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ABSTRACT
Transport of Heat and Momentum In Non-Equilibrium Wall-Bounded

Flows

by
Alireza Ebadi

University of New Hampshire, December, 2016

Transport of momentum and heat in non-equilibrium wall-bounded flows is studied analyt-

ically and experimentally to better understand the underlying physics, transition dynamics, and

appropriate flow scaling in non-equilibrium flows. Non-equilibrium flows, in which the mean flow

time scales are comparable to turbulent flow time scales, do not exhibit universal behaviors and

cannot be characterized only in terms of local parameters. Pressure gradients, fast transients and

complex geometries are among the sources that can perturb a flow from an equilibrium state to a

non-equilibrium state. Since all or some of these perturbation sources are present in many engi-

neering application relevant flow systems and geophysical flows, understanding and predicting the

non-equilibrium flow dynamics is essential to reliably analyze and control such flows.

Reynolds-averaged Navier-Stokes (RANS) simulations are extensively used to model and pre-

dict fluid transport across a wide range of disciplines. The shortcoming is that most turbulence

models used in RANS simulations use almost exclusively wall-models based on equilibrium bound-

ary layer behaviors, despite the fact that many basic assumptions required of equilibrium boundary

layers are not satisfied in the majority of the flow systems in which RANS simulations are used.

In particular, pressure gradients, dynamic walls, roughness, and large-scale flow obstacles produce

boundary layers that are strongly non-equilibrium in nature. Often the prediction of RANS simula-

tions in complex engineering systems (with perturbations that induce non-equilibrium flow behav-

iors) fail spectacularly primarily owing to the fact that the turbulence models do not incorporate the

correct physics to accurately capture the transport behaviors in non-equilibrium boundary layers.

These failures result in over-engineered and hence, less efficient designs. This lack of efficiency

manifests in higher economic and environmental costs. The broad objective of this dissertation
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work is to develop analytical and experimental tools needed to better understand the underlying

transport physics in non-equilibrium boundary layers.

The key scaling parameter in wall-bounded flows is the wall flux of momentum and heat. It

follows that an accurate determination of the wall fluxes is essential to study the dynamics of

non-equilibrium wall-bounded flows. As part of this dissertation research, an integral method to

evaluate wall heat flux suitable for experimental data is developed. The method is exact and does

not require any streamwise gradient measurements. The integral method is validated using simu-

lation and experimental data. Complications owing to experimental limitations and measurement

error in determining wall heat flux from the method are presented, and mitigating strategies are

described. In addition to the ability to evaluate the wall heat flux, the method provides a means to

connect transport properties at the wall to the mean flow dynamics.

The integral method is further developed to formulate a novel and robust validation technique

of Reynolds-averaged Navier-Stokes (RANS) turbulence models. Validation of the turbulence

models employed in RANS simulations is a critical part of model development and application.

The integral based validation technique is used to evaluate the performance of two low-Reynolds-

number and two high-Reynolds number RANS turbulence models of reciprocating channel flow,

and results are compared to the so-called standard validation technique. While the standard valida-

tion technique indicates that the low-Reynolds-number models predict the wall heat flux well, the

integral validation technique shows that the models do not accurately capture the correct physics

of thermal transport in reciprocating channel flow. Moreover, it shows that the correct prediction

of the wall heat flux by the models is owed to the serendipitous cancellation of model errors.

One of the identified failures of the RANS simulations of reciprocating channel flow is the

inability to accurately predict the flow dynamics during the laminar-turbulence transition. The

development of improved RANS turbulence models, therefore requires an improved understanding

of the underlying laminar-turbulent transition mechanisms. As part of this dissertation work, the

balance of the leading order terms in the phase-averaged mean momentum equation are used to

study the transition mechanism in a reciprocating channel flow. It is concluded that the emergence

of an internal layer in the late acceleration phase of the cycle triggers the flow to transition from

a self-sustaining transitional regime to an intermittently turbulent regime. In the absence of this

internal layer, the flow remains transitional throughout the cycle.
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Lastly, since experimental studies of heat transfer in non-equilibrium wall-bounded flows are

very limited, a unique experimental facility was developed to study non-equilibrium boundary lay-

ers with heat transfer. The facility consists of boundary layer wind tunnel that nominally measures

303mm × 135mm cross-section and 2.7m in length. A freestream heater and a thermal wall-

plate are used to maintain the desired outer and inner thermal boundary conditions, respectively.

A rotor-stator assembly is fabricated to generate a periodic pressure gradient used to produce pul-

satile boundary layer flow. The facility is first validated for equilibrium flow conditions, and then

used to study the transport of momentum in a pulsatile boundary layer (PBL). The results show that

although the PBL flow at each phase departs from equilibrium, the time-average profiles, except

for the streamwise turbulent intensity u′2, appears similar to steady-state, zero-pressure-gradient

boundary layer flow. Using u′2 as a metric for departure of the time mean flow from equilibrium,

a critical frequency range 0.014 < ω+
c < 0.020 was identified, where ω+ = ω

u2
τ/ν

, ω is the angular

frequency of the pressure gradient modulation, uτ is the friction velocity and ν is the fluid viscos-

ity. For ω+ > ω+
c , u′2 does not exhibit significant difference from ZPG boundary layer flow. For

ω+ < ω+
c , however, u′2 has a higher value compared to ZPG boundary layer flow where magnitude

of the differences is inversely proportional to flow frequency. The wall shear stress modulation is

investigated to study the perturbation field in PBL. The perturbation wall shear stress of the two

lower frequency cases is in phase with the freestream and the amplitude of modulation matches the

Stokes’ boundary layer solution. For the highest frequency case, however, the perturbation wall

shear stress leads the freestream and the amplitude of modulation is slightly larger than the Stokes’

boundary layer solution. It is, therefore, concluded that the perturbation flow of the highest fre-

quency case is non-equilibrium and eddy-viscosity model (EVM) simulation models fail to predict

the perturbation field accurately.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The transport of mass, momentum, and heat in turbulent boundary layers play critical role in the

performance, efficiency, and life-cycle of many engineered systems, and control or contribute to

the dynamics of many geophysical flows (Borman and Nishiwaki, 1987; Ristorcelli and Lumley,

1992). The need to reliably analyze, predict, and control boundary layer transport is therefore criti-

cally important across a broad spectrum of applications and scientific disciplines. In these pursuits,

computational fluid dynamics (CFD) simulations are widely employed. The ideal approach is to

employ direct numerical simulation (DNS) to numerically solve the governing equations, yielding

the full temporal and spatial evolution of a given flow field at all relevant time and length scales.

The limitation, however, is that DNS of full-scale engineering systems (e.g., a jet engine) or geo-

physical flows (e.g., atmospheric transport) is not possible even with the current processing power

of supercomputers.

The only rational approach to circumvent the limitations of DNS is to model (simulate with

some empirical assumptions) the system to reduce the complexity. The traditional CFD approach

employs a Reynolds-Averaged Navier-Stokes (RANS) formulation to describe the evolution of the

mean fields. Here a mean/fluctuation decomposition is used to decompose the governing equations

into the so-called RANS equations. This procedure leads to the well-known closure problem:

the averaged equations for the mean fields contain unknown correlations of the fluctuation fields.

To close the system of equations, ad hoc or phenomenological closure models of the unknown

fluctuating field correlations are invoked. Furthermore, in turbulent boundary layer simulations

most CFD codes utilize wall functions, which assume the form for the solution of the velocity
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and temperature fields in the near-wall region to reduce the number of computational grid points

near a wall. It follows that the potential for CFD simulations to accurately predict boundary layer

transport clearly depends on the specifics of the closure model and wall functions used.

In general, the development of turbulent closure models and wall functions are directed, refined,

and validated by experimental data. One limitation of this approach is the relatively small number

of experimental datasets acquired in complex flows typical of engineered systems. Consequently,

turbulence closure models and wall functions are generally based on data from canonical flows,

such as steady two-dimensional developing boundary layers, channel flow, or pipe flow. Such

flows are considered to be in statistical equilibrium, in that the time scales over which the mean

field vary are large compared to local turbulent time scales. In turn, the turbulent field rapidly

adjusts to mean field variations, and the flow exhibits universal behaviors when scaled by local

parameters (Townsend, 1976; Davidson, 2004).

One very important universal behavior is the logarithmic dependence of the mean velocity

profile in the so-called logarithmic region

U+ =
1

κ
log(y+) + C1, (1.1)

where the superscript + denotes normalization by the friction velocity uτ =
√
τw/ρ and kinematic

viscosity ν, where τw is the shear stress at the wall and ρ the fluid density; 1/κ (typically κ is

called the von Kármán coefficient) is the slope; y+ is the wall-normal coordinate; and C1 is the

intercept at y+ = 1. Equation 1.1 is referred to as the law of the wall with constants (at sufficiently

high Reynolds number) κ ≈ 0.4 and C1 ≈ 5, varying for a given canonical flow type (Nagib

and Chauhan, 2008). For the distribution of temperature in the boundary layer, using similar

dimensional scaling arguments used to derive Eq. 1.1 yields the law of the wall for temperature

Θ+ =
(Θw −Θ)

q′′w/(ρcpuτ )
=

1

κΘ

log(y+) + C2(Pr), (1.2)

where Θw is wall temperature, q′′w is the wall heat flux, cp is specific heat, 1/κΘ is the slope, and C2,

the intercept at y+ = 1, which is a function of the Prandtl number, Pr = ν/α where α is thermal
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diffusivity. In general, κΘ ≈ 0.48 is taken as a universal constant. Since κΘ ≈ κ, the formulation

is consistent with Reynolds’ analogy between heat transfer and momentum transfer, with the effect

of the Pr captured by C2.

In many engineering flows, however, the time scales over which the mean field vary are small

compared to local turbulent time scales, and the flow field cannot be characterized solely in terms

of local parameters (Townsend, 1976). Such rapid changes in the mean field typically result from

pressure gradients, wall curvature, strong three-dimensionality, wall roughness, or dynamic walls.

For simple non-equilibrium boundary layers, in which an equilibrium boundary layer flow ex-

periences a single sudden perturbation (e.g., flow over an obstacle/cavity or flow subjected to a

pressure gradient), there has been extensive, and continuing, research to understand the redistri-

bution of the velocity field when equilibrium is disturbed (Antonia and Luxton, 1971; Bradshaw

and Wong, 1972; Bandyopadhyay and Ahmed, 1993; Castro and Epik, 1998). In general, these

studies show that: (a) in a small local region of a strong perturbation the log-layer is obliterated

(i.e., the law of the wall given by Eq. 1.1 does not hold), (b) downstream of the perturbation, in

the so-called recovery region, an internal stress equilibrium layer grows and the boundary layer

recovers towards equilibrium. Conceptually, the effect of (b) relative to Eq. 1.1 is a spatially de-

veloping slope and intercept that asymptote to their universal values at the edge of the recovery

region, where the functional form of the spatial dependence depends on the perturbation.

While the effects of non-equilibrium boundary layers on the velocity field have been exten-

sively studied, heat transfer in non-equilibrium boundary layers has received far less attention.

Nevertheless, despite the somewhat limited data, it is a well-accepted fact that the law of the

wall for temperature is more affected by mean field variations than the velocity field (Blackwell

et al., 1972; Kader and Yaglom, 1991; Bradshaw and Huang, 1995; Kong et al., 2001; Houra and

Nagano, 2006; Wang et al., 2008). For example, in non-equilibrium boundary layer flow subjected

to a pressure gradient, the constants in Eq. 1.2 vary significantly with pressure gradient while the

constants in Eq. 1.1 vary little. This difference in sensitivity is unexpected given that Eqs. 1.1-1.2

were derived from analogous dimensional scaling arguments, and has brought into question the
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validity of the law of the wall (Bradshaw and Huang, 1995; Wei et al., 2005b). Moreover, the

high sensitivity of the temperature-field to pressure gradient flows is remarkable since the pressure

gradient does not appear in the transport equation for temperature. The consensus, although not

entirely well-understood, is that while the law of the wall for velocity is fairly resilient, the law

of the wall for temperature is very strongly affected by upstream disturbances. The implication

is that the scaling used to derive the law of the wall for velocity and, in particular, temperature

fails to describe the behaviors of the mean dynamics in flows with large gradients in the mean flow

direction, or with small Peclet number, Pe = Prδ+, where δ+ is the inner-normalized boundary

layer height (Wei et al., 2005b). Consequently, to capture non-linear effects on mean field dynam-

ics, the present state of the research is to introduce adjustments to the law of the wall (Volino and

Simon, 1997), devise new scaling laws (Wei et al., 2005b; Wang et al., 2008; Araya and Castillo,

2012), or use single-point closure models (i.e., eddy viscosity or mixing length models) informed

by experimental data (Mellor and Yamada, 1982; Kantha and Clayson, 1994).

Extrapolating the results discussed above to strong non-equilibrium flows, in which mean field

perturbations vary rapidly in magnitude and in space and time (i.e., in-cylinder engine flows dur-

ing a typical drive cycle), a logical conclusion is that with respect to the law of the wall given by

Eqs. 1.1-1.2 that either (a) they will not hold or (b) there will be will be strong spatio-temporal

variations of the slope and intercept. Moreover, the high sensitivity of the temperature field to

mean field perturbations is strongly suggestive that CFD simulations utilizing wall functions based

on equilibrium boundary layer behaviors will not accurately capture heat transfer in strong non-

equilibrium flows. Consequently, in most engineering systems with complex geometries and un-

steady flow forcing mechanisms RANS simulations fail spectacularly. These failures result in

over-engineered and hence, less efficient designs. This lack of efficiency is manifested in higher

economic and environmental costs. One obstacle for formulating new engineering heat transfer

models that better captures the physics of non-equilibrium flows (i.e., flows with complex dynam-

ics) is the lack of robust experimental data needed to both formulate and validate models.
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In the present work, the objective is to use complementary direct numerical simulation (DNS)

and numerical simulation models, and physical experiments to investigate both thermal and mo-

mentum transport in non-equilibrium wall-bounded flows. The broad objective is to advance the

fundamental knowledge of transport in non-equilibrium boundary layers and improve turbulence

models that account for non-equilibrium flow behaviors. The project work involves:

• developing novel integral method to evaluate wall heat flux,

• introducing new evaluation technique of RANS turbulent models,

• proposing the mechanism of transition to turbulence in oscillating wall-bounded flows,

• developing experimental infrastructure to study non-equilibrium thermal boundary layers,

and

• performing the experimental investigation of momentum transport in pulsatile boundary

layer flow.

1.2 Turbulent Wall-Bounded Flows

Equilibrium Wall-Bounded Flows and Wall Functions:

The so-called “no-slip" boundary condition states that the relative velocity between a fluid and

a bounding wall is zero. For a non-stationary fluid, the no-slip boundary condition imposes a shear

stress on the wall with an equal and opposite shear stress on the fluid layer attached to the wall. The

effects of the wall shear stress penetrate into the flow by both molecular and turbulent diffusion,

thus reducing the fluid momentum over a finite layer of fluid adjacent to the wall. The layer of

fluid that experiences this momentum drop is called the boundary layer. Conversely, the fluid layer

outside of the boundary layer does not feel the effects of the wall shear stress and is termed the

freestream flow.
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Owing to the momentum loss caused by the presence of the wall, the velocity field within the

boundary layer exhibits spatial velocity gradients. These gradients are associated with the presence

of vorticity (i.e., fluid rotation) defined as follows:

Ω = ∇× u (1.3)

where Ω is vorticity, ∇ is the gradient vector and u is the velocity vector. Therefore, the boundary

layer can be defined as fluid layer in the vicinity of the wall that contains vorticity. Conversely, the

freestream can be defined as the region of the flow away from the wall that is absent vorticity (i.e.,

irrotational).

A canonical steady-state equilibrium boundary layer is two-dimensional and, as described ear-

lier, exhibits universal behaviors when scaled by local parameters; most notable of these universal

behaviors is that the distribution of velocity and temperature follow Eqs. 1.1 and 1.2, respectively,

in the so-called logarithmic region of the flow. Importantly, similar universal behaviors are ob-

served in the near-wall layer of other turbulent wall-bounded flows such as channel flow and pipe

flow. These universal scaling behaviors are employed in high-Reynolds number RANS modeling

of wall-bounded flows by the use of wall functions. The purpose of the wall functions is to cir-

cumvent the excessive grid requirements to resolve the boundary layer (owing to the large spatial

gradients found in the boundary layer) by assuming apriori behaviors of the mean fluid dynamics

in the near-wall layer. Specifically, with the use of wall functions, the first grid point can be located

at a relatively large distance from the wall (i.e., within the so-called logarithmic layer) where the

velocity is assumed to follow Eq. 1.1. The implication is that a relatively coarse grid can be used

to resolve the mean boundary layer dynamics since the flow in the near-wall layer (where the gra-

dients are largest) is assumed. The gain in computational efficiency with the use of wall-functions

can be several orders of magnitude (Wilcox et al., 1998), and is a key element in the simulation of

high-Reynolds number wall-bounded flows.
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Figure 1.1: Mean velocity profile in the recovery region of flow behind a backward facing step.
Data acquired at x/h = 19, where x is the streamwise distance behind the step and h is the step
height (the recovery region starts at x/h � 7). Dashed line represents U+ = y+ and dotted-dashed
line represents U+ = 1

0.41
log(y+) + 5.0. Solid line is the DNS performed by Le et al. (1997), and

circles represent experimental measurements of Jovic and Driver (1994, 1995).

Non-Equilibrium Wall-Bounded Flows

It is important to differentiate between the terminology “equilibrium layer" defined by Townsend

(1961) and “equilibrium boundary layer” used in this dissertation. Townsend defined the equilib-

rium layer as a region within the boundary layer where the turbulent dissipation and production

rates are locally in balance. The term equilibrium boundary layer, as used in this dissertation, has

a fundamentally different meaning, and is best defined by flows that satisfy a set of given con-

ditions. De Graaff and Eaton (2000) defined an equilibrium boundary layer as a flow where the

shear stress distribution is balanced by the wall shear stress. Clauser (1956) defined an equilibrium

boundary layer as a flow in which the driving force (i.e., the pressure gradient) and the resisting
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Figure 1.2: Ensemble-averaged velocity profiles for turbulent oscillatory flow in a circular pipe.
Circles represent experimental data of Akhavan et al. (1991a) in decelerating phase of the flow and
solid log-linear lines are logarithmic fits to data.

force (i.e., the wall shear stress) are in balance. The Clauser equilibrium condition is satisfied when

β = δ∗(dp/dx)/τw is constant, where δ∗ is the displacement thickness, τw is the wall shear stress

and dp/dx is the streamwise pressure gradient. Zero pressure gradient boundary layer (ZPGBL)

and fully-developed channel/pipe flows are the most common equilibrium wall-bounded flows. It

follows that non-equilibrium boundary layer flows are flows that do not satisfy the set of conditions

defined by DeGraaff and Eaton or by Clauser.

Non-equilibrium boundary layer flows arise when the time scales associated with mean field

variations are comparable to turbulent time scales such that the the turbulent field does not have
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sufficient time to adjust to changes in the mean field. Consequently, the flow field cannot be

characterized by local parameters and the flow behaviors of the near-wall layer are not universal.

Pressure gradient, obstacles in the boundary, wall curvature, and fast transients in the flow forcing,

are typical perturbations that lead to non-equilibrium boundary layer behaviors. Two common

examples of non-equilibrium wall-bounded flows (i.e., variable β) are adverse pressure gradient

boundary layer (APGBL) flow and periodic wall-bounded flow. In the former τw is varying; in the

latter there is a phase difference between dp/dx and τw even though both parameters oscillate with

the same frequency. For a given non-equilibrium wall-bounded flow, some or all of the universal

behaviors observed in the near-wall layer of equilibrium wall-bounded flows are absent (Aubertine

and Eaton, 2005). For example, Samuel and Joubert (1974) studied a boundary layer flow in an

increasingly adverse pressure gradient and concluded all universal models for collapsing the data

fail other than the law of the wall. Antonia and Luxton (1971) investigated the response of a

turbulent boundary layer to a smooth-to-rough change in surface condition and concluded while

the outer layer remains fairly unchanged, the internal layer dynamics such as mixing length and

turbulent production are altered significantly. While departure of the mean velocity profile from

the universal log law had been established in the separation region of APGBL flow (Dengel and

Fernholz, 1990; Bradshaw and Huang, 1995; Bradshaw, 1996), experimental measurements of

Jovic and Driver revealed the velocity profile in the recovery region of a flow behind a backward-

facing step falls below the universal log-law (Jovic and Driver, 1994, 1995). Downward shift of the

mean velocity profile from the universal log-law in the recovery region of a flow behind a backward

facing step was later confirmed by DNS of Le et al. (1997). It is now established that in mild to

strong APG wall-bounded flows the mean velocity profile is shifted downward from the log law, the

wake region is amplified, and hence the extent of the logarithmic region is shrunk (Aubertine and

Eaton, 2005; Monty et al., 2011). Akhavan et al. (1991a) empirically predicted and experimentally

showed the y-intercept of Eq. 1.1 is strongly modified in a periodic wall-bounded flow. Figures

1.1 and 1.2 show departure of mean velocity profile in non-equilibrium wall-bounded flows. Other

investigations of non-equilibrium wall-bounded flows such as flow over curved channel (Shima
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et al., 2000), flow behind vehicles (Menter and Kuntz, 2004), to name a few, confirm that the

slope and y-intercept of Eq. 1.1 are strongly modified in the mild to strong APG flows. It follows

that RANS simulations of non-equilibrium boundary layers that employ wall-functions based on

equilibrium boundary layer behaviors will fail spectacularly.

Despite its importance in engineering, industrial, and geophysical flows, there are few experi-

mental studies of heat transport mechanisms in non-equilibrium boundary layers. The overwhelm-

ing majority of studies of non-equilibrium wall-bounded flows with heat transfer are focused on

the comparison of the heat transfer in those flows with their equilibrium counterparts (Moretti and

Kays, 1965; Aharwal et al., 2008; Bharadwaj et al., 2009; Pehlivan, 2013). The lack of experi-

mental studies is not surprising given that controlling thermal boundary conditions is non-trivial,

and the simultaneous measurement of temperature and velocity fluctuations in turbulent boundary

layers with forced convection is very difficult. In addition, direct measurement of the wall-heat

flux, which is the primary scaling variable to study thermal boundary layers, is challenging. Ex-

perimental measurements of Perry et al. (1966), Tsou et al. (1967), Blackwell et al. (1972) and

Orlando et al. (1974) are among the first attempts of simultaneous measurement of temperature

and velocity fluctuations in non-equilibrium wall-bounded flows. Afanasyev et al. (1993) stud-

ied the heat transfer characteristics on surfaces shaped by spherical cavities and more recently,

Houra and Nagano (2006, 2008) provided reliable experimental data in non-equilibrium adverse

pressure gradient boundary layers. A review of the experimental investigation of heat transfer

in non-equilibrium boundary layers, specifically in separated flows, can be found in Togun et al.

(2011). Nevertheless, the experimental measurements of Perry et al. (1966) and Blackwell et al.

(1972) are still used for validation purposes (Araya and Castillo, 2012), which is an indicator of

the scarcity of experimental data.

The limited studies, however, show that the distribution of temperature is more sensitive to

pressure gradients compared to the velocity field. As stated earlier, this is remarkable since the

pressure gradient does not appear in the transport equation for temperature. This sensitivity of the

temperature field is illustrated in Fig. 1.3 that shows that the slope and y-intercept of Eq. 1.2 is
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Figure 1.3: Mean temperature profile in wall units. Solid line represent Eq. 1.2, open triangles,
squares and circles represent FPG, ZPG and APG flow, respectively. Figure adopted from Brad-
shaw and Huang (1995)

significantly altered under favorable and adverse pressure gradient. In fact, the law of wall breaks

down in the flows where the law of wall for velocity is still valid (Bradshaw and Huang, 1995).

Since the law of wall for temperature (Eq. 1.2 is derived with the same scaling argument as the

law of wall for velocity (Eq. 1.1), their range of validity is expected to be roughly the same.

Experimental observations contradictory of these expectations raise the question that Bradshaw

and Huang (1995) stated: Is the tenacity of the law of wall for velocity just good luck, and if so

when does our luck run out?

It follows that reliable data and robust methodologies are required to address the validity of

wall functions and to evaluate the performance of turbulence models in non-equilibrium flows.

The contributing work of this dissertation to provide reliable data and introduce robust analytical

methodologies to better study and understand non-equilibrium wall-bounded flows are summa-

rized next.
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1.3 Organization of the Dissertation

The work of this dissertation can be divided into two primary approaches: analytical and ex-

perimental. A brief description of these separate but complementary efforts is provided below,

followed by an outline of the dissertation Chapters.

The analytical work involves the development of a mathematically exact, integral method to

evaluate wall heat flux in turbulent wall-bounded flows. The method is amenable to experimental

studies and provides a mean to connect transport properties at the wall to the bulk flow dynamics.

The latter is important for heat transfer model development in non-equilibrium boundary layers.

An extension of this integral method is used to formulate a robust validation technique for RANS

simulations. This validation technique has the advantage of providing a direct connection between

wall fluxes and mean flow dynamics. Lastly, the mean flow dynamics of reciprocating channel

flow is studied to better understand the mechanism of transition to turbulence in periodic flow.

On the experimental front, we have developed the UNH Non-Equilibrium and Thermal (NEAT)

boundary layer wind tunnel. The facility has been purposefully designed to investigate non-

equilibrium thermal boundary layers. The flow configuration studied is boundary layer flow over

a heated surface. A freestream heater and feedback system are used to set and maintain the

freestream temperature. A thermal wall-plate and feedback controllers are used to set and main-

tain the thermal boundary condition at the lower wall. A rotor-stator assembly upstream of the

test section produces a freestream velocity that varies sinusoidally in amplitude at a set frequency.

Experiments will be conducted in the NEAT tunnel to evaluate the transport of momentum and

heat in pulsatile channel flow.

The dissertation is organized into the following chapters:

• Chapter 2: Flow, Simulation and Facility

Non-equilibrium periodic wall-bounded flows are reviewed in the first part of this chapter.

Next, the DNS of reciprocating channel flow performed by our collaborators at the Uni-
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versity of Vermont are described. Lastly, the design, built, and validation results for the

Non-Equilibrium and Thermal (NEAT) boundary layer wind tunnel are presented.

• Chapter 3: An Exact Integral Method to Evaluate Wall Heat Flux In

Spatially Developing Two-Dimensional Wall-Bounded Flows

In this chapter, the integral method to evaluate wall heat flux in turbulent wall-bounded flows

is presented and validated.

• Chapter 4: Integral Validation Technique of RANS Turbulence Models

The formulation for the RANS validation technique based on the integral method developed

in Chapter 3 is described. To assess the value of the technique, it is used to evaluate the

performance of two low- and two high Reynolds-number turbulence models against DNS of

reciprocating channel flow with heat transfer.

• Chapter 5: Transition to Turbulence in Reciprocating Channel Flow

The contributing terms in the RANS equations are studied to better understand the mecha-

nism of transition to turbulence in periodic wall-bounded flows.

• Chapter 6: Experimental Details and Validation of Flow Facility

The experimental details are explained and the NEAT facility is validated for equilibrium

flow conditions, i.e., zero pressure gradient boundary layer (ZPGBL).

• Chapter 7: Pulsatile Boundary Layer Flow

The momentum transport in pulsatile boundary layer (PBL) is experimentally studied and

results are compared to ZPGBL.

• Chapter 8: Conclusions and Future Work

The significant results of the current study are summarized and suggestions for future work

are provided.
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CHAPTER 2

FLOW, SIMULATION AND FACILITY

This dissertation is focused on the study of wall-bounded periodic flows with and without heat

transfer. This particular flow type was chosen since it is an unsteady, non-equilibrium flow that is

simple enough for direct numerical simulation (DNS), but complex enough to test the performance

of RANS turbulence models in a complex flow relevant to engineering applications such as inter-

nal combustion engines, heat exchangers, industrial mixers, or pumping systems. In this chapter,

wall-bounded periodic flows are first described and their governing equations are presented. Next,

the numerical methods used in both the DNS and RANS simulations of reciprocating channel flow

are introduced. Lastly, the non-equilibrium and thermal (NEAT) boundary layer wind tunnel fa-

cility purposefully built to study pulsatile boundary layer flows with and without heat transfer is

described in detail.

2.1 Governing Equations of Fluid Dynamics

The governing equations of fluid dynamics for an incompressible, Newtonian, fluid are first pro-

vided in their most general form. The fundamental equation set, given in indicial notation, consists

of the continuity equation:

∂ui

∂xi

= 0, (2.1)

where ui and xi are the velocity and spatial vector components;

the Navier-Stokes equation:
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ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi

+ μ
∂2ui

∂x2
j

, (2.2)

where ρ is density, p is pressure, and μ is the absolute viscosity;

and the thermal transport equation:

ρcp

(
∂θ

∂t
+ ui

∂θ

∂xi

)
= λ

∂2θ

∂x2
i

+ φv + q̇, (2.3)

where cp is the specific heat, θ is temperature, λ is the thermal conductivity of the fluid, q̇ is the

heat generation and φv is the heat dissipation due to viscous forces, with the latter being negligible

in many engineering applications. Note that for the flows studied in this dissertation both q̇ and φv

are negligible. In addition to the governing equations, appropriate initial/boundary conditions are

needed to solve the system of equations.

Nondimensionalization of the governing equations is valuable to identify similarity parameters

and to elucidate the dominant terms with respect to prescribed initial/boundary conditions. Defin-

ing characteristic length, velocity, time and temperature scales as L, U , T and Θ, respectively, the

nondimensional variables, identified by an overhead tilde are ũi =
ui

U
, p̃ = p

ρU2 , x̃i =
xi

L
, t̃ = t

T
,

θ̃ = θ
Θ

. It follows that the nondimensionalized continuity, Navier-Stokes, and thermal transport

equations take the forms:

∂ũi

∂x̃i

= 0, (2.4)

(
L

UT

)
∂ũi

∂t̃
+ ũj

∂ũi

∂x̃j

= − ∂p̃

∂x̃i

+
1

Re

∂2ũi

∂x̃2
j

, (2.5)

and

(
L

UT

)
∂θ̃

∂t̃
+ ũi

∂θ̃

∂x̃i

=
1

RePr

∂2θ̃

∂x̃2
i

, (2.6)

respectively. The similarity parameters are Re = UL
ν

where ν = μ/ρ, Pr = ν/α where α = λ/ρcp,

and L
UT

. The latter is typically removed by defining T = L/U . In the next section, we will refor-
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mulate the governing equations specific to periodic flows.

2.2 Periodic Wall-Bounded Flows

Unsteady flows are generally separated into two categories: periodic or non-periodic. Periodic

flows occur across a wide-range of geophysical (Collins, 1963; Walterscheid, 1981), biological

(Nerem et al., 1972; Craciunescu and Clegg, 2001) and engineering (Dec and Keller, 1989; Mack-

ley and Stonestreet, 1995) systems. Owing to their importance in these systems, there has been

extensive-and continuing-research studying periodic flows that spans almost a century (Richardson

and Tyler, 1929; Vardy and Brown, 2007; O’donoghue et al., 2011). Periodic flows can be further

classified as reciprocating or pulsatile. The cycle-averaged flow rate in reciprocating flow is zero,

while it is non-zero and unidirectional in pulsatile flow. In reciprocating flow, the mean flow over

a half-period first accelerates to maximum velocity, next decelerates to zero velocity, then reverses

direction. In pulsatile flow, the mean flow over a half-period first accelerates to maximum veloc-

ity then decelerates to the mean velocity. During the next half-period, the flow first decelerates

to minimum velocity then accelerates to the mean velocity. For both flows, the cycle is repeated

indefinitely (Di Liberto and Ciofalo, 2009).

2.2.1 Governing Equations in Periodic Flows

Defining the characteristic time scale, T , of a periodic flow as 1/ω, where ω is the characteristic

angular frequency of the flow, Eqs. 2.5 and 2.6 become:

(
Lω

U

)
∂ũi

∂t̃
+ ũj

∂ũi

∂x̃j

= − ∂p̃

∂x̃i

+
1

Re

∂2ũi

∂x̃2
j

, (2.7)

and

(
Lω

U

)
∂θ̃

∂t̃
+ ũi

∂θ̃

∂x̃i

=
1

RePr

∂2θ̃

∂x̃2
i

, (2.8)
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respectively. The continuity equation (Eq. 2.4) is unchanged. Next, by introducing the Womersley

number W = L
√
ω/ν, the nondimensional Navier-Stokes and thermal transport equations in a

periodic flow can be written as:

(
W 2

Re

)
∂ũi

∂t̃
+ ũj

∂ũi

∂x̃j

= − ∂p̃

∂x̃i

+
1

Re

∂2ũi

∂x̃2
j

, (2.9)

and

(
W 2

Re

)
∂θ̃

∂t̃
+ ũi

∂θ̃

∂x̃i

=
1

RePr

∂2θ̃

∂x̃2
i

. (2.10)

It follows that the momentum transport in periodic flows are characterized by two parameters, Re

and W , and heat transfer is characterized by three parameters, Re, W , and Pr. Note that the

square of the Womersley number, W 2, characterizes the ratio of the diffusion time scale L2/ν to

the oscillation time scale ω−1.

2.2.2 Stokes Boundary Layer Solution

Laminar flow near a plane wall driven by a cosinusoidal (or sinusoidal) pressure gradient is

known as Stokes’ boundary layer flow. Its solution is reviewed here since it serves as a baseline

comparison to study transition to turbulence in periodic flows and elucidates many features of

periodic wall-bounded flows.

For a unidirectional, low Re, flow with u = u(y, t)̂i, where y is the wall-normal direction and

î is the unit vector parallel to the wall (i.e., in the flow direction, denoted as the x-direction), the

NS-equation in the x-direction reduces to:

∂u

∂t
= ν

∂2u

∂y2
− 1

ρ

∂p

∂x
, (2.11)

where
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1

ρ

∂p

∂x
= Px + P0cos(ωt), (2.12)

is the driving force, where Px is the steady-state pressure gradient and P0 is the amplitude of the

cosinusoidal pressure gradient. By decomposing the velocity into a steady-state and an oscillating

component:

u = uss + uosc, (2.13)

and inserting the decomposed velocity into Eq. 2.11, where uss is the steady-state velocity due to

Px and uosc is the oscillatory velocity due to P0cos(ωt), the governing equation becomes

⎛⎜⎝
�
�
���
0

∂uss

∂t
− ν

∂2uss

∂y2
+ Px

⎞⎟⎠+

(
∂uosc

∂t
− ν

∂2uosc

∂y2
+ P0cos(ωt)

)
= 0, (2.14)

where the steady-state and time-dependent terms are grouped and segregated. The steady-state

equation is

ν
∂2uss

∂y2
= Px, (2.15)

with solution

uss =
Pxy

2

2ν
+ Ay +B, (2.16)

where A and B are constants determined by boundary conditions and will vary between boundary

layer, fully-developed channel, and pipe flow.

The time-dependent equation is

∂uosc

∂t
= ν

∂2uosc

∂y2
− P0cos(ωt). (2.17)

A Fourier representation of the trigonometric terms (i.e., cos(ωt) = R{eiωt}, with i2 = −1 and

R{•} denoting the real part of the quantity between the brackets) in the time-dependent equation is
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used to reduce the complexity of the equations. The solution, achieved by separation of variables,

then follows as

uosc = R{F (y)eiωt}, (2.18)

where F (y) is the time-independent part of the solution. Plugging Eq. 2.18 into Eq. 2.17, the

time-dependent equation will be

iωF��eiωt = ν
∂2F

∂y2
��eiωt − P0�

�eiωt, (2.19)

with the boundary conditions:

F (y) = 0 for y = 0, and

dF (y)
dy

= 0 for y → +∞,

which are invariant for boundary layer, fully-developed channel, and pipe flows.

The general solution of Eq. 2.19 for F is

F = Csinh

(√
iω

ν
y

)
+Dcosh

(√
iω

ν
y

)
− iP0

ω
, (2.20)

where C and D can be determined by the boundary conditions. Applying the boundary conditions,

the solution reduces to

F = i
P0

ω

(
1− e−

√
iω
ν
y
)
. (2.21)

Plugging Eq. 2.21 into Eq. 2.18 and incorporating
√
i = i+1√

2
, the oscillating velocity will be:

uosc = R{
Feiωt

}
= R

{
i
P0

ω

(
1− ey/ls

)
eiωt

}
=

P0

ω

(
sin(ωt)− e−y/lssin(ωt− y/ls)

)
, (2.22)

where ls =
√

2ν
ω

is the wavenumber in the y direction and is called the Stokes’ layer thickness.

Since ls is a characteristic length scale in oscillating flows, a Reynolds number based on the Stokes’
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Figure 2.1: Oscillatory velocity profiles of a periodic laminar flow for ω = 2π/30 (blue solid lines)
and ω = 2π/40 (red dashed lines). For the accelerating portion of the cycle, the angular phase of
the profiles, φ = ωt, from left to right is 1π

16
to 8π

16
. For the decelerating portion of the cycle, the

angular phase of the profiles from right to left is 9π
16

to 15π
16

.

layer thickness is defined as Res = Umls/ν. The characteristic velocity, Um, is usually chosen to

be the maximum amplitude of the cross-sectional average velocity defined

Um = max

(∫ yt
0

udy

yt

)
, (2.23)

where yt is the limit of integration and can be chosen as channel half-height, pipe diameter or

boundary layer thickness. Note that the ratio of the peak Reynolds number to the Womersley

number is proportional to the Stokes’ Reynolds number, i.e., Rep/W =
√
2Res, where Rep =
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Figure 2.2: Normalized oscillatory velocity profiles of a periodic laminar flow. For the acceler-
ating portion of the cycle, the angular phase of the profiles from left to right is 1π

16
to 8π
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. For the

decelerating portion of the cycle, the angular phase of the profiles from right to left is 9π
16

to 15π
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.
The profiles are invariant of the flow period.

2Umh/ν. Effectively, the Stokes’ Reynolds number incorporates both scaling parameters in Eq. 2.9.

Figure 2.1 shows the time-dependent velocity profiles of a reciprocating channel flow with channel

half-height h = 1 and P0 = 1 for ω = 2π/30 and ω = 2π/40. The parameters are chosen since

they are the same parameters used in the numerical simulation incorporated in the dissertation.

The effect of an increase in Res results in the increase of the bulk flow velocity and the Stokes’

layer thickness (Fig. 2.1). Choosing the characteristic length and velocity scales as L = ls and

U = P0

ω
sin(ωt) and plotting y

L
versus uosc

U
reveals the self-similarity of the flow (Fig. 2.2).

The wall shear stress of the oscillatory unidirectional flow is calculated as

τw = μ
duosc

dy
|y=0 =

μP0

ωls
(sin(ωt) + cos(ωt)) =

√
2μP0

ωls
sin(ωt+

π

4
). (2.24)
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Figure 2.3: Wall shear stress profiles of a periodic laminar flow for ω = 2π/30 (blue solid lines)
and ω = 2π/40 (red dashed lines).

The wall shear stress profiles for ω = 2π/30 and ω = 2π/40 are shown in Fig. 2.3.

2.3 Reciprocating Flow Regimes and Dynamics

The above analysis constitutes the solution to a laminar periodic flow driven by a harmonic pressure

gradient. With increasing Res (i.e., a decreasing W and/or an increasing Rep), a reciprocating

flow (i.e., a zero-mean flow) will transition from a laminar flow to a turbulent flow. Owing to

the periodicity of the flow, the mechanism of transition and the stages of transition are different

compared to their steady-state counterparts (Scotti and Piomelli, 2001). For example, owing to the

unsteady pressure gradient, the flow may exhibit both laminar and transitional flow behaviors over
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portions of the cycle. Due to these complexities, reciprocating flows are often categorized into five

flow regimes based on the Stokes’ Reynolds number Res (Ozdemir et al., 2014)1 :

• (I) Laminar– The flow is unidirectional and the Stokes’ solution is valid at all phases. The

laminar regime is mostly reported for Res < 280 (Akhavan et al., 1991a).

• (II) Disturbed laminar– Small amplitude fluctuations are observed in the velocity profile

during the accelerating phases of the cycle, but the fluctuations do not have sufficient en-

ergy to modify the mean velocity profile from the Stokes’ solution. The reported Reynolds

number range for the disturbed laminar regime is 280 < Res < 500 (Ozdemir et al., 2014).

• (III) Self-sustaining transition The mean velocity profiles depart from Stokes’ solution at

all phases of the cycle. However, fully developed turbulence is not observed in any of the

phases. The reported Reynolds number range for the self-sustaining transitional regime is

500 < Res < 750 (Ozdemir et al., 2014).

• (IV) Intermittently turbulent The mean velocity profiles exhibit behaviors similar to fully-

developed turbulent flow during the early decelerating phases of the cycle. The intermittently

turbulent regime is reported for 750 < Res < 3460 (Jensen et al., 1989).

• (V) Fully-developed turbulent The flow stays fully turbulent for the entire oscillation period.

The critical Reynolds number reported for the fully-developed turbulence in a periodic flow

is Res = 3460 (Jensen et al., 1989).

Owing to practical constraints, flow regime V is rarely observed. The focus of this dissertation

is on flow regimes III and IV. In addition to understanding the fundamental flow dynamics in these

flow regimes, the mechanisms of transition between the two flow regimes will be investigated.

1Pulsatile flow regimes are discussed in details in Chapter 7.
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2.4 Numerical Simulation of Reciprocating Channel Flow

DNS and RANS simulations of reciprocating channel flow are used: a) to study the transition

dynamics from regime III to flow regime IV, b) to evaluate four RANS turbulence models using

the integral validation technique developed as part of this study and c) as a baseline to compare

and validate experimental measurements. The descriptions of the numerical simulations and the

turbulent models are provided below.

The simulations2 employ a cartesian domain defined by the orthonormal vector base (ex, ey, ez) =

(e1, e2, e3) where boldface denotes a vector, and x, y and z are the streamwise, wall-normal, and

spanwise directions, respectively. The components of the velocity vector ui = u are u, v, and w in

the x, y and z directions, respectively. The flow is incompressible,

∂ui

∂xi

= 0 , (2.25)

and driven by a cosinusoidal pressure gradient of amplitude Px,0 at a prescribed frequency ω, given

by the last term on the right hand side of the following momentum transport equation:

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

dp

dxi

+ ν
∂2ui

∂x2
j

+
1

ρ
Px,0 cos(ωt)δi1, (2.26)

where ρ is the fluid density, p is pressure, and δij is the Kronecker delta. The computational domain

is periodic in the streamwise (x) and spanwise (z) directions. The wall boundary conditions are

no-slip and no-through. The design of the forcing term yields a net-zero flow rate over a full period.

Temperature is incorporated in the simulation as a passive scalar with a transport equation:

∂θ

∂t
+ ui

∂θ

∂xi

=
ν

Pr

∂2θ

∂x2
i

, (2.27)

2Numerical simulations and turbulent models described in this section are performed by Dr. Yves Dubief’s group
at The University of Vermont (primarily by Ian Pond) as a collaborative work with the current research.
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where θ is temperature and Pr ≡ ν/(λ/ρCp) is the Prandtl number, where λ is the fluid thermal

conductivity and Cp is the fluid specific heat. In all simulations Pr = 0.7. The temperature

transport mechanism in the flow is driven by isothermal boundary conditions at the walls. The

bottom wall is set to a non-dimensional temperature of 1 and the top wall to 0.

The studies of Di Liberto and Ciofalo (2011) and Ozdemir et al. (2014) were used to iden-

tify two periods: T = 30 h
Um

and T = 40 h
Um

, with Womersley numbers of 20.47 and 17.72,

respectively, where h is the channel half-height and Um is the amplitude of the centerline velocity

modulation. The former period is within the self-sustaining transitional regime (III), whereas the

latter is well within the intermittently turbulent regime (IV ) and exhibits fully turbulent behaviors

over a portion of the cycle. The statistics presented are phase-averaged over 10 periods for the

DNS. For the RANS simulations, statistical convergence is achieved after 15 periods. A period is

divided into 32 phases: 1π/16 ≤ φ ≤ 32π/16, where φ denotes the phase angle. Wall-normal

distributions of velocity and temperature statistics are collected at each phase.

2.4.1 Direct Numerical Simulation (DNS)

DNS were carried out in a domain of dimensions Lx = 10h, Ly = 2h and Lz = 5h in the

streamwise, wall-normal and spanwise directions, respectively. These dimensions are identical to

the computational domain used in Di Liberto and Ciofalo (2011), although the present resolution

is higher with most simulations using 1283 cells. Statistics collected at a higher resolution of 2563

did not show appreciable deviation from the lower resolution simulations.

The DNS code is a well-validated finite difference code (Dubief et al., 2005) using non-

dissipative second-order schemes for spatial derivatives on a staggered grid. The fractional step

method enforces incompressibility. The time advancement is 3rd-order Runge-Kutta for the advec-

tion terms in all directions and the diffusive terms in the streamwise and spanwise directions. To

relax the viscous stability constraint, the wall-normal diffusive term is advanced with a 2nd-order

Crank-Nicolson scheme. All simulations are performed with a dynamic time step which satis-
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fies the Courant-Friedrichs-Lewy condition, Δtui/Δxi ≤ 0.9, and a viscous stability condition,

νΔt/min(Δx,Δz) < 0.2. Both conditions are satisfied well below their maximum values for the

numerical methods used here.

2.4.2 Reynolds Average Navier-Stokes (RANS)

The RANS simulations were carried out with OpenFOAM version 2.3.0 using the PISO incom-

pressible transient flow solver in a 2D computational domain with streamwise periodic boundary

condition. The present study compares two types of turbulence models: low-Reynolds-number and

high-Reynolds-number models. The low-Reynolds-number models require the first grid point to

be within a viscous unit, i.e. at y+ ≤ 1, where the superscript + denotes normalization by friction

velocity uτ =
√

τw/ρ and kinematic viscosity ν, where τw is the shear stress at the wall. Com-

putational grids were created to satisfy this condition for the maximum phase-averaged wall shear

stress. A grid refinement study determined that the solution is grid independent for Ny = 256

for both periods. For high-Reynolds number models, the viscous sublayer and buffer layer are

modeled assuming logarithmic behavior of the mean velocity distribution for y+ � 30. The first

grid point is therefore located at y+ = 30 based on the maximum of the wall shear stress. A grid

refinement study resulted in Ny = 40 and Ny = 60 for periods T = 30 h
Um

and 40 h
Um

, respectively.

In all RANS simulations, Eqs. (2.25-2.27) are phase-averaged and each variable is decomposed

into its phase-average and its fluctuations: ai = Ai + a′i, where a denotes a generic variable, a

capitalized variable denotes its phase average, and a prime denotes its fluctuations. The resulting

governing equations correspond to:

∂Ui

∂xj

= 0, (2.28)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −1

ρ

(
∂P

∂xi

+ μ
∂2Ui

∂x2
j

− ∂(ρu′
iu

′
j)

∂xj

)
, (2.29)

∂Θ

∂t
+ Ui

∂Θ

∂xi

=
ν

Pr

∂2Θ

∂x2
i

− ∂
(
u′
iθ

′)
∂xi

, (2.30)
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where μ is the dynamic viscosity and an overbar denotes a correlation of fluctuating fields. Equa-

tions (2.29) and (2.30) include two new terms which result from the averaging process, the tur-

bulent or Reynolds stress (−ρu′
iu

′
j) and the turbulent heat flux (−u′

iθ
′), both require models for

closure.

2.4.3 Low-Reynolds-number turbulence models

The low-Reynolds-number models are the focal point, as they produce the best prediction of

wall shear stress and wall heat flux. The specific models are the widely used Launder-Sharma

(LS) k-ε (Launder and Sharma, 1974) model and the v2-f model (Durbin, 1995; Iaccarino and

Durbin, 2000). Both models use the transport of average turbulent kinetic energy (k) and the rate

of dissipation of the average turbulent kinetic energy (ε). The transport equations for both low-

Reynolds-number models are presented below. Similar to base EVM presentation, the subscripted

C ′s denote a model constant and the subscripted σ′s denote a turbulent Prandtl number, where the

subscript serves as an identifier that typically contains an associated variable. The LS model has

the following transport equations and turbulent viscosity (νT ):

∂k

∂t
+ Uj

∂k

∂xj

=
∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
+ νT

(
∂Ui

∂xj

+
∂Uj

∂xi

)
∂Ui

∂xj

− (ε̃+D) , (2.31)

∂ε̃

∂t
+ Uj

∂ε̃

∂xj

=
∂

∂xj

(
νT
σε

∂ε̃

∂xj

)
+ Cε1

ε̃

k
νT

(
∂Ui

∂xj

+
∂Uj

∂xi

)
∂Ui

∂xj

− Cε2f2
ε̃2

k
+ E, (2.32)

νT = Cμfμ
k2

ε̃
, (2.33)

ε = ε̃+D, D = 2ν

(
∂
√
k

∂y

)2

≈ 2ν
(
∇
√
k
)2

, (2.34)
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fμ = exp

( −3.4

(1 +ReT/50)2

)
, f2 = 1− 0.3 exp(−Re2T ), (2.35)

E = 2ννT

(
∂2U

∂y2

)2

, ReT =
k2

νε̃
. (2.36)

The v2-f model uses the standard (k) and (ε) equations of a high-Reynolds-number model

as well as an equation for the transport of the wall normal fluctuating velocity and an elliptic

relaxation function (f):

∂k

∂t
+ Uj

∂k

∂xj

=
∂

∂xj

[(
ν +

νT
σk

)
∂k

∂xj

]
+ νT

(
∂Ui

∂xj

+
∂Uj

∂xi

)
∂Ui

∂xj

− ε, (2.37)

∂ε

∂t
+ Uj

∂ε

∂xj

=
∂

∂xj

(
νT
σε

∂ε

∂xj

)
+ Cε1

ε

k
νT

(
∂Ui

∂xj

+
∂Uj

∂xi

)
∂Ui

∂xj

− Cε2
ε2

k
, (2.38)

∂v′2

∂t
+ Uj

∂v′2

∂xj

= kf − v′2

k
ε+

∂

∂xj

[(
ν +

νT
σv′2

)
∂v′2

∂xj

]
, (2.39)

L2∇2f − f =
C1 − 1

Λ

(
v′2

k
− 2

3

)
− C2

Pk

ε
, (2.40)

νT = Cμv′2Λ (2.41)

L = CLmax

[
k3/2

ε
, Cη

(
ν3

ε

)1/4
]
, Λ = max

[
k

ε
, CT

(ν
ε

)1/2
]
. (2.42)

As seen in Eqs. (2.32) and (2.33), the LS model requires the use of damping functions listed in

equation (2.35). These functions are necessary to accurately damp the turbulent quantities as they

approach the wall, otherwise unrealistic values would be predicted. Conversely, the v2-f model
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does not require the use of damping functions. This is an important characteristic of the model. In

its formulation, the use of the fluctuating wall normal velocity v′
2 provides the correct scaling for

the damping of turbulence near the wall, hence the use of damping functions is removed. It also

accounts for anisotropic effects with the inclusion of the elliptic relaxation function f . For a more

in depth description of the v2-f model see Durbin (1995); Laurence et al. (2005).

2.4.4 High-Reynolds Number models

High-Reynolds-number models solve the same set of equations as low-Reynolds-number mod-

els but employ wall-functions to reduce the computational grid size. The unresolved region near

the wall (y+ � 30 − 50) is reconstructed under the assumption that the resolved mean velocity

distribution (y+ � 30 − 50) follows a logarithmic behavior (U+
1 = κ−1 ln y+ + B), where κ and

B are known constants, and the Reynolds shear stress balances the wall shear stress (−u′v′ = u2
τ ).

In this logarithmic region, the production of turbulence P and the dissipation rate of turbulent ki-

netic turbulence ε balance each other. For the location of the first node away from the wall yp, the

dissipation rate of turbulent kinetic energy can be estimated as

εp = Pp = −u′
1u

′
2

∂U1

∂y
=

u3
τ

κyp
=

C
3/4
μ k

1/2
p

κyp
(2.43)

where the subscript p denotes quantities computed at yp. The boundary condition for the dissipa-

tion rate of turbulent kinetic energy is εp. A Neumann boundary conditions is used for the kinetic

energy at the wall, the pressure and velocity boundary conditions remain the same as for low-

Reynolds-number models.

2.4.5 Turbulent Heat Flux Closure

In the present simulations, the turbulent heat flux (−u′
iθ) is closed using the simple eddy dif-

fusivity approach much like that of the eddy viscosity approach for the turbulent stress:

29



− u′
iθ

′ =
νT
PrT

∂Θ

∂xi

. (2.44)

A main component of this closure is the application of Reynolds analogy, which assumes that the

turbulent momentum flux is proportional to the turbulent heat flux. The Reynolds analogy is incor-

porated in the RANS simulations by the use of a turbulent Prandtl number (PrT = νT/αT ), where

αT is the turbulent thermal diffusivity. For the RANS simulations of reciprocating channel flow

with heat transfer PrT = 0.9, which is a common assumption in many engineering applications.

2.5 Facility

The non-equilibrium and thermal (NEAT) boundary layer facility was purposefully designed to

study non-equilibrium thermal boundary layers.3 The NEAT facility, shown in Fig. 2.4, is an

open-circuit suction-type boundary layer wind tunnel. The test-section of the tunnel nominally

measures 303mm × 135mm cross-section and 2.7m in length and is made of plexiglass to allow

full optical access. The inlet section to the tunnel consists of a resistive heater bank, a seeding

manifold, a turbulent management section (containing 4 screens of decreasing mesh size and hon-

eycomb) and a 4:1 contraction. A frequency controller is used to control and maintain constant

flow speed in the test-section. The freestream velocity can vary between 1 and 12m/s. A pro-

portional integral derivative (PID) controller is used to maintain constant inlet air temperature. A

feed-back controlled thermal wall plate sits on the floor of the tunnel and is used to control the

lower wall-temperature. Downstream of the test-section is a rotor-stator assembly used to produce

a sinusoidal pressure gradient. The components of the facility are described in detail below.

3The facility is developed by a collaborative work of the author, Michael Allard, and Drummond Biles. Contribu-
tion of each person will be indicated throughout this dissertation.

30



Figure 2.4: The UNH NEAT boundary layer facility. Flow direction is from right to left.

2.5.1 Test-Section

The test-section is constructed from plexiglass to provide optical access for laser-based or

imaging measurements. The development length of the test-section is 2.7m. The inlet cross-

section area is 303mm × 124mm, with the larger edge in the spanwise direction. The upper wall

of the test section is inclined at 0.23◦ to closely maintain a ZPG boundary layer flow. The outlet

cross-section area is is 303mm × 135mm. The inlet cross-section area with the thermal-wall

plate inserted into the test-section reduces to 303mm × 95mm. The suction fan, controlled by a

variable frequency drive (VFD), can produce a Reynolds number based on the length of the tunnel

up to 2 × 106. Three glass window inserts 254mm × 102mm are located on the top-wall of the

test-section for introduction of laser light and for infrared imaging. The optical quality of the glass

inserts are better than the plexiglass walls.
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Figure 2.5: The arrangement of the windows on the top wall of the NEAT test section. Units are in
mm and flow direction is from right to left.

2.5.2 freestream Heater

The air entering the tunnel first passes over nine-sheathed resistive heaters with heating density

of 0.0403 W/mm2 that provide the maximum power of 12kW . The heaters, manufactured by

OMEGA Engineering, are powered by 3-phase 208 VAC, and feedback controlled using a silicon

controlled rectifier paired with a PID controller. A J-type thermocouple located in the freestream

1m downstream of the test-section inlet is used for feedback for the PID controller. With this ar-

rangement, the freestream temperature in the test-section can be controlled to within ±0.1◦C at a

95% confidence interval.
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Figure 2.6: Rotor-stator assembly design adopted from Al-Asmi and Castro (1993); θm is chosen
such that r = Lrsin(θm), R1 = Lr − r and R2 = Lr + r.

2.5.3 Rotor-Stator Assembly

A rotor-stator assembly located downstream the test-section is used to produce a pulsatile

boundary layer flow. The rotor-stator assembly design, shown in Fig. 2.6, is adapted from the

work of Al-Asmi and Castro (1993). A Labview controlled DC stepper motor drives the rotor at a

set angular frequency, ωrotor. There are four holes and four matching slots on the rotor and stator,

respectively. The angular frequency of the pulsatile flow is, therefore, ωflow = 4ωrotor. The design

also incorporates adjustable bleed slots in the stator to regulate the incoming flow. Two rotor-stator

assemblies are fabricated: one that can be installed between the test-section and the diffuser and

one that can be installed between the diffuser and the suction fan. The former is called RSTD4

4RSTD is designed and fabricated by D. Biles.
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and the latter is called RSDF5. Both RSTD and RSDF were used in the experimental studies of

pulsatile boundary layer flow. The dimensions of each design is summarized in Table 2.1:

Table 2.1: Dimensions of the fabricated rotor-stator assemblies.

RSTD RSDF
r(mm) 12.700 35.179
θm π/8 π/8
Lr(mm) 38.100 91.821
R1(mm) 25.400 56.642
R2(mm) 50.800 127.000

2.5.4 Thermal Wall Plate

The thermal wall-plate6 (shown in Fig. 2.7) is a sectioned wall design where each section is

independently heated and controlled. The design is modeled after the work of Blackwell et al.

(1972). Each section consists of an aluminum 6061 plate, resistive heaters (affixed to the bottom

of the aluminum plate), and a calcium silicate holder used for thermal isolation of the aluminum

plate. (The thermal conductivity of calcium silicate is four-orders of magnitude less than aluminum

6061.) Embedded thermocouples in each aluminum plate are used to monitor wall temperature

and for feedback control of wall heating. The streamwise (flow direction) length of each section

increases with downstream position such that the convective heat transfer from plate-to-plate does

not vary by more than 15%. The section components sit in a Delrin (acetal) frame, chosen for its

low thermal conductivity and machinability.

The leading edge of the frame is a super-ellipse designed to prevent flow separation (Narasimha

and Prasad, 1994). Wall-normal velocity profiles acquired slightly downstream of the leading edge

agree, within experimental uncertainty, with the Blasius profile-verifying that the flow does not

separate at the leading edge. To investigate turbulent boundary layers, a 3mm rod extending the

5RSDF is designed and fabricated by the author.

6The thermal wall-plate is designed and built by D. Biles.
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Figure 2.7: Top: computer-aided design of the thermal wall plate; bottom: photographs of the
manufacturing process of the plate.

spanwise extent of the test-section is placed at the rear of the leading-edge nose, just upstream

of the first convective plate. The rod induces transition to the turbulence and fixes (on average)

the starting location of a developing turbulent boundary layer. The convective plate design and its

feedback controller are described in detail below.

• Convective plates The sectioned wall-plate consists of twelve 9.5mm thick aluminum 6061

plates. The length of the plates are summarized in Table 2.2. Each plate is heated by a pair of

Kapton Polyimide-Film flexible resistive heaters with heating density of 0.0155 W
mm2 affixed

to the bottom of the aluminum plate. Each plate is maintained at constant temperature using

a feedback controller (one controller per plate). Three spanwise aligned J-type thermocou-
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Table 2.2: The length of the convective plates. Plate 1 is at the upstream and plate 12 is at the
downstream of the wind tunnel.

Plate number Length (in)
1, 2 2.9528

3, 4, 5 4.9213
6, 7, 8 6.8898
9, 10 10.8268
11 12.8346
12 16.9291

ples are embedded in each plate to monitor wall temperature and for feedback control of wall

heating. The thermocouples are embedded 2.5mm below the plate to better estimate the sur-

face temperature and to minimize heat loss due to conduction. As a measure of temperature

uniformity across the plates, the Biot number7, Bi, is calculated as follows:

Bi =
h∞LAL

kAl

(2.45)

where h∞ is the convection heat transfer coefficient of the flow, LAl is thickness of the plates

and kAl is the thermal conductivity of the plates. Bi 
 1 indicates a uniform temperature

distribution, which is ideal in the current case. For all the flow configurations in this study,

i.e., U∞ < 10m
s

, Bi < 0.0014, which satisfies the required condition of a Bi 
 1.

The time constants of the convective plates τAl are also calculated as follows:

τAl = LAlρAlcp,Al/h∞ (2.46)

where ρAl and cp,Al are the density and the specific heat coefficient of the plate. The upstream

plates have the smallest time constants since the convective heat transfer coefficient is the

largest at these locations. For all the flow configurations investigated in this study τAl >

600s. The advantage of a large time constant for the plates is that the thermal wall-boundary

7Biot number provides a measure of the temperature drop in the solid relative to the temperature difference be-
tween the surface and the fluid (Incropera and DeWitt, 1985).
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Figure 2.8: Temperature distribution across two convective plates, one heated (top) and one un-
heated (bottom) acquired by a FLIR SC645 infrared camera. The horizontal dashed lines mark the
edges of the two plates.

conditions can be considered fixed even in pulsatile flow. Conversely, the disadvantage of

a large time constant is that it takes a long time the for the wall-plate to reach its steady-

state temperature. To overcome this disadvantage, the suggested procedure is to turn on the

heaters on with no air flow until the plates reach their steady-state temperature; whereafter

the suction fan is turned on.

2.5.5 Feedback Controller

The temperature of each convective plate in the sectioned thermal wall-plate is monitored and

maintained by its own feedback controller8. Labview is used to define and implement the con-

troller settings. Each controller consists of a 10A silicon controlled rectifier (SCR) and an NPN

8The feedback controller is designed and built by the author.
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Figure 2.9: Left: photograph of a controller board. Right: photograph of the thermocouple ampli-
fier board.

transistor. The average temperature of the three embedded thermocouples in each convective plate

serves as the feedback parameter to direct the SCR to block/pass the 110 VAC that powers the

resistive heaters (effectively the SCR serves as a quick switch to turn the heaters on/off). The

feedback controller time constant is limited by the AC voltage frequency, sampling rate of the data

acquisition device, and the run-time of the controlling program. The latter one has the slowest

frequency, which for the current program is ∼10Hz. Therefore, the feedback controller time con-

stant is limited to τc = 100ms, which is orders of magnitude smaller than the convective plate

time constant. Consequently, the controller can monitor and adjust the heat-input to the convec-

tive plate much faster than the plate can lose (gain) heat to (from) the flow. With this setup, the

controller can maintain the plate temperature to within ±0.5◦C. The temperature tolerance of

the convective plates is determined with the three embedded thermocouples. In addition, a FLIR

SC645 infrared camera is used to provide two-dimensional distribution of the temperature across

the heated plate. Figure 2.8 shows the spatial uniformity of the heated plate. Importantly, the de-

sign allows for the application of a wide-range of thermal boundary conditions: e.g., isothermal,
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Figure 2.10: Top: the assembly process of the electronics in the enclosure box. Bottom: the final
preview of the enclosure box before wiring the heaters and thermocouples.
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streamwise temperature gradient, discrete temperature steps, among others. More details on the

controllers, thermocouple amplifiers, wiring diagram, and enclosure to house the electronics are

provided in Appendix A.
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CHAPTER 3

AN EXACT INTEGRAL METHOD TO EVALUATE WALL HEAT FLUX

IN SPATIALLY DEVELOPING TWO-DIMENSIONAL WALL-BOUNDED

FLOWS

The wall heat flux, defined as the local power per unit area transferred between a fluid and

a bounding wall, provides a primary scaling variable to study and characterize thermal boundary

layer flows (Grossmann and Lohse, 2000; Wei et al., 2005b; Wang et al., 2008). It is an indicator

of near-wall dynamics and hence a very stringent measure for verifying turbulence heat transfer

models (Hosni et al., 1991; Han and Reitz, 1997; Roy and Blottner, 2006; Rakopoulos et al., 2010).

The wall heat flux is used in industry as a diagnostic to test and evaluate system performance and to

assess problems. With respect to this dissertation work, an accurate measurement of the local heat

flux is a primary measurement needed to study heat transfer in non-equilibrium thermal boundary

layers.

Due to its immense value in thermal transport physics and engineering, there has been con-

siderable interest in determining and evaluating different methodologies to measure wall heat flux

(Childs et al., 1999; Taler and Taler, 2012). The most commonly used methods are based on

temperature difference measurements across a substrate (i.e., an extra-wall or the bounding wall

itself) to deduce heat flux using analytical, numerical, or inverse heat conduction methods (Taler,

1996; Reichelt et al., 2002; Li and Yan, 2003; Hendricks and Ghandhi, 2012); analog methods that

measure (or estimate) mass or momentum transfer and infer the wall heat flux using flow analo-

gies (Neal, 1975; Goldstein and Cho, 1995), and direct measurement of the near-wall temperature

gradient. Among the various techniques to measure wall heat flux, a few may be classified as

“direct”, in the sense that they do not rely on any a priori assumptions regarding the behavior of

the flow or temperature fields, and do not require calibration. Nevertheless, determining the wall
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heat flux, even from direct methods, has its challenges. For example, the accuracy of an experi-

mentally determined mean temperature gradient near the wall is limited by the spatial resolution of

the measurement system, where this limitation is exacerbated with increasing Reynolds number.

Moreover, measuring fluid temperature near the wall is experimentally difficult owing to interfering

inputs from the wall itself. For immersion probes, the near-wall interfering inputs generally include

aerodynamic, electrical, and thermal disturbances induced by interactions between the probe and

the wall. For optical measurement techniques, near-wall interference generally includes reflections

of laser light, low tracer density, and limited or obscured optical access. Consequently, for most

temperature measurements, the data points closest to the wall have the largest measurement error

and can often be erroneous.

In this chapter, an integral method that provides a direct measurement of the wall heat flux is

presented. The method is an extension of the works of Mehdi and White (2011) and Mehdi et al.

(2014) to evaluate the skin friction coefficient in turbulent wall-bounded flows. Following Fuk-

agata et al. (2002), Mehdi and White (2011) thrice integrated the momentum equation, replaced

streamwise gradient terms by mathematically equivalent wall-normal gradient terms, and derived

a mathematically exact integral equation for evaluating the wall stress suitable for experimental

data. Here, we apply the same approach to the thermal transport equation and derive a mathe-

matically exact integral equation for evaluating the wall heat flux. The primary advantages of the

present approach are that (a) the wall heat flux can be determined exactly using only wall-normal

profiles of mean temperature and turbulent heat flux at a single streamwise position, (b) being an

integral method (as opposed to a differential method), the present approach is less sensitive to mea-

surement noise (and erroneous data), in particular in the near-wall region of the flow, and (c) the

method provides a means to connect transport properties at the wall to the mean flow dynamics and

quantify their contributions on the wall heat flux. To evaluate and demonstrate the usefulness of

this method, it is applied to existing datasets for both forced and natural convection boundary layer

flow for which independent estimates of the wall heat flux were known. Complications owing to

experimental limitations and measurement error in determining wall heat flux from the proposed
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method are presented, and mitigating strategies are proposed and evaluated.

3.1 Mathematical formulation

For a two-dimensional, wall-bounded incompressible turbulent flow, in which viscous heating is

negligible, the Reynolds-averaged thermal transport equation in the streamwise (x-coordinate) di-

rection reduces to

∂Θ

∂t
+Gx − ∂

∂y

(
α
∂Θ

∂y
− v′θ′

)
= 0, (3.1)

where

Gx = U
∂Θ

∂x
+ V

∂Θ

∂y
− ∂

∂x

(
α
∂Θ

∂x
− u′θ′

)
, (3.2)

where x, y are the streamwise and wall-normal directions, U , u′, V , v′ are the mean and fluctuating

velocities in the x and y directions respectively, Θ, θ′ are the mean and fluctuating temperatures,

α is the thermal diffusivity, and an overline denotes a correlation. Integrating Eq. 3.1 in the y

direction from the wall to an arbitrary height yt, the following expression is obtained:

∫ yt

0

∂Θ

∂t
dy +

∫ yt

0

Gx dy − α
∂Θ

∂y
+ v′θ′ +

��
��
���
− q′′w

ρcp

α
∂Θ

∂y
|y=0 − ���

���0
v′θ′|y=0 = 0, (3.3)

where q′′w is the wall heat flux and cp is the fluid specific heat. Integrating Eq. 3.3 again in the y

direction from the wall to an arbitrary height yt, and incorporating integration by parts results in

the following expression:

yt

∫ yt

0

∂Θ

∂t
dy−

∫ yt

0

y
∂Θ

∂t
dy+yt

∫ yt

0

Gxdy−
∫ yt

0

yGxdy−α(Θ−����
Θw

Θy=0) − q′′w
ρcp

yt+

∫ yt

0

v′θ′dy = 0,

(3.4)
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where Θw is the wall temperature. Finally, integrating Eq. 3.4 in the y direction from the wall to

the arbitrary height yt, and isolating the wall heat flux q′′w yields in the following relation:

q′′w =
2λ

y2t

∫ yt

0

(Θw −Θ)dy+
2ρcp
y2t

∫ yt

0

(yt − y)v′θ′dy+
ρcp
y2t

∫ yt

0

(yt − y)2
(
Gx +

∂Θ

∂t

)
dy, (3.5)

where λ is the fluid conductivity. Gx contains derivatives in the streamwise directions, and quanti-

fying these gradients is experimentally challenging since (a) it requires measurements in multiple

streamwise locations, and (b) due to the slow streamwise development of the flow, the stream-

wise gradients are small and hard to resolve with sufficient accuracy. Therefore, the useful-

ness of Eq. 3.5 is limited when applied to experimental data. However, referring to Eq. 3.1,

Gx = ∂
∂y

(
α∂Θ

∂y
− v′θ′

)
− ∂Θ

∂t
, such that Gx in Eq. 3.5 can be replaced with its mathematical

equivalent, resulting in the following expression:

q′′w =
2λ

y2t

∫ yt

0

(Θw −Θ)dy +
2ρcp
y2t

∫ yt

0

(yt − y)v′θ′dy +
ρcp
y2t

∫ yt

0

(yt − y)2
∂

∂y

(
α
∂Θ

∂y
− v′θ′

)
dy

(3.6)

It follows that determining the wall heat flux using Eq. 3.6 requires only measurements of wall-

normal profiles of mean temperature and turbulent heat flux at one streamwise location up to an

arbitrary height yt.

For a turbulent boundary layer flow, normalization of Eq. 3.6 by the boundary layer thickness

δ, freestream velocity U∞, and temperature difference (Θw − Θ∞), where Θ∞ is the freestream

temperature, results in an expression for the Stanton number, St = q′′w
ρcpU∞(Θw−Θ∞)

St =
2

η2tPe

∫ ηt

0

Θ̃dη︸ ︷︷ ︸
I

− 2

η2t

∫ ηt

0

(ηt − η)ṽ′θ̃′dη︸ ︷︷ ︸
II

− 1

η2t

∫ ηt

0

(ηt − η)2
∂

∂η

(
1

Pe

∂Θ̃

∂η
− ṽ′θ̃′

)
dη︸ ︷︷ ︸

III

, (3.7)
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where η = y/δ, Pe = U∞δ
α

is the Peclet number, Θ̃ = θ−Θw

Θ∞−Θw
is the normalized temperature that

is decomposed into a mean temperature Θ̃ and fluctuating temperature θ̃′, and ṽ′ = v′/U∞. Eq. 3.7

consists of three contributing terms to St: I is the contribution from the mean temperature profile,

II is the contribution from the turbulent heat flux, and III is the contribution from the gradient of the

total (i.e., molecular plus turbulent) heat flux, or equivalently the substituted terms. The (yt − y)

or (yt− y)2 weightings place more emphasis on the near wall values and, consequently, as yt → δ,

term I decreases while terms II and III increase. Consequently, in addition to the ability to evaluate

the wall heat flux, this decomposition provides a means to connect transport properties at the wall

to the mean flow dynamics.

3.2 Validation

The mathematical exactness of the expression for the wall heat flux (Eq. 3.6) or Stanton number

(Eq. 3.7) does not necessarily mean that it will prove useful in evaluating wall heat flux from ex-

perimental data. The purpose of this section is to conduct a systematic validation of the approach

to: (1) evaluate possible effects that may limit the practical application of the present method, and

(2) describe strategies to minimize these limiting effects. This systematic validation is conducted

by using direct numerical simulation (DNS) datasets to simulate and evaluate typical experimental

limitations and uncertainties on the computed wall heat flux.

3.2.1 DNS datasets

The method is first evaluated using DNS datasets from Wu and Moin (2010) and Araya and

Castillo (2012). The purpose here is to evaluate the method using well-resolved data in the absence

of experimental measurement noise. These results also provide a baseline comparison to evaluate

limiting effects not observed in these datasets. The Stanton number determined from the DNS

datasets by evaluating Eq. 3.7 with the integration limit ηt = 1 is given in Table 3.1 column 7. The

excellent agreement (effectively zero difference) in the evaluated value of St (column 7) compared
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Table 3.1: Tabulated results comparing reported Stanton number (column 3) to that determined
from Eq. 3.7 (column 7). Reθ in column 1 is the Reynolds number based on momentum thickness.
APG and ZPG denote adverse pressure gradient and zero pressure gradient, respectively. The
first two rows are calculated using Araya and Castillo’s, and the rest using Wu and Moin’s DNS
datasets.

Study Pe St (×103) I (×104) II (×103) III (×104) StI+II+III (×103)
(APG) 2925 3.4228 5.2130 2.6044 2.9926 3.4250

(15%) (76%) (9%)
(ZPG) 14269 2.0459 1.1322 1.5991 3.3369 2.0460

(6%) (78%) (16%)
(ZPG) 6966 2.0846 2.4702 1.2270 6.1054 2.0846

(12%) (59%) (29%)
8691 2.2114 1.9672 1.3315 6.8322 2.2114

(9%) (60%) (31%)
9384 2.1742 1.8131 1.3438 6.4910 2.1742

(8%) (62%) (30%)
10917 2.0694 1.5486 1.3391 5.7541 2.0694

(7%) (65%) (28%)
12516 1.9855 1.3439 1.3391 5.1907 1.9855

(7%) (67%) (26%)
13639 1.9539 1.2337 1.3286 5.0195 1.9539

(6%) (68%) (26%)
15402 1.8886 1.0887 1.2982 4.8158 1.8886

(6%) (69%) (25%)
16163 1.8605 1.0365 1.2741 4.8280 1.8605

(6%) (68%) (26%)

to the published value (column 3) lends credence to the method. The Table also shows the value of

the individual terms given in Eq. 3.7 and their percent contribution to St. The second term is the

largest, followed by the third term, where as the first term is small and decreases with increasing

Pe.

The contributions to St from the three terms in Eq. 3.7 as a function of wall-normal position

for the dataset of Wu and Moin (2010) at Pe = 16163 are shown in Fig. 3.1. The superscript

+ on the upper horizontal axis denotes inner normalization: y+ = ρuτy/μ, where uτ =
√

τw/ρ

and τw is the wall shear stress. Illustrated in the figure is that the individual term contributions to

St depend on the upper limit of integration. This dependency results from the combined effects

of the integral and the wall-normal distance weighting of the terms. Term I, which is a function
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Figure 3.1: Contribution of term I (circles), II (diamonds) and III (squares) in the right hand side
of Eq. 3.7 plotted as a function of wall-normal position. The sum of the three terms (i.e., St) is
represented by the solid black line. The data is from Wu and Moin (2010) at Pe = 16163.

of the mean temperature, completely dominates in the conductive sublayer, y+ � 5. The integral

continues to grow with increasing wall distance but the overall term decays due to being divided

by the square of the wall distance. From 5 � y+ � 100, term I and term II balance each other

(i.e., they decrease/increase in the same proportion summing to St). Term III remains small well

into the outer layer (η ≈ 0.1) but eventually overtakes term I. In principle, the dependency of the

contributing terms on yt can be exploited to isolate or neglect terms depending on the measurement

domain. The exact behaviors of the three terms, however, depend on the Pe. For example, with

increasing Pe, term I becomes negligible over an increasing fraction of the boundary layer owing

to its Pe−1 dependence. Table 3.1 suggests that with increasing Pe, term I decreases are balanced
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Figure 3.2: The percentage difference in St computed from Eq. 3.7 by integrating over realistic
experimental domains. Same source of DNS data as in Fig. 3.1

by term II increases.

3.2.2 Effects of the limits of integration and wall-position

For wall-bounded flows, the wall-normal extent of the flow domain is a � y � b, where a and

b are the wall-normal location of the inner and outer boundary conditions, respectively. Typically,

a = 0 and b = ∞ or δ, where δ is a characteristic length scale of the outer region of the flow.

In general, the experimental measurement domain does not extend across the entire flow domain.

Most critical is that the data point closest to the wall will be a finite distance from the wall (typically

several y+ units from the wall). The aim here is to evaluate the relative error in the computed St
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when evaluating Eq. 3.7 to an arbitrary upper limit (i.e., yupperlimit < b) or from an arbitrary lower

limit (i.e., ylowerlimit > a). Figure 3.2 shows the percentage error in St (relative to its published

value) when integrating Eq. 3.7 with varying lower and upper limits of integration for the same

DNS data as in Fig. 3.1. These results, typical of all datasets investigated in Table 3.1, show

that Eq. 3.7 is more sensitive to variation in the lower limit of integration compared to variation

in the upper limit of integration. The practical consequence of these sensitivity differences is

that when the lower limit of integration is sufficiently close to the wall (i.e., a+ < 10) there is

diminishing return in reducing the percentage error by increasing the upper limit of integration.

Contrarily, when the lower limit of integration is far from the wall (i.e., a/δ > .05), the upper

limit of integration should be as large as possible to reduce the percentage error in the computed

St. In general, relative to an experiment, Fig. 3.2 can be used a priori to select the measurement

domain or posteriori to estimate minimum uncertainty bounds of the computed St for a given

measurement domain. The importance of acquiring high-quality near-wall data is clearly illustrated

in Fig. 3.2. This is not unexpected given that the wall heat-flux is a manifestation of the near-wall

flow dynamics.

Determining the true position of the wall, and its implication on flow characterization is, how-

ever, nontrivial in boundary layer experiments (Örlü et al., 2010). This is especially true at high

Peclet (Reynolds) numbers. To simulate the effects of incorrect zero position, the wall-normal

locations for the DNS data of Wu and Moin at Pe = 16163 are shifted by Δy+ ≤ ±10, and St

is computed from the shifted profiles using Eq. 3.7. Figure 3.3 shows the percentage difference

in the computed St corresponding to these shifts compared with the unshifted profiles. The small

percentage errors illustrate the robustness of the method to uncertainty in determining the true po-

sition of the wall. Contrarily, direct measurement of the wall heat flux by measuring the mean

temperature gradient at the wall is highly sensitive to wall location uncertainties.
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Figure 3.3: The percentage difference in St computed from Eq. 3.7 for profiles shifted by |Δy+|
compared to unshifted profiles. Same source of DNS data as in Fig. 3.1

3.2.3 Investigation of sparse and noisy data

Experimental datasets are typically sparse and noisy compared to DNS datasets. Data spar-

sity results from both limited spatial resolution and finite experimental run-times. Measurement

noise results from interfering inputs that are compounded by the presence of a wall, yielding low

signal-to-noise ratio in the near-wall vicinity of the flow. Consequently, in most boundary layer

experiments, the data points closest to the wall have the largest measurement error and can often

be erroneous. When the signal-to-noise ratio is sufficiently high (i.e., absence of erroneous data),

measurement noise is dominated by statistical errors owing to finite size datasets. In a turbulent

boundary layer, the statistical measurement errors can be estimated by
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Figure 3.4: Turbulent heat flux profiles from Wu and Moin at Pe = 16163 for the (solid line)
unaltered dataset Wu and Moin, (open circles) with data points removed, and (closed circles) with
data points removed and noise added. The noise added has a mean of zero and a standard deviation
of 2.8% corresponding to N = 5000 in Eq. 3.8. Note that although the DNS profile represents
discrete data, a continuous line is used for clarity.

εΘ
Θ

∼ θ′/Θ√
N

∼ 0.05√
N
;
εv′θ′

v′θ′
∼ v′θ′rms/v

′θ′√
N

∼ 2√
N

(3.8)

where ε is the fluctuation in the estimates, and N is the number of data points. The rms/mean

values used in Eq. 3.8 are typical values measured in the log-layer (Kawamura et al., 1998; Wu

and Moin, 2010; Lee et al., 2013).

A sparse and noisy test dataset is constructed from the DNS dataset of Wu and Moin (2010)

at Pe = 16163 by systematically removing data points closest to the wall, reducing the number

of data points, and adding random statistical noise to the mean temperature and turbulent heat flux

profiles. To approximate data that would be obtained in an actual experiment, all data points below
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Figure 3.5: Weighted total heat flux profiles from Wu and Moin at Pe = 16163: solid line is the
unaltered DNS, closed circles are the sparse and noisy DNS, and open squares are the Whittaker
smoothed sparse and noisy DNS. The noise added corresponds to N = 5000 in Eq. 3.8.

y+ ≈ 3.5 and above y/δ ≈ 1 are discarded. The 401 y-locations in the DNS dataset are reduced

to 50 logarithmically spaced locations. Gaussian noise is introduced to the reduced DNS dataset

as a first approximation of experimental noise. The noise added to the mean temperature profile

has a mean of zero and standard deviations of 0.14, 0.1 and 0.07%, whereas the noise added to the

turbulent heat flux profile has a mean of zero and standard deviations of 2.8, 2.0 and 1.4%. These

noise levels correspond to N = 5000, 10000 and 20000, respectively, in Eq. 3.8. A representative

simulated sparse and noisy turbulent heat flux profile with standard deviation of 2.8% is shown in

Fig. 3.4. Shown for reference are the full and sparse DNS profiles without added noise.
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Figure 3.6: PDF of error in St calculated for sparse and noisy datasets using Eq. 3.7. The added
noise has a mean of zero and standard deviations of (solid line) 1.4% and 0.07%, (dashed-dotted
line) 2.0% and 0.10%, and (dashed line) 2.8% and 0.14% for the turbulent heat flux and mean
temperature, respectively. Each PDF is constructed from 5000 data points.

The evaluation of term III in Eq. 3.7 requires computing the derivative of the total heat flux in

the wall-normal direction. Since the simulated experimental profiles are noisy (as observed in Fig.

3.4), smoothing of the data is required to accurately compute the derivative. Following the work

of Mehdi and White (2011), a Whittaker smoother is utilized to evaluate the derivative of the total

heat flux from the noisy data. The Whittaker smoother is a discrete penalized least squares method

based on the balance of two factors: smoothness and conformity to the actual data (i.e., the ability

to follow scatter in the data). The result is a new discrete data set, which is a smoothed version of

the original noisy data set. The algorithm of the smoother and its MATLAB implementation can

be found in Eilers (2003).
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The Whittaker smoother algorithm is used on q̃′′totla (1− η/ηt) profiles where

q̃′′total ≡ q̃′′molecular + q̃′′turbulent =
1

Pe

∂Θ̃

∂η
+
(
−ṽ′θ̃′

)
. (3.9)

Dividing the smoothed profile by (1− η/ηt) yields q̃′′total suitable for numerical differentiation,

where the accent ∼ denotes a normalized variable (see Eq. 3.7). The benefit of using the (1− η/ηt)

weighting is that boundary layer physics (in the absence of a local heat source/ sink) dictates that

the weighted profile need be monotonically decreasing (i.e., maximum heat flux at the wall), thus

providing a means to identify erroneous near-wall data (see Mehdi and White (2011)). Figure

3.5 shows the weighted total heat flux profiles for the unaltered DNS data, the sparse and noisy

data, and the Whittaker smoothed sparse and noisy data. The ability of the Whittaker smoother to

effectively smooth out the noise while closely reproducing the unaltered DNS profile is evident.

The process of adding random noise to the sparse DNS data is repeated 5,000 times, and for

each noisy signal the Stanton number is computed using Eq. 3.7 integrated to ηt ≈ 1. Figure 3.6

shows the probability densities of the percent difference in St, and for each individual term in Eq.

3.7, for the 5,000 noisy signals. Given the discussion above and the need to use the Whittaker

smoother, it is not unexpected that term III has the highest percentage error. The 95% confidence

interval for the percentage errors in St for the most noisy case (i.e., N = 5000) is ±2.81%. These

results are typical of all the datasets in Table 3.1 when following the same procedure of removing

data points and adding noise.

3.3 Validation using experimental data

Natural convection boundary layer datasets from Tsuji and Nagano (1988a,b) are used to validate

the integral method using typical experimental data. In these experiments, hot-wire anemometry

and cold-wire thermometry were used to measure the velocity and temperature field simultaneously

over a heated copper plate held at constant temperature. The wall heat flux was determined by

54



Table 3.2: Tabulated results comparing reported value of qw (column 2) to that determined from
Eq. 3.6 (column 6). The percentage in the last column is the difference in the evaluated value of
qw compared to the reported value. The units of column 2-6 are kW/m2. Bracketed percent values
give individual contribution from the terms on the right-hand-side in Eq. 3.6 labeled I′ ; II′ and III′

from left to right, respectively. Data taken from Tsuji and Nagano (1988a,b).

Grx(×10−10) q′′w,exp.(×10) I′ (×102) II′ (×102) III′ (×102) q′′w,I′+II′+III′(×10) % Diff.
1.553 2.175 1.966 12.826 5.227 2.002 7.94

(10%) (64%) (26%)
3.624 2.144 1.479 12.244 6.275 2.000 6.72

(7%) (61%) (32%)
8.441 2.148 1.194 12.133 6.486 1.981 7.78

(6%) (61%) (33%)
8.986 2.288 1.363 12.940 7.263 2.156 5.76

(6%) (60%) (34%)
17.970 2.189 0.967 11.838 6.853 1.966 10.21

(5%) (60%) (35%)

computing the temperature gradient at the wall by extrapolating the temperature profile measured

in the linear sublayer to the wall.

The wall heat flux for the datasets of Tsuji and Nagano (1988a,b) are computed using Eq. 3.6,

employing Richardson’s extrapolation for numerical differentiation and the Whittaker smoother

to estimate q′′total suitable for differentiation. The results computed for several Grashof numbers

(Grx ≡ gβ(Θw−Θ∞)x3

ν2
, where g is gravity, β is the coefficient of volume expansion, x is the distance

from the leading edge of the plate, and ν is the kinematic viscosity) are tabulated in Table 3.2. The

percentage in the last column is the difference in the evaluated value of q′′w compared to the reported

value. The magnitude of the % differences between the reported values of the heat flux and those

computed using Eq. 3.6 are larger than the % differences observed for the noisy DNS datasets (see

Fig. 3.6, for example). This may be a consequence of larger uncertainty in the reported value of q′′w,

larger statistical measurement noise, data sparsity, or the compound effects from these and other

limiting effects not included in the analysis of the DNS datasets. The table also shows the value

of the individual terms in Eq. 3.6 (labeled I′ , II′ , and III′ to represent the first, second, and third

terms on the RHS of the equation) and their percent contribution to the wall heat flux. The percent
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Figure 3.7: The % difference in q′′w for the experimental data of [33] for Grx = 1.553× 1010

contributions from the three terms is similar in magnitude to the forced convection boundary layer

data tabulated in 3.1.

The % difference in the computed value of q′′w using Eq. 3.6 with variable upper limits of inte-

gration compared to the reported value for Grx = 1.553× 1010 is shown in Fig. 3.7. Observed in

the figure is that the % difference decreases with increasing outer limit of integration yt/δT , where

δT is the thermal boundary layer thickness. The decrease is initially rapid until yt/δT ≈ 0.3 after

which the % difference decreases more gradually. In brief, the good agreement in the computed

and reported value of q′′w demonstrates the robustness of the method applied to experimental data.

In addition, Fig. 3.7 indicates that the method is fairly accurate even for limited experimental do-

mains.
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3.4 Summary

An integral method to evaluate the wall-heat flux in turbulent wall-bounded flow based on the triple

integration of the Reynolds-averaged energy equation was presented. Using data from the litera-

ture, the method is shown to be fairly robust based on good agreement of the evaluated wall heat

flux when compared to direct calculation of the temperature gradient at the wall using both DNS

and experimental data. Complications owing to experimental limitations and measurement error

in determining wall heat flux from the proposed method were presented and mitigating strategies

were described. The need for this technique may be argued on grounds that it provides a direct

estimate of the wall heat flux, and is useful when: (1) profiles at multiple streamwise locations

are not available or feasible, (2) a flow has an ill-defined outer boundary conditions, or (3) when

the measurement grid does not extend over the whole boundary layer thickness. Being an inte-

gral method, it is less sensitive to measurement noise than a differential method, in particular in

the near-wall region of the flow. Furthermore, determination of wall heat flux from the present

method provides a means to connect transport properties at the wall to the mean flow mechanism

throughout the flow.
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CHAPTER 4

INTEGRAL VALIDATION TECHNIQUE OF RANS TURBULENCE

MODELS

Reynolds-averaged Navier-Stokes (RANS) numerical simulations are used extensively to ad-

dress engineering fluid transport problems across a broad range of disciplines and industries (Menter,

1994; Catalano and Amato, 2003; Roy and Blottner, 2006; Stamou and Katsiris, 2006; Zhai et al.,

2007). The widespread application of RANS simulations is primarily due to both ease of use and

low computational cost, making RANS simulations ideal for system design and optimization, or

investigative studies when experimental measurements are not feasible, among other practical uti-

lizations. One shortcoming of RANS simulations is that the most often used linear eddy viscosity

models (EVM) are largely incapable of accurately simulating complex flows (Spalart, 2000; Hunt

et al., 2001; Menter and Kuntz, 2004; Hanjalic, 2005; Menter and Egorov, 2010). Owing to these

deficiencies, the base EVM (k-ε and k-ω) have been reformulated to seek improved performance

(Jones and Launder, 1972; Launder and Sharma, 1974; Wilcox, 1988; Kato, 1993; Menter, 1994;

Durbin, 1996; Kalitzin et al.). The purportedly improved variants (some being nonlinear) of the

base EVM are typically validated following what is termed here as the “standard validation tech-

nique" where the user compares averaged variable profiles (e.g., mean velocity or Reynolds shear

stress) or averaged wall fluxes (e.g., wall shear stress or wall heat flux) against baseline standards.

Model performance is assessed based on the “agreement" between model computed metrics and

baseline standard metrics (Oberkampf and Trucano, 2002; Bardina et al., 1997; Babuska and Oden,

2004; Zhang et al., 2007; Gorji et al., 2014).

The standard validation technique is generally sufficient for model validation in simple canon-

ical flows, like steady boundary layers or free shear flows, since much is known about these flows

and there is a wealth of data for baseline comparison (Patel et al., 1985; Bardina et al., 1997;
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Sarkar and So, 1997; Menter and Kuntz, 2004). In complex flows, commonly found in real-world

applications, the standard validation technique is often deficient since typically little is known

about the underlying flow physics to justify model validation based on a qualitative comparison of

a few select metrics. In the present chapter, an integral validation technique is formulated that is

well-suited to validate and verify RANS turbulence models in complex flows. The metrics for the

integral validation technique are attained by thrice integrating the RANS momentum and scalar

temperature transport equations to derive expressions for the wall shear stress and wall heat flux,

respectively, in terms of integrated mean flow variables. The strength of the technique is that a

direct connection is provided between mean flow dynamics and wall fluxes that is embedded in the

validation metrics. Consequently, the integral validation technique provides an improved means,

compared to the standard validation technique, to better evaluate if a RANS turbulence model

accurately captures the underlying flow dynamics.

Model validation and verification using the integral technique is demonstrated for reciprocat-

ing channel flow. This particular flow type was chosen since it is an unsteady, non-equilibrium

flow that is simple enough for direct numerical simulation (DNS) but complex enough to test

the performance of RANS turbulence models in a complex flow relevant to engineering applica-

tions such as internal combustion engines, heat exchangers, industrial mixers, or pumping sys-

tems. Two low-Reynolds-number and two high-Reynolds-number RANS turbulence models are

validated against DNS first using the standard validation technique and second using the integral

validation technique. The designation low-Reynolds-number model means that no wall-functions

are employed and the near-wall region is solved directly, and high-Reynolds-number model means

that wall-functions are employed. The specific low-Reynolds-number RANS turbulence models

are the widely used Launder-Sharma (LS) k-ε (Launder and Sharma, 1974) model and the v2-f

model (Durbin, 1995; Iaccarino and Durbin, 2000). The two high-Reynolds-number RANS tur-

bulence models are k-ε and k-ω For the standard validation technique, phase-averaged wall fluxes

and wall-normal profiles of mean and fluctuating variables and their correlations are compared to

the DNS results. Similarly, for the integral validation technique, the phase-averaged contributing
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terms to the wall shear stress and the wall heat flux are compared to the DNS results. Lastly, the

two validation techniques are compared, and the benefits of the integral technique are described.

A full description of reciprocating channel flow, the DNS, and the RANS turbulence models

has been described in Chapter 2. Note that in the RANS simulations, the turbulent heat flux (−u′
iθ)

is closed using Reynolds’ analogy and a simple eddy diffusivity approach, such that

−u′
iθ

′ =
νT
PrT

∂Θ

∂xi

.

where the turbulent Prandtl number, PrT = νT/αT = 0.9.

4.1 Standard Validation Technique

Phase-averaged wall-normal profiles and wall fluxes computed from the RANS simulations are

first compared to the DNS profiles following the standard validation technique. For ease of inter-

pretation, and when appropriate, data is presented only for a half-cycle (owing to anti-symmetry)

and separated between the accelerating phases and decelerating phases of the cycle. The phase-

averaged streamwise velocity difference profiles between the RANS turbulence models and the

DNS (URANS −UDNS) normalized by static friction velocity (uτ0 ≡
√

τ0/ρ where τ0 = h|dP/dx|
is the static shear stress) for Res = 648 (T = 30 h

Um
) and Res = 1019 (T = 40 h

Um
) are shown in

Figs. 4.1 and 4.2, respectively, where h is the channel half-height and Um is the amplitude of the

centerline velocity modulation. In general, and not unexpected, is that the performance of the

RANS turbulence models vary with phase and Res. The largest differences are observed from

5π/16 ≤ φ ≤ 12π/16 when the cross-sectional averaged flow is transitioning from an accelerat-

ing flow to a decelerating flow. Integrated across all phases and wall-normal positions, the high-

Reynolds-number models generally show the largest differences while the low-Reynolds-number

models shows the smallest differences. The two high-Reynolds-number models are generally well-

correlated with each other, while the low-Reynolds-number models differ between each other in

the near-wall region at several phases in the cycle, and in particular during the decelerating phases

for Res = 1019.
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Figure 4.1: Wall-normal (y-direction) profiles of the phase-averaged streamwise velocity differ-
ence between the RANS turbulence models and the DNS normalized by static friction velocity for
Res = 648 for accelerating phases (panel 1 and 3) and decelerating phases (panel 2 and 4). Phase
increases from bottom-to-top in a panel and the corresponding phase is written above the curves.
The line styles correspond to: v2-f , LS, k-ε, k-ω.
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Figure 4.2: Wall-normal profiles of the phase-averaged streamwise velocity difference between
the RANS turbulence models and the DNS normalized by static friction velocity for Res = 1019
Panel layout and line styles are the same as in Fig. 4.1.
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Figure 4.3: Reynolds shear stress difference profiles between the RANS turbulence models and the
DNS normalized by u2

τ0 for Res = 648. Panel layout and line styles are the same as in Fig. 4.1.
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Figure 4.4: Reynolds shear stress difference profiles between the RANS turbulence models and the
DNS normalized by u2

τ0 for Res = 1019. Panel layout and line styles are the same as in Fig. 4.1.
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(left panel) and Res = 1019 (right panel). The black solid line denotes the DNS. The line styles
for the RANS turbulence models are the same as in Fig. 4.1.

The phase-averaged Reynolds stress difference profiles (u′v′RANS − u′v′DNS) normalized by

u2
τ0 for Res = 648 and Res = 1019 are shown in Figs. 4.3 and 4.4, respectively. For both Res,

the largest differences between the DNS and the RANS turbulence models occur in the near-wall

region from 5π/16 ≤ φ ≤ 12π/16. In addition, the differences for Res = 1019 are greater than

for Res = 648. In general, the two high-Reynolds-number models are very well-correlated with

each other for all phases and wall-normal positions and the two low-Reynolds-number models are

better correlated with each other compared to their correlation for mean velocity.

The normalized wall shear stress, τw/τ0, computed from the DNS and RANS simulations are

plotted in Fig. 4.5 as a function of φ for Res = 648 (left panel) and Res = 1019 (right panel). Here
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τw is computed from the velocity gradient at the wall using a finite difference method. Apparent

(and not unexpected) is that the low-Reynolds-number models show much better agreement with

the DNS compared to the high-Reynolds-number models. In particular, for Res = 1019, the high-

Reynolds-number models do not capture the rapid rise in τw from 5π/16 ≤ φ ≤ 12π/16 when

the cross-sectional averaged flow is transitioning from an accelerating flow to a decelerating flow.

While the low-Reynolds-number models capture this rapid rise in τw, the peak magnitude is lower

and the rise occurs at a phase-lead compared to the DNS. Since it is during these phases that the

flow transitions to a turbulent flow, these results suggest that the high-Reynolds-number models do

not capture the transition to turbulence, whereas the transition to turbulence for the low-Reynolds-

number models occur at an early phase compared to the DNS.

The analog plots to those shown in Figs. 4.1–4.5 with respect to the thermal field are shown

in Figs. 4.6–4.10. The phase-averaged mean temperature difference profiles between the RANS

turbulence models and the DNS (ΘRANS−ΘDNS) normalized by the difference between the center-

line and wall mean temperature (Θcl −Θw) for Res = 648 and Res = 1019 are shown in Figs. 4.6

and 4.7, respectively. Surprisingly, the low-Reynolds-number models show larger differences for

Res = 648 compared to the high-Reynolds-number RANS turbulence models. At Res = 1019,

however, the low-Reynolds-number models show smaller differences. The phase-averaged turbu-

lent heat flux difference profiles (v′θ′RANS−v′θ′DNS) normalized by uτ0(Θcl−Θw) for Res = 648

and Res = 1019 are shown in Figs. 4.8 and 4.9, respectively. For Res = 648, the low-Reynolds-

number models show the smallest differences. For Res = 1019, all four RANS turbulence models

show the largest differences in the near-wall region from 5π/16 ≤ φ ≤ 12π/16, similar to the

Reynolds shear stress differences. Again, indicating that the RANS turbulence models do not

accurately capture the transition to turbulence.

The phase-averaged wall heat flux, nondimensionalized in the form of a Nusselt (Nu) number:

Nu =
q′′w

λ(Θcl −Θw)/h
, (4.1)
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Figure 4.6: Wall-normal profiles of the phase-averaged temperature difference between the RANS
turbulence models and the DNS normalized by the difference between the phase-averaged center-
line temperature and wall temperature for Res = 648. Panel layout and line styles are the same as
in Fig. 4.1.
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Figure 4.7: Wall-normal profiles of the phase-averaged temperature difference between the RANS
turbulence models and the DNS normalized by the difference between the phase-averaged center-
line temperature and wall temperature for Res = 1019. Panel layout and line styles are the same
as in Fig. 4.1.
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Figure 4.8: Turbulent heat flux difference profiles between the RANS turbulence models and the
DNS normalized by uτ0(Θcl −Θw) for Res = 648. Panel layout and line styles are the same as in
Fig. 4.1.
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Figure 4.9: Turbulent heat flux difference profiles between the RANS turbulence models and the
DNS normalized by uτ0(Θcl − Θw) for Res = 1019. Panel layout and line styles are the same as
in Fig. 4.1.
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(left panel) and Res = 1019 (right panel). The black solid line denotes the DNS. The line styles
for the RANS turbulence models are the same as in Fig. 4.1.

where λ is the thermal conductivity of the fluid, plotted as a function of φ computed from the

DNS and RANS simulations at Res = 648 (left panel) and Res = 1019 (right panel) are shown in

Fig. 4.10. In general, the low-Reynolds-number models do a much better job of reproducing the

DNS period and magnitude of Nu compared to the high-Reynolds-number models. At Res=1019,

both models show an overshoot spike near the end of the decelerating portion of the cycle, although

the spike for the LS model is much larger than that for the v2-f model. Lastly, similar to τw

both low-Reynolds-number models phase lead the DNS during the later phases of the accelerating

portion of the cycle.
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Table 4.1: Tabulated values of Δτ̂w and ΔN̂u given by Eq. 4.2 and Eq. 4.3, respectively, for the
four RANS turbulence models.

Δτ̂w × 100 ΔN̂u× 100
Model Res = 648 Res = 1019 Res = 648 Res = 1019

LS 16.7 18.7 19.1 23.3
v2-f 20.3 20.0 17.8 12.9
k-ε 28.9 43.4 28.0 33.0
k-ω 28.9 42.6 23.7 33.4

The wall flux predictive capabilities of the RANS turbulence models are quantified by inte-

grating the magnitude difference between the phase-averaged wall flux values computed from the

DNS and the RANS simulations over a full-cycle normalized by the cycle-averaged magnitude of

the wall-flux:

Δτ̂w =
1

2π〈|τw|〉
∫ 2π

0

|τwRANS
− τwDNS

| dφ, (4.2)

ΔN̂u =
1

2π〈Nu〉
∫ 2π

0

|NuRANS −NuDNS| dφ, (4.3)

where |·| denotes an absolute magnitude and 〈·〉 denotes a cycle-average. The values of Δτ̂w and

ΔN̂u for the four RANS turbulence models at both Res are tabulated in Table 4.1. The tabulated

results are generally consistent with a qualitative evaluation of Figs. 4.5 and 4.10. Specifically, the

Δτ̂w and ΔN̂u metric shows that the low-Reynolds-number models better predict the wall fluxes

compared to the high-Reynolds-number models. The metric also shows that the v2-f model per-

forms the best at Res = 1019. The apparent poor performance of the LS model in predicting Nu,

however, is primarily owed to the large spike at φ ≈ 15π/16. It follows that the general conclusion

from this standard validation technique is that the low-Reynolds-number models do a reasonable

job of modeling the flow physics of reciprocating channel flow with heat transfer at both Res.

Additionally, it is concluded that the high-Reynolds-number models do not accurately capture the

flow physics of reciprocating channel flow with heat transfer (in particular at Res = 1019) likely
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owing to deficiencies in the wall functions employed.

4.2 Integral Validation Technique

The wall shear stress and wall heat flux are not local quantities, but depend on the integrated

effects of the flow dynamics above the wall. Consequently, a comparison of the wall flux computed

from a RANS simulation to that computed from a benchmark dataset does not provide sufficient

information on how well the turbulence model predicts the flow dynamics. In particular, while such

a comparison can identify model failures, it cannot identify false-positives owed to the cancellation

of model errors. Moreover, such a comparison cannot be used to provide physics-based guidance

on how to improve a model. The integral validation technique presented here provides a direct

connection between wall fluxes and mean flow dynamics, thus providing the necessary means to

evaluate if a model correctly predicts the flow physics. In turn, providing needed information

critical to the improved development of turbulence models.

The integral validation technique is derived following the work of Fukagata et al. (2002) and

the complementary works of Mehdi and White (2011); Mehdi et al. (2014) and Ebadi et al. (2015).

The derivation of the wall heat flux is provided in Chapter 3 while the derivation of the wall shear

stress can be found in Mehdi and White (2011) and Mehdi et al. (2014)1 .

τw =
2μ

y2t

∫ yt

0

Udy︸ ︷︷ ︸
I

− 2ρ

y2t

∫ yt

0

(yt − y)u′v′dy︸ ︷︷ ︸
II

− ρ

y2t

∫ yt

0

(yt − y)2
∂

∂y

(
ν
∂U

∂y
− u′v′

)
dy,︸ ︷︷ ︸

III

(4.4)

1These expressions are valid in the most general case even when the advection/convection terms in the momentum
and scalar temperature transport equation are non-zero. Also note that other integral expressions for τw and q′′w are
possible depending on alternate substitution of mathematically equivalent terms.
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q′′w =
2λ

y2t

∫ yt

0

(Θw −Θ)dy︸ ︷︷ ︸
I ∗

+
2ρcp
y2t

∫ yt

0

(yt − y)v′θ′dy︸ ︷︷ ︸
II ∗

+
ρcp
y2t

∫ yt

0

(yt − y)2
∂

∂y

(
λ

ρcp

∂Θ

∂y
− v′θ′

)
dy,︸ ︷︷ ︸

III ∗

(4.5)

where μ, ρ and cp are the kinetic viscosity, density and specific heat, respectively; and yt is arbitrary

height in the wall normal direction. The Reynolds shear stress (−u′v′) and heat flux (v′θ′) in eddy

viscosity RANS models are obtained from the constitutive equations:

−u′v′ = νT
∂U

∂y
and − v′θ′ =

νT
PrT

∂Θ

∂y
.

Therefore, the equivalent integral relations for the RANS turbulence models are obtained by replac-

ing the Reynolds fluxes in terms II, II∗, III, III∗ by their RANS modeling equivalent. Equations

4.4 and 4.5 each consist of three contributing terms to the wall flux: I, I∗ is the contribution from

the mean velocity or temperature profile, respectively; II, II∗ is the contribution from the tur-

bulent flux; and III, III∗ is the contribution from the gradient of the total (i.e., molecular plus

turbulent) flux, or equivalently the substituted terms (e.g., in reciprocating channel flow, term III

is effectively the sum of the unsteady velocity and pressure gradient terms and term III∗ is the

unsteady temperature term). The (yt−y) or (yt−y)2 weightings place more emphasis on the near-

wall values and, consequently, as yt → h (or, alternatively, boundary layer thickness δ), term I, I∗

decreases while terms II, II∗ and III, III∗ increase. As described previously, the decomposition

provides two major advantages: (a) it provides a means to connect the wall flux to the mean flow

dynamics and (b) the expressions are amenable to experimental validation of turbulence models

requiring only measurements of wall-normal profiles of mean variables (velocity or temperature)

and turbulent flux at one streamwise location up to an arbitrary height yt (Mehdi and White, 2011;

Mehdi et al., 2014; Ebadi et al., 2015). Here (a) is exploited to develop a robust RANS turbulence

model validation technique.
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The phase-averaged contributions to τw/τ0 from the three terms in Eq. 4.4 when integrated

to the channel half-height (i.e., yt = h) are plotted in Fig. 4.11 for Res = 648 (left panel) and

Res = 1019 (right panel). First inspecting the DNS data, consistent between the two periods is

that the contribution from term I is small (note the scale is one order-of-magnitude smaller than

the others), representing approximately 10% or less of the total wall-shear stress at all phases.

Relative to the sign of τw, term I follows with a slight phase-lag. This phase lag is smaller for

Res = 1019 compared to Res = 648. For Res = 648, term II is of opposite sign of τw during the

first quarter-period (i.e., accelerating phases) and the same sign during the second quarter-period

(i.e., decelerating phases). For Res = 1019, the sign change occurs at φ ≈ 6π/16. Term III ,

however, changes sign relative to τw at a phase = 12π/16 for both Res. Observe that at the phase

where τw = 0 (i.e., flow reversal at the wall), the contributing terms to the wall-shear stress are all

finite but sum to zero.

In general, the low-Reynolds-number models follow the DNS better compared to the high-

Reynolds-number models. The largest differences for the low-Reynolds-number models are for

Res = 1019, where term I is well-predicted, term II is slightly over predicted during the accel-

erating phases of the cycle and under predicted during the early phases of deceleration (9π/16 ≤
φ ≤ 11π/16), and term III is over predicted during the late phases of acceleration (6π/16 ≤ φ ≤
8π/16). The sum of the differences in term II and III is observed in the predicted τw, where

the RANS turbulence models phase-lead the DNS at the late phases of acceleration. In brief, the

low-Reynolds-number models perform better than the high-Reynolds-number models and show

the largest differences compared to the DNS from 6π/16 ≤ φ ≤ 11π/16 when the cross-sectional

averaged flow is transitioning from an accelerating flow to a decelerating flow. Similar, to the con-

clusions drawn from the standard validation technique, the low-Reynolds-number models do not

accurately capture the transition to turbulence.

The phase-averaged contributions to Nu from the three terms in Eq. 4.5, when integrated to

the channel half-height (i.e., yt = h), are plotted in Fig. 4.12 for Res = 648 (left panel) and

Res = 1019 (right panel). The DNS data shows that the period of each term is half the forcing
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Figure 4.11: Contribution of term I (2nd row), II (third row) and III (fourth row) in the right
hand side of Eq. 4.4 plotted as a function of φ for Res = 648 (left panel) and Res = 1019 (right
panel). The top row is τw/τ0 shown for reference. Note that at any φ the sum of I, II, III equals
τw/τ0. Panel layout and line styles are the same as in Fig. 4.5.

period, unlike the terms for τw which have a period equal to the forcing period2. The dominant

contribution is term II∗, the contribution from term I∗ is small, and term II∗ and III∗ are 1800

out of phase. Compared to τw, the RANS turbulence models perform far worse in predicting the

contributing terms to Nu. Similar to earlier observations from the mean temperature profiles,

the high-Reynolds number models better predict term I∗ at Res = 648, while the low-Reynolds-

number models better predict term I∗ at the higher Res. For Res = 1019, both the low- and

high-Reynolds-number models underestimate term II∗ but have the correct phase. Surprisingly,

2Details of a toy model developed to relate the modulation frequency of Nu and τw to the forcing frequency are
provided in Appendix B.
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Figure 4.12: Contribution of term I∗ (2nd row), II∗ (third row) and III∗ (fourth row) in the right
hand side of Eq. 4.5 plotted as a function of φ for Res = 648 (left panel) and Res = 1019 (right
panel). The top row is Nu shown for reference, where ΔΘ = Θcl − Θw. Note that at any φ the
sum of I∗, II∗, III∗ equals Nu. Panel layout and line styles are the same as in Fig. 4.10.

for term III∗ the high-Reynolds-number models perform better than the low-Reynolds-number

models. Specifically, although the high-Reynolds-number models underestimate the magnitude

of term III∗ they are roughly in phase with the DNS and have the correct sign. Conversely, for

the low-Reynolds-number models, term III∗ is 1800 out of phase and, during the late phases

of acceleration and almost all phases of deceleration (6π/16 ≤ φ ≤ 16π/16), of opposite sign

compared to the DNS. Since in reciprocating channel flow term III∗ is effectively the unsteady

temperature term (i.e., ∂Θ/∂t), these results suggest that the evolution of the unsteady term is not

well-modeled. Importantly, for the low-Reynolds-number models, the differences in terms II∗ and
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III∗ serendipitously cancel to yield a reasonable prediction of the wall heat flux compared to the

DNS.

A similar metric as used for the standard validation technique is used here to quantify the dif-

ferences between the phase-averaged RANS predicted integral terms in Eqs. 4.4 and 4.5 compared

to the DNS:

Δî =
1

2π〈|i| 〉
∫ 2π

0

|iRANS − iDNS| dφ, (4.6)

where i = {I, I∗, II, II∗, III, III∗}. The values of ΔÎ ,ΔÎ∗; ΔÎI,ΔÎI∗; and ΔÎII,ΔÎII∗ are

tabulated in Table 4.2, 4.3, and 4.4, respectively. The tabulated results are consistent with the

qualitative evaluation of Figs. 4.11 and 4.12 and their accompanying descriptions. Specifically,

term I, I∗ are generally well-predicted by the high-Reynolds number models at both Res. For the

low-Reynolds-number models, term I, I∗ are better predicted at Res = 1019. Note that the good

prediction of term I, I∗ does not necessarily mean that the U and Θ profiles are well predicted, it

only means that the integral contributions to the wall-flux from U and Θ are well-predicted. For

all four models, the differences in term II, II∗ are significantly larger compared to the differences

in term I, I∗, indicating that the turbulent models are not accurately modeling the turbulent flux

terms. Surprisingly, as described above, the high-Reynolds-number models better predict term

III∗ compared to the low-Reynolds-number models.

In summary, while validation based on comparisons of Nu alone suggests that the low-Reynolds-

number models perform reasonably well, the integral validation technique demonstrates that RANS

turbulence models do not accurately capture the underlying flow physics. The technique also iden-

tifies that the unsteady term is not well-modeled from the late-stages of the acceleration portion of

the cycle through the decelerating portion of the cycle. Moreover, the reasonable success in pre-

dicting the integral terms for τw and the failure in predicting the terms for Nu is strong evidence

that at least one issue in the RANS modeling lies in the assumption that the turbulent Prandtl num-

ber is constant.
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Table 4.2: Tabulated values of ΔÎ and ΔÎ∗ given by Eq. 4.6 for the four RANS turbulence models.

ΔÎ × 100 ΔÎ∗ × 100
Model Res = 648 Res = 1019 Res = 648 Res = 1019

LS 1.6 2.5 9.2 0.8
v2-f 2.1 2.8 11.0 0.7
k-ε 3.1 1.0 6.7 1.8
k-ω 2.8 1.0 1.4 4.2

Table 4.3: Tabulated values of ΔÎI and ΔÎI∗ given by Eq. 4.6 for the four RANS turbulence
models.

ΔÎI × 100 ΔÎI∗ × 100
Model Res = 648 Res = 1019 Res = 648 Res = 1019

LS 28.1 25.7 17.0 28.6
v2-f 35.6 22.1 28.7 28.8
k-ε 67.6 33.5 21.9 26.1
k-ω 72.4 40.7 29.2 30.5

Table 4.4: Tabulated values of ΔÎII and ΔÎII∗ given by Eq. 4.6 for the four RANS turbulence
models.

ΔÎII × 100 ΔÎII∗ × 100
Model Res = 648 Res = 1019 Res = 648 Res = 1019

LS 11.8 12.6 125.2 122.8
v2-f 15.8 15.7 126.3 115.3
k-ε 30.4 46.4 85.9 28.2
k-ω 28.6 41.8 59.2 43.3

4.3 Reynolds Analogy

The fact that the RANS turbulence models better predict the contributing integral terms to τw com-

pared to q′′w suggests that the turbulent heat flux closure is not properly modeled. Specifically, since

the Reynolds analogy is employed in the RANS numerical simulations, it suggests that Reynolds
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Figure 4.13: PrT profiles as a function of the distance from the wall in a steady channel flow, with
temperature as a passive scalar. Figure courtesy of Samir Sid.

analogy may not hold in reciprocating channel flow. The potential breakdown of Reynolds analogy

in reciprocating channel flow is, therefore, briefly explored here.

The Reynolds analogy relies on the assumption that there exists a turbulent Prandtl number

PrT , which relates the momentum scales to the thermal scales. In standard modeling practice,

PrT is assumed to be a constant across the flow domain. This assumption is relatively valid in

steady equilibrium flow but is known to breakdown in non-equilibrium flow (Blackwell et al.,

1972; Bradshaw and Huang, 1995; Araya and Castillo, 2012). Importantly, to assess the validity

of Reynolds analogy, DNS allows for the PrT to be computed directly:
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PrT =
νT
αT

=
u′v′ (∂Θ/∂y)

v′θ′ (∂U/∂y)
. (4.7)

It follows that examination of PrT profiles allows for a direct evaluation of the validity of Reynolds

analogy. For example, Fig. 4.13 shows wall-normal profiles of PrT in steady-state turbulent

channel flow at two Reτ = uτh/ν. Evident is that PrT is approximately constant across the

channel height, and that the degree of constancy is greater for the higher Reτ .

Wall-normal profiles of PrT computed from the DNS of reciprocating channel flow for Res =

648 and Res = 1019 are shown in Figs. 4.14 and 4.15, respectively. Apparent is that PrT is highly

variable both across the channel half-height as well as between different phases. With the exception

of a few decelerating phases at Res = 1019, the PrT does not approximate a constant across

the flow domain. In particular, the PrT profiles are complex and of generally similar shape for

many of the phases. For both Res and during the accelerating phases of the cycle, PrT decreases

with increasing y in the inner-region of the flow with a phase-dependent y-position zero crossing

followed by a rapid decrease/rapid increase (with a second zero crossing). PrT then approaches

either a constant value, decays to zero, or has some complex behavior as the channel centerline is

approached. The first zero crossing is where u′v′ changes sign and the rapid sign change occurs

at the zero crossing of ∂U/∂y. It is apparent from Figs. 4.14 and 4.15 that Reynolds analogy is a

flawed assumption in reciprocating channel flow.

The underlying failure of Reynolds analogy is most likely caused by the combined effects of

the flow being intermittently turbulent (i.e., transitional like at most phases) and forced by an un-

steady pressure gradient. Regarding the latter effect, as described by Bradshaw and Huang (1995)

and Bradshaw (1996), Reynolds analogy may breakdown in flows with imposed pressure gradients

because the velocity field depends on the pressure field while the temperature field does not (ex-

plicitly) depend on the pressure field. It follows that the inability of the RANS turbulence models

to accurately predict the contributing integral terms to Nu is most likely due to a combination of

deficiencies in the turbulence models employed and the use of Reynolds analogy, either way new

models or modification to the current models should be investigated.
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Figure 4.14: PrT profiles as a function of distance from the wall for Res = 648. The horizontal
dashed lines correspond to PrT = 1. Panel layout is the same as in Fig. 4.1.
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Figure 4.15: PrT profiles as a function of distance from the wall for Res = 1019. The horizontal
dashed lines correspond to PrT = 1. Panel layout is the same as in Fig. 4.1.
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4.4 Summary

DNS of reciprocating channel flow with heat transfer was used to evaluate the performance of two

low-Reynolds-number and two high-Reynolds-number RANS turbulence models. Two validation

techniques were used in the evaluation: (1) the so-called standard validation technique, where

results from RANS simulations of averaged variable profiles and wall fluxes are compared to the

DNS dataset, and (2) an integral validation technique, where the contributing terms to the wall

shear stress and wall heat flux are compared between the RANS results and the DNS dataset.

The contributing terms to the wall shear stress and wall heat flux used in the integral validation

technique were obtained by thrice integrating the momentum and scalar temperature transport

equation, respectively.

The standard validation technique indicated that the two low-Reynolds-number models rea-

sonably predicted the transport of momentum and thermal energy in reciprocating channel flow.

Specifically, the mean variable profiles predicted by the RANS simulations qualitatively agreed

reasonably well with the DNS profiles. Moreover, using the wall flux of momentum and wall flux

of heat as validation metrics, both low-Reynolds-number turbulence models predicted the wall-

shear stress and wall-heat flux to within approximately 20% of the DNS results as quantified by

Eqs. 4.2 and 4.3, respectively. The largest differences observed between the low-Reynolds-number

models and the DNS were from 6π/16 ≤ φ ≤ 11π/16, when the flow transitions from an accel-

erating flow to a decelerating flow. Since it is during these phases that the flow transitions to a

turbulent flow, it can be concluded that the RANS turbulence models do not accurately capture this

transition. With respect to the wall fluxes, this modeling deficiency manifested itself in a phase-

lead of the RANS modeled wall fluxes compared to the DNS computed wall fluxes.

The results of the integral validation technique, however, provided a very different assessment

of the performance of the RANS turbulence models. The most striking result is that while the

low-Reynolds-number models performed reasonably well in predicting the contributing terms to

the wall shear stress, the models performed rather poorly in predicting the contributing terms to the
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wall heat flux. Specifically, the contributions from the turbulent heat flux (term II∗) were under

predicted by as much as approximately 40% during the decelerating phases of the cycle. In addi-

tion, the contribution from the gradient of the total heat flux (term III∗, which is effectively the

contribution from the unsteady temperature), was of opposite sign and 180o out-of-phase compared

to the DNS. Importantly, the differences in term II∗ and III∗ serendipitously canceled each other

yielding a reasonable prediction of the wall heat flux compared to the DNS. Consequently, despite

a reasonable agreement in predicting the wall heat flux, the low-Reynolds-number models do not

accurately model the transport of thermal energy in reciprocating channel flow. This important

conclusion likely would have been missed using the standard validation technique. In addition, the

integral validation technique identified the root causes of the modeling failures, namely the break-

down of Reynolds analogy and deficiencies in the turbulence heat flux model. This information is

critical to the improved development of turbulence models.
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CHAPTER 5

TRANSITION TO TURBULENCE IN RECIPROCATING CHANNEL

FLOW

Reciprocating flow is typically categorized into five flow regime types: I (laminar), II (disturbed

laminar), III (self-sustaining transition), IV (intermittently turbulent), and V (fully-developed tur-

bulent) as described in Chapter 2 (Ozdemir et al., 2014; Akhavan et al., 1991a). Understanding

the mechanisms of transition between flow regime types is important to understand and predict

the transport mechanisms in many biological and engineered flow systems. Importantly, owing to

the profound differences in the transport behaviors between laminar and turbulent flow, there has

been extensive work towards understanding the underlying mechanisms of transition between the

laminar and turbulent flow regimes in periodic flow (Eckmann and Grotberg, 1991; Kurzweg et al.,

1989).

In this Chapter, the DNS of reciprocating channel flow described in Chapter 2 (and used to eval-

uate RANS turbulence models as described in Chapter 4) is used to study transition to turbulence

in periodic flows. The simulations are performed for Res = 648 and 1019, representing type III

(self-sustaining transition) and type IV (intermittently turbulent) flow regimes, respectively. The

phase-averaged mean momentum balance is analyzed to determine the leading order terms as a

function of phase angle. Turbulence is defined when the magnitude ordering of the leading order

terms in the mean momentum equation matches with the four layer structure first introduced by

Wei et al. (2005a) for fully-developed wall-bounded turbulent flows. Mean flow properties such as

the turbulent inertia and the temporal acceleration are investigated prior to and during the onset of

turbulence to understand the underlying mechanisms of transition.
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5.1 Literature Review

Critical Res of Flow Regime Transitions

Experimental studies investigating transition to turbulence in reciprocating flows include Miller

and Fejer (1964), Sergeev (1966), Akhavan et al. (1991a), Schmirler et al. (2014), Eckmann and

Grotberg (1991). Similarly, numerical simulations include Spalart and Baldwin (1989), Akha-

van et al. (1991b), Scotti and Piomelli (2001), Di Liberto and Ciofalo (2011) and Ozdemir et al.

(2014). Collectively, these studies demonstrate that the transition between different flow regime

types occur at a critical Stokes Reynolds number: Res =
Umls
ν

, where Um is the amplitude of the

cross-sectional average velocity, ls ≡ √
2 ν
ω

is the Stokes layer thickness, ω is the angular fre-

quency of the oscillation and ν is the kinematic viscosity of the fluid. Given that there are five

flow regime types there will be four critical Res values. The four critical values of Res denoted

here by Res,a→b, where a, b denotes the flow regimes from which the flow transitions from and to,

respectively. Res,a→b is determined empirically by defining arbitrary thresholds of turbulent inten-

sity, skin friction coefficient, and the turbulent kinetic energy growth rate, among other statistical

variables, (Di Liberto and Ciofalo, 2011; Hedley and Keffer, 1974). A summary of the four critical

values of Res and a brief description of the transition are described below:

1. Res,I→II ≈ 280 (Akhavan et al., 1991a): This transition is from a laminar flow (I) to a

disturbed laminar flow (II). A disturbed laminar flow shows fluctuations in the instantaneous

velocity, however, the mean velocity profile does not depart from the laminar profile. Since

the onset of velocity fluctuations are very sensitive to initial and background disturbances,

there is noticeable scatter in the report critical value of Res,I→II from different studies.

2. Res,II→III ≈ 500 (Ozdemir et al., 2014): This transition is from a disturbed laminar flow

(II) to a self-sustaining transitional flow (III). In a self-sustaining transitional flow, the mean

velocity profiles depart from laminar flow profiles. The energy of the velocity fluctuations

transfer from one phase to the next, however, the energy is insufficient to trigger transition to

a turbulent flow. Flow regime III was first proposed by Spalart and Baldwin (1989) and has
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been extensively studied by Ozdemir et al. (2014). Res,II→III ≈ 500 is reported by Ozdemir

et al. (2014).

3. Res,III→IV ≈ 750 (Ozdemir et al., 2014): This transition is from a a self-sustaining tran-

sitional flow (III) to a intermittently turbulent flow (IV). In an intermittently turbulent flow,

fully-developed turbulent flow behaviors are first observed in the early decelerating phases

of the cycle. Dimensional analysis performed by Akhavan et al. (1991a) predicts a modified

logarithmic mean velocity profile for the phases that exhibit fully-developed turbulent flow

behaviors.

4. Res,IV→V ≈ 3460 (Jensen et al., 1989): This transition is from an intermittently turbulent

flow (IV) to a fully-developed turbulent flow (V). In a fully-developed turbulent flow, the

flow exhibits fully-developed turbulent flow behaviors over the entire cycle and a logarith-

mic mean velocity profile is absent for only 10% of the oscillation period around the phase

corresponding to flow reversal (Jensen et al., 1989).

Mechanisms of Flow Regime Transitions

Theoretical studies on the mechanisms of flow regime transitions in periodic flow are primarily

based on linear instability analysis as reported by Morkovin and Obremski (1969), Von Kerczek

and Davis (1974), Blennerhassett and Bassom (2002), Blennerhassett and Bassom (2006), Luo and

Wu (2010). These theoretical studies can be categorized into two groups:

(a) Quasi-steady: In this approach, the time variation of the base flow is neglected, and the flow

is analyzed as an ensemble of frozen profiles at different phases (Morkovin and Obremski, 1969;

Von Kerczek and Davis, 1974). The method is valid only when the time scale of the base flow

(for example, the oscillation period) is much longer than the advection time scale of the growth

(or decay) rate of the instabilities. Using a quasi-steady approach, Von Kerczek and Davis (1974)

predicted Res,III→IV = 86. Compared to experimental observations (as described previously),

this predicted critical Res is much too low, indicating that the quasi-steady formulation does not

capture the correct mechanism of transition. A likely reason being that the instabilities are damped
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on a time-scale much shorter than the time-scale of the base flow, which would not be captured by

a quasi-steady analysis.

(b) Time-dependent theories: In this approach, which is an extension of the Floquet theo-

rem, the time variation is retained (Hall, 1978; Blennerhassett and Bassom, 2006). However, the

amplitude of the velocity fluctuations are assumed to be small at all phases of the cycle (Akha-

van et al., 1991b; Ozdemir et al., 2014). Employing the time-dependent approach, Blennerhassett

and Bassom (2006) predicted Res,III→IV = 1416, which is much greater than the experimentally

observed critical Res. Again, suggesting that the time-dependent approach does not capture the

correct mechanism of transition.

It can be conjectured, given the under/over predictions of Res,III→IV from the quasi-steady

and time-dependent formulations, respectively, that the time-dependency cannot be neglected and

the amplitude of velocity fluctuations cannot be considered small. An analysis that retains the

time-dependency and considers order one (large) velocity fluctuations has, to the best of author’s

knowledge, not been performed. Nevertheless, these theoretical investigations coupled with nu-

merical simulations (Akhavan et al., 1991b; Ozdemir et al., 2014) provide reasonable insights into

the underlying transition mechanisms, as outlined below.

1. Transition from regime I to regime II: Infinitesimally small disturbances grow linearly to

finite amplitude. Next, these finite-amplitude disturbances grow nonlinearly in the late ac-

celerating and early decelerating phases of the cycle, but are damped in the late decelerating

and early accelerating phases of the cycle. In this stage, even a 20% disturbance in velocity

amplitude does not lead to sustained departure from the laminar velocity profile (see Eq.

2.22) (Ozdemir et al., 2014).

2. Transition from regime II to regime III: Finite-amplitude disturbances grow nonlinearly and

the unsteady fluctuations are sustained from one cycle to the next. This transition depends

strongly on the amplitude of the initial disturbances (Ozdemir et al., 2014).
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3. Transition from regime III to regime IV: The unsteady finite-amplitude velocity fluctuations

grow exponentially during the acceleration phase of the cycle.

4. Transition from regime IV to V: Owing to strong nonlinear disturbances in regime IV, linear

instability analysis is not applicable.

While providing insightful information on the evolution of infinitesimally small flow distur-

bances, linear instability analysis has not been successful in predicting the onset of turbulence in

reciprocating wall-bounded flows (Ozdemir et al., 2014). Therefore, other approaches are neces-

sary to better understand the dynamics of the base flow that underlies the exponential growth of

the finite-amplitude velocity fluctuations and triggers transition from a self-sustaining transitional

flow (III) to a intermittently turbulent flow (IV). One such interesting approach is that by Studer

et al. (2006). Following Obremski and Fejer (1967), Studer et al. (2006) assumed two different

transition mechanisms in a reciprocating boundary layer: transition due to instabilities and tran-

sition due to a laminar-turbulent interface. In the former, the transition mechanisms are the same

as for a steady flow, such as Tollmien-Schlichting waves and bypass transition mechanisms. In

the latter, turbulent fronts emerge from upstream transitions (Studer et al., 2006). The metric used

to determine the type and spatial position of the transition is the amplitude and skewness of the

wavelet transfer function of the temporal velocity signal. One limitation of the method is, however,

that although a transition is detected, the underlying mechanism of transition is presumed to be ei-

ther transition due to instabilities or transition due to a laminar-turbulent interface. Furthermore,

the method is local (i.e., restricted to the probe location) and requires a very long sampling length

(>1000 periods).

In the present study, the balance of the leading order terms in the phase-averaged mean mo-

mentum equation are used to define the onset of turbulence in type IV flows. The results confirm

that fully-developed turbulence first emerges at the early phases in the decelerating portion of the

cycle. By comparing the leading-order terms in the momentum balance as a function of wall-

normal position between regime III and regime IV flows, the underlying mechanism of the laminar

to turbulent transition is the emergence of an internal layer that first develops during the late phases
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of the accelerating portion of the cycle. In the absence of this internal layer, the flow remains tran-

sitional over the entire cycle.

5.2 Direct Numerical Simulations

The data used in the analysis is the DNS of reciprocating channel described in previous chapters.

The study of Di Liberto and Ciofalo (2011) was used to identify two Stokes Reynolds numbers:

Res = 648 and 1019 (corresponding to periods T = 30 h
Um

and T = 40 h
Um

with Womersley num-

bers of 20.47 and 17.72, respectively, where h is the channel half-height and Um is the amplitude of

the centerline velocity modulation.). The former Res is at the edge of the interface between a dis-

turbed laminar flow (type III) and an intermittently turbulent flow (type IV), whereas the latter Res

is well within the intermittently turbulent regime (type IV) and exhibits fully turbulent behaviors

over a portion of the cycle.

Since Res,III→IV is approximate (i.e., ≈ 750), classification of flow regime types simply based

on Res is inexact. As described previously, type IV flows exhibit fully-developed turbulent be-

haviors during a portion of the cycle. These turbulent behaviors are most often evaluated by

the absence/existence of logarithmic behavior of the mean velocity profile, and how closely the

y-intercept and slope of the logarithmic velocity corresponds to those observed in equilibrium

wall-bounded flows (Akhavan et al., 1991a).

In equilibrium wall-bounded flow, a logarithmic (i.e., overlap) velocity profile is a dimensional

necessity when the inner (δν = ν/uτ ) and outer (h) length scales are sufficiently separated, i.e.,

when h+ is sufficiently large (Smits et al., 2011). In reciprocating flow, Akhavan et al. (1991a)

introduced a third length scale, termed the unsteady length-scale δt = uτ/ω, where ω is the angular

frequency of the oscillating pressure gradient. These authors argued that logarithmic behavior is

a dimensional necessity whenever at least two of the three length scales are widely separated, and

proposed four possible scenarios for logarithmic behavior:
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Figure 5.1: The ratio of the unsteady to the outer (top), the outer to the viscous (middle), and the
unsteady to the viscous (bottom) length scales for Res = 648 (blue circles) and Res = 1019 (red
diamonds) as a function of phase.

1. Case 1: δt � h � δν : The universal law of the law applies, U+ = 1
κ
log(y+) + B, where κ

is the von-Karman coefficient (� 0.4) and B (� 5) is the y-intercept at y+ = 1;

2. Case 2: δt ∼ h � δν : A modified logarithmic law applies, U+ = 1
κ
log(y+)+B1(

uτ

hω
), where

the y-intercept B1 �= B.

3. Case 3: h � δt � δν : No logarithmic behavior is expected;

4. Case 4: h � δt ∼ δν : A modified logarithmic law applies, i.e., U+ = 1
κ
log(y+) + B2(

u2
τ

νω
),

where the y-intercept B2 �= B1 �= B

The unsteady and viscous length scales in the current DNS are plotted and compared to the

channel half-height in Fig. 5.1. The scale separation for Res = 648 and 1019 are similar for

the most part of the cycle, and classifies the current simulation under Case 2. However, different
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magnitude ordering of the length scales for Res = 648 and 1019 are observed at 8π
16

≤ φ ≤ 12π
16

.

While the scale separation between δt and δν remains two orders of magnitude throughout the cycle

for Res = 648, it increases to three orders of magnitude for Res = 1019.

5.3 The Mean Momentum Equation Based Framework

The balance of the leading order terms in the mean momentum equation are explored for recip-

rocating channel flow using a mean momentum balance framework (Fife et al., 2005). While the

framework has proven valuable to better understand logarithmic scaling of the mean velocity dis-

tribution in canonical wall bounded flows, it has not been applied to non-equilibrium wall bounded

flow as will be done here. A brief review of the framework of the analysis is provided here first for

steady-state fully-developed channel flow and second for reciprocating channel flow. For more de-

tailed descriptions of the framework, the reader is referred to Fife et al. (2005), Wei et al. (2005a),

Klewicki et al. (2009), Klewicki et al. (2011) and Klewicki (2013).

5.3.1 Steady-State Channel Flow

For a steady-state, fully-developed, turbulent channel flow of channel half-height h the mean

momentum equation is given by

0 =
1

h+︸︷︷︸
A

+
dU+

dy+2︸ ︷︷ ︸
B

− du′v′
+

dy+
.︸ ︷︷ ︸

C

, (5.1)

where term A is the mean pressure gradient, term B is the mean viscous force, and term C, the

wall-normal gradient of the Reynolds shear stress, is the mean effect of turbulent inertia. Term C

becomes non-zero shortly after the onset of the transition to turbulence. At h+ = 180, the terms

in Eq. 5.1 begin to nominally satisfy the four layer magnitude ordering of terms first revealed by

Wei et al. (2005a) that is characteristic of the flow for all higher Re (Elsnab et al., 2011). The
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Figure 5.2: Representative profile of the ratio of the viscous force to the turbulent inertia in a
steady-state fully developed channel flow. Data obtained from the Johns Hopkins turbulence data
base (JHTDB) (Li et al., 2008; Perlman et al., 2007). The boundaries are defined using the thresh-
olds introduced by Wei et al. (2005a).

four layer structure is revealed through the ratio B/C as shown in Fig. 5.2 produced from DNS

channel flow data acquired from the Johns Hopkins turbulence data base (JHTDB) (Li et al., 2008;

Perlman et al., 2007). Within three sub-regions, Eq. 5.1 is brought into balance owing to two large
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Table 5.1: Magnitude ordering and scaling behaviors associated with the four layer structure of the leading
order balance of mean forces in a steady turbulent channel flow of a Newtonian fluid. Note that A, B and C
refer to the mean pressure gradient, mean viscous force and turbulent inertia terms that, from left to right,
are given in Eq. 5.1.

Physical Layer Magnitude Ordering Δy Increment ΔU Increment
1 |A| � |B| � |C| O(ν/uτ ) (≤ 3) O(uτ ) (≤ 3)

2 |B| � |C| � |A| O(
√
νh/uτ ) (� 1.6) O(Uc) (� 0.5)

3 |A| � |B| � |C| O(
√
νh/uτ ) (� 1.0) O(uτ ) (� 1)

4 |A| � |C| � |B| O(h) (→ 1) O(Uc) (→ 0.5)

terms and one small term (layers 1, 2 and 4), while in another sub-region (layer 3) all three terms

continue to contribute significantly to the balance. Thus, while all of the terms in Eq. 5.1 are of

leading order over some portion of 0 ≤ y+ ≤ h+, in three of the four layers there emerges only

two dominant terms.

Table 5.1 describes the Reynolds number dependent scaling properties of the layer widths and

their velocity increments (Wei et al., 2005a; Klewicki et al., 2011). Across layer 3 there is a bal-

ance breaking and exchange of mean forces. At the outer edge of layer 3 the mean viscous force

loses dominant order in Eq. 5.1. Note that two of the layers scale with an intermediate length that

is proportional to the geometric mean of the inner and outer length scales. Note further that the

point where the turbulent inertia term crosses zero (in the middle part of layer 3) coincides with

where −〈u′v′〉 attains its maximum value. In Newtonian channel flow, this position is located at

y+ � 1.9
√
h+ (Afzal, 1982; Sreenivasan and Sahay, 1997; Wei et al., 2005a).

5.3.2 Reciprocating Channel Flow

The Reynolds averaged x-momentum equation for a reciprocating channel flow (RCF) is

−∂U+

∂t+
+

dP+

dx+︸ ︷︷ ︸
A∗

+
∂2U+

∂y+2︸ ︷︷ ︸
B∗

+
∂(−u′v′

+
)

∂y+︸ ︷︷ ︸
C∗

= 0, (5.2)
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Figure 5.3: Left: The local acceleration at the channel centerline (−∂U
∂t
|CL) compared to the im-

posed pressure gradient (1
ρ
dP
dx

). Right: wall-normal profiles of the local acceleration and the im-
posed pressure gradient for select phases. Blue circles and red diamonds are, respectively, the local
accelerations for Res = 648 and Res = 1019, and black solid line represent the pressure gradient.

Relative to steady-state turbulent channel flow, the structure associated with the magnitude or-

dering of terms in 5.2 has not previously been explored. The starting point of the analysis is to

determine the relative magnitude of terms in Eq. 5.2 over 0 ≤ y+ ≤ h+. From left-to-right, the

first term is the unsteady term (called here the local acceleration), the second term is the cosinu-

soidal pressure gradient (known and constant across the channel half-height at any given phase),

the third term is the mean viscous force, and the last term is the net mean effect of turbulent inertia.

Equation 5.2 is effectively the time-averaged statement of Newton’s second law for a differen-

tial fluid element, and as such must be locally satisfied over 0 ≤ y+ ≤ h+. For the steady-state

channel flow, the ratio B/C best exposes how the balance is realized. For reciprocating channel

flow, a single ratio to expose the balance is insufficient owing to the four non-zero terms in Eq. 5.2.

Since the unsteady-term and the pressure gradient are in phase at the majority of the phases and in

balance near the channel centerline, they are combined and labeled term A∗ (Fig. 5.3). It follows

that, similar to canonical wall bounded flow, the ratio B∗/C∗ can be used in reciprocating channel
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flow to reveal the structure associated with the magnitude ordering of terms in 5.2. A fundamen-

tal question regarding the transition from laminar to turbulent flow in reciprocating channel flow

pertains as to how the magnitude ordering of terms vary with both Res and phase, φ, and when, if

ever, is the four-layer structure (Figs. 5.4 & 5.7) revealed.

The ratio B∗/C∗ in Eq. 5.2 for Res = 648 as a function of wall-normal position is shown in Fig.

5.4. It is observed that a four-layer structure, similar to that described by Wei et al. (2005a) for

canonical wall-bounded flows, does not emerge in any of the phases. The lack of fully-developed

turbulent behavior for Res = 648 is further supported by the phase-averaged velocity and Reynolds

shear stress profiles shown in Figs. 5.5 and 5.6, respectively, which are very different compared

to the profiles in fully-developed steady-state channel flow. A four-layer structure in the profiles

of B∗/C∗ for Res = 1019, similar to that observed in canonical wall bounded flow, is observed

from 9π
16

≤ φ ≤ 11π
16

as shown in Fig. 5.7. The difference between the four-layer structure in

RCF and steady-state channel is mainly in layer 1. Unlike steady-state, in which the ratio B/C is

less than -1 in layer 1, the ratio B∗/C∗ in RCF is greater than -1. The viscous force in a steady

channel flow, in layer 1, is balanced by the pressure gradient. In RCF, however, it is balanced

by the sum of the pressure gradient and the local acceleration. Unlike the channel centerline, the

pressure gradient and the local acceleration are not in balance near the wall (y/h � 0.2), and

combining the two terms is not justified (Fig. 5.3). Therefore, the ratio of the viscous force to the

turbulent inertia in RCF is different than the steady channel flow. In spite of the slight difference

in the balance of the contributing terms in layer 1, it is concluded that fully-developed turbulent

flow behaviors are observed for Res = 1019 during the early phases of the decelerating portion

of the cycle. This conclusion is further supported by the phase-averaged velocity and Reynolds

shear stress profiles shown in Figs. 5.8 and 5.9, respectively, which show similar behaviors to the

profiles in fully-developed steady-state channel flow from 9π
16

≤ φ ≤ 11π
16

.
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solid lines represent steady-state channel flow obtained from the Johns Hopkins turbulence data
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5.4 Transition Mechanism

The turbulent statistics and analysis presented above clearly demonstrate that Res = 648 is a type

III flow and Res = 1019 is a type IV flow. To investigate the mechanism of transition to fully-

developed turbulence (from type III to IV), the contributing terms in Eq. 5.2 are examined as a

function of phase angle. Particular focus is on the late stages of the accelerating portion of the

cycle since this is the portion of the cycle just prior to the phases when fully-developed turbulent

behaviors are observed for Res = 1019. In this analysis, the local acceleration and the turbulent

inertia (terms A∗ and C∗ in Eq. 5.2, respectively) are of primary dynamical interest. The former

because it captures the time evolution of the flow and the latter because it is a good indicator of the

emerging importance of turbulent transport.

Dynamical Contribution of the Turbulent Inertia
(
−∂u′v′+

∂y+

)
The evolution of the turbulent inertia (Reynolds stress gradient) as a function of phase is shown in

Figs. 5.10 and 5.11 for Res = 648 and Res = 1019, respectively. Note that since the the integrated

momentum flux across the channel half-height owed to turbulent inertia is zero, when considered

as a force, it is informative to view a positive region of turbulent inertia as a momentum source

and a negative region as a momentum sink (Elsnab et al., 2011). In steady-state, fully-developed

channel flow (ZPG flow as well) there is a single momentum source and a single momentum sink.

The momentum source, of large magnitude, is confined to a narrow region near the wall below

the location of peak Reynolds shear stress. While the momentum sink, of low magnitude, extends

from above the location of peak Reynolds shear stress to the channel centerline (or edge of the

boundary layer in ZPG flow). See Fig. 5.12. Consequently, on average, the action of the turbulent

inertia is to transport momentum from the outer layer (i.e., the sink region) to the inner layer (i.e.,

the source region) of the flow. This exchange of momentum between the outer and inner layer of

the flow results in a more uniform distribution of momentum across the channel height compared

to laminar flow.
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Figure 5.10: Profiles of turbulent inertia (∂−u′v′
∂y

) as function of phase for Res = 648. Color
identifiers are the same as Fig.5.4. The turbulent inertia profiles in phases 13π

16
≤ φ ≤ 15π

16
have the

same general behavior, but the overshoot at φ = 14π
16

does not fit within the limits of the figure.
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Figure 5.12: From left to right: normalized profiles of turbulent inertia for ZPG boundary layer
(Wu and Moin, 2010), fully-developed channel flow (Li et al., 2008; Perlman et al., 2007), recip-
rocating channel flow (Res = 648), and reciprocating channel flow (Res = 1019). The canonical
flows (ZPGBL and fully-developed CF) have one positive (momentum source) and one negative
(momentum sink) region, while RCF has two positive regions, i.e., two momentum sources.
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The distribution of turbulent inertia in reciprocating channel flow (RCF), however, shows a

second momentum source near the channel centerline (Fig. 5.12), indicating that the flow structure

is different compared to its canonical counterpart. Here we term the two source regions as the

“wall momentum source" and "centerline momentum source" and the sink region as the “interior

momentum sink". Consequently, RCF turbulence redistributes momentum from the interior region

of the flow to both the near-wall and centerline regions of the flow. The momentum redistribution

mechanism can be explained by the quadrant analysis of probability density function (PDF) of the

streamwise and wall-normal velocity fluctuations (u′ and v′, respectively). In the first quadrant

u′ > 0 and v′ > 0; in the second quadrant u′ < 0 and v′ > 0; in the third quadrant u′ < 0 and

v′ < 0; and the fourth quadrant u′ > 0 and v′ < 0. Events in the first quadrant correspond to

the positive streamwise velocity fluctuations lifted away from the wall by the positive wall-normal

velocity fluctuations; they are the so-called “outward interactions” (Bernard and Handler, 1990).

Events in the second quadrant correspond to the negative streamwise velocity fluctuations lifted

away from the wall by the positive wall-normal velocity fluctuations; they are the so-called “ejec-

tions” (Adrian, 2007). Events in the third quadrant correspond to the negative streamwise velocity

fluctuations being moved toward the wall by the negative wall-normal velocity fluctuations; they

are the so-called “inward interactions”. Events in the fourth quadrant correspond to the positive

streamwise velocity fluctuations being moved toward the the wall by the negative wall-normal ve-

locity fluctuations; they are the so-called “sweeps”. In ZPG and fully-developed channel flow,

the most common events statistically are ejections and sweeps (u′v′ < 0), which are spatially

coincident with the turbulent inertia momentum source and sink, respectively. High momentum

fluid in the outer layer is moved toward the wall by “sweeps” and low momentum fluid near the

wall is moved away from the wall by “ejections”. In some phases of RCF, however, there are re-

gions where u′v′ > 0, which correspond to either first or third quadrant events (Figs. 5.6 and 5.9).

These regions are spatially coincident with the portion of the interior momentum sink that is higher

than local minima in the turbulent inertia profile and the centerline momentum source (Fig. 5.12).

The “outward interactions” and “inward interactions” associated with the first and third quadrant
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events redistribute the momentum between the interior momentum sink and the centerline momen-

tum source. While the analysis provided above is supported by the phase-averaged profiles of the

Reynolds shear stress and its wall-normal gradient, the PDF profiles of u′ and v′ must be studied

for definite conclusions. Observed in Figs. 5.10 and 5.11 is that the redistribution of momentum

between the two sources varies both as a function of Res and φ. This redistribution is further

quantified in Fig. 5.13, which shows the integrated magnitude of TI between the two source terms

normalized by the integrated magnitude of the momentum sink.

For Res = 648, the centerline momentum source is dominant in the early phases of the acceler-

ating portion of the cycle, decreasing monotonically with increasing phase angle. Nevertheless, it

remains finite throughout most of the accelerating portion of the cycle. The centerline momentum

source for Res = 1019 is also dominant in the early phases of the accelerating portion but rapidly

decreases with increasing phase angle and approaches zero at approximately φ = π, and is negli-

gible during the decelerating portion of the cycle. In effect, the action of the TI in the decelerating

portion of the cycle for Res = 1019 is similar to its canonical counterpart. Hence, one indicator of

a transition from type III to type IV flows in RCF is that the contribution of the centerline momen-

tum source is zero in the decelerating portion of the cycle. This will be termed:

Condition I: the contribution of the “near-centerline” momentum source is negligible compared to

the “near-wall” momentum source.

Dynamical Contribution of The Local Acceleration
(−∂U

∂t

)
The evolution of the local acceleration as a function of phase is shown in Fig. 5.14. Profiles of

local acceleration in a laminar reciprocating channel flow are included for comparison purposes.

All four profiles are qualitatively similar in the first and last quarters of the half-period (left and

right columns in Fig. 5.14). For Res = 648, −∂U
∂t

remains similar to the laminar flow solution

throughout the cycle. For Res = 1019, however, the local acceleration departs considerably from

the laminar flow in the late accelerating phases of the cycle, i.e., 6π
16

≤ φ ≤ 8π
16

. Inspection of

the phases at this stage reveals the emergence of an internal layer that decelerates at a phase-lead
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compared to the near-wall and the core regions. Importantly, this internal layer spatially coincides

with the strong sink-like behavior of the turbulent inertia (TI) as observed in Fig 5.11 and occurs

at the same phase when the TI rapidly increases in magnitude. For Res = 648, an internal layer

does not emerge and the flow does not exhibit fully-developed turbulent like behaviors during any

part of the cycle.

The role of an internal shear layer in the transition mechanism to turbulence in fully-developed

channel flow has been postulated by Sandham and Kleiser (1992). In particular, an internal shear

layer can be generated by a Λ-shaped vortex. The mechanism of the formation of the shear layer is

vortex stretching and convection (Stuart, 1965). The high-shear layer then rolls-up into new vor-

tices, which move towards the channel center and hence, spread the turbulence across the channel.

The growth mechanism of the newly formed vortices in fully-developed channel is a shear-layer

instability, with energy being extracted from the local mean into the vortex (Sandham and Kleiser,

1992). Spatial coincidence of the observed internal layer in Res = 1019 with the strong sink-like

behavior of the TI suggests a similar shear-layer instability in reciprocating channel. It is conjec-

tured that the internal layer either emerges or causes a shear layer instability that rolls-up triggering

further flow instabilities that transitions the flow to a fully-developed turbulent flow in subsequent

phases. Hence, a second indicator of a transition from type III to type IV flows in RCF is that the

emergence of an internal layer during the late phases of the accelerating portion of the cycle. This

will be termed:

Condition II: The emergence of an internal (shear) layer between the wall region and the center-

line during the accelerating portion of the cycle.

5.5 Summary

The mean flow dynamics in reciprocating channel flow were studied to better understand the un-

derlying mechanism of transition to turbulence in reciprocating channel flow. The balance of the

leading order terms in the phase-averaged mean momentum equation confirms that fully-developed
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turbulence first emerges at the early phases in the decelerating portion of the cycle. The underlying

mechanism of this transition is the emergence of an internal layer that first develops during the

late phases of the accelerating portion of the cycle. In the absence of this internal layer, the flow

remains transitional over the entire cycle. The internal layer is found to be spatially coincident

with a strong momentum sink/source-like behavior of the turbulent inertia. It is conjectured that

the internal layer emerges or causes a shear layer instability that rolls-up triggering further flow

instabilities that transition the flow to a fully-developed turbulent channel in subsequent phases.
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CHAPTER 6

EXPERIMENTAL DETAILS AND VALIDATION OF FLOW FACILITY

The current chapter is divided into two parts. The first part describes the experimental details,

including descriptions of the particle image velocimetry (PIV) technique, the experimental proce-

dure employed, and measurement uncertainty analysis. In the second part, validation results for

zero pressure gradient (ZPG) boundary layer flow are presented and compared to the DNS data of

ZPGBL flow simulated by Wu and Moin (2010).

6.1 Particle Image Velocimetry (PIV)

PIV was chosen as the primary experimental measurement diagnostic because it is one of the

few non-intrusive whole-field flow measurement techniques. It is non-intrusive in a sense that no

measurement probe is placed within the flow, and whole-field in a sense that it provides a two-

dimensional (or three-dimensional) instantaneous measurement of the velocity field in a planar

slice of the flow. The principles of PIV are simple but, in practice, data acquisition can be very

challenging. A brief description of the PIV technique is provided here, the reader is referred to

Adrian and Westerweel (2011) or Raffel et al. (2013) for detailed descriptions.

PIV is a particle-based measurement technique in which the fluid velocity is inferred from

measurement of the velocity of tracer particles seeded into the flow. If the inertia of a tracer

particle is small and the particle density matches the fluid density, the particle will passively follow

the fluid motions. This is the ideal case, but in practice the particle will have finite inertia and a

finite density difference relative to the density of the fluid. The influence of these two effects can

be quantified by the particle Stokes number Stp and Froude number Fr , respectively. The former

is defined as the ratio of the particle time scale τp =
ρpd2p
18μ

to the flow time scale τf = (ν/ε)0.5,
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and the latter is defined as the ratio of the particle settling velocity up =
(ρp−ρ)d2pg

18μ
to the flow

velocity uf = (νε)0.25, where ρp is particle density, dp is particle diameter, μ is the fluid dynamic

viscosity, ν is the fluid kinematic viscosity, and ε is the turbulent dissipation rate per unit mass.

The ideal case is when Stp 
 1 and Fr 
 1. In a boundary layer flow, the characteristic flow time

scale and velocity scale vary as a function of wall-normal distance from the wall. Consequently,

both Stp and Fr will vary as a function of wall-normal distance from the wall. Oil droplets

with nominal diameter dp = 1μm and density ρp � 2.9ρair are used as tracer particles in the

present experiments. The Stp and Fr numbers of the oil droplets are well below unity across the

measurement field of view (FOV) that extends across the boundary layer thickness. The range of

Stp is 3×10−8 ≤ Stp ≤ 2×10−6, where the lower limit corresponds to the near-wall of the lowest

velocity ( 2m/s) and the upper limit corresponds to the freestream of the the highest velocity

( 5m/s). The range of Fr is 1× 10−6 ≤ Fr ≤ 7× 10−6, where the lower limit corresponds to the

freestream of the highest velocity ( 5m/s) and the upper limit corresponds to the near-wall of the

lowest velocity ( 2m/s).

The PIV technique uses laser light sheets formed (typically) from a pulsed laser to illuminate

the tracer particles in a planar slice of the flow. The light sheets overlap in space but are separated

in time, where the time separation δt is known and well-controlled. The laser light scattered by the

particles is captured on two separate camera frames: the first frame captures particle images from

the first of two successive laser pulses, while the second frame captures particle images from the

second pulse. Cross-correlation techniques applied to the image pair provide two components of

the velocity vector field in the imaged plane.

A schematic of the present experimental setup is shown in Fig. 6.1. Light is provided by a

Photonics DM-series dual cavity Nd:YLF laser capable of 2 × 30mJ per pulse. A periscope and a

90◦ turning mirror is used to direct the laser light into the tunnel test section. Sheet forming optics

(cylindrical + spherical lenses) placed upstream of the turning mirror are used to form a laser

sheet on the order 1mm thick in the streamwise/wall-normal plane (i.e., xy-plane in the chosen

experimental coordinate system). The offset of the laser sheet from the tunnel centerline and
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Figure 6.1: Schematic of the PIV setup.

towards camera 02 is d = 1/15D, where D is the tunnel width. Images of the laser light scattered

off the tracer particles 90◦ to the incident laser sheets are acquired using two Photron FASTCAM

SA4 CMOS cameras with 16GB RAM memory. The CCD array of the camera is 1024 × 1024

pixel2 and provides 12-bit intensity level per pixel. Triggering and synchronization of the lasers

and cameras are accomplished using the high speed controller that comes as part of the LaVision

system. The PIV images are acquired and analyzed using LaVision’s PIV software, DaVis 8.0.6

and DaVis 8.3.1. The magnification factor of a camera, M , is calculated as the ratio of the camera

image size to the field-of-view (FOV). The magnification factor of camera 01 is M1 � 0.38 and

the wall-normal FOV extends from −5.0mm � y � 54mm, where y = 0 denotes the location

of the lower wall. The magnification factor of camera 02 is M2 � 0.79 and the wall-normal FOV

extends from −2.0mm � y � 26mm. Note that the exact magnification is slightly different

between experiments. A representative PIV image acquired simultaneously from camera 01 and

camera 02 is shown in Fig. 6.2.

115



Figure 6.2: Simultaneous PIV images taken from the flow with camera 01 and camera 02. Hori-
zontal lines in the images show the wall location. Flow direction is from right to left.

The 150ns pulse width of the laser is much smaller than any flow time scale, so that the particles

are essentially frozen over the duration of the laser pulse. Therefore, the first image and second

image contain spatial information of the particle distribution at the time of the first laser pulse, t

and the second laser pulse t + δt, respectively. The velocity field is determined by dividing the

particle displacement field, δx, by the time separation between the two lasers, namely δt. The

displacement field is calculated by dividing the image into small interrogation areas of varying

size or shape, but are typically 32 × 32, 64 × 64, or 128 × 128 pixel2. For a given interrogation

area, the intensity field in the first image (I1) is cross-correlated with that of the second image (I2).
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Figure 6.3: Simultaneous PIV vector fields acquired fromcamera 01 and camera 02. y = 0 in the
vector fields show the wall location. Background color represents the magnitude of the velocity
vector. Flow direction is from right to left.

The normalized cross-correlation is calculated as

CC(x, y) =
ΣΣI1(i, j)I2(i+ x, j + y)

σI1σI2

, (6.1)

where CC(x, y) is the normalized cross-correlation as a function of x and y, σI1 and σI2 are

the standard deviation of I1 and I2, respectively, and i and j are the pixel indices in the x and y

directions, respectively. Next, the peak value of CC(x, y) is located with sub-pixel accuracy (using

fitting schemes) and the average particle displacement, δx, in the interrogation area is computed

as a vector that originates from the center of the interrogation area to the location of the CC(x, y)

peak. The average particle velocity in the interrogation area is then computed as the average

displacement divided by the time separation between laser pulses, i.e., u(x, y) = δx/δt.
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In the majority of the experiments presented here, the PIV images are analyzed using the cross-

correlation technique with multi-passing. An interrogation area of 64× 64 pixel2, with no overlap

of adjacent areas, is used for the first pass and 32 × 32 pixel2 with an overlap of 50%, for the

second. After a vector field is calculated, it is validated using a local median filter. A vector de-

termined to be spurious is either replaced by the vector corresponding to a secondary peak in the

correlation plane or left blank. A representative PIV vector field acquired simultaneously from

camera 01 and camera 02 is shown in Fig. 6.3. A step-by-step description of the experimental

procedure is provided in Appendix C.

6.2 “Stitching” Profiles

Camera 01 and 02 are used for, respectively, outer and inner flow measurements. The acquired

wall-normal profiles must be combined to create a uniform profile that covers the combined camera

01 and 02 wall-normal fields of view: FOV1 and FOV2, respectively. The most common “stitch-

ing” method is to average the profiles in the overlap region (Sterenborg et al., 2014). Alternatively,

Tang et al. (2008) developed a method based on obvious marks and transforming the spatial coordi-

nate matrices of neighboring points. Shea et al. (2014) introduced a three-step “stitching” process:

1-calculate the ideal offset between the two images, 2-calculate the appropriate scale factor in the

overlap region, and 3-merge the individual interrogation windows into a single combined window.

In order to minimize the interference in the acquired data, no post-processing is performed in the

overlap region. The combined wall-normal profile is attained by keeping FOV2, and including

the portion of FOV1 that does not overlap FOV2. Thus, the near wall is resolved by camera 02

and near the freestream is resolved by camera 01, and there is a break point in the interface of the

two fields of view that is more obvious in the pulsatile boundary layer profiles presented in the

following chapter.
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6.3 Uncertainty Estimates

Experimental measurements are associated with measurement errors caused by interfering inputs

owed to measurement system limitations, finite sampling, or operator error. The integrated effects

of the measurement errors are often quantified by a measurement uncertainty that provides a pos-

sible range of the error in the measurement. The value of the measured variable is not known

exactly but rather defined by a confidence interval in which a probability is assigned to a plus or

minus range about the measured value. Assuming the interfering inputs are independent, statistical

analysis based on the Normal distribution is used to assign the level of confidence. The uncertainty

estimation of the measured quantities and their statistical moments are explained in this section.

6.3.1 Velocity

PIV velocity vectors are evaluated as u = x
t
, where x is the particle displacement and t is the

time separation between laser pulses (or successive images). The uncertainty in the PIV velocity

measurement is estimated using the root-sum-square method of error propagation, given as

Δu =

√(
∂u

∂x
Δx

)2

+

(
∂u

∂t
Δt

)2

=

√(
1

t
Δx

)2

+

(−x

t2
Δt

)2

, (6.2)

where Δu, Δx and Δt are uncertainties of u, x and t, respectively. Δt � 10−9s , which makes the

second term under the square root much smaller than the first term. Therefore, velocity uncertainty

is estimated as

Δu � Δx

t
. (6.3)

Using a pixel size to define the spatial resolution of the camera, Δx = ±0.5px, where px is the

spatial resolution of a pixel in the PIV measurements. In the majority of the experiments reported

in this dissertation, px � 13μm. It follows that the velocity uncertainty is Δu � 0.09m/s. The

PIV measurements, however, employ “sub-pixel interpolation” schemes with a resolution of Δx =

±0.1px (Tropea et al., 2007). For this resolution, the velocity uncertainty is Δu � 0.018m/s.
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Figure 6.4: The percent uncertainty over the velocity range of the current experiment with 0.5
pixel resolution (red upward-pointing triangles) and 0.1 pixel resolution (green downward-pointing
triangles). The normalized histogram of the velocity measurements in ZPG flow is plotted for
reference (solid line). Different peaks correspond to different freestream velocities.

Using these two velocity uncertainties as a upper and lower bound, the percent uncertainty

over the velocity range of the current experiments is shown in Fig. 6.4. The different peaks in ex-

perimental histograms of velocity correspond to different experiments using different freestream

velocities (i.e., four different freestream velocities). Observe that in a boundary layer flow, the

% uncertainty in the measured velocity increases exponentially near the wall where the velocity

magnitudes are small and decreases as the edge of the boundary layer is approached where the

velocity magnitudes are large.
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6.3.2 Wall Location

The location of the wall in the PIV images is determined from images of the PIV calibration

plate. Given the typical image resolution in the PIV experiments and the number of trials to

locate the wall, the wall location uncertainty is estimated to be ±0.1mm (this corresponds to about

±8pixels).

6.3.3 Friction Velocity

The Integral method of Mehdi et al. (2014) is used to estimate the wall friction velocity uτ .

Since the experimental domain of the data acquired in the current experiments is from y+ �
17 to y/δ � 1. The uτ uncertainty for the current experimental domain is estimated to be <

2% according to Fig. 1 of Mehdi et al. (2014). However, since the uncertainty in the velocity

measurements is slightly higher than that used to create the figure, the uncertainty in the wall shear

stress is expected to be slightly above ±2%.

6.3.4 Statistical Moments

Reynolds decomposition is used to describe the flow statistics:

a(y, t) = A(y) + a′(y, t), (6.4)

where a is a generic flow parameter, A is the ensemble-averaged and a′ is the fluctuations. In

statistically steady flow A ≡ a, where overline denoting the time-average operator. The uncertainty

values in the measured statistics are determined following the procedure outlined by Sciacchitano

and Wieneke (2016). The uncertainty of the average velocity, i.e U is calculated as:

ΔU = σu

√
1

Neff

, (6.5)

where ΔU is the uncertainty of U (as described above), σu is the standard deviation of the velocity,

u, measurements, and Neff is number of independent realizations. Neff is estimated as
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Table 6.1: Experimental parameter of the current ZPGBL experiments.

Symbol U∞(m/s) uτ (m/s) ν/uτ (mm) δ∗(mm) θ(mm) H Reθ
1.94 0.0963 0.165 6.61 4.64 1.42 568
3.00 0.1422 0.111 5.82 4.36 1.33 814
4.15 0.1835 0.087 5.77 4.39 1.31 1093
5.38 0.2350 0.068 5.71 4.29 1.33 1438

Neff � T

L/U∞
, (6.6)

where T is the sampling length, L is the distance of the measurement location in the wind tun-

nel relative to the test-section inlet, and U∞ is the freestream velocity. For the majority of the

experiments, ΔU/U < 1%.

The uncertainty of the standard deviation, i.e., urms ≡
√

u′2 is calculated as:

Δurms = σu

√
1

(2Neff − 1)
. (6.7)

For the current experiments, Δurms/urms < 4% and Δvrms/vrms < 4%. Equations 6.5 and 6.7

have an accuracy of 1% for Neff > 30 (Ahn and Fessler, 2003), which is satisfied in the present

experiments.

The uncertainty of the Reynolds shear stress u′v′ is calculated as:

Δu′v′ = σuσv

√√√√1 +
(

u′v′
σuσv

)2

(Neff − 1)
. (6.8)

For the current ZPGBL flow experiments, Δu′v′/u′v′ < 14% for U∞ � 2m/s and 9% for

U∞ � 5m/s, which correspond to Reθ = 568 and 1438, respectively.

6.4 Zero Pressure Gradient Boundary Layer (ZPGBL)

Boundary layer parameters and velocity profiles acquired in the NEAT facility with dP/dx ≈ 0

are now described. This data, which will be called ZPGBL data, is acquired to validate the facility
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and measurement diagnostics, and to serve as a baseline comparative dataset. Data is acquired

at four freestream velocities. The experimental and computed boundary layer parameters for the

ZPG experiments are provided in Table 6.1 and described below:

• U∞ is the freestream velocity.

• ν/uτ is the wall unit.

• uτ is the friction velocity evaluated by the integral method of Mehdi and White (2011) and

Mehdi et al. (2014).

• δ∗ =
∫ 1

0

(
1− Ũ

)
dỹ is the displacement thickness, where Ũ is the mean streamwise velocity

normalized by the freestream and ỹ is wall-normal dimension normalized by the boundary

layer thickness.

• θ =
∫ 1

0
Ũ
(
1− Ũ

)
dỹ is the momentum thickness.

• H = δ∗
θ

is the shape factor. Shape factor of a turbulent ZPGBL is �1.3-1.4 (Schlichting

et al., 1979; Wu and Moin, 2010).

• Reθ =
U∞θ
ν

is Reynolds number based on the momentum thickness.

The experimentally acquired profiles are compared to the DNS profiles of a ZPGBL flow simulated

by Wu and Moin (2010). A description of the acquired profiles and how they compare to the data

from Wu and Moin are described below.

• Mean Velocity

The mean streamwise velocity profiles as a function of inner and outer coordinates (y+ and

y/δ, respectively) are shown in Figs. 6.5 and 6.6, respectively. The profiles show very good

agreement with DNS profiles in both inner and outer coordinates.
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• Streamwise Turbulence Intensity

The streamwise root mean square (RMS) velocity profiles as a function of inner and outer

coordinates are shown in Figs. 6.7 and 6.8, respectively. The Reynolds-number-dependence

of the inner normalized profiles in the outer layer follow the same trend of the DNS data.

The experimental profiles as a function of outer coordinate show very good agreement with

DNS profiles within the experimental uncertainty. The underestimation of the profiles in the

inner layer stems from the averaging effects of PIV. Since the PIV data is averaged within

an interrogation area, the fraction of the turbulent kinetic energy that is carried by eddies

smaller than the interrogation area is attenuated (De Graaff and Eaton, 2000). Multi-pass

processing procedure and overlap between interrogation areas reduce the uncertainty due to

averaging, but it is still not negligible. Higher turbulence level in the last few data points is

likely due to low seeding density near the edge of the boundary layer.

• Wall-Normal Turbulence Intensity

The wall-normal root mean square (RMS) velocity profiles as a function of inner and outer

coordinates are shown in Figs. 6.9 and 6.10, respectively. The Reynolds-number-dependence

of the profiles in the outer layer follow the same trend of the DNS data. Similar to the

streamwise turbulence intensity, the wall-normal turbulence intensity is underestimated in

the inner layer.

• Reynolds Stress

The Reynolds shear stress profiles as a function of inner and outer coordinates are shown

in Figs. 6.9 and 6.10, respectively. Similar to the wall-normal turbulence intensity, the

Reynolds-number-dependence of the profiles in the outer layer follow the same trend of the

DNS data, and profiles are underestimated in the inner layer.

In summary, the experimental ZPGBL profiles acquired in the NEAT facility with dP/dx ≈ 0

show very good agreement with to the DNS profiles of a ZPGBL flow simulated by Wu and Moin

(2010).
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Figure 6.5: Wall-normal profiles of the mean streamwise velocity normalized by inner scales with
()+ denoting normalizing by uτ and ν. DNS of a ZPGBL simulated by Wu and Moin (2010) and
Moin are included for reference.
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Figure 6.6: Wall-normal profiles of the mean streamwise velocity as a function of outer coordinate
y/δ. Marker symbols are the same as Fig. 6.5.

125



100 101 102 103

y+

0

0.5

1

1.5

2

2.5

3

u
+ rm

s

Figure 6.7: Wall-normal profiles of the streamwise RMS velocity normalized by inner scales.
Marker symbols are the same as Fig. 6.5.
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Figure 6.8: Wall-normal profiles of the streamwise RMS velocity as a function of outer coordinate
y/δ. Marker symbols are the same as Fig. 6.5.
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Figure 6.9: Wall-normal profiles of the wall-normal RMS velocity normalized by inner scales.
Marker symbols are the same as Fig. 6.5.
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Figure 6.10: Wall-normal profiles of the wall-normal RMS velocity as a function of outer coordi-
nate y/δ. Marker symbols are the same as Fig. 6.5.
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Figure 6.11: Wall-normal profiles of the Reynolds shear stress normalized by inner scales. Marker
symbols are the same as Fig. 6.5.
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Figure 6.12: Wall-normal profiles of the Reynolds shear stress as a function of outer coordinate
y/δ. Marker symbols are the same as Fig. 6.5.
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CHAPTER 7

PULSATILE BOUNDARY LAYER FLOW

7.1 Literature Review

Experimental studies investigating pulsatile wall-bounded flows include Yellin (1966), Tu and

Ramaprian (1983), Ramaprian and Tu (1983), Mao and Hanratty (1986), Stettler and Hussain

(1986), Brereton et al. (1990), Einav and Sokolov (1993), Tardu and Binder (1993), Tardu et al.

(1994), Binder et al. (1995) and Trip et al. (2012). Numerical simulations include, but not lim-

ited to Scotti and Piomelli (2001) Scotti and Piomelli (2002), Varghese and Frankel (2003), Mittal

et al. (2003) and Weng et al. (2016). Using the Reynolds decomposition, the flow parameters are

decomposed as follows:

A(y, t) = 〈A(y, t)〉+ A′(y, t) (7.1)

with

〈A(y, t)〉 = 1

N

N∑
i=1

A(y, t+ iT ) (7.2)

where 〈A〉 is the ensemble (phase-) average, T is the flow period, N is the number of cycles, and

A′ is the turbulent fluctuations component. Following Hussain and Reynolds (1970), the phase-

averaged parameters in a pulsatile flow are decomposed as follows:

〈A(y, t)〉 = A(y) + Ã(y, t) (7.3)

where A is time-averaged over integers of the period (cycle-), and Ã is the perturbation (oscillatory

or coherent) component. Combining Eqs. 7.1 and 7.3, the flow parameters in a turbulent pulsatile

flow are decomposed as follows:
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A = A(y) + Ã(y, t) + A′ (7.4)

It is well-established that the time-averaged mean flow (except for a quasi-steady oscillation with

large modulation amplitudes (see Tardu et al. (1994); Binder et al. (1995)) is independent of the

flow frequency (Yellin, 1966; Ramaprian and Tu, 1983; Mao and Hanratty, 1986; Trip et al., 2012;

Weng et al., 2016). Consequently, the perturbation field is the response of the flow to the im-

posed periodic pressure forcing. Furthermore, it also implies that the time-averaged perturbation

component is zero when averaged over a period.

When the oscillation period is much larger than the turbulence relaxation time, the perturbation

Reynolds stress responds immediately to the perturbation strain and redistribution of energy hap-

pens instantly. The perturbation field is therefore in equilibrium, and there is no phase difference

between the oscillating strain and stress field. However, when the oscillation period is comparable

to the turbulence relaxation time, the equilibrium of the perturbation field breaks down and there is

a phase difference between the oscillating strain and stress field. The phase difference asymptotes

to that of the Stokes’ boundary layer flow, i.e., 45◦, as the oscillation frequency increases (Brereton

and Mankbadi, 1995; Weng et al., 2016).

Most simulation models developed to predict the perturbation field in a pulsatile flow are based

on extending the standard eddy viscosity model (EVM), i.e.,

r̃ = −CνT
∂ũ

∂y
(7.5)

where r̃ = 〈u′v′〉 − u′v′ is the perturbation Reynolds shear stress with brackets denoting ensemble

(or phase) averaging, the overbar denoting the time (or cycle) average, νT is the eddy viscosity and

C is a constant, which is usually defined as C = 2/Re (Weng et al., 2016). The EVM models

wrongly assume the Reynolds shear stress and the strain rate (LHS and RHS of Eq. 7.5) are in-

phase, and hence, fail to predict the perturbation field in non-equilibrium pulsatile flows (Weng

et al., 2016).
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Pulsatile flow frequency is often normalized by wall-units, i.e., ω+ = ω
u2
τ/ν

, where ω+ is the

inner normalized frequency, ω is the dimensional frequency, uτ is the friction velocity and ν is the

fluid viscosity (Mao and Hanratty, 1986; Tardu and Binder, 1993; Weng et al., 2016). It can be

shown that ω+ = 2

l+s
2 = Str2

2
, where ls ≡ √

2ν/ω is the Stokes’ layer thickness and Str ≡ ω
uτ/ls

is the Strouhal number based on ls and uτ . Pulsatile flow can be classified into four regimes based

on the magnitude of ω+ (Ramaprian and Tu, 1983; Brereton and Mankbadi, 1995):

• (i) Quasi-steady (ω+ < 0.003) – The perturbation field in quasi-steady flow is negligi-

ble. Therefore, all flow properties will be the same as their steady flow counterpart at the

same instantaneous Reynolds number. Consequently, there is no phase variation or ampli-

tude overshoot of the ensemble-averaged velocity profiles in wall-normal direction (Tu and

Ramaprian, 1983). Departure from quasi-steady regime is reported for ω+ � 0.003 (Brere-

ton and Mankbadi, 1995).

• (ii) Low frequency (0.003 � ω+ � 0.006) – The perturbation field, which is not negligible

anymore, is in equilibrium, and there is negligible phase difference between the perturbation

velocity and the wall shear stress. The perturbation wall shear stress is larger than its laminar

counterpart (Stokes’ flow). The low frequency regime is 0.003 � ω+ � 0.006 (Weng et al.,

2016).

• (iii) Intermediate (or moderate) frequency (0.006 � ω+ � 0.02-0.04) – The perturbation

field is not in equilibrium and there is phase difference (0◦ < Δφ < 50◦) between the

straining force and the wall shear stress. The perturbation field wall shear stress is smaller

than the laminar flow counterpart (Weng et al., 2016). The intermediate frequency regime

is often reported for 0.006 � ω+ � 0.02-0.04 (Tardu et al., 1994; Brereton and Mankbadi,

1995; Weng et al., 2016).

• (iv) High frequency (ω+ � 0.02-0.04) – The perturbation wall shear stress amplitude and

phase asymptote to the Stokes’ flow values. While the flow is turbulent, the perturbation
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Figure 7.1: Modulation amplitude (top) and the phase lag of the perturbation wall shear stress
compared to the freestream modulation (bottom) of pulsatile wall-bounded flow in different fre-
quency regimes. The four frequency regimes are segregated by three vertical dashed lines. Marker
symbols are given in Brereton and Mankbadi (1995).

field in the very high frequency regime is governed by the viscous forces (Tardu et al., 1994;

Brereton and Mankbadi, 1995; Scotti and Piomelli, 2001).

The four frequency regimes are shown in Fig. 7.1. The reader is referred to Brereton and

Mankbadi (1995) for detailed review of pulsatile wall-bounded flows.
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7.2 Experimental Details

Particle image velocimetry is used to study the transport of momentum in PBL flow. The objective

of the study is to acquire velocity data in PBL flow and compare the results of the boundary

layer parameters and velocity profiles to ZPGBL flow. The time-averaged mean flow is turbulent

and the frequency range (1.60 - 4.95Hz) is within the intermediate frequency regime, such that the

lowest frequency (ω+ = 0.007) is just above the low frequency threshold and the highest frequency

(ω+ = 0.020) is at the onset of the high frequency threshold. Therefore, the differences in the flow

behaviors across the full frequency range of the intermediate frequency regime can be evaluated.

The NEAT boundary layer wind tunnel, while being able to drive the flow with a periodic

pressure gradient, does have limited capabilities. Specifically, the inherent flow blockage of the

rotor-stator assembly limits the maximum flow speed in the tunnel to ∼3.25m/s. In addition, at

the upper frequency limit, the amplitude of the velocity modulation is only 5%, which is amongst

the lowest modulation amplitude reported for pulsatile flows (Çarpinlioğlu and Gündoğdu, 2001).

Experiments are conducted at three forcing frequencies. Boundary layer parameters mea-

sured/computed for the three forcing frequencies are reported in Table 7.1 and described below:

• f is the flow frequency, calculated using a fast Fourier transform (FFT) of the time-averaged

freestream velocity signal. A typical FFT plot of the freestream velocity signal is shown in

Fig. 7.2. The peak signal is used to identify the flow frequency. Note that higher harmonics

were not observable in the FFT.

• U∞ is the time-averaged freestream velocity.

Table 7.1: Experimental parameters of the current PBL experiments.

Symbol f(Hz) U∞(m
s
) uτ (

m
s
) ω+ ls(mm) l+s Re Res W uosc

U∞
(%)

1.60 3.25 0.154 0.007 1.78 17 7306 336 30.71 11
3.25 3.21 0.155 0.014 1.25 12 6543 228 40.57 8
4.95 3.25 0.156 0.020 1.01 10 6805 185 51.99 6
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• uτ is the time-averaged friction velocity evaluated using the integral method of Mehdi and

White (2011) and Mehdi et al. (2014).

• ω+ ≡ ω
u2
τ/ν

is the inner normalized angular frequency.

• ls ≡
√

2ν/ω is the Stokes’ layer thickness.

• l+s ≡ ls
ν/uτ

is the inner normalized Stokes’ layer thickness, which is a measure of how far the

disturbances at the wall penetrate into the boundary layer.

• Re ≡ U∞δ
ν

is the time-averaged Reynolds number, δ is the average boundary layer thickness.

• Res ≡ Umls
ν

is the Stokes Reynolds number, where Um is the amplitude of the cross-sectional

average velocity.

• W ≡ δ
√

ω/ν is the Womersley number.

• uosc

U∞
is the modulation amplitude in of the freestream velocity.

The flow parameters are decomposed as follows:

A(y, t) = 〈A(y, t)〉+ A′(y, t) (7.6)

with

〈A(y, t)〉 = A(y) + Ã(y, t) =
1

N

N∑
i=1

A(y, t+ iT ) (7.7)

where 〈A〉 is the ensemble (phase-) average, T is the flow period and N is the number of cycles.

The flow is sampled over 60 cycles with sampling interval of ∼ T
18

. The oscillation phases are

binned into 18 bins, consequently, parameters within ±10◦ of the center of the bin are averaged

together. The bin phases are then shifted so that the maximum phase-averaged freestream velocity

is at φ = 90◦. Using Eqs. 6.5-6.8, the statistical uncertainty of 〈U〉, 〈u′v′〉, 〈urms〉 and 〈vrms〉 is

estimated to be 2%, 60-100%, 10% and 10%, respectively. The pressure-gradient oscillates around

the steady-state value, which is slightly favorable, and does not change sign.
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Figure 7.2: Top: Time series of the freestream velocity normalized by time-averaged plotted for
ten cycles. Bottom: FFT of the freestream velocity time series. fN is the Nyquist frequency, which
is half of the sampling frequency.
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Figure 7.3: The freestream perturbation velocity modulation as a function of phase angle. Marker
symbols are given in Table 7.1.

7.2.1 Results and Discussion

7.2.2 Perturbation Field

Bulk flow parameters

In PBL flow experiments, the wall-normal perturbation profiles are often compared to the Stokes’

flow solution. Since the Stokes’ layer (l+s ≤ 17) is not resolved in the present experiments, such

comparison is not feasible. Nonetheless, the perturbation wall shear stress, which is an indicator

of both the perturbation field dynamics and the response of the flow to the imposed oscillation, is

discussed in detail.

• Freestream Velocity

The oscillatory component of the freestream velocity in PBL as a function of phase angle

is shown in Fig. 7.3. It is observed that the modulation amplitude of the freestream ve-

locity is inversely proportional to the flow frequency, which is in agreement with previous
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Figure 7.4: The freestream turbulent intensity modulation as a function of phase angle. Marker
symbols are given in Table 7.1.

experiments (Ramaprian and Tu, 1980; Stettler and Hussain, 1986; Binder et al., 1995). The

freestream velocity is also in phase with the oscillation of the pressure-gradient in all cases.

• Freestream turbulence Intensity

The freestream turbulent intensity as a function of phase angle for the three forcing frequen-

cies is shown in Fig. 7.4. There is a 180◦ phase difference between the peak freestream

turbulence intensity measured at the highest forcing frequency compared to the two lower

forcing frequency cases. This observed phase difference in the peak turbulent intensity be-

tween low and high-frequency forcing is in agreement with results of Ramaprian and Tu

(1983).

• Shape Factor

The computed shape factor plotted as a function of phase angle for the three forcing frequen-

cies is shown in Fig. 7.5. It is observed that the shape factor is anti-correlated (i.e., it is 180◦
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Figure 7.5: Shape factor modulation as a function of phase angle. Marker symbols are given in
Table 7.1.

out of phase) with the pressure forcing and the modulation amplitude is almost identical for

all cases. The time (cycle-) average shape factor is � 1.3 for all cases.

• Wall Shear Stress

The oscillatory wall shear stress component plotted as a function of phase angle for the three

forcing frequencies is shown in Fig. 7.6. Considering the error map provided for the wall

shear stress estimation using the integral method by Mehdi et al. (2014) and comparing the

mean velocity uncertainty of PBL and ZPGBL, the wall shear stress uncertainty of PBL is

estimated to be slightly above 4%. In spite of the different modulation amplitude of the

freestream velocity, all three forcing frequencies show similar modulation amplitude of the

wall shear stress. The two lower frequency cases (ω+ = 0.007, 0.014) show a statistically

significant “bump” in the wall shear stress in the early decelerating phase (φ = 110◦), which

is absent in the highest frequency case (ω+ = 0.020). Since the phase and amplitude of the
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Figure 7.6: Wall shear stress modulation as a function of phase angle. Marker symbols are given
in Table 7.1.

perturbation wall-shear stress are indicators of the equilibrium or non-equilibrium state of

the perturbation field, they are discussed separately below.

Modulation amplitude of the oscillatory wall shear stress

Figure 7.7 compares the magnitude of the oscillatory component of the wall shear stress to the

magnitude expected from Stokes boundary layer flow (τw,s). Here τw,s is estimated from the oscil-

latory component of the freestream velocity:

|τw,s| =
√
2μ

ls
|U∞,s|. (7.8)

Notwithstanding the experimental uncertainty, the modulation amplitude of the highest frequency

case appears to be slightly larger than the Stokes’ flow solution, while the modulation amplitude

of the two lower frequency cases match with the Stokes’ flow within the experimental uncertainty.
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Figure 7.7: Modulation amplitude of the perturbation wall shear stress compared to Stokes’ solu-
tion (black solid lines) for ω+ = 0.007 (top), ω+ = 0.014 (middle), and ω+ = 0.020 (bottom) .
Marker symbols are given in Table 7.1.

Phase difference of the oscillatory wall shear stress and freestream velocity

The phase difference between the oscillatory component of the freestream velocity and the oscilla-

tory component of the wall shear stress (Δφ = φτ̃w−φ
˜U∞) is evaluated by quantifying the residuals

of their normalized modulations as a function of phase angle. First, the oscillatory component of

the freestream velocity is plotted as function of phase angle. Next, the oscillatory component of

the wall shear stress is shifted Δφ = ±60◦ with 20◦ increments and the phase angle that shows the

minimum residual between the two curves is selected (Fig. 7.8). Complementary visual inspection

of the normalized freestream velocity and the oscillatory component of the wall shear stress as a
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Figure 7.8: The difference between the normalized perturbation wall shear stress and the
freestream velocity. || • || corresponds to the Euclidean norm, where ||a|| =

√
a21 + a22 + ...+ a2n.

Marker symbols are given in Table 7.1.

function of phase angle is used for verification (Fig. 7.9). Following this procedure, the phase lead

of the oscillatory component of the wall shear stress is ±10◦ for the two lower forcing frequencies

and 40 ± 10◦ for the highest forcing frequency. The phase lead observed at the highest frequency

case matches the phase lead in Stokes’ boundary layer flow, i.e., 45◦ within the experimental uncer-

tainty and is in agreement with previous experimental and numerical studies performed at similar

ω+ (Brereton and Mankbadi, 1995; Scotti and Piomelli, 2001; Weng et al., 2016). The fact the wall

shear stress leads the freestream velocity (and hence the imposed pressure gradient) at the highest

frequency case indicates non-equilibrium behaviors in PBL flow. Consequently, eddy viscosity

models (EVM) will fail to predict the perturbation Reynolds stress at the highest frequency case

(Weng et al., 2016). Based on the measured perturbation field parameters in the present experi-

ments, in particular the wall shear stress and the turbulence intensity, it appears that the highest
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Figure 7.9: The phase difference between perturbation wall shear stress and freestream velocity
for ω+ = 0.007 (left), ω+ = 0.014 (middle), and ω+ = 0.020 (right). Dashed lines correspond
to the normalized freestream velocity and marker symbols are given in Table 7.1. The matching
phase difference is shaded.

frequency (ω+ = 0.020) is in a different flow regime than the two lower frequencies, which is

consistent with studies that find the onset of high frequency regime at ω+ = 0.020.

7.2.3 Time-averaged statistics

Wall-normal profiles in the outer coordinate

The time-averaged (averaged over discrete forcing periods) statistics of pulsatile flow is important

to predict cycle-averaged transport properties (Tu and Ramaprian, 1983; Brereton et al., 1990;
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Figure 7.10: Wall-normal profiles of the mean streamwise velocity normalized by inner scales.
Triangular marker symbols are provided in Table 7.1. Green squares represent the ZPG flow of
approximately the same average Reynolds number.

Tardu and Binder, 1993; Tardu et al., 1994; Binder et al., 1995; Trip et al., 2012; Weng et al.,

2016). In this section, the time-averaged profiles1 of PBL flow in inner and outer coordinates

are presented (triangular marker symbols). The experimental data of ZPGBL flow acquired at

approximately the same Reynolds number is included for reference (square marker symbols).

• Time-averaged Streamwise Velocity

The time-averaged streamwise velocity profiles as a function of inner and outer coordinates

are shown in Figs. 7.10 and 7.11, respectively. The time-averaged profiles show only small

differences compared to ZPGBL flow in both inner and outer coordinates. In general, the

PBL flows lie, respectively, slightly above and slightly below the ZPGBL profiles in the

inner and outer layers of the boundary layer, which suggest slightly higher values of the

von Kármán coefficient. To investigate the existence of a logarithmic region and estimate

1The time-averaged turbulent profiles (-u′v′, v′2 and u′2) are filtered using a median filter with a window size of
11.
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Figure 7.11: Wall-normal profiles of the mean streamwise velocity as a function of outer coordi-
nate. Marker symbols are the same as Fig. 7.10.

the von Kármán coefficient, the indicator function Ξ ≡ y+ ∂U+

∂y+
is plotted for the PBL and

ZPGBL flows. Obvious from Fig. 7.12 the time-averaged mean profiles exhibit a logarithmic

behavior (i.e., a local minima) at 40 � y+ � 70. For ZPGBL flow, in the inertial layer,

Ξ � 2.45, which corresponds to κ ≡ 1
Ξ

� 0.41. For PBL flow κ = 0.45, 0.42, 0.47 for

ω+ = 0.007, 0.014, 0.020, respectively.

• Time-averaged Streamwise Turbulence Intensity

The time-averaged streamwise turbulence intensity profiles as a function inner, outer and

mixed coordinates are shown in Figs. 7.13, 7.14 and Figs. 7.15, respectively. The highest

frequency case (ω+ = 0.020) shows the smallest differences compared to the ZPGBL profile,

while the lowest frequency (ω+ = 0.007) shows the largest differences. The turbulence

intensity in the streamwise direction is higher than the ZPGBL in the outer layer, and it

appears to asymptote to the ZPGBL in the inner layer (y+ < 30). The higher streamwise

turbulence intensity levels in the outer layer, which appears to be inversely proportional with
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Figure 7.12: Indicator function profiles as a function of wall-normal position. Marker symbols are
the same as Fig. 7.10.

flow frequency, has previously been observed by Tardu et al. (1994), but other studies show

that the turbulent intensity profiles in the outer layer is similar to ZPGBL.

• Time-averaged Wall-Normal Turbulence Intensity

The time-averaged wall-normal turbulence intensity profiles as a function of inner and outer

coordinates are shown in Figs. 7.16 and 7.17, respectively. Here the highest frequency

case shows the smallest difference compared to the ZPGBL profile, whereas the wall-normal

turbulence intensity for the two lower frequencies are slightly higher than the ZPGBL profile.

• Time-averaged Reynolds Shear Stress

The time-averaged Reynolds shear stress profiles as a function of inner and outer coordi-

nates are shown in Figs. 7.18 and 7.19, respectively. While the lowest frequency case shows

the smallest difference compared to the ZPGBL profile, the high measurement uncertainty

makes it difficult to draw any definite conclusions.
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Figure 7.13: Wall-normal profiles of the streamwise RMS velocity normalized by inner scales.
Marker symbols are the same as Fig. 7.10.
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Figure 7.14: Wall-normal profiles of the streamwise RMS velocity as a function of outer coordi-
nate. Marker symbols are the same as Fig. 7.10.
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Figure 7.15: Wall-normal profiles of the streamwise RMS velocity as a function of mixed coordi-
nate. Marker symbols are the same as Fig. 7.10.
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Figure 7.16: Wall-normal profiles of the wall-normal RMS velocity normalized by inner scales.
Marker symbols are the same as Fig. 7.10.
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Figure 7.17: Wall-normal profiles of the wall-normal RMS velocity as a function of outer coordi-
nate. Marker symbols are the same as Fig. 7.10.
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Figure 7.18: Wall-normal profiles of the Reynolds shear stress normalized by inner scales. Marker
symbols are the same as Fig. 7.10.
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Figure 7.19: Wall-normal profiles of the Reynolds shear stress as a function of outer coordinate.
Marker symbols are the same as Fig. 7.10.

7.2.4 Phase-Averaged Statistics

Wall-normal profiles normalized by inner scales

The wall-normal profiles of the phase-averaged statistics normalized by instantaneous inner scales

are shown in Figs. 7.20-7.27. Results of the comparison between the phase-averaged flow statistics

of PBL flow compared to ZPGBL flow are described below:

• Phase-Averaged Streamwise Velocity

Wall-normal profiles of the phase-averaged streamwise velocity in PBL flow as a function of

phase angle are shown in Figs 7.20 and 7.21. The fluctuations of the PBL profiles compared

to the ZPGBL profile are best detected when two phases that are180◦ apart are compared.

For example, the PBL profiles for ω+ = 0.020 are below and above ZPG profiles at φ = 10◦

and φ = 190◦, respectively. The magnitude of the fluctuations between PBL and ZPGBL are

small for y+ � 20. The lowest frequency case (ω+ = 0.007) exhibits the largest deviation

from the ZPGBL flow at φ = 310◦. All cases effectively collapse on the ZPGBL flow profiles
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at φ = 230◦, 330◦. Interestingly, it is at these two phases where the PBL flow experiences

approximately the same favorable pressure gradient as the ZPGBL flow.

• Phase-Averaged Reynolds Shear Stress Velocity (Figs.7.22 & 7.23)

The uncertainty in the Reynolds shear stress is high owing to the low number of recorded

cycles (∼60), which is a consequence of the limited camera RAM. Compared to ZPGBL

flow, the Reynolds shear stress in PBL flow is similar in the outer region of the boundary

layer. The large fluctuations in the near wall region (y+ � 50) are within the experimental

uncertainty.

• Phase-Averaged Wall-Normal Velocity Fluctuations (Figs.7.24 & 7.25)

The shape of the profiles of the wall-normal fluctuations in PBL flow are similar to ZPGBL

flow. In the outer region of the boundary layer (y+ � 50), the PBL profiles fluctuate about

the ZPGBL profile. In the near-wall region (y+ � 50) the large fluctuations are within

experimental uncertainty.

• Phase-Averaged Streamwise Velocity Fluctuations

The streamwise velocity fluctuations show large differences between the PBL and ZPGBL

flows. In general the fluctuations are larger in magnitude for the PBL flow at all phases.

The fluctuations are also consistently higher at the two lower frequencies (ω+ = 0.007

and 0.014). Interestingly, the PBL profiles are closest to the ZPGBL profile at φ = 90◦

and φ = 270◦, corresponding to where the flow is at maximum and minimum velocity,

respectively (i.e., when the sign of the acceleration changes). The higher level of turbulence

intensity in PBL flow measured in the present experiment for the current frequency range is

in disagreement with previous studies (Brereton and Mankbadi, 1995; Weng et al., 2016).
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Wall-normal profiles in the outer coordinate

The wall-normal profiles of the phase-averaged statistics as a function of outer coordinate are

shown in Figs. 7.28-7.37. Results of the phase-averaged wall-normal profiles of the turbulent

statistics acquired in PBL flow compared to that of ZPGBL flow are provided below.

• Phase-Averaged Streamwise Velocity (Figs.7.28 & 7.29)

The behavior of the wall-normal mean velocity profiles in PBL flow are different between the

first-half of the cycle (10◦ ≤ φ ≤ 170◦) compared to the second-half of the cycle (190◦ ≤
φ ≤ 350◦). In the first-half, the PBL profiles are generally below the ZPGBL profiles,

and the lowest frequency case (ω+ = 0.007) exhibits the least deviation from the ZPGBL

profiles. In the second-half, however, the PBL profiles are slightly above the ZPGBL profiles

from 190◦ ≤ φ ≤ 250◦ and they are in close agreement with the ZPGBL profile at 270◦ <

φ ≤ 350◦. Deviation of the mean velocity profiles from the ZPGBL flow in inner and outer

layers, especially at φ ≤ 250 is an indicator of non-equilibrium flow behaviors in the PBL

flow during the late phases of the cycle.

• Phase-Averaged Reynolds Shear Stress Velocity (Figs.7.30 & 7.31)

As described earlier, the uncertainty in the Reynolds shear stress is high making it difficult

to draw any conclusions regarding the effects of periodic forcing on the Reynolds stress.

• Phase-Averaged Wall-Normal Velocity Fluctuations (Figs.7.32 & 7.33)

The wall-normal turbulence intensity profiles for the PBL flow are of similar shape to the

ZPGBL flow. The magnitude of the fluctuations about the ZPGBL profiles is comparable

between the three frequencies.

• Phase-Averaged Streamwise Velocity Fluctuations (Figs.7.34 & 7.35)

The highest frequency case (ω+ = 0.020) shows the smallest differences compared to the

ZPGBL profile, while the lowest frequency (ω+ = 0.007) shows the largest differences. The

deviation of the turbulence intensity from the ZPGBL profiles for the two lower frequency
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cases is minimum from 50◦ ≤ φ ≤ 110◦ and 250◦ ≤ φ ≤ 270◦, where the freestream

velocity is near its peak and trough, respectively.

De Graaff and Eaton (2000) introduced a mixed scaling to minimize the Reynolds number

dependence of the streamwise turbulence intensity in the outer layer. In this mixed scaling,

the turbulence intensity 〈u′2〉 is normalized by uτU∞. The streamwise turbulence intensity

profiles in the mixed scaling are shown in Figs. 7.36 and 7.37. While the mixed scaling

appears to be more appropriate, the general observations deducted from the profiles plotted

in the outer coordinate remain valid.
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7.3 Reciprocating vs Pulsatile Wall-Bounded Flow

To summarize the study of the periodic wall-bounded flows, a brief discussion of similarities and

differences between reciprocating and pulsatile flow is provided. The metrics for comparison are,

however, not straightforward. In particular, in reciprocating flow, time(cycle)-averaged quantities

are zero, while they are finite in pulsatile flow. Consequently, the coupling between the time(cycle)-

averaged fields (both mean and turbulent quantities) and the oscillatory field is only relevant to

pulsatile flow. Nevertheless, in pulsatile flow, the time(cycle)-averaged profiles (both mean and

turbulent quantities) are insensitive to the amplitude and frequency of the imposed forcing. More-

over, they are not significantly different from the time-averaged profiles in steady-flow, with the

exception of only the streamwise RMS velocity as observed in the present study. This suggests a

weak coupling between the oscillatory field and the time(cycle)-averaged fields. Given the above,

the comparison will focus on the phase-averaged fields. In reciprocating flow, the phase averaged

fields (both mean and turbulent quantities) depend strongly on the frequency of the forcing. In

particular, the lower forcing frequency (larger period) case transitions to fully-turbulent behaviors

during a portion of the cycle while the higher forcing frequency case remains transitional through-

out the entire cycle. In pulsatile flow, the phase-averaged fields show a weak dependence on the

frequency of the forcing, effectively fluctuating about the time-averaged field. The highest forcing

frequency shows the smallest fluctuations. The oscillatory field for the highest forcing frequency

case is the most nonlinear, where the nonlinear behavior is quantified by a phase lag between the

stress field and the strain field. While this may appear counterintuitive, it is not. In particular, the

nonlinear behavior of the oscillatory flow is confined to the near-wall Stokes’ boundary layer and

does not strongly couple to the mean and turbulent fields.

Transition to turbulence in the two flow types is determined by the Stokes’ Reynolds number

Res, which is proportional to the ratio of the Reynolds number Re to the Womersley number W ,

i.e., Rec = f(W ), where Rec is the critical Reynolds number, and f(•) is a generic function. The

appropriate Reynolds number for a pulsatile and reciprocating flow is based on the time-averaged
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and oscillating velocity, respectively. In reciprocating flow the relationship is linear and well-

established, i.e., Rec = 700W (i.e., Res � 500). In pulsatile flow, the relationship between Rec

and W is complicated, and several correlations have been proposed in the literature (Çarpinlioğlu

and Özahi, 2012). The common agreement is the transition can be either advanced or delayed

based on the Womersley number (Çarpinlioğlu and Özahi, 2012; Trip et al., 2012). The reader is

referred to Brereton and Mankbadi (1995); Gündogdu and Çarpinlioğlu (1999a,b); Çarpinlioğlu

and Özahi (2012) for more detailed comparisons between the two flow types.

7.4 Conclusions

PIV studies were conducted in the NEAT boundary layer wind tunnel to study the transport of mo-

mentum in PBL flow. Three different forcing frequencies were investigated: ω+ = 0.007, 0.014, 0.020,

falling within the intermediate frequency flow regime as described by Brereton and Mankbadi

(1995) and illustrated in Fig. 7.1. In these experiments, the maximum velocity (hence Reynolds

number) and the amplitude of the mean velocity modulation were limited by the design of the

rotor-stator used to produce the periodic pressure forcing. The PIV vector fields acquired in PBL

flow were analyzed by phase and time-averaging and plotted as a function of inner and outer co-

ordinates. Bulk flow parameters and wall-normal profiles of streamwise velocity, rms velocity

fluctuations, and Reynolds shear stress were compared to ZPGBL flow at the same Reynolds num-

ber.

The study results showed that the modulation amplitude of the freestream velocity is inversely

proportional to the forcing frequency. The two lowest frequency cases exhibited very different flow

behaviors compared to the highest frequency case. In particular, the modulation of the perturbation

wall shear stress in the highest frequency case leads the freestream velocity by 40 ± 10◦, and the

amplitude of the modulation is slightly larger than that given by the Stokes’ boundary layer solu-

tion. The wall shear stress modulation of the two lower frequency cases, however, is in phase with

the freestream velocity and their amplitude of modulation closely matches that given by the Stokes’
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boundary layer solution. Moreover, the time-averaged streamwise turbulence intensity profiles in

the inner, outer and mixed coordinates show that the highest frequency case (ω+ = 0.020) shows

the smallest differences compared to the ZPGBL profile, while the lowest frequency (ω+ = 0.007)

shows the largest differences. The higher turbulence intensity levels in the streamwise direction

appears to be inversely proportional with flow frequency. The freestream turbulence intensity mod-

ulation of the two lower frequency cases is 180◦ out of phase with that of the highest frequency

case.

The time-averaged profiles of the streamwise velocity show only small differences compared

to ZPGBL flow in both inner and outer coordinates. The PBL flows lie slightly above and slightly

below the ZPGBL profiles in the inner and outer layers of the boundary layer, respectively.

In general, the time-averaged profiles in a pulsatile flow are not significantly different from

steady flow. While the modulation amplitudes of the current experiments remain less than 11%

of the mean flow, Binder et al. (1985) showed the insensitivity of the oscillatory field to imposed

forcing modulation for a modulation amplitude up to 80% of the mean flow. It is therefore, con-

cluded that nonlinear coupling between the mean and oscillatory fields remain insignificant in a

pulsatile flow, and the oscillatory profiles that are Δφ = 180◦ are anti-symmetric.

In brief, while the time-averaged mean flow of the highest frequency case is in equilibrium, the

perturbation field is not. In particular, the perturbation wall shear stress of the highest frequency

case leads the freestream and the amplitude of modulation is slightly higher than the Stokes’ bound-

ary layer solution. Therefore, the EVM models are not expected to predict the perturbation field of

the highest frequency case accurately. Conversely, the time-averaged mean flow of the two lower

frequency cases (ω+ = 0.007, 0.014) appear to exhibit slightly different statistics, in particular

with respect to the streamwise velocity fluctuations, while the perturbation field is in equilibrium.

Based on these results and the value of ls tabulated in 7.1, it is conjectured that a critical ω+ exists

below which the affect of periodic forcing will modify the time-averaged flow behaviors. Above

this threshold, the perturbation field departs from equilibrium and if the frequency is large enough

it will asymptote to the Stokes’ boundary layer solution. Clearly, the low frequency cases of
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ω+ = 0.007, 0.014 are below this threshold, while the high frequency case is above this threshold.

More work is required to verify the existence of this critical frequency.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

Collectively, the work of the dissertation has led to the development of analytical tools, and

a unique experimental facility to study non-equilibrium wall bounded flows. For clarity, the con-

cluding and future work statements are subdivided into four sections representing the four primary

research fronts of this dissertation.

8.1 An Exact Integral Method To Evaluate Wall Heat Flux In Spatially De-

veloping Two-Dimensional Wall-Bounded Flows

8.1.1 Conclusions

An integral method to evaluate the wall heat flux in turbulent wall-bounded flows based on

the triple integration of the Reynolds-averaged thermal transport equation was presented. Using

data from the literature, the method was shown to be fairly robust based on good agreement of

the evaluated wall heat flux when compared to direct calculation of the temperature gradient at the

wall using both DNS and experimental data. Complications owing to experimental limitations and

measurement error in determining the wall heat flux from the proposed method were presented and

mitigating strategies were described.

The need for this technique may be argued on grounds that it provides a direct measurement of

the wall heat flux and is useful when profiles at multiple streamwise locations are not available or

feasible, for flows with ill-defined outer boundary conditions, or when the measurement grid does

not extend over the whole boundary layer thickness. Being an integral method, it is less sensitive

to measurement noise than a differential method, in particular in the near-wall region of the flow.

Furthermore, determination of the wall heat flux from the present method provides a means to
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connect transport properties at the wall to the mean flow dynamics. This is an important character-

istic to better understand the underlying physics associated with the wall heat flux, in particular in

non-equilibrium wall-bounded flows.

8.1.2 Future Work

The presented integral method is valid for two-dimensional incompressible flows. However,

many turbulent flows in engineering applications are three-dimensional and/or compressible. Flow

inside a piston engine or through a turbine are but two important examples where evaluating the

wall heat flux in three dimensional, compressible flows is critically important. Suggested future

work is to refine the method for three-dimensional and/or compressible flows. Other suggested

future work is to explore the alternative forms of the integral method. In particular, evaluating the

wall heat flux using only the mean temperature profile, and comparing the results to the differential

method.

8.2 Integral Validation Technique of RANS Turbulence Models

8.2.1 Conclusions

DNS of reciprocating channel flow with heat transfer was used to evaluate the performance of

two low-Reynolds-number and two high-Reynolds-number RANS turbulence models. The stan-

dard validation technique indicated that the two low-Reynolds-number models reasonably predict

the transport of momentum and thermal energy in reciprocating channel flow. However, the results

of the integral validation technique indicate that while the low-Reynolds-number models perform

reasonably well in predicting the contributing terms to the wall shear stress, the models perform

rather poorly in predicting the contributing terms to the wall heat flux. Specifically, the contribu-

tions from the turbulent heat flux are under predicted while the contribution from the gradient of

the total heat flux is of opposite sign and 180◦ out-of-phase compared to the DNS. Importantly,

the differences in the contributing terms serendipitously cancel each other yielding a reasonable
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prediction of the wall heat flux compared to the DNS. In addition, the integral validation technique

identifies the breakdown of Reynolds analogy and deficiencies in the turbulence heat flux model as

the root causes of the modeling failures. This information is critical to the improved development

of turbulence models.

8.2.2 Future Work

The integral validation technique was used to evaluate the performance of “single equation”

heat transfer models using an eddy-viscosity approximation, i.e., −u′
iθ

′ = νT
PrT

∂Θ
∂xi

. Nevertheless,

there are a few modified heat transfer models that purportedly outperform single equation models.

For example, Abe et al. (1996) introduced a two-equation heat transfer model, So and Sommer

(1996) introduced an explicit algebraic heat transfer model for the temperature field, and Abdol-

Hamid et al. (2004) introduced a temperature corrected turbulence model for high temperature jet

flows, among others. Using the integral validation technique, the modified models can be evaluated

and their performance can be compared to the single-equation heat transfer models.

8.3 Transition to Turbulence In Reciprocating Channel Flow

8.3.1 Conclusions

The mean flow dynamics in reciprocating channel flow was studied to better understand the

mechanism of transition to turbulence in periodic flows. The underlying mechanism of this tran-

sition is the emergence of an internal layer that first develops during the late phases of the accel-

erating portion of the cycle. The internal layer is found to be spatially coincident with a strong

momentum sink/source-like behavior of the turbulent inertia. It is conjectured that the internal

layer emerges from a shear layer instability that rolls-up triggering further flow instabilities that

transition the flow to a fully-developed turbulent channel in subsequent phases.
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8.3.2 Future Work

The identification of the potential root cause of transition to turbulence in reciprocating channel

flow denotes good progress. However, further work is required to identify if the internal layer does

indeed roll-up as conjectured. A suggestion for future work is to incorporate flow structure identi-

fication schemes in the transitional phases of the flow to further study differences in the turbulent

structure when the flow transitions to turbulence at Res = 1019 compared to when the flow re-

mains transitional Res = 648. The Q-R criteria scheme, and the triple decomposition of the strain

rate tensor first introduced by Kolář (2007) are among several structure identification schemes that

can be employed.

8.4 Experimental Facility Development and Results

8.4.1 Conclusions

The non-equilibrium and thermal (NEAT) boundary layer facility was purposefully designed

and developed to study non-equilibrium thermal boundary layers. The facility can maintain various

thermal boundary conditions and generate pressure gradient modulations with various frequencies

and amplitudes. It was validated under equilibrium boundary layer conditions for 568 ≤ Reθ ≤
1438.

Particle image velocimetry (PIV) was used to study the momentum transport in pulsatile bound-

ary layer (PBL) flow. The analysis of the PIV results show that although the phase-averaged pro-

files depart from the equilibrium profile, the time(cycle)-average profiles, except for the streamwise

turbulent intensity u′2, are similar to steady-state, zero pressure-gradient boundary layer flow. Us-

ing u′2 as a metric for the departure of the time mean flow from equilibrium, a critical frequency

0.014 < ω+
c < 0.020 was identified, where ω+ = ω

u2
τ/ν

, ω is the flow angular frequency, uτ is the

friction velocity and ν is the fluid viscosity. For ω+ > ω+
c , u′2 does not exhibit significant differ-

ence from its steady flow counterpart. For ω+ < ω+
c , however, u′2 has a higher value compared to

the steady flow, the deviation magnitude is inversely proportional to flow frequency.
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The wall shear stress modulation is investigated to study the perturbation field of the PBL flow.

The perturbation wall shear stress of the two lower frequency cases is in phase with the freestream

velocity and the amplitude of the modulation matches that determined from the Stokes’ boundary

layer solution. However, the wall shear stress of the highest frequency case leads the freestream

and the amplitude of modulation is slightly larger than that determined from the Stokes’ boundary

layer solution. It is concluded that the perturbation field of the highest frequency case is not in

equilibrium and the flow is in a different flow regime than the two lower frequency cases.

8.4.2 Future Work

The pulsatile pressure-gradient used for flow forcing in the PBL flow was produced using a

rotor-stator assembly with limited capabilities. Specifically, the inherent flow blockage of the

system limits the maximum flow speed in the tunnel, such that the maximum Reynolds number

based on mean freestream velocity is limited to Retheta � 850. In addition, the limited forcing

frequency of the current setup limits the modulation of the freestream velocity in the tunnel.

Improving the design of the assembly to increase the flow rate while maintaining the pulsatile

flow modulation amplitude above 5% is necessary to study PBL flow at higher frequencies and

Reynolds numbers. For example, a rotating flap can replace the current rotor-stator assembly and

increase the flow rate. It also can provide higher modulation amplitude for a given flow frequency.

Since PIV provides a two-dimensional, instantaneous snapshot of the turbulent velocity field,

the PIV vector fields can be used to identify turbulent flow structures to study the difference in

the turbulent structure between PBL and ZPG boundary layer flow. Despite the benefits of PIV,

measurements over long sampling times and a high sampling frequency is not possible owing to

the limited camera memory. Therefore, PIV measurements of a PBL flow for a large number

of cycles (> 1000) and large number of phases per cycle (≥ 360) is very challenging. A point

measurement technique such as hotwire anemometry (as long as there is no flow reversal) can
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provide much higher sampling frequency and longer sampling length compared to PIV, which

reduces the uncertainty of the statistics.

Lastly, the thermal wall plate and feedback controllers, which are designed and manufactured

as part of the dissertation, are installed and ready to use. Temperature measurements in the fa-

cility to study heat transfer in pulsatile boundary layer flow provides valuable insight of the heat

transport mechanisms in non-equilibrium flows. The seeding particles introduced to the flow for

PIV measurements limit the options of the experimental techniques to measure temperature. One

suggestion is to use planar laser induced fluorescence (PLIF) and PIV to study the temperature and

the velocity fields simultaneously. Nevertheless, since the wind tunnel is made of plastic and it is

an open-circuit tunnel, finding the suitable particles for PLIF is nontrivial. The other option is to

use a hotwire/coldwire combination to study the velocity and temperature fields simultaneously.
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APPENDIX A

FEEDBACK CONTROLLERS, THERMOCOUPLE AMPLIFIER AND

ENCLOSURE BOX

This appendix provides detailed specifications of the enclosure box, in which the feedback

controllers and the thermocouple amplifiers are installed. Each section of the setup is briefly intro-

duced, its components are listed and instruction to repair/change/upgrade them is provided. The

reader may consider this appendix as the user’s manual of the feedback controller.

A.1 Feedback Controller Circuitry

Feedback controller circuitry is designed to keep the input signal (i.e., the temperature of the

convective plate) at a constant level by means of a silicon controlled rectifier (SCR). The circuitry

contains one NPN transistor, one SCR, a fuse, diodes, LEDs and resistors (Fig. A.1). In this

circuit the transistor decouples the controlling section (i.e., the DAQ board and the computer with

very low current) from the controlled section (i.e., the resistive heaters with high currents). The

benefit of the isolation is two folds: 1- the high current of the controlled section would not damage

the controller section, which is often very sensitive to high currents, and 2- the circuit can be

controlled with very low current that is often provided by DAQ boards. The feedback controller

works as follows:

The difference between the set and the convective plate temperatures is used as the input of the

circuit. When the input is positive (i.e., the plate temperature is lower than the set temperature), a

positive DC voltage (∼ 5V) is applied to the base of the transistor. The transistor becomes active

(like a forward diode) and allows the current flow from the DC power supply to the gate of the

SCR. Now the SCR is in forward conducting mode and the resistive heaters are powered by AC
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Figure A.1: Left: a photograph of the controller circuitry. Right: schematic of the feedback
controller circuitry. Specifications of the numbered parts are listed in Table A.1.

voltage. When the input is negative (i.e., the plate temperature is higher than the set temperature),

no positive voltage is applied to the base of the transistor and thus, the transistor is in the cutoff

mode (like an open switch). As a result, the SCR gate is not charged with positive signal and

the SCR switches to blocking mode (like and open switch). Hence, no current passes through the

resistive heaters.

A 10A fuse is installed to protect the circuit from current overshoots. An LED is installed to

help identify when the circuit is turned on or off. Specifications of the incorporated components

and their suppliers are listed in Table A.1.

Reader should note that the SCR in the forward conducting mode can be assumed as a diode.

Therefore, the AC current passes in half of the AC cycle and is blocked in the other half. Thus, the

effective voltage applied to the heaters is half of the AC voltage input to the circuit. Limitations

of the current design and suggestions to improve the performance of the controllers are provided

below.
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Table A.1: Specifications of the components of the feedback controller.

Number Component Properties Supplier Part number
1 NPN Transistor 230V, 1A, 2W Digikey 2SC4793FM-ND
2 Diode 1000V, 1A Digikey 1N4007DITR-ND
3 Resistor 220Ω, 0.25W Digikey CF14JT10K0TR-ND
4 SCR 400V, 10A Digikey S4010L-ND
4 Heat sink TO-220 Digikey 294-1080-ND
5 Fuse 10A, 250 VAC, 5× 20mm2 Digikey 507-1235-ND
5 Fuse holder 10A, 250 VAC, Cartridge Digikey WK6245-ND

A.1.1 Limitations and Suggestions

The voltage is limited by the AC outlet, i.e., 120VAC. In the current setup, the supplied voltage

to the resistive heaters is 60VDC. To increase the voltage one can install a resistor-capacitor in the

circuit parallel to the resistive heater. This change can double the voltage and provide 120VDC to

the heaters. However, the time constant of the circuit will increase as well. Therefore, one needs

to be careful in choosing the values of the resistor R and the capacitor C, so the time constant

τ = RC remains (much) lower than the time constant of the convective plates. Moreover, increas-

ing the supply voltage, increases the current drawn by each circuit. The current limit of the SCRs

is 10A, so one must note that the current of the two heaters that are powering the same plate, which

are powered by one controller, shall not pass 10A. The maximum total current of the two heaters

on the same plate with the current setup is 7.5A.

A.2 Feedback Controller Board

Feedback controller components are assembled on PCB boards. There are total of six boards (la-

beled as boards 1-6), each contains three circuitries. Twelve circuits (labeled as 1-12) are reserved

for twelve convective plates (plates 1-12, where plate one is upstream and plate 12 is downstream

of the wind tunnel), and six circuits (labeled as a-f) are saved for future use, i.e., potential up-

grades. The arrangement of the circuits on the boards is explained in Table A.2. The 10A fuses

of the circuits that are not in use are removed. Three AC (labeled as AC I, II and III) outlets and
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Table A.2: Arrangement of the controller circuitries on PCB boards.

Board number Active circuits Reserved circuits
1 1 a, b
2 2, 3 c
3 4, 5 d
4 6, 7, 8 -
5 9, 10 e
6 11, 12 f

three DC plugs (labeled as DC I, II and III) are predicted for the boards. Every two boards share

one AC outlet and one DC plug. A 20A fuse is installed for each AC outlet. Boards 1 and 4 share

AC I and DC I ; boards 2 and 5 share AC II and DC II; and boards 3 and 6 share outlets AC III and

DC III. The total current of the AC outlets with the current setup are 9A, 12A and 16, respectively.

The DC current draw of of circuits are well below 1A, so one may share one power supply for all

DC plugs. The grounded DC voltage between 6V to 12V is suggested for the controllers.

A.3 Thermocouple Amplifier

Analog Devices AD594 thermocouple amplifiers are incorporated to amplify the micro-voltage of

the thermocouples with the sensitivity of 10 mV/◦C. A schematic of the circuitry is shown in Fig.

A.2. Every three amplifier components, which measure the spanwise temperature distribution of

one convective plate, are installed on one PCB board. On each board amplifiers 1 (L), 2(C) and

3(R) are for the thermocouples mounted on the right, middle and left of the plate. Right and left

are defined when one looks at the convective plate such that plate 1 is up and plate 12 is on bottom.

Amplifier of plates 1-6, plates 7-9 and plates 10-12 share DC V, DC VI and DC VII. The current

drawn by the amplifiers are well below 1A, so one may share one power supply for all DC plugs.

The DC voltage must be between 5V to 15V. The DC voltage does not alter the sensitivity of the

amplifiers, however, lower voltage induces less noise. The DC voltage of the power supply can be

grounded or floating, but one must be consistent since providing floating voltage imposes a bias in
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Figure A.2: Left: a photograph of the thermocouple amplifier board. Right: schematic of the the
thermocouple amplifier circuitry. Diagram adopted from Analog Devices.

the voltage of the amplifiers. Therefore, a grounded 6VDC is suggested for amplifiers.

A.4 Enclosure Box

A 76.20 × 60.96 × 30.48cm3 Hammond Manufacturing box is utilized as the enclosure box in

this project. Figure A.3 shows the computer-aided design (CAD) of the box. The panel on the

left-hand side (LHS) of the box is used as the interface between user and the controller boards,

and the right-hand side (RHS) panel is used as the interface between user and the thermocouple

amplifier boards. Six controller boards, twelve thermocouple amplifier boards and four wire ducts

are installed on the mounting panel in the enclosure box. Details of the wirings between the barrier

200



Figure A.3: Computer-aided design (CAD) of the enclosure box. Details of the electronics can be
seen in Fig. A.4.

terminals and the binding posts on the side panels of the box, and the electronic boards on the

mounting panel is provided in Table A.3. Five DC fans are installed on the top panel of the box

to cool the SCRs. The cooling fans share DC IV and they share the power supply of the feedback

controllers. A transparent window is installed on the door for visual inspections. A photograph of

the mounting panel of the box is shown in Fig. A.4.
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Table A.3: The arrangement, color code and the size of the hook-up wires used in the enclosure
box.

From (side panel) To (mountaing panel) Color Size (AWG)
DC + (LHS) DC+ (controller) Yellow 16
DC - (LHS) DC- (controller) White 16
DC + (LHS) DC+ (Fan) Red 22
DC - (LHS) DC+ (Fan) Black 22
AC hot (LHS) AC+ (controller) Red 14
AC neutral + (LHS) AC - (controller) Black 14
AC ground (LHS) AC ground (box) Green 14
DAQ + (LHS) DAQ (controller) Purple 16
Heater (LHS) Heater (controller) Blue 16
Heater (LHS) Heater (controller) Green 16
TC in + (RHS) TC in + (amplifier) White (TC extension) 20
TC in - (RHS) TC in - (amplifier) Red (TC extension) 20
TC out + (RHS) TC out + (amplifier) Red 22
TC out - (RHS) TC out - (amplifier) Black 22
DC + (RHS) DC+ (amplifier) Yellow 16
DC - (RHS) DC- (amplifier) White 16
DC + (LHS) DC+ (controller) Yellow 16
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Table A.4: The color code of the hook-up wires that connect the resistive heaters to the enclosure
box.

Plate (heater) Wire color code
1 (1) Red-Black
1(2) Red-White
2(1) Red-Green
2(2) Red-Yellow
3(1) Blue-Green
3(2) Blue-Orange
4(1) Blue-Gray
4(2) Blue-Brown
5(1) Blue-White
5(2) Blue-Yellow
6(1) Purple-Brown
6(2) Purple-Yellow
7(1) Purple-Orange
7(2) Purple-Green/Yellow
8(1) Purple-Black
8(2) Purple-Red
9(1) White-Yellow
9(2) White-Black

10(1) White-Green
10(2) White-Blue
11(1) Green-Blue
11(2) Green-Yellow
12(1) Black-Blue
12(2) Black-Yellow

203



Figure A.4: Photograph of the mounting panel inside the enclosure box.
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APPENDIX B

MODULATION FREQUENCY OF THE WALL SHEAR STRESS AND

HEAT FLUX IN RECIPROCATING CHANNEL FLOW

A toy model is developed to relate the modulation frequency of Nu and τw to the forcing

frequency in a reciprocating channel flow:

Near the channel centerline, viscous forces and advection can be neglected, hence, the momentum

balance reduces to

∂u

∂t
= −1

ρ

∂P

∂x
. (B.1)

where u is mean streamwise velocity, ρ is the density, P is pressure, x is the streamwise direction

and t is time. Integrating Eq. B.1 in time and replacing the pressure gradient with a cosinusoidal

term, i.e., ∂P
∂x

= cos(ωt), results in the following

u(t) = C1sin(ωt), (B.2)

where C1 can be determined by initial condition and ω is the forcing frequency.

Similarly, the thermal transport equation near the channel centerline reduces to

∂Θ

∂t
+ u

∂Θ

∂x
= 0. (B.3)

where θ is the mean temperature. Integrating Eq. B.3 in time and assuming ∂Θ
∂x

modulates with the

forcing frequency, results in the following
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T (t) = C2cos(2ωt), (B.4)

where C2 can be determined by initial condition. Equations B.2 and B.4 show that while veloc-

ity (and therefore, wall shear stress) modulate with a frequency equal to the forcing frequency,

temperature (and therefore, wall heat flux) modulate with a frequency twice the forcing frequency.
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APPENDIX C

EXPERIMENTAL PROCEDURE

This appendix provides a step-by-step description of the experimental procedure. The proce-

dure is divided into eleven main operations. For each operation, a bulleted list of tasks are given.

1. Preliminaries

• Close laboratory doors, turn laser warning light ON and place laser curtains in front of

the lab doors.

• Turn refrigerated chiller ON and wait until the laser temperature reaches 20◦C.

• Turn the laser power supplies ON.

• Turn fog machine ON and wait until the green ready indicator on the remote illuminates

before pumping fog.

• Remove camera lens caps and turn cameras ON.

• Remove laser lens cap.

2. Laser turn on (for alignment and camera calibration)

• Wear OD 0.9 @ 527nm laser alignments goggles.

• Turn on PIV computer and launch Davis 8.3.1. In the toolbar click New, assign a

Project name and select PIV as the Type of project.

• Record experimental parameters such as room temperature and fan motor frequency

among others to labbook.txt. More information will be recorded in labbook.txt through-

out the experiment.
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• Click Recording in the toolbar.

• Under Device Settings-HighSpeedRecording-Laser 1, check Pulse T1A, set laser mode

to off, check both camera 01 and camera 02. From the drop-down menu choose single

frame (T1A) for both cameras.

• Under Timing, set Image rate to 0.25kHz.

• Turn upper laser power supply to ON.

• On the laser power supply: push Shutter button.

• On the power supply: push Menu button, select Diode Setting and hit Enter.

• On the laser power supply: Turn laser enable key-switch ON.

• On the laser power supply: Push LDD to ON.

• On the laser power supply: Increase Is slowly to 10A, which is the onset of lasing for

laser 1, hit Enter.

• In Davis set the laser mode to Adjust.

• Check the laser beam and light sheet alignment.

3. Camera scaling

• Insert the calibration plate so that it faces camera 01 and carefully align the plate such

that it’s front face is grazed by the laser sheet.

• In the Window Manager, under Light Source, set laser mode to OFF.

• Under live mode click Grab continuously.

• In the live window select F=0, adjust camera 01 focus until the calibration plate is in

focus.

• Under Device Settings-Timing, set Cycle rate to 1Hz, Start [Image], End [Image] and

Cycles to 1. This setting records a single image.
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• Under Recording Sequence-Recording Sequence, check Store immediately after record-

ing.

• In the Window Manager, under Recording, set Recording Name to Cam01-Calibration

and click Recording.

• Record camera f-# and exit Recording.

• In directory window, right click on Cam01-Calibration and click Convert all Stream

sets to native sets.

• Repeat procedure above for camera 02.

• Remove the calibration plate from the tunnel.

4. Calibration

• Click Calibration in the DaVis toolbar.

• Define experimental setup: select 2 cameras (independent 2D+2D); click Next.

• Define coordinate system: click Next.

• Select calibration plate(s) used: select Type 11 under Coordinate system 1 and Coor-

dinate system 2; click Next.

• Image acquisition: click images and from Cam01-Calibration select B00001.im7. Un-

der Select frames to input from the image, check frame 0 (=camera1), check specify

camera # (overrides frame info) and set to 1, click OK. Repeat for camera 02, click

Next.

• Mark definition: select All cameras/views, follow instruction and select 3 marks on

each image (6 in total); click Next.

• Finding all marks, click Start search, click Next.

• Fit mapping function:click Start Calibration, click Next.

• Evaluation of corrected images: check both calibrations under Coordinate system 1

and Coordinate system 2, click Finish.
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• In the pop-up window, select Overwrite active project with new scales and calibration

AND rescale all root image/recording dataset, click OK.

5. Move image origin

• Click Calibration in the DaVis toolbar.

• Define experimental setup: select define origin, maintain calibration; click Next.

• Define origin / maintain calibration: Under Action: calibrate visible frame in working

window, select lower left corner as the placement of the origin., Click Yes in the pop-up

window. Repeat for F=1; click Finish.

• In directory window, expand Properties and expand Calibration, click camera 01, right

click on image and select Data properties, select Scales and record scale Factor, click

Close. Repeat for camera 02.

• Write the calibration scales to labbook.txt.

• Estimate the wall location in the image (use mouse/pixel coordinate indicator on the

viewer) and record the estimated wall location to labbook.txt.

6. Turn laser ON (for data acquisition)

• Wear OD7+ @ 527nm goggles.

• On the upper power supply: hit Enter and increase the current slowly to 14A, hit Enter.

• Turn on the bottom power supply, follow the same directions as described in bulleted

list of operation 2.

• Increase the current to 14A, hit Enter.

• Record the laser currents to labbook.txt.

7. Image settings

• Click Recording in the DaVis toolbar.
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• Under Device setting click camera 01: HighSpeedStar 5.1, under Area Of Interest,

select Resolution and Origin. The maximum frame rate for full frame (1024×1024

pixel2) is 3.6kHz. To record at higher frame rate, the AOI must be smaller. For the

current experiments, 448×1024 pixel2 is chosen to record at 7.2kHz. The origin of the

two cameras must be selected such that the two images overlap.

• If background intensity subtraction is needed, under Timing, set Image rate to a number

that experiments will be performed at that frequency.

• Expand Device setting-camera 01: HighSpeedStar 5.1, click Intensity Correction.

• In the Window Manager, set laser mode to On. Shut room lights.

• Click Take Background Image and check Background subtraction. Repeat for camera

02.

• In the Window Manager, set laser mode to OFF..

8. PIV measurements

• Wear OD7+ @ 527nm goggles.

• Turn on the suction fan of the wind tunnel and set fan motor frequency to desired value.

• Turn room lights OFF.

• Under Device Settings-HighSpeedRecording-Laser 1, check laser(s) and select appro-

priate recording modes

• Under Device Settings-Timing, set Cycle rate, Start [Image], End [Image] and Cycles

appropriately. The settings are unique for each experimental setup. If Double Frame

(T1A+T1B) is chosen, set Start [Image] and End [Image] to 1. If Single Frame (T1A)

is chosen, set Start [Image] and End [Image] to 1 and 2, respectively.

• In the Window Manager, set laser mode to ON.

• Turn on the fog pump and wait until a sufficient fog density has filled the tunnel test-

section.
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• Click Start Recording.

• When recording is finished, set laser mode to OFF.

9. Laser turn off

• Verify that laser mode is set to OFF.

• On the top power supply: hit Enter and decrease Is slowly to 0A and hit Enter.

• Push LDD to OFF.

• Turn laser enable key-switch to OFF.

• Push Shutter to OFF..

• Turn top power supply OFF.

• Turn bottom power supply OFF.

• Put laser lens cover on.

10. Image processing

• Recorded images can be processed with Davis 8.3.1, or Davis 8.0.6. Author finds the

latter to be more stable near the edges of image and masks. Davis 8.3.1 image format

is not compatible with Davis 8.0.6, To convert the format, right click on the image set

and click Convert to native set. Convert all Stream sets to native sets can be selected to

convert all images.

• In the toolbar, click Processing. Set the desired settings in the Operation list. The

operation settings include mask definition, interrogation area size, number of passes

and overlap percentage, filtering and interpolation schemes, among others.

• Click Test Processing and evaluate the vector fields qualitatively. Repeat process for a

few snapshots.

• Once the operation list is finalized, click Save icon in the Operation list and click

Export to file. Choose the destination and save the operation list code.
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• Click Start Processing.

• Once the processing is done, the vector fields can be exported as .txt files. Include a

copy of labbook.txt in the destination folder.

11. Tunnel clean-up

• Facility clean-up is necessary to remove the buildup of oil from the flow facility. This

must be done both periodically during an experimental run and when the experiment is

finished.

• Using a damp towel wipe down and remove accumulated oil film form the thermal

wall-plate, test-section wall, diffuser and the exhaust fan.

• Using a dry towel wipe down and dry the thermal wall-plate, test-section wall, diffuser

and the exhaust fan.
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