces has changed the map of contemporary archi-

tecture in the past decades. On the one hand, this striking trend is boosted by the

increasing demand for freefrom design. Freeform architecture often creates landmark

buildings with unique and stunning visual features, rather than standard and con-

ventional box-like appearances. On the other hand, the cost of achieving freeform

architecture is constantly reduced by the development of new technologies. One set

of technologies simplify the designing and modeling processing. For example, 3D dig-

ital modeling tools can help people obtain almost any imaginable freeform geometry

and visualize the building with lighting, temperature and wind simulation before con-

struction. Modern fabrication techniques, especially with the assistance of robotics,

make customized manufacturing accessible and a↵ordable. The development of new

materials provide more choices in the planning and construction of freeform buildings.

Compared with conventional buildings, the construction cost of freeform buildings

is still much higher. One important reason for this high cost is the varying shape of

di↵erent elements including beams, nodes, panels and so on. In the past decade,

the arising new research area of architectural geometry [1] sought to obtain a balance

between purely freeform design and fabrication e�ciency. Such categories of work

are called rationalization in architecture. In other words, the goal is to discretize

a freeform architecture with elements that are suitable for manufacturing, for ex-
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ample, planar beams and panels, congruent nodes and bars, and torsion-free nodes.

Pottmann et al. summarized recent work on this topic in a survey [2].

In the community of computer graphics and geometry processing, the research

work on geometric rationalization is a combination of discrete di↵erential geome-

try, geometry processing algorithms, and optimization techniques. In this thesis, we

explore the geometric rationalization of freeform architecture using four specific ex-

ample problems. We achieve our results by developing optimization algorithms and

a theoretical study of the underlying geometrical structure of the problems. In the

following we briefly explain the four rationalization problems that we tackle in this

thesis. These problems are motivated by real-world architectural design challenges.

Shading systems and lighting systems. They are usually external decorative

structures and therefore their functionality is closely related to sunlight. Shading

systems are used to prevent light from going inside a building while lighting systems

aim to increase the amount of sunlight entering a building by reflection or refraction.

In our research, we focus on shading and lighting systems that consist of planar beams

arranged along the edges of a quad-dominant base mesh. The mesh itself covers

a reference freeform surface. One construction requirement that we use for these

structures is that the beams have to be planar and the nodes have to be torsion-

free. To achieve this goal, we draw from the theory of line congruences. We derive

constraints of discrete line congruences to construct a good initialization of the quad

mesh and the node directions at each vertex. Figure 1.1 shows the light simulation

for two shading systems constructed by torsion-free structures.

Honeycomb structures. Motivated by the structures of beehives, a freeform hon-

eycomb structure is defined as a special torsion-free structure based on a hexdominant

mesh on freeform surfaces. Besides the geometrical constraint of the structure be-

ing torsion-free, each angle between neighboring planar beams is required to be 120

degrees. Then the nodes at all vertices are congruent with each other and can be
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manufactured by cutting a single type of node structure. An honeycomb structure

approximated the Cour Visconti roof in the Louvre Museum is shown in figure 1.2.

Polyhedral patterns. Polyhedral patterns are polygonal meshes whose faces are

all planar. The planarity requirement is one of the primary rationalization goals in

architecture. We focus on regular and semi-regular patterns that can be derived from

triangle, quad, or hex meshes by geometric subdivision rules. Covering a freeform

surface by polyhedral patterns is not trivial, especially at the negative curvature re-

gions. A�ne symmetries with respected to axes or planes are proposed as regularizers

in the geometric optimization with the constraints of planarity. Polyhedral patterns

on a knot model are shown in figure 1.3.

Space frame structures. In architecture and structural engineering, a space frame

structure is a truss-like, lightweight rigid structure constructed from interlocking

struts in a geometric pattern. We propose a systematic computational framework

for the design of space structures incorporating considerations like static soundness,

approximation of reference surfaces, boundary alignment, and geometric regularity.

In addition, we consider the reduction of construction cost by minimizing the total

volume of material used for beams under the practical consideration that the cross

section can be customized but only a limited number of cross sections are allowed.

Formulating these requirements leads to a mixed-integer programming problem with a

bilinear objective function and quadratic constraints. To tackle this challenging prob-

lem, we propose a novel and practical alternating direction method based on linear

programming relaxation. A space structure constructed with six types of customized

beams is shown in figure 1.4.
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Figure 1.1: Line congruences constitute a basic geometric object in the computation
of freeform shading and lighting systems for architecture. Our objects of study are
discrete 2D systems of straight lines which undergo optimization according to geo-
metric requirements, followed by conversion to a non-manifold quad mesh with planar
faces which is capable of blocking light, creating reflection patterns, or serving as part
of the structure.

Figure 1.2: We approximate the Cour Visconti roof in the Louvre, Paris, by a quad
mesh with planar faces which caps a honeycomb (consisting of hexagonal cells whose
walls intersect at 120�). This structure exhibits several features important in freeform
architectural design: planar faces, low valence of nodes, a torsion-free support struc-
ture, and repetitive node geometry.
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Figure 1.3: Polyhedral patterns on a knot. Top: three polyhedral patterns tiling a
knot and optimized by our framework. All examples are combinatorially equivalent
to a semi-regular pattern (3, 4, 6, 4). Bottom: each of the three solutions is induced
by a choice of strip decomposition and corresponding a�ne symmetries. For each
model, we show the strip decomposition (left) with the pattern in the plane colored
by yellow and blue strips. We show the deformed pattern upon mapping to a cylin-
der, suggesting the feasible symmetries (right). The di↵erent colors encode di↵erent
choices of symmetries. For instance, blue faces are symmetric with respect to the
barycenter.

Figure 1.4: Left: A statically sound space structure designed and optimized with our
framework, motivated by the real architectural project shown in Figure 5.1. Right:
The space structure is constructed with six types of customized beams to minimize
the total volume of the material used for beams while maintaining moderate manu-
facturing complexity. Here, a hotter color indicates a larger beam cross-section area.
Our framework automatically determines the optimal cross-section areas of the six
types of beams as well as the assignment of beam types.
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Chapter 2

Shading and lighting systems

2.1 Introduction

This chapter studies objects which implicitly are important parts of graphics and

geometry processing in several ways, namely line congruences. These are 2-parameter

families of straight lines, of which the light rays emanating from a point source are

an example. Another example of much richer geometry is the system of lines which

intersect a surface orthogonally, and which is closely tied to the curvature behaviour

of that surface [3]. The geometry of smooth line congruences and their many relations

to surfaces are well understood. However there are only very few contributions to the

topic of the present chapter, which is discrete line congruences and their relations

to discrete surfaces. We here propose a discrete version of line congruences and

discuss their fundamentals as well as applications in shading and lighting systems in

architecture.

Contributions. These include discrete line congruences based on triangle meshes

( 2.2) and the important case of discrete normal congruences ( 2.3). Hitherto dis-

crete congruences have mostly been studied in the form of their quad-based torsal

parametrizations which could be interpreted as special quad- remeshings of triangle-

based congruences. Both kinds are relevant for our work, since our main application –

shading systems – essentially is the same as a torsal parametrization. Our algorithmic
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tained in L. The set of all regression curves c

i

of these developables makes up the
focal sheets F

1

, F
2

of the congruence (here only F
1

is shown).

contribution is a 2-stage optimization procedure: We optimize a triangle-based con-

gruence ( 2.4.1) such that quad-remeshing ( 2.4.2) yields the desired shading system,

up to a bit of final optimization. Results ( 2.4.3) and discussion ( 2.5) conclude this

chapter.

Previous work. For an overview on line congruences with an emphasis on com-

puting we refer to [4]. Design of congruences (with applications in mechanical en-

gineering) has been studied by [5], who consider Bézier surfaces in an appropriate

space of lines, thus modeling smooth congruences via a discrete control structure.

Discrete normal congruences, with a computational framework for estimating focal

surfaces of meshes with known or estimated normals, have been presented by [6].

There are some contributions to discrete line congruences in connection with spe-

cial quad meshes (integrable systems), for which we refer to the monograph by [7].

They do not consider discrete versions of congruences, but rather discrete versions of

the torsal parametrizations of congruences, which are also an important topic in the
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present chapter. This theory has been first elaborated by [8]. Of particular interest

is the special case of discrete normal congruences, which lead to torsion-free support

structures in architectural geometry, special cases of which have already been con-

sidered in connection with meshes with specific o↵set properties [9–11]. We should

mention that also semidiscrete versions of these constructions are of importance in

architecture [12]. Finally refer to [13] and the references therein for light control in

architecture.

2.2 Line Congruences

2.2.1 Smooth line congruences

We here recall a few facts from di↵erential geometry. A line congruence L is a smooth

2D manifold of lines described locally by lines L(u, v) which connect corresponding

points a(u, v) and b(u, v) of two surfaces A,B. The vector e(u, v) = b(u, v)� a(u, v)

indicates the direction of the line L(u, v). L is equivalently described by the volume

parametrization

x(u, v,�) = a(u, v) + �e(u, v) = (1� �)a(u, v) + �b(u, v).

A ruled surface R ⇢ L is described by functions u(t), v(t): A parametrization of such

a ruled surface via parameters t,� is given by x(u(t), v(t),�).

Torsal directions. In view of our applications we are especially interested in the

developable ruled surfaces R contained in the congruence L. Using subscripts for

partial derivatives, and the symbol [·, ·, ·] for the determinant, the condition that R

is developable reads [e,b
t

,a
t

] = 0 or equivalently [e,e
t

,a
t

] = 0 [4]. It expands to
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u2

t

[e
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,e]| {z }
=:�

0
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t
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t

([e
u

,a
v
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(2.1)

For any fixed line L(u, v) of the congruence, Equation (2.1) has up to 2 solutions

u
t

: v
t

, which are called torsal directions. By integrating torsal directions one creates

functions u(t), v(t) which fulfill (2.1) and which describe developable surfaces R

contained in L (see Fig. 2.1).

Example: Normal Congruences (see also 2.3). A classical example of a congru-

ence is formed by the lines orthogonal to a surface A. In this case the normals along a

principal curvature line constitute a developable ruled surface [3]. Thus such normal

congruences always have torsal directions, namely the principal directions of A (see

Fig. 2.1).

Remark (Undefined torsal directions). In the special case that L consists of the

bundle of lines incident with a center, all ruled surfaces R ⇢ L are cones (and thus

developable) and all directions are torsal. It is important for us to know that such

cases can occur, since optimization of congruences later in this chapter may yield

congruences close to a bundle, and defining a smooth frame field of torsal directions

has to be assisted e.g. by a smoothness energy.

Focal points. We are especially interested in hyperbolic congruences where two

torsal directions exist everywhere. Any line L(u, v) 2 L is then contained in two

developables R
1

,R
2

. It is known that this happens if and only if

([a
u

,e
v

,e] + [e
u

,a
v

,e])2 � 4[e
u

,e
v

,e][a
u

,a
v

,e]. (2.2)

To understand (2.2) we observe that among ruled surfaces, developables are charac-
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terized by having singular points on otherwise regular rulings (the curves of regression

of Fig. 2.1). Thus, hyperbolicity implies that there exist singularities (focal points)

x(u, v,�), where [x
u

,x
v

,x
�

] = 0, i.e.,

[e
u

,e
v

,e]�2 +
�
[a

u

,e
v

,e] + [e
u

,a
v

,e]
�
�+ [a

u

,a
v

,e] = 0. (2.3)

(2.3). This equation has solutions if and only if its discriminant is nonnegative,

whence (2.2). For the converse statement and “singularities at infinity” we refer

to [4]. Summing up, (2.2) holds () (2.3) has solutions () (2.1) has solutions.

Example: Congruences defined by a�ne mappings. Congruences defined by

parametrizations of the form

x(u, v,�) = a
0

+ a
10

u+ a
20

v + �(e
0

+ e
10

u+ e
20

v)

play an important in this work. For fixed � = �
0

, the mapping x(u, v,�
0

) parametrizes

a plane P
�

0

. The a�ne mapping from P
↵

to P
�

,

x(u, v,↵) 7�! x(u, v, �),

connects points which span the lines of the congruence. Focal points can be computed

by (2.3). The following properties (see [4, Ex. 7.1.2] and Fig. 2.2) are important for

us:

1. Each line L = P
↵

\ P
�

is contained in L

2. The lines P
↵

\P
�

with ↵ fixed, constitute a developable surface R ⇢ L which is

planar and contained in P
↵

(in general, it is the tangent surface of a parabola).

We are going to make use of these congruences in the next subsection, when we

consider discrete congruences defined by a correspondence between triangle meshes.
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x(1,0,0)

x(0,0,0)
x(0,1,0)

x(0,0,1)
x(1,0,1)

P
�

1

(1
3

,1
3

)

Figure 2.2: Congruence L defined
by a “linear” volumetric parametrization
x(u, v,�). Planes P

�

defined by � = const
are visualized as triangles. The red trian-
gle P

�

1

contains the ruling L(1
3

, 1
3

) and so
the set of lines P

�

1

\P
�

, � 2 R, constitutes
a developable R ⇢ L through that ruling.

2.2.2 Congruences defined over triangle meshes

Let us define discrete congruences by means of two combinatorially equivalent triangle

meshes A,B with vertices {a
i

} and {b
i

}. The correspondence a
i

 ! b
i

defines, via

linear interpolation, correspondences between corresponding faces a
i

a
j

a
k

and b
i

b
j

b
k

.

Connecting corresponding points then yields a congruence L which is composed of

pieces of the congruences studied in the example above. For each pair of corresponding

triangles we let

e
i

= b
i

� a
i

, a
ij

= a
i

� a
j

, e
ij

= e
i

� e
j

and obtain a volumetric parametrization of the type described in the example above:

x(u, v,�) = a(u, v) + �e(u, v), (2.4)

a(u, v) = a
i

+ ua
ji

+ va
ki

, e(u, v) = e
i

+ ue
ji

+ ve
ki

.

Here u, v run in the triangular domain u, v, 1� u� v � 0. In each point of a triangle

we may now use Equations (2.1) and (2.3) to compute torsal directions and focal

points.
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B

A

R \ B

R \ A

(a) (b)

R

Figure 2.3: Piecewise-linear correspondence of meshes A, B defining a piecewise-
smooth congruence L. (a) Integrating torsal directions yields corresponding polylines
A and B. (b) Connecting corresponding points of those polylines yields a piecewise-
flat (and thus developable) surface R ⇢ L.

In order to get a developable R contained in the congruence L, we pick an initial

point in a face and integrate the torsal directions from there. Property 2 above shows

that as long as we stay within a face, the torsal directions integrate along straight

lines (see Figure 2.3). When stepping over an edge from one triangle into the next one

there are up to two possible torsal directions to continue, and we choose the one which

has minimal deviation from the previous one. This procedure yields polylines R \A

and R \B, which subsequently span the developable R, and which are considered a

discrete representation of the developable R.

2.2.3 Congruences defined over quad meshes

Algorithms on meshes frequently have the aim that their results depend as little

as possible on the meshing but rather on geometric properties of the underlying

assumed smooth shape which is approximated by the mesh. Sometimes however the

mesh has regular combinatorics and the actual mesh polylines play an important

role. This section, changing from triangle-based congruences to quad- based ones,

performs exactly this change of viewpoint. Similar to 2.2.2, assume combinatorially
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Figure 2.4: A torsal discrete congruence L is defined by connecting corresponding
vertices of quad meshes A,B where corresponding edges are co-planar; creating dis-
crete developables (red and yellow) along mesh polylines. This congruence has been
used for the Yas Marina hotel, Abu Dhabi (right) to create a torsion-free support
structure.

equivalent quad meshes A,B. We could imitate the construction of 2.2.2 and define

a piecewise-smooth congruence by bilinear interpolation within faces, but this does

not lead to new insights. We therefore do not pursue this direction and reserve quad

combinatorics for the treatment of torsal parametrizations of congruences:

Definition 1. A parametrization L(u, v) of a congruence is torsal, if the ruled sur-

faces defined by u = const are developable, and so are the ones defined by v = const

A discrete torsal parametrization is defined by a direct analogy: A discrete ruled

surface (a sequence of lines) is developable if successive lines are co-planar (see colored

ruled surfaces in Figure 2.4). Using this notion, we define:

Definition 2. A line congruence {L
i,j

} of regular quad combinatorics is a torsal

parametrization, if the ruled surfaces defined by i = const are developable, and so are

those defined by j = const

Application: Torsion-Free Support Structures. Figure 2.4 shows a steel con-

struction where prismatic beams follow the edges of a mesh, denoted by A, with

regular quad combinatorics. A has the additional property that each vertex a
i,j

is
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equipped with a straight line L
i,j

such that for each beam adjacent to that vertex,

the central symmetry plane of the beam contains L
i,j

. Obviously this happens if and

only if the lines L
i,j

constitute a discrete torsal parametrization.

Such constructions play an important part in the geometry of freeform architec-

ture. We give them the name under which they are usually referred to in this context:

Definition 3. A torsion-free support structure consists of combinatorially equivalent

meshes A, B such that corresponding edges are co-planar but do not coincide (in

case of regular quad combinatorics, lines connecting corresponding vertices of A, B

constitute a torsal parametrization).

Doliwa et al. [8], who first studied discrete torsal parametrizations in depth, use the

word conjugacy for the relation between the mesh A and the congruence L. Previous

work on torsion-free support structures was in the context of meshes with planar

faces: [10] treat support structures in the context of architectural geometry. Actually

planarity of faces of A is an unnecessary restriction, see Fig. 2.4. It is an aim of the

present chapter to study and compute support structures consisting of meshes A,B

with non-planar faces, and to use them for new purposes.

2.3 Normal congruences

2.3.1 Smooth normal congruences

We already mentioned normal congruences, which are formed by the surface normals

of a smooth surface A (see Figure 2.1). The volume parametrization corresponding to

such a congruence L reads x(u, v,�) = a(u, v) + �e(u, v), where a(u, v) parametrizes

the surface A, and e(u, v) is the unit normal vector field. Note that any constant-

distance o↵set Ad of A defines the same congruence, with ad = a + de, ed = e, and

xd(u, v,�) = x(u, v,�+ d).
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Remark (Relation to Surfaces). Properties of normal congruences correspond di-

rectly to properties of surfaces: Torsal directions of L correspond to principal di-

rections of A (=) torsal directions exist everywhere). A developable surface in L

consists of the surface normals along a principal curvature line of A (=) there are

two families of developables which intersect at right angles; actually this characterizes

normal congruences). The focal surfaces of L consist of principal curvature centers

of A, so they are a surface analogue of the evolute of a curve [3].

A general congruence x(u, v,�) = a(u, v) + �e(u, v) might be the normal congru-

ence of an as yet unknown surface a⇤(u, v) with normal vectors e(u, v). In order to find

out if this is the case, we write a⇤(u, v) = a(u, v)+�(u, v)e(u, v) and solve for �(u, v).

If we restrict ourselves to kek = 1 we get he, e
u

i = he, e
v

i = 0, and the orthogonality

conditions he, a⇤
u

i = he, a⇤
v

i = 0 are equivalent to �
u

= �ha
u

, ei, �
v

= �ha
v

, ei. This

PDE has a solution if and only if the integrability condition �
uv

= �
vu

holds, i.e.,

ha
u

, e
v

i = ha
v

, e
u

i. (2.5)

2.3.2 Discrete normal congruences

The following definition takes up a property characterizing smooth normal congru-

ences:

Definition 4. A congruence L defined by a piecewise-linear correspondence of tri-

angle meshes A,B is called normal, if torsal planes (spanned by ruling and torsal

direction) in the barycenters of faces are orthogonal.

We consider corresponding faces a
1

a
2

a
3

and b
1

b
2

b
3

of A,B, with di↵erence vectors

e
i

= b
i

� a
i

and project them onto a plane orthogonal to the line connecting their

barycenters. This yields triangles ā
1

ā
2

ā
3

and b̄
1

b̄
2

b̄
3

and vectors ē
i

= b̄
i

� ā
i

(see

Figure 2.5). A discrete analogue of (2.5) now is the following:
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Figure 2.5: Congruences defined by corre-
sponding meshes A,B are normal if torsal
planes in the barycenters of faces are orthog-
onal (here we show also the projection used
by Prop. 1).

Proposition 1. In the notation of the previous paragraph, meshes A,B define a

normal congruence () for each pair of corresponding faces, we have

hā
ij

, b̄
ik

i = hā
ik

, b̄
ij

i, (2.6)

where ā
ij

= ā
j

� ā
i

, b̄
ij

= b̄
j

� b̄
i

. This is equivalent to

hā
ij

, ē
ik

i = hā
ik

, ē
ij

i,

where ē
ij

= ē
j

� ē
i

. It is su�cient that these equations hold for at least one choice

of indices i 6= j 6= k.

Proof. Corresponding points a 2 A, b 2 B move in corresponding torsal directions

a
t

, b
t

, resp., if and only if b � a, a
t

, b
t

are coplanar, cf. the text above (2.1).

With a,b as barycenters of corresponding faces, this is obviously equivalent to linear

dependence of ā
t

, b̄
t

. When using the projection ā = b̄ of barycenters as the origin of

the coordinate system, there is a linear mapping ↵ which maps corresponding points

ā
i

7! b̄
i

(i = 1, 2, 3) as well as vectors ā
t

7! b̄
t

(which are thus seen as eigenvectors of

↵). This implies that normality is characterized by orthogonality of ↵’s eigenvectors,

i.e., symmetry hx,↵(y)i = h↵(x),yi for at least 1 pair of linearly independent vectors

x,y. This is exactly what is stated.

Remark. It is easy to find conditions equivalent to (2.6). The following ones involve
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Figure 2.6: Shading systems with multiple constraints, computed by optimizing a
line congruence (selected lines shown in red), subsequent conversion to torsal form
and optimization towards planarity of shading fins. (a) Light is to be blocked, and
and the boundary, torsal directions are to be aligned with the boundary. (b) Light
is to be blocked, torsal directions are to be aligned with a user’s design strokes. (c)
Light is to be blocked, and in two selected areas of the facade, specified objects are
to be visible (see inset figures at right for fish-eye views from O

1

and O
2

which verify
this see-through constraint). (d) Here a truly flat facade is equipped with a shading
system whose di↵erent parts block light emitted from di↵erent sun positions.

the di↵erence of face centers,

e
c

= 1

3

(b
1

+ b
2

+ b
3

)� 1

3

(a
1

+ a
2

+ a
3

),

which indicates the direction of projection. We have

(2.6) () ha
ij

⇥ e
c

,b
ik

⇥ e
c

i = ha
ik

⇥ e
c

,b
ij

⇥ e
c

i

() ha
ij

⇥ e
c

, e
ik

⇥ e
c

i = ha
ik

⇥ e
c

, e
ij

⇥ e
c

i. (2.7)

2.4 Applications and Algorithms

The importance of torsion-free support structures for steel constructions has already

been emphasized, see Fig. 2.4 and [10]. We therefore demonstrate the capabilities

of modeling with line congruences by means of another application, namely freeform

shading and lighting systems.

Torsion-free support structures, which exhibit many planar quads, are well suited

to function as shading elements themselves — see Figure 2.6. Their design is based
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on optimization of a line congruence L, and subsequent extraction of a torsion-free

support structure from L whose planes (i.e., torsal planes of L) have the function of

blocking light. It is very important that the combinatorics of the shading system is

determined only in the second step, after optimization of the congruence has been

performed.

A typical design objective for shading systems applications is the blocking of light

by shading fins which correspond to torsal planes. We could require

(a). One family of L’s torsal planes is as orthogonal to incoming light as possible (so

that those planes can function as shading fins of minimal possible width).

(b). As an alternative, the lines of L are as orthogonal as possible to the incoming

light rays.

(a) achieves the goal of blocking light in a more obvious manner than (b), which

indiscriminately moves all quads in the support structure in a position generally

transverse to the light rays. Numerical experiments suggest that requiring (b) has

the same e↵ect as (a). Since it is simpler to implement we therefore employed (b) in

most examples. The foundation of this observation is

Proposition 2. For parallel light, generically (b)=)(a).

Proof. (b) =) rulings of developables R ⇢ L are orthogonal to light. Such devel-

opables can only be cylinders or planar. Generically not both families of developables

in L are cylinders since then all rulings would be parallel. So at least one family of

developables is planar, and torsal planes (being tangent planes of R) are orthogonal

to light rays.

This proof shows that congruences fulfilling (a) or (b) in an exact manner are rather

special and will not occur in practice. Accordingly our examples achieve (a) or (b)

only in a least squares sense. Further design objectives are:
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(c). The user might prescribe individual lines of L. Fitting a congruence to these

data is not di�cult [4], but in view of applications we want to do it such that L

is hyperbolic and convertible to a torsal parametrization.

(d). Hyperbolicity is achieved by incorporating (2.6) into the optimization, making

L more “normal”.

(e). A user may prescribe torsal directions at selected locations of the mesh, in order

to guide the appearance of the support structure later extracted from L.

(f). A similar design objective is that incoming light is reflected in torsal planes in a

prescribed way.

2.4.1 Optimization of Mesh-based Congruences

Most of the design objectives formulated above involve global optimization, and the

following paragraphs show how to do that. We discuss how to optimize a congruence L

defined by a fixed triangle mesh A = (V,E, F ) and a variable triangle mesh B (we keep

A fixed since we are later remeshing anyway). Throughout this text, corresponding

vertices of meshes A,B are given by

a
i

and b
i

= a
i

+ e
i

with ke
i

k ⇡ 1.

The lines L
i

of the congruence connect vertices a
i

and b
i

. Restriction to unit vectors

e
i

yields simpler expressions for target functionals, at the cost of some degrees of

freedom.

Contributions to target functionals. Below we list the components used to

build the various target functionals for optimization which are employed in individual

examples. Using an average edge length �, we appropriately normalize each term in

order to make it scale invariant.

• Fairness. Assuming that A is fair, we express fairness of the congruence in terms of
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the Laplacian of vectors e
i

interpreted as a vector-valued function “e” on the mesh

A:

f
fair

=
1

|V |
X

a
i

2V

k�e
i

k2, where �e
i

= e
i

� 1

deg a
i

X

a
j

⇠a
i

e
j

.

• The normal congruence property. In the notation of (2.7), we penalize deviation

from that property by

f
norm

=
1

�2|F |
X

a
i

a
j

a
k

2F

�
ha

ij

⇥e
c

, e
ik

⇥e
c

i�ha
ik

⇥e
c

, e
ij

⇥e
c

i
�
2

.

• Hyperbolicity constraint. If our congruence is to have torsal planes, the discriminant

condition (2.2) must hold everywhere. For practical purposes we require it for the

barycenters of each face 4 = a
i

a
j

a
k

. Using (2.4), it expands to

c
hyp

(4) = ([a
ij

,e
ik

,e
c

] + [e
ij

,a
ik

,e
c

])2

� 4[e
ij

,e
ik

,e
c

][a
ij

,a
ik

,e
c

] � 0.

• User-defined constraints. If the user specifies that the line L
i

2 L should be parallel

(resp., orthogonal) to a certain direction d
i

, we add appropriate linear combinations

of

f
par,i

= ke
i

⇥ d
i

k2, resp., f
perp,i

= he
i

,d
i

i2

to the target functional, depending on the application. The constraint that the angle

between L
i

and a user-specified vector d
i

does not exceed a certain threshold is

expressed as he
i

,d
i

i � const � 0 (here ke
i

k = 1 is needed).

• Prescribing torsal directions and planes. If a user prescribes torsal directions in

some part of the mesh, then we try to fulfill this wish for all faces 4 = a
i

a
j

a
k

which
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intersect that area of interest. We represent the required direction via a line segment

p
1

p
2

⇢ 4 containing the barycenter c = a
i

+a
j

+a
k

3

. Fig. 2.3 makes it clear that p
1

p
2

is torsal if and only if the lines of L passing through the

points p
1

,p
2

, c (indicated by vectors ep
1

, ep
2

, e
c

) are copla-

nar. A user wishing to prescribe an entire torsal plane must

in addition specify its normal vector n which in particular

is then orthogonal to e
c

. Summing up, for penalizing devi-

ation from a desired torsal direction and plane, we use

a
i

a
j

a
k

b
j

b
i

b
j

p
1

p
2

ep
1
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1

ep
1
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1
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1
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1
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1
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1

ep
1

ep
1

ep
1

e
c
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c

e
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c
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c
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e
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c
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c
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c
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2

ep
2

ep
2

ep
2

ep
2

ep
2

ep
2

ep
2

ep
2

ep
2

ep
2

ep
2

f
dir

(4) = [ep
1

,ep
2

,e
c

]2, f
plane

(4) = f
dir

(4) + he
c

,ni2.

• Transversality of torsal planes. For applications it is often desirable that torsal

planes intersect at right angles or nearly so. If we are optimizing towards a normal

congruence, this property is automatic. Otherwise we use a condition of the form

c
ang

(4) > 0 which holds true if and only if the angle between torsal directions in the

face 4 = a
i

a
j

a
k

does not fall below ↵ (c
ang

is a function taking arguments a
ij

, a
ik

,

e
i

, e
j

, e
k

, ↵ and is not printed here).

L

b
i

b
j

b
k

b
l

a
i

a
j

ā
i

ā
jā

k

ā
l

• Fairness of torsal directions is expressed in the smallness

of jump in torsal planes when crossing an edge. Consider

the line L 2 L passing through the midpoint of an edge a
i

a
j

of the mesh A and project the adjacent triangles a
i

a
j

a
k

and

a
i

a
j

a
l

orthogonally in direction L. This results in vertices

ā
i

, . . . “No jump” is expressed by the condition that torsal directions in the adjacent

triangles project onto the same straight line. The same procedure can be applied to

the mesh B. It is not di�cult to verify that “no jump” is equivalently expressed by

ā
l

having the same barycentric coordinates w.r.t. ā
i

ā
j

ā
k

as b̄
l

has w.r.t. b̄
i

b̄
j

b̄
k

. An

appropriate sum of squares constitutes a fairness energy f
fair/t

and is added to the
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target functional as a regularizer.

(a)
L

(b)
L̃

(c) 0

0.02

�pl

L̃opt

Figure 2.7: Flowchart of algorithm. (a) Optimize discrete line congruence L (red)
defined by meshes A,B (variables are vertices of A,B) and compute torsal directions
in the faces of A (blue). (b) Extract a quad-based support structure L̃ (an almost-
torsal parametrization of L) which follows the torsal directions of L. (c) Optimize
the quads of L̃ for planarity.

Unconstrained and constrained optimization. We initialize optimization with

vectors e
i

which are estimates for normal vectors in vertices of A. We employ both

unconstrained and constrained optimization. In the unconstrained case we minimize

a combination of f
fair

, f
norm

, together with terms f
dir

(4), f
plane

(4) and other terms

which correspond to design specifications. This optimization problem is solved by a

quasi-Newton method (limited-memory BFGS method [14]). The constraint ke
i

k = 1

is enforced by simply re-normalizing all e
i

’s after each round of iteration.

We also perform constrained optimization of the same kind of target functional,

by adding user-defined constraints like c
hyp

(4) � 0 or c
ang

(4) � 0. We employ an

augmented Lagrangian method to solve this constrained optimization problem. Again

ke
i

k = 1 is enforced by re-normalization.

2.4.2 Conversion to Quad-based Torsal Form

Converting the congruence L (defined by triangle meshes A,B) to torsal form means

finding a discrete torsal parametrization L̃ (defined by quad meshes Ã, B̃) whose

lines fit in the original congruence L. The easiest method of conversion is to choose

Ã, B̃ as respective remeshings of A, B, because then the edges of Ã follow the torsal
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directions of L in A. The actual construction of L̃ requires the two steps remeshing

and optimization (see Figure 2.7).

Torsal Remeshing of Congruences. Still using the notation from above, we first

compute the frame field in A which indicates the torsal directions of the congruence

L (Fig. 2.7a). It is su�cient to compute the torsal directions by solving (2.1) for the

barycenter of each face. We subsequently remesh A to gain a mesh Ã whose edges

follow the frame field. This is a nontrivial task which we however do not consider

a contribution of the present chapter. We employed the method of [15], which is a

version of mixed-integer quadrangulation [16]. Once Ã is known, we remesh B by

applying the correspondence A  ! B to vertices of Ã, which yields vertices of B̃

(Fig. 2.7b).

Optimization of Support Structures. The preceding paragraphs show how to

find corresponding meshes Ã = (Ṽ , Ẽ, F̃ ) and B̃ which represent an almost-torsal

parametrization L̃ of the congruence L (Fig. 2.7b). We optimize Ã, B̃ such that

corresponding edges become co-planar:

ã
i

, ã
j

, b̃
i

, b̃
j

, co-planar, whenever ã
i

ã
j

2 Ẽ.

We wish to achieve this while retaining proximity of Ã to the reference surface A,

and likewise retaining proximity of L̃ to the reference congruence L. We therefore

minimize

f̃ = w̃
plnr

1

�2|Ẽ|

X
a
i

a
j

2 ˜

E

dist(ã
i

_ b̃
j

, ã
j

_ b̃
i

)2

+ w̃
prox

1

|Ṽ |

X
˜a
i

2 ˜

V

⇣
kẽ

i

� ẽ
i,0

k2 + (dist(˜ai

,A)

˜

�

)2
⌘
,

+ w̃
fair

1

�̃2|Ṽ |

X
˜a
i

2 ˜

V

k�ã
i

k2. (2.8)

Here the first summand (with weight w̃
plnr

� 0, normalized by an average edge length
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10:00 12:00 14:00

Figure 2.8: Selective Shading: Moving patterns generated by shading system opti-
mized for blocking light at 12:00 except at designated areas.

�̃) penalizes deviation of quadrilaterals ã
i

ã
j

b̃
i

b̃
j

from planarity by computing the sum

of squares of distances of their diagonals.

The second summand (weighted with w̃
prox

) penalizes deviation of the vectors

ẽ
i

(indicating lines of L̃) from their initial values ẽ
i,0

; and deviation of vertices ã
j

from the reference surface A. Here the symbol dist(a
i

, A) does not really mean the

distance from A (which is hardly e�ciently computable), but an approximation of

that distance by dist(a
i

, T
i

)2, where T
i

is an estimated tangent plane of A in the point

which arises by closest-point projection onto A of the position of a
i

in the previous

round of iteration. See Fig. 2.7c, and see Figure ?? for details on the choice of weights.

2.4.3 Results

We apply 2.4.1, 2.4.2 to shading systems with both planar and developable elements,

and also to indirect lighting.

Shading Systems for Facades (Figure 2.6). In each of these examples a congruence

L is optimized so that a torsion-free support structure extracted from it blocks the

rays of the sun during the hottest parts of the day. The astronomical information

necessary to perform such computations is easily obtainable, since the path of the sun

throughout the year is known. For optimization we simply employ directions of light

which correspond to the location of the sun during “hot” times like early afternoon in

summer. If the depth of shading fins is made minimal, then obviously at other times

the sun is not completely blocked. Note that these shading systems are “freeform”
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Figure 2.9: Creating full shade by thin developable strips, created by the application
of subdivision+optimization to a shading system with planar faces.

even if the underlying reference surface is not, such as in Figure 2.6d.

For Figure 2.6 in general, a design surface (referred to as “mesh A” in our de-

scription of the optimization procedure) is equipped with a line congruence L, which

is initialized from surface normals of A and is subsequently optimized using a target

functional composed of f
norm

, f
fair

, and a linear combination of terms f
perp,i

(among

other terms). The latter make lines of L orthogonal to the vector d
i

= d = const

which indicates the direction of light. Having computed L, we perform quad remesh-

ing guided by L’s torsal frame field, and subsequently optimize a torsion-free support

structure.

For Figures 2.6a, 2.6b the support structure is to be aligned with the boundary

and a user’s design strokes, so optimization uses terms f
dir

(4) to achieve prescribed

torsal directions for faces contained in a certain subset F 0 ✓ F (F 0 is marked in red

in small inset figures). In a similar manner the shading system of 2.6d has been

optimized. As an alternative to f
perp,i

, here sun blocking is achieved using a linear

combination of terms f
plane

(4) which position torsal planes of the congruence directly

orthogonal to incoming light.
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Finally Figure 2.6c exhibits a shading system with the property that certain ob-

jects are visible through the shading system in designated areas (blue rectangles in

inset figure). Optimization therefore has to make sure that for vertices in a subset

V 0 ✓ V the lines of L pass through prescribed target points O
i

. This constraint

is incorporated into our optimization by augmenting the target functional with lin-

ear combinations of f
par,i

, for vertices in V 0. Such constraints could be used e.g. for

ensuring that people in o�ces see a portion of the sky. —newFor optimizing the

congruences L corresponding to Figure 2.6, we use the target functional

f = w
norm

f
norm

+ w
fair

f
fair

+ w
fair/t

f
fair/t

(2.9)

+ w
perp

1

|V |
X

a
i

f
perp,i

+ w
dir

1

|F 0|
X

42F 0
f
dir

(4)

+ w
par

1

|V 0|
X

a
i

2V 0
f
par,i

+ w
plane

1

|F |
X

42F
f
plnr

(4).

Selective Blocking of Light (Figure 2.8). This architectural design is to give shade

except for a designated area where shading fins are to be parallel to incoming rays.

To create this example we proceed similar to Figure 2.6c: The base mesh represents

the design surface, its normals initialize L. A subset V 0 ⇢ V of vertices specifies the

area where light should come through. The optimization uses the target functional

(2.9), with the ‘parallel’ and ‘perpendicular’ terms given as

w
par

|V 0|
X

a
i

2V 0
f
par,i

+
w

perp

|V \ V 0|
X

a
i

2V \V 0
f
perp,i

.

(f
par,i

, f
perp,i

involve the direction d
i

= d = const of light).

Shading by Single-Curved Elements (Figure 2.9). A sequence of planar quadri-

laterals is a discrete developable surface (see e.g. the red and yellow developables of

Figure 2.4). This interpretation motivates us to apply a refinement procedure ac-

cording to [9] to a torsion-free support structure in order to convert it into a system

of smooth developables: we iteratively apply splitting, smoothing, and optimization
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towards planar faces. Applications are structures built from plywood or sheet metal,

whose manufacturing depends on the developability property.

Indirect Lighting by Reflection (Figures 1.1, 2.10, 2.11). We extend our meth-

ods to indirect lighting by reflection. To guide a ray of light towards a prescribed

direction, a bisector plane of the original ray and the reflected ray has to be used

as a mirror surface. We therefore optimize a congruence L such that precomputed

mirror planes become torsal planes. Figure 2.10 actually exhibits a 2nd torsion-free

supporting structure, which does have the function indicated by its name, namely a

steel substructure aligned with the shading system (Fig. 2.10(d3)). It is based on a

congruence L0 which is optimized simultaneously with L. Alignment of L,L0 means

that torsal directions of L,L0 coincide which is achieved by augmenting the target

function (2.9) by

w
extra

· 1

|F |
X

42F

⇣ 1

�2

���
⇣

�

0

2�

1

�

2

⌘

L
⇥

⇣
�

0

2�

1

�

2

⌘

L0

���
⌘
2

(�
i

are the coe�cients of (2.1), evaluated in face barycenters).

2.5 Discussion

Implementation Details. Details on optimization for the examples contained in

this chapter are given in Figure ??. In particular we give the quality of planarity

for each occurring torsion-free support structure. We found that planarity is mostly

su�cient already after the extraction procedure of 2.4.2 so no further optimization

is needed. Timings are for a 2.4GHz dual core desktop with 6GB RAM.

Limitations. We generally found in our examples that we could successfully optimize

congruences as desired. However it is not possible to fulfill our kind of geometric side-

conditions for normal congruences. As a consequence, the contribution f
norm

to the
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target functional works as a regularizer and more importantly, it makes congruences

hyperbolic and therefore usable for support structures. A general limitation of static

systems which block or guide light from moving sources is, of course, that they are

optimal only for the few positions of the light source they have been optimized for;

see Figures 2.6d and 2.8.

Robustness. We take as evidence for robustness of our nonlinear optimizaton pro-

cedures that we could initialize congruences from lines orthogonal to the reference

surface, even if the result of optimization is far from orthogonal. Experiments show

that adding noise (uniformly distributed, up to maximum ⇡ 50�) does not visibly

influence the result.

Alternative Routes. We employ a two-step procedure: optimization of a congru-

ence and subsequent extraction of a torsion-free support structure (which determines

the combinatorics of the shading system). The separation into these two steps is

essential: we found that the simpler method of directly optimizing vertex positions of

a no-optimal shading system does not work. An alternative approach is to determine

the orientation of torsal planes from the desired light pattern. For smooth congru-

ences 1 family of torsal planes determines the congruence including the 2nd family

of torsal planes (by di↵erentiating twice). This method works in principle, but we

found it not very robust.

2.6 Conclusion

This chapter demonstrates geometric basics and applications of discrete congruences,

with a focus on shading and lighting systems. Our procedures can be applied to any

kind of geometry, from flat to double-curved. We thus combine an area deeply rooted

in graphics (i.e., shading and lighting) with geometric computing and optimization

in architectural design. Directions for future research are many: discrete curvatures
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defined in terms of normal congruences are a topic of discrete di↵erential geometry.

Other topics have to do with manufacturing and assembly, e.g. beams of constant

height, more general shapes as shading elements etc.



40

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

(d3)

(e3)

(e4)

Figure 2.10: Shading and lighting systems for a subway entrance in London at noon,
June 21. Rows a–d represent top view, front view, cross-section, and interior view,
respectively. Columns 1–4 correspond to di↵erent shading systems extracted from a
congruence L: In (a1)–(c1) L consists of the normals of the mesh A which represents
the roof, so the support structure follows the principal curvature lines of A. There is
no e↵ective shading. In (a2)–(c2) L is optimized for blocking sunlight. In (a3)–(e3)
L is optimized such that shading fins reflect sunlight towards the interior at an angle
of 45 degrees, with (e3) illustrating reflected light rays. In (a4)–(e4) the front part of
the roof is optimized for shading, the rest for reflection.
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(a)
S
SS

⇥
⇥
⇥
⇥
⇥
⇥

(b)

Figure 2.11: (a) A surface equipped with a torsion-free support structure e↵ecting
indirect lighting by reflecting sunlight onto the ceiling. (b) If made from a non-
reflecting material, shading and di↵use reflecting lighting is achieved. The screen is
almost transparent when viewed from the inside (“veil of light”).
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Chapter 3

Freeform Honeycomb Structures

3.1 Introduction

Figure 3.1: Left: Natural honeycomb. Right: Design by E. van Egeraat based on a
hexagonal torsion-free support structure.

Nature’s design strategies and solutions are a rich source of inspiration for various

branches of science and technology (see e.g. the biomimicry web pages www.ask-

nature.org and biomimicry.net). Architecture and structural engineering are certainly

among those areas which learn from nature, and this should be especially true for

research on the realization of complex architectural structures. The present chapter

presents a contribution in this direction. It is inspired by honeycombs which possess

fascinating freeform shapes (see Figure 3.1) and are composed of hexagonal cells whose

http://www.asknature.org/
http://www.asknature.org/
http://biomimicry.net
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faces meet at angles close to 120 degrees. Structures containing honeycomb geometry

have been used in engineering for a long time, as a means to minimize material without

losing structural strength [17]. This chapter assumes a di↵erent viewpoint and sees

them in the context of architectural geometry, as torsion-free support structures with

congruent regular nodes and hexagonal cells. The most important property of such

honeycomb structures is that all nodes are congruent within a reasonable tolerance,

which should facilitate the fabrication of these structures. We will show how to

compute and design honeycomb structures, discuss applications and their limitations,

and we also discuss the new topic of polyhedral patterns.

Related Work. Given a base mesh M of any connectivity, computing a torsion-free

structure based on M requires us to assign a plane to each edge so that the planes

around each vertex (node) intersect in a straight line, which is called the node axis. In

the actual realization of this structure, beams are positioned symmetric to the edge

planes. For triangle meshes, torsion-free support structures have very few degrees of

freedom and are not interesting for applications. This is because all node axes need to

pass through a fixed point, or are parallel [18]. For meshes with planar faces, torsion-

free support structures have been well studied in recent years: They are accessible

via the concept of parallel meshes. For quad meshes, support structures are related

to discrete line congruences [19]. Neither applies to honeycomb structures, which are

based on hex meshes with non-planar faces.

Special hex-dominant torsion-free structures can be derived from triangle meshes

with the circle-packing property [20] which are equipped with a packing of spheres

centered in the vertices. The sphere’s tangent planes in the points of contact form

a torsion-free hex structure, and if all spheres are of the same size it will be a hon-

eycomb with 120 degree intersection angles. Such CP meshes therefore are useful to

initialize some optimization tasks discussed in this chapter. A more general construc-

tion of support structures has been briefly addressed in connection with cell packing
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structures [21], but without aiming at congruent nodes.

Figure 3.2: Hexagonal support structure derived from a
circle-packing mesh, each cell containing a sphere touch-
ing the walls [20].

Repetition of elements has been a successful ingredient in reducing the fabrication

cost of freeform architecture, see e.g. [22], and thus this topic already received some

attention. Singh and Schaefer [23] optimize triangle meshes so that there is only a

relatively small set of di↵erent faces up to some chosen tolerance. Similarly, Fu et

al. [24] reduce the number of essentially di↵erent faces in non-polyhedral quad meshes.

For arbitrary freeform shapes, the goal of congruent faces appears to conflict mesh

fairness. We expect a similar e↵ect for the goal of congruent nodes in meshes with

straight edges. However, giving up the straightness of edges and using circular arcs

instead, one can achieve congruent and even regular nodes for triangular, quad and

hex combinatorics [25].

Last, but not least we point to [26], where the topics of repetition and general

polyhedral patterns are combined by the analysis of the realization of surfaces with

a bounded number of “folding elements”.

Contributions

(a). We analyze the geometry of honeycomb structures and discuss their flexibility to

approximate freeform shapes. It turns out that a honeycomb can be orthogonal

to a given surface only if that surface is developable. The Gaussian image of a

honeycomb is an unusual kind of spherical 2D tiling which is concentrated on

curves.

(b). We present computation and interactive design of honeycombs, addressing spe-
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cial cases and particular applications relevant to architectural design.

(c). Honeycombs can be converted to polyhedral patterns on surfaces, e.g. quad

patterns consisting of planar faces. Such patterns, which are not a discrete

version of a smooth curve network, constitute a remarkable and novel topic.

3.2 Geometry and flexibility of honeycomb struc-

tures

This section discusses geometric properties of honeycombs. Our conclusions in partic-

ular yield insights in the degrees of freedom which are available when approximating

a design surface by a honeycomb structure. It turns out that the condition of congru-

ent nodes is rather strong: It implies that the honeycomb can always follow a given

surface, but in general it is not possible that the node axes remain orthogonal to it.

We show that this can happen only for developable surfaces.

Definitions.
v0
k

v
k

v
i

v0
i

We summarize again the definition

of a honeycomb structure: It requires two combi-

natorially equivalent meshes M = (V,E, F ) and

M 0 = (V 0, E 0, F 0) such that each pair v
i

v
k

, v0
i

v0
k

of

corresponding edges defines a planar quadrilateral

wall which serves to border the open cells associated with the faces of the mesh.

Further we require that for each vertex the incident walls form angles of 120 degrees

(implying that the valence of each vertex is  3 and faces will be mostly hexagonal).

The intersection of walls at a vertex v
i

is called its node axis (it is the straight line

v
i

v0
i

).

The most relevant geometric information contained in a honeycomb structure is

not the meshes M,M 0 but the edge planes which carry the walls (connecting corre-
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sponding edges), and the node axes which connect corresponding vertices. If these

data are given we may freely choose vertices of M,M 0 in the node axes, thereby

defining a honeycomb structure (this e.g. implies that any surface can trivially be

approximated by a honeycomb structure, by moving the vertices of an existing hon-

eycomb close to that surface).

We will see that for our computations it is mostly su�cient to encode the relevant

geometric data of honeycombs by the vertices of the mesh M , and the normal vectors

of walls in the honeycomb.

The spherical image of a honeycomb. In order to understand the global geometry

of honeycombs we study the unit vectors v�

i

which indicate the directions of the node

axis v
i

v0
i

. In our applications the base mesh is always following a smooth surface,

and we assume that the vectors v�

i

consistently point to one side of that surface. For

any face f = (v
i

1

,v
i

2

, . . . ) of the base mesh, the spherical image of that face, resp.

cell, is the spherical polygon f� = (v�

i

1

,v�

i

2

, . . . ), see Figure 3.3. The spherical image

M� of the honeycomb consists of the spherical images of the individual cells.
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1 , . . . ,v
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5 )

Figure 3.3: Honeycomb and its spherical image. Left: Honeycomb with node axes. A
6-gon and a 5-gon are highlighted in red and blue, resp. Right: Spherical image M�

of node axes, with analogous highlighting. Observe the decomposition of M� into
curve- like structures.
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Remark: There is a linear space of honeycomb structures which belong to a given

spherical image. The dimension of that space is |E| � |V | ⇡ 1

2

|V |, because there is

one degree of freedom per edge plane, and one condition per vertex.

The spherical zero-area property of honeycombs. Since the walls of a honey-

comb cell intersect at 120 degrees, the spherical image f� of this cell is a polygon

whose edges are great circles intersecting at 60� or 120�. Figure 3.3 exhibits two kinds

of cells: f� may be large (like the highlighted 5-gon), or it might be small, meaning

that the node axes of the corresponding cell point in roughly the same direction.

Recall the Gauss-Bonnet formula which relates the total rotation number R of a

geodesic polygon in a surface with the Gauss curvature K and the angles ↵
i

which

indicate the turning of the edge in the individual vertices. We have

X
↵
i

= 2⇡R�
Z

x

K(x)w(x), (3.1)

where w(x) is the number of times the polygon is winding around the point x.

Example: For the blue polygon f� in Figure 3.3 we have K = 1, all ↵
i

equal

60�, R = 1, and the winding coe�cient w(x) equals 1 inside the polygon, and 0

outside. Thus
R
K(x)w(x) reduces to the area of the polygon, and we get 5 ⇥ ⇡

3

=

2⇡ � area(f�) =) area(f�) = ⇡

3

.

We sketch some planar 6-gons whose angles are 60� or 120�, indicating R and the

local winding number w(x):

R 1 1 0 0 2 1 2 2

1

-1

1

1
-1

1 +1-1
-1

1

1
-1

1

1
1 1

2 11
1
2 

(3.2)

The turning angles ↵
i

in vertices obey
P

↵
i

= 2⇡R, which follows from (3.1) when

we let K = 0. A spherical 6-gon f�, on the other hand, satisfies Gauss-Bonnet with
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K = 1:
X

↵
i

= 2⇡R�
Z

x

w(x) = 2⇡R� area(f�), (3.3)

where area(f�) is the oriented area of f�, defined as
R
w(x), meaning that each point

contributes to the area with a certain multiplicity defined by how often the polygon

winds around that point. If f� has the same combinatorics and angles as a planar

hexagon, then
P

↵
i

= 2⇡R immediately implies

area(f�) = 0. (3.4)

There may be f�’s whose area does not vanish,
P

↵
i

6= 2⇡R, and we cannot find

a planar 6-gon with the same angles and rotation number R. However the smallest

nonzero value of | area(f�)| equals ⇡/3 because both
P

↵
i

and 2⇡R are integer multi-

ples of that number (which, incidentally, is the area of the highlighted 5-gon in Figure

3.3). We have proved:

Proposition 3. The oriented area of a spherical image f� of a honeycomb cell either

vanishes or has absolute value � ⇡/3. In the first case there is a planar hexagon having

the same angles ↵
i

and rotation number R as f� does.

The practical implication of this statement is that a 6-gon honeycomb cell whose

node axes are close together will have a spherical image f� of zero area. Figure 3.3

shows an example of this: All hexagons in the spherical image have zero area, and

their shapes correspond to the examples in the left hand section of Equ. (3.2).

Global distribution of node axes. Numerical evidence (see e.g. Figures 3.3 and

3.4) shows that the spherical image of a honeycomb exhibits curve-like structures

where zero-area hexagons cluster, interspersed with individual polygons of nonzero

area (non-hexagonal ones mainly, but also hexagons are possible). We argue why

smoothness of honeycombs is responsible for this behaviour.

This smoothness is not meant in the literal sense, since the shape of spherical
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Detail

Figure 3.4: This curve-like spherical image (right) of a honeycomb (left) has the aspect
of a tiling of the sphere by zero-area hexagons shaped like the one shown above.

image polygons entails high-frequency oscillation of node axes in any case. Instead

we require a very modest kind of regularity: In a “regular” area of the honeycomb,

the spherical images of two neighbouring cells should have roughly the same size and

shape. The tiling of cells of the honeycomb must translate to a tiling of hexagons on

the unit sphere. We therefore have to ask which of the hexagons shown in Equation

(3.2) can possibly have a similar-shaped hexagon as a neighbour, along each of its six

edges.

For polygons of type (also depicted in Figure 3.4), this is possible. There is

a combinatorially regular two-dimensional tiling of such hexagons which is di�cult

to visualize, but which can be seen in Figure 3.4. Three individual rows of hexagons

contained in such a tiling are shown below, at right. For comparison we also show

three rows of hexagons in the tiling with a geometrically regular hexagon (at left).

(2) (3)

(1)

(3)

(2)

(1)
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Geometrically, this tiling exists because the sum ↵
1

+ ↵
3

+ ↵
5

of turning angles is

an integer multiple of 360�. For the polygons , , , such a tiling does not

exist, because if they are made to have zero area, there is at least one pair of opposite

edges of very di↵erent lengths. For polygons of type , opposite edges do have

the same length, but an attempt at tiling will still fail, because the above-mentioned

angle condition is not satisfied.

The image of the three rows also shows that a tiling of hexagons of type

is covering only a curve-like strip (see also Fig 3.4). For the planar version of this

hexagon this is because the 6 parallel translations which map an edge to its opposite

edge all go in the same direction; for the spherical version of this hexagon this property

holds only approximately. We summarize:

Property 4. The spherical image of a regular honeycomb is curve-like.

The practical implication of this statement is that node axes of a honeycomb

will not behave like the normals of a surface, even if high- frequency oscillations are

discarded. Only for developable surfaces, the spherical image of normals is curve-like

(see Figure 3.5). This implies:

Property 5. Node axes of a regular honeycomb approximate the normals of a surface

only if that surface is developable.

Remark: We also ask the converse question: Can we find a “zero-area” tiling along

a given spherical curve C, which is the spherical image of a honeycomb structure?

The answer is yes by the following heuristic argument: we start with a zigzag polyline

following C and extend it by adding zero-area hexagons layer by layer. For each new

row there are as many degrees of freedom (lateral displacement of vertices) as there

are conditions (zero area for each face).

If a honeycomb is guided by a surface S but the node axes are not required to be

close to the normals of S, then there are many design options. When honeycombs are
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smooth (in an appropriate meaning of the word) then node axes will automatically

be close to the normals of some developable, but that developable is present only

implicitly and does not interfere with computations.

(a)

(b)

(c)

Figure 3.5: (a) Honeycomb following a near-developable surface S (which is the only
kind of surface where node axes can follow the surface normals). (b) Color coded
quality of a near-isometric parametrization of S, which has been used for initializing
the honeycomb, by mapping a regular hexagonal tiling onto S (distortion peak .30 and
average .05). (c) Spherical image of honeycomb. This result experimentally confirms
that our method of initialization provides almost-isometric mappings; for details see
text.

3.3 Computational approach

Here we describe our computational setup for honeycomb structures. We discuss the

two processes of (i) finding an initial hex mesh equipped with additional data which

do not yet define a torsion- free support structure, and (ii) optimizing these data so

they will define a honeycomb structure.

Initialization of the base mesh. For initialization, we implemented the method of [27]
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(a) (b)

Figure 3.6: Computing a honeycomb on a complex architectural freeform skin (Yas
Marina hotel, Abu Dhabi). (a) Given the base mesh, we initialize a honeycomb
structure (not yet consistent) orthogonal to the reference surface and apply guided
projection onto the constraint manifold. (b) This result is not satisfactorily regular,
so the projection procedure has to be guided by a fairness energy. We added equality
of normal vectors of opposite walls in each hexagonal cell as soft constraints (with
the same weight as the regularizing term) to our algorithm. Note that the spherical
image of this honeycomb exhibits Property 2.

to find a hexagonal mesh M = (V,E, F ) on a given surface S, whose edges follow

a given 6-RoSy field of directions. To find that field, we use a direct extension of

the method of [28] which can easily accommodate alignment with features or a user’s

design strokes.

Choice of variables.

v
i

vj

v
k

v
l

nij

nik

nil v0
i

v0
l

v0
k

v0
j

The variables used in opti-

mization are the vertices together with unit vectors

nij for each edge v
i

vj. In the following text we as-

sume that nji = �nij but of course only one of nij,

nji is actually used in the implementation. These

vectors are initialized by letting nij = R�⇡/2

( v
i

�vj

kv
i

�vjk), with R�⇡/2

as a clockwise ro-

tation by 90 degrees about a surface normal in the midpoint of the edge v
i

vj. The

vectors nij are intended to serve as normal vectors of walls in the honeycomb, meaning

that for each vertex v
i

there should exist a node axis v
i

v0
i

which is orthogonal to nij

whenever v
i

vj is an edge.

Reconstructing the honeycomb structure from the chosen variables. This is done in

the following way: We must find the vertices v0
i

of the mesh M 0 paired with M , by

letting v0
i

= v
i

+ �
i

v�

i

, where �
i

is the prescribed thickness of the honeycomb and

v�

i

= 1

kv0
i

�v
i

k(v
0
i

� v
i

) is a unit vector indicating the node axis through v
i

which
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must be orthogonal to all nij’s. It is found by principal component analysis, as an

eigenvector of the 3 by 3 matrix
P

j

nijn
T

ij .

Constraints. We impose the following constraints on our variables. Firstly, every

normal vector is normalized, so nT

ijnij = 1. Secondly we have the consistency condition

nT

ij(vi

� vj) = 0 whenever v
i

vj 2 E.

The intersection angle of walls associated with edges v
i

vj and v
i

v
k

could be expressed

by nT

ijnik = cos 120� = �1/2. For a valence 3 vertex v
i

with neighbours vj,vk

,v
l

however, the simple condition nij + nik + nil = o states that these three normal

vectors form an equilateral triangle. This expresses both the angle condition and

the existence of a common node axis. Further constraints are vertices confined to

the design surface S or to a boundary curve. Since the geometry of the honeycomb

permits moving vertices along the node axes, proximity to S can be considered a soft

constraint.

Solution. Each constraint involves only a few variables and (apart from interpola-

tion constraints) is either linear or quadratic. We therefore use the method of [29]

to solve the constraint equations iteratively. In every round of iteration a Newton

linearization turns the constraints into a linear system of the form HX = R, with X

as the increment in the vector of variables. To allow for redundant constraints and

the general under-determinedness of the system, we do not solve it directly, but we

regularize and instead solve kHX � Rk2 + "kXk2 ! min, with " ⌧ 1. Note that

our solution procedure is essentially the same as minimizing a least-squares sum of

constraints with a Gauss- Newton method.

Interpolation constraints have the form “v 2 �” where � is a curve (or surface).

They are linarized in each round of iteration by replacing � with the tangent (or

tangent plane) in the point v⇤ 2 � which is closest to v.
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Fairness is not used in the basic version of our algorithm. It can be incorporated

either as a set of soft constraints (with small weights) or by adding a fairness energy

to the regularizing term, which amounts to the same thing (see Fig. 3.6).

Relevance of geometric properties. Section 4.3 discussed in detail geometric

properties of honeycomb structures. Their most important implications on our algo-

rithm (this section) and on applications (next section) are the following:

(a). We cannot expect that the walls of honeycomb cells can be made orthogonal

to a reference surface – this is possible only if that surface is developable (cf.

Property 2 and Property 3).

(b). We cannot expect the node axes (or the cell’s normal vectors) to be smooth

in the usual discrete sense of finite di↵erences, since the zero area property of

Proposition 1 implies high frequency oscillations.

In particular we conclude that orthogonality of a honeycomb to a surface cannot be

a hard constraint, and that fairness energies must be composed appropriately.

The next section discusses applications and extensions of the concept of honey-

comb, and also mentions where it is necessary to modify the initialization or to add

additional variables and constraints to optimization.

3.4 Results

The previous sections already contained examples of honeycombs, see Figures 3.3, 3.4,

3.5 and 3.6. Property 2 is validated by the spherical images of honeycombs shown

there. Further, Figure 3.7 gives an impression on how well the constraint equations

are satisfied before and after optimization.

Honeycombs following developable surfaces. Figure 3.5 shows a honeycomb

whose guiding surface S is nearly developable and where initialization according to
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Figure 3.7: We illustrate to which extent the constraints are fulfilled, for the hon-
eycomb of Figure 3.4, after initialization and before optimization (left) and after
optimization (right). The planarity of wall quadrilaterals is indicated by color cod-
ing the planarity measure �, which is defined as the distance of diagonals of a quad
divided by average edge length. “!” is the deviation from the desired intersection
angle of 120�.

3.3 yields an almost-isometric parametrization of S. The honeycomb is initialized

by mapping a regular hexagonal grid onto S. For the sake of experiment, we tried

to make the parametrization more isometric, following [?] to iteratively modify the

6-RoSy field our method is based on. We found that this improvement has almost no

visible e↵ect and that the original method yields a parametrization which is isometric

enough anyway.

User interaction. Solving the constraint equations necessary for computing a hon-

eycomb is fast enough to enable user interaction. There are three kinds of deformation

resp. modeling we emphasize: (i) changing the base mesh and recomputing the hon-

Figure 3.8: Honeycomb defined by parallel meshes M and M 0. The angle � between
corresponding edges e, e0 illustrates deviation from parallelity.
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Figure 3.9: An example of user guided design: The user edits the honeycomb of
Figure 3.4 by moving a node axis. This change is also applied to neighbouring node
axes, multiplied with a dampening function. Re-optimization modifies the honeycomb
such that walls intersect near the prescribed node axis positions (see accompanying
video).

eycomb for the modified mesh; (ii) repositioning vertices on the honeycomb’s node

axes, so that the wall planes remain unchanged, and (iii) editing the axes with only

minimal changes to the base mesh. All three are shown in the accompanying video.

As to computation, editing mode (i) corresponds to setting target values for the ver-

tex coordinates v
i

and re-running optimization. For (ii), no optimization has to be

performed; this deformation is conceptually similar to editing a triangle mesh. For

(iii), see Figure 3.9, the user’s wish is translated to new target values a
i

for the node

axis vectors 1

kv0
i

�v
i

k(v
0
i

� v
i

). They are incorporated in our optimization by adding

constraints

nT

ijai

= 0, whenever v
i

vj 2 E.

These equations express the wish that the wall planes intersect in the updated node

axes. In the optimization these constraints are given a lower weight than those ex-

pressing consistency and angles.

Honeycombs defined by parallel meshes. We are interested in the question if

there are honeycombs defined by parallel meshes M,M 0, meaning that corresponding

edges of M,M 0 are parallel (note that parallelity of this kind is not the same as
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Figure 3.10: Zigzag quadrangulation: We show two views of a polyhedral quad mesh
equipped with a honeycomb support structure, approximating the design surface of
the Cour Visconti roof in the Louvre, Paris (see also Figure 1.2). The right hand
image illustrates the “zigzag” mesh polylines (with consecutive vertices v

1

, . . . ,v
4

)
and “straight” mesh polylines (with consecutive vertices v

i

vjvk

). Fairness of these
polylines is a topic of optimization.

parallelity of meshes as studied by [18], since M,M 0 do not have planar faces). It

is not di�cult to add this constraint to our optimization. Introducing vertices v0
i

as

additional variables, we add the appropriate consistency condition nT

ij(v
0
i

� v0
j) = 0

for each edge v
i

vj, as well as the parallelity constraint (v
i

� vj) ⇥ (v0
i

� v0
j) = o. In

order to verify that optimization can succeed, we investigate the degrees of freedom

available when, given a honeycomb, we try to position the vertices of both M,M 0 on

their respective node axes such that edges become parallel.

Consider an n-gon cell, and assume that vertices v
1

, . . . ,v
n�1

and v0
1

, . . .v0
n�1

are

chosen already. In order to construct the remaining vertices v
n

,v0
n

we observe that

parallelity of corresponding edges means that the planes ↵,↵0 spanned by v
1

,v
n�1

,v
n

and v0
1

,v0
n�1

,v0
n

, resp., are parallel. Those planes are determined by the data already

available: ↵ passes through v
1

,v
n�1

and is parallel to v0
n�1

�v0
1

, and analogous for ↵0.

We therefore find v
n

, resp. v0
n

by intersecting

the given node axis with ↵, resp. ↵0. This shows
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that in a honeycomb of regular combinatorics

we can find parallel meshes M,M 0, simply by

choosing vertices on a zigzag sequence of walls

and working our way outward from there, with

1 d.o.f. per added face.

v
1

v
2

v
n�1

v0
1

v0
2

v0
n�1

↵0

Figure 3.8 shows a result of this kind of optimization. The additional variables v0
i

have been initialized by moving the vertex v
i

a constant distance along the normal

of the reference surface S.

Constant honeycomb depth. A honeycomb of constant depth is very interesting

for architectural geometry, because in this case, we can let beams of constant width

follow the edges ofM,M 0. It is not di�cult to add constant depth as a soft constraint,

e.g. by adding quadratic equations kv
i

�v0
i

k2 = c with a low weight. This turned out

to be unnecessary for the example of Figure 3.8.

Quadrangulation combined with torsion-free support structures. For appli-

cations in freeform architecture the ability to cover a given surface by planar elements

is particularly relevant. Since a honeycomb structure is usually not bounded by a hex

mesh with planar faces, we demonstrate how to cover a honeycomb by a pattern

of planar quadrilaterals. The resulting mesh is polyhedral, and is equipped with a

torsion-free support structure (which even has the feature of repetition in local node

geometry).

Our approach is to split each hexagonal face of the base mesh M into two quads

which are required to be planar; thus capping each cell of the honeycomb with two

planar quads. See Figures 1.2, 3.10 for the combinatorics of this splitting and a result.

A major di↵erence to previous approaches to planar-quad meshing is that we do

not require smoothness of the edge polygons. In this way we no longer have the strong

restrictions posed on quadrangulation which originate in an analogy between meshes

and curve networks, cf. [30], e.g. for the surface used in our example, a “smooth”
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Figure 3.11: It may be di�cult to approximate freeform architectural designs (here:
Cour Visconti, Louvre) by a quad mesh with planar faces whose edges discretize a
smooth network of curves. This is because such meshes have to follow conjugate
curve networks, and the number of singularities of these networks is determined by
the curvature of the surface.

quadrangulation with planar faces would have to look essentially like the one in

Figure 3.11.

In computations we use as additional variables the unit normal vectors of those

quads which are required to be planar. The vertices of these quads are already present

as variables. Constraints (normalization and consistency) are analogous to the planar

“wall” quads.

To capture the visual impression of smoothness (regularity) of both straight and

zigzag polylines in the hex mesh M , we add soft constraints with small weight. Re-

ferring to Figure 3.10, a zigzag polyline in a hex mesh is considered regular, if we

approximately have (v
1

� v
2

) � (v
3

� v
4

) = o, for all choices of consecutive ver-

tices v
1

, . . . ,v
4

. For the polylines transverse to the zigzag ones we merely want to

punish lateral deviation from the appearance of smoothness, meaning that we want

nT

ij(vj�v
k

) = 0 to hold for each choice of 3 consecutive vertices v
i

,vj,vk

. Both kinds

of equations are added as soft constraints to our optimization procedure.

Remark: It is not di�cult to add the condition of a minimum edge length l
min

to our optimization. This can be done by adding quadratic constraints kv
i

� vjk2 =

l2
min

+ (dummy)2 which use dummy variables, cf. [29].
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Local edits and subdivision. The property of two planes forming an angle of 120�

is not destroyed by parallel translation. Likewise the intersection line of such planes

may move if such a transformation is applied, but it keeps its direction. Our aim

is to exploit this fact and modify honeycomb structures by parallel translating the

walls. If we wish to keep the property that three planes are incident with a node axis,

then the translations involved are not independent: If the wall planes associated with

edges v
i

vj, resp. vi

v
k

, resp. v
i

v
l

undergo translation by the vector �ijnij, resp. �iknik,

resp. �ilnil, then a common intersection exists if and only if �ij+�ik+�il = 0 (because

the three normal vectors form an equilateral triangle).

!

Figure 3.12: Resizing a honeycomb cell by moving walls inwards by the same amount.

One example of such a move is the resizing of a single honeycomb cell (Figure

3.12): here all walls of the cell move by the same amount, while the “radial” walls

stay where they are (in the vertex-centered notation used above, we have e.g. �ij = 0,

�ik = ��il).

By resizing all cells, we create new hexagonal cells where the original walls had

been: this is the subdivision procedure shown by Figure 3.13. Shrinking each cell

of the honeycomb in Figure 3.13a to half its size (or another size) produces the

subdivided honeycomb of Figure 3.13b (or Figure 3.13c). Its spherical image coincides

with the original one, but it has 4 times as many cells.

Remark: For a general torsion-free support structure, where planes intersect at
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di↵erent angles, local edits (and in consequence, subdivision) are not so easy. Each

node will have its own condition on the three translations which a↵ect that node, and

those conditions will generally not be consistent when cycling around a cell.

A procedure destroying node axes is shown by Figure 3.14: the walls of hexagonal

cells are moved outward and inward in an alternating way, defining a reciprocal struc-

ture, cf. [31]. This structure is still formally a honeycomb, if we allow T-junctions.

Shading Systems. Wang et al. [19] have proposed shading systems as an applica-

tion of discrete line congruences. It is in fact not di�cult to optimize honeycomb

structures so that they serve the same purpose, such that the walls of cells block light

e↵ectively while the depth of the honeycomb remains small. We define a vector l

which corresponds to the direction of light, e.g. at 1 p.m. in summer. Since the angles

between walls are always 120� it would not make sense to optimize the honeycomb

such that walls are orthogonal to l. Instead we look for any field of unit vectors a
i

attached to the individual vertices v
i

which are orthogonal to l and which serve as

prescribed directions of node axes. We then optimize the honeycomb with constraints

aT

i

nij = 0 (for all edges v
i

vj). In the optimization these constraints are given a lower

weight than those expressing consistency and angles. A result can be seen in Figure

3.16.

3.5 Discussion

The success of the regularized Newton method used here has already been demon-

strated by [29]. Referring to that paper, we mention that it works well for constraints

which are linear or quadratic, and which do not involve many variables. Similar

to [29] we obtain high accuracy. Figure ?? gives details on optimization and geomet-

ric properties of the results. Timings refer to an Intel Xeon CPU with 2.67GHz (we

also mention that as a sparse linear solver we used the taucs library).
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Limitations. The main geometric limitation of honeycombs has been discussed in

4.3: it is the property that 120� angles between walls imply that the honeycomb’s

node axes do not in general follow the surface normals of a given reference shape. If

we do not insist on this condition (which we could do only for developable surfaces),

honeycombs have rather many degrees of freedom, and we found no obstructions in

our numerical experiments.

From the viewpoint of statics, structures based on hexagonal meshes are of course

more di�cult than structures based on triangle meshes, for the simple reason that

there are fewer load-bearing edges. In practice, auxiliary force-transmitting elements

like cables are typically used. We do not consider this aspect there.

3.6 Conclusion

We have presented geometry and computation of honeycomb structures and their

applicability to various tasks in freeform architectural design. Notably honeycombs

provide a torsion-free support structure with identical nodes, but can be used even

for quadrangulation.
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(a) (b) (c)

Figure 3.13: Subdivision of honeycombs by graphical stencils. There are several ways
we can parallel translate walls of a honeycomb so that intersection properties are
maintained, and which are useful for refinement and the definition of other derived
structures. These modifications are encoded in a symbolic way by a sketch of a
cell or node which shows the old and new positions of walls. (a), (b) The symbol

! signifies subdivision, generating a regular honeycomb with 1 new cell
per old cell, and 1 new cell per old wall, with all new cells roughly the same size. (c)
The analogous symbol ! signifies subdivision which is combinatorially
the same but geometrically di↵erent, where the newly created cells are of di↵erent
sizes.

Figure 3.14: Using the language of Figure 3.13, the symbol ! signifies the
creation of a reciprocal structure, replacing each node by a triangular cell.
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Figure 3.15: A pattern of planar quadrilaterals derived from a honeycomb structure in
much the same manner as Figure 3.10, but using a di↵erent set of diagonals through
cells.

Figure 3.16: Hexagonal support structure as shading system. Given a field of preferred
node axes which are orthogonal to the rays of light, we optimize a honeycomb such
that the walls of cells fit the given node axis field, thus e↵ectively blocking light while
still forming a shallow honeycomb (the result of optimization here serves as freeform
structure providing shade for people waiting for trains).
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Chapter 4

Polyhedral Patterns

4.1 Introduction

Architects and engineers are constantly pushing design boundaries by exploring new

building shapes and modeling their appearances. Advances in architectural geometry

have made it possible for many buildings to be shaped as freeform surfaces. To

conform to construction constraints, such designs are often rationalized with meshes

that have planar faces. These faces are then realized with common materials, such

as wood (see Fig. 4.2) or glass.

Symmetric tessellation patterns have often been used in art, architecture, and

product design for their aesthetic merits. However, the use of these patterns was

restricted to planar surfaces, such as windows, walls, or floors. Notable examples are

Arabesques, stained-glass patterns, and mosaics [32, 33]. Here, we seek to enrich ar-

chitectural design by meshing freeform surfaces with tessellation patterns. Examples

of those are in Figures 1.3 and 4.1.

There are several key challenges in designing polyhedral patterns on curved freeform

surfaces. Simply placing a given pattern on such a surface (e.g., by a parametriza-

tion) and optimizing for tile planarity without any regularization of tile shapes is

bound to fail; planarity alone is severly underconstrained, and the process is apt to

degenerate to solutions with zero-length edges or foldovers (see Figure 4.3). More-
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Figure 4.1: Cladding an interior space with a polyhedral pattern using wooden panels.
The pattern transforms smoothly from positive to negative curvature regions.

over, an arbitrary choice of tile-shape regularization with commonly used measures,

such as face or angle distortion, Laplacian smoothness, or edge-length preservation,

might clash with the planarity constraint, resulting in over-constrained optimization.

As a consequence, either the mesh is not planarized, or the desired regularity is not

satisfied. (Figures 4.26 and 4.27 show examples.)

Our solution to the problem is to study explicit constructions of polyhedral pat-

terns that approximate surfaces with varying Gaussian curvature. We observe curvature-

invariant regularities, namely di↵erent types of symmetries. We introduce a theoret-

ical study of polyhedral patterns that explains our choice of regularizers, and which

leads to an objective function that is neither over- nor under-constrained. We show

a set of results that demonstrate, for the first time, the computation of such patterns

on surfaces that satisfy both planarity and regularity constraints. We focus on semi-

regular patterns (see Figure 4.4), which are patterns comprising regular polygons.

Our contributions are:
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Figure 4.2: A planar-hexagonal pavilion constructed with wooden panels [34].

An analysis of surface approximation with polyhedral patterns by describing

tile shape deformations, in order to accommodate for curvature. Consequently,

we show how di↵erent strip decompositions result in a variety of patterns.

A�ne symmetries that are curvature-invariant. We construct a family of regu-

larizers encoding such symmetries: e.g., symmetries with respect to axes passing

through vertices, edge midpoints, or face barycenters, and reflective symmetries

with respect to planes.

A variety of polyhedral patterns that have not been demonstrated before.

4.2 Previous Work

Approximation with polyhedral meshes can be achieved with variational shape ap-

proximation [35]. However, the resulting unstructured mesh is built to satisfy required

approximation accuracy and does not follow a prescribed pattern.

Most previous works that focused on polyhedral mesh creation targeted planar

quad (PQ) meshes. PQ meshes play a central role in discrete di↵erential geometry [36,

37], and have attracted considerable interest in recent years, cf. [15, 30, 38], as their

design is a core problem in architectural geometry.
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Figure 4.3: Under- and over-constrained optimization illustrated on a quad mesh.
The initial mesh is aligned with the parameter lines on a bilinear surface. The task
is to planarize it. Left: Using mesh polyline smoothness as a regularizer results in
an over-constrained problem, and acceptable planarity is not achieved (red color).
Middle: Dropping the regularizer leads to an under-constrained problem, where the
faces are perfectly planar, yet their appearance is chaotic and unaesthetic. Right:
Using our regularizer, based on a�ne symmetries (with respect to edge midpoints),
yields an aesthetically pleasing pattern with planar quads.

Planar hexagonal (PH) meshes have also been studied, but to a lesser extent.

The simplest way to produce them is by taking the dual of triangle meshes [39, 40]

or remeshing triangle meshes by parametrization and deformation [41]. They are

problematic in several aspects: the face shapes have to change considerably and even

become concave in negatively curved areas. In addition, they have to transition

smoothly between regions of negative and positive Gaussian curvature. We present a

systematic way to regularize patterns between di↵erent curvature regions, including

PH meshes as a special case.

Special polyhedral patterns appear as by-products with circle-packing meshes [20]

and special hexagonal support structures [42]. However, these papers do not consider

polyhedral patterns in a systematic way; aesthetics and regularity largely come from

the structures the patterns have been derived from.

Numerical optimization schemes for computing polyhedral surfaces include the

alternating least-squares approach of [43], the local-global projection method of [44],

the augmented Lagrangian algorithm of [45], and the guided projection method of [29].
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(a) (34, 6) (b) (3, 4, 6, 4) (c) (3, 6, 3, 6) (d) (3, 12, 12) (e) (4, 6, 12) (f) (4, 8, 8)

(g) (34, 6)⇤ (h) (3, 4, 6, 4)⇤ (i) (3, 6, 3, 6)⇤ (j) (3, 12, 12)⇤ (k) (4, 6, 12)⇤ (l) (4, 8, 8)⇤

Figure 4.4: Several patterns used in this chapter: selected semi-regular patterns (top
row; labels correspond to the valences of faces around a vertex) and their duals
(bottom row). In our results, patterns (a) - (e) and (g) - (j) are derived from a
hex-mesh, patterns (f) and (l) from a quad mesh, and pattern (k) from a triangle
mesh.

Our computations are based on the latter approach, but are distinct from all the other

aforementioned works by the novel use of local a�ne symmetries as regularizers, which

are able to adapt to freeform geometry, and by the study of the curvature-dependent

appearance of polyhedral patterns.

Triangle meshes are trivial polyhedral meshes. Regularizing them for face and

edge repetitivity is the aim of [23] and [46]. These meshes also appear in triangle-

based point folding structures [26]. Our symmetry-based regularizers can also be used

for triangle mesh optimization.

4.3 Geometry of Polyhedral Patterns

Creating polyhedral patterns first and foremost poses a theoretical challenge, since

we do not possess the knowledge of how such patterns behave in di↵erent curvature

regions. We have an understanding of planar-quad meshes as given by [38]. If the

network of polylines that is characteristic of quad meshes follows conjugate directions,

it is possible to achieve a mesh with smooth polylines. Unfortunately, this is not

possible for any orientation of quads (see auxiliary material for a theoretical proof),

and there has been no suggestion for what could be done in this case. An analysis is



70

provided for feasible planar hexagonal tile shapes by [40]. However, the description is

particular for hexagons in principal directions, and the generalization to semi-regular

patterns is not obvious.

In the following, we provide an analysis of feasible planar tile shapes in di↵erent

curvature regions, for the general case of semi-regular tilings. In Section 4.6, we

utilize the insights gained from this analysis, to establish a set of symmetries that

remain invariant in each curvature region. We consequently use these symmetries as

regularizers in our planarization algorithm.

We base our geometric constructions on semi-regular patterns, which are tilings

that can be derived in the plane by altering either of the three regular tilings: triangle,

square, or hexagonal grids. Semi-regular tilings are characterized by several proper-

ties: First, the neighborhood of any vertex is perfectly similar to the neighborhood

of any other. Second, such tiles constitute an orthogonal circle pattern: every tile has

a circumcircle, and the dual segments between neighboring tile (circle) centers are

orthogonal to the primal edge they share. This property is important when we dis-

cuss construction by lifting. We depict a range of semi-regular tilings that we employ

in Figure 4.4. We denote tilings using vertex configuration shorthand by numbering

the degree of faces around each vertex and using powers for multiples, e.g., a pure

hexagonal pattern is 63. We use the term “tile” to indicate a single face of the tiling,

and either “tiling” or “pattern” to indicate the entire set. We often refer to the dual

pattern as the pattern that is made by connecting dual face centers of adjacent primal

tiles. Tilings that are not semi-regular exhibit several of these properties, and our

consequent optimization results in interesting polyhedral patterns as well.

4.3.1 Discretization of osculating paraboloids

We construct some explicit embeddings of polyhedral patterns on surfaces to study

necessary deformations in tile shapes. Such deformations are the result of fitting
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planar patterns with given connectivities onto curved surfaces, while constraining

each tile to remain planar. Our purpose is to derive the invariants of the required

deformations, focusing on symmetries they fix. An understanding of such invariant

symmetries serves as a guide to predicting the resulting pattern shapes expected

within our optimization process.

We locally approximate the original surface, S, to a second-order in a point,

p 2 S, with an osculating paraboloid, S
2

. Assuming the z direction is parametrized

to be in the direction of the normal, the formula defining the paraboloid is 2z =


1

x2 + 
2

y2, where 
1

,
2

are the principal curvatures, and the x and y axes are the

respective principal directions. The paraboloids are characterized as either elliptic

(both curvatures are nonzero and have the same sign), hyperbolic (di↵erent nonzero

signs), or cylindrical (one of the curvatures is zero). In case that 
1

= 
2

= 0, the

osculating paraboloid is a plane, and we do not need to deal further with this trivial

case.

We consider discretizations of paraboloids by polyhedral patterns characterized

by two properties: First, they are inscribed, which means the vertices of the pattern

lie exactly on the paraboloid. Second, we have normal adherence. Assuming that

the supporting plane to the inscribed tile encloses a well-defined small patch of the

paraboloid, then there must be a point within the patch whose tangent plane is

parallel to the supporting plane. Both properties can be generally relaxed, but it

is cogent to study the pattern symmetry and regularity emerging from these most

restrictive requirements.

Lifting The analysis we give for tiling surfaces relies on lifting planar tiles onto

paraboloids (see Figure 4.6). We then explore the tile shapes and topologies for

which the lifting produces polyhedral patterns (preserving tile planarity). Given the

paraboloid S
2

, the vertices are lifted (bijectively) by the function (x, y)! (x, y,
1

x2 + 
2

y2).

The intersection of the supporting plane of the tile and the paraboloid is a conic, re-
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lated to the Dupin indicatrix. The projection of the conic down to the plane is again

a planar conic, endowed with required properties that we next detail. Moreover, the

conic on the paraboloid is an a�ne image of the planar tile. See Figure 4.5 for an

example.

Figure 4.5: Lifting. Top: a circle lifted to an ellipse in
a rotational paraboloid. Bottom: a hyperbola lifted to
a hyperbolic paraboloid.

Consistent tilings Polyhedral patterns on paraboloids are synonymous with consis-

tent structures that are pivotal to our framework and that govern the deformations

induced on tiles for consistent approximation of paraboloids. Assume that there are

two neighboring tiles, i, j. Their centers are defined by looking at the centers of

the conics on the paraboloid and projecting them down on the tiling plane, produc-

ing c
i

, c
j

. The intersection points between them are the projected common vertices,

p
i

,p
j

. We define the primal vector p
ij

= p
j

� p
i

, and the dual vector c
ij

similarly.

Next, we consider the metric induced by the paraboloid: ha,bi := 
1

x
a

x
b

+ 
2

y
a

y
b

.

The lift of a planar tiling into a paraboloid is polyhedral if and only if:

(a). Conjugacy: the primal and dual vectors are conjugate. i.e., they are orthogonal

with respect to the metric (hp
ij

, c
ij

i = 0).

(b). Bisection: The dual edge bisects the primal edge.

We call a tiling that obeys both properties consistent. For completeness, we

include a proof in the Appendix. Consistency brings about several key consequences:

If the paraboloid is a rotational-symmetric canonical paraboloid 2z = x2 + y2,
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Figure 4.6: Lifting consistent tilings to paraboloids. Under the induced metric in
the plane, the dual edge c

ij

and the primal edge p
ij

are conjugate. Both vectors are
orthogonal in the rotational paraboloid case (left).

then the duals and the primals are in fact also Euclidean orthogonal, as we

demand from the original tilings.

If the paraboloid is cylindrical, then either the dual or the primal must be in

the direction of the ruling (the direction of zero curvature). That means that

the tiling has to comprise strips of faces that are parallel to the ruling direction.

If the paraboloid is hyperbolic, the dual and the primal can be identical (in

asymptotic directions). We can potentially produce degenerate and concave

tiles in this manner.

4.3.2 Fitting tiles to paraboloids

Given a planar tiling and a paraboloid of any shape, we next wish to deform the tiling

on the plane, such that the lifting produces a polyhedral pattern. This should be done

while keeping the shapes of the tiles as symmetric and as regular as possible and with

minimal deformation. It is worth noting at this point that we use this construction

for a theoretical, rather than a direct algorithmic, purpose; it is a general and ar-

bitrary way to observe which symmetries are invariant within the deformation, and

to motivate our use of such symmetries in pattern optimization for general surfaces,

locally approximated as paraboloids. We initiate this analysis by considering the
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canonical rotational paraboloid S
r

: 2z = x2 + y2. We take any semi-regular tiling on

the plane. Without any deformation, the circular faces of the semi-regular tiling are

then projected into ellipses in the paraboloid, which are planar by definition. We thus

obtain a natural polyhedral pattern embedded in S
r

for every semi-regular pattern.

Tiling cylindrical paraboloids Without loss of generality, we assume that our

cylinder is defined by S
c

: z = 
2

y2,
2

> 0. By the rule of conjugacy, the tiling must

comprise strips that are parallel to the ruling direction, ŷ, to consistently tile the

cylinder. In light of this, and opting to deform the tiling as little and as symmetrically

as possible, we do the following: decompose the tiling into strips of faces that are

parallel to the rulings. The lines between dual conic centers of the same strips are

denoted as dual rulings, and the sequence of intersection edges bounding two strips are

denoted as primal rulings. Next, fix all the tile (dual) centers and deform all (primal)

vertices orthogonally to the ruling until they are on a parallel primal ruling. The

actual position of the primal ruling is set as the ruling that is closest to the original

primal vertices (see Figure 4.7 for a depiction of this process). Denote the original

position of any primal vertex as p
i

, and the deformation vector for a cylindrical

pattern as u
c,i

. Then, ŷ · u
c,i

= 0.

Tiling elliptic and hyperbolic paraboloids To unify our deformation setting and

make it fit all types of paraboloids, we rephrase our construction for a cylindrical

paraboloid in a local and continuous manner: we deform the primal edges of an

initial tiling so that the (constant) dual and the primal are conjugate according to

the induced metric, and the deformation is done according to the choice of strip

decomposition, as in the cylindrical case. Suppose again that the chosen direction of

the dual strip is ŷ. We then need to find the deformation vector u
i

of vertex p
i

so

that for each primal edge p
ij

and dual edge c
ij

we get hp
j

+ u
j

� p
i

� u
i

, c
ij

i = 0,

according to the metric. Furthermore, we constrain u
i

= �u
j

for symmetry. Since

u
i

= �u
j

are orthogonal to ŷ, it is straightforward to compute the actual deformation.
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Figure 4.7: Deforming and lifting. Top: the paraboloid tilings. Bottom: top view of
the tiling. Left to right: original (fit to the canonical paraboloid), anisotropic elliptic,
cylindrical, and hyperbolic.

Discussion Our deformation process is obviously invariant to scale. More accurately,

it only pertains to the ratio of 
1

and 
2

and not their sizes. In addition, it is evident

that tiles with more than 4 vertices must become non-convex in order to be inscribed

in negatively curved regions; this is expected, since the conic in which the tile is

inscribed is a hyperbola.

The deformation orthogonal to the chosen strip direction is the only one possible

for tilings such as 63. However, by constraining the consistency, and by conforming to

the aesthetic request that the repeating faces of the same type must stay congruent,

some tilings may in fact allow more degrees of freedom in deformation possibilities.

This works only to our advantage.

Violating consistency The deformations we defined maintain conjugacy and bi-

section for most semi-regular patterns, but not for some. For example, consider the

(4, 6, 12) example in Figure 4.8: by fixing all the dual vertices, our deformation would

violate bisection between some of the quads and the 12-sided faces. This is caused by

the special structure of the (4, 6, 12) pattern, for which the dual centers of the hexes

and the oblique quads cannot conform to straight rulings should they stay fixed. Our
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Figure 4.8: The dual centers of the (4, 6, 12) pattern do not correspond to possible
rulings if fixed upon deformation. Allowing the hex (pink) centers to deform fixes
this problem.

correction is simple: allow the centers of the hexes to deform as well, so that they

line up with the (fixed) centers of the oblique quads.

4.3.3 Strip decompositions

Our explicit construction provides a canonical way to approximate paraboloids, by

relying on a single possible choice for defining strips. In the following, we explore

other possible constructed solutions, by choosing di↵erent alignments, corresponding

Figure 4.9: Di↵erent strip decompositions for regular hexagons. The three decom-
positions from the left correspond to the ones shown in Figure 4.10. In addition, the
transformation corresponding to the decomposition second from the left is shown in
Figure 4.11.
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Figure 4.10: Di↵erent strip decompositions increase the available types of polyhedral
patterns. With the three strip decompositions shown in Figure 4.9, we obtain hexagon
patterns approximating a cyclide with di↵erent appearances.

to decomposing the patterns into di↵erent strips.

Decomposable patterns Essentially, strip decomposition is a combinatorial refine-

ment of the original pattern. A feasible strip decomposition is a collection of disjoint

dual strings (trees with 2-valence nodes; see Figure 4.9 for examples). Since a strip

decomposition assigns primal vertices to dual vertices, it is actually a strip decomposi-

tion of the dual pattern as well. Regular quads, hexagons, (34, 6), (3, 4, 6, 4), (4, 6, 12),

(4, 8, 8) and their dual patterns have infinitely many strip decompositions. However,

patterns such as (3, 6, 3, 6), (3, 12, 12) and their duals cannot be decomposed to strips

by definition.

Deformations and symmetries The practical meaning of choosing strips is to con-

trast a chosen strip direction with the principal directions of the paraboloid. Choosing

a strip means choosing a dual axis for every consequent pair of faces, and forcing the

primal vertices to move in directions that are orthogonal to the strip axis. In other

words, we constrain a plane of symmetry that is orthogonal to the tile, and passes

through its center.

However, as we explain above, the principal directions may mandate (e.g., if they

are rulings), that the surface forms lines of primal vertices along such rulings. At any

rate, the tile must also be inscribed to a conic of the same nature. The canonical

choice of strips is where the dual axis is aligned with the rulings (see Figure 4.9

left). However, other choices may produce interesting patterns due to the mismatch
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between the constrained symmetry and the rulings (see Figure 4.11), and they may

potentially form invalid configurations. Such configurations arise when the strips are

along the asymptotic directions of the surface, i.e., where the dual direction is self

conjugate.

General patterns Not all patterns can be decomposed to strips. For instance, the

tri-hex pattern (3, 6, 3, 6) cannot be decomposed. Such patterns cannot therefore

comply to the normal adherence and cannot be made consistent by deformation.

However, as our algorithm requires consistency only for the theoretical analysis, we

still utilize these patterns in practice, just without any guarantees. Figures 4.16

and 4.22 provide examples.

4.3.4 Regularizers Motivated by Symmetries

Ideally, we would like to achieve the described symmetric and planar tile shapes for

meshes initially tiled with semi-regular convex patterns. However, general meshes are

not paraboloids, and they have a variety of strip decompositions and varying curva-

ture regions. Not wanting to be particular for every pattern, we instead opt for the

most general way to make any type of semi-regular pattern deform properly. Our

point is to utilize what remains invariant under curvature-based tile deformations,

rather then what deforms. Therefore, we identify invariant symmetries of tiles and

Figure 4.11: Transformation of the regular hexagon pattern from a rotational
paraboloid (left) via a parabolic cylinder (middle) to a hyperbolic paraboloid (right)
with the strip decomposition shown in Figure 4.9, second from left.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 4.12: Framework overview: a) for an initial triangle, quad, or hex mesh, we
can generate a pattern mesh using simple geometric rules. b) The initial pattern mesh
might already be aesthetically pleasing, but the faces are typically not planar. c) A
regularizer can be configured by specifying symmetries that should be preserved in
the pattern. In this case, face symmetries are chosen. Corresponding vertex pairs are
shown using the same number and the symmetry centers are shown in blue and red.
d) Finally, the optimization generates a mesh with planar faces. The most interesting
aspect of polyhedral patterns is that most of them have to transform so that they look
di↵erent in regions of positive, zero, and negative Gaussian curvature (see insets).

then regularize the mesh in our planarization process to maintain them. The sym-

metries that we identify include reflection through axes and through planes as well

as reflections through the centers of tiles or edges. It is straightforward to check that

such symmetries are general enough to contain the deformations we describe here.

The symmetries are described in greater detail in Section 4.6.

4.4 Overview and User Interaction

Our framework comprises four stages, shown in Figure 4.12.

Pre-processing Initial meshes are generated using triangular-, quad-, or hex-based

remeshing techniques in a separate program, according to the desired pattern (see Fig-

ure 4.4 for a description). Many patterns are initialized using the hex-based remeshing

approach proposed by Vaxman and Ben-Chen [41] with their planarity optimization

omitted. We therefore have two input meshes in our system: A finely-tessellated

triangle mesh to define the reference surface and a coarser (non-planar) remeshed
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triangle, quad, or hex mesh.

Pattern generation The user can transform the initial coarse mesh into a pat-

tern mesh by selecting from a list of pre-defined patterns. The transformation is

implemented using a sequence of geometric rules, e.g., subdivision rules. The imple-

mentation of such rules is fairly straightforward and follows the framework proposed

by Akleman et al. [47].

Symmetry configuration The user can then specify a desired strip decomposition

and configure the regularizer by assigning symmetries. We o↵er axial symmetries with

respect to an axis passing through a vertex, an edge midpoint, or a face barycenter.

We also o↵er reflective symmetries with respect to a plane, e.g., a plane passing

through an edge. The user specifies the symmetry assignment for one or more el-

ements, and the system propagates the assignment over the whole mesh according

to the strip decomposition. To guide the user in his/her selection, we provide a list

of suggested symmetries. The suggestions are generated by mapping each strip de-

composition of each pattern to a cylinder and then observing what symmetries are

feasible (see Sec. 4.3).

Symmetry optimization Our algorithm optimizes the pattern for planarity and

aesthetics (using the regularizer configured in the previous step) through non-linear

optimization. The details for the optimization framework are presented in Section 5.4,

and those for the symmetry regularizers are given in Section 4.6.

4.5 Optimization Framework

We next describe the regularity-based planarity optimization framework that our work

builds upon. The inputs are a reference surface, S, given as a triangle mesh, and an

initial polygonal mesh with vertices, v
i

, that approximates the reference surface. The

goal is to optimize the initial polygonal mesh, M = (V,E, F ), according to three
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terms: the planarity of the faces, the closeness to the reference surface, and the

regularity of the mesh. We rely on existing methods (described in this section) to

formulate planarity and closeness terms. The regularity terms are our contribution.

Variables We denote the vertex coordinates of M as v
i

, i 2 V , and the unit face

normals as n
k

, k 2 F . Vertices are not constrained to lie on the reference surface, S,

exactly. The closest point on S for a vertex v
i

is v⇤
i

with corresponding normal n⇤
i

(see Fig. 4.13).
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Figure 4.13: Notation: faces (left), closest point projection (right)

Problem formulation The objective function we minimize is

E(v
i

) = �
1

E
plan

+ �
2

E
close

+
X

j

µ
j

Ej

reg

. (4.1)

Following the reasoning of [29], we set up a system with energies that are at most

quartic, which entails soft constraints that are at most quadratic, since this formula-

tion is easy to optimize using a standard regularized Gauss-Newton algorithm.

Planarity The planarity constraint is necessary for all non-triangular faces. We

adapt the formulation of [29] and express E
plan

as

E
plan

=
X

k2F

X

(i,j)2E(f

k

)

((v
i

� v
j

) · n
k

)2 +
X

k

(n
k

· n
k

� 1)2, (4.2)

which is zero if all face edges are orthogonal to a unit length normal.

Closeness The closeness constraint of a vertex, v
i

, to a reference surface is modeled

by requiring v
i

to move only on the tangent plane associated with its closest point,
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v⇤
i

, on the reference surface, S:

E
close

=
X

v
i

2V

((v
i

� v⇤
i

) · n⇤
i

)2. (4.3)

As shown in Figure 4.13, n⇤
i

is the normal of the tangent plane at v⇤
i

, and it is kept

constant in every iteration. Alternatively, for coarse and inconsistent tilings, we may

use closeness of face barycenters instead to relax this constraint (see Figures 4.17 and

4.28, left).

Previous iteration We add a term in each iteration that dampens the optimization

for stability by closeness to the previous iteration:

E
prev

= �
X

v
i

2V

��vm

i

� vm�1

i

��2 + �
X

n
i

2F

��nm

i

� nm�1

i

��2, (4.4)

where m denotes the number of an iteration and vm
i

is the value of v
i

at iteration m.

We use � = 10�6 in all our examples.

4.6 Regularization with A�ne Symmetries

We next define the invariant symmetries of deforming patterns (see Section 4.3)

and how we utilize them in practice to regularize patterns undergoing deformations

through the planarization process. Generally speaking, there are several ways to rep-

resent feasible regularities, such as enforcing specific angles, polyline smoothness of

selected sequences of non-adjacent vertices, ratios of edge lengths, and more. We

choose to use local a�ne symmetries as described in the following, because they are

simple, sparse, local and linear (e.g., compared with angle-based formulations), and

this is important for computational e�ciency.

We describe the practical implementation of various symmetry regularizers and

adapt them to the discrete surface by two approaches: a�ne symmetries in space and
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in a tangential projection. Each approach has di↵erent merits and shortcomings.

4.6.1 A�ne symmetries

A�ne symmetries can be defined with respect to either an axis or a plane. We can

distinguish four di↵erent generators of symmetries: vertices, faces, edge midpoints,

and edges. Vertices, faces, and edge midpoints generate symmetries with respect to

an axis and edges generate symmetries with respect to a plane.

v
i v

j

A
k

c
k

n⇤
k a

k

T
k

n̄
k

r
k

b
k

v
i

v
j

P
k

Figure 4.14: A�ne reflection in an axis (left) and in a plane (right)

Axial symmetries An a�ne reflection in an axis, A
k

, requires the additional pre-

scription of a reference plane, T
k

(not parallel to A
k

; see Fig. 4.14, left). Then, a

pair of vertices v
i

and v
j

is symmetric with respect to A
k

if the midpoint between

v
i

and v
j

lies on A
k

and the vector v
i

� v
j

is parallel to T
k

. Let A
k

be defined by a

direction vector a
k

and a point c
k

, and let n⇤
k

be a normal vector of T
k

. Then, the

axial symmetry regularizer E1

reg

is encoded as follows:

X

(i,j,k)

((v
i

+ v
j

)/2� (c
k

+ �
kl

a
k

))2 + ((v
i

� v
j

) · n⇤
k

)2 (4.5)

The triplets (i, j, k) are chosen according to the user-assigned symmetries. That is,

v
i

and v
j

are selected to have a�ne symmetry with respect to A
k

. Furthermore, a
k

and �
kl

are considered as additional variables in our optimization. The axis point c
k

is a vertex, an edge midpoint, or a face barycenter, and thus it is a linear combina-

tion of vertex coordinates. The n⇤
k

variables can be either considered as additional
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variables, or approximated at the beginning of each iteration as the normal of S at

the closest point to c
k

. We do the latter. Symmetry is applied to local neighborhoods

as illustrated in Fig. 4.15. Note that the symmetry of a planar face with respect to

its barycenter does not require an axis. n⇤
k

= a
k

models a Euclidean reflection in A
k

and is therefore suitable to enforce Euclidean symmetries.

Plane-reflective symmetries Fig. 4.14 (right) presents an a�ne reflection with

respect to a plane, P
k

(through point b
k

and with normal vector n̄
k

), in the direction

r
k

. Plane-reflective symmetry of v
i

and v
j

requires their midpoint to be located on

P
k

, and the vector v
i

� v
j

to be parallel to r
k

. We encode this requirement in the

regularizer, E2

reg

, as follows:

X

(i,j,k)

(((v
i

+ v
j

)/2� b
k

) · n̄
k

)2 + ((v
i

� v
j

)� �
kl

r
k

)2. (4.6)

We use r
k

for each reflection plane and the scale variable �
kl

as additional variables.

The plane P
k

is commonly the bisection plane of two adjacent faces in a polyhedral

mesh, and so b
k

can be the midpoint of the common edge of two adjacent faces.

The normal, n̄
k

, is then pre-estimated in each iteration. With r
k

= n̄
k

, we obtain a

Euclidean reflection.

Symmetry centers In Fig. 4.15, as exemplified on a quad mesh, the three leftmost

images show point symmetries in 2D, equivalent to 3D axial symmetries. The blue

dot represents the symmetry center. Each pair of symmetric points is labelled the

same (orange dots). Their symmetry centers are located at a vertex, an edge midpoint

or a face barycenter, and their symmetries are denoted accordingly. The rightmost

edge symmetry is equivalent to a 3D planar symmetry.
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Figure 4.15: Left to right: symmetry with respect to a vertex, an edge midpoint, a
face barycenter, and an edge.

Figure 4.16: Semi-regular patterns on a Dupin cyclide. Left: A (3, 4, 6, 4) pattern
using face symmetries. Middle: A (3, 6, 3, 6)⇤ pattern using symmetries with respect
to an edge. Right: A (4, 8, 8) pattern using face symmetries.

4.6.2 Symmetry in a tangential projection

A relaxed version of a�ne axial symmetry is symmetry in a projection parallel to

a certain direction (the image plane of the projection does not matter). To achieve

it, we simply discard the second part of Equation 4.5. We use the normal at the

closest point, c⇤
k

, to c
k

as the projection direction, and thus enforce a symmetry that

is relative to the tangent plane of S at c⇤
k

. This yields the regularizer E3

reg

:

X

(i,j,k)

((v
i

+ v
j

)/2� (c
k

+ �
kl

a
k

))2. (4.7)

By approximating a
k

with n⇤
k

, this expression can be simplified to the following equiv-

alent formulation:
X

(i,j,k,l)

(((v
i

+ v
j

)/2� c
k

) · t
kl

)2. (4.8)
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In addition, we need to sum over two orthogonal directions, t
k1

and t
k2

. Both direc-

tions are orthogonal to n⇤
k

, and they are estimated at the beginning of each iteration.

4.6.3 Avoiding self-intersection

The proposed symmetry regularizers cannot prevent self-intersections within the pat-

tern. To counter that, we introduce an additional regularizer, E4

reg

, assuming that a

line segment connecting the face barycenter to a vertex is within the corresponding

face:
X

k2F
0i<|f

k

|

((v̂i

k

� c
k

)⇥ (v̂i+1

k

� c
k

) · n
k

� ⌫2

ki

)2. (4.9)

We assume that the faces are consistently oriented with vertices (v̂0

k

, v̂1

k

, . . . , v̂|f
k

|�1

k

),

where indices in the sum are taken modulo the face valence |f
k

|. The face normals,

n
k

, and barycenters, c
k

, are evaluated prior to each iteration, and considered as

constants. We introduce ⌫
ki

as slack variables to encode the inequality requirements

that the vectorial areas of c
k

v̂i

k

v̂i+1

k

are aligned with n
k

.

4.6.4 Edge length regularization

To avoid short edges, we regularize selected length di↵erences of adjacent edges. For

example, if e
i

and e
j

are the edge vectors of two neighboring edges, we regulate the

ratio of their lengths into a given interval, and E5

reg

is defined as:

X

(i,j)

(ke
i

k2 � r2ke
j

k2 � µ2

ij

)2 + (ke
j

k2 � r2ke
i

k2 � µ2

ji

)2, (4.10)

where the summation is over the pairs of edges chosen based on the used strip de-

composition and r is set to 0.8 in our implementation. We can require a lower bound,
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Figure 4.17: Triangle meshes constructed by a single type of triangle for the (4, 8, 8)⇤

pattern (left) and the (4, 6, 12)⇤ pattern (right) using symmetries with respect to an
edge.

l
min

, on edge lengths by E6

reg

:

X

i2E

(ke
i

k2 � l2
min

� �2

i

)2. (4.11)

µ
ij

and �
i

are slack variables for the inequality requirements.

4.7 Results

We present several results and discuss parameters, planarity, running time, failure

cases, and comparison to related work.

Models and patterns We generate results for a set of selected surfaces showing

multiple patterns per surface (see Figures 4.16, 4.22, and 4.23) where all patterns

use the simplest strip decomposition. Throughout the chapter, we select the surfaces
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Figure 4.18: We show a (3, 4, 6, 4) pat-
tern on the Moomoo model with 57 sin-
gularities. This is the most complicated
model shown in the chapter due to the high
number of singularities (hexagons replaced
by septagons and pentagons) and the high
curvature variations.

to highlight the behavior of our regularizer in di↵erent situations. We select models

to include regions of positive and negative Gaussian curvature, as well as interesting

transition regions between them. We exemplify patterns on both open and closed

surfaces, as well as surfaces with topological holes. We show a wood construction

of an interior cladding of an architectural model in Figure 4.1. Finally, our method

is used to generate rough patterns consisting of identical triangles (see Figure 4.17)

and a (3, 4, 6, 4) pattern on a non-architectural model (see Figure 4.18). Note that

our algorithm typically targets architectural models with moderate curvature vari-

ations and a sparse set of singularities. This model is therefore mainly depicted to

demonstrate robustness.

Strip decompositions We demonstrate a pattern on a surface with di↵erent strip

decompositions (see Figures 1.3 and 4.29). Di↵erent symmetries are used to accom-

modate each decomposition. Combining di↵erent strips and symmetries leads to a

large variety of aesthetic results from a single basic pattern (see Figure 4.28).

Planarity All our models are successfully planarized. For assessment, we measure

face planarity as the maximum distance between a vertex and a regression plane

computed using PCA, normalized by dividing by the average edge length in the
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model. Our tolerance for this measure is under 10�2. We illustrate one example in

Figure 4.12 where we show how the Soumaya museum model is planarized. Before the

optimization, many faces of the model are considerably non-planar. The optimization

is nevertheless successful.

Parameters The main parameters stem from the configuration of the regularizer,

i.e., the selected symmetries and strip decompositions. The weights for the di↵erent

terms in the optimization vary slightly per pattern. In the optimization, we use

the default parameters of 1.0 for face planarity, 0.1 for the closeness to the reference

surface, and 0.01 for the symmetry-based regularizers. This choice is good for most

examples. For example, the (34, 6) pattern in Figure 4.23, right and the (3, 4, 6, 4)

pattern in Figure 4.16, left use these parameters without change.

Alternatively, the user can adjust the parameters to trade o↵ regularity for stricter

planarity or closeness to the reference surface; see Figure 4.19 for example. For

the (4, 6, 12) patterns in Figure 4.22 and 4.23, we set the planarity to 5.0 and 10.0,

respectively, while setting the closeness and symmetry parameters to the default ones.

For the remaining terms, we advise that the edge-length parameter be equated with

the symmetry regularization parameter, and the self-intersection avoidance parameter

with the planarity parameter.

Implementation details and running times We implemented our framework

in C++ using OpenMesh [48] for the mesh data structures and TAUCS [49] as the

Figure 4.19: A planarized cyclide model. Hotter vertex colors indicate greater
distances to the reference surface (left). A coarse input mesh can be successfully
planarized and regularized at the cost of lower fidelity to the reference surface (second
from left). Forcing closeness to the reference surface sacrifices regularity (second from
right) and may cause edge degeneracies (right).
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Figure 4.20: Failure case on a monkey saddle: due to the initialization used on the
left, the pattern (3, 4, 6, 4) degenerates as some of the quads collapse to lines. With a
di↵erent initialization that is better aligned with the principal curvature directions,
the pattern can be mapped correctly (right).

library for sparse linear solvers. The running times for our examples are typically

under one minute with an Intel Xeon X5550 2.67GHz processor. For example, the

Soumaya model in Figure 4.12 has 7034 vertices and took 43 seconds to optimize.

Smaller examples are much faster. For example, a (4, 6, 12) pattern on an HP surface

with 432 vertices took 0.53 seconds to optimize.

Failure cases and limitations Our framework is sensitive to the triangle, quad

or hex mesh that is used as input. A poor initialization leads to poor results. In

Figure 4.20, we contrast the results of a poorly initialized optimization with a good

initialization on the monkey saddle. In Figure 4.21, we show a poor initialization of

the Soumaya model with many singularities in comparison with the example demon-

strated above in Figure 4.12. In addition, we depend on the quality of existing code

for the creation of the initial hex or quad patterns on the surface.

Coarse meshes Our algorithm can create adequate results on coarse meshes as

well. However, we observe that coarse meshes can typically only be planarized and

regularized when sacrificing the closeness to the reference surface, as demonstrated

in Figure 4.19.
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Figure 4.21: A failure case due to improper initialization. With a hex-dominant
mesh dualized from of an arbitrary triangle mesh (left), the computed result (right)
cannot achieve regularity or planarity, because there are too many singularities, lead-
ing to a over-fragmented strip decomposition.

Figure 4.22: Left: A (3, 4, 6, 4) pattern using face symmetries. Middle: A (3, 6, 3, 6)
pattern using vertex symmetries. Right: A (4, 6, 12) pattern using face symmetries.

Comparison to PQ meshing Our regularizers provide more degrees of freedom

than does the traditional regularizer based on polyline fairness [29]. Therefore, our

planarization is less sensitive to PQ meshes that are not initialized according to

conjugate directions. We show examples in Figures 4.3, 4.26, and 4.28. A detailed

analysis of the di↵erence is provided in the additional materials.

Comparison to PH meshing Li et al. [40] proposed a regularizer for planar hex

meshes, meshing the positively and negatively curved regions separately. However,

they do not propose a specific solution for the transition region and cannot automat-
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Figure 4.23: Semi-regular patterns on an architectural six shape. Left: A (4, 6, 12)
pattern using face symmetries. A (34, 6)⇤ pattern using vertex symmetries. Note how
prominent feature lines form automatically due to the regularization.

ically assign which regularizer to use. This may lead to artifacts in the transition

region (see Figure 4.24) and to possible failures in the planarization (Figure 4.25).

Our solution can produce significantly better results. It also caters to non-canonical

strip decomposition. However, we note that Li et al. [40] propose a complete frame-

work for PH remeshing, while our work focuses only on the regularizer used after the

generation of an initial mesh layout.

Comparison to ad-hoc regularizers A large variety of regularizers has been pro-

posed in other contexts. When using ad-hoc regularizers, typical problems occur,

depending on how the regularizer is weighted. On the one hand, using a high weight

leads to a mesh that is visually pleasing, but not polyhedral. On the other hand, using

a low weight leads to a planar mesh that is highly irregular, including degeneracies

like self-intersections. There is no e↵ective weight that can achieve both planarity

and regularity simultaneously. Figures 4.26 and 4.27 present examples.

4.8 Conclusions

We consider the design and optimization of polyhedral patterns, i.e. patterns of planar

polygonal faces, on freeform surfaces. Our contributions are the description of a novel

class of regularizers based on a�ne symmetries and a theoretical analysis of polyhedral

patterns. In future work, we plan to study mixed patterns and their transition regions,
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Figure 4.24: Comparison of Phex mesh aesthetics: with the same initialization, the
regularizer of [40] generates the left mesh, while our approach leads to more natural
transitions (right).

Figure 4.25: Comparison of Phex mesh planarity. Left: [40]. Right: our method
achieves better planarity.

volumetric patterns such as frame structures for support in architectural applications,

folding patterns, and time-varying polyhedral patterns for shading systems.

Figure 4.26: Mesh planarity. From left to right: initialization, polyline fairness,
Laplacian, edge length, angles, face area, ours.



94

Figure 4.27: Mesh planarity. From left to right: initialization, Laplacian, edge length,
angles, face area, ours.

Figure 4.28: Di↵erent patterns generated by di↵erent symmetries. The pattern on the
left uses face symmetries; the one on the right is based on edge midpoint symmetries.

Figure 4.29: Three strip decompositions on the knot model for the (4, 8, 8) pattern.
Figure 1.3 presents an explanation of the color coding.
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Chapter 5

Space Frame Structures

5.1 Introduction

Space structures, also called space frames or space frame structures, are elegant and

materially e�cient truss-like structures consisting of beams (two-force members) con-

nected at nodes. Working with space structures is desirable and often necessary

in industrial and architectural constructions. The design and optimization of space

structures present many challenges, especially for designs with complex geometry.

In industrial design, space structures have been widely used for structures that

should be light weight but also statically sound, such as bikes, cars, or airplanes. A

major advantage of space structures is their static soundness with a small amount

of material usage. In many situations, space structures also enable a simple man-

ufacturing process by assembling or welding beams or bars. Moreover, the richness

of the design space of space structures allows for the possibility of finding elegant

structures to support a variety of di↵erent designs with highly customized shapes.

More recently, similar ideas have also been extended to 3D printing and personalized

design and fabrication.

In architectural construction, space structures often serve as statically sound sup-

portive structures approximating target shapes or underlying desired freeform sur-

faces. In many prominent projects, they are not visible. However, they are essen-
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Figure 5.1: The Heydar Aliyev Cultural Center (top-left) in Baku, Azerbaijan is
designed by Zaha Hadid. A supporting space structure (top-right) underlying the
freeform surface is constructed by MERO-TSK using circular hollow section tubular
beams (bottom-left) and the KK-Ball Node System (bottom-right).

tial for the realization of the architectural design. For example, the Heydar Aliyev

Cultural Center in Azerbaijan designed by Zaha Hadid, is constructed based on an

underlying space structure, as shown in Figure 5.1.

Besides serving as underlying supportive structures, many space structures are

also visible. For these visible space structures, aesthetics considerations, such as

simplicity and regularity, should also be considered. These space structures are not

limited to freeform architectural designs like stadiums or cultural centers, but also

commonly seen on bridges, towers, and even playground domes.

Despite the universal applicability of space structures, most of the current con-

ventional design processes are based on manually exploring di↵erent variations using

interactive editing and customized scripting. There are usually many iterations of
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Figure 5.2: Two di↵erent construction solutions of a statically sound space structure
approximating the train station model. The solution on the left uses two types of
customized tubular beams, and the solution in the middle and the right uses six
types. Similar to Figure ??, the beams are color coded by their cross-section types,
where hotter colors represent stronger beams. For aesthetics, these beams have the
same outer radius, as the cross-section areas are controllable by the thicknesses of the
circular hollow sections (shown in Figure 5.1, bottom-left).

design and verification to optimize the connectivities, node positions, and the cross

sections of beams. Based on our collaboration with structural engineers working on

architectural projects in industry, we narrowed down the challenges in the design of

space structures to the following aspects. (Goal 1) First, the structure should be stat-

ically sound. This means that the structure is in force equilibirum with axial forces

along the beams without bending moments. (Goal 2) Second, the structure should be

aesthetically pleasing, constructed with regularly arranged beams and nodes. (Goal

3) Third, the structure should approximate a given designed shape, e.g., a freeform

architectural surface. (Goal 4) Fourth, the cost of the structure should be minimized.

The most important factor associated with cost is the material usage. Therefore,

a cost-e↵ective space structure consists of beams with variable cross sections, since

most material is used for the beams. Further, beams are usually manufactured by

extrusion (aluminium) or bending and welding (steel), followed by cutting, so that it

is important that many beams share the same cross section.

We propose a systematic framework to design and optimize statically sound space

structures that approximate freeform surfaces. To achieve the desired goals mentioned

above, our framework allows a user to explore di↵erent connectivities of the space
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 5.3: Framework overview: a) Based on an input reference mesh, our system
provides a set of tools for creating initial structures with di↵erent connectivities. b)
Three possible connectivities modeled with our system. c) After initialization, we
optimize the closeness to the reference shape, boundary alignment, static soundness,
total volume consumption, and geometric regularity, by adjusting vertex locations
and axial forces. d) We further adjust the beam types to minimize the total volume
of material used under the condition that the structure should be constructed with
beams of a limited number of cross section types that could be customized. Here, we
show solutions for 2, 3, and 6 beam types.

structures, optimize the node positions, and adjust the beam cross sections. Our

contributions to the design and optimization of space structures include:

A novel system for the design and optimization of space structures that considers

the most important practical aspects.

A break down of the overall problem into subproblems formulated into manage-

able optimization problems.

A practical optimization algorithm that e�ciently tackles a challenging mixed-

integer programing problem with a bilinear objective function and quadratic

constraints.

5.2 Previous Work

Studies related to our work can be found in di↵erent disciplines. Design and optimiza-

tion of trusses with relatively simple geometries have been studied for a long time in

structural engineering. Recently, the design of statically sound structures at di↵erent
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scales has been studied in the context of 3D printing and architectural geometry in

the graphics community.

More than one century ago, Anthony Michell, in his seminal article [50], provided

su�cient conditions and analytical examples for special types of optimal trusses to

attain their maximal e�ciency in terms of material usage. Michell’s work was based

on ideal assumptions that all external forces are determined and imposed on discrete

vertices and that beams are infinitesimally thin elements.

The analytical results of Michell were later reproduced by many computational

studies on topological optimization. The most commonly used algorithm for topology

optimization of trusses is the ground structure method [51,52]. It starts from a densely

connected structure with fixed node positions and given applied forces. To reduce

the total amount of material consumption, it adjusts the beam cross-section areas

to remove beams and simplify the graph. However, the ground structure method

typically generates connectivities that are infeasible for construction, which renders

manual adjustment of the final connectivity necessary. Many references in this field

have been extensively reviewed in the thesis of Mitchell [53].

Recently, researchers in the graphics community started to look into the design

of statically sound structures. For the purpose of procedural modeling to create

structurally realistic models in a virtual world, Smith et al. [54] studied the design of

truss-like structures. Similar goals were also studied on a smaller scale in the context

of 3D printing. For example, Wang et al. [55] studied the reduction of material usage

through frame structures. After Thrust Network Analysis was introduced in the thesis

of Block [56], there have been many studies on the design of freeform self-supporting

surfaces. Among them, the thrust networks in [57–59] are auxiliary and invisible in

the final constructions, without aesthetic restrictions (Goal 2). Vouga et al. [60] and

Tang et al. [29] studied thrust networks that are visible in the final construction,

but they did not consider the reduction of material consumption by adjusting the
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cross-section areas of beams (Goal 4). It is worth mentioning that compared with

our work, these works are subject to the additional restriction that only compressive

forces are allowed.

Besides static soundness and the reduction of material usage, complexity of the

construction process should also be considered in the design phase. To simplify the

construction of a large structure, it is often necessary to enforce the rule that the

structures are constructed by repetitive elements so that they can be batch manu-

factured using the same factory settings. Therefore, the work of Fu et al. [61] aimed

to enable the paneling of a freeform surface using limited types of faces. Jiang et

al. [42, 62] studied freeform honeycomb structures with repetitive nodes and Lobel

frames with edges of the same length. Similar goals are also pursued in [23] and [46].

However, using beams of repetitive lengths aggressively diminishes the shape space,

and this is often unnecessary for space structures where the beams can be easily cut

after extrusion or bending and welding. Therefore, our aim for repetitive cross-section

areas is more relevant to the reduction of cost, while imposing no restriction on either

statics or aesthetics.

5.3 Overview

We provide users a framework to create space structures, optimize for static sound-

ness, and minimize the total volume of material used. The framework is comprised

of four stages, including connectivity enumeration, force initialization, optimization

of node positions, and discrete optimization of beam cross sections, as illustrated in

Figure 5.3.

Connectivity Enumeration, Ranking, and Editing The input to our system

includes a reference model given as a finely tessellated triangle mesh and desired

boundary curves. We provide a set of tools to generate the connectivity of the space
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structure:

Coarse mesh enumeration, ranking, and editing.

Subdivision for mesh refinement and pattern generation.

Construction of multi-layer structures.

Force Initialization Once connectivity and node positions are initialized, we es-

timate the axial force densities of beams, defined as forces per unit length. Space

structure design should minimize the bending moments of beams such that static

soundness of the structure should be achieved with only axial forces, within the

bounds determined by beam types and cross-section areas. Therefore, we solve a

constrained least squares problem to achieve force balance in a least-squares sense

with axial forces only. The estimated axial force densities are the input for the next

stage of the optimization, where force equilibrium is strictly required.

Optimization of Node Positions The next stage of computation is a multi-

objective, nonlinear optimization in terms of node positions. Under constraints en-

coding the material properties of the beams and safety factors of buckling control, the

computation relocates the node positions while adjusting the axial forces accordingly

for better performance. A user can specify hard constraints that the computation has

to strictly satisfy, such as keeping selected nodes fixed, or soft constraints, such as

closeness to the reference surface, fairness of the structure, and a relaxed formulation

of total material usage.

Discrete Optimization of Beam Cross Sections While constructing space struc-

tures, we would like to minimize the total material consumption by adjusting the beam

cross-section areas. At the same time, space structures should be constructed with

beams of limited types of repetitive cross-section areas, with adjustable beam cross-

section areas of each type. This problem involves discrete variables (assignments of

types), and continuous variables (beam cross-section areas ). With an optimization
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Figure 5.4: To enrich the design space, our framework provides a user with a set
of tools to create base meshes with a variety of connectivities. Here, we show space
structures approximating the British Museum model with a base mesh being a triangle
mesh (left), a quadrilateral mesh (second from left), a hexagonal mesh (second from
right), and a semi-regular pattern consisting of triangles, quadrilaterals, and hexagons
(right). Each of the structures is constructed with tubular beams with six types of
customized cross sections.

scheme alternating with continuous and discrete variables, we can successfully tackle

this problem, overcoming the restrictions of general-purpose, mixed-integer program-

ming solvers.

5.4 Optimization Framework

The inputs to our framework include a reference surface given as a fine triangle mesh,

M , and boundary curves represented as polylines or splines, C i, i = 1 . . . nC . Our

goal is to design and optimize a space structure, S, which consists of a set of nodes

(vertices), V , connected by a set of beams (edges), E. The supported nodes are

V f ⇢ V , and the boundary vertices are V B ⇢ V , which may also be supported. We

denote V ⇢ V as the nodes of the outer layer which should approximate the reference

surface. In single-layer structures, V = V .



103

Figure 5.5: Left and middle: a double-layer quadrilateral space structure is con-
structed based on a quadrilateral base mesh. Right: a double-layer space structure
based on a triangle mesh.

5.4.1 Connectivity Enumeration, Ranking, and Editing

As connectivity is an essential element in space-structure design, we provide a set

of connectivity modeling tools. This set of tools includes connectivity enumeration,

interactive editing, and subdivision.

Coarse-mesh enumeration Coarse-mesh enumeration can be used for the outer

layer. For space structures with quadrilateral base meshes, the connectivities of the

base layer meshes are generated based on [63]. Triangle meshes are created by CVT-

based remeshing [64].

Interactive editing Interactive editing allows the user to sketch a desired coarse

mesh connectivity. A user can add, remove, and relocate vertices and edges. A user

also can edit a mesh by adding or removing polylines and relocating singularities.

Connectivity refinement A user can select from a set of subdivision and procedural

rules to refine the mesh. Simple subdivision rules include Loop and Catmull-Clark.

Procedural refinement rules include the construction of hexagonal meshes and semi-

regular patterns [65]. In multi-layer structures, derivation rules are applied based on

single-layer meshes [66] as shown in Figure 5.5.

Figure 5.4 illustrates di↵erent connectivities created using a combination of the

methods described above for the model of the British Museum. All of the space
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structures are optimized using the later stages of our framework and are structurally

sound.

5.4.2 Force Initialization

A space structure must be statically sound. In the following, we first describe our

structural assumptions and then introduce how axial forces are initialized.

Structural Assumptions In space structure design, we aim for structures in static

equilibrium with minimal bending moments of the beams. Therefore, axial forces

alone should be in force balance with the loads. Similar to previous work, e.g., [60],

the dead loads of the nodes on the outer layer are assumed to be proportional to

the influence areas, i.e., the areas of the dual cells, of the shell supported by the

space structure, as shown in Figure 5.6. Here, we also assume that the weights of the

beams are much less than the weights of the panels that the structure has to support.

Alternative assumptions do not essentially change the workflow.

Figure 5.6: A space structure (left) supporting a shell like surface is in force balance
under appropriate structural assumptions, e.g., the load at every node is proportional
to the area of its dual cell (right). Red dots in the left indicate supported nodes.

Force Initialization To proceed to the next stages of computation, all the variables

need to be properly initialized. The missing variables are the axial force densities.

The force densities, w
ij

, are the axial forces per unit length defined on each beam. The

axial forces at each node, v
i

, should balance the load, l
i

, imposed on the node. These
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forces are precomputed according to the structural assumptions described above. This

is equivalent to the minimization of the energy term encoding force equilibrium,

X

j: {i,j}2E

w
ij

(v
j

� v
i

) = �l
i

, i = 1, . . . , |V |. (5.1)

If there is no solution, the system is solved in a least-squares sense. If there are

multiple solutions, a least-norm solution is computed. In the next stage of compu-

tation, the node locations are treated as variables optimized together with the axial

forces.

5.4.3 Optimization of Node Positions

After the connectivity of a space structure has been determined, the locations of

the nodes should be further adjusted together with the axial forces. We model an

objective function consisting of five terms: closeness to the reference surface (E
close

),

boundary alignment (E
boundary

), static equilibrium (E
static

), total volume (E
volume

),

and geometric regularity (E
reg

).

Closeness to Reference Surfaces The outer layer of the space structures is required

to approximate the given reference shape provided as the fine triangle mesh, M . The

closeness of a vertex, v
i

2 V , to the reference surface, M , is required by constraining

v
i

to move only on the tangent plane associated with its closest point, v⇤
i

, on the

reference mesh, M :

E
close

=
X

v
i

2V

((v
i

� v⇤
i

) · n⇤
i

)2 . (5.2)

Here, the vector, n⇤
i

, is the unit normal vector of the tangent plane. Figure 5.7

illustrates the e↵ects of the closeness term.

Boundary Alignment We also require that the boundary vertices stay on the de-
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Figure 5.7: Optimization of a single-layer space structure with the energy term
enforcing closeness (left) provides a better approximation to the reference surface col-
ored in yellow. In contrast, optimization without the closeness term (right) drives the
structure away from the initial design to further reduce the total volume of material
used.

sired boundary curves, C i, by enforcing that a boundary vertex, v
i

2 V B, can only

move along the tangent line at its projected point, v†
i

, on the reference curve:

E
boundary

=
X

v
i

2V B

j2{1,2}

⇣
(v

i

� v†
i

) · n†
i,j

⌘
2

. (5.3)

Here, n†
i,1

and n†
i,2

are unit vectors that are orthogonal to each other and to the

tangent vector at the projected point, v†
i

.

Static Equilibrium The axial forces are related to both the total volume of the

material consumption and force balance. Absolute values of the force density terms,

|w
ij

|, are needed to represent the total volume. Therefore, we introduce slack vari-

ables, u+

ij

and u�
ij

, where (u+

ij

)2 = max(0, w
ij

) and (u�
ij

)2 = max(0,�w
ij

). With these

new variables, w
ij

= (u+

ij

)2 � (u�
ij

)2 and |w
ij

| = (u+

ij

)2 + (u�
ij

)2. The energy term for

static equilibrium, E
static

, is:

X

i2V

0

@
X

j: {i,j}2E

�
(u+

ij

)2 � (u�
ij

)2
�
(v

j

� v
i

)+l
i

1

A
2

. (5.4)

Total Volume The minimal beam cross-section areas are linearly related to the

absolute values of axial forces. Therefore, each solution of axial forces corresponds
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to a di↵erent assignment of beam cross-section areas. With the introduced slack

variables, the total volume of material used can be written as:

E
volume

=
X

i,j: {i,j}2E

�
(u+

ij

)2 + (u�
ij

)2
�
kv

j

� v
i

k2. (5.5)

Geometric Regularizers For aesthetics, a space structure should also be regular.

For a space structure with a triangle mesh as its base mesh, a uniformly weighted

Laplacian term is enforced on each layer for smoothness. For a structure with a quad-

rilateral mesh as its base, polyline fairness energy is applied. For a space structure

constructed based on a semi-regular pattern, symmetry-based regularizers proposed

in [65] are used.

Further Considerations Additionally, the following objectives, which are currently

not implemented in our system, could easily be included:

Alignment with respect to stress fields.

Maintenance of layer o↵sets for multilayer structures.

Fairness of axial forces for reduced stress concentration.

Coplanarity of selected vertices.

Optimization Algorithm The sum of the energy terms is solved by a quasi-Newton

method [67], based on an implementation of the Hybrid Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (HLBFGS) method developed in [64]. For the sum of en-

ergy terms, E
sum

=
P

i

�
i

E
i

, we choose higher weights, 1, for closeness and force

equilibrium, and lower weights, 0.01, for the other terms. At this stage, we have not

considered the practical construction complexity that the beams should have repeti-

tive cross-section areas. Therefore, the next stages of computation based on discrete

optimization are necessary for material minimization.
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Figure 5.8: Three di↵erent assignments of axial forces achieving static equilibrium
for a statically indeterminate (hyperstatic) structure with fixed nodes and given loads.
The beams are color coded according to the absolute values of the axial forces, where
red indicates stronger beams. Typically, there is an infinite space of such valid solu-
tions that keep a space structure in static equilibrium.

5.4.4 Discrete Optimization of Beam Cross Sections

The solution obtained from the previous stage assumes that the cross-section areas

of the beams can be arbitrarily and continuously adjusted. While the total material

consumption is reduced, such a solution imposes a high cost for beam customization,

as every beam has to be manufactured with a di↵erent factory setting. However, a

lot of material would be wasted if all beams had the same cross section. Therefore,

as a compromise, we create structures based on a small number, e.g., 2, 3, or 6, of

types of cross sections.

To keep the problem manageable, the previous nonlinear formulation needs to be

simplified before introducing discrete variables. To reduce the complexity, we fix the

node positions and solely focus on the axial forces and beam cross-section areas. Such

simplification is feasible as the structures we study are statically indeterminate (or

hyperstatic). This means that the solution space of axial forces in force equilibrium

generally has a nontrivial dimension for fixed nodes and given loads as illustrated

in Figure 5.8. In the infinite space of valid solutions, there is typically one that

has minimal volume for beams of varying cross sections. However, this solution is

not necessarily optimal when beams are chosen from a fixed set of cross sections.

Therefore, we cannot simply solve a continuous problem and take the solution as a
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basis for the discrete problem.

The natural formulation of the optimization is a mixed integer programming prob-

lem. However, there is no generic method to solve such a problem. In the following,

we first present the mixed integer programming problem. We then discuss our novel

solution to tackle this problem in a practical manner.

Mixed Integer Programming Formulation

minimize
x

ij

,a

j

,s

i

X

i

l
i

kX

j=1

a
j

x
ij

(5.6)

subject to BT s = �f (5.6a)

kX

j=1

x
ij

a
j

+ s
i

� 0; i = 1, . . . , |E| (5.6b)

kX

j=1

x
ij

a
j

� s
i

� 0; i = 1, . . . , |E| (5.6c)

kX

j=1

x
ij

 1; i = 1, . . . , |E| (5.6d)

x
ij

2 {0, 1}; j = 1, . . . , k, i = 1, . . . , |E|. (5.6e)

Here, the coe�cients, l
i

, are the lengths of the beams. Here, the scalars, a
j

, j =

1, . . . , k, are the bounds of the axial forces of the k-beam types. The assignment of

beams types is reflected by the integer variable, x
ij

, which is 1 if the i-th beam is

assigned with the j-th type, and 0 otherwise. Each element of s 2 R|E| is a signed

scalar value of the axial force of a beam, proportional to the beam length and the

force density: s
i

= w
i

l
i

.

The linear constraints, BT s = �f , for force balance on axial forces is equivalent

to Equation 5.1 for force densities. The matrix, BT 2 R3|V |⇥|E|, is called the nodal

equilibrium matrix. It represents the connectivity of the space structure, converting
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axial forces on beams to the resultant forces. The vector, f 2 R3|V |, represents all the

loads, l
i

, i = 1, . . . , |V |.

Di�culties of Mixed Integer Programming The seemingly simple formulation

presented above turns out to be remarkably di�cult to solve with a generic solver for

mixed integer programming. This is due to the fact that both the objective function

and the constraints are quadratic. Besides, the objective function is generally not

positive definite. With discrete variables, the problem becomes even more challenging.

There are three sets of variables: the axial forces of beams, s
i

, the cross-section

areas of beam types a
j

, and the assignment of types for beams x
ij

. We propose to

break the overall problem into individual subproblems and solve them in an alter-

nating scheme. Studying the structure of the problem, we derive the following three

subproblems:

Sp-1: Fix a
j

, and solve for s
j

and x
ij

.

Sp-2: Fix s
j

, and solve for a
j

and x
ij

.

Sp-3: Fix x
ij

, and solve for s
j

and a
j

.

In the following, we discuss how these three subproblems are formulated and

solved. We then discuss the overall algorithm comprised of these three subproblems.

Sp-1 (fix a
j

): When the cross-section areas of the k-beam types, a
j

, are given,

Equation 5.6 is reduced to a standard mixed integer linear programming problem

in terms of s and x
ij

. However, directly applying a generic solver has a very poor

scalability, and it soon becomes impractical even for a problem of moderate scale, as

shown in Section 5.5.

Linear programming relaxation. To further reduce the complexity, we relax the

integer variables, x
ij

, to real variables [68]. Instead of requiring x
ij

to be either 0 or
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1, we allow them to be continuously adjustable between 0 and 1:

minimize
x

ij

,s

i

X

i

l
i

kX

j=1

a
j

x
ij

subject to (5.6a)� (5.6d)

x
ij

� 0.

(5.7)

In Equation 5.7, each sum,
P

k

j=1

a
j

x
ij

, can assume values between 0 and max(a
j

, j =

1, . . . , k) := a
max

with non-unique choices of x
ij

. Therefore, we further eliminate x
ij

by introducing a
i

=
P

j=1

a
j

x
ij

and further simplify the problem to the following

continuous linear programming problem:

minimize
a

i

,s

i

|E|X

i=1

l
i

a
i

(5.8)

subject to BT s = �f (5.8a)

a
i

+ s
i

� 0; i = 1, . . . , |E| (5.8b)

a
i

� s
i

� 0; i = 1, . . . , |E| (5.8c)

a
i

 a
max

; i = 1, . . . , |E|. (5.8d)

Sp-2 (fix s
j

): When axial forces are given, we seek the cross-section areas of the

beam types, a
j

, and beam-type assignments, x
ij

. We sort the beams according to the

absolute values of axial forces, |s
i

|, i  |E|, in a nondecreasing order and relabel them

accordingly. Next, we look for optimal cuts at the indices, m
t

2 Z+, t = 1 . . . k � 1,

so that the volume is minimized:

minimize
m

t

2Z+

, t=1...k�1

kX

i=1

0

@
m

iX

j=m

i�1

+1

l
j

|s
m

i

|

1

A . (5.9)

By definition, the boundaries of the cuts are m
0

= 0, and m
k

= |E|. The internal

cuts, m
i

, i = 1 . . . k � 1, are initialized equidistantly between m
0

and m
k

, as shown
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Figure 5.9: Left: In Sp-2, we sort the beams according to the absolute values of axial
forces, |s

i

|, i  |E|, in a nondecreasing order and seek the optimal cuts to determine
the beam types. Right: We start from uniformly sampled cuts and adjust each cut
between its neighbors while fixing the other cuts iteratively.

on the left side of Figure 5.9. Next, each individual cut is adjusted by sweeping in

the range bounded by its two neighboring cuts, while fixing the other cuts, as shown

on the right side of Figure 5.9. This routine of seeking the optimal cuts with given

balanced forces generally converges in fewer than 10 iterations.

Sp-3 (fix x
ij

): Next, we consider the case when the assignment of beams is fixed in

Equation 5.6. For better clarity, we denote �
j

:= {i|x
ij

= 1} as the set of beams that

is assigned with the j-th type:

minimize
s

i

,a

j

kX

j=1

0

@
X

i2�
j

l
i

1

A a
j

subject to BT s = �f

a
1

+ s
i

� 0, a
1

� s
i

� 0; i 2 �
1

. . .

a
k

+ s
i

� 0, a
k

� s
i

� 0; i 2 �
K

(5.10)

As coe�cients of a
j

, the sums,
P

i2�
j

l
i

, are constants. This problem is thus a

standard linear programming problem.
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Overall Algorithm The three subproblems are assembled together for an overall

practical algorithm, constituting three stages. First, as a preprocessing step, we

determine the bounds of a
max

, which could be used as input for Sp-1 (fix a
j

). Next,

as the main procedure, the algorithm alternates between Sp-1 (fix a
j

) and Sp-2 (fix

s
j

) to find the optimal beam type assignment, x
ij

. Finally, as a post-processing step,

we use Sp-3 (fix x
ij

) to further adjust the cross-section areas of each type, a
j

.

Pre-processing: To find the range of feasible inputs for Equation 5.8 of Sp-1,

we look for the lower and upper bounds of the maximal cross-section area, a
max

:

(a
max

)min and (a
max

)max . The lower bound, (a
max

)min, could be found by a linear

programming formulation similar to Equation 5.8:

minimize
s

j

, a

max

a
max

subject to (5.8a)� (5.8d).

(5.11)

To find the upper bound, (a
max

)max, we solve Equation 5.8 without constraint 5.8d,

and we take the maximal value of a
j

, j = 1, . . . , |E|. Any choice of a
max

greater than

(a
max

)max does not activate constraint 5.8d, giving the same solution.

Main procedure: Here, we alternate between Sp-1 and Sp-2. The output of Sp-1

includes axial forces, s
j

, which could be directly used as input for Sp-2. However,

there is no readily available output from Sp-2 that could be used as input for Sp-

1. Therefore, we sample di↵erent values of a
max

for Sp-1, compute corresponding

optimal values, and estimate a gradient to update a
max

.

Our approach is illustrated in Figure 5.10: We start the search by a0,0
max

= (a
max

)min

and a1,4
max

= (a
max

)max. At the m-th iteration, we uniformly sample am,1

max

, am,2

max

, and

am,3

max

to divide the range between am,0

max

and am,4

max

. Among the five samples including the

boundaries, we find the n-th value am,n

max

assuming the smallest optimal volume from

Sp-2, and update the range for the next iteration accordingly: ak+1,0

max

= ak,max(0,n�1)

max

and ak+1,4

max

= ak,min(4,n+1)

max

.
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a1,0
max

a1,4
max

a2,0
max

a2,4
max

a3,0
max

a3,4
max

Figure 5.10: We apply Sp-1 and Sp-2 to narrow the range for the best choice of
a
max

. Starting from a1,0
max

= (a
max

)min and a1,4
max

= (a
max

)max in Iteration-0, we
uniformly sample a1,1

max

, a1,2
max

, and a1,3
max

to compute the total volumes computed based
on both Sp-1 and Sp-2. Then, we update the range according to the minimal value to
continue and repeat the procedure. Here, the red dots indicate the values requiring
new computation.

Post-processing: Finally, we use the computed type assignment from the previous

stage to run Sp-3 to further refine the choice of cross-section areas for the beam types.

5.5 Results and Discussion

We present example designs, discuss quantitative results, and compare our method

with an alternative approach.

Figure 5.11: Our
framework automat-
ically specifies the
strong supporting pil-
lars of a quad-based
double-layer space
structure. The as-
signment coincides
with structural designs
observed in real life like
the stadium shown in
the inset photo.
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Structure Beams
Arbitrary
Beam
Types
Avail-
able

1 Cus-
tomized
Beam
Type

2 Cus-
tomized
Beam
Types

3 Cus-
tomized
Beam
Types

6 Cus-
tomized
Beam
Types

Fig.

Vol T(s) Vol T(s) Vol T(s) Vol T(s) Vol T(s)
Dome 600 42.5 0.06 104.8 0.1 69.6 2.5 59.8 2.6 50.8 2.6 5.7
BM Tri 1200 55.9 0.1 168.7 0.2 104.2 6.3 89.4 7.0 71.2 7.2 5.4
Wave 1680 53.7 0.18 399.0 0.3 141.3 10.0 99.6 10.3 78.3 11.1 5.11
Flat
Roof

2048 30.1 0.2 98.6 0.3 56.9 11.9 45.0 12.7 35.8 12.8 5.17

Blob 2842 78.66 0.5 681.3 0.6 272.1 23.4 186.9 25.3 153.4 25.6 5.15
BM
Quad

4096 50.7 0.5 277.3 0.8 99.9 31.8 86.1 50.5 66.9 110.8 5.4

BM Hex 5184 86.9 0.6 368.3 1.3 149.9 33.6 128.8 44.4 108.3 50.9 5.4
Lilium 7824 102.3 1.6 493.1 2.8 226.7 79.6 178.9 94.7 139.4 92.3 5.16
Tunnel 10828 46.4 2.0 179.7 3.2 92.8 139.2 75.1 164.9 60.8 157.5 5.18
Flower 12240 70.3 3.3 363.5 22.3 147.6 433.8 117.5 481.6 93.0 504.8 5.12

BM 3464 19584 76.8 5.2 411.5 44.4 167.1 272.7 131.1 377.0 100.3 429.4 5.4
Baku 20768 150.2 7.1 747.5 701.1352.8 983.6 269.0 1181.7 209.3 1201.4 ??
Train
Station

23552 119.3 8.2 458.8 935.3242.2 1433.6 194.7 1536.3 157.2 1646.9 5.2

Table 5.1: Quantitative analysis of examples (sorted according to the number of
beams). For each example, we show the number of beams, computational time and
total volume for constructing solutions using 1, 2, 3, 6, and arbitrary types of beams.
Increasing the number of beam types reduces the total volume, at the cost of increased
manufacturing complexity and slightly more computational time.

Example DesignsWe illustrate construction solutions for a double-layer space struc-

ture design motivated by a real project in Figures ?? and 5.14. We present a design

of the train station model in Figure 5.2, and space structures with base meshes of

di↵erent connectivities in Figure 5.4. In addition, we show a result resembling a real

construction in Figure 5.11, a freeform pillar in Figures 5.12 and 5.13, a triangu-

lar single layer space structure in Figure 5.15, a structure approximating the Lilium

Tower model in Figure 5.16, a roof spanning a square domain in Figure 5.17, and a

tunnel based on a semi-regular pattern in Figure 5.18.

Quantitative Evaluation Our framework is implemented in C++ with customized
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Figure 5.12: From left to right: three construction solutions with 2, 3 and 6 types
of customized beams for the flower model featuring an extending freeform roof. The
thicker beams are adaptively assigned to regions with strong bending moments, as
shown in Figure 5.13.

Figure 5.13: Color coding of tension (purple)
and compression (blue) for the construction solu-
tion on the right side of Figure 5.12. The strong
bending moments are transferred to tensile and
compressive axial forces along the beams within
the two layers.

data structures. We use the HLBFGS Library developed in [64] for the multi-objective

nonlinear optimization procedure and Mosek for linear programming. We run our

tests on a workstation with an Intel Xeon X5550 2.67GHz processor. In Table 5.1, we

report the computational time and achieved total volume for each model when the

number of customized beam types is 1, 2, 3, 6, and arbitrary.

Comparisons A straightforward and seemingly standard alternative to our volume

Figure 5.14: From left to right: three construction plans using 2, 3 and 6 types of
customized beams for a statically sound space structure designed and optimized with
our framework, motivated by the real project shown in Figure 5.1. The solution on
the right is illustrated in Figure ??.
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Figure 5.15: Construction solutions with 2, 3, and 6 types of beams for a single
layer triangular space structure approximating the Blob model, following a real ar-
chitectural project in Eindhoven, the Netherlands. Our method automatically adjusts
beam cross-section areas adaptively, and thicker beams are used near the dent where
stresses are concentrated to ensure the structural soundness.

Structure Beams
Beam
Types

Ours MILP
Vol T(s) Vol T(s)

Small 101
2 15.96 0.83 17.44 0.81
6 10.19 0.87 10.96 55.20

Dome
Fig. 5.7

600
2 69.59 2.58 70.26 305
6 50.81 2.64 51.97 620

Lilium
Fig. 5.16

7824
2 226.17 79.57 260.17 610
6 139.71 92.32 190.16 30h

Table 5.2: Comparison to mixed integer programming. We show results for three
models and two configurations of each model with 2 and 6 beam types. We list the
number of beams and compare our volume and running time with the mixed integer
programming solutions.

optimization method described in Subsection 5.4.4 is to alternate solving the non-

relaxed form of Sp-1 with Sp-3. In Table 5.2, we compare our approach to this

alternative with Mosek as the mixed-integer linear programming (MILP) solver for

Sp-1. Our method provides construction solutions with less volume at a much faster

speed and exhibits better scalability. The key problem for mixed integer programming

is the initialization. Without a global search strategy, as present in our method, mixed

integer programming converges to an undesirable local minimum, despite its very high

computation time.

Limitations A major limitation of our framework is the fixed connectivity during

optimization phases discussed in Subsections 5.4.3 and 5.4.4. While we provide a set

of connectivity initialization tools, it would be desirable to suggest automatic connec-
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Figure 5.16: Construction solutions of a double-layer space structure based on a
quadrilateral mesh approximating the Lilium Tower model with 2 (left) and 6 (right)
types of customized beams.

Figure 5.17: Constructing a symmetric and flat roof spanning a square boundary
with 2 (left), 3 (middle) and 6 (types) of beams.

tivity changes during the nonlinear and discrete optimization procedures. Another

major limitation of our work is the lack of control for global buckling. We have not

considered the scenario that the overall structure as whole fails while each beam is still

statically sound. In such a case, the space structure overall, instead of a single beam,

might lack the sti↵ness, due to the existence of small eigenvalues in the load-sti↵ness

matrix. This is also a common limitation for other static-aware computational design

tools for initial stages, e.g., for self-supporting masonry structures.
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Figure 5.18: Construction solutions with 2, 3, and 6 types of beams for a space
structure approximating a freeform tunnel. The base mesh is a semi-regular pattern
consisting of triangles and quadrilaterals.

5.6 Conclusion

We study the design and volume optimization of space structures. Our computa-

tional framework creates space structures in static equilibrium with reduced material

usage. Moreover, we incorporate the practical consideration for construction com-

plexity where the beam types are limited and solve this challenging problem in a

practical and e�cient manner.
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Chapter 6

Conclusion

6.1 Summary

Geometric rationalization as a core research problem of architectural geometry has

been studied in this thesis through four specific example problems inspired by real life

applications. They include (1) shading and lighting systems, (2) freeform honeycomb

structures, (3) polyhedral patterns, and (4) space frame structures.

The principal goal of geometric rationalization is to reduce the di�culty of manu-

facturing and assembling of components of freeform architecture with complex geom-

etry. The four example problems highlight di↵erent construction requirements such

as

flat faces, either beams or panels (e.g., Chapter 2, 3 and 4).

torsion-free nodes (e.g., Chapter 2 and 3).

congruent nodes (e.g., Chapter 3).

repetitive bars (e.g., Chapter 5).

We achieve our results by developing e�cient optimization algorithms with aesthetic

and functional constraints and theoretical studies of the underlying geometry.
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6.2 Future Work

For future work, we would like to explore other types of geometric rationalization

formulations and we also wish to broaden the scope of the applications to other fields

in geometry processing to explore if similar techniques can be applied there. Example

applications are as follows.

Dynamic shading and lighting system. The shading and lighting systems shown

in chapter 2 are all static so that they cannot adaptively change their structures

according to di↵erent sunlight directions. Usually, static shading and lighting systems

are optimized to perform well for a certain sunlight condition. For example, a static

shading system could be optimized to block the sunlight at the hottest time. However,

the actual sunlight direction changes all the time. When the sunlight direction di↵ers

too much from the one being optimized, the performance of static systems will be

suboptimal. Because of this, a dynamic shading or lighting system is desirable to

achieve the functional goal by deforming its structure according to di↵erent sunlight

directions.

Packing problems and geometry optimization. Flat elements, either panels or

beams, are the easiest and cheapest to produce. Usually, they are manufactured by

cutting from large flat sheets of glass or metal. A freeform surface or structure con-

sists of a large number of panels and beams with various sizes and shapes. Packing

these elements e�ciently may be essential for material saving. Meanwhile, the cost

of cutting could also be incorporated in this challenging problem. Geometry opti-

mization of the surfaces or structure potentially provides more degrees of freedom for

packing these elements when their shapes are considered as variables.

Topology optimization of space structures. The geometric rationalization prob-

lem in chapter 5 regarding limited types of cross-section areas for the struts of space

structures is a challenging mix-integer optimization problem. We assume the topol-

ogy of space frames to be fixed in the optimization. If we allow the connectivities
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to change by adding or deleting nodes and struts, we will obtain more degrees of

freedom to compute the space structure with less volume and better stability. The

combination of topology optimization, volume optimization with the constraints of

force equilibrium is interesting and challenging.

Truss-like supporting structures for 3D printing. Due to their flexibility, sta-

bility, and cost-e↵ectiveness, space frame structures are popularly used as the support

structures for industrial workshops, train stations, airports, and stadiums in the field

of architecture and structural engineering. One possible research is to extend the ap-

plication of space frame structures to 3D printing, specifically, as the support struc-

tures for the overhanging areas of printed objects. 3D printing as a general technology

has enormous potential in digital fabrication, for both large-scale constructions like

buildings and small-scale objects such as those created by 3D nanoprinting. Usually

to print a sturdy object, we need supporting structures, especially for overhanging

area. Generating statically-sound and material-e�cient truss-like support structures

to support 3D printed objects is challenging from both sides of geometry process-

ing and digital fabrication. As the materials are added layer by layer, the force at

each supporting point due to the gravity is dynamically changed. We need to com-

bine the geometric analysis of 3D models during manufacturing with the design and

optimization of their underlying support structures.
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