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SUMMARY 
 

The major component of my research program focused on an in depth molecular 

and biochemical analysis of maize plants from different genetic backgrounds containing 

metabolic pathways introgressed from parents engineered with different transgenes 

representing the carotenoid, ketocarotenoid and vitamin E pathways. In the first instance 

I introgressed a carotenogenic mini-pathway into different yellow maize inbred lines 

having diverse carotenoid profiles. These experiments resulted in hybrids with higher 

amounts of carotenoids compared to their corresponding parents. Targeted 

transcriptomic and metabolite analysis revealed bottlenecks in sequential steps in the ε- 

and β-branches of the carotenoid pathway in the newly created hybrids. I discuss my 

results in terms of how plants I have generated might contribute towards a rapid and 

effective production of maize hybrids with high and diverse carotenoid content. I 

generated transgenic maize plants co-expressing Arabidopsis thaliana PDS1, HPT1, 

VTE3 and VTE4 genes in order to recreate the vitamin E biosynthetic pathway in maize. 

I then used a stacking strategy to introgress the vitamin E mini-pathway into a second 

transgenic maize line expressing Zmpsy1 and PacrtI in an attempt to determine the 

specific impact on metabolite accumulation and interaction of the vitamin E and the 

carotenoid biosynthetic pathways. I also generated a novel maize line (ZWB line) co-

expressing two β-carotene ketolases (sBcrtW and sCrbkt) and a β-carotene hydroxylase 

(sBcrtZ). This line accumulated astaxanthin as the only carotenoid, demonstrating total 

conversion of the carotenoid precursor pool in the wild type line used for the 

transformation experiment to this ketocarotenoid. Introgression of the ketocarotenoid 

biosynthetic pathway from ZWB into transgenic maize lines engineered previously with 

different carotenogenic genes and a wild type line accumulating high levels of β-

carotene, resulted in hybrids which not only accumulated astaxanthin, but also other 

intermediate carotenoids and ketocarotenoids. My work demonstrates that choice of an 

appropriate genetic background containing a partial carotenoid pathway influences 

significantly carotenoid conversion to downstream molecules, including astaxanthin, in 

hybrids. I have also recovered and analyzed maize lines accumulating pABA and pterin, 

precursors involved in folate biosynthesis. The levels of these precursors in the 

transgenic lines I generated were not sufficient to enhance folate content in maize. I 

concluded that additional or alternative steps in the pathway and/or metabolism need to 

be engineered to achieve substantial folate accumulation in maize. 
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RESUME� 
 

El componente principal de mi programa de investigación ha sido un análisis 

detallado, a nivel molécular y bioquímico de plantas de maíz provenientes de cruces con 

parentales con fondos genéticos diferentes. Los parentales estaban mejorados 

genéticamente con transgenes que codificaban para las rutas metabólicas de los 

carotenoides, cetocarotenoides y vitamina E. Inicié mi investigación introduciendo una 

mini-ruta metabólica carotenogénica en diferentes líneas puras de maíz amarillo que 

contenían diferentes perfiles de carotenoides. El resultado de este experimento fue la 

obtención de una colección de maíces híbridos con elevadas cantidades de carotenoides, 

al compararlos con sus parentales correspondientes. Los análisis transcriptómicos y 

metabólicos de los nuevos maíces híbridos nos mostraron limitaciones en pasos 

específicos de las ramificaciones ε y β de la ruta de los carotenoides. La conclusión más 

importante fue que las plantas que generadas pueden contribuir hacia una rápida y 

efectiva producción de híbridos con elevado y diverso contenido de carotenoides. Hice 

un segundo experimento de transformación de maíz donde co-introduje los genes PDS1, 

HPT1, VTE3 y VTE4 provenientes de Arabidopsis thaliana con la intención de recrear 

la ruta metabólica de la vitamina E. Para profundizar en el impacto específico de la 

acumulación e interacción de vitamina E con la ruta metabólica de los carotenoides, 

introduje la mini-ruta metabólica de la vitamina E en una línea de maíz transgénica que 

ya expresaba Zmpsy1 y PacrtI. También generé una nueva línea de maíz (línea ZWB) 

co-expresando dos β-caroteno cetolasas (sBcrtW and sCrbkt) y una β-caroteno 

hidroxilasa (sBcrtZ). Esta línea acumuló astaxantina como único carotenoide, 

demostrando una total conversión de los carotenoides de la línea salvaje utilizada para 

la transformación en este experimento a este cetocarotenoide. La introgresión a una 

línea salvaje con alto contenidos de β-caroteno de la ruta metabólica de los 

cetocarotenoides proveniente de ZWB, resultó en híbridos que además de acumular 

astaxantina, también acumulaban otros carotenoides y cetocarotenoides intermediarios. 

Mi trabajo demuestra que la elección de un fondo genético que contenga una ruta 

metabólica parcial influye significativamente en la conversión de los carotenoides a 

moléculas de pasos posteriores en la ruta metabolica, incluyendo astaxantina, en los 

híbridos. Finalmente regenere y analice líneas de maíz que acumulaban pABA y pterina, 

precursores involucrados en la biosíntesis de folato. Los niveles de estos precursores en 

las líneas transgénicas que regeneré no fueron suficientes para el incremento de folato 
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en maíz. Mi conclusión fue que se requiere de un paso adicional o alternativo en la ruta 

metabólica y/o en el metabolismo para alcanzar una acumulación significativa de folato 

en maíz.  
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RESUM 
 

El component principal del meu programa de investigació ha estat un anàlisi 

detallat, a nivell molecular i bioquímic de plantes de blat de moro que provenien de 

creuaments amb parentals de fons genètics diferents. Els parentals van ser millorats 

genèticament amb transgens que codificaven per a las rutes metabòliques dels 

carotenoids, cetocarotenoids i vitamina E. Vaig iniciar la meva recerca introduint una 

mini-ruta metabòlica carotenogènica en línies pures de blat de moro de color groc que 

contenien perfiles variats de carotenoids. El resultat va ser l’obtenció d’una col·lecció 

de blats de moro híbrids amb unes concentracions de carotenoids més elevades que els 

parentals originaris. Les anàlisis transcriptòmiques i metabòliques dels nous híbrids van 

mostrar limitacions en passos específics de les ramificacions ε i β de la ruta dels 

carotenoids. La conclusió més important va esser que aquestes plantes podrien 

contribuir cap una ràpida i efectiva producció d’híbrids amb un contingut divers i elevat 

de carotenoids. En un altre assaig de transformació vaig co-introduir els gens PDS1, 

HPT1, VTE3 i VTE4 d’Arabidopsis thaliana amb la intenció de recrear la ruta 

metabòlica de la vitamina E. Per a aprofundir en l’impacte específic de l’acumulació i 

interacció de la vitamina E amb la ruta metabòlica dels carotenoids, vaig introduir la 

mini-ruta metabòlica de la vitamina E en una línia de blat de moro transgènica que ja 

expressava Zmpsy1 i PacrtI. També vaig generar una nova línia de blat de moro (línia 

ZWB) co-expressant dos β-carotè cetolases (sBcrtW i sCrbkt) i una β-carotè hidroxilasa 

(sBcrtZ). Aquesta línia només va acumular astaxantina, demostrant una conversió total 

dels carotenoids de la línia salvatge (utilitzada per a la transformació en aquest 

experiment) a cetocarotenoids. La introgressió de la ruta metabòlica dels 

cetocarotenoids de ZWB a una línia salvatge amb elevat contingut de β-carotè, va 

produir híbrids que, a més d’acumular astaxantina, també acumulessin altres carotenoids 

i cetocarotenoids intermediaris. Amb aquest treballs he demostrat que l’elecció d’un 

fons genètic que contingui una ruta metabòlica parcial influencia significativament la 

conversió dels carotenoids a molècules de passos posteriors en la ruta metabòlica, 

incloent l’astaxantina. Finalment vaig regenerar i analitzar línies de blat de moro que 

acumulaven pABA i pterina, precursors involucrats en la biosíntesis de folat. Els nivells 

d’aquest precursors en les línies obtingudes no van ser suficients per incrementar el 

contingut de folat en blat de moro. Vaig concloure que calia un pas addicional o 
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I. Vitamins and antioxidants in human health 

 

Vitamins as essential nutrients 

Vitamins are defined as a group of complex organic compounds present in minute 

amounts in natural foodstuff that are essential to normal metabolism and lack of which in the 

diet causes deficiency diseases (McDowell, 2008). Vitamins consist of a mixed group of 

chemical compounds and are not related to each other as are proteins, carbohydrates or fats, 

and cannot be manufactured by the body in sufficient amounts in all circumstances and must 

therefore be obtained from the diet (Bender, 2003). Vitamins are required in trace amounts 

(micrograms or milligrams per day) in the diet for health, growth and reproduction. Omission 

of a single vitamin from the diet will produce deficiency symptoms (Basu & Dickerson 1996; 

Bender, 2003). Most vitamins are required because humans lack the metabolic capability to 

produce them, although vitamin D is an exception because it is produced in the skin during 

the exposure to UVB irradiation albeit not always in sufficient quantities to make dietary 

sources unnecessary (Basu & Dickerson, 1996). Vitamins are classified as either water- or fat-

soluble. In the context of human health, there are four fat-soluble vitamins (A, D, E and K), 

which are transported through the body in fat globules and stored in the liver and other fatty 

tissues, and nine water-soluble vitamins (eight B vitamins and vitamin C) that are not stored 

in the body and must be replaced every day (Moreno & Salvadó, 2000). Vitamins are found 

primarily in plants and are present in animal tissue only as a consequence of consumption of 

plants, or because the animal harbours microorganisms that synthesize them (McDowell, 

2008). Vitamin B12 is unique in that it occurs in plants as a result of microbial synthesis. Two 

of the four fat-soluble vitamins, A and D, differ from water-soluble B vitamins in that they 

occur in plants in a provitamin form (a precursor of the vitamin), which can be converted into 

a vitamin in the animal body. Vitamin and mineral deficiencies have been referred to as 

“hidden hunger”; such deficiencies occur on a population-wide basis when the diet lacks 

diversity or is overly dependent on a single staple crop, but in individual cases may reflect a 

genetic abnormality that prevents nutrient absorption or metabolism (Allen, 2003; 

FAO/WHO, 2002; Yuan et al., 2011). 
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Although all vitamins are equally important in supporting life, vitamin A is considered 

the most important vitamin from a practical standpoint (UNICEF, 2013). The reduced form of 

vitamin A (retinal) is required for the production of rhodopsin, which is essential for vision 

and also helps to maintain epithelial immune cells. The acidic form (retinoid acid) is a 

morphogen in development (Goodman & Huang, 1965). Humans can produce retinal and 

retinoic acid if provided with a source of retinol, one of its esters, or it can also be synthesized 

directly from β-carotene (also known as pro-vitamin A) (Goodman & Huang, 1965).  A 

second fat-soluble vitamin, vitamin E, comprises eight related molecules known as 

tocochromanols (DellaPenna & Pogson, 2006). The tocochromanols are powerful 

antioxidants that protect fatty acids, low density lipoproteins (LDLs) and other components of 

cell membranes from oxidative stress (Ricciarelli et al., 2002). Vitamin B9 (folate) is the 

source of tetrahydrofolate, an essential metabolite in many methylation reactions mediated by 

S-adenosyl methionine. Tetrahydrofolate is also essential for the synthesis of purines and 

thymidine and, therefore, for DNA and RNA synthesis (Reynolds, 2006). Vitamin B9 together 

with vitamin, B12 is involved in the synthesis of methionine from homocysteine (Reynolds, 

2006). 

 

Antioxidants confer health benefits to humans and animals  

Many non-essential molecules consumed in the diet are also antioxidants with health-

promoting effects, and hence there is an overlap between essential nutrients and non-essential 

compounds (sometimes described as nutraceuticals) that act as antioxidants (Zhu et al., 2013). 

Antioxidants inhibit the oxidation of other molecules and thereby prevent them from causing 

oxidative damage, which is a major contributory factor to diseases associated with ageing and 

with ageing itself (Valko et al., 2007). Antioxidant molecules are generally either lipophilic or 

hydrophilic, but both types act through common molecular mechanisms for their antioxidant 

effects. Such mechanisms include hydrogen atom transfer (HAT), single electron transfer 

followed by proton transfer (SET-PT), sequential proton loss electron transfer (SPLET) and 

the formation of radical adducts (Zhu et al., 2013). Some antioxidants have a single active 

mechanism, for example vitamin C uses HAT alone, whereas others employ multiple 

mechanisms (Zhu et al., 2013). 



General Introduction 

5 
 

The three major lipophilic antioxidant classes of molecules in mammals are 

carotenoids, tocochromanols and coenzyme Q10, all of which are derived from terpenoids 

(Grassmann, 2005). Carotenoids and tocochromanols are obtained from the diet whereas 

coenzyme Q10 is synthesized de novo by a multistep pathway starting with acetyl-CoA (Zhu 

et al., 2011). All three classes act primarily by scavenging lipid peroxyl radicals (ROO
.
) and 

by disrupting free radical chain reactions in membranes (Zhu et al., 2013). The best known 

carotenoids are those with pro-vitamin A activity (particularly β-carotene) because these 

represent a major dietary source of vitamin A, but others with important antioxidant effects 

include xantophylls (e.g. zeaxanthin, lutein or lycopene) and ketocarotenoids (e.g. astaxanthin 

or canthaxanthin) (Guerin et al., 2003; Stahl & Sies, 2005). Carotenoids, being exceptionally 

efficient physical and chemical quenchers of 
1
O2 and other ROS, have garnered particular 

attention as potentially protective agents against ROS-mediated disorders (Zhu et al., 2013). 

A large body of data, mostly from experiments with β-carotene, lycopene, lutein and 

zeaxanthin, have been collected in a number of epidemiological, interventional and clinical 

studies, generally supporting the observation that the adequate intake of carotenoid-rich fruits 

and vegetables or carotenoid supplements may significantly reduce the risk of some chronic 

diseases (Böhm et al., 2012; Linnewiel-Hermoni et al., 2015; Stahl & Sies, 2012). Thus, the 

beneficial effects of carotenoid administration have been confirmed in the case of several 

types of cancer and cardiovascular and photosensitive disorders, as well as in eye-related 

diseases (Linnewiel-Hermoni et al., 2015). Clinical trials indicate that lutein and zeaxanthin 

have an important role in maintaining good vision. These two xanthophylls compose the 

macular pigment of the focal centre of the retina, where lutein is accumulated in the 

perifoeveal and zeaxanthin in the foveal region (Beatty et al., 2004; Landrum & Bone, 2001). 

The two molecules protect photoreceptor cells from free radicals and filter the high-energy 

wavelengths of blue light. Evidence suggests that a high intake of lutein and zeaxanthin in the 

diet protects against and prevents age-related macular degeneration (AMD) (Ma et al., 2012; 

Moeller et al., 2006). The prevalence of AMD is 15% among 65–74 year olds, 25% among 

75–84 year olds, and in persons 85 years and older 30% (Klein et al., 2004). Nevertheless, 

due to the fact that some studies gave inconsistent results more data need to be generated 

before the carotenoid-ROS-mediated-disorder relationship is firmly established (Fiedor & 

Burda, 2014). Ketocarotenoids, such as astaxanthin, show a higher antioxidant activity than 

other carotenoids and also vitamin E (Yuan & Chen, 1999). Astaxanthin targets key 



General Introduction 

6 
 

molecules in oncogenic signalling pathways, induces apoptosis and is a promising candidate 

for cancer prevention and therapy (Kavitha et al., 2013; Kowshik et al., 2014).  

The nutritional value of vitamin E, which comprises tocopherols and tocotrienols, was 

first recognized in 1922 (Evans & Bishop, 1922). The most recognized function of 

tocopherols in humans is their ability to scavenge and quench reactive oxygen species
 
and 

lipid-soluble oxidative stress by-products (Bramley et al., 2000; Brigelius-Flohe & Traber, 

1999; Ricciarelli et al., 2002). Tocotrienols are more mobile within the biological membrane 

than tocopherols because of the presence of the unsaturated side-chain and hence penetrate 

tissues with saturated fatty layers, e.g. in brain and liver more efficiently. They have more 

recycling ability and are a better inhibitor of liver oxidation (Schaffer et al., 2005). 

Epidemiological data suggest that high vitamin E intake (100-1000 IU) correlates with a 

decreased risk of certain types of cancer and cardiovascular diseases (Bramley et al., 2000), 

improves the immune system and slows down the progression of human degenerative diseases 

(Traber & Sies, 1996). Due to its role as free radical scavenger, vitamin E is also believed to 

protect against degenerative processes, such as cancer and cardiovascular diseases (Burton & 

Traber, 1990; Kamal-Eldin & Appelqvist, 1996; Shewmaker et al., 1999). Recent data suggest 

the possible benefits of α-tocopherol and β-carotene supplementation on liver cancer and 

chronic liver disease (CLD), but long-term trial data are limited (Lai et al., 2014). 

Folate has been shown to exhibit certain antioxidant properties. It is known to be an 

efficient in vitro scavenger of free radicals (Joshi et al., 2001) and antioxidant effects of folate 

have also been observed in patients with coronary artery disease (Doshi et al., 2001). Recent 

studies indicated that folate administration decreases oxidative status and blood pressure in 

postmenopausal women (Cagnacci et al., 2015); another study reports dietary folate-

supplemented goat milk reduces both plasma transaminases levels, suggesting a 

hepatoprotective effect and has beneficial effects in situations of Fe-overload, improving the 

antioxidant enzymes activities and reducing lipid peroxidation (Alférez et al., 2015). 

However, further investigations are needed to better elucidate the antioxidant properties of 

folate. 
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Food insecurity in the 21
st
 century 

Food security is one of the pillars of health and well-being in society because humans 

rely on food not only to supply energy but also for essential nutrients that maintain the 

immune system and keep the body in a good state of repair. Adequate nutrition therefore 

correlates with lower morbidity and mortality from both infectious and non-infectious 

diseases and is particularly important in children and pregnant women where the lack of 

essential nutrients can lead to irreversible physical and mental damage during development 

(Hoddinott et al., 2008). Malnutrition is more prevalent in the developing world because it 

often reflects the lack of access to nutritious food. This in turn is frequently caused by 

poverty, which often occurs due to ill health and an inability to work, the typical 

consequences of malnutrition. Poverty, malnutrition and poor health therefore form a self-

reinforcing cycle from which many people (and in some cases entire populations) find it 

impossible to escape (Pérez-Massot et al., 2013). Almost 50 % of the world’s population is 

currently affected by malnutrition (Christou & Twyman, 2004). The majority are subsistence 

farmers, and their families, who depend entirely on staple cereal crops such as maize or rice 

for most, if not all their nutritional calories. Such monotonous diets are deficient in several 

essential nutrients (Zhu et al., 2007). Vitamin A deficiency (VAD) is one of the most 

prevalent deficiency diseases in developing countries affecting more than 4 million children 

each year, up to 500,000 of whom become partially or totally blind (Harrison, 2005). Folate 

and vitamin B12 deficiencies are derived from relatively small, local surveys, but these and 

national survey data from a number of countries suggest that deficiencies of both of these 

vitamins may be a public health problem that could affect many millions of people throughout 

the world (FAO/WHO, 2002). 

The poverty-malnutrition-disease cycle needs to be broken by multipoint interventions 

that provide direct, effective and sustainable approaches to increase the economic welfare of 

the world’s poorest people, including the provision of drugs and vaccines that tackle poor 

health, and adequate access to nutritious food (Serageldin et al., 2000) Although there are 

many global initiatives promoting short and mid-term strategies to tackle poverty, food 

insecurity/malnutrition and disease, sustainable solutions that provide the means for the 

world’s poor to build their own healthy societies are needed as envisaged by the Millennium 

Development Goals (Yuan et al., 2011).  
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II. Vitamins and antioxidants as industrial products 

�utraceuticals and nutricosmetics 

For a long time, natural products obtained mainly from plants have been used as a 

major source of compounds for the prevention and treatment of diseases in humans and 

animals (Almada, 2008). At the present time, the relationship between food and drugs is 

converging. Thus, the term nutraceutical was firstly used 20 years ago to describe a union 

between nutrition and pharmaceuticals, both key contributors to human wellness (Haller, 

2010). In the last 20 years, many publications were devoted to so-called “functional foods” 

and “nutraceuticals”. Research into functional ingredients is promising for the use of such 

ingredients in food products, thereby creating added value for manufacturers and benefits for 

consumer health (Coppens et al., 2006). In the last 10 years, pharmacists, chemists, 

nutritionists, and physicians have been working together to develop new nutritional 

applications to satisfy people’s needs and demands. More recently convergence between the 

cosmetics and food industries led to nutricosmetics, a blurry area unfamiliar to many 

consumers and sometimes even to food and cosmetics experts (Anunciato & da Rocha Filho, 

2012). Among the ingredients used in nutricosmetics, antioxidants and vitamins represent 

critical components.  

The best-known antioxidants are carotenoids (beta-carotene, lycopene, lutein, 

zeaxanthin and astaxanthin). While β-carotene accumulates for example in the skin of poultry 

providing a ‘‘golden-yellow’’ colour, lutein and zeaxanthin accumulate preferentially in the 

macula lutea, where they protect the retina against oxidative damage from UV light (Scarmo 

et al., 2010). Consequently, these two carotenoids have been studied extensively in the 

context of age-related macular degeneration (Biesalski & Tinz, 2008). Results from recent 

studies confirmed the role of lycopene against atherosclerosis and its potential in reducing 

LDL cholesterol similarly to statins in patients with slightly elevated cholesterol levels 

(Palozza et al., 2011; Ried & Fakler, 2011). Carotenoids present in the skin have an important 

role in photoprotection against UV radiation. Clinical studies have been conducted to assess 

their photoprotective capacity in the prevention of premature skin aging (Stahl & Sies, 2005, 

2012). Carotenoid economic value in industry and market is reflected in the high number of 

patents register in The United States Patent and Trademark Office (USPTO). More than 50% 
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of these patents relate to human use applications, including nutraceuticals and cosmetics 

(Berman et al., in press).  

Vitamin E has been touted as a panacea for age-related diseases, including 

cardiovascular disease and Alzheimer’s disease. The demand has increased dramatically in 

recent years, in turn driving research to increase vitamin E production from plant sources 

(Ajjawi & Shintani, 2004). Vitamin E is also a useful product in skin treatment against UV 

radiation and other oxidative stresses such as ozone. Moreover, vitamin E plays different roles 

in the maintenance of skin physiological conditions (Nada et al., 2014). Nutraceutical 

formulations including vitamin E and folate have been patented with different applications, 

such as degenerative treatments or cosmetics (Kurfurst et al., 2013; Shea et al., 2012).  

Animal feed  

While metabolism needs are similar, dietary needs for vitamins differ among species. 

Some vitamins are metabolic essentials, but not dietary essentials for certain species, because 

they can be synthesized readily from other food or metabolic constituents (McDowell, 2000). 

Poultry, swine and other monogastric animals are dependent on their diet for vitamins 

to a much greater degree than are ruminants (Aurousseau et al., 2006). Ruminants in which 

the rumen is fully functioning cannot suffer from a deficiency of B vitamins. It is generally 

assumed that ruminants can always satisfy their needs from the B vitamins naturally present 

in their feed, plus that synthesized by symbiotic microorganisms (Hill, 1997). However, under 

specific conditions relating to stress and high productivity, ruminants have more recently been 

shown to have requirements, particularly for the B vitamins, such as B12 (Spears & Weiss, 

2014). 

The rumen does not become functional with respect to vitamin synthesis for some 

time after birth. For the first few days of life, the young ruminant resembles a non-ruminant as 

it requires dietary sources of B vitamins (McDowell, 2000; Spears & Weiss, 2014). In 

monogastric animals, including humans, intestinal synthesis of many B vitamins is 

considerable, though not as extensive or as efficiently utilized as ruminants (McDowell, 

2000). 
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Vitamin A is essential for animals as it is for humans, for normal vision, maintenance of 

healthy epithelial or surface tissues, and normal bone development (McDowell, 2012). 

Ruminants lacking vitamin A may be more susceptible to pink eye or other diseases related to 

the mucous membranes. In feed manufacturing, vitamin A is supplemented in different ways, 

such as part of a concentrate or liquid supplement, included with a free-choice mineral 

mixture, injectable product or in drinking water preparations (McDowell, 2012). Because of 

the lack of stability of vitamin A the feed industry has accepted the dry stabilized forms of the 

vitamin (Rodríduez-Huezo et al., 2006). In poultry feed, carotenoids such as xanthophylls 

gained economic interest in pigmenting broiler skin and the egg yolk. The intensity as well as 

the color can be controlled by the concentration and type of dietary xanthophylls (Breithaupt, 

2008). In poultry ffeed, yellow xanthophylls (e.g. lutein) are the most important carotenoid 

additives. However, orange xanthophylls (e.g. zeaxanthin) are added in order to compensate 

for a specific final product color (Breithaupt, 2007). Vitamin E displays the greatest 

versatility of all vitamins in the range of deficiency signs which differ among species and 

even within the same species. Muscular dystrophy is the most common vitamin E deficiency 

in all species, while in poultry vitamin E deficiency has been related with subcutaneous 

edema, sterility and embryonic mortality (Julian, 2005; Xu, Wang & Wang, 2007).  The 

amount of vitamin E required in diets can vary depending on such factors as levels of PUFAs, 

Se, antioxidants and sulphur amino acids in feed (McDowell, 2012).  

 

III. Crop biofortification 

Fortification strategies  

Fortification is the addition of essential micronutrients and other health-promoting 

compounds to food. It aims to reduce the number of people suffering from malnutrition 

(approximately 50% of the global population) and to increase general health and wellbeing 

(Zhu et al., 2011). In developing countries fortification programs are often unsustainable due 

to poor governance, inefficient food-distribution networks and the prevalence of subsistence 

agriculture in rural populations (Yuan et al., 2011; Zhu et al., 2011). The major deficiency 

diseases in developing countries that result from or that are exacerbated by the accumulation 

of oxidative damage to cells (including cancer, cardiovascular diseases and neurodegenerative 
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disorders) correspond to the low levels of essential nutrients (such as vitamins or minerals) 

present in milled cereal grains which act as antioxidants or promote the activity or availability 

of antioxidants (Zhu et al., 2013). The limited impact of conventional interventions in 

developing country settings has promoted the use of biofortification as a sustainable approach 

that is equally beneficial to subsistence farmers and consumers of processed foods (Pérez-

Massot et al., 2013; Yuan et al., 2011). 

Biofortification utilizes nutrients and other health-promoting compounds which are 

incorporated while the plant is still growing, and are therefore present in the harvested 

material and at all subsequent stages en route to the consumer (Saltzman et al., 2013). There 

are two general strategies for biofortification with any organic or inorganic nutrient, 

conventional breeding and genetic engineering. Both attempt to create plant lines carrying 

genes that favour the most efficient biosynthesis and/or accumulation of essential 

micronutrients and other health-promoting compounds (Zhu et al., 2011). Conventional 

breeding achieves this by crossing the best performing plants and selecting those with 

favourable traits over many generations, sometimes in combination with mutagenesis or 

marker assisted selection, whereas genetic engineering introduces the traits as recombinant 

DNA and allows the best-performing plants to be selected in a single generation (Cubero, 

2003; Pérez-Massot et al., 2013) . Genetic engineering also permits nutritional traits to be 

targeted to specific organs (e.g. edible seeds) and multiple traits can be combined in the same 

plant without complex breeding programs (Naqvi et al., 2010; Pérez-Massot et al., 2013). 

 

Molecular breeding and biotechnological strategies  

The first step in the domestication of crop plants was a process that started 11,000 to 

13,000 years ago with the cultivation and ultimate domestication of many wild plant species 

in various parts of the world (Allard, 1999). The second phase which established the 

foundations of contemporary plant breeding started early in the twentieth century as 

Darwinian and Mendelian principles became firmly established (Allard, 1999). Plant breeding 

develops new plant varieties by selection over multiple plant species and uses genetic material 

that is already present within the genetic pool of a species or a sexually compatible species 

(Cubero, 2003). In the late 20th and early 21st centuries, new and diverse techniques in plant 



General Introduction 

12 
 

breeding were introduced. These dissociate and manipulate the components of the individual 

plant (explants, cells, molecular structures), thus paving the way to new possibilities in terms 

of sanitation, rapid propagation, cloning, mutagenesis, gene mapping, somatic hybridization 

and genetic transformation (Cubero, 2003).  

Molecular markers linked to vitamin biosynthesis can be used to select for more 

nutritious crops in breeding programs. Biotechnology has developed tools in order to 

accelerate breeding programs such as marker assistant selection (MAS) (Dwivedi et al., 

2007). Breeding without markers can only identify the most productive combinations of 

alleles by chance, whereas MAS allows particular alleles, identified by the linked markers, to 

be stacked in the same line without any need for phenotypic analysis (Dwivedi et al., 2007; 

Harjes et al., 2008). MAS has allowed the construction of saturated linkage maps for many 

crops and has made it possible to map the quantitative trait loci (QTLs) that control them. 

Understanding how QTLs affect crop performance under different environmental conditions 

and in different genetic backgrounds can facilitate the development of enhanced crop varieties 

(Collard et al., 2005). Consequently, the mapping of QTLs for agronomic traits is an 

important component of conventional nutritional improvement programs (Collard et al., 2005; 

Dwivedi et al., 2007). Breeding programs can also be accelerated by mutagenesis, which 

generates new alleles more rapidly than would occur in nature (Cubero, 2003). This can be 

achieved by irradiating seeds with X-rays or exposing them to chemical mutagens such as 

ethyl methanesulfonate (EMS), each of which causes random damage to DNA and usually 

generates point mutations (Chen et al., 2014). Any phenotypic effects of such mutations are 

observed in subsequent generations, depending on whether the effect is dominant or recessive, 

and must be mapped to identify the affected gene. An advanced method for identifying such 

point mutations is TILLING (Targeting Induced Local Lesions In Genomes), a high-

throughput method based on conformational electrophoresis for the detection of point 

mutations in large populations of plants (Comai & Henikoff, 2006; Chen et al., 2014). 

TILLING can identify genetic variation in elite germplasm without the need to acquire 

variation from exotic cultivars, thus avoiding the introduction of agriculturally undesirable 

traits. Once a TILLING library is set up, it can be used for the analysis of many different gene 

targets. TILLING is a powerful reverse genetics approach that has the unique advantage of 

allowing the generation of an allelic series for any target gene, including essential genes 

(Slade et al., 2005). If a variety developed by TILLING has commercial potential, it is not 
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subject to the same regulatory approval requirements as transgenic crops. Even with methods 

such as TILLING making the process of mapping novel mutations easier, it is still preferable 

to be able to identify mutated genes with a unique DNA signature (Slade et al., 2005). This is 

the benefit of insertional mutagenesis using unique DNA tags such as transposons or T-DNA, 

the former endogenous to plants, the latter introduced artificially. In this approach, randomly 

integrating DNA sequences disrupt genes and cause loss of function. The identification of 

desirable mutant phenotypes is followed by DNA analysis using the insertional mutagen 

sequence as a probe, or as the basis for PCR primer design, allowing flanking gene sequences 

to be identified (Maes et al., 1999). 

QTLs or mutants have been utilized in crop biofortification programs to increase 

vitamin A, folate, vitamin E and vitamin C content in edible organs or tissues. However, 

numerous studies have shown that so far only genetic engineering has provided the means to 

produce nutritionally enhanced crops that can meet RDI values (Sanahuja et al., 2013). 

Organic molecules such as amino acids, fatty acids, and vitamins are synthesized by the plant, 

and increasing the nutritional content therefore requires some form of metabolic engineering 

with the aim of increasing the amount of the desirable compound. To this end, methods had to 

be developed for the coordinated expression of one or more genes (Capell & Christou, 2004) 

to attain objectives, such as: (a) enhance the activity of enzymes at multiple rate-limiting steps 

in target pathways, e.g. by overexpression or expression of enzymes that are released from 

feedback inhibition; (b) increase the availability of upstream precursors to amplify the flux 

through the target pathway; (c) modulate pathway branch points to prevent the loss of flux; 

and (d) promote the development of sink compartments to store target compounds (Figure 1) 

(Zhu et al., 2013; Zorrilla-López et al., 2013). 
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Figure 1: Strategies to modulate organic compound levels in plants. A and B are the 

precursors of C; C is the target product; D is the result of the target product conversion. (A) 

Modification of the activity of enzymes implicated in rate-limiting steps in the target pathway 

by modulation of one or two key enzymes, or multiple enzymes. (B) Upstream precursors 

enhancement by increasing flux through the pathway by overexpressing the enzyme(s) that 

catalyze(s) the first committed step of the pathway. (C) Blocked pathway branch points by 

RNA interference or antisense. (D) Enhanced accumulation of target metabolite by increasing 

sink compartments (Zorrilla-López et al., 2013). 

 

Multigene Engineering strategies  

Most agronomic traits in plants are controlled by multiple genes, as is also the case for 

the synthesis of complex organic compounds from primary and secondary metabolism, which 

often represent the outputs of long and convoluted metabolic pathways. Therefore, genetic 

engineering has seen a progressive change from single-gene intervention to multigene 

transformation to tackle increasingly ambitious objectives (Halpin, 2005). Examples of 

metabolic engineering in plants include primary metabolic pathways (carbohydrates, amino 

acids, and lipids) and secondary metabolic pathways (e.g. alkaloids, terpenoids, flavonoids, 

 

Figure 1: Strategies to modulate organic compound levels in plants 
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lignins, quinones, and other benzoic acid derivatives) (Zhu et al., 2011). These pathways 

generate a large number of compounds that are useful to humans, including energy-rich foods, 

vitamins and many different pharmaceuticals. The introduction of multiple genes into plants 

was initially achieved using iterative processes, such as successive rounds of crosses between 

transgenic lines (Halpin, 2005) or sequential retransformation (Blancquaert et al., 2013). Both 

methods are labour intensive in terms of breeding, as the transgenes are unlinked and 

segregate independently in later generations (Zorrilla-López et al., 2013). The simultaneous 

introduction of two or more transgenes (cotransformation) via direct DNA transfer allows 

transgenic plants carrying multiple genes at one locus to be produced in a single generation, 

which can be achieved using genes in tandem on the same transformation plasmid or unlinked 

genes on different transformation plasmids. Each of these approaches is compatible with 

Agrobacterium -mediated and also direct DNA transfer (Naqvi et al., 2010). However, the 

linked-gene strategy becomes less efficient as more transgenes are added because of cloning 

difficulties, stability issues, and the declining efficiency of transformation of ever-larger DNA 

fragments. Occasional success has been achieved with the direct transfer of DNA fragments 

>100 kb in length (reviewed in Zorrilla-López et al., 2013) but the greatest success has 

resulted from modified high-capacity binary vectors based on bacterial artificial chromosomes 

(BIBACs) and bacteriophage P1-derived transformation-competent artificial chromosomes 

(TACs) (for reviews see Farré et al., 2014; Naqvi et al., 2010; Zorrilla-López et al., 2013). 

Cloning in high-capacity vectors has been simplified by the addition of Cre-lox P and 

Gateway site-specific recombination technology (Hubbard, 2014). A more recent approach is 

the plant minichromosome using either linear DNA or more stable circular maize 

minichromosomes (Birchler, 2015).  

The next step for multigene metabolic engineering is synthetic biology. Synthetic 

biology involves the de novo assembly of genetic systems using pre-validated components 

(Haseloff & Ajioka, 2009). In the context of metabolic engineering in plants, a synthetic 

biology approach might utilize specific promoters, genes, and other regulatory elements to 

create ideal genetic circuits that will facilitate the accumulation of particular metabolites. 

Synthetic biology combines engineering principles and mathematical models to predict and 

validate the behavior of the resulting system, which can be considered as the next step in 

multigene metabolic engineering because it removes any dependence on naturally occurring 

sequences and allows the design of ideal functional genetic circuits from first principles 
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(Haseloff & Ajioka, 2009). Thus far, most work on synthetic biology has been carried out in 

microorganisms (Nikel et al., 2014; Cameron et al., 2014). Simple synthetic biology 

approaches have been described in plants, mostly in the context of signalling pathways and 

development, but also in the development of phytodetectors (Zurbriggen et al., 2012) and bio-

fortified crops (Naqvi et al., 2009). The use of synthetic biology in development as well as 

metabolism is important because it not only controls the metabolic capacity of a cell, but also 

steps one level up in terms of organization and use of particular promoters and genes that 

control developmental processes to generate novel tissues, in which the cells have specialized 

biosynthetic or storage functions to accumulate target products in particular organs. This 

approach will facilitate the achievement of goals that are unattainable by conventional genetic 

engineering, such as the development of novel organisms with medical functions, the 

production of biofuels, and the removal of hazardous waste (Purnick & Weiss, 2009). 
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The overarching aim of my dissertation has been to modulate three complex metabolic 

pathways in maize seeds. A further aim was to develop a mechanistic understanding of 

molecular factors influencing the qualitative and quantitative profiles of metabolites in the 

transgenic seeds, and ascertain the influence of genetic background on ketocarotenoid 

biosynthesis in maize endosperm. 

 

 My specific objectives were to: 

1. use a multigene engineering strategy to generate different transgenic maize lines with 

altered carotenoid, folate and vitamin E metabolism 

2. investigate the interaction between the carotenoid and vitamin E biosynthetic 

pathways as they share common precursors  

3. introgress a carotenogenic mini-pathway into a range of maize germplasm with 

different carotenoid profiles in order to understand molecular factors influencing flow 

of precursors into the two different branches of the pathway  

4. ascertain the consequences of a one versus two gene strategy to modulate folate 

biosynthesis in maize seeds 

5. determine the influence of genetic background on ketocarotenoid biosynthesis in 

maize endosperm. 
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1.1 Abstract 

The two xanthophylls, lutein and zeaxanthin are important carotenoids for human 

health as they are implicated in the prevention of macular degeneration. While lutein is 

abundant in fruits and vegetables, zeaxanthin is only found in a few plants, e.g. in a number of 

yellow maize genotypes. Differences in the accumulation ratio of lutein and zeaxanthin are 

due to β:ε lycopene cyclase activity, which direct the carotenoid pathway to the β- and ε-

branch, respectively. Hydroxylation of α- and β-carotene also plays a role in the formation of 

the two molecules. A transgenic maize line expressing Zmpsy1 and PacrtI  which 

accumulated high levels of carotenoids, including β-carotene had been generated previously 

in the laboratory. I report results from experiment in which I introgressed this transgenic 

mini-pathway into five different yellow maize inbred lines with different carotenoid profiles. 

Hybrids obtained in field experiments demonstrated that the yellow endosperm background 

can compensate in a number of cases limiting steps in the carotenoid pathway towards lutein 

and zeaxanthin. Other bottlenecks limiting lutein and/or zeaxanthin levels  remained in the 

hybrids. Through combination of genetic engineering and conventional breeding we have 

been able to generate a novel hybrid with high amounts of lutein and zeaxanthin, up to ca: 27 

and ca: 32 µg ⁄ g DW respectively, in the field. 

 

1.2 Introduction 

1.2.1 Carotenoids 

Carotenoids comprise a large isoprenoid family of mostly C40 tetraterpenoids derived 

from phytoene. They include well over 800 structures that provide fruits and flowers with 

distinctive red, orange and yellow colors (Britton et al., 2004). Carotenoids are divided into 

two groups: hydrocarbon carotenes such as β-carotene, α-carotene and lycopene and 

oxygenated xanthophylls such as lutein, zeaxanthin and violaxanthin (Zaripheh & Erdman, 

2002). They are the only natural tetraterpenes, synthesised de novo by photosynthetic 

organisms (including plants, algae, and cyanobacteria) and some non-photosynthetic bacteria 

and fungi (Botella-Pavía & Rodríguez-Concepción, 2006). More recently aphids were shown 

to synthesize carotenoids, mostly γ-carotene, β-carotene, α-carotene, torulene and dehydro-

γ,ψ-carotene (a carotenoid similar to torulene)  (Moran & Jarvik, 2010). Lutein and 
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zeaxanthin belong to the subclass of non-provitamin A carotenoids known as xanthophylls, 

which are different from other carotenoids because they contain oxygenated substituents 

(Sander et al., 1994; Stahl & Sies, 2005). 2008). 

Lutein and zeaxanthin accumulate in different amounts in food; lutein is most 

common in green leafy vegetables, while zeaxanthin is present in lower amounts in general 

and accumulates only in some yellow maize varieties (Perry et al., 2009).  Although sweet-

corn is a good source of zeaxanthin relative to other foods (Holden et al., 1999; Perry et al., 

2009), the amount of zeaxanthin used in human supplements is substantially higher (2 

mg/person/day) (Chew et al., 2013) and would require a daily consumption of 4–11 cobs of 

corn, 1.2 kg of kale, or 1–9 kg of eggs to achieve an equivalent concentration (O’Hare et al, 

2015). 

Animal farming practitioners are increasingly interested in enriching feed by adding 

xanthophylls, such as lutein and zeaxanthin, in order to pigment the skin of poultry and confer 

a commercially desirable color to egg yolks (Breithaupt 2007). In animals, xanthophylls are 

mainly found in meat, eggs, and in the skin of fish. Astaxanthin, canthaxanthin and lutein are 

the most important carotenoids in the feed industry (Alcaino et al., 2014; Breithaupt, 2007). 

Pigments, whether natural or synthetic, increase the production costs (Castaneda et al., 2005). 

In a recent study, feed rich in carotenoids was tested for its ability to prevent coccidiosis in 

poultry, a disease caused by protozoan parasites.  Chickens were raised on a diet enriched 

with an engineered corn variety containing very high levels of four key carotenoids (β-

carotene, lycopene, zeaxanthin and lutein) resulting in carotenoid accumulation in different 

body tissues and exhibiting normal growth after inoculation with Eimeria tenella, the causal 

agent of coccidiocis (Nogareda et al., 2015).  

Maize is one of the most widely cultivated crops throughout the world in terms of 

harvested weight per year compared to other grains (IGC, 2012). Maize exhibits considerable 

natural variation for grain carotenoids because of variations in carotenogenic gene 

polymorphisms, and this is reflected as distinct color phenotypes, with some lines 

accumulating as much as 66 µg/g total carotenoids (Harjes et al., 2008). This natural variation 

can be exploited to increase β-carotene level by conventional breeding combining association 

analysis, linkage mapping, expression analysis or mutagenesis (Harjes et al., 2008; O’Hare et 

al., 2015). HarvestPlus, a consortium of international research institutions works to address 
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the challenge of micronutrient malnutrition, including enhancement of vitamin A in maize. 

Within the HarvestPlus program, the breeding target level of 18 µg of provitamin A per gram 

DW was established for maize to provide a 50% of the estimated average requirement (EAR) 

of vitamin A for non-pregnant, non-lactating women of reproductive age and for preschool 

children 4−6 years old (Saltzman et al., 2013; Gannon et al., 2014). The most recently 

developed lines have increased provitamin A through biofortified maize hybrids up to 7.5 to 

10.3 µg/g DW (Mugode et al., 2014). In a recent breeding program in sweet corn, zeaxanthin 

and β-carotene concentrations were increased up to 87.1µg/g and 25.8µg/g FW at 60 days 

after pollination (DAP), respectively (O’Hare et al., 2015). The zeaxanthin concentration 

achieved at eating stage was 25µg/g FW, which appears to be significantly greater than that 

reported for sweet corn in the scientific literature, ranging from 0.02 to 6.8 µg/g FW (O’Hare 

et al., 2015).  

Five carotenogenic genes (Zmpsy1, PacrtI, Glbch, Gllycb, and ParacrtW) under the 

control of endosperm-specific promoters were introduced into an elite white maize variety 

(M37W) deficient for endosperm carotenoid synthesis (Zhu et al., 2008). This resulted in a 

population of transgenic plants containing different combinations of transgenes and producing 

high levels of various carotenoids, including β-carotene, lutein, zeaxanthin, lycopene, and 

astaxanthin. One phenotype exhibited a substantial increase of ca: 57 µg/g DW of β-carotene, 

169-fold the normal amount in comparison with wild type (Zhu et al., 2008). A transgenic 

mini-pathway comprising Zmpsy1 and PacrtI was introgressed into two inbred lines, EP42 

and A632. These lines were selected because they exhibit contrasting β:ε ratios of 0.61 and 

1.90. These ratios reflect carbon flow favouring the ε or the β branch. Thus, metabolic 

synergy between the partial endogenous and induced heterologous pathways was used to 

enhance the levels of nutritionally important metabolites, compensating for the limiting steps 

of the native pathway in the two inbreds by the heterologous expression of Zmpsy1 and PacrtI 

in the transgenic parent. Introgression of the mini-pathway from the transgenic line into A632 

resulted in a hybrid in which zeaxanthin production was elevated to 56 µg/g DW and lutein to 

9.7 µg/g DW. In hybrids between the transgenic line and EP42, zeaxanthin levels were ca: 

23µg/g DW and lutein levels ca: 38 µg/g DW (Naqvi et al., 2011). The difference in β/ε ratios 

between the hybrids correlates with the levels of the endogenous lycE gene, the higher level in 

EP42 favouring higher lutein accumulation and the lower level in A632 favouring higher 

zeaxanthin accumulation (Naqvi et al., 2011).  
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Standard feed industry practices include vitamin A and other carotenoids as micronutrients 

not only in poultry but also in bovine and porcine production (McDowell, 2000). Thus, maize 

hybrids engineered with targeted carotenogenic mini-pathways may offer to the feed industry 

a valuable product where key carotenoids such as β-carotene, lutein and zeaxanthin are 

accumulated in higher amounts. Potential commercial value of these hybrids is enhanced as a 

result of cost savings and easier feed production because addition of colorants in the feed 

becomes unnecessary.  

1.2.2 Carotenoid biosynthesis pathway 

In plants, the biosynthesis of carotenoids occurs on chloroplast membranes, 

chromoplasts and amyloplasts, genetically identical plastids of very different internal 

membrane architecture. The plant enzymes, whose function is for the most part well 

understood, are encoded in the nucleus and targeted to the plastids (Gallagher et al., 2004). 

The tetraterpenoids are formed by eight condensed C5 isoprenoids precursors forming a C40 

linear backbone (Fraser & Bramley, 2004). These reactions involve condensation of 

isopentenyl diphosphate (IPP) and dimethyllallyl diphosphate (DMAPP) (Figure 1.1). Plants 

synthesize IPP and DMAPP by two independent pathways: the mevalonic acid (MVA) 

pathway, which produces cytosolic IPP, and the plastidial methylerythritol phosphate (MEP) 

pathway (DMAPP). The addition of three molecules of IPP to one DMAPP unit catalyzed by 

the enzyme geranylgeranyl diphosphate synthase (GGDS), encoded by the crtE gene in 

bacteria, results in the formation of geranylgeranyl pyrophosphate (GGPP) (Botella-Pavía et 

al., 2004; Nishida et al., 2005). The condensation of two molecules of GGPP by phytoene 

synthase (CrtB in bacteria, PSY in plants) gives rise to 15-cis-phytoene, the first C40 

hydrocarbon in the biosynthetic sequence in the carotenoid pathway (Giuliano et al., 2008). 

Phytoene undergoes a series of four desaturation reactions that result in the formation 

of phytofluene and subsequently, zeta-carotene (ζ-carotene), neurosporene and lycopene 

(Figure 1.1). These desaturation reactions introduce a series of carbon–carbon double bonds 

that constitute the chromophore of carotenoid pigments, and they transform the colorless 

phytoene into pink-colored lycopene (Naik et al., 2003). The linear, symmetrical lycopene 

then undergoes cyclization to yield carotenes with two types of rings, β and ε, where the only 

difference between these two rings is the position of the double bond in one of the ionone 

moieties (Rivera & Canela-Garayoa, 2012). Then, two cyclases, lycopene β-cyclase (LYCB) 
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and lycopene ε-cyclase (LYCE) transform lycopene. LYCB can introduce two β-rings, one at 

each end of lycopene to obtain γ-carotene (monocyclic molecule) or β-carotene (β, β-

carotene; dicyclic molecule). LYCE can only introduce one ε-ring at the end of lycopene to 

obtain σ-carotene (monocyclic compound) (Zhu et al., 2009).  β-Carotene, with two β rings 

serves as a precursor of several other carotenoids in plants including the oxygenated 

xanthophylls. This occurs via hydroxylation and ketolation reactions.  The introduction of 

hydroxyl moieties into β–ring carotenes is catalyzed by β-carotene hydroxylases (BCH) to 

generate zeaxanthin (Naik et al., 2003) (Figure 1.1). α-Carotene (also known as β, ε-carotene) 

is produced from lycopene by the addition of an ε-ring at one end and a β-ring at the other, 

reactions catalyzed by LYCE and LYCB, respectively (Zhu et al., 2009). Hydroxylation of α-

carotene by ε-hydroxylase results in the formation of lutein (Pogson et al., 1996). 
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Figure 1. 1: Carotenoid biosynthetic pathway in plants and equivalent steps in bacteria.  

Enzymes in the red ovals are from bacteria. Abbreviations: CRTB, bacterial phytoene 

synthase; CRTI, bacterial phytoene desaturase, which catalyze all desaturation and 

isomerization reaction from phytoene to lycopene; CRTISO, carotenoid isomerase; CRTY, 

bacterial lycopene β-cyclase; CRTZ, bacterial β-carotene hydroxylase; CYP97C, heme-

containing cytochrome P450 carotene e-ring hydroxylase; DMAPP, dimethylallyl 

diphosphate; DXP, 1-deoxy-D-xylulose 5-phosphate; DXR, DXP reductoisomerase; DXS, 

DXP synthase; GA3P, glyceraldehyde 3-phosphate; GGPP, geranylgeranyl diphosphate; 

GGPPS, GGPP synthase; HDR, HMBPP reductase; HMBPP, hydroxymethylbutenyl 4-

diphosphate; HYDB, β-carotene hydroxylase [non-heme di-iron β-carotene hydroxylase 

(BCH) and heme-containing cytochrome P450 β-ring hydroxyalses (CYP97A and CYP97B)]; 

IPP, isopentenyl diphosphate; IPPI, isopentenyl diphosphate isomerase; LYCB, lycopene β-

cyclase; LYCE, lycopene ε-cyclase; MEP, methylerythritol 4-phosphate; PDS, phytoene 

desaturase; PSY, phytoene synthase; VDE, violaxanthin deepoxidase; ZDS, ζ-carotene 

desaturase; ZEP, zeaxanthin epoxidase; Z-ISO, ζ-carotene isomerase (Farré et al., 2010; Farré 

et al., 2011). 

  

1.2.2 Genetic engineering strategies for enhancing carotenoid content in plants 

Several strategies have been used to increase the levels of carotenoids in plants. These 

include increasing flux through the carotenoid pathway by making more precursors available, 

modifying the activity of carotenogenic enzymes, blocking pathway branch points and 

creating sinks to store β-carotene and relieve feedback inhibition (Table 1.1). 

The first committed step in carotenoid biosynthesis is the conversion of GGPP into 

phytoene by phytoene synthase (PSY) and this is recognized as a major pathway bottleneck. 

Therefore, increasing the activity of this enzyme by expressing a plant psy transgene or the 

bacterial equivalent crtB has increased total carotenoid levels in tomato, canola and maize by 

up to 50-fold, predominantly in the form of α- and β-carotene (Fraser et al., 2007; Shewmaker 

et al., 1999; Zhu et al., 2008). Phytoene is desaturated and isomerized in several steps to form 

lycopene, but one bacterial enzyme (CRTI) can accomplish all these reactions (Cong et al., 

2009). Lycopene is then cyclized at each end by lycopene β-cyclase (LYCB, bacterial 

equivalent CRTY) to form β-carotene, or at one end by lycopene ε-cyclase (LYCE) and at the 
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other by LYCB to form α-carotene (Rosati et al., 2000). Several attempts have been made to 

increase the β-carotene content of plants by overexpressing LYCB or suppressing the activity 

of LYCE, thus shifting flux into the β-branch (for review see Farré et al., 2011). For example, 

in canola lines expressing crtB, crtI and crtY, there was not only a higher total carotenoid 

content than wild type seeds (1229 µg/g fresh weight), but the β- to α-carotene ratio increased 

from 2:1 to 3:1 demonstrating that the additional LYCB activity skewed the competition for 

the common precursor lycopene and increased flux specifically towards β-carotene 

(Ravanello et al., 2003).  

Cereal grains do not produce carotenoids or accumulate them at very small levels, and 

it is therefore necessary to devise strategies to remedy this deficiency. One of the most 

important examples is rice endosperm, where the expression of PSY leads to the accumulation 

of phytoene but no other carotenoids, thus the entire carotenoid pathway had to be imported to 

produce “Golden Rice” containing β-carotene (Burkhard et al., 1997). Similar methodology 

can be used to extent partial pathways and generate additional carotenoid products in plants, 

e.g. ketocarotenoids such as adonixanthin, echinenone and astaxanthin were obtained in 

transgenic maize by expressing maize psy1, Paracoccus crtW and crtI, and Gentiana lutea 

lycb and bch (Zhu et al., 2008). 

Blocking the α-carotene branch to prevent competition for the common precursor 

lycopene can also direct flux towards β-carotene synthesis. This was achieved by using RNA 

interference (RNAi) to block LYCE expression in canola, increasing total carotenoids where 

ca: 42-fold to 227 µg/g fresh weight and increasing β-carotene levels ca: 185-fold to 90 µg/g 

fresh weight (Yu et al., 2008). 

Carotenoids such as β-carotene accumulate in specialized lipoprotein-sequestering 

structures within chromoplasts, so a final strategy to enhance carotenoid accumulation in 

plants is to modify the storage capacity by increasing the number of storage compartments or 

encouraging chromoplast differentiation. The most notable example is the cauliflower 

(Brassica oleracea var. botrytis) Orange (Or) gene that represents a rare dominant gene 

mutation. It encodes a DnaJ cysteine-rich domain-containing protein, which confers a high 

level of β-carotene accumulation in normally white tissues of the plant, turning them orange 

(Giuliano & Diretto, 2007; Lu et al., 2006). Rather than directly regulating carotenoid 

biosynthesis, the Or gene appears to mediate the differentiation of proplastids and/or non-
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color plastids in apical shoot and inflorescence meristematic tissues of curd into chromoplasts 

(one or two per cell) for the associated carotenoid accumulation (Li et al., 2001; Li & Eck, 

2007). This gene was expressed in potato tubers, resulting in an increase of 6-fold of total 

carotenoids (24 µg/g DW) (Lu et al., 2006). In another study, also in potato, an increase of 

5.7-fold of total carotenoids (31µg/g DW) was reported but after storage for 6 month at 5ºC 

the total carotenoids in the transgenic tubers were increased 10-fold (López et al., 2008). 

More recently, AtOR has been expressed in rice endosperm together with Zmpsy1 and PacrtI. 

Resulting grains accumulated ca: 25 µg/g DW total carotenoids and 10 µg/g DW β-carotene 

(no carotenoids could be measured in the wild type rice endosperm) (Bai et al., 2015). 

 

Species Genes (origin) Promoters Carotenoid  levels in transgenic plants Reference 

Rice 

(Oryza 

sativa) 

psy1 and lycb 
(daffodil)  
crtI (Pantoea 

ananatis) 

Rice Gt1 (seed specific; 

psy1 and lycb) and 

CaMV35S (constitutive; 

crtI) 

1.6 µg/g dry weight (DW) total 

carotenoids  
Ye et al., 2000 

psy1 (Zea mays)  
crtI (Pantoea 

ananatis) 

Rice Gt1 
37 µg/g (DW) total carotenoids (23-

fold) 
Paine et al., 2005 

psy1 (Zea mays)  
crtI (Pantoea 

ananatis) 

Endosperm-specific rice 

prolamin promoter 

5.5 µg/g (DW) total carotenoids 

2.15 µg/g (DW) β-carotene 

Bai et al. 2015 
psy1 (Zea mays)  
crtI (Pantoea 

ananatis) 
OR (A. thaliana) 

25.83 µg/g (DW) total carotenoids 

10.52 µg/g (DW) β-carotene 

psy1 (Zea mays)  
crtI (Pantoea 

ananatis) 
DXS (A. thaliana) 

31.78 µg/g (DW) total carotenoids 

16.6 µg/g (DW) β-carotene 

Canola 
(Brassic

a napus) 
 
 

crtB (Pantoea 

ananatis) 
Napin (seed specific) 

1617 µg/g fresh weight (FW) total 
carotenoids (50-fold) 
949 µg/g (FW) β-carotene (316-fold) 

Shewmaker et al., 

1999 

crtB (Pantoea 

ananatis) 

Napin  

1341 µg/g FW total carotenoids 
 739 µg/g FW β-carotene  

Ravanello et al., 2003 

crtE and crtB 

(Pantoea ananatis) 

1023 µg/g FW total carotenoids  
488 µg/g FW β-carotene  
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crtB and crtI 

(Pantoea ananatis)  

1412 µg/g FW total carotenoids  
857 µg/g FW β-carotene  

crtB and crtY 

(Pantoea ananatis) 

935 µg/g FW total carotenoids  
459 µg/g FW β-carotene  

crtB (Pantoea 

ananatis) and β-

cyclase (B. napus) 

985 µg/g FW total carotenoids  
488 µg/g FW β-carotene  

crtB, crtY and crtI 
(Pantoea ananatis) 

1229 µg/g FW total carotenoids  
846 µg/g FW β-carotene  

lycopene β-cyclase 

(B. napus) 

RNAi to 5’ end 

CaMV35S 

227.78 µg/g FW total carotenoids 
(42.6-fold) in seeds 
90.76 µg/g FW β-carotene in seeds 

(185.2-fold) 

Yu et al., 2008 

lycopene β-cyclase 

(B. napus) 

RNAi to 3’ end 

94 µg/g FW total carotenoids in seeds 
(17.6-fold) 
27 µg/g FW β-carotene in seeds (55-

fold) 

Idi, crtE, crtB, crtI, 
crtY  (P. ananatis)  
crtZ , crtW 

(Brevundimonas 

spp.) 

CaMV35S (crtE, crtI 

and crtY), napin (idi,and 

crtZ) and 

Arabidopsis FAE1(crtW 

and crtB) (seed 

specific) 

657 µg/g FW total carotenoids (30-

fold) 

214 µg/g FW β-carotene (1070-fold) 

Fujisawa et al., 2009 

microRNA 

miR156b 

(Arabidopsis 

thaliana) 

Napin 

6.9 µg/g FW total carotenoids (2.45-

fold)  

0.38 µg/g FW β-carotene (6-fold) 

(10% water content) 

Wei et al., 2009 

Tomato 

(Lycoper

sicon 

esculentu

m) 

psy1 (tomato) CaMV35S 

1159 µg/g FW total carotenoids (1.14-

fold) 

(assuming a water content of 90%) 

Fray & Grierson, 1993 

crtI (P. ananatis) CaMV35S 

137.2 µg/g FW total carotenoids (0.5-
fold) 
52 µg/g FW β-carotene (1.9-fold) 

Römer  et al., 2002 

LYCB (Arabidopsis Pds (fruit specific) 109 µg/g FW total carotenoids (1.7-
fold)  

Rosati et al., 2000 
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thaliana) 57 µg/g FW β-carotene (7.1-fold)  
(assuming a water content of 90%) 

LYCB (A. thaliana)  
b-chy (pepper; 

Capsicum annuum)  

Pds  
100.7 µg/g FW total carotenoids (1.5-
fold)  
63 µg/g FW β-carotene (12-fold) 

Dharmapuri et al., 

2002 

crtB (Pantoea 

ananatis) 

polygalacturonase (fruit 

specific) 

591.8 µg/g FW total carotenoids (1.1-
fold)  
82.5 µg/g FW β-carotene (1.3-fold) 

Fraser et al., 2001 

lycb (tomato) CaMV35S 

215.2 µg/g FW total carotenoids (2.3-
fold) 
205 µg/g FW β-carotene (46.6-fold)  
(assuming a water content of 90%) 

D’Ambrosio et al., 

2004 

dxs (Escherichia 

coli) 
fibrillin 

720 µg/g FW total carotenoids (1.6-
fold) 
70.0 µg/g FW β-carotene (1.4-fold) 

Enfissi et al., 2005 

det-1 (tomato, 

antisense) 

P119, 2A11 and TFM7 

(fruit specific)  

83.8 µg/g FW total carotenoids (2.3-
fold) 
13 µg/g FW β-carotene (8-fold) 
(assuming a water content of 90%) 

Davuluri et al., 2005 

CRY2 (tomato) CaMV35S 

149 µg/g FW total carotenoids (1.7-

fold) 

10.1 µg/g FW β-carotene (1.3-fold) 

Giliberto et al., 2005 

 crtY (P. ananatis) aptI 
3237.1 µg/g FW total carotenoids (0.9-
fold) 
286.1µg/g FW β-carotene (4-fold) 

Wurbs et al., 2007 

Fibrillin (pepper) fibrillin 
650 µg/g FW total carotenoids (2.0-
fold)  
150 µg/g FW β-carotene (1.6-fold) 

Simkin et al., 2007 

lycb (daffodil) ribosomal RNA 
115 µg/g FW total carotenoids (1.5-
fold)  
95 µg/g DW β-carotene (5-fold) 

Apel & Bock, 2009 

psy1 (tomato) CaMV35S 

2276 µg/g FW total carotenoids (1.25-

fold) 

819 µg/g FW8 β-carotene (1.4-fold) 

Fraser et al., 2007 

Potato 

(Solanu

m 

ZEP (Arabidopsis) GBSS (tuber specific) 
60.8 µg/g DW total carotenoids (5.7-
fold) 
2.4 µg/g DW β-carotene (3.4-fold) 

Römer et al., 2002 

crtB (P. ananatis) Patatin (tuber specific) 
35 µg/g DW total carotenoids (6.3-

Ducreux  et al., 2005 
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tuberosu

m) 

fold) 

10.3 µg/g DW β-carotene (10-fold) 

lyce (potato, 

antisense) 
Patatin  

12.27 µg/g DW total carotenoids (2.6-

fold) 

0.043 µg/g DW β-carotene (14-fold) 

Diretto et al., 2006 

crtO 

(Synechocystis sp.) 
CaMV35S  

39.76 µg/g DW total carotenoids (2.1-

fold) 

Gerjets  & Sandmann, 

2006 

dxs (E. coli) Patatin  7 µg/g DW total carotenoids (2-fold) Morris et al., 2006a 

crtB (P. ananatis) 

bkt1 

(Haematococcus 

pluvialis) Patatin  
 

5.2 µg/g DW total carotenoids  

1.1 µg/g DW total ketocarotenoids  

Morris et al., 2006b 

bkt1 (H. pluvialis) 

30.4 µg/g DW total carotenoids (4-

fold) 

19.8 µg/g DW total ketocarotenoids  

or (cauliflower; 

Brassica oleracea 

var botrytis) 

GBSS 24 µg/g DW total carotenoids (6-fold) Lu et al., 2006 

bch (potato, 

antisense) 
Patatin  

21.7 µg/g DW total carotenoids (4.5-

fold) 

0.085 µg/g DW β-carotene (38-fold) 

Diretto et al., 2007 

crtB, crtI and crtY 

(P. ananatis) 
Patatin  

114 µg/g DW total carotenoids (20-

fold) 

47 µg/g DW β-carotene (3643-fold) 

Diretto et al, 2007 

bch (potato, 

antisense) 

CaMV35S  

4.7 µg/g DW total carotenoids (1.04-

fold)  

2.64 µg/g DW β-carotene (331-fold) 
(assuming a water content of 80%) Van Eck et al., 2007 

GBSS 

5.23 µg/g DW total carotenoids 

2.36 µg/g DW β-carotene 
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(assuming a water content of 80%) 

or (cauliflower) 
GBSS  
 

31 µg/g DW total carotenoids (5.7-

fold) 
Lopez et al., 2008 

Maize 

(Zea 

mays) 

psy1 (Z. mays) 

crtI (P. ananatis) 

crtW (Paracoccus 

spp.) 

lycb (Gentiana 

lutea) 

Wheat LMW glutelin, 

barley 

D-hordein, corn γ-zein, 

rice 

prolamin (all 

endospermspecific) 

146.7 µg/g DW total carotenoids (133-

fold) 

34.81µg/g DW β-carotene (248-fold) 

 

Zhu et al, 2008 

crtB and crtI (P. 

ananatis) 
super γ-zein 

33.6 µg/g DW total carotenoids (34-

fold) 

9.8 µg/g DW DW β-carotene (3.8-fold) 

Aluru et al., 2008 

psy1 (Z. mays) 

crtI (P. ananatis) 

Wheat LMW glutelin 

and 

barley D-hordein 

163.2 µg/g DW total carotenoids (112-

fold) 

59.32 µg/g DW β-carotene (169-fold) 

Naqvi et al., 2009 

Lotus 

japonicu

s 

crtW 

(Agrobacterium 

aurantiacum) 

CaMV35S 

387 µg/g FW total carotenoids (1.5-

fold) 

79.3 µg/g FW β-carotene (2.2-fold) 

89.9 µg/g FW total ketocarotenoids 

 

Suzuki et al., 2007 

Kumquat 
psy (Citrus 

sinensis; orange) 
CaMV35S 

131.9 µg/g FW total carotenoids (1.6-

fold) 

1.72 µg/g FW β-carotene (2.5-fold) 

Zhang et al., 2009 

Carrot 

bkt1 (H. pluvialis) 

CHYB 

(Arabidopsis) 

CaMV35S and 

Agrobacterium 

rhizogenes 

rolD (root specific) 

300 µg/g DW total carotenoids in root 

(assuming 87%water content) 

Jayaraj et al., 2007 

PSY (Arabidopsis) CaMV35S 
514.1 µg/g DW total carotenoids in 

roots (93-fold) 
Maass et al., 2009 
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241.6 µg/g DW β-carotene (178-fold) 

Wheat 

psy1 (Z. mays) 

crtI (P. ananatis) 

CaMV35S and 1Dx5 

(constitutive) 

4.96 µg/g DW total carotenoids (10.8-

fold) 
Cong et al., 2009 

Cassava crtB (P. ananatis) CP1 
21.84 µg/g DW total carotenoids (33.6-
fold) 
6.67 µg/g DW  β-carotene (16-fold) 

Welsch et al., 2010 

Table 1. 1: Carotenoid enhancement in crop plants by genetic engineering.  

DW = dry weight; FW = fresh weight (Farré et al, 2011b). 

In order to compensate for the limiting steps in the pathway and study carotenoid 

accumulation in maize endosperm we introgressed a transgenic mini-pathway, (Zmpsy1 and 

PacrtI) into different maize inbred lines. The availability of different inbreds with diverse 

carotenoid profiles and β:ɛ ratios provides an opportunity to combine the transgenic mini-

pathway in the transgenic maize with diverse backgrounds differing in the profiles of 

zeaxanthin and lutein to increase and study carotenoid accumulation. We carried out an in-

depth analysis at the transcript and metabolite levels in an attempt to determine the specific 

impact of the introgressed mini-pathway in each inbred line. 

 

1.2. Materials and methods  

1.3.1 Plant material 

Maize (Zea mays) varieties M37W (white endosperm), Mo17, EZ59, EZ6, B73 and 

A632 (all yellow endosperm), and transgenic line Carolight expressing maize Zmpsy1 and 

Pantoea annatis crtI were planted in the experimental fields of the University of Lleida in 

May, 2013. Carolight was crossed with Mo17, EZ59, EZ6, B73 and A632 in August, 2013. 

Endosperm samples were harvested at 30DAP, frozen in liquid nitrogen and stored at -80ºC. 

The inbreds Mo17, EZ59, EZ6, B73 and A632 were provide by CSIC, Zaragoza, Spain, and 

M37W was obtained from CSIR, Pretoria, South Africa. 
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1.3.2 Total RNA isolation and mRNA analysis  

 Total RNA was isolated using RNeasy® Plant Min Kit (QIAGEN, Valencia, CA, 

USA) and 30µg aliquots were fractionated on a denaturing 1.2% w/v agarose gel containing 

formaldehyde. The RNA was transferred onto a positively charged nylon membrane (Roche 

Diagnostics GmbH, Mannheim, Germany) via capillary transfer using standard methods 

(Sambrook et al., 1989). The membrane was probed with digoxygenin-labeled partial cDNAs 

at 50ºC, overnight using DIG Easy Hyb (Roche Diagnostics). The partial cDNAs were 

converted into probes using the DIG probe synthesis kit (Roche Diagnostics). After washing 

and immunological detection with anti-DIG-AP (fragment of sheep anti-digoxigenin 

antibody; Fab-Fragments, Diagnostics GMBH, Roche, Welwyn, UK) according to the 

manufacturer’s instructions Chemiluminescence using disodium 3-(4-methoxyspiro{1,2-

dioxetane-3,2-(5-chloro)tricyclodecan}-4-yl)phenyl phosphate (CSPD) (Roche Diagnostics) 

was detected on Kodak BioMax light film (Sigma-Aldrich, St. Louis, MO, USA). Primer 

sequences used for designing probes are shown in Table 1.2. 

 

Transgene Primer set 

Zmpsy1 Forward: 5´-GTGTAGGAGGACAGATGAGCTTGT-3´ 

Reverse: 5´-CATCTGCTAGCCTGTGAGAGCTCA-3´ 

PacrtI Forward: 5´-TGGAGAAGCGTTTACAGTAAGGT-3´ 

Reverse: 5´-GCGTGCAGATAAAGTGAGAAGTC-3´ 

            Table 1. 2: Primer sequences used for transgene probe design. 

 

1.3.3 Quantitative real time PCR 

Real-time RT-PCR was performed on a BioRad CFX96TM system using 25µl mixtures 

containing 10 ng of synthesized cDNA, 1x iQ SYBR green supermix (BioRad, Hercules, CA, 

USA) and 0.2 µM forward and reverse primers (Table 1.3). CYP97A and CYP97C primer 

information was obtained from Naqvi et al., 2011. Relative expression levels were calculated 

on the basis of serial dilutions of cDNA (125–0.2 ng) which were used to generate standard 

curves for each gene. PCR was performed in triplicate using 96 well optical reaction plates. 

Cycling conditions consisted of a single incubation step at 95ºC for 5 min followed by 44 
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cycles of 95ºC for 10 s, 58ºC for 35 s and 72 ºC for 15s. Specificity was confirmed by product 

melt curve analysis over the temperature range 50–90ºC with fluorescence acquired after 

every 0.5ºC increase, and the fluorescence threshold value and gene expression data were 

calculated with BioRad CFX96TM software. Values represent the mean of three RT-PCR 

replicates ± SD. Amplification efficiencies were compared by plotting the ∆Ct values of 

different primer combinations of serial dilutions against the log of starting template 

concentrations using the CFX96TM software. 

Gene Forward primer Reverse primer 

Zmpsy1  5'‐CATCTTCAAAGGGGTCGTCA‐3'  5'‐CAGGATCTGCCTGTACAACA‐3' 

Zmpsy2 5'‐TCACCCATCTCGACTCTGCTA‐3'  5'‐GATGTGATCTACGGATGGTTCAT‐3' 

Zmlyce 5'‐TTTACGTGCAAATGCAGTCAA‐3' 5'‐TGACTCTGAAGCTAGAGAAAG‐3' 

Zmlycb 5'‐GACGCCATCGTAAGGTTCCTC‐3' 5'‐TCGAGGTCCAGCTTGAGCAG‐3' 

Zmbch1 5'‐CCACGACCAGAACCTCCAGA‐3' 5'‐CATGGCACCAGACATCTCCA‐3' 

Zmbch2 5'‐GCGTCCAGTTGTATGCGTTGT‐3' 5'‐CATCTATCGCCATCTTCCTTT‐3' 

ZmCYP97A 5'-CTGGAGCCATCTGAAAGTCA‐3' 5'-GGACCAAATCCAAACGAGAT‐3' 

ZmCYP97B  5'-CTGAGGAGAAGGACTTGACGG‐3' 5'-TCCACTGGTCTGTTCTGCGAT‐3' 

ZmCYP97C 5'-GTTGACATTGGATGTGATTGG‐3' 5'-AACCAACCTTCCAGTATGGC‐3' 

Zmactin 5'‐ CGATTGAGCATGGCATTGTCA‐3' 5'‐ CCCACTAGCGTACAACGAA‐3' 

Table 1. 3: Oligonucleotide sequences of maize actin and endogenous carotenogenic genes 

for quantitative Real-Time PCR analysis. 

 

1.3.4 Carotenoid extraction from maize endosperm 

Maize endosperm was excised by removing the seed coat and embryo. Samples were 

freeze-dried before extraction and were ground to a fine powder. Carotenoids in 50-100mg 

samples were extracted in 15 ml methanol:ethyl acetate (6:4 v/v) at 58ºC for 20 min. The 

mixture was filtered, transferred to a separatory funnel and 15 ml hexane:diethyl ether (9:1 

v/v) were used and agitated gently for 1 min. Fifteen ml of saturated NaCl was added, the 
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aqueous phase was removed, and the organic phase was washed twice with water. The 

samples were dried under N2 at 37ºC, flushed with argon and stored at -80ºC. 

1.3.5 HPLC-MS and UHPLC-MS  

Maize endosperm was excised by removing the seed coat and embryo. Samples were 

freeze-dried before extraction and were ground to a fine powder. Carotenoids in 50-100mg 

samples were extracted in 15 ml methanol:ethyl acetate (6:4 v/v) at 58ºC for 20 min. The 

mixture was filtered, transferred to a separatory funnel, 15 ml hexane:diethyl ether (9:1 v/v) 

were added and agitated gently for 1 min. The organic phase was washed twice with saturated 

NaCl water and the aqueous phase was removed. The samples were dried under N2 and stored 

at -80ºC until injection. 

The extracts were dissolved in 210-600 µl injection solvent [ACN/MeOH 7:3, 

v/v]/acetone 3:2, v/v. UHPLC analysis was carried out at SCT-DATCEM, University of 

Lleida, using an Acquity Ultra Performance LC system linked to a PDA 2996 detector 

(Waters, Milford, USA). Mass detection was carried out using an Acquity TQD tandem-

quadrupole MS equipped with a Zspray electrospray interface (Waters). MassLynx software 

version 4.1 (Waters) was used to control the instruments and also for data acquisition and 

processing. UHPLC separations were performed on a reversed-phase column Acquity UPLC 

C18 BEH 130 Å, 1.7 µm, 2.1 × 150 mm (Waters). The mobile phase consisted of solvent A, 

ACN/MeOH 7:3, v/v, and solvent B, water 100%. Carotenoids in samples were quantified 

using a PDA detector through the external standard method. Identification of carotenoids was 

carried out as previously described (Rivera et al. 2013). MS analyses were conducted by 

atmospheric pressure chemical ionization (APCI), and the conditions used are the same as 

those described by Rivera et al. 2011. Authentic standards used for quantification were β-

carotene, lutein, β-cryptoxanthin and astaxanthin (Sigma), zeaxanthin (Fluka, Buchs SG, 

Switzerland), phytoene and antheraxanthin (Carotenature, Lupsingen, Switzerland). 

 

1.3.6 Carotenoid identification and quantification   

Carotenoids were identified according to the following: order of elution from the 

column, ultraviolet and visible spectra, the spectral fine structure (%III/II) (Britton et al., 

2004), mass fragments based on literature data (Rivera et al., 2011) and comparison to 
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authentic standards. Those standards were also used for quantification in combination with 

the extinction coefficients (Britton et al., 2004). 

 

1.4 Results 

1.4.1 Maize hybrids generated through breeding HC with yellow inbred lines 

In order to gain further insights into the rate-limiting steps of carotenoid biosynthesis 

in maize endosperm, a carotenogenic mini-pathway was introgressed into a number of 

different yellow maize inbred lines. The hybrids were grown in the field as described in 

material and methods. The previously generated transgenic HC line, described in section 

1.3.1, expressing Zmpsy1 (encoding phytoene synthase 1) under the control of the wheat 

LMW glutenin promoter, and PacrtI (encoding phytoene desaturase) under the control of the 

barley D-hordein promoter in a white maize background (M37W) was crossed with Mo17, 

EZ6, EZ59, B73 and A632. mRNA blot analysis was carried out using 25 µg total RNA from 

30 DAP endosperm of all yellow maize lines, M37W white maize parent,  HC and 

corresponding hybrids (Figure 1.2). Zmpsy1 transgene expression was measured in HC and in 

all hybrids along with very low levels of endogenous psy1 transcripts in yellow maize 

inbreds, which was absent in M37W. PacrtI expression was also confirmed in transgenic HC 

and corresponding hybrids (Figure 1.2). Resulting hybrids exhibited visually distinct orange 

color phenotypes in the seeds (Figure 1.3).   
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Figure 1.2: mRNA blot showing Zmpsy and PacrtI transcript accumulation in all parents and 

hybrids; 25µl of total RNA was loaded in each lane and rRNA (stained with ethidium 

bromide) was used as loading control. 

 
1.4.2 Carotenoid composition and accumulation in wild-type and HC maize endosperm  

Maize endosperm was excised 30 days after pollination (DAP) from field grown Mo17, 

EZ59, EZ6, B73, A632, HC and M37W plants. Carotenoid content was determined by HPLC 

(Table 1.4). This analysis confirmed that M37W endosperm contained only trace amounts of 

carotenoids (0.8 µg/g DW), whereas the yellow inbred lines Mo17, EZ59, EZ6, B73 and 

A632 accumulated up to 27.8, 13.5, 16.6, 17.8 and 9 µg/g DW, respectively. No, or very low 

accumulation of β-carotene, and α- and β-cryptoxanthin (the immediate precursors of lutein 

and zeaxanthin) were present in Mo17, EZ59, EZ6, B73 and A632 endosperm (Table 1.4). 

Lutein and zeaxanthin were the predominant carotenoids in yellow maize endosperm, but 

each line exhibited different β:ɛ ratios. I classified wild type yellow maize lines into three 

different groups: low β:ɛ ratio (less than 1), equal β:ɛ ratio (close to 1), or high β:ɛ ratio (2 or 

higher). 

The first group with low β:ɛ ratio included Mo17 and B73 inbred lines exhibiting a ratio 

of ca: 0.4 and 0.15, respectively. Both lines had similar carotenoid profiles. The major 

carotenoids in Mo17 were β-carotene (2 µg/g DW), zeaxanthin (4.9 µg/g DW) and lutein 

(27.2 µg/g DW). Lutein was the most prevalent carotenoid (ca: 75% of the total; see Figure 

1.3 and Table 1.4). B73 accumulated ca: 12 µg/g DW of lutein (ca: 65% of the total amount 

of carotenoids). B73 also accumulated α-cryptoxanthin (ca: 3 µg/g DW), zeaxanthin (ca: 2 

µg/g DW) and traces of antheraxanthin. 
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EZ6 had a β/ɛ ratio of ca: 1, accumulating near equal amounts of lutein and zeaxanthin, 

ca: 6 and 7 µg/g DW, respectively. Parental line M37W had a β/ɛ ratio of ca: 1 and also 

accumulated equal amounts of lutein and zeaxanthin, ca: 0.2 µg/g DW. EZ6 accumulated 

other carotenoids such as α-carotene or β-cryptoxanthin in lower amounts, and no β-carotene 

(Figure 1.3 and Table 1.4). M37W accumulated only traces of zeaxanthin, lutein, 

antheraxanthin and violaxanthin. 

EZ59 and A632 accumulated higher amounts of β-branch carotenoids. EZ59 was the only 

line accumulating phytoene (3.4 µg/g DW) (Table 1.4) suggesting a bottleneck in 

desaturation and isomeration steps of phytoene towards lycopene production. The most 

abundant carotenoid in EZ59 was zeaxanthin (ca: 8 µg/g DW), followed by lutein (4.5 µg/g 

DW). Only traces of antheraxanthin and β-cryptoxanthin were measured in this line.  The 

higher accumulation of β-branch metabolites in EZ59 resulted in a β/ɛ ratio close to 2. A632 

had the highest β/ɛ ratio, ca: 5, due to a higher accumulation of zeaxanthin versus lutein, ca: 6 

µg/g DW and 1.5 µg/g DW, respectively. Traces of antheraxanthin and β-cryptoxanthin were 

also measured in A632 (Figure 1.3 and Table 1.4). 
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Table 1.4: Endosperm carotenoid content (presented as µg ⁄ g dry weight (DW) ± SD (n = 3–

5 mature seeds) of wild-type (M37W, Mo17, EZ6, EZ59, B73, A632), transgenic high 

carotenoid (HC), and hybrids (Mo17xHC, EZ6xHC, EZ59xHC, B73xHC and A632xHC) 

determined by HPLC. Abbreviations: β-caro, β-carotene; β-crypto, β-cryptoxanthin; zeaxant, 

zeaxanthin; anthera, antheraxanthin; violaxanth, violaxanthin; α-caro, α-carotene; α-crypto, α-

cryptoxanthin. 
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Figure 1.3: Carotenoid profiles in maize hybrids (Mo17xHC, EZ6xHC, EZ59xHC, B73xHC 

and A632xHC), transgenic line HC and wild-type inbreds (Mo17, EZ6, EZ59, B73 and 

A632). Color phenotypes reflect differences in carotenoid accumulation in the endosperm 

(represented as the surface area of pie charts corresponding to the total carotenoid content) 

and β/ɛ ratio for each phenotype. Abbreviations: betacaro, β-carotene; betacrypto, β-

cryptoxanthin; zeaxant, zeaxanthin; anthera, antheraxanthin; violaxanth, violaxanthin; 

alfacaro, α-carotene; alfacrypto, α-cryptoxanthin.  

 

1.4.3 Transcript levels of endogenous carotenogenic genes in wild-type maize 

endosperm  

Transcript levels of endogenous genes in the carotenoid biosynthetic pathway were 

compared by real-time qRT-PCR. Relative expression levels of the endogenous carotenogenic 

genes were determined in the wild type inbreds (Figure 1.4). mRNA for Zmpsy1 (encoding 

the endosperm-specific isoform of phytoene synthase) did not accumulate in the white M37W 

endosperm but did so in the yellow endosperm varieties. Zmpsy2 mRNA (encoding the 

isoform of phytoene synthase that is preferentially accumulated in vegetative tissues) was 

present at lower levels in all inbred lines. Zmpsy2 transcript also accumulated in white M37W 

endosperm, perhaps accounting for the trace levels of carotenoids in this line.  

 Levels of ZmlycE mRNA accumulation in Mo17 and B73 lines (low β/ɛ ratio lines), 

were higher than ZmlycB, (5- and almost 10-fold higher, respectively). Zmbch2 mRNA 

accumulated at very low levels in both lines, whereas Zmbch1 mRNA accumulated at 

considerably higher levels in B73. ZmcypC and ZmcypB transcript accumulation was similar 

in both lines. However, ZmcypA mRNA accumulation was almost double in Mo17 compared 

to B73 (Figure 1.4). 

  ZmlycE and ZmlycB transcripts accumulated at similar levels in EZ6 (β/ɛ ratio ca: 1). 

Zmbch1 transcript accumulated at higher levels (50-fold higher) compared to Zmbch2. 

ZmcypA, ZmcypB and ZmcypC accumulated at similar levels in this line. ZmlycB, Zmbch2 and 

ZmcypA mRNA accumulation was the highest in M37W (compared to all other lines; Figure 

1.4).  

 ZmlycE mRNA accumulation was hardly measurable in EZ59 and A632 (β/ɛ ratio 

equal or higher than 2). ZmlycB mRNA accumulation was the highest in EZ59, (with the 
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exception of M37W). ZmlycB mRNA accumulation in A632 was ca: 2-fold lower than in 

EZ59 (Figure 1.4). Zmbch2 mRNA accumulation was low in both lines, while Zmbch1 

mRNA accumulated at higher levels in A632 (ca: 7-fold higher than EZ59). A significantly 

higher accumulation of ZmcypC mRNA was measured in EZ59 (ca: 15-fold higher) compared 

to A632 and also all the other lines. Similarly, mRNA accumulation for ZmcypB doubled in 

EZ59 compared to A632 (Figure 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Quantitative Real Time RT-PCR analysis showing relative mRNA accumulation 

of endogenous carotenogenic genes in immature maize endosperm (30 DAP), normalized 

against actin mRNA and presented as the mean of three replicates ± SD. Abbreviations: 

PSY1/2, phytoene synthase 1/2; LYCB, lycopene β-cyclase; LYCE, lycopene ε-cyclase; 

BCH1/2, β-carotene hydroxylase 1/2. CYP97A/B, β-carotene hydroxylase; CYP97C, carotene 

ε-hydroxylase.  
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1.4.4 Carotenoid profiles in hybrid lines  

While M37W accumulates only traces of carotenoids (total content up to ca: 1 µg/g 

DW), Zmpsy1 and PacrtI transcripts accumulated in HC and were responsible for the 

increased total carotenoid content up, to ca: 59 µg/g DW (Table 1.4). β-Carotene and 

zeaxanthin accumulated up to ca: 8 µg/g and 32 µg/g DW in HC, respectively. Additional β-

branch carotenoids also accumulated. These included β-cryptoxanthin (ca: 3 µg/g DW), 

antheraxanthin (ca: 4 µg/g DW) and violaxanthin (traces). The only ε-branch carotenoid was 

lutein (ca: 5 µg/g DW). Due to this accumulation profile, the β/ε ratio increased up to 9-fold 

in HC over the wild type (Table 1.4). Phytoene also accumulated, in HC (up to 6 µg/g DW). 

All hybrids exhibited different carotenoid accumulation profiles compared to their 

respective inbred parents and HC (Table 1.4 and Figure 1.3). Thus, a number of the hybrids 

had a different β/ε ratio compared to their corresponding parents. Total carotenoid content 

increased in all hybrids compared to their corresponding yellow inbred parent. Higher levels 

of total carotenoids accumulated in Mo17xHC and EZ59xHC (ca: 87 µg/g DW and 68 µg/g 

DW, respectively) compared to HC (ca: 59 µg/g DW).  Total carotenoid content in B73xHC, 

EZ6xHC and A632xHC increased versus their yellow maize parents (40 µg/g DW, 34 µg/g 

DW, 46 µg/g DW, respectively). However, total carotenoid levels in these three hybrids were 

lower compared to the HC transgenic parent (ca: 59 µg/g DW) (Table 1.4). 

A 2.6-fold increase in the β/ε ratio was measured in Mo17xHC versus Mo17 due to an 

increase in β-branch carotenoids (Table 1.4 and Figure 1.3). Zeaxanthin levels increased ca: 

6-fold (up to 32 µg/g DW), β-cryptoxanthin 5-fold (up to 3 µg/g DW) and β-carotene levels 

more than doubled (ca: 5 µg/g DW) (Table 1.4). In the ε-branch, lutein levels were not 

increased significantly, while α-carotene and α-cryptoxanthin accumulated (ca: 2.5 µg/g DW 

and 10 µg/g DW, respectively). Phytoene accumulated up to 7 µg/g DW. The β/ε ratio in 

B73xHC did not change compared to B73; rather, the amounts of most carotenoids increased 

proportionally (Table 1.4 and Figure 1.3). Lutein and α-cryptoxanthin accumulation doubled, 

while zeaxanthin and antheraxanthin levels did not change. β-Carotene was the only β-branch 

metabolite whose levels increased (ca: 2 µg/g DW). Phytoene also accumulated in this hybrid 

(ca: 3 µg/g DW). 

EZ6xHC exhibited a β/ε ratio of ca: 2.7-fold versus EZ6 (Table 1.4 and Figure 1.3). 

Accumulation of ε-branch carotenoids did not show significant variation, but in the β-branch, 
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zeaxanthin and antheraxanthin levels doubled. β-Carotene  also accumulated (ca: 7 µg/g DW) 

and phytoene was detected (ca: 2 µg/g DW) in the hybrid. 

EZ59xHC maintained a β/ε ratio of ca: 2 similarly to EZ59 (Table 1.4 and Figure 

1.3). Accumulation of different β-branch carotenoids increased in this hybrid. Zeaxanthin 

levels increased ca: 3-fold (21.5 µg/g DW), β-cryptoxanthin ca: 6-fold (3.7 µg/g DW), 

antheraxanthin 3.5-fold (1.4 µg/g DW), and β-carotene also accumulated (ca: 9 µg/g DW) 

(Table 1.4). Levels of ε-branch carotenoids also increased. Lutein levels doubled (ca: 10 µg/g 

DW), and α-carotene and α-cryptoxanthin also accumulated (ca: 4 µg/g DW and 3 µg/g DW, 

respectively). Phytoene accumulation increased ca: 4-fold (15 µg/g DW) (Table 1.4). The β/ε 

ratio in A632xHC increased up to ca: 9 compared to A632 (Table 1.4 and Figure 1.3). This 

was due to a significant increase in zeaxanthin (ca: 4-fold, 26 µg/g DW), β-cryptoxanthin (ca: 

4.5-fold, 4 µg/g DW) and antheraxanthin (ca: 5-fold, 1.5 µg/g DW) levels. β-Carotene also 

accumulated up to ca: 7 µg/g DW. Lutein was the only ε-branch carotenoid whose levels 

increased (ca: 4-fold, 4 µg/g DW). No other carotenoids were present, but phytoene 

accumulated up to ca: 3 µg/g DW in the hybrid (Table 1.4). 

 

1.5 Discussion 

1.5.1 Carotenoid profile in maize endosperm is controlled by the expression of 

endogenous carotenogenic genes  

The biosynthesis and functions of carotenoids in plants have been extensively 

reviewed in recent years. However, despite significant progress in our understanding of 

carotenogenesis in plants, there are still a lot of questions about how carotenoid biosynthesis 

and accumulation regulating mechanisms operate. As compared to other staple cereals, maize 

possesses tremendous variability for endosperm carotenoids (Buckner, Kelson, & Robertson, 

1990). In the current study mRNA analysis confirmed previous findings that Zmpsy1 

transcripts do not accumulate in white (M37W) maize endosperm; rather Zmpsy2 transcripts 

accumulated as the predominant isoform moiety of this gene. This suggested that the residual 

carotenoid content in M37W endosperm was due to expression of Zmpsy2. Although Zmpsy2 

transcripts accumulated in M37W endosperm, the total carotenoid content remains extremely 

low, confirming that Zmpsy1, not Zmpsy2, plays a crucial role in the accumulation of 

carotenoids in endosperm in yellow maize, as reported in previous studies (Zhu et al, 2008). 
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Further supporting evidence for the key role of Zmpsy1 in endosperm carotenogenesis is 

corroborated by the expression of the gene in diverse yellow maize germplasm such as Mo17, 

EZ6, EZ59, B73 and A632 inbred lines in which a positive correlation between the 

accumulation of Zmpsy1 transcripts yellow endosperm phenotype, and carotenoid 

accumulation in the endosperm was measured. Phytoene undergoes four desaturation and 

subsequent isomerization steps to produce all-trans lycopene. The cyclization of all trans-

lycopene is an important branch point in carotenoid biosynthesis. Alternatively, lycopene ε-

cyclase (LYCE) adds one ε-ring at one end of all trans-lycopene and a second cyclization by 

LYCB produces α-carotene (Cunningham et al 1996). Cyclase enzymes play key roles in 

controlling relative concentrations of lutein and zeaxanthin in the endosperm. ZmlycE 

transcripts accumulated at higher levels in Mo17 and B73 inbred lines compared to EZ6, 

EZ59, A632 and HC (Figure 1.5). Precursor flow was thus directed towards lutein, and this 

was reflected in lower β/ε ratios (0.38 and 0.16, respectively for these two genotypes). On the 

other hand, ZmlycB mRNA accumulated at higher levels in EZ6, EZ59 and A632 inbred lines, 

and it correlated with higher amounts of zeaxanthin accumulation relative to lutein. The 

corresponding β/ε ratios in the three genotypes were ca: 1, 2 and 5, respectively.  

1.5.2 Carotenoid accumulation in maize hybrids reveals the existence of bottlenecks 

towards zeaxanthin and lutein accumulation 

The hybrid lines had a bright orange endosperm phenotype indicating the 

accumulation of higher amounts of carotenoids, and/or different carotenoid profiles compared 

to their corresponding parents (Figure 1.4). Introgression of a carotenogenic mini-pathway 

(comprising Zmpsy1 and PacrtI) into different yellow maize genetic backgrounds increased 

significantly the total carotenoid content in each hybrid by eliminating early bottlenecks in the 

pathway. These bottlenecks constrain phytoene synthesis and its subsequent conversion to 

lycopene.  The higher accumulation of total carotenoids in the hybrids indicated new 

bottlenecks in the carotenoid pathway in the different yellow maize inbreds: phytoene 

isomerization and desaturation, lycopene cyclization, and α- and β-carotene hydroxylation.  

The first new bottleneck detected in the hybrids, phytoene isomerization and 

desaturation steps, have been shown earlier to limit carotenoid biosynthesis in tomato (Enfissi 

et al., 2005), potato (Morris et al., 2006), rice (Bai et al., 2015) and maize (Naqvi et al., 2011). 

Here we demonstrate that introducing PacrtI, which constrains phytoene isomerisation and 
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desaturation in HC, Mo17xHC, B73xHC, EZ6xHC, EZ59xHC and A632xHC increased 

phytoene levels in all of them compared to their corresponding parents. Zmpsy1 transcript 

accumulation eliminated the first bottleneck in the pathway which impedes phytoene 

synthesis, but the high amounts of newly synthesized phytoene were not converted to 

lycopene efficiently by PacrtI.  

No lycopene accumulated in any of the hybrids, indicating that ZmlycE/B converted 

all the lycopene to α- and β-carotene efficiently in HC, Mo17xHC, B73xHC, EZ6xHC, 

EZ59xHC and A632xHC. Previous reports confirmed that the β/ɛ ratio is determined by the 

relative levels of ZmlycE and ZmlycB transcripts in maize  (Harjes et al., 2008; Naqvi et al., 

2011).  Similar results were reported in Brassica napus (Yu et al., 2008), tomato (Dharmapuri 

et al., 2002; Rosati et al., 2000; D’Ambrosio et al., 2004) and potato (Diretto et al., 2006). 

 Hydroxylation of α- and β-carotene is also critical in regulating relative amounts of 

lutein and zeaxanthin in maize endosperm (Wurtzel, 2004). We demonstrated that even in 

cases in which Zmlycb transcripts accumulated at higher amounts than the corresponding 

Zmlyce transcripts, α- and β-carotene hydroxylation was a determining factor for the 

accumulation of lutein and zeaxanthin in the endosperm. Each hybrid is discussed in detail 

bellow.  

 

Mo17xHC hybrid 

  The main carotenoids in Mo17 are β-carotene (2 µg/g DW), zeaxanthin (ca: 5 µg/g 

DW) and lutein (ca: 27 µg/g DW). Lutein  is the predominant carotenoid accounting for ca: 

75% of total carotenoids (Figure 1.4 and Table 1.4). This high accumulation of lutein was 

reflected in a β/ɛ ratio of 0.38. High accumulation of ZmlycE transcripts in Mo17 directed the 

pathway towards the ɛ-branch (Figure 1.3 and Figure 1.5). Mo17xHC had a 3-fold increase 

in total carotenoid (87 µg/g DW) compared with Mo17 (Table 1.4). New carotenoids which 

were not present in Mo17 accumulated in the hybrid. These included phytoene, α-carotene 

and α-cryptoxanthin. Zeaxanthin accumulation in the hybrid increased significantly and this 

was also reflected in a β/ɛ ratio up to 1 in the hybrid (Figure 1.4). ZmlycB transcripts in the 

hybrid (residing in the genetic background of the transgenic parent-M37W) compensated the 

predominance of ZmlycE transcripts (from Mo17) generating a balance in the hybrid reflected 

as equal accumulation of total metabolites in the ɛ and β branches (Figure 1.4 and Figure 

1.6). 
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EZ6xHC hybrid 

 Lutein and zeaxanthin accumulated at near equal levels ca: 6 and 7 µg/g DW, 

respectively, in EZ6. Other carotenoids such as α-carotene or β-cryptoxanthin accumulated in 

lower amounts. EZ 6 contains no β-carotene (Figure 1.4 and Table 1.4). A β/ɛ ratio of ca: 1 

indicated that metabolite amounts in both branches were similar, as were the levels of ZmlycE 

and ZmlycB transcript accumulation (Figure 1.3 and Figure 1.5). However, the β/ɛ ratio in 

EZ6xHC was more than double (ca: 3) compared with EZ6. Thus, zeaxanthin levels increased 

significantly whereas lutein amounts were similar as in EZ6 (Figure 1.4 and Table 1.4). This 

increase in β/ɛ ratio was due to a higher accumulation of ZmlycB transcripts (from the M37W 

background of the transgenic parent) directing the pathway towards the β-branch (Figure 1.3 

and Figure 1.6). A bottleneck in the hydroxylation step from α-cryptoxanthin to lutein 

resulted in a higher accumulation of α-cryptoxanthin (more than 2-fold) in the hybrid, and no 

change in lutein accumulation (ca: 7 µg/g DW) (Figure 1.3 and Figure 1.6). Other 

metabolites accumulated in the hybrid such as β-carotene (ca: 7 µg/g DW) and phytoene (ca: 

2 µg/g DW), which were absent in EZ6 (Figure 1.4 and Table 1.4).  

 

EZ59xHC hybrid 

EZ59 inbred line was the only wild type line accumulating phytoene (ca: 3 µg/g DW) 

(Table 1.4), indicating a bottleneck in desaturation and isomerization of phytoene towards 

lycopene. The same bottleneck was present in EZ59xHC. Phytoene levels increase ca: 5-fold 

(ca: 15 µg/g DW), more than double the amount than in the HC transgenic parent (ca: 6 µg/g 

DW). The β/ɛ ratio was similar between EZ59 and EZ59xHC, ca: 2. The total amount of 

carotenoids increased 4-fold in the hybrid compared to EZ59 (Figure 1.4 and Table 1.4). 

Endogenous gene expression and metabolite accumulation profiles indicated that lack of 

Zmpsy1 expression in the endosperm was the only bottleneck in EZ59 (Figure 1.5 and 1.6). 

Introgression of the carotenogenic mini-pathway into the hybrid increased the total amount of 

carotenoids and the accumulation of β-carotene (ca: 9 µg/g DW). β-carotene levels in the 

hybrid were similar to those in the HC parent (ca: 8 µg/g DW). Zeaxanthin and lutein amounts 

also increased proportionally, compared with EZ59 [(ca: 3- and 2-fold respectively) (Figure 

1.4 and Table 1.4)]. 
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B73xHC hybrid 

 B73 has a proportionally similar carotenoid profile as that in Mo17. Lutein is the 

predominant carotenoid and the β/ɛ ratio indicates that the pathway is directed towards the ɛ 

branch (Figure 1.4). However, the β/ɛ ratio in B73xHC remained similar to the B73 parent 

(0.16 and 0.15, respectively). ZmlycE transcripts accumulated at higher levels compared with 

the other yellow endosperm lines and the HC transgenic parent. In this hybrid ZmlycB 

introgressed from the transgenic line did not compensate the pathway towards the β branch 

(Figure 1.3, Figure 1.5 and Figure 1.6). The total amount of carotenoids was increased in the 

hybrid up to ca: 2-fold. The amount of a number of metabolites such as lutein and α-

cryptoxanthin was increased.  β-Carotene and phytoene absent in B73accumulated in the 

hybrid. Zeaxanthin accumulation was almost the same as in B73. In this hybrid low 

expression of Zmbch1 and Zmbch2 β-carotene hydroxylases generated a bottleneck in β-

carotene hydroxylation towards zeaxanthin (Figures 1.5 and 1.6).  

 

A632xHC hybrid 

 A632 has the lowest accumulation of total carotenoids (9 µg/g DW). The predominant 

carotenoids in this line are lutein and zeaxanthin (Figure 1.4 and Table 1.4). The β/ɛ ratio in 

A632 (ca: 5) indicates that the carotenoid pathway in this line is directed toward the β-branch. 

In the A632xHC hybrid this ratio is almost double suggesting a synergistic effect in ZmlycB 

between A632 and HC (Figure 1.5 and 1.6). The amounts of metabolites in the β-branch of 

the carotenoid pathway such as β-cryptoxanthin, zeaxanthin and antheraxanthin increased up 

to ca: 4.5-, 4- and 5-fold, respectively, in the hybrid. β-carotene accumulated in the hybrid up 

to ca: 7 µg/g DW. In the case of the ε-branch, the only metabolite that accumulated was 

lutein, the levels of which increased ca: 3-fold in the hybrid. (Table 1.4). 
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Figure 1.5: Gene expression in the wild type inbred parents compared with HC. Thicker lines 

represent a higher mRNA accumulation of the corresponding genes in each step compared 

with HC. β/ε ratio is also shown for each inbred line. Abbreviations: A, CYP97A; B, CYP97B 

(linked to a lighter line); C, CYP97C; 1, BCH1; 2, BCH2 (linked to a lighter line); CRTISO, 

carotenoid isomerase; PDS, phytoene desaturase; ZDS, ζ-carotene desaturase.  
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Figure 1.6: Representation of modulation of the carotenoid pathway given by HC in different 

inbred lines. Each color corresponds to a different hybrid; thicker lines represent reaction 

steps where introgression of HC background has eliminated a bottelneck; intermittent lines 

represent bottlenecks in the pathway that still remains in the hybrid; thinner lines represent no 

change in the reaction flux. Abbreviations: PSY1, phytoene synthase; CRTI, bacterial 

phytoene desaturase, which catalyze all desaturation and isomerization reaction from 

phytoene to lycopene; CYP97C, heme-containing cytochrome P450 carotene e-ring 

hydroxylase; BCH, β-carotene hydroxylase [non-heme di-iron β-carotene hydroxylase; 

CYP97A, CYP97B and CYP97C, heme-containing cytochrome P450 β-ring hydroxylases; 

LYCB, lycopene b-cyclase; LYCE, lycopene ε-cyclase.  
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1.6 Conclusions 

A comparative investigation of several yellow endosperm maize inbred lines and the 

white endosperm M37W line, focusing on targeted carotenoid transcript and metabolite 

analysis allowed me to identify several bottlenecks in the pathway in these lines. mRNA 

analysis revealed the complete absence of psy1 transcripts in M37W endosperm whereas I 

could measure psy2 expression in the endosperm suggesting that the residual carotenoid 

content in white endosperm maize is most likely due to the activity of PSY2. This finding 

confirms that PSY1 (Y1), and not PSY2, plays a crucial role in the accumulation of 

carotenoids in corn endosperm. 

Transcript levels for both lycopene ε-cyclase (ZmlycE) and β-cyclase (ZmlycB) varied 

among the different yellow endosperm lines and also M37W, generating different β/ε ratios. 

Transcript levels for α- and β-carotene hydroxylases (Zmbch1/2 and CYP97A/B/C) were 

critical in lutein and zeaxanthin accumulation in the endosperm in all maize lines. 

In order to develop further insights into the control of carotenoid accumulation in corn 

endosperm the impact of transgene expression on the regulation of carotenoid biosynthesis 

was compared between five yellow maize lines (Mo17, B73, EZ6, EZ59 and A632) and a 

transgenic high carotenoid line generated earlier (HC), itself originally derived from white 

maize M37W. I introgressed two transgenes (Zmpsy1+PacrtI) in the five yellow maize lines 

by crossing them with HC. Expression of the introgressed transgenes in Mo17xHC, B73xHC, 

EZ6xHC, EZ59xHC and A632xHC increased total carotenoid content up to ca: 3-, 2-, 2-, 4- 

and 5-fold, respectively, compared to the corresponding yellow endosperm parents (Mo17, 

B73, EZ6, EZ59 and A632). Maize hybrids accumulated different amounts of lutein and 

zeaxanthin, highlighting bottlenecks in α- and β-carotene hydroxylation in some of these 

hybrids. EZ6xHC exhibited a bottleneck in α-carotene hydroxylation towards lutein 

accumulation, while B73xHC exhibited a bottleneck in β-carotene hydroxylation towards 

zeaxanthin accumulation. In Mo17xHC endogenous carotenogenic genes from HC eliminated 

an existing bottleneck in Mo17 towards zeaxanthin accumulation. This fact allowed a high 

and equal accumulation of zeaxanthin and lutein in Mo17xHC. EZ59xHC increased 

proportionally all the carotenoids and A632xHC almost doubled the β/ε ratio. 
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2.1 Abstract 

Vitamin E is a group of four tocopherols and four tocotrienols collectively known as 

tocochromanols. The naturally occurring isomer α-tocopherol (RRR-α-tocopherol) is 1.5 fold 

more active than synthetic vitamin E. A heterologous vitamin E pathway comprising AtPDS1, 

AtVTE2, AtVTE3 and AtVTE4 in a transgenic line was introgressed into a second line 

expressing Zmpsy1 and PacrtI (HC). The simultaneous reconstruction of the carotenoid and 

vitamin E biosynthetic pathways in the resulting hybrids caused a significant increase in α-

tocopherol accumulation and a moderate decrease in carotenoid accumulation in maize seeds, 

demonstrating an interaction between the two pathways. Endosperm-specific carotenoid 

biosynthesis and constitutive tocopherol biosynthesis influenced core metabolic processes in 

the embryo and endosperm of the hybrids. This in turn resulted in an increase in zeaxanthin 

(ca: 3-fold) and α-tocopherol (ca: 8-fold) accumulation compared with HC, respectively, as 

the predominant metabolites in the two pathways, in the maize embryo. Even no α-tocopherol 

accumulation in the endosperm, total carotenoid amount decreased up to a ca: 28%. This 

decrease was primarily due to a reduction in the levels of zeaxanthin and phytoene 

accumulation. 

 

2.2 Introduction 

2.2.1 Vitamin E 

Vitamin E is a group of four tocopherols and four tocotrienols, collectively known as 

tocochromanols or simply tocols (DellaPenna and Pogson 2006). They are amphipathic 

molecules consisting of a chromanol group with one, two or three methyl groups and an 

isoprenyl side chain. Tocopherols possess a saturated phytyl tail, while tocotrienols have an 

unsaturated geranylgeranyl side chain (Figure 2.1). Tocochromanols vary in their vitamin E 

activity in vivo. All isomers can be absorbed equally during digestion (Traber & Sies, 1996) 

but the hepatic α-tocopherol transfer protein (α-TTP) shows a preferential retention for α-

tocopherol making it the most important form in terms of vitamin E activity in the human 

body (Traber & Arai, 1999). 
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Tocochromanols R1 R2 R3 

δ- H H CH3 

β- CH3 H CH3 

γ- H CH3 CH3 

α- CH3 CH3 CH3 

Figure 2.1: Chemical structures of tocopherols and tocotreinols. The table indicates the 

number and position of methyl groups in δ-, β-, γ-, α-tocopherols and tocotrienols (Sen et al., 

2006). 

Tocopherols are present in seeds, fruits, roots, tubers, cotyledons, hypocotyls, stems, 

leaves and flowers of higher plants (Munne-Bosch & Alegre, 2002). Tocochromanols are 

synthesized by plants and other photosynthetic organisms. In plants, the role of different 

vitamin E forms is still unclear. The presence of higher levels of α-tocopherol in 

photosynthetic tissues provides evidence of its role in the photosynthetic apparatus for 

protection against oxygen toxicity and lipid peroxidation. However, the accumulation of γ-

tocopherol in seeds is thought to be involved in the prevention of auto-oxidation of 

polyunsaturated fatty acids (Munne-Bosch & Alegre, 2002). Other possible functions of 

tocochromanols in plants such as regulation of membrane fluidity and a role in intracellular 

signaling have received attention (Hofius & Sonnewald, 2003; Porfirova et al., 2002).  
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 The nutritional value of vitamin E was first recognized in 1922 (Evans & Bishop, 1922). 

The most recognized function of tocopherols in humans is their ability to scavenge and 

quench reactive oxygen species
 
and lipid-soluble oxidative stress by-products (Bramley et al., 

2000; Brigelius-Flohe & Traber, 1999; Ricciarelli et al., 2002). Epidemiological data suggest 

that high vitamin E intake (100-1000 IU) correlates with a decreased risk of certain types of 

cancer and cardiovascular diseases (Bramley et al., 2000), improves the immune system and 

slows down the progression of human degenerative diseases (Traber & Sies, 1996). The 

human body cannot synthesize vitamin E and it must be provided in the diet. Recommended 

Daily Allowance (RDA) is 15 mg (35 µmol)/day of α-tocopherol (Institute of Medicine, 

2000). Vitamin E deficiency can occur in three specific cases: a) people who either show 

incapacity to absorb dietary fat because they cannot secrete bile or suffer rare disorders of fat 

metabolism; b) people who suffer genetic abnormalities in the α-tocopherol transfer protein 

(α–TTP); and c) premature, very low weight birth infants [birth weights < 1500 grams (Office 

of dietary supplements, 2008)]. Vitamin E deficiency causes poor transmission of nerve 

impulses, muscle weakness, sclerosis of the gastrointestinal tract and degeneration of the 

retina that can cause blindness (Hanna, 1995; Tanyel & Mancano, 1997).  

 The composition of tocols varies widely among different plant species (Table 2.1). In 

green leaves of higher plants the predominant form of vitamin E is α-tocopherol, whereas 

generally in seeds γ-tocopherol is the major form (D DellaPenna & Last, 2006; Hess JL, 

1983). Tocotrienols are the major form of vitamin E in seeds of monocots including rice, 

wheat, oat and maize (Barnes, 1983; Padley et al., 1994; Peterson & Qureshi, 1993). In dicots 

tocopherols are the principal vitamin E components in both leaves and seeds (Kamal-Eldin & 

Appelqvist, 1996; Padley et al., 1994). Tocol amount and composition in maize varies ca: 

from ca: 36µg/g to 44µg/g in whole seeds, where γ-tocopherol is the highest fraction (Weber, 

1987). The major portion of the tocols in different maize genotypes is concentrated in the 

embryo (from 63% up to 91% in), while the endosperm contains from 9% up to 37%. 

Tocopherols are mostly concentrated in the maize embryo, while tocotrienols predominate in 

the endosperm (Weber, 1987). Much of the variation in plant tocochromanol content is due to 

the expression, activity and substrate specificities of different pathway enzymes (reviewed by 

DellaPenna and Last, 2006). 
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Plant and 

organ 

Total tocopherols 

(ug/g fresh 

weight) 

Percent α-

tocopherol 

Percent others and major 

type 

Potato tubers 0.7 90 10% γ, β-T 

Rice (grains) 17 18 30%  α-T3, 30%  γ-T3, 

18%  γ-T 

Lettuce leaf 7 55 45% γ-T 

Spinach leaf 30 63 5% γ-T, 33% δ-T 

Arabidopsis leaf 10-20 90 10% γ-T 

Arabidopsis 

seed 

200-300 0 95% γ-T, 5%  δ-T 

Sunflower seed 

oil 

700 96 4% γ, β-T 

Maize seed oil 1000 20 70% γ-T, 7% δ-T 

Soybean seed 

oil 

1200 7 70% γ-T, 22% δ-T 

Wheat germ 

oil 

2700 47 25% β-T, 10% γ-T, 7% β-

T3 

Table 2.1: Tocopherol levels and composition in selected plant tissues and oils (Hess, 1983; 

Taylor & Barnes, 1981). α-T, β-T, γ-T and δ-T are α-, β-, γ- and δ-tocopherol, respectively. 

Α-T3,  β-T3, γ-T3 and δ-T3 are α-, β-, γ- and δ-tocotrienols, respectively. 

1.1.2 Vitamin E biosynthetic pathway 

The tocochromanol biosynthetic pathway in the plastids of higher plants was 

elucidated from radiotracer studies in the mid-1980s (Falk et al., 2003). Precursors are derived 

from the shikimate and methylerythritol phosphate (MEP) pathways. The shikimate pathway 

produces homogentisic acid (HGA) which contributes to the “head group” whereas the MEP 

pathway contributes to the side chain (Garcia et al., 1997) of tocochromanols. The first 

committed step is the conversion of ρ-hydroxyphenylpyruvic acid (HPP) to HGA by ρ-

hydroxyphenylpyruvic acid dioxygenase that occurs in the cytosol (HPPD) (Figure 2.2). This 

enzyme participates in the catabolism of the aromatic amino acid tyrosine (Savidge et al., 

2002). HGA is then prenylated with either PDP or GGDP to produce the intermediates 2-

methyl-6-phytyl benzoquinone (MPBQ) and 2-methyl-6-geranylgeranylplastoquinol 

(MGGBQ) (DellaPenna, 2005). Tocopherol biosynthesis takes place in the plastids and the 

enzymes homogentisate phytyltransferase (HPT), MPBQ methyltransferase (MPBQ-MT), 

tocopherol cyclase (TC), γ–methyltransferase (γ–TMT)] are associated with the chloroplast 
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envelope. The first step in tocopherol biosynthesis is prenylation of HGA with PDP to 

generate MPBQ. This is a prenyl transfer reaction that is catalyzed by HPT (Hofius & 

Sonnewald, 2003; Karunanandaa et al., 2005). MPBQ is a substrate for MPBQ-MT, which 

adds a second methyl group to MPBQ to form 2,3-dimethyl-5-phytyl-1,4-benzoquinone 

(DMPBQ). The initial step of tocotrienol biosynthesis is condensation of geranylgeranyl 

pyrophosphate (GGPP) with homogentisate (HGA), catalyzed by homogentisate 

geranylgeranyltransferase (HGGT), producing 2-methyl-6-geranylgeranylbenzoquinol 

(MGGBQ) (Cahoon et al., 2003). MGGBQ is the substract for MPBQ-MT, which adds a 

second methyl group to form 2,3-dimethyl-6-geranylgeranylbenzoquinol (DMGGBQ) 

(Matsuzuka et al, 2013).  

All four intermediates (MPBQ, DMPBQ, MGGBQ and DMGGBQ) are substrates for 

tocopherol cyclase (TC), which produces δ and γ tocopherols and tocotrienols. Finally, γ-

tocopherol methyltransferase (γ-TMT) catalyses a second ring methylation to yield α and β 

tocopherols and tocotrienols (Matsuzuka et al, 2013). 
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Figure 2.2: Vitamin E biosynthetic pathway in plants and transgenes used in the work 

described in this chapter. Enzymes in red ovals correspond to transgene product. 

Abbreviations: methylerythritol phosphate (MEP), ydroxyphenylpyruvate (HPP), 

hydroxyphenylpyruvate dioxygenase (HPPD), homogentisic acid (HGA), phytyldiphosphate 

(PDP), geranylgeranyl pyrophosphate (GGPP), homogentisate phytyltransferase (HPT), 

homogentisate geranylgeranyltransferase (HGGT), 2-methyl-6-phytylbenzoquinol (MPBQ), 

2-methyl-6-phytylbenzoquinol methyltransferase (MPBQ-MT), 2,3-dimethyl-5-phytyl-1,4-

benzoquinol (DMPBQ), 2-methyl-6-geranylgeranylbenzoquinol (MGGBQ), 2,3-dimethyl-6-

geranylgeranylbenzoquinol (DMGGBQ), tocopherol cyclase (TC), γ–tocopherol 

methyltransferase (γ–TMT) (Adapted from Naqvi et al., 2011; Matsuzuka et al, 2013). 
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2.2.3 Genetic engineering strategies for enhancing vitamin E content in plants 

Plants can be engineered to accumulate higher levels of vitamin E by introducing 

transgenes that encode enzymes involved in tocochromanol synthesis. Improvements in 

vitamin E accumulation and composition in plants can be achieved either by increasing the 

total tocochromanol/tocotrienol content or skewing tocochromanol synthesis toward α-

tocopherol (Table 2.2).  

The introduction of single or multiple limiting pathway enzymes can help to relieve 

bottlenecks and increase total vitamin E levels. For example, a two-fold increase in 

tocopherol levels was achieved in canola seeds by expressing the Erwinia herbicola tyra 

gene, which encodes chorismate mutase-prephenate dehydrogenase and is responsible for the 

synthesis of HPP from prephenate (Karunanandaa et al., 2005). In contrast, constitutive 

expression of the barley hppd gene in tobacco leaves had no effect on tocopherol levels (Falk 

et al., 2003). Arabidopsis leaves expressing Arabidopsis HPT1 accumulated ca: 458 µg/g dry 

weight (DW) of total tocopherols, a 4.4-fold increase over wild-type levels (Collakova & 

DellaPenna, 2003). The simultaneous expression of Erwinia herbicola tyra, Arabidopsis 

HPPD and Synechocystis spp vte2 (HPT) in canola seeds resulted in a three-fold increase in 

total tocochromanols (Karunanandaa et al., 2005). 

Different approaches have been used to modulate vitamin E composition of plants. For 

example, the overexpression of MPBQ-MT diverts flux towards the α-branch of the pathway 

at the expense of the δ-branch, because MPBQ-MT converts MPBQ to DMPBQ, which later 

can be converted to α-tocopherol via TC and γ-TMT. The impact of Arabidopsis VTE3 and 

VTE4 expression in soybean seeds, alone or in combination, has also been investigated (Van 

Eenennaam et al., 2003). The expression of VTE3 alone (under the control of the seed-specific 

napin promoter) increased the total tocopherol content only marginally. However, it caused 

the preferential accumulation of γ-tocopherol (75–85% of total tocopherols) indicating that 

flux was diverted into the α-branch of the pathway and that the inefficient conversion of γ- to 

α-tocopherol by γ-TMT (VTE4) was the rate-limiting step in the pathway (Shintani & 

DellaPenna, 1998). In maize, the combination of HPPD and MPBQ-MT caused a three-fold 

increase in γ-tocopherol levels in whole seed (to 9.5 µg/g DW) without changing the total 

tocopherol content, again showing that flux was directed into the α-branch but was limited by 

low γ-TMT activity, forcing the accumulation of γ-tocopherol (Naqvi et al., 2011). In rice, 
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constitutive expression of HPPD did not change the α:γ ratio in the tocotrienol branch or the 

overall level of tocopherols in whole seed. However, the α:γ ratio increased significantly, 

resulting in an increased amount of α-tocopherol in rice seed (1.4-fold) at the expense of γ-

tocopherol (Farré et al., 2012). 

The constitutive expression of γ-TMT (VTE4) alone resulted in the accumulation of 

100% α- and β-tocopherol in soybean seeds (Van Eenennaam et al., 2003), but expression 

under the control of the seed-specific vicilin promoter resulted in a 41-fold increase in α-

tocopherol levels in seeds (Lee et al., 2011). Combining VTE3 and VTE4 in soybean resulted 

in an eight-fold increase in α-tocopherol levels; α-tocopherol was the main tocochromanol 

vitamer in the seeds (Van Eenennaam et al., 2003).  

By combining the above strategies, it was possible to increase overall tocopherol 

levels and skew the content towards the accumulation of α-tocopherol. In T2 transgenic lettuce 

plants, a six-fold increase in the total tocopherol content was achieved (up to ca: 42µg/g fresh 

weight) by the constitutive expression of Arabidopsis HPT and VTE4, also resulting in a six-

fold increase in the α/γ ratio (Li et al., 2011).  

The success of the above approaches depended not only on the expression of 

functional enzymes, but also on factors such as promoter choice and transgene origin (Kumar 

et al., 2005; Tsegaye et al., 2002). Most transgenic plants with enhanced vitamin E levels 

have been engineered with transgenes under the control of seed-specific promoters e.g. the 

canola napin promoter, the soybean 7Sα and vicilin promoters, and the Daucus carota 

DC3RΩ promoter, but constitutive promoters such as the Cauliflower mosaic virus 35S 

(CaMV 35S) and maize ubiquitin-1 (Ubi1) promoters have also been used. Appropriate 

promoter choice contributes to the higher vitamin E levels achieved in transgenic plants, e.g. 

the expression of Arabidopsis HPPD under the control of the DC3R promoter in Arabidopsis 

seeds achieved a 1.3-fold increase in the total tocopherol content (to 528 µg/g) compared to 

1.1-fold (398 µg/g) when using the CaMV 35S promoter (Tsegaye et al., 2002). The transgene 

origin may have an impact on tocochromanol content because enzymes from different species 

have different intrinsic levels of activity, and codon usage may also affect the efficiency of 

protein synthesis. For example, the maize vte1 gene expressed in canola under the control of 

the napin promoter resulted in a 1.7-fold increase in total tocochromanols (to 1159 µg/g seed 
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oil) compared to the 1.5-fold increase achieved using the Arabidopsis ortholog VTE1 (1018 

µg/g) (Kumar et al., 2005). 

Species Genes 

(origin) 

Promoter Vitamin E levels and 

composition  in transgenic 

plants 

Reference 

Maize hggt 

(barley) 

Corn oleosin 

(embryo-

specific)  

> 344,57 µg /g DW in seeds (6-

fold)  

Cahoon et 

al., 2003 

HPPD  and 

VTE3 

(Arabidopsi

s) 

Corn Ubi-1  9.5 µg/g DW γ-tocopherol in 

seeds (3-fold) 

 

Naqvi et al, 

2011 

Lettuce VTE4 

(Arabidopsi

s) 

CaMV 35S Improved α/γ tocopherol ratio 

0.4-544 (wild type = 0.6-1.2) 

Cho et al., 

2005 

VTE2 

(Arabidopsi

s) 

CaMV 35S 40.41 µg/g FW total tocopherol 

(5.7-fold) 0.46 α/γ ratio  no 

changes 

Li et al., 

2011 

VTE4 

(Arabidopsi

s) 

CaMV 35S 12.44 µg/g FW total tocopherol 

(1.75-fold) 9.19 α/γ ratio (20-

fold) 

VTE2 and 

VTE4 

(Arabidopsi

s) 

CaMV 35S 64.55 µg/g FW total tocopherol 

(9-fold) 8.34 α/γ ratio (18.5-fold) 
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vte2 

(Lettuce) 

CaMV 35S 17.77 µg/g FW total tocopherol 

in leaves 

(2.6-fold of α- and γ-tocopherol) 

in leaves  

Tocotrienols and other 

tocopherols were negligible 

Ren et al., 

2011 

VTE1 

(Arabidopsi

s) 

rbcL 22 µg/g FW total tocopherol in 

leaves 

 (1.3-fold) 

Yabuta et al., 

2013 

Mustard VTE4 

(Arabidopsi

s) 

CaMV 35S 609.7 µg/g total tocopherol in 

seeds (1.07-fold)  

367.6 µg/g α-tocopherol in seeds 

(6-fold) 

79.08 µg/g β-tocopherol in seeds 

(1.63-fold) 

211.5 µg/g γ-tocopherol in seeds 

(41% decrease) 

31.3 µg/g δ-tocopherol in seeds 

(21% decrease) 

Yusuf  & 

Sarin, 2007 



Chapter 2 

Simultaneous reconstruction of the carotenoid and vitamin E… 

 

81 
 

Canola HPPD 

(Arabidopsi

s) 

DC3Ω 819 µg/g total tocochromanol in 

seed oil (1.2-fold)  

183 µg/g α-tocochromanol in 

seeds (1.07-fold) 

606 µg/g γ-tocochromanol in 

seeds (1.24-fold) 

16.7 µg/g δ-tocochromanol in 

seeds (1.67-fold) 

Raclaru et 

al., 2006 

HPPD, 

HPT1 and 

VTE1 

(Arabidopsi

s) 

DC3Ω (HPD), 

napin (HPT1, 

VTE1)  

1850 µg/g total tocochromanol 

in seed (2-fold)  

610 µg/g α-tocopherol in seed 

(1.74-fold) 

1010 µg/g γ-tocopherol in seed 

(2.5-fold) 

163 µg/g δ-tocopherol in seed 

(14.8-fold) 

tyra (E. 

herbicola) 

Napin 540 µg/g total tocochromanols in 

seeds (2-fold) 

Karunananda

a et al., 2005 

tyra (E. 

herbicola), 

HPPD 

(Arabidopsi

s), vte2  

(Synechocy

stis spp) 

Arc (common 

bean arcelin-5), 

7Sα 

829 µg/g total tocochromanols in 

seeds (3-fold)  
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VTE1 

(Arabidopsi

s) 

Napin 1018 µg/g total tocochromanols 

in seed oil (1.36-fold)  

436 µg/g α-tocochromanol in 

seed (1.4-fold) 

510 µg/g γ-tocochromanol in 

seed (1.22-fold) 

36 µg/g δ-tocochromanol in seed 

(3.6-fold) 

Kumar et al., 

2005 

vte1 (maize)  1159 µg/g total tocochromanols 

in seed oil (1.55-fold)  

386 µg/g α-tocochromanol in 

seed (1.24-fold) 

720 µg/g γ-tocochromanol in 

seed (1.73-fold) 

32 µg/g δ-tocochromanol in seed 

(3.2-fold) 

Soybean 

 

tyrA (E. 

herbicola), 

HPPD, 

VTE2  and 

GGH 

(Arabidopsi

s) 

 Arc, 7Sα 4806 µg/g total tocochromanols 

in seeds (15-fold) 

94% tocotrienols 

slight reduction in total 

tocopherols  

Karunananda

a et al., 2005 
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VTE3 

(Arabidopsi

s) 

7Sα 329 µg/g total tocopherols in 

seeds 

10-20% α-tocopherol 

 0-1.9% β-tocopherol 

75-85%%  γ-tocopherol  

11%δ-tocopherol 

 

Van 

Eenennaam 

et al., 2003 

VTE4 

(Arabidopsi

s) 

7Sα 321 µg/g total tocopherols in 

seeds 

75% α-tocopherol 

 2-28% β-tocopherol 

15-79%  γ-tocopherol  

0-28%δ-tocopherol  

VTE3 and 

VTE4 

(Arabidopsi

s) 

7Sα 320 µg/g total tocopherols in 

seeds   

60-91% α-tocopherol (8-fold)  

no charge β-tocopherol,  

4.3-26.9%  γ-tocopherol  

1-10% δ-tocopherol  
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vte4 (Perilla 

frutescens) 

Vicilin 193.61 µg/g FW α-tocopherol in 

seeds (10.4-fold) 

23.96 µg/g FW β-tocopherol 

(14.9-fold) 

γ- and δ- tocopherol levels 

negligible  

Tavva et al., 

2007 

vte4 (P. 

frutescens) 

Vicilin 656 µg/g α-tocopherol in seed 

(41-fold) 

208 µg/g β-tocopherol (1.23-

fold) 

marginal change in γ- and α- 

tocopherol 

Lee et al., 

2011 

Arabidops

is 

 

VTE4 

(Arabidopsi

s) 

DC3(carrot) 360.6 µg/g total tocopherol (no 

differences) 

342 µg/g α-tocopherol in seeds 

(86-fold; 95.1% of total 

tocopherols) 

Reductions in γ-tocopherol 

(from 96.9% to 3.9%) and δ-

tocopherol (from 2.18% to 0%)  

Increase in β-tocopherol (from 

0% to 1%)  

Shintani & 

DellaPenna, 

1998 

HPPD 

(Arabidopsi

s) 

CaMV 35S 

 

398 µg/g total tocopherol content 

in seeds (1.1-fold) 

 

Tsegaye et 

al., 2002 
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DC3 528 µg/g total tocopherol in 

seeds (1.3-fold) 

 

VTE2 

(Arabidopsi

s)  

CaMV35S  473 µg/g  DW total tocopherol 

in leaves (4.4-fold; mainly α-

tocopherols) 

555.62 µg/g  DW total 

tocopherol in seeds (40% 

increase; mainly γ-tocopherol) 

Collakova & 

DellaPenna, 

2003 

VTE2 

(Arabidopsi

s) 

Napin 926 µg/g total tocopherol in 

seeds (2-fold) 

Savidge et 

al., 2002 

Tobacco tyra (E. 

uredovora) 

Arabidopsis 

histone H4748 

 

67 µg/g DW  total tocotrienols in 

leaves (1.3-fold)  

14.3 µg/g DW α-tocotrienol in 

leaves 

Rippert et al., 

2004 

tyra (E. 

uredovora)  

HPPD 

(Arabidopsi

s) 

Arabidopsis 

histone  H4748 

 

551 µg/g DW total tocotrienols 

content in leaves (10-fold) 

412.3 µg/g DW α-tocotrienol in 

leaves 

No change in tocopherol content 

Hppd 

(barley) 

CaMV 35S 58 µg/g FW γ-tocotrienol in 

seeds (2-fold)  

50 µg/g FW γ-tocopherol in 

seeds (2-fold)   

Falk et al., 

2003 
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VTE1  

 

(Arabidopsi

s) 

rbcL 22µg/g  FW total Toc in leaves 

(1.6-fold)  

Yabuta et al., 

2013 

VTE4 

(Arabidopsi

s) 

rbcL No significant dfferences 

 

VTE1  

VTE4 

(Arabidopsi

s) 

rbcL 27 µg/g FW total Toc (2.2-fold) 

in leaves 

15 µg/g FW α-Toc(1.2-fold) in 

leaves 

Rice HPPD 

(Arabidopsi

s) 

Corn Ubi-1 Improved α/γ tocopherol ratio 

3.97 (wild type = 2.35) 

6.00 µg/g DW α-tocopherol in 

seeds (1.4-fold) 

Farré et al., 

2012 

Tomato  vte2 (apple) CaMV 35S 4.5 µg/g FW α-tocopherol in 

fruits (1.7-fold) 

Seo et al., 

2011 

Table 2.2: Vitamin E enhancement by genetic engineering. DW = dry weight; FW = fresh 

weight (Farré et al., 2012). 

Our experimental strategy for the enhancement of vitamin E in maize seeds involves 

the simultaneous expression of Arabidopsis thaliana PDS1, HPT1, VTE3 and VTE4 genes 

using a combinatorial transformation strategy (Zhu et al, 2008). A stacking strategy was used 

to introgress this vitamin E mini-pathway into a second transgenic maize line expressing 

Zmpsy1 and PacrtI. We carried out an in-depth analysis at the transcript and metabolite levels 

in an attempt to determine the specific impact in metabolite accumulation and interaction of 

vitamin E and carotenoid biosynthetic pathways. 
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2.3 Materials and methods 

2.3.1 Plant material 

 A transgenic maize line was generated by combinatorial nuclear transformation and 

was shown to express all four transgenes required for vitamin E biosynthesis in maize, 

AtPDS1, AtVTE2, AtVTE3 and AtVTE4. This line was crossed with the Carolight
R
 transgenic 

line expressing Zmpsy1 and PacrtI (Chapter 1) generating a hybrid line expressing all six 

transgenes. Endosperm, embryo and seed samples were harvested at 30DAP for each parent, 

and corresponding cross, frozen in liquid nitrogen, and stored at -80ºC prior to use. 

2.3.2 Cloning and vector construction 

Genes involved in tocopherol biosynthesis (phytoene desaturation mutant gene 

number 1, AtPDS1; homogentisate phytylpernyltransferase, AtHPT or AtVTE2; 2-methyl-6-

phytylplastoquinol methyltransferase, AtVTE3; and γ-tocopherol methyltransferase, AtVTE4) 

were cloned from Arabidopsis thaliana. On the basis of gene information (GenBank 

accession numbers AF000228, AY089963, AB054257, AF104220, respectively) forward and 

reverse primers were designed and the full length cDNA of each gene was amplified by 

reverse transcriptase PCR. Genes were sub-cloned into the pGEM®-T easy vector (pGEM®-

T Vector Cloning Kit, Promega, Madison, Wisconsin, USA) that was later digested with 

BamHI and HindIII and was ligated into vector pAL76 containing the maize ubiquitin-1 

promoter with its first intron and the nos terminator.  

 

 2.3.3 Combinatorial maize transformation 

 Maize plants (Zea mays L., cv. M37W, white endosperm maize) were grown in the 

greenhouse and/or growth room at 28/20ºC day/night temperature with a 10h photoperiod and 

60–90% relative humidity for the first 50 days, followed by maintenance at 21/18ºC day/night 

temperature with a 16-h photoperiod thereafter. M37W immature zygotic embryos (IZEs) at 

10-14 days after pollination were excised aseptically and cultured on N6 medium (Ramessar 

et al., 2008). After 5 days, the embryos were bombarded with 10 mg of DNA coated gold 

particles. Target tissues were incubated on N6 medium containing high osmoticum (0.2 M 
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mannitol and 0.2 M sorbitol) for 3 to 4 hours prior to and 16 hours after bombardment. The 

gold particles were coated at a molar ratio of 3:1 relatively to the gene of interest. The 

following amounts of plasmid was used to coat the gold particles: 0.0094 mg of PAL76-

AtPDS1 (2245 ng/µl); 0.009 mg of PAL76-AtVTE2 (2100 ng/µl); 0.0088 mg of PAL76-

AtVTE3 (2145 ng/µl); 0.0089 mg of PAL76-AtVTE4 (1220 ng/µl); and 0.018 selectable 

marker plasmid pTRAuxbar (1668ng/µl) derived from pAHC20 which contains the bar gene 

(Christensen & Quail, 1996) for selection (Christou et al., 1991). Bombarded callus was 

selected on phosphinothrin-supplemented medium (3mg/l) as described previously (Ramessar 

et al., 2008). The maize transformation process is illustrated in Figure 2.3. The media 

composition is listed in Table 2.3.  

  

 

 

Table 2.3: Media composition (amounts listed for 1l; pH was adjusted to 5.8 with1M KOH) 
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Figure 2.3: Maize transformation process. 

 

2.3.4 Total RNA isolation and mRNA analysis  

 The protocol is described in detail in Chapter 1, section 1.3.2. Primer sequences 

used for designing probes are shown in Table 2.4. 

Transgene Primer set 

AtPDS1 Forward: 5’-AGGATCCTCAATGGGCCACCAAAACGCCGCCG-3’ 

Reverse: 5’-AAGCTTCATCCCACTAACTGTTTGGCTTC-3’ 

AtHPT1 Forward: 5’-AGGATCCATGGAGTCTCTGCTCTCTAGTTCTT-3’ 

Reverse: 5’-GAAGCTTCACTTCAAAAAAGGTAACAGCAAG-3’ 

AtVTE3 Forward: 5’-AGGATCCATGGCCTCTTTGATGCTCAACGG-3’ 

Reverse: 5’-CAAGCTTCAGATGGGTTGGTCTTTGGGAAC-3’ 

AtVTE4 Forward: 5’-AGGATCCTAAATGAAAGCAACTCTAGCAGCA-3’ 

Reverse: 5’-GAAGCTTAGAGTGGCTTCTGGCAAGTGATG-3’ 

       Table 2.4: Primer sequences used for probe design. 

 

 



Chapter 2 

Simultaneous reconstruction of the carotenoid and vitamin E… 

 

90 
 

 2.3.5 Quantitative real time PCR 

 The protocol and primer design for endogenous carotenogenic genes are described 

in detail in Chapter 1, section 1.3.3. Primer sequences used for designing forward and reverse 

primers for vitamin E endogenous genes are shown in Table 2.5. 

 2.3.6 Carotenoid and vitamin E analysis through HPLC 

 The protocol and primer design for endogenous carotenogenic genes are described 

in detail in Chapter 1, section 1.3.4. Total tocopherols and tocotrienols were extracted in 20 

ml 50/50 (v/v) tetrahydrofuran (THF) and methanol at 60ºC for 15-20 min. Extracts were 

filtered into a funnel and the solid residues were re-extracted in acetone to ensure complete 

tocopherol extraction. The combined extracts were partitioned in petroleum ether 90/10 (v/v).  

THF and methanol residues were removed from the upper phase by washing twice with 

distilled water. For HPLC separation, the solvent was evaporated under a stream of N2 at 37ºC 

and the residue was re-dissolved in 20 µl acetone and injected immediately. The samples were 

separated on a Nucleosil C18 3µ column (Macherey and Nagel, Dueren, Germany) with a 

mobile phase of 88% ethanol: 10% ethyl acetate: 1% triethylamine: 1% water, at a column 

temperature of 25°C. Samples were monitored with a Kontron DAD 440 photodiode array 

detector with on-line registration of the spectra. α-Tocopherol was identified by co-

chromatography with an authentic reference compound and comparison of their spectra. This 

standard was also used for quantification in combination with the extinction coefficient 

(Davies 1976). These analyses were performed in Dr P. Fraser’s laboratory at The Royal 

Holloway University of London, UK. 
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2.4 Results 

2.4.1 Combinatorial transformation of vitamin E genes into maize endosperm and mRNA 

analysis of introduced transgenes 

I transformed four-day-old immature zygotic embryos of South African elite white 

maize inbred M37W by bombarding them with gold particles coated with five constructs: four 

transgenes involved in vitamin E biosynthesis: Arabidopsis thaliana PDS1(encoding ρ-

hydroxyphenylpyruvate dioxygenase or HPPD), HPT1(encoding homogentisate 

phytyltransferase), VTE3 (encoding 2-methyl-6-phytylbenzoquinol methyltransferase or 

MPBQ-MT), and VTE4 (encoding γ-tocopherol methyltransferase or γ-TMT) and the 

selectable marker bar. The four genes (ATPDS1, ATHPT1, ATVTE3 and ATVTE4) were 

individually ligated into separate pAL76 vectors containing the maize ubiquitin-1 promoter 

and its first intron. I recovered one transgenic line VE, which co-expressed all four input 

transgenes. This line was crossed with the high carotenoid content transgenic line (HC) 

described in Chapter 1 expressing Zmpsy1 (encoding phytoene synthase 1) and PacrtI 

(encoding phytoene desaturase) also in the M37W genetic background. Transgene expression 

was confirmed by mRNA blot analysis (Figure 2.4).  

ATPDS1, ATHPT1, ATVTE3 and ATVTE4 expression at  the mRNA level were 

measured in VE, HC and in the corresponding cross VExHC. Zmpsy1 and PacrtI expression 

was also confirmed in HC and in the corresponding cross VExHC (Figure 2.4).  
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Figure 2.4: Transgene expression analyses in maize endosperm. mRNA blot analysis (25 µg 

of total RNA per line) was used to monitor transgene expression in the endosperm (30 DAP) 

of wild type M37W, and transgenic lines VE, HC and the corresponding cross VExHC. 

 

3.4.2 UHPLC analysis of α-tocopherol and carotenoid accumulation in maize seeds 

In order to elucidate the interaction of the tocopherol and the carotenoid biosynthetic 

pathways, VE and HC lines were crossed to generate VExHC. α-Tocopherol content of VE, 

HC, VExHC and M37W were analyzed by UHPLC separately in the embryo, endosperm and 

in the whole seed (Table 2.5). α-Tocopherol accumulation was in general higher in the 

embryo in all lines. VExHC, co-expressing all six transgenes (ATPDS1, ATHPT1, ATVTE3, 

ATVTE4, Zmpsy1 and PacrtI), exhibited an increase of ca: 8-fold of α-tocopherol in the 

embryo compared to wild type, VE, and HC. α-Tocopherol also accumulated in whole seeds 

in VE and VExHC up to 0.02 and 0.05 µg/g DW, while only traces were detected in M37W 

and HC in the whole seed. Only traces of α-tocopherol were detected in the endosperm of all 

the lines. 
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 PL  Tissue α-tocopherol 

HC Embryo 0.09±0.01 

  Endosperm traces 

  Seed traces 

VE Embryo 0.06±0.01 

  Endosperm traces 

  Seed 0.02±0.00 

VExHC Embryo 0.49±0.16 

  Endosperm traces 

  Seed 0.05±0.03 

WT Embryo 0.06±0.00 

  Endosperm traces 

  Seed traces 

Table 2.5: α-Tocopherol content of HC, VE, VExHC and WT (M37W), in the embryo, 

endosperm and whole seeds. Results are presented in µg/g DW± SD (n = 3–5 embryos, 

endosperm or seeds). Abbreviations: PL, plant lines. 

Carotenoid content of VE, HC, VExHC and wild type M37W were analyzed by 

UHPLC in the endosperm and whole seeds (Table 2.6). VE did not show significant 

differences in carotenoid composition compared to wild type, which accumulate up to ca: 

5µg/g DW total carotenoids in whole seeds and up to ca: 4 µg/g DW in the endosperm. HC 

had higher carotenoid content than wild type and VE in endosperm and seeds, accumulating 

ca: 79 µg/g DW total carotenoids in the seeds and ca: 86 µg/g DW in the endosperm. VExHC 

accumulated ca: 7% less total carotenoids in whole seeds and ca: 28% less in the endosperm, 

than HC. 

 Carotenoid accumulation in maize embryo varied between lines. VE and wild type 

accumulated zeaxanthin as the only carotenoid, in similar amounts (ca: 8 µg/g DW). 

However, HC and VExHC accumulated additional carotenoids, including β-carotene, 

antheraxanthin, and lutein, in addition to zeaxanthin. The most prevalent carotenoid in HC 
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and VExHC was zeaxanthin. Zeaxanthin accumulation in VExHC was 3-fold higher than in 

HC and 2-fold higher than in VE and wild type. 

Table 2.6: Carotenoid content and composition in HC, VE, VExHC and WT (M37W) in the 

endosperm, embryo and whole seeds at 30 DAP. Results are presented in µg/g DW± SD (n = 

3–5 endosperm and seeds). Abbreviations: Phyto, phytoene; β-cryp, β-cryptoxanthin; β-caro, 

β-carotene; Lut, lutein; Zea, zeaxanthin; Anthe, antheraxanthin; TC, total carotenoids; Endos, 

endosperm; PL, plant lines. 

 

 

 

PL  Phyto β-caro β-cryp Anthera Zea Lut TC 

WT  Seed 0.3±0.0 0.0±0.0 0.0±0.0 0.4±0.0 2.4±0.1 1.2±0.0 4.3 

  Endos 0.3±0.0 0.0±0.0 0.0±0.0 0.3±0.0 2.0±0.1 1.1±0.0 3.7 

 Embryo 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 7.8±0.5 0.0±0.0 7.8 

VE Seed 0.0±0.0 0.0±0.0 0.0±0.0 0.6±0.2 2.9±0.3 1.2±0.1 4.7 

  Endos 0.3±0.0 0.0±0.0 0.0±0.0 0.0±0.0 2.1±0.0 1.1±0.0 3.6 

 Embryo 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 7.5±0.3 0.0±0.0 7.5 

VEx

HC  

Seed 14.2±0.1 12.4±1.0 6.2±0.4 5.2±0.9 25.5±2.0 9.9±0.5 73.4 

  Endos 17.0±0.2 11.3±0.04 6.2±0.8 1.7±0.1 15.9±2.5 9.6±0.2 61.7 

 Embryo 
0.0±0.0 1.7±0.1 0.0±0.0 0.4±0.0 14.2±1.3 0.9±0.1 

17.2 

HC  Seed 19.7±0.9 14.5±0.8 6.7±0.5 2.3±0.4 25.4±1.0 9.9±0.4 78.6 

 Endos 25.6±0.6 15.0±3.4 7.7±2.0 2.1±1.2 26.5±6.6 8.8±1.9 85.8 

 Embryo 0.0±0.0 0.88±0.0 0.0±0.0 0.5±0.0 4.2±0.1 0.4±0.0 5.9 
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2.5 Discussion 

Carotenoids and tocopherols are two important groups of antioxidants that are relatively 

abundant in maize (Egesel et al., 2003; Weber, 1987). Carotenoids and tocopherols typically 

found in maize include‚ β-carotene, α-carotene, β-cryptoxanthin, lutein, zeaxanthin (Egesel et 

al., 2003; Weber, 1987) and α-, δ-, and γ -tocopherols (Weber, 1987), respectively. Higher 

levels of tocopherols are found in the embryo, while carotenoids are more commonly 

associated with the kernel endosperm (Weber, 1987). Several strategies have been developed 

to increase carotenoid levels in plants including maize (see Chapter 1). Different approaches 

have also been used to modulate α-tocopherol composition in plants.  

Four transgenes (AtPDS1, AtVTE2, AtVTE3 and AtVTE4) encoding rate limiting enzymes 

in the vitamin E pathway were co-expressed constitutively in maize in order to direct the 

pathway to the α-branch to relieve the γ-TMT limiting step and accumulate α-tocopherol in 

seeds. This vitamin E mini-pathway was introgressed into a High Carotenoid (HC) maize line 

co-expressing Zmpsy1 and PacrtI in the endosperm (described in chapter 1) in order to 

generate maize accumulating α-tocopherol and also high amounts of carotenoids 

simultaneously in the same line, VExHC.  

 

2.5.1 Introgression of the vitamin E biosynthetic pathway into HC resulted in a significant 

increase in α-tocopherol levels and a moderate decrease in carotenoid accumulation in maize 

seeds of resulting hybrids. 

The enzymes that catalyze the later steps of the tocopherol pathway, MPBQ 

methyltrasferase (MBPQ MT), tocopherol cylcase (TC) and γ-TMT, are important in 

determining the composition of tocopherols in plants (Farré et al., 2012). The expression of 

AtVTE3 (MBPQ MT) alone and also together with AtVTE4 (γ-TMT) in soybean under the 

control of a seed specific promoter resulted in a significant increase in α- and γ-tocopherols in 

seeds, with a simultaneous decrease in the levels of the δ- and β- isomers, indicating a shift in 

the pathway from the δ- to the γ- branch (Van Eenennaam et al., 2003). On the basis of these 

results, the authors suggested that expression of AtVTE3 under the control of a seed-specific 

promoter might be useful in reducing δ-tocopherol levels in favour of γ-tocopherol (Van 

Eenennaam et al., 2003). 
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Introduction of AtVTE4 into transgenic soybean plants already expressing AtVTE3, resulted 

in dramatic increases in the levels of α-tocopherol, with simultaneous decreases in γ-

tocopherol levels, demonstrating the conversion of γ- to α-tocopherols as a result of AtVTE4 

(γ-TMT) overexpression (Van Eenennaam et al., 2003). In earlier studies, M37W maize seeds 

co-expressing constitutively AtPDS1 and AtVT3 had increased amounts of γ-tocopherol, up to 

ca: 3-fold compared to wild type. However, in the case of maize co-expressing AtPDS1 and 

AtVTE3, no α-tocopherol could be detected, as there was no γ-TMT activity in the maize seed 

(Naqvi et al., 2011). These results were in agreement with previous studies where γ-TMT was 

shown to be limiting in seeds of cereals such as maize (Shintani & DellaPenna, 1998).  

In my experiments, VE maize line seeds overexpressing a vitamin E mini-pathway 

comprising (AtPDS1, AtVTE2, AtVTE3 and AtVTE4), exhibited a redirection of the pathway 

towards the α-branch and also accumulated up to 0.02 µg/g DW of α-tocopherol in VE, and 

0.05 µg/g DW in VExHC (overexpressing AtPDS1, AtVTE2, AtVTE3, AtVTE4, Zmpsy1 and 

PacrtI) (Table 2.5, Results section). This suggests that expression of AtVTE4 facilitated 

conversion of γ- to α-tocopherol. γ-Tocopherol accumulation measurements are ongoing. In 

earlier studies in maize seeds co-expressing AtPDS1 and AtVTE3 in the same genetic 

background M37W, γ-tocopherol accumulated up to ca: 10 µg/g DW. In relation to carotenoid 

accumulation, VE and wild type differed in β-carotene accumulation (Table 2.6, Results 

section). β-Carotene, was not detected in M37W, whereas it accumulated in VE at ca: 1 µg/g 

DW. This suggested that the tocopherol mini-pathway influenced the carotenoid pathway 

resulting in β-carotene accumulation. In contrast, VExHC in which both pathways operate 

simultaneously exhibited a decrease in total endosperm carotenoids up to ca: 5% compared to 

HC. Phytoene and β-carotene accumulation decrease ca: 27 and 15%, respectively in VExHC. 

These results suggest that biosynthesis of carotenoid decreases in order to compensate the 

activation of the tocopherol biosynthetic pathway towards α-tocopherol. 

 

 

2.5.2 Simultaneous modulation of carotenoid and tocopherol biosynthesis influences core 

metabolic processes in maize seeds  

Tocopherol and carotenoid biosynthesis differ in maize embryo and endosperm. Most of 

the seed carotenoids accumulate in the endosperm (ca: 90%) with only a small amount (ca: 
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10%) in the embryo; the reverse is true for tocopherols which predominate in the embryo 

(Weber, 1987). In my experiments α-tocopherol was found exclusively in the embryo. This 

demonstrates a separation of α-tocopherol biosynthesis in endosperm and embryo. The 

embryo was the major site of carotenoid biosynthesis and accumulation compared to the 

endosperm (in M37W wild type and VE) (Table 2.6, Results section). In wild type and VE, 

carotenoid concentration was up to 2-fold higher in the embryo relatively to the endosperm. 

This corresponds to the accumulation of endogenous Psy transcripts in maize embryo (Singh 

et al., 2003). In contrast, in HC, carotenoid biosynthesis was engineered specifically in the 

endosperm. This not only enhanced carotenoid accumulation in the endosperm, making this 

tissue the major carotenogenic site in the seed but, in addition, it decreased carotenoid 

accumulation in the embryo (Table 2.6, Results section). These results corroborate an earlier 

in depth study in which metabolomic analysis in HC and wild type also confirmed a ca: 2-fold 

decrease in the embryos of HC compared with M37W (Decourcelle et al., 2015). In the same 

study sterols and γ-tocopherol were analysed, indicating a significant increase in sterols in HC 

endosperm and embryo, compared to wild type, but a decrease in γ-tocopherol accumulation, 

demonstrating that HC needs a higher flux through and out of the glycolytic pathway for the 

synthesis of carotenoids, sterols and fatty acids (Decourcelle et al., 2015). 

The maximum accumulation of total carotenoids was in the embryo of VExHC, ca: 2-fold 

higher than in VE and wild type embryos, and ca: 3-fold higher than the embryo in HC. 

Carotenoid accumulation in the endosperm of VExHC decreased, ca: 26%, compared to HC. 

It thus appears that our results established the existence of a competition between the 

carotenoid pathways in the endosperm and the embryo. The prevalent carotenoid was 

zeaxanthin in both embryo and endosperm, whereas α-carotene, β-carotene and their 

hydroxyl-derivatives were below the limit of detection (in VE and wild type) or accumulated 

at very low levels (in HC and VExHC) (Table 2.6, Results section).   

α-Tocopherol accumulation in the embryo of VExHC was ca: 8-fold higher than in the 

wild type. VE co-expressing all four transgenes (AtPDS1, AtVTE2, AtVTE3 and AtVTE4) did 

not exhibit differences in α-tocopherol accumulation compared to wild type. The 

heterozygosity of VE could have diluted α-tocopherol accumulation as measured by UHPLC 

analysis. I have shown that modulation of carotenogenesis has collateral effects on other 

terpenoid or terpenoid-related pathways, particularly in non-target organs such as the embryo. 

In earlier studies, in which combined transcript, proteome and metabolite analysis through 
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and integrative model using the HC line, indicated that overexpression of a carotenogenic 

pathway resulted in pleotropic effects in core metabolism (Decourcelle et al., 2015). The 

model was supported by higher activities of fructokinase, glucose 6-phosphate isomerase, and 

fructose 1,6-bisphosphate aldolase indicating a higher flux through the glycolytic pathway for 

the synthesis of carotenoids, sterols and fatty acids. Although pyruvate and acetyl-CoA 

utilization was higher in the engineered line (HC), pyruvate kinase activity was lower 

indicating a down regulation of the citrate cycle (Decourcelle et al., 2015).  

Further studies focusing on the modulation of carbohydrate metabolism in VExHC seeds 

will allow a deeper understanding of upstream utilization of precursors towards tocopherol 

and carotenoid accumulation and how the corresponding precursors are distributed in the 

endosperm and the embryo. Analysis of the remaining vitamin E forms, such as γ-tocopherol, 

will elucidate how AtPDS1, AtVTE2, AtVTE3 and AtVTE4 modulate the pathway in maize 

seeds.  

 

 

2.6 Conclusions 

I reconstructed the carotenoid and vitamin E biosynthetic pathways (Zmpsy1 and PacrtI, 

and AtPDS1; AtVTE2, AtVTE3 and AtVTE4) in a novel maize hybrid. I measured a significant 

increase in α-tocopherol accumulation and a moderate decrease in carotenoid accumulation in 

the seeds of the hybrid, demonstrating an interaction between these two pathways. I also 

demonstrated that endosperm-specific carotenoid biosynthesis and constitutive tocopherol 

biosynthesis influenced core metabolic processes in maize embryo and endosperm. This in 

turn resulted in the accumulation of zeaxanthin and α-tocopherol, respectively as the 

predominant metabolites in the two pathways, in the maize embryo. On the other hand, α-

tocopherol was not detected in the endosperm, but total carotenoid decreased up to a ca: 28%, 

mostly because in the reduction in the levels of zeaxanthin and phytoene. Further studies 

focusing on the effects of the carotenoid and vitamin E pathways on core metabolites, such as 

sugars which are precursors for both pathways, and also other vitamin E forms, such as γ-

tocopherol, will allow a deeper understanding of the interaction of these two pathways and 

their impact on core metabolism in maize seeds.  
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3.1 Abstract 

Astaxanthin is a high-value ketocarotenoid rarely found in plants. It is derived from β-

carotene by the 3-hydroxylation and 4-ketolation of both ionone end groups, in reactions 

catalyzed by β-carotene hydroxylase and β-carotene ketolase, respectively. We investigated 

the impact of introducing an extended carotenoid biosynthetic pathway into different maize 

endosperm backgrounds in order to optimize the production of astaxanthin. This allowed us to 

identify and resolve potential bottlenecks in the different genotypes  that might facilitated the 

accumulation of this valuable compound in the endosperm. White maize endosperm does not 

accumulate high amounts of carotenoids because phytoene synthase, the enzyme responsible 

for the first committed step in the pathway, is not present in this tissuet. We therefore 

expressed a combination of ketocarotenogenic transgenes in maize endosperm, generating a 

maize line expressing two synthetic β-carotene ketolases and a synthetic β-carotene 

hydroxylase. This mini-pathway was introgressed into different maize backgrounds with 

different endosperm carotenoid profiles. The resulting lines predominantly accumulated 

astaxanthin at different levels, from ca: 9 µg/g up to 18 µg/g DW. We demonstrate that 

selection of an appropriate genetic background has significant effects on carotenoid 

conversion and astaxanthin accumulation.  

 

3.2 Introduction 

Ketocarotenoids are carotenoids that contain at least one keto group on the β-ionone 

ring(s). Many ketocarotenoids are synthetize by algae, fungi and bacteria and impart an 

attractive red color to the feathers and skin of many birds such as flamingo, scarlet ibis or 

roseate spoonbill (Hudon & Brush 1992). Astaxanthin (3,3’-dihydroxy-β, β-carotene-4,4’-

dione) is a commercially valuable ketocarotenoid (Margalith, 1999) because it is widely used 

in the aquaculture industry to produce pink flesh in fish and shellfish, such as salmon and 

lobster, respectively  (Guerin et al., 2003). Demand for astaxanthin is increasing also because 

of applications in human dietary supplements and cosmetics (Berman et al., 2014. Partial 

chemical synthesis is used to manufacture astaxanthin (Nguyen, 2013; Hirschberg & Lotan, 

2001). Although chemical synthesis produces a mixture of stereoisomers with limited 

applications, most of the commercial astaxanthin is produced in that way because it is more 
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economical than extraction or fermentation from natural sources, such as Phaffia rhodozyma 

or Haematococcus pluvialis (reviewed in Berman et al., 2014).  

Astaxanthin is a strong antioxidant (Miki, 1991) protecting against a wide range of 

diseases (Guerin et al., 2003). It has anti-inflammatory properties and inhibits the oxidation of 

low-density lipoproteins in humans (Kishimoto et al., 2010). It also helps to prevent diabetic 

nephropathy in diabetic db/db mice (Naito et al., 2006), protects against cancer (Saino et al., 

2000; Tanaka et al., 2012) and boosts the immune system (Chew & Park, 2004; Jyonouchi et 

al., 1991). The various functions of astaxanthin make it an attractive target for genetic 

engineering in plants where the objective is to increase its content (Giuliano et al., 2006; 

Naqvi et al., 2009; Sandmann et al., 2006; Zhu et al., 2008; Zhu et al., 2007a).  

3.2.1 Astaxanthin biosynthetic pathway  

Astaxanthin is synthesized from β-carotene by the introduction of keto and hydroxyl 

moieties at the 4,4’ and 3,3’ positions of the β-ionone rings (Figure 3.1). These reactions are 

catalyzed by a β-carotene ketolase and a β-carotene hydroxylase (Misawa et al. 1995; Zhu et 

al., 2009). Whereas the hydroxylation reaction is widespread in higher plants, ketolation is 

mostly restricted to bacteria, fungi, and some unicellular green algae (Misawa et al. 1995; Zhu 

et al., 2009). Therefore, whereas many higher plants can synthesize different hydroxylated 

carotenoids such as zeaxanthin, only a few species in the genus Adonis can synthesize 

ketocarotenoids, e.g. Adonis aestivalis, which accumulates ketocarotenoids in its flowers 

(Cunningham & Gantt, 2011). This is because β-carotene ketolase, which is responsible for 

the conversion of β-carotene to canthaxanthin and zeaxanthin to astaxanthin, is not usually 

expressed in plants. 
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Figure 3.1: Astaxanthin biosynthesis pathway in bacteria and transgenic plants. 

Catalytic function of β-carotene hydroxylase (arrow with circle) and β-carotene ketolase 

(arrow with square) (Zhu et al., 2009; Zhu et al., 2013). 

3.2.2 Genetic engineering strategies for enhancing astaxanthin content in plants 

Competition between β-carotene hydroxylase and β-carotene ketolase for substrates in 

the extended ketocarotenoid pathway provides a novel way for astaxanthin formation (Figure 

3.1). A significant bottleneck limiting accumulation of high levels of astaxanthin in transgenic 

plants is the inefficient conversion of zeaxanthin to astaxanthin via adonixanthin, a reaction 

catalyzed by β-carotene ketolases (Zhu et al., 2009). There are three major classes of β-

carotene ketolases, BKT, CRTO and CRTW (Mann et al., 2000; Ralley et al., 2004; Suzuki et 

al., 2007; Zhu et al, 2008). Previous literature reported that plants overexpressing the marine 

or bacterial CRTW can synthesize astaxanthin with lower efficiency (Mann et al., 2000; 

Morris et al., 2006; Ralley et al., 2004; Suzuki et al., 2007) (Table 3.1). Transgenic tobacco 

expressing Brevundimonas CRTW and CRTZ (β-carotene hydroxylase) accumulated more 

than 0.5% (dry weight) astaxanthin (ca: 70% of total carotenoids) in leaves, which developed 

a reddish brown color (Hasunuma et al., 2008). Transgenic Arabidopsis thaliana expressing 
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BKT from Chlamydomonas reinhardtii (CrBKT) exhibited orange pigmentation in leaves due 

to the accumulation of substantial amounts of astaxanthin (up to 2 mg/g dry weight with a 

1.8-fold increase in total carotenoids) (Zhong et al., 2011). The efficiency of CrBKT for the 

accumulation of astaxanthin was therefore demonstrated to be much higher than other BKT 

genes, including CzBKT (Chlorella zofingiensis BKT) and HpBKT3 (Haematococcus pluvialis 

BKT3) (Zhong et al., 2011). Expression of the two linked gene cassettes Crbkt and Hpbch in 

tomato resulted in the up-regulation of most intrinsic carotenogenic genes leading to massive 

accumulations of mostly free astaxanthin in leaves (ca: 3 mg/g) and esterified astaxanthin in 

fruits (ca: 16 mg/g). A 16-fold increase in total carotenoid accumulation was reported in these 

plants without any detrimental effects on plant growth and development (Huang et al., 2013) 

(Table 3.1). 

Genes origin  Promoter Plant 

species 

Major ketocarotenoids 

(µg/g) / tissue/organ of 

accumulation  

Reference 

BKT (H. pluvialis) Tomato 

PDS gene 

Tobacco Astaxanthin (23.5), 

adonirubin (17.1), 

adonixanthin (12), 

canthaxanthin (10.2), 3-

OH echinenone (8.5), 3’-

hydroxyechinenone 

(8.1)/nectaries FW 

Mann et 

al., 2000 

BKT (H. pluvialis) Seed 

storage 

protein 

napA 

(oilseed 

rape) 

Arabidop

sis 

thaliana 

4-keto-lutein, 

canthaxanthin and 

adonirubin/seeds 

(Stålberg 

et al., 

2003) 

CRTW and CRTZ 

(Paracoccus 

CaMV Tobacco Ketocarotenoids/leaves 

(800) DW and nectaries 

Ralley et 
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spN81106) 35s (64) DW al., 2004 

CRTO (Synechocystis 

spPCC6803) 

CaMV 

35s 

Potato Echinenone (7600), 3’-

hydroxyechinenone 

(1500) and 4-

ketozeaxanthin (2700)/ 

leaves DW; astaxanthin 

(1.8), 3’-

hydroxyechinenone (0,4) 

and 4-ketozeaxanthin 

(8.5)/ tubers DW 

Gerjets  & 

Sandmann

, 2006 

BKT (H. pluvialis) Patatin 

(potato) 

Potato  

cv. 

Desiree 

4-ketolutein (0.5) and 

astaxanthin (0.6)/desiree 

tubers(DW) 

Morris et 

al., 2006 

Potato  

cv. 

Mayan 

Gold 

4-Ketolutein(9.8) and 

astaxanthin(9.5)/ Mayan 

Gold tubers(DW) 

CRTW 

(Paracoccus 

spN81106) 

CaMV 

35S 

Lotus 

japonicus 

ketocarotenoids (89.8)/ 

flower petals(DW) 

Suzuki et 

al., 2007 

CRTO 

(Synechocystis 

spPCC6803), 

CRTZ (Pananatis) 

CaMV 

35S 

Tobacco Echinenone(8), 

3´-Hydroxyechinenone(5 

.2), 

4-keto-lutein(8.8)/leaves( 

DW); echinenone(11.6), 

Gerjets et 

al., 2007 
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4-keto-lutein(8.5) and 

4-keto-zeaxanthin(12.9)/ 

nectaries(DW) 

CRTO 

(Synechocystis 

spPCC6803) 

CaMV 

35S 

Tobacco echinenone (2.3) and 

4-keto-lutein (2.6)/ 

leaves, echinenone (83.), 

4-keto-lutein (6.7) and 

4-keto-zeaxanthin 

(8.3)/nectaries(DW) 

Gerjets et 

al., 2007 

CRTO 

(Synechocystis 

spPCC6803) 

CaMV 

35S 

/icotiana 

glauca 

echinenone (3.8), 

4-keto-zeaxanthin (7.8), 

ketolutein (9.9) and 

3´-hydroxyechinenone 

(7.0)/petals(DW); 

echinenone (1.8), 

ketolutein (3.5) and 

3´-hydroxyechinenone 

(4.4) /nectary(DW); 

echinenone (7.6), 

4-keto-zeaxanthin (2.2), 

ketolutein (3.7) and 3´-

hydroxyechinenone 

Zhu et al., 

2007b 



Chapter 3 

Underlying mechanisms for the conversion of carotenoids to astaxanthin… 

113 
 

(11.4)/pistils(DW); 

echinenone (11.0) and 

3´-hydroxyechinenone 

(14.5) /sepal(DW); 

echinenone (6.7) and 

3´-hydroxyechinenone 

(12.9) /ovary(DW) 

CRTW 

and 

CRTZ 

(Brevundimonas 

spSD212) 

Tobacco 

rrn 

Tobacco astaxanthin (5440), 

4-ketoantherxanthin 

(370), adonirubin (140), 

adonixanthin (110), 

canthaxanthin (80) and 

3´-hydroxyechinenone 

(30)/leaves(DW) 

Hasunuma 

et al., 

2008 

BKT 

(H. pluvialis) 

Double 

CaMV 

35S 

 

Carrot astaxanthin (91.6), 

adonixanthin (15.9), 

adonirubin (57), 

canthaxanthin (50.1) and 

echinenone 

(21.4)/roots(DW); 

astaxanthin (34.7), 

Jayaraj et 

al., 2007 
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adonixanthin (5.0), 

adonirubin (5.9), 

canthaxanthin (4.0) and 

echinenone 

(2.7)/leaves(DW); 

astaxanthin (12.4), 

adonixanthin (3.2), 

adonirubin (3.1), 

canthaxanthin (5.8) and 

echinenone 

(5.6)/callus(DW) 

CRTW 

(ParacoccusspN8110

6) 

λ-zein 

(maize) 

Maize astaxanthin (4.5), 

adonixanthin (22.4), 

3'-

hydroxyechinenone(3.8) 

and echinenone 

(5.1)/Maize 

endosperm(DW) 

Zhu et al., 

2008 

Idi 

(Paracoccus 

spstrain 

N81106), 

Pnos,  

Pnapin, 

from 

Bnapus,P

Brassica 

napus 

echinenone (109.8), 

3'-hydroxyechinenone 

(3.9), 

3-hydroxyechinenone 

Fujisawa 

et al., 

2009 
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CRTW 

(Brevundimonas 

Spstrain SD212), 

CRTZ, CRTE 

(Pantoea ananatis, 

ATCC19321), 

CRTB, 

CRTY, 

CRTI 

3 

5S, 

CaMV 

35S, 

PFAE, 

FAE1 

seed-

speci 

fic 

promoter 

from A. 

thaliana 

(10.6), astaxanthin (0.6), 

adonixanthin (1.5), 

adonirubin (7.1) and 

canthaxanthin 

(51.1)/Bnapus 

seeds(DW) 

CrBKT 

(Chlamydomonas 

reinhardtii) 

CaMV 

35S 

A. 

thaliana 

echinenone (80), 

3'-hydroxyechinenone 

(100), astaxanthin 

(1370), adonixanthin 

(390), adonirubin (370), 

canthaxanthin (240), 

and 4-ketoantheraxanthin 

(190)/Arabidopsis 

leaves(DW); echinenone 

(2.27), 

3-hydroxyechinenone 

Zhong et 

al., 2011 
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(0.51), Astaxanthin 

(17.23), adonixanthin 

(16.64) and 

4-Ketoantheraxanthin 

(0.1 

4)/Arabidopsis seed(DW) 

HpBKT 

(H. pluvialis) 

ibAGP1 

promoter 

Carrot Astaxanthin (17.2), 

Adonirubin (5.6)/carrot 

root(DW) 

Ahn et al., 

2011 

CrBKT 

(Chlamydomonas 

reinhardtii) 

CaMV 

35S 

Tomato Echinenone (60), 

3'-hydroxyechinenone 

(190), 

4-Ketoantheraxanthin 

(10), Astaxanthin (350), 

Adonixanthin (320), 

adonirubin (530) and 

canthaxanthin 

(1690)/tom 

ato leaves (DW), 

Echinenone (200), 

Astaxanthin (926), 

Adonirubin (828), 

canthaxanthin 

Huang et 

al., 2013 
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(2249)/tom 

ato fruits(DW) 

BKT 

(Chlamydomonas 

reinhardtii) 

and 

HpBC 

H (Haematococcus 

pluvialis) 

CaMV 

35S 

Tomato Echinenone (80), 

Astaxanthin (3120), 

Adonixanthin (910), 

adonirubin (230) and 

4-Ketoantheraxanthin 

(250), 

Canthaxanthin 

(338)/toma 

to leaves(DW), 

Echinenone (562.7), 

Astaxanthin (16104.1), 

Adonixanthin (393), 

Adonirubin (197) and 

4-Ketoantheraxanthin 

(117), 

Canthaxanthin 

(338)/tomato fruits (DW) 

Huang et 

al., 2013 

CRTZ and CRTW 

Brevundimonas 

sp. 

SD212, 

CaMV 

35s/ 

GBSS 

Potato  

cv. Gold 

Mayan 

Keto ester (16.3), 

Ketolutein (9.2), 

astaxanthin (7.1), other 

keto (2.4) tuber (DW) 

Campbell 

et al., 

2015 
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chemically 

synthesised/ 

OR (cauliflower) 

 

CRTZ and CRTW 

Brevundimonas 

sp. 

SD212, 

chemically 

synthesised 

CaMV 

35s 

Potato  

cv. Gold 

Mayan 

Keto ester (8.4), 

ketolutein (5.5), 

astaxanthin (4), other 

keto (1.5) tuber (DW) 

Campbell 

et al., 

2015 

CRTZ and CRTW 

Brevundimonas 

sp. 

SD212, 

chemically 

synthesised/ 

OR (cauliflower) 

 

CaMV 

35s/ 

GBSS 

Potato  

cv. 

01H15 

astaxanthin (53.2),  keto 

ester (22), other keto 

(5.6) tuber (DW) 

Campbell 

et al., 

2015 

CRTZ and CRTW 

Brevundimonas 

sp. 

SD212, 

CaMV 

35s 

Potato cv. 

01H15 

astaxanthin (28),  keto 

ester (18.8), other keto 

(2)/ tuber DW 

Campbell 

et al., 

2015 
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Table 3.1: Ketocarotenoid levels in diverse transgenic plants. (DW = dry weight, FW = fresh 

weight) (Bai et al, 2011) 

In order to increase astaxanthin accumulation in maize endosperm and get a better 

understanding of the roles of  hydroxylase and ketolase enzymes in astaxanthin biosynthesis 

in maize endosperm, we expressed synthetic Chlamydomonas reinhardtii BKT and 

Brevundimonas CRTW  (β-carotene ketolases) together with a synthetic CRTZ (β-carotene 

hydroxylase) in the white-endosperm elite South African maize inbred M37W which is 

deficient in carotenoid accumulation because of the absence of the enzyme phytoene synthase 

(PSY1). This line was crossed with four different transgenic maize lines which had been 

engineered previously with different carotenogenic genes (M37W genetic background) and a 

wild type yellow-endosperm maize line, accumulating higher levels of β-carotene. Targeted 

metabolomic analysis of each resulting hybrid allowed us to draw conclusions on the relative 

ability of ketolase and hydroxylase enzymes to generate diverse metabolite profiles. The 

mechanistic basis of the near quantitative conversion of carotenoids to keto-derivatives was 

elucidated, and this provides a framework for further more targeted interventions to create 

plants with specific ketocarotenoid profiles suited to particular commercial applications.  

 

3.3. Materials and methods  

3.3.1 Cloning and vector construction 

Zea mays psy1 cDNA was cloned from maize inbred line B73 by RT-PCR based on 

the Zmpsy1 sequence (GenBank: AY324431) and incorporating appropriate restriction sites 

chemically 

synthesised 

CRTZ and CRTW 

Brevundimonas 

sp. 

SD212 

rrn Lettuce  

cv. 

Berkeley 

Canthaxanthin (12.2), 

adonirubin (2.5), 

astaxanthin diester (113), 

astaxanthin monoester 

(41.8), astaxanthin (23), 

4-ketoantheraxanthin (8) 

Harada et 

al., 2014 
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for vector construction. The product was inserted into pGEM®-T (Promega, Madison, WI, 

USA) for sequencing and then transferred to p326 containing the LMW glutenin promoter 

(Colot et al., 1987; Stoger et al., 1999) and nopaline synthase terminator. 

The Pantoea ananatis (formerly known as Erwinia uredovora) CrtI gene fused in 

frame with the transit peptide signal from the Phaseolus vulgaris small subunit of ribulose 

bisphosphate carboxylase (Schreier et al., 1985) in plasmid pYPIET4 (Misawa et al., 1993) 

was amplified by PCR based on the PacrtI sequence (GenBank: D90087). The product was 

inserted into pGEM®-T (Promega) for sequencing and then transferred to pHor-P containing 

the barley D-hordein promoter (Sørensen et al., 1996) and the rice ADPGPP terminator.  

AtOR cDNA was cloned directly from A. thaliana mRNA by reverse transcriptase 

PCR based on sequence infromation in GenBank (accession number U27099.1). The cDNAs 

was transferred to the pGEM-T easy vector (Promega) and the recombinant vector was 

digested with EcoRI. AtOR was introduced into vector p326, containing the wheat low 

molecular weight (LMW) glutenin gene promoter and nos terminator. 

The Paracoccus ssp. N81106 (formerly known as Agrobacterium aurantiacum) CrtW 

gene fused in frame with the P. vulgaris transit peptide signal described above (Schreier et al., 

1985) in plasmid p35W2AZ (Ralley et al., 2004) was amplified by PCR using forward primer 

5´-AGG ATC CAT GGC TTC TAT GAT ATC CTC TTC-3´ and reverse primer 5´-AGA 

ATTCTC ATG CGG TGT CCC CCT TGG TGC-3 incorporating appropriate restriction sites. 

The product was inserted into pGEM®-T (Promega) for sequencing and then transferred to 

vector pGZ63 containing the corn γ-zein promoter (Torrent et al., 1997) and nopaline 

synthase terminator. 

A truncated β-carotene ketolase gene from Chlamydomonas reinhardtii (Zhong et al., 

2011) was chemically synthesized by a commercial vendor (MWG Eurofins, Ebersberg, 

Germany) and optimized for maize codon usage. The modified gene (sCrBKT) was fused with 

the transit peptide sequence (TPS) from the Phaseolus vulgaris small subunit of ribulose 

bisphosphate carboxylase (Schreier et al., 1985) and the 5'-untranslated region (5'UTR) of the 

rice alcohol dehydrogenase gene (Sugio et al., 2008) under the control of the maize γ-zein 

promoter. The TPS and 5'UTR were also optimized for maize codon usage. 

 

β-carotene ketolase sBcrtW and hydroxylase sBcrtZ from Brevundimonas sp. Strain 

SD212 (Nishida et al., 2005) were chemically synthesized according to the codon usage of 
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Brassica napus (provided by Dr.Norihiko Misawa, Japan) and fused to the full-length rice 

alcohol dehydrogenase untranslated region (Sugio et al., 2008) and to the transit peptide 

sequence from the pea ribulose 1, 5-bisphospate carboxylase small subunit (Schreier et al., 

1985). These DNA fragments were inserted into plasmid GZ63 containing the maize γ-zein 

gene promoter and the nos terminator. 

 

3.3.2 Plant material 

Four different transgenic lines were generated as described in Chapter 2, subsection 

2.3.2; they are shown in Table 3.2. PSY, PCW, Or and a yellow endosperm maize inbred line 

C17 (obtained from Dr. Conchita Royo, IRTA, Lleida, Spain) were crossed with line ZWB 

co-expressing sBcrtZ, sBcrtW and sCrbkt. Endosperm samples from the resulting crosses 

were harvest at 30DAP, frozen in liquid nitrogen and stored at -80ºC prior to use. 

 

Lines Transgenes 

PSY Zmpsy1 

PCW Zmpsy1+PacrtI+PacrtW 

OR AtOR 

ZWB sBcrtZ+sBcrtW+sCrbkt 

 Table 3.1: Transgenic lines used in this study. 

sBcrtZ and sBcrtW genes were chemically synthesised. PcrtW was cloned from 

Paracoccus sp.N81106.  

 3.3.3 DNA analysis of endogenous maize carotenoid pathway genes 

 Genomic DNA was isolated from maize leaves by phenol extraction (Edwards et al., 

1991) and 20 µg aliquots were digested overnight with EcoRI. The DNA was fractionated by 

0.8% agarose gel electrophoresis (Sambrook et al., 1989), transferred to a positively-charged 

nylon membrane (Roche) and fixed by UV cross-linking. DIG-labeled probes generated by 

PCR using the exon-specific primers listed in Table 3.3 were purified using the QIAquick 

Gel Extraction Kit (Qiagen) and denaturated at 95ºC for 10 min prior to hybridization 

overnight at 42ºC. Membranes were washed at high stringency (twice for 5 min in 2x SSC, 

0.1% SDS at room temperature, twice for 30 min in 0.5 SSC, 0.1 SDS at 68ºC, once for 20 
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min in 0.2x SSC, 0.1% SDS at 68ºC, and once for 10 min in 0.1x SSC, 0.1% SDS at 68ºC) 

prior to chemiluminescent detection using the DIG Luminescent Detection Kit (Roche) 

according to the manufacturer’s instructions. After washing, the membranes were incubated 

with CSPD chemiluminescent substrate (Roche) and exposed on BioMax light film (Kodak) 

at 37ºC for 2h at 37ºC (or overnight if the signal was weak). 

 

3.3.4 Total RNA isolation and mRNA analysis  

 The protocol is described in detail in Chapter 1, section 1.3.2. Primer sequences 

used for designing probes are shown in Table 3.3. 

Transgene Primer set 

Zmpsy1 Forward: 5´-GTGTAGGAGGACAGATGAGCTTGT-3´ 

Reverse: 5´-CATCTGCTAGCCTGTGAGAGCTCA-3´ 

PacrtI Forward: 5´-TGGAGAAGCGTTTACAGTAAGGT-3´ 

Reverse: 5´-GCGTGCAGATAAAGTGAGAAGTC-3´ 

AtOR Forward 5´-ATGTCATCTTTGGGTAGGATTTTGT-3´ 

Reverse 5´-GGTTTTGGGCGGTGATAGAGA-3´ 

PacrtW Forward: 5´-ATCGCGCATGACGCGATGCACGG-3´ 

Reverse: 5´-GGTGCAGGTGGTGTTCGTGATGAT-3´ 

sCrbkt Forward 5´- GGATCCTCAGCCAGGAGCCAGTGCAGCGCCTCT-3´ 

Forward 5´-AATTCCATGGGGCCAGGCATTCAGCCCACTTCCG-3´ 

sBcrtZ Forward 5´- ACGAATTCGAT GGCCTG GCT GACGT -3´ 

Forward 5´- TAG AGGATCCTC AGG CGCCGCTGC TGG-3´ 

sBcrtW Forward 5´- TACGAATTCGATGAGCGCCGCCGTCG -3´ 

Forward 5´- TAGAGGATCCTCAAGACTCGCCGCGCCACAA -3´ 

  

Table 3.2: Primer sequences used for transgene probe design. 

 

3.3.5 Quantitative real time PCR 

The protocol is described in detail in Chapter 1, section 1.3.3. 
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3.3.6 Carotenoid extraction from maize endosperm 

The protocol is described in detail in Chapter 1, section 1.3.4. 

 

3.3.7 HPLC-MS and UHPLC-MS and carotenoid identification and quantification   

The protocols are described in detail in Chapter 1, section 1.3.5 and section 1.3.6. 

 

3.4 Results 

3.4.1 Combinatorial transformation of carotenogenic genes into maize endosperm and 

mRNA analysis of introduced transgenes 

I transformed four-day-old immature zygotic embryos of South African elite white 

maize inbred M37W by bombarding them with gold particles coated with four constructs: the 

selectable marker bar and three ketocarotenogenic genes: sCrBKT (Chlamydomonas 

reinhardtii truncated β-carotene ketolase), sBcrtW (modified β-carotene ketolase originally 

from Brevundimonas sp. Strain SD212), and sBcrtZ (modified β-carotene hydroxylase 

originally from Brevundimonas sp. Strain SD212). All transgenes were driven by the 

endosperm-specific maize γ-zein gene promoter. I selected two representative transgenic lines 

as discussed below. DNA blot analysis indicated that one line contained sCrBKT, sBcrtW and 

sBcrtZ, (line ZWB). Transgene expression was confirmed by mRNA blot analysis (Figure 

3.2). In this chapter the abbreviation TC refers to total carotenoids, including ketocarotenoids, 

when present. 

Line ZWB was crossed with different maize lines selected on the basis of their 

carotenoid composition:(a) wild type inbred line C17 was yellow in color and was selected 

because it accumulates naturally high levels of β-carotene; (b) transgenic line PSY, (M37W 

genetic background) expressing only Zmpsy1 accumulates high levels of total carotenoids, 

mostly zeaxanthin, lutein and antheraxanthin; (c) transgenic line PCW (M37W genetic 

background) expressing Zmpsy1, PacrtI and PacrtW, which not only accumulated high 

amounts of total carotenoids (mostly zeaxanthin and β-carotene), but also accumulates the 

ketocarotenoid adonixanthin at ca: 5% of TC (d) transgenic line Or, expressing an AtOR 

transgene which generates a metabolic sink for carotenoids. These lines had been generated in 

the laboratory previously and are described in section 3.3.1. Transgene expression in all 

transgenic lines and corresponding crosses was confirmed by mRNA blot analysis (Figure 
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3.2). This analysis revealed that Zmpsy1 mRNA accumulated only at detectable levels in lines 

PSY and PCW. Endogenous Zmpsy1 expression was beyond the limit of detection in C17 by 

mRNA blot analysis, but qRT-PCR analysis confirmed accumulation of this transcript. PacrtI 

and PacrtW mRNA accumulated in PCW, and AtOR mRNA accumulated only in OR. 

sCrBKT,sBcrtZ and sBcrtW mRNA accumulated in transgenic line ZWB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Transgene expression analyses in maize endosperm. mRNA blot analysis (25 µg 

of total RNA per lane) was used to monitor transgene expression in the endosperm (30 DAP, 
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T1 generation) of wild types M37W and C17, and transgenic lines PSY, PCW, OR and ZWB. 

Abbreviations:  Zmpsy1, maize phytoene synthase 1 gene; PacrtI, bacterial phytoene 

desaturase gene; PacrtW, bacterial β-carotene ketolase; AtOR, Arabidopsis thaliana Orange 

gene; sBcrtZ, synthetic β-carotene hydroxylase gene; sBcrtW, synthetic β-carotene ketolase 

gene; sCrbkt, synthetic C. reinhardtii β-carotene ketolase gene. 

 

 

3.4.2 Introgression of ketocarotenoid genes into diverse genetic backgrounds leads to 

different levels of astaxanthin accumulation in the resulting hybrids  

 In order to elucidate the mechanism of the conversion of carotenoids to astaxanthin in 

maize endosperm, ZWB was crossed with lines having different genetic backgrounds and 

carotenoid profiles: PSY, PCW, C17 and OR. 

ZWB expressing sBcrtZ, sBcrtW and sCrbkt  was crossed with PSY, PCW, OR and 

C17. PSYxZWB expressed four transgenes, Zmpsy1, sBcrtZ, sBcrtW and sCrbkt (Figure 3.2). 

PCWxZWB expressed six transgenes, Zmpsy1, PacrtI, PacrtW, sBcrtZ, sBcrtW and sCrbkt, 

[including three different β-carotene ketolases (Figure 3.2)]. ORxZWB expressed four 

different transgenes, AtOR sBcrtZ, sBcrtW and sCrbkt (Figure 3.2). C17xZWB expressed 

sBcrtZ, sBcrtW and sCrbkt (derived from ZWB) (Figure 3.2). 

The new genotypes resulted in phenotypes with different carotenoid and 

ketocarotenoid profiles. The original ZWB transgenic line expressing sBcrtZ, sBcrtW and 

sCrbkt exhibited a light pink color seed phenotype (Figure 3.3). HPLC analysis confirmed 

that this phenotype was due to the complete conversion of the total carotenoids (0.7µg/g DW) 

to astaxanthin (0.4 µg/g DW) (Table 3.4 and Table 3.5). PSYxZWB, PCWxZWB, ORxZWB 

and C17xZWB had a red/orange endosperm phenotype suggesting the accumulation of 

astaxanthin (Figure 3.3). 
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Figure 3.3: Phenotype of transgenic lines, wild type C17 (yellow), wild type M37W (white), 

and corresponding crosses with ZWB. ZWB exhibits a pale pink endosperm color, due to the 

accumulation of traces of astaxanthin; OR, PSY, PCW and C17 had yellow to orange 

endosperm due to the accumulation of carotenoids; ORxZWB, PSYxZWB, PCWxZWB and 

C17xZWB had orange-red endosperm due to different levels of astaxanthin. 

PSYxZWB    

 The highest accumulation of TC in all parental lines reported in these experiments 

(ca: 66 µg/g DW) was measured in PSY, expressing only Zmpsy1. The predominant 

endosperm carotenoids were zeaxanthin (ca: 23 µg/g DW, 35% of TC), antheraxanthin (ca: 14 

µg/g DW, 21% of TC), lutein (ca: 9 µg/g DW, 14% of TC and phytoene (ca: 8 µg/g DW, 12% 

of TC) (Table 3.4). Lycopene and β-carotene accumulated as minor components, ca: 3 µg/g 

DW (4-5% of TC) (Table 3.4). The carotenoid accumulation profile changed dramatically in 

PSYxZWB (Table 3.5). TC increased up to ca: 79 µg/g DW, with phytoene and astaxanthin 

being the predominant metabolites, ca: 25 µg/g DW (32%) and 12 µg/g DW (15%) 

respectively. Unknown ketocarotenoids also accumulated up to 17% of TC (Table 3.5). 

While different ketocarotenoids accumulated in the hybrid, the amount of zeaxanthin, 

antheraxanthin and lutein was reduced. They were accumulated only to 2-3% of TC. 

Lycopene and β-carotene levels remained similar to those in PSY (Table 3.5). 
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PCWxZWB 

PCW accumulates high amounts of TC (ca: 62 µg/g DW), as well as adonixanthin, as 

the only ketocarotenoid (ca: 3 µg/g DW, 5% of TC). The main carotenoids in this line are 

zeaxanthin (ca: 31 µg/g DW, 51% of TC), β-carotene (ca: 8 µg/g DW, 13% TC) and phytoene 

(ca: 6 µg/g DW, 10% TC) (Table 3.4). PCWxZWB accumulated higher amounts of TC (ca: 

80 µg/g DW), representing a ca: 60% conversion to ketocarotenoids. Astaxanthin was the 

predominant ketocarotenoid accumulated (ca: 17 µg/g DW, 22% TC) (Table 3.5). The 

conversion of carotenoids to ketocarotenoids consumed almost all carotenoids present in 

PCW. Phytoene and lycopene were the only carotenoids which accumulated in the hybrid. 

Phytoene levels increased up to ca: 17 µg/g DW and lycopene accumulated up to ca: 15 µg/g 

DW. Lycopene did not accumulate  in PCW (Table 3.5). 

ORxZWB 

OR accumulated lower amounts of TC (ca: 22 µg/g DW) compared to PSY, PCW and 

C17 (Table 3.4). The main carotenoids in this line were zeaxanthin (ca: 7 µg/g DW, 32% 

TC), antheraxanthin (ca: 6 µg/g DW, 27% TC) and lutein (ca: ca: 6 µg/g DW, 25% TC). β-

Carotene accumulation was very low (ca: 1 µg/g DW, 3% TC) and phytoene did not 

accumulate (Table 3.4). Introgression of the ketocarotenoid mini-pathway resident in ZWB 

into OR resulted in a 93% conversion of TC to ketocarotenoids. The only remaining 

carotenoids in the hybrid were lycopene (ca: 1 µg/g DW, 6 % TC) and traces of violaxanthin 

(Table 3.5). Astaxanthin was the most prevalent metabolite (ca: 8 µg/g DW, 52% TC), 

together with 3OH-echinenone (ca: 1 µg/g DW, 7% TC) and an unknown ketocarotenoid 

(36% of TC) (Table 3.5).  

C17xZWB 

Yellow maize C17 inbred line accumulates relatively higher amounts of β-carotene, 

compared to other wild type maize lines [ca: 11 µg/g DW (29% TC)], as well as lutein (ca: 12 

µg/g DW, 31% TC). Only two additional carotenoids were detected, phytoene (ca: 9 µg/g 

DW, 22% TC) and zeaxanthin (ca: 6 µg/g DW, 16% TC) (Table 3.4). The TC in C17 and 

corresponding cross C17xZWB, were very similar, ca: 39 µg/g DW and 35 µg/g DW, 

respectively (Table 3.4 and Table 3.5). However, C17xZWB had a different carotenoid 

profile with 100% of carotenoids converted to ketocarotenoids. Astaxanthin was the 
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predominant ketocarotenoid (ca: 12 µg/g DW, 35% TC). Canthaxanthin and adonixanthin also 

accumulated but in lower amounts, ca: 2 µg/g DW (5% TC) and 3 µg/g DW (9% TC), 

respectively. Slightly more than half of total carotenoids were unknown ketocarotenoids 

(Table 3.5).  

Table 3.3:  Carotenoid content of ZWB, PCW, Or, PSY and C17, and corresponding crosses 

PCWxZWB, OrxZWB, PSYxZWB and C17xZWB in the endosperm.  

Results are presented as % of individual carotenoids and total carotenoids (TC) in µg/g dry 

weight (DW) ± SD (n = 3–5 mature seeds).  These crosses were carried out in the spring of 

2013.  α-Cryptoxanthin and α-carotene did not accumulate. Abbreviations: Phyto, phytoene; 

Lyco, lycopene; β-cryp, β-cryptoxanthin; β-caro, β-carotene; ζ-beta + peroxi ζ-beta, ζ-

betacarotene + peroxi ζ-betacarotene; Lut, lutein; Zea, zeaxanthin; Anthe, antheraxanthin; 

Viola, violaxanthin. 

 

 

 

 

 

Metabolite

/plant line  Phyto Lyco β-cryp β-caro 

ζ-beta + 

peroxi 

ζ-beta Lut Zea Anthe Viola TC 

PCW 10 0 5 13 0 8 51 7 1 61.8 

PCWx 

ZWB 22 19 0 0 0 0 0 0 0 80.4 

Or 0 0 3 3 0 25 32 27 9 22.2 

Orx 

ZWB 0 6 0 0 0 0 0 0 1 16.4 

PSY 12 4 2 5 0 14 35 21 6 65.7 

PSYx 

ZWB 32 4 0 4 2 2 3 2 1 78.9 

C17 22 0 1 29 0 31 16 0 0 38.9 

C17x 

ZWB 0 0 0 0 0 0 0 0 0 35.1 

ZWB 0 0 0 0 0 0 0 0 0 0.4 

M37W 0 0 0 0 0 29 57 0 14 0.7 
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Table 3.4: Ketocarotenoid content of ZWB, PCW, Or, PSY and C17, and corresponding 

crosses PCWxZWB, OrxZWB, PSYxZWB and C17xZWB in the endosperm.  

Results are presented as % of individual and total carotenoids (TC) (TC in µg/g dry weight 

(DW) ± SD (n = 3–5 mature seeds)].  These crosses were carried out in the spring of 2013. 

Abbreviations: Asta, astaxanthin; Cantha, canthaxanthin; Adoniru, adonirubin; Adonixan, 

adonixanthin; 3OH-echi, 3OH-echinenone. 

 

3.4.3 Endogenous carotenogenic gene expression profiles in hybrid lines 

To further investigate whether endogenous carotenoid gene expression was influenced 

by the expression of the introduced transgenes in the hybrids described above, transcript 

levels of endogenous phytoene synthase 1 (Zmpsy1), lycopene β-cyclase (ZmlycB), lycopene 

ε-cyclase (ZmlycE), β-carotene hydroxylase 1 and 2 (Zmbch1/2) genes were monitored by 

quantitative real-time RT-PCR 30DAP in the endosperm of all parents (PSY, PCW, OR, C17, 

ZWB and M37W) and hybrids (PSYxZWB, PCWxZWB, ORxZWB, C17xZWB) (Figure 

3.5). 

Zmpsy1 transcripts accumulated at high levels in PCW, PSY, PCWxZWB and 

PSYxZWB consistent with the presence of the transgene in these lines (Figure 3.5A). 

Samples/ 

Plant line Asta Cantha Adoniru Adonixan 3OH-echi 

Other 

keto 

% total 

KETO TC 

PCW 0 0 0 5 0 0 5 61.8 

PCWx 

ZWB 22 4 4 1 8 21 59 80.4 

Or 0 0 0 0 0 0 0 22.2 

Orx 

ZWB 52 0 0 0 7 34 93 16.4 

PSY 0 0 0 0 0 0 0 65.7 

PSYx 

ZWB 15 6 6 0 8 17 51 78.9 

C17 0 0 0 0 0 0 0 38.9 

C17x 

ZWB 35 5 0 9 0 52 100 35.1 

ZWB 100 0 0 0 0 0 100 0.4 

M37W 0 0 0 0 0 0 0 0.7 
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Endogenous Zmpsy1 transcript accumulation was lower in C17, C17xZWB, OrxZWB, ZWB 

and M37W, compared to transgenic lines accumulating Zmpsy1. While no endogenous 

Zmpsy1 transcript could be measured in OrxZWB, ZWB and M37W, it accumulated at 

moderate levels in C17 and C17xZWB (Figure 3.5B).  

ZmlycB transcript accumulation in C17 was the highest among all the lines, more than 

double compared to PCW, PSY, PCWxZWB, PSYxZWB, C17xZWB, OrxZWB, ZWB and 

M37W. However, ZmlycB transcript accumulation was reduced almost 3-fold in C17xZWB.  

ZmlycB transcript accumulation was also higher in PCWxZWB compared to the 

remaining lines (having the M37W background) (Figure 3.5C).  

ZmlycE expression exhibited the opposite trend in C17 compared to the other lines. 

This transcript did not accumulate in C17. However, ZmlycE transcript levels in C17xZWB 

were ca: 2- to 8-fold higher compared to the other lines. ZmlycE transcript levels were over 3-

fold lower in OR and ORxZWB compared to PCWxZWB, PSYxZWB and M37W (Figure 

3.5D).  

Relative accumulation of Zmbch2 transcripts was in general low in all the lines. No 

accumulation of Zmbch2 was measured in C17; however, qRT-PCR analysis confirmed the 

presence of this transcript in OR, ORxZWB and ZWB (Figure 3.5E). Zmbch1 transcripts 

accumulated at very low levels in PCW, PSY, OR, PCWxZWB, PSYxZWB, C17xZWB, 

OrxZWB, ZWB and M37W, while Zmbch1 transcript accumulated at higher levels in C17 

and C17xZWB (ca: over 5-fold) compared to PCW, PSY, OR, PCWxZWB, PSYxZWB, 

C17xZWB, OrxZWB, ZWB and M37W (Figure 3.5F).  
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Figure 3.4: Expression analyses of endogenous carotenogenic genes in C17 (1), 

C17xZWB (2), OR (3), ORxZWB (4), PCW (5), PCWxZWB (6), PSY (7), PSYxZWB (8), 

M37W (9) and ZWB (10). Relative transcript levels of endogenous Zmpsy1 (in all lines) (A), 

Zmpsy1 (only wild type lines, Or and ZWB lines) (B), ZmlycB (C), ZmlycE (D),  Zmbch2 (E) 

and Zmbch1 (F) genes in maize endosperm at 30 DAP. Values were normalized against actin 

mRNA and presented as the mean of three replicates ± SD.  
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3.5 Discussion 

3.5.1 Competition between β-carotene hydroxylase and β-carotene ketolase for substrates in 

the extended ketocarotenoid pathway provides a novel strategy for astaxanthin production in 

maize endosperm 

Metabolic engineering is an effective approach for the understanding and utilization of 

metabolic processes. Astaxanthin is a ketocarotenoid of commercial importance, and thus a 

suitable target for metabolic engineering in plants. Expression of β-carotene ketolase alone is 

not sufficient to convert carotenoids such as β-carotene or zeaxanthin to astaxanthin in maize, 

potato, tobacco or Arabidopsis  (Zhong et al., 2011; Zhu et al., 2008; Gerjets & Sandmann, 

2006; Gerjets et al., 2007; Zhu et al., 2007b). However, co-expression of β-carotene 

hydroxylase and β-carotene ketolase provides an effective strategy to convert β-carotene, 

zeaxanthin or β-cryptoxanthin to astaxanthin in plants (Campbell et al., 2015). We evaluated 

the impact of introgressing a ketocarotenoid mini-pathway resident in a transgenic line 

created earlier (line ZWB, with a M37W genetic background) into a range of maize genotypes 

specifically selected because of their diversity in their carotenoid profile, total carotenoid 

content and specifically β-carotene content in the endosperm. ZWB expressed one beta 

carotene hydroxylase (sBcrtZ) and two beta carotene ketolase (sBcrtW and sCrbkt) 

transgenes. Astaxanthin was the only carotenoid that accumulated in this line. Thus, the small 

amount of carotenoids in the M37W parent (lutein, zeaxanthin and violaxanthin) was 

quantitatively converted to astaxanthin (Figure 3.5). 

 In order to investigate the conversion of carotenoids to early pathway ketocarotenoid 

intermediates and astaxanthin, four transgenic maize lines (PSY, PCW, OR and C17) with 

different carotenoid profiles were crossed with ZWB. This resulted in different conversion 

efficiencies of carotenoids to astaxanthin and other ketocarotenoids in the resulting hybrids 

where the endogenous and induced carotenoid/ketocarotenoid pathways operated 

synergistically (Figure 3.5).  

3.5.2 High carotenoid content is a necessary but not the only prerequisite for the subsequent 

efficient conversion of precursors to astaxanthin 

Overexpression of Zmpsy1 in PSY, PCB, PSYxZWB and PCBxZWB provides 

unequivocal confirmation that PSY1 is the key enzyme limiting carotenoid biosynthesis in 
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maize endosperm (Buckner et al., 1996; Palaisa et al., 2003; Zhu et al., 2008). Even when 

Zmpsy1 transcripts accumulated at low levels as in C17 and C17xZWB total carotenoid levels 

in these two lines increased up to ca: 39 and 35 µg/g, respectively.  Carotenoids accumulated 

in OR and ORxZWB, even in the absence of Zmpsy1 expression, because of the generation of 

a carotenoid sink resulting from the expression of AtOR (Bai et al., 2014; Li et al., 2006). 

Accumulation of phytoene in PCW, PSY, C17, PSYxZWB and PCBxZWB indicates that 

conversion of phytoene to lycopene (catalyzed by endogenous desaturases and isomerases in 

PSY, C17 and PSYxZWB, and by PacrtI in addition to endogenous desaturases and 

isomerase in PCB, PCBxZWB and PCBxZWB) is a rate-limiting step for carotenoid 

biosynthesis in M37W (Naqvi  et al., 2011; Zhu et al., 2008) and also in C17. However,  

accumulation of lycopene in PSY, PSYxZWB and PCWxZWB, is consistent with results 

reported in earlier studies, where co-expression of Zmpsy1 and PacrtI and co-expression of 

Zmpsy1, PacrtI and GllycE in M37W resulted in the accumulation of lycopene (Zhu et al., 

2008). In contrast to results obtained in rice expressing similar gene complements (Paine et 

al., 2005; Ye et al., 2000; Bai et al., 2015), transgenic canola seeds expressing bacterial crtB 

and crtI, or crtB, crtI and crtY/Bnlycb (Ravanello et al., 2003), and transgenic potato tubers 

expressing bacterial crtB and crtI, or crtB, crtI and crtY (Diretto et al 2007) accumulated 

lycopene. These results demonstrated that lycopene cyclization is a rate-limiting step in the 

conversion of lycopene to cyclic carotenes in maize endosperm. In contrast, C17 (yellow 

maize) did not accumulate lycopene because ZmlycB expression eliminated the bottleneck in 

the lycopene cyclization step by converting it to lutein. 

 Levels of astaxanthin accumulation in PSYxZWB and PCWxZWB endosperm are 

also influenced by the initial total carotenoid amount in PSY and PCW endosperm, both of 

them with the highest total carotenoid amount, accumulated more astaxanthin than ORxZWB 

and C17xZWB, with less total carotenoid amount. In previous studies in potato, a ketolase 

and a hydroxylase were co-expressed in two different varieties, where the potato variety 

01H15.57 with higher levels of total carotenoids accumulated more astaxanthin than Mayan 

Gold (with less total carotenoids) (Campbell et al., 2015). In my experiments, co-expression 

of two beta carotene ketolases (sBcrtW and sCbkt) and a beta carotene hydroxylase (sBcrtZ) 

in PCWxZWB, PSYxZWB, ORxZWB and C17xZWB demonstrate that accumulation of 

astaxanthin in maize endosperm is determined by several factors, such as competition 

between these two enzymes for substrates in the extended maize ketocarotenoid pathway 
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towards astaxanthin biosynthesis. Co-expression of a β-carotene ketolase and a β-carotene 

hydroxylase has been one common strategy to convert carotenoids to astaxanthin (e.g., co-

expression of CRTW and CRTZ). Brevundimonas sp. SD212, Paracoccus sp. N81106 or 

Pananatis have been used as source of these two genes. However, in previous studies 

chemically synthesized CRTW and CRTZ from Brevundimonas sp. SD212 were more 

effective for astaxanthin accumulation in potato (Campbell et al., 2015). The β-carotene 

ketolase BKT has also been widely used to accumulate astaxanthin in different plants, such as 

HpBKT in carrot and tobacco (Ahn et al., 2011; Jayaraj et al., 2007; Mann et al., 2000) and 

CrBKT in tomato (Huang et al.,  2013) (Table 3.1). Haematococcus pluvialis or Chlorella 

zofingiensis have been the source for BKT, but is has been also demonstrated that synthetic 

BKT is more effective in terms of generating higher amounts of astaxanthin in plants 

compared to the corresponding gene from bacteria (Zhong et al., 2011).  

Our experiments involving co-expression of two β-carotene ketolase and a β-carotene 

hydroxylase in PCWxZWB and PSYxZWB did not convert all carotenoids to astaxanthin or 

to other ketocarotenoids. PSYxZWB and PCWxZWB still accumulated several carotenoids 

such as zeaxanthin, β-carotene or lutein. Previous studies in potato reported similar results by 

co-expressing sBcrtW and  sBcrtZ in a high total carotenoid background (Campbell et al., 

2015). On the other hand, in PCWxZWB co-expression of three beta carotene ketolases 

(PacrtW, sBcrtW and sCbkt) and a beta carotene hydroxylase (sBcrtZ) converted most but not 

all the carotenoids in maize endosperm to ketocarotenoids; phytoene and lycopene still 

accumulated in the hybrids (Figure 3.6B). This fact supports earlier results in maize where 

lycopene cyclization was identified as a bottleneck in ketocarotenoid biosynthesis (Zhu et al., 

2008). Canthaxanthin, adonirubin and echinenone accumulation in PSYxZWB and 

PCWxZWB indicates that overexpression of sBcrtZ is not sufficient to complete the 

hydroxylation steps towards astaxanthin. The same results were reported in other studies in 

tobacco, Brassica napus and lettuce, where by co-expressing CRTZ together with ketolases 

several ketocarotenoids accumulated, such as canthaxanthin, adonirubin and echinenone 

(Fujisawa et al., 2009; Harada et al., 2014; Hasunuma et al., 2008). 

At the same time, effects of co-expression of Or with a ketocarotenoid pathway have 

been assessed in maize in this study (ORxZWB), as it has been also done in potato in a recent 

study (Campbell et al., 2015). A high percentage of carotenoids were converted to 
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ketocarotenoids in both maize and potato. However, astaxanthin was not the only 

ketocarotenoid accumulated, nor it was the only ketocarotenoid accumulated in PSYxZWB 

and PCWxZWB. However, C17xZWB had the most efficient conversion of carotenoids to 

ketocarotenoids. However, as for ORxZWB, PSYxZWB and PCWxZWB, several 

ketocarotenoid intermediates accumulated, in addition to astaxanthin. A high Zmlyce 

transcript accumulation in C17xZWB might indicate a pathway redirection towards 

ketolutein. Previous studies showed that plants overexpressing a ketocarotenoid pathway and 

accumulating lutein, such as potato, Arabidopsis and tobacco, were able to produce ketolutein 

(Gerjets et al., 2007; Morris et al., 2006b; Stålberg et al., 2003; Zhu et al., 2007b).  
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Figure 3.5: Carotenoid profiles in maize parents (A) and resulting hybrids (B) following 

introgression of the ketocarotenoid biosynthetic mini-pathway (sBcrtZ, sBcrtW and sCrbkt) 

originally present in line ZWB. Overexpressed transgenes in each parent and hybrid: PSY: 

Zmpsy1; PCW: Zmpsy1, PacrtI, PacrtW; OR: AtOR; ZWB: sBcrtZ, sBcrtW and sCrbkt; 

PSYxZWB: Zmpsy1, sBcrtZ, sBcrtW and sCrbkt; PCWxZWB: Zmpsy1, PacrtI, PacrtW, 

sBcrtZ, sBcrtW and sCrbkt; ORxZWB: AtOR, sBcrtZ, sBcrtW and sCrbkt; C17xZWB: sBcrtZ, 

sBcrtW and sCrbkt. Surface area of each pie chart represents total carotenoid content and each 

segment represents % accumulation of individual metabolites. Pie chart on the left hand side 

of each hybrid in B, shows the detailed composition of ketocarotenoids in each hybrid.  

 

3.6 Conclusions 

We explored factors limiting astaxanthin production in maize endosperm by 

overexpressing a combination of two β-carotene ketolases and a β-carotene hydroxylase in 

different maize lines with diverse carotenogenic backgrounds. Co-expression of sBcrtW, 

sBcrtZ and sCrbkt in a white endosperm background (M37W) allowed the conversion of 

almost all carotenoids to astaxanthin in the resulting transgenic line. However, the initial low 

amount of total carotenoids in M37W only permitted accumulation of traces of astaxanthin in 

the transgenic line. Introgression of the same transgene combination into maize lines 

accumulating higher carotenoid amounts proved to be a novel and effective strategy to 

accumulate astaxanthin at higher levels in maize endosperm. The accumulation of several 

intermediates, particularly high levels of canthaxanthin, provides evidence for the existence of 

different bottlenecks in the extended ketocarotenoid pathway in maize endosperm. These 

include lycopene cyclization, or hydroxylation of canthaxanthin, adonirubin or echinenone, 

among others. Introgeression of a ketocarotenoid mini-pathway in yellow endosperm maize 

backgrounds was the most effective strategy for the conversion of carotenoids to 

ketocarotenoids. Remaining bottlenecks towards astaxanthin accumulation must be removed 

in order to maximize its accumulation in maize endosperm. 
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4.1 Abstract 

Folates are important cofactors in one-carbon metabolism in all living organisms. 

Only plants and microorganisms are capable of biosynthesizing folates, therefore, humans 

depend entirely on their diet as a folate source. Given the low folate content of several staple 

crops, folate deficiency affects developed as well as developing countries. Folate 

biofortification of staple crops through enhancement of the folate precursors, pterin and para-

aminobenzoate was successful in tomato and rice. However, the same strategy has not been 

sufficient to enhance folate levels in potato and Arabidopsis thaliana. In maize, the folate 

content was doubled by the enhancement of pterin levels. Our study shows that accumulation 

of these precursors individually or simultaneously was not sufficient to enhance folate content 

in maize. We conclude that additional or alternative steps in the pathway and/or metabolism 

need to be engineered to achieve substantial folate accumulation in maize endosperm. A 

better understanding of the folate biosynthetic pathway is required in order to determine 

optimal engineering strategies that can be generally applicable to most staple crops. 

 

4.2 Introduction 

4.2.1 Folate 

Folic acid, from Latin folium (leaf) so called because it is especially abundant in green 

leaves of many plants (Williams et al, 1941). It is also known as folate, vitamin M, vitamin 

B9, vitamin Bc
 
(or folacin), pteroyl-L-glutamic acid, and pteroyl-L-glutamate. Folate is a 

generic term used to describe folic acid and related compounds that exhibit the biological 

activity of folic acid (Kamikawa et al, 2004). The term folate and folic acid are used 

interchangeably in this chapter.  

Folate is the group name used to distinguish naturally occurring compounds of this 

class, the pure substance is designated pteroylmonoglutamic acid (Kamikawa et al., 2004). 

The chemical structure of folate (pteroylglutamic acid) is shown in figure 4.1. The molecule 

comprises three distinct units, glutamic acid, ρ-aminobenzoic acid (p-ABA), and a pteridine 

nucleus, the last two making up pteroic acid (Scott et al, 2000). Much of the folate in natural 

feedstuffs is conjugated with a varying number of extra glutamic acid molecules. Synthetic 

folate, however, is in the monoglutamate form. There are more biologically active forms of 
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folate than any other known vitamin (McDowell, 2008). Naturally occurring 

pteroylpolyglutamates constitute a large family of closely related compounds arising from 

modification of the three units of the parent compound pteroylglutamic acid. Changes in the 

state of reduction of the pteridine moiety, addition of various one-carbon substituents (C1-

substituents) (such as CHO, CH3, -CH2- and =CH-), and addition of glutamic acid residues 

lead to a wide array of compounds (Figure 4.1) (Scott et al., 2000). Folate is a tasteless and 

odourless yellowish-orange crystalline powder, which is insoluble in alcohol, ether, and other 

organic solvents (Oliphant, 1987). It is readily degraded by light and ultraviolet radiation. 

Cooking can considerably reduce food folate content (Stea et al, 2006; Dang et al, 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Chemical structures of folates. A) The folate molecule consists of pterin, p-ABA 

and glutamate moieties. The particular folate shown here is the monoglutamyl form of 

tetrahydrofolate (THF). Plant folates have γ-linked polyglutamyl tails of up to six residues 

attached to the first glutamate. B) One carbon (C1) units at various degrees of oxidation 

(CHO, CH3, -CH2- and =CH-) can be attached to two different positions (N5 and/or N10), as 

indicated by R1 and R2. The pteridine ring can exist as tetrahydro, dihydro, or fully oxidized 

forms (Lucock, 2000). 
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Folic acid, together with vitamin B12, plays an important role in DNA metabolism 

(Figure 4.2) (Reynolds, 2006). It is required for the synthesis of dTMP (2′-deoxythymidine-

5′-phosphate) from dUMP (2′-deoxyuridine-5′-phosphate). Under conditions of folic acid 

deficiency, dUMP accumulates and as a result uracil is incorporated into DNA instead of 

thymine (Fenech, 2001). There is good evidence suggesting that excessive incorporation of 

uracil in DNA not only leads to point mutations but may also result in the generation of 

single- and double-stranded DNA breaks, chromosome breakage and micronucleus formation 

(Blount et al., 1997; Fenech, 2001; Reynolds, 2006). The mutagenic effects of uracil are 

underscored by the observation that of eight known human glycosylases, four (UNG, TDG, 

hSMUG1, MBD4) are dedicated to the removal of uracil (Blount et al., 1997). Folic acid is 

also required for the synthesis of methionine and S-adenosyl methionine (SAM), the common 

methyl donor required for the maintenance of methylation patterns in DNA that determine 

gene expression and DNA conformation (Niculescu & Zeisel, 2002; Whitehead et al., 1995). 

When the concentration of Vitamin B12 and methionine is low, SAM synthesis is reduced, 

methylation of DNA is reduced, inhibition by SAM of methylenetetrahydrofolate reductase 

(MTHFR) is minimised resulting in the irreversible conversion of 5,10-

methylenetetrahydrofolate to 5-methyltetrahydrofolate, thus, favouring an increase in the 

dUMP pool and uracil incorporation into DNA (Födinger et al, 2000). Deficiencies in folic 

acid, therefore, can lead to: (a) elevated DNA damage rate and altered methylation of DNA, 

both of which are important risk factors for cancer (Blount et al., 1997; Duthie, 2011); and (b) 

an increased level in homocysteine status, an important risk factor for cardiovascular disease 

(Jardine et al., 2012). These defects may also play an important role in developmental and 

neurological abnormalities (Frye et al, 2013; Mattson & Shea, 2003). 
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Figure 4.2: The main metabolic pathways in folate and homocysteine metabolism.  

Abbreviations: B12, Vitamin B12; METH, methionine; THF, tetrahydrofolate; TS, 

thymidylate synthase; MS, methionine synthase; MTHFR, methylenetetrahydrofolate 

reductase; SAM, S-adenosyl methionine; SAH, S-adenosyl homocysteine; dTMP, (2′-

deoxythymidine-5′-phosphate); dUMP, (2′-deoxyuridine-5′-phosphate) (Fenech, 2001).  

 

Intake recommendations for folate and other nutrients are provided in the Dietary 

Reference Intakes (DRIs) developed by the Food and Nutrition Board (FNB) at the Institute 

of Medicine (IOM) of the National Academies (formerly National Academy of Sciences) 

(Alasfoor, 2013; Institute of Medicine, 1998). DRI is the general term for a set of reference 

values used for planning and assessing nutrient intakes of healthy people (National Institutes 

of Health, 2012). These values vary by age and gender (Table 4.1). 
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Folate (mg/day)  

Age  Female/Male  Pregnancy  Lactation  

0-12 months  0.065-0.08 - - 

1-3 years  0.15 - - 

4-8 years  0.2 - - 

9-13 years  0.3 - - 

14 + years  0.4 0.6 0.5 

Table 4.1:  Dietary Reference Intakes (DRI) for Folate (National Institutes of Health, 2012). 

 

Deficiency in adults causes macrocytic anemia and elevated levels of homocysteine 

(Clarke et al., 2003; Morris et al, 2007), but the impact in pregnant women is much more 

severe, leading to neural tube defects in the fetus. Spina bifida, in which bones of the spine do 

not completely enclose the spinal cord, is the most common congenital abnormality 

associated with folate deficiency (Au et al, 2010; Lucock, 2000). Based on the total number of 

neural tube defects, as reported in UNICEF’s Global Damage Assessment Report of Vitamin 

and Mineral Deficiency (UNICEF, 2004), and the World Bank demographic databases on 

total population and birth rate (World Bank, 2011), the prevalence of Neural Tube Defects 

(NTDs) is calculated and provides an overview of the key areas of high NTD prevalence, 

defined as >10 NTDs per 10,000 births, reflecting folate deficiency.  

A number of researchers have reported a high incidence of folate deficiency in 

pregnant women in both developed and developing countries (Imdad & Bhutta, 2012). It has 

been estimated that up to one-third of all pregnant women in the world may experience folate 

deficiency of varying severity (McGowan & McAuliffe, 2012). Megaloblastic anemia during 

pregnancy, resulting from low folate intake, is associated with poverty and poor diet 

(McNulty et al, 2012; Tripathi et al., 2012). While folate deficiency is extremely common in 

women 16 to 40 years of age because of the effects of pregnancy or lactation, it is rare in men 

younger than 60 years of age. After age 60, folate deficiency is equally high in both men and 

women (McDowell, 2008). Because of their rapid growth rate, cancer cells have an 

exceptionally high folate requirement (Lu & Low, 2012; Tedeschi et al., 2013). Therefore, 

drugs that inhibit folate-requiring enzymes are widely used in medicine for cancer 
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chemotherapy (Gonen & Assaraf, 2012; Lu & Low, 2012; Morris et al., 2014; Vergote et al, 

2015). 

Folate is found naturally in a wide variety of foods, including vegetables (especially 

dark green leafy vegetables), fruits and fruit juices, nuts, beans, peas, dairy products, poultry 

and meat, eggs, seafood, and grains. Spinach, liver, yeast, asparagus, and Brussels sprouts are 

among the foods with the highest levels of folate (National Institutes of Health, 2012). 

 

4.2.2 Folate biosynthetic pathway  

Folates are present throughout plant cells in the mitochondria, plastids, cytosol, and 

vacuoles (Akhtar et al., 2010; Chen et al, 1997; Goyer et al., 2005), but are synthesized only 

in mitochondria. The pterin and pABA precursors are synthesized in the cytosol and plastids, 

respectively (Figure 4.3). Pterin synthesis begins with the conversion of GTP to 

dihydroneopterin triphosphate, which is mediated by GTP cyclohydrolase I (GCHI) (Basset et 

al., 2002; McIntosh et al, 2008). GCHI is the first committed enzyme in pterin biosynthesis in 

plants, occurring in the cytosol and it is inhibited by GTP (Basset et al., 2002; McIntosh et al., 

2008). The dihydroneopterin triphosphate product of GCHI is then dephosphorylated to 

dihydroneopterin in two steps. The first step in plants, as in bacteria, is the removal of 

pyrophosphate, which yields dihydroneopterin monophosphate (Klaus et al., 2005). 

Hydrolysis of dihydroneopterin monophosphate to dihydroneopterin may be carried out by a 

nonspecific phosphatase in plants, as in Escherichia coli (G. Basset et al., 2002; Roje, 2007; 

Suzuki & Brown, 1974), but there is as yet no biochemical or genetic evidence for this 

hypothesis in plants, so a specific enzyme remains a possibility. The side chain of 

dihydroneopterin is then cleaved to 6-hydroxymethyldihydropterin (HMDHP) and 

glycolaldehyde by dihydroneopterin aldolase. This enzyme also mediates the epimerization of 

dihydroneopterin to dihydromonopterin, which it likewise cleaved to yield HMDHP (Goyer et 

al., 2004). Dihydroneopterin and dihydromonapterin can be metabolized to β-D-glycosides, at 

least in tomato fruit engineered to overproduce pterins (Díaz de la Garza et al., 2004). Neither 

the sugar moiety nor the glycosyltransferase(s) involved have been identified, nor it is known 

whether the glycosides serve as a mobilizable reserve of pterins (Hanson and Gregory, 2011). 
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pABA is synthesized from chorismate, a product of the shikimate pathway, in two 

steps (Figure 4.3). Both steps are localized in the plastids, as is the entire shikimate pathway 

(Basset et al., 2004a; 2004b). In the first step chorismate is converted to 

aminodeoxychorismate by aminodeoxychorismate synthase (ADCS). Subsequently, 

aminodeoxychorismate lyase converts aminodeoxychorismate to pABA (Basset et al., 2004a). 

pABA can be esterified with glucose in a reversible reaction mediated by a cytosolic UDP-

glucosyltransferase (Eudes et al., 2008; Quinlivan et al., 2003). 

The HMDHP and pABA precursors are assembled into THF in the mitochondrion 

(Figure 4.3). HMDHP is first activated by pyrophosphorylation, and then coupled to pABA 

to yield dihydropteroate (Eisenhu et al, 2013; McIntosh & Henry, 2008). These reactions are 

catalyzed by HMDHP pyrophosphokinase and dihydropteroate synthase, respectively, two 

domains of a single bifunctional protein in plants (Bekaert et al., 2008). Subsequenlty, DHF 

synthase couples dihydropteroate to glutamate to yield DHF (Ravanel et al., 2001). Finally, 

DHF is reduced to THF by DHF reductase, which in plants is fused to thymidylate synthase 

for dTMP conversion from dUMP (see figure 4.2)(Schnell et al, 2004). 

The polyglutamate tail is added to THF and its C1-substituted forms, one residue at a 

time, via the action of folylpolyglutamate synthase (FPGS). The folate polyglutamate tail is 

not a static entity but can be shortened or removed by γ-glutamyl hydrolase (GGH), which 

can have endo- and exopeptidase activities (Akhtar et al., 2008; Cossins, 2000; Orsomando et 

al., 2005). GGH is located in vacuoles (Orsomando et al., 2005).  
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Figure 4.3: The folate biosynthesis pathway, its compartmentalization in plant cells, and 

carrier-mediated transport steps.  

The two known folate carrier protein (plastidial) is shown in green. Hypothetical carriers are 

shown in blue and in orange, with dotted lines indicating hypothetical transport steps (the 

movement of p-ABA is most probably by diffusion). The hypothetical vacuolar folate carrier 

might transport polyglutamyl forms, unlike most other folate carriers. p-ABA occurs mainly 

as its glucose ester, which is formed in the cytosol via a reversible reaction with UDP-

glucose. Compounds abbreviations: ADC, aminodeoxychorismate; DHF, dihydrofolate; 

DHM, dihydromonapterin; DHN, dihydroneopterin; DHP, diydropteroate; -Glc, glucose ester; 

-Glun, polyglutamate; HMDHP, hydroxymethyldihydropterin; -P, phosphate; -P2, 

diphosphate; -P3, triphosphate; THF, tetrahydrofolate. Enzymes: 1, GTP cyclohydrolase I; 2, 

DHN-P3 pyrophosphatase; 3, non-specific phosphatase; 4, dihydroneopterin aldolase (which 

mediates the epimerization of DHN to DHM, and aldol cleavage of both); 5, 

aminodeoxychorismate synthase; 6, aminodeoxychorismate lyase; 7, 

hydroxymethyldihydropterin pyrophosphokinase; 8, dihydropteroate synthase; 9, 
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dihydropholate synthase; 10, dihydrofolate reductase; 11, folypolyglutamate synthase; 12, p-

ABA glucosyltrasnferase (Adapted from Bekaert et al., 2008). 

4.2.3 Genetic engineering strategies for enhancing folate content in plants 

The biofortification of staple crops with folate through metabolic engineering offers a 

sustainable alternative to fight folate deficiency, especially for poor populations in rural 

remote areas. Thus far, metabolic engineering was applied solely through the overexpression 

of key folate biosynthesis genes, such GTP cyclohydrolase I (gch1) and 

aminodeoxychorismate synthase (adcs). Over the past decade, engineering attempts were 

reported in Arabidopsis (Blancquaert et al., 2013; Hossain et al., 2004), tomato (Díaz de la 

Garza et al, 2004; 2007), rice (Storozhenko et al., 2007), lettuce (Nunes et al, 2009), maize 

(Naqvi  et al., 2009), and potato (Blancquaert et al., 2013). These attempts can be divided into 

two groups: (i) the over-expression of GTP cyclohydrolase I (GTPCHI) (resulting in G lines), 

the first enzyme in the pterin branch of folate biosynthesis, and (ii) the combined 

overexpression of GTPCHI and aminodeoxychorismate synthase (ADCS), the first enzyme in 

the p-ABA branch (resulting in GA or G+A lines, depending on whether both genes were 

combined on the same T-DNA or separately transformed lines were crossed) (Table 4.3). 

Plants overexpressing GTPCHI alone exhibited a massive increase in pterin levels (up to 

1250-fold) in Arabidopsis (Hossain et al., 2004), which coincided with a 2–8.5-fold increase 

in folate content (the highest increase being reported in lettuce (Nunes et al., 2009). In these 

lines, further folate enhancement was hampered due to a depletion of the p-ABA pool 

(Hossain et al., 2004; Nunes et al., 2009). Therefore, co-expression of GTPCHI and ADCS in 

tomato fruit (Díaz de la Garza et al., 2007) and rice seeds (Storozhenko et al., 2007) increased 

folate contents up to 25-fold in tomato and 100-fold in rice. Interestingly, p-ABA and pterin 

levels in these plants were also elevated compared with their respective wild types, indicating 

that an additional bottleneck is present against the higher accumulation of tetrahydrofolate. 

Attempts to biofortify Arabidopsis plants and potato tubers by enhancing both pterin and p-

ABA levels did not result in high folate enhancement (Blancquaert et al., 2013). These data 

suggest that the two-gene strategy cannot be universally applied to biofortify crops with folate 

and that engineering strategies should be adapted in order to reach this goal. Recently, a 

further study has been reported in rice by overexpression separately in different rice plants 

two enzymes which perform the first and further additions of glutamate, dihydrofolate 



Chapter 4 

Towards folate accumulation in maize… 

 

156 
 

synthase (DHFS) and folypolyglutamate synthase (FPGS) (Figure 4.3) resulting in a slight 

increase in seed folate content  (Table 4.3) (Dong et al., 2014). GTPCHI and ADCS were also 

independently overexpressed in rice, resulting in up to a 6.1-fold and 1.8-fold increase of 

folate content, respectively (Dong et al., 2014). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: Folate enhancement in plant crops by genetic engineering.  

 

Crop  Amount (fold increase over 

wild type) 

Introduced 

transgenes  

Reference  

Tomato 

 (Solanum 

lycopersicum)  

6.18 µg /g FW total folate  

(14-fold)  

gch1 and adcs1  Waller et al., 2010  

1.02 µg /g  FW total folate  

(2-fold)  

gch1  Díaz de la Garza et 

al., 2004 

11.04 µg /g FW total folate  

(25-fold)  

gch1 and adcs1  Díaz de la Garza et 

al., 2007  

Corn  

 (Zea mays)  

1.94 µg /g DW total folate  

(2-fold)  

gch1  Naqvi et al., 2009  

Rice    

(Oryza sativa)  

16.9 µg /g (100-fold)  gch1 and adcs1  Storozhenko et al., 

2007  

1.15  µg /g of total folate 

(14.5–27.2 % increase) 

dhfs Dong et al., 2014 

1.2  µg /g of total folate 

(7.5 to 19.9 % increase) 

fpgs 

5.7  µg /g of total folate (6.1-

fold) 

gch1 

1.4 µg /g of total folate (1.8-

fold) 

adcs1 

Lettuce  

(Lactuca 

sativa)  

1.89 µg /g FW total folate  

(5.4-fold)  

gch1  Nunes et al., 2009  

Potato 

(Solanum 

tuberosum)  

1.22 µg /g total folate  

(3-fold)  

gch1 and adcs1  Blancquaert et al., 

2013   
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Our experimental strategy for the enhancement of folate in maize seeds involves the 

simultaneous expression of AtADCS1 and EcfolE (equivalent to gch1) and also EcfolE alone, 

in maize endosperm. We carried out an in-depth analysis at the transcript and metabolite 

levels in an attempt to assess accumulation of folate, and its derivatives, in maize endosperm. 

4.3 Material and Methods  

  4.3.1 Cloning and vector construction 

The Escherichia coli folE gene was cloned from DH5α (non-pathogenic E. coli strain 

for laboratory use) by RT-PCR based on the folE sequence (GenBank: X63910) and 

incorporating appropriate restriction sites. The product was inserted into pGEM®-T 

(Promega) for sequencing and then transferred to pHor-P containing the barley D-hordein 

promoter (Sørensen et al., 1996) and the rice ADPGPP terminator.  

AtADCS1 cDNA was cloned directly from A. thaliana mRNA by reverse transcriptase 

PCR based on sequence information in GenBank (accession number AT2G28880). The 

cDNAs was transferred to the pGEM-T easy vector (Promega) and the recombinant vector 

was digested with EcoRI. AtADCS1 was introduced into vector p326, containing the wheat 

low molecular weight (LMW) glutenin gene promoter and nos terminator. 

 

4.3.2 Plant material 

Three different transgenic lines were generated as described in Chapter 2, subsection 

2.3.2; they are shown in Table 4.4. Endosperm and aleurone samples were harvest at 40 DAP, 

frozen in liquid nitrogen and stored at -80ºC prior to use. 

Lines Transgenes 

F1 EcfolE 

F2 EcfolE 

FA EcfolE+AtADCS1 

Table 4.3: Transgenic lines generated through combinatorial transformation. 
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4.3.3 Total RNA isolation and mRNA analysis  

 The protocol is described in detail in Chapter 1, section 1.3.2. Primer sequences 

used for designing probes are shown in Table 4.5. 

Transgene Primer set 

EcfolE Forward: 5´- ATGCCATCACTCAGTAAAGAAGCGG-3´ 

Reverse: 5´- TAATCAGTTGTGATGACGCACAGCG-3´ 

AtADCS1 Forward: 5´-GTGGAATGCCAATTAATCGTCACAA-3´ 

Reverse: 5´-CTTTGCTTCAAGCATTCCATTTCTGT-3´ 

  

Table 4.4: Primer sequences used for probe design. 

 

 4.3.4 Folate extraction and HPLC analysis from maize endosperm  

Folates were extracted, purified and determined following the methodology described 

by Konings (1999), Pfeiffer et al. (1997) and Vahteristo et al. (1996). Briefly, folates 

contained in one g of sample were extracted using 50mM Ches/Hepes extraction buffer (pH 

7.85) containing 2% ascorbic acid and 10mM 2-mercaptoethanol. An aliquot was incubated 

for 3 hr at 37
o
 C with 1 ml of α-amylase from Aspergillus oryzae (Type X-A, Sigma), 

previously prepared to a concentration of 25 mg/ml in distilled water, and 1 ml of hog kidney 

conjugase prepared according to Gregory et al. (1984). The samples were then filtered 

through 0.45 µm pore size and 25 mm Ø nylon disposable filters (Whatman, Florham Park, 

NJ, USA) and purified in strong anion-exchange (SAX) cartridges connected to a vacuum 

manifold (Supelco, Bellefonte, PA, USA). The analysis were carried out on a HPLC-MS/MS 

system consisting of an Agilent 1100 Series HPLC (Agilent Technologies, Santa Clara, CA, 

USA) equipped with a µ-wellplate autosampler and a capillary pump, and connected to an 

Agilent Ion Trap XCT Plus mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) 

using an electrospray (ESI) interface. 40-µl of each sample was injected onto a Supelco 

Discovery C18 HPLC column (5 µm, 10 × 2.1 mm), thermostatted at 40°C, and eluted at a 

flow rate of 200 µl/min. Mobile phase A, consisting of water + 0.1% formic acid, and mobile 

phase B, consisting of acetonitrile + 0.1% formic acid, were used for the chromatographic 

separation. Different control samples with known concentrations of folates were also run in 



 

the same conditions. These analysis were performed by Dr Rubén Nicolás López at 

University on Murcia. 

 

4.4 Results 

4.4.1 Transgenic plants

Two different transgenic maize genotypes were generated. The first genotype 

expresses EcfolE alone. This gene is involved in pterin biosynthesis. The second genotype co

expresses EcfolE and AtADCS1

biosynthesis pathway. Two EcfolE

AtADCS1 were studied in detail. Admittedly only a small number of transgenic plants were 

recovered and studied. 

4.4.2 EcfolE and AtADCS1

mRNA blot analysis was carried out to confirm expression of the transgenes in each 

line. The analysis confirmed the accumulation of full

for each of the transgenes (EcfolE

Transgenic line 3 expressed both genes and lines 1 and 2 express 

Figure 4.4:  mRNA blot analysis showing endosperm

different transgenic lines. Transgenic plants F1 and

FA expressing-expressed EcfolE

ethidium bromide. 
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These analysis were performed by Dr Rubén Nicolás López at 

4.4.1 Transgenic plants 

different transgenic maize genotypes were generated. The first genotype 

alone. This gene is involved in pterin biosynthesis. The second genotype co

AtADCS1. The later gene is involved in the pABA branch of the folate 

EcfolE-expressing plants and one plant co-expressing 

were studied in detail. Admittedly only a small number of transgenic plants were 

AtADCS1 expression in maize endosperm  

mRNA blot analysis was carried out to confirm expression of the transgenes in each 

line. The analysis confirmed the accumulation of full-length transcripts of the expected size 

EcfolE = 971bp; AtADCS1=3,084bp) as shown in 

Transgenic line 3 expressed both genes and lines 1 and 2 express EcfolE alone

mRNA blot analysis showing endosperm-specific transgene expression in the 

different transgenic lines. Transgenic plants F1 and F2 expressed EcfolE 

EcfolE and AtADCS1. The loading control was rRNA stained with 
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different transgenic maize genotypes were generated. The first genotype 

alone. This gene is involved in pterin biosynthesis. The second genotype co-

. The later gene is involved in the pABA branch of the folate 

expressing EcfolE and 

were studied in detail. Admittedly only a small number of transgenic plants were 

mRNA blot analysis was carried out to confirm expression of the transgenes in each 

length transcripts of the expected size 

=3,084bp) as shown in Figure 4.4. 

alone.  
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4.4.3 Pterin, para-aminobenzoate, and folate accumulation in maize endosperm 

 We analyzed folate, pterin and pABA content in maize endosperm samples in T2 

seeds from transgenic lines and M37W wild type as negative control. The samples were 

analysed at 40 DAP, when seeds started to exhibit a yellow color, and at 60 DAP, in order to 

investigate accumulation of folate, pterin and pABA during seed maturation. Accumulation of 

folic acid (FA), dihydrofolate (DHF), tetrahydrofolate (THF), 5-methyl-tetrahydrofolate 

(5MTHF) and 5-formyl-tetrahydrofolate (5FTHF) is shown in Figure 4.5. No significant 

differences between wild type and transgenic lines were observed for any of the folic acid 

forms and accumulation decreased during seed maturation. pABA and pterin metabolite 

accumulation in transgenic lines was estimated by comparing HPLC peak areas of metabolites 

extracted from the transgenic lines and the M37W (Figure 4.6). HPLC peaks in M37W were 

designated as reference with a value of 100%, since standards were not available for pABA 

and pterin.  
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Figure 4.5: Folate content in maize endosperm in M37W, F1, F2 and FA transgenic lines at 

40 DAP (A) and at 60 DAP (B). Abbreviations: FA, folic acid; DHF, dihydrofolate; THF, 

tetrahydrofolate; 5MTHF, 5-methyl-tetrahydrofolate; 5FTHF, 5-formyl-tetrahydrofolate. 

 

 

 

 

 

 

 

 

 

Figure 4.6: pABA and pterin accumulation in maize endosperm. Accumulation of these 

compounds in F1, F2 and FA lines at 40 and 60 DAP are represented in % of the area in the 

chromatogram result, taking as reference pABA and pterin accumulation in M37W (100%).  
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Abbreviations: PABA, p-aminobenzoic acid; HMDHP, 6-hydroxymethyldihydropterin; DHN, 

dihydroneopterin; DHM, dihydromonapterin; HMDHP+2P, hydroxymethyldihydropterin 

diphosphate. 

4.5 Discussion  

 4.5.1 Overexpression of GTP cyclohydrolase or GTP cyclohydrolase together with 

aminodeoxychorismate synthase is not sufficient to enhanced folate levels in maize 

endosperm 

Folates are important cofactors in one-carbon metabolism in all living organisms. Since 

only plants and microorganisms are capable of synthesizing folates, humans depend entirely 

on their diet as a folate source. Given the low folate content of several staple crops, folate 

deficiency affects regions all over the world (Blancquaert et al., 2014). Folate biofortification 

of staple crops through enhancement of pterin and para-aminobenzoate levels, precursors of 

the folate biosynthesis pathway, was reported to be successful in tomato and rice (Díaz de la 

Garza et al., 2004; Storozhenko et al., 2007).  

In our folate engineering experiments white maize M37W inbred line was transformed 

with E. coli FolE encoding GTPCHI (lines F1 and F2) alone or in combination with A. 

thaliana ADSCS1 (line FA). EcfolE had been overexpressed in an earlier study in the same 

genetic background where folate content was doubled (Naqvi et al., 2009). However, in the 

current study no significant differences were measured in folate accumulation between 

transgenic lines and wild type (Figure 4.5). The low number of transgenic lines I recovered 

does not permit a correlation between overexpressed transgenes and folate levels. More 

transgenic maize lines expressing both genes are needed in order to draw meaningful 

conclusions. In previous studies several lines were regenerated expressing GTPCHI alone or 

together with ADCS1 in potato and Arabidopsis, where even though both pterin and p-ABA 

levels were increased, this did not result in folate enhancement (Blancquaert et al., 2013). 

These data suggest that the two-gene strategy cannot be universally applied to biofortify crops 

with folate and that engineering strategies should be adapted in order to reach this goal. 

Although the new bottleneck in the flux toward folate enhancement has not been identified, 

several possibilities have been suggested in the literature, such as restricted import of pterin 

and p-ABA to mitochondria; limitation in activity of one or more tetrahydrofolate 
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biosynthetic enzymes in mitochondria; or a  regulation of the enzyme activity implicated in 

these two branches (Blancquaert et al., 2013, 2014). Another important issue with respect to 

folate biofortification is folate stability, since obtaining high levels of this vitamin would be 

meaningless if they drop to basal levels upon food storage and processing. Indeed, folates are 

unstable compounds, susceptible to oxidative and photo-oxidative catabolism (Scott et al., 

2000).  

In the current experiments two different time points in seed development were analysed 

for folate content. Total amount of folate decreased over time in the wild type endosperm and 

also in the transgenic lines Figure 4.7. These data suggest a loss of total folate during seed 

maturation.  

 

 

 

 

 

 

Figure 4.7: Total folate content in maize endosperm in three transgenic lines and a 

wild type control at two different seed maturity stages (40 DAP and 60DAP). 

A number of approaches have been suggested to improve folate stability (Blancquaert et 

al., 2010): (i) engineering of a more stable compound; (ii) simultaneous accumulation of 

compounds with a protective mode of action (e.g. anti-oxidants such as ascorbate); (iii) 

engineering salvage and breakdown reactions; and (iv) association with folate binding 

proteins.  In folate biofortified rice, 5-methyl THF is the most abundant folate form 

(Storozhenko et al., 2007) and at the same time it is the most stable naturally occurring folate 

form. However, in M37W the most accumulated folate form was dihydrofolate, and it also 

exhibits the same amount of dihydrofolate stability during seed maturity (Figure 4.5, Results 

section).  
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4.5.2 Modulation in p-ABA and pterin metabolite accumulation reveals bottlenecks in 

folate biosynthesis in maize endosperm 

In the current experiments p-ABA and pterin accumulation in maize endosperm showed 

different amounts in A.2, A.4 and FA lines compared to wild type (Figure 4.6). However, the 

accumulation profiles of these metabolites for both lines overexpressing GTPCHI alone (A.2 

and A.4) did not differ from the line co-expressing GTPCHI and ADCS1 (FA). At the same 

time, two different seed development time points were analysed (40 and 60 DAP). Seeds at 

these two time points exhibited different metabolite accumulation profiles. EcfolE transcripts 

accumulated in all three transgenic lines (F1, F2 and FA), which accumulate dihydroneopterin 

triphosphate (DHN-P3) (Figure 4.3, Results section). DHN-P3 and DHN-P determinations 

were not carried out because of lack of standards, but the subsequent metabolites in the 

pathway, DHN/DHM were analysed. These two metabolites accumulated at lower levels in 

the transgenic lines compared to wild type at 40 DAP. DHN/DHM accumulation increased up 

to wild type levels at 60 DAP. Interestingly, the next metabolite in the pathway HMDHP 

showed significant differences with respect to the wild type. HMDHP levels decreased in 

transgenic lines to ca: 40% at 40DAP and ca: 60% at 60 DAP.  

In order to obtain a better understanding of HMDHP accumulation differences in F1, F2, 

FA and wild type, HMDHP-P2 (next metabolite in the pathway) was analysed, but no big 

differences were measured compared to wild type. Previous studies in Arabidopsis and potato 

suggested that the transport of pterin to mitochondria is restricted, generating a bottleneck 

(Blancquaert et al., 2013). In the current study HMDHP was decreased in transgenic maize 

lines suggesting that HMDHP was metabolized. However, HMDHP-P2 and different folate 

forms did not increase their accumulation significantly (Figure 4.5 and 4.6). Also a 

cytosololic 7,8-dihydropteroate synthase (DHPS) was described, which converts HMDHP-P2 

into dihydropteroate (DHP) (Navarrete et al., 2012). The next steps of this cytosolic 

independent pathway are still unknown (Figure 4.7).  
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Figure 4.8: Pterin biosynthetic pathway towards folate biosynthesis with cytosolic 

hydroxymethyldihydropterin pyrophosphokinase (HPPK) (7) and cytosololic 7,8-

dihydropteroate synthase (DHPS) (8) (in red color). Abbreviations: DHF, dihydrofolate; 

DHM, dihydromonapterin; DHN, dihydroneopterin; DHP, diydropteroate; -Glu, glutamate; 

HMDHP, hydroxymethyldihydropterin. Enzymes: 1, GTP cyclohydrolase I; 2, DHN-P3 

pyrophosphatase; 3, non-specific phosphatase; 4, dihydroneopterin aldolase (which mediates 

the epimerization of DHN to DHM, and aldol cleavage of both); 5, aminodeoxychorismate 

synthase; 6, aminodeoxychorismate lyase; 7, hydroxymethyldihydropterin 

pyrophosphokinase; 8, dihydropteroate synthase; 9, dihydropholate synthase; (Adapted from 

Bekaert et al., 2008 and Navarrete et al., 2012). 

Significant variability in p-ABA accumulation was measured in F1, F2 and FA compared 

to wild type (Figure 4.6). In the transgenic lines p-ABA levels increased by ca: 30% at 40 

DAP with respect to wild type. p-ABA levels decreased at 60 DAP by ca: 30% compared to 

wild type. ADCS1 only expressed in FA line. However, no differences were measured 

between FA and the other two lines (F1 and F2 which only expressed EcfolE) in pABA and 

pterin accumulation, suggesting that differences in the accumulation of these metabolites in 

FA, F1 and F2 compared to wild type was only due to EcfolE expression. Results suggested 

that p-ABA accumulation was modulated by endogenous regulatory mechanisms. Different 
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studies have been carried out in order to unravel the regulation of folate biosynthesis in plants. 

These studies, however, did not identify regulatory bottlenecks which limit folate biosynthesis 

(Hanson & Gregory, 2011). 

 

4.6 Conclusions 

 In the current study I demonstrated that modulation in p-ABA and pterin 

accumulation alone is not sufficient to enhance folate biosynthesis in maize endosperm 

through overexpression of GTP cyclohydrolase alone or in combination with 

aminodeoxychorismate synthase in the regenerated lines F1/2 and FA. However, due to the 

limited amount of lines I cannot reach a conclusion in general terms. 
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1. Multigene engineering was used to generate different transgenic maize lines with 

altered carotenoid or vitamin E profiles. I demonstrated that this strategy is useful to 

generate maize lines  for in depth molecular and biochemical investigations in the 

seeds. 

2. Introgressing a carotenogenic mini-pathway into a range of maize inbred lines with 

different carotenoid content and composition is an effective strategy to generate maize 

hybrids with high and diverse carotenoid content. Introgression of this mini-pathway 

allows the development of a better understanding of molecular factors influencing the 

flow of precursors into the two different branches of the carotenoid pathway.  

3. I identified a number of bottlenecks that limit the production of lutein and zeaxanthin 

in maize endosperm by analyzing the above hybrids at the metabolite and mRNA 

level. Phytoene desaturation and isomerization towards lycopene accumulation 

influenced directly total carotenoid content in the endosperm.  

4. Simultaneous reconstruction of the carotenoid and vitamin E biosynthetic pathways in 

maize hybrids resulted in a significant increase in α-tocopherol accumulation and a 

moderate decrease in carotenoid accumulation in maize seeds, demonstrating an 

interaction between these two pathways.  

5. Endosperm-specific carotenoid biosynthesis and constitutive tocopherol biosynthesis 

influenced core metabolic processes in maize embryo and endosperm. This in turn 

resulted in the accumulation of zeaxanthin and α-tocopherol, respectively as the 

predominant metabolites in the two pathways, in the maize embryo. α-Tocopherol was 

not detected in the endosperm, but total carotenoid decreased up to a ca: 28%, mostly 

because of the reduction in the levels of zeaxanthin and phytoene. 

6. Introgression of the ketocarotenoid biosynthetic pathway into maize lines with 

different carotenogenic backgrounds revealed bottlenecks in astaxanthin 

accumulation. Choice of an appropriate genetic background with a partial carotenoid 

pathway influences significantly carotenoid conversion to downstream molecules such 

as astaxanthin. 

7. Co-expression of β-carotene ketolases and a β-carotene hydroxylase in maize 

endosperm resulted in the efficient conversion of carotenoids to astaxanthin, in the 

endosperm. A yellow endosperm genetic background was preferred for the total 
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conversion of carotenoid precursors to ketocarotenoids, in hybrids with the transgenic 

line expressing the ketolase and hydroxylase genes. 

8. I recovered and analyzed maize lines with a modulated accumulation of pABA and 

pterin, precursors in folate biosynthesis. The levels of these precursors in the 

transgenic lines I generated were not sufficient to enhance folate content in maize. 

However, due to the limited amount of transgenic lines I cannot reach a conclusion in 

general terms. 
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