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Abstract 

 

Monte Carlo simulations have become the workhorse of the modern methodologist aimed at providing 

both novel statistical insights and to guide data analysis practice. In spite of its widespread use, 

familiarity with data-generating algorithms is rare among users and consumers of simulation-based 

research, making the process appear as a “black box” of sorts. Without a good understanding of these 

algorithms, design flaws can appear in Monte Carlo studies which can influence the recommendations 

offered to applied researchers. In order to address these potential problems, this dissertation will 

highlight three issues in three separate papers related to the process of simulation as well as potential 

recommendations to deal with them.  The first paper (chapter 2) focuses on the importance of matching 

the population model with the simulation design underlying the researcher’s hypothesis. It takes the 

Spearman rank correlation as a case study and documents the impact that potential disparities between 

simulation design and methodology can have on the conclusions derived from computer studies. The 

second paper (chapter 3) investigates a popular data-generating method within the social sciences, the 

Vale-Maurelli algorithm, and compares its results to a second one, the Headrick method, in terms of the 

kind of data they can generate and how this influences simulation results within a Structural Equation 

Modelling framework. The third paper (chapter 4) takes a closer look at the both the univariate 

(Fleishman) and multivariate (Vale-Maurelli) versions of the 3rd-order polynomial transformation to 

generate correlated, nonnormal data and documents the impact that its multiplicity of solutions has on 

simulation study results. In conclusion, this dissertation has the ultimate goal to help illuminate the 

process of simulation to psychometricians and social scientists alike in order to help create better study 

designs and promote a critical evaluation of Monte Carlo studies among methodologists and applied 

researchers alike.   
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Chapter 2. A version of chapter 2 of this dissertation has been accepted for publication in the British 
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Chapter 1: Introduction 

 
The method of Monte Carlo simulation has, for all intents and purposes, revolutionized the way in which 

both the natural and social sciences conceptualize data analysis and evaluate best practices related to it. 

With the advent of accessible computer power, quantitatively-oriented researchers have gained the 

ability to generate complex multivariate data to serve a wide variety of purposes, from approximating 

solutions to problems that would otherwise be intractable to mimicking real-life phenomena in an 

attempt to understand the inputs and outputs of non-deterministic physical, biological, or social systems 

(Beisbart & Norton, 2012). Underlying this panoply of applications, however, there exists one important 

assumption: that the researcher, at every point and every moment, has a formal understanding of the 

simulation process. This understanding of the process is of utmost importance if one is to implement 

robust, well-designed studies and the less the process is understood, the more researchers become 

susceptible to unwarranted assumptions that may or may not influence the results of their simulations. 

It is the purpose of this dissertation to explore some of these assumptions and document the type of 

impact they can have when researchers use Monte Carlo simulations. 

 There is not one specific definition of a Monte Carlo simulation. Since its early inception in the 

1950s by Stanislaw Ulam, Nicholas Metropolis, and John Von Neumann, this family of methods is 

characterized, in its most general conception, by the implementation of multiple repeated instances of a 

controlled random process (Jones, Maillardet & Robinson, 2009).  Sawilowsky and Fahoome (2003) 

emphasize that the main feature that separates a Monte Carlo simulation from other types of stochastic 

modelling is its reliance on a large number of finite samples. Rubinstein and Kroese (2007) mention that 

any recurrent process with calculated uncertainty that the researcher oversees can be called a Monte 

Carlo simulation. Overall, these differences of definitions reflect the variety of uses that of simulations 

can have. Beisbar and Norton (2012) list three broad applications of the Monte Carlo method, one of 
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which will be the focus of the investigations present within this dissertation. The first one is to approach 

issues of tractability and estimation, such as within the context of Monte Carlo integration or Markov 

Chain Monte Carlo (MCMC) samplers. Many modern-day applications of physics, mathematics and 

statistics rely on complex sets of equations (such as in Bayesian analysis) for which analytic results are 

either unknown or too convoluted to be practically implemented (e.g., Fishman, 2013). Being able to 

approximate solutions through a random simulation is one of the ways in which these problems become 

solvable. The second application of Monte Carlo simulations is to mirror real-life phenomena, such as 

particle dispersions (e.g. Elishakoff, 2003) or the spread of disease (e.g. Martínez-López, Ivorra, Ngom, 

Ramos & Sánchez-Vizcaíno, 2012). In these cases, a deterministic system that is highly-sensitive to its 

initial conditions (usually referred to as chaotic system) is modelled as if it were a random process in an 

attempt to representatively sample a collection of all the instances the system can end up in (Hoover & 

Hoover, 2015). In these cases, Monte Carlo simulations are also referred to as computer experiments for 

they attempt to mimic the same process of a real-life experiment, where the researcher systematically 

manipulates the conditions of the system and uses the computer to calculate the impact that these 

conditions can have (Sacks, Welch, Mitchell & Wynn, 1989). The third application (which is the most 

popular use among social scientists and the focus of this dissertation) is a hybrid between the previous 

two, the use of computer simulations to design and implement robustness studies of statistical 

methods. Carsey and Hardsen (2013) point out that even though statistical theory provides the 

framework to evaluate the assumptions of the methods used in day-to-day data practice, there is a wide 

variety of specific instances where the theory may be somewhat unclear. Issues such as the presence of 

outliers, violation of distributional assumptions or even the influence of sample size cannot always be 

analytically derived but their presence can exert undue influence in the use of statistical methods for 

data analysis. Monte Carlo simulation plays a key role in these instances, helping applied researchers 

choose the best method to analyze their data. The use of Monte Carlo simulations within the social 
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sciences (particularly psychology and sociology) began in the early 1960s and became widespread with 

the availability of computer power. Johnson (2013) notes that even though its early use permeated all 

fields of psychology, the types of motivating problems that popularized simulations were on the area of 

methodology, particularly in the tradition of factor analysis and best practices surrounding the number 

of factors problem (e.g. Horn, 1965). Although other areas in the social sciences have benefited from 

theorizing within a Monte Carlo framework (e.g. Johansen, Savage, Fouquet & Shanks, 2015; Szolnoki & 

Perc, 2015), its most widespread applications have been on investigating and comparing different types 

of statistical methodologies aimed at improving data analysis practice.  This type of simulation studies 

can be described in four general steps: 

(1) Decide the models and conditions from which the data will be generated (i.e. what “holds” in 
the population).  
 

(2)  Generate the data. 
 

(3) Estimate parameters for the models being studied under step (1)’s conditions. 
 

(4) Save the parameter estimates, standard errors, goodness-of-fit indices, etc. for later analyses 
and go back to step (2). 

 
 
Steps (2)-(4) would be considered a replication within the framework of a Monte Carlo simulation and 

repeating them a large number of times shows the patterns of behaviour of the statistical methods 

under investigation that will result in further recommendations for users of these methods. 

 This type of simulation studies usually emphasizes the decisions made in step (1) because the 

selection of statistical methods to test and data conditions will guide the recommendations that will 

subsequently inform data practice. Most of the time, steps (2) through (4) are assumed to operate 

seamlessly either because the researcher has the sufficient technical expertise to program them in a 

computer or because it is just assumed that the subroutines and algorithms employed satisfy the 

requests of the researcher.  
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 When step (2) pertains to the generation of multivariate, non-normal data, a great variety of 

algorithms exist to achieve this goal. Broadly speaking, these algorithms can be categorized as either 

based on transformations from normal to non-normal distributions and those defined by theoretical 

non-normal distributions. Ruscio and Kaczetow (2008) calls the first class of methods “Transform-

Calculate” (TC) methods because they involve a series of transformations from normality to non-

normality and calculation of intermediate correlation matrices until the final correlation is achieved. TC-

type algorithms subsume the Fleishman (1978) and Vale and Maurelli (1983) 3rd-order polynomial 

method, the Hedrick (2002) 5th-order polynomial method, the Pearson distribution system (Nagahara, 

2004) and Ruscio and Kaczetow (2008)’s method, among others. Examples of the second broad class of 

algorithms include the multivariate skew-normal distribution (Azzalini & Dalla Valle, 1996) or copula 

distributions (Mair, Satorra & Bentler, 2012). These algorithms have seen their uses and applications 

mostly determined by area of study and not necessarily by the relative merits they have. For instance, 

the multivariate skew-normal distribution has seen most of its citations within statistics and 

econometrics journals whereas the 3rd and 5th-order polynomial transform methods are almost 

exclusively cited within the social sciences (Kraatz, 2011). Due to this fact, this dissertation will focus 

primarily on polynomial-based methods in order to further document and inform researchers who might 

use them in their Monte Carlo simulations.   

 A crucial aspect of the implementation of these algorithms and of the performance of the 

simulation in general is the ability of the researcher to ensure that the simulation design and the actual 

computer implementation of it are consistent with one another. If this consistency is not there then step 

(2) is brought into question and one, either as a producer or consumer of simulation research, needs to 

wonder whether or not the conclusions obtained from the Monte Carlo studies are reliable. This issue 

constitutes the cornerstone of the present dissertation and the papers presented herein attempt to 

document the consequences of violating these often-overlooked assumptions. 
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 Kraatz (2011) is perhaps the one of the very few people ever to acknowledge that the simulation 

work within the social sciences is sometimes conducted in a “blind”  fashion , where the researcher is, to 

a certain degree, disconnected from the intermediate process that happens between the design of the 

simulation study and the final analysis of the data. Instead of calling the process “blind”, this dissertation 

opts to borrow the engineering concept of the “black box” (see Karlsson, Nellore & Soderquist, 1998) 

because it mirrors the idea of software development testing where a process (such an algorithm or an 

application) is only understood in terms of the inputs it is fed and the outputs it produces. The user is, 

for the most part, completely unaware of any actions taking place inside the “black box” and considers 

the outputs as valid based on nothing more than naïve faith in the process. In contrast, the conceptual 

methodology of this dissertation is that of a “glass box” or “open box” engineering model (see du 

Boulay, O'Shea & Monk, 1981), where there is a direct connection and full awareness between inputs, 

intermediate processes, and outputs. If there is any uncertainty or ambiguity in the intermediate 

processes, there is awareness of it and it is considered in the final analysis of the outputs. The overall 

goal of this dissertation is then to offer a “glass box” account of the simulation process within the 

psychometrics and the quantitative social sciences. 

 Two guiding principles will be analyzed in the subsequent studies presented in this dissertation 

in order to make an explicit connection from simulation design (inputs) to data-generating algorithms 

(intermediate processes) and the final results (outputs). The first one is the issue of matching statistical 

models to the actual simulation design or, in other words, ensuring that the computer is simulating what 

the researcher actually hypothesized in her or his simulation. To this effect, the case of the Spearman 

correlation is presented in chapter 2 and the argument is made that a large number of Monte Carlo 

studies within the social sciences have either explicitly or implicitly made the unwarranted assumption 

that the sample rank correlation estimates the population Pearson product-moment correlation. This 

study derives the population model for the Spearman rank correlation by relying on copula distribution 
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theory and shows instances and conditions where both types of sample correlations estimate the same 

or different parameter values. To inform the methodology of simulation studies, it presents the Conover 

and Iman (1981) algorithm as a potential alternative to simulate data where the population parameter 

that governs the process is the rank correlation (as opposed to the product-moment correlation) and 

implements a simulation study looking at the properties of bias and Type I error rate for the t test and r-

to-z transformation of the correlation, analyzing the differences in conclusions that arise when an 

algorithm that accurately matches the simulation design is used.  

 The second issue to be investigated (and the focus of the remaining two papers of this 

dissertation) is the unexplored characteristics of data-generation algorithms that can potentially impact 

the results of a simulation process or, in other words, ensuring that the simulation conditions the 

researcher specify are the actual conditions that are being generated by the computer. To this purpose, 

the Fleishman (1978) algorithm and its multivariate extension proposed by Vale and Maruelli (1983) are 

explored in chapter 3 given their tremendous popularity among social scientists and the influence they 

have had on the methodology of Monte Carlo simulation in this area. The Fleishman (1978) method is 

based on the 3rd-degree polynomial transformation of a standard normal variable with a fixed mean of 

0, variance of 1 and skewness and kurtosis defined by the researcher. Since this algorithm relies on the 

Fisher-Pearson conceptualization of higher-order moments, the definitions used throughout this 

dissertation are: 

  ̂  
     ∑      ̅   

   

[     ∑      ̅   
   ]

   
   

  ̂  
     ∑      ̅   

   

[     ∑      ̅   
   ]

      

where       are the skewness and kurtosis,    is a sample unit,  ̅  is the mean of the sample and   is the 

sample size. Notice that since 3 is being subtracted from   , the term “kurtosis” being used here is the 
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same as “excess kurtosis”, given that these definitions take the normal distribution as reference and the 

kurtosis of the normal distribution is 3 (Headrick, 2002). 

 First, the Fleishman (1978) and Vale-Maurelli (1983) algorithms are studied descriptively in 

terms of the quality of the data they can generate.  A thorough investigation of their performance at 

different values of skewness and kurtosis from previously-published articles is conducted by calculating 

average bias and variability within a simulation study. Next, a second simulation study is done 

comparing the characteristics of the data generated by the Vale-Maurelli (1983) algorithm to those 

generated by the Headrick (2002) algorithm which is conceptually similar but uses a 5th-order 

polynomial transformation as opposed to a 3rd-order order one. Lastly, in chapter 4 of this dissertation, a 

peculiarity of the Fleishman (1978) method is explored related to the type of data it can generate. At the 

crux of this method is the solution to a system of five non-linear equations that yield the polynomial 

coefficients needed to induce non-normality on the data. The solutions to this system are not unique 

and different types of solutions yield data that may have similar univariate characteristics, but different 

multivariate ones. These differences are explored further as well as the potential impact that they can 

have in applied conclusions when this method is employed in robustness-type simulation studies.  

 Due to the myriad of uses of Monte Carlo simulations and the influence they have on informing 

data practice, their popularity has exploded both within and outside the social sciences. Every day, more 

and more researchers are learning how to conduct their own simulations to test their own hypotheses 

and explore the properties of their methods. Although this is certainly commendable, it is important to 

point out that, to a certain extent, it has come at the price of divorcing the theory that substantiates 

Monte Carlo simulations as a methodology and the actual practice in the design of computer studies. 

Understanding the formalities associated with data generation and model specifications are crucial to 

develop a solid simulation design that will generate reliable conclusions. The more this issue is 

overlooked, the more one risks conducting simulations at a merely procedural level without 
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acknowledging the influence that this type of “methods effects” can have in computer experiments. The 

challenge is, however, that these effects can be very subtle and hide deceivingly in plain sight, all within 

the clear, sharp logic of computer code. By turning the method of simulation to the simulation itself 

starting from first principles and building it up to the actual computer code implementation, my 

dissertation looks to turn some of the hidden assumptions visible and open the black box for all to see. 

We might be surprised by what we will find.  
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Chapter 2: Population models and simulation methods. The case of the Spearman rank 

correlation 

 

2.1 Background 

 
Spearman’s rho is one of the first instances of non-parametric statistics that most researchers in the 

social sciences become familiar with. It has an intuitive conceptualization as the Pearson correlation 

between two ranked variables, it is readily available in most statistical software packages and provides 

an immediate alternative when the distributional assumption of normality is suspect. In spite of this 

seeming familiarity and common usage, there exist several important developments concerning this 

statistic which have yet to make their way into the quantitative behavioural sciences and which have 

contributed to generate some misconceptions within the methodological literature. As demonstrated in 

Hotelling and Pabst (1936), it can be shown that that when the definition of the Pearson correlation is 

applied to ranked data (expressed as positive integers 1, 2, 3, . . . , n) with no ties, it results in 

 
 ̂    

 ∑   
  

   

       
   

(2.1) 

where    are the squared rank differences between variables and n is the total number of measured 

units (i.e., the sample size). This is the most commonly used computational formula to obtain the 

Spearman correlation and perhaps the most easily recognized one among introductory statistics 

textbooks in the social sciences. Its standard error and sampling distribution were extensively studied by 

Fieller, Hartley, and Pearson (1957) who found that, for the null case,   √    and the normal 

distribution are respectively good approximations as sample size grows arbitrarily large. For the non-null 

case, most work has relied on computer simulations which can be reviewed in Caruso and Cliff (1997), 

David and Mallows (1961) and Zimmerman, Zumbo, and Williams (2003). 

 An important issue that has been at least partially overlooked within the methodological 

literature on quantitative methods for psychology and education (and which serves as the guiding 
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principle for this paper) is the question of what is known or understood of the Spearman rank 

correlation as a population parameter and not only as a descriptive sample statistic. Without a well-

defined population model, it can be challenging to study the properties of statistics (such as bias) as well 

as the quality of the estimators used for them. The purpose of this paper is, therefore, to focus on the 

issue of matching the simulation design with the theoretical model implied by the researcher’s 

hypotheses for the case of the Spearman rank correlation. Using analytic demonstrations and a 

simulation study, we highlight the impact of simulating Spearman’s rho as if it were Pearson’s r, and the 

potential shortcomings that arise from a mismatch between what is intended to be simulated and what 

is actually simulated. 

 This paper is organized as follows. Section 2.1.1 introduces the idea of a population definition 

for the Spearman correlation. Section 2.1.2 describes the parameterization of the rank correlation 

through a copula model and how it subsumes previous conceptualizations of this statistic. Section 2.1.3 

introduces the Iman–Conover algorithm and posits it as one potential option (among others) of 

algorithms that can be selected to help match the simulation design with the population model of the 

Spearman rho. Section 2.2 presents a simulation study as a motivating empirical demonstration of the 

importance of having congruence between the population model and the simulation model employed 

by the researcher. Section 2.3 discusses the results from this simulation. Section 2.4 elaborates on 

recommendations for statistical researchers who use Monte Carlo simulation as a research 

methodology, as well as those readers who inform their data analysis practice based on simulation study 

outcomes. 

2.1.1 Towards a population model for the Spearman rank correlation 

 

Generally speaking, the understanding that permeates the rank correlation is that it acts as either as an 

alternative estimator or a type of substitute for the Pearson product-moment correlation in the 
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population (Christine & John, 2004; Hinton, McMurray, & Brownlow, 2014; Howitt & Cramer, 2005; 

Sapp, 2006). Spearman (1906) himself, for instance, mentioned that ‘by using it *the rank correlation+ 

we obtain a precise quantitative value which can be compared with that found for any other correlation 

under any other circumstances between any other things by the r method’ (p. 104). He also comments 

on the fact that ‘the values of these two symbols already, by definition, coincide with one another as 

regards their extreme upper and lower limits since both coefficients become 1 for perfect correlation 

and 0 for entire absence of correlation’ (p. 101). It is, therefore, not surprising to find that a conflation 

between Spearman’s rho and Pearson’s r is prevalent both for methodological and applied researchers 

where the rank correlation is invoked every time the distributional assumptions needed for the product-

moment correlation are suspect. The problem is that both types of correlations describe different types 

of relationships, rely on different assumptions and need not be the same even in the extreme cases of 

null or perfect correlation. For a simple example, assume       are sampled from a standard bivariate 

normal distribution such that                          . By letting      and   

  (where e is the base of the natural logarithm) now A and B follow standard lognormal distributions. 

Because they are no longer normally distributed, the Pearson correlation between A and B is now 

restricted and no longer spans the    range, regardless of what the initial population correlation   is. To 

be more specific, this new standard lognormal distribution now has a correlation range restricted to 

         . Nevertheless, since exponentiation is a monotonic transformation, the Spearman rank 

correlation still spans the complete   range, yielding a case where even through      is a perfectly 

plausible population value, the Pearson correlation is unable to capture this relationship due to the 

nature of the lower-dimensional marginal distributions. A proof of this result, as well as more detailed 

exploration of the boundaries of the product-moment correlation, is shown in Appendix A. 

 A population model for Spearman’s rho was initially developed as part of the effort to 

theoretically substantiate non-parametric statistics and the rank transformation in general. Although 
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early theoretical work explicitly assumes the existence of a population-level Spearman rho (Moran, 

1948) and offers a proof of its existence (Hoeffding, 1948a,b), the implications of these results are rarely 

discussed within the quantitative social sciences. Kruskal (1958) was the first to explicitly define the 

population rank correlation in terms of a probability measure which he labelled q for quadrant 

association. This model, however, is not employed in the rest of the present paper. The copula-based 

model proposed in Schweizer and Wolff (1981) (which subsumes Kurskal’s work on this statistic) was 

selected instead, given its flexibility of use, and ease of implementation for simulation studies. 

 

2.1.2 A copula approach to the population the Spearman rank correlation 

 

A thorough description of the theory behind copula distributions is beyond the scope of this paper1, but 

a brief insight into these mathematical objects is needed in order to fully understand the population 

model of the rank correlation. Generally speaking, a copula is a type of multivariate distribution where 

all the marginals are uniformly distributed (Joe, 2014). An important advantage that copulas offer when 

modelling data is that they can capture the dependencies of any type of multivariate distribution by 

allowing the user to specify the dependence structure separately from its lower-dimensional marginal 

distributions (i.e., the user can couple marginal distributions in whichever way required). By employing 

the probability integral transformation, the marginal distributions can become any type of distribution 

(as long as its cumulative distribution function is well defined) and, as proved in Sklar’s theorem (Sklar, 

1959), they can be joined in whichever way is necessary to approximate any type of multivariate 

structure. In terms of more formal definition, assume                   are jointly, continuously 

distributed random variables with well-defined cumulative density functions. By applying the probability 

integral transform one can obtain 

                                                           
1
 Interested readers can consult Nelsen (2010) or Joe (2014) for a more comprehensive introduction. 
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                 (                             )  (2.2) 

where    follows a standard uniform distribution and       is a cumulative distribution function. The 

copula of                   is therefore defined as the joint cumulative distribution of 

               : 

                                                 (2.3) 

so that                  is the copula function, and               are specific realizations of the 

random variables                . The copula function       preserves the relationship among all the 

                and by using the inverse of any suitable cumulative distribution function       , the 

marginal distributions can obtain any arbitrary shape or property that may be needed.  

 For the purpose of obtaining the population model for the Spearman rank correlation, one last 

identity needs to be introduced. If the values of ranked variables (which are themselves natural 

numbers) are used in the sample definition of the Pearson product-moment correlation, it can be shown 

that 

 
  ̂  

∑                    
   

          
   

(2.4) 

where         denote the ranks and n denotes the sample size. By letting    ,  the sample rank 

correlation   ̂ converges to 

 
     ∫                   

(2.5) 

where          is the copula function as described as above. This same definition of the population 

Spearman rank correlation coefficient can be found in Schmid and Schmidt (2007), Nelsen (2010) and 

Joe (2014) and can be trivially derived by evaluating the double integral of equation (5) in Schweizer and 

Wolff (1981). The full derivation of equation (2.4) and a proof of convergence for the population 

Spearman rank correlation are shown in Appendix B. 
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 If the Gaussian copula function (which in the two-variable case would be equivalent to the 

cumulative density function of the bivariate normal distribution) is used in (2.5) then the definition of 

Spearman’s rho becomes the well-known identity that relates the rank correlation to the product-

moment correlation: 

 
    

 

 
     (

 

 
)  

(2.6) 

where   is the Pearson correlation parameter for the Gaussian copula. A proof of (2.6) is presented in 

Appendix C to help highlight the fact that for any given copula distribution function, a population version 

of the Spearman rank correlation can be obtained. 

 The use of a well-defined population model for the rank correlation not only allows researchers 

to explore the theoretical properties of this statistic, but also grants them the ability to conceive well-

designed simulation studies such that issues like robustness or small-sample characteristics can be 

thoroughly investigated. In this particular case, being able to easily sample from copula distributions 

allows the user to choose simulation designs that actually match the intended research questions, 

where the data are generated using the Spearman rank correlation as a population parameter, and not 

just tangentially relying on the Pearson product-moment correlation. One such method that will be used 

throughout this paper is the Iman–Conover algorithm to generate rank-correlated data. 

2.1.3 Studying the properties of the estimator. A demonstration with the Iman–Conover algorithm 

 

There are several methods in the statistical literature for generating rank-correlated data. Although the 

methods recently introduced by Headrick et al. (Headrick, 2002, 2010; Headrick, Aman & Beasley,  2008; 

Headrick & Mugdadi, 2006; Headrick & Sawilowsky, 1999; Koran, Headrick & Kuo, 2015; Kowalchuk & 

Headrick, 2010; Pant & Headrick, 2015) show great potential, we have chosen to use the Conover and 

Iman (1981) approach as a way of demonstrating the point  about the importance of population models. 



15 
 

This choice should not be interpreted as a recommendation of this method over any other, but rather as 

a reflection of the fact that the Conover and Iman (1981) method was developed earlier and, hence, is 

more widely used in the literature. It should be noted that our purpose is not to compare the various 

simulation methods, because that would take us away from the main point of the point of the paper: 

that a population model is important and that the simulation method needs to reflect the design implied 

by it. 

Conover and Iman (1981) developed their approach after observing that the simulation methods 

available to researchers at the time were mostly limited to linear relationships and extensions of the 

multivariate normal distribution. They pointed out that the mathematics may become intractable for 

non-normal distributions and that if certain types of dependencies (such as those generated from 

stratified sampling) were to be induced, the current methods would simply not suffice. In order to 

address these issues, they derived a new method that allows for the correlation of any number of 

marginal distributions of any type by altering the rank order in which the elements from each 

distribution are being sampled. Altering the order of the elements does not change the properties of the 

distributions but it does influence the degree of dependency that they can have with reference to each 

other, making this method ideal to simulate variables with a given rank correlation. A description of the 

Iman–Conover algorithm follows. 

Assume   to be an  -element sample from  -dimensional distribution. Consider the column 

vectors of   to be independently sampled so that its covariance matrix is an     identity matrix  . 

Assume   to be the desired correlation matrix. Because   is positive definite, it has a Cholesky 

decomposition      (where   is some upper-level triangular matrix and    is its transpose). The 

matrix product     will now have the desired correlation matrix   as a population parameter. Although 

this method is standard to simulate multivariate normal data with a given covariance matrix, the fact of 
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the matter is that this procedure can be used with any marginal distribution, as long as the researcher 

keeps in mind that the properties of the marginal distributions (such as their moments) will change once 

the linear transformations on the last step are done (with the exception of the normal distribution, 

which is closed under linear transformations). 

The issue becomes now how to ensure that   is a Spearman correlation matrix (and not just a 

Pearson correlation matrix) while keeping intact the properties of the intended marginal distributions. 

The solution provided by Conover and Iman is to find a set of numbers (referred by the authors as 

‘scores’) which preserve a one-to-one relationship with the original elements sampled from the 

distributions and to assemble them in a different matrix with the same dimensions of the previously 

defined matrix   (the matrix of scores will be defined as   and is also    ). The said scores must have 

mean zero and standard deviation 1 (it suffices to ensure that for any collection of scores   , ∑     

and ∑  
   ) so that no further adjustments are needed for   to be a correlation and not a covariance 

matrix. There are various types of scoring schemes that can be implemented (such as scaled ranking or 

uniformly distributed   ) but the method recommended by Conover and Iman is normal scoring (also 

known as van der Waerden scores) by using the cumulative distribution function of the Gaussian 

distribution       . For all the elements of the matrix  , the elements in   are obtained by    

             where   is the respective rank of each    . The algorithm then proceeds by randomly 

shuffling the columns of   to ensure that there are no correlations among the scores (in some 

implementations, both a shuffle of the columns and some matrix algebra are used so that the 

correlation matrix of   is an exact identity matrix). Once the score matrix has been generated and the 

necessary precautions have been taken so the correlations among the scores are 0, the standard 

Cholesky decomposition approach is taken to induce the desired correlations among the elements of   

so that the matrix product     (with   defined as above) follows the desired correlation matrix  . The 

last step (which induces the rank correlation) is then simply to rearrange the elements of   in the same 
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rank order as the elements of    . Once they are reordered, the matrix   (which would be a Pearson 

correlation matrix for the scores) becomes the population Spearman correlation for the originally 

intended variables in  . 

Although the authors themselves acknowledge that many of the properties of this method were 

unknown to them at the time of publishing, further research has demonstrated that, if normal scores 

are used, this algorithm becomes equivalent to sampling from a Gaussian copula (Mildenhall, 2006). 

Because copulas rely on measures of association which are invariant under monotonic transformations 

(which the Pearson correlation is not), they take in an association parameter (referred to as a 

‘generator’) that can usually be transformed into either a Kendall’s tau or a Spearman’s rho (Joe, 2014). 

There exist, however, a few limitations to this method that are important to point out. Since the 

scoring method is arbitrary, choosing different cumulative distribution functions (or a completely 

different scoring scheme) will result in different multivariate distributions, so researchers must be 

careful with their selection to ensure the scoring method matches their simulation design. A second 

issue is the use of an intermediate correlation matrix that needs to be calculated (the correlation matrix 

of   in the description above) before the final Spearman correlation intended by the researchers is 

attained. Headrick (2010) and Headrick and Pant (2012) have demonstrated that, since the Pearson 

correlation is not invariant under strictly increasing non-linear transformations, issues such as non-

positive definiteness or out-of-bound correlations could occur. 

Given the fact that the rank correlation does not always estimate the product-moment 

correlation (as illustrated in Section 2.1.1) and that, to the best of the authors’ knowledge, very limited 

simulation work has been done where the value of Spearman’s rho is set as the population parameter, 

the primary aim of this paper is to investigate the issue of what changes and what remains the same 

when the rank correlation is set as a parameter value within a broader simulation design. Rather than 
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conduct a comprehensive study comparing the Pearson and Spearman correlation coefficients, the 

emphasis of this paper is on presenting brief examples from simulation conditions where the paradigm 

of the data being sampled from a bivariate normal distribution (where the population parameter is 

Pearson’s  ) is switched by sampling from a bivariate, Iman–Conover defined distribution (where the 

population parameter is Spearman’s rho). Although exploring the small-sample properties of both types 

of correlations will be expanded upon, this goal is secondary to the primary aim of highlighting the 

impact that the theoretical simulation design has on the actual conclusions that can be derived from the 

study. 

2.2 Method 

 

Five papers published within social science journals were selected to evaluate the conclusions derived 

from simulation studies concerning the Spearman rank correlation. These articles were selected because 

of their focus on the performance of Spearman’s rho under a variety of simulation conditions and 

because their high number of citations indicates that they have had an influence in shaping the 

understanding of this statistic within psychology and education. It is important to point out that, 

although Spearman’s rho has been used for more than a century, the number of simulation studies 

focused on it within the social sciences is relatively limited, as pointed out in Bishara and Hittner (2012). 

Table 2.1 summarizes the simulation conditions found in each paper.  

Based on this overview, the conditions chosen for this short study were sample sizes from 10 to 

100 in increments of 10 (                   ) and population effect sizes from 0 to .9 in 

increments of .1 (                       ). Some of the simulation studies in Table 2.1 also explored the 

impact that the non-normality of the unidimensional marginal distributions had on the correlation 

coefficients and, even though this is an important avenue of research, the present paper did not explore 

said conditions. A consistent conclusion from the papers reviewed here (and many others) is that 
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nonnormality has an adverse effect on the Pearson correlation in terms of bias, Type I error rate and 

power. If non-normality had been used as a simulation condition, it could have masked the impact that 

the change in the data-generation paradigm had on the estimation of both types of correlations. 

Table 2.1 Summary chart of the simulation conditions per article  

Article Population  Sample size Distributions 

  effect size     

Rupinski & Dunlap (1996) .1 to .9 5 to 100  Normal 

Caruso & Cliff (1997) 0,.3, .45,.6,.75, .9 10, 50, 200 Normal 

Zimmerman, Zumbo &  0,.1,.3,.5,.7,.9 10, 20, 40 Normal, Exponential, 

Williams (2003)      Log-normal, Uniform 

Wilcox & Tian (2010) .1,.3,.4,.6,.7 20, 50, 100 Normal, Uniform, Exponential 

Bishara & Hittner (2012) 0,.1,.5 5, 10, 20 40, 80, 160 Normal, Weibull, Chi-square, Uniform, 

       Bi-modal, Long-tailed 

 

This creates a 10 (sample sizes)   10 (effect sizes)   2 (data-generation mechanisms) study design, 

where 10,000 replications per combination of conditions were implemented to ensure maximum 

stability. The process of simulation and analysis of the generated data were conducted in the R 

statistical programming environment (R Development Core Team, 2015), using the MASS package 

(Venables & Ripley, 2002) to generate bivariate normal data and the mc2d package (Pouillot & 

Delignette-Muller, 2010), which has a function to implement the Iman–Conover algorithm. 

The outcomes of this simulation were the average bias of the sample estimates of the Spearman 

and Pearson correlations, the Type I error rate and power of Pearson’s t-test and Fisher’s r-to-z 

transformation. All of the articles in Table 2.1 explored at least one of these two classical significance 

tests and only the Zimmerman et al. (2003) study focused on the small sample bias of the correlation 

estimates. It is important to keep in mind, though, that the ultimate goal of the present paper is not to 

redo published simulation work or document the potential impact that the choice of data-generation 

algorithm has on the quality of the data, but to understand what types of claims regarding each type of 

correlation still hold when one uses the theoretically appropriate model to simulate data that matches 

the study design. For instance, the Zimmerman et al. (2003) study on small-sample bias comments on 
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the fact that the sample Spearman rank correlation coefficient is a more biased estimate than the 

Pearson product-moment correlation. But the parameter that defined the population of the bivariate 

distributions in their study (and against which bias is evaluated) is the Pearson correlation coefficient, 

not Spearman’s rho. Would it be sensible to assume, then, that if bias is calculated with respect to a 

population version of the Spearman rank correlation, the sample estimate of the Pearson correlation is 

actually more biased? Similar claims were made in the other four articles, where the performance of the 

Spearman rank correlation is evaluated without having a population-defined model from which the data 

were sampled. 

2.3 Results 

 

Simulation results in Table 2.2 show evidence of the small-sample bias of the correlation coefficient 

present both in the product-moment correlation coefficient and the rank correlation coefficient. 

Generally speaking, both types of correlations underestimate the population parameter value, albeit 

that the size of the bias becomes smaller as the sample size increases. For the largest effect size, 

however, the rank correlation coefficient estimated on Iman–Conover sampled data overestimated its 

population value. It is important to highlight that the cases where the data-generation process matches 

the type of correlation being estimated (so the Norm columns with the r rows, or the rho columns with 

the IC rows) showed both the smallest bias and the fastest convergence towards the population effect 

size. 

 Figure 2.1 shows the mean bias for four effect sizes across all sample size conditions in the 

simulation. Although biased estimates were found across all different population effect sizes, this bias 

became especially pronounced when the effect size was large, particularly for the conditions where the 

data-generation mechanism did not match the type of correlation being calculated. When either the  
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 Table 2.2   Mean correlation estimates for the Pearson (r) product-moment and Spearman (  ) rank correlation across 10,000 

replications per condition. Data were sampled from either a bivariate normal (Norm) or Iman-Conover (I-C) distribution using a 
subset of population effect sizes (ES) and sample sizes (n) from the simulation conditions. 

   ES 0 0.1 0.5 0.7 0.8 0.9 

n   Norm I-C Norm I-C Norm I-C Norm I-C Norm I-C Norm I-C 

10 

  -.019 .009 .102 .009 .484 .401 .677 .600 .782 .712 .894 .821 

   -.016 .005 .089 .076 .397 .426 .625 .617 .729 .782 .847 .913 

20 

  .002 .005 .096 .019 .495 .405 .694 .605 .793 .739 .894 .834 

   -.002 -.004 .087 .057 .467 .466 .660 .654 .763 .794 .866 .906 

30 

  .011 -.006 .097 .061 .492 .451 .694 .612 .792 .751 .897 .847 

   .008 -.003 .091 .088 .464 .475 .665 .671 .762 .797 .875 .905 

50 

  -.003 -.003 .106 .076 .496 .467 .693 .633 .798 .761 .898 .857 

   -.004 -.003 .094 .104 .477 .492 .668 .685 .777 .798 .881 .904 

80 

  .000 .002 .103 .089 .497 .469 .695 .666 .797 .769 .899 .861 

   -.001 .002 .105 .092 .479 .495 .672 .694 .776 .802 .885 .904 

100 

  -.001 -.001 .100 .094 .498 .473 .699 .671 .798 .771 .900 .884 

   .000 .000 .097 .101 .477 .497 .677 .699 .781 .802 .885 .902 

  

Figure 2.1 Mean bias across sample sizes for population effect sizes of 0.0, 0.5, 0.7 and 0.9. The “IC” abbreviation implies the 
data was sampled from an Iman-Conover-generated distribution. No abbreviation implies the data was sampled from a normal 
distribution 
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and the estimates reached an upper asymptote, not converging to the population effect size even at the 

largest sample size of 100. Overall, the Pearson correlation calculated on bivariate normal data showed 

the least amount of bias and fastest convergence towards its parameter value, but it also showed the 

largest bias and upper asymptote when calculated on Iman–Conover sampled data. 

The Type I error rate of both data-generation mechanisms is presented in Table 2.3, calculated 

on both the standard t-test and the r-to-z Fisher transformation. Overall, it can be said that when the 

data-generation mechanism matches the statistic being calculated, the empirical error rate converges 

faster to the nominal 5% than when there is no match. The most extreme cases of Type I error rate 

inflation happened at the smallest sample size of 10, but it quickly reached its nominal rejection rate, 

particularly at the largest sample sizes. In spite of this, when these results are evaluated according to the 

criterion presented in Bradley (1978), one can point out that no considerable inflation or deflation of the 

error rate was found, regardless of the simulation conditions or which test statistic was being calculated. 

The power of the t-test and r-to-z transformation shows a remarkably similar pattern, with almost 

identical results to those found previously in the literature (e.g., Bishara & Hittner, 2012). Because of 

this, the comments on this section apply to both tests. Generally speaking, trends in empirical power 
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were also contingent on whether the type of correlation being calculated matched the data-generation 

mechanism. As shown in Figure 2.2, the Spearman rank correlation computed on Iman–Conover 

sampled data outperformed all other correlations/data mechanisms for small population effect sizes at 

larger sample sizes. But for both small effect and small samples, the Pearson product-moment 

correlation yielded the highest power in every case. As the effect size in the population becomes larger, 

the power curves become closer and closer together (particularly for large sample sizes), to the point 

that they become indistinguishable. It was found that for population effect sizes of .5 and larger, the 

differences between estimated powers are sufficiently small to be considered negligible. 

 

Table 2.3   Empirical type 1 error rates (α=.05) for both bivariate normal 
(Norm) and Iman-Conover algorithm (I-C) simulated data at different 
sample sizes (n) both for the Pearson (r) and Spearman (rho) correlation 
coefficients.  

    t r-to-z 

     n   Norm I-C Norm I-C 

    .045 .062 .045 .065 

10    .048 .060 .058 .059 

    .046 .048 .048 .044 

20    .047 .044 .056 .047 

    .048 .046 .047 .046 

30    .050 .045 .057 .048 

    .049 .057 .048 .057 

50    .052 .056 .053 .055 

    .048 .054 .049 .052 

80    .051 .051 .051 .052 

    .050 .052 .051 .054 

100    .051 .050 .052 .050 
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Figure 2.2 Empirical power across sample sizes for population effect sizes of 0.1, 0.2, 0.3 and 0.5. The “IC” abbreviation implies 

the data was sampled from an Iman-Conover-generated distribution. No abbreviation implies the data was sampled from a 

bivariate normal distribution. A horizontal line at the .05 level is included as reference 
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2.4 Discussion 

 

The main purpose of this paper was to address two goals, one pertaining specifically to the simulation 

studies of the Spearman rank correlation coefficient, and a more general one aimed at informing the 

methodology of Monte Carlo simulations more broadly within the behavioural sciences. The theoretical 

derivations and simulation study results presented here were aimed at reaching both goals, helping 

psychologists and educational researchers with a qualitative bent to become familiar with some of the 

formalism regarding the rank correlation and how this formalism helps guide the design and implement 

simulation studies.  

Regarding Spearman’s rho, the formulation of its population model, as shown in equation (2.5), 

helps highlight the idea that this type of correlation estimates a parameter with properties that may or 

may not necessarily align themselves with those of the Pearson product-moment correlation coefficient 

(Borkowf, 2002). For instance, even though identity (2.6) explicitly relates the Pearson and Spearman 

correlations, this only happens under the assumption of bivariate normality (i.e., choosing a Gaussian 

copula as the integrand in (2.5)). Changing the copula distribution function to a different one could 

either result in a different identity or no identity at all, if a closed-form expression does not exist. Under 

this paradigm, it makes sense to bring forward the idea that treating the rank correlation as a ‘robust’ 

estimator of the Pearson correlation – as sometimes presented or implied in the literature (e.g., Hinton 

et al., 2014) – is not always warranted, particularly for cases where the Pearson correlation may not 

even be theoretically feasible, as shown in Appendix A. In spite of this, it is possible to find cases in the 

literature where the Pearson and Spearman correlations are treated as if they always referred to the 

same parameter in the population. For instance, even though it was not explicitly stated, the simulation 

methodologies present in the papers summarized in Table 2.1 make the implicit equivalence between 

the rank correlation and the product-moment correlation at the population level, which is not always 

true since, in many instances, non-normal marginal distributions were used as simulation conditions. To 
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the authors’ knowledge, the present paper is one of the very few instances within the quantitative 

behavioural sciences literature where theoretical model underlying the Spearman rank correlation 

matches the data-generation mechanism and, as shown in Section 2.3, simulation study results can 

change depending on which simulation design is used. Claims such as ‘even for larger sample sizes, the 

correlation based on ranks remains biased and apparently does not approach zero asymptotically as 

does the correlation based on scores’ (Zimmerman et al., 2003, p. 144) would need further re-evaluation 

since, as demonstrated here, the nature of the small-sample bias changes depending on which 

population effect size is used to generate the synthetic data. 

Regarding the practice and use of simulation methodology within the behavioural sciences, the 

present authors believe that the population model for the rank correlation offers a good and easy-to-

understand opportunity to help remind quantitative researchers who both conduct and make use of 

simulation studies to always consider the type of Monte Carlo design that underlies the conclusions 

present in this type of literature. No simulation study (or scientific study in general) exists without its 

limitations, and being aware of them from a technical and theoretical standpoint helps create better 

simulation studies to inform day-to-day data analysis practice. For instance, Astivia and Zumbo (2015) 

showed empirically, through simulation results, that choosing different data-generating algorithms for 

multivariate, non-normal data can lead to different conclusions when re-examining previously published 

papers, even if all conditions are kept the same and only the algorithm changes. It is important to point 

out that this is not a claim to consider previously published simulation results as wrong or invalid. It is 

merely an attempt to highlight the possibility that other (perhaps non-standard) simulation designs exist 

and that they could provide a more comprehensive understanding of the conditions in which certain 

statistical methodologies perform. In this specific simulation demonstration, for example, hypothesis 

tests based on normal theory performed relatively well (in terms of power) when the Spearman rank 

correlation was calculated on Iman–Conover sampled data. But they did not perform as well when 
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calculated on bivariate normal data, as shown here, on Zimmerman et al. (2003) and Bishara and Hittner 

(2012). So if one is applying normal-theory tests on the rank correlation when the inference pertains 

only to the population rank correlation, their use is not entirely unwarranted (given the simulation 

conditions studied). But when the inferences go from the sample rank correlation to the population 

product-moment correlation coefficient, the reduction in power (which has been well documented in 

the literature) becomes apparent. Therefore, previously published simulation results and the 

conclusions presented here are consistent with each other (as expected), with the added benefit that 

new information was discovered when extending the original theoretical simulation designs by using 

algorithms that match the proper population model for the parameter being investigated (i.e., the 

bivariate normal data for the Pearson correlation and the Iman–Conover data for the Spearman 

correlation). 

There still exist many future avenues of research to pursue within the theoretical framework of 

the Spearman correlation that have been left unexplored in this paper. Very little is known within the 

behavioural sciences about the properties of the Spearman correlation matrix, even though multivariate 

extensions to this coefficient have been already developed (see Schmid & Schmidt, 2007). Other types of 

algorithms (such as the ones developed by Headrick et al. that were mentioned previously) could also be 

employed to explore other types of correlational structures that still take the rank correlation as a 

population parameter, in order to see which conclusions from the published literature could be changed 

or expanded upon. Generally speaking, not much research is devoted to understanding the Spearman 

rank correlation (or other types of non-parametric measures of association), but with a clear 

understanding of its mathematical formalism and the algorithms that exist to design proper simulation 

studies it will possible to expand the research surrounding this statistic as well as making more 

comprehensive recommendations to practitioners and applied researchers. 
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Chapter 3: A cautionary note on the use of the Vale and Maurelli method to generate 

multivariate, nonnormal data for simulation purposes 

 

3.1 Background 

 

With the increasing availability of computer power, Monte Carlo simulations have become one of the 

most popular methods to explore the robustness of statistical procedures to the less-than-ideal 

conditions found in applied research (Bandalos & Leite, 2013). In order to be able to properly conduct 

simulation studies, it is important for the researcher to use algorithms that accurately reflect the 

conditions being studied or the conclusions from said simulation results would be suspect. To 

investigate the effect of violating distributional assumptions (mostly, normality) for multivariate 

methods, simulation studies usually require the implementation of a data-generating procedures that 

allow the researcher to control the correlation or covariance structure of the data as well as the degree 

of nonnormality (Mattson, 1997; Ruscio & Kaczetow, 2008; Vale & Maurelli, 1983). Various methods 

have been proposed to this effect (e.g., Azzalini & Dalla Valle, 1996; Headrick, 2002, etc.) but, arguably, 

none have been as widely used within the methodological literature as the Vale and Maurelli (1983) 

multivariate extension of the Fleishman (1978) power method. 

 

3.1.1 Overview of the Fleishman–Vale–Maurelli method (third-order polynomial) 

 
The Fleishman method or (third-order polynomial approach) employs a polynomial transformation of 

standard, normal variables where the polynomial coefficients are used to specify the first four moments 

of a distribution. Let            and define 

                (3.1) 

where           are the polynomial coefficients that will control the first four order moments of the 

new random variable Y. For appropriately chosen coefficients, the researcher can control the skewness 

and kurtosis of Y  taking advantage of the following relationships.  
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 Let us define the first four moments of Y as                                  

(where         are the skewness and kurtosis of Y ). Then it follows that  

         (3.2) 

                      (3.3) 

                           (3.4) 

                                                    (3.5) 

 where equations (3.2) to (3.5) correspond to Fleishman’s equations (5), (11), (17), and (18), 

respectively. 

Because of its relative ease of implementation, the Fleishman (1978) method was extended by 

Vale and Maurelli (1983) to the multivariate case by applying the algorithm to each one-dimensional 

marginal in the multivariate distribution being defined. An undesirable aspect of this process is that it 

changes the correlation structure intended by the user, so a correction needs to be implemented before 

proceeding. The solution proposed in Vale and Murelli (1983) is to calculate an intermediate correlation 

matrix so that the data takes it as the initial ‘‘population’’ correlation matrix and, as one applies the 

Fleishman (1978) method to each marginal distribution, the correlation matrix is transformed to the 

originally intended one. Define the vectors z and w and the new variable Y as 

                 (3.6) 

               (3.7) 

       (3.8) 

where Z is defined as above and the vector w contains the polynomial weights needed to control the 

moments of the nonnormal distribution Y. Letting       
 be the correlation coefficient of two nonnormal 

variables    and    generated from the two normally distributed variables    and    (with a correlation 

coefficient      
) it follows that 
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       (3.9) 
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(3.10) 

And by collecting the appropriate terms from the matrix   in equation (3.10) it can be shown that the 

correlation between    and    is 

      
      

                              

              

         (3.11) 

By solving for      
, it is possible to find the pairwise elements of the intermediate correlation matrix so 

that the researcher can specify all the elements      
 that will act as the desired and final correlation 

matrix used to generate the data. 

 

3.1.2 Overview of the Headrick method (fifth-order polynomial) 

 
Tadikamalla (1980) published one of the first overviews of algorithms to generate nonnormal data that 

let the user specify the higher order moments of a distribution. As a criticism, he pointed out that the 

probability density function that arises from implementing the Fleishman (1978) method is not known 

and that various combinations of skewness and kurtosis are not possible (a boundary exists that relates 

the values of kurtosis and skewness as      
    and Fleishman’s method can only obtain a subset of 

the values in it). Nevertheless, he did recommend the third-order polynomial method because of its 

ease of implementation. 

To address some of the previously mentioned limitations, Headrick (2002) proposed an 

extension of the power method where polynomials of Order 5 (instead of those of Order 3) are 

implemented to obtain a wider range of values in the skewness–kurtosis parabola. Again, taking 

           the Headrick (2002) approach defines the new, nonnormal variable Y as 

             
     

     
     

  (3.12) 
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As expected, the increase in the number of polynomial coefficients also increases both the number and 

the complexity of the equations that need to be solved in order to obtain the estimates 

of                    . The general equations (which are quite lengthy) as well as the technical details 

can be found in Headrick (2002), but the general logic rests on the idea of moment-matching the new 

distribution of Y to the skewness/kurtosis values defined by the user and needed to solve Equation 

(3.12). The more moments one can control, the better the approximation of Y  will be. By using the fifth- 

and sixth-order moments, the user now has the ability to choose from a wider range of skewness and 

kurtosis values and can better reproduce well-known distributions whose theoretical higher order 

moments are known. 

The fifth-order polynomial approach has been extended to the multivariate case as well, 

following the same premise of finding an intermediate correlation matrix for the data before the 

nonnormal transformations are carried out (Headrick, 2002, 2004; Headrick & Kowalchuk, 2007). For 

two nonnormal variables    and    generated from two standard normally distributed variables    and 

   with a correlation coefficient      
, the resulting correlation of the Y  variables is 

      
                                            (                    )

                  
                 

                  

                 
                 

                  

                  
                  

                   

                  

                   

                  

 

                  

                   

                    

 

                  

                    

                          

         

           

   

(3.13) 

 

So by substituting the desired correlation in       
 and obtaining the appropriate polynomial coefficients, 

it is possible to solve for      
 and obtain the intermediate correlation matrix. 

Both theoretical and simulation results have shown that the fifth-order polynomial method can, 

indeed, obtain estimates of skewness and kurtosis that cannot be achieved through the implementation 

of third-order polynomials (Headrick 2002, 2004). It has also been shown that the range of possible 
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correlation values allowed by using the Headrick (2002) method is much wider than when using the Vale 

and Maurelli’s (1983) method (Headrick, 2004). The polynomial coefficients place boundaries on the 

correlational structure that each method can generate, so it is not unusual to find that certain 

correlations (particularly on the higher or lower ranges) cannot be reproduced when certain 

combinations of skewness or kurtosis are present, particularly if one variable is severely skewed and the 

other one is symmetric (Mair, Satorra, & Bentler, 2012). It is also relevant to point out that since the 

intermediate correlation matrix is estimated in a pairwise fashion, there is no guarantee that it will be 

positive definite once it is fully assembled (Fan, Sivo, & Keenan, 2002; Li & Hammond, 1975). Both 

polynomial methods have this problem, but Headrick (2002) has shown that his method is much more 

flexible in terms of the values that these correlations may have. 

 

3.1.3 Issues on the implementation of the polynomial methods in simulation studies 

 
Because of its ease of implementation, the Vale and Maurelli (1983) multivariate extension of 

Fleishman’s (1978) method is arguably the most-widely used method in simulation studies for the social 

sciences. It has more than 130 citation counts on ISI’s Web of Knowledge (and more than 230 on Google 

Scholar) and has been the default in popular software programs such as EQS and the lavaan and 

semTools packages in R. In spite of its widespread use, there is not much research documenting its 

implementation, outside of the fact that other methods can cover a wider range of skewness/kurtosis 

combinations and ranges of correlation values. 

Only two series of studies were found to specifically address the issue of empirically assessing 

the quality of the nonnormal data generated by both the third-order polynomial and the fifth-order 

polynomial methods (Kraatz, 2011; Luo, 2011). Kraatz (2011) evaluates the third- and fifth-order 

polynomial methods (alongside the g- and h- distributions) in terms of the theory behind the method 

and the quality of the estimates they generate. In her evaluation of the Vale and Maurelli (1983) method 



33 
 

(which is directly relevant to the purpose of this article), Kraatz (2011) presents eight combinations of 

skewness/kurtosis from published articles (0/25, 0/3, 1/1, 1.75/3.75, 2/6, 3/21, 21.25/3.75, and 2/40) at 

two different sample sizes (40 and 100) and 100,000 replications per condition to empirically estimate 

their expected values. Overall, she found that the simulation-derived expected values are almost never 

close to the values specified in the population (and intended by the researcher), sometimes 

underestimating in them by a substantial amount. She concluded that skewness tends to be better 

reproduced than kurtosis and that, overall, larger sample sizes were needed to obtain better parameter 

estimates of skewness and kurtosis, even though they also resulted in larger variability of the estimates. 

Luo (2011) focuses on ordinal data in structural equation models but contains two sets of 

studies where the Fleishman (1978) method, the Vale and Maurelli (1983) extension, the Headrick and 

Sawilowsky (1999) modification of Vale and Maurelli, the Headrick (2002), and Ruscio and Kaczetow 

(2008) methods are investigated. In her simulation study, she chose distributions of Dimension 2 (with a 

skewness of √  and a kurtosis of 12), 3 (with skewness/kurtosis combinations of 2/6, 0/3, and 0/1.2), 

and 4 (with skewness/kurtosis combinations of 2/6, 0/0, √ /3, and 0/3) at sample sizes of 10, 20, 100, 

and 1,000 and 50,000 replications per condition. In her assessment of these methods, she concludes 

that the Ruscio and Kaczetow (2008) method is preferred in the cases of large sample sizes and that 

Headrick and Sawilowsky’s (1999) modification is to be preferred at small samples. 

One relevant aspect of both Luo and Kraatz’s work touches on the fact that the estimates of 

higher order moments can be biased and highly variable if the sample sizes are small or moderate. In 

some of the simulation conditions studied by Kraatz and Luo, the mean of the empirical distributions of 

the kurtosis values were several units lower than the population-defined ones, sometimes even less 

than half of their intended value. 

Another issue that is raised in both studies is the fact that both the third and fifth order 

polynomial methods can have more than one set of solutions for the exact same values of skewness and 
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kurtosis. The fact that there is more than one solution can be predicted by the fundamental theorem of 

algebra so that nonconstant polynomials of degree higher than one are susceptible to have many 

solutions, especially if nonreal solutions are also taken into account. Aside from the work of Headrick 

and Kowalchuk (2007) there are no guidelines in the literature that help researchers choose which set of 

polynomial coefficients are appropriate for data-generation purposes and no studies have yet been 

done to see whether the conclusions from simulation studies change depending on the use of different 

sets of polynomial coefficients. 

Because very limited literature exists that evaluates the use and quality of the data generated 

through the previously discussed methods, the series of studies herein aims to address two specific 

goals. The first goal, and hence the first study, is meant to assess the performance of the third-order 

polynomial method with high-dimensional data. Although the studies conducted both by Kraatz and Luo 

investigate correlated data, Kraatz only worked with bivariate distributions and Luo did not consider 

distributions with more than 4 dimensions. Currently, to our knowledge, no published studies exist 

where the quality of the data generated by the Vale and Maurelli (1983) method is analyzed in models 

where the factor structure of the covariance is known in the population. There are also, to our 

knowledge, no published studies answering the question of whether or not typical factor models used in 

simulation studies imply nonpositive definite intermediate correlation matrices. This study will look at 

both issues. 

The second goal, and hence the second study, aims to redo the first simulation study in Curran, 

West, and Finch (1996) using Headrick’s fifth-order polynomial method, in order to discover whether or 

not some of the conclusions from this published article would change if a different data-generation 

method had been used. Some of the computational difficulties of implementing the Headrick (2002) 

method will be discussed as well as general recommendations for quantitative analysts for the use of 

each algorithm. 
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3.2 Method 

 

3.2.1 Study 1 

 

Four articles were chosen to exemplify the use of the Vale and Maurelli (1983) method in the robustness 

literature: Curran et al. (1996); Finch, West, and MacKinnon (1997); Flora and Curran (2004); and 

Skidmore and Thompson (2011). The first three were chosen because of their prominence in the 

structural equation modeling (SEM) literature, as evidenced by their citation count. The Skidmore and 

Thompson (2011) article was selected both because it is outside of the field of SEM (hence illustrating 

the use of the Vale & Maurelli, 1983, method in other types of robustness studies) and because of its 

relatively recent publication date, hinting toward the fact that the third-order polynomial approach is 

still very much in vogue. 

For the first study, the models and simulation conditions investigated by the authors in the 

previously mentioned articles were redone, but instead of looking at the impact that nonnormality had 

on the parameter estimates, the sample estimates of skewness and kurtosis were recorded. All 

simulations and analyses were done in the R (Version 3.0.3) programming environment, using the 

lavaan package (Rosseel, 2012, Version 0.5-15), which implements the Vale and Maurelli (1983) method 

to generate nonnormal data through the simulateData() function. Each combination of sample size and 

nonnormality condition was replicated 10,000 times. Table 3.1 summarizes the sample sizes and 

skewness/kurtosis population values used in the articles. Path diagrams of the models can be found in 

the Appendix D. 

            Table 3.1 Sample sizes and skewness/kurtosis combinations studied in each article  

Article  Sample size (Skewness, Kurtosis)  

Curran, West & Finch (1996) 100, 200, 500, 1000 (0,0) (2,7) (3,21) 

Finch, West & MacKinnon (1997) 150, 250, 500, 1000 (0,0) (2,7) (3,21) 

Flora & Curran (2004) 100, 200, 500, 1000 (0,0) (.75,1.75) (1.25, 3.75) 

Skidmore & Thompson (2011) 10,20,40,60,100,200 (0,0), (1,1), (-1.5,3.5) 
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In all four articles, the large-sample properties of the skewness and kurtosis estimates were 

verified by means of generating ‘‘empirical’’ populations of size 10,000 (Curran et al., 1996; Finch et al., 

1997); 50,000 (Flora & Curran, 2004); and 100,000 (Skidmore & Thompson, 2011). The same empirical 

populations were reproduced using lavaan to ensure that the data-generation method was comparable 

across the different studies (EQS was used in the first three articles to generate data and the SAS macro 

described in Fan et al., 2002, was used for the last article). Descriptive statistics were calculated to 

investigate any potential biases of the estimates as well as their variability. Intermediate-correlation 

matrices were also calculated in each case to verify their positive-definiteness. 

3.2.2 Study 2 

 

For the second study, the fifth-order polynomial method as described in Headrick (2002) was 

implemented in R to compare its sample estimates of skewness and kurtosis to the ones generated by 

using Vale and Maurelli (1983). To investigate this method further, the first simulation study described 

in Curran et al. (1996) (‘‘Model 1’’ on p. 19) was rerun, under the same conditions, but using the newer 

data-generation algorithm to discover the impact (if any) that it could have on the conclusions from the 

study. 

Headrick, Sheng, and Hodis (2007) provide a Mathematica script that needed to be adapted in R 

before the main simulation studies could be set up. The nlimnb() function was used to find the roots of 

the fifth-order polynomial equations instead of the FindRoot routine from Mathematica. To verify the 

validity of the R implementation of the Mathematica script, some of the simulations done in Headrick 

(2002) and Headrick and Kowalchuck (2007) were run and results were compared with the tables 

published in said articles. All answers were within four or five decimal points showing that the R script 

was accurately implementing the fifth-order polynomial method as it was originally intended. 

An initial problem that had to be overcome was the fact that no ranges of potential values for 

the standardized higher order moments are known if the skewness and kurtosis values are set in 
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advance. Even though Headrick (2002, 2004) provides certain values for the fifth- and sixth-order 

moments for certain combinations of skewness and kurtosis, no values are available for the 

combinations of skewness/kurtosis used in the published articles being analyzed. To obtain a solution, a 

grid search was programmed where the known values shown in Headrick (2002) are used as starting 

values and then R would attempt different solutions until estimates of the fifth and sixth standardized 

higher order moments were found. The grid search starts by randomly generating two lists of 50 

candidate values (each for one higher order moment) and inspects all first        combinations in 

search of a solution. If no solution is found, the index for the fifth-order moment is increased to 15 so 5 

new combination of values is explored. If all those values are traversed and no solution is found, the 

index for the sixth-order moment is increased then to allow new candidates and the process is repeated. 

This method of exhaustively exploring candidate solutions is standard practice for grid search—the 

interested reader can consult Kruschke (2010, Chap. 6), for a more in-depth explanation. A list of these 

values was kept in order to use them either to calculate future values of skewness and kurtosis or to go 

through the data-generation process more efficiently. Once the values for the fifth and sixth 

standardized order moments are found, the data-generation process is relatively straightforward. 

For the purposes of comparing methods, descriptive statistics of the estimated skewness and 

kurtosis values of the fifth-order polynomial were computed. Headrick (2002) showed in simulation 

studies that estimates of skewness and kurtosis from his method are superior in terms of less variability 

and smaller bias, but Luo’s (2011) results seem to contradict this finding. In her simulation studies, she 

found that the improvement provided by the Headrick (2002) method over Vale and Maurelli (1983) was 

marginal at the cost of great computational complexity. She also found that in the cases of three- and 

four-dimensional distributions, the sample estimates of the correlations were biased (even at the 

sample size of 1,000) making it the least efficient one among the ones she studied. Kraatz (2011) also 

speculates that the fifth-order polynomial method could become ‘‘unpredictable’’ (p. 61) if used to 
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simulate data in higher dimensional settings (much like the ones being studied here) but provides no 

evidence of this. 

The main purpose of Study 2, however, is to answer the question of whether conclusions 

derived from simulations using the Vale and Maurelli (1983) method hold when the Headrick (2002) 

method is chosen instead. Because of the exploratory nature of this study, only the simulations done for 

Model 1 (properly specified model) described in Curran et al. (1996) were redone to exemplify the uses 

of the fifth-order polynomial method. The same simulation conditions were implemented with the only 

exception that instead of 500 replications (as in the original study), 10,000 replications were used to 

ensure the stability of the results. Portions from Table 1 (p. 22) from the Curran et al. (1996) article were 

reproduced including the estimated chi-square values obtained when the Headrick (2002) method was 

used. Although not investigated in the original study, the average standard errors in each simulation 

condition will also be reported to further investigate any differences that may arise by using each data-

generation method. To ensure comparability between both simulation studies, the mimic=‘‘EQS’’ option 

was specified within the cfa() function of lavaan 

3.3 Results 

3.3.1 Study 1 

 
Descriptive statistics of the estimates across the 10,000 replications for each sample size are shown in 

Table 3.2. Because of the large number of simulation conditions studied in each article, only one SEM 

model was chosen for Curran et al. (1996); Finch et al. (1997); and the Flora and Curran (2004) to report 

in the table. For Skidmore and Thompson (2011), only results with population correlation of 0.5 are 

depicted. For these particular articles, the various types of SEM models and ranges of correlations did 

not seem to have an impact on the quality of the sample skewness and kurtosis estimates generated by  

the Vale and Maurelli (1983) algorithm. There was also no evidence found that any of the models or or 

correlational structures implied nonpositive definite intermediate correlation matrices.  
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There is a consistent downward bias of the skewness/kurtosis estimates across all sample size 

conditions and across all different studies. In general, sample skewness is estimated much more 

accurately than sample kurtosis and higher levels of kurtosis at smaller sample sizes were generated 

with a heavily downward bias, which is consistent with the findings from the Luo (2011) and Kraatz 

(2011). From inspecting the minimum and maximum values, it is possible to see that there is much 

variability in the estimates, particularly for sample kurtosis. For the population kurtosis value of 21, 

there were instances where the Vale and Maurelli (1983) algorithm generated estimates more than 10 

times larger than what was specified in the population. It is important to point out that the variability in 

the estimates of skewness and kurtosis (measured by the standard deviation of the empirical 

distributions) seems to follow different patterns as sample size becomes larger. For skewness estimates, 

the standard deviations are progressively reduced but for kurtosis estimates, they tend to increase. 

  To further analyze the nature of the bias in the skewness and kurtosis estimates, Table 3.3 

shows the percentage of the values generated by Vale and Maurelli (1983), which fall below the 

population values specified by the authors. In general, the majority of the estimates are below the the 

population parameter, particularly for small sample sizes at higher levels of skewness/kurtosis. Even at 

the largest sample size condition of 1,000, a substantial amount of sample skewness and kurtosis are 

still below the values intended by the simulation conditions. 
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Table 3.2 Mean (M), median (Mdn), standard deviation (SD), minimum (Min) and maximum (Max) of the skewness and kurtosis estimates generated by Vale & Maurelli (1983) at 
various sample sizes (n).   

 
n=  100     200     500     1000   

  M / Mdn SD Min / Max M / Mdn SD Min / Max M / Mdn SD Min / Max M /  Mdn SD Min / Max 

 C,W &F (1996)   
 

    
 

    
 

    
 

  

Skewness = 2 1.70 / 1.59 0.62 0.62 / 7.43 1.83 / 1.72 0.55 0.57 / 7.58 1.97 / 1.91 0.33 1.22 / 7.21 1.99 / 1.94 0.31 1.35 / 7.93 

Kurtosis = 7 4.26 / 3.04 4.45 -1.01/ 63.11 5.32 / 4.09 4.63 -0.42/ 102.8 6.57 / 5.72 3.73 1.57/ 114.2 6.60/ 5.74 3.66 1.77 / 137.21 

Skewness = 3 2.21 / 2.09 1.21 -4.63 / 8.09 2.48 / 2.33 1.15 -4.56 / 11.04 2.74 / 2.60 1.02 -3.82/ 13.26 2.86 / 2.72 0.83 -1.89 / 14.66 

Kurtosis = 21 9.65 / 7.11 8.51 -0.53/ 75.68 12.88 / 9.71 10.6 1.20 /136.55 16.44/ 12.77 12.40 3.12/ 211.7 18.38 /14.83 12.5 4.69 / 359.73 

  n=   150 
  

 250 
  

500 
  

1000 
  F, W & McK (1997) M /  Mdn SD Min / Max M / Med SD Min / Max M / Med SD Min / Max M / Med SD Min / Max 

Skewness = 2 1.78 / 1.67 0.58 0.35 / 7.95 1.86 / 1.77 0.51 0.78 / 8.08 1.93 / 1.85 0.42 1.00 / 7.70 1.96 / 1.90 0.32 1.20 / 4.02 

Kurtosis = 7 4.86 / 3.59 4.70 -0.61/ 80.22 5.61 / 4.35 4.57 -0.12 / 95.56 6.26 / 5.16 4.01 0.75/ 107.7 6.56 / 5.71 3.65 1.51 / 132.12 

Skewness = 3 2.25 / 2.12 1.43 -4.29 / 9.11 2.55 / 2.42 1.11 -8.36/12.02 2.76 / 2.58 0.92 -4.33/ 11.62 2.86 / 2.73 0.84 -4.78 / 16.66 

Kurtosis= 21 9.74/7.44 9.12 -0.32/ 93.86 13.71/ 10.46 11.6 1.36/ 175.92 16.74/ 13.11 13.64 4.32/ 208.9 18.20/ 14.90 12.1 4.82 / 390.06 

  n=   100 
  

 200 
  

500 
  

 1000 

  C & F (2004) M /  Mdn SD Min / Max M /  Mdn SD Min / Max M /  Mdn SD Min / Max M /  Mdn SD Min / Max 

Skewness = 0.75 0.56 / 0.41 0.36 -1.12 / 7.32 0.64 / 0.59 0.28 -1.06 / 6.33 0.71 / 0.68 0.16 -0.98 / 4.12 0.74 / 0.71 0.08 0.01 / 3.12 

Kurtosis = 1.25 0.98 / 0.82 1.13 -0.16/ 23.18 1.11 / 0.96 1.64 -0.04/ 17.44 1.16 / 1.04 1.78 0.06/ 19.26 1.22 / 1.17 2.03 0.09 / 13.11 

Skewness = 1.25 1.06 / 0.99 0.55 -1.13 / 6.11 1.14 / 1.08 0.43 -0.99 / 5.56 1.21 / 1.16 0.33 0.13 / 4.43 1.23 / 1.20 0.21 0.55 / 3.04 

Kurtosis = 3.75 2.34 / 1.56 2.93 -0.83/ 46.72 2.96 / 2.16 3.11 -0.71 / 38.83 3.40 / 2.77 3.96 0.11 / 81.35 3.59 / 3.05 4.22 0.65 / 77.58 

   n=  10 
  

 40 
  

100 
  

200 
  S & T (2012) M /  Mdn SD Min / Max M /  Mdn SD Min / Max M /  Mdn SD Min / Max M /  Mdn SD Min / Max 

Skewness = 1 0.18 / 0.09 0.21 -1.65 / 1.98 0.36 / 0.21 0.16 -1.08 / 1.33 0.78 / 0.52 0.12 -0.96 / 1.29 0.91 / 0.76 0.08 -0.10 /1.06 

Kurtosis = 1 0.12 / 0.06 0.33 -2.34 / 3.02 0.22 / 0.16 1.62 -1.04 / 7.88 0.31 / 0.25 2.02 -0.86/ 14.61 0.72 / 0.64 2.14 -0.88 / 19.06 

Skewness = -1.5 -0.63/  0.59 0.52 -2.22 / 1.36 -1.15 / -1.08 0.50 -4.96 / 0.08 -1.33 / -1.26 0.44 -5.20/ -.031 -1.41 / -1.36 0.37 -4.38 / -0.50 

Kurtosis = 3.5 -0.68/ -0.99 1.00 -2.15 / 3.39 1.36 / 0.71 2.31 -1.59 / 20.44 2.35 / 1.64 2.58 -1.08/ 37.93 2.87 / 2.25 2.48 -0.59 / 59.67 
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                                         Table 3.3 Percentage of sample estimates lower than the population  
                                          estimates across 10,000 replications. 

  Curran, West & Finch (1996) 

  N = 100 N=200 N=500 N=1000 

Skewness = 2 75.66% 71.36% 62.06% 58.51% 

Kurtosis = 7  83.35% 78.08% 68.29% 58.61% 

Skewness = 3 79.81% 74.88% 72.77% 66.54% 

Kurtosis = 21 91.24% 86.40% 84.75% 76.98% 

  Finch, West & MacKinnon (1997) 

  N = 150 N=250 N=500 N=1000 

Skewness = 2 72.85% 69.82% 65.58% 59.82% 

Kurtosis = 7  80.92% 77.68% 66.93% 60.11% 

Skewness = 3 73.69% 72.04% 69.23% 65.38% 

Kurtosis = 21 88.74% 85.82% 81.93% 76.04% 

  Flora & Curran (2004) 

  N = 100 N=200 N=500 N=1000 

Skewness = 0.75 62.13% 59.48% 50.12% 46.88% 

Kurtosis = 1.25 68.11% 65.72% 61.66% 58.16% 

Skewness = 1.25 70.33% 66.34% 61.46% 60.32% 

Kurtosis = 3.75 81.54% 77.11% 70.06% 67.82% 

  Skidmore & Thompson 2011 

  N=10 N=40 N=100 N=200 

Skewness = 1 96.11% 88.50% 67.95% 59.12% 

Kurtosis = 1 98.12% 90.42% 74.57% 69.16% 

Skewness = -1.5 6.24% 20.85% 28.42% 34.07% 

Kurtosis = 3.5 100% 87.28% 78.85% 73.49% 
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3.3.2 Study 2 

 
For Study 2, the same values of skewness and kurtosis used in the Curran et al. (1996) simulation studies 

were re-calculated using the Headrick (2002) method. Only the correctly specified model condition 

(‘‘Model Specification 1’’ in their article) was run. Table 3.4 shows the average across 10,000 replications 

for the differing sample sizes and higher order moment conditions. 

Table 3.4 Comparison of the mean skewness and kurtosis estimates between  
the Vale & Maurelli  (1983) method (VM) and the Headrcik (2002) method (H)  
for the Curran, West & Finch (1996) study across 10,000 replications.  
Standard deviations appear between parentheses  

  

  n=100 n=200 

  VM H VM H 

Skewness= 2 1.70(0.62) 1.92(0.51) 1.83(0.55) 1.98(0.42) 

Kurtosis = 7 4.26(4.45) 5.85(2.42) 5.32(4.63) 6.12(3.44) 

Skewnes = 3 2.21(1.21) 2.61(1.19) 2.48(1.15) 2.76(1.06) 

Kurtosis = 21 9.65(8.51) 12.46(7.90) 12.88(10.63) 16.39(9.58) 

  n=500 n=1000 

  VM H VM H 

Skewness= 2 1.97(0.33) 2.00(0.31) 1.99(0.31) 2.00(0.30) 

Kurtosis = 7 6.57(3.73) 6.83(3.11) 6.60(3.66) 6.96(3.50) 

Skewnes = 3 2.74(1.02) 2.79(0.91) 2.86(0.83) 2.96(0.67) 

Kurtosis = 21 16.44(12.40) 18.02(10.88) 18.38(12.55) 20.46(11.05) 

   

It can be seen that the empirical averages generated by the Headrick (2002) method, although still 

downward biased, are closer to those specified in the population. The standard deviations for each 

condition are also consistently lower when compared with the ones calculated from the values 

generated via the Vale and Maurelli (1983) algorithm, which helps show that the fifth-order polynomial 

method also generates estimates that are more consistent. 

Just as with the estimates shown in Table 3.2, the kurtosis values obtained via the Headrick 

(2002) method exhibit an increasing trend in their standard deviations as the sample size grows larger, 

the opposite of what happens to the skewness estimates, where larger sample sizes are associated with 

less variability.   
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In Figure 3.1, it is possible to see the mean values across replications for each condition of 
 

Figure 3.1 Plots of means for skewness and kurtosis values across simulation replications as a function of sample size  
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sample size and population skewness and kurtosis. The Headrick (2002) method consistently 

outperforms the Vale and Maurelli (1983) method in terms of less bias in the parameter estimates, but 

its overall slope is smaller so it approaches the true population values at a slower rate, particularly for 

small samples. With the exception of the population skewness of 2, neither method ever reaches their 

intended value, although the fifth-order polynomial approach is always the closest. 

To visually investigate the variability of the estimates, violin plots for each skewness/ kurtosis 

combination and sample size condition are presented in Figure 3.2. As a hybrid between a boxplot and 

an empirical density plot, violin plots highlight the areas of highest mass in the distribution of the data as 

well as the behavior of its furthermost points. It is possible to see that the Vale and Maurelli (1983) 

method is susceptible to generating extreme points, particularly when the population values of 

skewness or kurtosis are high. The Headrick (2002) method is much more consistent in generating 

sample skewness and kurtosis values closer to the true value intended in the population. By comparing 

the areas of highest density of the data (where the ‘‘shoulders’’ of the violin plot begin to appear) across 

methods, it becomes apparent that the fifth-order polynomial algorithm consistently outperforms the 

third-order polynomial approach, particularly with increasing sample size. This fact is most evident in the 

condition of population kurtosis of 21 where, as sample size increases, the curves of the violin plot for 

the Headrick (2002) method become wider and closer around the true population value. Although the 

Vale and Maurelli’s (1983) plot also approaches the intended value, it can be readily seen that the 

highest density of the data is still below it. Contrary to the plots depicting skewness, where larger 

sample sizes imply that the largest density of the data concentrates around the population values, 

kurtosis plots show the same trend of more extreme values being generated at higher sample sizes, 

reflecting the increases in standard deviation of the estimates shown in Tables 3.2 and 3.4. 

 



45 
 

 
 
 

Figure 3.2 Violin plots showing the empirical density of the values of skewness and kurtosis generated by each method. The 
intended population value is highlighted with a black line. The top two plots correspond to the skewness of 2 and a kurtosis of 7 
condition. The bottom two plots show the skewness of 3 and kurtosis of 21 condition. 
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In terms of whether or not using Headrick’s (2002) method would have influenced the 

conclusions found in Curran et al.’s (1996) first study on the robustness of the chi-square test of fit, 

Table 3.5 compares the values obtained by the authors with the values obtained in this simulation when 

using both the Vale and Maurelli (1983) approach and the Headrick (2002) approach. The values 

reported by Curran et.al. (1996) differ little from what was found by fitting the model in lavaan. Only the 

Table 3.5 Chi-square values obtained by the methods of maximum likelihood (ML), Satorra-Bentler (SB) correction or 
                 asymptotic distribution free (ADF).  

    Moderately nonnormal (skewness =2, kurtosis =7) 

n Method Expected C,W&F (1996) VM (1983) Min/Max VM H(2002) Min/Max H 

100 ML 24 29.35 29.46 8.59 /72.58 36.19 7.24 / 61.98  

  SB 24 26.06 26.38 8.13/58.76 28.83 6.68/41.51 

  ADF 24 38.04 36.85 9.01/64.94 36.16 11.10/47.2 

200 ML 24 30.15 29.96 8.93/71.08 34.78 7.41/62.47 

  SB 24 25.44 25.18 9.71/47.29 26.36 7.23/40.83 

  ADF 24 29.27 28.53 10.11/57.98 31.32 7.36/42.27 

500 ML 24 31.26 30.66 10.40/61.01 36.23 10.06/50.76 

  SB 24 25.44 24.28 8.33/53.43 25.92 8.11/43.84 

  ADF 24 26.42 25.79 10.19/53.73 26.95 8.29/44.48 

1000 ML 24 30.78 30.06 9.94/66.84 36.82 11.77/55.79 

  SB 24 24.77 24.32 8.96/55.09 24.16 8.71/42.46 

  ADF 24 25.36 25.11 8.79/53.42 24.85 8.04/46.33 

    Severely nonnormal (skewness =3, kurtosis =21) 

n Method Expected C,W&F (1996) VM (1983) Min/Max VM H(2002) Min/Max H 

100 ML 24 33.54 33.46 10.65/91.09 30.82 7.84/74.38 

  SB 24 27.26 27.41 12.17/53.20 28.19 8.31/44.19 

  ADF 24 44.82 40.56 11.24/64.14 34.16 11.35/59.43 

200 ML 24 34.40 34.78 11.33/104.39 29.86 9.82/97.83 

  SB 24 25.80 26.17 11.09/68.59 25.94 9.12/48.94 

  ADF 24 31.29 28.66 11.52/52.61 26.80 8.92/41.94 

500 ML 24 35.55 34.95 9.46/102.21 31.12 8.57/94.06 

  SB 24 24.85 24.62 10.15/52.21 23.62 9.01/46.28 

  ADF 24 26.83 25.31 9.37/50.56 25.11 10.09/47.72 

1000 ML 24 37.40 37.10 10.50/94.89 29.73 9.38/95.47 

  SB 24 25.01 24.84 8.43/50.16 24.60 8.05/52.96 

  ADF 24 25.47 25.20 8.88/48.7 25.12 8.61/49.52 
Note. The values reported by Curran, West and Finch (1996) (C, W &F) are presented alongside with those obtained using the 
Vale and Maurelli (1983) (VM) method and the Headrick (H) method at the various sample size (N) conditions. Minimum and 
maximum (Min/Max) chi-square values per method and sample size conditions are also presented. 
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results of the ‘‘moderately nonnormal’’ and ‘‘severely nonnormal’’ conditions are shown, but the 

normal distribution condition was run to ensure lavaan’s results were comparable. 

Overall, both the Headrick (2002) and the Vale and Maurelli (1983) methods generated mean 

chi-square values which were relatively comparable to each other. For the cases of the ‘‘moderately 

nonnormal’’ condition, the fifth-order polynomial method was consistently associated with higher chi-

square values when the model was fitted using likelihood theory. This situation seemed to reverse itself 

for the ‘‘severely nonnormal’’ condition though, in which the Headrick (2002) method was associated 

with lower chi-square values (albeit still higher than the expected value for the chi-square distribution). 

The Satorra–Bentler correction and asymptotic distribution free (ADF) chi-square estimates followed the 

overall pattern reported by Curran et al. (1996) where the Satorra–Bentler correction yielded the closest 

values to the expected model chi-square when calculated with nonnormal data, particularly for small 

sample sizes. No considerable differences were found in the mean chi-square values obtained for the 

Satorra–Bentler and ADF chi-squares, regardless of whether the Headrick (2002) method or the Vale and 

Maurelli (1983) method were used. It is important to point out, however, that the Vale Maurelli (1983) 

method was associated with higher chi-square values, particularly with higher maximums than the 

Headrick (2002) method. 

Table 3.6 shows the empirical rejection rates published by Curran et al. (1996) and those 

obtained by generating data through the Vale and Maurelli (1983) and Headrick (2002) method. In 

general, the Vale and Maurelli (1983) rejection rates appear to be somewhat lower than those reported 

by Curran et al. (1996; with the exception of chi-squares obtained from the normal theory maximum 

likelihood), although they are still reasonably close to the ones published in the original study. The 

empirical rejection rates from the Headrick (2002) method, however, do exhibit some important 

changes, particularly for the ADF estimator. The Headrick (2002) algorithm yielded empirical rejection 

rates that were overall higher than those obtained through the Vale and Maurelli (1983) method for the 
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case of the normal-theory maximum likelihood, but they seemed to converge to the nominal alpha of 

5% much faster, that is at smaller sample sizes, for the Satorra–Bentler correction and ADF estimator. 

Although the ADF chi-square still required larger sample sizes to approach the theoretical rejection rate, 

it did so at smaller sample sizes when the data were generated by the Headrick (2002) method than 

when the data generated by the Vale and Maurelli (1983) method. For instance, the ADF estimator at a  

                    Table 3.6 Empirical rejection rates obtained by the methods of maximum likelihood (ML), Satorra-Bentler (SB) 
                   correction or asymptotic distribution Free (ADF) across 10,000 replications.                      

    Moderately nonnormal (skewness =2, kurtosis =7) 

n Method Expected C,W&F (1996) VM (1983) H (2002) 

100 ML 5% 20% 21.7% 30.8% 

  SB 5% 8.5% 8.6% 9.5% 

  ADF 5% 49% 46.45% 26.67% 

200 ML 5% 25% 20.5% 27.9% 

  SB 5% 8% 7.7% 6.7% 

  ADF 5% 19% 16.1% 7.2% 

500 ML 5% 24% 21.3% 29.4% 

  SB 5% 6.9% 6.5% 6.4% 

  ADF 5% 6.7% 6.5% 6% 

1000 ML 5% 24% 23.3% 25.6% 

  SB 5% 7.5% 6.8% 5.8% 

  ADF 5% 7.5% 6.6% 4.8% 

    Severely nonnormal (skewness =3, kurtosis =21) 

n Method Expected C,W&F (1996) VM (1983) H (2002) 

100 ML 5% 30.0% 33.8% 37.9% 

  SB 5% 13.0% 12.4% 9.3% 

  ADF 5% 68.0% 59.4% 46.6% 

200 ML 5% 36.0% 34.7% 38.3% 

  SB 5% 6.5% 7.0% 5.2% 

  ADF 5% 25.0% 19.2% 10.3% 

500 ML 5% 40.0% 40.0% 40.7% 

  SB 5% 8.5% 8.4% 6.5% 

  ADF 5% 8.5% 7.9% 4.6% 

1000 ML 5% 48.0% 42.4% 42.5% 

  SB 5% 7.0% 6.4% 4.6% 

  ADF 5% 7.2% 6.1% 5.9% 
Note: The rejection rates reported by Curran, West and Finch (1996) (C, W &F) are presented alongside with those 
obtained using the Vale and Maurelli (1983) (VM) method and the Headrick (H) method at the various sample size (N) 
conditions. 
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sample size of 200 for the Headrick (2002) method had a better rejection rate than the Satorra–Bentler 

chi-square calculated from data generated by the Vale and Maurelli (1983) method. 

 Even though it was not initially investigated by Curran et al. (1996), it was of interest to also 

document whether the choice of data-generation method affects the estimates of standard errors for 

parameter estimates or not. Percentage reduction of the standard errors was calculated the same way 

Finch et al. (1997) did by subtracting the estimated standard error from the true parameter and dividing 

the difference by the true parameter. Table 3.7 summarizes these results, where it is possible to see 

that, under the Headrick (2002) method, the shrinkage of the standard errors is higher than when data 

are generated by the Vale and Maurelli (1983) method. 

                                                               Table 3.7 Percentage reduction of the standard error of the  
                                                               parameter estimates at different sample sizes (n) for the Vale  
                                                               and Maurelli (VM) and Headrick (H) methods.  

Skewness = 2 and Kurtosis = 7 

n % bias (VM) % bias (H) 

100 35% 43% 

200 31% 39% 

500 33% 39% 

1000 34% 41% 

Skewness = 3 and Kurtosis = 21 

n % bias (VM) % bias (H) 

100 52% 61% 

200 51% 58% 

500 53% 58% 

1000 52% 57% 

 

3.4 Discussion 

 
As it can be readily seen from the results in Study 1, the quality of the estimates generated by the Vale 

and Maurelli (1983) algorithm is extremely susceptible to the sample size being chosen, yielding 

estimates of skewness and kurtosis that can be both moderately to severely downwardly biased and 

extremely variable. These findings are in line with the ones of Luo (2011) and Kraatz (2011), so it is 

reasonable to assume that regardless of the dimensionality of the data, the third-order polynomial 
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method can result in suboptimal estimates, unless the sample sizes are moderately large (likely larger 

than 200, although even at 1,000 one can see some bias when the population kurtosis is large in the 

population). The estimates of kurtosis were much more biased and variable than those of skewness, 

possibly because larger sample sizes are needed to estimate more accurately the higher moments of a 

distribution. In spite of this, even after 10,000 replications the bias was still present. Moderate estimates 

were generated with more precision than higher estimates of kurtosis, so the Vale and Maurelli (1983) 

method is still ideal for simulations where either larger sample sizes are used or if lower values of 

skewness and kurtosis are being inspected. Of particular interest is the seemingly contradictory finding 

that larger sample sizes are accompanied by increases in the variability of the estimates of kurtosis, as 

measured by the standard deviation of the sampling distribution. The same trend can be observed in 

Kraatz’s (2011) work in her Tables 20 to 27 (pp. 105-112). A potential explanation for this result is an 

interplay between the upper bound that the sample size places on the estimates of kurtosis and the 

tendency of the Vale and Maurelli (1983) algorithm to generate extreme values of it. Dalen (1987) 

provides the most up to date upper bound to the sample kurtosis as a quadratic function of the sample 

size. If the sample size grows larger, the bound also becomes higher and the third-order polynomial 

method has more opportunity to generate values that concentrate toward the extreme of the 

distribution. Clearly, more research is needed that helps evaluate the quality of the data generated by 

these algorithms not only in terms of bias but also in terms of the variability of these higher order 

moments. 

Although Li and Hammond (1975) and Headrick (2002) present examples where nonpositive 

intermediate correlation matrices arose while using the third-order polynomial method, the inspection 

of the intermediate correlation matrices implied by the models specified in each one of the four articles 

were all positive definite. A potential explanation as for why this could be the case relies on the fact that 

the range of correlation values is most restricted when the intended population correlation is high (0.7 
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and greater) and the variables are either highly skewed in opposite directions or if one variable is 

skewed and the other one is symmetric (Mair et al., 2012). In all the simulation studies considered here, 

all the variables had skewness and kurtosis values specified in the same direction, so further research is 

needed to understand other potential factors that may influence the quality of the data obtained via the 

Vale and Maurelli (1983) method. Preliminary inspections, for instance, show that if the population 

correlation coefficients are negative, it is much more likely to obtain a nonpositive definite intermediate 

correlation matrix. 

Study 2 helped understand the use of the fifth-order polynomial algorithm and highlighted many 

of the advantages and potential problems one may encounter with it. In terms of the quality of the 

generated data, the results were consistent with those found in Headrick (2002), Kraatz (2011), and Luo 

(2011), where the newer method outperformed the third-order polynomial method both in terms of less 

bias and variability. This is, of course, a reasonable expectation because of the fact that the addition of 

the two higher order moments provides the algorithm with more information to better reproduce the 

values intended in the population. The use of higher dimensional data (9 dimensions) did not result in 

unstable estimates and the data-generation procedure was, overall, relatively straightforward once 

suitable values for the    and    values were found. This is, perhaps, one of the biggest drawbacks 

associated with the Headrick (2002) method. The optimization of these high-dimensional polynomials is 

not a simple task and there is currently no theory to help potential users choose suitable values of    

and    for any arbitrary case. Table 2 from Headrick (2002; p. 698) is a good starting point to properly 

choose some of these values, but most authors use values of skewness and kurtosis well above the 

range of what is presented there. Experimentation during the process of coding the grid search that 

currently finds these values in R suggests that there are no specific values but ranges of values of    and 

  , which yield acceptable solutions for the polynomial coefficients. Deriving the boundaries of these 
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ranges for given population skewness and kurtosis could be a potential way to expand the results found 

here. 

The comparison of the simulation results from the first model specification in Curran et al. 

(1996) yielded some very interesting results. Overall, whether one uses the Vale and Maurelli (1983) or 

the Headrick (2002) method, the results are consistent ith the statistical theory surrounding SEM: higher 

levels of kurtosis inflate the value of the chi-square test of fit (Bollen, 1989). It also supported the 

general conclusions found in Curran et al. (1996), where the Satorra–Bentler correction is favoured over 

the ADF correction when nonnormality is present. In spite of this, a more nuanced analysis of the results 

highlights the fact that some of the conclusions the authors arrived at would have changed had the 

Headrick (2002) method been available to them. 

The inflation of the chi-square appeared to be higher with the Headrick (2002) method for the 

case of moderately nonnormal distributions but somewhat lower for severe nonnormality. This result is 

slightly counterintuitive given than the third-order polynomial method not only generates values that 

had lower kurtosis but also that the bulk of these values is on the lower end of the distribution. Further 

analysis, however, helped show that some of the datasets generated by the Vale and Maurelli (1983) 

algorithm included pockets of very extreme values of kurtosis, with some having kurtosis values more 

than 100 for the cases of population kurtosis of 7 and even close to 400 in the cases of population 

kurtosis of 21, as can be seen in Figure 3.2. These extreme values of kurtosis generated extreme chi-

square values which raised the overall average across simulation repetitions. Because the Headrick 

(2002) method yields estimates that are more consistent, the inflation of chi-square values is not as 

severe. Table 3.5 helps exemplify this by showing the minimum and maximum chi square values from 

the 10,000 replications across conditions. In general, the Vale and Maurelli (1983) method had 

maximum chi-square values that were 10 times higher in the moderately nonnormal condition and 
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around 20 times higher in the severe nonnormal condition, when compared with the Headrick (2002) 

method. 

Table 3.6 highlights some of the important differences of using the Headrick (2002) versus the 

Vale and Maurelli (1983) procedures. Even though under normal likelihood theory the Headrick (2002) 

method resulted in higher rejection rates, it seemed to reach the nominal rate of 5% faster. This case is 

particularly noticeable for the ADF estimator, where it becomes almost as good as the Satorra–Bentler 

correction even at samples of 200. This is goes against some of the recommendations found in Curran et 

al. (1996), where they suggest this estimator should be used in samples of 500 or higher. A working 

hypothesis of why these differences may have arisen has to do with the fact that because the Vale and 

Maurelli (1983) method is prone to generating data with very large kurtosis values, the demands it 

places on the data to estimate the weight matrix needed by the ADF estimator are considerably higher 

than when the data is generated using the Headrick (2002) method. Under the Headrick (2002) method, 

the ADF estimator reaches its asymptotic chi-square distribution much faster and obtains a better 

empirical rejection rate. Regardless of whether one uses the third- or the fifth-order polynomial 

method, both the Satorra–Bentler correction and the ADF chi-square statistic tended to behave similarly 

when compared with normal-likelihood chi-square. This comes from the fact that both approaches are 

specifically designed to handle excess kurtosis and, as sample size grows larger, it is expected that they 

would behave more and more similarly by returning the Type I error rate to its nominal value. It is 

important to highlight the fact, however, that when the data is generated by the Headrick (2002) 

method it appears that the asymptotic properties of the ADF estimator manifest themselves faster. The 

fact that normal likelihood chi-squares are more different between both data-generating methods could 

point toward the fact that the multivariate structure implied by both them is not the same. It is 

important to keep in mind that, when using the power polynomial methods, the multivariate 

nonnormality is indirectly attained by modifying all the one-dimensional marginal distributions. Neither 
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method offers the researcher any control over what the shape of the joint distribution looks like. An 

interesting avenue for future research could be to explore different methods that allow the researcher 

to control the multivariate nonnormality (perhaps by setting a population value of Mardia’s kurtosis or 

another measure of multivariate nonnormality) and not only the lower dimensional moments. 

Table 3.7 also helps highlight the fact that the shrinkage of standard errors changes depending 

on whether one uses the Vale and Maurelli (1983) method or the Headrick (2002) method. Future 

research could look at whether the robust corrections to standard errors require larger sample sizes 

than what is usually recommended in the published literature, given that standard errors of the 

parameter estimates tend to be smaller when the data is generated via fifth-order polynomials. 

 

3.5 Conclusions and recommendations 

 
There are two sets of concluding remarks to be made from this article. First, it was the purpose of these 

studies to start a conversation about the algorithms being used in simulations by highlighting some of 

the advantages and drawbacks of the Vale and Maurelli (1983) method and looking at the differences in 

terms of results that can be encountered when another method is used. The third-order polynomial is 

the status quo in terms of nonnormal data-generation procedures for Monte Carlo studies in the social 

sciences and, even though it used to be the best alternative available, advances in both computational 

power and statistical theory have given the quantitative researcher a much wider range of choices, 

many of which could be better suited to investigate the simulation conditions intended by the 

researchers. Just a small, and by no means exhaustive list of these methods include the multivariate 

skew-normal distribution (Azzalini & Dalla Valle, 1996), the multivariate g-and-h distribution (Kowalchuk 

& Headrick, 2010), Gaussian mixtures (Muthén & Muthén, 2002), copula distributions (Mair et al., 2012), 

and iterative approaches such as the one described in Ruscio and Kaczetow (2008). 
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Still, the majority of these methods have received little (if any) attention from researchers in 

psychometrics and the social sciences, in general. The Headrick (2002) method, for instance, has only 

been used once within the published SEM literature as the data-generating procedure used in the 

simulation studies of Tong and Bentler (2013). Most of the citations of the fifth-order polynomial in the 

social sciences come from researchers commenting on the improvements done by Headrick (2002) 

andHeadrick and Kowalchuk (2007) on the power method, but not many actually use the algorithm itself 

for the purpose it was intended to (particularly in the multivariate case). Even the overall lack of 

literature on the empirical properties of the estimates of these algorithms points to the fact that a wide 

area of study exists which is not seeing much incursion from quantitatively oriented social scientists. 

The second concluding remark is that the validity of conclusions in simulation studies depends 

heavily on the quality of the data-generating procedures, and if these procedures are suspect, the 

conclusions from simulation studies are suspect as well. For example, the simulation studies done in Lix 

and Fouladi (2007); Lix, Keselman, and Hinds (2005); and Weathers, Sharma, and Niedrich (2005) use 

skewness–kurtosis values that imply nonreal polynomial coefficients as solutions to the Fleishman 

(1978) equations, and a variety of combination of skewness and kurtosis conditions used commonly in 

the literature can imply odd-shaped (and even bi-modal) distributions on the generated datasets 

(Kraatz, 2011). There is no published research to document whether different sets of solutions to the 

Fleishman (1978) and Vale and Maurelli (1983) polynomials influence the results intended by the 

researchers, yet most people who rely on simulations used this method unsuspectingly. 

In conclusion, it is important to raise awareness of a type of ‘‘black box’’ approach to simulation 

that exists among many quantitative social scientists. Although exceptions do exist where researchers 

create empirical populations to study the large sample properties of the data-generating methods they 

use (all the articles studied here reported doing this as a manner of checking whether the data they 
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generated matches their simulation conditions), there seems to be a general lack of concern or 

awareness about how exactly many of these algorithms work and, more importantly, their limitations. 

Being the field traditionally associated with fighting against the ‘‘black box’’ approach to understanding 

statistics and data analysis, it is crucial that we start taking the necessary steps to not only fully 

understand the tools of our trade, but also to know which tools work better for which task. 
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Chapter 4: Solution multiplicity of the Fleishman method and its impact in simulation 

studies. Is your non-normality the same as mine? 

 

4.1 Background 

 

Within the social sciences, Monte Carlo simulations are routinely used to investigate the small sample 

properties of statistical tests and methods, as well as their potential robustness to the assumptions 

required to use them. Conducting these simulations implies the researcher has the ability to generate 

data with the conditions needed to reliably assess their impact on the methods being studied. To 

simulate correlated non-normal data, several algorithms have been proposed in the literature (e.g. 

Azzalini & Dalla Valle (1996); Headrick (2002); Foldnes & Olsson (2016)) but few have been used with 

such frequency as Fleishman (1978) 3rd-order polynomial method and its multivariate extension 

developed by Vale and Maurelli (1983). 

 The Fleishman (1978) method relies on a non-linear transformation of standard normal random 

variates where the first four-order moments of the distribution are parameterized as a 3rd degree 

polynomial. Assume the random variable Z is normally distributed,         . Define a new, non-

normal, variable Y  as: 

                  (4.1) 

where a, b, c and d are real-valued polynomial coefficients.  By taking powers of the expected value ofY ,  

          ,           , and algebraically expanding them, Fleishman (1978) was able to derive the 

following system of non-linear equations to solve for the polynomial coefficients needed to obtain the 

non-normal distribution: 

          (4.2) 

                       (4.3) 



58 
 

 
 
 

                            (4.4) 

                                                     (4.5) 

 where      are the respective values of skewness and kurtosis selected by the user. 

 Although this method allows the user to control the 3rd and 4th central moments for the case of 

univariate data, one further step needs to be taken in order to expand it to a truly multivariate setting, 

allowing for the control of the skewness, kurtosis, and correlation structure. Vale and Maurelli (1983) 

noticed that naively applying the Fleishman transformation to correlated data alters the correlation 

matrix of the variables. In a similar manner, if uncorrelated data are transformed to non-normality first 

and then a correlation structure is imposed, the values of skewness and kurtosis would end up being 

different than those originally intended. In order to tackle this issue, they begin by re-expressing    as 

the vector-product of the powers of the standard normally-distributed variate   and its respective 

polynomial coefficients: 

 

                [

 
 
  

  

]  

(4.6) 

Because the correlation of two standardized variables can be defined as their cross-product, 

they proceeded by conceiving two non-normal variables (       that have been Fleishman-transformed 

and obtain the expected value of their cross-product. It then becomes apparent that: 

      
             

            
      

 
       

    , (4.7) 

where   is the expectation of: 

 

   

[
 
 
 
 
    
      

       

        

    

       
       

        ]
 
 
 
 

. 

(4.8) 
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Finally, Vale and Maurelli (1983) used the relationships between the coefficients of the 

Fleishman transformation and the elements of   to arrive at the following expression: 

      
      

                              

              

        , (4.9) 

so that for a user-specified correlation      
 , one needs to solve (4.9) in order to obtain      

 first, the 

“intermediate correlation”. This intermediate correlation is then imposed on uncorrelated, standard-

normal variates before they are transformed to non-normality via the 3rd order polynomial method and 

that yields the full multivariate extension of this algorithm. 

 

4.1.1 Limitations of the 3rd-order polynomial transform 

 
In spite of its popularity and ease of implementation, there exist various issues with both the univariate 

and multivariate versions of this method of which researchers need to be aware. The earliest and most-

thoroughly studied limitation refers to the range of possible skewness/kurtosis combinations that the 

3rd-order polynomial algorithm can generate (Headrick, 2004; Tadikamalla, 1980). There exists a 

quadratic relationship between the 3rd and 4th central moments, defined by      
    , which places a 

theoretical bound on the possible values that the moments of any probability distribution can take. The 

wider the region within this parabola an algorithm can cover, the wider the variety of theoretical 

distributions it can approximate. The Fleishman transformation covers an approximate range of 

          
        with an upper bound to the kurtosis set at around 101 (Kraatz, 2011). This 

implies that it cannot accurately simulate distributions such as the uniform distribution (        

      or the standard log-normal distribution (           . Other methods such as Headrick (2002)’s 

5th-order polynomial approach or the use of copulas (Mair, Satorra & Bentler, 2012) can be used as  an 

alternative since they allow for a wider choice of more extreme values of higher-order moments. 

 A second limitation that pertains to the Vale-Maurelli (1983) multivariate extension, concerns 

the calculation of the intermediate correlation and whether or not there are restrictions on the type of 
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relationships among variables that can be generated through this method (Headrick & Kowalchuk, 2007; 

Li & Hammond, 1975). From (4.9) it is possible to see that, although      
 spans the complete [-1, +1] 

range, its interplay with the values of the polynomial coefficients restricts the choices the researchers 

can have for      
. For instance, assume that a researcher is interested in correlating two variables, one 

normally-distributed and another non-normally distributed. For the purposes of this example, the values 

of skewness and kurtosis of the chi-square distribution with one degree of freedom will be selected, 

   √       . The Fleishman transformation for the non-normally distributed variable   and the 

normally-distributed variable     are: 

                                                                    

                              

Since the mean, skewness and excess kurtosis of the standard normal distribution are defined to 

be 0, those polynomial coefficients of    are also 0. One can substitute the values of these coefficients in 

(4.9) to find: 

     
      

                                                              

       

                      

                

     
      

                           

By letting      
   and      

    one can obtain the bounds of      
 which are [-0.5543808, 

0.6748156]. Other choices of higher-order moments can result in a narrower range of correlations, 

placing restrictions on the population effect sizes that researchers can potentially study. In addition to 

this, it is important to emphasize that when moving to a higher number of dimensions, the elements of 

the intermediate correlation matrix have to be found in a pairwise fashion (Vale & Maurelli, 1983). Each 

intermediate correlation is calculated for its own set of polynomial coefficients and plugged into a 

correlation matrix. Because of this, there is no guarantee that the intermediate correlation matrix will 
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even be positive definite and very little research exists documenting the potential issues that may arise 

from this.  

When compared to other data-generation algorithms, the 3rd-order polynomial method also 

displays certain features that require caution from researchers. From an empirical standpoint, Astivia 

and Zumbo (2015) demonstrated through simulation studies that the Fleishman (1978) algorithm 

generates downward-biased estimates of skewness and kurtosis even at sample sizes of 500. Few but 

very extreme values of kurtosis tended to be generated as well, particularly when compared with the 

Headrick (2002) 5th-order polynomial approach that offers better control of the higher moments of the 

data. In their simulation study, these issues ended up being sufficiently influential to the point that 

recommendations from previously-published literature would have changed if a different data-

generating algorithm had been used. From a more formal, mathematical perspective, Foldnes and 

Grønneberg (2015) derived the probability distribution of the Vale-Maurelli (1983) transformation as an 

extension of the Gaussian copula and demonstrate that it shares many similarities with the multivariate 

normal distribution, particularly the absence of tail dependence. This is a potential issue for both 

previously-published studies and future simulations that rely on the 3rd-order polynomial transformation 

since it restricts the types of distributions from which researchers can actually generate data.     

4.1.2 Multiplicity of solutions to the Fleishman (1978) polynomials 

 
There exists one more property of the 3rd-order polynomial that has remained virtually unexplored in 

the literature with a few exceptions (e.g., Kraatz (2011), Luo (2011)).  This property alludes to the fact 

that the system of equations found in (4.2)-(4.5) consists of high-degree polynomials with potentially 

more than one distinct solution. 
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Appendix E provides the full mathematical derivation to show that four sets of real-valued 

solutions exist for the system of equations described in (4.2)-(4.5). Of these four sets of solutions, two 

sets share the same b and d coefficients, albeit with opposite signs, because both coefficients in the 

equations appear either squared or multiplying one another, so that they end up being positive by 

themselves or when multiplied together. The effect that this switch of signs has on the potential 

distributions is merely a reflection alongside the y-axis so the variables end up being either skewed to 

the left or skewed to the right by the same amount. Coefficients a and c, however, do change in 

absolute value for two of the sets  so that, in total, there are two out of four completely distinct sets of 

solutions for each combination of skewness and kurtosis handled by the Fleishman method.  To clarify, 

take the previous example of generating a variable that matches the skewness and kurtosis of the chi-

square distribution with one degree of freedom,    √       . When applying the 3rd-order 

polynomial transformation, the potential coefficients for (4.1) that achieve these high-order moments 

could be: 

 
a b c d 

Set 1: -0.5206759 0.614598122 0.5206759 0.020072438 

Set 2: -0.5206759 -0.614598122 0.5206759 -0.020072438 

Set 3: -0.7066366 0.036456329 0.7066366 0.000002020 

Set 4: -0.7066366 -0.036456329 0.7066366 -0.000002020 

 
Set 1 and Set 3 are the two completely distinct solutions and Set 2 and Set 4 are the y-axis 

reflected ones. If these polynomial coefficients were extended to the Vale-Maurelli (1983) multivariate 

setting, plugging them in equation (4.9) would also give different intermediate correlations, each with a 

potentially different set of bounds for      
.  

Headrick and Kowalchuk (2007) provide one of the very few recommendations within the 

published literature regarding which set of solutions should be preferred over others by making the 

distinction between monotonic and non-monotonic polynomial transformations. Although their 
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characterization of polynomial transformations is based on the ratio of the normal probability density 

function and the derivative of the polynomial transformation, a more intuitive way to distinguish them is 

to see whether or not the values of the standard normal variable Z  have a monotonic relationship with 

those of the non-normally transformed variable Y.  

The top panel of Figure 4.1 shows the 3rd-order polynomial transformation corresponding to a 

Figure 4.1 Monotonic (top) and non-monotonic (bottom) transformations from the standard normal variate (Z) to the non-
normal variate (Y)  
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population skewness of 2 and kurtosis of 7. The relationship between the original standard normal 

variable and the new non-normal variable is clearly monotonic and strictly increasing. Each and every 

value of Z is paired with only one value of Y  and the curve does not switch direction or changes its 

trend. Compare this transformation with the chi-square distribution with one degree of freedom 

example, using the values    √        on the bottom panel in Figure 4.1. This relationship is 

neither monotonic nor strictly increasing, since there exists a clear quadratic relationship between Z and 

Y.  Given that the chi-square distribution with one degree of freedom is defined as a squared standard 

normal variable, it should not be surprising that a similar type of relationship arises whenever the 

Fleishman transformation is used to mimic this distribution.  

Headrick and Kowalchuk (2007) were able to derive the analytic probability density function 

(PDF) and cumulative density function (CDF) of the general case of the power polynomial transformation 

(which encompasses the 3rd-order polynomial transformation) under the assumption of monotonic 

transformations. They refer to non-monotonic transformations as generating “invalid” PDFs and CDFs 

given that their analytic form is not known. Kraatz (2011) questions the use of this term since the 

distribution functions of non-monotonic transformations do not have anything intrinsically wrong or 

“invalid” about them, they simply cannot be described under the framework developed by Headrick and 

Kowalchuk (2007). As shown in the previous example, “invalid” transformations can encompass well-

known theoretical distributions (such as the chi-square) whose theoretical polynomial transform would 

be        , with all the other powers of     beyond two having coefficients of 0. 

Not all combinations of skewness / kurtosis allow for monotonic transformations and, in cases 

where they do, there is no guarantee that the multiple sets of solutions will only generate one type of 

them. Chen and Tung (2003) and Kraatz (2011) show that for the 3rd-order polynomial to be strictly 

monotonic, the inequality          among the polynomial coefficients must hold, further reducing 
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the range of available skewness / kurtosis combinations within the approximate Fleishman parabola 

          
       .  

There is not much known about how the issue of multiple solutions impacts simulation practice 

among quantitative researchers in the social sciences. No information exists concerning whether certain 

sets of solutions are more prevalent than others and even less is known about the type of data that each 

type of solution generates. Because every software package that implements the Fleishman (1978) or 

the Vale-Maurelli (1983) algorithms uses its own specific optimization routines, it is currently unknown 

whether or not the synthetic datasets generated in each simulation design are even comparable or what 

type of distributions they can generate. Because of this, the studies presented here attempt to meet 

two specific goals. The first one is concerned with the type of data itself that each type of solution 

generates to see whether or not different sets of polynomial coefficients for the same combinations of 

skewness and kurtosis generate similar univariate and multivariate structures. The second goal is aimed 

at understanding the impact that this multiplicity of coefficients has on previously-published results. 

Since there is no way of knowing which polynomial solutions were being  used in the literature, three 

published articles within the social sciences that have used this method will be chosen and sections of 

their simulation studies will be redone under both polynomial conditions to see whether or not their 

recommendations generalize beyond the type of solution selected. Using the guiding principle described 

in Headrick and Kowalchuk (2007), monotonic and non-monotonic transformations will be compared 

whenever available to see what kind of differences arise when one set of coefficients is used instead of 

the other one.  Recommendations will be presented at the end of this article to help inform researchers 

who plan on using this method so they can be aware of potential issues that may influence the results of 

their simulation designs.  
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4.2 Method 

 

The focus of these studies is solely on the Vale-Maurelli (1983) generalization of the Fleishman (1978) 

approach because the issue of solution multiplicity influences the multivariate extension just as much as 

it does the univariate case, with the added benefit that the potential impact it has on correlational 

structures can also be explored.  All simulations and analyses were carried out in the R programming 

language version 3.3.1 (R Core Team, 2015), using the lavaan (Rosseel, 2012) and psych (Revelle, 2016) 

packages when conducting latent variable models. Whenever needed, the number of replications per 

condition was set at 10,000. The code to estimate the Fleishman polynomial coefficients and the 

intermediate correlation matrices was modified from the simulateData() function present in lavaan in 

order to have better control over the type of solutions generated. The three articles selected to guide 

the simulation designs are shown in Table 4.1. 

Table 4.1 Sample sizes and skewness / kurtosis combinations for each article.   

Article Sample Size (Skewness, Kurtosis ) 

Curran, West and Finch (1996) 100, 200, 500, 1,000 (2,7) (3,21) 

Finch, West, and MacKinnon (1997) 150, 250, 500, 1,000 (2,7) (3,21) 

Skidmore and Thompson (2011) 10, 20, 40, 60, 100, 200 (1,1) (-1.5, 3.5) 

 

The first two articles were selected both because of the potential impact they have had on data analysis 

practice (the Curran, West and Finch (1996) article, for instance, has been cited more than 2000 times) 

and because of their use of popular simulation designs within Structural Equation Models (SEM): the 

correlated three factor model and the latent mediation model. The skewness and kurtosis combinations 

used by the authors are also common in the literature, with published articles implementing either the 

exact same values (e.g. Enders, 2001; Nevitt & Hancock, 2001; Rhemtulla, Brosseau-Liard & Savalei, 

2012; Seco, Gras & Garcia, 2007) or values close to them (e.g. Kelley & Pornprasertmanit, 2016). The 

third article was selected to highlight the use of the Vale-Maurelli (1983) method outside of SEM and 
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because it allows to explore the impact of the multiplicity of solutions issue on lower-dimensional (i.e. 

bivariate) settings. Only one full simulation study was reproduced for reasons of space. 

 

4.2.1 Study 1 

 
Study 1 aimed to investigate the properties of each set of solutions to the Fleishman system of 

polynomial equations. A grid search over the potential parameter space was conducted by setting the 

starting values of the parameters at 1 and moving up to 20 in incremental steps of .0005. Preliminary 

simulations had shown that, when the starting values were greater than 20, the optimization process 

settled in too many bad solutions and non-convergences, therefore, no values beyond 20 were 

explored.  Once the solutions were found, they were categorized as yielding either monotonic or non-

monotonic transformations and the bounds to the final correlation      
 were calculated. These bounds 

were compared to the bounds obtained by the generate-sort-correlate (GSC) method described in 

Demritas and Hedeker (2011) where they use the Fréchet-Hoeffding theorem to approximate the 

boundaries of correlation coefficients under non-normal conditions. Ideally, the closer the range of the 

final correlation      
 is to that specified by the GSC method, the better these intermediate correlations 

will be able to approximate theoretical distributions.  

Once the polynomial coefficients and intermediate correlations were generated, the full 

Fleishman (1978) transformation was done in a simulation study, each time using the two distinct sets of 

solutions (i.e., solutions defined by different sets of a and c coefficients) in order to document which one 

better approximated the population values of univariate skewness/kurtosis at the sample sizes reported 

in Curran, West and Finch (1996). The sample sizes of this article were the only ones used both because 

they are very similar to those used in Finch, West, and MacKinnon (1997) and because previous 

simulation work (Astivia and Zumbo, 2015) has shown that, at smaller sample sizes, the estimates of 
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higher order moments are simply too variable to be able to appreciate any clear differences due to the 

choice of polynomial solution.  Even though the 3rd-order polynomial method induces non-normality 

through the one-dimensional marginal distributions, the Vale-Maurelli (1983) method and the articles 

shown in Table 4.1 pertain to the study of multivariate structures. Because of this, Mardia’s (1970) 

multivariate measure of kurtosis was calculated, as well as the asymptotic variance-covariance matrix of 

the sample estimates,  . Bentler (1995) defines this matrix as 

                      , (4.10) 

where     and     are the covariances of observed variables             and                    

                  . Previous results (e.g. Astivia & Zumbo, 2015) had indicated that different types 

of data-generation mechanisms can result in different estimates of  , but this hypothesis was never 

explicitly tested. In order to measure the differences between matrices, a small simulation with 100 

replications at sample sizes of 10 million was conducted. In each replication, the  ̂ matrix was calculated 

and the average was taken among those 100 replications to yield a pseudo-population matrix  . During 

the simulation study comparing polynomial coefficient solutions, the Frobenius distance between the 

sample  ̂ and its pseudo-population analog    was calculated, where the Frobenius distance is defined 

as √     ̂      ̂       in order to understand the ways in which each polynomial solution influences 

the properties of this matrix. 

4.2.2 Study 2 

 
Study 2 focused on documenting the impact that the choice of polynomial solution had on the 

conclusions obtained by previously-published simulation studies. As there is no way to know which 

polynomial coefficients were used in the Table 4.1 articles (or any other articles for that matter), it 

would be of interest to see whether or not any of the recommendations suggested by the authors 

change depending on which coefficients are used to induce the non-normality of the data.  
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 Because Study 2’s purpose is mostly illustrative (and to economize the space in this chapter), 

only the first simulation of Curran, West and Finch (1996) was implemented. A path diagram of the 

population factor model can be found in Appendix G. It is the same one found in the appendix of Astivia 

& Zumbo (2015) or Figure 1 of Curran, West and Finch (1996). It consists of a 3-factor model with 3 

indicators per factor (for a total of 9 indicators). Factors are correlated at 0.3 in the population, with 

population loadings of 0.7 and error variances of 0.51. For its simulation conditions, Study 2 uses the 

same sample sizes and levels of moderate and severe skewness/kurtosis combinations as those found in 

Table 4.1 of the present article (i.e. n = 100, 200, 500 and 1000 and skewness/kurtosis of 2/7 and 3/21). 

The outcomes of the study are the observed    statistic of model fit, average bias, and empirical 

rejection rates when two different estimation methods, normal theory Maximum Likelihood (ML), and 

Asymptotic Distribution Free estimation (ADF) and one correction, Satorra-Bentler (SB), were 

implemented.  The only three differences between this present study and the original study design are 

the number of replications per condition (200 for the original study and 10,000 for the present study to 

ensure maximum stability), the software where the simulations were implemented (EQS for the original 

study and the lavaan package for the current study), and differences in polynomial solutions for data-

generation purposes. Because the EQS software was used originally, the mimic="EQS" setting was 

defined in lavaan to ensure maximum comparability between the two. 

4.3 Results 

 

4.3.1 Study 1 

 

Table 4.2 shows the two different sets of polynomial coefficients for the skewness/kurtosis 

combinations found in the Table 4.1 articles. As it was described in the previous section, only the two 

qualitatively distinct polynomial solutions (i.e., those with different a and c coefficients) will be analyzed.  
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Table 4.2 Two distinct sets of polynomial solutions for the skewness/kurtosis values. 

    Solution 1 of polynomial coefficients 

Skewness Kurtosis a1 b1 c1 d1 

2 7 0.260 -0.761 -0.260 -0.053 

3 21 0.252 -0.418 -0.252 -0.147 

1 1 0.344 1.216 -0.344 -0.136 

-1.5 3.5 0.232 -0.886 -0.232 -0.018 

    Solution 2 of polynomial coefficients 

Skewness Kurtosis a2 b2 c2 d2 

2 7 0.572 0.848 -0.572 -0.108 

3 21 0.637 0.681 -0.637 0.148 

1 1 0.190 1.017 -0.190 -0.018 

-1.5 3.5 0.471 -1.049 -0.471 0.122 

 

In the parameter space defined on the interval [1, 20], 38000 solutions to the system of 

polynomial equations were found for each combination of skewness and kurtosis values. The Solution 1 

set of coefficients was found 43.14% of the time for the skewness/kurtosis combination          

  , 30.75% for the combination             , 71.61% for the values             and 66.42% 

for                 .  Figure 4.2 below highlights the fact that each solution (identified solely by 

coefficient a) is not evenly distributed in the parameter space. For purposes of identifying changes in the 

frequency of solutions, the scale of the horizontal axis was subdivided in intervals [1,5], [5,10] and 

[10,15]. In the [15,20] subsection no discernible pattern was found so that subinterval was not plotted. 

When the values of the 3rd and 4th order moment are similar (as presented in the bottom two panels) 

each solution appears more or less with the same frequency, regardless of the starting value. When the 

skewness and kurtosis are very different, there are certain values of the parameter space that tended to 

favour certain solutions. The clearest case of this can be seen in the              combination 

where Solution 1 is considerably less frequent, particularly in the [5,10] subinterval. For parameter space 

values less than 2, Solution 1 rarely appears, but for the values between 4 and 5, Solution 2 shows a 

clear gap where only coefficients for Solution 1 are found. 
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            Figure 4.2 Distribution of coefficient a across different starting values on the interval [1,20]  

 

 
  A similar (albeit less pronounced) pattern is also found for the set             although, in this 

case, it seems that at the lower end of the parameter space, Solution 1 appears more frequently. 

Towards the higher values of the parameter space the solution values appear to be more or less equally 

likely. 
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Table 4.3 further characterizes the type of solution depending on whether or not it results on a 

monotonic or non-monotonic transformation from Z to Y.   

Table 4.3 Description of solutions by type of transformation (monotonic vs non-monotonic), range of possible 
final correlations, theoretical range of correlations as per Demritas and Hedeker (2011) and range coverage.  

    Type      
 range Theoretical Range  Coverage 

       
      

Solution 1 Monotonic (-0.244, 0.514) (-0.727,  1) 43.97% 

Solution 2 Non-Monotonic (-0.029, 1) (-0.727,  1) 59.59% 

       
        

Solution 1 Monotonic  (-0.745, 1) (-0.745, 1) 100% 

Solution 2 Monotonic  (-0.592, 1) (-0.745, 1) 91.23% 

       
       

Solution 1 Non-Monotonic (-0.525, 1) (-0.861, 1) 81.91% 

Solution 2 Non-Monotonic (-0.854, 1) (-0.861, 1) 99.58% 

          
          

Solution 1 Monotonic (-0.783, 1) (-0.784, 1) 99.93% 

Solution 2 Non-monotonic (-0.111, 1) (-0.784, 1) 62.30% 

 

For each combination of skewness and kurtosis, every possible type of transformation was 

found, with some combinations being either strictly monotonic or strictly non-monotonic. There does 

not seem to be a relationship between the type of transformation and the width of the correlation 

ranges, although instances of more extreme moments,              and            , were 

associated with the more restricted possible ranges.  The plausible range for the final correlation      
 

spanned more than 50% of the theoretical range most of the time (with one exception for the 

          combination) and it appears that the boundaries were most pronounced towards the 

negative end of the correlation ranges as none of them were able to reach the lower bound of -1. 

To understand the potential differences in sample estimates of skewness and kurtosis 

contingent on the choice of polynomial coefficients, Table 4.4 shows the results of a simulation study 

using the 3rd-order polynomial transform where the only difference in the data-generation process is the 

type of coefficients employed. Although data under both conditions resulted in downward-biased 

estimates of skewness and kurtosis, it appears that there was always a solution in which both the bias 

and the variability were lower when compared to the other one. In the cases where the 
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skewness/kurtosis combination resulted in both monotonic and non-monotonic transformations,  non-

monotonic transformations (Solution 2 for the              and                  conditions) 

were always considerably more downward biased and with much higher standard deviations when 

compared with their monotonic counterparts. It is of particular interest to notice that for the 

skewness/kurtosis combination of 3/21 (where both coefficients result in a monotonic transformation) 

the sample skewness tends to be overestimated, on average, as opposed to underestimated. For the 

cases where skewness and kurtosis were smaller,             and                 , the  

Table 4.4 Mean and standard deviation (SD) of sample estimates of skewness and kurtosis at different sample sizes (n)  

    n=100 n=200 n=500 n=1000 

    Mean  SD Mean  SD Mean  SD Mean  SD 

       
         Solution1 1.671 0.618 1.839 0.557 1.929 0.424 1.953 0.330 

  
4.126 4.278 5.221 4.855 6.103 4.009 6.541 3.674 

 
Solution 2 1.710 0.603 1.789 0.604 1.883 0.502 1.934 0.481 

 
  3.204 4.878 4.202 6.291 5.141 6.225 5.909 7.241 

       
           Solution 1 2.138 1.224 2.457 1.219 2.687 1.029 2.829 0.849 

 
 

9.268 8.065 12.585 11.766 15.749 14.250 17.789 12.607 

 
Solution 2 2.950 0.933 3.223 0.944 3.471 0.857 3.584 0.753 

 
  11.152 8.970 14.182 11.350 17.623 13.484 19.420 14.262 

       
           Solution 1 0.901 0.337 0.942 0.352 0.962 0.362 0.983 0.261 

  
0.072 2.325 0.346 3.023 0.504 4.579 0.716 3.285 

 
Solution 2 0.791 0.278 0.964 0.113 0.982 0.140 0.989 0.096 

 
  0.322 2.182 0.752 2.066 0.916 0.649 0.977 0.457 

          
        Solution 1 -1.337 0.453 -1.408 0.377 -1.457 0.271 -1.493 0.199 

   
 

2.307 2.703 2.785 2.948 3.158 2.069 3.325 1.725 

 
Solution 2 -1.321 0.483 -1.403 0.552 -1.430 0.480 -1.451 0.338 

 
  1.634 3.794 2.270 5.851 2.545 4.882 2.847 4.421 

 

average sample estimates converged much faster to their population-level values than in the cases 

where these values were larger.  
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Figure 4.3 shows the empirical density plots for the most extreme combinations of skewness 

and kurtosis values at the different sample sizes. In each panel it is possible to observe that the type of 

solution does exert a certain influence on the overall behaviour of the sample estimates of these higher- 

 

Figure 4.3 Empirical density plot of for population values of              and             at sample sizes 100, 200, 
500 and 100. 

 

 



75 
 

 
 
 

 

 
   
order moments. In each case, the moments are underestimated  (with the exception of      in 

Solution 2) because the peak of each distribution lies to the left of the vertical line denoting the 

population value, evidencing that the regions of highest density are concentrated towards the lower end 

of the distribution. At the higher end, however, the tails of the distributions seem to behave differently 

depending on which solution one focuses. For the case of     , the monotonic Solution 1 seems to 

smooth itself much more evenly than the non-monotonic Solution 2, where there is some variability of 

the estimates as the curve slopes down. Solution 1, however, shows some pockets of density very far 

out in the x-axis (with two recognizable sections beyond the mark of 75). Solution 2 does not show said 
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pockets, albeit it does seem to have a tendency to generate higher values of kurtosis up to around the 

mark of 75 on the x-axis. For       the curves show substantial overlap in Solution 2, regardless of 

sample size. Solution 1, on the other hand, shows a distinct high peak at n=100, far from 21, with the 

subsequent curves progressively approaching the population value. In the case of      the pattern is 

not as clear, although it appears that Solution 1 curves are closer to the population parameter. The 

curves for skewness,     , are mostly bell-shaped  with the n=1000 for Solution 1 centered in its 

original population value. The curves for      do show a certain longer tail with irregularities as they 

spread out.   

In order to gain better insight into the different nature of the multivariate distributions that 

each type of solution can generate, Table 4.5 documents the mean Mardia’s kurtosis from the 

simulation study and its z-score transformation. Each solution generated data with different types of 

multivariate structures, with certain solutions (mostly the non-monotonic Solution 2) generating 

multivariate kurtosis estimates that are around 10 points lower in the standard normal metric than their 

counterpart. The value of Mardia’s kurtosis is only asymptotically unbiased, so it is not a surprise to see 

that it increases as sample size increases as well, pointing towards the fact that for these values of 

skewness/kurtosis, the corresponding population value of multivariate kurtosis is probably much higher. 

It is also possible to see that as sample size grows larger, the differences between solutions become 

smaller. For the most extreme combination of values             , however, this difference 

reaches its highest at the largest sample size but for the lower combinations                  

and            the difference at a sample size of 1000 is barely over 5 points in the standard 

normal metric. Figure 4.4 shows the average Frobenius distance for each type of polynomial solution at 

the different sample sizes used in the simulation study. Overall, it is possible to see clear distinctions in 

the way the  matrix is calculated for each case. It is difficult to discern a pattern depending on the type  



77 
 

 
 
 

Table 4.5. Mean Mardia’s kurtosis (Mku) and its corresponding average z-score at sample sizes 100, 200, 500 and 1000.   

    n = 100 n = 200 n = 500 n = 1000 

    Mku z Mku z Mku z Mku z 

          
         

Solution 1 144.62 16.21 163.38 32.35 180.15 64.48 188.09 100.11 

Solution 2 119.85 7.4 138.01 19.6 166.42 53.56 181.66 92.88 

         
          

Solution 1 175.79 27.28 221.08 61.34 279.43 143.21 315.28 243.02 

Solution 2 203.79 37.24 247.79 74.77 292.39 153.66 332.44 262.31 

          
           

Solution 1 106.05 2.5 111.58 6.32 117.15 14.42 120.67 24.35 

Solution 2 107.11 2.88 111.51 6.29 114.41 12.25 115.28 18.3 

          
        

Solution 1 132.49 16.83 135.49 18.33 149.88 40.42 151.22 58.66 

Solution 2 114.91 5.65 121.72 11.41 142.75 34.76 146.18 53.01 

 

of solution, though. For example, for the combination             , Solution 2 (non-monotonic) 

showed a distinct tendency to generate more extreme values, resulting in higher variability of the 

estimates. However, in the case of             , Solution 1 (monotonic) was the one showing much 

longer tails and extreme values, even at the largest sample of 1000. At larger sample sizes (n=500 and 

n=1000), there is a larger density closer to the median of the estimates (marked with a dot) and shorter 

tails, although this also differed by solution type. Even though the median values across replications in 

each sample size are somewhat comparable, a clear exception is the most extreme combination of 

skewness/kurtosis values,               , which shows much fatter tails for Solution 2, implying 

higher values and higher variability. Solution 2 in this case also shows a much higher median Frobenius 

distance (around a value of 500) when compared to Solution 1 (closer to 100), suggesting that   matrix 

for both types of solutions may be approximated differently. Overall, larger values of       were 

associated with much higher sample estimates that took longer to converge to their population value 

than when        are small. At n=1000, for instance, the norm for cases              and 

                 , already show plots with high-density regions closer to the centre of the 

distribution as opposed to the extremes. This was not constant across solution types though, as Solution 



78 
 

 
 
 

1 for the               combination and Solution 2 for the                   combination still 

show much longer tails.  

Figure 4.4 Violin plots for the mean Frobenius norm at sample sizes 100, 200, 500 and 1000. Median value marked at the dot. 

 

 
 

4.3.2 Study 2 

 
Table 4.6 reproduces sections of Table 1 on page 22 of the Curran et al. (1996) study. It contrasts the 

average chi-square value and empirical rejection rates of the original authors to those obtained by 
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Solution 1 and Solution 2 of the 3rd-order polynomials. In both instances of skewness/kurtosis 

combinations, the mean chi-square values across conditions are relatively comparable with the one 

obtained by the original authors, although Solution 2, in both cases, resulted in  

Table 4.6 Mean chi-square values and empirical rejection rates from the Curran, West and Finch (1996) (CWF 1996) article 
obtained for both polynomial solutions at sample sizes (N) for normal theory maximum likelihood (ML), asymptotic distribution 
free (ADF) and Satorra-Bentler correction (SB).   

          

n Method Expected 
CWF 

(1996) Solution 1 Solution 2 
Nominal 
rejection 

CWF 
(1996) Solution 1 Solution 2 

 
ML 24 29.35 29.86 29.238 5% 20% 21.20% 17.80% 

100 SB 24 26.06 26.54 26.518 5% 8.50% 8.70% 7.10% 

 
ADF 24 38.04 31.007 30.531 5% 49% 47.80% 23.10% 

 
ML 24 30.15 29.213 29.29 5% 25% 20.30% 19.70% 

200 SB 24 25.44 24.913 25.254 5% 8% 7.30% 6.01% 

 
ADF 24 29.27 27.279 27.35 5% 19% 14.30% 9.40% 

 
ML 24 31.26 29.939 29.75 5% 24% 22.30% 22.30% 

500 SB 24 25.44 24.453 24.552 5% 6.90% 6.50% 6.30% 

 
ADF 24 26.42 25.716 25.515 5% 6.70% 6.30% 7.72% 

 
ML 24 30.78 30.133 30.235 5% 24% 21.40% 23.30% 

1000 SB 24 24.77 24.406 24.461 5% 7.50% 6.40% 6.00% 

 
ADF 24 25.36 25.08 25.031 5% 7.50% 6.20% 5.80% 

                      

n Method Expected 
CWF 

(1996) Solution 1 Solution 2 
Nominal 
rejection 

CWF 
(1996) Solution 1 Solution 2 

 
ML 24 33.54 31.46 27.747 5% 30.00% 34.10% 20.30% 

100 SB 24 27.26 24.41 25.644 5% 13.00% 10.40% 6.79% 

 
ADF 24 44.82 45.56 37.761 5% 68.00% 61.24% 52.82% 

 
ML 24 34.4 33.98 29.949 5% 36.00% 35.60% 28.30% 

200 SB 24 25.8 25.12 20.463 5% 6.50% 7.00% 6.46% 

 
ADF 24 31.29 30.66 25.284 5% 25.00% 22.10% 15.50% 

 
ML 24 35.55 32.95 31.414 5% 40.00% 42.50% 32.40% 

500 SB 24 24.85 24.78 24.799 5% 8.50% 7.80% 6.70% 

 
ADF 24 26.83 27.01 25.182 5% 8.50% 7.20% 5.40% 

 
ML 24 37.4 37.6 33.457 5% 48.00% 43.20% 36.00% 

1000 SB 24 25.01 24.96 24.525 5% 7.00% 5.80% 5.20% 

 
ADF 24 25.47 25.11 24.929 5% 7.20% 6.20% 5.10% 

 
somewhat lower values when compared to those shown in Solution 1. The differences between 

solutions were more pronounced, though, when looking at the empirical rejection rates. In both 
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instances, Solution 1 was much closer to the original results than Solution 2, with Solution 2 being lower 

(sometimes by around 10 percent points) uniformly across the different types of chi-square estimates. 

For the              condition, the overall pattern of results is similar to the one reported by 

Curran et al. (1996) where the Satorra-Bentler correction outperforms both ML and ADF estimation 

(with the exception of the largest sample size). For the               condition, however, this 

pattern is not consistently present, with the ADF estimator approaching its nominal rejection rate of 5% 

much faster than the Satorra-Bentler correction. In both cases, it appears that estimating the model 

using data generated under Solution 2 resulted in a faster convergence to the chi-square distribution 

than under Solution 1. Overall, however, the differential effect that the type of solution had on the 

rejection rates disappears as sample size increases, as it is possible to see both results looking 

progressively similar at larger and larger samples.  

 

4.3 Discussion 

 
Being aware of the properties of data-generation algorithms is central to the design and implementation 

of Monte Carlo simulation studies. The issue of multiple solutions to the Fleishman (1978) polynomial 

equations is an example of these properties, but is also one that has received little attention in the 

literature in spite of the popularity of the method. With the exception of the work of Kraatz (2011) and 

Luo (2011), not much research exists regarding the potential impact that these solutions may have had 

in previously-published results, even though this algorithm continues to be routinely used. For instance, 

Google Scholar reports 18 and 31 citations of the Vale-Maurelli (1983) and Fleishman (1978) articles 

respectively in 2016, with more than half of those citations coming from articles using both methods in 

robustness-type Monte Carlo simulations.  

 Several important conclusions from the solution multiplicity issue can be highlighted in order to 

better inform the design and practice of simulation research. The first one is that, for each 
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skewness/kurtosis combination studied, there does not seem to be a clear pattern of which set of 

polynomial roots is more frequent than the other when solving the system of equations. Although it 

appears that, for lower values of      , each solution is more or less equally likely (i.e., about 50% of the 

time Solution 1 was obtained and the other half of the time Solution 2 was obtained), for higher values 

one of the solutions is more frequent than the other. It would be beneficial for researchers to be aware 

that, if they are using low or moderate values of population skewness and kurtosis, there is some 

uncertainty regarding the type of solution on which their optimizer might settle. A second feature to 

point out is that there exists a differential effect that the type of solution had on the quality of the data 

that were generated. When both monotonic and non-monotonic transformations were available, 

solutions that implied a monotonic transformation resulted in overall less biased and less variable 

estimates of skewness and kurtosis. This apparent “good behaviour” of monotonic solutions was found 

previously in Kraatz (2011) and, although not referenced explicitly, the framework developed by 

Headrick and Kowalchuk (2007) labels these transformations as having a “valid” probability density 

function. Although it seems like polynomial solutions that imply monotonic transformations should be 

preferred, it is important to remind the reader that, even when no monotonic solution existed (or when 

both solutions were monotonic), one solution still showed less bias and variability, so recommending 

the choice of monotonic solutions may only work in the condition that both types are available.  

 Regarding the properties of the multivariate transformation (Vale & Maurelli, 1983), several 

new insights were found in this article that, to the authors’ knowledge, are not yet present in the 

published literature. The first one is the fact that, even though quantitative researchers may indeed be 

limited in their ultimate choice of final correlation      
, the theoretical range that      

 can actually span 

is sometimes well approximated by the interplay of      
 and the polynomial coefficients. Demirtas and 

Hedeker (2011) lament the fact that, even though the Fréchet–Hoeffding bounds on the correlation 
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have been known for more than 50 years, their use has not permeated the daily practice of applied 

statistics. Perhaps this situation has prompted a criticism of the available correlation range of the Vale-

Maurelli method (and other polynomial-based transformations) that is not necessarily warranted. The 

Demirtas-Hedeker process is relatively straightforward to implement so it would be of benefit for 

applied researchers to check what range of correlations they can realistically choose from when 

studying non-normal distributions before selecting a final correlation      
. It also appears that, in most 

cases, the positive range of the Pearson correlation [0,+1] is well-approximated by the combinations of 

skewness/kurtosis being selected so this may not pose a great limitation as long as the skewness and 

kurtosis values point in the same direction (i.e., variables being positively skewed or negatively skewed 

simultaneously or both platykurtic or leptokurtic). These bounds would probably be much narrower if 

variables have their higher-order moments going in opposite directions.  

 Another new finding that was hinted by Astivia and Zumbo (2015) is that, even though the 

different solutions may asymptotically generate the same univariate skewness and kurtosis values, they 

do not necessarily generate the same multivariate structure at all sample sizes. Table 4.5 and Figure 4.4 

point towards this fact. Of peculiar interest is the               case where the median value of the 

Fobrenius distance metric is substantially different between Solution 1 (about 100) and Solution 2 

(about 500). Two potential explanations can be offered regarding this result. The first one is that 

Solution 2 is over-approximating the distance between  and  ̂ and much larger samples are needed for 

it to converge. Although this is a plausible explanation, it would not elucidate why the median points at 

different sample sizes are clustered together (and far away from those of Solution 1). A second 

explanation, however, could be that the actual population values of   are different for Solution 1 and 

Solution 2, which could also explain the disparate empirical rejection rates found in Study 2. 

Unfortunately, the values of   had to be approximated via simulation because, to the authors’ 
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knowledge, there does not exist a data-generation algorithm yet that allows for full control of this 

matrix. 

 Although Study 2 was merely intended as an example, it does pose the question of which other 

types of studies exist where the recommendations and conclusions partly depend on value of the 

polynomial coefficients chosen to generate the data. An easy recommendation that would help clarify 

this issue (and which was originally advocated by Steiger (2014)) is to simply request that researchers 

report which polynomial coefficients were used in their simulation studies. Non-normality is, by all 

means, an elusive concept because there are many ways in which a distribution can be non-normal. 

Consider the 4th-order moments present in the calculation of the   matrix,                     

                  . The Vale-Maurelli (1983) procedure only allows the researcher control the case 

where         per variable (i.e. elements found in the diagonal of  ). All the other higher-order 

moments are free to vary and there is no way to know which type of non-normality will arise under 

which conditions.  

 

4.5 Conclusions and recommendations 

 
There are several limitations in this article that will hopefully span future research on the properties of 

the 3rd-order polynomial method and other data-generation algorithms. Aside from the fact that only a 

limited set of studies was used in these simulations, it is important to point out that cases where the 

skewness and kurtosis of the univariate distributions have different directions (e.g., a positively-skewed 

variable correlated with a negatively-skewed variable) were not studied. These are likely to change the 

Fréchet–Hoeffding bounds and will perhaps result in a much narrower range of values for      
. Another 

condition that warrants further study (particularly considering the results of Kraatz (2011)) is to explore 

the type of distributions that may arise when monotonic and non-monotonic solutions are used 
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concurrently to generate data. All throughout these simulations, all variables were transformed 

uniformly using coefficients from either Solution 1 or Solution 2. It would be of interest to 

methodologists and psychometricians to see what happens when coefficients from Solution 1 and 

Solution 2 are used to generate data within the same simulation. One aspect of solution multiplicity that 

was not explored here (and, to the authors’ knowledge has never been mentioned in the published 

literature) is the solution multiplicity issue of the intermediate correlation equation itself. Equation (4.9) 

is a 3rd-degree polynomial and, as such, it has 3 sets of solutions. Appendix F shows the mathematical 

derivation of when these solutions are real or imaginary. It would be of interest to know the effect that 

the intermediate correlation has for cases when all 3 solutions are real-valued numbers and all 3 

solutions fall within the theoretical limits of the correlation coefficient.  

 There still is much to know and discover about these data-generation algorithms and the fact 

that they are being used in the published literature without a thorough understanding of their 

properties raises the question of whether or not Monte Carlo simulations are being operated from a 

“black box” perspective among quantitative social scientists, where little is known about what happens 

inside the “black box” and even less is known about how the “black box” influences the results and 

recommendations suggested in the literature. By pointing out the fact that even the most popular data-

generation method still needs further exploration, the authors of this article hope other methodologists 

and statisticians will bring their efforts forward in order to help inform and design better simulation 

studies that will result in more robust and reliable recommendations to applied data analysts. 
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Chapter 5: Conclusion 

 
At the beginning of this dissertation, the claim was made that, within the social sciences, the process of 

Monte Carlo simulation can sometimes operate as if it were a “black box”, where the user has limited 

understanding of the actual process of the simulation itself and is mostly concerned with the hypotheses 

and statistical methods that she or he wishes to test. Throughout this document, three instances 

(among many that exist) were presented where the disconnection between the theory and practice of 

simulation either masked the proper Monte Carlo design or influenced potential recommendations 

related to data practice. In each instance, it was demonstrated that the ambiguity in the choice of 

population model and the unexpected properties of data-generating algorithms had a direct impact on 

the type and quality of synthetic data being used, on the final conclusions from the study and, 

potentially, on the decisions that applied researchers may make when evaluating a specific statistical 

method over another.  Much like in real-life experiments, computer simulations are susceptible to 

design inconsistencies that may end up pushing the results of Monte Carlo studies in unexpected, 

unwanted directions. 

 With this issue in mind, the overall goal of this dissertation was successfully addressed both by 

highlighting how a “black box” understanding of simulation studies opens the possibility for researchers 

to accept unwarranted assumptions and by emphasizing the importance of becoming acquainted with 

the theory that underlies Monte Carlo simulations. The following sections summarize some of the novel 

findings contained within this dissertation and the implications that they have both on simulation 

studies and on overall statistical theory in general. They also point towards important limitations not 

only in the chapters presented here but also in the broader conceptualization of simulation studies and 

potential avenues of future research that could help inform practice. 
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5.1 Novel contributions 

 
The novel contributions of this dissertation will be divided in two broad categories. The first category is a 

focuses on computer algorithms and technical details for Monte Carlo simulations. The second category 

deals with the advances in statistical theory and analytic results.  

 For the first set of novel contributions, it is important to note that comparing and evaluating 

computer algorithms and studying their impact on simulation study results are both relevant and 

relatively unexplored avenues of research. It is somewhat surprising to see how little is known about the 

data-generating mechanisms used regularly by social scientists, in spite of their popularity of use. With 

the exception of the work of Kraatz (2011) and Luo (2011), an extensive search both in Google Scholar 

and the ISI Web of Knowledge yielded no published articles tackling this issue in the social science 

literature. Even the work of these two authors in the area of data-generating methods is not the main 

focus of their research. It is merely a subsection within their doctoral dissertations dealing only with 

low-dimensional distributions. The understanding of the empirical properties of the Fleishman (1978) 

and Vale-Maurelli (1983) methods, such as their tendency to generate downward-biased estimates of 

skewness and kurtosis or their occasional propensity for outliers in the case of the 4th order moment is, 

therefore, a significant contribution for applied researchers who may consider using these algorithms 

for their own studies. Investigating the Headrick (2002) method also provided novel insights into the 

role that the 5th and 6th-order moments of the data have in obtaining more stable, consistent values of 

skewness and kurtosis, particularly at smaller samples. This information could potentially be of 

relevance to researchers who are looking to investigate the influence that non-normality and small 

sample sizes have concurrently on statistical methods. 

To the author’s knowledge, chapter 3 of this dissertation is the first psychometric study 

comparing the impact that different types of algorithms can have when conducting a simulation 
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focusing on the properties of a statistical method, such as the chi-square test of fit under non-normality 

in Structural Equation Modelling (SEM). This is one of the driving principles of this dissertation and poses 

the crucial question of what kind of distributions  have the majority of social scientists been 

investigating for more than three decades, since the Fleishman (1978) article was first published. It has 

only been recently discovered, thanks to the work of Foldnes and Grønneberg (2015), that the 3rd-order 

polynomial transformation has more in common with the multivariate normal distribution than with the 

myriad of non-normal distributions that exist, so re-visiting published simulation work with other types 

of algorithms provides both new and necessary insights into the workings of the statistical methods 

used by researchers.  

Of all of the novel findings related to the use of these data-generating methods, one of the most 

significant and, to a certain extent, worrisome is the multiplicity of solutions of the Fleishman (1978) 

method. Although the work of Kraatz (2011) foreshadows some of its impact, chapter 4 in this 

dissertation is the first account, to the authors’ knowledge, of a systematic study aimed at investigating 

the empirical and analytical properties of this algorithm, focusing both on the univariate and 

multivariate characteristics of the data it can generate, and the potential impact it can have on 

simulation studies. Because of its popularity in the social sciences, any findings related to the 3rd-order 

polynomial method have the potential to alter a large number of the recommendations present in the 

published articles that have used it. Of particular interest (and a new finding in itself) is the issue that 

the multivariate structures that each type of solution can generate are not the same. This brings into 

question the ways in which social science researchers describe multivariate non-normality and the need 

to become better acquainted with this concept. As a curious final note on chapter 4, it is also important 

to point out that, to the authors’ knowledge, no article has alluded to the fact that the intermediate 

correlation equation is also prone to multiple solutions and, up until this dissertation, there had been no 

previous investigation into its properties (shown in Appendix F). 
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Regarding the use of the Conover and Iman (1981) algorithm and the simulation of the rank 

correlation, one needs to pay attention to the fact that, within Monte Carlo studies in the social 

sciences, no previous study has explicitly employed a method where the generated data were rank-

correlated. Although, in some cases, the results could generalize across correlation types (see Caruso & 

Cliff, 1997), the majority of published articles only used data where the Pearson correlation served as a 

population parameter. Acknowledging this mismatch between simulation design and research 

hypothesis is one of the most important contributions of this dissertation because it goes at the core of 

what any computer study attempts to do. Ensuring the concordance between the statistical model in 

the population and the algorithm used to generate the data from this model should be a top priority for 

any researcher and, if this concordance is not present, it is imperative to be cognizant of this fact and 

address the limitations that this may entail. For this chapter, the rank correlation presented itself as an 

amenable case study that, in its simplicity, helped remind quantitative social scientists that, even in 

straightforward cases, there can still be a disconnection between the population parameter implied by 

the researcher and what he or she actually simulates.  

Regarding the advancement of formal statistical theory, the second main category of novel 

contributions of this work, chapter 2 presents findings that translate knowledge from the statistical and 

mathematical literature to a wider audience of methodologists and social scientists. At the crux of this 

paper is the population definition of the Spearman rank correlation in terms of copula distributions as 

shown in Schmid and Schmidt (2007), Nelsen (2010), and Joe (2014). The literature review for this 

chapter, however, showed that none of these authors (or subsequent ones that use this definition) 

shows that the sample rank correlation converges to Equation (2.5) as the sample size grows arbitrarily 

large. Appendix B made this connection explicit by showing that an algebraic re-arrangement of the 

sample Spearman  ̂ does converge in the limit to its copula population definition. Once this equality was 

obtained, Appendix C helped showcase the generality of the copula framework by re-deriving Pearson 
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(1914)’s identity of the graded correlation under the assumption of a bivariate Gaussian copula which, 

although not a new finding in itself, does help popularize this fact among social scientists that may be 

unaware of it. 

Although chapter 3 is mostly focused on the actual computational results of comparing two 

data-generating algorithms, chapter 4 does provide some novel, theoretical insights into the nature of 

the 3rd-order polynomial transformation that had not been published before. First, although Kraatz 

(2011) mentions that there are four real solutions to the Fleishman system of polynomial equations; she 

presents no proof of this fact. Using Bézout’s theorem, it was demonstrated that there are, at most, 24 

potential solutions, four of which are real and the rest are either complex or with different multiplicities. 

In the process of deriving this, it was also made explicit why the symmetry in coefficients             

makes them members of different solution sets by re-formulating their expressions in terms of quadratic 

equations. To the best of the author’s knowledge, up to this dissertation, no published article has 

acknowledged the multiplicity of solutions to the intermediate correlation equation or described the 

nature of its solutions, particularly the conditions for all three solutions to be real-valued. This series of 

theoretical insights help highlight the fact that not much is known about the properties of the 3rd-order 

power transformation and that, in spite of its popularity, there are many characteristics of this method 

that are still very much unknown.  

5.2 Limitations and future directions 

 
There exist several limitations within the studies presented in this dissertation that open the door for 

future developments and avenues of research. Since chapter 2’s main purpose was to exemplify the 

mismatch between population models and simulation methods, its simulation study is small and limited 

in terms of the practical conclusions that can be derived from it. Having a full Monte Carlo study where 

the unidimensional marginals are modified systematically would provide novel insights into the 
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properties of the Iman-Conover algorithm as well as the copula-based definition of Spearman’s  . 

Another limitation in this study was that only one data-generating mechanism was used2.  There are 

other computer algorithms capable of generating rank-correlated data, such as the one presented in 

Koran, Headrick, and Kuo (2015). This is an important research direction considering the theme of this 

dissertation because the literature review for this chapter yielded no empirical evaluations of the 

Conover and Iman (1981) method, in spite of its popularity of use across the natural and engineering 

sciences. The analytic and simulation work of this chapter is solely focused on the bivariate case, only 

hinting to multivariate extensions (i.e., the Spearman rank correlation matrix) towards its conclusion. 

Expanding the results from lower to higher-dimensional distributions could also be a potentially new 

direction that was not explored here. 

 Chapters 3 and 4 were mostly concerned with exploring polynomial-based transformation 

methods due to their popularity in the social sciences. Other methods to obtain correlated, non-normal 

data exist within the published literature; however, but none of them were explored in this dissertation. 

Gaining further understanding of these methods would help researchers determine which algorithms 

work better for which types of simulation designs. For instance, the study used to explore the 

differential effect of the data-generation process on published recommendations comes from the field 

of SEM. It would be of interest to see whether or not different ways of generating data also have an 

effect in different types of studies. In this specific case, it is a well-known fact that the kurtosis of the 

sample has a detrimental effect on the chi-square test statistic of model fit (Yuan, Bentler & Zhang, 

2005). One of the findings of this dissertation was that the 3rd-order polynomial transform generates 

data that are prone to downward-biased kurtosis values, with the occasional exceedingly large one. 

Nevertheless, this method does generate relatively well-behaved skewness values at larger sample sizes. 

A potential new direction could be to document the effect of using other types of data-generating 

                                                           
2
 I would like to thank an anonymous reviewer of the published version of this chapter for this suggestion.  
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mechanisms on test statistics that may be influenced by the 3rd moment of the data, particularly 

location-based tests such as the t-test (Zimmerman & Zumbo, 1992). The use of the Headrick (2002) 

method also opens up questions that were unexplored in this dissertation regarding the role that the 

the 5th and 6th order moments play in describing data, sometimes referred to as “super” or “hyper” 

skewness and “super” or “hyper” kurtosis respectively (Yee, 1990). Any insight into how these moments 

influence datasets collected by social scientists would be a novel contribution given that there rarely is 

any mention of them. 

 Although several novel insights into the mathematical properties of the Fleishman system of 

equations were found in this dissertation, several questions still remain unresolved. To begin with, even 

though Fleishman (1978), Headrick (2004), Kraatz (2011), and Luo (2011) agree that the 3rd-order 

polynomial transform does not span the full      
    parabola from which the researcher can select 

skewness and kurtosis values, they all disagree on the bounds that these values can take. With the 

exception of Headrick (2004), the other three authors did not elaborate on the methodology they 

employed to find their respective upper and lower bounds so more research is needed in this area to 

see where the Fleishman (1978) method shows a good performance and where it becomes unstable. 

Chapter 4 also describes the distribution of solutions to the system of equations within a grid search of 

several different starting points, noting that certain solutions appear more frequently for certain 

intervals but offers no insights as for why this happens. This suggests that the solution space of the 

system is multimodal in certain directions so a more thorough description of it could help inform which 

starting values should be preferred if the researcher is looking to work with exclusively monotonic or 

non-monotonic solutions.  

 The multiplicity of solutions to the system of polynomial equations is not only an issue of the 

Fleishman (1978) method. The intermediate correlation equation derived by Vale and Maurelli (1983) 

also has multiple roots (three, to be more precise). This dissertation presents a proof of this fact and 
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describes the solutions analytically, but it does not elaborate on the potential impact that different 

values of the intermediate correlation may have in simulation studies. Just as it was shown that 

monotonic and non-monotonic solutions to the 3rd order polynomial may have a differential effect on 

the data-generation process, it could be the case that different types of intermediate correlations can 

potentially describe different types of covariance structures. This issue also extends to the Headrick 

(2002) method itself, where there are even more solutions both for its intermediate correlation 

equation and for the polynomial coefficients it uses.  

5.3 Concluding remarks 

 
Although the primary goal of this dissertation was to describe some of the assumptions that social 

science researchers make when conducting simulation studies and documenting the impact that they 

may have, there is also a different, much more subtle dimension to this work that aims to open a 

dialogue regarding the epistemology of simulation studies and the type of knowledge they can generate.  

The types of conclusions that can be obtained from Monte Carlo investigations are defined from the 

early planning stages of the simulation and are continuously shaped by the researcher as the design of 

the study develops. What kind of conditions should be investigated? What types of models should be 

generated? How should results be reported? All these, and many more, are important questions that 

influence, in the short term, the kind of recommendations that can be offered to applied researchers 

and, in the long term, the overall thinking and practice of data analysis.  

Take, for instance, the role that skewness and kurtosis have on characterizing the data. Since 

they are based on the normal distribution, these indices try to provide a descriptive measure of what 

data looks like if it were to move progressively from a classic “bell-shaped” curve to something that is 

not “bell-shaped”. But even the idea not being “bell-shaped” posits the question of the sheer number of 

ways in which datasets can be distributed and, consequently, the usefulness of skewness and kurtosis in 
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describing data. A probability distribution with a mean of 0, variance of 1, skewness of 0, and a kurtosis 

of 3 is not immediately a normal distribution. To be more precise, Romano and Siegel (1986) have 

proven that, for any finite collection of moments of the normal distribution, it is possible to construct a 

discrete, non-normal distribution that matches them. Only when having the full set of infinite moments 

will some distributions be fully-defined, although this statement is not even true in general since there 

exist distributions (e.g., log-normal) that are not defined by their moments (Durrett, 2010). Other areas 

of research have taken note of this fact and are changing their conceptualization of how moments are to 

be interpreted with respect to the data (e.g., Westfall, 2014) or even considering the case of using more 

moments to provide a more accurate description of it (e.g., Yee, 1990). 

Would questioning each and every type of simulation study bring forth a better understanding 

of statistical methods and more reliable simulation conclusions? Perhaps, but it would not be feasible 

given the time constraints to which most researchers are subject. What can be done, however, is to 

think critically about simulation studies when learning from them and to be fully aware of the 

methodology used in a Monte Carlo study when designing them. Being able to understand a simulation 

from a “glass box” perspective is crucial in order to evaluate its merits and, although it certainly 

complicates the process in most cases, it also, at the very least, sets the stage to have a clear, open 

understanding of what types of conclusions can be generalized from the results. A good practical 

benchmark to use regarding how far the questioning of a simulation design should go could potentially 

be the point at which switching designs or methodologies has no bearing on the conclusions obtained. 

Chapter 3 of this dissertation shows that, once the sample size of 1000 is reached, the type of data 

generated both by the Headrick (2002) and Vale-Maurelli (1983) methods and the practical 

recommendations they imply are somewhat similar. Therefore, for large-sample type simulations, using 

either method would probably make no difference and its choice would depend solely on the 

researcher’s preference. 
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Statistical theory, the design of the simulation, and its practical computer implementation are 

the three elements of a Monte Carlo study that researchers need to align in order to obtain reliable 

conclusions aimed at informing data practice. Whenever any of these three elements is not in 

concordance with the other two, the implicit assumption of their overlap is introduced in order to 

preserve the balance of the design and to obtain valid conclusions. Depending on the particular 

situation, sometimes this perfect overlap is not possible (in which case it needs to be acknowledged) 

and sometimes, even though it is possible, it can be missed by the researcher. The significance of this 

issue is crucial and cannot be emphasized enough in order to evaluate computer experiments with the 

same strict standards that we have for every day, real-life experiments. Those of us involved in the 

advancement of methodology and statistics need to set the example in terms of good design and data 

practice if we are to successfully navigate the changing zeitgeist taking place within the social sciences. 

The Crisis of Replicability and overall critiquing of the prevalent methods in science have brought into 

question many of the old research paradigms within psychology and its influence is beginning to 

reverberate across many other fields. It is my belief that this change in zeitgeist will eventually permeate 

the field of quantitative methods and we, as people of numbers, need to be ready to accept it and move 

on into whichever new endeavours the future holds for us.  
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Appendix A: Bounds of correlation coefficient for lognormal-distributed marginals. 

 
Without loss of generality, assume:  
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  follows a standard log-normal distribution. 
 
From the definition of the log-normal distribution’s mean and variance and the population values 
specified above, it is possible to determine: 
 

               
  

     
  

        
 

                (   
  )      

                          . 

 
For the readers interested in knowing how the mean and variance of the log-normal distribution are 
derived, consult Crow and Shimizu (1988) for further details. 
 
To obtain the expected value of the cross-product         we will rely on the moment-generating 
function (MGF) of the multivariate normal distribution: 
 

                     . 
 
Since the MGF is expressed in terms of exponentiated random variables, it is a natural framework to 
obtain the moments of the log-normal distribution. By setting t=1: 
 

                         
       (    *

 
 
+  
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] *
 
 
+)   

   (  
 

 
      )               

 
Now all the elements are in place to define the correlation between   and   in the population: 
  

             
                  

√       √       
  

             

√    √    
 

     

    
 

       

      
 

    

   
  

 
For     : 

           
   

   
     

 
For     : 
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Therefore as     the Pearson correlation between two standard log-normal random variables can 
never go below     . 
 
A quick simulation in R yields: 
 

n <- 10000000 

z1 <- rnorm(n, 0, 1) 

z2 <- rnorm(n, 0, 1) 

 

x1 <- exp(z1) 

x2 <- exp(z2) 

 

cor(sort(x1, decreasing=T), sort(x2, decreasing=F), method="pearson") 

[1] -0.3678432 
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Appendix B: Convergence of the sample    to its population definition 

 
Consider the formula for the sample product-moment correlation coefficient. 
 

  
∑      ̅      ̅  

   

√∑      ̅  
   

 √∑      ̅  
   

 

 

 
Since both   and    are ranked variables with no ties, they consist of natural numbers from 1 to n.  
 
Therefore, the denominator can be expressed as: 
 

√∑      ̅   
   √∑      ̅   

    √∑      ̅   
   √∑      ̅   

    ∑      ̅   
   , 

 
because the order of the ranks does not influence their mean value or their sum of squared differences. 
 
Expanding the binomial one obtains: 
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And by using the identities of the sum of n and n2 consecutive natural numbers, the above expression can be 
formulated as: 
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For the numerator:  
 

∑     ̅      ̅ 
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 ∑      [
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And by letting            to define them as ranks, it is possible to obtain the same expression for the 

Spearman rank correlation as found in equation (2.4): 
 

  ̂  
∑                    

   

          
  

 
In order to obtain the population value of this expression, one needs to take the limit    . Split the 
previous expression as: 
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  ̂  
∑       

 
   

          
 

           

          
 

 
And take each limit independently. For the section of the previous expression to the right of the 
negative sign, one can do: 
 

           

          
 

      

 
      

  

 
        

       
  

      

          
  

   

   
 

 
The limit     is a classical application of L’Hôpital’s rule which results in: 
 

    
   

   

   
          

 
For the left section, invoke the definition of an integral as the limit of a Riemann sum: 
 

∫          
   

∑               

 

   

 

 
Therefore, for the cumulative density functions            : 
 

∫                      
   

∑                                    

 

   

  

 
Without loss of generality, remember that, by definition,               . Since                   are 
randomly selected samples (i.e. each    has equal probability of being selected), it is possible to see that: 
 

                                
                               

                               
  

                   

 
 

 
By the same logic and because       and        are ordered to be strictly increasing,              is the 

smallest value bigger than         . Therefore, as     it is possible to see: 
 

   
   

       
   
 

                   
   

       
   

 
                  

   
                       

 

 
 

 
with     and     being the ranking position of        as defined above. Finally joining all the limiting quantities 

one can see: 
 

∫                      
   

∑
   
 

   

 

 

 

 

   

     
   

∑       
 
   

  
 

 
Since for simple polynomial expression, like in the denominator, only the largest exponent defines the rate of  
convergence on the limit, one can trivially re-arrange the denominator such that: 
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∫                      
   

∑       
 
   

  
     

   

∑       
 
   

    
     

   

∑       
 
   

       
 

 
Therefore, all the elements are present to obtain the population version of the Spearman rank correlation 
expressed as: 
 

     ∫                    

 
To re-express    using copulas, it suffices to remind the reader that that both       and       are uniformly 
distributed over the domain *0,1+ and that, by Sklar’s theorem, one can express any multidimensional joint 
distribution function in terms of its univariate marginals and respective copula function.  Therefore: 
 

     ∫                      ∫                

 

As shown in Joe (2014), notice that ∫               (           ) with   ,    and         

independent of one another.    and     follow standard uniform distributions and the joint distribution 
         can be expressed as the copula         . Taking the complement of the copula function (i.e. the 

survival function), it is possible to switch the integrand as: 
 

     ∫                  ∫  ̅(     )         

 

And using the identity  ̅(     )                   found in Nelsen (2010), the pervious integral 

can be evaluated to result in: 
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Appendix C: Generalization of the Pearson identity for graded correlation   

 
Consider the population version of the Spearman rank correlation expressed as: 
 

     ∫ (       )         ∫        (  )  (     )    

 
Where F is the cumulative density function for the bivariate normal random variable         with standard 

normal marginal distributions       and correlation coefficient    
 
Notice that: 

 

  ∫        (  )  (     )      ∫        (  ) (     )            [            ]    

 

Where  (     ) is the probability density function of the bivariate normal distribution and          (  ) 

are uniformly distributed.  
 
Consider the bivariate normal random variable           with standard normal marginal distributions     and 

    but with components independent of one another and of         so that   
     

          .  

 
Define the bivariate distribution       

       
  . This distribution is in itself bivariate normal with: 
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Then it is possible to see: 
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By the law of total probability and symmetry we also have: 

 

 {      
  (     

 )   }   {     
        

         
        

   }  

 {      
  (     

 )   }    {     
        

   } 

 
And so this equality holds: 

 

 [            ]   {     
        

   } 
 
For the case of the bivariate standard normal distribution (i.e.         follow a bivariate normal distribution 
with standard normal marginals), the normal quadrant probability theorem states: 
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Therefore one can make the equivalence: 
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Substituting this in the population definition of the Spearman correlation with a Gaussian copula then results 
in: 

     ∫        (  )  (     )       [            ]      [
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which yields the desired identity: 
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Appendix D: Population factor models for chapter 3, study 1 

 
Three Factor Model for Curran, West & Finch (1996) with 9 indicators (“Model 1”) 

 

 

 

One Factor Base Model from Flora & Curran (2004) with 10 indicators. 
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Latent Mediation Model from Finch, West and MacKinnon (1997)   

 

 

Bivariate correlation from Skidmore and Thompson (2011) 

 

 

 
 

 

 
 
 



112 
 

 
 
 

Appendix E: Analysis of solutions for the Fleishman system of polynomial equations 

 
The polynomial system defined by Fleishman (1978) is: 
 

      
 

    

                   
 

    

                        
 

    

                                                     
 
By Bézout’s theorem of homogeneous polynomial equations, the maximum number of solutions for this 
system is 24. Readers interested in the details of this theorem please consult Lang (2014). What follows 
is a demonstration of the number of real-valued solutions to this system. 
 
Take                   and express it in terms of c. It then becomes apparent that: 
 

                           √
               

 
 

 
 
are solutions to the system in terms of b and d. Coefficients b and d also need to satisfy the constraints: 
 

                                
  

                  
 

 
By the symmetry of the inequality               it is possible to see that if the set       is a 
solution to the system, then         is also a solution to the system. It now becomes apparent that 
whether one uses       or        , coefficient   has two possible real-valued solutions in terms its 
positive and the negative radical expression. And since coefficient   is fully determined by the sign of   it 
can only take on two values,      . Therefore we have two solutions (with switching signs) for       
and two solutions for       making it a total of 4 possible solution sets. 
 
With this fact established, the task is now to explore possible bounds for the         values to obtain 
real-valued solutions to the system. For simplicity we will not consider solutions of a because its values 
are fully determined by any solution obtained for c. 
 
Take                   and solve for   to obtain: 
 

   √             
 

We will only now work with    √             while keeping in mind that, by symmetry, any 
algebraic solution to the positive radical of   will also be a solution to the negative radical.  
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Substituting this expression for   in the other two equations yields the new system: 
 

      *     (    √         )+       

 

   *      (           √         )

  (         √              √         )+      

 
 
which has two equations in with two unknowns. 
 
Maple version 13 (Monagan et.al., 2012) was used to solve the second equation containing    in order 
to derive closed form expressions for c and d . In total, 12 possible solutions were found. given the 
following conditions. Notice that not all solutions are reproduced given the complexity both of the 
conditions and the high-degree polynomial expressions.  
 
If    : 
 

    √  √ √     

  
           √  √ √     

  
  

 
 
 

If  √      √ √              then: 

 

    √      √ √           

     
          √      √ √           

     
         

 
 

    √      √ √           

    
           √      √ √           

    
 

 
Notice that in the second case, there truly  are only 4 (not 8) different solutions because the conditions: 
 

√      √ √              and  √      √ √              

 
are the same for purposes of obtaining the bounds of         that make the system have real-valued 
roots.  
 
Substituting either the positive or negative radical expressions for       in the first equation of the new 
system gives the final conditions for         to be real-valued as follows. 
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IF   √      √ √              AND: 

 

   

 (     √   √      √ √           √      √ √              √           )

    √   
 

 
 

where    √      √ √          
 
 

 
the original Felishman (1978) polynomial system will generate real-valued solutions.  
 
At least another 7 possible conditions like this one can be derived, but some of them are high-degree 
polynomials that will have no closed-form expression. Still, this is the first account within the published 
literature where explicit bounds to the 3rd-order polynomial method are reported and could be used to 
evaluate the performance of optimizing algorithms close to the solution space. 
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APPENDIX F: Analysis of solutions for the intermediate correlation equation  

 
Vale and Maurelli’s (1983) intermediate correlation equation is defined as: 

     
      

                              

              

         

Let        
         

                                    to simplify it as: 

               

It becomes immediately apparent that this is a polynomial of the third degree. Notice that since q is 
chosen by the researcher, it is always a pre-determined constant.  

By relying on the Cardano method to find the roots of a cubic equation (readers interested in the details 
of this method can consult Mollin (1947)) it is possible to see that: 
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 √ 

 
      

where: 

  √  √     
 

 

  √  √     
 

 

with: 

  
      

   
                

              

    
 

 

The expression       is referred to as the discriminant and it describes the nature of the solutions as 
falling in one of three possible scenarios.  

If        : 

           
 

⇒         

                                       
 
⇒ 

 √ 

 
        

which implies          are all real-valued numbers, with      .  
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If          

       ⇒ √        

                                    
 
⇒            

                                                                
 
⇒ 

 √ 

 
             

 √ 

 
        

which implies   is the only real-valued root, with       being complex conjugates of one another. 

If          

       ⇒ √        

                                    
 
⇒            

                                                                
 

⇒ 
 √ 

 
             

 √ 

 
        

which implies           are all real-valued numbers and all three are solutions are different.  

A back substitution to the original polynomial coefficients yields: 

  
              

    
 

                                
   

      
    

   
 

      
   

  

  
      

   
 

                         
   

 

     
   

  

 

Since   in the discriminant is being squared, it is always positive. Therefore, the nature of the solution is 
almost exclusively defined by the numerator of  . Expanding the numerator we obtain: 

              
         

         
   

      
   

  

which does not simplify further. The cases where this expression is less than 0 (primarily for large      ) 
determine the cases where there could potentially be more than one intermediate correlation value.  
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APPENDIX G: Population factor model for study 2, chapter 4 

 
Three Factor Model for Curran, West & Finch (1996) with 9 indicators (“Model 1”) 

 

 

 


