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Representation and context modeling are two important factors that are criti-

cal in the design of computer vision algorithms. For example, in applications such as

skeleton-based human action recognition, representations that capture the 3D skele-

tal geometry are crucial for achieving good action recognition accuracy. However,

most of the existing approaches focus mainly on the temporal modeling and classifi-

cation steps of the action recognition pipeline instead of representations. Similarly,

in applications such as image enhancement and semantic image segmentation, mod-

eling the spatial context is important for achieving good performance. However, the

standard deep network architectures used for these applications do not explicitly

model the spatial context. In this dissertation, we focus on the representation and

context modeling issues for some computer vision problems and make novel contri-

butions by proposing new 3D geometry-based representations for recognizing human

actions from skeletal sequences, and introducing Gaussian conditional random field



model-based deep network architectures that explicitly model the spatial context

by considering the interactions among the output variables. In addition, we also

propose a kernel learning-based framework for the classification of manifold features

such as linear subspaces and covariance matrices which are widely used for image

set-based recognition tasks.

This dissertation has been divided into five parts. In the first part, we intro-

duce various 3D geometry-based representations for the problem of skeleton-based

human action recognition. The proposed representations, referred to as R3DG fea-

tures, capture the relative 3D geometry between various body parts using 3D rigid

body transformations. We model human actions as curves in these R3DG feature

spaces, and perform action recognition using a combination of dynamic time warp-

ing, Fourier temporal pyramid representation and support vector machines. Experi-

ments on several action recognition datasets show that the proposed representations

perform better than many existing skeletal representations.

In the second part, we represent 3D skeletons using only the relative 3D rota-

tions between various body parts instead of full 3D rigid body transformations. This

skeletal representation is scale-invariant and belongs to a Lie group based on the

special orthogonal group. We model human actions as curves in this Lie group and

map these curves to the corresponding Lie algebra by combining the logarithm map

with rolling maps. Using rolling maps reduces the distortions introduced in the ac-

tion curves while mapping to the Lie algebra. Finally, we perform action recognition

by classifying the Lie algebra curves using Fourier temporal pyramid representation

and a support vector machines classifier. Experimental results show that by com-



bining the logarithm map with rolling maps, we can get improved performance when

compared to using the logarithm map alone.

In the third part, we focus on classification of manifold features such as linear

subspaces and covariance matrices. We present a kernel-based extrinsic framework

for the classification of manifold features and address the issue of kernel selection

using multiple kernel learning. We introduce two criteria for jointly learning the

kernel and the classifier by solving a single optimization problem. In the case of

support vector machine classifier, we formulate the problem of learning a good

kernel-classifier combination as a convex optimization problem. The proposed ap-

proach performs better than many existing methods for the classification of manifold

features when applied to image set-based classification task.

In the fourth part, we propose a novel end-to-end trainable deep network archi-

tecture for image denoising based on a Gaussian Conditional Random Field (CRF)

model. Contrary to existing discriminative denoising approaches, the proposed net-

work explicitly models the input noise variance and hence is capable of handling a

range of noise levels. This network consists of two sub-networks: (i) a parameter

generation network that generates the Gaussian CRF pairwise potential parameters

based on the input image, and (ii) an inference network whose layers perform the

computations involved in an iterative Gaussian CRF inference procedure. Experi-

ments on several images show that the proposed approach produces results on par

with the state-of-the-art without training a separate network for each noise level.

In the final part of this dissertation, we propose a Gaussian CRF model-based

deep network architecture for the task of semantic image segmentation. This net-



work explicitly models the interactions between output variables which is important

for structured prediction tasks such as semantic segmentation. The proposed net-

work is composed of three sub-networks: (i) a Convolutional Neural Network (CNN)

based unary network for generating the unary potentials, (ii) a CNN-based pairwise

network for generating the pairwise potentials, and (iii) a Gaussian mean field in-

ference network for performing Gaussian CRF inference. When trained end-to-end

in a discriminative fashion the proposed network outperforms various CNN-based

semantic segmentation approaches.
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Chapter 1: Introduction

1.1 Motivation

Representation and context modeling are two important factors that have im-

proved the performance of computer vision algorithms over the past two decades.

Representations such as Scale-Invariant Feature Transform [3], Histogram of Ori-

ented Gradients (HOG) [4], and more recently, deep network-based features [5–7]

have played a crucial role in various applications such as depth estimation, image

retrieval, 3D reconstruction, object detection, object recognition, etc. Similarly,

context modeling tools such as graphical models [8, 9] have played a crucial role in

applications like image enhancement, image segmentation, semantic scene under-

standing, etc.

While it is widely agreed that representation is the most important compo-

nent of any computer vision algorithm, most of the existing skeleton-based human

action recognition approaches still use simple skeletal representations such as joint

positions [10, 11], relative joint positions [12, 13] or joint angles [14, 15]. However,

capturing the 3D skeletal geometry in the representation is crucial for achieving good

action recognition accuracy. Motivated by this, we introduce various 3D geometry-

based skeletal representations for human action recognition.

1



Manifold features such as linear subspaces [16] and covariance matrices [17,18]

are used in various computer vision applications such as image set-based object and

face recognition [16,18–23], pedestrian detection [17,24], texture classification [25,26]

and activity recognition [16]. Due to the non-Euclidean nature of the underly-

ing feature spaces, these representations are often classified using kernel-based ap-

proaches [18,20,22–24]. However, for kernel-based methods, choosing an appropriate

kernel is important for achieving good classification performance. Motivated by this,

we propose a kernel learning-based extrinsic classification framework to address the

issue of kernel-selection for the classification of manifold features.

While modeling the spatial context is important for applications such as im-

age enhancement and semantic image segmentation, the standard deep network

architectures [27–31] used for these applications do not explicitly model the spatial

context. Motivated by this, we propose novel deep network architectures based on

Gaussian Conditional Random Field (CRF) models [9] that explicitly model the

spatial context by considering the interactions among the output variables.

1.2 Proposed Algorithms and their Contributions

In this section, we briefly describe the algorithms introduced in this disserta-

tion and their key contributions.

1. R3DG features for skeleton-based human action recognition:

In this part of the dissertation, we try to answer the following basic question:

Which is a good skeletal representation for human action recognition? Inspired

2



by the observation that for human actions, the relative geometry between var-

ious body parts provides a more meaningful description than their absolute

locations, we propose new skeletal representations that explicitly model the

relative 3D geometry between all pairs of body parts. Given two rigid body

parts, their relative geometry can be described using the rigid body trans-

formation required to take one body part to the position and orientation of

the other. Rigid body transformations in 3D space can be mathematically

represented in different ways using the special orthogonal group, quaternions,

the special Euclidean group, and dual quaternions. Using these mathematical

representations, we introduce a family of relative 3D geometry-based skeletal

representations for human action recognition, which we refer to as R3DG fea-

tures. Using the proposed skeletal representations, we model actions as curves

in R3DG feature spaces, and perform action recognition using a combination

of dynamic time warping [32], Fourier Temporal Pyramid (FTP) representa-

tion [13], and a Support Vector Machines (SVM) classifier [33]. The proposed

representations outperform many existing skeletal representations when eval-

uated on several benchmark action recognition datasets. Since the size of the

skeleton varies from subject to subject, we need to scale-normalize the skeletal

data before using the rigid body transformation-based R3DG features. Instead

of doing explicit scale-normalization, we can obtain scale-invariant skeletal rep-

resentations by using only the rotational part of the rigid body transformation

to describe the relative 3D geometry between body parts. In this part of the

dissertation, we also show that just by using the relative 3D rotations, we
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can get a classification accuracy that is close to the accuracy obtained by us-

ing the full rigid body transformation-based representations computed from

scale-normalized skeletons.

2. Rolling rotations for skeleton-based human action recognition:

In this part of the dissertation, instead of doing explicit scale-normalization,

we use only the rotational part of rigid body transformation to describe the

relative 3D geometry between body parts. Since 3D rotations are members

of the special orthogonal group SO(3), we represent each skeleton as a point

in the product Lie group SO(3) ⊗ . . . ⊗ SO(3), and actions as curves in this

group. Since classification of temporal curves in the Lie group is difficult due

to the non-Euclidean nature of the underlying space, we first map the curves

to the corresponding Lie algebra, which is a vector space, and then classify

the Lie algebra curves using the FTP representation and an SVM classifier.

For mapping the action curves to the Lie algebra, instead of directly using

the standard logarithm map, we combine it with rolling maps. We show that

rolling maps reduce the distortions in the action curves when mapping them

to the Lie algebra and improves the action recognition performance. We also

derive new closed form expressions for the rolling maps in the case of piecewise-

geodesic rolling curves.

3. Extrinsic classification of manifold features using kernel learning:

In this part of the dissertation, we try to answer the following important

question: How to find good kernels for the classification of manifold features?
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Manifold features such as linear subspaces and covariance matrices are used

in various computer vision applications. Popular learning algorithms such as

Fisher discriminant analysis, partial least squares, support vector machines,

etc., are not directly applicable to such features due to the non-Euclidean

nature of the underlying spaces. Hence, classification is often performed in

an extrinsic manner by mapping the manifolds to Euclidean spaces using ker-

nels. However, for kernel-based approaches, a poor choice of kernel often

results in reduced performance. We address this issue of kernel-selection for

the classification of manifold features using the kernel learning approach. We

propose two criteria for jointly learning the kernel and the classifier using a

single optimization problem. Specifically, for the SVM classifier, we formulate

the problem of learning a good kernel-classifier combination as a convex opti-

mization problem and solve it efficiently following the multiple kernel learning

approach. The proposed approach outperforms various existing methods for

the classification of manifold features when evaluated using image set-based

object and face recognition tasks.

4. Deep Gaussian CRF network for image denoising:

State-of-the-art deep network-based denoising methods train a separate model

for each noise level, which is not desirable. In this part of the dissertation, we

address this issue by proposing a novel deep network architecture for image

denoising based on a Gaussian CRF model. The proposed deep network explic-

itly models the input noise variance and hence is capable of handling a range
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of noise levels. Our deep network architecture consists of two sub-networks:

(i) a parameter generation network that generates the pairwise potential pa-

rameters based on the noisy input image, and (ii) an inference network whose

layers perform the computations involved in an iterative Gaussian CRF in-

ference procedure. All the components of our network are differentiable and

hence it can be trained end-to-end using standard gradient-based techniques.

Experimental results show that the proposed network can achieve state-of-the-

art results without training specific networks for each noise level.

5. Gaussian CRF network for semantic image segmentation:

In the past few years, deep networks have revolutionized the field of com-

puter vision by improving the state-of-the-art results in various applications

by a huge margin. However, standard feed-forward networks do not explic-

itly model the interactions between output variables, which is important for

structured prediction tasks such as semantic image segmentation. Tradition-

ally, graphical models, especially the CRF models, have been widely used to

model the interactions between output variables. In this part of the disserta-

tion, we combine both these ideas and propose a feed-forward deep network

based on a Gaussian CRF model. The proposed Gaussian CRF network is

composed of three sub-networks: (i) a Convolutional Neural Network (CNN)

based unary network for generating the unary potentials, (ii) a CNN-based

pairwise network for generating the pairwise potentials, and (iii) an inference

network whose layers perform Gaussian mean field inference. The proposed
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inference network has the desired property that each of its layers produces an

output that is closer to the maximum a posteriori solution of the Gaussian

CRF compared to its input. The proposed network significantly improves the

semantic segmentation results when compared to standard CNN architectures.

1.3 Organization

This dissertation is organized as follows. Chapter 2 introduces the special

orthogonal group, the special Euclidean group, quaternions and dual quaternions,

which will be used in subsequent chapters of this dissertation. Chapter 3 presents

various relative 3D geometry-based skeletal representations for human action recog-

nition. Chapter 4 discusses the rolling of special orthogonal group and its applica-

tion to skeleton-based human action recognition. Chapter 5 presents an extrinsic

framework for the classification of manifold features using multiple kernel learning.

Chapters 6 and 7 present Gaussian CRF-based deep network architectures for image

denoising and semantic image segmentation, respectively. Chapter 8 concludes the

dissertation and discusses future research directions.
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Chapter 2: Lie groups, Quaternions and Dual Quaternions

In this chapter, we introduce the special orthogonal group SO(3), the spe-

cial Euclidean group SE(3), quaternions and dual quaternions, which will be used

in subsequent chapters of this dissertation. Please refer to [34, 35] for additional

details on Lie groups, and [35–37] for additional details on quaternions and dual

quaternions.

2.1 Lie Groups

A Lie group G is a group that is also a smooth manifold [34]. The tangent

space g at the identity element e of G is referred to as the Lie algebra of G. A

matrix Lie group is a Lie group of n × n invertible matrices with the usual matrix

multiplication and inversion as the group multiplication and inversion operations,

and the n× n identity matrix as the group identity element.

The mapping from a Lie algebra to the corresponding Lie group, referred to

as the Lie exponential map, is given by LexpG(u) = γu(1), where γu : R → G is the

unique one-parameter subgroup of G whose tangent vector at the identity element e

is equal to u ∈ g. The inverse of Lie exponential map is known as the Lie logarithm

map, and is denoted by LlogG. Figure 2.1 gives an illustration of the Lie exponential

8



Figure 2.1: Illustration of the Lie exponential and Lie logarithm maps between a

Lie group G and its Lie algebra g.

and Lie logarithms maps. In the case of matrix Lie groups, the Lie exponential and

Lie logarithm maps are given by

LexpG(u) = eu, LlogG(g) = log(g), (2.1)

where e and log represent the usual matrix exponential and logarithm, respectively.

2.1.1 Special Orthogonal Group SO(3)

The special orthogonal group SO(3) is a three dimensional matrix Lie group

formed by the set of all 3×3 matricesR that satisfy the following constraints [34,35]:

R>R = I3, det(R) = 1. (2.2)

The Lie algebra of SO(3), denoted by so(3), is the three dimensional vector space

spanned by the set of all 3× 3 skew symmetric matrices. For any element

A =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 ∈ so(3), (2.3)
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its vector representation is given by vec(A) = [a1, a2, a3]. Since SO(3) is a matrix

Lie group, the Lie exponential and Lie logarithm maps between SO(3) and so(3)

are given by

LexpSO(3)(A) = eA, LlogSO(3)(R) = log(R). (2.4)

The Lie logarithm map is not unique in the case of SO(3). In this dissertation, we

use the log(R) with the smallest norm.

Elements of SO(3) are commonly used to represent 3D rotations. Let z′ be

a 3D point obtained by rotating z ∈ R3 by an angle θ about an axis n. Then, we

have

z′ = eskew(θn)z, (2.5)

where skew(θn) is a skew-symmetric matrix that satisfies vec(skew(θn)) = θn.

Hence, the matrix eskew(θn) ∈ SO(3) represents the 3D rotation by an angle θ about

an axis n.

Riemannian geometry of SO(3) [38]: Along with being a Lie group, SO(3) is

also a Riemannian manifold. The tangent space TR0SO(3) at R0 ∈ SO(3) is the

vector space spanned by the set of all 3 × 3 matrices A such that A = ΩR0 for

some skew-symmetric matrix Ω. The inner product in the tangent space TR0SO(3)

is given by the Frobenius inner product:

〈A1,A2〉R0
= trace(A>1A2), A1,A2 ∈ TR0SO(3). (2.6)

Under this Riemannian metric, the exponential and logarithm maps between SO(3)
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and its tangent space at R0 ∈ SO(3) are given by

expSO(3)(R0,A) = eAR
>
0 R0, A ∈ TR0SO(3),

logSO(3)(R0,R1) = log(R1R
>
0 )R0, R1 ∈ SO(3).

(2.7)

The geodesic curve from R0 to R1 is given by et log(R1R>0 )R0, t ∈ [0, 1], and the

geodesic distance between R0 and R1 is given by ‖ logSO(3)(R0,R1)‖Fr.

Interpolation: Various approaches have been proposed in the past for interpolation

on SO(3) [39]. In this dissertation, we use a simple piecewise geodesic interpolation

scheme. Given R1, . . . ,Rm ∈ SO(3) at time instances t1, . . . , tm respectively, we

use the following curve for interpolation:

γ(t) = Ri LexpSO(3)

(
t− ti
ti+1 − ti

Ai

)
for t ∈ [ti, ti+1], (2.8)

where Ai = LlogSO(3)

(
R−1
i Ri+1

)
for i = 1, 2, . . . ,m− 1.

SO(3)⊗ . . .⊗ SO(3): We can combine multiple SO(3) groups using the direct

product to form a new Lie group

SO(3)n := SO(3)⊗ . . .⊗ SO(3) (2.9)

with the corresponding Lie algebra

so(3)n := so(3)⊕ . . .⊕ so(3). (2.10)

The Lie exponential and Lie logarithm maps for (A1,A2, . . . ,An) ∈ so(3)n and

(R1,R2, . . . ,Rn) ∈ SO(3)n are given by

LexpSO(3)n(A1,A2, . . . ,An) = (eA1 , eA2 , . . . , eAn),

LlogSO(3)n(R1,R2, . . . ,Rn) = (log(R1), log(R2), . . . , log(Rn)).

(2.11)
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Interpolation on SO(3)n can be performed by simultaneously interpolating on indi-

vidual SO(3).

2.1.2 Special Euclidean Group SE(3)

The special Euclidean group SE(3) [34, 35] is a six dimensional matrix Lie

group formed by the set of all 4× 4 matrices of the form

P (R,d) =

 R d

0 1

 , d ∈ R3, R ∈ SO(3). (2.12)

The Lie algebra of SE(3), denoted by se(3), is the six dimensional vector space

spanned by the set of all 4× 4 matrices of the form

B =



0 −a3 a2 w1

a3 0 −a1 w2

−a2 a1 0 w3

0 0 0 0


. (2.13)

The vector representation of B ∈ se(3) is given by

vec(B) = [a1, a2, a3, w1, w2, w3]. (2.14)

Since SE(3) is a matrix Lie group, the Lie exponential and Lie logarithm maps

between SE(3) ans se(3) are given by

LexpSE(3)(B) = eB, LlogSE(3)(P ) = log(P ). (2.15)

The Lie logarithm map is not unique in the case of SE(3). In this dissertation, we

use the log(P ) with the smallest norm.
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Elements of SE(3) are commonly used to represent 3D rigid body transfor-

mations. Let z′ be a 3D point obtained by transforming z ∈ R3 using a rotation by

an angle θ about an axis n followed by a translation d. Then, we have z′
1

 =

 eskew(θn) d

0 1


 z

1

 . (2.16)

Hence, the matrix

 R d

0 1

 ∈ SE(3), where R = eskew(θn), represents the 3D rigid

body transformation composed of a rotation by an angle θ about an axis n and a

translation d.

Interpolation: Various approaches have been proposed in the past for interpolation

on SE(3) [40,41]. In this dissertation, we use a simple piecewise interpolation scheme

based on screw motions [42]. Given P1, . . . ,Pm ∈ SE(3) at time instances t1, . . . , tm

respectively, we use the following curve for interpolation:

γ(t) = Pi LexpSE(3)

(
t− ti
ti+1 − ti

Bi

)
for t ∈ [ti, ti+1], (2.17)

where Bi = LlogSE(3)

(
P−1
i Pi+1

)
for i = 1, 2, . . . ,m− 1.

SE(3)⊗ . . .⊗ SE(3): We can combine multiple SE(3) groups using the direct

product to form a new Lie group

SE(3)n := SE(3)⊗ . . .⊗ SE(3) (2.18)

with the corresponding Lie algebra

se(3)n := se(3)⊕ . . .⊕ se(3). (2.19)
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The Lie exponential and Lie logarithm maps for (B1,B2, . . . ,Bn) ∈ se(3)n and

(P1,P2, . . . ,Pn) ∈ SE(3)n are given by

LexpSE(3)n(B1,B2, . . . ,Bn) = (eB1 , eB2 , . . . , eBn),

LlogSE(3)n(P1,P2, . . . ,Pn) = (log(P1), log(P2), . . . , log(Pn)).

(2.20)

Interpolation on SE(3)n can be performed by simultaneously interpolating on indi-

vidual SE(3).

2.2 Quaternions

The set of quaternions Q [35,43–45] is equivalent to the 4-dimensional vector

spaceR4 equipped with the quaternion multiplication operation. Let {e0, e1, e2, e3}

be the canonical basis for the vector space R4. The quaternion multiplication is

defined by giving the following multiplication table for the basis:

e0e1 = e1e0 = e1, e1e2 = −e2e1 = e3,

e0e2 = e2e0 = e2, e2e3 = −e3e2 = e1,

e0e3 = e3e0 = e3, e3e1 = −e1e3 = e2,

e0e0 = e0, e1e1 = e2e2 = e3e3 = −1.

(2.21)

A quaternion q is commonly represented as (sq,vq), where sq ∈ R is referred

to as the scalar or real part and vq ∈ R3 is referred to as the vector or imaginary

part. Addition of two quaternions p = (sp,vp) and q = (sq,vq) is given by

p+ q = (sp + sq,vp + vq). (2.22)

Using (2.21), multiplication of p and q can be computed as

pq = (spsq − vp � vq, spvq + sqvp + vp × vq), (2.23)
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where vp � vq and vp × vq represent the dot product and cross product between vp

and vq, respectively. Note that the quaternion multiplication is not commutative.

The conjugate q̄, the norm ‖q‖, and the exponential eq of a quaternion q =

(sq,vq) are given by

q̄ = (sq,−vq), ‖q‖ =
√
s2
q + ‖vq‖2

2,

eq =

(
esq cos(‖vq‖2), esq sin(‖vq‖2)

vq
‖vq‖2

)
.

(2.24)

The quaternions with unit norm are known as unit quaternions. The set of

unit quaternions, denoted by UQ, forms a Lie group with quaternion multiplication

as the group multiplication operation, and qe = (1,0) as the group identity element.

The Lie algebra of UQ, denoted by uq, is the three dimensional vector space spanned

by the set of purely imaginary quaternions. The Lie exponential and Lie logarithm

maps for w ∈ uq and q = (sq,vq) ∈ UQ are given by

LexpUQ(w) = ew =

(
cos(‖w‖2), sin(‖w‖2)

w

‖w‖2

)
,

LlogUQ(q) = cos−1(sq)
vq√

1− s2
q

.

(2.25)

Unit quaternions are commonly used to represent rotations in 3D space. Let

z be a 3D point, and qz = (0, z) be its quaternion representation. Let z′ be a 3D

point obtained by rotating z by an angle θ about an axis n, and qz′ = (0, z′) be its

quaternion representation. Then, we have qz′ = rqzr̄, where r = en
θ
2 . Hence, the

unit quaternion

en
θ
2 =

(
cos

(
θ

2

)
, n sin

(
θ

2

))
(2.26)

represents the 3D rotation by an angle θ about the axis n. We can easily convert

15



between unit quaternion and SO(3) representations using

r = LexpUQ

(w
2

)
, w = vec

(
LlogSO(3)(R)

)
,

R = LexpSO(3)(skew(w)), w = 2 (LlogUQ(r)) .
(2.27)

UQ⊗ . . .⊗UQ: We can combine multiple UQ groups using the direct product to

form a new Lie group

UQn := UQ⊗ . . .⊗ UQ (2.28)

with the corresponding Lie algebra

uqn := uq⊕ . . .⊕ uq. (2.29)

2.3 Dual Quaternions

The set of dual quaternions D is the extension of quaternions using dual num-

ber theory [37]. Each dual quaternion consists of eight elements or two quaternions:

ζ = qr + εqd, (2.30)

where qr = (sr,vr), qd = (sd,vd) are quaternions, and ε is the dual operator, i.e.,

ε2 = 0, ε 6= 0. The dual quaternion addition, multiplication, conjugate and magni-

tude are given by

ζ1 + ζ2 = (q1r + q2r) + ε(q1d + q2d),

ζ1ζ2 = q1rq2r + ε(q1rq2d + q1dq2r),

ζ̄ = q̄r + εq̄d,

‖ζ‖ = ‖qr‖+ ε

(
srsd + vr � vd

‖qr‖

)
.

(2.31)
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Note that the magnitude of dual quaternion is a dual number. Dual quaternions

that satisfy

‖ζ‖ = 1, i.e., ‖qr‖ = 1, srsd + vr � vd = 0, (2.32)

are called unit dual quaternions. We denote the set of all unit dual quaternions

using UD.

While a unit quaternion can represent a 3D rotation, a unit dual quaternion

can represent a full 3D rigid body transformation, i.e, both rotation and translation.

Let z be a 3D point, and ζz = (1,0) + ε(0, z) be its dual quaternion representation.

Let z′ be a 3D point obtained by transforming z using a rotation by an angle θ

about an axis n followed by a translation d, and ζz′ = (1,0) + ε(0, z′) be its dual

quaternion representation. Then, we have ζz′ = ζrdζzζ̄rd, where

ζrd = r + ε

(
1

2
tr

)
∈ UD,

r = en
θ
2 ∈ UQ, t = (0,d) ∈ Q.

(2.33)

Hence, the unit dual quaternion ζrd represents the 3D rigid body transformation

composed of a rotation by an angle θ about an axis n and a translation d.
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Chapter 3: Relative 3D Geometry-based Skeletal Representations for

Human Action Recognition

3.1 Introduction

Human action recognition has been an active area of research for the past sev-

eral decades due to its applications in surveillance, video games, human computer

interaction, robotics, health care, etc. In the past few decades, several approaches

have been proposed for recognizing human actions from monocular RGB video se-

quences [46, 47]. Unfortunately, the monocular RGB data is highly sensitive to

various factors like illumination changes, variations in view-point, occlusions and

background clutter. Moreover, monocular video sensors do not fully capture the

human motion in a 3D space. Hence, despite significant research efforts over the

past few decades, human action recognition still remains a challenging problem.

Human body can be represented as an articulated system of rigid segments

connected by joints, and human motion can be considered as a continuous evolution

of the spatial configuration of these rigid segments [48–50]. So, if we can reliably

extract the human skeleton, action recognition can be performed by classifying its

temporal evolution. Using skeletal data for action recognition has several advan-
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tages such as ease of interpretability, low processing time, fast/cheap transmission

and storage, etc. Skeletal data makes it easier to analyze which part of the body is

playing a major role in discriminating one action against the other, and allows us to

correlate this with human interpretation of motion. Interpretability is an important

factor in various applications such as exercise monitoring, human computer interac-

tion, post-surgery rehabilitation, etc. Skeletons provide a compact low-dimensional

representation that can be stored easily, transmitted and processed quickly. Storage

and transmission are critical in applications where the recognition module runs on

a central server.

Unfortunately, extracting the human skeleton from monocular RGB videos is

a very difficult task [51]. Sophisticated motion capture systems can be used to get

the 3D locations of landmarks placed on the human body, but such systems are very

expensive, and require the user to wear a motion capture suit with markers which

can hinder natural movements. With the recent availability of cost-effective depth

sensors, extracting the human skeleton has become relatively easier. These sensors

provide 3D depth data of the scene, which is robust to illumination changes and

offers more useful information to infer human skeletons. Recently, a quick method

was proposed in [52] to accurately estimate the 3D positions of skeletal joints using

a single depth image. These recent advances have generated a renewed interest in

skeleton-based human action recognition.

Existing skeleton-based action recognition approaches can be broadly grouped

into two main categories: joint-based approaches and body part-based approaches.

Inspired by the moving lights display experiment of [53], joint-based approaches
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Figure 3.1: Two views of a human skeleton

consider the human skeleton as a set of points (Figure 3.1 left). These approaches

try to model the motion of either the individual joints or combinations of multiple

joints using various features like joint positions [11, 54–56], joint orientations with

respect to a fixed root node [57,58], pairwise relative joint positions [13,59,60], etc.

On the other hand, motivated by the 3D-shape representations of [61], body part-

based approaches consider the human skeleton as a connected set of rigid segments

(Figure 3.1 right). These approaches either model the temporal evolution of indi-

vidual body parts [62] or focus on directly-connected pairs of body parts and model

the temporal evolution of joint angles [14, 15,63].

In this chapter, we introduce a new family of body part-based skeletal rep-

resentations for recognizing human actions. Inspired by the observation that for

human actions, the relative geometry between various body parts (though not di-

rectly connected by a joint) provides a more meaningful description than their abso-

lute locations (for example, clapping is more intuitively described using the relative
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geometry between the two hands), we explicitly model the relative 3D geometry

between different body parts in our skeletal representations.

Given two rigid body parts, their relative geometry can be described using

the rigid body transformation (rotation and translation) required to take one body

part to the position and orientation of the other. Hence, we use the rigid body

transformations between all pairs of body parts to represent a human skeleton. Rigid

body transformations in 3D space can be mathematically represented in various

ways using the special orthogonal group SO(3), quaternions, the special Euclidean

group SE(3), and dual quaternions. Using these mathematical representations, we

introduce a family of relative 3D geometry-based skeletal representations for action

recognition, which we refer to as R3DG features.

One of the major issues while working with skeletal-data is scale variation.

This can be handled by normalizing all the skeletons (without changing the joint

angles) such that their body part lengths are equal to the corresponding lengths of a

fixed reference skeleton. Interestingly, while the relative translations between various

body parts vary with this scale normalization, the relative rotations do not change.

Hence, we can get scale-invariant skeletal representations by using only the relative

rotations between different body parts. In this chapter, we experimentally show

that just by using the relative 3D rotations, we can get a recognition accuracy that

is close to the accuracy obtained by using the full rigid body transformation-based

representations computed from scale-normalized skeletons. This suggests that the

translational information might possibly be redundant for human action recognition

when the 3D rotations between all pairs of body parts are used.
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Figure 3.2: Representation of an action as a curve in an R3DG feature space.

Using any of the proposed skeletal representations, human actions can be mod-

eled as curves (Figure 3.2) in an R3DG feature space, and action recognition can

be performed by classifying these curves. Irrespective of the skeletal representation

being used, classification of temporal sequences into different action categories is a

difficult problem due to various issues like rate variations, temporal misalignment,

noise, etc. To handle rate variations, for each action category, we compute a nominal

curve using Dynamic Time Warping (DTW) [32], and warp all the curves to this

nominal curve. Then, we represent the warped curves using the low frequency FTP

representation, which was shown to be robust to noise and temporal misalignment

in [13]. Finally, classification is performed using an SVM classifier with the FTP

representation.

Contributions: We introduce a new family of body part-based 3D skeletal rep-

resentations for human action recognition. The proposed representations explic-

itly model the relative geometry between various body parts using 3D rigid body
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transformations. We use the special Euclidean group and dual quaternions in our

skeletal representations. To the best of our knowledge, they have not been explored

before in the context of skeleton-based human action recognition. We experimen-

tally show that the proposed representations outperform several existing skeletal

representations by evaluating them on several benchmark action datasets. We also

introduce scale-invariant skeletal representations that use only the 3D rotations be-

tween various body parts. We experimentally show that the performance of the

scale-invariant rotation-only representations is very close to that of the full rigid

body transformation-based representations.

Organization: Section 3.2 provides an overview of existing skeleton-based human

action recognition approaches. Section 3.3 introduces the proposed family of R3DG

features, and Section 3.4 presents the proposed temporal modeling and classifica-

tion approach. Experimental results and conclusions are presented in Sections 3.5

and 3.6, respectively.

3.2 Related Work

In this section, we provide an overview of various existing skeleton-based hu-

man action recognition approaches. Various depth map-based action recognition

approaches have also been proposed in the recent past, which use features extracted

from the 3D depth data. Since the focus of this chapter is on skeleton-based ac-

tion recognition, we refer the readers to [64, 65] for a review of depth map-based

recognition approaches.
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Existing skeleton-based action recognition approaches can be broadly grouped

into two main categories: joint-based approaches and body part-based approaches.

While the joint-based approaches consider the human skeleton as a set of inde-

pendent points, the body part-based approaches consider the human skeleton as a

connected set of rigid segments. Approaches that use joint angles for representing

the human skeleton can be classified as part-based approaches since joint angles

measure the geometry between pairs of body parts that are directly connected to

each other.

3.2.1 Joint-based Approaches

A set of 13 joint trajectories in XYZT space was used to represent human

actions in [54], and their affine projections were compared using a subspace angle-

based similarity measure. In [55], the trajectories of individual joints and groups

of joints were modeled using Hidden Markov Models (HMMs). Each HMM was

considered as a weak classifier, which were then combined using AdaBoost. HMMs

were also used in [66] to model the joint trajectories of whole body, upper body and

lower body separately for performing action recognition.

The 3D joint locations were combined with silhouette-based features in [67],

and their temporal evolutions were compared using DTW. Dynamic time warping

was also used in [56] for comparing the sequences of joint positions. Instead of giving

equal weight to all the joints in the DTW distance computation, a feature weighting

approach was used in [56], where each joint was assigned its own weight. In [11], the

24



temporal evolutions of joint locations were modeled using a temporal hierarchy of

covariance features, and action recognition was performed using an SVM classifier.

In [10], the 3D trajectory of each joint was projected onto three Cartesian planes to

get three 2D trajectories. Each 2D trajectory was represented using the histogram

of displacements between consecutive points. The histograms from all the joints

were concatenated to get the final representation, which was classified using an

SVM classifier. Recently, hierarchical recurrent neural networks were used in [68]

for modeling the temporal dynamics of skeletal joints.

A view invariant representation of human skeleton was obtained in [57] by

quantizing the 3D joint locations into histograms based on their orientations with

respect to a coordinate system attached to the hip center. The temporal evolutions

of this representation were modeled using HMMs. In [69], human skeletons were

represented using 3D joint positions, their first and second order derivatives, i.e.,

joint velocities and accelerations, and a nearest neighbor-based approach was used

to perform low-latency action recognition. In [58], one of the joints was selected as a

root joint, and all the remaining joints were represented using their orientations with

respect to a coordinate system attached to the root joint. The temporal evolutions

of this representation were compared using dynamic time warping.

In [13, 59], pairwise relative positions of the joints were used to represent the

human skeleton, and the temporal evolutions of this representation were modeled

using low-frequency Fourier coefficients [13] and wavelets [59]. A similar skeletal

representation was also used in [12], where a discriminative learning-based temporal

alignment method was used for comparing temporal sequences.
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In [70], the human skeleton was represented using distances between all pairs of

joints in the current frame, distances between all pairs of joints in the current frame

and the previous frame, distances between all pairs of joints in the current frame

and the first frame of the sequence. Action recognition was then performed using

a logistic regression-based approach. In [60], the human skeleton was represented

using relative joint positions, temporal displacements of the joints, and offsets of

the joints with respect to the initial frame. Action classification was then performed

using the Naive-Bayes nearest neighbor rule in a low-dimensional space obtained

using Principal Component Analysis (PCA). A similar representation was also used

in [71] along with random forests.

A local skeleton descriptor, referred to as skeletal quad, was introduced in [72],

which encodes the relative position of joint quadruples. This descriptor represents

a set of four joints using the coordinates of third and fourth joints in a coordinate

system with the first joint as the origin and the second joint as (1, 1, 1). These

skeletal quads were combined with Fisher vectors [73] and a linear SVM classifier to

perform action recognition. An interesting aspect of this descriptor is that it can be

used to represent the relative 3D geometry between two body parts (since two body

parts can be considered as four joints). However, the main difference between the

skeletal quad descriptor and the proposed R3DG features is that while the proposed

features directly use the translation and rotation between body parts, the skeletal

quad descriptor encodes this information indirectly using the joint coordinates.

In [74], human skeleton was divided into five parts and each part was rep-

resented using the coordinates of the joints that belonged to the part. Then, a
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dictionary of pose templates was learned for each body part, and these templates

were used to obtain a quantized representation of part poses. The authors further

defined spatial-part-sets to capture the spatial configurations of multiple body parts,

and temporal-part-sets to capture the joint pose evolutions of multiple body parts.

Finally, the bag-of-words model was used to get the action representation, which

was classified using a one-vs-one intersection kernel SVM classifier.

Different from the above mentioned approaches, [75] introduced various types

of relational pose features that describe the geometric relations between specified

joints of the skeleton, and used them successfully for indexing and retrieval of motion

capture data. Similar features were later used in [76–78] for skeleton-based human

action recognition.

3.2.2 Part-based Approaches

In [62], the human body was divided into five different parts, and human ac-

tions were represented using the motion parameters of individual parts like horizon-

tal and vertical translations, in-plane rotations, etc. Principal component analysis

was used to represent an action as a linear combination of a set of basis actions,

and classification was performed by comparing the PCA coefficients. In [79], human

skeletons were divided into smaller parts and each body part was represented using

certain bio-inspired shape features. The temporal evolutions of these bio-inspired

features were modeled using Linear Dynamical Systems (LDS), and a discriminative

metric learning approach was used for comparing the LDS models.
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In [63], human skeletons were represented using 3D joint angles, and the tem-

poral evolutions of this representation were compared using DTW. While [80] rep-

resented human actions as curves in low-dimensional phase spaces related to joint

angles, [15] represented human actions using pairwise affinities between joint angle

trajectories. In [81], human skeletons were represented using joint angle quaternions.

These skeletal features were augmented with RGB and depth-based HOG features,

and a maximum entropy Markov model was used for action detection. In [14], a set

of few informative skeletal joints was selected at each time instance based on highly

interpretable measures such as mean and variance of joint angles, angular velocity

of the joints, etc. Human actions were represented as sequences of these informative

joints, which were compared using the normalized edit distance.

3.3 Relative 3D Geometry-based Skeletal Representations

Let S = (V,E) be a skeleton, where V = {v1, . . . , vN} denotes the set of joints

and E = {e1, . . . , eM} denotes the set of oriented rigid body parts. Let em1, em2

denote the starting and end points of em, respectively.

Given a pair of body parts em and en, to describe their relative 3D geometry,

we use the rigid body transformations required to take one body part to the position

and orientation of the other. A full rigid body transformation T is composed of a ro-

tation by an angle θ about an axis n and a translation d. To measure the rigid body

transformation Tm,n = (θm,n,nm,n,dm,n) required to take en to the position and ori-

entation of em, we use a local coordinate system attached to en (Figure 3.3(a)).
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Figure 3.3: (a) Rigid body transformation Tm,n = (θm,n,nm,n,dm,n) from en to em

measured in the coordinate system of en, (b) Rigid body transformation Tn,m =

(θn,m,nn,m,dn,m) from em to en measured in the coordinate system of em, (c) Rigid

body transformation Tm = (θm,nm,dm) of em with respect to global x-axis.

Similarly, to measure the rigid body transformation Tn,m = (θn,m,nn,m,dn,m) re-

quired to take em to the position and orientation of en, we use a local coordinate

system attached to em (Figure 3.3(b)). We obtain the local coordinate system of a

body part em by rotating (with minimum rotation) and translating the global coor-

dinate system such that em1 becomes the origin and em coincides with the x-axis.

At first glance it might appear that using only Tm,n or Tn,m would be sufficient

to represent the relative geometry between em and en. Consider the case in which

en is rotating about an axis parallel to em. Though there is relative motion between

the two, Tm,n will not change. Similarly, if em is rotating about an axis parallel

to en, then Tn,m will not change. So, if we represent the relative geometry using

only one of them, the representation will not change under certain kinds of relative

motions, which is undesirable. Hence, we use both Tm,n and Tn,m to represent the

29



relative geometry between em and en. Note that both Tm,n and Tn,m do not change

only when both em and en undergo same rotation and translation.

Using the relative geometry between all pairs of body parts, we represent a

skeleton S at time instance t using

C(t) = (T1,2(t), T2,1(t), . . . , TM−1,M(t), TM,M−1(t)), (3.1)

where M is the number of body parts. The total number of rigid body transfor-

mations used in the skeletal representation is K = M(M − 1). Using the proposed

representation, a skeletal sequence describing an action can be represented as a

curve {C(t), t ∈ [0, T ′]}, and action recognition can be performed by classifying

such curves into different action categories.

Note that we are using only the relative measurements Tm,n(t) in our skeletal

representation. We also performed experiments by adding the absolute 3D locations

of body parts to the skeletal representation. The 3D location of a body part em

can be described using its rigid body transformation Tm with respect to the global

x-axis (Figure 3.3(c)). But, this did not give any improvement, suggesting that the

absolute measurements are redundant when the relative measurements are used.

3.3.1 R3DG Features

There are multiple ways to mathematically represent the rigid body transfor-

mations in 3D space. In this chapter, we consider the following four representations:

SE(3), SO(3) ⊗ R3, UQ ⊗ R3, and UD. Using each representation we get a full

rigid body transformation-based R3DG feature. Please refer to Chapter 2 for details
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about the special Euclidean group SE(3), the special orthogonal group SO(3), the

unit quaternions UQ, and the unit dual quaternions UD.

SE(3) : Each rigid body transformation Ti,j(t) is represented as a member of SE(3)

using the 4× 4 matrix

Pi,j(t) =

 Ri,j(t) di,j(t)

0 1

 , (3.2)

where Ri,j(t) is the SO(3) representation of 3D rotation (θi,j(t),ni,j(t)), and the

entire skeleton is represented using

(
P1,2(t), P2,1(t), . . . ,PM−1,M(t),PM,M−1(t)

)
∈ SE(3)K . (3.3)

Since SE(3)K is a curved space, classification of action curves in this space is

not an easy task. Standard classification approaches like SVM, which are defined

for vector space representations, are not directly applicable to this non-vector space.

Also, temporal modeling approaches like Fourier analysis are not applicable to this

space. Note that the standard Fourier analysis is defined for functions whose output

varies along the real line. Here, the action curve C(t) evolves in the non-Euclidean

space SE(3)K as a function of time, and the standard Fourier analysis is not defined

for this case. To overcome these difficulties, we map the action curves from the Lie

group SE(3)K to its Lie algebra se(3)K , which is a 6M(M − 1)-dimensional vector

space. The final representation of action curve C(t) is given by

C1(t) =
[

vec(log(P1,2(t))), vec(log(P2,1(t))), . . . ,

vec(log(PM−1,M(t))), vec(log(PM,M−1(t)))
]
.

(3.4)
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SO(3)⊗R3 : In this case, the rotations and translations are separately represented

as members of SO(3) and R3, respectively, and the entire skeleton is represented

using

(
R1,2(t),R2,1(t), . . . ,RM−1,M(t),RM,M−1(t),

d1,2(t),d2,1(t), . . . ,dM−1,M(t),dM,M−1(t)
)
∈ SO(3)K ⊗R3K .

(3.5)

Similar to SE(3)K , the Lie group SO(3)K is also a curved space. So, we map

the action curves from SO(3)K ⊗R3K to the 6M(M − 1)-dimensional vector space

so(3)K ⊕R3K by mapping the rotational part from the Lie group SO(3)K to its Lie

algebra so(3)K . Note that the translational part remains the same. The final vector

space representation of action curve C(t) is given by

C2(t) =
[

vec(log(R1,2(t))), vec(log(R2,1(t))), . . . , vec(log(RM−1,M(t))),

vec(log(RM,M−1(t))),d1,2(t),d2,1(t), . . . ,dM−1,M(t),dM,M−1(t)
]
.

(3.6)

UQ⊗R3 : In this case, the rotations and translations are separately represented

as elements of UQ and R3, respectively, and the entire skeleton is represented using

(
r1,2(t), r2,1(t), . . . , rM−1,M(t), rM,M−1(t),

d1,2(t),d2,1(t),dM−1,M(t),dM,M−1(t)
)
∈ UQK ⊗R3K ,

(3.7)

where ri,j(t) = (si,j(t),vi,j(t)) is the unit quaternion representation of 3D rotation

(θi,j(t),ni,j(t)).

Similar to SO(3) and SE(3), the Lie group UQ is also a curved surface. In fact,

the set of unit quaternions forms a three dimensional unit sphere in R4. Hence, to

get a vector space representation, we directly use the 4-dimensional ambient space
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representation of unit quaternions. With this, we get the following 7M(M − 1)-

dimensional vector space representation for the action curve C(t):

C3(t) =
[
s1,2(t),v1,2(t), s2,1(t),v2,1(t), . . . , sM−1,M(t),vM−1,M(t),

sM,M−1(t),vM,M−1(t),d1,2(t),d2,1(t), . . . ,dM−1,M(t),dM,M−1(t)
]
.

(3.8)

Here, we could have used the Lie algebra representation instead of the ambient

space representation. But, the uq representation is nothing but a scaled version (a

scaling factor of 1/2) of so(3) representation (refer to (2.27)). Since so(3) represen-

tation is already being used in the case of SO(3)⊗R3, we chose to use the ambient

space representation for unit quaternions.

UD : In this case, each rigid body transformation Ti,j(t) is represented using a unit

dual quaternion

ζi,j(t) =
(
sri,j(t), v

r
i,j(t)

)
+ ε
(
sdi,j(t), v

d
i,j(t)

)
. (3.9)

The set of unit dual quaternions does not form a vector space. Hence, similar to

the quaternions, we use the 8-dimensional ambient space representation for unit

dual quaternions, which gives the following 8M(M − 1)-dimensional vector space

representation for the action curve C(t):

C4(t) =
[
sr1,2(t),vr1,2(t), sd1,2(t),vd1,2(t), sr2,1(t),vr2,1(t), sd2,1(t),vd2,1(t), . . . ,

srM−1,M(t),vrM−1,M(t), sdM−1,M(t),vdM−1,M(t),

srM,M−1(t),vrM,M−1(t), sdM,M−1(t),vdM,M−1(t)
]
.

(3.10)
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Table 3.1: The proposed family of R3DG features.

R3DG feature Dimensionality Needs scale normalization

Rigid body transformation-based

se(3) 6M(M − 1) Yes

so(3)⊗R3 6M(M − 1) Yes

UQ⊗R3 7M(M − 1) Yes

UD 8M(M − 1) Yes

Rotation-based
so(3) 3M(M − 1) No

UQ 4M(M − 1) No

3.3.2 Scale-invariant R3DG Features

One of the standard ways to handle scale variations in skeletal data is to

resize all the skeletons to a fixed size. This can be done by normalizing the skeletons

(without changing the joint angles) such that their body part lengths are equal to the

corresponding lengths of a reference skeleton. Interestingly, while the translations

between different body parts vary with this scale normalization, the 3D rotations

do not change. So, by using only the rotations between different body parts, we

can get the following two scale-invariant R3DG features based on the so(3) and UQ

representations of rotations:

C5(t) =
[

vec(log(R1,2(t))), vec(log(R2,1(t))), . . . ,

vec(log(RM−1,M(t))), vec(log(RM,M−1(t)))
]
,

C6(t) =
[
s1,2(t),v1,2(t), s2,1(t),v2,1(t), . . . ,

sM−1,M(t),vM−1,M(t), sM,M−1(t),vM,M−1(t)
]
.

(3.11)
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Note that at any time instance t, C5(t) is a 3M(M−1)-dimensional vector and C6(t)

is a 4M(M − 1)-dimensional vector. Table 3.1 summarizes the proposed family of

R3DG features.

3.4 Temporal Modeling and Classification

Classification of vector space curves into different action categories is not a

straightforward task due to various issues like rate variations, temporal misalign-

ment, noise, etc. Following [32, 82], we use DTW to handle rate variations. During

training, for each action category, we compute a nominal curve using the algorithm

described in Table 3.2, and warp all the training curves to this nominal curve. We

use the squared Euclidean distance for DTW computations. Note that for comput-

ing a nominal curve all the curves should have equal number of samples. For this, we

re-sample the action curves using the interpolation algorithms presented for SO(3)

and SE(3) in Sections 2.1.1 and 2.1.2, respectively. In the case of quaternions, we

first interpolate the rotations on SO(3) and then convert them to unit quaternions.

In the case of dual quaternions, we first interpolate the rigid body transformations

on SE(3) and then convert them to unit dual quaternions.

After the DTW step, we represent the warped curves by using the low-frequency

FTP representation that was shown to be robust to temporal misalignment and

noise in [13]. We apply FTP for each dimension separately and concatenate the

low-frequency Fourier coefficients to obtain the final feature vector. Action recog-

nition is performed by classifying the final feature vectors using a one-vs-all SVM
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Table 3.2: Algorithm for computing a nominal curve.

Input: Curves S1(t), . . . ,SJ(t) at t = 0, 1, . . . , T ′.

Maximum number of iterations max and threshold δ.

Output: Nominal curve S(t) at t = 0, 1, . . . , T ′.

Initialization: S(t) = S1(t), iter = 0.

while iter < max

Warp each curve Sj(t) to the nominal curve S(t) using DTW with

squared Euclidean distance to get a warped curve Swj (t).

Compute a new nominal S ′
(t) using S ′

(t) = 1
J

∑J
j=1 Swj (t).

if
∑T ′

t=0 ‖S
′
(t)− S(t)‖22 ≤ δ

break

end

S(t) = S ′
(t); iter = iter + 1;

end

classifier. Figure 3.4 gives an overview of the proposed skeleton-based action recog-

nition approach. The top row shows all the steps involved in training and the bottom

row shows all the steps involved in testing.

3.5 Experimental Evaluation

In this section, we evaluate the proposed R3DG features on five action datasets:

MSRAction3D [83], UTKinect-Action [57], Florence3D [84], MSRPairs [85] and

G3D [86]. Please refer to Table 3.3 for details about these datasets.

Basic pre-processing: To make the skeletal data invariant to the absolute location

of human in the scene, all the 3D joint coordinates were transformed from world
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Table 3.3: Datasets for skeleton-based human action recognition.

Dataset MSRAction3D UTKinect-Action Florence3D MSRPairs G3D

Actions 20 10 9 12 20

Subjects 10 10 10 10 10

Sequences 557 199 215 353 663

Joints 20 20 15 20 20

Body parts 19 19 14 19 19

coordinate system to a person-centric coordinate system by placing the hip center

at the origin. We rotated the skeletons such that the ground plane projection of the

vector from left hip to right hip is parallel to the global x-axis. For each dataset,

we took one of the subjects as reference, and normalized all the other skeletons

(without changing their joint angles) such that their body part lengths are equal to

the corresponding lengths of the reference skeleton. This normalization takes care

of scale variations. We also performed experiments by varying the reference sub-

ject, but the results did not vary much. The standard deviation in the recognition

accuracy was around 0.2-0.3%.

Alternative skeletal representations: To show the effectiveness of the proposed

R3DG features, we compare them with the following alternative representations:

• Joint positions (JP): Concatenation of 3D coordinates of all the joints

v1, . . . , vN (except the hip center).

• Relative positions of the joints (RJP): Concatenation of all the vectors

−−→vivj, 1 ≤ i < j ≤ N.
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• Joint angles (JA): Concatenation of the quaternion representations of all

the joint angles. We also tried the so(3) and Euler-angle representations for

joint angles, but quaternions gave the best results. Here, we measure each

joint angle in the local coordinate systems of both body parts associated with

that angle.

• Relation pose features (RP): We use the joint distance, plane, normal

plane, velocity and normal velocity features of [77] computed from a single

human skeleton.

• Individual body part locations (BPL): Each body part em is represented

using its rigid body transformation Tm with respect to the global x-axis (Fig-

ure 3.3(c)). Similar to R3DG features, we have six different BPL features:

se(3), so(3)⊗R3, UQ⊗R3, UD, so(3), and UQ.

• Skeletal quads (SQ): We use the skeletal quad descriptor of [72] to describe

the relative geometry between every pair of body parts.

For a fair comparison, we use the same temporal modeling and classification

approach described in Section 3.4 with all the representations. Table 3.4 summarizes

the alternative skeletal representations used for comparison.

Parameters: For the FTP representation, we used a three-level temporal pyramid

with one-fourth of the segment length as the number of low-frequency coefficients.

While using one or two levels for the temporal pyramid produced inferior results,

going beyond three did not improve the results significantly. Changing the number
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Table 3.4: Alternative skeletal representations for comparison.

Representation JP RJP JA RP SQ

Dimensionality 3(N − 1) 3
2N(N − 1) 8M N(75 + N−1

2 ) 6M(M − 1)

Requires scale

normalization
Yes Yes No Yes Yes

Representation
BPL

se(3) so(3)⊗R3 UQ⊗R3 UD so(3) UQ

Dimensionality 6M 6M 7M 8M 3M 4M

Requires scale

normalization
Yes Yes Yes Yes No No

of low-frequency coefficients from one-fourth of the segment length to one-third or

one-fifth did not significantly change the accuracy (around 0.2%). The value of SVM

parameter C was chosen using cross-validation. For each dataset, all the curves were

re-sampled to have same length. The reference length was chosen to be the maxi-

mum number of samples in any curve in the dataset before re-sampling.

Comparison with other skeletal representations: Table 3.5 shows the recog-

nition accuracy for various skeletal representations on five action datasets when the

same temporal modeling and classification pipeline (DTW + FTP + linear SVM) is

used with all the representations. For all the datasets, we followed the cross-subject

test setting, in which half of the subjects were used for training and the other half

were used for testing. All the results reported in this table were averaged over ten

different random combinations of training and test data. The best result in each

column is shown in boldface style. We can see that all the proposed R3DG features
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Table 3.5: Recognition accuracy for various skeletal representations.

Representation MSRAction3D UTKinect Florence3D MSRPairs G3D

JP 88.75 95.08 85.26 92.90 87.28

RJP 88.87 95.48 85.17 93.91 90.03

JA 75.39 94.07 80.45 90.46 86.25

RP 87.25 93.46 76.86 84.76 88.19

SQ 83.44 95.18 88.89 90.70 89.79

BPL

se(3) 82.97 94.58 81.38 89.62 87.40

so(3)⊗R3 83.88 94.67 81.26 90.59 87.19

UQ⊗R3 88.74 96.18 84.94 93.32 89.48

UD 87.76 95.48 83.95 92.75 88.73

so(3) 82.46 94.37 80.52 90.70 86.64

UQ 86.30 95.18 83.46 92.41 87.76

R3DG

se(3) 89.55 97.20 90.71 93.65 91.60

so(3)⊗R3 89.37 97.20 90.87 93.82 91.60

UQ⊗R3 90.24 97.09 92.61 93.60 91.51

UD 90.69 97.09 91.55 94.33 92.12

so(3) 89.22 96.78 90.52 93.48 91.48

UQ 90.59 96.88 91.27 93.88 92.12

perform better than all the alternative skeletal representations on all the datasets

except the MSRPairs dataset where the RJP representation performs slightly bet-

ter than some of the R3DG features. Specifically, the accuracy of the best R3DG

feature is better than the accuracy of the best competing skeletal representation

by 1.82% on the MSRAction3D dataset, 1.02% on the UTKinect dataset, 3.72% on

the Florence3D dataset, 0.42% on the MSRPairs dataset, and 2.09% on the G3D

dataset. These results clearly show the superiority of the proposed R3DG features.
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Table 3.6: Contribution of the FTP module in terms of recognition accuracy

Dataset se(3) so(3)⊗R3 UQ⊗R3 UD so(3) UQ

MSRAction3D

DTW + SVM 87.71 87.52 90.30 90.59 86.96 90.23

DTW + FTP + SVM 89.55 89.37 90.24 90.69 89.22 90.59

FTP contribution 1.84 1.85 -0.06 0.10 2.26 0.36

G3D

DTW + SVM 88.13 88.28 89.73 89.73 87.92 89.52

DTW + FTP + SVM 91.60 91.60 91.51 92.12 91.48 92.12

FTP contribution 3.47 3.32 1.78 2.39 3.56 2.60

Contribution of the translational information: Comparing the recognition ac-

curacy of rotation-based and full rigid body transformation-based R3DG features,

we can see that on four out of five datasets, the contribution of translational infor-

mation is not that significant. The difference between the best recognition accuracy

of rotation-based and full rigid body transformation-based R3DG features is 0.1%

for the MSRAction3D dataset, 0.32% for the UTKinect dataset, 0.45% for the MSR-

Pairs dataset, and 0% for the G3D dataset. Only on the Florence3D dataset, there

is a significance difference of around 1.34%.

Contribution of the DTW and FTP modules: Our temporal modeling con-

sists of the DTW and FTP modules. To analyze the contribution of these modules

to the final recognition accuracy, we performed experiments on the MSRAction3D

and G3D datasets (the two largest datasets) by removing these modules from the

action recognition pipeline. Table 3.6 compares the final accuracy with and without

the FTP module in the action recognition pipeline. As we can see, the FTP module

contributes significantly to the final accuracy in most of the cases.
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Table 3.7: Contribution of the DTW module in terms of recognition accuracy

Dataset se(3) so(3)⊗R3 UQ⊗R3 UD so(3) UQ

MSRAction3D

FTP + SVM 86.93 86.94 87.58 87.69 86.42 87.26

DTW + FTP + SVM 89.55 89.37 90.24 90.69 89.22 90.59

DTW contribution 2.62 2.43 2.66 3.00 2.80 3.33

G3D

FTP + SVM 91.75 91.75 91.48 92.12 91.60 92.12

DTW + FTP + SVM 91.60 91.60 91.51 92.12 91.48 92.12

DTW contribution -0.15 -0.15 0.03 0 -0.12 0

Table 3.7 compares the final accuracy with and without the DTW module in

the action recognition pipeline. While the DTW module contributes significantly

to the final accuracy in the case of MSRAction3D dataset, it does not change the

accuracy much in the case of G3D dataset. This variation is expected since the

contribution of DTW module depends on the rate variations present in the dataset.

Comparison with state-of-the-art approaches: Table 3.8 compares the pro-

posed approach with various existing skeleton-based action recognition approaches

on MSRAction3D, UTKinect, Florence3D and G3D datasets (MSRPairs dataset is

missing since all the results reported in the literature for this dataset are based

on depth data). Since the focus of this work is on skeleton-based human action

recognition, we use only skeleton-based approaches for comparison. We evaluated

our approach using both linear and RBF kernel SVMs, and the kernel SVM per-

formed slightly better on all datasets. When the RBF kernel was used, the UQ

R3DG feature gave the best result (among all R3DG features) for the G3D dataset

and the UQ×R3 R3DG feature gave the best result on all the remaining datasets.
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Table 3.8: Comparison with other skeleton-based action recognition approaches.

MSRAction3D dataset

Bag of key poses [67]† 89.62

Random forests [71]† 90.90

HOD features [10]† 91.26

Covariance descriptors [11]† 90.53

Spatial and temporal part-sets [74]† 90.22

Skeletal quads [72]† 89.86

Moving pose [69]† 91.70

Actionlets [13] 88.20

MMTW [12] 92.70

Motion Trajectories [87] 92.10

Hanklets [88] 89.00

Joint angle similarities [15] 83.53

Proposed approach (linear SVM) 89.74

Proposed approach (Kernel SVM) 90.11

† Easier three subset protocol.

UTKinect dataset

Histograms of 3D joints [57]** 90.92

Hanklets [88]** 86.76

Motion Trajectories [87]** 91.50

Random forests [71] 87.90

Elastic functional coding [89] 94.87

Proposed approach (linear SVM) 97.20

Proposed approach (Kernel SVM) 97.59

Florence3D dataset

Multi-Part Bag-of-Poses [84]* 82.00

Motion Trajectories [87]* 87.04

Elastic functional coding [89] 89.67

Proposed approach (linear SVM) 92.61

Proposed approach (Kernel SVM) 93.06

G3D dataset

RBM + HMM [90] 86.40

Proposed approach (linear SVM) 92.12

Proposed approach (kernel SVM) 92.39

* Easier leave-one-actor-out scheme.

** Easier leave-one-action-out scheme.
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For the MSRAction3D dataset, we followed the standard protocol of using sub-

jects 1, 3, 5, 7, 9 for training and the remaining for testing. For G3D, UTKinect

and Florence3D datasets, we followed the cross-subject setting and used half of the

subjects for training and the remaining half for testing. Note that this is a more

difficult setting compared to the leave-one-action-out scheme used for the UTKinect

dataset in [57, 87, 88] and the leave-one-actor-out scheme used for the Florence3D

dataset in [84,87], where more subjects were used for training. We report the results

averaged over ten random combinations of training and test data.

The best accuracy on each dataset is shown in boldface style. We can see

that the proposed approach gives the best recognition accuracy on three out of

four datasets. Specifically, it is better than the state-of-the-art results by 2.72%

on the UTKinect dataset, 3.39% on the Florence3D dataset and 5.99% on the G3D

dataset. The proposed approach also outperforms many recent skeleton-based action

recognition approaches on the MSRAction3D dataset. Note that the main focus of

this work is on skeletal representation, and the proposed R3DG features clearly

outperform various existing skeletal representations when the same classification

pipeline is used with all the representations.

3.6 Conclusions

In this chapter, we introduced a family of body part-based 3D skeletal repre-

sentations for human action recognition, which we refer to as R3DG features. The

proposed representations explicitly model the relative 3D geometry between various
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body parts (though not directly connected by a joint) using rigid body transfor-

mations. We represented 3D rigid body transformations using SE(3), SO(3)⊗R3,

UQ ⊗ R3, and UD, resulting in four different R3DG features. We also introduced

scale-invariant R3DG features by using only the 3D rotations between various body

parts. Using the proposed representations, we modeled the human actions as curves

in R3DG feature spaces. Finally, we performed action recognition by classifying

these curves using a combination of DTW, the FTP representation and an SVM clas-

sifier. We experimentally showed that the proposed R3DG features perform better

than various existing skeletal representations, and the proposed action recognition

approach outperforms various existing skeleton-based action recognition approaches.
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Chapter 4: Rolling the Special Orthogonal Group for Skeleton-based

Human Action Recognition

4.1 Introduction

In Chapter 3, we introduced scale-invariant skeletal representations for hu-

man action recognition based on the special orthogonal group SO(3) and unit

quaternions. In this chapter, we further investigate the SO(3)-based representa-

tion. Given a skeletal sequence, we represent each skeleton as a point in the Lie

group SO(3)⊗ . . .⊗SO(3) using the relative 3D rotations between all pairs of body

parts, and the entire sequence as a curve in the Lie group. A similar SO(3)-based

representation was also used in [91, 92] to represent human skeletons. However,

while [91, 92] used only the joint orientations, our skeletal representation includes

the 3D rotations between all pairs of body parts.

Classification of curves in the Lie group SO(3)⊗ . . .⊗ SO(3) is a non-trivial

task due to the non-Euclidean nature of the underlying space. In Chapter 3, we

first mapped the action curves from the Lie group to its Lie algebra (which is the

tangent space at the identity element) using the logarithm map, and then classified

the Lie algebra curves. But, flattening the Lie group using the logarithm map at a
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Figure 4.1: Left: Logarithm map at point P , Right: Unwrapping using the logarithm

map while rolling along the nominal curve.

single point introduces distortions due to which curves that are nearby in the Lie

group can move away from each other in the Lie algebra. Figure 4.1 (left) illustrates

this pictorially with the example of a sphere. Here, the longitudinal curves moves

away from each other when mapped to the tangent space at P using the logarithm

map. Note that though we use a sphere for illustration in Figure 4.1, the manifold

of interest here is SO(3)⊗ . . .⊗ SO(3).

To reduce the distortions introduced by flattening the Lie group using the loga-

rithm map at a single point, we combine the logarithm map with rolling maps [93–95]

in this chapter. Rolling maps can be used to flatten the Lie group SO(3)⊗. . .⊗SO(3)

by unwrapping the action curves onto its Lie algebra using the logarithm map while

rolling. Figure 4.1 (right) illustrates the effect of unwrapping (using the logarithm

map) while rolling with the example of a sphere. When rolled along the middle lon-

gitudinal curve, referred to as the nominal curve in the figure, the other curves that

are close to the nominal curve on the sphere remain close to it even after unwrapping

onto the tangent space at P .
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Though the rolling map is a mathematically well-defined concept, it has not

been explored much by the computer vision community. Recently, Caseiro et. al. [96]

introduced the rolling map to the vision community by using it for the classification

of manifold features. In [96], the Grassmann manifold was first rolled as a rigid

body over the tangent space at identity, and the data samples were unwrapped

onto the tangent space. Then, classification was performed in the tangent space.

Rolling maps have also been used for interpolation on SO(3) [97,98] and Grassmann

manifold [99].

In this chapter, we first compute a nominal curve for each action category in

SO(3)⊗ . . .⊗ SO(3), and warp all the action curves to these nominal curves using

DTW. This helps us to handle the rate variations. Then, we roll SO(3)⊗. . .⊗SO(3)

(by rolling each SO(3) individually) over its Lie algebra so(3)⊕ . . .⊕so(3) along the

nominal curves, and unwrap all the action curves (using the logarithm map) onto the

Lie algebra while rolling. The main advantage of unwrapping while rolling is that

the distances between the action curves and the nominal curves are preserved while

mapping the curves from the Lie group to the Lie algebra. Finally, we represent

the unwrapped Lie algebra curves either by directly concatenating the temporal

samples into a single feature vector or by using the FTP representation of [13], and

classify them using a one-vs-all linear SVM classifier. Experimental results show

that flattening by unwrapping while rolling improves the recognition performance

when compared to flattening by using the logarithm map at a single point.

In most of the existing works that use rolling maps, the rolling curve was

chosen as a geodesic curve [96–98]. But, we are interested in rolling SO(3) along
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the nominal action curves, which are non-geodesic. While [94,96–98] provide closed

form expressions for the rolling map when the rolling curve is a geodesic, they do

not explain how to compute the rolling map in closed form when the rolling curve

is non-geodesic. In this chapter, we show how to obtain a piecewise smooth rolling

map for a given (discrete) non-geodesic rolling curve in SO(3). Specifically, we

derive closed form expressions for a rolling map such that the rolling curve passes

through a given set of points in SO(3) at given instances of time.

Contributions: We combine the logarithm and rolling maps to flatten the special

orthogonal group SO(3) for performing human action recognition from 3D skeletal

data. The rolling map is a mathematically well-defined concept that has not been

explored much by the vision community. To the best of our knowledge, it was never

used in the context of human action recognition. Most existing works on rolling

maps use a geodesic curve as the rolling curve. They do not provide closed form

expressions for the rolling map in the case of a non-geodesic rolling curve. In this

chapter, we show how to compute a piecewise smooth rolling map corresponding to

a given (discrete) non-geodesic rolling curve in SO(3).

Organization: Section 4.2 provides relevant background information on group

SO(3)2R9 and rolling maps. Section 4.3 presents the rolling and unwrapping opera-

tions for SO(3) and Section 4.4 presents the proposed action recognition approach.

Section 4.5 presents the experimental results and Section 4.6 concludes the chapter.
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4.2 Relevant Background

4.2.1 Group SO(3)2R9

The group SO(3)2R9 is the set of all matrix triplets (U, V,X), where X ∈ R3×3

and U, V ∈ SO(3). The group multiplication and group inversion operations for this

group are defined as

(U2, V2, X2) ? (U1, V1, X1) = (U2U1, V2V1, U2X1V
>

2 +X2),

(U, V,X)−1 = (U>, V >,−U>XV ), (4.1)

and the group identity element is given by (I3, I3,0). The group SO(3)2R9 acts on

R3×3 via

SO(3)2R9 ◦ R3×3 → R3×3, (U, V,X) ◦ Z = UZV > +X. (4.2)

4.2.2 Rolling Motion

For two m-dimensional Riemannian manifolds M and M̄, both embedded in

the same ambient Euclidean space Rn (n ≥ m), the rolling motion describes how

M rolls over M̄ as a rigid body without slip and twist. A classical example of such

a motion is the rolling of 2-dimensional sphere over the tangent plane at a point as

shown in figure 4.2.

The curve {α(t) ∈ M ⊂ Rn : t ∈ [0, T ]} along which the manifold M rolls

is called the rolling curve and the curve {ᾱ(t) ∈ M̄ ⊂ Rn : t ∈ [0, T ]}, where the

rolling curve touches the manifold M̄ while rolling, is called the development curve
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Figure 4.2: Sphere rolling over a tangent plane. The red curve is the rolling curve

α(t) and the black curve is the development curve ᾱ(t).

of α on M̄. In figure 4.2, the red curve on the sphere is the rolling curve and the

black curve in the tangent space is the development curve. Since rolling is a rigid

body motion in the ambient space Rn, it can be mathematically described using a

curve in the special Euclidean group SE(n).

Definition 4.1 A rolling map describing how M rolls over M̄, without slip and

twist, along a smooth rolling curve α : [0, T ]→M, is a smooth map

h : [0, T ]→ SE(n), t→ h(t) = (R(t),d(t)), (4.3)

satisfying the following conditions [94, 95]:

• Rolling conditions

ᾱ(t) := h(t) ◦ α(t) ∈ M̄,

Th(t)◦α(t)(h(t) ◦M) = Tᾱ(t)M̄,

(4.4)

• No-slip conditions

(ḣ(t) ◦ h(t)−1) ◦ ᾱ(t) = 0, (4.5)

• No-twist conditions

(ḣ(t) ◦ h(t)−1) ◦ Tᾱ(t)M̄ ⊂ (Tᾱ(t)M̄)⊥,

(ḣ(t) ◦ h(t)−1) ◦ (Tᾱ(t)M̄)⊥ ⊂ Tᾱ(t)M̄,

(4.6)
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where for a point x ∈ Rn and a vector η ∈ Rn (i.e., there exists a curve y : (−ε, ε)→

Rn such that ẏ(0) = η), the operations h(t) ◦ x, ḣ(t) ◦ x, (ḣ(t) ◦ h(t)−1) ◦ x and

(ḣ(t) ◦ h(t)−1) ◦ η are defined as

h(t) ◦ x := R(t)x+ d(t),

ḣ(t) ◦ x :=
d

ds
(h(s) ◦ x)|s=t,

(ḣ(t) ◦ h(t)−1) ◦ x :=
d

ds
((h(s)h(t)−1) ◦ x)|s=t,

(ḣ(t) ◦ h(t)−1) ◦ η :=
d

ds
((ḣ(t) ◦ h(t)−1) ◦ y(s))|s=t.

(4.7)

Result 4.1 Given any piecewise smooth development or rolling curve, this defini-

tion ensures the existence and uniqueness of the corresponding rolling map [94,95].

4.3 Rolling Special Orthogonal Group

Here, we are interested in rolling SO(3) over the tangent plane TR0SO(3)

at a point R0 ∈ SO(3). Note that both SO(3) and TR0SO(3) are 3-dimensional

manifolds embedded in the 9-dimensional Euclidean space R3×3. Hence, we can

describe the rolling of SO(3) using a curve h(t) ∈ SE(9). However, in [94], it

has been shown that for rolling SO(3) over a tangent plane, the rotational and

translational components of the original special Euclidean group SE(9) turn out to

be SO(3)2 and R3×3, respectively. Therefore, the rolling map can be represented

using a curve c(t) ∈ SO(3)2R9.
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Result 4.2 Rolling maps for SO(3): Let {Ω(t) ∈ so(3) | t ∈ [0, T ]} be any

continuous curve. Let c(t) = (U(t),V (t),X(t)) ∈ SO(3)2R9 be the solution of

dX(t)

dt
= Ω(t)R0,

dU(t)

dt
= −1

2
Ω(t)U(t),

dV (t)

dt
=

1

2
R>0 Ω(t)R0V (t), (4.8)

satisfying c(0) = (I3, I3,0). Then, the action of c(t) on SO(3) ⊂ R3×3 results in

rolling of SO(3) over the tangent plane TR0SO(3) with the rolling and development

curves given by

α(t) = U(t)>R0V (t) ∈ SO(3),

ᾱ(t) = c(t) ◦ α(t) = R0 +X(t) ∈ TR0SO(3).

(4.9)

The above result says that every continuous curve Ω(t) in the Lie algebra

of SO(3) defines a rolling map c(t) through the set of differential equations (4.8).

Please refer to [94] for the proof.

Rolling along a geodesic: If Ω(t) = Ω = log(R1R
>
0 ), then the solution to (4.8)

is given by

U(t) = e−
1
2
tΩ, V (t) = R>0 e

1
2
tΩR0, X(t) = tΩR0. (4.10)

In this case, the rolling curve

α(t) = U(t)>R0V (t) = etΩR0 = et log(R1R>0 )R0 (4.11)

is the geodesic from R0 to R1, and the development curve is given by

ᾱ(t) = R0 + tΩR0. (4.12)
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4.3.1 Rolling along a Non-geodesic Curve

Note that Result 4.2 starts with a curve Ω(t) ∈ so(3) and explains how to

obtain the corresponding rolling map c(t) and rolling curve α(t). It doesn’t say

anything about how to compute the rolling map c(t) starting from a rolling curve

α(t). But, in this chapter, we are interested in rolling SO(3) along specific α(t),

which are the nominal action curves obtained using DTW. If the rolling curve α(t)

is a geodesic, then the corresponding rolling map c(t) can be computed using (4.10).

But, the nominal action curves along which we want to roll are usually non-geodesic.

Let {R0,R1, . . . ,RT} be the discrete representation of the curve along which

we want to roll SO(3). In Theorem 4.1, we show how to obtain a piecewise smooth

rolling map c(t) such that the corresponding rolling curve α(t) passes through Rt

at time instance t for t = 0, 1, . . . , T .

Theorem 4.1 Let {R0,R1, . . . ,RT} be the given (discrete) rolling curve. Let Ω1,

Ω2, . . ., ΩT be T skew-symmetric matrices defined recursively using

Ωn = log
(
e−

Ωn−1
2 . . . e−

Ω1
2 RnR

>
o e
−Ω1

2 e−
Ωn−1

2

)
. (4.13)

Let c(t) = (U(t),V (t),X(t)) be a curve defined as

U(t) = e−
(t−n+1)Ωn

2 e−
Ωn−1

2 . . . e−
Ω1
2 , V (t) = R>0 e

(t−n+1)Ωn
2 e

Ωn−1
2 . . . e

Ω1
2 R0,

X(t) =
n−1∑
i=1

ΩiR0 + (t− n+ 1)ΩnR0, t ∈ [n− 1, n], n = 1, 2, . . . , T.

(4.14)

Then, the action of c(t) ∈ SO(3)2R9 on SO(3) results in rolling of SO(3) over the
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tangent plane TR0SO(3) with a rolling curve α(t) that satisfies

α(n) = Rn, for n = 1, 2, . . . , T. (4.15)

Proof: Let {Ω(t) ∈ so(3) | t ∈ [0, T ]} be a curve defined as

Ω(t) = 6Ωn

(
(t− n+ 1)− (t− n+ 1)2

)
, t ∈ [n− 1, n], n = 1, 2, . . . , T.

(4.16)

For this Ω(t), the solution for differential equations (4.8) is given by (4.14). Hence

by Result 4.2, the action of c(t) on SO(3) results in rolling of SO(3) over the tangent

space TR0SO(3) with the rolling curve given by

α(t) = U(t)>R0V (t) = e
Ω1
2 . . . e

Ωn−1
2 e(t−n+1)Ωne

Ωn−1
2 . . . e

Ω1
2 R0, (4.17)

t ∈ [n− 1, n], n = 1, 2, . . . , T.

which satisfies

α(n) = e
Ω1
2 . . . e

Ωn−1
2 eΩne

Ωn−1
2 . . . e

Ω1
2 R0 = Rn, for n = 0, 1, . . . , T. (4.18)

The above equation follows directly from the definition of Ωn in (4.13). �

4.3.2 Unwrapping while Rolling

Rolling maps can be used to flatten SO(3) by unwrapping the action curves

(while rolling) onto the tangent space at a point using the logarithm map. Figure 4.3

illustrates this pictorially. In this figure, the blue curve is unwrapped onto a tangent

space while rolling along the red curve.
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Figure 4.3: Unwrapping the blue curve while rolling along the red curve.

Let c(t) = (U(t),V (t),X(t)) ∈ SO(3)2R9 be the rolling map corresponding

to the rolling curve α(t) ∈ SO(3). Let ᾱ(t) ∈ Tα(0)SO(3) be the development curve

of α(t). Then, unwrapping (using the logarithm map) of a curve β(t) ∈ SO(3) while

rolling along α(t) gives the following curve β̄(t) ∈ Tα(0)SO(3) [98]:

β̄(t) = logSO(3) (α(0), c(t)oβ(t)− ᾱ(t) + α(0)) + ᾱ(t)

= logSO(3)

(
α(0), U(t)β(t)V (t)>

)
+ α(0) +X(t).

(4.19)

4.3.3 Advantage of Unwrapping while Rolling

The main motivation for using rolling maps in this chapter is that flattening

of SO(3) by unwrapping (using the logarithm map) the action curves while rolling

is better than flattening it by using the logarithm map at a single point.

Theorem 4.2 Let {α(t), β(t) ∈ SO(3) : t ∈ [0, T ]} be two curves. Let ᾱ(t), β̄(t) ∈

Tα(0)SO(3) respectively be the curves obtained by unwrapping (using the logarithm

map) α(t) and β(t) while rolling the SO(3) over the tangent space at α(0) along the

curve α(t). Then, we have

dTα(0)SO(3)

(
β̄(t), ᾱ(t)

)
= dSO(3)(β(t), α(t)) ∀t, (4.20)
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where dSO(3) represents the geodesic distance on SO(3) and dTα(0)SO(3) represents the

standard Euclidean distance in the tangent space Tα(0)SO(3).

Proof: Let c(t) = (U (t),V (t),X(t)) ∈ SO(3)2R9 be the rolling map corresponding

to the rolling curve α(t). Then, by (4.19) we have

β̄(t) = logSO(3)

(
α(0), U(t)β(t)V (t)>

)
+ α(0) +X(t). (4.21)

Since α(t) is the rolling curve, ᾱ(t) = α(0) +X(t) from Results 4.2. Hence, we have

dTα(0)SO(3)

(
β̄(t), ᾱ(t)

)
= ‖β̄(t)− ᾱ(t)‖Fr

= ‖ logSO(3)

(
α(0), U(t)β(t)V (t)>

)
‖Fr

= dSO(3)

(
α(0), U(t)β(t)V (t)>

)
= dSO(3)

(
U(t)>α(0)V (t), β(t)

)
= dSO(3) (α(t), β(t)) .

(4.22)

Here, the second last equality follows from the fact that dSO(3) is bi-invariant [100].�

As mentioned earlier, we first compute a nominal curve for each action cat-

egory, and warp all the action curves to these nominal curves. Then, we roll the

Lie group along the nominal curves and unwrap all the action curves onto the Lie

algebra while rolling. As stated in the above theorem , the main advantage of flat-

tening the action curves by unwrapping while rolling is that the distances between

the action curves and the nominal curves are preserved. This is not the case with

flattening using the logarithm map at a single point.

Alternative interpretation: The idea of unwrapping while rolling along the nom-

inal curve can also be interpreted as the extension of the idea of tangent plane
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mapping at the Karcher mean from points to curves. When dealing with points, the

Karcher mean is commonly used as the anchor point for tangent plane projection.

Since we are dealing with curves rather than points, the Karcher mean is replaced by

the mean/nominal curve. In the case of points, the logarithm map at Karcher mean

is used to map the points to a common tangent space. Since we are dealing with

curves (a curve can go through various points that are quite far apart), using the

logarithm map at a single point to flatten entire curves is not a good idea because,

as we move away from the anchor point (which will happen in the case of curves),

the distortion due to the logarithm map increases. Instead, it is better to use the

logarithm maps at multiple points spread over the nominal curve. This is exactly

what we are doing while rolling and unwrapping.

4.4 Proposed Action Recognition Approach

Our human action recognition system consists of the following steps: (1) Skele-

tal representation, (2) Nominal curve computation using DTW, (3) Rolling and un-

wrapping, (4) Linear SVM classification (with concatenated or FTP representation).

Skeletal representation: We represent a 3D human skeleton using the relative

3D rotations between all pairs of body parts. Since 3D rotations are members of

the Lie group SO(3), our skeletal representation becomes a point in the Lie group

SO(3) ⊗ . . . ⊗ SO(3).

Nominal curves: Using the above skeletal representation, we represent human

actions as curves in the Lie group SO(3) ⊗ . . . ⊗ SO(3). During training, for each
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Table 4.1: Algorithm for computing a nominal curve.

Input: Curves S1(t), . . . ,SN (t) at t = 0, 1, . . . , T.

Maximum number of iterations max and threshold δ.

Output: Nominal curve S(t) at t = 0, 1, . . . , T .

Initialization: S(t) = S1(t), iter = 0.

while iter < max

Warp each curve Sj(t) to the nominal curve S(t) using DTW to get a warped

curve Swj (t).

Compute a new nominal S ′
(t) using S ′

(t) = Karcher mean
(
{Swi (t)}Ni=1

)
if
∑T

t=0 Geodesic distance(S ′
(t),S(t)) ≤ δ

break

end

S(t) = S ′
(t); iter = iter + 1;

end

action category, we compute a nominal curve using the algorithm summarized in

Table 4.1, and warp all the curves to this nominal using dynamic time warping.

This step helps in handling rate variations. For DTW computations, we use the

squared Euclidean distance in the Lie algebra. We also performed DTW using the

geodesic distance in SO(3), but did not get any improvement in the final classifica-

tion results. Hence, for faster computations, we use the Lie algebra distance in this

chapter. Note that in order to compute the nominal curves, all the action curves

must have same number of samples. For this, we use the interpolation algorithm

presented in section 2.1.1 and re-sample the curves in SO(3)⊗ . . .⊗ SO(3). Inter-

polation on SO(3) ⊗ . . . ⊗ SO(3) is performed by simultaneously interpolating on

individual SO(3).
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We note that the recently proposed transported square-root vector field [101]

representation of curves, which is an extension of the earlier square-root velocity

representation [102] to Riemannian manifolds, provides a distance metric that is

invariant to temporal warping (i,.e., the distance between two curve does not change

if both curves undergo the same temporal warping). Using this distance metric for

DTW and nominal curve computations could further improve the performance.

Rolling and unwrapping: In this step, we roll the Lie group SO(3)⊗ . . .⊗SO(3)

over its lie algebra so(3) ⊕ . . . ⊕ so(3) (by rolling each SO(3) individually over its

Lie algebra) along each nominal action curve, and unwrap all the action curves onto

the Lie algebra. The rolling map for a given (discrete) rolling curve can be obtained

using Theorem 4.1 and the unwrapping operation can be performed using (4.19).

Since a nominal action curve may not start from the identity element (remember

that Lie algebra is the tangent space at the identity element), we first roll the Lie

group from the identity element to the starting point of the nominal curve and then

roll along the nominal curve.

SVM classification: In this step, we first represent the unwrapped action curves

either by directly concatenating the temporal samples into a single feature vector or

by using the FTP representation of [13], and then classify them using a one-vs-all

linear SVM classifier. In the case of FTP representation, we apply FTP for each

dimension separately and concatenate all the Fourier coefficients to obtain the final

feature vector.

Figure 4.4 gives an overview of the proposed action recognition approach.
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4.5 Experimental Evaluation

In this section, we evaluate the proposed action recognition approach using

three action datasets captured with Kinect sensor: Florence3D-Action [84], MSRAc-

tion Pairs [85] and G3D-Gaming [86].

Florence3D-Action [84] dataset consists of nine different daily actions like drink

water, answer phone, read watch, tight lace, etc. performed by 10 different subjects.

Each subject performed every action two or three times resulting in a total of 215

action sequences. The 3D locations of 15 joints are provided with the dataset.

MSRAction Pairs [85] dataset consists of six action pairs like pick up a box/put

down a box, wear a hat/take off a hat, etc. performed by 10 different subjects. Each

subject performed every action two or three times resulting in a total of 353 action

sequences. The 3D locations of 20 joints are provided with the dataset.

G3D-Gaming [86] dataset consists of 20 different gaming actions like golf swing,

tennis serve, bowling, aim and fire gun, etc. performed by 10 different subjects. Each

subject performed every action three or more times resulting in a total of 663 action

sequences. The 3D locations of 20 joints are provided with the dataset.

Evaluation setting: We followed the cross-subject test setting, in which half of

the subjects were used for training and the other half were used for testing. All the

results reported in this section were averaged over ten different random combina-

tions of training and test subjects.
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Table 4.2: Comparison between logarithm map at a point and rolling.

Dataset
Concatenated representation FTP representation

Logarithm Rolling Logarithm Rolling

Florence3D 86.83 89.82 90.89 91.40

MSRPairs 92.96 94.09 94.10 94.67

G3D 87.89 87.77 91.48 91.42

Basic pre-processing: To make the skeletal data invariant to the absolute location

of human in the scene, all the 3D joint coordinates were transformed from world

coordinate system to a person-centric coordinate system by placing the hip center

at the origin. We rotated the skeletons such that the ground plane projection of the

vector from left hip to right hip is parallel to the global x-axis.

Parameters: As explained in section 4.4, for each dataset, all the action curves

were re-sampled to have same length. The reference length was chosen to be the

maximum number of samples in any curve in the dataset before re-sampling. The

value of SVM parameter C was chosen based on cross-validation. For the FTP rep-

resentation, we used a three-level temporal pyramid with 1/4 length of each segment

as low-frequency coefficients.

Unwrapping while rolling vs logarithm map: In this chapter, we are using

rolling and unwrapping for flattening the Lie group SO(3)⊗. . .⊗SO(3). An alterna-

tive way to flatten this Lie group is to map the action curves to its Lie algebra using

the logarithm map. Table 4.2 compares the performance of both these approaches

in terms of action recognition accuracy when a linear SVM classifier is used with

the concatenated and FTP representations.
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Table 4.3: Comparison with the remaining R3DG features.

Dataset se(3) so(3)⊗R3 UQ⊗R3 UD UQ SO(3)+ Rolling

Florence3D 90.71 90.87 92.61 91.55 91.27 91.40

MSRPairs 93.65 93.82 93.60 94.33 93.88 94.67

G3D 91.60 91.60 91.51 92.12 92.12 91.42

Note that the concatenated representation is nothing but the vectorized ver-

sion of unwrapped curves. Hence, the results obtained using this representation

directly compare the effects of using the logarithm map at a point and unwrapping

while rolling. As we can see from Table 4.2, unwrapping while rolling outperforms

the logarithm map by 3% on Florence3D dataset and by 1.1% on MSRPairs dataset.

On G3D dataset, both rolling and logarithm map perform equally well. These re-

sults suggest that it is better to flatten SO(3) by unwrapping while rolling instead

of using the logarithm map at a point. When we use additional processing steps like

the FTP representation, the performance gap decreases. This is probably because,

by discarding the high frequency Fourier coefficients, the FTP representation is able

to remove some of the distortions introduced by the logarithm map.

Comparison with the remaining R3DG features: Table 4.3 compares the

performance of the proposed SO(3)-based approach with the remaining R3DG fea-

tures introduced in Chapter 3. We use the DTW + FTP + linear SVM pipeline

described in Chapter 3 with the other R3DG features. As we can see, while the

proposed approach gives the best result on MSRPairs dataset, its accuracy is 1.2%

and 0.7% less than the accuracy of best competing R3DG feature on Florence3D

and G3D datasets, respectively.
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4.6 Conclusions

In this chapter, we used the rolling maps for flattening SO(3) to perform hu-

man action recognition from 3D skeletal data. We represented each human skeleton

as a point in the Lie group SO(3) ⊗ . . . ⊗ SO(3) using the relative 3D rotations

between all pairs of body parts. Using this skeletal representation, we represented

human actions as curves in SO(3) ⊗ . . . ⊗ SO(3). For each action category, we

computed a nominal curve and warped all the action curves to this nominal using

DTW. Then, we rolled SO(3)⊗ . . .⊗ SO(3) over its Lie algebra along the nominal

curves and unwrapped all the action curves onto the Lie algebra. Finally, we rep-

resented the unwrapped curves using either the concatenated representation or the

FTP representation and classified them using a one-vs-all linear SVM classifier. By

evaluating on three action datasets, we showed that flattening SO(3) by unwrap-

ping while rolling performs better than flattening SO(3) by using logarithm map at

a single point.

Note that in order to roll along the nominal curves, we should be able to

compute the rolling map corresponding to a non-geodesic rolling curve. However,

most of the existing works use a geodesic curve as the rolling curve and do not

provide closed form expressions for the rolling map in the case of a non-geodesic

rolling curve. In this chapter, we showed how to compute a piecewise smooth rolling

map such that the rolling curve passes through a given set of points in SO(3) at

given instances of time.
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Chapter 5: Kernel Learning for Extrinsic Classification of Manifold

Features

5.1 Introduction

Many applications involving images and videos require classification of data

that obey specific constraints. Such data often lie in non-Euclidean spaces. For

instance, popular features in computer vision such as shapes [103], rotation matri-

ces [35], linear subspaces [16], covariance features [17], etc., are known to lie on

Riemannian manifolds. In such cases, one needs good classification techniques that

make use of the underlying manifold structure.

For features that lie in Euclidean spaces, classifiers based on discriminative

approaches such as Linear Discriminant Analysis (LDA), Partial Least Squares

(PLS) and SVM have been successfully used in various applications. However,

these approaches are not directly applicable to features that lie on Riemannian

manifolds. Hence, classification is often performed in an extrinsic manner by first

mapping the manifold to an Euclidean space, and then learning classifiers in the

new space. One such popularly used Euclidean space is the tangent space at the

mean sample [17, 104]. However, tangent spaces preserve only the local structure
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of the manifold and can often lead to sub-optimal performance. An alternative

approach is to map the manifold to a reproducing kernel Hilbert space by using ker-

nels [18, 20, 22–24, 105]. Though kernel-based methods have been successfully used

in many computer vision applications, a poor choice of kernel can often result in

reduced classification performance. This gives rise to an important question: How

to find good kernels for the classification of manifold features?

In this chapter, we answer the above question using the kernel learning ap-

proach [106, 107], in which appropriate kernels are learned directly from the data.

Since we are interested in learning good kernels for the purpose of classification, we

jointly learn the kernel and the classifier by solving a single optimization problem.

To learn a good kernel-classifier combination for features that lie on Riemannian

manifolds, we propose the following two criteria: (i) Risk functional associated with

the classifier in the mapped space should be minimized for good classification per-

formance, (ii) The mapping should preserve the underlying manifold structure. The

second criterion acts as a regularizer in learning the kernel. Our general framework

for learning a good kernel-classifier combination can be represented as the following

optimization problem

min
w,K

λ Γs(K) + Γc(w,K),

where Γs(K), Γc(w,K) are respectively the manifold-structure and the classifier

costs expressed as functions of classifier parameters w and kernel K, and λ is a

regularization parameter.

Due to its superior generalization properties, we focus on using the SVM clas-
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sifier in this chapter. In order to preserve the manifold structure, we constrain the

distances in the mapped space to be close to the manifold distances. Under this

setting, we formulate the problem of learning a good kernel-classifier combination

as a convex optimization problem. While the resulting formulation is an instance

of SemiDefinite Programming (SDP) and can be solved using standard solvers such

as SeDuMi [108], it is transductive in nature: both training and test data need to

be present while learning the kernel matrix. Solving SDPs is also computationally

expensive for large datasets. To solve both the issues, we follow the Multiple Ker-

nel Learning (MKL) approach of [106, 107] and parameterize the kernel as a linear

combination of known base kernels. This formulation results in a simpler convex

optimization problem, that can be efficiently solved using gradient-based methods.

Organization: Section 5.2 provides a brief overview of existing approaches for

the classification of manifold features. Section 5.3 briefly discuss the Riemannian

geometry of two popularly-used manifold features, namely linear subspaces and

covariance features, and Section 5.4 presents the proposed kernel learning-based ex-

trinsic classification approach. Experimental results and conclusions are presented

in Sections 5.5 and 5.6, respectively.

5.2 Related Work

Existing classification methods for manifold features can be broadly grouped

into three main categories: nearest-neighbor methods, Bayesian methods, and Eu-

clidean mapping-based methods.
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Nearest neighbor: The simplest classifier on a manifold is the nearest-neighbor

classifier based on some appropriately defined distance or similarity measure. In [109],

the trajectories of human joint positions were represented as subspaces using LDS

models, which were then classified using Martin and Finsler distances. In [104], LDS

models were used to get subspace representations for shape deformations and the

Frobenius distance was used for classification. In [19,21,110], image sets were mod-

eled using linear subspaces, which were compared using the direct sum of canonical

correlations in [19], a weighted sum of canonical correlations in [21], and the largest

canonical correlation in [110].

Bayesian framework: Another possible approach for classification is to use the

Bayesian framework by defining probability density functions (pdfs) on manifolds.

In [16] parametric pdfs like Gaussian were defined on the tangent space and then

wrapped back on to the manifold to define intrinsic pdfs for the Grassmann man-

ifold. Alternatively, Parzen-window based non-parametric density estimation was

used in [111] for the Stiefel manifold. Both these approaches along with the Bayes

classifier were used for human activity recognition and video-based face recognition.

In general, parametric approaches are sensitive to the model order, whereas the

model-free non-parametric approaches are sensitive to the choice of window size.

Euclidean mapping: Discriminative approaches like LDA, PLS, SVM, Boosting,

etc., can be extended to manifolds by mapping the manifolds to Euclidean spaces.

One such Euclidean space is the tangent-space. In [17], a LogitBoost classifier was
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developed using weak classifiers learned on tangent spaces. This classifier was ap-

plied to the pedestrian detection task using covariance features. Alternatively, one

can map manifolds to Euclidean spaces by defining Mercer kernels for manifolds.

In [20,22], discriminant analysis was used for image set-based recognition tasks using

Grassmann kernels. In [18], a kernel defined for the manifold of Symmetric Positive

Definite (SPD) matrices was used with PLS for image set-based recognition tasks.

In [105], Binet-Cauchy kernels defined for non-linear dynamical systems were used

for human activity recognition. In general, the success of kernel-based methods is

often determined by the choice of kernel. Hence, in this chapter, we address the

issue of kernel-selection for the classification of manifold features.

The idea of using manifold structure as a regularizer was previously explored

in the context of data manifolds [112, 113], where the given high dimensional data

samples were simply assumed to lie on a lower dimensional manifold. Since the

structure of the underlying manifold was unknown, a graph Laplacian-based empir-

ical estimate of the data distribution was used in [112,113]. Contrary to this, in this

chapter, we are interested in analytical manifolds such as the Grassmann manifold

and the manifold of SPD matrices, whose underlying geometry is well-understood.

5.3 Relevant Background

In this section, we briefly discuss the Riemannian geometry of two represen-

tations that are popularly used in computer vision, namely linear subspaces and

covariance features.
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5.3.1 Linear Subspaces - Grassmann Manifold

Grassmann manifold, denoted by Gn,d, is the set of all d-dimensional linear

subspaces of Rn. An element S of Gn,d can be represented by any n×d orthonormal

matrix YS such that the column span of YS is the subspace S. The geodesic distance

between two subspaces S1 and S2 on the Grassmann manifold is given by ‖θ‖2,

where θ = [θ1, . . . , θd] are the principal angles between S1 and S2. The angles θ

can be computed using θi = cos−1(αi) ∈ [0, π
2
], where αi are the singular values

of Y >S1YS2. Other popularly-used distances for the Grassmann manifold are the

Procrustes metric given by 2(
∑d

i=1 sin2(θi/2))1/2, and the Projection metric given by

(
∑d

i=1 sin2θi)
1/2. We refer the interested readers to [114,115] for further discussions

on the Grassmann manifold.

Grassmann kernels: Grassmann manifold can be mapped to Euclidean spaces

by using Mercer kernels. One popularly-used kernel [18, 20, 22] is the Projection

kernel given by KP (Y1,Y2) = ‖Y >1 Y2‖2
Fr. The feature mapping corresponding to

the Projection kernel is given by ΦP (Y ) = Y Y >. Various kernels can be generated

from KP and ΦP using

Krbf
P (Y1,Y2) = exp

(
−γ‖ΦP (Y1)− ΦP (Y2)‖2

Fr

)
,

Kpoly
P (Y1,Y2) = (γKP (Y1,Y2))d .

(5.1)

We refer to the family of kernels Krbf
P as projection-RBF kernels and the family of

kernels Kpoly
P as projection-polynomial kernels.
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5.3.2 Covariance Features - SPD Manifold

The d × d SPD matrices, i.e., full-rank covariance matrices, form a Rieman-

nian manifold [116], and the resulting Affine-Invariant Geodesic Distance (AIGD) is

given by (
∑d

i=1 ln2λi(C1,C2))1/2, where λi(C1,C2) are the generalized Eigenvalues

of matrices C1 and C2, and ln denotes the natural logarithm. Another popularly-

used distance for SPD matrices is the Log-Euclidean Distance (LED) [117] given by

‖log(C1)− log(C2)‖Fr. We refer the readers to [116,117] for further details.

Kernels for SPD matrices: Similar to the Grassmann manifold, we can define

kernels for the set of SPD matrices. One such kernel based on the log-Euclidean

distance was derived in [18]: Klog(C1,C2) = trace[log(C1)>log(C2)]. The map-

ping corresponding to Klog is given by Φlog(C) = log(C). Various kernels can be

generated from Klog and Φlog using

Krbf
log(C1,C2) = exp

(
−γ‖Φlog(C1)− Φlog(C2)‖2

Fr

)
,

Kpoly
log (C1,C2) = (γKlog(C1,C2))d .

(5.2)

We refer to the family of kernels Krbf
log as LED-RBF kernels and the family of kernels

Kpoly
log as LED-polynomial kernels.

5.4 Extrinsic Support Vector Machines

Let M denote the underlying Riemannian manifold. Let {(xi, yi)}Ntri=1 be the

set of training samples where xi ∈ M, yi ∈ {+1, -1}, and {xi}Ni=Ntr+1 be the set of

test samples. Let Φ be the mapping to be learned from the manifold M to some
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inner product space H. Let K(·, ·) be the associated kernel function, and

K =

 Ktr,tr Ktr,te

Kte,tr Kte,te

 ∈ RN×N (5.3)

be the associated kernel matrix, with Kij = K(xi, xj) = Φ(xi)
>Φ(xj),∀xi, xj ∈M.

Since we are interested in performing classification in the mapped space, we

jointly learn the kernel and the classifier using a single optimization problem based

on the following criteria:

• Risk minimization: For better classification performance, the risk functional

associated with the classifier in the mapped space should be minimized.

• Structure preservation: Since the features lie on a Riemannian manifold

with a well-defined structure, the mapping should be structure-preserving.

This criterion can be seen as playing the role of a regularizer in kernel-learning.

Combining the above two criteria we formulate the problem of learning a good

kernel-classifier combination as

min
w,K

λ Γs(K) + Γc(w,K), (5.4)

where Γs(K) and Γc(w,K) are respectively the manifold-structure cost and the clas-

sifier cost expressed as functions of classifier parameters w and kernel K. Here, λ

is the regularization parameter used to balance the two criteria. Since the mapped

space is an inner product space, one can use standard machine learning techniques

to perform classification. Due to its superior generalization properties, we focus

on the SVM classifier in this chapter. However, it is important to note that the
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framework introduced here is general and can be applied to other classifiers as well.

SVM classifier in the mapped space: The SVM classifier in the mapped space

is given by

f(x) = w∗>Φ(x) + b∗, (5.5)

where the weight vector w∗ and the bias b∗ are given by

w∗, b∗ = arg min
w,b,η

1

2
‖w‖2

2 + C
Ntr∑
i=1

ηi

subject to yi(w
>Φ(xi) + b) ≥ 1− ηi, ηi ≥ 0, i = 1, . . . , Ntr.

(5.6)

This problem is usually solved in its dual form

max
α∈Ω

(
α>1− 1

2
α>
(
yy> ∗ Ktr,tr

)
α

)
, (5.7)

where Ω = {α ∈ RNtr | 0 ≤ α ≤ C1, α>y = 0}, and y> = [y1, . . . , yNtr ].

Preserving the manifold structure: To preserve the manifold structure, we

constrain the distances in the mapped space to be close to the manifold distances.

The squared Euclidean distance between two points xi and xj in the mapped space

can be expressed in terms of kernel values as

‖Φ(xi)− Φ(xj)‖2
2 = Kii +Kjj −Kij −Kji. (5.8)

Hence, we wish to minimize
∑N

i=1

∑N
j=i+1 ζ

2
ij, where

ζij = Kii +Kjj −Kij −Kji − d2
ij, (5.9)

and dij is the manifold distance between the points xi and xj. Since ζij can be

positive or negative, we use ζ2
ij in the cost.
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Combined formulation: Combining both the classifier and the structure costs,

the joint optimization problem for learning a good kernel-classifier combination is

given by

min
K�0, ζ

max
α∈Ω

λ‖ζ‖2
2 +

(
α>1− 1

2
α>
(
yy> ∗ Ktr,tr

)
α

)
,

subject to
N∑
i=1

N∑
j=1

Kij = 0,

Kii +Kjj −Kij −Kji − d2
ij = ζij for 1 ≤ i < j ≤ N,

(5.10)

where Ω = {α ∈ RNtr | 0 ≤ α ≤ C1, α>y = 0}, ζ is the column vector of variables

ζij and y ∈ RNtr is the column vector of class labels. The centering constraint∑
ijKij = 0 in (5.10) is added simply to remove the ambiguity associated with the

origin in the mapped space [118]. Note that in (5.10) we are learning the entire

kernel matrix K directly in a non-parametric fashion, and the classifier term has

only Ktr,tr. Therefore, to ensure meaningful values for Ktr,te and Kte,te, we need

additional constraints between the training and test samples [106]. For this, we use

both the training and test samples in the structure-preserving constraints.

By following [106], it can be easily shown that the optimal K for (5.10) can be

found by solving a semidefinite programming problem. SDPs are convex in nature

and can be solved using standard solvers such as SeDuMi. Once the kernel matrix

K is obtained, the SVM classifier in the mapped space can be obtained by solving

the SVM dual problem (5.7). Note that the above formulation is transductive in

nature: both training and test data need to be present while learning the kernel

matrix. Also in general, solving SDPs can be computationally expensive for large

datasets. Both these issues can be addressed by using the MKL approach.
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5.4.1 Extrinsic SVM using MKL Framework

Instead of learning a non-parametric kernel matrix K, following [107], we

parameterize the kernel function K as a linear combination of fixed base kernels

K1,K2, ....,KM :

K =
M∑
m=1

µmKm, (5.11)

where µ> = [µ1, . . . , µm] are positive weights to be learned. Since we use the same

linear combination model for both training and test data, the weights µ can be

learned using only the training data, and the kernel values for test data can be

computed using the known base kernels and the learned weights. Hence, the formu-

lation becomes inductive. Under this linear combination model, the optimization

problem (5.10) becomes

min
ζ, µ

max
α∈Ω

λ‖ζ‖2
2 +

(
α>1− 1

2
α>(yy> ∗

M∑
m=1

µmK
m
tr,tr)α

)
,

subject to
M∑
m=1

µm(Km
ii +Km

jj −Km
ij −Km

ji )− d2
ij = ζij, for 1 ≤ i < j ≤ Ntr,

µ ≥ 0,

(5.12)

where Ω = {α ∈ RNtr | 0 ≤ α ≤ C1, α>y = 0}. Note that the centering

constraint
∑

i,jKij = 0 in (5.10) is not required for the MKL approach as the origin

is automatically decided based on the base kernels and their weights.

Let pmij denote the squared distance between samples xi and xj induced by the

base kernel Km, i.e., pmij = Km
ii +Km

jj −Km
ij −Km

ji . Let J1(µ) and J2(µ) represent
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the manifold-structure cost and the classifier cost respectively in (5.12). Then,

J1(µ) =
Ntr∑
i=1

Ntr∑
j=i+1

ζ2
ij =

Ntr∑
i=1

Ntr∑
j=i+1

(
M∑
m=1

µmp
m
ij − d2

ij

)2

,

J2(µ) = max
α∈Ω

(
α>1− 1

2
α>(yy> ∗

M∑
m=1

µmK
m
tr,tr)α

)
.

(5.13)

Let Φm be the mapping corresponding to the kernel Km and `h(f) be the hinge loss

function: `h(f) = max(0, 1− f).

Result 5.1 J2(µ) = J3(µ), where

J3(µ) = min
Vm, b

1

2

M∑
m=1

‖Vm‖2
2

µm
+ C

Ntr∑
i=1

`h

(
yi

(
M∑
m=1

V >m Φm(xi) + b

))
. (5.14)

Please refer to [107] for the proof. Let h(µ) = λJ1(µ) + J3(µ). Then, using Re-

sult 5.1, the optimization problem (5.12) can be written as

min
µ

h(µ) subject to µ ≥ 0. (5.15)

Theorem 5.1 h(µ) is differentiable and convex if Km
tr,tr � 0 for m = 1, ...M .

Proof: J1(µ) is a convex quadratic term and hence differentiable with respect to

µ. As shown in [107], J3(µ) is also convex and differentiable if all the base kernel

matrices Km
tr,tr are strictly positive definite. Hence, h(µ) is a differentiable convex

function of µ.

Using Theorem 5.1, the optimization problem (5.15) can be efficiently solved

using the reduced gradient descent method [107] or any other standard algorithm

used for solving constrained convex optimization problems. For any given µ, J1(µ)

can be evaluated directly using (5.13) and its gradient can be computed as

∂J1

∂µm
=

Ntr∑
i=1

Ntr∑
j=i+1

(
2pmij

(
M∑
k=1

µkp
k
ij − d2

ij

))
. (5.16)
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Since J3(µ) = J2(µ), it can be computed by solving a standard SVM dual problem

with Ktr,tr =
∑M

m=1 µmK
m
tr,tr. The gradient of J3 can be computed using [107]

∂J3

∂µm
= −1

2

Ntr∑
i=1

Ntr∑
j=1

α∗iα
∗
jyiyjK

m
ij , (5.17)

where α∗ is the optimal solution for the SVM dual problem used for computing

J3(µ). Once the optimal µ∗ is computed, the classifier in the mapped space can

be obtained by solving the SVM dual problem (5.7) with Ktr,tr =
∑M

m=1 µ
∗
mK

m
tr,tr.

Note that Theorem 5.1 requires the Gram matrices Km
tr,tr to be positive definite. To

enforce this property a small ridge may be added to their diagonals.

5.5 Experimental Evaluation

In this section, we evaluate the proposed extrinsic classification approach by

applying it to image set-based face and object recognition tasks using two manifold

features, namely linear subspaces and covariance features.

5.5.1 Recognition using Image Sets

Given multiple images of the same face or object, they can be collectively

represented using a lower dimensional subspace spanned by the feature vectors rep-

resenting individual images. Let X = [x1,x2, . . . ,xN ] be the mean-subtracted data

matrix of an image set, where xi ∈ Rn is an n-dimensional feature descriptor of

i-th image. Let C = XX>/N be the data covariance matrix. The linear subspace

spanned by the top d Eigenvectors of C can be used to represent the image set by a

d-dimensional linear subspace. Alternatively, the image set can also be represented
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using its natural second-order statistic [18], i.e., the covariance matrix C. Since

covariance matrices are positive semi-definite in general, we add a small ridge to

their diagonals to make them positive definite.

5.5.2 Datasets and Feature Extraction

Face recognition – YouTube Celebrities [119]: This dataset has 1910 video

clips of 47 subjects collected from the YouTube. Most of them are low resolution

and highly compressed videos, making it a challenging dataset for face recognition.

The face region in each image was extracted using a cascaded face detector, resized

into 30 × 30 intensity image, and histogram equalized to eliminate lighting effects.

Each video generated an image set of faces. Figure 5.1 shows some of the variations

in an image set from this dataset.

Object recognition – ETH80 [120]: This dataset has images of eight object

categories with each category containing ten different object instances. Each object

instance has 41 images captured under different views, which form an image set.

All the images were resized into 20× 20 intensity images. Figure 5.2 shows typical

variations in an image set from this dataset.

For both of these datasets, we performed experiments with two different mani-

fold features: covariance matrices and linear subspaces. To avoid matrix singularity,

we added a small ridge δI to each covariance matrix C, where δ = 10−3× trace(C).

For subspace representation, we used twenty dimensional linear subspaces spanned

by the top twenty Eigenvectors of C.
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Figure 5.1: An image set from

YouTube dataset.

Figure 5.2: An image set from

ETH80 dataset.

5.5.3 Comparative Methods and Evaluation Settings

We compare the proposed approach with the following methods:

• Nearest neighbor(NN): We used three different distances for the Grass-

mann manifold, namely the geodesic distance, the Procrustes distance and

the Projection metric. We report the best results among the three. For co-

variance features, we used two distances, namely the AIGD and the LED and

report the best results among the two.

• Grassmann discriminant analysis (GDA) [20]: Performs discriminant

analysis followed by NN classification for the Grassmann manifold using the

Projection kernel.

• PLS with the Projection kernel (Proj+PLS) [18]: Uses PLS combined

with the Projection kernel for the Grassmann manifold.

• Covariance discriminative learning (CDL) [18]: Uses LDA and PLS for

covariance features using a kernel derived from the LED metric.
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• Standard MKL (S-MKL) [107]: In standard MKL, the kernel is learned as

a convex combination of base kernels (K =
∑M

m=1 µmKm, µ ≥ 0, µ>1 = 1),

by minimizing the SVM cost without manifold-based regularization.

Following [18], for the YouTube dataset, for each person, we used three ran-

domly chosen image sets for training and six for testing, and for the ETH80 dataset,

for each category, we used five randomly chosen image sets for training and five for

testing. We report the recognition accuracy averaged over ten random trials. For

GDA, Proj+PLS and CDL approaches, we report the recognition accuracy from [18].

5.5.4 Base Kernels and Parameters

For both the S-MKL and the proposed approaches, we used several base ker-

nels. For experiments with linear subspaces, we used multiple projection-RBF and

projection-polynomial kernels defined in (5.1). For each dataset, the values for the

RBF parameter γ and the polynomial degree d were chosen based on their individ-

ual cross-validation accuracy on the training data. Specifically, for the YouTube

dataset, we used ten projection-polynomial kernels and fifteen projection-RBF ker-

nels, and for the ETH80 dataset, we used ten projection-polynomial kernels and

thirteen projection-RBF kernels. The values for RBF kernel parameter γ were

taken as 1
n
2δ, where n is the number of dimensions of ΦP defined in Section 5.3.1,

δ = {−14,−12, . . . , 12, 14} for the YouTube dataset, and δ = {−5,−3, . . . , 17, 19}

for the ETH80 dataset. Polynomial kernels were generated by taking γ = 1
n

and

varying the degree from one to ten for both datasets.
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For experiments with covariance features, we used the LED-RBF and LED-

polynomial kernels defined in (5.2), whose parameters were chosen based on their

individual cross-validation performance. Specifically, for the YouTube dataset, we

used ten LED-polynomial kernels and fifteen LED-RBF kernels. For the ETH80

dataset, we used ten LED-polynomial kernels and twenty LED-RBF kernels. The

values for the RBF parameter γ were taken as 1
n
2δ, where n is the number of di-

mensions of Φlog defined in Section 5.3.2, δ = {−7,−6, . . . , 6, 7} for the YouTube

dataset, and δ = {−10,−9, . . . , 8, 9} for the ETH80 dataset. For both datasets,

polynomial kernels were generated by taking γ = 1
n

and varying the degree from one

to ten.

For both linear subspaces and covariance features, manifold geodesic distances

were used in the distance preserving constraints. In all the experiments, the param-

eters for the S-MKL method (SVM parameter C) and the proposed approach (SVM

parameter C and the regularization parameter λ) were chosen using cross-validation.

For multi-class classification using SVM, we followed one-vs-all approach.

5.5.5 Results

Tables 5.1 and 5.2 show the recognition accuracy for YouTube and ETH80

datasets using linear subspaces and covariance features, respectively. We can see

that the proposed approach clearly outperforms various existing approaches for the

classification of manifold features. When compared to the NN baseline method,

the proposed approach performs better with an average increase of 12.2% in the

83



Table 5.1: Recognition accuracy using linear subspaces.

dataset NN S-MKL [107] GDA [20] Proj + PLS [18] Proposed approach

YouTube 62.8 64.3 65.7 67.7 70.8

ETH80 93.2 93.7 92.8 95.3 96.0

Table 5.2: Recognition accuracy using covariance features.

dataset NN S-MKL [107] CDL-LDA [18] CDL-PLS [18] Proposed approach

YouTube 40.7 69.7 67.5 70.1 73.2

ETH80 92.7 93.7 94.5 96.5 98.2

recognition accuracy. This is expected as the simple NN-based classifier may not

be powerful enough to handle the complex visual recognition tasks considered here.

When compared to the S-MKL approach, the proposed approach performs better

with an average increase of 4.2% in the recognition accuracy. This shows that the

proposed manifold-based regularization is effective in finding a better kernel for clas-

sification. Recently, covariance features combined with PLS have been shown [18]

to perform better than various other recent methods for image set-based recognition

tasks. Our results show that the classification performance can be further improved

by combining the covariance features with the proposed approach.

5.6 Conclusions

In this chapter, we introduced a general extrinsic framework for the classifica-

tion of manifold features using kernel learning approach. We proposed two criteria
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for learning a good kernel-classifier combination for manifold features. In the case

of SVM classifier, based on the proposed criteria, we formulated the problem of

learning a good kernel-classifier combination as a convex optimization problem, and

solved it efficiently following the multiple kernel learning approach. We evaluated

the proposed approach for the image set-based classification task using linear sub-

spaces and covariance features, and obtained superior performance compared to

other relevant approaches.

85



Chapter 6: Deep Gaussian Conditional Random Field Network for

Image Denoising

6.1 Introduction

In the recent past, deep networks have been successfully used in various im-

age processing and computer vision applications [7, 28, 121]. Their success can be

attributed to several factors such as their ability to represent complex input-output

relationships, feed-forward nature of their inference (no need to solve an optimiza-

tion problem during run time), availability of large training datasets, etc. One of

the positive aspects of deep networks is that fairly general architectures composed

of fully-connected or convolutional layers have been shown to work reasonably well

across a wide range of applications. However, these general architectures do not use

problem domain knowledge which could be very helpful in many applications.

For example, in the case of image denoising, it has been recently shown that

conventional Multi-Layer Perceptrons (MLP) are not very good at handling multiple

levels of input noise [28]. When a single MLP was trained to handle multiple input

noise levels (by providing the noise variance as an additional input to the network),

it produced inferior results compared to the widely-used Block-Matching and 3D
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filtering (BM3D) [122] approach. Contrary to this, the Expected Patch Log Likeli-

hood (EPLL) framework of [123], which is a model-based approach, has been shown

to work well across a range of noise levels. These results suggest that we should work

towards bringing deep networks and model-based approaches together. Motivated

by this, we propose a new deep network architecture for image denoising based on a

Gaussian conditional random field model. The proposed network explicitly models

the input noise variance and hence is capable of handling a range of noise levels.

Gaussian Markov Random Fields (MRFs) [9] are popular models for various

structured inference tasks such as denoising, inpainting, super-resolution and depth

estimation, as they model continuous quantities and can be efficiently solved us-

ing linear algebra routines. However, the performance of a Gaussian MRF model

depends on the choice of pairwise potential functions. For example, in the case of im-

age denoising, if the potential functions for neighboring pixels are homogeneous (i.e.,

identical everywhere), then the Gaussian MRF model can result in blurred edges and

over-smoothed images. Therefore, to improve the performance of a Gaussian MRF

model, the pairwise potential function parameters should be chosen according to the

image being processed. A Gaussian MRF model that uses data-dependent potential

function parameters is referred to as Gaussian conditional random field [124].

Image denoising using a Gaussian CRF model consists of two steps: a parame-

ter selection step in which the potential function parameters are chosen based on the

input image, and an inference step in which energy minimization is performed for

the chosen parameters. In this chapter, we propose a novel model-based deep net-

work architecture, which we refer to as deep Gaussian CRF network, by converting
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both the parameter selection and inference steps into feed-forward networks.

The proposed deep Gaussian CRF network consists of two sub-networks: a

Parameter Generation Network (PGNet) that generates appropriate potential func-

tion parameters based on the input image, and an Inference Network (InfNet) that

performs energy minimization using the potential function parameters generated

by the PGNet. Since directly generating the potential function parameters for an

entire image is very difficult (as the number of pixels could be very large), we con-

struct a full-image pairwise potential function indirectly by combining the potential

functions defined on image patches. If we use d× d patches, then our construction

defines a graphical model in which each pixel is connected to its (2d− 1)× (2d− 1)

spatial neighbors. This construction is motivated by the recent EPLL framework

of [123]. Our PGNet directly operates on each d× d input image patch and chooses

appropriate parameters for the corresponding potential function.

Though the energy minimizer can be obtained in closed form for a Gaussian

CRF, it involves solving a linear system with number of variables equal to the

number of image pixels (usually of the order of 106). Solving such a large linear

system could be computationally prohibitive, especially for dense graphs (each pixel

is connected to 224 neighbors when 8×8 image patches are used). Hence, we use an

iterative optimization approach based on Half Quadratic Splitting (HQS) [123,125–

127] for designing our inference network. Recently, this approach has been shown

to work very well for image restoration tasks even with a few iterations [123]. Our

inference network consists of a new type of layer, which we refer to as the HQS layer,

that performs the computations involved in a HQS iteration.
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Figure 6.1: The proposed deep Gaussian CRF network: Parameter generation net-

work followed by inference network. The PGNets in dotted boxes are the additional

parameter generation networks introduced after each HQS iteration.

Combining the parameter generation and inference networks, we get our deep

Gaussian CRF network shown in Figure 6.1. Note that using appropriate pairwise

potential functions is crucial for the success of a Gaussian CRF model. Since PGNet

operates on the noisy input image, it becomes increasingly difficult to generate good

potential function parameters as the image noise increases. To address this issue, we

introduce an additional PGNet after each HQS iteration as shown in dotted boxes

in Figure 6.1. Since we train this deep Gaussian CRF network discriminatively in an

end-to-end fashion, even if the first PGNet fails to generate good potential function

parameters, the later PGNets can learn to generate appropriate parameters based

on partially restored images.

Contributions: We propose a new end-to-end trainable deep network architecture

for image denoising based on a Gaussian CRF model. Contrary to existing dis-

criminative denoising methods that train a separate model for each noise level, the

proposed network explicitly models the input noise variance and hence is capable of

handling a range of noise levels. We propose a differentiable parameter generation
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network that generates the Gaussian CRF pairwise potential parameters based on

the noisy input image. We unroll a half quadratic splitting-based iterative Gaussian

CRF inference procedure into a deep network and train it jointly with our parameter

generation network. We show that the proposed approach produces results on par

with the state-of-the-art without training a separate network for each noise level.

Organization: Section 6.2 provides an overview of existing works on Gaussian

CRFs, image denoising and inference unfolding. Section 6.3 presents the Gaus-

sian CRF model used in this chapter, and Section 6.4 presents the proposed deep

Gaussian CRF network. Experimental results and conclusions are presented in Sec-

tions 6.5 and 6.6, respectively.

6.2 Related Work

Gaussian CRFs were first introduced in [124] by modeling the parameters of

the conditional distribution of output given input as a function of the input image.

The precision matrix associated with each image patch was modeled as a linear

combination of twelve derivative filter-based matrices. The combination weights

were chosen as a parametric function of the responses of the input image to a set of

oriented edge and bar filters, and the parameters were learned using discriminative

training. This Gaussian CRF model was extended to Regression Tree Fields (RTFs)

in [128], where regression trees were used for selecting the parameters of Gaussians

defined over image patches. These regression trees used responses of the input image

to various hand-chosen filters for selecting an appropriate leaf node for each image

90



patch. This RTF-based model was trained by iteratively growing the regression

trees and optimizing the Gaussian parameters at leaf nodes. Recently, a cascade of

RTFs [129] has also been used for image restoration tasks. Contrary to the RTF-

based approaches, all the components of our network are differentiable, and hence

it can be trained end-to-end using standard gradient-based techniques.

Recently, [130] proposed a cascade of shrinkage fields for image restoration

tasks. They learned a separate filter bank and shrinkage function for each stage of

their cascade using discriminative training. Though this model can also be seen as

a cascade of Gaussian CRFs, the filter banks and shrinkage functions used in the

cascade do not depend on the noisy input image during test time. Contrary to this,

the pairwise potential functions used in our Gaussian CRF model are generated by

our PGNets based on the noisy input image.

Our approach is also related to the EPLL framework of [123], which decom-

poses the full-image Gaussian model into patch-based Gaussians, and uses HQS

iterations for Gaussian CRF inference. Following are the main differences between

EPLL and this work: (i) We propose a new deep network architecture which com-

bines HQS iterations with a differentiable parameter generation network. (ii) While

the EPLL chooses the potential parameters for each image patch as one of the K

possible matrices, we construct each potential parameter matrix as a convex com-

bination of K base matrices. (iii) While the EPLL learns the K possible potential

parameter matrices in a generative fashion by fitting a Gaussian Mixture Model

(GMM) to clean image patches, we learn the K base matrices in a discriminative

fashion by the end-to-end training of our deep network. As shown later in the
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experiments section, our discriminative model clearly outperforms the generatively

trained EPLL.

Gaussian CRFs have also been used recently for other applications such as

depth estimation [131], facial landmark detection [132] and document retrieval [133].

Denoising: Image denoising is one of the oldest problems in image processing

and various denoising algorithms have been proposed over the past several years.

Some of the popular algorithms include fields of experts [1], BM3D [122], wavelet

shrinkage [134], Gaussian scale mixtures [135], non-linear diffusion process-based

approaches [136–138], sparse coding-based approaches [139–142], weighted nuclear

norm minimization [143], and non-local Bayesian denoising [144]. Among these,

BM3D is currently the most widely-used state-of-the-art denoising approach.

Denoising with neural networks: Recently, various deep neural network-based

approaches have also been proposed for image denoising [27–29,145–147]. While [145]

used a convolutional neural network, [28,146] used multilayer perceptrons, and [27,

29] used stacked sparse denoising autoencoders. Among these, the MLP [28] ap-

proach has been shown to work very well outperforming the BM3D approach. How-

ever, none of these deep networks explicitly model the input noise variance, and

hence are not good at handling multiple noise levels. In all these works, a different

network was trained for each noise level.

Unfolding inference as a deep network: The proposed approach is also related

to a class of algorithms that discriminatively learn the model parameters by back-
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propagating the gradient through a fixed number of inference steps. In [148], the

fields of experts [1] MRF model was discriminatively trained for image denoising

by unfolding a fixed number of gradient descent inference steps. In [149], message-

passing inference machines were trained for structured prediction tasks by consider-

ing the belief propagation-based inference of a discrete graphical model as a sequence

of predictors. In [150], a feed-forward sparse code predictor was trained by unfolding

a coordinate descent based sparse coding inference algorithm. In [151, 152], deep

CNNs and discrete graphical models were jointly trained by unfolding the discrete

mean-field inference. In [153], a new kind of non-negative deep network was intro-

duced by deep unfolding of non-negative matrix factorization model. Recently, [136]

revisited the classical non-linear diffusion process [154] by modeling it using several

parameterized linear filters and influential functions. The parameters of this diffu-

sion process were learned discriminatively by back-propagating the gradient through

a fixed number of diffusion process iterations. Though this diffusion process-based

approach has been shown to work well for the task of image denoising, it uses a

separate model for each noise level.

In this chapter, we design our inference network using HQS-based inference of

a Gaussian CRF model, resulting in a different network architecture compared to

the above unfolding works. In addition to this inference network, our deep Gaussian

CRF network also consists of other sub-networks used for modeling the Gaussian

CRF pairwise potentials.
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6.3 Gaussian Conditional Random Field Model

Let X be the given (noisy) input image and Y be the (clean) output image

that needs to be inferred. Let X(i, j) and Y(i, j) represent the pixel (i, j) in images

X and Y, respectively. We model the conditional probability density p(Y|X) as a

Gaussian distribution given by p (Y|X) ∝ exp {−E (Y|X)}, where

E (Y|X) =
1

2σ2

∑
ij

[Y(i, j)−X(i, j)]2
}

:= Ed (Y|X)

+
1

2
vector(Y)>Q(X)vector(Y)

}
:= Ep (Y|X) .

(6.1)

Here, σ2 is the input noise variance and Q(X) � 0 are the input-dependent param-

eters of the quadratic pairwise potential function Ep (Y|X) defined over the image

Y. Note that if the pairwise potential parameters Q are constant, then this model

can be interpreted as a generative model with Ed as the data term, Ep as the prior

term and p(Y|X) as the posterior. Hence, our Gaussian CRF is a discriminative

model inspired by a generative Gaussian model.

6.3.1 Patch-based Pairwise Potential Functions

Directly choosing the pairwise potential parameters Q(X) for an entire image

Y is very challenging since the number of pixels in an image could be of the order

of 106. Hence, motivated by [123], we construct the (full-image) pairwise potential

function Ep by combining patch-based pairwise potential functions.

Let xij and yij be d2×1 column vectors representing the d×d patches centered

on pixel (i, j) in images X and Y, respectively. Let x̄ij = Gxij and ȳij = Gyij be the
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mean-subtracted versions of vectors xij and yij, respectively, where G = Id2 − 1
d2

1

is the mean subtraction matrix. Let

V (ȳij|x̄ij) =
1

2
ȳ>ij (Σij(x̄ij))

−1 ȳij, Σij(x̄ij) � 0, (6.2)

be a quadratic pairwise potential function defined on patch ȳij, with Σij(x̄ij) being

the corresponding (input) data-dependent parameters. Combining the patch-based

potential functions at all the pixels, we get the following full-image pairwise potential

function:

Ep (Y|X) =
1

d2

∑
ij

V (ȳij|x̄ij) =
1

2d2

∑
ij

y>ijG
> (Σij(x̄ij))

−1 Gyij. (6.3)

Note that since we are using all d×d image patches, each pixel appears in d2 patches

that are centered on its d × d neighbor pixels. In every patch, each pixel interacts

with all the d2 pixels in that patch. This effectively defines a graphical model of

neighborhood size (2d− 1)× (2d− 1) on image Y.

6.3.2 Inference

Given the (input) data-dependent parameters {Σij(x̄ij)} of the pairwise po-

tential function Ep (Y|X), the Gaussian CRF inference solves the following opti-

mization problem:

Y∗ = argmin
Y

∑
ij

(
d2

σ2
[Y(i, j)−X(i, j)]2 + y>ijG

> (Σij(x̄ij))
−1 Gyij

)
. (6.4)

Note that the optimization problem (6.4) is an unconstrained quadratic program

and hence can be solved in closed form. However, the closed form solution for Y

requires solving a linear system of equations with number of variables equal to the
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number of image pixels. Since solving such linear systems could be computation-

ally prohibitive for large images, we use a half quadratic splitting-based iterative

optimization method, that has been recently used in [123] for solving the above op-

timization problem. This approach allows for efficient optimization by introducing

auxiliary variables.

Let zij be an auxiliary variable corresponding to the patch yij. In half quadratic

splitting method, the cost function in (6.4) is modified to

J(Y, {zij}, β) =
∑
ij


d2

σ2 [Y(i, j)−X(i, j)]2 + β‖yij − zij‖2
2

+ z>ijG
> (Σij(x̄ij))

−1 Gzij

 . (6.5)

Note that as β → ∞, the patches {yij} are restricted to be equal to the auxiliary

variables {zij}, and the solutions of (6.4) and (6.5) converge.

For a fixed value of β, the cost function J can be minimized by alternatively

optimizing for Y and {zij}. If we fix Y, then the optimal zij is given by

f(yij) = argmin
zij

(
z>ijG

> (Σij(x̄ij))
−1 Gzij + β‖yij − zij‖2

2

)
=
(
G> (Σij(x̄ij))

−1 G + βId2
)−1

βyij

=
(
Id2 −G>

(
βΣij(x̄ij) + GG>

)−1
G
)

yij.

(6.6)

The last equality in (6.6) follows from Woodbury matrix identity. If we fix {zij},

then the optimal Y(i, j) is given by

g({zij}) = argmin
Y(i,j)

d2

σ2
[Y(i, j)−X(i, j)]2 + β

d d−1
2
e∑

p,q=−b d−1
2
c

[Y(i, j)− zpq(i, j)]
2


=

X(i, j)

1 + βσ2
+

βσ2

(1 + βσ2)d2

d d−1
2
e∑

p,q=−b d−1
2
c

zpq(i, j),

(6.7)
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where b c, d e are the floor and ceil operators, respectively, and zpq(i, j) is the

intensity value of pixel (i, j) according to the auxiliary patch zpq.

In half quadratic splitting approach, the optimization steps (6.6) and (6.7) are

repeated while increasing the value of β in each iteration. This iterative approach

has been shown to work well in [123] for image restorations tasks even with few (5-6)

iterations.

6.4 Deep Gaussian CRF network

As mentioned earlier, the proposed deep Gaussian CRF network consists of

the following two components:

• Parameter generation network: This network takes the noisy image X as

input and generates the parameters {Σij(x̄ij)} of pairwise potential function

Ep (Y|X).

• Inference network: This network performs Gaussian CRF inference using

the pairwise potential parameters {Σij(x̄ij)}} given by the parameter genera-

tion network.

6.4.1 Parameter Generation Network

We model the pairwise potential parameters {Σij} as convex combinations of

K symmetric positive semidefinite matrices Ψ1, . . . ,ΨK :

Σij =
∑
k

γkijΨk, γ
k
ij ≥ 0,

∑
k

γkij = 1. (6.8)
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Figure 6.2: Parameter generation network: Mean subtracted patches x̄ij extracted

from the input image X are used to compute the combination weights {γkij}, which

are used for generating the pairwise potential parameters {Σij}.

The combination weights {γkij} are computed from the mean-subtracted input image

patches {x̄ij} using the following two layer selection network:

Layer 1 - Quadratic layer : For k = 1, 2, . . . , K

skij = −1

2
x̄>ij
(
Wk + σ2Id2

)−1
x̄ij + bk.

(6.9)

Layer 2 - Softmax layer : For k = 1, 2, . . . , K

γkij = es
k
ij/

K∑
p=1

es
p
ij .

(6.10)

Figure 6.2 shows the overall parameter generation network which includes a patch

extraction layer, a selection network and a combination layer. Here, σ2 is the noise

variance, and {(Wk � 0,Ψk � 0, bk)} are the network parameters.

Our choice of the above quadratic selection function is motivated by the fol-

lowing two reasons: (i) Since the selection network operates on mean-subtracted

patches, it should be symmetric, i.e., both x̄ and −x̄ should have the same combi-

nation weights {γk}. To achieve this, we compute each sk as a quadratic function

of x̄. (ii) Since we are computing the combination weights using the noisy image

patches, the selection network should be robust to input noise. To achieve this,

we include the input noise variance σ2 in the computation of {sk}. We choose the
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particular form (Wk + σ2Id2)
−1

because in this case, we can (roughly) interpret the

computation of {sk} as evaluating the Gaussian log likelihoods. If we interpret {Wk}

as covariance matrices associated with clean image patches, then {Wk + σ2Id2} can

be interpreted as covariance matrices associated with noisy image patches.

6.4.2 Inference Network

We use the half quadratic splitting method described in Section 6.3.2 to create

our inference network. Each layer of the inference network, also referred to as

the HQS layer, implements one half quadratic splitting iteration. Each HQS layer

consists of the following two sub-layers:

• Patch inference layer (PI): This layer uses the current image estimate Yt

and computes the auxiliary patches {zij} using f(yij) given in (6.6).

• Image formation layer (IF): This layer uses the auxiliary patches {zij}

given by the PI layer and computes the next image estimate Yt+1 using

g({zij}) given in (6.7).

Let {β1, β2, . . . , βT} be the β schedule for half quadratic splitting. Then, our infer-

ence network consists of T HQS layers as shown in Figure 6.3. Here, X is the input

image with noise variance σ2, and {Σij(x̄ij)} are the (data-dependent) pairwise

potential parameters generated by the PGNet.

Remark 6.1 Since our inference network implements a fixed number of HQS it-

erations, its output may not be optimal for (6.4). However, since we train our

parameter generation and inference networks jointly in a discriminative fashion, the
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Figure 6.3: Inference network uses the pairwise potential parameters {Σij(x̄ij)}

generated by the PGNet and performs T HQS iterations.

PGNet will learn to generate appropriate pairwise potential parameters such that the

output after a fixed number of HQS iterations would be close to the desired output.

6.4.3 Gaussian CRF Network

Combining the above parameter generation and inference networks, we get our

full Gaussian CRF network with parameters {(Wk � 0,Ψk � 0, bk)}. Note that this

Gaussian CRF network has various new types of layers that use quadratic functions,

matrix inversions and multiplicative interactions, which are quite different from the

computations used in standard deep networks.

Additional PGNets: Note that using appropriate pairwise potential functions is

crucial for the success of a Gaussian CRF model. Since the parameter generation

network operates on the noisy input image X, it is very difficult to generate good

parameters at high noise levels (even after incorporating the noise variance σ2 into

the selection network). To overcome this issue, we introduce an additional PGNet

after each HQS iteration (shown with dotted boxes in Figure 6.1). The rationale

behind adding these additional PGNets is that even if the first PGNet fails to

generate good parameters, the later PGNets could generate appropriate parameters
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using the partially restored images. Our final deep Gaussian CRF network consists

of T PGNets and T HQS layers as shown in Figure 6.1.

6.4.4 Training

Since all the components of the proposed deep Gaussian CRF network are

differentiable, it can be trained end-to-end in a discriminative fashion. Here, we

show how to back-propagate the loss derivatives through the layers of the proposed

deep network. Please refer to Appendix B for detailed derivations. Let L be the

final loss function.

Backpropagation through the combination layer: Given the derivatives dL/dΣij

of the loss function L with respect to the pairwise potential parameters Σij, we can

compute the derivatives of L with respect to the combination weights γkij and the

matrices Ψk using

dL

dγkij
= trace

(
Ψ>k

dL

dΣij

)
,

dL

dΨk

=
∑
ij

γkij
dL

dΣij

. (6.11)

Backpropagation through the quadratic layer: Given the derivatives dL/dskij

of the loss function L with respect to the quadratic layer output skij, we can compute

the derivatives of L with respect to the selection network parameters (Wk, bk) and

the input patches x̄ij using:

dL

dWk

=
(
Wk + σ2Id2

)−1

(∑
ij

dL

dskij

x̄ijx̄
>
ij

2

)(
Wk + σ2Id2

)−1

dL

dbk
=
∑
ij

dL

dskij
,

dL

dx̄ij
= −

∑
k

dL

dskij

(
Wk + σ2Id2

)−1
x̄ij.

(6.12)
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Backpropagation through the patch inference layer: Given the derivatives

dL/dzij of the loss function L with respect to the output of a patch inference layer,

we can compute the derivatives of L with respect to its input patches yij and the

pairwise potential parameters Σij using

dL

dyij
=
(
Id2 −G>(βΣij + G)−1G

) dL
dzij

,

dL

dΣij

= β (βΣij + G)−1 G
dL

dzij
y>ijG

> (βΣij + G)−1 .
(6.13)

We skip the derivative formulas for other computations such as softmax,

extracting mean-subtracted patches from an image, averaging in the image for-

mation layer, etc., as they are standard operations. Note that we have a con-

strained optimization problem here because of the symmetry and positive semi-

definiteness constraints on the network parameters {Wk} and {Ψk}. We convert

this constrained problem into an unconstrained one by parametrizing Wk and Ψk

as Wk = PkP
>
k ,Ψk = RkR

>
k , where Pk and Rk are lower triangular matrices.

6.5 Experimental Evaluation

In this section, we use the proposed deep Gaussian CRF network for image

denoising. We trained our network using a dataset of 400 images (200 images from

BSD300 [155] training set and 200 images from PASCALVOC 2012 [156] dataset)

by maximizing the Peak Signal-to-Noise Ratio (PSNR) measure. We used limited

memory BFGS [157] for optimization. For testing, we used a dataset of 300 images

(100 images from BSD300 test set and 200 images from PASCALVOC 2012 dataset).

We used white Gaussian noise of various standard deviations in our experiments.
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For realistic evaluation, all the images were quantized to [0-255] range after adding

the noise. We use the standard PSNR measure for quantitative evaluation.

Though we use Gaussian noise, due to quantization (clipping to 0-255 range),

the noise characteristics deviate from being a Gaussian as the noise variance in-

creases. To cope up with this variation in noise characteristics, we trained two

different networks, one for low input noise levels (σ ≤ 25, noise reasonably close to

a Gaussian after quantization) and one for high input noise levels (25 < σ < 60,

noise far from being a Gaussian after quantization). When we tried training a single

network for all noise levels, the training was mainly focusing on high noise data.

For training the low noise network, we used σ = [8, 13, 18, 25] and for training the

high noise network, we used σ = [30, 35, 40, 50]. Note that both the networks were

trained to handle a range of input noise levels. For testing, we varied the σ from 10

to 60 in intervals of 5.

We performed experiments with two patch sizes (5 × 5 and 8 × 8), and the

number of matrices Ψk was chosen as 200. Following [123], we used six HQS iter-

ations with β values given by 1
σ2 [1, 4, 8, 16, 32, 64]. Optimizing the β values using a

validation set may further improve our performance. To avoid overfitting, we reg-

ularized the network, by sharing the parameters {Wk,Ψk} across all PGNets. We

initialized the network parameters using the parameters of a GMM learned on clean

image patches.

Table 6.1 compares the proposed deep Gaussian CRF network with various

image denoising approaches on 300 test images. Here, DGCRF5 and DGCRF8 refer

to the deep Gaussian CRF networks that use 5× 5 and 8× 8 patches, respectively.

103



Table 6.1: Comparison of various denoising approaches on 300 test images.

Test σ 10 15 20 25

ClusteringSR [139] 33.27 30.97 29.41 28.22

EPLL [123] 33.32 31.06 29.52 28.34

BM3D [122] 33.38 31.09 29.53 28.36

NL-Bayes [144] 33.46 31.11 29.63 28.41

NCSR [140] 33.45 31.20 29.56 28.39

WNNM [143] 33.57 31.28 29.70 28.50

CSF [130] - - - 28.43

MLP [28] 33.43 - - 28.68

DGCRF5

33.53 31.29 29.76 28.58
Low noise network

DGCRF8

33.56 31.35 29.84 28.67
Low noise network

Test σ 30 35 40 45 50 55 60

ClusteringSR [139] 27.25 26.30 25.56 24.89 24.28 23.72 23.21

EPLL [123] 27.36 26.52 25.76 25.08 24.44 23.84 23.27

BM3D [122] 27.42 26.64 25.92 25.19 24.63 24.11 23.62

NL-Bayes [144] 27.42 26.57 25.76 25.05 24.39 23.77 23.18

NCSR [140] 27.45 26.32 25.59 24.94 24.35 23.85 23.38

WNNM [143] 27.51 26.67 25.92 25.22 24.60 24.01 23.45

MLP [28] - 27.13 - - 25.33 - -

DGCRF5

27.68 26.95 26.30 25.73 25.23 24.76 24.33
High noise network

DGCRF8

27.80 27.08 26.44 25.88 25.38 24.90 24.45
High noise network
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For each noise level, the top two PSNR values are shown in boldface style. Note that

the CSF [130] and MLP [28] approaches train a different model for each noise level.

Hence, for these approaches, we report the results only for those noise levels for which

the corresponding authors have provided their trained models. As we can see, the

proposed deep Gaussian CRF network clearly outperforms the ClusteringSR [139],

EPLL [123], BM3D [122], NL-Bayes [144], NCSR [140] and CSF approaches on all

noise levels, and the WNNM [143] approach on all noise levels except σ = 10 (where

it performs equally well). Specifically, it produces significant improvement in the

PSNR compared to the ClusteringSR (0.29 - 1.24 dB), EPLL (0.24 - 1.18 dB), BM3D

(0.18 - 0.83 dB), NL-Bayes (0.10 - 1.27 dB), NCSR (0.11 - 1.07 dB) and WNNM

(upto 1.0 dB) approaches. The CSF approach of [130], which also uses Gaussian

CRFs, performs poorly (0.24 dB for σ = 25) compared to our deep network.

When compared with MLP [28], which is the state-of-the-art deep networks-

based denoising approach, we perform better for σ = [10, 50], worse for σ = 35, and

equally well for σ = 25. However, note that while [28] uses a different MLP for

each specific noise level, we trained only two networks, each of which can handle a

range of noise levels. In fact, our single low noise network is able to outperform the

MLP trained for σ = 10 and perform as good as the MLP trained for σ = 25. This

ability to handle a range of noise levels is one of the major benefits of the proposed

deep network. Note that though we did not use the noise levels σ = 10, 15, 20, 45

during training, our networks performs very well for these σ. This shows that our

networks are able to handle a range of noise levels rather than just being effective

for the trained σ. Also, our high noise network performs well for σ = 55 and 60
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Figure 6.4: Sensitivity analysis of the MLP and the proposed approach. The noise

levels for which MLP was trained are indicated using a circular marker.

even though these values are out of its training range. This shows that the proposed

model-based deep network can also generalize reasonably well for out-of-range noise

levels.

We acknowledge that the comparisons in Table 6.1 may be biased since some of

the competing methods are not designed for denoising quantized images. However,

we believe that, for the denoising problem, using quantized images is a more realistic

experimental setting than using unquantized images. Please refer to Table 6.2 for

additional results on a benchmark dataset under the unquantized setting.

To analyze the sensitivity of the non-model based MLP approach to the devi-

ation from training noise, we evaluated it on noise levels that are slightly (±5)

different from the training σ. The authors of [28] trained separate MLPs for

σ = 10, 25, 35, 50 and 65. As reported in [28], training a single MLP to handle

multiple noise levels gave inferior results. Figure 6.4 shows the improvement of the
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MLP approach over BM3D in terms of PSNR. For each noise level, we used the best

performing model among σ = 10, 25, 35, 50, 65. As we can see, while the MLP ap-

proach does very well for the exact noise levels for which it was trained, it performs

poorly if the test σ deviates from the training σ even by 5 units. This is a major

limitation of the MLP approach since training a separate model for each noise level

is not practical. Contrary to this, the proposed approach is able to cover a wide

range of noise levels just using two networks.

Please note that the purpose of Figure 6.4 is not to compare the performance

of our approach with MLP on noise levels that were not used in MLP training,

which would be an unfair comparison. The only purpose of this figure is to show

that, although very powerful, a network trained for a specific noise level is very

sensitive.

Apart from our test set of 300 images, we also evaluated our low noise DGCRF8

network on a smaller dataset of 68 images [1] which has been used in various existing

works. Tables 6.2 and 6.3 compare the proposed deep Gaussian CRF network with

various approaches on this dataset under the unquantized and quantized settings,

respectively. For each noise level, the top two PSNR values are shown in boldface

style. As we can see, the proposed approach outperforms all the other approaches

except RTF5 [129] and MLP [28] under the quantized setting, and TRD [136] under

the unquantized setting. However, note that while we use a single network for both

σ = 15 and σ = 25, the MLP, TRD and RTF5 approaches trained their models

specifically for individual noise levels.
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Table 6.2: Comparison of various denoising approaches on 68 images (dataset of [1])

under the unquantized setting.

Test σ ARF LLSC EPLL opt-MRF ClusteringSR NCSR BM3D

[148] [142] [123] [158] [139] [140] [122]

15 30.70 31.27 31.19 31.18 31.08 31.19 31.08

25 28.20 28.70 28.68 28.66 28.59 28.61 28.56

Test σ MLP WNNM CSF RTF5 TRD DGCRF8

[28] [143] [130] [129] [136]

15 - 31.37 31.24 - 31.43 31.43

25 28.85 28.83 28.72 28.75 28.95 28.89

Table 6.3: Comparison of various denoising approaches on 68 images (dataset of [1])

under the quantized setting.

Test σ LLSC EPLL opt-MRF ClusteringSR NCSR BM3D

[142] [123] [158] [139] [140] [122]

15 31.09 31.11 31.06 30.93 31.13 31.03

25 28.24 28.46 28.40 28.26 28.41 28.38

Test σ NL-Bayes MLP WNNM CSF RTF5 DGCRF8

[144] [28] [143] [130] [129]

15 31.06 - 31.20 - - 31.36

25 28.43 28.77 28.48 28.53 28.74 28.73
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Figure 6.5: Denoising results by the proposed approach for noise σ = 25.

Figure 6.5 shows some example denoising results produced by the proposed

approach for noise standard deviation σ = 25. As we can see, the proposed approach

is able to retain the image content while suppressing the noise.

Denoising time: The proposed DGCRF8 network takes 4.4s for a 321×481 image

on an NVIDIA Titan GPU using a MATLAB implementation.
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6.6 Conclusions

In this chapter, we proposed a new end-to-end trainable deep network archi-

tecture for image denoising using a Gaussian CRF model. The proposed network

consists of a parameter generation network that generates appropriate potential

function parameters based on the input image, and an inference network that per-

forms approximate Gaussian CRF inference. Unlike existing discriminative denoising

approaches that train a separate model for each noise level, the proposed network

can handle a range of noise levels as it explicitly models the input noise variance.

We achieved results on par with the state-of-the-art by training two deep Gaussian

CRF networks, one for low input noise levels and one for high input noise levels.
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Chapter 7: Gaussian Conditional Random Field Network for Seman-

tic Segmentation

7.1 Introduction

Semantic segmentation, which aims to predict a category label for every pixel

in the image, is an important task for scene understanding. Though it has received

significant attention from the vision community over the past few years, it still

remains a challenging problem due to large variations in the visual appearance of

the semantic classes and complex interactions between various classes in the visual

world. Recently, CNNs have been shown to work very well for this challenging

task [30, 31, 159–161]. Their success can be attributed to several factors such as

their ability to represent complex input-output relationships, feed-forward nature of

their inference, availability of large training datasets and fast computing hardware

like GPUs, etc.

However, CNNs may not be optimal for structured prediction tasks such as

semantic segmentation as they do not model the interactions between output vari-

ables directly. Acknowledging this, various semantic segmentation approaches have

been proposed in the recent past that use CRF models [162] on top of CNNs [2,
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30,151,152,163–165], and all these approaches have shown significant improvement

in the segmentation results by using CRFs. By combining CNNs and CRFs, these

approaches get the best of both worlds: the ability of CNNs to model complex

input-output relationships and the ability of CRFs to directly model the interactions

between output variables. While some of these approaches use CRF as a separate

post-processing step [2, 30, 163–165], some other approaches train the CNNs along

with the CRFs in an end-to-end fashion [151,152].

All of the above approaches use discrete graphical models, and hence end up

using graph-cuts or mean field-based approximate inference procedures. Though

these inference procedures do not have global optimum guarantees, they have been

successfully used for the semantic segmentation task in conjunction with CNNs.

Different from discrete graphical models, Gaussian graphical models [9, 124] are

simpler models, and have inference procedures that are guaranteed to converge to

the global optimal solution. Gaussian graphical models have been used in the past

for various applications such as image denoising [124, 128], depth estimation [131,

166], deblurring [123, 129], edge detection [167], texture classification [168], texture

segmentation [169], etc.

While a discrete CRF is a natural fit for labeling tasks such as semantic seg-

mentation, one needs to use inference techniques that do not have optimality guar-

antees. While exact inference is tractable in the case of a Gaussian CRF, it is not

clear if this model is a good fit for discrete labeling tasks. This leads us to the

following question: Should we use a better model with approximate inference or an

approximate model with better inference?
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To answer this question, in this chapter, we use a Gaussian CRF model for

the task of semantic segmentation. To use a Gaussian CRF model for this discrete

labeling task, we first replace each discrete variable with a vector of K mutually

exclusive binary variables, where K is the number of possible values the discrete

variable can take, and then model all the variables jointly as a multivariate Gaus-

sian by relaxing the mutual exclusivity and binary constraints. After the Gaussian

CRF inference, the discrete label assignment is done based on which of the K cor-

responding variables has the maximum value.

Though the Maximum a Posteriori (MAP) solution can be obtained in closed

form in the case of Gaussian CRFs, it involves solving a linear system with number

of variables equal to the number of nodes in the graph times the dimensionality of

node variables (which is equal to the number of spatial locations times the number

of classes in the case of semantic segmentation). Solving such a large linear system

could be computationally prohibitive, especially for dense graphs where each node

is connected to several other nodes. Hence, instead of exactly solving a large linear

system, we unroll a fixed number of Gaussian Mean Field (GMF) inference steps

as layers of a deep network, which we refer to as the GMF network. Note that the

GMF inference is different from the mean field inference used in [170] for discrete

CRFs with Gaussian edge potentials.

While GMF updates are guaranteed to give the MAP solution upon conver-

gence, parallel updates are guaranteed to converge only under certain constraints

such as diagonal dominance of the precision matrix of the joint Gaussian [171]. If the
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nodes are updated serially, then the GMF inference is equivalent to an alternating

minimization approach in which each subproblem is solved optimally, and hence it

will converge (as finding the MAP solution for a Gaussian CRF is a convex problem

with a smooth cost function). But, using serial updates would be very slow when

the number of variables is large. To avoid both these issues, we use a bipartite graph

structure that allows us to update half of the nodes in parallel in each step without

loosing the convergence guarantee even when the diagonal dominance constraint is

not satisfied. Using this bipartite structure, we ensure that each layer of our GMF

network produces an output that is closer to the MAP solution compared to its

input.

By combining the proposed GMF network with CNNs, we propose a new

end-to-end trainable deep network, which we refer to as Gaussian CRF network

(Figure 7.1), for the task of semantic segmentation. The proposed Gaussian CRF

network consists of a CNN-based unary network for generating the unary potentials,

a CNN-based pairwise network for generating the pairwise potentials and a GMF

network for performing the Gaussian CRF inference.

Contributions: Different from existing approaches that use discrete CRF models,

we propose to use a Gaussian CRF model for the task of semantic segmentation.

Compared to discrete CRFs, Gaussian CRFs are simpler models that can be solved

optimally. We propose a novel deep network for Gaussian CRF inference by un-

folding a fixed number of GMF iterations. Using a bipartite graph structure, we

ensure that each layer in our inference network produces an output that is closer to
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the optimal solution compared to its input. We propose a new end-to-end trainable

deep network that combines the Gaussian CRF model with CNNs for the task of

semantic segmentation. We show that the proposed Gaussian CRF network out-

performs various discrete CRF-based approaches on the challenging PASCALVOC

2012 test set [156] (when trained with ImageNet [172] and PASCALVOC data).

Organization: Section 7.2 provides an overivew of existing works on semantic

segmentation, Gaussian CRFs, and inference unfolding. Section 7.3 presents the

Gaussian CRF model used in this chapter, and Section 7.4 presents the proposed

Gaussian CRF network. Experimental results and conclusions are presented in Sec-

tions 7.5 and 7.6, respectively.

7.2 Related Work

Semantic segmentation using CNNs: In the recent past, numerous semantic

segmentation approaches have been proposed based on CNNs. In [121, 173], each

region proposal was classified into one of the semantic classes by using CNN features.

Instead of applying a CNN to each region independently as in [121, 173], [174]

applied the convolutional layers only once to the entire image, and generated region

features by using pooling after the final convolutional layer.

Different from the above approaches, [30] trained a CNN to directly extract

features at each pixel. To capture the information present at multiple scales, CNN

was applied to the input image multiple times at different resolutions, and the

features from all the resolutions were concatenated to get the final pixel features.
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This multiscale feature was then classified using a two-layer neural network. Finally,

post-processing steps like CRF and segmentation tree were used to further improve

the results. Building on top of these CNN features, [175,176] introduced a recursive

context propagation network that enriched the CNN features by adding image level

contextual information. Instead of using a CNN multiple times, [2,160,161] proposed

to use the features extracted by the intermediate layers of a deep CNN to capture

the multi-scale information. Recently, [177] trained a deconvolution network for the

task of semantic segmentation. This network was applied separately to each region

proposal, and all the results were aggregated to get the final predictions.

Most of the CNN-based methods mentioned above use superpixels or region

proposals, and hence the errors in the initial proposals will remain no matter how

good the CNN features are. Different from these methods, [31] directly produced

dense segmentation maps by upsampling the predictions produced by a CNN using

a trainable deconvolution layer. To obtain the finer details in the upsampled output,

they combined the final layer predictions with predictions from lower layers.

Combining CNNs and CRFs for semantic segmentation: Though CNNs

have been shown to work very well for the task of semantic segmentation, they may

not be optimal as they do not model the interactions between the output variables

directly, which is important for semantic segmentation. To overcome this issue,

various recent approaches [2, 30, 163–165] have used discrete CRF [162] models on

top of CNNs. While [30] defined a CRF on superpixels and used graph-cuts based

inference, [2,163–165] defined a CRF directly on image pixels and used the efficient
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mean field inference proposed in [170]. Instead of using CRF as a post-processing

step, [152] trained a CNN along with a CRF in an end-to-end fashion by converting

the mean field inference procedure of [170] into a recurrent neural network. Similar

joint training strategy was also used in [151].

In all these approaches, the CRF edge potentials were designed using hand-

chosen features like image gradients, pixel color values, spatial locations, etc. and the

potential function parameters were manually tuned. Contrary to this, recently, [178]

has learned both unary and pairwise potentials using CNNs. While all these ap-

proaches learn CNN-based potentials and use message passing algorithms to perform

CRF inference, [179] has recently proposed to use CNNs to directly learn the mes-

sages in message passing inference.

The idea of jointly training a CNN and graphical model has also been used for

other applications such as sequence labeling [180, 181], text recognition [182], hu-

man pose estimation [183], predicting words from images [184], handwritten word

recognition [185]. Recently, various CNN-based semantic segmentation approaches

have also been proposed for semi and weakly supervised settings [164,186–188].

Unrolling inference as a deep network: The proposed approach is also re-

lated to a class of algorithms that learn model parameters discriminatively by back-

propagating the gradient through a fixed number of inference steps. In [148], the

fields of experts [1] model was discriminatively trained for image denoising by un-

rolling a fixed number of gradient descent inference steps. In [184,189–191] discrete

graphical models were trained by back-propagating through either the mean field
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or the belief propagation inference iterations. In [149], message passing inference

machines were trained by considering the belief propagation-based inference of a

discrete graphical model as a sequence of predictors. In [150], a feed-forward sparse

code predictor was trained by unrolling a coordinate descent-based sparse coding

inference algorithm. In [153], a new non-negative deep network was introduced by

deep unfolding of non-negative factorization model. Different from these approaches,

we unroll the mean filed inference of a Gaussian CRF model as a deep network, and

train our CNN-based potential functions along with the Gaussian CRF inference

network in an end-to-end fashion.

Gaussian conditional random fields: Gaussian CRFs [124] are popular models

for structured inference tasks like denoising [123,124,128–130], deblurring [123,129,

130], depth estimation [131,166], etc., as they model continuous quantities and can

be efficiently solved using linear algebra routines.

Gaussian CRF was also used for discrete labeling tasks earlier in [192], where

a Logistic Random Field (LRF) was proposed by combining a quadratic model with

logistic function. While the LRF used a logistic function on top of a Gaussian

CRF to model the output, we directly model the output using a Gaussian CRF.

Unlike [192], which used hand-chosen features like image gradients, color values,

etc. to model the potentials, we use CNN-based potential functions.

Recently, [166] trained a CNN along with a Gaussian CRF model for image-

based depth prediction. The Gaussian CRF model of [166] was defined on super-

pixels and had edges only between adjacent superpixels. As the resulting graph was
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sparse with few nodes, [166] performed exact Gaussian CRF inference by solving a

linear system. Different from [166], we define our Gaussian CRF model directly on

top of the dense CNN output and connect each node to several neighbors. Since

the number of variables in our Gaussian CRF model is very large, exactly solving a

linear system would be computationally expensive. Hence, we unfold a fixed number

of GMF inference steps into a deep network. Also, while [166] used hand-designed

features like color histogram, local binary patterns, etc. for designing their pairwise

potentials, we use CNN-based pairwise potentials.

7.3 Gaussian Conditional Random Field Model

In semantic segmentation, we are interested in assigning each pixel in an image

X to one of the K possible classes. As mentioned earlier, we use K variables (one for

each class) to model the output at each pixel, and the final label assignment is done

based on which of these K variables has the maximum value. Let yi = [yi1, . . . , yiK ]

be the vector of K output variables associated with the ith pixel, and y be the vector

of all output variables. We model the conditional probability density P (y|X) as a

Gaussian distribution given by P (y|X) ∝ exp
{
−1

2
E(y|X)

}
, where

E (y|X) =
∑
i

‖yi − ri(X; θu)‖2
2 +

∑
ij

(yi − yj)
>Wij (X; θp) (yi − yj) . (7.1)

The first term in the above energy function E is the unary term and the second term

is the pairwise term. Here, both ri and Wij � 0 are functions of the input image X

with θu and θp being the respective function parameters. Note that when Wij � 0

for all pairs of pixels, the unary and pairwise terms can be combined together into
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a single positive semidefinite quadratic form.

The optimal y that minimizes the energy function E can be obtained in closed

form since the minimization of E is an unconstrained quadratic program. However,

this closed form solution involves solving a linear system with number of variables

equal to the number of pixels times the number of classes. Since solving such a large

linear system could be computationally prohibitive, we use the iterative mean field

inference approach.

7.3.1 Gaussian Mean Field Inference

The standard mean field approach approximates the joint distribution P (y|X)

using a simpler distribution Q(y|X) which can be written as a product of inde-

pendent marginals, i.e, Q(y|X) =
∏

iQi(yi|X). This approximate distribution is

obtained by minimizing the KL-divergence between the distributions P and Q. In

the case of Gaussian, the mean field approximation Q and the original distribution

P have the same mean [171]. Hence, finding the MAP solution y is equivalent to

finding the mean µ of the distribution Q.

For the Gaussian distribution in (7.1), the mean field updates for computing

the mean µ are given by

µi ←
(
IK +

∑
j

Wij

)−1(
ri +

∑
j

Wijµj

)
. (7.2)

Here, µi is the mean of marginal Qi. Please refer to Appendix A for detailed

derivations. It is easy to see that if we use the standard alternating minimization

approach (in which we update one pixel at a time) to find the optimal y that
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minimizes the energy function in (7.1), we would end up with the same update

equation. Since the energy function is a convex quadratic in the case of Gaussian

CRF and update (7.2) solves each subproblem optimally, i.e., finds the optimal yi (or

µi) when all the other yj (or µj) are fixed, performing serial updates is guaranteed

to give us the MAP solution. However, it would be very slow since we are dealing

with a large number of variables.

While using parallel updates seems to be a reasonable alternative, convergence

of parallel updates is guaranteed only under certain constraints like diagonal domi-

nance of the precision matrix of the distribution P [171]. Imposing such constraints

could restrict the model capacity in practice. For example, in our Gaussian CRF

model (7.1), we can satisfy the diagonal dominance constraint by making all Wij

diagonal. However, this can be very restrictive, as making the non-diagonal entries

of Wij zero will remove the direct inter-class interactions between pixels i and j, i.e.,

there will not be any interaction term in the energy function between the variables

yip and yjq for p 6= q.

7.3.2 Bipartite Graph Structure for Parallel Updates

While we want to avoid the diagonal dominance constraint, we also want to

update as many variables as possible in parallel. To address this problem, we use a

bipartite graph structure, which allows us to update half of the variables in parallel

in each step, and still guarantees convergence without any constraints.

Note that our graphical model has a node for each pixel, and each node rep-
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Figure 7.2: Each pixel in our CRF is connected to every other pixel along both rows

and columns within a spatial neighborhood. Here, all the pixels that are connected

to the center black pixel are shown in red. If the black pixel is on odd column, all

the pixels connected to it will be on even columns and vice versa.

resents a vector of K variables. In order to update the ith node using (7.2), we

need to keep all the other nodes connected to the ith node (i.e., all the nodes with

non-zero Wij) fixed. If we partition the image into odd and even columns (or odd

and even rows) and avoid edges within the partitions, then we can optimally update

all the odd columns (or rows) in parallel using (7.2) while keeping the even columns

(or rows) fixed and vice versa. This is again nothing but an alternating minimiza-

tion approach in which each subproblem (corresponding to half of the nodes in

the graph) is optimally solved, and hence is guaranteed to converge to the global

optimum (since we are dealing with a convex problem).

Generally when using graphical models, each pixel is connected to all the

pixels within a spatial neighborhood. Here, instead of using all the neighbors, we

connect each pixel to every other neighbor along both rows and columns. Figure 7.2

illustrates this for a 7 × 7 spatial neighborhood. It is easy to see that with this

connectivity, we can partition the image into even and odd columns (or even and

odd rows) without any edges within the partitions.
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7.4 Gaussian CRF network

The proposed Gaussian CRF network consists of three components: Unary

network, Pairwise network and GMF network. While the unary and pairwise net-

works generate the ri and Wij that are respectively used in the unary and pairwise

terms of the energy function (7.1), the GMF network performs Gaussian mean field

inference using the outputs of unary and pairwise networks. Figure 7.1 gives an

overview of the proposed Gaussian CRF network.

Unary network: To generate the ri used in the unary term of the energy func-

tion (7.1), we use the DeepLab-MSc-LargeFov network of [2] (along with the softmax

layer), which is a modified version of the popular VGG-16 network [6]. Modifica-

tions compared to VGG-16 include converting the fully-connected layers into convo-

lutional layers, skipping downsampling after the last two pooling layers, modifying

the convolutional layers after the fourth pooling layer, and using the multi-scale

features. Please refer to [2] for further details. For brevity, we will refer to this

DeepLab-MSc-LargeFov network as DeepLab CNN in the rest of this chapter. We

will denote the parameters of this unary DeepLab network using θCNNu .

Pairwise network: Our pairwise network generates the matrices Wij that are

used in the pairwise term of the energy function (7.1). We compute each Wij as

Wij = sijC, C � 0, (7.3)
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where sij ∈ [0, 1] is a measure of similarity between pixels i and j, and the learned

matrix C encodes the class compatibility information. We compute the similarity

measure sij using

sij = e−(zi−zj)
>F(zi−zj), (7.4)

where zi is the feature vector extracted at ith pixel using a DeepLab CNN (with

parameters θCNNp ), and the learned matrix F � 0 defines a Mahalanobis distance

function. Note that the exponent of sij can be written as

(zi − zj)
>F(zi − zj) =

M∑
m=1

(f>mzi − f>mzj)
2, (7.5)

where F =
∑M

m=1 fmf>m. Hence, we implement the Mahalanobis distance computa-

tion as convolutions (of zi with filters fm) followed by an Euclidean distance com-

putation.

The overall pairwise network consists of a DeepLab CNN that generates the

pixel features zi, a similarity layer that computes sij for every pair of connected pix-

els using (7.4) and (7.5), and a matrix generation layer that computes the matrices

Wij using (7.3). Note that here {fm} are the parameters of the similarity layer and

C � 0 are the parameters of the matrix generation layer.

GMF network: The proposed GMF network performs a fixed number of Gaussian

mean field updates using the outputs of unary and pairwise networks. The input

to the network is initialized using the unary output, µ1 = r = {ri}. The network

consists of several sequential GMF layers, where each GMF layer has two sub-layers

(an even update layer followed by an odd update layer, See Figure 7.3):
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Figure 7.3: GMF Network. µte and µto are even and odd column nodes respectively

where t indexes the layers, µt = {µte, µto}. Network is initialized with unary network

output µ1 = r.

• Even update layer: This sublayer takes the output of previous layer as

input, and updates the even column nodes using (7.2) while keeping the odd

column nodes fixed.

• Odd update layer: This sublayer takes the output of even update layer as

input, and updates the odd column nodes using (7.2) while keeping the even

column nodes fixed.

As explained in the previous section, because of the bipartite graph structure,

the update performed by each of the above sublayers is an optimal update. Hence,

each layer of our GMF network is guaranteed to generate an output that is closer to

the MAP solution compared to its input (unless the input itself is the MAP solution,

in which case the output will be equal to the input).

Combining the unary, pairwise and GMF networks, we get the proposed Gaus-

sian CRF network, which can be trained in an end-to-end fashion. The parameters

of the network are the unary network parameters θu = θCNNu , and the pairwise net-

work parameters θp = {θCNNp , {fm},C � 0}. Note that since we use a fixed number
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of layers in our GMF network, the final output is not guaranteed to be the MAP

solution of our Gaussian CRF model. However, since we train the entire network

discriminatively in an end-to-end fashion, the unary and pairwise networks would

learn to generate appropriate ri and Wij such that the output after a fixed number

of mean field updates would be close to the desired output.

Note that the DeepLab network has three downsampling layers, and hence the

size of its output is 1/8 times the input image size. We apply our Gaussian CRF

model to this low resolution output and upsample the GMF network output to the

input image resolution by using bilinear interpolation.

Discrete label assignment: Note that the final output at each pixel is a K-

dimensional vector where K is the number of classes. Let y∗i = [y∗i1, . . . , y
∗
iK ] be

the final output at ith pixel. Then the predicted class label of ith pixel is given by

argmaxk y
∗
ik.

7.4.1 Training

We train the proposed Gaussian CRF network discriminatively by minimizing

the following loss function at each pixel

L (y∗i , li) = −min
(
0, y∗ili −maxk 6=li y

∗
ik − T

)
, (7.6)

where li is the true class label. This loss function basically encourages the output

associated with the true class to be greater than the output associated with all the

other classes by a margin T .
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We use standard backpropagation to compute the gradient of the network pa-

rameters. Here, we show how to backpropagate the loss derivatives through the

layers of the proposed network. Please refer to Appendix C for detailed derivations.

Backpropagating through the odd update layer: Given the derivatives dL/dµouti

of the loss function with respect to the output of an odd update layer, we can com-

pute the derivatives of L with respect to its inputs ri, Wij and µinj using

dL

dri
=


(IK +

∑
k Wik)

−1 dL
dµouti

if node i is in an odd column

0 elsewise,

dL

dWij

=

(
IK +

∑
k

Wik

)−1
dL

dµouti

(
µinj − µouti

)>
, for i in odd columns,

dL

dµinj
=


dL

dµoutj
+
∑

i

(
Wij (IK +

∑
k Wik)

−1 dL
dµouti

)
if node j is in an even column

0 elsewise.

(7.7)

Backpropagating through the similarity layer: Given the derivatives dL/dsij

of the loss function with respect to the output of the similarity layer, we can compute

the derivatives of L with respect to its input zi and parameters fm using

dL

dzi
= 2

(
M∑
m=1

fmf>m

)(∑
j

sij
dL

dsij
(zj − zi)

)
,

dL

dfm
= −2

(∑
ij

sij
dL

dsij
(zi − zj) (zi − zj)

>

)
fm.

(7.8)
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Backpropagating through the even update layer: Given the derivatives dL/dµouti

of the loss function with respect to the output of an even update layer, we can com-

pute the derivatives of L with respect to its inputs ri, Wij and µinj using

dL

dri
=


(IK +

∑
k Wik)

−1 dL
dµouti

if node i is in an even column

0 elsewise,

dL

dWij

=

(
IK +

∑
k

Wik

)−1
dL

dµouti

(
µinj − µouti

)>
, for i in even columns,

dL

dµinj
=


dL

dµoutj
+
∑

i

(
Wij (IK +

∑
k Wik)

−1 dL
dµouti

)
if node j is in an odd column

0 elsewise.

(7.9)

Backpropagating through the matrix generation layer: Given the derivatives

dL/dWij of the loss function with respect to the output of the matrix generation

layer, we can compute the derivatives of L with respect to its input sij and param-

eters C using

dL

dsij
= trace

((
dL

dWij

)>
C

)
,

dL

dC
=
∑
ij

sij
dL

dWij

. (7.10)

We skip the derivative formulas for CNNs since they are composed of standard

layers. Note that we have a constrained optimization problem here due to the

symmetry and positive semidefiniteness constraints on the parameter C. We convert

this constrained problem into an unconstrained one by parametrizing C as C =

RR>, where R is a lower triangular matrix.
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7.5 Experimental Evaluation

We evaluate the proposed deep network using the PASCALVOC 2012 segmen-

tation dataset [156], which consists of 20 object classes and one background class.

The original dataset consists of 1464, 1449 and 1456 training, validation and test

images, respectively. Similar to [2], we augment the training set with the additional

annotations provided by [193], resulting in a total of 10,582 training images.

Parameters: In our Gaussian CRF model, each node was connected to every other

node along both rows and columns (Figure 7.2) within a 23 × 23 spatial neighbor-

hood. Note that since our Gaussian CRF model is applied to the CNN output whose

resolution is 1/8 times the input resolution, the effective neighborhood size in the

input image is 184× 184. For our experiments, we used a five layer GMF network,

which performs five full-image updates in the forward pass. During training, we

used a value of 0.5 for the margin T used in our loss function. The number of filters

M used in the similarity layer was set to be equal to the number of classes.

7.5.1 Training

We used the open source Caffe framework [194] for our experiments. We initial-

ized both of our CNNs with the trained model provided by the authors of [2]. Note

that this model was finetuned using only the PASCALVOC segmentation data start-

ing from the ImageNet-trained VGG-16 model [6]. For training, we used stochastic

gradient descent with a weight decay of 5× 10−3 and a momentum of 0.9.
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Pretraining: Before training the full Gaussian CRF network, we pre-trained the

similarity layer and CNN of the pairwise network such that the output sij of the

similarity layer is high for a pair of pixels that have the same class label and low

for a pair of pixels that have different class labels. For pre-training, we used the

following loss function for each pair of connected pixels:

Lij = −1[li = lj]sij + 1[li 6= lj] min(0, sij − h), (7.11)

where li and lj are respectively the class labels of pixel i and j, and h is a threshold

parameter. This loss function encourages sij to be high for similar pairs and below a

threshold h for dissimilar pairs. The value of h was chosen as e−10. For training, we

used a mini-batch of 15 images and a starting learning rate of 10−3 for the similarity

layer parameters {fm} and 10−4 for the CNN parameters θCNNp . After training for

8000 iterations, we multiplied the learning rate of the similarity layer parameters by

0.1 and trained for additional 5000 iterations.

Finetuning: After the pre-training stage, we finetuned the entire Gaussian CRF

network using a mini-batch of 5 images and a starting learning rate of 10−2 for all

parameters except θCNNu , for which we used a small learning rate of 10−6. Since the

Unary DeepLab CNN was trained by [2] using PASCALVOC segmentation data,

it was already close to a good local minima. Hence, we finetuned it with a small

learning rate. After training for 6000 iterations, we multiplied the learning rate by

0.01 and trained for additional 25000 iterations.

131



Table 7.1: Comparison with various approaches on PASCALVOC 2012 test set

(when trained using ImageNet and PASCALVOC data).

Method bkg areo bike bird boat bottle bus car cat

MSRA-CFM [174] 87.7 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3

FCN-8s [31] 91.2 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6

Hypercolumns [160] 89.3 68.7 33.5 69.8 51.3 70.2 81.1 71.9 74.9

DeepLab CNN [2] 91.6 78.7 51.5 75.8 59.5 61.9 82.5 76.6 79.4

ZoomOut [161] 91.1 85.6 37.3 83.2 62.5 66.0 85.1 80.7 84.9

Deep message passing [179] 93.9 90.1 38.6 77.8 61.3 74.3 89.0 83.4 83.3

Approaches that use CNNs and CRFs

DeconvNet + CRF [177] 92.9 87.8 41.9 80.6 63.9 67.3 88.1 78.4 81.3

object clique potentials [165] 92.8 80.0 53.8 80.8 62.5 64.7 87.0 78.5 83.0

DeepLab CNN-CRF [2] 93.3 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4

CRF-RNN [152] 94.0 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4

DeconvNet + FCN + CRF [177] 93.1 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1

Proposed Gaussian CRF network 93.4 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3

chair cow table dog horse mbk person plant sheep sofa train tv mean

30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8

21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

23.9 60.6 46.9 72.1 68.3 74.5 72.9 52.6 64.4 45.4 64.9 57.4 62.6

26.9 67.7 54.7 74.3 70.0 79.8 77.3 52.6 75.2 46.6 66.9 57.3 67.0

27.2 73.2 57.5 78.1 79.2 81.1 77.1 53.6 74.0 49.2 71.7 63.3 69.6

36.2 80.2 56.4 81.2 81.4 83.1 82.9 59.2 83.4 54.3 80.6 70.8 73.4

Approaches that use CNNs and CRFs

25.9 73.7 61.2 72.0 77.0 79.9 78.7 59.5 78.3 55.0 75.2 61.5 70.5

29.0 82.0 60.3 76.3 78.4 83.0 79.8 57.0 80.0 53.1 70.1 63.1 71.2

30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2
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7.5.2 Results

For quantitative evaluation, we use the standard mean intersection-over-union

measure (averaged across the 21 classes). Table 7.1 compares the proposed Gaussian

CRF network with state-of-the-art semantic segmentation approaches on the chal-

lenging PASCALVOC 2012 test set. We can infer the following from these results:

• The proposed Gaussian CRF network performs significantly (6.2 points) better

than the DeepLab CNN, which was used for initializing the unary network.

This shows that Gaussian CRFs can be successfully used for discrete labeling

problems even though they are continuous models.

• The proposed approach outperforms several recent approaches that use dis-

crete CRF models with CNNs. This shows that, despite being a continuous

model, the Gaussian CRF model can be a strong competitor to discrete CRFs

in discrete labeling tasks.

Figure 7.4 provides a visual comparison of the proposed approach with DeepLab

CNN (which is same as our unary network) and DeepLab CNN + discrete CRF. As

we can see, the proposed Gaussian CRF model is able to correct the errors made by

the unary network, and also produces more accurate segmentation maps compared

to the discrete CRF-based DeepLab approach.

Computation time: The proposed Gaussian CRF network takes around 0.6 sec-

onds to segment a 505× 505 image on an NVIDIA TITAN GPU.
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Figure 7.4: Comparison of the proposed approach with DeepLab CNN [2] and

DeepLab CNN + discrete CRF [2].
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7.6 Conclusions

In this chapter, we proposed a Gaussian CRF model for the discrete labeling

task of semantic segmentation. We proposed a novel deep network for Gaussian

CRF inference, which we refer to as GMF network, by unfolding a fixed number of

Gaussian mean field inference steps. By combining this GMF network with CNNs,

we proposed an end-to-end trainable Gaussian CRF network. When trained discrim-

inatively, the proposed Gaussian CRF network outperformed various recent discrete

CRF-based semantic segmentation approaches on the challenging PASCALVOC

2012 segmentation dataset. Our results suggest that, despite being a continuous

model, Gaussian CRF can be successfully used for discrete labeling tasks.
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Chapter 8: Conclusions and Directions for Future Work

8.1 Summary

In this dissertation, we focused on two important factors that are critical in

the design of computer vision algorithms, namely representation and context mod-

eling, and made novel contributions by proposing new 3D geometry-based repre-

sentations for recognizing human actions from skeletal sequences, and introducing

Gaussian conditional random field model-based deep network architectures that ex-

plicitly model the spatial context by considering the interactions among the output

variables. In addition, we also proposed a kernel learning-based framework for the

classification of manifold features such as linear subspaces and covariance matrices.

In the first part of this dissertation, we introduced a family of body part-based

3D skeletal representations for human action recognition, which we refer to as R3DG

features. The proposed representations explicitly model the relative 3D geometry

between various body parts using rigid body transformations. We represented 3D

rigid body transformations using SE(3), SO(3) ⊗ R3, UQ ⊗ R3, and UD, result-

ing in four different R3DG features. We also introduced two scale-invariant R3DG

features by using only the 3D rotations between various body parts. Using the pro-

posed representations, we modeled the human actions as curves in R3DG feature
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spaces. Finally, we performed action recognition by classifying these curves using

a combination of DTW, FTP representation and SVM classifier. We experimen-

tally showed that the proposed R3DG features perform better than various existing

skeletal representations, and the proposed action recognition approach outperforms

various existing skeleton-based action recognition approaches.

In the second part of this dissertation, we used rolling maps for flattening

SO(3) to perform human action recognition from 3D skeletal data. We represented

each human skeleton as a point in the Lie group SO(3)⊗ . . .⊗SO(3) using the rela-

tive 3D rotations between all pairs of body parts. Using this skeletal representation,

we represented human actions as curves in SO(3)⊗. . .⊗SO(3). For each action cate-

gory, we computed a nominal curve and warped all the action curves to this nominal

using DTW. Then, we rolled SO(3) ⊗ . . . ⊗ SO(3) over its Lie algebra along the

nominal curves and unwrapped all the action curves onto the Lie algebra. Finally,

we represented the unwrapped curves using either the concatenated representation

or the FTP representation and classified them using a one-vs-all linear SVM classi-

fier. We experimentally showed that flattening SO(3) by unwrapping while rolling

performs better than flattening SO(3) by using logarithm map at a single point. In

this part of the dissertation, we also showed how to compute a piecewise smooth

rolling map such that the corresponding rolling curve passes through a given set of

points in SO(3) at given instances of time.

In the third part of this dissertation, we introduced a general extrinsic frame-

work for the classification of manifold features using kernel learning approach. We

proposed two criteria for learning a good kernel-classifier combination for manifold
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features. In the case of SVM classifier, based on the proposed criteria, we formulated

the problem of learning a good kernel-classifier combination as a convex optimization

problem, and solved it efficiently following the multiple kernel learning approach.

We evaluated the proposed approach for the image set-based classification task us-

ing linear subspaces and covariance features, and obtained superior performance

compared to other relevant approaches.

In the fourth part of this dissertation, we proposed a new end-to-end trainable

deep network architecture for image denoising based on a Gaussian CRF model.

The proposed network consists of a parameter generation network that generates

appropriate potential function parameters based on the input image, and an infer-

ence network that performs approximate Gaussian CRF inference. Unlike existing

discriminative denoising approaches that train a separate model for each noise level,

the proposed network can handle a range of noise levels as it explicitly models the

input noise variance. We achieved results on par with the state-of-the-art by train-

ing two deep Gaussian CRF networks, one for low input noise levels and one for

high input noise levels.

In the last part of this dissertation, we proposed to use a Gaussian CRF model

for the discrete labeling task of semantic segmentation. We proposed a novel deep

network for Gaussian CRF inference, which we refer to as GMF network, by unfold-

ing a fixed number of Gaussian mean field inference steps. By combining this GMF

network with CNNs, we proposed an end-to-end trainable Gaussian CRF network

for semantic segmentation. When trained discriminatively, the proposed Gaussian

CRF network outperformed various recent discrete CRF-based semantic segmenta-
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tion approaches on the challenging PASCALVOC 2012 segmentation dataset. Our

results suggest that, despite being a continuous model, Gaussian CRF can be suc-

cessfully used for discrete labeling tasks.

8.2 Directions for Future Work

In Chapter 3, we used the relative 3D geometry between all pairs of body

parts in the skeletal representation. However, each action is usually characterized

by the interactions of a specific set of body parts. Hence, using feature selection

approaches such as multiple kernel learning to automatically identify the set of body

parts that differentiates a given action from the rest could further improve the action

recognition performance.

In Chapter 4, we used the concept of rolling maps for mapping temporal

sequences from the Lie group SO(3) to its Lie algebra. Though we focused on

SO(3) in this dissertation, the rolling map is a general concept that can be used

with any Riemannian manifold. So, the proposed approach can also be used for

the classification of time series data on other manifolds like Grassmann manifold

and the manifold of SPD matrices. While we focused only on actions performed

by a single person in this dissertation, the proposed representations and action

recognition approaches can also be used for classifying multi-person interactions.

In Chapter 5, we focused on the SVM classifier and formulated the problem of

learning a good kernel-classifier combination as a convex optimization problem. The

proposed framework can also be extended to discriminant analysis as kernel learning
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can be formulated as a convex optimization problem in the case of Fisher discrimi-

nant analysis [195,196]. Another possible direction of future work is to explore more

sophisticated regularizers that can make use of the underlying manifold structure

instead of the simple distance-preserving constraints used in this dissertation.

In Chapter 6, we proposed a Gaussian CRF-based deep network architecture

for image denoising. Although we focused on image denoising in this dissertation,

the proposed network design strategy can also be used for other full-image inference

tasks like super-resolution, depth estimation, etc. We used half quadratic splitting

and Gaussian mean field based inference approaches to design our inference networks

in Chapters 6 and 7, respectively. Instead, one can also consider other inference

approaches such as belief propagation.
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Appendix A: Gaussian Mean Field Inference

In this appendix, we derive the Gaussian mean field inference update equation

for the Gaussian CRF model presented in Section 7.3. We modeled the conditional

probability density P (y|X) as a Gaussian distribution given by

P (y|X) ∝ exp

{
−1

2
E(y|X)

}
, where

E (y|X) =
∑
i

‖yi − ri‖2
2 +

∑
ij

(yi − yj)
>Wij (yi − yj)

=
∑
i

y>i

(
IK +

∑
j

Wij

)
yi − 2

∑
i

r>i yi +
∑
i

r>i ri − 2
∑
ij

y>i Wijyj.

(A.1)

The standard mean field approach approximates the joint Gaussian distribu-

tion P (y|X) using a simpler Gaussian distribution Q(y|X) which can be written

as a product of independent marginals, i.e, Q(y|X) =
∏

iQi(yi|X), where Q(yi|X)

is a Gaussian distribution with mean µi ∈ RK and covariance Σi ∈ RK×K . The

parameters {µi,Σi} of Q are obtained by minimizing the KL-divergence between

the distributions Q and P .

KL(Q||P ) =

∫
Q(y|X) log [Q(y|X)]−

∫
Q(y|X) log [P (y|X)]

=
∑
i

∫
Qi(yi|X) log [Qi(yi|X)]−

∫
Q(y|X) log [P (y|X)]

= −
∑
i

1

2
log
[
(2πe)K |Σi|

]
−
∫
Q(y|X) log [P (y|X)] .

(A.2)
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{µ∗i ,Σ∗i } = argmin
{µi,Σi}

KL(Q||P )

= argmin
{µi,Σi}

−
∑
i

1

2
log
[
(2πe)K |Σi|

]
−
∫
Q(y|X) log [P (y|X)]

= argmin
{µi,Σi}

−
∑
i

log [|Σi|] +
∑
i

∫
Q(y|X) y>i

(
IK +

∑
j

Wij

)
yi

− 2
∑
i

∫
Q(y|X) r>i yi − 2

∑
ij

∫
Q(y|X) y>i Wijyj

= argmin
{µi,Σi}

−
∑
i

log [|Σi|] +
∑
i

E

[
y>i

(
IK +

∑
j

Wij

)
yi

]

− 2
∑
i

E
[
r>i yi

]
− 2

∑
ij

E
[
y>i Wijyj

]
= argmin
{µi,Σi}

−
∑
i

log [|Σi|] +
∑
i

E

[
trace

(
yiy

>
i

(
IK +

∑
j

Wij

))]

− 2
∑
i

E
[
r>i yi

]
− 2

∑
ij

E
[
trace

(
yjy

>
i Wij

)]
= argmin
{µi,Σi}

−
∑
i

log [|Σi|] +
∑
i

trace

(
E
[
yiy

>
i

](
IK +

∑
j

Wij

))

− 2
∑
i

E
[
r>i yi

]
− 2

∑
ij

trace
(
E
[
yjy

>
i

]
Wij

)
= argmin
{µi,Σi}

−
∑
i

log [|Σi|] +
∑
i

trace

((
Σi + µiµ

>
i

)(
IK +

∑
j

Wij

))

− 2
∑
i

r>i µi − 2
∑
ij

trace
(
µjµ

>
i Wij

)
(A.3)

Note that in the last step, we have used the fact that yi and yj are independent

under the distribution Q. From (A.3) we have,

Σ∗i = argmin
Σi

trace

(
Σi

(
IK +

∑
j

Wij

))
− log [|Σi|] (A.4)

Note that (A.4) is a convex problem. Differentiating the cost function and setting
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the gradient to zero, we get Σ∗i =
(
IK +

∑
j Wij

)−1

. From (A.3) we have,

µ∗i = argmin
µi

trace

(
µiµ

>
i

(
IK +

∑
j

Wij

))
− 2r>i µi − 2

∑
j

trace
(
µ∗jµ

>
i Wij

)
= argmin

µi

µ>i

(
IK +

∑
j

Wij

)
µi − 2r>i µi − 2µ>i

(∑
j

Wijµ
∗
j

)
(A.5)

Note that (A.5) is a convex problem. Differentiating the cost function and setting

the gradient to zero, we get

µ∗i =

(
IK +

∑
j

Wij

)−1(
ri +

∑
j

wijµ
∗
j

)
. (A.6)

Hence, for the Gaussian distribution in (A.1), the mean field update for computing

the means {µi} is given by

µi ←
(
IK +

∑
j

Wij

)−1(
ri +

∑
j

Wijµj

)
. (A.7)
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Appendix B: Deep Gaussian CRF Network for Image Denoising -

Backpropagation

In this appendix, we derive the formulas used for backpropagating the loss

derivatives through the layers of the deep Gaussian CRF network presented in Sec-

tion 6.4. Let L be the final loss function.

B.1 Backpropagation - Combination Layer

Forward step:

Σij =
∑
k

γkijΨk. (B.1)

Backward step:

dL

dγkij
=
∑
pq

dL

dΣij(p, q)

dΣij(p, q)

dγkij

=
∑
pq

dL

dΣij(p, q)
Ψk(p, q) = trace

(
Ψ>k

dL

dΣij

)
.

(B.2)

dL

dΨk(p, q)
=
∑
ij

dL

dΣij(p, q)

dΣij(p, q)

dΨk(p, q)

=
∑
ij

dL

dΣij(p, q)
γkij =⇒ dL

dΨk

=
∑
ij

γkij
dL

dΣij

.

(B.3)
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B.2 Backpropagation - Quadratic Layer

Forward step:

skij = −1

2
x̄>ij
(
Wk + σ2Id2

)−1
x̄ij + bk. (B.4)

Backward step:

dL

dbk
=
∑
ij

dL

dskij

dskij
dbk

=
∑
ij

dL

dskij
. (B.5)

dL

dx̄ij
=
∑
k

dL

dskij

dskij
dx̄ij

= −
∑
k

dL

dskij

(
Wk + σ2Id2

)−1
x̄ij. (B.6)

dL

dWk(p, q)
=
∑
ij

dL

dskij

dskij
dWk(p, q)

= −1

2

∑
ij

dL

dskij
x̄>ij

d(Wk + σ2Id2)
−1

dWk(p, q)
x̄ij

=
1

2

∑
ij

dL

dskij
x̄>ij (Wk + σ2Id2)

−1 d(Wk + σ2Id2)

dWk(p, q)
(Wk + σ2Id2)

−1 x̄ij

=
1

2

∑
ij

dL

dskij

[
(Wk + σ2Id2)

−1 x̄ij x̄>ij (Wk + σ2Id2)
−1
]

(p, q).

(B.7)

From (B.7), we have

dL

dWk

=
1

2

∑
ij

dL

dskij

[
(Wk + σ2Id2)

−1 x̄ij x̄>ij (Wk + σ2Id2)
−1
]

= (Wk + σ2Id2)
−1

(∑
ij

dL

dskij

x̄ij x̄>ij
2

)
(Wk + σ2Id2)

−1.

(B.8)
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B.3 Backpropagation - Patch Inference Layer

Forward step:

zij =
(
Id2 −G>

(
βΣij + GG>

)−1
G
)

yij. (B.9)

Backward step:

Let Aij = Id2 −G>
(
βΣij + GG>

)−1
G. Let Ipq be a matrix with (p, q) element as

one and all other elements as zero. Note that the matrix G = Id2 − 1
d2

1 satisfies

GG> = G.

zij = Aijyij =⇒ dL

dyij
= A>ij

dL

dzij

=
(
Id2 −G>

(
βΣij + GG>

)−1
G
) dL

dzij

=
(
Id2 −G>

(
βΣij + G

)−1
G
) dL

dzij
.

(B.10)

zij = Aijyij =⇒ dL

dAij

=
dL

dzij
y>ij. (B.11)

dL

dΣij(p, q)
=
∑
r,s

dL

dAij(r, s)

dAij(r, s)

dΣij(p, q)
= trace

((
dL

dAij

)>
dAij

dΣij(p, q)

)
. (B.12)

dAij

dΣij(p, q)
= −G>

d
(
βΣij + GG>

)−1

dΣij(p, q)
G

= G>
(
βΣij + GG>

)−1 d
(
βΣij + GG>

)
dΣij(p, q)

(
βΣij + GG>

)−1
G

= G>
(
βΣij + GG>

)−1
(βIpq)

(
βΣij + GG>

)−1
G.

(B.13)
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From (B.12) and (B.13), we have

dL

dΣij(p, q)
= trace

((
dL

dAij

)> (
G>

(
βΣij + GG>

)−1
(βIpq)

(
βΣij + GG>

)−1
G
))

= trace

((
βΣij + GG>

)−1
G

(
dL

dAij

)>
G>

(
βΣij + GG>

)−1
(βIpq)

)
.

(B.14)

From (B.11) and (B.14), we have

dL

dΣij

= β

((
βΣij + GG>

)−1
G

(
dL

dAij

)>
G>

(
βΣij + GG>

)−1

)>

= β
(
βΣij + GG>

)−1
G

(
dL

dAij

)
G>

(
βΣij + GG>

)−1

= β (βΣij + G)−1 G
dL

dzij
y>ij G> (βΣij + G)−1 .

(B.15)
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Appendix C: Gaussian CRF Network for Semantic Segmentation -

Backpropagation

In this appendix, we derive the formulas used for backpropagating the loss

derivatives through the layers of the Gaussian CRF network presented in Section 7.4.

Let L be the final loss function.

C.1 Backpropagation - Matrix Generation Layer

Forward step:

Wij = sijC. (C.1)

Backward step:

dL

dsij
=
∑
pq

dL

dWij(p, q)

dWij(p, q)

dsij

=
∑
pq

dL

dWij(p, q)
C(p, q) = trace

((
dL

dWij

)>
C

)
.

(C.2)

dL

dC(p, q)
=
∑
ij

dL

dWij(p, q)

dWij(p, q)

dC(p, q)

=
∑
ij

dL

dWij(p, q)
sij =⇒ dL

dC
=
∑
ij

sij
dL

dWij

.

(C.3)
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C.2 Backpropagation - Similarity Layer

Forward step:

sij = e−
∑M
m=1(f>mzi−f>mzj)

2

. (C.4)

Backward step:

dL

dzi
=
∑
j

dL

dsij

dsij
dzi

=
∑
j

dL

dsij

(
−2sij

M∑
m=1

d
(
f>mzi

)
dzi

(
f>mzi − f>mzj

))

=
∑
j

2sij
dL

dsij

M∑
m=1

fmf>m (zj − zi)

= 2

(
M∑
m=1

fmf>m

)(∑
j

sij
dL

dsij
(zj − zi)

)
.

(C.5)

dL

dfm
=
∑
ij

dL

dsij

dsij
dfm

=
∑
ij

dL

dsij

(
−2sij

d
(
f>m (zi − zj)

)
dfm

(zi − zj)
> fm

)

=
∑
ij

dL

dsij

(
−2sij (zi − zj) (zi − zj)

> fm

)
= −2

(∑
ij

sij
dL

dsij
(zi − zj) (zi − zj)

>

)
fm.

(C.6)

C.3 Backpropagation - Odd Update Layer

Forward step:

µouti =


A
(
ri +

∑
j Wijµ

in
j

)
if node i is in an odd column

µini elsewise,

(C.7)

where A = (IK +
∑

k Wik)
−1 .
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Backward step:

If node i is in an even column, then ri does not play a role in the forward step and

hence dL/dri = 0. If node i is in an odd column, then

dL

dri
=
∑
p

dL

dµouti (p)

dµouti (p)

dri
=
∑
p

dL

dµouti (p)

d (A(p, :)ri)

dri

=
∑
p

dL

dµouti (p)
A>(:, p)

= A>
dL

dµouti

=

(
IK +

∑
k

Wik

)−1
dL

dµouti

.

(C.8)

If node j is in an odd column, then µinj does not play a role in the forward step and

hence dL/dµinj = 0. If node j is in an even column, then

dL

dµinj
=

dL

dµoutj

+
∑
i

∑
p

dL

dµouti (p)

dµouti (p)

dµinj

=
dL

dµoutj

+
∑
i

∑
p

dL

dµouti (p)

d
(
(AWij) (p, :)µinj

)
dµinj

=
dL

dµoutj

+
∑
i

∑
p

dL

dµouti (p)
(AWij)

> (:, p)

=
dL

dµoutj

+
∑
i

WijA
dL

dµouti

=
dL

dµoutj

+
∑
i

Wij

(
IK +

∑
k

Wik

)−1
dL

dµouti

.

(C.9)
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Let Ipq be a matrix with (p, q) element as one and all other elements as zero. For i

in odd columns,

dL

dWij(p, q)
=

(
dL

dµouti

)>
dµouti

dWij(p, q)

=

(
dL

dµouti

)> d(A
(
ri +

∑
j Wijµ

in
j

))
dWij(p, q)

=

(
dL

dµouti

)>(
−A

dA−1

dWij(p, q)
A

(
ri +

∑
j

Wijµ
in
j

)
+ A

dWij

dWij(p, q)
µinj

)

=

(
dL

dµouti

)> (
−AIpqµouti + AIpqµinj

)
= trace

(
dL

dµouti

(
AIpq

(
µinj − µouti

))>)

= trace

(
dL

dµouti

(
µinj − µouti

)> IqpA>)

= trace

(
A>

dL

dµouti

(
µinj − µouti

)> Iqp)

=

[
A>

dL

dµouti

(
µinj − µouti

)>]
(p, q)

=⇒ dL

dWij

= A>
dL

dµouti

(
µinj − µouti

)>
=

(
IK +

∑
k

Wik

)−1
dL

dµouti

(
µinj − µouti

)>
.

(C.10)
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[190] Philipp Krähenbühl and Vladlen Koltun. Parameter learning and convergent
inference for dense random fields. In International Conference on Machine
Learning, 2013.

[191] Veselin Stoyanov, Alexander Ropson, and Jason Eisner. Empirical risk mini-
mization of graphical model parameters given approximate inference, decod-
ing, and model structure. In International Conference on Artificial Intelligence
and Statistics, 2011.

[192] Marshall F. Tappen, Kegan G. G. Samuel, Craig V. Dean, and David M.
Lyle. The logistic random field - A convenient graphical model for learning
parameters for MRF-based labeling. In IEEE Conference on Computer Vision
and Pattern Recognition, 2008.

[193] Bharath Hariharan, Pablo Arbelaez, Lubomir D. Bourdev, Subhransu Maji,
and Jitendra Malik. Semantic contours from inverse detectors. In IEEE In-
ternational Conference on Computer Vision, 2011.

[194] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. CoRR, abs/1408.5093, 2014.

167



[195] Jieping Ye, Shuiwang Ji, and Jianhui Chen. Multi-class discriminant kernel
learning via convex programming. Journal of Machine Learning Research,
9:719–758, 2008.

[196] Raviteja Vemulapalli, Vinay Praneeth Boda, and Rama Chellappa. MKL-
RT: Multiple kernel learning for ratio-trace problems via convex optimization.
CoRR, abs/1410.4470, 2014.

168


	List of Tables
	List of Figures
	List of Abbreviations
	List of Notations
	Introduction
	Motivation
	Proposed Algorithms and their Contributions
	Organization

	Lie groups, Quaternions and Dual Quaternions
	Lie Groups
	Special Orthogonal Group SO(3)
	Special Euclidean Group SE(3)

	Quaternions
	Dual Quaternions

	Relative 3D Geometry-based Skeletal Representations for Human Action Recognition
	Introduction
	Related Work
	Joint-based Approaches
	Part-based Approaches

	Relative 3D Geometry-based Skeletal Representations
	R3DG Features
	Scale-invariant R3DG Features

	Temporal Modeling and Classification
	Experimental Evaluation
	Conclusions

	Rolling the Special Orthogonal Group for Skeleton-based Human Action Recognition
	Introduction
	Relevant Background
	Group SO(3)2R9
	Rolling Motion

	Rolling Special Orthogonal Group
	Rolling along a Non-geodesic Curve
	Unwrapping while Rolling
	Advantage of Unwrapping while Rolling

	Proposed Action Recognition Approach
	Experimental Evaluation
	Conclusions

	Kernel Learning for Extrinsic Classification of Manifold Features
	Introduction
	Related Work
	Relevant Background
	Linear Subspaces - Grassmann Manifold
	Covariance Features - SPD Manifold

	Extrinsic Support Vector Machines
	Extrinsic SVM using MKL Framework

	Experimental Evaluation
	Recognition using Image Sets
	Datasets and Feature Extraction
	Comparative Methods and Evaluation Settings
	Base Kernels and Parameters
	Results

	Conclusions

	Deep Gaussian Conditional Random Field Network for Image Denoising
	Introduction
	Related Work
	Gaussian Conditional Random Field Model
	Patch-based Pairwise Potential Functions
	Inference

	Deep Gaussian CRF network
	Parameter Generation Network
	Inference Network
	Gaussian CRF Network
	Training

	Experimental Evaluation
	Conclusions

	Gaussian Conditional Random Field Network for Semantic Segmentation
	Introduction
	Related Work
	Gaussian Conditional Random Field Model
	Gaussian Mean Field Inference
	Bipartite Graph Structure for Parallel Updates

	Gaussian CRF network
	Training

	Experimental Evaluation
	Training
	Results

	Conclusions

	Conclusions and Directions for Future Work
	Summary
	Directions for Future Work

	Gaussian Mean Field Inference
	Deep Gaussian CRF Network for Image Denoising - Backpropagation
	Backpropagation - Combination Layer
	Backpropagation - Quadratic Layer
	Backpropagation - Patch Inference Layer

	Gaussian CRF Network for Semantic Segmentation - Backpropagation
	Backpropagation - Matrix Generation Layer
	Backpropagation - Similarity Layer
	Backpropagation - Odd Update Layer

	Bibliography

